#### Sample records for single phase model

1. Modelling a single phase voltage controlled rectifier using Laplace transforms

Science.gov (United States)

Kraft, L. Alan; Kankam, M. David

1992-01-01

The development of a 20 kHz, AC power system by NASA for large space projects has spurred a need to develop models for the equipment which will be used on these single phase systems. To date, models for the AC source (i.e., inverters) have been developed. It is the intent of this paper to develop a method to model the single phase voltage controlled rectifiers which will be attached to the AC power grid as an interface for connected loads. A modified version of EPRI's HARMFLO program is used as the shell for these models. The results obtained from the model developed in this paper are quite adequate for the analysis of problems such as voltage resonance. The unique technique presented in this paper uses the Laplace transforms to determine the harmonic content of the load current of the rectifier rather than a curve fitting technique. Laplace transforms yield the coefficient of the differential equations which model the line current to the rectifier directly.

2. Equivalence of two models in single-phase multicomponent flow simulations

KAUST Repository

Wu, Yuanqing

2016-02-28

In this work, two models to simulate the single-phase multicomponent flow in reservoirs are introduced: single-phase multicomponent flow model and two-phase compositional flow model. Because the single-phase multicomponent flow is a special case of the two-phase compositional flow, the two-phase compositional flow model can also simulate the case. We compare and analyze the two models when simulating the single-phase multicomponent flow, and then demonstrate the equivalence of the two models mathematically. An experiment is also carried out to verify the equivalence of the two models.

3. Equivalence of two models in single-phase multicomponent flow simulations

KAUST Repository

Wu, Yuanqing; Sun, Shuyu

2016-01-01

In this work, two models to simulate the single-phase multicomponent flow in reservoirs are introduced: single-phase multicomponent flow model and two-phase compositional flow model. Because the single-phase multicomponent flow is a special case of the two-phase compositional flow, the two-phase compositional flow model can also simulate the case. We compare and analyze the two models when simulating the single-phase multicomponent flow, and then demonstrate the equivalence of the two models mathematically. An experiment is also carried out to verify the equivalence of the two models.

4. An investigation of subchannel analysis models for single-phase and two-phase flow

Energy Technology Data Exchange (ETDEWEB)

Hwang, Dae Hyun

1996-01-01

The governing equations and lateral transport modelings of subchannel analysis code, which is the most widely used tool for the analysis of thermal hydraulics fields in reactor cores, have been thoroughly investigated in this study. The procedure for the derivation of subchannel integral balance equations from the local instantaneous phase equations was investigated by stages. The characteristics of governing equations according to the treatment of phase velocity were studies, and the equations based on the drift-flux equilibrium formulation have been derived. Turbulent mixing and void drift modeling, which affect considerably to the accuracy of subchannel analysis code, have been reviewed. In addition, some representative modelings of single-phase and two-phase turbulent mixing models have been introduced. (author). 5 tabs., 4 figs., 16 refs.

5. Simplified paraboloid phase model-based phase tracker for demodulation of a single complex fringe.

Science.gov (United States)

He, A; Deepan, B; Quan, C

2017-09-01

A regularized phase tracker (RPT) is an effective method for demodulation of single closed-fringe patterns. However, lengthy calculation time, specially designed scanning strategy, and sign-ambiguity problems caused by noise and saddle points reduce its effectiveness, especially for demodulating large and complex fringe patterns. In this paper, a simplified paraboloid phase model-based regularized phase tracker (SPRPT) is proposed. In SPRPT, first and second phase derivatives are pre-determined by the density-direction-combined method and discrete higher-order demodulation algorithm, respectively. Hence, cost function is effectively simplified to reduce the computation time significantly. Moreover, pre-determined phase derivatives improve the robustness of the demodulation of closed, complex fringe patterns. Thus, no specifically designed scanning strategy is needed; nevertheless, it is robust against the sign-ambiguity problem. The paraboloid phase model also assures better accuracy and robustness against noise. Both the simulated and experimental fringe patterns (obtained using electronic speckle pattern interferometry) are used to validate the proposed method, and a comparison of the proposed method with existing RPT methods is carried out. The simulation results show that the proposed method has achieved the highest accuracy with less computational time. The experimental result proves the robustness and the accuracy of the proposed method for demodulation of noisy fringe patterns and its feasibility for static and dynamic applications.

6. SINGLE PHASE ANALYTICAL MODELS FOR TERRY TURBINE NOZZLE

Energy Technology Data Exchange (ETDEWEB)

Zhao, Haihua; Zhang, Hongbin; Zou, Ling; O' Brien, James

2016-11-01

benchmarked with CFD simulations. The analytical models generally agree well with the experimental data and CFD simulations. The analytical models are suitable for implementation into a reactor system analysis code or severe accident code as part of mechanistic and dynamical models to understand the RCIC behaviors. The cases with two-phase flow at the turbine inlet will be pursued in future work.

7. Theoretical modelling and experimental investigation of single-phase and two-phase flow division at a tee-junction

International Nuclear Information System (INIS)

Lemonnier, H.; Hervieu, E.

1991-01-01

Phase separation in a tee-junction is modelled in the particular case of bubbly-flow. The model is based on a two-dimensional approach and hence, uses local equations. The first step consists in modelling the single-phase flow in the tee-junction. The free streamline theory is used to predict the flow of the continuous phase. The two recirculation zones which are presented in this case are predicted by the model. The second step consists in predicting the gas bubble paths as a result of the actions of the single-phase flow. Finally, the trajectories of gas bubbles are used to predict the separation characteristics of the tee-junction. Each step of the modelling procedure has been carefully tested by an in-depth experimental investigation. Excellent quantitative agreement is obtained between experimental results and model predictions. Moreover, the phase separation phenomenon is found to be clearly described by the model. (orig.)

8. Three-dimensional numerical modeling of turbulent single-phase and two-phase flow in curved pipes

International Nuclear Information System (INIS)

Xin, R.C.; Dong, Z.F.; Ebadian, M.A.

1996-01-01

In this study, three-dimensional single-phase and two-phase flows in curved pipes have been investigated numerically. Two different pipe configurations were computed. When the results of the single-phase flow simulation were compared with the experimental data, a fairly good agreement was achieved. A flow-developing process has been suggested in single-phase flow, in which the turbulence is stronger near the outer tube wall than near the inner tube wall. For two-phase flow, the Eulerian multiphase model was used to simulate the phase distribution of a three-dimensional gas-liquid bubble flow in curved pipe. The RNG/κ-ε turbulence model was used to determine the turbulence field. An inlet gas void fraction of 5 percent was simulated. The gas phase effects on the liquid phase flow velocity have been examined by comparing the results of single-phase flow and two-phase flow. The findings show that for the downward flow in the U bend, the gas concentrates at the inner portion of the cross section at φ = π/18 - π/6 in most cases. The results of the phase distribution simulation are compared to experimental observations qualitatively and topologically

9. Multi-scale Modeling of Compressible Single-phase Flow in Porous Media using Molecular Simulation

KAUST Repository

2016-01-01

potential model that accounts for the molecular quadrupole moment of fluids with non-spherical molecules such as CO2. The potential model was used to simulate the thermodynamic equilibrium properties for single-phase and two-phase systems using the canonical

10. POD-Galerkin Model for Incompressible Single-Phase Flow in Porous Media

KAUST Repository

Wang, Yi; Yu, Bo; Sun, Shuyu

2017-01-01

Fast prediction modeling via proper orthogonal decomposition method combined with Galerkin projection is applied to incompressible single-phase fluid flow in porous media. Cases for different configurations of porous media, boundary conditions

11. A single grain approach applied to modelling recrystallization kinetics in a single-phase metal

NARCIS (Netherlands)

Chen, S.P.; Zwaag, van der S.

2004-01-01

A comprehensive model for the recrystallization kinetics is proposed which incorporates both microstructure and the textural components in the deformed state. The model is based on the single-grain approach proposed previously. The influence of the as-deformed grain orientation, which affects the

12. Single-Phase Bundle Flows Including Macroscopic Turbulence Model

Energy Technology Data Exchange (ETDEWEB)

Lee, Seung Jun; Yoon, Han Young [KAERI, Daejeon (Korea, Republic of); Yoon, Seok Jong; Cho, Hyoung Kyu [Seoul National University, Seoul (Korea, Republic of)

2016-05-15

To deal with various thermal hydraulic phenomena due to rapid change of fluid properties when an accident happens, securing mechanistic approaches as much as possible may reduce the uncertainty arising from improper applications of the experimental models. In this study, the turbulence mixing model, which is well defined in the subchannel analysis code such as VIPRE, COBRA, and MATRA by experiments, is replaced by a macroscopic k-e turbulence model, which represents the aspect of mathematical derivation. The performance of CUPID with macroscopic turbulence model is validated against several bundle experiments: CNEN 4x4 and PNL 7x7 rod bundle tests. In this study, the macroscopic k-e model has been validated for the application to subchannel analysis. It has been implemented in the CUPID code and validated against CNEN 4x4 and PNL 7x7 rod bundle tests. The results showed that the macroscopic k-e turbulence model can estimate the experiments properly.

13. Analysis of free-surface flows through energy considerations: Single-phase versus two-phase modeling.

Science.gov (United States)

Marrone, Salvatore; Colagrossi, Andrea; Di Mascio, Andrea; Le Touzé, David

2016-05-01

The study of energetic free-surface flows is challenging because of the large range of interface scales involved due to multiple fragmentations and reconnections of the air-water interface with the formation of drops and bubbles. Because of their complexity the investigation of such phenomena through numerical simulation largely increased during recent years. Actually, in the last decades different numerical models have been developed to study these flows, especially in the context of particle methods. In the latter a single-phase approximation is usually adopted to reduce the computational costs and the model complexity. While it is well known that the role of air largely affects the local flow evolution, it is still not clear whether this single-phase approximation is able to predict global flow features like the evolution of the global mechanical energy dissipation. The present work is dedicated to this topic through the study of a selected problem simulated with both single-phase and two-phase models. It is shown that, interestingly, even though flow evolutions are different, energy evolutions can be similar when including or not the presence of air. This is remarkable since, in the problem considered, with the two-phase model about half of the energy is lost in the air phase while in the one-phase model the energy is mainly dissipated by cavity collapses.

14. Fractional single-phase-lagging heat conduction model for describing anomalous diffusion

Directory of Open Access Journals (Sweden)

T.N. Mishra

2016-03-01

Full Text Available The fractional single-phase-lagging (FSPL heat conduction model is obtained by combining scalar time fractional conservation equation to the single-phase-lagging (SPL heat conduction model. Based on the FSPL heat conduction model, anomalous diffusion within a finite thin film is investigated. The effect of different parameters on solution has been observed and studied the asymptotic behavior of the FSPL model. The analytical solution is obtained using Laplace transform method. The whole analysis is presented in dimensionless form. Numerical examples of particular interest have been studied and discussed in details.

15. Modeling and Stability Assessment of Single-Phase Grid Synchronization Techniques

DEFF Research Database (Denmark)

Golestan, Saeed; Guerrero, Josep M.; Vasquez, Juan

2018-01-01

(GSTs) is of vital importance. This task is most often based on obtaining a linear time-invariant (LTI) model for the GST and applying standard stability tests to it. Another option is modeling and dynamics/stability assessment of GSTs in the linear time-periodic (LTP) framework, which has received...... a very little attention. In this letter, the procedure of deriving the LTP model for single-phase GSTs is first demonstrated. The accuracy of the LTP model in predicting the GST dynamic behavior and stability is then evaluated and compared with that of the LTI one. Two well-known single-phase GSTs, i...

16. Modeling and Control of a Single-Phase Marine Cooling System

DEFF Research Database (Denmark)

Hansen, Michael; Stoustrup, Jakob; Bendtsen, Jan Dimon

2013-01-01

This paper presents two model-based control design approaches for a single-phase marine cooling system. Models are derived from first principles and aim at describing significant system dynamics including nonlinearities and transport delays, while keeping the model complexity low. The two...

17. A Novel Model Predictive Control for Single-Phase Grid-Connected Photovoltaic Inverters

DEFF Research Database (Denmark)

2017-01-01

Single-phase grid-connected inverters with LCL filter are widely used to connect photovoltaic systems to the utility grid. Among the existing control schemes, predictive control methods are faster and more accurate but also more complicated to implement. Recently, the Model Predictive Control (MPC......) algorithm for single-phase inverter has been presented, where the algorithm implementation is straightforward. In the MPC approach, all switching states are considered in each switching period to achieve the control objectives. However, since the number of switching states in single-phase inverters is small......, the inverter output current has a high Total Harmonic Distortions (THD). In order to reduce this, this paper presents an improved MPC for single-phase grid-connected inverters. In the proposed approach, the switching algorithm is changed and the number of the switching states is increased by means of virtual...

18. Single-Phase PLLs

DEFF Research Database (Denmark)

Golestan, Saeed; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

2017-01-01

Single-phase phase-locked loops (PLLs) are popular for the synchronization and control of single-phase gridconnected converters. They are also widely used for monitoring and diagnostic purposes in the power and energy areas. In recent years, a large number of single-phase PLLs with different stru......-PLLs). The members of each category are then described and their pros and cons are discussed. This work provides a deep insight into characteristics of different single-phase PLLs and, therefore, can be considered as a reference for researchers and engineers....

19. Modelling and simulation of multiple single - phase induction motor in parallel connection

Directory of Open Access Journals (Sweden)

Sujitjorn, S.

2006-11-01

Full Text Available A mathematical model for parallel connected n-multiple single-phase induction motors in generalized state-space form is proposed in this paper. The motor group draws electric power from one inverter. The model is developed by the dq-frame theory and was tested against four loading scenarios in which satisfactory results were obtained.

20. High Quality Model Predictive Control for Single Phase Grid Connected Photovoltaic Inverters

DEFF Research Database (Denmark)

2018-01-01

Single phase grid-connected inverters with LCL filter are widely used to connect the photovoltaic systems to the utility grid. Among the presented control schemes, predictive control methods are faster and more accurate but are more complex to implement. Recently, the model-predictive control...... algorithm for single-phase inverter has been presented, where the algorithm implementation is straightforward. In the proposed approach, all switching states are tested in each switching period to achieve the control objectives. However, since the number of the switching states in single-phase inverter...... is low, the inverter output current has a high total harmonic distortions. In order to reduce the total harmonic distortions of the injected current, this paper presents a high-quality model-predictive control for one of the newest structure of the grid connected photovoltaic inverter, i.e., HERIC...

1. DQ reference frame modeling and control of single-phase active power decoupling circuits

DEFF Research Database (Denmark)

Tang, Yi; Qin, Zian; Blaabjerg, Frede

2015-01-01

. This paper presents the dq synchronous reference frame modeling of single-phase power decoupling circuits and a complete model describing the dynamics of dc-link ripple voltage is presented. The proposed model is universal and valid for both inductive and capacitive decoupling circuits, and the input...... of decoupling circuits can be either dependent or independent of its front-end converters. Based on this model, a dq synchronous reference frame controller is designed which allows the decoupling circuit to operate in two different modes because of the circuit symmetry. Simulation and experimental results...... are presented to verify the effectiveness of the proposed modeling and control method....

2. Phase-coexistence simulations of fluid mixtures by the Markov Chain Monte Carlo method using single-particle models

KAUST Repository

Li, Jun; Calo, Victor M.

2013-01-01

models although its deviation in the liquid phase is greater. Since the single-particle model reduces the particle number and avoids the time-consuming Ewald summation used to evaluate Coulomb interactions, the proposed model improves the computational

3. A High-Rate, Single-Crystal Model including Phase Transformations, Plastic Slip, and Twinning

Energy Technology Data Exchange (ETDEWEB)

Addessio, Francis L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Bronkhorst, Curt Allan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Bolme, Cynthia Anne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Explosive Science and Shock Physics Division; Brown, Donald William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Cerreta, Ellen Kathleen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Lebensohn, Ricardo A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Lookman, Turab [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Luscher, Darby Jon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Mayeur, Jason Rhea [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Morrow, Benjamin M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Rigg, Paulo A. [Washington State Univ., Pullman, WA (United States). Dept. of Physics. Inst. for Shock Physics

2016-08-09

An anisotropic, rate-­dependent, single-­crystal approach for modeling materials under the conditions of high strain rates and pressures is provided. The model includes the effects of large deformations, nonlinear elasticity, phase transformations, and plastic slip and twinning. It is envisioned that the model may be used to examine these coupled effects on the local deformation of materials that are subjected to ballistic impact or explosive loading. The model is formulated using a multiplicative decomposition of the deformation gradient. A plate impact experiment on a multi-­crystal sample of titanium was conducted. The particle velocities at the back surface of three crystal orientations relative to the direction of impact were measured. Molecular dynamics simulations were conducted to investigate the details of the high-­rate deformation and pursue issues related to the phase transformation for titanium. Simulations using the single crystal model were conducted and compared to the high-­rate experimental data for the impact loaded single crystals. The model was found to capture the features of the experiments.

4. On Thermodynamics Problems in the Single-Phase-Lagging Heat Conduction Model

Directory of Open Access Journals (Sweden)

Shu-Nan Li

2016-11-01

Full Text Available Thermodynamics problems for the single-phase-lagging (SPL model have not been much studied. In this paper, the violation of the second law of thermodynamics by the SPL model is studied from two perspectives, which are the negative entropy production rate and breaking equilibrium spontaneously. The methods for the SPL model to avoid the negative entropy production rate are proposed, which are extended irreversible thermodynamics and the thermal relaxation time. Modifying the entropy production rate positive or zero is not enough to avoid the violation of the second law of thermodynamics for the SPL model, because the SPL model could cause breaking equilibrium spontaneously in some special circumstances. As comparison, it is shown that Fourier’s law and the CV model cannot break equilibrium spontaneously by analyzing mathematical energy integral.

5. POD-Galerkin Model for Incompressible Single-Phase Flow in Porous Media

KAUST Repository

Wang, Yi

2017-01-25

Fast prediction modeling via proper orthogonal decomposition method combined with Galerkin projection is applied to incompressible single-phase fluid flow in porous media. Cases for different configurations of porous media, boundary conditions and problem scales are designed to examine the fidelity and robustness of the model. High precision (relative deviation 1.0 x 10(-4)% similar to 2.3 x 10(-1)%) and large acceleration (speed-up 880 similar to 98454 times) of POD model are found in these cases. Moreover, the computational time of POD model is quite insensitive to the complexity of problems. These results indicate POD model is especially suitable for large-scale complex problems in engineering.

6. Single-phase sodium pump model for LMFBR thermal-hydraulic analysis

International Nuclear Information System (INIS)

Madni, I.K.; Cazzoli, E.G.; Agrawal, A.K.

1979-01-01

A single-phase, homologous pump model has been developed for simulation of safety-related transients in LMFBR systems. Pump characteristics are modeled by homologous head and torque relations encompassing all regimes of operation. These relations were derived from independent model test results with a centrifugal pump of specific speed equal to 35 (SI units) or 1800 (gpm units), and are used to analyze the steady-state and transient behavior of sodium pumps in a number of LMFBR plants. Characteristic coefficients for the polynomials in all operational regimes are provided in a tabular form. The speed and flow dependence of head is included through solutions of the impeller and coolant dynamic equations. Results show the model to yield excellent agreement with experimental data in sodium for the FFTF prototype pump, and with vendor calculations for the CRBR pump. A sample pipe rupture calculation is also performed to demonstrate the necessity for modeling the complete pump characteristics

7. Single-phase pump model for analysis of LMFBR heat transport systems

International Nuclear Information System (INIS)

1978-05-01

A single-phase pump model for transient and steady-state analysis of LMFBR heat transport systems is presented. Fundamental equations of the model are angular momentum balance to determine transient impeller speed and mass balance (including thermal expansion effects) to determine the level of sodium in the pump tank. Pump characteristics are modeled by homologous head and torque relations. All regions of pump operation are represented with reverse rotation allowed. The model also includes option for enthalpy rise calculations and pony motor operation. During steady state, the pump operating speed is determined by matching required head with total load in the circuit. Calculated transient results are presented for pump coastdown and double-ended pipe break accidents. The report examines the influence of frictional torque and specific speed on predicted response for the pump coastdown to natural circulation transient. The results for a double-ended pipe break accident indicate the necessity of including all regions of operation for pump characteristics

8. Multi-scale Modeling of Compressible Single-phase Flow in Porous Media using Molecular Simulation

KAUST Repository

2016-05-01

In this study, an efficient coupling between Monte Carlo (MC) molecular simulation and Darcy-scale flow in porous media is presented. The cell-centered finite difference method with a non-uniform rectangular mesh were used to discretize the simulation domain and solve the governing equations. To speed up the MC simulations, we implemented a recently developed scheme that quickly generates MC Markov chains out of pre-computed ones, based on the reweighting and reconstruction algorithm. This method astonishingly reduces the required computational time by MC simulations from hours to seconds. In addition, the reweighting and reconstruction scheme, which was originally designed to work with the LJ potential model, is extended to work with a potential model that accounts for the molecular quadrupole moment of fluids with non-spherical molecules such as CO2. The potential model was used to simulate the thermodynamic equilibrium properties for single-phase and two-phase systems using the canonical ensemble and the Gibbs ensemble, respectively. Comparing the simulation results with the experimental data showed that the implemented model has an excellent fit outperforming the standard LJ model. To demonstrate the strength of the proposed coupling in terms of computational time efficiency and numerical accuracy in fluid properties, various numerical experiments covering different compressible single-phase flow scenarios were conducted. The novelty in the introduced scheme is in allowing an efficient coupling of the molecular scale and Darcy scale in reservoir simulators. This leads to an accurate description of the thermodynamic behavior of the simulated reservoir fluids; consequently enhancing the confidence in the flow predictions in porous media.

9. A two-phase inspection model for a single component system with three-stage degradation

International Nuclear Information System (INIS)

Wang, Huiying; Wang, Wenbin; Peng, Rui

2017-01-01

This paper presents a two-phase inspection schedule and an age-based replacement policy for a single plant item contingent on a three-stage degradation process. The two phase inspection schedule can be observed in practice. The three stages are defined as the normal working stage, low-grade defective stage and critical defective stage. When an inspection detects that an item is in the low-grade defective stage, we may delay the preventive replacement action if the time to the age-based replacement is less than or equal to a threshold level. However, if it is above this threshold level, the item will be replaced immediately. If the item is found in the critical defective stage, it is replaced immediately. A hybrid bee colony algorithm is developed to find the optimal solution for the proposed model which has multiple decision variables. A numerical example is conducted to show the efficiency of this algorithm, and simulations are conducted to verify the correctness of the model. - Highlights: • A two-phase inspection model is studied. • The failure process has three stages. • The delayed replacement is considered.

10. Model Building of Photovoltaic Array with MPPT Function and Research on Single Phase Grid Connected

Directory of Open Access Journals (Sweden)

Li Zhengzhou

2016-01-01

Full Text Available With the continued development of solar photovoltaic technology, research on distributed grid connected photovoltaic system has become a research focus in the field of photovoltaic grid power plant and the computer simulation technology is an effective technology means in the study. On the basis of the photovoltaic array output characteristic equation, the photovoltaic array maximum power control simulation model based on M function is established by using MATLAB/Simulink and the simulation model of single phase grid connected photovoltaic array is proposed. It overcomes the shortcomings of the process of building the model of the PV array by using Simulink component library and provides the basic guarantee for the realization of system simulation, guiding theory research and system design.

11. Nonlinear Dynamic Model of Power Plants with Single-Phase Coolant Reactors

International Nuclear Information System (INIS)

Vollmer, H.

1968-12-01

The traditional way of developing dynamic models for a specific nuclear power plant and for specific purpose seems rather uneconomical, as much of the information often can not be utilized if the plant design or the required accuracy of the calculation is desired to be changed. It is therefore suggested that the model development may be made more systematic, general and flexible by - applying the 'box of bricks' system, where the main components of a nuclear power plant are treated separately and combined afterwards according to a given flow scheme, - a dynamic determination of the components which is as general as possible without taking into account those details which have a minor influence on the overall dynamics, - providing approximations of the more rigorous solution sufficient to meet the user s requirements on accuracy, - proper use of computers. A dynamic model for single-phase coolant reactor plants is established along these lines. By separation of the nonlinear and linear parts of the system, application of Laplace transformation and proper approximations, and the use of a hybrid computer it seems possible to determine the (nonlinear) dynamic behaviour of such a plant for perturbations which are not so large that phase changes of physical parameters occur, e. g. fuel does not melt. The model is applied to a steam cooled fast reactor power plant

12. Nonlinear Dynamic Model of Power Plants with Single-Phase Coolant Reactors

Energy Technology Data Exchange (ETDEWEB)

Vollmer, H

1968-12-15

The traditional way of developing dynamic models for a specific nuclear power plant and for specific purpose seems rather uneconomical, as much of the information often can not be utilized if the plant design or the required accuracy of the calculation is desired to be changed. It is therefore suggested that the model development may be made more systematic, general and flexible by - applying the 'box of bricks' system, where the main components of a nuclear power plant are treated separately and combined afterwards according to a given flow scheme, - a dynamic determination of the components which is as general as possible without taking into account those details which have a minor influence on the overall dynamics, - providing approximations of the more rigorous solution sufficient to meet the user s requirements on accuracy, - proper use of computers. A dynamic model for single-phase coolant reactor plants is established along these lines. By separation of the nonlinear and linear parts of the system, application of Laplace transformation and proper approximations, and the use of a hybrid computer it seems possible to determine the (nonlinear) dynamic behaviour of such a plant for perturbations which are not so large that phase changes of physical parameters occur, e. g. fuel does not melt. The model is applied to a steam cooled fast reactor power plant.

13. Analytical Modeling Of The Steinmetz Coefficient For Single-Phase Transformer Eddy Current Loss Prediction

Directory of Open Access Journals (Sweden)

T. Aly Saandy

2015-08-01

Full Text Available Abstract This article presents to an analytical calculation methodology of the Steinmetz coefficient applied to the prediction of Eddy current loss in a single-phase transformer. Based on the electrical circuit theory the active power consumed by the core is expressed analytically in function of the electrical parameters as resistivity and the geometrical dimensions of the core. The proposed modeling approach is established with the duality parallel series. The required coefficient is identified from the empirical Steinmetz data based on the experimented active power expression. To verify the relevance of the model validations both by simulations with two in two different frequencies and measurements were carried out. The obtained results are in good agreement with the theoretical approach and the practical results.

14. A single-phase model for liquid-feed DMFCs with non-Tafel kinetics

Energy Technology Data Exchange (ETDEWEB)

Vera, Marcos [Area de Mecanica de Fluidos, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganes (Spain)

2007-09-27

An isothermal single-phase 3D/1D model for liquid-feed direct methanol fuel cells (DMFC) is presented. Three-dimensional (3D) mass, momentum and species transport in the anode channels and gas diffusion layer is modeled using a commercial, finite-volume based, computational fluid dynamics (CFD) software complemented with user supplied subroutines. The 3D model is locally coupled to a one-dimensional (1D) model accounting for the electrochemical reactions in both the anode and the cathode, which provides a physically sound boundary condition for the velocity and methanol concentration fields at the anode gas diffusion layer/catalyst interface. The 1D model - comprising the membrane-electrode assembly, cathode gas diffusion layer, and cathode channel - assumes non-Tafel kinetics to describe the complex kinetics of the multi-step methanol oxidation reaction at the anode, and accounts for the mixed potential associated with methanol crossover, induced both by diffusion and electro-osmotic drag. Polarization curves computed for various methanol feed concentrations, temperatures, and methanol feed velocities show good agreement with recent experimental results. The spatial distribution of methanol in the anode channels, together with the distributions of current density, methanol crossover and fuel utilization at the anode catalyst layer, are also presented for different opperating conditions. (author)

15. Modelling of the modified-LLCL-filter-based single-phase grid-tied Aalborg inverter

DEFF Research Database (Denmark)

Liu, Zifa; Wu, Huiyun; Liu, Yuan

2017-01-01

Owing to less conduction and switching power losses, the recently proposed Aalborg inverter has high efficiency within a wide range of input DC voltage for single-phase DC/AC power conversion. In theory, the conduction power losses can be further decreased, if an LLCL-filter is adopted instead...... of an LCL-filter for a voltage source inverter, mainly due to the reduced inductance. The Aalborg inverter shows the characteristic of a current source inverter, when working in the boost' state. Whether the LLCL-filter can meet the control requirement of this type inverter needs to be further explored....... In this study, the small signal analysis for the modified-LLCL-filter-based Aalborg inverter is addressed. Through the modelling, it can be proven that compared with the LCL-filter, the modified-LLCL-filter causes no extra control challenge for the Aalborg inverter, and therefore more inductance in the power...

16. Phase-coexistence simulations of fluid mixtures by the Markov Chain Monte Carlo method using single-particle models

KAUST Repository

Li, Jun

2013-09-01

We present a single-particle Lennard-Jones (L-J) model for CO2 and N2. Simplified L-J models for other small polyatomic molecules can be obtained following the methodology described herein. The phase-coexistence diagrams of single-component systems computed using the proposed single-particle models for CO2 and N2 agree well with experimental data over a wide range of temperatures. These diagrams are computed using the Markov Chain Monte Carlo method based on the Gibbs-NVT ensemble. This good agreement validates the proposed simplified models. That is, with properly selected parameters, the single-particle models have similar accuracy in predicting gas-phase properties as more complex, state-of-the-art molecular models. To further test these single-particle models, three binary mixtures of CH4, CO2 and N2 are studied using a Gibbs-NPT ensemble. These results are compared against experimental data over a wide range of pressures. The single-particle model has similar accuracy in the gas phase as traditional models although its deviation in the liquid phase is greater. Since the single-particle model reduces the particle number and avoids the time-consuming Ewald summation used to evaluate Coulomb interactions, the proposed model improves the computational efficiency significantly, particularly in the case of high liquid density where the acceptance rate of the particle-swap trial move increases. We compare, at constant temperature and pressure, the Gibbs-NPT and Gibbs-NVT ensembles to analyze their performance differences and results consistency. As theoretically predicted, the agreement between the simulations implies that Gibbs-NVT can be used to validate Gibbs-NPT predictions when experimental data is not available. © 2013 Elsevier Inc.

17. Berry phase of primordial scalar and tensor perturbations in single-field inflationary models

Science.gov (United States)

2018-06-01

In the framework of the single-field slow-roll inflation, we derive the Hamiltonian of the linear primordial scalar and tensor perturbations in the form of time-dependent harmonic oscillator Hamiltonians. We find the invariant operators of the resulting Hamiltonians and use their eigenstates to calculate the adiabatic Berry phase for sub-horizon modes in terms of the Lewis-Riesenfeld phase. We conclude by discussing the discrepancy in the results of Pal et al. (2013) [21] for these Berry phases, which is resolved to yield agreement with our results.

18. Low-Complexity Model Predictive Control of Single-Phase Three-Level Rectifiers with Unbalanced Load

DEFF Research Database (Denmark)

Ma, Junpeng; Song, Wensheng; Wang, Xiongfei

2018-01-01

The fluctuation of the neutral-point potential in single-phase three-level rectifiers leads to coupling between the line current regulation and dc-link voltage balancing, deteriorating the quality of line current. For addressing this issue, this paper proposes a low-complexity model predictive...

19. Can stochastic consumer phase models in QMRA be simplified to a single factor?

DEFF Research Database (Denmark)

Neves, Maria Ines; Mungai, Sylvester N.; Nauta, Maarten J.

2018-01-01

, and a consumer phase model (CPM) needs to be included in a QMRA to allow an evaluation of the effectiveness of intervention measures in food production and processing in terms of human health risk. However, the development of a CPM is complex because consumer practices can be highly variable and data are scarce......In quantitative microbiological risk assessment (QMRA), the consumer phase covers the part of the food chain following production and retail, where the consumer transports, stores, prepares and consumes the food products considered. These consumer practices have a crucial impact on exposure......-implemented and their equivalent surrogate models were derived, basing the value of the constant surrogate model factor on the absolute risk estimate from the stochastic model. The performances of the models were evaluated by comparing the effects of hypothetical intervention measures that reduce the mean or the standard...

20. Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part I: Single layer cloud

Energy Technology Data Exchange (ETDEWEB)

Klein, S A; McCoy, R B; Morrison, H; Ackerman, A; Avramov, A; deBoer, G; Chen, M; Cole, J; DelGenio, A; Golaz, J; Hashino, T; Harrington, J; Hoose, C; Khairoutdinov, M; Larson, V; Liu, X; Luo, Y; McFarquhar, G; Menon, S; Neggers, R; Park, S; Poellot, M; von Salzen, K; Schmidt, J; Sednev, I; Shipway, B; Shupe, M; Spangenberg, D; Sud, Y; Turner, D; Veron, D; Falk, M; Foster, M; Fridlind, A; Walker, G; Wang, Z; Wolf, A; Xie, S; Xu, K; Yang, F; Zhang, G

2008-02-27

Results are presented from an intercomparison of single-column and cloud-resolving model simulations of a cold-air outbreak mixed-phase stratocumulus cloud observed during the Atmospheric Radiation Measurement (ARM) program's Mixed-Phase Arctic Cloud Experiment. The observed cloud occurred in a well-mixed boundary layer with a cloud top temperature of -15 C. The observed liquid water path of around 160 g m{sup -2} was about two-thirds of the adiabatic value and much greater than the mass of ice crystal precipitation which when integrated from the surface to cloud top was around 15 g m{sup -2}. The simulations were performed by seventeen single-column models (SCMs) and nine cloud-resolving models (CRMs). While the simulated ice water path is generally consistent with the observed values, the median SCM and CRM liquid water path is a factor of three smaller than observed. Results from a sensitivity study in which models removed ice microphysics indicate that in many models the interaction between liquid and ice-phase microphysics is responsible for the large model underestimate of liquid water path. Despite this general underestimate, the simulated liquid and ice water paths of several models are consistent with the observed values. Furthermore, there is some evidence that models with more sophisticated microphysics simulate liquid and ice water paths that are in better agreement with the observed values, although considerable scatter is also present. Although no single factor guarantees a good simulation, these results emphasize the need for improvement in the model representation of mixed-phase microphysics. This case study, which has been well observed from both aircraft and ground-based remote sensors, could be a benchmark for model simulations of mixed-phase clouds.

1. Improving Performance of LVRT Capability in Single-phase Grid-tied PV Inverters by a Model Predictive Controller

DEFF Research Database (Denmark)

2018-01-01

dynamic response and stability. To fill in this gap, this paper presents a fast and robust current controller based on a Model-Predictive Control (MPC) for single-phase PV inverters in other to deal with the LVRT operation. In order to confirm the effectiveness of the proposed controller, results...... the voltage sag period is short, a fast dynamic performance along with a soft behavior of the controller is the most important issue in the LVRT duration. Recently, some methods like Proportional Resonant (PR) controllers, have been presented to control the single phase PV systems in LVRT mode. However......, these methods have had uncertainties in respect their contribution in LVRT mode. In PR controllers, a fast dynamic response can be obtained by tuning the gains of PR controllers for a high bandwidth, but typically the phase margin is decreased. Therefore, the design of PR controllers needs a tradeoff between...

2. Guidelines for the formulation of Lagrangian stochastic models for particle simulations of single-phase and dispersed two-phase turbulent flows

Science.gov (United States)

Minier, Jean-Pierre; Chibbaro, Sergio; Pope, Stephen B.

2014-11-01

In this paper, we establish a set of criteria which are applied to discuss various formulations under which Lagrangian stochastic models can be found. These models are used for the simulation of fluid particles in single-phase turbulence as well as for the fluid seen by discrete particles in dispersed turbulent two-phase flows. The purpose of the present work is to provide guidelines, useful for experts and non-experts alike, which are shown to be helpful to clarify issues related to the form of Lagrangian stochastic models. A central issue is to put forward reliable requirements which must be met by Lagrangian stochastic models and a new element brought by the present analysis is to address the single- and two-phase flow situations from a unified point of view. For that purpose, we consider first the single-phase flow case and check whether models are fully consistent with the structure of the Reynolds-stress models. In the two-phase flow situation, coming up with clear-cut criteria is more difficult and the present choice is to require that the single-phase situation be well-retrieved in the fluid-limit case, elementary predictive abilities be respected and that some simple statistical features of homogeneous fluid turbulence be correctly reproduced. This analysis does not address the question of the relative predictive capacities of different models but concentrates on their formulation since advantages and disadvantages of different formulations are not always clear. Indeed, hidden in the changes from one structure to another are some possible pitfalls which can lead to flaws in the construction of practical models and to physically unsound numerical calculations. A first interest of the present approach is illustrated by considering some models proposed in the literature and by showing that these criteria help to assess whether these Lagrangian stochastic models can be regarded as acceptable descriptions. A second interest is to indicate how future

3. Guidelines for the formulation of Lagrangian stochastic models for particle simulations of single-phase and dispersed two-phase turbulent flows

International Nuclear Information System (INIS)

Minier, Jean-Pierre; Chibbaro, Sergio; Pope, Stephen B.

2014-01-01

In this paper, we establish a set of criteria which are applied to discuss various formulations under which Lagrangian stochastic models can be found. These models are used for the simulation of fluid particles in single-phase turbulence as well as for the fluid seen by discrete particles in dispersed turbulent two-phase flows. The purpose of the present work is to provide guidelines, useful for experts and non-experts alike, which are shown to be helpful to clarify issues related to the form of Lagrangian stochastic models. A central issue is to put forward reliable requirements which must be met by Lagrangian stochastic models and a new element brought by the present analysis is to address the single- and two-phase flow situations from a unified point of view. For that purpose, we consider first the single-phase flow case and check whether models are fully consistent with the structure of the Reynolds-stress models. In the two-phase flow situation, coming up with clear-cut criteria is more difficult and the present choice is to require that the single-phase situation be well-retrieved in the fluid-limit case, elementary predictive abilities be respected and that some simple statistical features of homogeneous fluid turbulence be correctly reproduced. This analysis does not address the question of the relative predictive capacities of different models but concentrates on their formulation since advantages and disadvantages of different formulations are not always clear. Indeed, hidden in the changes from one structure to another are some possible pitfalls which can lead to flaws in the construction of practical models and to physically unsound numerical calculations. A first interest of the present approach is illustrated by considering some models proposed in the literature and by showing that these criteria help to assess whether these Lagrangian stochastic models can be regarded as acceptable descriptions. A second interest is to indicate how future

4. Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part I: Single layer cloud

Energy Technology Data Exchange (ETDEWEB)

Klein, Stephen A.; McCoy, Renata B.; Morrison, Hugh; Ackerman, Andrew S.; Avramov, Alexander; de Boer, Gijs; Chen, Mingxuan; Cole, Jason N.S.; Del Genio, Anthony D.; Falk, Michael; Foster, Michael J.; Fridlind, Ann; Golaz, Jean-Christophe; Hashino, Tempei; Harrington, Jerry Y.; Hoose, Corinna; Khairoutdinov, Marat F.; Larson, Vincent E.; Liu, Xiaohong; Luo, Yali; McFarquhar, Greg M.; Menon, Surabi; Neggers, Roel A. J.; Park, Sungsu; Poellot, Michael R.; Schmidt, Jerome M.; Sednev, Igor; Shipway, Ben J.; Shupe, Matthew D.; Spangenberg, Douglas A.; Sud, Yogesh C.; Turner, David D.; Veron, Dana E.; von Salzen, Knut; Walker, Gregory K.; Wang, Zhien; Wolf, Audrey B.; Xie, Shaocheng; Xu, Kuan-Man; Yang, Fanglin; Zhang, Gong

2009-02-02

Results are presented from an intercomparison of single-column and cloud-resolving model simulations of a cold-air outbreak mixed-phase stratocumulus cloud observed during the Atmospheric Radiation Measurement (ARM) program's Mixed-Phase Arctic Cloud Experiment. The observed cloud occurred in a well-mixed boundary layer with a cloud top temperature of -15 C. The observed average liquid water path of around 160 g m{sup -2} was about two-thirds of the adiabatic value and much greater than the average mass of ice crystal precipitation which when integrated from the surface to cloud top was around 15 g m{sup -2}. The simulations were performed by seventeen single-column models (SCMs) and nine cloud-resolving models (CRMs). While the simulated ice water path is generally consistent with the observed values, the median SCM and CRM liquid water path is a factor of three smaller than observed. Results from a sensitivity study in which models removed ice microphysics suggest that in many models the interaction between liquid and ice-phase microphysics is responsible for the large model underestimate of liquid water path. Despite this general underestimate, the simulated liquid and ice water paths of several models are consistent with the observed values. Furthermore, there is evidence that models with more sophisticated microphysics simulate liquid and ice water paths that are in better agreement with the observed values, although considerable scatter is also present. Although no single factor guarantees a good simulation, these results emphasize the need for improvement in the model representation of mixed-phase microphysics.

5. Modelling and Simulation of Single-Phase Series Active Compensator for Power Quality Improvement

Science.gov (United States)

Verma, Arun Kumar; Mathuria, Kirti; Singh, Bhim; Bhuvaneshwari, G.

2017-10-01

A single-phase active series compensator is proposed in this work to reduce harmonic currents at the ac mains and to regulate the dc link voltage of a diode bridge rectifier (DBR) that acts as the front end converter for a voltage source inverter feeding an ac motor. This ac motor drive is used in any of the domestic, commercial or industrial appliances. Under fluctuating ac mains voltages, the dc link voltage of the DBR depicts wide variations and hence the ac motor is used at reduced rating as compared to its name-plate rating. The active series compensator proposed here provides dual functions of improving the power quality at the ac mains and regulating the dc link voltage thus averting the need for derating of the ac motor.

6. General model of phospholipid bilayers in fluid phase within the single chain mean field theory

Energy Technology Data Exchange (ETDEWEB)

Guo, Yachong; Baulin, Vladimir A. [Departament d’Enginyeria Química, Universitat Rovira i Virgili, Av. dels Paisos Catalans 26, 43007 Tarragona (Spain); Pogodin, Sergey [Institute of Chemical Research of Catalonia, ICIQ, Av. Paisos Catalans 16, 43007 Tarragona (Spain)

2014-05-07

Coarse-grained model for saturated phospholipids: 1,2-didecanoyl-sn-glycero-3-phosphocholine (DCPC), 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and unsaturated phospholipids: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1,2- dioleoyl-sn-glycero-3-phosphocholine (DOPC) is introduced within the single chain mean field theory. A single set of parameters adjusted for DMPC bilayers gives an adequate description of equilibrium and mechanical properties of a range of saturated lipid molecules that differ only in length of their hydrophobic tails and unsaturated (POPC, DOPC) phospholipids which have double bonds in the tails. A double bond is modeled with a fixed angle of 120°, while the rest of the parameters are kept the same as saturated lipids. The thickness of the bilayer and its hydrophobic core, the compressibility, and the equilibrium area per lipid correspond to experimentally measured values for each lipid, changing linearly with the length of the tail. The model for unsaturated phospholipids also fetches main thermodynamical properties of the bilayers. This model is used for an accurate estimation of the free energies of the compressed or stretched bilayers in stacks or multilayers and gives reasonable estimates for free energies. The proposed model may further be used for studies of mixtures of lipids, small molecule inclusions, interactions of bilayers with embedded proteins.

7. Harmonic Instability Analysis of Single-Phase Grid Connected Converter using Harmonic State Space (HSS) modeling method

DEFF Research Database (Denmark)

Kwon, Jun Bum; Wang, Xiongfei; Bak, Claus Leth

2015-01-01

The increasing number of renewable energy sources at the distribution grid is becoming a major issue for utility companies, since the grid connected converters are operating at different operating points due to the probabilistic characteristics of renewable energy. Besides, typically, the harmonics...... proposes a new model of a single phase grid connected renewable energy source using the Harmonic State Space modeling approach, which is able to identify such problems and the model can be extended to be applied in the multiple connected converter analysis. The modeling results show the different harmonic...... and impedance from other renewable energy sources are not taken carefully into account in the installation and design. However, this may bring an unknown harmonic instability into the multiple power sourced system and also make the analysis difficult due to the complexity of the grid network. This paper...

8. RELAP-7 Progress Report: A Mathematical Model for 1-D Compressible, Single-Phase Flow Through a Branching Junction

Energy Technology Data Exchange (ETDEWEB)

Berry, R. A. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

2017-08-14

In the literature, the abundance of pipe network junction models, as well as inclusion of dissipative losses between connected pipes with loss coefficients, has been treated using the incompressible flow assumption of constant density. This approach is fundamentally, physically wrong for compressible flow with density change. This report introduces a mathematical modeling approach for general junctions in piping network systems for which the transient flows are compressible and single-phase. The junction could be as simple as a 1-pipe input and 1-pipe output with differing pipe cross-sectional areas for which a dissipative loss is necessary, or it could include an active component, between an inlet pipe and an outlet pipe, such as a pump or turbine. In this report, discussion will be limited to the former. A more general branching junction connecting an arbitrary number of pipes with transient, 1-D compressible single-phase flows is also presented. These models will be developed in a manner consistent with the use of a general equation of state like, for example, the recent Spline-Based Table Look-up method [1] for incorporating the IAPWS-95 formulation [2] to give accurate and efficient calculations for properties for water and steam with RELAP-7 [3].

9. A model of single and two-phase flow (critical or not) through cracks

International Nuclear Information System (INIS)

Seynhaeve, J.M.; Giot, M.; Granger, S.; Pages, D.

1995-07-01

The leaks through steam-generator cracks are the subject of research carried out in cooperation between EDF and UCL. A model to predict the mass flow rate with inlet subcooling has been developed, validated and published. The model takes into account the persistence of some metastable liquid in the crack. The present paper improves and extends the model, by making it applicable to all kinds of conditions prevailing in the S.G. tubes: not only subcooled water, but also saturated water, steam-water mixtures, saturated dry steam or superheated steam. Therefore, the flow at the crack inlet is analyzed and appropriate methods to initialize the numerical integration of the flow equations along the crack are proposed. The extensions of the model are still in the process of validation. However, a sensitivity analysis of its results has been made and is presented. (author)

10. Numerical modelling of single-phase flow in rough fractures with contacts

Science.gov (United States)

Olkiewicz, Piotr; Dabrowski, Marcin

2017-04-01

Fracture flow may dominate in rocks with low porosity and it can accompany both industrial and natural processes. Typical examples of such processes are natural flows in crystalline rocks and industrial flows in oil and gas production systems or hydraulic fracturing. Fracture flow provides an important mechanism for transporting mass and energy. The distribution of the apertures of fracture and contact area are the key parameters with regard to the fracture transmissivity. We use the method of correlated random fields [Mourzenko, 1996] to generate synthetic fracture geometry in 3D. The flow of an incompressible Newtonian viscous fluid in geological formation can be approximated by the Stokes, the Stokes-Brinkman or the Reynolds models. We use our own implementation of the finite element method based on MILAMIN [Dabrowski, 2008] to solve governing partial differential equation over domain. We compare the Stokes, the Stokes-Brinkamn and the Reynolds models for fracture flow based on systematic numerical simulations for a wide range of geometric parameters. Mismatch between the Reynolds and the Stokes models becomes significant with increasing fracture roughness or contact area. The Stokes-Brinkman model is more accurate than Reynolds models due to additional Laplacian term, which allows to fulfil no-slip boundary condition. We present condition when the Reynolds and the Stokes-Brinkman models are valid. In the last three decades many authors used the Reynolds equation for studying fracture flow because of its simplicity. We recommend using the Stokes-Brinkman model for fracture flow, which allows to fulfil no-slip boundary condition on asperities boundary and is more accurate for rough fractures than the Reynolds model.

11. Modeling Single-Phase PV HB-ZVR Inverter Connected to Grid

DEFF Research Database (Denmark)

Guo, Yougui; Zeng, Ping; Zhu, Jieqiong

2011-01-01

PLECS is used to model the PV H-bridge zero voltage rectifier (HB-ZVR) inverter connected to grid and good results are obtained. First, several common topologies of PV inverters are introduced. Then the unipolar PWM control strategy is described for PV HB-ZVR inverter. Third, PLECS is briefly...... introduced. Fourth, the modeling of PV HB-ZVR inverter is presented with PLECS. Finally, a series of simulations are carried out. The simulation results tell us PLECS is very powerful tool to real power circuits and it is very easy to simulate LCL filter. They have also verified that the unipolar PWM control...... strategy is feasible to control the PV HB-ZVR inverter....

12. Model Building of Photovoltaic Array with MPPT Function and Research on Single Phase Grid Connected

OpenAIRE

Li Zhengzhou

2016-01-01

With the continued development of solar photovoltaic technology, research on distributed grid connected photovoltaic system has become a research focus in the field of photovoltaic grid power plant and the computer simulation technology is an effective technology means in the study. On the basis of the photovoltaic array output characteristic equation, the photovoltaic array maximum power control simulation model based on M function is established by using MATLAB/Simulink and the simulation m...

13. Modeling Single-Phase Inverter and Its Decentralized Coordinated Control by Using Feedback Linearization

Directory of Open Access Journals (Sweden)

Renke Han

2014-01-01

Full Text Available It is a very crucial problem to make a microgrid operated reasonably and stably. Considering the nonlinear mathematics model of inverter established in this paper, the input-output feedback linearization method is used to transform the nonlinear mathematics model of inverters to a linear tracking synchronization and consensus regulation control problem. Based on the linear mathematics model and multiagent consensus algorithm, a decentralized coordinated controller is proposed to make amplitudes and angles of voltages from inverters be consensus and active and reactive power shared in the desired ratio. The proposed control is totally distributed because each inverter only requires local and one neighbor’s information with sparse communication structure based on multiagent system. The hybrid consensus algorithm is used to keep the amplitude of the output voltages following the leader and the angles of output voltage as consensus. Then the microgrid can be operated more efficiently and the circulating current between DGs can be effectively suppressed. The effectiveness of the proposed method is proved through simulation results of a typical microgrid system.

14. Structural models of increasing complexity for icosahedral boron carbide with compositions throughout the single-phase region from first principles

Science.gov (United States)

Ektarawong, A.; Simak, S. I.; Alling, B.

2018-05-01

We perform first-principles calculations to investigate the phase stability of boron carbide, concentrating on the recently proposed alternative structural models composed not only of the regularly studied B11Cp (CBC) and B12(CBC), but also of B12(CBCB) and B12( B4 ). We find that a combination of the four structural motifs can result in low-energy electron precise configurations of boron carbide. Among several considered configurations within the composition range of B10.5C and B4C , we identify in addition to the regularly studied B11Cp (CBC) at the composition of B4C two low-energy configurations, resulting in a new view of the B-C convex hull. Those are [B12 (CBC)]0.67[B12(B4)] 0.33 and [B12 (CBC)]0.67[ B12 (CBCB)]0.33, corresponding to compositions of B10.5C and B6.67C , respectively. As a consequence, B12(CBC) at the composition of B6.5C , previously suggested in the literature as a stable configuration of boron carbide, is no longer part of the B -C convex hull. By inspecting the electronic density of states as well as the elastic moduli, we find that the alternative models of boron carbide can provide a reasonably good description for electronic and elastic properties of the material in comparison with the experiments, highlighting the importance of considering B12(CBCB) and B12( B4 ), together with the previously proposed B11Cp (CBC) and B12(CBC), as the crucial ingredients for modeling boron carbide with compositions throughout the single-phase region.

15. Small-Signal Modeling, Stability Analysis and Design Optimization of Single-Phase Delay-Based PLLs

DEFF Research Database (Denmark)

Golestan, Saeed; Guerrero, Josep M.; Vidal, Ana

2016-01-01

Generally speaking, designing single-phase phaselocked loops (PLLs) is more complicated than three-phase ones, as their implementation often involves the generation of a fictitious orthogonal signal for the frame transformation. In recent years, many approaches to generate the orthogonal signal...... these issues and explore new methods to enhance their performance. The stability analysis, control design guidelines and performance comparison with the state-of-the-art PLLs are presented as well....

16. Heat transfer and velocity characteristics of single- and two-phase flows in a subsonic model gun

International Nuclear Information System (INIS)

Bicen, A.F.; Khezzar, L.; Schmidt, M.; Whitelaw, J.H.

1989-01-01

Heat transfer and velocity measurements are reported for single- and two-phase flows in the wake of an in-bore projectile propelled by an inert gas at an initial gauge pressure of 8 bars to an exit velocity over 40 m/s in ∼ 33 ms. The results show that with the single phase the turbulent velocity boundary layers occupy over 20% of the barrel radius and that the wall heat transfer increases with distance from the breech and decreases with time during the shot. In the initial chamber, and later in the shot, the heat transfer results are close to those obtained from a convection correlation for a steady turbulent boundary layer, contrary to those at locations swept by the projectile, which are higher by up to 50% throughout the shot. The two-phase flow results show that 55-μm particles with loadings of 1.3% and 4% by volume initially lag the fluid and this lag increases with distance from the breech. Later in the shot the particles catch up and lead the decelerating fluid by an amount that is greater, with the higher particle loading and with a tendency for the particle velocity to increase around the edge of the boundary layer

17. Mixed-order phase transition in a two-step contagion model with a single infectious seed.

Science.gov (United States)

Choi, Wonjun; Lee, Deokjae; Kahng, B

2017-02-01

Percolation is known as one of the most robust continuous transitions, because its occupation rule is intrinsically local. As one of the ways to break the robustness, occupation is allowed to more than one species of particles and they occupy cooperatively. This generalized percolation model undergoes a discontinuous transition. Here we investigate an epidemic model with two contagion steps and characterize its phase transition analytically and numerically. We find that even though the order parameter jumps at a transition point r_{c}, then increases continuously, it does not exhibit any critical behavior: the fluctuations of the order parameter do not diverge at r_{c}. However, critical behavior appears in mean outbreak size, which diverges at the transition point in a manner that the ordinary percolation shows. Such a type of phase transition is regarded as a mixed-order phase transition. We also obtain scaling relations of cascade outbreak statistics when the order parameter jumps at r_{c}.

18. Stochastic modelling of two-phase flows including phase change

International Nuclear Information System (INIS)

Hurisse, O.; Minier, J.P.

2011-01-01

Stochastic modelling has already been developed and applied for single-phase flows and incompressible two-phase flows. In this article, we propose an extension of this modelling approach to two-phase flows including phase change (e.g. for steam-water flows). Two aspects are emphasised: a stochastic model accounting for phase transition and a modelling constraint which arises from volume conservation. To illustrate the whole approach, some remarks are eventually proposed for two-fluid models. (authors)

19. A Forward Dynamic Modelling Investigation of Cause-and-Effect Relationships in Single Support Phase of Human Walking

Directory of Open Access Journals (Sweden)

Michael McGrath

2015-01-01

Full Text Available Mathematical gait models often fall into one of two categories: simple and complex. There is a large leap in complexity between model types, meaning the effects of individual gait mechanisms get overlooked. This study investigated the cause-and-effect relationships between gait mechanisms and resulting kinematics and kinetics, using a sequence of mathematical models of increasing complexity. The focus was on sagittal plane and single support only. Starting with an inverted pendulum (IP, extended to include a HAT (head-arms-trunk segment and an actuated hip moment, further complexities were added one-by-one. These were a knee joint, an ankle joint with a static foot, heel rise, and finally a swing leg. The presence of a knee joint and an ankle moment (during foot flat were shown to largely influence the initial peak in the vertical GRF curve. The second peak in this curve was achieved through a combination of heel rise and the presence of a swing leg. Heel rise was also shown to reduce errors in the horizontal GRF prediction in the second half of single support. The swing leg is important for centre-of-mass (CM deceleration in late single support. These findings provide evidence for the specific effects of each gait mechanism.

20. Cloud Properties Simulated by a Single-Column Model. Part II: Evaluation of Cumulus Detrainment and Ice-phase Microphysics Using a Cloud Resolving Model

Science.gov (United States)

Luo, Yali; Krueger, Steven K.; Xu, Kuan-Man

2005-01-01

This paper is the second in a series in which kilometer-scale-resolving observations from the Atmospheric Radiation Measurement program and a cloud-resolving model (CRM) are used to evaluate the single-column model (SCM) version of the National Centers for Environmental Prediction Global Forecast System model. Part I demonstrated that kilometer-scale cirrus properties simulated by the SCM significantly differ from the cloud radar observations while the CRM simulation reproduced most of the cirrus properties as revealed by the observations. The present study describes an evaluation, through a comparison with the CRM, of the SCM's representation of detrainment from deep cumulus and ice-phase microphysics in an effort to better understand the findings of Part I. It is found that detrainment occurs too infrequently at a single level at a time in the SCM, although the detrainment rate averaged over the entire simulation period is somewhat comparable to that of the CRM simulation. Relatively too much detrained ice is sublimated when first detrained. Snow falls over too deep of a layer due to the assumption that snow source and sink terms exactly balance within one time step in the SCM. These characteristics in the SCM parameterizations may explain many of the differences in the cirrus properties between the SCM and the observations (or between the SCM and the CRM). A possible improvement for the SCM consists of the inclusion of multiple cumulus cloud types as in the original Arakawa-Schubert scheme, prognostically determining the stratiform cloud fraction and snow mixing ratio. This would allow better representation of the detrainment from deep convection, better coupling of the volume of detrained air with cloud fraction, and better representation of snow field.

1. Improvement of Torque Production in Single-Phase Induction Motors

African Journals Online (AJOL)

OLUWASOGO

PID controller. Simulation results show the starting torque of the motor increased by 75% under the developed drive .... The model equations of the capacitor-run single phase induction .... process using the MATLAB pidtool command (Control.

2. Current Harmonics from Single-Phase Grid-Connected Inverters

DEFF Research Database (Denmark)

Yang, Yongheng; Zhou, Keliang; Blaabjerg, Frede

2016-01-01

Environmental conditions and operational modes may significantly impact the distortion level of the injected current from single-phase grid-connected inverter systems, such as photovoltaic (PV) inverters, which may operate in cloudy days with a maximum power point tracking, in a non-unity power...... factor, or in the low voltage ride through mode with reactive current injection. In this paper, the mechanism of the harmonic current injection from grid-connected single-phase inverter systems is thus explored, and the analysis is conducted on single-phase PV systems. In particular, the analysis...... is focused on the impacts of the power factor and the feed-in grid current level on the quality of the feed-in grid current from single-phase inverters. As a consequence, an internal model principle based high performance current control solution is tailor-made and developed for single-phase grid-connected...

3. Unconventional phase transitions in a constrained single polymer chain

International Nuclear Information System (INIS)

Klushin, L I; Skvortsov, A M

2011-01-01

Phase transitions were recognized among the most fascinating phenomena in physics. Exactly solved models are especially important in the theory of phase transitions. A number of exactly solved models of phase transitions in a single polymer chain are discussed in this review. These are three models demonstrating the second order phase transitions with some unusual features: two-dimensional model of β-structure formation, the model of coil–globule transition and adsorption of a polymer chain grafted on the solid surface. We also discuss models with first order phase transitions in a single macromolecule which admit not only exact analytical solutions for the partition function with explicit finite-size effects but also the non-equilibrium free energy as a function of the order parameter (Landau function) in closed analytical form. One of them is a model of mechanical desorption of a macromolecule, which demonstrates an unusual first order phase transition with phase coexistence within a single chain. Features of first and second order transitions become mixed here due to phase coexistence which is not accompanied by additional interfacial free energy. Apart from that, there exist several single-chain models belonging to the same class (adsorption of a polymer chain tethered near the solid surface or liquid–liquid interface, and escape transition upon compressing a polymer between small pistons) that represent examples of a highly unconventional first order phase transition with several inter-related unusual features: no simultaneous phase coexistence, and hence no phase boundary, non-concave thermodynamic potential and non-equivalence of conjugate ensembles. An analysis of complex zeros of partition functions upon approaching the thermodynamic limit is presented for models with and without phase coexistence. (topical review)

4. Fidelity study of the superconducting phase diagram in the two-dimensional single-band Hubbard model

Science.gov (United States)

Jia, C. J.; Moritz, B.; Chen, C.-C.; Shastry, B. Sriram; Devereaux, T. P.

2011-09-01

Extensive numerical studies have demonstrated that the two-dimensional single-band Hubbard model contains much of the key physics in cuprate high-temperature superconductors. However, there is no definitive proof that the Hubbard model truly possesses a superconducting ground state or, if it does, of how it depends on model parameters. To answer these longstanding questions, we study an extension of the Hubbard model including an infinite-range d-wave pair field term, which precipitates a superconducting state in the d-wave channel. Using exact diagonalization on 16-site square clusters, we study the evolution of the ground state as a function of the strength of the pairing term. This is achieved by monitoring the fidelity metric of the ground state, as well as determining the ratio between the two largest eigenvalues of the d-wave pair/spin/charge-density matrices. The calculations show a d-wave superconducting ground state in doped clusters bracketed by a strong antiferromagnetic state at half filling controlled by the Coulomb repulsion U and a weak short-range checkerboard charge ordered state at larger hole doping controlled by the next-nearest-neighbor hopping t'. We also demonstrate that negative t' plays an important role in facilitating d-wave superconductivity.

5. Preparation of single phase molybdenum boride

International Nuclear Information System (INIS)

Camurlu, Hasan Erdem

2011-01-01

Highlights: → Formation of Mo and a mixture of molybdenum boride phases take place in preparation of molybdenum borides. → It is intricate to prepare single phase molybdenum borides. → Formation of single phase MoB from MoO 3 + B 2 O 3 + Mg mixtures has not been reported previously. → Single phase MoB was successfully prepared through a combination of mechanochemical synthesis and annealing process. - Abstract: The formation of MoB through volume combustion synthesis (VCS), and through mechanochemical synthesis (MCS) followed by annealing has been investigated. MoO 3 , B 2 O 3 and Mg were used as reactants while MgO and NaCl were introduced as diluents. Products were leached in dilute HCl solution and were subjected to X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) examinations. Mo was the major phase component in the VCS products under all the experimental conditions. Mo 2 B, MoB, MoB 2 and Mo 2 B 5 were found as minor phases. Products of MCS contained a mixture of Mo 2 B, MoB, MoB 2 and Mo. After annealing the MCS product at 1400 deg. C for 3 h, single phase α-MoB was obtained.

6. Development of the self-learning machine for creating models of microprocessor of single-phase earth fault protection devices in networks with isolated neutral voltage above 1000 V

Science.gov (United States)

Utegulov, B. B.; Utegulov, A. B.; Meiramova, S.

2018-02-01

The paper proposes the development of a self-learning machine for creating models of microprocessor-based single-phase ground fault protection devices in networks with an isolated neutral voltage higher than 1000 V. Development of a self-learning machine for creating models of microprocessor-based single-phase earth fault protection devices in networks with an isolated neutral voltage higher than 1000 V. allows to effectively implement mathematical models of automatic change of protection settings. Single-phase earth fault protection devices.

7. A new PLL system using full order observer and PLL system modeling in a single phase grid-connected inverter

DEFF Research Database (Denmark)

Ko, Youngjong; Park, Kiwoo; Lee, Kyo-Beum

2011-01-01

In a grid connected power conversion system, the phase angle information of a grid voltage is very essential for supplying power to the grid since it is used for active and reactive power control. A Phase Locked Loop (PLL) system is used and should be robust because often the actual grid voltages...

8. Single phase induction motor with starting performance

Energy Technology Data Exchange (ETDEWEB)

Popescu, M.; Demeter, E. [Research Institute for Electrical Machines, ICPE-ME, Bucharest (Romania); Navrapescu, V. [University Politehnica Bucharest, Electrical Engineering Faculty Splaiul Independentei, Bucharest (Romania)

1997-12-31

The paper presents problems related to a special type of single phase induction motor. The main novelty consists in the use of a conducting (aluminium casted) shell distributed on the periferic region of the rotor. As a result the starting performance, as well as the rated ones, is much improved in comparison with the conventional construction. (orig.) 4 refs.

9. Control of Single-Stage Single-Phase PV inverter

DEFF Research Database (Denmark)

Ciobotaru, Mihai; Teodorescu, Remus; Blaabjerg, Frede

2005-01-01

In this paper the issue of control strategies for single-stage photovoltaic (PV) inverter is addressed. Two different current controllers have been implemented and an experimental comparison between them has been made. A complete control structure for the single-phase PV system is also presented......-forward; - and the grid current controller implemented in two different ways, using the classical proportional integral (PI) and the novel proportional resonant (PR) controllers. The control strategy was tested experimentally on 1.5 kW PV inverter....

10. Multi-port network and 3D finite-element models for accurate transformer calculations: Single-phase load-loss test

Energy Technology Data Exchange (ETDEWEB)

Escarela-Perez, R. [Departamento de Energia, Universidad Autonoma Metropolitana, Av. San Pablo 180, Col. Reynosa, C.P. 02200, Mexico D.F. (Mexico); Kulkarni, S.V. [Electrical Engineering Department, Indian Institute of Technology, Bombay (India); Melgoza, E. [Instituto Tecnologico de Morelia, Av. Tecnologico 1500, Morelia, Mich., C.P. 58120 (Mexico)

2008-11-15

A six-port impedance network for a three-phase transformer is obtained from a 3D time-harmonic finite-element (FE) model. The network model properly captures the eddy current effects of the transformer tank and frame. All theorems and tools of passive linear networks can be used with the multi-port model to simulate several important operating conditions without resorting anymore to computationally expensive 3D FE simulations. The results of the network model are of the same quality as those produced by the FE program. Although the passive network may seem limited by the assumption of linearity, many important transformer operating conditions imply unsaturated states. Single-phase load-loss measurements are employed to demonstrate the effectiveness of the network model and to understand phenomena that could not be explained with conventional equivalent circuits. In addition, formal deduction of novel closed-form formulae is presented for the calculation of the leakage impedance measured at the high and low voltage sides of the transformer. (author)

11. Single-superfield helical-phase inflation

Energy Technology Data Exchange (ETDEWEB)

Ketov, Sergei V., E-mail: ketov@tmu.ac.jp [Department of Physics, Tokyo Metropolitan University, Minami-ohsawa 1-1, Hachioji-shi, Tokyo 192-0397 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (IPMU), The University of Tokyo, Chiba 277-8568 (Japan); Institute of Physics and Technology, Tomsk Polytechnic University, 30 Lenin Ave., Tomsk 634050 (Russian Federation); Terada, Takahiro, E-mail: takahiro@hep-th.phys.s.u-tokyo.ac.jp [Department of Physics, The University of Tokyo, Tokyo 113-0033 (Japan); Deutsches Elektronen-Synchrotron (DESY), 22607 Hamburg (Germany)

2016-01-10

Large-field inflation in supergravity requires the approximate global symmetry needed to protect flatness of the scalar potential. In helical-phase inflation, the U(1) symmetry of the Kähler potential is assumed, the phase part of the complex scalar of a chiral superfield plays the role of inflaton, and the radial part is strongly stabilized. The original model of helical phase inflation, proposed by Li, Li and Nanopoulos (LLN), employs an extra (stabilizer) superfield. We propose a more economical new class of the helical phase inflationary models without a stabilizer superfield. As the specific examples, the quadratic, the natural, and the Starobinsky-type inflationary models are studied in our approach.

12. Reactive Power Control of Single-Stage Three-Phase Photovoltaic System during Grid Faults Using Recurrent Fuzzy Cerebellar Model Articulation Neural Network

Directory of Open Access Journals (Sweden)

Faa-Jeng Lin

2014-01-01

Full Text Available This study presents a new active and reactive power control scheme for a single-stage three-phase grid-connected photovoltaic (PV system during grid faults. The presented PV system utilizes a single-stage three-phase current-controlled voltage-source inverter to achieve the maximum power point tracking (MPPT control of the PV panel with the function of low voltage ride through (LVRT. Moreover, a formula based on positive sequence voltage for evaluating the percentage of voltage sag is derived to determine the ratio of the injected reactive current to satisfy the LVRT regulations. To reduce the risk of overcurrent during LVRT operation, a current limit is predefined for the injection of reactive current. Furthermore, the control of active and reactive power is designed using a two-dimensional recurrent fuzzy cerebellar model articulation neural network (2D-RFCMANN. In addition, the online learning laws of 2D-RFCMANN are derived according to gradient descent method with varied learning-rate coefficients for network parameters to assure the convergence of the tracking error. Finally, some experimental tests are realized to validate the effectiveness of the proposed control scheme.

13. Load compensation for single phase system using series active filter

African Journals Online (AJOL)

user

Keywords: Active power filter (APF), current source type of harmonic load ... Single phase active filters could attract less attention than three phase due to its low ..... Generalised single-phase p-q theory for active power filtering: simulation and.

14. Modeling of liquid phases

CERN Document Server

Soustelle, Michel

2015-01-01

This book is part of a set of books which offers advanced students successive characterization tool phases, the study of all types of phase (liquid, gas and solid, pure or multi-component), process engineering, chemical and electrochemical equilibria, and the properties of surfaces and phases of small sizes. Macroscopic and microscopic models are in turn covered with a constant correlation between the two scales. Particular attention has been given to the rigor of mathematical developments. This second volume in the set is devoted to the study of liquid phases.

15. Description and Validation of a MATLAB - Simulink Single Family House Energy Model with Furniture and Phase Change Materials (Update)

DEFF Research Database (Denmark)

Johra, Hicham; Heiselberg, Per Kvols

This report aims to present in details the numerical building model and each of its elements. In the second part, the results of different validation tests are presented to certify the reliability of the model and thus the results of numerical analyses using it....

16. Single- and two-phase flow modeling for coupled neutronics / thermal-hydraulics transient analysis of advanced sodium-cooled fast reactors

International Nuclear Information System (INIS)

Chenu, A.

2011-10-01

Nuclear power is nowadays in the front rank as regards helping to meet the growing worldwide energy demand while avoiding an excessive increase in greenhouse gas emissions. However, the operating nuclear power plants are mainly thermal-neutron reactors and, as such, can not be maintained on the basis of the currently identified uranium resources beyond one century at the present consumption rate. Sustainability of nuclear power thus involves closure of the fuel cycle through breeding. With a uranium-based fuel, breeding can only be achieved using a fast-neutron reactor. Sodium-cooled fast reactor (SFR) technology benefits from 400 reactor-years of accumulated experience and is thus a prime candidate for the implementation of so-called Generation-IV nuclear energy systems. In this context, the safety demonstration of SFRs remains a major Research and Development related issue. The current research aims at the development of a computational tool for the in-depth understanding of SFR core behaviour during accidental transients, particularly those including boiling of the coolant. An accurate modelling of the core physics during such transients requires the coupling between 3D neutron kinetics and thermal-hydraulics in the core, to account for the strong interactions between the two-phase coolant flow and power variations caused by the sodium void effect. The present study is specifically focused upon models for the representation of sodium two-phase flow. The extension of the thermal-hydraulics TRACE code, previously limited to the simulation of single-phase sodium flow, has been carried out through the implementation of equations-of-state and closure relations specific to sodium. The different correlations have then been implemented as options. From the validation study carried out, it has been possible to recommend a set of models which provide satisfactory results, while considering annular flow as the dominant regime up to dryout and a smooth breakdown of the

17. Revisiting a many-body model for water based on a single polarizable site: from gas phase clusters to liquid and air/liquid water systems.

Science.gov (United States)

Réal, Florent; Vallet, Valérie; Flament, Jean-Pierre; Masella, Michel

2013-09-21

We present a revised version of the water many-body model TCPE [M. Masella and J.-P. Flament, J. Chem. Phys. 107, 9105 (1997)], which is based on a static three charge sites and a single polarizable site to model the molecular electrostatic properties of water, and on an anisotropic short range many-body energy term specially designed to accurately model hydrogen bonding in water. The parameters of the revised model, denoted TCPE/2013, are here developed to reproduce the ab initio energetic and geometrical properties of small water clusters (up to hexamers) and the repulsive water interactions occurring in cation first hydration shells. The model parameters have also been refined to reproduce two liquid water properties at ambient conditions, the density and the vaporization enthalpy. Thanks to its computational efficiency, the new model range of applicability was validated by performing simulations of liquid water over a wide range of temperatures and pressures, as well as by investigating water liquid/vapor interfaces over a large range of temperatures. It is shown to reproduce several important water properties at an accurate enough level of precision, such as the existence liquid water density maxima up to a pressure of 1000 atm, the water boiling temperature, the properties of the water critical point (temperature, pressure, and density), and the existence of a "singularity" temperature at about 225 K in the supercooled regime. This model appears thus to be particularly well-suited for characterizing ion hydration properties under different temperature and pressure conditions, as well as in different phases and interfaces.

18. Single-Receiver GPS Phase Bias Resolution

Science.gov (United States)

Bertiger, William I.; Haines, Bruce J.; Weiss, Jan P.; Harvey, Nathaniel E.

2010-01-01

19. Domain switching in single-phase multiferroics

Science.gov (United States)

Jia, Tingting; Cheng, Zhenxiang; Zhao, Hongyang; Kimura, Hideo

2018-06-01

Multiferroics are a time-honoured research subject by reason for their tremendous application potential in the information industry, such as in multi-state information storage devices and new types of sensors. An outburst of studies on multiferroicity has been witnessed in the 21st century, although this field has a long research history since the 19th century. Multiferroicity has now become one of the hottest research topics in condensed matter physics and materials science. Numerous efforts have been made to investigate the cross-coupling phenomena among ferroic orders such as ferroelectricity, (anti-)ferromagnetism, and ferroelasticity, especially the coupling between electric and magnetic orderings that would account for the magnetoelectric (ME) effect in multiferroic materials. The magnetoelectric properties and coupling behavior of single phase multiferroics are dominated by their domain structures. It was also noted that, however, the multiferroic materials exhibit very complicated domain structures. Studies on domain structure characterization and domain switching are a crucial step in the exploration of approaches to the control and manipulation of magnetic (electric) properties using an electric (magnetic) field or other means. In this review, following a concise outline of our current basic knowledge on the magnetoelectric (ME) effect, we summarize some important research activities on domain switching in single-phase multiferroic materials in the form of single crystals and thin films, especially domain switching behavior involving strain and the related physics in the last decade. We also introduce recent developments in characterization techniques for domain structures of ferroelectric or multiferroic materials, which have significantly advanced our understanding of domain switching dynamics and interactions. The effects of a series of issues such as electric field, magnetic field, and stress effects on domain switching are been discussed as well. It

20. Instability of single-phase natural circulation

International Nuclear Information System (INIS)

Xie Heng; Zhang Jinling; Jia Dounan

1997-01-01

The author has investigated the instability of single-phase flows in natural circulation loops. The momentum equation and energy equation are made dimensionless according to some definitions, and some important dimensionless parameters are gotten. The authors decomposed the mean mass flowrate and temperature into a steady solution and a small disturbance equations. Through solving the disturbance equations, the authors get the neutral stability curves. The authors have studied the effect of the two parameters which represent the ratio of buoyancy force to the friction loss in the loop on the stability of loops. The authors also have studied the effect of the difference of height between the center of heat source and the heat sink on the stability

1. CGILS : Results from the first phase of an international project to understand the physical mechanisms of low cloud feedbacks in single column models

NARCIS (Netherlands)

Zhang, M.; Bretherton, C.S.; Blossey, P.N.; Austin, P.H.; Bacmeister, J.T.; Bony, S.; Brient, F.; Cheedela, S.K.; Cheng, A.; Del Genio, A.D.; De Roode, S.R.; Endo, S.; Franklin, C.N.; Golaz, J.C.; Hannay, C.; Heus, T.; Isotta, F.A.; Dufresne, J.L.; Kang, I.S.; Kawai, H.; Köhler, M.; Larson, V.E.; Liu, Y.; Lock, A.P.; Lohmann, U.; Khairoutdinov, M.F.; Molod, A.M.; Neggers, R.A.J.; Rasch, P.; Sandu, I.; Senkbeil, R.; Siebesma, A.P.; Siegenthaler-Le Drian, C.; Stevens, B.; Suarez, M.J.; Xu, K.M.; Von Salzen, K.; Webb, M.J.; Wolf, A.; Zhao, M.

2013-01-01

CGILS—the CFMIP-GASS Intercomparison of Large Eddy Models (LESs) and single column models (SCMs)—investigates the mechanisms of cloud feedback in SCMs and LESs under idealized climate change perturbation. This paper describes the CGILS results from 15 SCMs and 8 LES models. Three cloud regimes over

2. Laser doppler anemometry in single- and two-phase flows

International Nuclear Information System (INIS)

Durst, F.

1976-01-01

The present report gives an introduction into laser-Doppler anemometry and tries to explain the basic physical principles of this measuring technique. Moire fringe patterns are used in order to visually model LDA-signals and to explain the basic difference in optical systems. It is pointed out that LDA measurements in highly turbulent flows and in two-phase flows should be attempted with direction sensitive instruments only. Some of the optical systems developed by the author and his collaborators are introduced and their functioning in measurements is demonstrated. These measurements embrace investigations in a number of single-phase flows including flames. (orig.) [de

3. Pressure Drop Correlations of Single-Phase and Two-Phase Flow in Rolling Tubes

International Nuclear Information System (INIS)

Xia-xin Cao; Chang-qi Yan; Pu-zhen Gao; Zhong-ning Sun

2006-01-01

A series of experimental studies of frictional pressure drop for single phase and two-phase bubble flow in smooth rolling tubes were carried out. The tube inside diameters were 15 mm, 25 mm and 34.5 mm respectively, the rolling angles of tubes could be set as 10 deg. and 20 deg., and the rolling periods could be set as 5 s, 10 s and 15 s. Combining with the analysis of single-phase water motion, it was found that the traditional correlations for calculating single-phase frictional coefficient were not suitable for the rolling condition. Based on the experimental data, a new correlation for calculating single-phase frictional coefficient under rolling condition was presented, and the calculations not only agreed well with the experimental data, but also could display the periodically dynamic characteristics of frictional coefficients. Applying the new correlation to homogeneous flow model, two-phase frictional pressure drop of bubble flow in rolling tubes could be calculated, the results showed that the relative error between calculation and experimental data was less than ± 25%. (authors)

4. Two-phase flow models

International Nuclear Information System (INIS)

Delaje, Dzh.

1984-01-01

General hypothesis used to simplify the equations, describing two-phase flows, are considered. Two-component and one-component models of two-phase flow, as well as Zuber and Findlay model for actual volumetric steam content, and Wallis model, describing the given phase rates, are presented. The conclusion is made, that the two-component model, in which values averaged in time are included, is applicable for the solving of three-dimensional tasks for unsteady two-phase flow. At the same time, using the two-component model, including values, averaged in space only one-dimensional tasks for unsteady two-phase flow can be solved

5. Single-Phase Phase-Locked Loop Based on Derivative Elements

DEFF Research Database (Denmark)

Guan, Qingxin; Zhang, Yu; Kang, Yong

2017-01-01

High-performance phase-locked loops (PLLs) are critical for power control in grid-connected systems. This paper presents a new method of designing a PLL for single-phase systems based on derivative elements (DEs). The quadrature signal generator (QSG) is constructed by two DEs with the same...... PLL to achieve high performance when the grid frequency changes rapidly. This paper presents the model of the PLL and a theoretical performance analysis with respect to both the frequency-domain and time-domain behavior. The error arising from the discretization process is also compensated, ensuring...

6. Unexpectedly normal phase behavior of single homopolymer chains

International Nuclear Information System (INIS)

Paul, W.; Strauch, T.; Rampf, F.; Binder, K.

2007-01-01

Employing Monte Carlo simulations, we show that the topology of the phase diagram of a single flexible homopolymer chain changes in dependence on the range of an attractive square well interaction between the monomers. For a range of attraction larger than a critical value, the equilibrium phase diagram of the single polymer chain and the corresponding polymer solution phase diagram exhibit vapor (swollen coil, dilute solution), liquid (collapsed globule, dense solution), and solid phases. Otherwise, the liquid-vapor transition vanishes from the equilibrium phase diagram for both the single chain and the polymer solution. This change in topology of the phase diagram resembles the behavior known for colloidal dispersions. The interplay of enthalpy and conformational entropy in the polymer case thus can lead to the same topology of phase diagrams as the interplay of enthalpy and translational entropy in simple liquids

7. Sensitivity of Cirrus and Mixed-phase Clouds to the Ice Nuclei Spectra in McRAS-AC: Single Column Model Simulations

Science.gov (United States)

Betancourt, R. Morales; Lee, D.; Oreopoulos, L.; Sud, Y. C.; Barahona, D.; Nenes, A.

2012-01-01

The salient features of mixed-phase and ice clouds in a GCM cloud scheme are examined using the ice formation parameterizations of Liu and Penner (LP) and Barahona and Nenes (BN). The performance of LP and BN ice nucleation parameterizations were assessed in the GEOS-5 AGCM using the McRAS-AC cloud microphysics framework in single column mode. Four dimensional assimilated data from the intensive observation period of ARM TWP-ICE campaign was used to drive the fluxes and lateral forcing. Simulation experiments where established to test the impact of each parameterization in the resulting cloud fields. Three commonly used IN spectra were utilized in the BN parameterization to described the availability of IN for heterogeneous ice nucleation. The results show large similarities in the cirrus cloud regime between all the schemes tested, in which ice crystal concentrations were within a factor of 10 regardless of the parameterization used. In mixed-phase clouds there are some persistent differences in cloud particle number concentration and size, as well as in cloud fraction, ice water mixing ratio, and ice water path. Contact freezing in the simulated mixed-phase clouds contributed to transfer liquid to ice efficiently, so that on average, the clouds were fully glaciated at T approximately 260K, irrespective of the ice nucleation parameterization used. Comparison of simulated ice water path to available satellite derived observations were also performed, finding that all the schemes tested with the BN parameterization predicted 20 average values of IWP within plus or minus 15% of the observations.

8. MECHANICAL CHARACTERISTICS OF THREE-PHASE INDUCTION MOTORS WITH SINGLE-PHASE POWER SUPPLY

Directory of Open Access Journals (Sweden)

V.S. Malyar

2016-06-01

Full Text Available Aim. Development of a method for calculating mechanical characteristics of three-phase induction motors with single-phase power supply. Methods. The developed algorithm is based on the high-adequacy mathematical model of motor and projection method for solving the boundary problem for equations of electrical circuits balance presented in the three-phase coordinate system. As a result of asymmetry of power supply to the stator windings, in steady state, flux-linkage and current change according to the periodic law. They are determined by solving the boundary problem. Results. The developed mathematical model allows determining periodic dependence of coordinates as a function of slip and, based on them, mechanical characteristics of motors. Academic novelty. The developed method relies on a completely new mathematical approach to calculation of stationary modes of nonlinear electromagnetic circuits, which allows obtaining periodic solution in a timeless domain. Practical value. Using the developed calculation algorithm, one can select capacitance required to start an induction motor with single-phase power supply and calculate static mechanical characteristics at a given capacitance.

9. A Novel Single Phase Hybrid Switched Reluctance Motor Drive System

DEFF Research Database (Denmark)

Liang, Jianing; Xu, Guoqing; Jian, Linni

2011-01-01

In this paper, a novel single phase hybrid switched reluctance motor(SRM) drive system is proposed. It integrated a single phase hybrid SRM and a novel single phase boost converter. This motor can reduce the number of phase switch. And the permanent magnet which is used in the motor can improve...... the performance and efficiency of SR motor. However, the inherent characteristic of this motor is that the negative torque is very sensitive with the excitation current near the turn-on angle. The slow excitation current limits the torque generation region and reduces the average torque. Therefore, a novel single...... phase boost converter is applied to improve the performance of this motor. It is easy to generate a double dclink voltage and dc-link voltage and switch both of them. The voltage of boost capacitor is self balance, so the protective circuit is not need to consider. The fast excitation mode helps hybrid...

10. Analytical prediction of the electromagnetic torques in single-phase and two-phase ac motors

Energy Technology Data Exchange (ETDEWEB)

Popescu, M.

2004-07-01

The single-phase and two-phase versions of AC motors can be modelled by means of the two-axis (d-q) theory with sufficient accuracy when the equivalent circuit parameters are correctly estimated. This work attempts to present a unified approach to the analytical prediction of the electromagnetic torque of these machines. Classical d-q axes formulation requires that the reference frame should be fixed on the frame where the asymmetries arise, i.e. the stator and rotor. The asynchronous torques that characterize the induction motors are modelled in a stationary reference frame, where the d-q axes coincide with the physical magnetic axes of the stator windings. For the permanent magnet motors, that may exhibit asymmetries on both stator and rotor, the proposed solution includes: a series of frame transformations, followed by symmetrical components decomposition. As in single-phase and two-phase systems the homopolar component is zero; each symmetrical component - negative and positive - is further analysed using d-q axes theory. The superposition principle is employed to consider the magnets and rotor cage effects. The developed models account for the most important asymmetries of the motor configuration. These are, from the stator point of view, different distribution, conductors' dimensions and number of effective turns, non-orthogonal magnetic axes windings and from the rotor point of view, asymmetrical rotor cage, variable reluctance, and permanent magnets effect. The time and space harmonics effect is ignored. Test data are compared with the computed data in order to observe how the simplifying assumptions affect the level of accuracy. The analytical prediction methods make possible torque computation according to the nature of the torque being computed, namely, induction, reluctance and excitation (permanent magnet). The results are available for quasi steady-state, steady-state (rated or synchronous speed) and dynamic analyses. All the developed

11. Preliminary Phase Field Computational Model Development

Energy Technology Data Exchange (ETDEWEB)

Li, Yulan [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hu, Shenyang Y. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xu, Ke [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Suter, Jonathan D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McCloy, John S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Bradley R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

2014-12-15

This interim report presents progress towards the development of meso-scale models of magnetic behavior that incorporate microstructural information. Modeling magnetic signatures in irradiated materials with complex microstructures (such as structural steels) is a significant challenge. The complexity is addressed incrementally, using the monocrystalline Fe (i.e., ferrite) film as model systems to develop and validate initial models, followed by polycrystalline Fe films, and by more complicated and representative alloys. In addition, the modeling incrementally addresses inclusion of other major phases (e.g., martensite, austenite), minor magnetic phases (e.g., carbides, FeCr precipitates), and minor nonmagnetic phases (e.g., Cu precipitates, voids). The focus of the magnetic modeling is on phase-field models. The models are based on the numerical solution to the Landau-Lifshitz-Gilbert equation. From the computational standpoint, phase-field modeling allows the simulation of large enough systems that relevant defect structures and their effects on functional properties like magnetism can be simulated. To date, two phase-field models have been generated in support of this work. First, a bulk iron model with periodic boundary conditions was generated as a proof-of-concept to investigate major loop effects of single versus polycrystalline bulk iron and effects of single non-magnetic defects. More recently, to support the experimental program herein using iron thin films, a new model was generated that uses finite boundary conditions representing surfaces and edges. This model has provided key insights into the domain structures observed in magnetic force microscopy (MFM) measurements. Simulation results for single crystal thin-film iron indicate the feasibility of the model for determining magnetic domain wall thickness and mobility in an externally applied field. Because the phase-field model dimensions are limited relative to the size of most specimens used in

12. High Energy Single Frequency Resonant Amplifier, Phase I

Data.gov (United States)

National Aeronautics and Space Administration — This SBIR phase I project proposes a single frequency high energy resonant amplifier for remote sensing. Current state-of-art technologies can not provide all...

13. LENA Conversion Foils Using Single-Layer Graphene, Phase I

Data.gov (United States)

National Aeronautics and Space Administration — Our key innovation will be the use of single-layer graphene as LENA conversion foils, with appropriate microgrids and nanogrids to support the foils. Phase I...

14. Non Invasive Instrumentation For Single Event Effects (NIISEE), Phase I

Data.gov (United States)

National Aeronautics and Space Administration — On this Phase 1 project, Adventium will identify and address key hurdles to achieve Radiation Hardening by Software (RHS) for Single Event Effects (SEEs) for modern...

15. Load compensation for single phase system using series active filter ...

African Journals Online (AJOL)

Load compensation for single phase system using series active filter. ... KK Mishra, R Gupta ... load varies from time to time, the non linear load ranging from voltage source type harmonic load (VSHL) dominant to current source type harmonic ...

16. Dynamics Assessment of Advanced Single-Phase PLL Structures

DEFF Research Database (Denmark)

2013-01-01

Recently, several advanced phase locked loop (PLL) techniques have been proposed for single-phase applications. Among these, the Park-PLL, and the second order generalized integrator (SOGI) based PLL are very attractive, owing to their simple digital implementation, low computational burden...

17. CGILS: Results from the First Phase of an International Project to Understand the Physical Mechanisms of Low Cloud Feedbacks in Single Column Models

Science.gov (United States)

Zhang, Minghua; Bretherton, Christopher S.; Blossey, Peter N.; Austin, Phillip H.; Bacmeister, Julio T.; Bony, Sandrine; Brient, Florent; Cheedela, Suvarchal K.; Cheng, Anning; DelGenio, Anthony;

2013-01-01

1] CGILS-the CFMIP-GASS Intercomparison of Large Eddy Models (LESs) and single column models (SCMs)-investigates the mechanisms of cloud feedback in SCMs and LESs under idealized climate change perturbation. This paper describes the CGILS results from 15 SCMs and 8 LES models. Three cloud regimes over the subtropical oceans are studied: shallow cumulus, cumulus under stratocumulus, and well-mixed coastal stratus/stratocumulus. In the stratocumulus and coastal stratus regimes, SCMs without activated shallow convection generally simulated negative cloud feedbacks, while models with active shallow convection generally simulated positive cloud feedbacks. In the shallow cumulus alone regime, this relationship is less clear, likely due to the changes in cloud depth, lateral mixing, and precipitation or a combination of them. The majority of LES models simulated negative cloud feedback in the well-mixed coastal stratus/stratocumulus regime, and positive feedback in the shallow cumulus and stratocumulus regime. A general framework is provided to interpret SCM results: in a warmer climate, the moistening rate of the cloudy layer associated with the surface-based turbulence parameterization is enhanced; together with weaker large-scale subsidence, it causes negative cloud feedback. In contrast, in the warmer climate, the drying rate associated with the shallow convection scheme is enhanced. This causes positive cloud feedback. These mechanisms are summarized as the "NESTS" negative cloud feedback and the "SCOPE" positive cloud feedback (Negative feedback from Surface Turbulence under weaker Subsidence-Shallow Convection PositivE feedback) with the net cloud feedback depending on how the two opposing effects counteract each other. The LES results are consistent with these interpretations

18. Directory of Open Access Journals (Sweden)

Koji Kosai

2017-11-01

Full Text Available Single-crystal germanium is a semiconductor material which shows complicated phase transformation under high pressure. In this study, new insight into the phase transformation of diamond-cubic germanium (dc-Ge was attempted by controlled cyclic nanoindentation combined with Raman spectroscopic analysis. Phase transformation from dc-Ge to rhombohedral phase (r8-Ge was experimentally confirmed for both single and cyclic nanoindentation under high loading/unloading rates. However, compared to single indentation, double cyclic indentation with a low holding load between the cycles caused more frequent phase transformation events. Double cyclic indentation caused more stress in Ge than single indentation and increased the possibility of phase transformation. With increase in the holding load, the number of phase transformation events decreased and finally became less than that under single indentation. This phenomenon was possibly caused by defect nucleation and shear accumulation during the holding process, which were promoted by a high holding load. The defect nucleation suppressed the phase transformation from dc-Ge to r8-Ge, and shear accumulation led to another phase transformation pathway, respectively. A high holding load promoted these two phenomena, and thus decreased the possibility of phase transformation from dc-Ge to r8-Ge.

19. A simple output voltage control scheme for single phase wavelet ...

African Journals Online (AJOL)

DR OKE

of the wavelet modulated (WM) scheme is that a single synthesis function, derived ... a single-phase H-bridge voltage-source (VS) inverter using MATLAB simulations. ... reconstruction process has been suggested to device a new class of ...

20. Phases and phase transitions in the algebraic microscopic shell model

Directory of Open Access Journals (Sweden)

Georgieva A. I.

2016-01-01

Full Text Available We explore the dynamical symmetries of the shell model number conserving algebra, which define three types of pairing and quadrupole phases, with the aim to obtain the prevailing phase or phase transition for the real nuclear systems in a single shell. This is achieved by establishing a correspondence between each of the pairing bases with the Elliott’s SU(3 basis that describes collective rotation of nuclear systems. This allows for a complete classification of the basis states of different number of particles in all the limiting cases. The probability distribution of the SU(3 basis states within theirs corresponding pairing states is also obtained. The relative strengths of dynamically symmetric quadrupole-quadrupole interaction in respect to the isoscalar, isovector and total pairing interactions define a control parameter, which estimates the importance of each term of the Hamiltonian in the correct reproduction of the experimental data for the considered nuclei.

1. Single-phase and two phase bubbly flow in a T connection: theoretical and experimental study

International Nuclear Information System (INIS)

Hervieu, Eric

1988-01-01

The objective of this research thesis is to highlight the driving factors of the separation of phases of a bubbly flow in a T junction, and to develop a prediction model. In a first part, the author reports the rigorous formulation of equations averaged on the T volume. He shows that it's not possible to solve globally the problem with these equations. Then, he reports a bibliographical study on the modelling of a bubbly flow, and, based upon this study, highlights intrinsic characteristics of the flow, and explains its dynamic mechanisms. He reports the development of the theoretical model, and describes the experimental installation used to validate it. In the third part, he reports the study of the liquid-gas interaction, and presents the adopted approach: study of the behaviour of an isolated bubble within a single-phase flow. Experimentation is used to check theoretical predictions. Results are used to compute phase separation. The obtained results are again compared with experimental results to validate the global relevance of the model [fr

2. Structure and single-phase regime of boron carbides

International Nuclear Information System (INIS)

Emin, D.

1988-01-01

The boron carbides are composed of twelve-atom icosahedral clusters which are linked by direct covalent bonds and through three-atom intericosahedral chains. The boron carbides are known to exist as a single phase with carbon concentrations from about 8 to about 20 at. %. This range of carbon concentrations is made possible by the substitution of boron and carbon atoms for one another within both the icosahedra and intericosahedral chains. The most widely accepted structural model for B 4 C (the boron carbide with nominally 20% carbon) has B/sub 11/C icosahedra with C-B-C intericosahedral chains. Here, the free energy of the boron carbides is studied as a function of carbon concentration by considering the effects of replacing carbon atoms within B 4 C with boron atoms. It is concluded that entropic and energetic considerations both favor the replacement of carbon atoms with boron atoms within the intericosahedral chains, C-B-C→C-B-B. Once the carbon concentration is so low that the vast majority of the chains are C-B-B chains, near B/sub 13/C 2 , subsequent substitutions of carbon atoms with boron atoms occur within the icosahedra, B/sub 11/C→B/sub 12/. Maxima of the free energy occur at the most ordered compositions: B 4 C,B/sub 13/C 2 ,B/sub 14/C. This structural model, determined by studying the free energy, agrees with that previously suggested by analysis of electronic and thermal transport data. These considerations also provide an explanation for the wide single-phase regime found for boron carbides

3. Single-phase DECT with VNCT compared with three-phase CTU in patients with haematuria

Energy Technology Data Exchange (ETDEWEB)

Park, Jung Jae; Park, Byung Kwan; Kim, Chan Kyo [Sungkyunkwan University School of Medicine, Department of Radiology, Samsung Medical Center, Seoul (Korea, Republic of)

2016-10-15

To retrospectively evaluate the diagnostic performance of single-phase dual-energy CT (DECT) with virtual non-contrast CT (VNCT) compared with three-phase CT urography (CTU) in patients with haematuria. A total of 296 patients underwent three-phase CTU (NCT at 120 kVp; nephrographic phase and excretory phase DECTs at 140 kVp and 80 kVp) owing to haematuria. Diagnostic performances of CT scans were compared for detecting urothelial tumours and urinary stones. Dose-length product (DLP) was compared in relation to single-phase DECT and three-phase CTU Dose-length product (DLP) was compared in relation to single-phase DECT and three-phase CTU. Sensitivity and specificity for tumour were 95 % (19/20) and 98.9 % (273/276) on CTU, 95 % (19/20) and 98.2 % (271/276) on nephrographic phase DECT, and 90 % (18/20) and 98.2 % (271/276) on excretory phase DECT (P > 0.1). Of the 148 stones detected on NCT, 108 (73 %) and 100 (67.6 %) were detected on nephrographic phase and excretory phase VNCTs, respectively. The mean size of stones undetected on nephrographic and excretory VNCTs was measured as 1.5 ± 0.5 mm and 1.6 ± 0.6 mm, respectively. The mean DLPs of three-phase CTU, nephrographic phase DECT and excretory phase DECT were 1076 ± 248 mGy . cm, 410 ± 98 mGy . cm, and 360 ± 87 mGy . cm, respectively (P < 0.001). Single-phase DECT has a potential to replace three-phase CTU for detecting tumours with a lower radiation dose. (orig.)

4. Deterministic nonlinear phase gates induced by a single qubit

Science.gov (United States)

Park, Kimin; Marek, Petr; Filip, Radim

2018-05-01

We propose deterministic realizations of nonlinear phase gates by repeating a finite sequence of non-commuting Rabi interactions between a harmonic oscillator and only a single two-level ancillary qubit. We show explicitly that the key nonclassical features of the ideal cubic phase gate and the quartic phase gate are generated in the harmonic oscillator faithfully by our method. We numerically analyzed the performance of our scheme under realistic imperfections of the oscillator and the two-level system. The methodology is extended further to higher-order nonlinear phase gates. This theoretical proposal completes the set of operations required for continuous-variable quantum computation.

5. A combined single-multiphase flow formulation of the premixing phase using the level set method

International Nuclear Information System (INIS)

Leskovar, M.; Marn, J.

1999-01-01

The premixing phase of a steam explosion covers the interaction of the melt jet or droplets with the water prior to any steam explosion occurring. To get a better insight of the hydrodynamic processes during the premixing phase beside hot premixing experiments, where the water evaporation is significant, also cold isothermal premixing experiments are performed. The specialty of isothermal premixing experiments is that three phases are involved: the water, the air and the spheres phase, but only the spheres phase mixes with the other two phases whereas the water and air phases do not mix and remain separated by a free surface. Our idea therefore was to treat the isothermal premixing process with a combined single-multiphase flow model. In this combined model the water and air phase are treated as a single phase with discontinuous phase properties at the water air interface, whereas the spheres are treated as usually with a multiphase flow model, where the spheres represent the dispersed phase and the common water-air phase represents the continuous phase. The common water-air phase was described with the front capturing method based on the level set formulation. In the level set formulation, the boundary of two-fluid interfaces is modeled as the zero set of a smooth signed normal distance function defined on the entire physical domain. The boundary is then updated by solving a nonlinear equation of the Hamilton-Jacobi type on the whole domain. With this single-multiphase flow model the Queos isothermal premixing Q08 has been simulated. A numerical analysis using different treatments of the water-air interface (level set, high-resolution and upwind) has been performed for the incompressible and compressible case and the results were compared to experimental measurements.(author)

6. ESTABLISHED MODES AND STATIC CHARACTERISTICS OF THREE-PHASE ASYNCHRONOUS MOTOR POWERED WITH SINGLE PHASE NETWORK

Directory of Open Access Journals (Sweden)

V. S. Malyar

2016-01-01

Full Text Available A mathematical model is developed to study the operation of three-phase asynchronous motor with squirrel-cage rotor when the stator winding is powered from a single phase network. To create a rotating magnetic field one of the phases is fed through the capacitor. Due to the asymmetry of power feed not only transients, but the steady-state regimes are dynamic, so they are described by differential equations in any coordinate system. Their study cannot be carried out with sufficient adequacy on the basis of known equivalent circuits and require the use of dynamic parameters. In the mathematical model the state equations of the circuits of the stator and rotor are composed in the stationary three phase coordinate system. Calculation of the established mode is performed by solving the boundary problem that makes it possible to obtain the coordinate dependences over the period, without calculation of the transient process. In order to perform it, the original nonlinear differential equations are algebraized by approximating the variables with the use of cubic splines. The resulting nonlinear system of algebraic equations is a discrete analogue of the initial system of differential equations. It is solved by parameter continuation method. To calculate the static characteristics as a function of a certain variable, the system is analytically differentiated, and then numerically integrated over this variable. In the process of integration, Newton's refinement is performed at each step or at every few steps, making it possible to implement the integration in just a few steps using Euler's method. Jacobi matrices in both cases are the same. To account for the current displacement in the rods of the squirrel-cage rotor, each of them, along with the squirrel-cage rings, is divided in height into several elements. This results in several squirrel-cage rotor windings which are represented by three-phase windings with magnetic coupling between them.

7. Single phase inverter for a three phase power generation and distribution system

Science.gov (United States)

Lindena, S. J.

1976-01-01

A breadboard design of a single-phase inverter with sinusoidal output voltage for a three-phase power generation and distribution system was developed. The three-phase system consists of three single-phase inverters, whose output voltages are connected in a delta configuration. Upon failure of one inverter the two remaining inverters will continue to deliver three-phase power. Parallel redundancy as offered by two three-phase inverters is substituted by one three-phase inverter assembly with high savings in volume, weight, components count and complexity, and a considerable increase in reliability. The following requirements must be met: (1) Each single-phase, current-fed inverter must be capable of being synchronized to a three-phase reference system such that its output voltage remains phaselocked to its respective reference voltage. (2) Each single-phase, current-fed inverter must be capable of accepting leading and lagging power factors over a range from -0.7 through 1 to +0.7.

8. The Single-Phase ProtoDUNE Technical Design Report

Energy Technology Data Exchange (ETDEWEB)

Abi, B. [Univ. of Padova (Italy); et al.

2017-06-21

ProtoDUNE-SP is the single-phase DUNE Far Detector prototype that is under construction and will be operated at the CERN Neutrino Platform (NP) starting in 2018. ProtoDUNE-SP, a crucial part of the DUNE effort towards the construction of the first DUNE 10-kt fiducial mass far detector module (17 kt total LAr mass), is a significant experiment in its own right. With a total liquid argon (LAr) mass of 0.77 kt, it represents the largest monolithic single-phase LArTPC detector to be built to date. It's technical design is given in this report.

9. Analysis and MPPT control of a wind-driven three-phase induction generator feeding single-phase utility grid

Directory of Open Access Journals (Sweden)

Krishnan Arthishri

2017-05-01

Full Text Available In this study, a three-phase diode bridge rectifier and a single-phase voltage source inverter topology has been proposed for feeding single-phase utility grid employing a three-phase induction generator fed from wind energy. A self-excited induction generator configuration has been chosen for wide speed operation of wind turbine system, which gives the scope for extracting maximum power available in the wind. In addition to maximum power point tracking (MPPT, the generator can be loaded to its rated capacity for feeding single-phase utility grid using a three-phase induction machine, whereas it is not possible with existing configurations because of the absence of power converters. For the proposed system, MPPT algorithm has been devised by continuously monitoring the grid current and a proportional resonant controller has been employed for grid synchronisation of voltage source inverter with single-phase grid. A MATLAB/Simulink model of the proposed system has been developed to ascertain its successful working by predetermining the overall performance characteristics. The present proposal has also been tested with sag, swell and distortion in the grid voltage. The control strategy has been implemented using field programmable gate array (FPGA controller with modularised programming approach. The efficacy of the system has been demonstrated with the results obtained from an experimental set-up in the laboratory.

10. 30 CFR 77.806 - Connection of single-phase loads.

Science.gov (United States)

2010-07-01

... COAL MINES Surface High-Voltage Distribution § 77.806 Connection of single-phase loads. Single-phase loads, such as transformer primaries, shall be connected phase to phase in resistance grounded systems. ...

11. 30 CFR 77.905 - Connection of single-phase loads.

Science.gov (United States)

2010-07-01

... COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.905 Connection of single-phase loads. Single-phase loads shall be connected phase-to-phase in resistance grounded systems. ...

12. Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cDPC.

Directory of Open Access Journals (Sweden)

Zachary F Phillips

Full Text Available We present a new technique for quantitative phase and amplitude microscopy from a single color image with coded illumination. Our system consists of a commercial brightfield microscope with one hardware modification-an inexpensive 3D printed condenser insert. The method, color-multiplexed Differential Phase Contrast (cDPC, is a single-shot variant of Differential Phase Contrast (DPC, which recovers the phase of a sample from images with asymmetric illumination. We employ partially coherent illumination to achieve resolution corresponding to 2× the objective NA. Quantitative phase can then be used to synthesize DIC and phase contrast images or extract shape and density. We demonstrate amplitude and phase recovery at camera-limited frame rates (50 fps for various in vitro cell samples and c. elegans in a micro-fluidic channel.

13. Modelación en coordenadas de fase del transformador monofásico con derivación central en el secundario; Modeling in phase-coordinates of the single-phase transformer with center tap in the secondary winding

Directory of Open Access Journals (Sweden)

Ignacio - Pérez Abril

2013-10-01

14. Investigation of effect of single phase electrical faults at LOFT

International Nuclear Information System (INIS)

Yeates, J.A.

1978-01-01

This LTR presents the general basic engineering facts related to an open phase fault in a three phase power system commonly referred to as a single phase condition. It describes the probable results to electrical motors and describes the LOFT system design factors which minimize the likelihood of such a fault occurring at LOFT. It recognizes that the hazard of such a fault is a realistic threat and notes the types of relays designed to provide protection. Recommendations are made to perform a detailed engineering study to determine the most advantageous protective relay design, and to implement such a design by installation of the necessary devices and controls

15. Ultrafast electric phase control of a single exciton qubit

Science.gov (United States)

Widhalm, Alex; Mukherjee, Amlan; Krehs, Sebastian; Sharma, Nandlal; Kölling, Peter; Thiede, Andreas; Reuter, Dirk; Förstner, Jens; Zrenner, Artur

2018-03-01

We report on the coherent phase manipulation of quantum dot excitons by electric means. For our experiments, we use a low capacitance single quantum dot photodiode which is electrically controlled by a custom designed SiGe:C BiCMOS chip. The phase manipulation is performed and quantified in a Ramsey experiment, where ultrafast transient detuning of the exciton energy is performed synchronous to double pulse π/2 ps laser excitation. We are able to demonstrate electrically controlled phase manipulations with magnitudes up to 3π within 100 ps which is below the dephasing time of the quantum dot exciton.

16. Modelling aspects of two phase flow

International Nuclear Information System (INIS)

Mayinger, F.

1977-01-01

In two phase flow scaling is much more limited to very narrowly defined physical phenomena than in single phase fluids. For complex and combined phenomena it can be achieved not by using dimensionless numbers alone but in addition a detailed mathematical description of the physical problem - usually in the form of a computer program - must be available. An important role plays the scaling of the thermodynamic data of the modelling fluid. From a literature survey and from own scaling experiments the conclusion can be drawn that Freon is a quite suitable modelling fluid for scaling steam-water mixtures. However, whithout a theoretical description of the phenomena nondimensional numbers for scaling two phase flow must be handled very carefully. (orig.) [de

17. Single particle analysis based on Zernike phase contrast transmission electron microscopy.

Science.gov (United States)

2008-02-01

We present the first application of Zernike phase-contrast transmission electron microscopy to single-particle 3D reconstruction of a protein, using GroEL chaperonin as the test specimen. We evaluated the performance of the technique by comparing 3D models derived from Zernike phase contrast imaging, with models from conventional underfocus phase contrast imaging. The same resolution, about 12A, was achieved by both imaging methods. The reconstruction based on Zernike phase contrast data required about 30% fewer particles. The advantages and prospects of each technique are discussed.

18. A Transformer-less Single Phase Inverter For photovoltaic Systems

DEFF Research Database (Denmark)

Mostaan, Ali; Alizadeh, Ebrahim; Qu, Ying

2017-01-01

A single phase transformer-less inverter is introduced in this paper. The negative polarities of the input voltage and output terminal have common ground. Therefore, the leakage current problem that is common in PV systems is eliminated naturally. In addition, the proposed inverter has fewer comp...

19. experimental implementation of single-phase, three-level, sinusoidal

African Journals Online (AJOL)

Page 1 ... of many multilevel inverter configurations. This paper presents an experimental report of a simplified topology for single-phase, SPWM, three-level voltage source inverter wit R-L load. To keep the power circuit ... employed in many industrial applications such as variable speed drives, uninterruptible power sup-.

20. An Asymmetrical Space Vector Method for Single Phase Induction Motor

DEFF Research Database (Denmark)

Cui, Yuanhai; Blaabjerg, Frede; Andersen, Gert Karmisholt

2002-01-01

Single phase induction motors are the workhorses in low-power applications in the world, and also the variable speed is necessary. Normally it is achieved either by the mechanical method or by controlling the capacitor connected with the auxiliary winding. Any above method has some drawback which...

1. Single-phase high-entropy alloys. An overview

Energy Technology Data Exchange (ETDEWEB)

Kozak, Roksolana; Steurer, Walter [ETH Zurich (Switzerland). Lab. of Crystallography; Sologubenko, Alla [ETH Zurich (Switzerland). Lab. of Nanotechnology

2015-02-01

The term 'high-entropy alloys (HEAs)' first appeared about 10 years ago defining alloys composed of n=5-13 principal elements with concentrations of approximately 100/n at.% each. Since then many equiatomic (or near equiatomic) single- and multi-phase multicomponent alloys were developed, which are reported for a combination of tunable properties: high hardness, strength and ductility, oxidation and wear resistance, magnetism, etc. In our paper, we focus on probably single-phase HEAs (solid solutions) out of all HEAs studied so far, discuss ways of their prediction, mechanical properties. In contrast to classical multielement/multiphase alloys, only single-phase multielement alloys (solid solutions) represent the basic concept underlying HEAs as mixing-entropy stabilized homogenous materials. The literature overview is complemented by own studies demonstrating that the alloys CrFeCoNi, CrFeCoNiAl{sub 0.3} and PdFeCoNi homogenized at 1300 and 1100 C, respectively, for 1 week are not single-phase HEAs, but a coherent mixture of two solid solutions.

2. Solar-Based Boost Differential Single Phase Inverter | Eya | Nigerian ...

African Journals Online (AJOL)

Solar-Based Boost Differential Single Phase Inverter. ... Solar-based boost differential inverter is reduced down to 22.37% in closed loop system with the aid of Proportional –integral-Differential (PID) ... The dc power source is photovoltaic cell.

3. A single phase photovoltaic inverter control for grid connected system

This paper presents a control scheme for single phase grid connected photovoltaic (PV) system operating under both grid connected and isolated grid mode. The control techniques include voltage and current control of grid-tie PV inverter. During grid connected mode, grid controls the amplitude and frequency of the PV ...

4. Design of an Internal Model Control strategy for single-phase grid-connected PWM inverters and its performance analysis with a non-linear local load and weak grid.

Science.gov (United States)

Chaves, Eric N; Coelho, Ernane A A; Carvalho, Henrique T M; Freitas, Luiz C G; Júnior, João B V; Freitas, Luiz C

2016-09-01

This paper presents the design of a controller based on Internal Model Control (IMC) applied to a grid-connected single-phase PWM inverter. The mathematical modeling of the inverter and the LCL output filter, used to project the 1-DOF IMC controller, is presented and the decoupling of grid voltage by a Feedforward strategy is analyzed. A Proportional - Resonant Controller (P+Res) was used for the control of the same plant in the running of experimental results, thus moving towards the discussion of differences regarding IMC and P+Res performances, which arrived at the evaluation of the proposed control strategy. The results are presented for typical conditions, for weak-grid and for non-linear local load, in order to verify the behavior of the controller against such situations. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

5. protoDUNE-Single Phase and protDUNE-DualPhase

CERN Multimedia

Brice, Maximilien

2016-01-01

At the EHN1 two big 8m x 8m x8m detector prototypes (protoDUNE-Single Phase and protDUNE-DualPhase) are being constructed. The aim is to test technologies and detector performances for DUNE, a new generation of LBN neutr

6. Study of a new static mixer for two-phase and single-phase flows

International Nuclear Information System (INIS)

Foucrier, Michel

1996-01-01

The subject of this work is the study of OptimiX, a new static mixer, which is fully designed using an inverse method taking the final product features as input and based on the physical properties of the fluid to mix. The work began with the construction of an experimental loop which allowed us to qualify the mixer in two-phase and single-phase flow conditions. Next, a chemical method using a new test reaction and a micro-mixing model have been used to further characterise the mixer. This test reaction and the micro-mixing model have been developed by the 'Laboratoire des Sciences du Genie Chimique' of Nancy. The mixer OptimiX has proved to be an excellent device for both macro- and micro-mixing. The capability of this mixer to foster rapid reactions was also demonstrated. The well organised flow pattern of OptimiX, which results from its design, provides it with the unusual feature of being fully calculable. This work emphasizes the internal hydrodynamics of this mixer, justifies the universality of the design procedures, which validation is supported by the completed qualification work. (author) [fr

7. European developments in single phase turbulence for innovative reactors

Energy Technology Data Exchange (ETDEWEB)

Roelofs, F., E-mail: roelofs@nrg.eu [NRG, Petten (Netherlands); Rohde, M. [DUT, Delft (Netherlands); and others

2011-07-01

Thermal-hydraulics is recognized as a key scientific subject in the development of different innovative nuclear reactor systems. From the thermal-hydraulic point of view, different innovative reactors are mainly characterized by their coolants (gas, water, liquid metals and molten salt). They result in specific behavior of flow and heat transfer, which requires specific models and advanced analysis tools. However, many common thermal-hydraulic issues are identified among various innovative nuclear systems. In Europe, such cross-cutting thermal-hydraulics topics are the motivation for the THINS (Thermal-Hydraulics of Innovative Nuclear Systems) project which is sponsored by the European Commission from 2010 to 2014. This paper describes the ongoing developments in an important part of this project devoted to single phase turbulence issues. To this respect, the two main issues have been identified: Non-unity Prandtl number turbulence. In case of liquid metals, molten salts or supercritical fluids, the commonly applied constant turbulent Prandtl number concept is not applicable and robust engineering turbulence models are needed. This paper will report on the progress achieved with respect to the development and validation of turbulence models available in commonly used engineering tools. The paper also reports about the supporting experiments and direct numerical simulations; and, Temperature fluctuations possibly leading to thermal fatigue in innovative reactors. The status is described of a fundamental experiment dealing with the mixing of different density gases in a rectangular channel, an experiment in a more complex geometry of a small mixing plenum using a supercritical fluid, and direct numerical simulations of conjugate heat transfer on temperature fluctuations in liquid metal. (author)

8. European developments in single phase turbulence for innovative reactors

International Nuclear Information System (INIS)

Roelofs, F.; Rohde, M.

2011-01-01

Thermal-hydraulics is recognized as a key scientific subject in the development of different innovative nuclear reactor systems. From the thermal-hydraulic point of view, different innovative reactors are mainly characterized by their coolants (gas, water, liquid metals and molten salt). They result in specific behavior of flow and heat transfer, which requires specific models and advanced analysis tools. However, many common thermal-hydraulic issues are identified among various innovative nuclear systems. In Europe, such cross-cutting thermal-hydraulics topics are the motivation for the THINS (Thermal-Hydraulics of Innovative Nuclear Systems) project which is sponsored by the European Commission from 2010 to 2014. This paper describes the ongoing developments in an important part of this project devoted to single phase turbulence issues. To this respect, the two main issues have been identified: Non-unity Prandtl number turbulence. In case of liquid metals, molten salts or supercritical fluids, the commonly applied constant turbulent Prandtl number concept is not applicable and robust engineering turbulence models are needed. This paper will report on the progress achieved with respect to the development and validation of turbulence models available in commonly used engineering tools. The paper also reports about the supporting experiments and direct numerical simulations; and, Temperature fluctuations possibly leading to thermal fatigue in innovative reactors. The status is described of a fundamental experiment dealing with the mixing of different density gases in a rectangular channel, an experiment in a more complex geometry of a small mixing plenum using a supercritical fluid, and direct numerical simulations of conjugate heat transfer on temperature fluctuations in liquid metal. (author)

9. Model for pairing phase transition in atomic nuclei

International Nuclear Information System (INIS)

Schiller, A.; Guttormsen, M.; Hjorth-Jensen, M.; Rekstad, J.; Siem, S.

2002-01-01

A model is developed which allows the investigation and classification of the pairing phase transition in atomic nuclei. The regions of the parameter space are discussed for which a pairing phase transition can be observed. The model parameters include number of particles, attenuation of pairing correlations with increasing seniority, single-particle level spacing, and pairing gap parameter

10. Overview of Single-Phase Grid-Connected Photovoltaic Systems

DEFF Research Database (Denmark)

Yang, Yongheng; Blaabjerg, Frede

2017-01-01

A continuous booming installation of solar photovoltaic (PV) systems has been witnessed worldwide. It is mainly driven by the imperative demand of “clean” power generation from renewables. Grid-connected PV systems will thus become an even more active player in the future mixed power systems, which...... systems. This chapter thus gives an overview of the advancement of power electronics converters in single-phase grid-connected PV systems, being commonly used in residential applications. Demands to single-phase grid-connected PV systems and the general control strategies are also addressed...... are linked together by a vast of power electronics converters and the power grid. In order to achieve a reliable and efficient power generation from PV systems, more stringent demands have been imposed on the entire PV system. It, in return, advances the development of the power converter technology in PV...

11. Permanent split capacitor single phase electric motor system

Science.gov (United States)

Kirschbaum, H.S.

1984-08-14

A permanent split capacitor single phase electric motor achieves balanced operation at more than one operating point by adjusting the voltage supplied to the main and auxiliary windings and adjusting the capacitance in the auxiliary winding circuit. An intermediate voltage tap on an autotransformer supplies voltage to the main winding for low speed operation while a capacitive voltage divider is used to adjust the voltage supplied to the auxiliary winding for low speed operation. 4 figs.

12. Stability characteristics of a single-phase free convection loop

Science.gov (United States)

Creveling, H. F.; De Paz, J. F.; Baladi, J. Y.; Schoenhals, R. J.

1975-01-01

Experiments investigating the stability characteristics of a single-phase free convection loop are reported. Results of the study confirm the contention made by previous workers that instabilities near the thermodynamic critical point can occur for ordinary fluids as well as those with unusual behavior in the near-critical region. Such a claim runs counter to traditional beliefs, but it is supported by the observation of such instabilities for water at atmospheric pressure and moderate temperatures in the present work.

13. Berry-phase blockade in single-molecule magnets

OpenAIRE

Gonzalez, Gabriel; Leuenberger, Michael N.

2006-01-01

We formulate the problem of electron transport through a single-molecule magnet (SMM) in the Coulomb blockade regime taking into account topological interference effects for the tunneling of the large spin of a SMM. The interference originates from spin Berry phases associated with different tunneling paths. We show that in the case of incoherent spin states it is essential to place the SMM between oppositely spin-polarized source and drain leads in order to detect the spin tunneling in the s...

14. Reliability Evaluation of a Single-phase H-bridge Inverter with Integrated Active Power Decoupling

DEFF Research Database (Denmark)

Tang, Junchaojie; Wang, Haoran; Ma, Siyuan

2016-01-01

it with the traditional passive DC-link solution. The converter level reliability is obtained by component level electro-thermal stress modeling, lifetime model, Weibull distribution, and Reliability Block Diagram (RBD) method. The results are demonstrated by a 2 kW single-phase inverter application.......Various power decoupling methods have been proposed recently to replace the DC-link Electrolytic Capacitors (E-caps) in single-phase conversion system, in order to extend the lifetime and improve the reliability of the DC-link. However, it is still an open question whether the converter level...... reliability becomes better or not, since additional components are introduced and the loading of the existing components may be changed. This paper aims to study the converter level reliability of a single-phase full-bridge inverter with two kinds of active power decoupling module and to compare...

15. Single beam Fourier transform digital holographic quantitative phase microscopy

Energy Technology Data Exchange (ETDEWEB)

Anand, A., E-mail: arun-nair-in@yahoo.com; Chhaniwal, V. K.; Mahajan, S.; Trivedi, V. [Optics Laboratory, Applied Physics Department, Faculty of Technology and Engineering, M.S. University of Baroda, Vadodara 390001 (India); Faridian, A.; Pedrini, G.; Osten, W. [Institut für Technische Optik, Universität Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart (Germany); Dubey, S. K. [Siemens Technology and Services Pvt. Ltd, Corporate Technology—Research and Technology Centre, Bangalore 560100 (India); Javidi, B. [Department of Electrical and Computer Engineering, U-4157, University of Connecticut, Storrs, Connecticut 06269-2157 (United States)

2014-03-10

Quantitative phase contrast microscopy reveals thickness or height information of a biological or technical micro-object under investigation. The information obtained from this process provides a means to study their dynamics. Digital holographic (DH) microscopy is one of the most used, state of the art single-shot quantitative techniques for three dimensional imaging of living cells. Conventional off axis DH microscopy directly provides phase contrast images of the objects. However, this process requires two separate beams and their ratio adjustment for high contrast interference fringes. Also the use of two separate beams may make the system more vulnerable to vibrations. Single beam techniques can overcome these hurdles while remaining compact as well. Here, we describe the development of a single beam DH microscope providing whole field imaging of micro-objects. A hologram of the magnified object projected on to a diffuser co-located with a pinhole is recorded with the use of a commercially available diode laser and an arrayed sensor. A Fourier transform of the recorded hologram directly yields the complex amplitude at the image plane. The method proposed was investigated using various phase objects. It was also used to image the dynamics of human red blood cells in which sub-micrometer level thickness variation were measurable.

16. Hydrodynamics of single- and two-phase flow in inclined rod arrays

International Nuclear Information System (INIS)

Ebeling-Koning, D.B.; Todreas, N.E.

1983-09-01

Required inputs for thermal-hydraulic codes are constitutive relations for fluid-solid flow resistance, in single-phase flow, and interfacial momentum exchange (relative phase motion), in two-phase flow. An inclined rod array air-water experiment was constructed to study the hydrodynamics of multidimensional porous medium flow in rod arrays. Velocities, pressures, and bubble distributions were measured in square rod arrays of P/d = 1.5, at 0, 30, 45, and 90 degree inclinations to the vertical flow direction. Constitutive models for single-phase flow resistance are reviewed, new comprehensive models developed, and an assessment with previously published and new data made. The principle of superimposing one-dimensional correlations proves successful for turbulent single-phase inclined flow. For bubbly two-phase incline flow a new flow separation phenomena was observed and modeled. A two-region liquid velocity model is developed to explain the experimentally observed phenomena. Fundamental data for bubbles rising in rod arrays were also taken

17. An experimental modeling of trinomial bioengineering- crp, rDNA, and transporter engineering within single cell factory for maximizing two-phase bioreduction.

Science.gov (United States)

Basak, Souvik; Ghosh, Sumanta Kumar; Punetha, Vinay Deep; Aphale, Ashish N; Patra, Prabir K; Sahoo, Nanda Gopal

2017-02-01

A carbonyl reductase (cr) gene from Candida glabrata CBS138 has been heterologously expressed in cofactor regenerating E. coli host to convert Ethyl-4-chloro-3-oxobutanoate (COBE) into Ethyl-4-chloro-3-hydroxybutanoate (CHBE). The CR enzyme exhibited marked velocity at substrate concentration as high as 363mM with highest turnover number (112.77±3.95s -1 ). Solitary recombineering of such catalytic cell reproduced CHBE 161.04g/L per g of dry cell weight (DCW). Introduction of combinatorially engineered crp (crp*, F136I) into this heterologous E. coli host yielded CHBE 477.54g/L/gDCW. Furthermore, using nerolidol as exogenous cell transporter, the CHBE productivity has been towered to 710.88g/L/gDCW. The CHBE production has thus been upscaled to 8-12 times than those reported so far. qRT-PCR studies revealed that both membrane efflux channels such as acrAB as well as ROS scavenger genes such as ahpCF have been activated by engineering crp. Moreover, membrane protecting genes such as manXYZ together with solvent extrusion associated genes such as glpC have been upregulated inside mutant host. Although numerous proteins have been investigated to convert COBE to CHBE; this is the first approach to use engineering triad involving crp engineering, recombinant DNA engineering and transporter engineering together for improving cell performance during two-phase biocatalysis. Copyright © 2016 Elsevier B.V. All rights reserved.

18. Theory of phase transformation and reorientation in single crystalline shape memory alloys

International Nuclear Information System (INIS)

Zhu, J J; Liang, N G; Cai, M; Liew, K M; Huang, W M

2008-01-01

A constitutive model, based on an (n+1)-phase mixture of the Mori–Tanaka average theory, has been developed for stress-induced martensitic transformation and reorientation in single crystalline shape memory alloys. Volume fractions of different martensite lattice correspondence variants are chosen as internal variables to describe microstructural evolution. Macroscopic Gibbs free energy for the phase transformation is derived with thermodynamics principles and the ensemble average method of micro-mechanics. The critical condition and the evolution equation are proposed for both the phase transition and reorientation. This model can also simulate interior hysteresis loops during loading/unloading by switching the critical driving forces when an opposite transition takes place

19. Spectral decomposition of single-tone-driven quantum phase modulation

International Nuclear Information System (INIS)

Capmany, Jose; Fernandez-Pousa, Carlos R

2011-01-01

Electro-optic phase modulators driven by a single radio-frequency tone Ω can be described at the quantum level as scattering devices where input single-mode radiation undergoes energy changes in multiples of ℎΩ. In this paper, we study the spectral representation of the unitary, multimode scattering operator describing these devices. The eigenvalue equation, phase modulation being a process preserving the photon number, is solved at each subspace with definite number of photons. In the one-photon subspace F 1 , the problem is equivalent to the computation of the continuous spectrum of the Susskind-Glogower cosine operator of the harmonic oscillator. Using this analogy, the spectral decomposition in F 1 is constructed and shown to be equivalent to the usual Fock-space representation. The result is then generalized to arbitrary N-photon subspaces, where eigenvectors are symmetrized combinations of N one-photon eigenvectors and the continuous spectrum spans the entire unit circle. Approximate normalizable one-photon eigenstates are constructed in terms of London phase states truncated to optical bands. Finally, we show that synchronous ultrashort pulse trains represent classical field configurations with the same structure as these approximate eigenstates, and that they can be considered as approximate eigenvectors of the classical formulation of phase modulation.

20. Spectral decomposition of single-tone-driven quantum phase modulation

Energy Technology Data Exchange (ETDEWEB)

Capmany, Jose [ITEAM Research Institute, Univ. Politecnica de Valencia, 46022 Valencia (Spain); Fernandez-Pousa, Carlos R, E-mail: c.pousa@umh.es [Signal Theory and Communications, Department of Physics and Computer Science, Univ. Miguel Hernandez, 03202 Elche (Spain)

2011-02-14

Electro-optic phase modulators driven by a single radio-frequency tone {Omega} can be described at the quantum level as scattering devices where input single-mode radiation undergoes energy changes in multiples of {h_bar}{Omega}. In this paper, we study the spectral representation of the unitary, multimode scattering operator describing these devices. The eigenvalue equation, phase modulation being a process preserving the photon number, is solved at each subspace with definite number of photons. In the one-photon subspace F{sub 1}, the problem is equivalent to the computation of the continuous spectrum of the Susskind-Glogower cosine operator of the harmonic oscillator. Using this analogy, the spectral decomposition in F{sub 1} is constructed and shown to be equivalent to the usual Fock-space representation. The result is then generalized to arbitrary N-photon subspaces, where eigenvectors are symmetrized combinations of N one-photon eigenvectors and the continuous spectrum spans the entire unit circle. Approximate normalizable one-photon eigenstates are constructed in terms of London phase states truncated to optical bands. Finally, we show that synchronous ultrashort pulse trains represent classical field configurations with the same structure as these approximate eigenstates, and that they can be considered as approximate eigenvectors of the classical formulation of phase modulation.

1. Criterion for traffic phases in single vehicle data and empirical test of a microscopic three-phase traffic theory

International Nuclear Information System (INIS)

Kerner, Boris S; Klenov, Sergey L; Hiller, Andreas

2006-01-01

Based on empirical and numerical microscopic analyses, the physical nature of a qualitatively different behaviour of the wide moving jam phase in comparison with the synchronized flow phase-microscopic traffic flow interruption within the wide moving jam phase-is found. A microscopic criterion for distinguishing the synchronized flow and wide moving jam phases in single vehicle data measured at a single freeway location is presented. Based on this criterion, empirical microscopic classification of different local congested traffic states is performed. Simulations made show that the microscopic criterion and macroscopic spatiotemporal objective criteria lead to the same identification of the synchronized flow and wide moving jam phases in congested traffic. Microscopic models in the context of three-phase traffic theory have been tested based on the microscopic criterion for the phases in congested traffic. It is found that microscopic three-phase traffic models can explain both microscopic and macroscopic empirical congested pattern features. It is obtained that microscopic frequency distributions for vehicle speed difference as well as fundamental diagrams and speed correlation functions can depend on the spatial co-ordinate considerably. It turns out that microscopic optimal velocity (OV) functions and time headway distributions are not necessarily qualitatively different, even if local congested traffic states are qualitatively different. The reason for this is that important spatiotemporal features of congested traffic patterns are lost in these as well as in many other macroscopic and microscopic traffic characteristics, which are widely used as the empirical basis for a test of traffic flow models, specifically, cellular automata traffic flow models

2. Similarity analysis and scaling criteria for LWRs under single-phase and two-phase natural circulation

International Nuclear Information System (INIS)

Ishii, M.; Kataoka, I.

1983-03-01

Scaling criteria for a natural circulation loop under single phase and two-phase flow conditions have been derived. For a single phase case the continuity, integral momentum, and energy equations in one-dimensional area average forms have been used. From this, the geometrical similarity groups, friction number, Richardson number, characteristic time constant ratio, Biot number, and heat source number are obtained. The Biot number involves the heat transfer coefficient which may cause some difficulties in simulating the turbulent flow regime. For a two-phase flow case, the similarity groups obtained from a perturbation analysis based on the one-dimensional drift-flux model have been used. The physical significance of the phase change number, subcooling number, drift-flux number, friction number are discussed and conditions imposed by these groups are evaluated. In the two-phase flow case, the critical heat flux is one of the most important transients which should be simulated in a scale model. The above results are applied to the LOFT facility in case of a natural circulation simulation. Some preliminary conclusions on the feasibility of the facility have been obtained

3. Similarity analysis and scaling criteria for LWRs under single-phase and two-phase natural circulation

Energy Technology Data Exchange (ETDEWEB)

Ishii, M.; Kataoka, I.

1983-03-01

Scaling criteria for a natural circulation loop under single phase and two-phase flow conditions have been derived. For a single phase case the continuity, integral momentum, and energy equations in one-dimensional area average forms have been used. From this, the geometrical similarity groups, friction number, Richardson number, characteristic time constant ratio, Biot number, and heat source number are obtained. The Biot number involves the heat transfer coefficient which may cause some difficulties in simulating the turbulent flow regime. For a two-phase flow case, the similarity groups obtained from a perturbation analysis based on the one-dimensional drift-flux model have been used. The physical significance of the phase change number, subcooling number, drift-flux number, friction number are discussed and conditions imposed by these groups are evaluated. In the two-phase flow case, the critical heat flux is one of the most important transients which should be simulated in a scale model. The above results are applied to the LOFT facility in case of a natural circulation simulation. Some preliminary conclusions on the feasibility of the facility have been obtained.

4. Hybrid Three-Phase/Single-Phase Microgrid Architecture with Power Management Capabilities

DEFF Research Database (Denmark)

Sun, Qiuye; Zhou, Jianguo; Guerrero, Josep M.

2015-01-01

With the fast proliferation of single-phase distributed generation (DG) units and loads integrated into residential microgrids, independent power sharing per phase and full use of the energy generated by DGs have become crucial. To address these issues, this paper proposes a hybrid microgrid...... architecture and its power management strategy. In this microgrid structure, a power sharing unit (PSU), composed of three single-phase back-to-back (SPBTB) converters, is proposed to be installed at the point of common coupling (PCC). The aim of the PSU is mainly to realize the power exchange and coordinated...... control of load power sharing among phases, as well as to allow fully utilization of the energy generated by DGs. Meanwhile, the method combining the modified adaptive backstepping-sliding mode control approach and droop control is also proposed to design the SPBTB system controllers. With the application...

5. Circadian phase resetting via single and multiple control targets.

Directory of Open Access Journals (Sweden)

Neda Bagheri

2008-07-01

Full Text Available Circadian entrainment is necessary for rhythmic physiological functions to be appropriately timed over the 24-hour day. Disruption of circadian rhythms has been associated with sleep and neuro-behavioral impairments as well as cancer. To date, light is widely accepted to be the most powerful circadian synchronizer, motivating its use as a key control input for phase resetting. Through sensitivity analysis, we identify additional control targets whose individual and simultaneous manipulation (via a model predictive control algorithm out-perform the open-loop light-based phase recovery dynamics by nearly 3-fold. We further demonstrate the robustness of phase resetting by synchronizing short- and long-period mutant phenotypes to the 24-hour environment; the control algorithm is robust in the presence of model mismatch. These studies prove the efficacy and immediate application of model predictive control in experimental studies and medicine. In particular, maintaining proper circadian regulation may significantly decrease the chance of acquiring chronic illness.

6. Hydrodynamics of single- and two-phase flow in inclined rod arrays

International Nuclear Information System (INIS)

Todreas, N.E.

1984-01-01

Required inputs for thermal-hydraulic codes are constitutive relations for fluid-solid flow resistance, in single-phase flow, and interfacial momentum exchange (relative phase motion), in two-phase flow. An inclined rod array air-water experiment was constructed to study the hydrodynamics of multidimensional porous medium flow in rod arrays. Velocities, pressures, bubble distributions, and void fractions were measured in inline and rotational square rod arrays of P/d = 1.5, at 0, 30, 45, and 90 degree inclinations to the vertical flow direction. Constitutive models for single-phase flow resistance are reviewed, new comprehensive models developed, and an assessment with previously published and new data made. The principle of superimposing one-dimensional correlations proves successful for turbulent single-phase inclined flow. For bubbly two-phase yawed flow through incline rod arrays a new flow separation phenomena was observed and modeled. Bubbles of diameters significantly smaller than the rod diameter travel along the rod axis, while larger diameter bubbles move through the rod array gaps. The outcome is a flow separation not predictable with current interfacial momentum exchange models. This phenomenon was not observed in rotated square rod arrays. Current interfacial momentum exchange models were confirmed for this rod arrangement. Models for the two phase flow resistance multiplier for cross flow were reviewed and compared with data from cross and yawed flow rod arrays. Both drag and lift components of the multiplier were well predicted by the homogenous model. Other models reviewed overpredicted the data by a factor of two

7. Single toxin dose-response models revisited

Energy Technology Data Exchange (ETDEWEB)

Demidenko, Eugene, E-mail: eugened@dartmouth.edu [Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH03756 (United States); Glaholt, SP, E-mail: sglaholt@indiana.edu [Indiana University, School of Public & Environmental Affairs, Bloomington, IN47405 (United States); Department of Biological Sciences, Dartmouth College, Hanover, NH03755 (United States); Kyker-Snowman, E, E-mail: ek2002@wildcats.unh.edu [Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH03824 (United States); Shaw, JR, E-mail: joeshaw@indiana.edu [Indiana University, School of Public & Environmental Affairs, Bloomington, IN47405 (United States); Chen, CY, E-mail: Celia.Y.Chen@dartmouth.edu [Department of Biological Sciences, Dartmouth College, Hanover, NH03755 (United States)

2017-01-01

The goal of this paper is to offer a rigorous analysis of the sigmoid shape single toxin dose-response relationship. The toxin efficacy function is introduced and four special points, including maximum toxin efficacy and inflection points, on the dose-response curve are defined. The special points define three phases of the toxin effect on mortality: (1) toxin concentrations smaller than the first inflection point or (2) larger then the second inflection point imply low mortality rate, and (3) concentrations between the first and the second inflection points imply high mortality rate. Probabilistic interpretation and mathematical analysis for each of the four models, Hill, logit, probit, and Weibull is provided. Two general model extensions are introduced: (1) the multi-target hit model that accounts for the existence of several vital receptors affected by the toxin, and (2) model with a nonzero mortality at zero concentration to account for natural mortality. Special attention is given to statistical estimation in the framework of the generalized linear model with the binomial dependent variable as the mortality count in each experiment, contrary to the widespread nonlinear regression treating the mortality rate as continuous variable. The models are illustrated using standard EPA Daphnia acute (48 h) toxicity tests with mortality as a function of NiCl or CuSO{sub 4} toxin. - Highlights: • The paper offers a rigorous study of a sigmoid dose-response relationship. • The concentration with highest mortality rate is rigorously defined. • A table with four special points for five morality curves is presented. • Two new sigmoid dose-response models have been introduced. • The generalized linear model is advocated for estimation of sigmoid dose-response relationship.

8. Investigation on a Novel Discontinuous Pulse-Width Modulation Algorithm for Single-phase Voltage Source Rectifier

DEFF Research Database (Denmark)

Qu, Hao; Yang, Xijun; Guo, Yougui

2014-01-01

Single-phase voltage source converter (VSC) is an important power electronic converter (PEC), including single-phase voltage source inverter (VSI), single-phase voltage source rectifier (VSR), single-phase active power filter (APF) and single-phase grid-connection inverter (GCI). Single-phase VSC...

9. Single-tier city logistics model for single product

Science.gov (United States)

Saragih, N. I.; Nur Bahagia, S.; Suprayogi; Syabri, I.

2017-11-01

This research develops single-tier city logistics model which consists of suppliers, UCCs, and retailers. The problem that will be answered in this research is how to determine the location of UCCs, to allocate retailers to opened UCCs, to assign suppliers to opened UCCs, to control inventory in the three entities involved, and to determine the route of the vehicles from opened UCCs to retailers. This model has never been developed before. All the decisions will be simultaneously optimized. Characteristic of the demand is probabilistic following a normal distribution, and the number of product is single.

10. Simulation of the phenomenon of single-phase and two-phase natural circulation

International Nuclear Information System (INIS)

Castrillo, Lazara Silveira

1998-02-01

Natural convection phenomenon is often used to remove the residual heat from the surfaces of bodies where the heat is generated e.g. during accidents or transients of nuclear power plants. Experimental study of natural circulation can be done in small scale experimental circuits and the results can be extrapolated for larger operational facilities. The numerical analysis of transients can be carried out by using large computational codes that simulate the thermohydraulic behavior in such facilities. The computational code RELAP5/MOD2, (Reactor Excursion and Leak Analysis Program) was developed by U.S. Nuclear Regulatory Commissions's. Division of Reactor Safety Research with the objective of analysis of transients and postulated accidents in the light water reactor (LWR) systems, including small and large ruptures with loss of coolant accidents (LOCA's). The results obtained by the simulation of single-phase and two-phase natural circulation, using the RELAP5/MOD2, are presented in this work. The study was carried out using the experimental circuit built at the 'Departamento de Engenharia Quimica da Escola Politecnica da Universidade de Sao Paulo'. In the circuit, two experiments were carried out with different conditions of power and mass flow, obtaining a single-phase regime with a level of power of 4706 W and flow of 5.10 -5 m 3 /s (3 l/min) and a two-phase regime with a level of power of 6536 W and secondary flow 2,33.10 -5 m 3 /s (1,4 l/min). The study allowed tio evaluate the capacity of the code for representing such phenomena as well as comparing the transients obtained theoretically with the experimental results. The comparative analysis shows that the code represents fairly well the single-phase transient, but the results for two-phase transients, starting from the nodalization and calibration used for the case single-phase transient, did not reproduce faithfully some experimental results. (author)

11. Single phase cascaded H5 inverter with leakage current elimination for transformerless photovoltaic system

DEFF Research Database (Denmark)

Guo, Xiaoqiang; Jia, X.; Lu, Z.

2016-01-01

Leakage current reduction is one of the important issues for the transformelress PV systems. In this paper, the transformerless single-phase cascaded H-bridge PV inverter is investigated. The common mode model for the cascaded H4 inverter is analyzed. And the reason why the conventional cascade H4...... inverter fails to reduce the leakage current is clarified. In order to solve the problem, a new cascaded H5 inverter is proposed to solve the leakage current issue. Finally, the experimental results are presented to verify the effectiveness of the proposed topology with the leakage current reduction...... for the single-phase transformerless PV systems....

12. Potential pitfalls of single phasing operation in a three phase distribution network

Energy Technology Data Exchange (ETDEWEB)

Narayanan, V S

1986-07-01

Finding it difficult to cope with the increased demand for electric power, some electricity boards have resorted to single phasing techniques in distribution system. This practice is harmful to the equipment in the power system. Some of the potential dangers associated with this undesirable practice are briefly discussed.

13. Reaction kinetics of oxygen on single-phase alloys, oxidation of nickel and niobium alloys

International Nuclear Information System (INIS)

Lalauze, Rene

1973-01-01

This research thesis first addresses the reaction kinetics of oxygen on alloys. It presents some generalities on heterogeneous reactions (conventional theory, theory of jumps), discusses the core reaction (with the influence of pressure), discusses the influence of metal self-diffusion on metal oxidation kinetics (equilibrium conditions at the interface, hybrid diffusion regime), reports the application of the hybrid diffusion model to the study of selective oxidation of alloys (Wagner model, hybrid diffusion model) and the study of the oxidation kinetics of an alloy forming a solid solution of two oxides. The second part reports the investigation of the oxidation of single phase nickel and niobium alloys (phase α, β and γ)

14. Total robotic radical rectal resection with da Vinci Xi system: single docking, single phase technique.

Science.gov (United States)

Tamhankar, Anup Sunil; Jatal, Sudhir; Saklani, Avanish

2016-12-01

15. Ultrafast Switching Superjunction MOSFETs for Single Phase PFC Applications

DEFF Research Database (Denmark)

Hernandez Botella, Juan Carlos; Petersen, Lars Press; Andersen, Michael A. E.

2014-01-01

This paper presents a guide on characterizing state-of-the-art silicon superjunction (SJ) devices in the 600V range for single phase power factor correction (PFC) applications. The characterization procedure is based on a minimally inductive double pulse tester (DPT) with a very low intrusive...... current measurement method, which enables reaching the switching speed limits of these devices. Due to the intrinsic low and non-linear capacitances in vertical SJ MOSFETs, special attention needs to be paid to the gate drive design to minimize oscillations and limit the maximum at turn off. This paper...

16. Critical flow rate in a single phase flow. Blocking concept

International Nuclear Information System (INIS)

Giot, Michel

1978-01-01

After referring to the phenomena accompanying the appearance of a critical flow rate in a nozzle and presenting equations governing single phase flows, the critical condition is defined. Several particular cases are then examined; the horizontal and vertical isentropic flow, Fanno's flow and Raleigh's and the isothermal flow. The entropy deviation is calculated on either side of a normal impact. To conclude, the link existing between the concepts of critical flow and the propagation rate of small perturbations is demonstrated. To do so, the method of perturbations, that of Prandtl and that of characteristic directions are applied in turn [fr

17. Berry-Phase Blockade in Single-Molecule Magnets

Science.gov (United States)

González, Gabriel; Leuenberger, Michael N.

2007-06-01

We formulate the problem of electron transport through a single-molecule magnet (SMM) in the Coulomb blockade regime taking into account topological interference effects for the tunneling of the large spin of a SMM. The interference originates from spin Berry phases associated with different tunneling paths. We show that, in the case of incoherent spin states, it is essential to place the SMM between oppositely spin-polarized source and drain leads in order to detect the spin tunneling in the stationary current, which exhibits topological zeros as a function of the transverse magnetic field.

18. Phase-field model of eutectic growth

International Nuclear Information System (INIS)

Karma, A.

1994-01-01

A phase-field model which describes the solidification of a binary eutectic alloy with a simple symmetric phase diagram is introduced and the sharp-interface limit of this model is explored both analytically and numerically

19. Discrete element weld model, phase 2

Science.gov (United States)

Prakash, C.; Samonds, M.; Singhal, A. K.

1987-01-01

A numerical method was developed for analyzing the tungsten inert gas (TIG) welding process. The phenomena being modeled include melting under the arc and the flow in the melt under the action of buoyancy, surface tension, and electromagnetic forces. The latter entails the calculation of the electric potential and the computation of electric current and magnetic field therefrom. Melting may occur at a single temperature or over a temperature range, and the electrical and thermal conductivities can be a function of temperature. Results of sample calculations are presented and discussed at length. A major research contribution has been the development of numerical methodology for the calculation of phase change problems in a fixed grid framework. The model has been implemented on CHAM's general purpose computer code PHOENICS. The inputs to the computer model include: geometric parameters, material properties, and weld process parameters.

20. Natural circulation in single-phase and two-phase flow

International Nuclear Information System (INIS)

Cheung, F.B.; El-Genk, M.S.

1989-01-01

Natural circulation usually arises in a closed loop between a heat source and a heat sink were the fluid motion is driven by density difference. It may also occur in enclosures or cavities where the flow is induced primarily by temperature or concentration gradients within the fluid. The subject has recently received special attention by the heat transfer and nuclear reactor safety communities because of it importance to the areas of energy extraction, decay, heat removal in nuclear reactors, solar and geothermal heating, and cooling of electronic equipment. Although many new results and physical insights have been gained of the various natural circulation phenomena, a number of critical issues remain unresolved. These include, for example, transition from laminar to turbulent flow, buoyancy-induced turbulent flow modeling, change of flow regimes, flow field visualization, variable property effects, and flow instability. This symposium volume contains papers presented in the Natural Circulation in Single-Phase and Two-Phase Flow session at the 1989 Winter Annual Meeting of ASME, by authors from different countries including the United States, Japan, Canada, and Brazil. The papers deal with experimental and theoretical studies as well as state-of-the-art reviews, covering a broad spectrum of topics in natural circulation including: variable-conductance thermosyphons, microelectronic chip cooling, natural circulation in anisotropic porous media and in cavities, heat transfer in flat plat solar collectors, shutdown heat removal in fast reactors, cooling of light-water and heavy-water reactors. The breadth of papers contained in this volume clearly reflect the importance of the current interest in natural circulation as a means for passive cooling and heating

1. Adaptive nonlinear control of single-phase to three-phase UPS system

Directory of Open Access Journals (Sweden)

Kissaoui M.

2014-01-01

Full Text Available This work deals with the problems of uninterruptible power supplies (UPS based on the single-phase to three-phase converters built in two stages: an input bridge rectifier and an output three phase inverter. The two blocks are joined by a continuous intermediate bus. The objective of control is threefold: i power factor correction “PFC”, ii generating a symmetrical three-phase system at the output even if the load is unknown, iii regulating the DC bus voltage. The synthesis of controllers has been reached by two nonlinear techniques that are the sliding mode and adaptive backstepping control. The performances of regulators have been validated by numerical simulation in MATLAB / SIMULINK.

2. Differentiating the growth phases of single bacteria using Raman spectroscopy

Science.gov (United States)

Strola, S. A.; Marcoux, P. R.; Schultz, E.; Perenon, R.; Simon, A.-C.; Espagnon, I.; Allier, C. P.; Dinten, J.-M.

2014-03-01

In this paper we present a longitudinal study of bacteria metabolism performed with a novel Raman spectrometer system. Longitudinal study is possible with our Raman setup since the overall procedure to localize a single bacterium and collect a Raman spectrum lasts only 1 minute. Localization and detection of single bacteria are performed by means of lensfree imaging, whereas Raman signal (from 600 to 3200 cm-1) is collected into a prototype spectrometer that allows high light throughput (HTVS technology, Tornado Spectral System). Accomplishing time-lapse Raman spectrometry during growth of bacteria, we observed variation in the net intensities for some band groups, e.g. amides and proteins. The obtained results on two different bacteria species, i.e. Escherichia coli and Bacillus subtilis clearly indicate that growth affects the Raman chemical signature. We performed a first analysis to check spectral differences and similarities. It allows distinguishing between lag, exponential and stationary growth phases. And the assignment of interest bands to vibration modes of covalent bonds enables the monitoring of metabolic changes in bacteria caused by growth and aging. Following the spectra analysis, a SVM (support vector machine) classification of the different growth phases is presented. In sum this longitudinal study by means of a compact and low-cost Raman setup is a proof of principle for routine analysis of bacteria, in a real-time and non-destructive way. Real-time Raman studies on metabolism and viability of bacteria pave the way for future antibiotic susceptibility testing.

3. SINGLE-PHASE AND TWO-PHASE SECONDARY COOLANTS: SIMULATION AND EVALUATION OF THEIR THERMOPHYSICAL PROPERTIES

Directory of Open Access Journals (Sweden)

Pedro Samuel Gomes Medeiros

2011-09-01

Full Text Available This paper makes a comparative analysis of the thermophysical properties of ice slurry with conventional single-phase secondary fluids used in thermal storage cooling systems. The ice slurry is a two-phase fluid consisting of water, antifreeze and ice crystals. It is a new technology that has shown great energy potential. In addition to transporting energy as a heat transfer fluid, it has thermal storage properties due to the presence of ice, storing coolness by latent heat of fusion. The single-phase fluids analyzed are water-NaCl and water-propylene glycol solutions, which also operate as carrier fluids in ice slurry. The presence of ice changes the thermophysical properties of aqueous solutions and a number of these properties were determined: density, thermal conductivity and dynamic viscosity. Data were obtained by software simulation. The results show that the presence of 10% by weight of ice provides a significant increase in thermal conductivity and dynamic viscosity, without causing changes in density. The rheological behavior of ice slurries, associated with its high viscosity, requires higher pumping power; however, this was not significant because higher thermal conductivity allows a lower mass flow rate without the use of larger pumps. Thus, the ice slurry ensures its high potential as a secondary fluid in thermal storage cooling systems, proving to be more efficient than single-phase secondary fluids.

4. Extracting Models in Single Molecule Experiments

Science.gov (United States)

Presse, Steve

2013-03-01

Single molecule experiments can now monitor the journey of a protein from its assembly near a ribosome to its proteolytic demise. Ideally all single molecule data should be self-explanatory. However data originating from single molecule experiments is particularly challenging to interpret on account of fluctuations and noise at such small scales. Realistically, basic understanding comes from models carefully extracted from the noisy data. Statistical mechanics, and maximum entropy in particular, provide a powerful framework for accomplishing this task in a principled fashion. Here I will discuss our work in extracting conformational memory from single molecule force spectroscopy experiments on large biomolecules. One clear advantage of this method is that we let the data tend towards the correct model, we do not fit the data. I will show that the dynamical model of the single molecule dynamics which emerges from this analysis is often more textured and complex than could otherwise come from fitting the data to a pre-conceived model.

5. The nuclear single particle model

International Nuclear Information System (INIS)

Mang, H.

1985-01-01

Twenty years ago in December 1963 one half of the Nobel prize in Physics was awarded to Maria Goeppert-Mayer and Johannes Daniel Jensen for their work on the nuclear shell model. They suggested independently that a strong spin-orbit force with the opposite sign of the one known from atomic physics should be added to the shell-model potential. This proved to be the crucial new idea, because then all the bits of and pieces of evidence that had accumulated over the years fell into place. The author begins with the basic assumption: In a nucleus nucleons move almost independently of each other in an average or shell-model potential. He then provides experimental evidence plausibility arguments and mathematical deductions

6. Single phase and two-phase flow pressure losses through restrictions, expansions and inserts

International Nuclear Information System (INIS)

Glenat, P.; Solignac, P.

1984-11-01

We give a selection of methods to predict pressure losses through retrictions, expansions and inserts. In single phase flow, we give the classical method based on the one-dimensional momentum and mass balances. In two-phase flow, we propose the method given by Harshe et al. and an empirical approach suggested by Chisholm. We notice the distinction between long and short inserts depends upon wether or not the vena contracta lies within insert. Finally, we propose three correlations to calculate void fraction through the singularities which have been considered [fr

7. Time domain spectral phase encoding/DPSK data modulation using single phase modulator for OCDMA application.

Science.gov (United States)

2010-05-10

A novel scheme using single phase modulator for simultaneous time domain spectral phase encoding (SPE) signal generation and DPSK data modulation is proposed and experimentally demonstrated. Array- Waveguide-Grating and Variable-Bandwidth-Spectrum-Shaper based devices can be used for decoding the signal directly in spectral domain. The effects of fiber dispersion, light pulse width and timing error on the coding performance have been investigated by simulation and verified in experiment. In the experiment, SPE signal with 8-chip, 20GHz/chip optical code patterns has been generated and modulated with 2.5 Gbps DPSK data using single modulator. Transmission of the 2.5 Gbps data over 34km fiber with BEROCDMA) and secure optical communication applications. (c) 2010 Optical Society of America.

8. Single Photon Sensitive HgCdTe Avalanche Photodiode Detector (APD), Phase II

Data.gov (United States)

National Aeronautics and Space Administration — Leveraging Phase I SBIR successes, in Phase II, a single photon sensitive LIDAR receiver will be fabricated and delivered to NASA. In Phase I, high-gain,...

9. Bisimulation for Single-Agent Plausibility Models

DEFF Research Database (Denmark)

Andersen, Mikkel Birkegaard; Bolander, Thomas; van Ditmarsch, H.

2013-01-01

define a proper notion of bisimulation, and prove that bisimulation corresponds to logical equivalence on image-finite models. We relate our results to other epistemic notions, such as safe belief and degrees of belief. Our results imply that there are only finitely many non-bisimilar single......-agent epistemic plausibility models on a finite set of propositions. This gives decidability for single-agent epistemic plausibility planning....

10. A grid-connected single-phase photovoltaic micro inverter

Science.gov (United States)

Wen, X. Y.; Lin, P. J.; Chen, Z. C.; Wu, L. J.; Cheng, S. Y.

2017-11-01

In this paper, the topology of a single-phase grid-connected photovoltaic (PV) micro-inverter is proposed. The PV micro-inverter consists of DC-DC stage with high voltage gain boost and DC-AC conversion stage. In the first stage, we apply the active clamp circuit and two voltage multipliers to achieve soft switching technology and high voltage gain. In addition, the flower pollination algorithm (FPA) is employed for the maximum power point tracking (MPPT) in the PV module in this stage. The second stage cascades a H-bridge inverter and LCL filter. To feed high quality sinusoidal power into the grid, the software phase lock, outer voltage loop and inner current loop control method are adopted as the control strategy. The performance of the proposed topology is tested by Matlab/Simulink. A PV module with maximum power 300W and maximum power point voltage 40V is applied as the input source. The simulation results indicate that the proposed topology and the control strategy are feasible.

11. Investigation on phase noise of the signal from a singly resonant optical parametric oscillator

Science.gov (United States)

Jinxia, Feng; Yuanji, Li; Kuanshou, Zhang

2018-04-01

The phase noise of the signal from a singly resonant optical parametric oscillator (SRO) is investigated theoretically and experimentally. An SRO based on periodically poled lithium niobate is built up that generates the signal with a maximum power of 5.2 W at 1.5 µm. The intensity noise of the signal reaches the shot noise level for frequencies above 5 MHz. The phase noise of the signal oscillates depending on the analysis frequency, and there are phase noise peaks above the shot noise level at the peak frequencies. To explain the phase noise feature of the signal, a semi-classical theoretical model of SROs including the guided acoustic wave Brillouin scattering effect within the nonlinear crystal is developed. The theoretical predictions are in good agreement with the experimental results.

12. Single-Phase Single-Stage Grid Tied Solar PV System with Active Power Filtering Using Power Balance Theory

Science.gov (United States)

Singh, Yashi; Hussain, Ikhlaq; Singh, Bhim; Mishra, Sukumar

2018-03-01

In this paper, power quality features such as harmonics mitigation, power factor correction with active power filtering are addressed in a single-stage, single-phase solar photovoltaic (PV) grid tied system. The Power Balance Theory (PBT) with perturb and observe based maximum power point tracking algorithm is proposed for the mitigation of power quality problems in a solar PV grid tied system. The solar PV array is interfaced to a single phase AC grid through a Voltage Source Converter (VSC), which provides active power flow from a solar PV array to the grid as well as to the load and it performs harmonics mitigation using PBT based control. The solar PV array power varies with sunlight and due to this, the solar PV grid tied VSC works only 8-10 h per day. At night, when PV power is zero, the VSC works as an active power filter for power quality improvement, and the load active power is delivered by the grid to the load connected at the point of common coupling. This increases the effective utilization of a VSC. The system is modelled and simulated using MATLAB and simulated responses of the system at nonlinear loads and varying environmental conditions are also validated experimentally on a prototype developed in the laboratory.

13. Initial transformer sizing for single-phase residential load

International Nuclear Information System (INIS)

1992-01-01

The purchase of distribution transformers represents a significant capital investment per year for an electric utility. Choosing the correct thermal and economic size transformer can help control this investment. This paper describes a method for determining the correct economic size of distribution transformers using end-use appliance load profiles and the ANSI/IEEE Standard C57.91-1981 thermal model. Although applied only to single family and multifamily residential load in this paper, the method can be extended to other types of load such as commercial or industrial

14. Benchmarking of small-signal dynamics of single-phase PLLs

DEFF Research Database (Denmark)

Zhang, Chong; Wang, Xiongfei; Blaabjerg, Frede

2015-01-01

Phase-looked Loop (PLL) is a critical component for the control and grid synchronization of grid-connected power converters. This paper presents a benchmarking study on the small-signal dynamics of three commonly used PLLs for single-phase converters, including enhanced PLL, second......-order generalized integrator based PLL, and the inverse-PLL. First, a unified small-signal model of those PLLs is established for comparing their dynamics. Then, a systematic design guideline for parameters tuning of the PLLs is formulated. To confirm the validity of theoretical analysis, nonlinear time...

15. State-Space Equations and the First-Phase Algorithm for Signal Control of Single Intersections

Institute of Scientific and Technical Information of China (English)

LI Jinyuan; PAN Xin; WANG Xiqin

2007-01-01

State-space equations were applied to formulate the queuing and delay of traffic at a single intersection in this paper. The signal control of a single intersection was then modeled as a discrete-time optimal control problem, with consideration of the constraints of stream conflicts, saturation flow rate, minimum green time, and maximum green time. The problem cannot be solved directly due to the nonlinear constraints.However, the results of qualitative analysis were used to develop a first-phase signal control algorithm. Simulation results show that the algorithm substantially reduces the total delay compared to fixed-time control.

16. Self-phase modulation of a single-cycle THz pulse

DEFF Research Database (Denmark)

Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, M. C.

2013-01-01

We demonstrate self-phase modulation (SPM) of a single-cycle THz pulse in a semiconductor, using bulk n-GaAs as a model system. The SPM arises from the heating of free electrons in the electric field of the THz pulse. Electron heating leads to an ultrafast reduction of the plasma frequency, which...... results in a strong modification of the THz-range dielectric function of the material. THz SPM is observed directly in the time domain as a characteristic reshaping of single-cycle THz pulse. In the frequency domain, it corresponds to a strong frequency-dependent refractive index nonlinearity of n...

17. WINKLER'S SINGLE-PARAMETER SUBGRADE MODEL FROM ...

African Journals Online (AJOL)

Preferred Customer

Page 1 ... corresponding single-parameter Winkler model presented in this work. Keywords: Heterogeneous subgrade, Reissner's simplified continuum, Shear interaction, Simplified continuum, Winkler ... model in practical applications and its long time familiarity among practical engineers, its usage has endured to this date ...

18. Single-phase convective heat transfer in rod bundles

International Nuclear Information System (INIS)

Holloway, Mary V.; Beasley, Donald E.; Conner, Michael E.

2008-01-01

The convective heat transfer for turbulent flow through rod bundles representative of nuclear fuel rods used in pressurized water reactors is examined. The rod bundles consist of a square array of parallel rods that are held on a constant pitch by support grids spaced axially along the rod bundle. Split-vane pair support grids, which create swirling flow in the rod bundle, as well as disc and standard support grids are investigated. Single-phase convective heat transfer coefficients are measured for flow downstream of support grids in a rod bundle. The rods are heated using direct resistance heating, and a bulk axial flow of air is used to cool the rods in the rod bundle. Air is used as the working fluid instead of water to reduce the power required to heat the rod bundle. Results indicate heat transfer enhancement for up to 10 hydraulic diameters downstream of the support grids. A general correlation is developed to predict the heat transfer development downstream of support grids. In addition, circumferential variations in heat transfer coefficients result in hot streaks that develop on the rods downstream of split-vane pair support grids

19. Single-phase convective heat transfer in rod bundles

Energy Technology Data Exchange (ETDEWEB)

Holloway, Mary V. [Mechanical Engineering Department, United States Naval Academy, 590 Holloway Rd., Annapolis, MD 21402 (United States)], E-mail: holloway@usna.edu; Beasley, Donald E. [Mechanical Engineering Department, Clemson University, Clemson, SC 29634 (United States); Conner, Michael E. [Westinghouse Nuclear Fuel, 5801 Bluff Road, Columbia, SC 29250 (United States)

2008-04-15

The convective heat transfer for turbulent flow through rod bundles representative of nuclear fuel rods used in pressurized water reactors is examined. The rod bundles consist of a square array of parallel rods that are held on a constant pitch by support grids spaced axially along the rod bundle. Split-vane pair support grids, which create swirling flow in the rod bundle, as well as disc and standard support grids are investigated. Single-phase convective heat transfer coefficients are measured for flow downstream of support grids in a rod bundle. The rods are heated using direct resistance heating, and a bulk axial flow of air is used to cool the rods in the rod bundle. Air is used as the working fluid instead of water to reduce the power required to heat the rod bundle. Results indicate heat transfer enhancement for up to 10 hydraulic diameters downstream of the support grids. A general correlation is developed to predict the heat transfer development downstream of support grids. In addition, circumferential variations in heat transfer coefficients result in hot streaks that develop on the rods downstream of split-vane pair support grids.

20. Single particle detection: Phase control in submicron Hall sensors

International Nuclear Information System (INIS)

Di Michele, Lorenzo; Shelly, Connor; Gallop, John; Kazakova, Olga

2010-01-01

We present a phase-sensitive ac-dc Hall magnetometry method which allows a clear and reliable separation of real and parasitic magnetic signals of a very small magnitude. High-sensitivity semiconductor-based Hall crosses are generally accepted as a preferential solution for non-invasive detection of superparamagnetic nanobeads used in molecular biology, nanomedicine, and nanochemistry. However, detection of such small beads is often hindered by inductive pick-up and other spurious signals. The present work demonstrates an unambiguous experimental route for detection of small magnetic moments and provides a simple theoretical background for it. The reliability of the method has been tested for a variety of InSb Hall sensors in the range 600 nm-5 μm. Complete characterization of empty devices, involving Hall coefficients and noise measurements, has been performed and detection of a single FePt bead with diameter of 140 nm and magnetic moment of μ≅10 8 μ B has been achieved with a 600 nm-wide sensor.

1. Self-assembled single-phase perovskite nanocomposite thin films.

Science.gov (United States)

Kim, Hyun-Suk; Bi, Lei; Paik, Hanjong; Yang, Dae-Jin; Park, Yun Chang; Dionne, Gerald F; Ross, Caroline A

2010-02-10

Thin films of perovskite-structured oxides with general formula ABO(3) have great potential in electronic devices because of their unique properties, which include the high dielectric constant of titanates, (1) high-T(C) superconductivity in cuprates, (2) and colossal magnetoresistance in manganites. (3) These properties are intimately dependent on, and can therefore be tailored by, the microstructure, orientation, and strain state of the film. Here, we demonstrate the growth of cubic Sr(Ti,Fe)O(3) (STF) films with an unusual self-assembled nanocomposite microstructure consisting of (100) and (110)-oriented crystals, both of which grow epitaxially with respect to the Si substrate and which are therefore homoepitaxial with each other. These structures differ from previously reported self-assembled oxide nanocomposites, which consist either of two different materials (4-7) or of single-phase distorted-cubic materials that exhibit two or more variants. (8-12) Moreover, an epitaxial nanocomposite SrTiO(3) overlayer can be grown on the STF, extending the range of compositions over which this microstructure can be formed. This offers the potential for the implementation of self-organized optical/ferromagnetic or ferromagnetic/ferroelectric hybrid nanostructures integrated on technologically important Si substrates with applications in magnetooptical or spintronic devices.

2. On the combination of molecular replacement and single-wavelength anomalous diffraction phasing for automated structure determination

International Nuclear Information System (INIS)

Panjikar, Santosh; Parthasarathy, Venkataraman; Lamzin, Victor S.; Weiss, Manfred S.; Tucker, Paul A.

2009-01-01

The combination of molecular replacement and single-wavelength anomalous diffraction improves the performance of automated structure determination with Auto-Rickshaw. A combination of molecular replacement and single-wavelength anomalous diffraction phasing has been incorporated into the automated structure-determination platform Auto-Rickshaw. The complete MRSAD procedure includes molecular replacement, model refinement, experimental phasing, phase improvement and automated model building. The improvement over the standard SAD or MR approaches is illustrated by ten test cases taken from the JCSG diffraction data-set database. Poor MR or SAD phases with phase errors larger than 70° can be improved using the described procedure and a large fraction of the model can be determined in a purely automatic manner from X-ray data extending to better than 2.6 Å resolution

3. Phase diagram of the Ge-rich of the Ba–Ge system and characterisation of single-phase BaGe4

International Nuclear Information System (INIS)

Prokofieva, Violetta K.; Pavlova, Lydia M.

2014-01-01

Highlights: • The Ba-Ge phase diagram for the range 50–100 at.% Ge was constructed. • Single-phase BaGe 4 grown by the Czochralski method was characterised. • A phenomenological model for a liquid-liquid phase transition is proposed. - Abstract: The Ba–Ge binary system has been investigated by several authors, but some uncertainties remain regarding phases with Ba/Ge ⩽ 2. The goal of this work was to resolve the uncertainty about the current phase diagram of Ba–Ge by performing DTA, X-ray powder diffraction, metallographic and chemical analyses, and measurements of the electrical conductivity and viscosity. The experimental Ba–Ge phase diagram over the composition range of 50–100 at.% Ge was constructed from the cooling curves and single-phase BaGe 4 grown by the Czochralski crystal pulling method was characterised. Semiconducting BaGe 4 crystallised peritectically from the liquid phase near the eutectic. In the liquid state, the caloric effects were observed in the DTA curves at 1050 °C where there are no definite phase lines in the Ba–Ge phase diagram. These effects are confirmed by significant changes in the viscosity and electrical conductivity of a Ba–Ge alloy with eutectic composition at this temperature. A phenomenological model based on two different approaches, a phase approach and a chemical approach, is proposed to explain the isothermal liquid–liquid phase transition observed in the Ba–Ge system from the Ge side. Our results suggest that this transition is due to the peritectic reactions in the liquid phase. This reversible phase transition results in the formation of precursors of various metastable clathrate phases and is associated with sudden changes in the structure of Ba–Ge liquid alloys. Characteristics of both first- and second-order phase transitions are observed. Charge transfer appears to play an important role in this transition

4. Direct phase selection of initial phases from single-wavelength anomalous dispersion (SAD) for the improvement of electron density and ab initio structure determination

International Nuclear Information System (INIS)

Chen, Chung-De; Huang, Yen-Chieh; Chiang, Hsin-Lin; Hsieh, Yin-Cheng; Guan, Hong-Hsiang; Chuankhayan, Phimonphan; Chen, Chun-Jung

2014-01-01

A novel direct phase-selection method to select optimized phases from the ambiguous phases of a subset of reflections to replace the corresponding initial SAD phases has been developed. With the improved phases, the completeness of built residues of protein molecules is enhanced for efficient structure determination. Optimization of the initial phasing has been a decisive factor in the success of the subsequent electron-density modification, model building and structure determination of biological macromolecules using the single-wavelength anomalous dispersion (SAD) method. Two possible phase solutions (ϕ 1 and ϕ 2 ) generated from two symmetric phase triangles in the Harker construction for the SAD method cause the well known phase ambiguity. A novel direct phase-selection method utilizing the θ DS list as a criterion to select optimized phases ϕ am from ϕ 1 or ϕ 2 of a subset of reflections with a high percentage of correct phases to replace the corresponding initial SAD phases ϕ SAD has been developed. Based on this work, reflections with an angle θ DS in the range 35–145° are selected for an optimized improvement, where θ DS is the angle between the initial phase ϕ SAD and a preliminary density-modification (DM) phase ϕ DM NHL . The results show that utilizing the additional direct phase-selection step prior to simple solvent flattening without phase combination using existing DM programs, such as RESOLVE or DM from CCP4, significantly improves the final phases in terms of increased correlation coefficients of electron-density maps and diminished mean phase errors. With the improved phases and density maps from the direct phase-selection method, the completeness of residues of protein molecules built with main chains and side chains is enhanced for efficient structure determination

5. Mechanistic modelling of the drying behaviour of single pharmaceutical granules

DEFF Research Database (Denmark)

Thérèse F.C. Mortier, Séverine; Beer, Thomas De; Gernaey, Krist

2012-01-01

The trend to move towards continuous production processes in pharmaceutical applications enhances the necessity to develop mechanistic models to understand and control these processes. This work focuses on the drying behaviour of a single wet granule before tabletting, using a six...... phase (submodel 2), the water inside the granule evaporates. The second submodel contains an empirical power coefficient, b. A sensitivity analysis was performed to study the influence of parameters on the moisture content of single pharmaceutical granules, which clearly points towards the importance...

6. Stability analysis of single-phase thermosyphon loops by finite difference numerical methods

International Nuclear Information System (INIS)

Ambrosini, W.

1998-01-01

In this paper, examples of the application of finite difference numerical methods in the analysis of stability of single-phase natural circulation loops are reported. The problem is here addressed for its relevance for thermal-hydraulic system code applications, in the aim to point out the effect of truncation error on stability prediction. The methodology adopted for analysing in a systematic way the effect of various finite difference discretization can be considered the numerical analogue of the usual techniques adopted for PDE stability analysis. Three different single-phase loop configurations are considered involving various kinds of boundary conditions. In one of these cases, an original dimensionless form of the governing equations is proposed, adopting the Reynolds number as a flow variable. This allows for an appropriate consideration of transition between laminar and turbulent regimes, which is not possible with other dimensionless forms, thus enlarging the field of validity of model assumptions. (author). 14 refs., 8 figs

7. Phase Field Modeling Using PetIGA

KAUST Repository

Vignal, Philippe; Collier, Nathan; Calo, Victor M.

2013-01-01

, and having a highly efficient and parallel framework to solve them is necessary. In this work, a brief review on phase field models is given, followed by a short analysis of the Phase Field Crystal Model solved with Isogeometric Analysis us- ing PetIGA. We

8. Phase diagram of an extended Agassi model

Science.gov (United States)

García-Ramos, J. E.; Dukelsky, J.; Pérez-Fernández, P.; Arias, J. M.

2018-05-01

Background: The Agassi model [D. Agassi, Nucl. Phys. A 116, 49 (1968), 10.1016/0375-9474(68)90482-X] is an extension of the Lipkin-Meshkov-Glick (LMG) model [H. J. Lipkin, N. Meshkov, and A. J. Glick, Nucl. Phys. 62, 188 (1965), 10.1016/0029-5582(65)90862-X] that incorporates the pairing interaction. It is a schematic model that describes the interplay between particle-hole and pair correlations. It was proposed in the 1960s by D. Agassi as a model to simulate the properties of the quadrupole plus pairing model. Purpose: The aim of this work is to extend a previous study by Davis and Heiss [J. Phys. G: Nucl. Phys. 12, 805 (1986), 10.1088/0305-4616/12/9/006] generalizing the Agassi model and analyze in detail the phase diagram of the model as well as the different regions with coexistence of several phases. Method: We solve the model Hamiltonian through the Hartree-Fock-Bogoliubov (HFB) approximation, introducing two variational parameters that play the role of order parameters. We also compare the HFB calculations with the exact ones. Results: We obtain the phase diagram of the model and classify the order of the different quantum phase transitions appearing in the diagram. The phase diagram presents broad regions where several phases, up to three, coexist. Moreover, there is also a line and a point where four and five phases are degenerated, respectively. Conclusions: The phase diagram of the extended Agassi model presents a rich variety of phases. Phase coexistence is present in extended areas of the parameter space. The model could be an important tool for benchmarking novel many-body approximations.

9. Two Phase Flow Split Model for Parallel Channels | Iloeje | Nigerian ...

African Journals Online (AJOL)

The model and code are capable of handling single and two phase flows, steady states and transients, up to ten parallel flow paths, simple and complicated geometries, including the boilers of fossil steam generators and nuclear power plants. A test calculation has been made with a simplified three-channel system ...

10. Assessing Model Characterization of Single Source ...

Science.gov (United States)

Aircraft measurements made downwind from specific coal fired power plants during the 2013 Southeast Nexus field campaign provide a unique opportunity to evaluate single source photochemical model predictions of both O3 and secondary PM2.5 species. The model did well at predicting downwind plume placement. The model shows similar patterns of an increasing fraction of PM2.5 sulfate ion to the sum of SO2 and PM2.5 sulfate ion by distance from the source compared with ambient based estimates. The model was less consistent in capturing downwind ambient based trends in conversion of NOX to NOY from these sources. Source sensitivity approaches capture near-source O3 titration by fresh NO emissions, in particular subgrid plume treatment. However, capturing this near-source chemical feature did not translate into better downwind peak estimates of single source O3 impacts. The model estimated O3 production from these sources but often was lower than ambient based source production. The downwind transect ambient measurements, in particular secondary PM2.5 and O3, have some level of contribution from other sources which makes direct comparison with model source contribution challenging. Model source attribution results suggest contribution to secondary pollutants from multiple sources even where primary pollutants indicate the presence of a single source. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, deci

11. Single Electron Transistor Platform for Microgravity Proteomics, Phase II

Data.gov (United States)

National Aeronautics and Space Administration — This Phase II program builds from the successful Phase I efforts to demonstrate that Quantum Logic Devices' nanoelectronic platform for biological detection could...

12. Atomistic simulation of fcc—bcc phase transition in single crystal Al under uniform compression

International Nuclear Information System (INIS)

Li Li; Liang Jiu-Qing; Shao Jian-Li; Duan Su-Qing; Li Yan-Fang

2012-01-01

By molecular dynamics simulations employing an embedded atom model potential, we investigate the fcc-to-bcc phase transition in single crystal Al, caused by uniform compression. Results show that the fcc structure is unstable when the pressure is over 250 GPa, in reasonable agreement with the calculated value through the density functional theory. The morphology evolution of the structural transition and the corresponding transition mechanism are analysed in detail. The bcc (011) planes are transited from the fcc (111-bar) plane and the (11-bar1) plane. We suggest that the transition mechanism consists mainly of compression, shear, slid and rotation of the lattice. In addition, our radial distribution function analysis explicitly indicates the phase transition of Al from fcc phase to bcc structure. (condensed matter: structural, mechanical, and thermal properties)

13. Selectivity of single, mixed, and modified pseudostationary phases in electrokinetic chromatography.

Science.gov (United States)

Fuguet, Elisabet; Ràfols, Clara; Bosch, Elisabeth; Abraham, Michael H; Rosés, Martí

2006-05-01

The selectivity of a compilation of single, mixed, and modified EKC pseudostationary phases, described in the literature and characterized through the solvation parameter model, is analyzed. Not only have micellar systems of different nature been included but also microemulsions, polymeric, and liposomial phases. In order to compare the systems, a principal component analysis of the coefficients of the solvation equation is performed. From this analysis, direct information of the system properties, differences in selectivity, as well as evidence of lack of accuracy in some system characterizations are obtained. These results become a very useful tool to perform separations with mixtures of surfactants, since it is possible to know which mixtures will provide a greater selectivity variation by changing only the composition of the pseudostationary phases. Furthermore, the variation of the selectivity of some mixtures, as well as the effect of the addition of organic solvents on selectivity, is also discussed.

14. Graphical models for inferring single molecule dynamics

Directory of Open Access Journals (Sweden)

Gonzalez Ruben L

2010-10-01

Full Text Available Abstract Background The recent explosion of experimental techniques in single molecule biophysics has generated a variety of novel time series data requiring equally novel computational tools for analysis and inference. This article describes in general terms how graphical modeling may be used to learn from biophysical time series data using the variational Bayesian expectation maximization algorithm (VBEM. The discussion is illustrated by the example of single-molecule fluorescence resonance energy transfer (smFRET versus time data, where the smFRET time series is modeled as a hidden Markov model (HMM with Gaussian observables. A detailed description of smFRET is provided as well. Results The VBEM algorithm returns the model’s evidence and an approximating posterior parameter distribution given the data. The former provides a metric for model selection via maximum evidence (ME, and the latter a description of the model’s parameters learned from the data. ME/VBEM provide several advantages over the more commonly used approach of maximum likelihood (ML optimized by the expectation maximization (EM algorithm, the most important being a natural form of model selection and a well-posed (non-divergent optimization problem. Conclusions The results demonstrate the utility of graphical modeling for inference of dynamic processes in single molecule biophysics.

15. PHASE CHAOS IN THE DISCRETE KURAMOTO MODEL

DEFF Research Database (Denmark)

Maistrenko, V.; Vasylenko, A.; Maistrenko, Y.

2010-01-01

The paper describes the appearance of a novel, high-dimensional chaotic regime, called phase chaos, in a time-discrete Kuramoto model of globally coupled phase oscillators. This type of chaos is observed at small and intermediate values of the coupling strength. It arises from the nonlinear...... interaction among the oscillators, while the individual oscillators behave periodically when left uncoupled. For the four-dimensional time-discrete Kuramoto model, we outline the region of phase chaos in the parameter plane and determine the regions where phase chaos coexists with different periodic...

16. Numerical investigation of refrigeration machine compressor operation considering single-phase electric motor dynamic characteristics

Science.gov (United States)

Baidak, Y.; Smyk, V.

2017-08-01

Using as the base the differential equations system which was presented in relative units for generalized electric motor of hermetic refrigeration compressor, mathematical model of the software for dynamic performance calculation of refrigeration machine compressors drive low-power asynchronous motors was developed. Performed on its ground calculations of the basic model of two-phase electric motor drive of hermetic compressor and the proposed newly developed model of the motor with single-phase stator winding, which is an alternative to the industrial motor winding, have confirmed the benefits of the motor with innovative stator winding over the base engine. Given calculations of the dynamic characteristics of compressor drive motor have permitted to determine the value of electromagnetic torque swinging for coordinating compressor and motor mechanical characteristics, and for taking them into consideration in choosing compressor elements construction materials. Developed and used in the process of investigation of refrigeration compressor drive asynchronous single-phase motor mathematical and software can be considered as an element of computer-aided design system for design of the aggregate of refrigeration compression unit refrigerating machine.

17. Validation of CATHENA MOD-3.5/Rev0 for single-phase water hammer

International Nuclear Information System (INIS)

Beuthe, T.G.

2000-01-01

This paper describes work performed to validate the system thermalhydraulics code CATHENA MOD-3.5c/Rev0 for single-phase water hammer. Simulations were performed and are compared quantitatively against numerical tests and experimental results from the Seven Sisters Water Hammer Facility to demonstrate CATHENA can predict the creation and propagation of pressure waves when valves are opened and closed. Simulations were also performed to show CATHENA can model the behaviour of reflected and transmitted pressure waves at area changes, dead ends, tanks, boundary conditions, and orifices in simple and more complex piping systems. The CATHENA results are shown to calculate pressure and wave propagation speeds to within 0.2% and 0.5% respectively for numerical tests and within 3.3% and 5% for experimental results respectively. These results are used to help validate CATHENA for use in single-phase water hammer analysis. They also provide assurance that the fundamental parameters needed to successfully model more complex forms of water hammer are accounted for in the MOD-3.5c/Rev0 version of CATHENA, and represent the first step in the process to validate the code for use in modelling two-phase water hammer and condensation-induced water hammer. (author)

18. Plastic crystal phases of simple water models

International Nuclear Information System (INIS)

Aragones, J. L.; Vega, C.

2009-01-01

We report the appearance of two plastic crystal phases of water at high pressure and temperature using computer simulations. In one of them the oxygen atoms form a body centered cubic structure (bcc) and in the other they form a face centered cubic structure (fcc). In both cases the water molecules were able to rotate almost freely. We have found that the bcc plastic crystal transformed into a fcc plastic crystal via a Martensitic phase transition when heated at constant pressure. We have performed the characterization and localization in the phase diagram of these plastic crystal phases for the SPC/E, TIP4P, and TIP4P/2005 water potential models. For TIP4P/2005 model free energy calculations were carried out for the bcc plastic crystal and fcc plastic crystal using a new method (which is a slight variation of the Einstein crystal method) proposed for these types of solid. The initial coexistence points for the SPC/E and TIP4P models were obtained using Hamiltonian Gibbs–Duhem integration. For all of these models these two plastic crystal phases appear in the high pressure and temperature region of the phase diagram. It would be of interest to study if such plastic crystal phases do indeed exist for real water. This would shed some light on the question of whether these models can describe satisfactorily the high pressure part of the phase diagram of water, and if not, where and why they fail.

19. Phase Field Modeling Using PetIGA

KAUST Repository

Vignal, Philippe

2013-06-01

Phase field modeling has become a widely used framework in the computational material science community. Its ability to model different problems by defining appropriate phase field parameters and relating it to a free energy functional makes it highly versatile. Thermodynamically consistent partial differential equations can then be generated by assuming dissipative dynamics, and setting up the problem as one of minimizing this free energy. The equations are nonetheless challenging to solve, and having a highly efficient and parallel framework to solve them is necessary. In this work, a brief review on phase field models is given, followed by a short analysis of the Phase Field Crystal Model solved with Isogeometric Analysis us- ing PetIGA. We end with an introduction to a new modeling concept, where free energy functions are built with a periodic equilibrium structure in mind.

20. Mathematical modelling of two-phase flows

International Nuclear Information System (INIS)

Komen, E.M.J.; Stoop, P.M.

1992-11-01

A gradual shift from methods based on experimental correlations to methods based on mathematical models to study 2-phase flows can be observed. The latter can be used to predict dynamical behaviour of 2-phase flows. This report discusses various mathematical models for the description of 2-phase flows. An important application of these models can be found in thermal-hydraulic computer codes used for analysis of the thermal-hydraulic behaviour of water cooled nuclear power plants. (author). 17 refs., 7 figs., 6 tabs

1. Langley's CSI evolutionary model: Phase O

Science.gov (United States)

Belvin, W. Keith; Elliott, Kenny B.; Horta, Lucas G.; Bailey, Jim P.; Bruner, Anne M.; Sulla, Jeffrey L.; Won, John; Ugoletti, Roberto M.

1991-01-01

A testbed for the development of Controls Structures Interaction (CSI) technology to improve space science platform pointing is described. The evolutionary nature of the testbed will permit the study of global line-of-sight pointing in phases 0 and 1, whereas, multipayload pointing systems will be studied beginning with phase 2. The design, capabilities, and typical dynamic behavior of the phase 0 version of the CSI evolutionary model (CEM) is documented for investigator both internal and external to NASA. The model description includes line-of-sight pointing measurement, testbed structure, actuators, sensors, and real time computers, as well as finite element and state space models of major components.

2. THE BERTRAND MODEL OF THE SINGLE MARKET

Directory of Open Access Journals (Sweden)

2010-12-01

Full Text Available Starting with the signification of the rationality hypothesis when the agent’s contentment is directly affected by the other agents’ decisions, the theory of games defines solutions for solving different situations of conflict. The economic actors have different behaviours of the Single Market. Oligopoly strategic behaviours were analysed by the Bertrand model. The two types revealed in the work show that strategic interactions are sensitive to the companies’ features, products and markets. Regarding the situation when we have an oligopoly competition, the companies make interdependent decisions in the environment affected by risk and uncertainty of the Single Market. For this reason it is an opportunity to study the structure of oligopoly type of of the Single Market with the aid of non – cooperative games.

3. Power coordinated control method with frequency support capability for hybrid single/three-phase microgrid

DEFF Research Database (Denmark)

Zhou, Xiaoping; Chen, Yandong; Zhou, Leming

2018-01-01

storage unit (ESU) are added into hybrid single/three-phase microgrid, and a power coordinated control method with frequency support capability is proposed for hybrid single/three-phase microgrid in this study. PEU is connected with three single-phase microgrids to coordinate power exchange among three...... phases and provide frequency support for hybrid microgrid. Meanwhile, a power coordinated control method based on the droop control is proposed for PEU to alleviate three-phase power imbalance and reduce voltage fluctuation of hybrid microgrid. Besides, ESU is injected into the DC-link to buffer......Due to the intermittent output power of distributed generations (DGs) and the variability of loads, voltage fluctuation and three-phase power imbalance easily occur when hybrid single/three-phase microgrid operates in islanded mode. To address these issues, the power exchange unit (PEU) and energy...

4. Single phase and two phase erosion corrosion in broilers of gas-cooled reactors

International Nuclear Information System (INIS)

Harrison, G.S.; Fountain, M.J.

1988-01-01

Erosion-corrosion is a phenomenon causing metal wastage in a variety of locations in water and water-steam circuits throughout the power generation industry. Erosion-corrosion can occur in a number of regions of the once-through boiler designs used in the later Magnox and AGR type of gas cooled nuclear reactor. This paper will consider two cases of erosion-corrosion damage (single and two phase) in once through boilers of gas cooled reactors and will describe the solutions that have been developed. The single phase problem is associated with erosion-corrosion damage of mild steel downstream of a boiler inlet flow control orifice. With metal loss rates of up to 1 mm/year at 150 deg. C and pH in the range 9.0-9.4 it was found that 5 μg/kg oxygen was sufficient to reduce erosion-corrosion rates to less than 0.02 mm/year. A combined oxygen-ammonia-hydrazine feedwater regime was developed and validated to eliminate oxygen carryover and hence give protection from stress corrosion in the austenitic section of the AGR once through boiler whilst still providing erosion-corrosion control. Two phase erosion-corrosion tube failures have occurred in the evaporator of the mild steel once through boilers of the later Magnox reactors operating at pressures in the range 35-40 bar. Rig studies have shown that amines dosed in the feedwater can provide a significant reduction in metal loss rates and a tube lifetime assessment technique has been developed to predict potential tube failure profiles in a fully operational boiler. The solutions identified for both problems have been successfully implemented and the experience obtained following implementation including any problems or other benefits arising from the introduction of the new regimes will be presented. Methods for monitoring and evaluating the efficiency of the solutions have been developed and the results from these exercises will also be discussed. Consideration will also be given to the similarities in the metal loss

5. Single phase and two phase erosion corrosion in broilers of gas-cooled reactors

Energy Technology Data Exchange (ETDEWEB)

Harrison, G S; Fountain, M J [Operational Engineering Division (Northern Area), Central Electricity Generating Board, Manchester (United Kingdom)

1988-07-01

Erosion-corrosion is a phenomenon causing metal wastage in a variety of locations in water and water-steam circuits throughout the power generation industry. Erosion-corrosion can occur in a number of regions of the once-through boiler designs used in the later Magnox and AGR type of gas cooled nuclear reactor. This paper will consider two cases of erosion-corrosion damage (single and two phase) in once through boilers of gas cooled reactors and will describe the solutions that have been developed. The single phase problem is associated with erosion-corrosion damage of mild steel downstream of a boiler inlet flow control orifice. With metal loss rates of up to 1 mm/year at 150 deg. C and pH in the range 9.0-9.4 it was found that 5 {mu}g/kg oxygen was sufficient to reduce erosion-corrosion rates to less than 0.02 mm/year. A combined oxygen-ammonia-hydrazine feedwater regime was developed and validated to eliminate oxygen carryover and hence give protection from stress corrosion in the austenitic section of the AGR once through boiler whilst still providing erosion-corrosion control. Two phase erosion-corrosion tube failures have occurred in the evaporator of the mild steel once through boilers of the later Magnox reactors operating at pressures in the range 35-40 bar. Rig studies have shown that amines dosed in the feedwater can provide a significant reduction in metal loss rates and a tube lifetime assessment technique has been developed to predict potential tube failure profiles in a fully operational boiler. The solutions identified for both problems have been successfully implemented and the experience obtained following implementation including any problems or other benefits arising from the introduction of the new regimes will be presented. Methods for monitoring and evaluating the efficiency of the solutions have been developed and the results from these exercises will also be discussed. Consideration will also be given to the similarities in the metal loss

6. Phase transition in the hadron gas model

International Nuclear Information System (INIS)

Gorenstein, M.I.; Petrov, V.K.; Zinov'ev, G.M.

1981-01-01

A class of statistical models of hadron gas allowing an analytical solution is considered. A mechanism of a possible phase transition in such a system is found and conditions for its occurence are determined [ru

7. A single quark effective potential model

International Nuclear Information System (INIS)

Bodmann, B.E.J.; Vasconcellos, C.A.Z.

1994-01-01

In the present work we construct a radial spherical symmetric single quark potential model for the nucleon, consistent with asymptotic freedom and confinement. The quark mass enters as potential parameter and that way induces indirectly an isospin dependence in the interaction. As a consequence, a contribution to the negative charge square radius of the neutron arises an an effect of the quark core, which simulates an isospin symmetry breaking effect in the nucleon due to strong interaction. (author)

8. Power Based Phase-Locked Loop Under Adverse Conditions with Moving Average Filter for Single-Phase System

Directory of Open Access Journals (Sweden)

Menxi Xie

2017-06-01

Full Text Available High performance synchronization methord is citical for grid connected power converter. For single-phase system, power based phase-locked loop(pPLL uses a multiplier as phase detector(PD. As single-phase grid voltage is distorted, the phase error information contains ac disturbances oscillating at integer multiples of fundamental frequency which lead to detection error. This paper presents a new scheme based on moving average filter(MAF applied in-loop of pPLL. The signal characteristic of phase error is dissussed in detail. A predictive rule is adopted to compensate the delay induced by MAF, thus achieving fast dynamic response. In the case of frequency deviate from nomimal, estimated frequency is fed back to adjust the filter window length of MAF and buffer size of predictive rule. Simulation and experimental results show that proposed PLL achieves good performance under adverse grid conditions.

9. Modeling beams with elements in phase space

International Nuclear Information System (INIS)

Nelson, E.M.

1998-01-01

Conventional particle codes represent beams as a collection of macroparticles. An alternative is to represent the beam as a collection of current carrying elements in phase space. While such a representation has limitations, it may be less noisy than a macroparticle model, and it may provide insights about the transport of space charge dominated beams which would otherwise be difficult to gain from macroparticle simulations. The phase space element model of a beam is described, and progress toward an implementation and difficulties with this implementation are discussed. A simulation of an axisymmetric beam using 1d elements in phase space is demonstrated

10. new topology for single-phase, three-level, spwm vsi with lc filter

African Journals Online (AJOL)

level PWM inverter. However, this is not the case with single-phase PWM inverters. In these days, the popular single-phase inverters adopt the full-bridge type using approximate sinusoidal modulation technique. The output voltage in them has two values: zero and pos- itive supply dc voltage levels in the positive half cycle.

11. Torque Analysis With Saturation Effects for Non-Salient Single-Phase Permanent-Magnet Machines

DEFF Research Database (Denmark)

Lu, Kaiyuan; Ritchie, Ewen

2011-01-01

The effects of saturation on torque production for non-salient, single-phase, permanent-magnet machines are studied in this paper. An analytical torque equation is proposed to predict the instantaneous torque with saturation effects. Compared to the existing methods, it is computationally faster......-element results, and experimental results obtained on a prototype single-phase permanent-magnet machine....

12. Measurement of the single and two phase flow using newly developed average bidirectional flow tube

International Nuclear Information System (INIS)

Yun, Byong Jo; Euh, Dong Jin; Kang, Kyung Ho; Song, Chul Hwa; Baek, Won Pil

2005-01-01

A new instrument, an average BDFT (Birectional Flow Tube), was proposed to measure the flow rate in single and two phase flows. Its working principle is similar to that of the pitot tube, wherein the dynamic pressure is measured. In an average BDFT, the pressure measured at the front of the flow tube is equal to the total pressure, while that measured at the rear tube is slightly less than the static pressure of the flow field due to the suction effect downstream. The proposed instrument was tested in air/water vertical and horizontal test sections with an inner diameter of 0.08m. The tests were performed primarily in single phase water and air flow conditions to obtain the amplification factor(k) of the flow tube in the vertical and horizontal test sections. Tests were also performed in air/water vertical two phase flow conditions in which the flow regimes were bubbly, slug, and churn turbulent flows. In order to calculate the phasic mass flow rates from the measured differential pressure, the Chexal dirft-flux correlation and a momentum exchange factor between the two phases were introduced. The test results show that the proposed instrument with a combination of the measured void fraction, Chexal drift-flux correlation, and Bosio and Malnes' momentum exchange model could predict the phasic mass flow rates within a 15% error. A new momentum exchange model was also proposed from the present data and its implementation provides a 5% improvement to the measured mass flow rate when compared to that with the Bosio and Malnes' model

13. Large conditional single-photon cross-phase modulation

Science.gov (United States)

Hosseini, Mahdi; Duan, Yiheng; Vuletić, Vladan

2016-01-01

Deterministic optical quantum logic requires a nonlinear quantum process that alters the phase of a quantum optical state by π through interaction with only one photon. Here, we demonstrate a large conditional cross-phase modulation between a signal field, stored inside an atomic quantum memory, and a control photon that traverses a high-finesse optical cavity containing the atomic memory. This approach avoids fundamental limitations associated with multimode effects for traveling optical photons. We measure a conditional cross-phase shift of π/6 (and up to π/3 by postselection on photons that remain in the system longer than average) between the retrieved signal and control photons, and confirm deterministic entanglement between the signal and control modes by extracting a positive concurrence. By upgrading to a state-of-the-art cavity, our system can reach a coherent phase shift of π at low loss, enabling deterministic and universal photonic quantum logic. PMID:27519798

14. the steady-state performance characteristics of single phase transfer

African Journals Online (AJOL)

2012-11-03

Nov 3, 2012 ... field (SPTF) machine operating in the asynchronous mode from which the performance charac- teristics could be ... motor from a poly-phase induction motor by discon- necting one of its .... tating magnetic field. The pulsating ...

15. Indirect Control of a low power Single-Phase Active Power Filter

Directory of Open Access Journals (Sweden)

SILVIU EPURE

2010-12-01

Full Text Available This paper deals with a low power, single phase active filter used to compensate nonlinear loads. The filter uses the indirect control method and it is based on a particular connection between filter, polluting load and grid to avoid timeconsuming mathematic operations or signal processing computations and assures good rejection of harmonic currents injected by the nonlinear load into the grid. A scale model was first simulated in Simulink and then physically implemented. The paper presents simulation and experimental results, and highlight problems encountered during experiments.

16. Detection and characterization of single nanoparticles by interferometric phase modulated ellipsometry

Energy Technology Data Exchange (ETDEWEB)

Barroso, F.; Bosch, S.; Tort, N.; Arteaga, O. [Universitat de Barcelona, IN2UB, Dep. Fisica Aplicada i Optica, c/Marti i Franques 1, 08028 (Spain); Sancho-Parramon, J. [Rudjer Boskovic Institute, Bijenicka c. 54, Zagreb 10002 (Croatia); Jover, E.; Bertran, E. [Universitat de Barcelona, IN2UB, Dep. Fisica Aplicada i Optica, c/Marti i Franques 1, 08028 (Spain); Canillas, A., E-mail: acanillas@ub.ed [Universitat de Barcelona, IN2UB, Dep. Fisica Aplicada i Optica, c/Marti i Franques 1, 08028 (Spain)

2011-02-28

We introduce a new measurement system called Nanopolar interferometer devoted to monitor and characterize single nanoparticles which is based on the interferometric phase modulated ellipsometry technique. The system collects the backscattered light by the particles in the solid angle subtended by a microscope objective and then analyses its frequency components. The results for the detection of 2 {mu}m and 50 nm particles are explained in terms of a cross polarization effect of the polarization vectors when the beam converts from divergent to parallel in the microscope objective. This explanation is supported with the results of the optical modelling using the exact Mie theory for the light scattered by the particles.

17. Detection and characterization of single nanoparticles by interferometric phase modulated ellipsometry

International Nuclear Information System (INIS)

Barroso, F.; Bosch, S.; Tort, N.; Arteaga, O.; Sancho-Parramon, J.; Jover, E.; Bertran, E.; Canillas, A.

2011-01-01

We introduce a new measurement system called Nanopolar interferometer devoted to monitor and characterize single nanoparticles which is based on the interferometric phase modulated ellipsometry technique. The system collects the backscattered light by the particles in the solid angle subtended by a microscope objective and then analyses its frequency components. The results for the detection of 2 μm and 50 nm particles are explained in terms of a cross polarization effect of the polarization vectors when the beam converts from divergent to parallel in the microscope objective. This explanation is supported with the results of the optical modelling using the exact Mie theory for the light scattered by the particles.

18. Single Phase Current-Source Active Rectifier for Traction: Control System Design and Practical Problems

Directory of Open Access Journals (Sweden)

Jan Michalik

2006-01-01

Full Text Available This research has been motivated by industrial demand for single phase current-source active rectifier dedicated for reconstruction of older types of dc machine locomotives. This paper presents converters control structure design and simulations. The proposed converter control is based on the mathematical model and due to possible interaction with railway signaling and required low switching frequency employs synchronous PWM. The simulation results are verified by experimental tests performed on designed laboratory prototype of power of 7kVA

19. A discrete dislocation–transformation model for austenitic single crystals

International Nuclear Information System (INIS)

Shi, J; Turteltaub, S; Remmers, J J C; Van der Giessen, E

2008-01-01

A discrete model for analyzing the interaction between plastic flow and martensitic phase transformations is developed. The model is intended for simulating the microstructure evolution in a single crystal of austenite that transforms non-homogeneously into martensite. The plastic flow in the untransformed austenite is simulated using a plane-strain discrete dislocation model. The phase transformation is modeled via the nucleation and growth of discrete martensitic regions embedded in the austenitic single crystal. At each instant during loading, the coupled elasto-plasto-transformation problem is solved using the superposition of analytical solutions for the discrete dislocations and discrete transformation regions embedded in an infinite homogeneous medium and the numerical solution of a complementary problem used to enforce the actual boundary conditions and the heterogeneities in the medium. In order to describe the nucleation and growth of martensitic regions, a nucleation criterion and a kinetic law suitable for discrete regions are specified. The constitutive rules used in discrete dislocation simulations are supplemented with additional evolution rules to account for the phase transformation. To illustrate the basic features of the model, simulations of specimens under plane-strain uniaxial extension and contraction are analyzed. The simulations indicate that plastic flow reduces the average stress at which transformation begins, but it also reduces the transformation rate when compared with benchmark simulations without plasticity. Furthermore, due to local stress fluctuations caused by dislocations, martensitic systems can be activated even though transformation would not appear to be favorable based on the average stress. Conversely, the simulations indicate that the plastic hardening behavior is influenced by the reduction in the effective austenitic grain size due to the evolution of transformation. During cyclic simulations, the coupled plasticity

20. 1.26 Single Frequency Fiber Laser, Phase II

Data.gov (United States)

National Aeronautics and Space Administration — This proposal is for the development of an innovative compact, high power, and extremely reliable 1.26 micron Ho-doped single frequency fiber laser. The proposed...

1. 1.26 Single Frequency Fiber Laser, Phase I

Data.gov (United States)

National Aeronautics and Space Administration — This proposal is for the development of an innovative compact, high power, and extremely reliable 1.26 micron Ho-doped single frequency fiber laser. The proposed...

2. Single Molecule Scanning of DNA Radiation Oxidative Damage, Phase I

Data.gov (United States)

National Aeronautics and Space Administration — This proposal will develop an assay to map genomic DNA, at the single molecule level and in a nanodevice, for oxidative DNA damage arising from radiation exposure;...

3. Single phase flow pressure drop and heat transfer in rectangular metallic microchannels

International Nuclear Information System (INIS)

Sahar, Amirah M.; Özdemir, Mehmed R.; Fayyadh, Ekhlas M.; Wissink, Jan; Mahmoud, Mohamed M.; Karayiannis, Tassos G.

2016-01-01

Numerical simulations were performed using Fluent 14.5 to investigate single phase flow and conjugate heat transfer in copper rectangular microchannels. Two different configurations were simulated: (1) single channel with hydraulic diameter of 0.561 mm and (2) multichannel configuration consisting of inlet and outlet manifolds and 25 channels with hydraulic diameter of 0.409 mm. In the single channel configuration, four numerical models were investigated namely, 2D thin-wall, 3D thin-wall (heated from the bottom), 3D thin-wall (three side heated) and 3D full conjugate models. In the multichannel configuration, only 3D full conjugate model was used. The simulation results of the single channel configuration were validated using experimental data of water as a test fluid while the results of the multichannel configuration were validated using experimental data of R134a refrigerant. In the multichannel configuration, flow distribution among the channels was also investigated. The 3D thin-wall model simulation was conducted at thermal boundary conditions similar to those assumed in the experimental data reduction (uniform heat flux) and showed excellent agreement with the experimental data. However, the results of the 3D full conjugate model demonstrated that there is a significant conjugate effect and the heat flux is not uniformly distributed along the channel resulting in significant deviation compared to the experimental data (more than 50%). Also, the results demonstrated that there is a significant difference between the 3D thin-wall and full conjugate models. The simulation of the multichannel configuration with an inlet manifold having gradual decrease in cross sectional area achieved very reasonable uniform flow distribution among the channels which will provide uniform heat transfer rates across the base of the microchannels.

4. Quantitative occupational risk model: Single hazard

International Nuclear Information System (INIS)

Papazoglou, I.A.; Aneziris, O.N.; Bellamy, L.J.; Ale, B.J.M.; Oh, J.

2017-01-01

A model for the quantification of occupational risk of a worker exposed to a single hazard is presented. The model connects the working conditions and worker behaviour to the probability of an accident resulting into one of three types of consequence: recoverable injury, permanent injury and death. Working conditions and safety barriers in place to reduce the likelihood of an accident are included. Logical connections are modelled through an influence diagram. Quantification of the model is based on two sources of information: a) number of accidents observed over a period of time and b) assessment of exposure data of activities and working conditions over the same period of time and the same working population. Effectiveness of risk reducing measures affecting the working conditions, worker behaviour and/or safety barriers can be quantified through the effect of these measures on occupational risk. - Highlights: • Quantification of occupational risk from a single hazard. • Influence diagram connects working conditions, worker behaviour and safety barriers. • Necessary data include the number of accidents and the total exposure of worker • Effectiveness of risk reducing measures is quantified through the impact on the risk • An example illustrates the methodology.

5. Modeling two-phase flow in PEM fuel cell channels

Energy Technology Data Exchange (ETDEWEB)

Wang, Yun; Basu, Suman; Wang, Chao-Yang [Electrochemical Engine Center (ECEC), and Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States)

2008-05-01

This paper is concerned with the simultaneous flow of liquid water and gaseous reactants in mini-channels of a proton exchange membrane (PEM) fuel cell. Envisaging the mini-channels as structured and ordered porous media, we develop a continuum model of two-phase channel flow based on two-phase Darcy's law and the M{sup 2} formalism, which allow estimate of the parameters key to fuel cell operation such as overall pressure drop and liquid saturation profiles along the axial flow direction. Analytical solutions of liquid water saturation and species concentrations along the channel are derived to explore the dependences of these physical variables vital to cell performance on operating parameters such as flow stoichiometric ratio and relative humility. The two-phase channel model is further implemented for three-dimensional numerical simulations of two-phase, multi-component transport in a single fuel-cell channel. Three issues critical to optimizing channel design and mitigating channel flooding in PEM fuel cells are fully discussed: liquid water buildup towards the fuel cell outlet, saturation spike in the vicinity of flow cross-sectional heterogeneity, and two-phase pressure drop. Both the two-phase model and analytical solutions presented in this paper may be applicable to more general two-phase flow phenomena through mini- and micro-channels. (author)

6. Direct phase selection of initial phases from single-wavelength anomalous dispersion (SAD) for the improvement of electron density and ab initio structure determination.

Science.gov (United States)

Chen, Chung-De; Huang, Yen-Chieh; Chiang, Hsin-Lin; Hsieh, Yin-Cheng; Guan, Hong-Hsiang; Chuankhayan, Phimonphan; Chen, Chun-Jung

2014-09-01

Optimization of the initial phasing has been a decisive factor in the success of the subsequent electron-density modification, model building and structure determination of biological macromolecules using the single-wavelength anomalous dispersion (SAD) method. Two possible phase solutions (φ1 and φ2) generated from two symmetric phase triangles in the Harker construction for the SAD method cause the well known phase ambiguity. A novel direct phase-selection method utilizing the θ(DS) list as a criterion to select optimized phases φ(am) from φ1 or φ2 of a subset of reflections with a high percentage of correct phases to replace the corresponding initial SAD phases φ(SAD) has been developed. Based on this work, reflections with an angle θ(DS) in the range 35-145° are selected for an optimized improvement, where θ(DS) is the angle between the initial phase φ(SAD) and a preliminary density-modification (DM) phase φ(DM)(NHL). The results show that utilizing the additional direct phase-selection step prior to simple solvent flattening without phase combination using existing DM programs, such as RESOLVE or DM from CCP4, significantly improves the final phases in terms of increased correlation coefficients of electron-density maps and diminished mean phase errors. With the improved phases and density maps from the direct phase-selection method, the completeness of residues of protein molecules built with main chains and side chains is enhanced for efficient structure determination.

7. Heat transfer modelling of two-phase bubbles swarm condensing in three - phase direct - contact condenser

Directory of Open Access Journals (Sweden)

Mahood Hameed B.

2016-01-01

Full Text Available An analytical model for the convective heat transfer coefficient and the two-phase bubble size of a three-phase direct contact heat exchanger was developed. Until the present, there has only been a theoretical model available that deals with a single two-phase bubble and a bubble train condensation in an immiscible liquid. However, to understand the actual heat transfer process within the three-phase direct contact condenser, characteristic models are required. A quasi - steady energy equation in a spherical coordinate system with a potential flow assumption and a cell model configuration has been simplified and solved analytically. The convective heat transfer in terms of Nu number has been derived, and it was found to be a function to Pe number and a system void fraction. In addition, the two-phase bubble size relates to the system void fraction and has been developed by solving a simple energy balance equation and using the derived convective heat transfer coefficient expression. Furthermore, the model correlates well with previous experimental data and theoretical results.

8. Macroscopic models for single-phase flows in fractured porous medium: application to well tests; Modeles macroscopiques pour les ecoulements monophasiques en milieu poreux fracture: application aux tests de puits

Energy Technology Data Exchange (ETDEWEB)

Landereau, P.

2000-12-01

We consider pressure diffusion in fractured media, with application to well test interpretation. Using the volume averaging theory of Quintard and Whitaker, the local problem is replaced by a double-porosity large scale description. The parameters of the latter may be computed solving small scale closure problems on a representative volume. Using suitable numerical methods, we have performed a systematic study of these parameters as a function of the topology of the fracture network and matrix to fracture permeability contrast. We find that the matrix permeability plays a significant role near a percolation threshold. Next, we studied the exchange coefficient parameter, by unifying the different definitions of the literature in a single framework using a Fourier analysis. Finally, we applied our technique to well-test interpretation in fractured media by comparing large scale solutions to high resolution direct simulations. We find that at short time scale, very fine grid blocks are needed to get good accuracy. In that case, a good agreement is observed between large scale averaged results and reference simulations. (author)

9. Dynamical quantum phase transitions in extended transverse Ising models

Science.gov (United States)

Bhattacharjee, Sourav; Dutta, Amit

2018-04-01

We study the dynamical quantum phase transitions (DQPTs) manifested in the subsequent unitary dynamics of an extended Ising model with an additional three spin interactions following a sudden quench. Revisiting the equilibrium phase diagram of the model, where different quantum phases are characterized by different winding numbers, we show that in some situations the winding number may not change across a gap closing point in the energy spectrum. Although, usually there exists a one-to-one correspondence between the change in winding number and the number of critical time scales associated with DQPTs, we show that the extended nature of interactions may lead to unusual situations. Importantly, we show that in the limit of the cluster Ising model, three critical modes associated with DQPTs become degenerate, thereby leading to a single critical time scale for a given sector of Fisher zeros.

10. Phase models of galaxies consisting of disk and halo

International Nuclear Information System (INIS)

Osipkov, L.P.; Kutuzov, S.A.

1987-01-01

A method of finding the phase density of a two-component model of mass distribution is developed. The equipotential surfaces and the potential law are given. The equipotentials are lenslike surfaces with a sharp edge in the equatorial plane, which provides the existence of an imbedded thin disk in halo. The equidensity surfaces of the halo coincide with the equipotentials. Phase models for the halo and the disk are constructed separately on the basis of spatial and surface mass densities by solving the corresponding integral equations. In particular the models for the halo with finite dimensions can be constructed. The even part of the phase density in respect to velocities is only found. For the halo it depends on the energy integral as a single argument

11. Conceptual Design of a Single Phase 33 MVA HTS Transformer with a Tertiary Winding

International Nuclear Information System (INIS)

Lee, S. W.; Kim, W. S.; Hahn, S. Y.; Hwang, Y. I.; Choi, K. D.

2006-01-01

We have proposed a 3 phase, 100 MVA, 154 kV class HTS transformer substituting for a 60 MVA conventional transformer. The power transformer of 154 kV class has a tertiary winding besides primary and secondary windings. So the HTS transformer should have the 3rd superconducting winding. In this paper, we designed conceptually the structure of the superconducting windings of a single phase 33 MVA transformer. The electrical characteristics of the HTS transformer such as % impedance and AC loss vary with the arrangement of the windings and gaps between windings. We analyzed the effects of the winding parameters, evaluated the cost of each design, and proposed a suitable HTS transformer model for future power distribution system.

12. 16 channel WDM regeneration in a single phase-sensitive amplifier through optical Fourier transformation

DEFF Research Database (Denmark)

Guan, Pengyu; Da Ros, Francesco; Lillieholm, Mads

2016-01-01

We demonstrate simultaneous phase regeneration of 16-WDM DPSK channels using optical Fourier transformation and a single phase-sensitive amplifier. The BERs of 16-WDM×10-Gbit/s phase noise degraded DPSK signals are improved by 0.4-1.3 orders of magnitude...

13. Pressure transient analysis in single and two-phase water by finite difference methods

International Nuclear Information System (INIS)

Berry, G.F.; Daley, J.G.

1977-01-01

An important consideration in the design of LMFBR steam generators is the possibility of leakage from a steam generator water tube. The ensuing sodium/water reaction will be largely controlled by the amount of water available at the leak site, thus analysis methods treating this event must have the capability of accurately modeling pressure transients through all states of water occurring in a steam generator, whether single or two-phase. The equation systems of the present model consist of the conservation equations together with an equation of state for one-dimensional homogeneous flow. These equations are then solved using finite difference techniques with phase considerations and non-equilibrium effects being treated through the equation of state. The basis for water property computation is Keenan's 'fundamental equation of state' which is applicable to single-phase water at pressures less than 1000 bars and temperatures less than 1300 0 C. This provides formulations allowing computation of any water property to any desired precision. Two-phase properties are constructed from values on the saturation line. The use of formulations permits the direct calculation of any thermodynamic property (or property derivative) to great precision while requiring very little computer storage, but does involve considerable computation time. For this reason an optional calculation scheme based on the method of 'transfinite interpolation' is included to give rapid computation in selected regions with decreased precision. The conservation equations were solved using the second order Lax-Wendroff scheme which includes wall friction, allows the formation of shocks and locally supersonic flow. Computational boundary conditions were found from a method-of-characteristics solution at the reservoir and receiver ends. The local characteristics were used to interpolate data from inside the pipe to the boundary

14. Ultrafast photoinduced structure phase transition in antimony single crystals

NARCIS (Netherlands)

Fausti, Daniele; Misochko, Oleg V.; van Loosdrecht, Paul H. M.

2009-01-01

Picosecond Raman scattering is used to study the photoinduced ultrafast dynamics in Peierls distorted antimony. We find evidence for an ultrafast nonthermal reversible structural phase transition. Most surprisingly, we find evidence that this transition evolves toward a lower symmetry in contrast to

15. Method of manufacture of single phase ceramic superconductors

Science.gov (United States)

Singh, Jitrenda P.; Poeppel, Roger B.; Goretta, Kenneth C.; Chen, Nan

1995-01-01

A ceramic superconductor is produced by close control of oxygen partial pressure during sintering of the material. The resulting microstructure of YBa.sub.2 Cu.sub.3 O.sub.x indicates that sintering kinetics are enhanced at reduced p(O.sub.2) and that because of second phase precipitates, grain growth is prevented. The density of specimens sintered at 910.degree. C. increased from 79 to 94% theoretical when p(O.sub.2) was decreased from 0.1 to 0.0001 MPa. The increase in density with decrease in p(O.sub.2) derives from enhanced sintering kinetics, due to increased defect concentration and decreased activation energy of the rate-controlling species undergoing diffusion. Sintering at 910.degree. C resulted in a fine-grain microstructure, with an average grain size of about 4 .mu.m. Post sintering annealing in a region of stability for the desired phase converts the second phases and limits grain growth. The method of pinning grain boundaries by small scale decompositive products and then annealing to convert its product to the desired phase can be used for other complex asides. Such a microstructure results in reduced microcracking, strengths as high as 230 MPa and high critical current density capacity.

16. Photon Cascade from a Single Crystal Phase Nanowire Quantum Dot

DEFF Research Database (Denmark)

Bouwes Bavinck, Maaike; Jöns, Klaus D; Zieliński, Michal

2016-01-01

. We notice that the emission spectra consist often of two peaks close in energy, which we explain with a comprehensive theory showing that the symmetry of the system plays a crucial role for the hole levels forming hybridized orbitals. Our results state that crystal phase quantum dots have promising...

17. Modelling transport in single electron transistor

International Nuclear Information System (INIS)

Dinh Sy Hien; Huynh Lam Thu Thao; Le Hoang Minh

2009-01-01

We introduce a model of single electron transistor (SET). Simulation programme of SET is used as the exploratory tool in order to gain better understanding of process and device physics. This simulator includes a graphic user interface (GUI) in Matlab. The SET was simulated using GUI in Matlab to get current-voltage (I-V) characteristics. In addition, effects of device capacitance, bias, temperature on the I-V characteristics were obtained. In this work, we review the capabilities of the simulator of the SET. Typical simulations of the obtained I-V characteristics of the SET are presented.

18. Microstructural modelling of nuclear graphite using multi-phase models

International Nuclear Information System (INIS)

Berre, C.; Fok, S.L.; Marsden, B.J.; Mummery, P.M.; Marrow, T.J.; Neighbour, G.B.

2008-01-01

This paper presents a new modelling technique using three-dimensional multi-phase finite element models in which meshes representing the microstructure of thermally oxidised nuclear graphite were generated from X-ray micro-tomography images. The density of the material was related to the image greyscale using Beer-Lambert's law, and multiple phases could thus be defined. The local elastic and non-linear properties of each phase were defined as a function of density and changes in Young's modulus, tensile and compressive strength with thermal oxidation were calculated. Numerical predictions compared well with experimental data and with other numerical results obtained using two-phase models. These models were found to be more representative of the actual microstructure of the scanned material than two-phase models and, possibly because of pore closure occurring during compression, compressive tests were also predicted to be less sensitive to the microstructure geometry than tensile tests

19. Self-phase modulation of a single-cycle terahertz pulse by nonlinear free-carrier response in a semiconductor

DEFF Research Database (Denmark)

Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias C.

2012-01-01

We investigate the self-phase modulation (SPM) of a single-cycle terahertz pulse in a semiconductor, using bulk n-GaAs as a model system. The SPM arises from the heating of free electrons in the electric field of the terahertz pulse, leading to an ultrafast reduction of the plasma frequency...

20. A Standalone Solar Photovoltaic Power Generation using Cuk Converter and Single Phase Inverter

Science.gov (United States)

Verma, A. K.; Singh, B.; Kaushika, S. C.

2013-03-01

In this paper, a standalone solar photovoltaic (SPV) power generating system is designed and modeled using a Cuk dc-dc converter and a single phase voltage source inverter (VSI). In this system, a dc-dc boost converter boosts a low voltage of a PV array to charge a battery at 24 V using a maximum power point tracking control algorithm. To step up a 24 V battery voltage to 360 V dc, a high frequency transformer based isolated dc-dc Cuk converter is used to reduce size, weight and losses. The dc voltage of 360 V is fed to a single phase VSI with unipolar switching to achieve a 230 Vrms, 50 Hz ac. The main objectives of this investigation are on efficiency improvement, reduction in cost, weight and size of the system and to provide an uninterruptible power to remotely located consumers. The complete SPV system is designed and it is modeled in MATLAB/Simulink. The simulated results are presented to demonstrate its satisfactory performance for validating the proposed design and control algorithm.

1. A note on similarity in single-phase and porous-medium natural convection

International Nuclear Information System (INIS)

Lyall, H.G.

1981-03-01

The similarity laws for single-phase and porous-medium natural convection are developed. For single-phase flow Nu = Nu(Ra) implies that inertial effects are negligible, while Nu = Nu(Ra.Pr) implies that viscous effects are. The first correlation is adequate for Pr>10, while the second applies for Pr<0.01. For intermediate values of Pr, a more general correlation, Nu = Nu(Ra,Pr) is necessary. For a porous-medium, if inertial effects and dispersion are negligible, Nu* = Nu*(Ra*). However dispersion will only be negligible if the ratio of grain size d to the width of the region L is very small (d/L<< l). If this condition does not hold it is necessary to model d/L. If inertial effects are significant, i.e. the Reynolds number is too large for Darcy's law to apply, a group containing the effective Prandtl number, Pr*, also needs to be modelled for similarity. (author)

2. Predicting muscle forces during the propulsion phase of single leg triple hop test.

Science.gov (United States)

Alvim, Felipe Costa; Lucareli, Paulo Roberto Garcia; Menegaldo, Luciano Luporini

2018-01-01

Functional biomechanical tests allow the assessment of musculoskeletal system impairments in a simple way. Muscle force synergies associated with movement can provide additional information for diagnosis. However, such forces cannot be directly measured noninvasively. This study aims to estimate muscle activations and forces exerted during the preparation phase of the single leg triple hop test. Two different approaches were tested: static optimization (SO) and computed muscle control (CMC). As an indirect validation, model-estimated muscle activations were compared with surface electromyography (EMG) of selected hip and thigh muscles. Ten physically healthy active women performed a series of jumps, and ground reaction forces, kinematics and EMG data were recorded. An existing OpenSim model with 92 musculotendon actuators was used to estimate muscle forces. Reflective markers data were processed using the OpenSim Inverse Kinematics tool. Residual Reduction Algorithm (RRA) was applied recursively before running the SO and CMC. For both, the same adjusted kinematics were used as inputs. Both approaches presented similar residuals amplitudes. SO showed a closer agreement between the estimated activations and the EMGs of some muscles. Due to inherent EMG methodological limitations, the superiority of SO in relation to CMC can be only hypothesized. It should be confirmed by conducting further studies comparing joint contact forces. The workflow presented in this study can be used to estimate muscle forces during the preparation phase of the single leg triple hop test and allows investigating muscle activation and coordination. Copyright © 2017 Elsevier B.V. All rights reserved.

3. Film boiling from spheres in single- and two-phase flow

International Nuclear Information System (INIS)

Liu, C.; Theofanous, T.G.; Yuen, W.W.

1992-01-01

Experimental data on film boiling heat transfer from single, inductively heated, spheres in single- and two-phase flow (saturated water and steam, respectively) are presented. In the single-phase-flow experiments water velocities ranged from 0.1 to 2.0 m/s; in the two-phase-flow experiments superficial water and steam velocities covered 0.1 to 0.6 m/s and 4 to 10 m/s, respectively. All experiments were run at atmospheric pressure and with sphere temperatures from 900C down to quenching. Limited interpretations of the single-phase- flow data are possible, but the two-phase-flow data are new and unique

4. Hydrostatic-pressure induced phase transition of phonons in single-walled nanotubes

International Nuclear Information System (INIS)

Feng Peng; Meng Qingchao

2009-01-01

We study the effect of the hydrostatic pressure on the phonons in single-walled carbon nanotubes (SWNTs) in a magnetic field. We calculate the magnetic moments of the phonons using a functional integral technique, and find that the phonons in SWNTs undergo a pressure-induced phase transition from the paramagnetic phase to the diamagnetic phase under hydrostatic pressure 2 GPa. We explain the mechanism of generating this phase transition.

5. Multidimensional spectroscopy with a single broadband phase-shaped laser pulse

International Nuclear Information System (INIS)

Glenn, Rachel; Mukamel, Shaul

2014-01-01

We calculate the frequency-dispersed nonlinear transmission signal of a phase-shaped visible pulse to fourth order in the field. Two phase profiles, a phase-step and phase-pulse, are considered. Two dimensional signals obtained by varying the detected frequency and phase parameters are presented for a three electronic band model system. We demonstrate how two-photon and stimulated Raman resonances can be manipulated by the phase profile and sign, and selected quantum pathways can be suppressed

6. High-quality single crystalline NiO with twin phases grown on sapphire substrate by metalorganic vapor phase epitaxy

Directory of Open Access Journals (Sweden)

Kazuo Uchida

2012-12-01

Full Text Available High-quality single crystalline twin phase NiO grown on sapphire substrates by metalorganic vapor phase epitaxy is reported. X-ray rocking curve analysis of NiO films grown at different temperatures indicates a minimum full width at half maximum of the cubic (111 diffraction peak of 0.107° for NiO film grown at as low as 550 °C. Detailed microstructural analysis by Φ scan X-ray diffraction and transmission electron microscopy reveal that the NiO film consists of large single crystalline domains with two different crystallographic orientations which are rotated relative to each other along the [111] axis by 60°. These single crystal domains are divided by the twin phase boundaries.

7. Phase transitions of single polymer chains and of polymer solutions: insights from Monte Carlo simulations

International Nuclear Information System (INIS)

Binder, K; Paul, W; Strauch, T; Rampf, F; Ivanov, V; Luettmer-Strathmann, J

2008-01-01

The statistical mechanics of flexible and semiflexible macromolecules is distinct from that of small molecule systems, since the thermodynamic limit can also be approached when the number of (effective) monomers of a single chain (realizable by a polymer solution in the dilute limit) is approaching infinity. One can introduce effective attractive interactions into a simulation model for a single chain such that a swollen coil contracts when the temperature is reduced, until excluded volume interactions are effectively canceled by attractive forces, and the chain conformation becomes almost Gaussian at the theta point. This state corresponds to a tricritical point, as the renormalization group theory shows. Below the theta temperature a fluid globule is predicted (at nonzero concentration then phase separation between dilute and semidilute solutions occurs), while at still lower temperature a transition to a solid phase (crystal or glass) occurs. Monte Carlo simulations have shown, however, that the fluid globule phase may become suppressed, when the range of the effective attractive forces becomes too short, with the result that a direct (ultimately first-order) transition from the swollen coil to the solid occurs. This behavior is analogous to the behavior of colloidal particles with a very short range of attractive forces, where liquid-vapor-type phase separation may be suppressed. Analogous first-order transitions from swollen coils to dense rodlike or toroidal structures occur for semiflexible polymers. Finally, the modifications of the behavior discussed when the polymers are adsorbed at surfaces are also mentioned, and possible relations to wetting behavior of polymer solutions are addressed.

8. Phase diagrams of the ternary alloy with a single-ion anisotropy in the mean-field approximation

International Nuclear Information System (INIS)

Dely, J.; Bobak, A.

2006-01-01

The phase diagram of the AB p C 1-p ternary alloy consisting of Ising spins S A =32, S B =2, and S C =52 is investigated by the use of a mean-field theory based on the Bogoliubov inequality for the Gibbs free energy. The effect of the single-ion anisotropy on the phase diagrams is discussed by changing values of the parameters in the model Hamiltonian and comparison is made with the recently reported finite-temperature phase diagrams for the ternary alloy having spin S B =1

9. Single-shot femtosecond-pulsed phase-shifting digital holography.

Science.gov (United States)

Kakue, Takashi; Itoh, Seiya; Xia, Peng; Tahara, Tatsuki; Awatsuji, Yasuhiro; Nishio, Kenzo; Ura, Shogo; Kubota, Toshihiro; Matoba, Osamu

2012-08-27

Parallel phase-shifting digital holography is capable of three-dimensional measurement of a dynamically moving object with a single-shot recording. In this letter, we demonstrated a parallel phase-shifting digital holography using a single femtosecond light pulse whose central wavelength and temporal duration were 800 nm and 96 fs, respectively. As an object, we set spark discharge in atmospheric pressure air induced by applying a high voltage to between two electrodes. The instantaneous change in phase caused by the spark discharge was clearly reconstructed. The reconstructed phase image shows the change of refractive index of air was -3.7 × 10(-4).

10. Evaluation of single-walled carbon nanohorns as sorbent in dispersive micro solid-phase extraction

Energy Technology Data Exchange (ETDEWEB)

Jimenez-Soto, Juan Manuel; Cardenas, Soledad [Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Marie Curie Building, Campus de Rabanales, University of Cordoba, 14071 Cordoba (Spain); Valcarcel, Miguel, E-mail: qa1meobj@uco.es [Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Marie Curie Building, Campus de Rabanales, University of Cordoba, 14071 Cordoba (Spain)

2012-02-10

Highlights: Black-Right-Pointing-Pointer The potential of single walled carbon nanohorns in dispersive solid phase microextraction has been evaluated. Black-Right-Pointing-Pointer The method was characterized for the extraction of PAHs from waters. Black-Right-Pointing-Pointer Single walled carbon nanohorns were better extractant than carbon nanotubes and carbon nanocones. Black-Right-Pointing-Pointer The limits of detection were adequate for the target analytes in environmental waters. - Abstract: A new dispersive micro solid-phase extraction method which uses single-walled carbon nanohorns (SWNHs) as sorbent is proposed. The procedure combines the excellent sorbent properties of the nanoparticles with the efficiency of the dispersion of the material in the sample matrix. Under these conditions, the interaction with the analytes is maximized. The determination of polycyclic aromatic hydrocarbons was selected as model analytical problem. Two dispersion strategies were evaluated, being the functionalization via microwave irradiation better than the use of a surfactant. The extraction was accomplished by adding 1 mL of oxidized SWHNs (o-SWNHs) dispersion to 10 mL of water sample. After extraction, the mixture was passed through a disposable Nylon filter were the nanoparticles enriched with the PAHs were retained. The elution was carried out with 100 {mu}L of hexane. The limits of detection achieved were between 30 and 60 ng L{sup -1} with a precision (as repeatability) better than 12.5%. The recoveries obtained for the analytes in three different water samples were acceptable in all instances. The performance of o-SWNHs was favourably compared with that provided by carboxylated single-walled carbon nanotubes and thermally treated carbon nanocones.

11. Flux distribution in single phase, Si-Fe, wound transformer cores

International Nuclear Information System (INIS)

Loizos, George; Kefalas, Themistoklis; Kladas, Antonios; Souflaris, Thanassis; Paparigas, Dimitris

2008-01-01

This paper shows experimental results of longitudinal flux density and its harmonics at the limb, the yoke and the corner as well as normal flux in the step lap joint of a single phase, Si-Fe, wound transformer core. Results show that the flux density as well as the harmonics content is higher in the inner (window) side of the core and reduces gradually towards the outer side. Variations of flux density distribution between the limb and the corner or the yoke of the core were observed. A full record of normal flux around the step lap region of the model core was also obtained. Longitudinal and normal flux findings will enable the development of more accurate numerical models that describe the magnetic behavior of magnetic cores

12. Analytical Determining Of The Steinmetz Equivalent Diagram Elements Of Single-Phase Transformer

Directory of Open Access Journals (Sweden)

T. Aly Saandy

2015-08-01

Full Text Available This article presents to an analytical calculation methodology of the Steinmetz Equivalent Diagram Elements applied to the prediction of Eddy current loss in a single-phase transformer. Based on the electrical circuit theory the active and reactive powers consumed by the core are expressed analytically in function of the electromagnetic parameters as resistivity permeability and the geometrical dimensions of the core. The proposed modeling approach is established with the duality parallel series. The equivalent diagram elements empirically determined by Steinmetz are analytically expressed using the expressions of the no loaded transformer consumptions. To verify the relevance of the model validations both by simulations with different powers and measurements were carried out to determine the resistance and reactance of the core. The obtained results are in good agreement with the theoretical approach and the practical results.

13. Numerical simulation of single-phase and multiphase non-Darcy flowin porous and fractured reservoirs

Energy Technology Data Exchange (ETDEWEB)

Wu, Yu-Shu

2000-06-02

A numerical method as well as a theoretical study of non-Darcy fluid flow of through porous and fractured reservoirs is described. The non-Darcy flow is handled in a three-dimensional, multiphase flow reservoir simulator, while the model formulation incorporates the Forchheimer equation for describing single-phase or multiphase non-Darcy flow and displacement. The numerical scheme has been verified by comparing its results against those of analytical methods. Numerical solutions are used to obtain some insight into the physics of non-Darcy flow and displacement in reservoirs. In addition, several type curves are provided for well-test analyses of non-Darcy flow to demonstrate a methodology for modeling this type of flow in porous and fractured rocks, including flow in geothermal reservoirs.

14. A Single Phase to Three Phase PFC Half-Bridge Converter Using BLDC Drive with SPWM Technique.

OpenAIRE

2014-01-01

In this paper, a buck half-bridge DC-DC converter is used as a single-stage power factor correction (PFC) converter for feeding a voltage source inverter (VSI) based permanent magnet brushless DC motor (BLDC) drive. The front end of this PFC converter is a diode bridge rectifier (DBR) fed from single-phase AC mains. The BLDC is used to drive a compressor load of an air conditioner through a three-phase VSI fed from a controlled DC link voltage. The speed of the compressor is controlled to ach...

15. A Fuzzy Logic Based Three phase Inverter with Single DC Source for Grid Connected PV System Employing Three Phase Transformer

OpenAIRE

Mani, venkatesan; Ramachandran, Rajeswari; N, Deverajan

2016-01-01

A fuzzy based three phase inverter with single DC source for grid connected photo voltaic (PV) system employing three phase transformer is presented in this paper. Space Vector Pulse Width Modulation (SVPWM) control scheme is effectively used to generate the appropriate switching sequences to the inverter switches. The intend of the fuzzy logic approach is to meet high quality output, fast response and high robustness. Finally Total Harmonics Distortion (THD) generated by the inverter is comp...

16. Deexcitation of single excited nuclei in the QMD model

International Nuclear Information System (INIS)

Mueller, W.; Begemann-Blaich, M.; Aichelin, J.

1992-10-01

We investigate the emission pattern of a single excited nucleus in the QMD model and compare the results with several statistical and phenomenological models. We find that the number of intermediate mass fragments as a function of the excitation energy is in very good agreement with the results of statistical models in which the emission pattern is governed by phase space only. This allows two conclusions: (a) The microscopic dynamical description of the disintegration of static excited nuclei in the QMD yields directly the emission pattern expected from phase space decay. This is the case despite of the fact that nuclear level densities are not given directly but are modeled semiclassically by the nucleon-nucleon interaction. Thus there is no need to supplement the QMD calculations by an additional evaporation model. (b) Differences between the QMD results and the data are not due to insufficiencies in the description of the disintegration of excited systems. Thus other possible reasons, like a substantial change of the free cross section in the nuclear environment have to be investigated. (orig.)

17. Phase transitions in a lattice population model

International Nuclear Information System (INIS)

Windus, Alastair; Jensen, Henrik J

2007-01-01

We introduce a model for a population on a lattice with diffusion and birth/death according to 2A→3A and A→Φ for a particle A. We find that the model displays a phase transition from an active to an absorbing state which is continuous in 1 + 1 dimensions and of first-order in higher dimensions in agreement with the mean field equation. For the (1 + 1)-dimensional case, we examine the critical exponents and a scaling function for the survival probability and show that it belongs to the universality class of directed percolation. In higher dimensions, we look at the first-order phase transition by plotting a histogram of the population density and use the presence of phase coexistence to find an accurate value for the critical point in 2 + 1 dimensions

18. Characterization of Single Phase and Two Phase Heat and Momentum Transport in a Spiraling Radial Inow Microchannel Heat Sink

Science.gov (United States)

Ruiz, Maritza

Thermal management of systems under high heat fluxes on the order of hundreds of W/cm2 is important for the safety, performance and lifetime of devices, with innovative cooling technologies leading to improved performance of electronics or concentrating solar photovoltaics. A novel, spiraling radial inflow microchannel heat sink for high flux cooling applications, using a single phase or vaporizing coolant, has demonstrated enhanced heat transfer capabilities. The design of the heat sink provides an inward swirl flow between parallel, coaxial disks that form a microchannel of 1 cm radius and 300 micron channel height with a single inlet and a single outlet. The channel is heated on one side through a conducting copper surface, and is essentially adiabatic on the opposite side to simulate a heat sink scenario for electronics or concentrated photovoltaics cooling. Experimental results on the heat transfer and pressure drop characteristics in the heat sink, using single phase water as a working fluid, revealed heat transfer enhancements due to flow acceleration and induced secondary flows when compared to unidirectional laminar fully developed flow between parallel plates. Additionally, thermal gradients on the surface are small relative to the bulk fluid temperature gain, a beneficial feature for high heat flux cooling applications. Heat flux levels of 113 W/cm2 at a surface temperature of 77 deg C were reached with a ratio of pumping power to heat rate of 0.03%. Analytical models on single phase flow are used to explore the parametric trends of the flow rate and passage geometry on the streamlines and pressure drop through the device. Flow boiling heat transfer and pressure drop characteristics were obtained for this heat sink using water at near atmospheric pressure as the working fluid for inlet subcooling levels ranging from 20 to 80 deg C and mean mass flux levels ranging from 184-716 kg/m. 2s. Flow enhancements similar to singlephase flow were expected, as well

19. Characterisation of different single and multilayer films using phase modulated spectroscopic ellipsometry

International Nuclear Information System (INIS)

Das, N.C.; Bhattacharyya, D.; Thakur, S.

1998-06-01

Different single layers and multilayer coatings deposited by e-beam evaporation and r.f. sputtering techniques have been characterised by the Phase Modulated Spectroscopic Ellipsometer, installed recently in the Spectroscopy Division, B.A.R.C. The Phase Modulated technique provides a faster and more accurate data acquisition process than the conventional ellipsometry. Measurements have been done on single layers of Cu, Si and ZrO 2 films and on multilayer thin films devices e.g., high reflectivity mirror, beam combiner, beam splitter, narrow band filter etc. consisting of several bilayers of TiO 2 /SiO 2 . The measured Ellipsometry spectra is then fitted with a theoretical spectra generated assuming an appropriate model regarding the sample. The layer thickness and composition have been used as fitting parameters. The optical constants of the substrates have been supplied and a trial dispersion relation have been used for the layers. In case of inhomogeneous layers, trial compositions have been given for the individual components for each layer. The roughness of the layers has been taken into account by assuming the film to be an inhomogeneous mixture of material and voids. The fittings have been done objectively by minimising the squared difference (χ 2 ) between the measured and calculated values of the ellipsometric parameters and thus accurate information have been derived regarding the thickness and optical constants (viz, the refractive index and extinction coefficient) of the different layers, the surface roughness and the inhomogeneities present in the layers. (author)

20. Experimental study of single-phase pressure drops in coarse particle beds

Energy Technology Data Exchange (ETDEWEB)

Clavier, R., E-mail: remi.clavier@irsn.fr [IRSN Cadarache, Saint Paul-lez-Durance (France); Chikhi, N., E-mail: nourdine.chikhi@irsn.fr [IRSN Cadarache, Saint Paul-lez-Durance (France); Fichot, F., E-mail: florian.fichot@irsn.fr [IRSN Cadarache, Saint Paul-lez-Durance (France); Quintard, M., E-mail: Michel.Quintard@imft.fr [Université de Toulouse, Allée Camille Soula, F-31400 Toulouse (France); INPT, UPS, Allée Camille Soula, F-31400 Toulouse (France); IMFT (Institut de Mécanique des Fluides de Toulouse), Allée Camille Soula, F-31400 Toulouse (France); CNRS, F-31400 Toulouse (France)

2017-02-15

Motivated by uncertainty reduction in nuclear debris beds coolability, experiments have been conducted on the CALIDE facility in order to investigate single-phase pressure losses in representative debris beds, i.e., high sphericity (>80%) particle beds with small size dispersion (from 1 mm to 10 mm), for which no validated model exists. In this paper, experimental results are presented and analyzed in order to identify a simple correlation for single-phase flow pressure losses generated in this kind of porous media in reflooding flowing conditions, which cover Darcy to weakly turbulent regimes. In the literature, it has been observed that their behavior can be accurately described by a Darcy–Forchheimer law, involving the sum of a linear term and a quadratic non-linear deviation, with respect to the filtration velocity. Expressions for the coefficients of the linear and quadratic terms are determined by assessing the possibility to evaluate equivalent diameters, i.e., characteristic lengths allowing correct predictions of the linear and quadratic terms by the Ergun equation. It has been observed that the Sauter diameter of particles allows a very precise prediction of the linear term, while the quadratic term can be predicted using the product of the Sauter diameter and a sphericity coefficient as an equivalent diameter.

1. On Affine Fusion and the Phase Model

Directory of Open Access Journals (Sweden)

Mark A. Walton

2012-11-01

Full Text Available A brief review is given of the integrable realization of affine fusion discovered recently by Korff and Stroppel. They showed that the affine fusion of the su(n Wess-Zumino-Novikov-Witten (WZNW conformal field theories appears in a simple integrable system known as the phase model. The Yang-Baxter equation leads to the construction of commuting operators as Schur polynomials, with noncommuting hopping operators as arguments. The algebraic Bethe ansatz diagonalizes them, revealing a connection to the modular S matrix and fusion of the su(n WZNW model. The noncommutative Schur polynomials play roles similar to those of the primary field operators in the corresponding WZNW model. In particular, their 3-point functions are the su(n fusion multiplicities. We show here how the new phase model realization of affine fusion makes obvious the existence of threshold levels, and how it accommodates higher-genus fusion.

2. Phase Transitions in Algebraic Cluster Models

International Nuclear Information System (INIS)

Yepez-Martinez, H.; Cseh, J.; Hess, P.O.

2006-01-01

Complete text of publication follows. Phase transitions in nuclear systems are of utmost interest. An interesting class of phase transitions can be seen in algebraic models of nuclear structure. They are called shapephase transitions due to the following reason. These models have analytically solvable limiting cases, called dynamical symmetries, which are characterized by a chain of nested subgroups. They correspond to well-defined geometrical shape and behaviour, e.g. to rotation of an ellipsoid, or spherical vibration. The general case of the model, which includes interactions described by more than one groupchain, breaks the symmetry, and changing the relative strengths of these interactions, one can go from one shape to the other. In doing so a phase-transition can be seen. A phase transition is defined as a discontinuity of some quantity as a function of the control parameter, which gives the relative strength of the interactions of different symmetries. Real phase transitions can take place only in infinite systems, like in the classical limits of these algebraic models, when the particle number N is very large: N → ∞. For finite N the discontinuities are smoothed out, nevertheless, some indications of the phase-transitions can still be there. A controlled way of breaking the dynamical symmetries may reveal another very interesting phenomenon, i.e. the appearance of a quasidynamical (or effective) symmetry. This rather general symmetry-concept of quantum mechanics corresponds to a situation, in which the symmetry-breaking interactions are so strong that the energy-eigenfunctions are not symmetric, i.e. are not basis states of an irreducible representation of the symmetry group, rather they are linear combinations of these basis states. However, they are very special linear combinations in the sense that their coefficients are (approximately) identical for states with different spin values. When this is the case, then the underlying intrinsic state is the

3. A High Energy and High Efficiency Spectral Shaping Single Frequency Fiber Laser, Phase I

Data.gov (United States)

National Aeronautics and Space Administration — This SBIR phase I project proposes a tunable single frequency high energy fiber laser system for coherent Lidar systems for remote sensing. Current state-of-art...

4. A High Energy and High Efficiency Spectral Shaping Single Frequency Fiber Laser, Phase II

Data.gov (United States)

National Aeronautics and Space Administration — This SBIR phase II project proposes a single frequency high energy fiber laser system for coherent Lidar systems for remote sensing. Current state-of-art...

5. Standard Specification for Sampling Single-Phase Geothermal Liquid or Steam for Purposes of Chemical Analysis

CERN Document Server

American Society for Testing and Materials. Philadelphia

1983-01-01

1.1 This specification covers the basic requirements for equipment to be used for the collection of uncontaminated and representative samples from single-phase geothermal liquid or steam. Geopressured liquids are included. See Fig 1.

6. High Power Compact Single-Frequency Volume Bragg Er-Doped Fiber Laser, Phase I

Data.gov (United States)

National Aeronautics and Space Administration — The purpose of this NASA SBIR Phase I proposal is to develop the prototype of a compact single-frequency mode one longitudinal and one transverse mode laser...

7. Random matrix models for phase diagrams

International Nuclear Information System (INIS)

Vanderheyden, B; Jackson, A D

2011-01-01

We describe a random matrix approach that can provide generic and readily soluble mean-field descriptions of the phase diagram for a variety of systems ranging from quantum chromodynamics to high-T c materials. Instead of working from specific models, phase diagrams are constructed by averaging over the ensemble of theories that possesses the relevant symmetries of the problem. Although approximate in nature, this approach has a number of advantages. First, it can be useful in distinguishing generic features from model-dependent details. Second, it can help in understanding the 'minimal' number of symmetry constraints required to reproduce specific phase structures. Third, the robustness of predictions can be checked with respect to variations in the detailed description of the interactions. Finally, near critical points, random matrix models bear strong similarities to Ginsburg-Landau theories with the advantage of additional constraints inherited from the symmetries of the underlying interaction. These constraints can be helpful in ruling out certain topologies in the phase diagram. In this Key Issues Review, we illustrate the basic structure of random matrix models, discuss their strengths and weaknesses, and consider the kinds of system to which they can be applied.

8. Single dose pharmacokinetics of fenspiride hydrochloride: phase I clinical trial.

Science.gov (United States)

Montes, B; Catalan, M; Roces, A; Jeanniot, J P; Honorato, J M

1993-01-01

The absolute bioavailability of fenspiride has been studied in twelve healthy volunteers. It was administered IV and orally in single doses of 80 mg fenspiride hydrochloride according to a randomised crossover pattern. Following IV administration, the plasma clearance of fenspiride was about 184 ml.min-1, and its apparent volume of distribution was moderately large (215 l). When given orally as a tablet, fenspiride exhibited fairly slow ab- sorption; the maximum plasma concentration (206 ng.ml-1) was achieved 6 h after administration. The absolute bioavailability was almost complete (90%). The tablet had slow release characteristics. The elimination half-life obtained from the plasma data was 14 to 16 h independent of the route of administration.

9. Reducing Electromagnetic Interference in a Grid Tied Single Phase Power Inverter

Science.gov (United States)

2016-09-01

With the growing demand for a reliable electrical grid, backup power supplies and energy management systems are a necessity. Systems such as server...ELECTROMAGNETIC INTERFERENCE IN A GRID TIED SINGLE PHASE POWER INVERTER by Jason Hassan Valiani September 2016 Thesis Advisor: Giovanna Oriti...3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE REDUCING ELECTROMAGNETIC INTERFERENCE IN A GRID TIED SINGLE PHASE POWER

10. Searching for Next Single-Phase High-Entropy Alloy Compositions

Directory of Open Access Journals (Sweden)

David E. Alman

2013-10-01

Full Text Available There has been considerable technological interest in high-entropy alloys (HEAs since the initial publications on the topic appeared in 2004. However, only several of the alloys investigated are truly single-phase solid solution compositions. These include the FCC alloys CoCrFeNi and CoCrFeMnNi based on 3d transition metals elements and BCC alloys NbMoTaW, NbMoTaVW, and HfNbTaTiZr based on refractory metals. The search for new single-phase HEAs compositions has been hindered by a lack of an effective scientific strategy for alloy design. This report shows that the chemical interactions and atomic diffusivities predicted from ab initio molecular dynamics simulations which are closely related to primary crystallization during solidification can be used to assist in identifying single phase high-entropy solid solution compositions. Further, combining these simulations with phase diagram calculations via the CALPHAD method and inspection of existing phase diagrams is an effective strategy to accelerate the discovery of new single-phase HEAs. This methodology was used to predict new single-phase HEA compositions. These are FCC alloys comprised of CoFeMnNi, CuNiPdPt and CuNiPdPtRh, and HCP alloys of CoOsReRu.

11. Coordinated single-phase control scheme for voltage unbalance reduction in low voltage network.

Science.gov (United States)

Pullaguram, Deepak; Mishra, Sukumar; Senroy, Nilanjan

2017-08-13

Low voltage (LV) distribution systems are typically unbalanced in nature due to unbalanced loading and unsymmetrical line configuration. This situation is further aggravated by single-phase power injections. A coordinated control scheme is proposed for single-phase sources, to reduce voltage unbalance. A consensus-based coordination is achieved using a multi-agent system, where each agent estimates the averaged global voltage and current magnitudes of individual phases in the LV network. These estimated values are used to modify the reference power of individual single-phase sources, to ensure system-wide balanced voltages and proper power sharing among sources connected to the same phase. Further, the high X / R ratio of the filter, used in the inverter of the single-phase source, enables control of reactive power, to minimize voltage unbalance locally. The proposed scheme is validated by simulating a LV distribution network with multiple single-phase sources subjected to various perturbations.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).

12. CFD Simulations of a Single-phase Mixing Experiment

International Nuclear Information System (INIS)

Bertolotto, Davide; Chawla, Rakesh; Manera, Annalisa; Prasser, Horst-Michael

2008-01-01

The current paper reports on an investigation of the capabilities of CFD codes to model multidimensional mixing phenomena in a loop. For the purpose, a test facility consisting of two loops connected by a double T-junction has been built at the Paul Scherrer Institut (PSI). Experiments were carried out, in which a tracer was injected in one loop and the tracer distribution before and after the T-junction was measured by means of wire-mesh sensors located at the outlets of the junction. The tracer distribution after the T-junction is strongly dependent on 3D mixing phenomena, which are dominant due to the particular geometry of the set-up. For the CFD analysis, a 3D model of the double T-junction was created, and different simulations were performed with ANSYS-CFX to study the sensitivity of the results with respect to parameters such as mesh refinement, integration time step, turbulence model, profiles for inlet velocity and injected tracer concentration. Thereafter, these results were compared with the experimental data. The comparisons have clearly pointed out that 3D modelling is able to reproduce (at least qualitatively) the experimental results. Moreover, it has been found that the CFD results are strongly influenced by the velocity profile assumptions at the inlets of the double T-junction. (authors)

13. Design and control of single-phase dynamic voltage restorer

Amit Meena

... voltage sag and swell. Modelling of the DVR and its controller design is included in ..... simulation study of DVR is accomplished in MATLAB/. Simulink. Parameters of ..... During this process, the PWM signals generated by the DSP are not as ...

14. Experimental study of single- and two-phase flow fields around PWR steam generator tube support plates

International Nuclear Information System (INIS)

Bates, J.M.; Stewart, C.W.

1979-08-01

Laser-Doppler anemometry (LDA) was used to measure local mean axial velocities and turbulence intnsities at selected locations within a study model dimensionally protypic of an existing PWR steam generator design. The model tube bundle with support plate was installed in a special flow housing that formed part of an isothermal recirculating water flow loop. Flow conditions for this experiment were intended to simulate only typical single-phase flow velocities and were not an attempt to completely model actual steam generator, boiling, two-phase flow conditions. The measurements were performed in water at approximately 85 0 F with test section average velocities of approximately 0.55 and 1.1 fps. These conditions corresponded to Reynolds numbers of approximately 7,000 and approximately 14,000, respectively. Normalized velocity and turbulence intensity ratios are graphically reported. Additional qualitative, photographic investigations of air-water two-phase flows in a PWR steam generator study model were also performed

15. Modelling of creep curves of Ni3Ge single crystals

Science.gov (United States)

Starenchenko, V. A.; Starenchenko, S. V.; Pantyukhova, O. D.; Solov'eva, Yu V.

2015-01-01

In this paper the creep model of alloys with L12 superstructure is presented. The creep model is based on the idea of the mechanisms superposition connected with the different elementary deformation processes. Some of them are incident to the ordered structure L12 (anomalous mechanisms), others are typical to pure metals with the fcc structure (normal mechanisms): the accumulation of thermal APBs by means of the intersection of moving dislocations; the formation of APB tubes; the multiplication of superdislocations; the movement of single dislocations; the accumulation of point defects, such as vacancies and interstitial atoms; the accumulation APBs at the climb of edge dislocations. This model takes into account the experimental facts of the wetting antiphase boundaries and emergence of the disordered phase within the ordered phase. The calculations of the creep curves are performed under different conditions. This model describes different kinds of the creep curves and demonstrates the important meaning of the deformation superlocalisation leading to the inverse creep. The experimental and theoretical results coincide rather well.

16. Directed self-assembly of liquid crystalline blue-phases into ideal single-crystals

Science.gov (United States)

Martínez-González, Jose A.; Li, Xiao; Sadati, Monirosadat; Zhou, Ye; Zhang, Rui; Nealey, Paul F.; de Pablo, Juan J.

2017-06-01

Chiral nematic liquid crystals are known to form blue phases--liquid states of matter that exhibit ordered cubic arrangements of topological defects. Blue-phase specimens, however, are generally polycrystalline, consisting of randomly oriented domains that limit their performance in applications. A strategy that relies on nano-patterned substrates is presented here for preparation of stable, macroscopic single-crystal blue-phase materials. Different template designs are conceived to exert control over different planes of the blue-phase lattice orientation with respect to the underlying substrate. Experiments are then used to demonstrate that it is indeed possible to create stable single-crystal blue-phase domains with the desired orientation over large regions. These results provide a potential avenue to fully exploit the electro-optical properties of blue phases, which have been hindered by the existence of grain boundaries.

17. Results of single borehole hydraulic testing in the Mizunami Underground Research Laboratory project. Phase 2

International Nuclear Information System (INIS)

Daimaru, Shuji; Takeuchi, Ryuji; Onoe, Hironori; Saegusa, Hiromitsu

2012-09-01

This report summarize the results of the single borehole hydraulic tests of 79 sections conducted as part of the Construction phase (Phase 2) in the Mizunami Underground Research Laboratory (MIU) Project. The details of each test (test interval depth, geology, etc.) as well as the interpreted hydraulic parameters and analytical method used are presented in this report. (author)

18. Dynamics Assessment of Grid-Synchronization Algorithms for Single-Phase Grid-Connected Converters

DEFF Research Database (Denmark)

Han, Yang; Luo, Mingyu; Guerrero, Josep M.

2015-01-01

Several advanced phase-lock-loop (PLL) algorithms have been proposed for single-phase power electronic systems. Among these algorithms, the orthogonal signal generators (OSGs) are widely utilized to generate a set of in-quadrature signals, owing to its benefit of simple digital implementation and...

19. Comparative Performance Evaluation of Orthogonal-Signal-Generators-Based Single-Phase PLL Algorithms

DEFF Research Database (Denmark)

Han, Yang; Luo, Mingyu; Zhao, Xin

2016-01-01

The orthogonal signal generator based phase-locked loops (OSG-PLLs) are among the most popular single-phase PLLs within the areas of power electronics and power systems, mainly because they are often easy to be implement and offer a robust performance against the grid disturbances. The main aim o...

20. Electron attachment to DNA single strands: gas phase and aqueous solution.

Science.gov (United States)

Gu, Jiande; Xie, Yaoming; Schaefer, Henry F

2007-01-01

The 2'-deoxyguanosine-3',5'-diphosphate, 2'-deoxyadenosine-3',5'-diphosphate, 2'-deoxycytidine-3',5'-diphosphate and 2'-deoxythymidine-3',5'-diphosphate systems are the smallest units of a DNA single strand. Exploring these comprehensive subunits with reliable density functional methods enables one to approach reasonable predictions of the properties of DNA single strands. With these models, DNA single strands are found to have a strong tendency to capture low-energy electrons. The vertical attachment energies (VEAs) predicted for 3',5'-dTDP (0.17 eV) and 3',5'-dGDP (0.14 eV) indicate that both the thymine-rich and the guanine-rich DNA single strands have the ability to capture electrons. The adiabatic electron affinities (AEAs) of the nucleotides considered here range from 0.22 to 0.52 eV and follow the order 3',5'-dTDP > 3',5'-dCDP > 3',5'-dGDP > 3',5'-dADP. A substantial increase in the AEA is observed compared to that of the corresponding nucleic acid bases and the corresponding nucleosides. Furthermore, aqueous solution simulations dramatically increase the electron attracting properties of the DNA single strands. The present investigation illustrates that in the gas phase, the excess electron is situated both on the nucleobase and on the phosphate moiety for DNA single strands. However, the distribution of the extra negative charge is uneven. The attached electron favors the base moiety for the pyrimidine, while it prefers the 3'-phosphate subunit for the purine DNA single strands. In contrast, the attached electron is tightly bound to the base fragment for the cytidine, thymidine and adenosine nucleotides, while it almost exclusively resides in the vicinity of the 3'-phosphate group for the guanosine nucleotides due to the solvent effects. The comparatively low vertical detachment energies (VDEs) predicted for 3',5'-dADP(-) (0.26 eV) and 3',5'-dGDP(-) (0.32 eV) indicate that electron detachment might compete with reactions having high activation barriers

1. Pore-scale modeling of phase change in porous media

Science.gov (United States)

Juanes, Ruben; Cueto-Felgueroso, Luis; Fu, Xiaojing

2017-11-01

One of the main open challenges in pore-scale modeling is the direct simulation of flows involving multicomponent mixtures with complex phase behavior. Reservoir fluid mixtures are often described through cubic equations of state, which makes diffuse interface, or phase field theories, particularly appealing as a modeling framework. What is still unclear is whether equation-of-state-driven diffuse-interface models can adequately describe processes where surface tension and wetting phenomena play an important role. Here we present a diffuse interface model of single-component, two-phase flow (a van der Waals fluid) in a porous medium under different wetting conditions. We propose a simplified Darcy-Korteweg model that is appropriate to describe flow in a Hele-Shaw cell or a micromodel, with a gap-averaged velocity. We study the ability of the diffuse-interface model to capture capillary pressure and the dynamics of vaporization/condensation fronts, and show that the model reproduces pressure fluctuations that emerge from abrupt interface displacements (Haines jumps) and from the break-up of wetting films.

2. Single Phase Transformer-less Buck-Boost Inverter with Zero Leakage Current for PV Systems

DEFF Research Database (Denmark)

Mostaan, Ali; Abdelhakim, Ahmed; N. Soltani, Mohsen

2017-01-01

In this paper, a novel single-stage single-phase transformer-less buck-boost inverter is proposed, in which a reduced number of passive components is used. The proposed inverter combines the conventional buck, boost, and buck-boost converters in one converter in order to obtain a sinusoidal output...

3. Lyapunov-Based Control Scheme for Single-Phase Grid-Connected PV Central Inverters

NARCIS (Netherlands)

Meza, C.; Biel, D.; Jeltsema, D.; Scherpen, J. M. A.

A Lyapunov-based control scheme for single-phase single-stage grid-connected photovoltaic central inverters is presented. Besides rendering the closed-loop system globally stable, the designed controller is able to deal with the system uncertainty that depends on the solar irradiance. A laboratory

4. A Direct Maximum Power Point Tracking Method for Single-Phase Grid Connected PV Inverters

DEFF Research Database (Denmark)

EL Aamri, Faicel; Maker, Hattab; Sera, Dezso

2018-01-01

in dynamic conditions, especially in low irradiance when the measurement of signals becomes more sensitive to noise. The proposed MPPT is designed for single-phase single-stage grid-connected PV inverters, and is based on estimating the instantaneous PV power and voltage ripples, using second...

5. Fully tunable 360° microwave photonic phase shifter based on a single semiconductor optical amplifier.

Science.gov (United States)

Sancho, Juan; Lloret, Juan; Gasulla, Ivana; Sales, Salvador; Capmany, José

2011-08-29

A fully tunable microwave photonic phase shifter involving a single semiconductor optical amplifier (SOA) is proposed and demonstrated. 360° microwave phase shift has been achieved by tuning the carrier wavelength and the optical input power injected in an SOA while properly profiting from the dispersion feature of a conveniently designed notch filter. It is shown that the optical filter can be advantageously employed to switch between positive and negative microwave phase shifts. Numerical calculations corroborate the experimental results showing an excellent agreement.

6. Fabrication of single phase 2D homologous perovskite microplates by mechanical exfoliation

Science.gov (United States)

Li, Junze; Wang, Jun; Zhang, Yingjun; Wang, Haizhen; Lin, Gaoming; Xiong, Xuan; Zhou, Weihang; Luo, Hongmei; Li, Dehui

2018-04-01

The two-dimensional (2D) Ruddlesden-Popper type perovskites have attracted intensive interest for their great environmental stability and various potential optoelectronic applications. Fundamental understanding of the photophysical and electronic properties of the 2D perovskites with pure single phase is essential for improving the performance of the optoelectronic devices and designing devices with new architectures. Investigating the optical and electronic properties of these materials with pure single phase is required to obtain pure single phase 2D perovskites. Here, we report on an alternative approach to fabricate (C4H9NH3)2(CH3NH3) n-1Pb n I3n+1 microplates with pure single n-number perovskite phase for n  >  2 by mechanical exfoliation. Micro-photoluminescence and absorption spectroscopy studies reveal that the as-synthesized 2D perovskite plates for n  >  2 are comprised by dominant n-number phase and small inclusions of hybrid perovskite phases with different n values, which is supported by excitation power dependent photoluminescence. By mechanical exfoliation method, 2D perovskite microplates with the thickness of around 20 nm are obtained, which surprisingly have single n-number perovskite phase for n  =  2-5. In addition, we have demonstrated that the exfoliated 2D perovskite microplates can be integrated with other 2D layered materials such as boron nitride, and are able to be transferred to prefabricated electrodes for photodetections. Our studies not only provide a strategy to prepare 2D perovskites with a single n-number perovskite phase allowing us to extract the basic optical and electronic parameters of pure phase perovskites, but also demonstrate the possibility to integrate the 2D perovskites with other 2D layered materials to extend the device’s functionalities.

7. Theory and modelling of nanocarbon phase stability.

Energy Technology Data Exchange (ETDEWEB)

Barnard, A. S.

2006-01-01

The transformation of nanodiamonds into carbon-onions (and vice versa) has been observed experimentally and has been modeled computationally at various levels of sophistication. Also, several analytical theories have been derived to describe the size, temperature and pressure dependence of this phase transition. However, in most cases a pure carbon-onion or nanodiamond is not the final product. More often than not an intermediary is formed, known as a bucky-diamond, with a diamond-like core encased in an onion-like shell. This has prompted a number of studies investigating the relative stability of nanodiamonds, bucky-diamonds, carbon-onions and fullerenes, in various size regimes. Presented here is a review outlining results of numerous theoretical studies examining the phase diagrams and phase stability of carbon nanoparticles, to clarify the complicated relationship between fullerenic and diamond structures at the nanoscale.

8. Trajectory phases of a quantum dot model

International Nuclear Information System (INIS)

Genway, Sam; Hickey, James M; Garrahan, Juan P; Armour, Andrew D

2014-01-01

We present a thermodynamic formalism to study the trajectories of charge transport through a quantum dot coupled to two leads in the resonant-level model. We show that a close analogue of equilibrium phase transitions exists for the statistics of transferred charge; by tuning an appropriate ‘counting field’, crossovers to different trajectory phases are possible. Our description reveals a mapping between the statistics of a given device and current measurements over a range of devices with different dot–lead coupling strengths. Furthermore insight into features of the trajectory phases are found by studying the occupation of the dot conditioned on the transported charge between the leads; this is calculated from first principles using a trajectory biased two-point projective measurement scheme. (paper)

9. LIDAR forest inventory with single-tree, double- and single-phase procedures

Science.gov (United States)

Robert C. Parker; David L. Evans

2009-01-01

Light Detection and Ranging (LIDAR) data at 0.5- to 2-m postings were used with doublesample, stratified inventory procedures involving single-tree attribute relationships in mixed, natural, and planted species stands to yield sampling errors (one-half the confidence interval expressed as a percentage of the mean) ranging from ±2.1 percent to ±11.5...

10. Performance Evaluation of Low/Zero Voltage Ride-Through Operations for Single-Stage Single-Phase Photovoltaic Inverters

DEFF Research Database (Denmark)

Zhang, Zhen; Yang, Yongheng; Blaabjerg, Frede

2017-01-01

With the fast development of distributed power generations, stability and security have attracted extensive attention in the recent years. As a representative of clean energies, Photovoltaic (PV) systems have been installed extensively worldwide. This drives grid-connected requirements...... to be continuously updated. In current active grid requirements/codes, PV systems should be more intelligent in the considerations of the grid stability, reliability and fault protection. In this paper, two control strategies (i.e., the single-phase PQ control and power phase-angle control) are evaluated for grid...

11. Linkage of PRA models. Phase 1, Results

Energy Technology Data Exchange (ETDEWEB)

Smith, C.L.; Knudsen, J.K.; Kelly, D.L.

1995-12-01

The goal of the Phase I work of the Linkage of PRA Models project was to postulate methods of providing guidance for US Nuclear Regulator Commission (NRC) personnel on the selection and usage of probabilistic risk assessment (PRA) models that are best suited to the analysis they are performing. In particular, methods and associated features are provided for (a) the selection of an appropriate PRA model for a particular analysis, (b) complementary evaluation tools for the analysis, and (c) a PRA model cross-referencing method. As part of this work, three areas adjoining linking analyses to PRA models were investigated: (a) the PRA models that are currently available, (b) the various types of analyses that are performed within the NRC, and (c) the difficulty in trying to provide a generic classification scheme to groups plants based upon a particular plant attribute.

12. Linkage of PRA models. Phase 1, Results

International Nuclear Information System (INIS)

Smith, C.L.; Knudsen, J.K.; Kelly, D.L.

1995-12-01

The goal of the Phase I work of the ''Linkage of PRA Models'' project was to postulate methods of providing guidance for US Nuclear Regulator Commission (NRC) personnel on the selection and usage of probabilistic risk assessment (PRA) models that are best suited to the analysis they are performing. In particular, methods and associated features are provided for (a) the selection of an appropriate PRA model for a particular analysis, (b) complementary evaluation tools for the analysis, and (c) a PRA model cross-referencing method. As part of this work, three areas adjoining ''linking'' analyses to PRA models were investigated: (a) the PRA models that are currently available, (b) the various types of analyses that are performed within the NRC, and (c) the difficulty in trying to provide a ''generic'' classification scheme to groups plants based upon a particular plant attribute

13. X-ray quality increasing system controlled by single-chip microcomputer in single phase fluoroscopy unit

International Nuclear Information System (INIS)

Wang Qiaolin; Gu Hongmei

2004-01-01

Objective: To decrease the amount of radiation that doctor and patient receives by increasing X-ray quality. Methods: Using Single-chip Microcomputer technology, test and modulate AC(Alternating Current) from high voltage generator by IGBT. X-ray tube generates X-rays only at high energy area. Thus the amount of radiation decreases. Results: The tube current decreases remarkably and the amount of radiation that doctor and patient receives decreases effectively. Conclusion: the system can effectively decrease the amount of radiation and is widely applicable to the upgrade of all kinds of single phase X-ray units. (authors)

14. Preliminary Two-Phase Terry Turbine Nozzle Models for RCIC Off-Design Operation Conditions

Energy Technology Data Exchange (ETDEWEB)

Zhao, Haihua [Idaho National Lab. (INL), Idaho Falls, ID (United States); O' Brien, James [Idaho National Lab. (INL), Idaho Falls, ID (United States)

2017-06-12

This report presents the effort to extend the single-phase analytical Terry turbine model to cover two-phase off-design conditions. The work includes: (1) adding well-established two-phase choking models – the Isentropic Homogenous Equilibrium Model (IHEM) and Moody’s model, and (2) theoretical development and implementation of a two-phase nozzle expansion model. The two choking models provide bounding cases for the two-phase choking mass flow rate. The new two-phase Terry turbine model uses the choking models to calculate the mass flow rate, the critical pressure at the nozzle throat, and steam quality. In the divergent stage, we only consider the vapor phase with a similar model for the single-phase case by assuming that the liquid phase would slip along the wall with a much slower speed and will not contribute the impulse on the rotor. We also modify the stagnation conditions according to two-phase choking conditions at the throat and the cross-section areas for steam flow at the nozzle throat and at the nozzle exit. The new two-phase Terry turbine model was benchmarked with the same steam nozzle test as for the single-phase model. Better agreement with the experimental data is observed than from the single-phase model. We also repeated the Terry turbine nozzle benchmark work against the Sandia CFD simulation results with the two-phase model for the pure steam inlet nozzle case. The RCIC start-up tests were simulated and compared with the single-phase model. Similar results are obtained. Finally, we designed a new RCIC system test case to simulate the self-regulated Terry turbine behavior observed in Fukushima accidents. In this test, a period inlet condition for the steam quality varying from 1 to 0 is applied. For the high quality inlet period, the RCIC system behaves just like the normal operation condition with a high pump injection flow rate and a nominal steam release rate through the turbine, with the net addition of water to the primary system; for

15. ASSERT validation against the Stern Laboratories' single-phase pressure drop tests

International Nuclear Information System (INIS)

Waddington, G.M.; Kiteley, J.C.; Carver, M.B.

1995-01-01

This paper describes the preliminary validation of ASSERT-IV against the single-phase pressure drop tests from the 37-element CHF (critical heat flux) experiments conducted at Stern Laboratories, and shows how this study fits into the overall ASSERT validation plan. The effects on the pressure drop of several friction and form loss models are evaluated, including the geometry-based K-factor model. The choice of friction factor has a small effect on the predicted channel pressure drop, compared to the form loss model choice. Using the uniform K-factors of Hameed, the computed pressure drops are in excellent agreement with the experimental results from the nominal pressure tube tests. For future ASSERT applications, either Hameed's uniform K-factors or the geometry-based model using Idelchik's thick-edged orifice equation are recommended, as are the friction factor correlations of Colebrook-White, Selander, and Aly and Groeneveld. More analysis of the geometry-based K-factor model is required. (author). 23 refs., 4 tabs., 9 figs

16. Nucleation of the lamellar phase from the disordered phase of the renormalized Landau-Brazovskii model

Science.gov (United States)

Carilli, Michael F.; Delaney, Kris T.; Fredrickson, Glenn H.

2018-02-01

Using the zero-temperature string method, we investigate nucleation of a stable lamellar phase from a metastable disordered phase of the renormalized Landau-Brazovskii model at parameters explicitly connected to those of an experimentally accessible diblock copolymer melt. We find anisotropic critical nuclei in qualitative agreement with previous experimental and analytic predictions; we also find good quantitative agreement with the predictions of a single-mode analysis. We conduct a thorough search for critical nuclei containing various predicted and experimentally observed defect structures. The predictions of the renormalized model are assessed by simulating the bare Landau-Brazovskii model with fluctuations. We find that the renormalized model makes reasonable predictions for several important quantities, including the order-disorder transition (ODT). However, the critical nucleus size depends sharply on proximity to the ODT, so even small errors in the ODT predicted by the renormalized model lead to large errors in the predicted critical nucleus size. We conclude that the renormalized model is a poor tool to study nucleation in the fluctuating Landau-Brazovskii model, and recommend that future studies work with the fluctuating bare model directly, using well-chosen collective variables to investigate kinetic pathways in the disorder → lamellar transition.

17. Condition monitoring of shaft of single-phase induction motor using optical sensor

Science.gov (United States)

Fulzele, Asmita G.; Arajpure, V. G.; Holay, P. P.; Patil, N. M.

2012-05-01

Transmission type of optical technique is developed to sense the condition of rotating shafts from a distance. A parallel laser beam is passed tangential over the surface of rotating shaft of a single phase induction motor and its flickering shadow is received on a photo sensor. Variations in sensor voltage output are observed on a digital storage oscilloscope. It is demonstrated that this signal carries information about shaft defects like miss alignment, play and impacts in bearings along with surface deformities. Mathematical model of signals corresponding to these shaft defects is developed. During the development and testing of the sensor, effects of reflections are investigated, sensing phenomenon is simulated, frequency response of the sensor is obtained and its performance is compared with conventional accelerometer.

18. Reliability assessment of single-phase grid-connected PV microinverters considering mission profile and uncertainties

DEFF Research Database (Denmark)

2017-01-01

Microinverters usually connect a PV panel to a Single-phase power grid. In such system, the input power is constant while the output power oscillates twice the line frequency. Thus, the input and output power differences should be stored in a storage component, which is typically an electrolytic ...... irritation of two different places on the micro inverter lifetime is studied....... capacitor. However, electrolytic capacitors are usually blamed for their short lifetime. Recently, some active power decoupling methods are introduced in the literature which can takes advantage of high reliable film capacitors. However, some extra switches and diodes are added to the microinverter which...... can influence the microinverter lifetime. This paper investigates the microinverter reliability according to mission profile where it is installed. To get more accurate results, uncertainties in both lifetime model and manufacturing process are considered. The effect of ambient temperature and solar...

19. Harmonics Suppression for Single-Phase Grid-Connected Photovoltaic Systems in Different Operation Modes

DEFF Research Database (Denmark)

Yang, Yongheng; Zhou, Keliang; Blaabjerg, Frede

2013-01-01

-connected PV inverters may be severely affected in different operation modes. In this paper, a detailed analysis is conducted to reveal the relationship between the harmonics level with the power factor and the current level in the PV systems. A current control solution which employs an Internal Model...... Principle (IMP) is proposed to suppress the harmonic currents injected into the grid. Experiments are carried out to verify the analysis and the performance of the proposed control method. It is demonstrated that the proposed method presents an effective solution to harmonics suppression for single......-phase grid-connected PV systems in different operation modes. Especially, it can remove higher order harmonics effectively leading to a better power quality compared to the Proportional plus Multi-Resonant Controller, and it has less computational burden....

20. High-performance phase-field modeling

KAUST Repository

Vignal, Philippe

2015-04-27

Many processes in engineering and sciences involve the evolution of interfaces. Among the mathematical frameworks developed to model these types of problems, the phase-field method has emerged as a possible solution. Phase-fields nonetheless lead to complex nonlinear, high-order partial differential equations, whose solution poses mathematical and computational challenges. Guaranteeing some of the physical properties of the equations has lead to the development of efficient algorithms and discretizations capable of recovering said properties by construction [2, 5]. This work builds-up on these ideas, and proposes novel discretization strategies that guarantee numerical energy dissipation for both conserved and non-conserved phase-field models. The temporal discretization is based on a novel method which relies on Taylor series and ensures strong energy stability. It is second-order accurate, and can also be rendered linear to speed-up the solution process [4]. The spatial discretization relies on Isogeometric Analysis, a finite element method that possesses the k-refinement technology and enables the generation of high-order, high-continuity basis functions. These basis functions are well suited to handle the high-order operators present in phase-field models. Two-dimensional and three dimensional results of the Allen-Cahn, Cahn-Hilliard, Swift-Hohenberg and phase-field crystal equation will be presented, which corroborate the theoretical findings, and illustrate the robustness of the method. Results related to more challenging examples, namely the Navier-Stokes Cahn-Hilliard and a diusion-reaction Cahn-Hilliard system, will also be presented. The implementation was done in PetIGA and PetIGA-MF, high-performance Isogeometric Analysis frameworks [1, 3], designed to handle non-linear, time-dependent problems.

1. Power decoupling method for single phase differential buck converter

DEFF Research Database (Denmark)

Yao, Wenli; Tang, Yi; Zhang, Xiaobin

2015-01-01

inverter to improve the dc link power quality, and an improved active power decoupling method is proposed to achieve ripple power reduction for both AC-DC and DC-AC conversions. The ripple energy storage is realized by the filter capacitors, which are connected between the output terminal and the negative...... generation technique is proposed to provide accurate ripple power compensation, and closed-loop controllers are also designed based on small signal models. The effectiveness of this power decoupling method is verified by detailed simulation studies as well as laboratory prototype experimental results....... dc bus. By properly controlling the differential mode voltage of the capacitors, it is possible to transfer desired energy between the DC port and AC port. The common mode voltage is controlled in such a way that the ripple power on the dc side will be reduced. Furthermore, an autonomous reference...

2. Benchmarking of Grid Fault Modes in Single-Phase Grid-Connected Photovoltaic Systems

DEFF Research Database (Denmark)

Yang, Yongheng; Blaabjerg, Frede; Zou, Zhixiang

2013-01-01

Pushed by the booming installations of singlephase photovoltaic (PV) systems, the grid demands regarding the integration of PV systems are expected to be modified. Hence, the future PV systems should become more active with functionalities of Low Voltage Ride-Through (LVRT) and grid support...... phase systems under grid faults. The intent of this paper is to present a benchmarking of grid fault modes that might come in future single-phase PV systems. In order to map future challenges, the relevant synchronization and control strategies are discussed. Some faulty modes are studied experimentally...... and provided at the end of this paper. It is concluded that there are extensive control possibilities in single-phase PV systems under grid faults. The Second Order General Integral based PLL technique might be the most promising candidate for future single-phase PV systems because of its fast adaptive...

3. System and method for single-phase, single-stage grid-interactive inverter

Science.gov (United States)

Liu, Liming; Li, Hui

2015-09-01

The present invention provides for the integration of distributed renewable energy sources/storages utilizing a cascaded DC-AC inverter, thereby eliminating the need for a DC-DC converter. The ability to segment the energy sources and energy storages improves the maintenance capability and system reliability of the distributed generation system, as well as achieve wide range reactive power compensation. In the absence of a DC-DC converter, single stage energy conversion can be achieved to enhance energy conversion efficiency.

4. Enhanced power quality based single phase photovoltaic distributed generation system

Science.gov (United States)

Panda, Aurobinda; Pathak, M. K.; Srivastava, S. P.

2016-08-01

This article presents a novel control strategy for a 1-ϕ 2-level grid-tie photovoltaic (PV) inverter to enhance the power quality (PQ) of a PV distributed generation (PVDG) system. The objective is to obtain the maximum benefits from the grid-tie PV inverter by introducing current harmonics as well as reactive power compensation schemes in its control strategy, thereby controlling the PV inverter to achieve multiple functions in the PVDG system such as: (1) active power flow control between the PV inverter and the grid, (2) reactive power compensation, and (3) grid current harmonics compensation. A PQ enhancement controller (PQEC) has been designed to achieve the aforementioned objectives. The issue of underutilisation of the PV inverter in nighttime has also been addressed in this article and for the optimal use of the system; the PV inverter is used as a shunt active power filter in nighttime. A prototype model of the proposed system is developed in the laboratory, to validate the effectiveness of the control scheme, and is tested with the help of the dSPACE DS1104 platform.

5. Single-phase and two-phase gas-liquid turbulent mixing between subchannels in a simulated rod bundle

International Nuclear Information System (INIS)

Sadatomi, Michio; Kawahara, Akimaro; Sato, Yoshifusa; Tomino, Takayoshi.

1996-01-01

This study is concerned with turbulent mixing which is one of the three mechanisms of cross flows between subchannels in a nuclear fuel rod bundle. The channel used in this experiments was a vertical simulated rod bundle having two subchannels connected through 1 to 3 gaps between two rods and/or rod and channel wall. The number of the gaps was changed to investigate the effect of the number on the turbulent mixing. Turbulent mixing rates of air and water and fluctuations of pressure difference between the subchannels were measured for single-phase and two-phase gas-liquid flows under hydrodynamic equilibrium flow conditions. It has been confirmed that the turbulent mixing rate is affected strongly by the fluctuations especially for liquid phase in two-phase slug or churn flow. (author)

6. Adjusting output impedance using a PI controller to improve the stability of a single-phase inverter under weak grid

Directory of Open Access Journals (Sweden)

Jiao Jiao

2016-11-01

Full Text Available Explored in this paper is the grid impedance effect on the stability of a single-phase grid connected inverter with an LC filter based on an analysis of the inverter output impedance. For a single-phase grid connected inverter, a PI controller is often used to regulate the current injected into the grid. However, the control performance can be influenced when the inverter is connected to a weak grid. Also, the utility grid has background harmonic noise, which can make the injected current distorted. Therefore, analysis of the output impedance of a single-phase grid connected inverter is important for the robustness and stability of the system. By modeling the output impedance of inverter, it can be determined that the proportional gain and integral gain of the controller have an effect on the output impedance. Analytical results show that by adjusting the PI controller parameters, the ability for harmonic reduction and stability of the system can be improved. Simulation and experiments using a 1 kW single-phase grid connected inverter verify the effectiveness of the theoretical analysis.

7. Single-phase ProtoDUNE, the Prototype of a Single-Phase Liquid Argon TPC for DUNE at the CERN Neutrino Platform

CERN Document Server

Cavanna, F; Touramanis, C

2017-01-01

ProtoDUNE-SP is the single-phase DUNE Far Detector prototype that is under construction and will be operated at the CERN Neutrino Platform (NP) starting in 2018. It was proposed to the CERN SPSC in June 2015 (SPSC-P-351) and was approved in December 2015 as experiment NP04 (ProtoDUNE). ProtoDUNE-SP, a crucial part of the DUNE effort towards the construction of the first DUNE 10-kt fiducial mass far detector module (17 kt total LAr mass), is a significant experiment in its own right. With a total liquid argon (LAr) mass of 0.77 kt, it represents the largest monolithic single phase LArTPC detector to be built to date. It is housed in an extension to the EHN1 hall in the North Area, where the CERN NP is providing a new dedicated charged-particle test beamline. ProtoDUNE-SP aims to take its first beam data before the LHC long shutdown (LS2) at the end of 2018. ProtoDUNE-SP prototypes the designs of most of the single-phase DUNE far detector module (DUNE-SP) components at a 1:1 scale, with an extrapolation of abo...

8. Some new possibilities for the diagnostics of single-phase and two-phase plasma jets

Energy Technology Data Exchange (ETDEWEB)

Goldfarb, V M

1979-02-01

The literature on three classes of methods for the diagnostics of plasma jets is reviewed. These classes include nonintrusive measurements (spectroscopy, refractometry, scatterometry, and plasma velocimetry) intrusive measurements (electrostatic probes and calorimeters) and measurements of solid-phase properties (pyrometry, particle track records, diffractometry, light attenuation measurements, and laser Doppler velocimeters).

9. Tunable phase transition in single-layer TiSe2 via electric field

Science.gov (United States)

Liu, Lei; Zhuang, Houlong L.

2018-06-01

Phase transition represents an intriguing physical phenomenon that exists in a number of single-layer transition-metal dichalcogenides. This phenomenon often occurs below a critical temperature and breaks the long-range crystalline order leading to a reconstructed superstructure called the charge-density wave (CDW) structure, which can therefore be recovered by external stimuli such as temperature. Alternatively, we show here that another external stimulation, electric field can also result in the phase transition between the regular and CDW structures of a single-layer transition-metal dichalcogenide. We used single-layer TiSe2 as an example to elucidate the mechanism of the CDW followed by calculations of the electronic structure using a hybrid density functional. We found that applying electric field can tune the phase transition between the 1T and CDW phases of single-layer TiSe2. Our work opens up a route of tuning the phase transition of single-layer materials via electric field.

10. A Simple and Consistent Equation of State for Sodium in the Single Phase and Two Phase Regions

International Nuclear Information System (INIS)

Breton, J.P.

1976-01-01

An equation of state valid over an extended temperature and density range has been derived. Then, the following properties have been deduced: coefficient of thermal expansion, isothermal coefficient of bulk compressibility, thermal pressure coefficient, heat capacity at constant pressure, at constant volume, along the saturation curve for liquid, for vapor, heat of vaporization, speed of sound, and finally the Mollier diagram and the entropy diagram. All the obtained properties are thermodynamically consistent and satisfy the basic relations of thermodynamics for both single phase and two-phase regions. Experimental results were always used when available

11. A simple and consistent equation of state for sodium in the single phase and two phase regions

International Nuclear Information System (INIS)

Breton, J.P.

1976-01-01

An equation of state valid over an extended temperature and density range has been derived. Then, the following properties have been deduced : coefficient of thermal expansion, isothermal coefficient of bulk compressibility, thermal pressure coefficient, heat capacity at constant pressure, at constant volume, along the saturation curve for liquid, for vapor, heat of vaporization, speed of sound, and finally the Mollier diagram and the entropy diagram. All the obtained properties are thermodynamically consistent and satisfy the basic relations of thermodynamics for both single phase and two-phase regions. Experimental results were always used when available. (auth.)

12. Impact of Intragranular Substructure Parameters on the Forming Limit Diagrams of Single-Phase B.C.C. Steels

Directory of Open Access Journals (Sweden)

Gérald Franz

2013-11-01

Full Text Available An advanced elastic-plastic self-consistent polycrystalline model, accounting for intragranular microstructure development and evolution, is coupled with a bifurcation-based localization criterion and applied to the numerical investigation of the impact of microstructural patterns on ductility of single-phase steels. The proposed multiscale model, taking into account essential microstructural aspects, such as initial and induced textures, dislocation densities, and softening mechanisms, allows us to emphasize the relationship between intragranular microstructure of B.C.C. steels and their ductility. A qualitative study in terms of forming limit diagrams for various dislocation networks, during monotonic loading tests, is conducted in order to analyze the impact of intragranular substructure parameters on the formability of single-phase B.C.C. steels.

13. An algebraic stress/flux model for two-phase turbulent flow

International Nuclear Information System (INIS)

Kumar, R.

1995-12-01

An algebraic stress model (ASM) for turbulent Reynolds stress and a flux model for turbulent heat flux are proposed for two-phase bubbly and slug flows. These mathematical models are derived from the two-phase transport equations for Reynolds stress and turbulent heat flux, and provide C μ , a turbulent constant which defines the level of eddy viscosity, as a function of the interfacial terms. These models also include the effect of heat transfer. When the interfacial drag terms and the interfacial momentum transfer terms are absent, the model reduces to a single-phase model used in the literature

14. Steady state RANS simulations of temperature fluctuations in single phase turbulent mixing

International Nuclear Information System (INIS)

Kickhofel, J.; Fokken, J.; Kapulla, R.; Prasser, H. M.

2012-01-01

Single phase turbulent mixing in nuclear power plant circuits where a strong temperature gradient is present is known to precipitate pipe failure due to thermal fatigue. Experiments in a square mixing channel offer the opportunity to study the phenomenon under simple and easily reproducible boundary conditions. Measurements of this kind have been performed extensively at the Paul Scherrer Inst. in Switzerland with a high density of instrumentation in the Generic Mixing Experiment (GEMIX). As a fundamental mixing phenomena study closely related to the thermal fatigue problem, the experimental results from GEMIX are valuable for the validation of CFD codes striving to accurately simulate both the temperature and velocity fields in single phase turbulent mixing. In the experiments two iso-kinetic streams meet at a shallow angle of 3 degrees and mix in a straight channel of square cross-section under various degrees of density, temperature, and viscosity stratification over a range of Reynolds numbers ranging from 5*10 3 to 1*10 5 . Conductivity measurements, using wire-mesh and wall sensors, as well as optical measurements, using particle image velocimetry, were conducted with high temporal and spatial resolutions (up to 2.5 kHz and 1 mm in the case of the wire mesh sensor) in the mixing zone, downstream of a splitter plate. The present paper communicates the results of RANS modeling of selected GEMIX tests. Steady-state CFD calculations using a RANS turbulence model represent an inexpensive method for analyzing large and complex components in commercial nuclear reactors, such as the downcomer and reactor pressure vessel heads. Crucial to real world applicability, however, is the ability to model turbulent heat fluctuations in the flow; the Turbulent Heat Flux Transport model developed by ANSYS CFX is capable, by implementation of a transport equation for turbulent heat fluxes, of readily modeling these values. Furthermore, the closure of the turbulent heat flux

15. Broadband microwave photonic fully tunable filter using a single heterogeneously integrated III-V/SOI-microdisk-based phase shifter.

Science.gov (United States)

Lloret, Juan; Morthier, Geert; Ramos, Francisco; Sales, Salvador; Van Thourhout, Dries; Spuesens, Thijs; Olivier, Nicolas; Fédéli, Jean-Marc; Capmany, José

2012-05-07

A broadband microwave photonic phase shifter based on a single III-V microdisk resonator heterogeneously integrated on and coupled to a nanophotonic silicon-on-insulator waveguide is reported. The phase shift tunability is accomplished by modifying the effective index through carrier injection. A comprehensive semi-analytical model aiming at predicting its behavior is formulated and confirmed by measurements. Quasi-linear and continuously tunable 2π phase shifts at radiofrequencies greater than 18 GHz are experimentally demonstrated. The phase shifter performance is also evaluated when used as a key element in tunable filtering schemes. Distortion-free and wideband filtering responses with a tuning range of ~100% over the free spectral range are obtained.

16. Effect of the single-scattering phase function on light transmission through disordered media with large inhomogeneities

International Nuclear Information System (INIS)

Marinyuk, V V; Sheberstov, S V

2017-01-01

We calculate the total transmission coefficient (transmittance) of a disordered medium with large (compared to the light wavelength) inhomogeneities. To model highly forward scattering in the medium we take advantage of the Gegenbauer kernel phase function. In a subdiffusion thickness range, the transmittance is shown to be sensitive to the specific form of the single-scattering phase function. The effect reveals itself at grazing angles of incidence and originates from small-angle multiple scattering of light. Our results are in a good agreement with numerical solutions to the radiative transfer equation. (paper)

17. Effects of rolling on characteristics of single-phase water flow in narrow rectangular ducts

International Nuclear Information System (INIS)

Xing Dianchuan; Yan Changqi; Sun Licheng; Xu Chao

2012-01-01

Highlights: ► Mass flow rate and friction pressure drop with different pressure head are compared. ► The effect of pressure head on flow fluctuation is considered theoretically. ► Time-mean and real-time friction pressure drop in different rolling motion are studied. ► Rolling motion influences the fluctuation of friction pressure drop in two aspects. ► New correlation for frictional coefficient in rolling motion is achieved. - Abstract: Experimental and theoretical studies of rolling effects on characteristics of single-phase water flow in narrow rectangular ducts are performed under ambient temperature and pressure. Two types of pressure head are supplied by elevate water tank and pump respectively. The results show that the frictional pressure drop under rolling condition fluctuates periodically, with its amplitude decaying as mean Reynolds number increase and the rolling amplitude decrease, while the amplitude is nearly invariable with rolling period. Rolling motion influences the fluctuation amplitude of frictional pressure drop in two aspects, on the one hand, rolling reduced periodical pulsing flow leads to the fluctuation of the frictional pressure drop, on the other hand, additional force acting on fluid near the wall due to the rolling motion makes local frictional resistance oscillate periodically. The mass flow rate oscillates periodically in rolling motion with the pressure head supplied by water tank, while its fluctuation is so weak that could be neglected for the case of the pressure head supplied by pump. An empirical correlation for the frictional coefficient under rolling condition is achieved, and the experimental data is well correlated. A mathematical model is also developed to study the effect of pressure head on mass flow rate fluctuation in rolling motion. The fluctuation amplitude of the mass flow rate decreases rapidly with a higher pressure head. Comparing with the vertical condition, rolling motion nearly has no effects on

18. Synthesis and characterization of single-phase Mn-doped ZnO

Science.gov (United States)

2009-05-01

Different samples of Zn 1-xMn xO series have been prepared using conventional solid-state sintering method. We identified up to what extent doping will enable us to synthesize single-phase polycrystalline Mn-doped ZnO sample, which is one of the prerequisites for dilute magnetic semiconductor, and we have analyzed its some other physical aspects. In synthesizing the samples, proportion of Mn varies from 1 to 5 at%. However, the milling time varied (6, 12, 24, 48 and 96 h) only for 2 at% Mn-doped samples while for other samples (1, 3, 4 and 5 at% Mn doped) the milling time has been fixed to 96 h. Room-temperature X-ray diffraction (XRD) data reveal that all of the prepared samples up to 3 at% of Mn doping exhibit wurtzite-type structure, and no segregation of Mn and/or its oxides has been found. The 4 at% Mn-doped samples show a weak peak of ZnMn 2O 4 apart from the other usual peaks of ZnO and the intensity of this impurity peak has been further increased for 5 at% of Mn doping. So beyond 3 at% doping, single-phase behavior is destroyed. Band gap for all the 2 at% Mn-doped samples has been estimated to be between 3.21 and 3.19 eV and the reason for this low band gap values has been explained through the grain boundary trapping model. The room-temperature resistivity measurement shows an increase of resistivity up to 48 h of milling and with further milling it saturates. The defect state of these samples has been investigated using the positron annihilation lifetime (PAL) spectroscopy technique. Here all the relevant lifetime parameters of positron i.e. free annihilation ( τ1) at defect site ( τ2) and average ( τav) increases with milling time.

19. Synthesis and characterization of single-phase Mn-doped ZnO

International Nuclear Information System (INIS)

2009-01-01

Different samples of Zn 1-x Mn x O series have been prepared using conventional solid-state sintering method. We identified up to what extent doping will enable us to synthesize single-phase polycrystalline Mn-doped ZnO sample, which is one of the prerequisites for dilute magnetic semiconductor, and we have analyzed its some other physical aspects. In synthesizing the samples, proportion of Mn varies from 1 to 5 at%. However, the milling time varied (6, 12, 24, 48 and 96 h) only for 2 at% Mn-doped samples while for other samples (1, 3, 4 and 5 at% Mn doped) the milling time has been fixed to 96 h. Room-temperature X-ray diffraction (XRD) data reveal that all of the prepared samples up to 3 at% of Mn doping exhibit wurtzite-type structure, and no segregation of Mn and/or its oxides has been found. The 4 at% Mn-doped samples show a weak peak of ZnMn 2 O 4 apart from the other usual peaks of ZnO and the intensity of this impurity peak has been further increased for 5 at% of Mn doping. So beyond 3 at% doping, single-phase behavior is destroyed. Band gap for all the 2 at% Mn-doped samples has been estimated to be between 3.21 and 3.19 eV and the reason for this low band gap values has been explained through the grain boundary trapping model. The room-temperature resistivity measurement shows an increase of resistivity up to 48 h of milling and with further milling it saturates. The defect state of these samples has been investigated using the positron annihilation lifetime (PAL) spectroscopy technique. Here all the relevant lifetime parameters of positron i.e. free annihilation (τ 1 ) at defect site (τ 2 ) and average (τ av ) increases with milling time.

20. Computational simulation of flow and heat transfer in single-phase natural circulation loops

International Nuclear Information System (INIS)

Pinheiro, Larissa Cunha

2017-01-01

Passive decay heat removal systems based on natural circulation are essential assets for the new Gen III+ nuclear power reactors and nuclear spent fuel pools. The aim of the present work is to study both laminar and turbulent flow and heat transfer in single-phase natural circulation systems through computational fluid dynamics simulations. The working fluid is considered to be incompressible with constant properties. In the way, the Boussinesq Natural Convection Hypothesis was applied. The model chosen for the turbulence closure problem was the k -- εThe commercial computational fluid dynamics code ANSYS CFX 15.0 was used to obtain the numerical solution of the governing equations. Two single-phase natural circulation circuits were studied, a 2D toroidal loop and a 3D rectangular loop, both with the same boundary conditions of: prescribed heat flux at the heater and fixed wall temperature at the cooler. The validation and verification was performed with the numerical data provided by DESRAYAUD et al. [1] and the experimental data provided by MISALE et al. [2] and KUMAR et al. [3]. An excellent agreement between the Reynolds number (Re) and the modified Grashof number (Gr_m), independently of Prandtl Pr number was observed. However, the convergence interval was observed to be variable with Pr, thus indicating that Pr is a stability governing parameter for natural circulation. Multiple steady states was obtained for Pr = 0,7. Finally, the effect of inclination was studied for the 3D circuit, both in-plane and out-of-plane inclinations were verified for the steady state laminar regime. As a conclusion, the Re for the out-of-plane inclination was in perfect agreement with the correlation found for the zero inclination system, while for the in-plane inclined system the results differ from that of the corresponding vertical loop. (author)

1. Phase-and-amplitude recovery from a single phase-contrast image using partially spatially coherent x-ray radiation

Science.gov (United States)

Beltran, Mario A.; Paganin, David M.; Pelliccia, Daniele

2018-05-01

A simple method of phase-and-amplitude extraction is derived that corrects for image blurring induced by partially spatially coherent incident illumination using only a single intensity image as input. The method is based on Fresnel diffraction theory for the case of high Fresnel number, merged with the space-frequency description formalism used to quantify partially coherent fields and assumes the object under study is composed of a single-material. A priori knowledge of the object’s complex refractive index and information obtained by characterizing the spatial coherence of the source is required. The algorithm was applied to propagation-based phase-contrast data measured with a laboratory-based micro-focus x-ray source. The blurring due to the finite spatial extent of the source is embedded within the algorithm as a simple correction term to the so-called Paganin algorithm and is also numerically stable in the presence of noise.

2. Designing Multifunctionality into Single Phase and Multiphase Metal-Oxide-Selective Propylene Ammoxidation Catalysts

Directory of Open Access Journals (Sweden)

James F. Brazdil

2018-03-01

Full Text Available Multifunctionality is the hallmark of most modern commercial heterogeneous catalyst systems in use today, including those used for the selective ammoxidation of propylene to acrylonitrile. It is the quintessential principle underlying commercial catalyst design efforts since petrochemical process development is invariably driven by the need to reduce manufacturing costs. This is in large part achieved through new and improved catalysts that increase selectivity and productivity. In addition, the future feedstocks for chemical processes will be invariably more refractory than those currently in use (e.g., replacing alkenes with alkanes or using CO2, thus requiring a disparate combination of chemical functions in order to effect multiple chemical transformations with the fewest separate process steps. This review summarizes the key chemical phenomena behind achieving the successful integration of multiple functions into a mixed-metal-oxide-selective ammoxidation catalyst. An experiential and functional catalyst design model is presented that consists of one or both of the following components: (1 a mixed-metal-oxide–solid solution where the individual metal components serve separate and necessary functions in the reaction mechanism through their atomic level interaction in the context of a single crystallographic structure; (2 the required elemental components and their catalytic function existing in separate phases, where these phases are able to interact for the purposes of electron and lattice oxygen transfer through the formation of a structurally coherent interface (i.e., epitaxy between the separate crystal structures. Examples are provided from the literature and explained in the context of this catalyst design model. The extension of the model concepts to the design of heterogeneous catalysts in general is also discussed.

3. Phase-field modelling and synchrotron validation of phase transformations in martensitic dual-phase steel

International Nuclear Information System (INIS)

Thiessen, R.G.; Sietsma, J.; Palmer, T.A.; Elmer, J.W.; Richardson, I.M.

2007-01-01

A thermodynamically based method to describe the phase transformations during heating and cooling of martensitic dual-phase steel has been developed, and in situ synchrotron measurements of phase transformations have been undertaken to support the model experimentally. Nucleation routines are governed by a novel implementation of the classical nucleation theory in a general phase-field code. Physically-based expressions for the temperature-dependent interface mobility and the driving forces for transformation have also been constructed. Modelling of martensite was accomplished by assuming a carbon supersaturation of the body-centred-cubic ferrite lattice. The simulations predict kinetic aspects of the austenite formation during heating and ferrite formation upon cooling. Simulations of partial austenitising thermal cycles predicted peak and retained austenite percentages of 38.2% and 6.7%, respectively, while measurements yielded peak and retained austenite percentages of 31.0% and 7.2% (±1%). Simulations of a complete austenitisation thermal cycle predicted the measured complete austenitisation and, upon cooling, a retained austenite percentage of 10.3% while 9.8% (±1%) retained austenite was measured

4. Modeling the Activity of Single Genes

Science.gov (United States)

Mjolsness, Eric; Gibson, Michael

1999-01-01

the key questions in gene regulation are: What genes are expressed in a certain cell at a certain time? How does gene expression differ from cell to cell in a multicellular organism? Which proteins act as transcription factors, i.e., are important in regulating gene expression? From questions like these, we hope to understand which genes are important for various macroscopic processes. Nearly all of the cells of a multicellular organism contain the same DNA. Yet this same genetic information yields a large number of different cell types. The fundamental difference between a neuron and a liver cell, for example, is which genes are expressed. Thus understanding gene regulation is an important step in understanding development. Furthermore, understanding the usual genes that are expressed in cells may give important clues about various diseases. Some diseases, such as sickle cell anemia and cystic fibrosis, are caused by defects in single, non-regulatory genes; others, such as certain cancers, are caused when the cellular control circuitry malfunctions - an understanding of these diseases will involve pathways of multiple interacting gene products. There are numerous challenges in the area of understanding and modeling gene regulation. First and foremost, biologists would like to develop a deeper understanding of the processes involved, including which genes and families of genes are important, how they interact, etc. From a computation point of view, there has been embarrassingly little work done. In this chapter there are many areas in which we can phrase meaningful, non-trivial computational questions, but questions that have not been addressed. Some of these are purely computational (what is a good algorithm for dealing with a model of type X) and others are more mathematical (given a system with certain characteristics, what sort of model can one use? How does one find biochemical parameters from system-level behavior using as few experiments as possible?). In

5. Phase retrieval from a single fringe pattern by using empirical wavelet transform

International Nuclear Information System (INIS)

Guo, Xiaopeng; Zhao, Hong; Wang, Xin

2015-01-01

Phase retrieval from a single fringe pattern is one of the key tasks in optical metrology. In this paper, we present a new method for phase retrieval from a single fringe pattern based on empirical wavelet transform. In the proposed method, a fringe pattern can be effectively divided into three components: nonuniform background, fringes and random noise, which are described in different sub-pass. So the phase distribution information can be robustly extracted from fringes representing a fundamental frequency component. In simulation and a practical projection fringes test, the performance of the present method is successfully verified by comparing with the conventional wavelet transform method in terms of both image quality and phase estimation errors. (paper)

6. Algorithms for image recovery calculation in extended single-shot phase-shifting digital holography

Science.gov (United States)

Hasegawa, Shin-ya; Hirata, Ryo

2018-04-01

The single-shot phase-shifting method of image recovery using an inclined reference wave has the advantages of reducing the effects of vibration, being capable of operating in real time, and affording low-cost sensing. In this method, relatively low reference angles compared with that in the conventional method using phase shift between three or four pixels has been required. We propose an extended single-shot phase-shifting technique which uses the multiple-step phase-shifting algorithm and the corresponding multiple pixels which are the same as that of the period of an interference fringe. We have verified the theory underlying this recovery method by means of Fourier spectral analysis and its effectiveness by evaluating the visibility of the image using a high-resolution pattern. Finally, we have demonstrated high-contrast image recovery experimentally using a resolution chart. This method can be used in a variety of applications such as color holographic interferometry.

7. Single-phase dual-energy CT urography in the evaluation of haematuria.

Science.gov (United States)

Ascenti, G; Mileto, A; Gaeta, M; Blandino, A; Mazziotti, S; Scribano, E

2013-02-01

To assess the value of a single-phase dual-energy computed tomography (DECT) urography protocol with synchronous nephrographic-excretory phase enhancement and to calculate the potential dose reduction by omitting the unenhanced scan. Eighty-four patients referred for haematuria underwent CT urography using a protocol that included single-energy unenhanced and dual-energy contrast-enhanced with synchronous nephrographic-excretory phase scans. DECT-based images [virtual unenhanced (VUE), weighted average, and colour-coded iodine overlay] were reconstructed. Opacification degree by contrast media of the upper urinary tract, and image quality of virtual unenhanced images were independently evaluated using a four-point scale. The diagnostic accuracy in detecting urothelial tumours on DECT-based images was determined. The dose of a theoretical dual-phase single-energy protocol was obtained by multiplying the effective dose of the unenhanced single-energy acquisition by two. Radiation dose saving by omitting the unenhanced scan was calculated. The degree of opacification was scored as optimal or good in 86.9% of cases (k = 0.72); VUE image quality was excellent or good in 83.3% of cases (k = 0.82). Sensitivity, specificity, positive predictive value, and negative predictive value for urothelial tumours detection were 85.7, 98.6, 92.3, and 97.1%. Omission of the unenhanced scan led to a mean dose reduction of 42.7 ± 5%. Single-phase DECT urography with synchronous nephrographic-excretory phase enhancement represents an accurate "all-in-one'' approach with a radiation dose saving up to 45% compared with a standard dual-phase protocol. Copyright © 2012 The Royal College of Radiologists. All rights reserved.

8. Single-phase dual-energy CT urography in the evaluation of haematuria

International Nuclear Information System (INIS)

Ascenti, G.; Mileto, A.; Gaeta, M.; Blandino, A.; Mazziotti, S.; Scribano, E.

2013-01-01

Aim: To assess the value of a single-phase dual-energy computed tomography (DECT) urography protocol with synchronous nephrographic–excretory phase enhancement and to calculate the potential dose reduction by omitting the unenhanced scan. Materials and methods: Eighty-four patients referred for haematuria underwent CT urography using a protocol that included single-energy unenhanced and dual-energy contrast-enhanced with synchronous nephrographic–excretory phase scans. DECT-based images [virtual unenhanced (VUE), weighted average, and colour-coded iodine overlay] were reconstructed. Opacification degree by contrast media of the upper urinary tract, and image quality of virtual unenhanced images were independently evaluated using a four-point scale. The diagnostic accuracy in detecting urothelial tumours on DECT-based images was determined. The dose of a theoretical dual-phase single-energy protocol was obtained by multiplying the effective dose of the unenhanced single-energy acquisition by two. Radiation dose saving by omitting the unenhanced scan was calculated. Results: The degree of opacification was scored as optimal or good in 86.9% of cases (k = 0.72); VUE image quality was excellent or good in 83.3% of cases (k = 0.82). Sensitivity, specificity, positive predictive value, and negative predictive value for urothelial tumours detection were 85.7, 98.6, 92.3, and 97.1%. Omission of the unenhanced scan led to a mean dose reduction of 42.7 ± 5%. Conclusion: Single-phase DECT urography with synchronous nephrographic–excretory phase enhancement represents an accurate “all-in-one’’ approach with a radiation dose saving up to 45% compared with a standard dual-phase protocol.

9. Nonequilibrium phase diagram of a one-dimensional quasiperiodic system with a single-particle mobility edge

Science.gov (United States)

Purkayastha, Archak; Dhar, Abhishek; Kulkarni, Manas

2017-11-01

We investigate and map out the nonequilibrium phase diagram of a generalization of the well known Aubry-André-Harper (AAH) model. This generalized AAH (GAAH) model is known to have a single-particle mobility edge which also has an additional self-dual property akin to that of the critical point of the AAH model. By calculating the population imbalance, we get hints of a rich phase diagram. We also find a fascinating connection between single particle wave functions near the mobility edge of the GAAH model and the wave functions of the critical AAH model. By placing this model far from equilibrium with the aid of two baths, we investigate the open system transport via system size scaling of nonequilibrium steady state (NESS) current, calculated by fully exact nonequilibrium Green's function (NEGF) formalism. The critical point of the AAH model now generalizes to a critical' line separating regions of ballistic and localized transport. Like the critical point of the AAH model, current scales subdiffusively with system size on the `critical' line (I ˜N-2 ±0.1 ). However, remarkably, the scaling exponent on this line is distinctly different from that obtained for the critical AAH model (where I ˜N-1.4 ±0.05 ). All these results can be understood from the above-mentioned connection between states near the mobility edge of the GAAH model and those of the critical AAH model. A very interesting high temperature nonequilibrium phase diagram of the GAAH model emerges from our calculations.

10. Indirect Matrix Converter for Hybrid Electric Vehicle Application with Three-Phase and Single-Phase Outputs

Directory of Open Access Journals (Sweden)

Yeongsu Bak

2015-04-01

Full Text Available This paper presents an indirect matrix converter (IMC topology for hybrid electric vehicle (HEV application with three-phase and single-phase outputs. The HEV includes mechanical, electrical, control, and electrochemical systems among others. In the mechanical system, a traction motor and a compressor motor are used to drive the HEV. The traction motor and the compressor motor are usually operated as three-phase and single-phase motors, respectively. In this respect, a dual AC-drive system can operate the traction and the compressor motor simultaneously. Furthermore, compared to a conventional dual matrix converter system, the proposed topology can reduce the number of switches that the dual outputs share with a DC-link. The application of this system for HEV has advantages, like long lifetime and reduced volume due to the lack of a DC-link. The proposed control strategy and modulation schemes ensure the sinusoidal input and output waveforms and bidirectional power transmission. The proposed system for the HEV application is verified by simulation and experiments.

11. A review of single-phase grid-connected inverters for photovoltaic modules

DEFF Research Database (Denmark)

Kjaer, Soren Baekhoej; Pedersen, John Kim; Blaabjerg, Frede

2005-01-01

-phase grid; 3) whether they utilizes a transformer (either line or high frequency) or not; and 4) the type of grid-connected power stage. Various inverter topologies are presented, compared, and evaluated against demands, lifetime, component ratings, and cost. Finally, some of the topologies are pointed out......This review focuses on inverter technologies for connecting photovoltaic (PV) modules to a single-phase grid. The inverters are categorized into four classifications: 1) the number of power processing stages in cascade; 2) the type of power decoupling between the PV module(s) and the single...

12. Synchronization in single-phase grid-connected photovoltaic systems under grid faults

DEFF Research Database (Denmark)

Yang, Yongheng; Blaabjerg, Frede

2012-01-01

The highly increasing penetration of single-phase photovoltaic (PV) systems pushes the grid requirements related to the integration of PV power systems to be updated. These upcoming regulations are expected to direct the grid-connected renewable generators to support the grid operation and stabil......The highly increasing penetration of single-phase photovoltaic (PV) systems pushes the grid requirements related to the integration of PV power systems to be updated. These upcoming regulations are expected to direct the grid-connected renewable generators to support the grid operation...

13. Challenges in thermal design of industrial single-phase power inverter

Directory of Open Access Journals (Sweden)

Ninković Predrag

2016-01-01

Full Text Available This paper presents the influence of thermal aspects in design process of an industrial single-phase inverter, choice of its topology and components. Stringent design inputs like very high overload level, demand for natural cooling and very wide input voltage range have made conventional circuit topology inappropriate therefore asking for alternative solution. Different power losses calculations in semiconductors are performed and compared, outlining the guidelines how to choose the final topology. Some recommendations in power magnetic components design are given. Based on the final project, a 20kVA single-phase inverter for thermal power plant supervisory and control system is designed and commissioned.

14. Single-Phase Hybrid Switched Reluctance Motor for Low-Power Low-Cost Applications

DEFF Research Database (Denmark)

Lu, Kaiyuan; Rasmussen, Peter Omand; Jakobsen, Uffe

2011-01-01

This paper presents a new single-phase, Hybrid Switched Reluctance (HSR) motor for low-cost, low-power, pump or fan drive systems. Its single-phase configuration allows use of a simple converter to reduce the system cost. Cheap ferrite magnets are used and arranged in a special flux concentration...... manner to increase effectively the torque density and efficiency of this machine. The efficiency of this machine is comparable to the efficiency of a traditional permanent magnet machine in the similar power range. The cogging torque, due to the existence of the permanent magnetic field, is beneficially...

15. An Open-Loop Grid Synchronization Approach for Single-Phase Applications

DEFF Research Database (Denmark)

Golestan, Saeed; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

2018-01-01

in the presence of frequency drifts. This is particularly true in single-phase applications, where the lack of multiple independent input signals makes the implementation of the synchronization technique difficult. The aim of this paper is to develop an effective OLS technique for single-phase power and energy...... applications. The proposed OLS method benefits from a straightforward implementation, a fast dynamic response (a response time less than two cycles of the nominal frequency), and a complete immunity against the DC component in the grid voltage. In addition, the designed OLS method totally blocks (significantly...

16. Zero-Voltage Ride-Through Capability of Single-Phase Grid-Connected Photovoltaic Systems

Directory of Open Access Journals (Sweden)

Zhen Zhang

2017-03-01

Full Text Available Distributed renewable energy systems play an increasing role in today’s energy paradigm. Thus, intensive research activities have been centered on improving the performance of renewable energy systems, including photovoltaic (PV systems, which should be of multiple-functionality. That is, the PV systems should be more intelligent in the consideration of grid stability, reliability, and fault protection. Therefore, in this paper, the performance of single-phase grid-connected PV systems under an extreme grid fault (i.e., when the grid voltage dips to zero is explored. It has been revealed that combining a fast and accurate synchronization mechanism with appropriate control strategies for the zero-voltage ride-through (ZVRT operation is mandatory. Accordingly, the representative synchronization techniques (i.e., the phase-locked loop (PLL methods in the ZVRT operation are compared in terms of detection precision and dynamic response. It shows that the second-order generalized integrator (SOGI-PLL is a promising solution for single-phase systems in the case of fault ride-through. A control strategy by modifying the SOGI-PLL scheme is then introduced to single-phase grid-connected PV systems for ZVRT operation. Simulations are performed to verify the discussions. The results have demonstrated that the proposed method can help single-phase PV systems to temporarily ride through zero-voltage faults with good dynamics.

17. Quantum phase transitions in spin-1 X X Z chains with rhombic single-ion anisotropy

Science.gov (United States)

Ren, Jie; Wang, Yimin; You, Wen-Long

2018-04-01

We explore numerically the inverse participation ratios in the ground state of one-dimensional spin-1 X X Z chains with the rhombic single-ion anisotropy. By employing the techniques of density-matrix renormalization group, effects of the rhombic single-ion anisotropy on various information theoretical measures are investigated, such as the fidelity susceptibility, the quantum coherence, and the entanglement entropy. Their relations with the quantum phase transitions are also analyzed. The phase transitions from the Y -Néel phase to the large-Ex or the Haldane phase can be well characterized by the fidelity susceptibility. The second-order derivative of the ground-state energy indicates all the transitions are of second order. We also find that the quantum coherence, the entanglement entropy, the Schmidt gap, and the inverse participation ratios can be used to detect the critical points of quantum phase transitions. Results drawn from these quantum information observables agree well with each other. Finally we provide a ground-state phase diagram as functions of the exchange anisotropy Δ and the rhombic single-ion anisotropy E .

18. Extended Group Contribution Model for Polyfunctional Phase Equilibria

DEFF Research Database (Denmark)

Abildskov, Jens

of physical separation processes. In a thermodynamic sense, design requires detailed knowledge of activity coefficients in the phases at equilibrium. The prediction of these quantities from a minimum of experimental data is the broad scope of this thesis. Adequate equations exist for predicting vapor......Material and energy balances and equilibrium data form the basis of most design calculations. While material and energy balances may be stated without much difficulty, the design engineer is left with a choice between a wide variety of models for describing phase equilibria in the design......-liquid equilibria from data on binary mixtures, composed of structurally simple molecules with a single functional group. More complex is the situation with mixtures composed of structurally more complicated molecules or molecules with more than one functional group. The UNIFAC method is extended to handle...

19. Administration of single-dose GnRH agonist in the luteal phase in ICSI cycles: a meta-analysis

Directory of Open Access Journals (Sweden)

Oliveira João

2010-09-01

Full Text Available Abstract Background The effects of gonadotrophin-releasing hormone agonist (GnRH-a administered in the luteal phase remains controversial. This meta-analysis aimed to evaluate the effect of the administration of a single-dose of GnRH-a in the luteal phase on ICSI clinical outcomes. Methods The research strategy included the online search of databases. Only randomized studies were included. The outcomes analyzed were implantation rate, clinical pregnancy rate (CPR per transfer and ongoing pregnancy rate. The fixed effects model was used for odds ratio. In all trials, a single dose of GnRH-a was administered at day 5/6 after ICSI procedures. Results All cycles presented statistically significantly higher rates of implantation (P Conclusions These findings demonstrate that the luteal-phase single-dose GnRH-a administration can increase implantation rate in all cycles and CPR per transfer and ongoing pregnancy rate in cycles with GnRH antagonist ovarian stimulation protocol. Nevertheless, by considering the heterogeneity between the trials, it seems premature to recommend the use of GnRH-a in the luteal phase. Additional randomized controlled trials are necessary before evidence-based recommendations can be provided.

20. Phase behavior of model ABC triblock copolymers

Science.gov (United States)

Chatterjee, Joon

The phase behavior of poly(isoprene-b-styrene- b-ethylene oxide) (ISO), a model ABC triblock copolymer has been studied. This class of materials exhibit self-assembly, forming a large array of ordered morphologies at length scales of 5-100 nm. The formation of stable three-dimensionally continuous network morphologies is of special interest in this study. Since these nanostructures considerably impact the material properties, fundamental knowledge for designing ABC systems have high technological importance for realizing applications in the areas of nanofabrication, nanoporous media, separation membranes, drug delivery and high surface area catalysts. A comprehensive framework was developed to describe the phase behavior of the ISO triblock copolymers at weak to intermediate segregation strengths spanning a wide range of composition. Phases were characterized through a combination of characterization techniques, including small angle x-ray scattering, dynamic mechanical spectroscopy, transmission electron microscopy, and birefringence measurements. Combined with previous investigations on ISO, six different stable ordered state symmetries have been identified: lamellae (LAM), Fddd orthorhombic network (O70), double gyroid (Q230), alternating gyroid (Q214), hexagonal (HEX), and body-centered cubic (BCC). The phase map was found to be somewhat asymmetric around the fI = fO isopleth. This work provides a guide for theoretical studies and gives insight into the intricate effects of various parameters on the self-assembly of ABC triblock copolymers. Experimental SAXS data evaluated with a simple scattering intensity model show that local mixing varies continuously across the phase map between states of two- and three-domain segregation. Strategies of blending homopolymers with ISO triblock copolymer were employed for studying the swelling properties of a lamellar state. Results demonstrate that lamellar domains swell or shrink depending upon the type of homopolymer that

1. Effect of completion geometry and phasing on single-phase liquid flow behaviour in horizontal wells

Energy Technology Data Exchange (ETDEWEB)

Yuan, H.; Sarica, C.; Brill, P. [Tulsa Unov., OK (United States)

1998-12-31

The effects of completion geometries and the phasing and density of injection openings in horizontal wells was studied. A total of 1,257 tests were conducted for no fluid injections, no main flow at the test section inlet, and with fluid injection for Reynolds numbers ranging from 4,000 to 60,000 and for influx to main flow rate ratios ranging from 1/5 to 1/2000. Results demonstrated the dramatic effects of completion geometry, phasing density, Reynolds number and main flow rate on the pressure behaviour and therefore on the production behaviour of the well. A general friction factor expression for horizontal wells with multiple injection openings was developed based on the conservation of mass and momentum and using a commercial Computational Fluid Dynamics (CFD) computer program to determine the length of the flow developing region in a horizontal well. A field example is presented to show the importance of using the proper friction factor correlation to calculate the pressure drop in a horizontal well. 32 refs., 4 tabs., 20 figs.

2. The Impact of Consumer Phase Models in Microbial Risk Analysis

DEFF Research Database (Denmark)

Nauta, Maarten; Christensen, Bjarke Bak

2011-01-01

In quantitative microbiological risk assessment (QMRA), the consumer phase model (CPM) describes the part of the food chain between purchase of the food product at retail and exposure. Construction of a CPM is complicated by the large variation in consumer food handling practices and a limited...... availability of data. Therefore, several subjective (simplifying) assumptions have to be made when a CPM is constructed, but with a single CPM their impact on the QMRA results is unclear. We therefore compared the performance of eight published CPMs for Campylobacter in broiler meat in an example of a QMRA......, where all the CPMs were analyzed using one single input distribution of concentrations at retail, and the same dose-response relationship. It was found that, between CPMs, there may be a considerable difference in the estimated probability of illness per serving. However, the estimated relative risk...

3. Three-dimensional two-phase mass transport model for direct methanol fuel cells

International Nuclear Information System (INIS)

Yang, W.W.; Zhao, T.S.; Xu, C.

2007-01-01

A three-dimensional (3D) steady-state model for liquid feed direct methanol fuel cells (DMFC) is presented in this paper. This 3D mass transport model is formed by integrating five sub-models, including a modified drift-flux model for the anode flow field, a two-phase mass transport model for the porous anode, a single-phase model for the polymer electrolyte membrane, a two-phase mass transport model for the porous cathode, and a homogeneous mist-flow model for the cathode flow field. The two-phase mass transport models take account the effect of non-equilibrium evaporation/ condensation at the gas-liquid interface. A 3D computer code is then developed based on the integrated model. After being validated against the experimental data reported in the literature, the code was used to investigate numerically transport behaviors at the DMFC anode and their effects on cell performance

4. Shot-noise-limited monitoring and phase locking of the motion of a single trapped ion.

Science.gov (United States)

Bushev, P; Hétet, G; Slodička, L; Rotter, D; Wilson, M A; Schmidt-Kaler, F; Eschner, J; Blatt, R

2013-03-29

We perform a high-resolution real-time readout of the motion of a single trapped and laser-cooled Ba+ ion. By using an interferometric setup, we demonstrate a shot-noise-limited measurement of thermal oscillations with a resolution of 4 times the standard quantum limit. We apply the real-time monitoring for phase control of the ion motion through a feedback loop, suppressing the photon recoil-induced phase diffusion. Because of the spectral narrowing in the phase-locked mode, the coherent ion oscillation is measured with a resolution of about 0.3 times the standard quantum limit.

5. Universal holonomic single quantum gates over a geometric spin with phase-modulated polarized light.

Science.gov (United States)

Ishida, Naoki; Nakamura, Takaaki; Tanaka, Touta; Mishima, Shota; Kano, Hiroki; Kuroiwa, Ryota; Sekiguchi, Yuhei; Kosaka, Hideo

2018-05-15

We demonstrate universal non-adiabatic non-abelian holonomic single quantum gates over a geometric electron spin with phase-modulated polarized light and 93% average fidelity. This allows purely geometric rotation around an arbitrary axis by any angle defined by light polarization and phase using a degenerate three-level Λ-type system in a negatively charged nitrogen-vacancy center in diamond. Since the control light is completely resonant to the ancillary excited state, the demonstrated holonomic gate not only is fast with low power, but also is precise without the dynamical phase being subject to control error and environmental noise. It thus allows pulse shaping for further fidelity.

6. Improved state observers for sensorless single phase BLDC-PM motor drives

DEFF Research Database (Denmark)

Lepure, Liviu L.; Boldea, Ion; Andreescu, Gheorghe Daniel

2010-01-01

Two methods of extracting the rotor position and speed for a sensorless single phase BLDC-PM motor drive by measuring only the phase current are presented here. Both methods are based on a generated orthogonal flux system. The first method extracts the position information by using the tan−1...... function and then an improved observer is created by adding a 4th order harmonic term in the estimated position, while the second method uses a phase locked loop structure. The proposed state observers are detailed using simulation results and then validated by experimental results....

7. Dynamic Modeling of Phase Crossings in Two-Phase Flow

DEFF Research Database (Denmark)

Madsen, Søren; Veje, Christian; Willatzen, Morten

2012-01-01

by a high resolution finite difference scheme due to Kurganov and Tadmore. The homogeneous formulation requires a set of thermodynamic relations to cover the entire range from liquid to gas state. This leads a number of numerical challenges since these relations introduce discontinuities in the derivative...... of the variables and are usually very slow to evaluate. To overcome these challenges, we use an interpolation scheme with local refinement. The simulations show that the method handles crossing of the saturation lines for both liquid to two-phase and two-phase to gas regions. Furthermore, a novel result obtained...

8. Liquid Phase Deposition of Single-Phase Alpha-Copper-Indium-Diselenide

Science.gov (United States)

Hepp, Aloysius F.; Bailey, S.; Cowen, Jonathan; Lucas, L.; Ernst, Frank; Pirouz, P.

2004-01-01

The success of exploratory missions in outer space often depends on a highly efficient renewable energy supply, as provided by solar cells. Since future missions will demand large aggregates of solar cells, and space flight is expensive, the solar cells must furthermore be available at low costs and have a long lifetime and high resistance against structural damage introduced by irradiation with high energy electrons and protons. The photovoltaic materials that are presently available only partly fulfill all these requirements. Therefore, we propose to explore a new method for fabricating thin-films for cost-efficient solar cells with very high specific power,high irradiation resistance and long lifetime based on the alpha-phase of the Cu-In-Se system "alpha-CIS."

9. Description of turbulent velocity and temperature fields of single phase flow through tight rod bundles

International Nuclear Information System (INIS)

Monir, C.

1991-02-01

A two-dimensional procedure, VANTACY-II, describing the turbulent velocity and temperature fields for single phase flow in tight lattices is presented and validated. The flow is assumed to be steady, incrompressible and hydraulic and thermal fully developed. First, the state of art of turbulent momentum and heat transport in tight lattices is documented. It is shown that there is a necessity for experimental investigations in the field of turbulent heat transport. The presented new procedure is based on the turbulence model VELASCO-TUBS by NEELEN. The numerical solution of the balance equations is done by the finite element method code VANTACY by KAISER. The validation of the new procedure VANTACY-II is done by comparing the numerically calculated data for the velocity and temperature fields and for natural mixing with the experimental data of SEALE. The comparison shows a good agreement of experimental and numerically computed data. The observed differences can be mainly attributed to the model of the turbulent PRANDTL number used in the new procedure. (orig.) [de

10. Oxidation kinetics of a Pb-64 at.% In single-phase alloy

International Nuclear Information System (INIS)

Zhang, M.X.; Chang, Y.A.; Marcotte, V.C.

1991-01-01

The solid-state oxidation kinetics of a Pb-64 at.% IN(50 wt.%) single-phase alloy were studied from room temperature to 150C using AES (Auger Electron Spectroscopy) depth profiling technique. The general oxidation behavior of this alloy is different from that of a Pb-3 at.% In alloy but similar to that of a Pb-30 at.% In alloy. The oxide formed on this alloy is almost pure In oxide (In 2 O 3 ) with the possible existence of some In suboxide near the oxide/alloy interface. At room temperature, oxidation of the alloy follows a direct logarithmic law, and the results can be described by the model proposed previously by Zhang, Chang, and Marcotte. At temperatures higher than 75C, rapid oxidation occurred initially followed by a slower parabolic oxidation at longer time. These data were described quantitatively by the model which assumes the existence of short-circuit diffusion in addition to lattice diffusion in the oxide as proposed by Smeltzer, Haering, and Kirkaldy. The effects of alloy composition in the oxidation kinetics of (pb, In) alloy are also examined by comparing the data for Pb-3, 30, and 64 at.% In alloys

11. Single and two-phase flow pressure drop for CANFLEX bundle

Energy Technology Data Exchange (ETDEWEB)

Park, Joo Hwan; Jun, Ji Su; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Dimmick, G R; Bullock, D E [Atomic Energy of Canada Limited, Ontario (Canada)

1999-12-31

Friction factor and two-phase flow frictional multiplier for a CANFLEX bundle are newly developed and presented in this paper. CANFLEX as a 43-element fuel bundle has been developed jointly by AECL/KAERI to provide greater operational flexibility for CANDU reactor operators and designers. Friction factor and two-phase flow frictional multiplier have been developed by using the experimental data of pressure drops obtained from two series of Freon-134a (R-134a) CHF tests with a string of simulated CANFLEX bundles in a single phase and a two-phase flow conditions. The friction factor for a CANFLEX bundle is found to be about 20% higher than that of Blasius for a smooth circular pipe. The pressure drop predicted by using the new correlations of friction factor and two-phase frictional multiplier are well agreed with the experimental pressure drop data of CANFLEX bundle within {+-} 5% error. 11 refs., 5 figs. (Author)

12. Single and two-phase flow pressure drop for CANFLEX bundle

Energy Technology Data Exchange (ETDEWEB)

Park, Joo Hwan; Jun, Ji Su; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Dimmick, G. R.; Bullock, D. E. [Atomic Energy of Canada Limited, Ontario (Canada)

1998-12-31

Friction factor and two-phase flow frictional multiplier for a CANFLEX bundle are newly developed and presented in this paper. CANFLEX as a 43-element fuel bundle has been developed jointly by AECL/KAERI to provide greater operational flexibility for CANDU reactor operators and designers. Friction factor and two-phase flow frictional multiplier have been developed by using the experimental data of pressure drops obtained from two series of Freon-134a (R-134a) CHF tests with a string of simulated CANFLEX bundles in a single phase and a two-phase flow conditions. The friction factor for a CANFLEX bundle is found to be about 20% higher than that of Blasius for a smooth circular pipe. The pressure drop predicted by using the new correlations of friction factor and two-phase frictional multiplier are well agreed with the experimental pressure drop data of CANFLEX bundle within {+-} 5% error. 11 refs., 5 figs. (Author)

13. Comparison of numerical results with experimental data for single-phase natural convection in an experimental sodium loop

International Nuclear Information System (INIS)

Ribando, R.J.

1979-01-01

A comparison is made between computed results and experimental data for single-phase natural convection in an experimental sodium loop. The tests were conducted in the Thermal-Hydraulic Out-of-Reactor Safety (THORS) Facility, an engineering-scale high temperature sodium facility at the Oak Ridge National Laboratory used for thermal-hydraulic testing of simulated LMFBR subassemblies at normal and off-normal operating conditions. Heat generation in the 19 pin assembly during these tests was typical of decay heat levels. Tests were conducted both with zero initial forced flow and with a small initial forced flow. The bypass line was closed in most tests, but open in one. The computer code used to analyze these tests [LONAC (LOw flow and NAtural Convection)] is an ORNL-developed, fast running, one-dimensional, single-phase finite difference model for simulating forced and free convection transients in the THORS loop

14. Ferrimagnetic Properties of Bond Dilution Mixed Blume-Capel Model with Random Single-Ion Anisotropy

International Nuclear Information System (INIS)

Liu Lei; Yan Shilei

2005-01-01

We study the ferrimagnetic properties of spin 1/2 and spin-1 systems by means of the effective field theory. The system is considered in the framework of bond dilution mixed Blume-Capel model (BCM) with random single-ion anisotropy. The investigation of phase diagrams and magnetization curves indicates the existence of induced magnetic ordering and single or multi-compensation points. Special emphasis is placed on the influence of bond dilution and random single-ion anisotropy on normal or induced magnetic ordering states and single or multi-compensation points. Normal magnetic ordering states take on new phase diagrams with increasing randomness (bond and anisotropy), while anisotropy induced magnetic ordering states are always occurrence no matter whether concentration of anisotropy is large or small. Existence and disappearance of compensation points rely strongly on bond dilution and random single-ion anisotropy. Some results have not been revealed in previous papers and predicted by Neel theory of ferrimagnetism.

15. A single-reciprocating-piston two-phase thermofluidic prime-mover

International Nuclear Information System (INIS)

Taleb, Aly I.; Timmer, Michael A.G.; El-Shazly, Mohamed Y.; Samoilov, Aleksandr; Kirillov, Valeriy A.; Markides, Christos N.

2016-01-01

We explore theoretically a thermodynamic heat-engine concept that has the potential of attaining a high efficiency and power density relative to competing solutions, while having a simple construction with few moving parts and dynamic seals, allowing low capital and operating costs, and long lifetimes. Specifically, an unsteady heat-engine device within which a working fluid undergoes a power cycle featuring phase-change, termed the ‘Evaporative Reciprocating-Piston Engine’ (EPRE) is considered as a potential prime mover for use in combined heat and power (CHP) applications. Based on thermal/fluid-electrical analogies, a theoretical ERPE device is conceptualized initially in the electrical-analogy domain as a linearized, closed-loop active electronic circuit model. The circuit-model representation is designed to potentially exhibit high efficiencies compared to similar, existing two-phase unsteady heat engines. From the simplified circuit model in the electrical domain, and using the thermal/fluid-electrical analogies, one possible configuration of a corresponding physical ERPE device is derived, based on an early prototype of a device currently under development that exhibits some similarities with the ERPE, and used as a physical manifestation of the proposed concept. The corresponding physical ERPE device relies on the alternating phase change of a suitable working-fluid (here, water) to drive a reciprocating displacement of a single vertical piston and to produce sustained oscillations of thermodynamic properties within an enclosed space. Four performance indicators are considered: the operational frequency, the power output, the exergy efficiency, and the heat input/temperature difference imposed externally on the device's heat exchangers that is necessary to sustain oscillations. The effects of liquid inertia, viscous drag, hydrostatic pressure, vapour compressibility and two-phase heat transfer in the various engine components/compartments are

16. Analytic properties of the Ruelle ζ-function for mean field models of phase transition

International Nuclear Information System (INIS)

Hallerberg, Sarah; Just, Wolfram; Radons, Guenter

2005-01-01

We evaluate by analytical means the Ruelle ζ-function for a spin model with global coupling. The implications of the ferromagnetic phase transitions for the analytical properties of the ζ-function are discussed in detail. In the paramagnetic phase the ζ-function develops a single branch point. In the low-temperature regime two branch points appear which correspond to the ferromagnetic state and the metastable state. The results are typical for any Ginsburg-Landau-type phase transition

17. MODELING OF SYMMETRIC THREE-PHASE ASYNCHRONOUS ELECTRIC MOTOR IN ASYMMETRIC CONNECTION TO NETWORK

Directory of Open Access Journals (Sweden)

V. I. Lukovnikov

2005-01-01

Full Text Available The paper shows how to solve the problem concerning reveal of changes in mathematical models and electric parameters of symmetric three-phase short-circuited asynchronous electric motors in case of their connection to single- or two-phase network in comparison with their connection to three-phase network. The uniform methodological approach permitting to generalize the known data and receive new results is offered in the paper.

18. Single phase computed tomography is equivalent to dual phase method for localizing hyperfunctioning parathyroid glands in patients with primary hyperparathyroidism: a retrospective review

Directory of Open Access Journals (Sweden)

Fanny Morón

2017-08-01

Full Text Available Objective This study aims to compare the sensitivity of dual phase (non-contrast and arterial versus single phase (arterial CT for detection of hyper-functioning parathyroid glands in patients with primary hyperparathyroidism. Methods The CT scans of thirty-two patients who have biochemical evidence of primary hyperparathyroidism, pathologically proven parathyroid adenomas, and pre-operative multiphase parathyroid imaging were evaluated retrospectively in order to compare the adequacy of single phase vs. dual phase CT scans for the detection of parathyroid adenomas. Results The parathyroid adenomas were localized in 83% of cases on single arterial phase CT and 80% of cases on dual phase CT. The specificity for localization of parathyroid tumor was 96% for single phase CT and 97% for dual phase CT. The results were not significantly different (p = 0.695. These results are similar to those found in the literature for multiphase CT of 55–94%. Conclusions Our study supports the use of a single arterial phase CT for the detection of hyperfunctioning parathyroid adenomas. Advances in knowledge: a single arterial phase CT has similar sensitivity for localizing parathyroid adenomas as dual phase CT and significantly reduces radiation dose to the patient.

19. An efficiency improved single-phase PFC converter for electric vehicle charger applications

DEFF Research Database (Denmark)

Zhu, Dexuan; Tang, Yi; Jin, Chi

2013-01-01

This paper presents an efficiency improved single-phase power factor correction (PFC) converter with its target application to plug-in hybrid electric vehicle (PHEV) charging systems. The proposed PFC converter features sinusoidal input current, three-level output characteristic, and wide range...

20. A double parameters measurement of steam-water two-phase flow with single orifice

International Nuclear Information System (INIS)

Zhong Shuoping; Tong Yunxian; Yu Meiying

1992-08-01

A double parameters measurement of steam-water two-phase flow with single orifice is described. An on-line measurement device based on micro-computer has been developed. The measured r.m.s error of steam quality is less than 6.5% and the measured relative r.m.s. error of mass flow rate is less than 9%

1. Design and Implementation of Wireless Energy Meter System for Monitoring the Single Phase Supply

OpenAIRE

U. V, Prashanth B.

2013-01-01

Wireless energy meter is a system developed to serve as a basic single-phase energy meter with advanced functionalities such as Peak hour setting, Peak load setting Wireless reading transmission; further the system eliminates the role of a Meter Reader.

2. Novel Motion Sensorless Control of Single Phase Brushless D.C. PM Motor Drive, with experiments

DEFF Research Database (Denmark)

Lepure, Liviu Ioan; Boldea, Ion; Andreescu, Gheorghe Daniel

2010-01-01

A motion sensorless control for single phase permanent magnet brushless d.c. (PM-BLDC) motor drives, based on flux integration and prior knowledge of the PM flux/position characteristic is proposed here and an adequate correction algorithm is adopted, in order to increase the robustness to noise...

3. Single-Phase 3L PR Controlled qZS Inverter Connected to the Distorted Grid

DEFF Research Database (Denmark)

Makovenko, Elena; Husev, Oleksandr; Roncero-Clemente, Carlos

2016-01-01

This paper presents a single-phase three-level NPC qZS inverter connected to a distorted grid using PID and PR regulators. A case study system along with the control strategy are described. Tuning approaches for PID and PR regulators are addressed and validated by means of simulation results...

4. PI and repetitive control for single phase inverter based on virtual rotating coordinate system

Science.gov (United States)

Li, Mengqi; Tong, Yibin; Jiang, Jiuchun; Liang, Jiangang

2018-03-01

Microgrid technology developed rapidly and nonlinear loads were connected increasingly. A new control strategy was proposed for single phase inverter when connected nonlinear loads under island condition. PI and repetitive compound controller was realized under synchronous rotating coordinate system and acquired high quality sinusoidal voltage output without voltage spike when loads step changed. Validity and correctness were verified by simulation using MATLAB/Simulink.

5. Forest resources of southeast Alaska, 2000: results of a single-phase systematic sample.

Science.gov (United States)

Willem W.S. van Hees

2003-01-01

A baseline assessment of forest resources in southeast Alaska was made by using a single-phase, unstratified, systematic-grid sample, with ground plots established at each grid intersection. Ratio-of-means estimators were used to develop population estimates. Forests cover an estimated 48 percent of the 22.9-million-acre southeast Alaska inventory unit. Dominant forest...

6. Benchmarking of grid fault modes in single-phase grid-connected photovoltaic systems

DEFF Research Database (Denmark)

Yang, Yongheng; Blaabjerg, Frede; Zou, Zhixiang

2012-01-01

Pushed by the booming installations of single-phase photovoltaic (PV) systems, the grid demands regarding the integration of PV systems are expected to be modified. Hence, the future PV systems should become more active with functionalities of low voltage ride-through (LVRT) and the grid support...

7. Frequency Adaptive Repetitive Control of Grid-Tied Single-Phase PV Inverters

DEFF Research Database (Denmark)

Zhou, Keliang; Yang, Yongheng; Blaabjerg, Frede

2015-01-01

. This paper thus explores a frequency adaptive repetitive control strategy for grid converters, which employs fractional delay filters in order to adapt to the change of the grid frequency. Case studies with experimental results of a single-phase grid-connected PV inverter system are provided to verify...

8. The Effect of Grain Size on Mechanical Instability in Single-Phase Li-Alloy Anodes

National Research Council Canada - National Science Library

Wolfenstine, Jeff

2000-01-01

.... The results of this study suggest that decreasing the particle and/or grain size is not a practical approach to solving the mechanical instability problem of single phase Li alloys that are intended to be used as anodes in Li-ion batteries.

9. Decoupling of fluctuating power in single-phase systems through a symmetrical half-bridge circuit

DEFF Research Database (Denmark)

Tang, Yi; Blaabjerg, Frede; Loh, Poh Chiang

2014-01-01

Single-phase AC/DC or DC/AC systems inherently subject to harmonic disturbance which is caused by the well-known double line frequency ripple power. This issue can be eased through the installation of bulky electrolytic capacitors in the dc-link, but such passive filtering approach may inevitably...

10. Hybrid Control Method for a Single Phase PFC using a Low Cost Microcontroller

DEFF Research Database (Denmark)

Jakobsen, Lars Tønnes; Nielsen, Nils; Wolf, Christian

2005-01-01

This paper presents a hybrid control method for single phase boost PFCs. The high bandwidth current loop is analog while the voltage loop is implemented in an 8-bit microcontroller. The design focuses on minimizing the number of calculations done in the microcontroller. A 1kW prototype has been...

11. A Generic Topology Derivation Method for Single-phase Converters with Active Capacitive DC-links

DEFF Research Database (Denmark)

Wang, Haoran; Wang, Huai; Zhu, Guorong

2016-01-01

capacitive DCDC- link solutions, but important aspects of the topology assess-ment, such as the total energy storage, overall capacitive energy buffer ratio, cost, and reliability are still not available. This paper proposes a generic topology derivation method of single-phase power converters...

12. Flux Concentration and Pole Shaping in a Single Phase Hybrid Switched Reluctance Motor Drive

DEFF Research Database (Denmark)

Jakobsen, Uffe; Lu, Kaiyuan

2010-01-01

The single phase hybrid switched reluctance motor (HSRM) may be a good candidate for low-cost drives used for pump applications. This paper presents a new design of the HSRM with improved starting torque achieved by stator pole shaping, and a better arrangement of the embedded stator permanent...

13. Structural, vibrational and thermal characterization of phase transformation in L-histidinium bromide monohydrate single crystals

Energy Technology Data Exchange (ETDEWEB)

Moura, G.M. [Universidade Federal do Maranhão, CCSST, Imperatriz, MA, 65900-410 (Brazil); Universidade Federal do Sul e Sudeste do Pará, ICEN, Marabá, PA 68505-080 (Brazil); Carvalho, J.O. [Universidade Federal do Maranhão, CCSST, Imperatriz, MA, 65900-410 (Brazil); Instituto Federal do Tocantins, Araguaína, TO, 77.826-170 (Brazil); Silva, M.C.D.; Façanha Filho, P.F. [Universidade Federal do Maranhão, CCSST, Imperatriz, MA, 65900-410 (Brazil); Santos, A.O. dos, E-mail: adenilson1@gmail.com [Universidade Federal do Maranhão, CCSST, Imperatriz, MA, 65900-410 (Brazil)

2015-09-01

L-Histidinium bromide monohydrate (LHBr) single crystal is a nonlinear optical material. In this work the high temperature phase transformation and the thermal stability of single crystals of LHBr was investigated by X-ray diffraction, thermogravimetric analysis, differential thermal analysis, differential scanning calorimetry and Raman spectroscopy. The results showed the LHBr phase transformation of orthorhombic (P2{sub 1}2{sub 1}2{sub 1}) to monoclinic system (P 1 2 1) at 120 °C, with the lattice parameters a = 12.162(1) Å, b = 16.821(2) Å, c = 19.477(2) Å and β = 108.56(2)°. These techniques are complementary and confirm the structural phase transformation due to loss water of crystallization. - Highlights: • -histidinium bromide single crystal was grown by slow evaporation technique. • X-ray diffraction characterize the high-temperature phase transformation. • The structural phase transformation occur due to loss of water of crystallization. • The LHBr thermal expansion coefficients exhibit an anisotropic behavior.

14. Scaling Analysis of the Single-Phase Natural Circulation: the Hydraulic Similarity

International Nuclear Information System (INIS)

Yu, Xin-Guo; Choi, Ki-Yong

2015-01-01

These passive safety systems all rely on the natural circulation to cool down the reactor cores during an accident. Thus, a robust and accurate scaling methodology must be developed and employed to both assist in the design of a scaled-down test facility and guide the tests in order to mimic the natural circulation flow of its prototype. The natural circulation system generally consists of a heat source, the connecting pipes and several heat sinks. Although many applauding scaling methodologies have been proposed during last several decades, few works have been dedicated to systematically analyze and exactly preserve the hydraulic similarity. In the present study, the hydraulic similarity analyses are performed at both system and local level. By this mean, the scaling criteria for the exact hydraulic similarity in a full-pressure model have been sought. In other words, not only the system-level but also the local-level hydraulic similarities are pursued. As the hydraulic characteristics of a fluid system is governed by the momentum equation, the scaling analysis starts with it. A dimensionless integral loop momentum equation is derived to obtain the dimensionless numbers. In the dimensionless momentum equation, two dimensionless numbers, the dimensionless flow resistance number and the dimensionless gravitational force number, are identified along with a unique hydraulic time scale, characterizing the system hydraulic response. A full-height full-pressure model is also made to see which model among the full-height model and reduced-height model can preserve the hydraulic behavior of the prototype. From the dimensionless integral momentum equation, a unique hydraulic time scale, which characterizes the hydraulic response of a single-phase natural circulation system, is identified along with two dimensionless parameters: the dimensionless flow resistance number and the dimensionless gravitational force number. By satisfying the equality of both dimensionless numbers

15. Scaling Analysis of the Single-Phase Natural Circulation: the Hydraulic Similarity

Energy Technology Data Exchange (ETDEWEB)

Yu, Xin-Guo; Choi, Ki-Yong [KAERI, Daejeon (Korea, Republic of)

2015-05-15

These passive safety systems all rely on the natural circulation to cool down the reactor cores during an accident. Thus, a robust and accurate scaling methodology must be developed and employed to both assist in the design of a scaled-down test facility and guide the tests in order to mimic the natural circulation flow of its prototype. The natural circulation system generally consists of a heat source, the connecting pipes and several heat sinks. Although many applauding scaling methodologies have been proposed during last several decades, few works have been dedicated to systematically analyze and exactly preserve the hydraulic similarity. In the present study, the hydraulic similarity analyses are performed at both system and local level. By this mean, the scaling criteria for the exact hydraulic similarity in a full-pressure model have been sought. In other words, not only the system-level but also the local-level hydraulic similarities are pursued. As the hydraulic characteristics of a fluid system is governed by the momentum equation, the scaling analysis starts with it. A dimensionless integral loop momentum equation is derived to obtain the dimensionless numbers. In the dimensionless momentum equation, two dimensionless numbers, the dimensionless flow resistance number and the dimensionless gravitational force number, are identified along with a unique hydraulic time scale, characterizing the system hydraulic response. A full-height full-pressure model is also made to see which model among the full-height model and reduced-height model can preserve the hydraulic behavior of the prototype. From the dimensionless integral momentum equation, a unique hydraulic time scale, which characterizes the hydraulic response of a single-phase natural circulation system, is identified along with two dimensionless parameters: the dimensionless flow resistance number and the dimensionless gravitational force number. By satisfying the equality of both dimensionless numbers

16. A Systematic Modelling Framework for Phase Transfer Catalyst Systems

DEFF Research Database (Denmark)

Anantpinijwatna, Amata; Sales-Cruz, Mauricio; Hyung Kim, Sun

2016-01-01

Phase-transfer catalyst systems contain two liquid phases, with a catalyst (PTC) that transfers between the phases, driving product formation in one phase and being regenerated in the other phase. Typically the reaction involves neutral species in an organic phase and regeneration involves ions i....... The application of the framework is made to two cases in order to highlight the performance and issues of activity coefficient models for predicting design and operation and the effects when different organic solvents are employed....

17. A single product perishing inventory model with demand interaction

African Journals Online (AJOL)

The paper describes a single perishing product inventory model in which ... continuous review inventory models have been studied recently by Yadavalli et al ...... stochastic inventory system with lost sales, Stochastic Analysis and Applications ...

18. Photon-counting-based diffraction phase microscopy combined with single-pixel imaging

Science.gov (United States)

Shibuya, Kyuki; Araki, Hiroyuki; Iwata, Tetsuo

2018-04-01

We propose a photon-counting (PC)-based quantitative-phase imaging (QPI) method for use in diffraction phase microscopy (DPM) that is combined with a single-pixel imaging (SPI) scheme (PC-SPI-DPM). This combination of DPM with the SPI scheme overcomes a low optical throughput problem that has occasionally prevented us from obtaining quantitative-phase images in DPM through use of a high-sensitivity single-channel photodetector such as a photomultiplier tube (PMT). The introduction of a PMT allowed us to perform PC with ease and thus solved a dynamic range problem that was inherent to SPI. As a proof-of-principle experiment, we performed a comparison study of analogue-based SPI-DPM and PC-SPI-DPM for a 125-nm-thick indium tin oxide (ITO) layer coated on a silica glass substrate. We discuss the basic performance of the method and potential future modifications of the proposed system.

19. 100-nm thick single-phase wurtzite BAlN films with boron contents over 10%

KAUST Repository

Li, Xiaohang

2017-01-11

Growing thicker BAlN films while maintaining single-phase wurtzite structure and boron content over 10% has been challenging. In this study, we report on the growth of 100 nm-thick single-phase wurtzite BAlN films with boron contents up to 14.4% by MOCVD. Flow-modulated epitaxy was employed to increase diffusion length of group-III atoms and reduce parasitic reactions between the metalorganics and NH3. A large growth efficiency of ∼2000 μm mol−1 was achieved as a result. Small B/III ratios up to 17% in conjunction with high temperatures up to 1010 °C were utilized to prevent formation of the cubic phase and maintain wurtzite structure.

20. 100-nm thick single-phase wurtzite BAlN films with boron contents over 10%

KAUST Repository

Li, Xiaohang; Wang, Shuo; Liu, Hanxiao; Ponce, Fernando A.; Detchprohm, Theeradetch; Dupuis, Russell D.

2017-01-01

Growing thicker BAlN films while maintaining single-phase wurtzite structure and boron content over 10% has been challenging. In this study, we report on the growth of 100 nm-thick single-phase wurtzite BAlN films with boron contents up to 14.4% by MOCVD. Flow-modulated epitaxy was employed to increase diffusion length of group-III atoms and reduce parasitic reactions between the metalorganics and NH3. A large growth efficiency of ∼2000 μm mol−1 was achieved as a result. Small B/III ratios up to 17% in conjunction with high temperatures up to 1010 °C were utilized to prevent formation of the cubic phase and maintain wurtzite structure.

1. Development of a single-phase thermosiphon for cold collection and storage of radiative cooling

Energy Technology Data Exchange (ETDEWEB)

Zhao, Dongliang; Martini, Christine Elizabeth; Jiang, Siyu; Ma, Yaoguang; Zhai, Yao; Tan, Gang; Yin, Xiaobo; Yang, Ronggui

2017-11-01

A single-phase thermosiphon is developed for cold collection and storage of radiative cooling. Compared to the conventional nocturnal radiative cooling systems that use an electric pump to drive the heat transfer fluid, the proposed single-phase thermosiphon uses the buoyancy force to drive heat transfer fluid. This solution does not require electricity, therefore improving the net gain of the radiative cooling system. A single-phase thermosiphon was built, which consists of a flat panel, a cold collection tank, a water return tube, and a water distribution tank. Considering that outdoor radiative cooling flux is constantly changing (i.e. uncontrollable), an indoor testing facility was developed to provide a controllable cooling flux (comparable to a radiative cooling flux of 100 W/m2) for the evaluation of thermosiphon performance. The testing apparatus is a chilled aluminum flat plate that has a controlled air gap separation relative to the flat panel surface of the thermosiphon to emulate radiative cooling. With an average of 105 W/m2 cooling flux, the 18 liters of water in the thermosiphon was cooled to an average temperature of 12.5 degrees C from an initial temperature of 22.2 degrees C in 2 h, with a cold collection efficiency of 96.8%. The results obtained have demonstrated the feasibility of using a single-phase thermosiphon for cold collection and storage of radiative cooling. Additionally, the effects of the thermosiphon operation conditions, such as tilt angle of the flat panel, initial water temperature, and cooling energy flux, on the performance have been experimentally investigated. Modular design of the single-phase thermosiphon gives flexibility for its scalability. A radiative cooling system with multiple thermosiphon modules is expected to play an important role in cooling buildings and power plant condensers.

2. Single-cluster dynamics for the random-cluster model

NARCIS (Netherlands)

Deng, Y.; Qian, X.; Blöte, H.W.J.

2009-01-01

We formulate a single-cluster Monte Carlo algorithm for the simulation of the random-cluster model. This algorithm is a generalization of the Wolff single-cluster method for the q-state Potts model to noninteger values q>1. Its results for static quantities are in a satisfactory agreement with those

3. Influence of microstructure on low cycle fatigue in some single phase and biphasic stainless steels

Energy Technology Data Exchange (ETDEWEB)

Stolarz, J. [Ecole Nationale Superieure des Mines, Centre SMS, URA CNRS 1884, Saint-Etienne (France)

2004-07-01

This overview deals with the effects of microstructural parameters in different single phase and biphasic stainless steels on short crack behaviour and on fatigue life in the low cycle regime. The effect of the grain size is investigated in a single phase austenitic stainless steel. Under plastic strain control, the fatigue life increases when the grain size decreases. The results are discussed by analysing the distributions of crack depths as a function of the grain size. The second type of material is a metastable austenitic steel which partially transforms into martensite during LCF at temperatures between -50 C and +120 C. The grain size of the initially single phase austenitic microstructure has a combined influence on the volume fraction of martensite produced during fatigue and on the fatigue life. In this case, the grain size effect is still considerable but totally indirect because all fatigue cracks grow exclusively in the martensite. The cyclic behaviour analysis in biphasic alloys in which two phases undergo plastic deformation during LCF is considerably more complex because the conventional concept of microstructural barriers cannot be applied. The possible damage patterns in a pair of grains with different mechanical properties are discussed on the example of a solution treated and aged superduplex austenitic-ferritic stainless steel (SDSS). The hardening of one phase (ferrite) through ageing at 475 C changes the cyclic behaviour of the initial ''quasi single phase'' microstructure. Consequently, the fatigue life under plastic strain control decreases compared with the solution treated SDSS. The discussion is focussed on LCF damage mechanisms at the microstructure size scale with a particular accent put on the propagation of short cracks in the bulk. All the microstructures exhibit some common features with respect to the behaviour of short cracks. In particular a strong effect of microstructural barriers in the bulk and the

4. COMMIX-1AR/P: A three-dimensional transient single-phase computer program for thermal hydraulic analysis of single and multicomponent systems

Energy Technology Data Exchange (ETDEWEB)

Garner, P.L.; Blomquist, R.N.; Gelbard, E.M.

1992-09-01

The COMMIX-1AR/P computer program is designed for analyzing the steady-state and transient aspects of single-phase fluid flow and heat transfer in three spatial dimensions. This version is an extension of the modeling in COMMIX-1A to include multiple fluids in physically separate regions of the computational domain, modeling descriptions for pumps, radiation heat transfer between surfaces of the solids which are embedded in or surround the fluid, a k-[var epsilon] model for fluid turbulence, and improved numerical techniques. The porous-medium formulation in COMMIX allows the program to be applied to a wide range of problems involving both simple and complex geometrical arrangements. The input preparation and execution procedures are presented for the COMMIX-1AR/P program and several postprocessor programs which produce graphical displays of the calculated results.

5. COMMIX-1AR/P: A three-dimensional transient single-phase computer program for thermal hydraulic analysis of single and multicomponent systems

International Nuclear Information System (INIS)

Garner, P.L.; Blomquist, R.N.; Gelbard, E.M.

1992-09-01

The COMMIX-1AR/P computer program is designed for analyzing the steady-state and transient aspects of single-phase fluid flow and heat transfer in three spatial dimensions. This version is an extension of the modeling in COMMIX-1A to include multiple fluids in physically separate regions of the computational domain, modeling descriptions for pumps, radiation heat transfer between surfaces of the solids which are embedded in or surround the fluid, a k-var-epsilon model for fluid turbulence, and improved numerical techniques. The porous-medium formulation in COMMIX allows the program to be applied to a wide range of problems involving both simple and complex geometrical arrangements. The input preparation and execution procedures are presented for the COMMIX-1AR/P program and several postprocessor programs which produce graphical displays of the calculated results

6. Studies on Single-phase and Multi-phase Heat Pipe for LED Panel for Efficient Heat Dissipation

Science.gov (United States)

Vyshnave, K. C.; Rohit, G.; Maithreya, D. V. N. S.; Rakesh, S. G.

2017-08-01

The popularity of LED panel as a source of illumination has soared recently due to its high efficiency. However, the removal of heat that is produced in the chip is still a major challenge in its design since this has an adverse effect on its reliability. If high junction temperature develops, the colour of the emitted light may diminish over prolonged usage or even a colour shift may occur. In this paper, a solution has been developed to address this problem by using a combination of heat pipe and heat fin technology. A single-phase and a two-phase heat pipes have been designed theoretically and computational simulations carried out using ANSYS FLUENT. The results of the theoretical calculations and those obtained from the simulations are found to be in agreement with each other.

7. Models for assessing the relative phase velocity in a two-phase flow. Status report

International Nuclear Information System (INIS)

Schaffrath, A.; Ringel, H.

2000-06-01

The knowledge of slip or drift flux in two phase flow is necessary for several technical processes (e.g. two phase pressure losses, heat and mass transfer in steam generators and condensers, dwell period in chemical reactors, moderation effectiveness of two phase coolant in BWR). In the following the most important models for two phase flow with different phase velocities (e.g. slip or drift models, analogy between pressure loss and steam quality, ε - ε models and models for the calculation of void distribution in reposing fluids) are classified, described and worked up for a further comparison with own experimental data. (orig.)

8. Automated selection of the optimal cardiac phase for single-beat coronary CT angiography reconstruction

International Nuclear Information System (INIS)

Stassi, D.; Ma, H.; Schmidt, T. G.; Dutta, S.; Soderman, A.; Pazzani, D.; Gros, E.; Okerlund, D.

2016-01-01

Purpose: Reconstructing a low-motion cardiac phase is expected to improve coronary artery visualization in coronary computed tomography angiography (CCTA) exams. This study developed an automated algorithm for selecting the optimal cardiac phase for CCTA reconstruction. The algorithm uses prospectively gated, single-beat, multiphase data made possible by wide cone-beam imaging. The proposed algorithm differs from previous approaches because the optimal phase is identified based on vessel image quality (IQ) directly, compared to previous approaches that included motion estimation and interphase processing. Because there is no processing of interphase information, the algorithm can be applied to any sampling of image phases, making it suited for prospectively gated studies where only a subset of phases are available. Methods: An automated algorithm was developed to select the optimal phase based on quantitative IQ metrics. For each reconstructed slice at each reconstructed phase, an image quality metric was calculated based on measures of circularity and edge strength of through-plane vessels. The image quality metric was aggregated across slices, while a metric of vessel-location consistency was used to ignore slices that did not contain through-plane vessels. The algorithm performance was evaluated using two observer studies. Fourteen single-beat cardiac CT exams (Revolution CT, GE Healthcare, Chalfont St. Giles, UK) reconstructed at 2% intervals were evaluated for best systolic (1), diastolic (6), or systolic and diastolic phases (7) by three readers and the algorithm. Pairwise inter-reader and reader-algorithm agreement was evaluated using the mean absolute difference (MAD) and concordance correlation coefficient (CCC) between the reader and algorithm-selected phases. A reader-consensus best phase was determined and compared to the algorithm selected phase. In cases where the algorithm and consensus best phases differed by more than 2%, IQ was scored by three

9. Lattice Boltzmann model for simulating immiscible two-phase flows

International Nuclear Information System (INIS)

Reis, T; Phillips, T N

2007-01-01

The lattice Boltzmann equation is often promoted as a numerical simulation tool that is particularly suitable for predicting the flow of complex fluids. This paper develops a two-dimensional 9-velocity (D2Q9) lattice Boltzmann model for immiscible binary fluids with variable viscosities and density ratio using a single relaxation time for each fluid. In the macroscopic limit, this model is shown to recover the Navier-Stokes equations for two-phase flows. This is achieved by constructing a two-phase component of the collision operator that induces the appropriate surface tension term in the macroscopic equations. A theoretical expression for surface tension is determined. The validity of this analysis is confirmed by comparing numerical and theoretical predictions of surface tension as a function of density. The model is also shown to predict Laplace's law for surface tension and Poiseuille flow of layered immiscible binary fluids. The spinodal decomposition of two fluids of equal density but different viscosity is then studied. At equilibrium, the system comprises one large low viscosity bubble enclosed by the more viscous fluid in agreement with theoretical arguments of Renardy and Joseph (1993 Fundamentals of Two-Fluid Dynamics (New York: Springer)). Two other simulations, namely the non-equilibrium rod rest and the coalescence of two bubbles, are performed to show that this model can be used to simulate two fluids with a large density ratio

10. Plasticity induced by phase transformation in steel: experiment vs modeling

International Nuclear Information System (INIS)

2011-01-01

The objectives of this work are: (i) understand the mechanisms and phenomena involved in the plasticity of steels in the presence of a diffusive or martensitic phase transformation. (ii) develop tools for predicting TRIP, which are able to correctly reproduce the macroscopic deformation for cases of complex loading and could also provide information about local elasto-visco-plastic interactions between product and parent phases. To this purpose, new experimental tests are conducted on 35NCD16 steel for austenite to martensite transformation and on 100C6 steel for austenite to pearlite transformation. The elasto viscoplastic properties of austenite and pearlite of the 100C6 steel are characterized through tension compression and relaxation tests. The parameters of macro-homogeneous and crystal-based constitutive laws could then be identified such as to analyse different models with respect to the experimental TRIP: the analytical models of Leblond (1989) and Taleb and Sidoroff (2003) but also, above all, different numerical models which can be distinguished by the prevailing assumptions concerning the local kinetics and the constitutive laws. An extension of the single-grain model dedicated to martensitic transformations developed during the thesis of S. Meftah (2007) is proposed. It consists in introducing the polycrystalline character of the austenite through a process of homogenization based on a self-consistent scheme by calculating the properties of an Equivalent Homogeneous Medium environment (EHM). (author)

11. Pharmacokinetics of surotomycin from phase 1 single and multiple ascending dose studies in healthy volunteers.

Science.gov (United States)

Chandorkar, Gurudatt; Zhan, Qiao; Donovan, Julie; Rege, Shruta; Patino, Hernando

2017-03-28

12. Modeling of two-phase slug flow

International Nuclear Information System (INIS)

Fabre, J.; Line, A.

1992-01-01

When gas and liquid flow in a pipe, over a range of flow rates, a flow pattern results in which sequences of long bubbles, almost filling the pipe cross section, are successively followed by liquid slugs that may contain small bubbles. This flow pattern, usually called slug flow, is encountered in numerous practical situations, such as in the production of hydrocarbons in wells and their transportation in pipelines; the production of steam and water in geothermal power plants; the boiling and condensation in liquid-vapor systems of thermal power plants; emergency core cooling of nuclear reactors; heat and mass transfer between gas and liquid in chemical reactors. This paper provides a review of two phase slug flow modeling

13. Thermal analysis of hybrid single-phase, two-phase and heat pump thermal control system (TCS) for future spacecraft

International Nuclear Information System (INIS)

Lee, S.H.; Mudawar, I.; Hasan, Mohammad M.

2016-01-01

Highlights: • Hybrid Thermal Control System (H-TCS) is proposed for future spacecraft. • Thermodynamic performance of H-TCS is examined for different space missions. • Operational modes including single-phase, two-phase and heat pump are explored. • R134a is deemed most appropriate working fluid. - Abstract: An urgent need presently exists to develop a new class of versatile spacecraft capable of conducting different types of missions and enduring varying gravitational and temperature environments, including Lunar, Martian and Near Earth Object (NEOs). This study concerns the spacecraft's Thermal Control System (TCS), which tackles heat acquisition, especially from crew and avionics, heat transport, and ultimate heat rejection by radiation. The primary goal of the study is to explore the design and thermal performance of a Hybrid Thermal Control System (H-TCS) that would satisfy the diverse thermal requirements of the different space missions. The H-TCS must endure both ‘cold’ and ‘hot’ environments, reduce weight and size, and enhance thermodynamic performance. Four different operational modes are considered: single-phase, two-phase, basic heat pump and heat pump with liquid-side, suction-side heat exchanger. A thermodynamic trade study is conducted for six different working fluids to assess important performance parameters including mass flow rate of the working fluid, maximum pressure, radiator area, compressor/pump work, and coefficient of performance (COP). R134a is determined to be most suitable based on its ability to provide a balanced compromise between reducing flow rate and maintaining low system pressure, and a moderate coefficient of performance (COP); this fluid is also both nontoxic and nonflammable, and features zero ozone depletion potential (ODP) and low global warming potential (GWP). It is shown how specific mission stages dictate which mode of operation is most suitable, and this information is used to size the radiator for the

14. Mineral vein dynamics modeling (FRACS). Phase 1

Energy Technology Data Exchange (ETDEWEB)

Urai, J.; Virgo, S.; Arndt, M. [RWTH Aachen (Germany). Geologie-Endogene Dynamik] [and others

2013-07-15

The Mineral Vein Dynamics Modeling group ''FRACS'' is a team of 7 research groups from the Universities of Mainz, Aachen, Tuebingen, Karlsruhe, Bayreuth, ETH Zuerich and Glasgow working on an understanding of the dynamic development of fracturing, fluid flow and fracture sealing. World-class field laboratories, especially carbonate sequences from the Oman Mountains are studied and classified. State of the art numerical programs are written, expanded and used to simulate the dynamic interaction of fracturing, flow and resealing and the results are compared with the natural examples. Newest analytical technologies including laser scanning, high resolution X-ray microtomography, fluid inclusion and isotope analysis are performed to understand and compare the results of simulations with natural examples. A new statistical program was developed to classify the natural fracture and vein systems and compare them with dynamic numerical simulations and analytical models. The results of the first project phase are extremely promising. Most of the numerical models have been developed up to the stage where they can be used to simulate the natural examples. The models allow a definition of the first proxies for high fluid pressure and tectonic stresses. It was found out that the Oman Mountains are a complex and very dynamic system that constantly fractures and reseals from the scale of small veins up to the scale of large normal and strike slip faults. The numerical simulations also indicate that the permeability of such systems is not a constant but that the system adjusts to the driving force, for ex-ample high fluid pressure. When the system reseals fast a fluctuating behavior can be observed in the models where the system constantly fractures and reseals, which is in accordance with the observation of the natural laboratory.

15. Constitutive modeling of multiphase materials including phase transformations

NARCIS (Netherlands)

Perdahcioglu, Emin Semih; Geijselaers, Hubertus J.M.; Khan, A.S.; Meredith, C; Farrokh, B

2011-01-01

A constitutive model is developed for materials involving two or more different phases in their microstructure such as DP (Dual Phase) or TRIP (TRansformation Induced Plasticity) steels. Homogenization of the response of the phases is achieved by the Mean-Field method. One of the phases in TRIP

16. Scaling of the steady state and stability behaviour of single and two-phase natural circulation systems

International Nuclear Information System (INIS)

Vijayan, P.K.; Nayak, A.K.; Bade, M.H.; Kumar, N.; Saha, D.; Sinha, R.K.

2002-01-01

Scaling methods for both single-phase and two-phase natural circulation systems have been presented. For single-phase systems, simulation of the steady state flow can be achieved by preserving just one nondimensional parameter. For uniform diameter two-phase systems also, it is possible to simulate the steady state behaviour with just one non-dimensional parameter. Simulation of the stability behaviour requires geometric similarity in addition to the similarity of the physical parameters appearing in the governing equations. The scaling laws proposed have been tested with experimental data in case of single-phase natural circulation. (author)

17. Single-layer model for surface roughness.

Science.gov (United States)

Carniglia, C K; Jensen, D G

2002-06-01

Random roughness of an optical surface reduces its specular reflectance and transmittance by the scattering of light. The reduction in reflectance can be modeled by a homogeneous layer on the surface if the refractive index of the layer is intermediate to the indices of the media on either side of the surface. Such a layer predicts an increase in the transmittance of the surface and therefore does not provide a valid model for the effects of scatter on the transmittance. Adding a small amount of absorption to the layer provides a model that predicts a reduction in both reflectance and transmittance. The absorbing layer model agrees with the predictions of a scalar scattering theory for a layer with a thickness that is twice the rms roughness of the surface. The extinction coefficient k for the layer is proportional to the thickness of the layer.

18. Optical π phase shift created with a single-photon pulse.

Science.gov (United States)

Tiarks, Daniel; Schmidt, Steffen; Rempe, Gerhard; Dürr, Stephan

2016-04-01

A deterministic photon-photon quantum logic gate is a long-standing goal. Building such a gate becomes possible if a light pulse containing only one photon imprints a phase shift of π onto another light field. We experimentally demonstrate the generation of such a π phase shift with a single-photon pulse. A first light pulse containing less than one photon on average is stored in an atomic gas. Rydberg blockade combined with electromagnetically induced transparency creates a phase shift for a second light pulse, which propagates through the medium. We measure the π phase shift of the second pulse when we postselect the data upon the detection of a retrieved photon from the first pulse. This demonstrates a crucial step toward a photon-photon gate and offers a variety of applications in the field of quantum information processing.

19. Phase locking of a semiconductor double-quantum-dot single-atom maser

Science.gov (United States)

Liu, Y.-Y.; Hartke, T. R.; Stehlik, J.; Petta, J. R.

2017-11-01

We experimentally study the phase stabilization of a semiconductor double-quantum-dot (DQD) single-atom maser by injection locking. A voltage-biased DQD serves as an electrically tunable microwave frequency gain medium. The statistics of the maser output field demonstrate that the maser can be phase locked to an external cavity drive, with a resulting phase noise L =-99 dBc/Hz at a frequency offset of 1.3 MHz. The injection locking range, and the phase of the maser output relative to the injection locking input tone are in good agreement with Adler's theory. Furthermore, the electrically tunable DQD energy level structure allows us to rapidly switch the gain medium on and off, resulting in an emission spectrum that resembles a frequency comb. The free running frequency comb linewidth is ≈8 kHz and can be improved to less than 1 Hz by operating the comb in the injection locked regime.

20. Rapid synthesis of single-phase bismuth ferrite by microwave-assisted hydrothermal method

Energy Technology Data Exchange (ETDEWEB)

Cao, Wenqian [College of Materials Science and Engineering, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, Zhejiang Province (China); Chen, Zhi, E-mail: zchen0@gmail.com [College of Materials Science and Engineering, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, Zhejiang Province (China); Gao, Tong; Zhou, Dantong; Leng, Xiaonan; Niu, Feng [College of Materials Science and Engineering, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, Zhejiang Province (China); Zhu, Yuxiang [College of Materials Science and Engineering, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, Zhejiang Province (China); Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and Technology, Tianjin (China); Qin, Laishun, E-mail: qinlaishun@yeah.net [College of Materials Science and Engineering, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, Zhejiang Province (China); Wang, Jiangying; Huang, Yuexiang [College of Materials Science and Engineering, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, Zhejiang Province (China)

2016-06-01

This paper describes on the fast synthesis of bismuth ferrite by the simple microwave-assisted hydrothermal method. The phase transformation and the preferred growth facets during the synthetic process have been investigated by X-ray diffraction. Bismuth ferrite can be quickly prepared by microwave hydrothermal method by simply controlling the reaction time, which is further confirmed by Fourier Transform infrared spectroscopy and magnetic measurement. - Graphical abstract: Single-phase BiFeO{sub 3} could be realized at a shortest reaction time of 65 min. The reaction time has strong influences on the phase transformation and the preferred growth facets. - Highlights: • Rapid synthesis (65 min) of BiFeO{sub 3} by microwave-assisted hydrothermal method. • Reaction time has influence on the purity and preferred growth facets. • FTIR and magnetic measurement further confirm the pure phase.

1. Single-reactor process for producing liquid-phase organic compounds from biomass

Science.gov (United States)

Dumesic, James A [Verona, WI; Simonetti, Dante A [Middleton, WI; Kunkes, Edward L [Madison, WI

2011-12-13

Disclosed is a method for preparing liquid fuel and chemical intermediates from biomass-derived oxygenated hydrocarbons. The method includes the steps of reacting in a single reactor an aqueous solution of a biomass-derived, water-soluble oxygenated hydrocarbon reactant, in the presence of a catalyst comprising a metal selected from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, Mo, Tc, Ru, Rh, Pd, Ag, W, Re, Os, Ir, Pt, and Au, at a temperature, and a pressure, and for a time sufficient to yield a self-separating, three-phase product stream comprising a vapor phase, an organic phase containing linear and/or cyclic mono-oxygenated hydrocarbons, and an aqueous phase.

2. Rapid synthesis of single-phase bismuth ferrite by microwave-assisted hydrothermal method

International Nuclear Information System (INIS)

Cao, Wenqian; Chen, Zhi; Gao, Tong; Zhou, Dantong; Leng, Xiaonan; Niu, Feng; Zhu, Yuxiang; Qin, Laishun; Wang, Jiangying; Huang, Yuexiang

2016-01-01

This paper describes on the fast synthesis of bismuth ferrite by the simple microwave-assisted hydrothermal method. The phase transformation and the preferred growth facets during the synthetic process have been investigated by X-ray diffraction. Bismuth ferrite can be quickly prepared by microwave hydrothermal method by simply controlling the reaction time, which is further confirmed by Fourier Transform infrared spectroscopy and magnetic measurement. - Graphical abstract: Single-phase BiFeO_3 could be realized at a shortest reaction time of 65 min. The reaction time has strong influences on the phase transformation and the preferred growth facets. - Highlights: • Rapid synthesis (65 min) of BiFeO_3 by microwave-assisted hydrothermal method. • Reaction time has influence on the purity and preferred growth facets. • FTIR and magnetic measurement further confirm the pure phase.

3. Single-Cycle Terahertz Pulse Generation from OH1 Crystal via Cherenkov Phase Matching

Science.gov (United States)

Uchida, Hirohisa; Oota, Kengo; Okimura, Koutarou; Kawase, Kodo; Takeya, Kei

2018-06-01

OH1 crystal is an organic nonlinear optical crystal with a large nonlinear optical constant. However, it has dispersion of refractive indices in the terahertz (THz) frequency. This limits the frequencies that satisfy the phase matching conditions for THz wave generation. In this study, we addressed the phase matching conditions for THz wave generation by combining an OH1 crystal with prism-coupled Cherenkov phase matching. We observed the generation of single-cycle THz pulses with a spectrum covering a frequency range of 3 THz. These results prove that combining prism-coupled Cherenkov phase matching with nonlinear optical crystals yields a THz wave generation method that is insusceptible to crystal dispersion.

4. Single-phased Fault Location on Transmission Lines Using Unsynchronized Voltages

Directory of Open Access Journals (Sweden)

ISTRATE, M.

2009-10-01

Full Text Available The increased accuracy into the fault's detection and location makes it easier for maintenance, this being the reason to develop new possibilities for a precise estimation of the fault location. In the field literature, many methods for fault location using voltages and currents measurements at one or both terminals of power grids' lines are presented. The double-end synchronized data algorithms are very precise, but the current transformers can limit the accuracy of these estimations. The paper presents an algorithm to estimate the location of the single-phased faults which uses only voltage measurements at both terminals of the transmission lines by eliminating the error due to current transformers and without introducing the restriction of perfect data synchronization. In such conditions, the algorithm can be used with the actual equipment of the most power grids, the installation of phasor measurement units with GPS system synchronized timer not being compulsory. Only the positive sequence of line parameters and sources are used, thus, eliminating the incertitude in zero sequence parameter estimation. The algorithm is tested using the results of EMTP-ATP simulations, after the validation of the ATP models on the basis of registered results in a real power grid.

5. Synthesis and characterization of single-phase Mn-doped ZnO

Energy Technology Data Exchange (ETDEWEB)

Chattopadhyay, S.; Dutta, S.; Banerjee, A.; Jana, D. [Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700 009, West Bengal (India); Bandyopadhyay, S., E-mail: sbaphy@caluniv.ac.i [Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700 009, West Bengal (India); Chattopadhyay, S. [Department of Physics, Taki Government College, Taki 743 429, West Bengal (India); Sarkar, A. [Department of Physics, Bangabasi Morning College, 19 Rajkumar Chakraborty Sarani, Kolkata 700 009, West Bengal (India)

2009-05-01

Different samples of Zn{sub 1-x}Mn{sub x}O series have been prepared using conventional solid-state sintering method. We identified up to what extent doping will enable us to synthesize single-phase polycrystalline Mn-doped ZnO sample, which is one of the prerequisites for dilute magnetic semiconductor, and we have analyzed its some other physical aspects. In synthesizing the samples, proportion of Mn varies from 1 to 5 at%. However, the milling time varied (6, 12, 24, 48 and 96 h) only for 2 at% Mn-doped samples while for other samples (1, 3, 4 and 5 at% Mn doped) the milling time has been fixed to 96 h. Room-temperature X-ray diffraction (XRD) data reveal that all of the prepared samples up to 3 at% of Mn doping exhibit wurtzite-type structure, and no segregation of Mn and/or its oxides has been found. The 4 at% Mn-doped samples show a weak peak of ZnMn{sub 2}O{sub 4} apart from the other usual peaks of ZnO and the intensity of this impurity peak has been further increased for 5 at% of Mn doping. So beyond 3 at% doping, single-phase behavior is destroyed. Band gap for all the 2 at% Mn-doped samples has been estimated to be between 3.21 and 3.19 eV and the reason for this low band gap values has been explained through the grain boundary trapping model. The room-temperature resistivity measurement shows an increase of resistivity up to 48 h of milling and with further milling it saturates. The defect state of these samples has been investigated using the positron annihilation lifetime (PAL) spectroscopy technique. Here all the relevant lifetime parameters of positron i.e. free annihilation (tau{sub 1}) at defect site (tau{sub 2}) and average (tau{sub av}) increases with milling time.

6. Optimal multi-photon phase sensing with a single interference fringe

Science.gov (United States)

Xiang, G. Y.; Hofmann, H. F.; Pryde, G. J.

2013-01-01

Quantum entanglement can help to increase the precision of optical phase measurements beyond the shot noise limit (SNL) to the ultimate Heisenberg limit. However, the N-photon parity measurements required to achieve this optimal sensitivity are extremely difficult to realize with current photon detection technologies, requiring high-fidelity resolution of N + 1 different photon distributions between the output ports. Recent experimental demonstrations of precision beyond the SNL have therefore used only one or two photon-number detection patterns instead of parity measurements. Here we investigate the achievable phase sensitivity of the simple and efficient single interference fringe detection technique. We show that the maximally-entangled “NOON” state does not achieve optimal phase sensitivity when N > 4, rather, we show that the Holland-Burnett state is optimal. We experimentally demonstrate this enhanced sensitivity using a single photon-counted fringe of the six-photon Holland-Burnett state. Specifically, our single-fringe six-photon measurement achieves a phase variance three times below the SNL. PMID:24067490

7. Non-Resonant Magnetoelectric Energy Harvesting Utilizing Phase Transformation in Relaxor Ferroelectric Single Crystals

Directory of Open Access Journals (Sweden)

Peter Finkel

2015-12-01

Full Text Available Recent advances in phase transition transduction enabled the design of a non-resonant broadband mechanical energy harvester that is capable of delivering an energy density per cycle up to two orders of magnitude larger than resonant cantilever piezoelectric type generators. This was achieved in a [011] oriented and poled domain engineered relaxor ferroelectric single crystal, mechanically biased to a state just below the ferroelectric rhombohedral (FR-ferroelectric orthorhombic (FO phase transformation. Therefore, a small variation in an input parameter, e.g., electrical, mechanical, or thermal will generate a large output due to the significant polarization change associated with the transition. This idea was extended in the present work to design a non-resonant, multi-domain magnetoelectric composite hybrid harvester comprised of highly magnetostrictive alloy, [Fe81.4Ga18.6 (Galfenol or TbxDy1-xFe2 (Terfenol-D], and lead indium niobate–lead magnesium niobate–lead titanate (PIN-PMN-PT domain engineered relaxor ferroelectric single crystal. A small magnetic field applied to the coupled device causes the magnetostrictive element to expand, and the resulting stress forces the phase change in the relaxor ferroelectric single crystal. We have demonstrated high energy conversion in this magnetoelectric device by triggering the FR-FO transition in the single crystal by a small ac magnetic field in a broad frequency range that is important for multi-domain hybrid energy harvesting devices.

8. Phase response curves for models of earthquake fault dynamics

Energy Technology Data Exchange (ETDEWEB)

Franović, Igor, E-mail: franovic@ipb.ac.rs [Scientific Computing Laboratory, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Kostić, Srdjan [Institute for the Development of Water Resources “Jaroslav Černi,” Jaroslava Černog 80, 11226 Belgrade (Serbia); Perc, Matjaž [Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, SI-2000 Maribor (Slovenia); CAMTP—Center for Applied Mathematics and Theoretical Physics, University of Maribor, Krekova 2, SI-2000 Maribor (Slovenia); Klinshov, Vladimir [Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov Street, 603950 Nizhny Novgorod (Russian Federation); Nekorkin, Vladimir [Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov Street, 603950 Nizhny Novgorod (Russian Federation); University of Nizhny Novgorod, 23 Prospekt Gagarina, 603950 Nizhny Novgorod (Russian Federation); Kurths, Jürgen [Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov Street, 603950 Nizhny Novgorod (Russian Federation); Potsdam Institute for Climate Impact Research, 14412 Potsdam (Germany); Institute of Physics, Humboldt University Berlin, 12489 Berlin (Germany)

2016-06-15

We systematically study effects of external perturbations on models describing earthquake fault dynamics. The latter are based on the framework of the Burridge-Knopoff spring-block system, including the cases of a simple mono-block fault, as well as the paradigmatic complex faults made up of two identical or distinct blocks. The blocks exhibit relaxation oscillations, which are representative for the stick-slip behavior typical for earthquake dynamics. Our analysis is carried out by determining the phase response curves of first and second order. For a mono-block fault, we consider the impact of a single and two successive pulse perturbations, further demonstrating how the profile of phase response curves depends on the fault parameters. For a homogeneous two-block fault, our focus is on the scenario where each of the blocks is influenced by a single pulse, whereas for heterogeneous faults, we analyze how the response of the system depends on whether the stimulus is applied to the block having a shorter or a longer oscillation period.

9. Phase response curves for models of earthquake fault dynamics

International Nuclear Information System (INIS)

Franović, Igor; Kostić, Srdjan; Perc, Matjaž; Klinshov, Vladimir; Nekorkin, Vladimir; Kurths, Jürgen

2016-01-01

We systematically study effects of external perturbations on models describing earthquake fault dynamics. The latter are based on the framework of the Burridge-Knopoff spring-block system, including the cases of a simple mono-block fault, as well as the paradigmatic complex faults made up of two identical or distinct blocks. The blocks exhibit relaxation oscillations, which are representative for the stick-slip behavior typical for earthquake dynamics. Our analysis is carried out by determining the phase response curves of first and second order. For a mono-block fault, we consider the impact of a single and two successive pulse perturbations, further demonstrating how the profile of phase response curves depends on the fault parameters. For a homogeneous two-block fault, our focus is on the scenario where each of the blocks is influenced by a single pulse, whereas for heterogeneous faults, we analyze how the response of the system depends on whether the stimulus is applied to the block having a shorter or a longer oscillation period.

10. Single-image phase retrieval using an edge illumination X-ray phase-contrast imaging setup

Energy Technology Data Exchange (ETDEWEB)

Diemoz, Paul C., E-mail: p.diemoz@ucl.ac.uk; Vittoria, Fabio A. [University College London, London WC1 E6BT (United Kingdom); Research Complex at Harwell, Oxford Harwell Campus, Didcot OX11 0FA (United Kingdom); Hagen, Charlotte K.; Endrizzi, Marco [University College London, London WC1 E6BT (United Kingdom); Coan, Paola [Ludwig-Maximilians-University, Munich 81377 (Germany); Ludwig-Maximilians-University, Garching 85748 (Germany); Brun, Emmanuel [Ludwig-Maximilians-University, Garching 85748 (Germany); European Synchrotron Radiation Facility, Grenoble 38043 (France); Wagner, Ulrich H.; Rau, Christoph [Diamond Light Source, Harwell Oxford Campus, Didcot OX11 0DE (United Kingdom); Robinson, Ian K. [Research Complex at Harwell, Oxford Harwell Campus, Didcot OX11 0FA (United Kingdom); London Centre for Nanotechnology, London WC1 H0AH (United Kingdom); Bravin, Alberto [European Synchrotron Radiation Facility, Grenoble 38043 (France); Olivo, Alessandro [University College London, London WC1 E6BT (United Kingdom); Research Complex at Harwell, Oxford Harwell Campus, Didcot OX11 0FA (United Kingdom)

2015-06-25

A method enabling the retrieval of thickness or projected electron density of a sample from a single input image is derived theoretically and successfully demonstrated on experimental data. A method is proposed which enables the retrieval of the thickness or of the projected electron density of a sample from a single input image acquired with an edge illumination phase-contrast imaging setup. The method assumes the case of a quasi-homogeneous sample, i.e. a sample with a constant ratio between the real and imaginary parts of its complex refractive index. Compared with current methods based on combining two edge illumination images acquired in different configurations of the setup, this new approach presents advantages in terms of simplicity of acquisition procedure and shorter data collection time, which are very important especially for applications such as computed tomography and dynamical imaging. Furthermore, the fact that phase information is directly extracted, instead of its derivative, can enable a simpler image interpretation and be beneficial for subsequent processing such as segmentation. The method is first theoretically derived and its conditions of applicability defined. Quantitative accuracy in the case of homogeneous objects as well as enhanced image quality for the imaging of complex biological samples are demonstrated through experiments at two synchrotron radiation facilities. The large range of applicability, the robustness against noise and the need for only one input image suggest a high potential for investigations in various research subjects.

11. Qualification of code-Saturne for thermal-hydraulics single phase nuclear applications

International Nuclear Information System (INIS)

Archambeau, F.; Bechaud, C.; Gest, B.; Martin, A.; Sakiz, M.

2003-01-01

Code-Saturne is a general finite volume CFD (computational fluid dynamics) code developed by Electricite de France (EDF) under quality assurance for 2- and 3-dimensional simulations, laminar and turbulent flows, conjugate heat transfer (coupling with thermal code SYRTHES), including combustion modelling and a Lagrangian module. A very large range of meshes can be used. The solver relies on a finite volume method on arbitrary meshes (hybrid, with hanging nodes, any type of element). All variables are located at the cell centres. The solver is time marching, with a predictor-corrector scheme for Navier-Stokes equations. Standard Reynolds Average Navier-Stokes modelling (RANS) is included (k-epsilon, RSM). Code-Saturne is used by EDF in various industrial fields such as process engineering, aeraulics, combustion and nuclear applications. The present paper describes the qualification phase carried out during 2001 for single-phase nuclear applications. Indeed, once an industrial product has been released and validated, it is of major importance, especially in this particular field related to safety matters, to demonstrate the ability of the code to help engineers produce satisfactory conclusions to industrial problems. In coherence with analyses and best practice guidelines such as those published by the ERCOFTAC Special Interest Group, it seemed important to base the qualification phase on well defined and documented experimental facilities, sufficiently complex to be representative of industrial studies. Much attention has been devoted to evaluating sensitivity to numerical parameters such as grid refinement, time step... Moreover, the qualification studies have been carried out in real-life conditions, that is in limited time, with industrial limitations on the number of grid cells, and by the teams usually producing such studies, so as to integrate a real industrial process in the qualification phase. Two test cases chosen to assess certain types of flows in PWR

12. Phase transition sequence in ferroelectric Aurivillius compounds investigated by single crystal X-ray diffraction

Science.gov (United States)

Boullay, P.; Tellier, J.; Mercurio, D.; Manier, M.; Zuñiga, F. J.; Perez-Mato, J. M.

2012-09-01

The investigation of the phase transition sequence in SrBi2Ta2O9 (SBT) and SrBi2Nb2O9 (SBN) is reported using single-crystal X-ray diffraction. By monitoring specific reflections as a function of temperature, sensitive either to the superstructure formation or to polar displacements, it was possible to check the existence or not of an intermediate phase. This latter was confirmed in SBT, but within experimental accuracy could not be detected in SBN.

13. Dispersed single-phase-step Michelson interferometer for Doppler imaging using sunlight.

Science.gov (United States)

Wan, Xiaoke; Ge, Jian

2012-09-15

A Michelson interferometer is dispersed with a fiber array-fed spectrograph, providing 59 Doppler sensing channels using sunlight in the 510-570 nm wavelength region. The interferometer operates at a single-phase-step mode, which is particularly advantageous in multiplexing and data processing compared to the phase-stepping mode of other interferometer spectrometer instruments. Spectral templates are prepared using a standard solar spectrum and simulated interferometer modulations, such that the correlation function with a measured 1D spectrum determines the Doppler shift. Doppler imaging of a rotating cylinder is demonstrated. The average Doppler sensitivity is ~12 m/s, with some channels reaching ~5 m/s.

14. Single-phase CFD applicability for estimating fluid hot-spot locations in a 5 x 5 fuel rod bundle

International Nuclear Information System (INIS)

Ikeda, Kazuo; Makino, Yasushi; Hoshi, Masaya

2006-01-01

High-thermal performance PWR spacer grids require both of low pressure loss and high critical heat flux (CHF) properties. Therefore, a numerical study using computational fluid dynamics (CFD) was carried out to estimate pressure loss in strap and mixing vane structures. Moreover, a CFD simulation under single-phase flow condition was conducted for one specific condition in a water departure from nucleate boiling (DNB) test to examine the applicability of the CFD model for predicting the CHF rod position. Energy flux around the rod surface in a water DNB test is the sum of the intrinsic energy flux from a rod and the extrinsic energy flux from other rods, and increments of the enthalpy and decrements of flow velocity near the rod surface are assumed to affect CHF performance. CFD makes it possible to model the complicated flow field consisting of a spacer grid and a rod bundle and evaluate the local velocity and enthalpy distribution around the rod surface, which are assumed to determine the initial conditions for the two-phase structure. The results of this study indicate that single-phase CFD can play a significant role in designing PWR spacer grids for improved CHF performance

15. 3D microstructural evolution of primary recrystallization and grain growth in cold rolled single-phase aluminum alloys

Science.gov (United States)

Adam, Khaled; Zöllner, Dana; Field, David P.

2018-04-01

Modeling the microstructural evolution during recrystallization is a powerful tool for the profound understanding of alloy behavior and for use in optimizing engineering properties through annealing. In particular, the mechanical properties of metallic alloys are highly dependent upon evolved microstructure and texture from the softening process. In the present work, a Monte Carlo (MC) Potts model was used to model the primary recrystallization and grain growth in cold rolled single-phase Al alloy. The microstructural representation of two kinds of dislocation densities, statistically stored dislocations and geometrically necessary dislocations were quantified based on the ViscoPlastic Fast Fourier transform method. This representation was then introduced into the MC Potts model to identify the favorable sites for nucleation where orientation gradients and entanglements of dislocations are high. Additionally, in situ observations of non-isothermal microstructure evolution for single-phase aluminum alloy 1100 were made to validate the simulation. The influence of the texture inhomogeneity is analyzed from a theoretical point of view using an orientation distribution function for deformed and evolved texture.

16. In situ TEM investigation on the precipitation behavior of μ phase in Ni-base single crystal superalloys

International Nuclear Information System (INIS)

Gao, Shuang; Liu, Zhi-Quan; Li, Cai-Fu; Zhou, Yizhou; Jin, Tao

2016-01-01

The precipitation behavior of μ phase in Ni-base single crystal superalloys was investigated by in situ transmission electron microscopy (TEM). A layer-by-layer growth process with a ledge propagation mechanism was first observed during in situ precipitation. Three types of μ phase with different morphologies were found, which grow along [001] μ with (001) μ planar defects, [-111] μ with (1–12) μ planar defects, as well as both directions with mixed planar defects. High-resolution TEM image and established atomic models reveal a basic growth mechanism of μ phase by stacking on (001) μ plane and randomly forming coherent planar defects, while the nucleation of incoherent (1–12) μ planar defects at the early stage of precipitation plays an important role in affecting the basic growth mechanism. The frequent faults during the stacking process of the sub-unit layers within μ lattice should be responsible for the defect formation. -- Graphical abstract: In situ transmission electron microscopy (TEM) investigations reveal the layer-by-layer growth mechanism of μ phase precipitated in Ni-base single crystal superalloys. Three types of μ phase with different morphologies were formed at 1050 °C, which grows along [001] μ with (001) μ planar defects, [-111] μ with (1–12) μ planar defects, as well as both directions with mixed planar defects respectively. Formation of (001) μ micro-twin and stacking fault is the essential feature for precipitated μ phase, while nucleation of incoherent (1–12) μ planar defects plays an important role in changing growth method. Display Omitted

17. Single-phase and two-phase anaerobic digestion of fruit and vegetable waste: Comparison of start-up, reactor stability and process performance

International Nuclear Information System (INIS)

Ganesh, Rangaraj; Torrijos, Michel; Sousbie, Philippe; Lugardon, Aurelien; Steyer, Jean Philippe; Delgenes, Jean Philippe

2014-01-01

Highlights: • Single-phase and two-phase systems were compared for fruit and vegetable waste digestion. • Single-phase digestion produced a methane yield of 0.45 m 3 CH 4 /kg VS and 83% VS removal. • Substrate solubilization was high in acidification conditions at 7.0 kg VS/m 3 d and pH 5.5–6.2. • Energy yield was lower by 33% for two-phase system compared to the single-phase system. • Simple and straight-forward operation favored single phase process over two-phase process. - Abstract: Single-phase and two-phase digestion of fruit and vegetable waste were studied to compare reactor start-up, reactor stability and performance (methane yield, volatile solids reduction and energy yield). The single-phase reactor (SPR) was a conventional reactor operated at a low loading rate (maximum of 3.5 kg VS/m 3 d), while the two-phase system consisted of an acidification reactor (TPAR) and a methanogenic reactor (TPMR). The TPAR was inoculated with methanogenic sludge similar to the SPR, but was operated with step-wise increase in the loading rate and with total recirculation of reactor solids to convert it into acidification sludge. Before each feeding, part of the sludge from TPAR was centrifuged, the centrifuge liquid (solubilized products) was fed to the TPMR and centrifuged solids were recycled back to the reactor. Single-phase digestion produced a methane yield of 0.45 m 3 CH 4 /kg VS fed and VS removal of 83%. The TPAR shifted to acidification mode at an OLR of 10.0 kg VS/m 3 d and then achieved stable performance at 7.0 kg VS/m 3 d and pH 5.5–6.2, with very high substrate solubilization rate and a methane yield of 0.30 m 3 CH 4 /kg COD fed. The two-phase process was capable of high VS reduction, but material and energy balance showed that the single-phase process was superior in terms of volumetric methane production and energy yield by 33%. The lower energy yield of the two-phase system was due to the loss of energy during hydrolysis in the TPAR and the

18. Final model independent result of DAMA/LIBRA-phase1

Energy Technology Data Exchange (ETDEWEB)

Bernabei, R.; D' Angelo, S.; Di Marco, A. [Universita di Roma ' ' Tor Vergata' ' , Dipartimento di Fisica, Rome (Italy); INFN, sez. Roma ' ' Tor Vergata' ' , Rome (Italy); Belli, P. [INFN, sez. Roma ' ' Tor Vergata' ' , Rome (Italy); Cappella, F.; D' Angelo, A.; Prosperi, D. [Universita di Roma ' ' La Sapienza' ' , Dipartimento di Fisica, Rome (Italy); INFN, sez. Roma, Rome (Italy); Caracciolo, V.; Castellano, S.; Cerulli, R. [INFN, Laboratori Nazionali del Gran Sasso, Assergi (Italy); Dai, C.J.; He, H.L.; Kuang, H.H.; Ma, X.H.; Sheng, X.D.; Wang, R.G. [Chinese Academy, IHEP, Beijing (China); Incicchitti, A. [INFN, sez. Roma, Rome (Italy); Montecchia, F. [INFN, sez. Roma ' ' Tor Vergata' ' , Rome (Italy); Universita di Roma ' ' Tor Vergata' ' , Dipartimento di Ingegneria Civile e Ingegneria Informatica, Rome (Italy); Ye, Z.P. [Chinese Academy, IHEP, Beijing (China); University of Jing Gangshan, Jiangxi (China)

2013-12-15

The results obtained with the total exposure of 1.04 ton x yr collected by DAMA/LIBRA-phase1 deep underground at the Gran Sasso National Laboratory (LNGS) of the I.N.F.N. during 7 annual cycles (i.e. adding a further 0.17 ton x yr exposure) are presented. The DAMA/LIBRA-phase1 data give evidence for the presence of Dark Matter (DM) particles in the galactic halo, on the basis of the exploited model independent DM annual modulation signature by using highly radio-pure NaI(Tl) target, at 7.5{sigma} C.L. Including also the first generation DAMA/NaI experiment (cumulative exposure 1.33 ton x yr, corresponding to 14 annual cycles), the C.L. is 9.3{sigma} and the modulation amplitude of the single-hit events in the (2-6) keV energy interval is: (0.0112{+-}0.0012) cpd/kg/keV; the measured phase is (144{+-}7) days and the measured period is (0.998{+-}0.002) yr, values well in agreement with those expected for DM particles. No systematic or side reaction able to mimic the exploited DM signature has been found or suggested by anyone over more than a decade. (orig.)

19. Assessing the measurement of aerosol single scattering albedo by Cavity Attenuated Phase-Shift Single Scattering Monitor (CAPS PMssa)

Science.gov (United States)

Perim de Faria, Julia; Bundke, Ulrich; Onasch, Timothy B.; Freedman, Andrew; Petzold, Andreas

2016-04-01

The necessity to quantify the direct impact of aerosol particles on climate forcing is already well known; assessing this impact requires continuous and systematic measurements of the aerosol optical properties. Two of the main parameters that need to be accurately measured are the aerosol optical depth and single scattering albedo (SSA, defined as the ratio of particulate scattering to extinction). The measurement of single scattering albedo commonly involves the measurement of two optical parameters, the scattering and the absorption coefficients. Although there are well established technologies to measure both of these parameters, the use of two separate instruments with different principles and uncertainties represents potential sources of significant errors and biases. Based on the recently developed cavity attenuated phase shift particle extinction monitor (CAPS PM_{ex) instrument, the CAPS PM_{ssa instrument combines the CAPS technology to measure particle extinction with an integrating sphere capable of simultaneously measuring the scattering coefficient of the same sample. The scattering channel is calibrated to the extinction channel, such that the accuracy of the single scattering albedo measurement is only a function of the accuracy of the extinction measurement and the nephelometer truncation losses. This gives the instrument an accurate and direct measurement of the single scattering albedo. In this study, we assess the measurements of both the extinction and scattering channels of the CAPS PM_{ssa through intercomparisons with Mie theory, as a fundamental comparison, and with proven technologies, such as integrating nephelometers and filter-based absorption monitors. For comparison, we use two nephelometers, a TSI 3563 and an Aurora 4000, and two measurements of the absorption coefficient, using a Particulate Soot Absorption Photometer (PSAP) and a Multi Angle Absorption Photometer (MAAP). We also assess the indirect absorption coefficient

20. Creep in single crystals of γ single phase Ni-20Cr alloy and evolution of dynamic recrystallization

International Nuclear Information System (INIS)

Matsuo, T.; Terada, Y.; Takahashi, S.; Ishiwari, Y.

2000-01-01

The creep rate - time and the creep rate - strain curves of the single crystals of γ single phase Ni-20 mass%Cr alloy have been investigated at 1173 K under the wide stress range of 19.6 to 98 MPa, and compared with those of polycrystals. The orientation corresponding to the stress axis of the single crystals were chosen within the standard stereographic triangle. The creep curve in the Ni-20 mass%Cr single crystal consists of a transient stage and an accelerating stage without a steady state stage. The transient stage has two steps. In the first step, the creep rate slightly decreases, and in the second step, the decrease in creep rate becomes prominent with increasing the testing time. With decreasing the stress, the extension of transient stage becomes prominent, and by this extension, the decreasing ratio of the creep rate in transient stage is enlarged. At the lowest stress of 19.6 MPa, the most prominent extension of transient stage and the more than two order decrease in creep rate in transient stage are detected. The creep interrupting tests have been conducted at the stress of 29.4 MPa in the strain range of 0.1 to 0.6 to examine the appearance of dynamically recrystallized grains. At the strain of 0.1 corresponding to the end of the first step in transient stage, a straight subboundary parallel to slip plane appears in a wide distance of a few hundreds micrometers. With increasing the strain, the straight subboundary turns to waved one. At the strain showing the minimum creep rate, a lot of evolved subgrains appear. At the strain corresponding to the early stage of accelerating creep, dynamically recrystallized grains appear. It is confirmed that the onset of accelerating creep well corresponds to the appearance of dynamically recrystallized grains. In the single crystal creep ruptured, the whole gage portion turns to polycrystal with equiaxed grains having a diameter of 150 μm. (orig.)

1. A New Power Calculation Method for Single-Phase Grid-Connected Systems

DEFF Research Database (Denmark)

Yang, Yongheng; Blaabjerg, Frede

2013-01-01

A new method to calculate average active power and reactive power for single-phase systems is proposed in this paper. It can be used in different applications where the output active power and reactive power need to be calculated accurately and fast. For example, a grid-connected photovoltaic...... system in low voltage ride through operation mode requires a power feedback for the power control loop. Commonly, a Discrete Fourier Transform (DFT) based power calculation method can be adopted in such systems. However, the DFT method introduces at least a one-cycle time delay. The new power calculation...... method, which is based on the adaptive filtering technique, can achieve a faster response. The performance of the proposed method is verified by experiments and demonstrated in a 1 kW single-phase grid-connected system operating under different conditions.Experimental results show the effectiveness...

2. Fourier phase retrieval with a single mask by Douglas-Rachford algorithms.

Science.gov (United States)

Chen, Pengwen; Fannjiang, Albert

2018-05-01

The Fourier-domain Douglas-Rachford (FDR) algorithm is analyzed for phase retrieval with a single random mask. Since the uniqueness of phase retrieval solution requires more than a single oversampled coded diffraction pattern, the extra information is imposed in either of the following forms: 1) the sector condition on the object; 2) another oversampled diffraction pattern, coded or uncoded. For both settings, the uniqueness of projected fixed point is proved and for setting 2) the local, geometric convergence is derived with a rate given by a spectral gap condition. Numerical experiments demonstrate global, power-law convergence of FDR from arbitrary initialization for both settings as well as for 3 or more coded diffraction patterns without oversampling. In practice, the geometric convergence can be recovered from the power-law regime by a simple projection trick, resulting in highly accurate reconstruction from generic initialization.

3. Microcontroller Based SPWM Single-Phase Inverter For Wind Power Application

Directory of Open Access Journals (Sweden)

Khin Ohmar Lin

2017-04-01

Full Text Available In this paper microcontroller based sinusoidal pulse width modulation SPWM single-phase inverter is emphasized to constant frequency conversion scheme for wind power application. The wind-power generator output voltage and frequency are fluctuated due to the variation of wind velocity. Therefore the AC output voltage of wind-generator is converted into DC voltage by using rectifier circuit and this DC voltage is converted back to AC voltage by using inverter circuit. SPWM technique is used in inverter to get nearly sine wave and reduce harmonic content. The rating of inverter is 500W single-phase 220V 50 Hz. The required SPWM timing pulses for the inverter are generated from the PIC16F877A microcontroller. Circuit simulation was done by using Proteus 7 Professional and MATLABR 2008 software. The software for microcontroller is implemented by using MPASM assembler.

4. Improved Design Methods for Robust Single- and Three-Phase ac-dc-ac Power Converters

DEFF Research Database (Denmark)

Qin, Zian

. The approaches for improving their performance, in terms of the voltage stress, efficiency, power density, cost, loss distribution, and temperature, will be studied. The structure of the thesis is as follows, Chapter 1 presents the introduction and motivation of the whole project as well as the background...... becomes a emerging challenge. Accordingly, installation of sustainable power generators like wind turbines and solar panels has experienced a large increase during the last decades. Meanwhile, power electronics converters, as interfaces in electrical system, are delivering approximately 80 % electricity...... back-to-back, and meanwhile improve the harmonics, control flexibility, and thermal distribution between the switches. Afterwards, active power decoupling methods for single-phase inverters or rectifiers that are similar to the single-phase ac-dc-ac converter, are studied in Chapter 4...

5. A High Power Density Single-Phase PWM Rectifier With Active Ripple Energy Storage

Energy Technology Data Exchange (ETDEWEB)

Wang, Ruxi [Virginia Polytechnic Institute and State University (Virginia Tech); Wang, Fei [ORNL; Boroyevich, Dushan [Virginia Polytechnic Institute and State University (Virginia Tech); Burgos, Rolando [ABB; Lai, Rixin [General Electric; Ning, Puqi [ORNL; Rajashekara, Kaushik [Rolls Royce

2011-01-01

It is well known that single-phase pulse width modulation rectifiers have second-order harmonic currents and corresponding ripple voltages on the dc bus. The low-frequency harmonic current is normally filtered using a bulk capacitor in the bus, which results in low power density. However, pursuing high power density in converter design is a very important goal in the aerospace applications. This paper studies methods for reducing the energy storage capacitor for single-phase rectifiers. The minimum ripple energy storage requirement is derived independently of a specific topology. Based on theminimum ripple energy requirement, the feasibility of the active capacitor s reduction schemes is verified. Then, we propose a bidirectional buck boost converter as the ripple energy storage circuit, which can effectively reduce the energy storage capacitance. The analysis and design are validated by simulation and experimental results.

6. Experimental research on single phase convection heat transfer in micro-fin tube

International Nuclear Information System (INIS)

Fan Guangming; Sun Zhongning; Zhu Sheng

2011-01-01

An experimental investigation of heat transfer and flow resistance characteristics of single phase water in three micro-fin tubes with different fin height was conducted. At the same time, the efficiency of micro-fin tubes within the experimental scope was evaluated and the optimal working region was determined. Based on the experimental data in the optimal working region, correlations for predicting the heat transfer and flow resistance were also given by multiple regression method. The result indicates that the micro-fin tubes can greatly enhance the single-phase heat transfer in turbulent flow, and the increase of heat transfer coefficient is higher than the increase of flow resistance. The accuracy of the correlation is very high, of which the deviation from the experimental value is very small. (authors)

7. Experimental research of inclined-micro-fin flat tube on single phase convection heat transfer

International Nuclear Information System (INIS)

Fan Guangming; Sun Zhongning; Wang Meng

2011-01-01

The experimental research of heat transfer and flow resistance characteristics of single phase water in four inclined-micro-fin flat tubes with different physical dimensions was conducted. At the same time,suitable criteria were selected to evaluate the efficiency of inclined-micro-fin flat tubes within the experimental scope and the optimal working region was determined. The results indicate that inclined-micro-fin flat tubes can greatly enhance the single-phase heat transfer in turbulent flow and the maximum heat transfer coefficient attains to 5.9 times of that in smooth tube. The quantities of heat transfer for inclined-micro-fin flat tubes are three times higher than that of smooth tube with the same of heat exchange area and pump power. (authors)

8. Photoluminescence Polarization Anisotropy in a Single Heterostructured III-V Nanowire with Mixed Crystal Phases

International Nuclear Information System (INIS)

Moses, A. F.; Hoang, T. B.; Ahtapodov, L.; Dheeraj, D. L.; Fimland, B. O.; Weman, H.; Helvoort, A. T. J. van

2011-01-01

Low temperature (10 K) micro-photoluminescence (μ-PL) of single GaAs/AlGaAs core-shell nanowires with single GaAsSb inserts were measured. The PL emission from the zinc blende GaAsSb insert is strongly polarized along the nanowire axis while the PL emission from the wurtzite GaAs nanowire is perpendiculary polarized to the nanowire axis. The result indicates that the crystal phase, through the optical selection rules, has significant effect on the polarization of the PL from NWs besides the dielectric mismatch. The analysis of the PL results based on the electronic structure of these nanowires supports the correlation between the crystal phase and the PL emission.

9. A Synchronization Method for Single-Phase Grid-Tied Inverters

DEFF Research Database (Denmark)

Hadjidemetriou, Lenos; Kyriakides, Elias; Yang, Yongheng

2016-01-01

The controllers of single-phase grid-tied inverters require improvements to enable distribution generation systems to meet the grid codes/standards with respect to power quality and the fault ride through capability. In that case, the response of the selected synchronization technique is crucial...... for the performance of the entire grid-tied inverter. In this paper, a new synchronization method with good dynamics and high accuracy under a highly distorted voltage is proposed. This method uses a Multi-Harmonic Decoupling Cell (MHDC), which thus can cancel out the oscillations on the synchronization signals due...... to the harmonic voltage distortion while maintaining the dynamic response of the synchronization. Therefore, the accurate and dynamic response of the proposed MHDC-PLL can be beneficial for the performance of the whole single-phase grid-tied inverter....

10. The phase model of burnout and employee turnover.

Science.gov (United States)

Goodman, Eric A; Boss, R Wayne

2002-01-01

This study explores the phase model of burnout and investigates its relationship to actual turnover in a hospital. The results indicate that employees who turnover have significantly higher burnout phase scores that those who stay in the organization. A further comparison of voluntary and involuntary turnover demonstrates that there is no significant differences on burnout phase scores. The findings lend support to the usefulness of the phase model of burnout.

11. A review of modern advances in analyses and applications of single-phase natural circulation loop in nuclear thermal hydraulics

International Nuclear Information System (INIS)

Basu, Dipankar N.; Bhattacharyya, Souvik; Das, P.K.

2014-01-01

Highlights: • Comprehensive review of state-of-the-art on single-phase natural circulation loops. • Detailed discussion on growth in solar thermal system and nuclear thermal hydraulics. • Systematic development in scaling methodologies for fabrication of test facilities. • Importance of numerical modeling schemes for stability assessment using 1-D codes. • Appraisal of current trend of research and possible future directions. - Abstract: A comprehensive review of single-phase natural circulation loop (NCL) is presented here. Relevant literature reported since the later part of 1980s has been meticulously surveyed, with occasional obligatory reference to a few pioneering studies originating prior to that period, summarizing the key observations and the present trend of research. Development in the concept of buoyancy-induced flow is discussed, with introduction to flow initiation in an NCL due to instability. Detailed discussion on modern advancement in important application areas like solar thermal systems and nuclear thermal hydraulics are presented, with separate analysis for various reactor designs working on natural circulation. Identification of scaling criteria for designing lab-scale experimental facilities has gone through a series of modification. A systematic analysis of the same is presented, considering the state-of-the-art knowledge base. Different approaches have been followed for modeling single-phase NCLs, including simplified Lorenz system mostly for toroidal loops, 1-D computational modeling for both steady-state and stability characterization and 3-D commercial system codes to have a better flow visualization. Methodical review of the relevant studies is presented following a systematic approach, to assess the gradual progression in understanding of the practical system. Brief appraisal of current research interest is reported, including the use of nanofluids for fluid property augmentation, marine reactors subjected to rolling waves

12. A review of modern advances in analyses and applications of single-phase natural circulation loop in nuclear thermal hydraulics

Energy Technology Data Exchange (ETDEWEB)

Basu, Dipankar N., E-mail: dipankar.n.basu@gmail.com [Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039 (India); Bhattacharyya, Souvik; Das, P.K. [Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India)

2014-12-15

Highlights: • Comprehensive review of state-of-the-art on single-phase natural circulation loops. • Detailed discussion on growth in solar thermal system and nuclear thermal hydraulics. • Systematic development in scaling methodologies for fabrication of test facilities. • Importance of numerical modeling schemes for stability assessment using 1-D codes. • Appraisal of current trend of research and possible future directions. - Abstract: A comprehensive review of single-phase natural circulation loop (NCL) is presented here. Relevant literature reported since the later part of 1980s has been meticulously surveyed, with occasional obligatory reference to a few pioneering studies originating prior to that period, summarizing the key observations and the present trend of research. Development in the concept of buoyancy-induced flow is discussed, with introduction to flow initiation in an NCL due to instability. Detailed discussion on modern advancement in important application areas like solar thermal systems and nuclear thermal hydraulics are presented, with separate analysis for various reactor designs working on natural circulation. Identification of scaling criteria for designing lab-scale experimental facilities has gone through a series of modification. A systematic analysis of the same is presented, considering the state-of-the-art knowledge base. Different approaches have been followed for modeling single-phase NCLs, including simplified Lorenz system mostly for toroidal loops, 1-D computational modeling for both steady-state and stability characterization and 3-D commercial system codes to have a better flow visualization. Methodical review of the relevant studies is presented following a systematic approach, to assess the gradual progression in understanding of the practical system. Brief appraisal of current research interest is reported, including the use of nanofluids for fluid property augmentation, marine reactors subjected to rolling waves

13. Removal of Direct Current Link Harmonic Ripple in Single Phase Voltage Source Inverter Systems Using Supercapacitors

Science.gov (United States)

2016-09-01

Khaligh, “Optimization of sizing and battery cycle life in battery/ultracapacitor hybrid energy storage systems for electric vehicle applications...depth cycling operation in photovoltaic system ,” in 22nd International Conference “Mixed Design of Integrated Circuits and Systems ,” Toruń, Poland...CURRENT LINK HARMONIC RIPPLE IN SINGLE-PHASE VOLTAGE SOURCE INVERTER SYSTEMS USING SUPERCAPACITORS by Gabriel D. Hernandez September 2016

14. Geometric relationships for homogenization in single-phase binary alloy systems

Science.gov (United States)

Unnam, J.; Tenney, D. R.; Stein, B. A.

1978-01-01

A semiempirical relationship is presented which describes the extent of interaction between constituents in single-phase binary alloy systems having planar, cylindrical, or spherical interfaces. This relationship makes possible a quick estimate of the extent of interaction without lengthy numerical calculations. It includes two parameters which are functions of mean concentration and interface geometry. Experimental data for the copper-nickel system are included to demonstrate the usefulness of this relationship.

15. Single-phase flow and flow boiling of water in horizontal rectangular microchannels

OpenAIRE

Mirmanto

2013-01-01

This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University The current study is part of a long term experimental project devoted to investigating single-phase flow pressure drop and heat transfer, flow boiling pressure drop and heat transfer, flow boiling instability and flow visualization of de-ionized water flow in microchannels. The experimental facility was first designed and constructed by S. Gedupudi (2009) and in the present study; ...

16. A facility for the experimental investigation of single substance two phase flow

International Nuclear Information System (INIS)

Maeder, P.F.; Dickinson, D.A.; Nikitopoulos, D.E.; DiPippo, R.

1985-01-01

The paper describes a research facility dedicated to single-substance two-phase flow. The working fluid is dichlorotetrafluoroethane (or refrigerant R-114), allowing both operation at manageable pressures, temperatures and flowrates, and application of results to practical situations through similarity. Operation is in the blowdown mode. The control and data acquisition systems are fully automated and computer controlled. A range of flow conditions from predominantly liquid flow to high velocity, high void fraction choked flow can be attained

17. Factors affecting GEBV accuracy with single-step Bayesian models.

Science.gov (United States)

Zhou, Lei; Mrode, Raphael; Zhang, Shengli; Zhang, Qin; Li, Bugao; Liu, Jian-Feng

2018-01-01

A single-step approach to obtain genomic prediction was first proposed in 2009. Many studies have investigated the components of GEBV accuracy in genomic selection. However, it is still unclear how the population structure and the relationships between training and validation populations influence GEBV accuracy in terms of single-step analysis. Here, we explored the components of GEBV accuracy in single-step Bayesian analysis with a simulation study. Three scenarios with various numbers of QTL (5, 50, and 500) were simulated. Three models were implemented to analyze the simulated data: single-step genomic best linear unbiased prediction (GBLUP; SSGBLUP), single-step BayesA (SS-BayesA), and single-step BayesB (SS-BayesB). According to our results, GEBV accuracy was influenced by the relationships between the training and validation populations more significantly for ungenotyped animals than for genotyped animals. SS-BayesA/BayesB showed an obvious advantage over SSGBLUP with the scenarios of 5 and 50 QTL. SS-BayesB model obtained the lowest accuracy with the 500 QTL in the simulation. SS-BayesA model was the most efficient and robust considering all QTL scenarios. Generally, both the relationships between training and validation populations and LD between markers and QTL contributed to GEBV accuracy in the single-step analysis, and the advantages of single-step Bayesian models were more apparent when the trait is controlled by fewer QTL.

18. A strictly hyperbolic equilibrium phase transition model

International Nuclear Information System (INIS)

Allaire, G; Faccanoni, G; Kokh, S.

2007-01-01

This Note is concerned with the strict hyperbolicity of the compressible Euler equations equipped with an equation of state that describes the thermodynamical equilibrium between the liquid phase and the vapor phase of a fluid. The proof is valid for a very wide class of fluids. The argument only relies on smoothness assumptions and on the classical thermodynamical stability assumptions, that requires a definite negative Hessian matrix for each phase entropy as a function of the specific volume and internal energy. (authors)

19. Suggestion of an average bidirectional flow tube for the measurement of single and two phase flow rate

International Nuclear Information System (INIS)

Yun, B.J.; Kang, K.H.; Euh, D.J.; Song, C.H.; Baek, W.P.

2005-01-01

Full text of publication follows: A new type instrumentation, average bidirectional flow tube, was suggested to apply to the single and two phase flow condition. Its working principle is similar to that of the Pitot tube. The pressure measured at the front of the flow tube is equal to the total pressure, while that measured at the rear tube is slightly less than static pressure of flow field due to the suction effect at the downstream. It gives an amplification effect of measured pressure difference at the flow tube. The proposed instrumentation has the characteristics that it could be applicable to low flow condition and measure bidirectional flow. It was tested in the air-water vertical and horizontal test sections which have 0.08 m inner diameter. The pressure difference across the average bidirectional flow tube, system pressure, average void fraction and injection phasic mass flow rates were measured on the measuring plane. Test was performed primarily in the single phase water and air flow condition to get the amplification factor k of the flow tube. The test was also performed in the air-water two phase flow condition and the covered flow regimes were bubbly, slug, churn turbulent flow in the vertical pipe and stratified flow in the horizontal pipe. In order to calculate the phasic and total mass flow rates from the measured differential pressure, Chexal drift-flux correlation and momentum exchange factor between the two phases were introduced. The test result shows that the suggested instrumentation with the measured void fraction, Chexal drift-flux correlation and Bosio and Malnes' momentum exchange model can predict the phasic mass flow rates within 15% error compared to the true values. A new momentum exchange model was also suggested and it gives up to 5% improvement of the measured mass flow rate compared to combination of Bosio and Malnes' momentum exchange model. (authors)

20. On the development of a grid-enhanced single-phase convective heat transfer correlation

International Nuclear Information System (INIS)

Miller, D.J.; Cheung, F.B.; Bajorek, S.M.

2011-01-01

A new single-phase convective heat transfer augmentation correlation has been developed using single phase steam cooling experimental data obtained from the Penn State/NRC Rod Bundle Heat Transfer (RBHT) facility. Experimental data obtained from the RBHT single phase steam cooling tests have been evaluated and new findings identified. Previous rod bundle tests showed the importance of spacer grid on the local heat transfer, and that the augmentation in heat transfer downstream of a grid decays exponentially. The RBHT data also shows that the Reynolds number affects the rate at which this augmentation decays. The new correlation includes the strong dependence of heat transfer on both the Reynolds number and the grid blockage ratio. While the effects of both parameters were clearly evident in the RBHT experimental data, existing correlations do not account for the Reynolds number effect. The developed correlation incorporates Reynolds number in the decay curve of heat transfer. The newly developed correlation adequately accounts for the dependence of the heat transfer augmentation decay rate on the local flow Reynolds number. (author)

1. Subchannel Scale Thermal-Hydraulic Analysis of Rod Bundle Geometry under Single-phase Adiabatic Conditions Using CUPID

Energy Technology Data Exchange (ETDEWEB)

Yoon, Seok Jong; Park, Goon Cherl; Cho, Hyoung Kyu [KAERI, Daejeon (Korea, Republic of)

2016-05-15

In Korea, subchannel analysis code, MATRA has been developed by KAERI (Korea Atomic Energy Research Institute). MATRA has been used for reactor core T/H design and DNBR (Departure from Nucleate Boiling Ratio) calculation. Also, the code has been successfully coupled with neutronics code and fuel analysis code. However, since major concern of the code is not the accident simulation, some features of the code are not optimized for the accident conditions, such as the homogeneous model for two-phase flow and spatial marching method for numerical scheme. For this reason, in the present study, application of CUPID for the subchannel scale T/H analysis in rod bundle geometry was conducted. CUPID is a component scale T/H analysis code which adopts three dimensional two-fluid three-field model developed by KAERI. In this paper, the validation results of the CUPID code for subchannel scale rod bundle analysis at single phase adiabatic conditions were presented. At first, the physical models required for a subchannel scale analysis were implemented to CUPID. In the future, the scope of validation tests will be extended to diabetic and two phase flow conditions and required models will be implemented into CUPID.

2. A Comparison between Boundary and Continuous Conduction Modes in Single Phase PFC Using 600V Range Devices

DEFF Research Database (Denmark)

Hernandez Botella, Juan Carlos; Petersen, Lars Press; Andersen, Michael A. E.

2015-01-01

This paper presents an analysis and comparison of boundary conduction mode (BCM) and continuous conduction mode (CCM) in single phase power factor correction (PFC) applications. The comparison is based on double pulse tester (DPT) characterization results of state-of-the-art superjunction devices...... in the 600V range. The measured switching energy is used to evaluate the devices performance in a conventional PFC. This data is used together with a mathematical model for prediction of the conducted electromagnetic interference (EMI). This allows comparing the different devices in BCM and CCM operation...

3. Single-Phase Full-Wave Rectifier as an Effective Example to Teach Normalization, Conduction Modes, and Circuit Analysis Methods

Directory of Open Access Journals (Sweden)

Predrag Pejovic

2013-12-01

Full Text Available Application of a single phase rectifier as an example in teaching circuit modeling, normalization, operating modes of nonlinear circuits, and circuit analysis methods is proposed.The rectifier supplied from a voltage source by an inductive impedance is analyzed in the discontinuous as well as in the continuous conduction mode. Completely analytical solution for the continuous conduction mode is derived. Appropriate numerical methods are proposed to obtain the circuit waveforms in both of the operating modes, and to compute the performance parameters. Source code of the program that performs such computation is provided.

4. An experimental and numerical study of developed single phase axial turbulent flow in a smooth rod bundle

International Nuclear Information System (INIS)

Hooper, J.D.

1977-01-01

A combined experimental and numerical model of a turbulent single phase coolant, flowing axially along the fuel pins of a nuclear reactor, was developed. The experimental rig represented two interconnected subchannels of a square array at a pitch/diameter ratio of 1.193. Air was the working fluid, and measurements were made of the mean radial velocity profiles, wall shear stress variation, turbulence velocity spectra and intensities. The numerically predicted wall shear distribution and mean velocity profiles, obtained using an empirical two-dimensional mixing length and eddy diffusivity concept to represent fluid turbulence, showed good agreement with the experimental results. (Author)

5. A Three-dimensional Topological Model of Ternary Phase Diagram

International Nuclear Information System (INIS)

Mu, Yingxue; Bao, Hong

2017-01-01

In order to obtain a visualization of the complex internal structure of ternary phase diagram, the paper realized a three-dimensional topology model of ternary phase diagram with the designed data structure and improved algorithm, under the guidance of relevant theories of computer graphics. The purpose of the model is mainly to analyze the relationship between each phase region of a ternary phase diagram. The model not only obtain isothermal section graph at any temperature, but also extract a particular phase region in which users are interested. (paper)

6. Grassmann phase space theory and the Jaynes–Cummings model

International Nuclear Information System (INIS)

Dalton, B.J.; Garraway, B.M.; Jeffers, J.; Barnett, S.M.

2013-01-01

The Jaynes–Cummings model of a two-level atom in a single mode cavity is of fundamental importance both in quantum optics and in quantum physics generally, involving the interaction of two simple quantum systems—one fermionic system (the TLA), the other bosonic (the cavity mode). Depending on the initial conditions a variety of interesting effects occur, ranging from ongoing oscillations of the atomic population difference at the Rabi frequency when the atom is excited and the cavity is in an n-photon Fock state, to collapses and revivals of these oscillations starting with the atom unexcited and the cavity mode in a coherent state. The observation of revivals for Rydberg atoms in a high-Q microwave cavity is key experimental evidence for quantisation of the EM field. Theoretical treatments of the Jaynes–Cummings model based on expanding the state vector in terms of products of atomic and n-photon states and deriving coupled equations for the amplitudes are a well-known and simple method for determining the effects. In quantum optics however, the behaviour of the bosonic quantum EM field is often treated using phase space methods, where the bosonic mode annihilation and creation operators are represented by c-number phase space variables, with the density operator represented by a distribution function of these variables. Fokker–Planck equations for the distribution function are obtained, and either used directly to determine quantities of experimental interest or used to develop c-number Langevin equations for stochastic versions of the phase space variables from which experimental quantities are obtained as stochastic averages. Phase space methods have also been developed to include atomic systems, with the atomic spin operators being represented by c-number phase space variables, and distribution functions involving these variables and those for any bosonic modes being shown to satisfy Fokker–Planck equations from which c-number Langevin equations are

7. Magnetic phases in Pt/Co/Pt films induced by single and multiple femtosecond laser pulses

Energy Technology Data Exchange (ETDEWEB)

Kisielewski, J., E-mail: jankis@uwb.edu.pl; Kurant, Z.; Sveklo, I.; Tekielak, M.; Maziewski, A. [Faculty of Physics, University of Białystok, Ciołkowskiego 1L, 15-245 Białystok (Poland); Wawro, A. [Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw (Poland)

2016-05-21

Ultrathin Pt/Co/Pt trilayers with initial in-plane magnetization were irradiated with femtosecond laser pulses. In this way, an irreversible structural modification was introduced, which resulted in the creation of numerous pulse fluence-dependent magnetic phases. This was particularly true with the out-of-plane magnetization state, which exhibited a submicrometer domain structure. This effect was studied in a broad range of pulse fluences up to the point of ablation of the metallic films. In addition to this single-pulse experiment, multiple exposure spots were also investigated, which exhibited an extended area of out-of-plane magnetization phases and a decreased damage threshold. Using a double exposure with partially overlapped spots, a two-dimensional diagram of the magnetic phases as a function of the two energy densities was built, which showed a strong inequality between the first and second incoming pulses.

8. Magnetic phases in Pt/Co/Pt films induced by single and multiple femtosecond laser pulses

International Nuclear Information System (INIS)

Kisielewski, J.; Kurant, Z.; Sveklo, I.; Tekielak, M.; Maziewski, A.; Wawro, A.

2016-01-01

Ultrathin Pt/Co/Pt trilayers with initial in-plane magnetization were irradiated with femtosecond laser pulses. In this way, an irreversible structural modification was introduced, which resulted in the creation of numerous pulse fluence-dependent magnetic phases. This was particularly true with the out-of-plane magnetization state, which exhibited a submicrometer domain structure. This effect was studied in a broad range of pulse fluences up to the point of ablation of the metallic films. In addition to this single-pulse experiment, multiple exposure spots were also investigated, which exhibited an extended area of out-of-plane magnetization phases and a decreased damage threshold. Using a double exposure with partially overlapped spots, a two-dimensional diagram of the magnetic phases as a function of the two energy densities was built, which showed a strong inequality between the first and second incoming pulses.

9. Creating diversified response profiles from a single quenchometric sensor element by using phase-resolved luminescence.

Science.gov (United States)

Tehan, Elizabeth C; Bukowski, Rachel M; Chodavarapu, Vamsy P; Titus, Albert H; Cartwright, Alexander N; Bright, Frank V

2015-01-05

We report a new strategy for generating a continuum of response profiles from a single luminescence-based sensor element by using phase-resolved detection. This strategy yields reliable responses that depend in a predictable manner on changes in the luminescent reporter lifetime in the presence of the target analyte, the excitation modulation frequency, and the detector (lock-in amplifier) phase angle. In the traditional steady-state mode, the sensor that we evaluate exhibits a linear, positive going response to changes in the target analyte concentration. Under phase-resolved conditions the analyte-dependent response profiles: (i) can become highly non-linear; (ii) yield negative going responses; (iii) can be biphasic; and (iv) can exhibit super sensitivity (e.g., sensitivities up to 300 fold greater in comparison to steady-state conditions).

10. Optical study of phase transitions in single-crystalline RuP

Science.gov (United States)

Chen, R. Y.; Shi, Y. G.; Zheng, P.; Wang, L.; Dong, T.; Wang, N. L.

2015-03-01

RuP single crystals of MnP-type orthorhombic structure were synthesized by the Sn flux method. Temperature-dependent x-ray diffraction measurements reveal that the compound experiences two structural phase transitions, which are further confirmed by enormous anomalies shown in temperature-dependent resistivity and magnetic susceptibility. Particularly, the resistivity drops monotonically upon temperature cooling below the second transition, indicating that the material shows metallic behavior, in sharp contrast with the insulating ground state of polycrystalline samples. Optical conductivity measurements were also performed in order to unravel the mechanism of these two transitions. The measurement revealed a sudden reconstruction of band structure over a broad energy scale and a significant removal of conducting carriers below the first phase transition, while a charge-density-wave-like energy gap opens below the second phase transition.

11. Influence of modulation method on using LC-traps with single-phase voltage source converters

DEFF Research Database (Denmark)

Wang, Xiongfei; Min, Huang; Bai, Haofeng

2015-01-01

The switching-frequency LC-trap filter has recently been employed with high-order passive filters for Voltage Source Inverters (VSIs). This paper investigates the influence of modulation method on using the LC-traps with single-phase VSIs. Two-level (bipolar) and three-level (unipolar) modulations...... that include phase distortion and alternative phase opposition distortion methods are analyzed. Harmonic filtering performances of four LC-trap-based filters with different locations of LC-traps are compared. It is shown that the use of parallel-LC-traps in series with filter inductors, either grid...... or converter side, has a worse harmonic filtering performance than using series-LC-trap in the shunt branch. Simulations and experimental results are presented for verifications....

12. Orientational Phase Transition Around 274 K in C60 Single Crystal

Institute of Scientific and Technical Information of China (English)

徐亚伯; 何丕模; 杨宏顺; 郑萍; 余朝文; 陈兆甲; 张宣嘉; 李文铸

1994-01-01

The electrical conductivity of a C60 single crystal around 274 K and the specific heat of C60 crystals from 150 to 340 K have been measured.The delta-like specific heat peak at about 251 K related to the first-order phase transition has been reported.The activation energy change around 274 K and the lambda-like specific heat peak beginning at 270 K and ending at 310 K show that there is an orientational phase transition in fcc C60 crystals above 251 K.By taking the symmetry into consideration and further analyzing lambda-like specific heat peak and the activation energy change around 274 K,the conclusion has been reached that this new phase transition is an orientational structure transition from the merohedral twinning fcc to the orientationally disordered fcc.The temperature of free rotation of C60 molecules is about 281 K.

13. Scintigraphic demonstration of single- or two-phase gastric emptying in diabetics

International Nuclear Information System (INIS)

Eikman, E.A.; Leichter, S.; Waldholtz, B.; Tenorio, L.; Brady, P.

1989-01-01

This paper discusses how a modified scintigraphic test of gastric emptying revealed two types of abnormal gastric emptying in diabetic patients. After ingestion of 100 mL of cooked egg whites labeled with 0.5 mCi of Tc-99m sulfur colloid, the geometric mean stomach radioactivity was recorded serially for 90 minutes. Linear regression computed for the log of radioactivity versus time facilitated recognition of changes in gastric emptying. In 16 of 25 consecutive diabetic patients with postprandial symptoms, initial slow emptying (half-life,>100 minutes) was observed. Single-phase emptying was shown in seven of these patients. In nine patients, the slow-emptying phase lasted up to 50 minutes, followed by a distinct second phase of normal or rapid emptying (half-life, <40 minutes). The existence of different gastric emptying implies differing mechanisms of delay and may be important in treatment

14. A Nonadaptive Window-Based PLL for Single-Phase Applications

DEFF Research Database (Denmark)

Golestan, Saeed; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

2018-01-01

The rectangular window filter, typically known as the moving average filter (MAF), is a quasi-ideal low-pass filter that has found wide application in designing advanced single-phase phase-locked loops (PLLs). Most often, the MAF is employed as an in-loop filter within the control loop of the sin......The rectangular window filter, typically known as the moving average filter (MAF), is a quasi-ideal low-pass filter that has found wide application in designing advanced single-phase phase-locked loops (PLLs). Most often, the MAF is employed as an in-loop filter within the control loop...... response is avoided. Nevertheless, the PLL implementation complexity considerably increases as MAFs are frequency-adaptive and, therefore, they require an additional frequency detector for estimating the grid frequency. To reduce the implementation complexity while maintaining a good performance, using...... a nonadaptive MAF-based QSG with some error compensators is suggested in this letter. The effectiveness of the resultant PLL, which is briefly called the nonadaptive MAF-based PLL, is verified using experimental results....

15. Tests of the single-pion exchange model

International Nuclear Information System (INIS)

Treiman, S.B.; Yang, C.N.

1983-01-01

The single-pion exchange model (SPEM) of high-energy particle reactions provides an attractively simple picture of seemingly complex processes and has accordingly been much discussed in recent times. The purpose of this note is to call attention to the possibility of subjecting the model to certain tests precisely in the domain where the model stands the best chance of making sense

16. Modeling of calcination of single kaolinitic clay particle

DEFF Research Database (Denmark)

Gebremariam, Abraham Teklay; Yin, Chungen; Rosendahl, Lasse

The present work aims at modeling of the calcination (dehydroxylation) process of clay particles, specifically kaolinite, and its thermal transformation. For such purpose, 1D single particle calcination model was developed based on the concept of shrinking core model to assess the dehydroxylation...

17. Simulating single-phase and two-phase non-Newtonian fluid flow of a digital rock scanned at high resolution

Science.gov (United States)

Tembely, Moussa; Alsumaiti, Ali M.; Jouini, Mohamed S.; Rahimov, Khurshed; Dolatabadi, Ali

2017-11-01

Most of the digital rock physics (DRP) simulations focus on Newtonian fluids and overlook the detailed description of rock-fluid interaction. A better understanding of multiphase non-Newtonian fluid flow at pore-scale is crucial for optimizing enhanced oil recovery (EOR). The Darcy scale properties of reservoir rocks such as the capillary pressure curves and the relative permeability are controlled by the pore-scale behavior of the multiphase flow. In the present work, a volume of fluid (VOF) method coupled with an adaptive meshing technique is used to perform the pore-scale simulation on a 3D X-ray micro-tomography (CT) images of rock samples. The numerical model is based on the resolution of the Navier-Stokes equations along with a phase fraction equation incorporating the dynamics contact model. The simulations of a single phase flow for the absolute permeability showed a good agreement with the literature benchmark. Subsequently, the code is used to simulate a two-phase flow consisting of a polymer solution, displaying a shear-thinning power law viscosity. The simulations enable to access the impact of the consistency factor (K), the behavior index (n), along with the two contact angles (advancing and receding) on the relative permeability.

18. Mixture of Regression Models with Single-Index

OpenAIRE

Xiang, Sijia; Yao, Weixin

2016-01-01

In this article, we propose a class of semiparametric mixture regression models with single-index. We argue that many recently proposed semiparametric/nonparametric mixture regression models can be considered special cases of the proposed model. However, unlike existing semiparametric mixture regression models, the new pro- posed model can easily incorporate multivariate predictors into the nonparametric components. Backfitting estimates and the corresponding algorithms have been proposed for...

19. Coexisting chaotic attractors in a single neuron model with adapting feedback synapse

International Nuclear Information System (INIS)

Li Chunguang; Chen Guanrong

2005-01-01

In this paper, we consider the nonlinear dynamical behavior of a single neuron model with adapting feedback synapse, and show that chaotic behaviors exist in this model. In some parameter domain, we observe two coexisting chaotic attractors, switching from the coexisting chaotic attractors to a connected chaotic attractor, and then switching back to the two coexisting chaotic attractors. We confirm the chaoticity by simulations with phase plots, waveform plots, and power spectra

20. Single-sphere multiple-detector neutron spectrometer. Final report on Phase 1

International Nuclear Information System (INIS)

Sinclair, F.; Stern, I.; Hahn, R.W.; Entine, G.

1987-07-01

To address the problem of accurate, timely estimates of the neutron spectral flux, researchers are developing a monitoring instrument based on a single moderating sphere with a large number of independent sensors. Such a single-sphere spectrometer would allow easy measurement of quality factors. This is made possible by the recent development of a novel digital sensor which detects radiation induced errors in a dynamic random-access memory. During Phase I of the SBIR program, researchers constructed a first prototype of the single-sphere spectrometer, measured its response in a neutron flux from an isotopic Am-Be source in several geometries, and compared these with the results of Monte Carlo simulations of neutron transport. The preliminary results show that the approach is feasible and relatively straightforward

1. High resolution transmission electron microscopy studies of {sigma} phase in Ni-based single crystal superalloys

Energy Technology Data Exchange (ETDEWEB)

Sun Fei [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Zhang Jianxin, E-mail: jianxin@sdu.edu.cn [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Liu Pan [Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124 (China); Feng Qiang [National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083 (China); State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Han Xiaodong; Mao Shengcheng [Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124 (China)

2012-09-25

Graphical abstract: (a) TEM micrograph of {sigma} phase; (b) HRTEM image of {sigma}/{gamma} interface corresponding to the area of the white frame in (a); (c) an enlarged image of area from the white frame in (b). The combination of {sigma}/{gamma} interface appears very well, and a two-atomic-layer step is shown on the {sigma}/{gamma} interface. In addition, {sigma} phase has the orientation relationship of [0 0 1]{sub {gamma}}//[1 1 2{sup Macron }]{sub {sigma}}, (2{sup Macron} 2 0){sub {gamma}}//(1{sup Macron} 1 0){sub {sigma}}, (2{sup Macron }2{sup Macron} 0){sub {gamma}}//(1 1 1){sub {sigma}}; [0 1 1]{sub {gamma}}//[1 1 0]{sub {sigma}}, (1 1{sup Macron} 1){sub {gamma}}//(0 0 1{sup Macron }){sub {sigma}} with the {gamma} phase. Highlights: Black-Right-Pointing-Pointer Elemental characteristic of {sigma} phase is studied by HAADF techniques and EDS analysis. Black-Right-Pointing-Pointer Interfacial characteristics of {sigma}/{gamma} interface are revealed by HRTEM. Black-Right-Pointing-Pointer An atomic structural {sigma}/{gamma} interface with a two-atomic-layer step has been proposed. - Abstract: By means of high resolution transmission electron microscopy (HRTEM) and high-angle annular dark-field image technique (HAADF), morphological of plate-shaped {sigma} phase and interfacial characteristics between plate-shaped {sigma} phase and {gamma} phase in Ni-based single crystal superalloys have been studied. On the basis of HRTEM observations, an atomic structural interface between {sigma} phase and {gamma} phase with a step has been proposed. {sigma} Phase has the relationship of [0 0 1]{sub {gamma}}//[1 1 2{sup Macron }]{sub {sigma}}, (2{sup Macron} 2 0){sub {gamma}}//(1{sup Macron} 1 0){sub {sigma},} (2{sup Macron }2{sup Macron} 0){sub {gamma}}//(1 1 1){sub {sigma}}; [0 1 1]{sub {gamma}}//[1 1 0]{sub {sigma}}, (1 1{sup Macron} 1){sub {gamma}}//(0 0 1{sup Macron }){sub {sigma}} with the {gamma} phase. The compositional characteristics of the {sigma} phase which

2. Regularity of solutions of a phase field model

KAUST Repository

Amler, Thomas

2013-01-01

Phase field models are widely-used for modelling phase transition processes such as solidification, freezing or CO2 sequestration. In this paper, a phase field model proposed by G. Caginalp is considered. The existence and uniqueness of solutions are proved in the case of nonsmooth initial data. Continuity of solutions with respect to time is established. In particular, it is shown that the governing initial boundary value problem can be considered as a dynamical system. © 2013 International Press.

3. Dynamical phase transitions in spin models and automata

International Nuclear Information System (INIS)

Derrida, B.

1989-01-01

Some of the models and methods developed in the study of the dynamics of spin models and automata are described. Special attention is given to the distance method which consists of comparing the time evolution of two configurations. The method is used to obtain the phase boundary between a frozen and a chaotic phase in the case of deterministic models. For stochastic systems the method is used to obtain dynamical phase transitions

4. The effects of ruthenium on the phase stability of fourth generation Ni-base single crystal superalloys

International Nuclear Information System (INIS)

Sato, Atsushi; Harada, Hiroshi; Yokokawa, Tadaharu; Murakumo, Takao; Koizumi, Yutaka; Kobayashi, Toshiharu; Imai, Hachiro

2006-01-01

The formation of topologically close-packed (TCP) phases in nickel-base single crystal superalloys causes considerable degradation of the mechanical properties. It has recently been found that platinum-group metals can be effective in controlling the precipitation of such phases, and this extent of precipitation control requires further investigation. This study compares Ru-containing and non-Ru-containing single crystal superalloys. Scanning electron microscopy microstructural observations showed that the rate of TCP phase precipitations decreased through Ru addition. Transmission electron microscopy microstructural observations showed that the P phase, one of the TCP phases, was eliminated through the addition of Ru. The occurrence of this phenomenon will be discussed

5. Experiments and modeling of single plastic particle conversion in suspension

DEFF Research Database (Denmark)

2018-01-01

Conversion of single high density polyethylene (PE) particles has been studied by experiments and modeling. The experiments were carried out in a single particle combustor for five different shapes and masses of particles at temperature conditions of 900 and 1100°C. Each experiment was recorded...... against the experiments as well as literature data. Furthermore, a simplified isothermal model appropriate for CFD applications was developed, in order to model the combustion of plastic particles in cement calciners. By comparing predictions with the isothermal and the non–isothermal models under typical...

6. Effect of duration of the pause single-phase auto-reclosing on electro-power transmission capacitance

Directory of Open Access Journals (Sweden)

Krasil'nikova Tatyana

2017-01-01

Full Text Available This paper discusses the problem associated with accidents in the aerial line (AL ultra-high voltage (UHV due to its big length. In lines with a voltage of 500-1150 kV the overwhelming proportion of trips (98% is caused by single-phase short circuit (SPSC. A substantial portion (70% single-phase short circuits is erratic arc accidents which can be successfully eliminated in a high-speed auto-reclosing (HSAR or single-phase auto-reclosing (SPAR. Success single-phase auto-reclosing (SPAR at liquidation by single-phase short circuit (SPSC, on the one hand, is determined by the characteristics of the secondary arc current, and on the other hand the effectiveness of ways to reduce secondary arc current and recovery voltage development. The minimum dead time, at a HSAR it is usually taken as 0.5 s., at single-phase autoreclosing (SPAR it depends on the current value of the arc support is in the range of 0.5-3.0 s. The article shows high efficiency of use single-phase auto reclosing (SPAR at liquidation SPSC in a single-chain AL voltage of 500 kV, the dependence of the bandwidth of transmission in maintaining the dynamic stability from the length of the pause SPAR.

7. Lithium tantalate single crystal for pyroelectricity-based laser energy-meter: growth, application and phase transition study

International Nuclear Information System (INIS)

Bhaumik, Indranil; Ganesamoorthy, S.; Bhatt, R.; Karnal, A.K.; Gupta, P.K.

2009-01-01

Single crystals of lithium tantalate have been grown. Dielectric-spectroscopy study reveals phase transition in congruent lithium tantalate (CLT) single crystal is diffusive and frequency dependent in contrast to that in near stoichiometric lithium tantalate where it is sharper. The ac conductivity measurements show that the conductivity is lower for 0.5Mg-SLT as compared to 1.0Mg-SLT. This is explained in terms of a Li-vacancy model. Calculation of activation energy from the lnσ vs. 1000/T plot reveals that hopping of Li + ions becomes difficult for 0.5 Mg-SLT. The pyroelectric response of CLT for pulsed Nd:YAG laser output has been tested. (author)

8. Rich magnetoelectric phase diagrams of multiferroic single-crystal α -NaFeO2

Science.gov (United States)

Terada, Noriki; Ikedo, Yuta; Sato, Hirohiko; Khalyavin, Dmitry D.; Manuel, Pascal; Miyake, Atsushi; Matsuo, Akira; Tokunaga, Masashi; Kindo, Koichi

2017-07-01

The magnetic and dielectric properties of the multiferroic triangular lattice magnet compound α -NaFeO2 were studied by magnetization, specific heat, dielectric permittivity, and pyroelectric current measurements and by neutron diffraction experiments using single crystals grown by a hydrothermal synthesis method. This work produced magnetic field (in the monoclinic a b -plane, Ba b, and along the c*-axis, Bc) versus temperature magnetic phase diagrams, including five and six magnetically ordered phases in Ba b and along Bc, respectively. In zero magnetic field, two spin-density-wave orderings with different k vectors—(0 ,q ,1/2 ) in phase I and (qa,qb,qc ) in phase II—appeared at T =9.5 and 8.25 K, respectively. Below T =5 K, a commensurate order with k =(0.5 ,0 ,0.5 ) was stabilized as the ground state in phase III. Both Ba b≥3 T and Bc≥5 T were found to induce ferroelectric phases at the lowest temperature (2 K), with an electric polarization that was not confined to any highly symmetric directions in phases IVa b (3.3 ≤Ba b≤8.5 T), Va b (8.5 ≤Ba b≤13.6 T), IVc (5.0 ≤Bc≤8.5 T), and Vc (8.5 ≤Bc≤13.5 T). In phase VIc, within a narrow temperature region in Bc, the polarization was confined to the a b plane. For each of the ferroelectric phases, the k vector was (qa,qb,qc ), and noncollinear structures were identified, including a general spiral in IVa b an a b cycloid in IVc and Vc, and a proper screw in VIc, along with a triclinic 11' magnetic point group allowing polarization in the general direction. Comparing the polarization direction to the magnetic structures in the ferroelectric phases, we conclude that the extended inverse Dzyaloshinskii-Moriya mechanism expressed by the orthogonal components p1∝ri j×(Si×Sj) and p2∝Si×Sj can explain the polarization directions. Based on calculations incorporating exchange interactions up to fourth-nearest-neighbor (NN) couplings, we infer that competition among antiferromagnetic second NN

9. A control strategy for induction motors fed from single phase supply

DEFF Research Database (Denmark)

Søndergård, Lars Møller

1993-01-01

It is often required that a three-phased asynchronous motor can run at variable speed, which makes it necessary to use a three-phase inverter driven from a DC-source. Today, most inverters are driven from the network using a simple diode bridge and an electrolytic capacitor. The problem with the ......It is often required that a three-phased asynchronous motor can run at variable speed, which makes it necessary to use a three-phase inverter driven from a DC-source. Today, most inverters are driven from the network using a simple diode bridge and an electrolytic capacitor. The problem...... with the simple diode bridge and the electrolytic capacitor is that current is only drawn for short periods, which gives rise to harmonic currents in the network. For small drive systems (motor+inverter), i.e. less than 1.5 kW, a single phase network outlet is often used. The author describes a method whereby...

10. Three phase carbon EOS model with electronic excitation

International Nuclear Information System (INIS)

van Thiel, M.; Ree, F.H.; Grover, R.

1987-07-01

A simple and rapid way for computing EOS data of multiphase solids with a liquid phase is described with emphasis on carbon. The method uses a scaling model for the liquid phase and includes a provision for electronic effects. The free energy minimum determines the stable phase

11. Variance Function Partially Linear Single-Index Models1.

Science.gov (United States)

Lian, Heng; Liang, Hua; Carroll, Raymond J

2015-01-01

We consider heteroscedastic regression models where the mean function is a partially linear single index model and the variance function depends upon a generalized partially linear single index model. We do not insist that the variance function depend only upon the mean function, as happens in the classical generalized partially linear single index model. We develop efficient and practical estimation methods for the variance function and for the mean function. Asymptotic theory for the parametric and nonparametric parts of the model is developed. Simulations illustrate the results. An empirical example involving ozone levels is used to further illustrate the results, and is shown to be a case where the variance function does not depend upon the mean function.

12. New three-phase ac-ac converter incorporating three-phase boost integrated ZVT bridge and single-phase HF link

International Nuclear Information System (INIS)

Abdelhamid, Tamer H.; Sabzali, Ahmad J.

2008-01-01

This paper presents a new zero voltage transition (ZVT), power factor corrected three phase ac-ac converter with single phase high frequency (HF) link. It is a two stage converter; the first stage is a boost integrated bridge converter (combination of a 3 ph boost converter and a bridge converter) operated at fixed frequency and that operates in two modes at ZVT for all switches and establishes a 1 ph square wave HF link. The second stage is a bi-directional pulse width modulation (PWM) 3 ph bridge that converts the 1 ph HF link to a 3 ph voltage using a novel switching strategy. The converter modes of operation and key equations are outlined. Simulation of the overall system is conducted using Simulink. The switching strategy and its corresponding control circuit are clearly described. Experimental verification of the simulation is conducted for a prototype of 100 V, 500 W at 10 kHz link frequency

13. Model Based Control of Single-Phase Marine Cooling Systems

DEFF Research Database (Denmark)

Hansen, Michael

2014-01-01

in this work is on the development of a nonlinear robust control design. The design is based on principles from feedback. linearization to compensate for nonlinearities as well as transport delays by including a delay estimate in the feedback law. To deal with the uncertainties that emerged from the feedback...

14. Simulation of single grid-based phase-contrast x-ray imaging (g-PCXI)

Energy Technology Data Exchange (ETDEWEB)

Lim, H.W.; Lee, H.W. [Department of Radiation Convergence Engineering, iTOMO Group, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 26493 (Korea, Republic of); Cho, H.S., E-mail: hscho1@yonsei.ac.kr [Department of Radiation Convergence Engineering, iTOMO Group, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 26493 (Korea, Republic of); Je, U.K.; Park, C.K.; Kim, K.S.; Kim, G.A.; Park, S.Y.; Lee, D.Y.; Park, Y.O.; Woo, T.H. [Department of Radiation Convergence Engineering, iTOMO Group, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 26493 (Korea, Republic of); Lee, S.H.; Chung, W.H.; Kim, J.W.; Kim, J.G. [R& D Center, JPI Healthcare Co., Ltd., Ansan 425-833 (Korea, Republic of)

2017-04-01

Single grid-based phase-contrast x-ray imaging (g-PCXI) technique, which was recently proposed by Wen et al. to retrieve absorption, scattering, and phase-gradient images from the raw image of the examined object, seems a practical method for phase-contrast imaging with great simplicity and minimal requirements on the setup alignment. In this work, we developed a useful simulation platform for g-PCXI and performed a simulation to demonstrate its viability. We also established a table-top setup for g-PCXI which consists of a focused-linear grid (200-lines/in strip density), an x-ray tube (100-μm focal spot size), and a flat-panel detector (48-μm pixel size) and performed a preliminary experiment with some samples to show the performance of the simulation platform. We successfully obtained phase-contrast x-ray images of much enhanced contrast from both the simulation and experiment and the simulated contract seemed similar to the experimental contrast, which shows the performance of the developed simulation platform. We expect that the simulation platform will be useful for designing an optimal g-PCXI system. - Highlights: • It is proposed for the single grid-based phase-contrast x-ray imaging (g-PCXI) technique. • We implemented for a numerical simulation code. • The preliminary experiment with several samples to compare is performed. • It is expected to be useful to design an optimal g-PCXI system.

15. Gamma model and its analysis for phase measuring profilometry.

Science.gov (United States)

Liu, Kai; Wang, Yongchang; Lau, Daniel L; Hao, Qi; Hassebrook, Laurence G

2010-03-01

Phase measuring profilometry is a method of structured light illumination whose three-dimensional reconstructions are susceptible to error from nonunitary gamma in the associated optical devices. While the effects of this distortion diminish with an increasing number of employed phase-shifted patterns, gamma distortion may be unavoidable in real-time systems where the number of projected patterns is limited by the presence of target motion. A mathematical model is developed for predicting the effects of nonunitary gamma on phase measuring profilometry, while also introducing an accurate gamma calibration method and two strategies for minimizing gamma's effect on phase determination. These phase correction strategies include phase corrections with and without gamma calibration. With the reduction in noise, for three-step phase measuring profilometry, analysis of the root mean squared error of the corrected phase will show a 60x reduction in phase error when the proposed gamma calibration is performed versus 33x reduction without calibration.

16. The phases of isospin-asymmetric matter in the two-flavor NJL model

Energy Technology Data Exchange (ETDEWEB)

Lawley, S. [Special Research Centre for the Subatomic Structure of Matter, University of Adelaide, Adelaide, SA 5005 (Australia) and Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606 (United States)]. E-mail: slawley@jlab.org; Bentz, W. [Department of Physics, School of Science, Tokai University, Hiratsuka-shi, Kanagawa 259-1292 (Japan); Thomas, A.W. [Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606 (United States)

2006-01-19

We investigate the phase diagram of isospin-asymmetric matter at T=0 in the two-flavor Nambu-Jona-Lasinio model. Our approach describes the single nucleon as a confined quark-diquark state, the saturation properties of nuclear matter at normal densities, and the phase transition to normal or color superconducting quark matter at higher densities. The resulting equation of state of charge-neutral matter and the structure of compact stars are discussed.

17. Design of Controller for Reducing In-Rush Current of Single-Phase Induction Motor

Energy Technology Data Exchange (ETDEWEB)

Park, Su Kang; Baek, Hyung Lae; Lee, Sang Il [Chosun University, Kwangju (Korea)

2001-05-01

During an AC motor's start-up accelerating period, a large amount of current is required to reach to the rating speed. This is called in-rush current. This peak in-rush current can be more than about several times the operating or steady-state current in the full load rating of the motor. In-rush current is present in both and electronic ballasts. The main area of concern is the tripping of circuit breaker and fuses which can affect electrical system components From this, we can see that the electrical power controllers will be rather concerned, since they have to supply the actual current necessary to start the motor. This paper presents a new method to reducing in-rush current and energy saving of the single-phase induction motor used in air-conditioner. It can be obtained that proposed system is low cost and small size as compared with other controller. Experiments are focused on a capacitor starting single-phase induction motor. The optimal power saving and in-rush current limiting by phase angle control are verified by experimental results. Also, auxiliary winding was controlled by electronic starting switch. (author). 10 refs., 13 figs., 2 tabs.

18. Paramagnetism and antiferromagnetic interactions in single-phase Fe-implanted ZnO

CERN Document Server

Pereira, Lino Miguel da Costa; Correia, João Guilherme; Van Bael, M J; Temst, Kristiaan; Vantomme, André; Araújo, João Pedro

2013-01-01

As the intrinsic origin of the high temperature ferromagnetism often observed in wide-gap dilute magnetic semiconductors becomes increasingly debated, there is a growing need for comprehensive studies on the single-phase region of the phase diagram of these materials. Here we report on the magnetic and structural properties of Fe-doped ZnO prepared by ion implantation of ZnO single crystals. A detailed structural characterization shows that the Fe impurities substitute for Zn in ZnO in a wurtzite Zn$_{1−x}$Fe$_{x}$O phase which is coherent with the ZnO host. In addition, the density of beam-induced defects is progressively decreased by thermal annealing up to 900$^{\\circ}$C, from highly disordered after implantation to highly crystalline upon subsequent annealing. Based on a detailed analysis of the magnetometry data, we demonstrate that isolated Fe impurities occupying Zn substitutional sites behave as localized paramagnetic moments down to 2$^{\\circ}$K, irrespective of the Fe concentration and the density...

19. Application of Phased Array Ultrasonic Testing (PAUT) on Single V-Butt Weld Integrity Determination

International Nuclear Information System (INIS)

Amry Amin Abas; Mohd Kamal Shah Shamsudin; Norhazleena Azaman

2015-01-01

Phased Array Ultrasonic Testing (PAUT) utilizes arrays of piezoelectric elements that are embedded in an epoxy base. The benefit of having such kind of array is that beam forming such as steering and focusing the beam front possible. This enables scanning patterns such as linear scan, sectorial scan and depth focusing scan to be performed. Ultrasonic phased array systems can potentially be employed in almost any test where conventional ultrasonic flaw detectors have traditionally been used. Weld inspection and crack detection are the most important applications, and these tests are done across a wide range of industries including aerospace, power generation, petrochemical, metal billet and tubular goods suppliers, pipeline construction and maintenance, structural metals, and general manufacturing. Phased arrays can also be effectively used to profile remaining wall thickness in corrosion survey applications. The benefits of PAUT are simplifying inspection of components of complex geometry, inspection of components with limited access, testing of welds with multiple angles from a single probe and increasing the probability of detection while improving signal-to-noise ratio. This paper compares the result of inspection on several specimens using PAUT as to digital radiography. The specimens are welded plates with single V-butt weld made of carbon steel. Digital radiography is done using blue imaging plate with x-ray source. PAUT is done using Olympus MX2 with 5 MHz probe consisting of 64 elements. The location, size and length of defect is compared. (author)

20. Magnetic phase transitions in Er7Rh3 studied on single crystals

International Nuclear Information System (INIS)

Tsutaoka, Takanori; Obata, Keisuke; Cheyvuth, Seng; Koyama, Keiichi

2014-01-01

Highlights: • Magnetic and electrical properties of Er 7 Rh 3 were studied on single crystals. • The magnetic phase diagram along the c-axis was constructed. • The field-induced magnetic transitions in Er 7 Rh 3 can be explained by the magnetic structure with two magnetic propagation vectors. • The anomalies of electrical resistivity can also be described by the magnetic structure in Er 7 Rh 3 . - Abstract: Magnetic phase transitions in Er 7 Rh 3 with the Th 7 Fe 3 type hexagonal structure have been studied on single crystals by measuring magnetization, magnetic susceptibility and electrical resistivity. Er 7 Rh 3 possesses antiferromagnetic state below T N = 13 K. In the ordered state, the two successive magnetic transitions at T t1 = 6.2 K and T t2 = 4.5 K were observed. Several field-induced magnetic transitions were also observed along the a- and c-axes below T N ; magnetic field H – temperature T phase diagram along the c-axis was constructed. The field-induced magnetic transitions in Er 7 Rh 3 can be explained by the magnetic structure with two magnetic propagation vectors which were derived by the previous neutron diffraction studies. Electrical resistivity shows humps just below the magnetic transition temperatures, T N and T t1 due to the super-zone gap formation at the Fermi level; these anomalies can also be described by the magnetic structure changes in Er 7 Rh 3

1. FUZZY LOGIC BASED OPTIMIZATION OF CAPACITOR VALUE FOR SINGLE PHASE OPEN WELL SUBMERSIBLE INDUCTION MOTOR

Directory of Open Access Journals (Sweden)

R. Subramanian

2011-01-01

Full Text Available Purpose – The aim of this paper is to optimize the capacitor value of a single phase open well submersible motor operating under extreme voltage conditions using fuzzy logic optimization technique and compared with no-load volt-ampere method. This is done by keeping the displacement angle (a between main winding and auxiliary winding near 90o, phase angle (f between the supply voltage and line current near 0o. The optimization work is carried out by using Fuzzy Logic Toolbox software built on the MATLAB technical computing environment with Simulink software. Findings – The optimum capacitor value obtained is used with a motor and tested for different supply voltage conditions. The vector diagrams obtained from the experimental test results indicates that the performance is improved from the existing value. Originality/value – This method will be highly useful for the practicing design engineers in selecting the optimum capacitance value for single phase induction motors to achieve the best performance for operating at extreme supply voltage conditions.

2. Single-crystal FCC and DHCP phases in Ce/Pr superlattices

International Nuclear Information System (INIS)

Lee, S.; Goff, J.P.; Ward, R.C.C.; Wells, M.R.; McIntyre, G.J.

2002-01-01

Cerium usually comprises a mixture of polycrystalline FCC and DHCP allotropes. Single-crystal Ce has been stabilised in Ce/Pr superlattices grown using molecular beam epitaxy. It is found that FCC or DHCP phases can be obtained depending on superlattice composition and growth conditions. Low-temperature neutron scattering was performed on Ce/Pr samples using the triple-axis spectrometer D10 at the ILL. Such measurements revealed one sample, [Ce 20 Pr 20 ] 60 , to be a single crystal with a DHCP unit cell; while another, [Ce 30 Pr 10 ] 56 , was a mixture of FCC and DHCP phases. Antiferromagnetic ordering of magnetic moments was observed in the DHCP sample (T N =11.1 K) with a magnetic structure similar to that found in bulk β-Ce. Surprisingly, the magnetic ordering was found to be confined to single Ce blocks. Furthermore, it was found that, at low temperatures, the lattice contraction observed for bulk FCC Ce was suppressed in Ce/Pr superlattices. (orig.)

3. Identification of the partitioning characteristics of refractory elements in σ and γ phases of Ni-based single crystal superalloys based on first principles

Energy Technology Data Exchange (ETDEWEB)

Sun, Fei [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Mao, Shengcheng [Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124 (China); Zhang, Jianxin, E-mail: jianxin@sdu.edu.cn [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China)

2014-10-15

The impurity formation energies of the σ and γ phases of Ni-based single crystal superalloys doped with W, Cr and Co in different sublattices have been investigated using first-principles based on the density functional theory. The bonding characteristics of the doped σ phase were analyzed with the valence charge densities and the density of the states. The results of the calculations indicated that the typical refractory element W, which has a large atomic size, preferentially partitions into the σ phase due to the nature of the bonding and the unique crystal structure with close-packed planes and large interstitial spaces. In addition, the site preference of refractory elements in γ phase was in the order of W, Cr and Co. - Highlights: • A reasonable σ phase model was adopted in our calculation. • The site preference of refractory elements in σ and γ phases was investigated. • The bonding characteristic was analyzed on the basis of electronic microstructures.

4. A novel single-phase phase space-based voltage mode controller for distributed static compensator to improve voltage profile of distribution systems

International Nuclear Information System (INIS)

Shokri, Abdollah; Shareef, Hussain; Mohamed, Azah; Farhoodnea, Masoud; Zayandehroodi, Hadi

2014-01-01

Highlights: • A new phase space based voltage mode controller for D-STATCOM was proposed. • The proposed compensator was tested to mitigate voltage disturbances in distribution systems. • Voltage fluctuation, voltage sag and voltage swell are considered to evaluate the performance of the proposed compensator. - Abstract: Distribution static synchronous compensator (D-STATCOM) has been developed and attained a great interest to compensate the power quality disturbances of distribution systems. In this paper, a novel single-phase control scheme for D-STATCOM is proposed to improve voltage profile at the Point of Common Coupling (PCC). The proposed voltage mode (VM) controller is based on the phase space algorithm, which is able to rapidly detect and mitigate any voltage deviations from reference voltage including voltage sags and voltage swells. To investigate the efficiency and accuracy of the proposed compensator, a system is modeled using Matlab/Simulink. The simulation results approve the capability of the proposed VM controller to provide a regulated and disturbance-free voltage for the connected loads at the PCC

5. SPICE Modeling of Single-Grain Si TFTs using BSIMSOI

NARCIS (Netherlands)

Baiano, A.; Ishihara, R.; Saputra, N.; Long, J.; Karaki, N.; Inoue, S.; Metselaar, W.; Beenakker, C.I.M.

2007-01-01

Single Grain Thin-film transistors (SG-TFTs) fabricated inside a location-controlled grain by µ-Czochralski process have as high as SOI performance. To model them, BSIMSOI with a proper modification of the mobility is proposed. The model has been verified for n- and p-channel DC and low frequency AC

6. Partitioning of Nanoparticles into Organic Phases and Model Cells

Energy Technology Data Exchange (ETDEWEB)

Posner, J.D.; Westerhoff, P.; Hou, W-C.

2011-08-25

dissolved substances" or "more like colloids" as the division between behaviors of macromolecules versus colloids remains ill-defined. Below we detail our work on two broadly defined objectives: (i) Partitioning of ENP into octanol, lipid bilayer, and water, and (ii) disruption of lipid bilayers by ENPs. We have found that the partitioning of NP reaches pseudo-equilibrium distributions between water and organic phases. The equilibrium partitioning most strongly depends on the particle surface charge, which leads us to the conclusion that electrostatic interactions are critical to understanding the fate of NP in the environment. We also show that the kinetic rate at which particle partition is a function of their size (small particles partition faster by number) as can be predicted from simple DLVO models. We have found that particle number density is the most effective dosimetry to present our results and provide quantitative comparison across experiments and experimental platforms. Cumulatively, our work shows that lipid bilayers are a more effective organic phase than octanol because of the definable surface area and ease of interpretation of the results. Our early comparison of NP partitioning between water and lipids suggest that this measurement can be predictive of bioaccumulation in aquatic organisms. We have shown that nanoparticle disrupt lipid bilayer membranes and detail how NP-bilayer interaction leads to the malfunction of lipid bilayers in regulating the fluxes of ionic charges and molecules. Our results show that the disruption of the lipid membranes is similar to that of toxin melittin, except single particles can disrupt a bilayer. We show that only a single particle is required to disrupt a 150 nm DOPC liposome. The equilibrium leakage of membranes is a function of the particle number density and particle surface charge, consistent with results from our partitioning experiments. Our disruption experiments with varying surface functionality show that

7. Non-uniform chiral phase in effective chiral quark models

International Nuclear Information System (INIS)

2000-01-01

We analyze the phase diagram in effective chiral quark models (the Nambu-Jona-Lasinio model, the σ-model with quarks) and show that at the mean-field level a phase with a periodically-modulated chiral fields separates the usual phases with broken and restored chiral symmetry. A possible signal of such a phase is the production of multipion jets travelling in opposite directions, with individual pions having momenta of the order of several hundred MeV. This signal can be interpreted in terms of disoriented chiral condensates. (author)

8. A theoretical model for measuring mass flowrate and quality of two phase flow by the noise of throttling set

International Nuclear Information System (INIS)

Tong Yunxian; Wang Wenran

1992-03-01

The mass flowrate and steam quality measuring of two phase flowrate is an essential issue in the tests of loss-of-coolant accident (LOCA). The spatial stochastic distribution of phase concentration would cause a differential pressure noise when two phase flow is crossing a throttling set. Under the assumption of that the variance of disperse phase concentration is proportional to its mean phase concentration and by using the separated flow model of two phase flow, it has demonstrated that the variance of noise of differential pressure square root is approximately proportional to the flowrate of disperse phase. Thus, a theoretical model for measuring mass flowrate and quality of two phase flow by noise measurement is developed. It indicates that there is a possibility to measure two phase flowrate and steam quality by using the simple theoretical model and a single throttling set

9. Phase Locking of Multiple Single Neurons to the Local Field Potential in Cat V1.

Science.gov (United States)

Martin, Kevan A C; Schröder, Sylvia

2016-02-24

The local field potential (LFP) is thought to reflect a temporal reference for neuronal spiking, which may facilitate information coding and orchestrate the communication between neural populations. To explore this proposed role, we recorded the LFP and simultaneously the spike activity of one to three nearby neurons in V1 of anesthetized cats during the presentation of drifting sinusoidal gratings, binary dense noise stimuli, and natural movies. In all stimulus conditions and during spontaneous activity, the average LFP power at frequencies >20 Hz was higher when neurons were spiking versus not spiking. The spikes were weakly but significantly phase locked to all frequencies of the LFP. The average spike phase of the LFP was stable across high and low levels of LFP power, but the strength of phase locking at low frequencies (≤10 Hz) increased with increasing LFP power. In a next step, we studied how strong stimulus responses of single neurons are reflected in the LFP and the LFP-spike relationship. We found that LFP power was slightly increased and phase locking was slightly stronger during strong compared with weak stimulus-locked responses. In summary, the coupling strength between high frequencies of the LFP and spikes was not strongly modulated by LFP power, which is thought to reflect spiking synchrony, nor was it strongly influenced by how strongly the neuron was driven by the stimulus. Furthermore, a comparison between neighboring neurons showed no clustering of preferred LFP phase. We argue that hypotheses on the relevance of phase locking in their current form are inconsistent with our findings. Copyright © 2016 the authors 0270-6474/16/362494-09\$15.00/0.

10. The phase field technique for modeling multiphase materials

Science.gov (United States)

2008-10-01

This paper reviews methods and applications of the phase field technique, one of the fastest growing areas in computational materials science. The phase field method is used as a theory and computational tool for predictions of the evolution of arbitrarily shaped morphologies and complex microstructures in materials. In this method, the interface between two phases (e.g. solid and liquid) is treated as a region of finite width having a gradual variation of different physical quantities, i.e. it is a diffuse interface model. An auxiliary variable, the phase field or order parameter \\phi(\\vec{x}) , is introduced, which distinguishes one phase from the other. Interfaces are identified by the variation of the phase field. We begin with presenting the physical background of the phase field method and give a detailed thermodynamical derivation of the phase field equations. We demonstrate how equilibrium and non-equilibrium physical phenomena at the phase interface are incorporated into the phase field methods. Then we address in detail dendritic and directional solidification of pure and multicomponent alloys, effects of natural convection and forced flow, grain growth, nucleation, solid-solid phase transformation and highlight other applications of the phase field methods. In particular, we review the novel phase field crystal model, which combines atomistic length scales with diffusive time scales. We also discuss aspects of quantitative phase field modeling such as thin interface asymptotic analysis and coupling to thermodynamic databases. The phase field methods result in a set of partial differential equations, whose solutions require time-consuming large-scale computations and often limit the applicability of the method. Subsequently, we review numerical approaches to solve the phase field equations and present a finite difference discretization of the anisotropic Laplacian operator.

11. A PWM strategy for acoustic noise reduction for grid-connected single-phase inverters

Energy Technology Data Exchange (ETDEWEB)

Shao, R.; Guo, Z.; Chang, L. [New Brunswick Univ., Fredericton, NB (Canada). Dept. of Electrical and Computer Engineering

2006-07-01

This paper presented a newly proposed and improved pulse width modulation (PWM) strategy for grid-connected single-phase inverters. Small distributed generators using energy from renewable resources such as PV and wind systems typically use grid-connected single-phase inverters as voltage source inverters for good acoustic performance. PWM is generally applied in these inverters in order to achieve good waveforms of output current as required by interconnection standards. In routine simultaneous switching PWM methods, the current ripples through the inverter output filter inductor are at the carrier switching frequency, which is one of the major causes for inverter acoustic noise. The new PWM strategy effectively alleviates acoustic noise and improves output power quality. It is based on the principle of evenly splitting the switching of Insulated Gate Bipolar Transistors (IGBT) in each switching cycle among all IGBTs of the full bridge, thereby using a non-simultaneous mode of PWM which doubles the output current ripple frequency. This increases the inductor current ripple frequency to twice the carrier frequency. It is therefore possible to increase the current ripple frequency, or noise frequency into the range of ultrasonic which is inaudible to the human ear, without increasing the inverter's switching frequency to which the inverter's switching loss is proportional. In addition, this new PWM scheme can reduce the output current harmonics distortion and dc link current ripples. As such, lower capacitance in dc link capacitors and lower inductance of output inductor are needed. The improved PWM scheme was verified in a 3 kW grid-connected single-phase inverter. It was shown that the PWM strategy can be readily implemented with a digital signal processing microcontroller. 8 refs., 11 figs.

12. Reactive Power Injection Strategies for Single-Phase Photovoltaic Systems Considering Grid Requirements

DEFF Research Database (Denmark)

Yang, Yongheng; Wang, Huai; Blaabjerg, Frede

2014-01-01

.g. Germany and Italy. Those advanced features can be provided by next generation PV systems, and will be enhanced in the future to ensure an even efficient and reliable utilization of PV systems. In light of this, Reactive Power Injection (RPI) strategies for single-phase PV systems are explored...... in this paper. The RPI possibilities are: a) constant average active power control, b) constant active current control, c) constant peak current control and d) thermal optimized control strategy. All those strategies comply with the currently active grid codes, but are with different objectives. The proposed...... RPI strategies are demonstrated firstly by simulations and also tested experimentally on a 1 kW singe-phase grid-connected system in LVRT operation mode. Those results show the effectiveness and feasibilities of the proposed strategies with reactive power control during LVRT operation. The design...

13. Phase Portraits of the Autonomous Duffing Single-Degree-of-Freedom Oscillator with Coulomb Dry Friction

Directory of Open Access Journals (Sweden)

Nikola Jakšić

2014-01-01

Full Text Available The paper presents phase portraits of the autonomous Duffing single-degree-of-freedom system with Coulomb dry friction in its δ-γ-ε parameter space. The considered nonlinearities of the cubic stiffness (ε and Coulomb dry friction (γ are widely used throughout the literature. It has been shown that there can be more than one sticking region in the phase plane. It has also been shown that an equilibrium point occurs at the critical combinations of values of the parameters γ and ε which gives rise to zero eigenvalue of the linearised system. The unstable limit cycle may appear in the case of negative viscous damping (δ; δ<0.

14. Quantum sensing of the phase-space-displacement parameters using a single trapped ion

Science.gov (United States)

Ivanov, Peter A.; Vitanov, Nikolay V.

2018-03-01

We introduce a quantum sensing protocol for detecting the parameters characterizing the phase-space displacement by using a single trapped ion as a quantum probe. We show that, thanks to the laser-induced coupling between the ion's internal states and the motion mode, the estimation of the two conjugated parameters describing the displacement can be efficiently performed by a set of measurements of the atomic state populations. Furthermore, we introduce a three-parameter protocol capable of detecting the magnitude, the transverse direction, and the phase of the displacement. We characterize the uncertainty of the two- and three-parameter problems in terms of the Fisher information and show that state projective measurement saturates the fundamental quantum Cramér-Rao bound.

15. Reliable Grid Condition Detection and Control of Single-Phase Distributed Power Generation Systems

DEFF Research Database (Denmark)

Ciobotaru, Mihai

standards addressed to the grid-connected systems will harmonize the combination of the DPGS and the classical power plants. Consequently, the major tasks of this thesis were to develop new grid condition detection techniques and intelligent control in order to allow the DPGS not only to deliver power...... to the utility grid but also to sustain it. This thesis was divided into two main parts, namely "Grid Condition Detection" and "Control of Single-Phase DPGS". In the first part, the main focus was on reliable Phase Locked Loop (PLL) techniques for monitoring the grid voltage and on grid impedance estimation...... techniques. Additionally, a new technique for detecting the islanding mode has been developed and successfully tested. In the second part, the main reported research was concentrated around adaptive current controllers based on the information provided by the grid condition detection techniques. To guarantee...

16. Green synthesis of isopropyl myristate in novel single phase medium Part I: Batch optimization studies.

Science.gov (United States)

Vadgama, Rajeshkumar N; Odaneth, Annamma A; Lali, Arvind M

2015-12-01

Isopropyl myristate finds many applications in food, cosmetic and pharmaceutical industries as an emollient, thickening agent, or lubricant. Using a homogeneous reaction phase, non-specific lipase derived from Candida antartica, marketed as Novozym 435, was determined to be most suitable for the enzymatic synthesis of isopropyl myristate. The high molar ratio of alcohol to acid creates novel single phase medium which overcomes mass transfer effects and facilitates downstream processing. The effect of various reaction parameters was optimized to obtain a high yield of isopropyl myristate. Effect of temperature, agitation speed, organic solvent, biocatalyst loading and batch operational stability of the enzyme was systematically studied. The conversion of 87.65% was obtained when the molar ratio of isopropyl alcohol to myristic acid (15:1) was used with 4% (w/w) catalyst loading and agitation speed of 150 rpm at 60 °C. The enzyme has also shown good batch operational stability under optimized conditions.

17. Zero-voltage ride-through capability of single-phase grid-connected photovoltaic systems

DEFF Research Database (Denmark)

Zhang, Zhen; Yang, Yongheng; Ma, Ruiqing

2017-01-01

Distributed renewable energy systems play an increasing role in today’s energy paradigm. Thus, intensive research activities have been centered on improving the performance of renewable energy systems, including photovoltaic (PV) systems, which should be of multiple-functionality. That is, the PV...... systems should be more intelligent in the consideration of grid stability, reliability, and fault protection. Therefore, in this paper, the performance of single-phase grid-connected PV systems under an extreme grid fault (i.e., when the grid voltage dips to zero) is explored. It has been revealed...... that combining a fast and accurate synchronization mechanism with appropriate control strategies for the zero-voltage ride-through (ZVRT) operation is mandatory. Accordingly, the representative synchronization techniques (i.e., the phase-locked loop (PLL) methods) in the ZVRT operation are compared in terms...

18. Phase transitions in trajectories of a superconducting single-electron transistor coupled to a resonator.

Science.gov (United States)

Genway, Sam; Garrahan, Juan P; Lesanovsky, Igor; Armour, Andrew D

2012-05-01

Recent progress in the study of dynamical phase transitions has been made with a large-deviation approach to study trajectories of stochastic jumps using a thermodynamic formalism. We study this method applied to an open quantum system consisting of a superconducting single-electron transistor, near the Josephson quasiparticle resonance, coupled to a resonator. We find that the dynamical behavior shown in rare trajectories can be rich even when the mean dynamical activity is small, and thus the formalism gives insights into the form of fluctuations. The structure of the dynamical phase diagram found from the quantum-jump trajectories of the resonator is studied, and we see that sharp transitions in the dynamical activity may be related to the appearance and disappearance of bistabilities in the state of the resonator as system parameters are changed. We also demonstrate that for a fast resonator, the trajectories of quasiparticles are similar to the resonator trajectories.

19. Precision in single atom localization via Raman-driven coherence: Role of detuning and phase shift

Energy Technology Data Exchange (ETDEWEB)

Rahmatullah,; Qamar, Sajid, E-mail: sajid_qamar@comsats.edu.pk

2013-10-01

Role of detuning and phase shift associated with the standing-wave driving fields is revisited for precision position measurement of single atom during its motion through two standing-wave fields. A four-level atomic system in diamond configuration is considered where the intermediate levels are coupled to upper and lower level via standing-wave driving fields and atomic decay channels, respectively. The former is responsible for the generation of quantum mechanical coherence via two-photon Raman transition while the latter leads to spontaneous emission of a photon. Due to standing-wave driving fields the atom–field interaction becomes position-dependent and measurement of the frequency of spontaneously emitted photon gives the position information of the atom. The unique position of the atom with much higher spatial resolution, i.e., of the order of λ/100 is observed using detuning and phase shift associated with the standing-wave driving fields.

20. Phase-space dynamics of Bianchi IX cosmological models

International Nuclear Information System (INIS)

Soares, I.D.

1985-01-01

The complex phase-space dynamical behaviour of a class of Biachi IX cosmological models is discussed, as the chaotic gravitational collapse due Poincare's homoclinic phenomena, and the n-furcation of periodic orbits and tori in the phase space of the models. Poincare maps which show this behaviour are constructed merically and applications are discussed. (Author) [pt