WorldWideScience

Sample records for single phase carbon

  1. Chirality-Controlled Growth of Single-Wall Carbon Nanotubes Using Vapor Phase Epitaxy: Mechanistic Understanding and Scalable Production

    Science.gov (United States)

    2016-09-15

    AFRL-AFOSR-VA-TR-2016-0319 Chirality-Controlled Growth of Single -Wall Carbon Nanotubes Using Vapor Phase Epitaxy: Mechanistic Understanding and...controlled growth of single -wall carbon nanotubes using vapor phase epitaxy: mechanistic understanding and scalable production FA9550-14-1-0115 Zhou...controlled synthesis of single -wall carbon nanotubes. Firstly, we have successfully demonstrated a vapor-phase-epitaxy-analogous general strategy for

  2. Solution-phase synthesis of chromium-functionalized single-walled carbon nanotubes

    KAUST Repository

    Kalinina, Irina V.

    2015-03-01

    The solution phase reactions of single-walled carbon nanotubes (SWNTs) with Cr(CO)6 and benzene-Cr(CO)3 can lead to the formation of small chromium clusters. The cluster size can be varied from less than 1 nm to about 4 nm by increasing the reaction time. TEM images suggest that the clusters are deposited predominantly on the exterior walls of the nanotubes. TGA analysis was used to obtain the Cr content and carbon to chromium ratio in the Cr-complexed SWNTs. It is suggested that the carbon nanotube benzenoid structure templates the condensation of chromium atoms and facilitates the loss of carbon monoxide leading to well defined metal clusters.

  3. Chirality-Dependent Vapor-Phase Epitaxial Growth and Termination of Single-Wall Carbon Nanotubes

    Science.gov (United States)

    Liu, Bilu; Liu, Jia; Zhou, Chongwu; USC nanolab Team

    2014-03-01

    Chirality-pure single-wall carbon nanotubes are highly desired for both fundamental study and many of their technological applications. Recently, we have shown that chirality-pure short nanotubes can be used as seeds for vapor-phase epitaxial cloning growth, opening up a new route toward chirality-controlled carbon nanotube synthesis. Nevertheless, the yield of vapor-phase epitaxial growth is rather limited at the present stage, due to the lack of mechanistic understanding of the process. Here we report chirality-dependent growth kinetics and termination mechanism for the vapor-phase epitaxial growth of seven single- chirality nanotubes of (9, 1), (6, 5), (8, 3), (7, 6), (10, 2), (6, 6), and (7, 7), covering near zigzag, medium chiral angle, and near armchair semiconductors, as well as armchair metallic nanotubes. Our results reveal that the growth rates of nanotubes increase with their chiral angles while the active lifetimes of the growth hold opposite trend. Consequently, the chirality distribution of a nanotube ensemble is jointly determined by both growth rates and lifetimes. These results correlate nanotube structures and properties with their growth behaviors and deepen our understanding of chirality-controlled growth of nanotubes.

  4. Selective distributions of functionalized single-walled carbon nanotubes in a polymeric reverse hexagonal phase.

    Science.gov (United States)

    Ha, Jae-Min; Jang, Hyung-Sik; Lim, Sung-Hwan; Choi, Sung-Min

    2015-08-07

    We have investigated the distributions of individually isolated and hydrophilically functionalized single-walled carbon nanotubes (p-SWNTs) in the Pluronic L121-water system at the reverse hexagonal phase using small-angle X-ray scattering (SAXS) and contrast-matched small-angle neutron scattering (SANS) measurements. As the p-SWNT-L121-water system is transitioned from the lamellar phase to the reverse hexagonal phase with temperature, p-SWNTs which were selectively distributed in the polar layers of the lamellar structure become selectively distributed in the cylindrical polar cores of the reverse hexagonal structure, forming a hexagonal array of p-SWNTs. This was clearly confirmed by the contrast-matched SANS measurements. The selective distribution of p-SWNTs in the reverse hexagonal phase is driven by the selective affinity of p-SWNTs to the polar domains of the block copolymer system. The method demonstrated in this study provides a new route for fabricating ordered SWNT superstructures and may be applicable for inorganic 1D nanoparticles such as semiconducting, metallic and magnetic nanorods which are of great interest.

  5. Electron Density Modification of Single Wall Carbon Nanotubes (SWCNT by Liquid-Phase Molecular Adsorption of Hexaiodobenzene

    Directory of Open Access Journals (Sweden)

    Hirofumi Kanoh

    2013-02-01

    Full Text Available Electron density of single wall carbon nanotubes (SWCNT is effectively modified by hexaiodobenzene (HIB molecules using liquid-phase adsorption. UV-Vis-NIR absorption spectra of the HIB-adsorbed SWCNT, especially in the NIR region, showed a disappearance of S11 transitions between the V1 valance band and the C1 conduction band of van Hove singularities which can be attributed to the effective charge transfer between HIB and the SWCNT. The adsorption of HIB also caused significant peak-shifts (lower frequency shift around 170 cm−1 and higher shift around 186 cm‑1 and an intensity change (around 100–150 cm−1 and 270–290 cm−1 in the radial breathing mode of Raman spectra. The charge transfer from SWCNT to HIB was further confirmed by the change in the C1s peak of X-ray photoelectron spectrum, revealing the oxidation of carbon in SWCNT upon HIB adsorption.

  6. Single-Phase PLLs

    DEFF Research Database (Denmark)

    Golestan, Saeed; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2017-01-01

    Single-phase phase-locked loops (PLLs) are popular for the synchronization and control of single-phase gridconnected converters. They are also widely used for monitoring and diagnostic purposes in the power and energy areas. In recent years, a large number of single-phase PLLs with different...... structures and properties have been proposed in the literature. The main aim of this paper is to provide a review of these PLLs. To this end, the single-phase PLLs are first classified into two major categories: 1) power-based PLLs (pPLLs), and 2) quadrature signal generation-based PLLs (QSG......-PLLs). The members of each category are then described and their pros and cons are discussed. This work provides a deep insight into characteristics of different single-phase PLLs and, therefore, can be considered as a reference for researchers and engineers....

  7. Effect of single and multi-wall carbon nanotubes on the mechanical properties of Gd-123 superconducting phase

    Science.gov (United States)

    Anas, M.; Ebrahim, Shaker; Eldeen, I. G.; Awad, R.; Abou-Aly, A. I.

    2017-10-01

    The influence of single wall carbon nanotubes SWCNTs and multi wall carbon nanotubes MWCNTs on Vickers microhardness of Gd-123 superconducting phase is studied. Samples of type (SWCNTs)x and (MWCNTs)xGdBa2Cu3O7-δ, composite where, 0.0 ≤ x ≤ 0.1 wt.%, are prepared by solid-state reaction technique. The samples are characterized by X-ray powder diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM). Moreover the samples are examined by measuring electrical resistivity and Vickers microhardness. The obtained results showed an enhancement in the phase formation and grains connectivity up to 0.06 and 0.08 wt.% for SWCNTs and MWCNTs added samples, respectively. Likewise the superconducting transition temperature Tc was improved at a low content of CNTs but it suppressed for higher concentrations. In addition, the analysis of Vickers microhardness measurements suggests that the most suitable model that describes the behavior of our sample is proportional specimen resistance PSR model.

  8. Enhanced thermal conductivity of form-stable phase change composite with single-walled carbon nanotubes for thermal energy storage.

    Science.gov (United States)

    Qian, Tingting; Li, Jinhong; Feng, Wuwei; Nian, Hong'en

    2017-03-16

    A striking contrast in the thermal conductivities of polyethylene glycol (PEG)/diatomite form-stable phase change composite (fs-PCC) with single-walled carbon nanotubes (SWCNs) as nano-additive has been reported in our present study. Compared to the pure PEG, the thermal conductivity of the prepared fs-PCC has increased from 0.24 W/mK to 0.87 W/Mk with a small SWCNs loading of 2 wt%. SWCNs are decorated on the inner surface of diatomite pores whilst retaining its porous structure. Compared to PEG/diatomite fs-PCC, the melting and solidification time of the PEG/diatomite/SWCNs fs-PCC are respectively decreased by 54.7% and 51.1%, and its thermal conductivity is 2.8 times higher. The composite can contain PEG as high as 60 wt% and maintain its original shape perfectly without any PEG leakage after subjected to 200 melt-freeze cycles. DSC results indicates that the melting point of the PEG/diatomite/SWCNs fs-PCC shifts to a lower temperature while the solidification point shifts to a higher temperature due to the presence of SWCNs. Importantly, the use of SWCNs is found to have clear beneficial effects for enhancing the thermal conductivity and thermal storage/release rates, without affecting thermal properties, chemical compatibility and thermal stability. The prepared PEG/diatomite/SWCNs fs-PCC exhibits excellent chemical and thermal durability and has potential application in solar thermal energy storage and solar heating.

  9. Simultaneous Determination of Parathion, Malathion, Diazinon, and Pirimiphos Methyl in Dried Medicinal Plants Using Solid-Phase Microextraction Fibre Coated with Single-Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Reza Ahmadkhaniha

    2012-01-01

    Full Text Available A reliable and sensitive headspace solid-phase microextraction gas chromatography-mass spectrometry method for simultaneous determination of different organophosphorus pesticides in dried medicinal plant samples is described. The analytes were extracted by single-walled carbon nanotubes as a new solid-phase microextraction adsorbent. The developed method showed good performance. For diazinon and pirimiphos methyl calibration, curves were linear (r2≥0.993 over the concentration ranges from 1.5 to 300 ng g−1, and the limit of detection at signal-to-noise ratio of 3 was 0.3 ng g−1. For parathion and malathion, the linear range and limit of detection were 2.5–300 (r2≥0.991 and 0.5 ng g−1, respectively. In addition, a comparative study between the single-walled carbon nanotubes and a commercial polydimethylsiloxane fibre for the determination of target analytes was carried out. Single-walled carbon nanotubes fibre showed higher extraction capacity, better thermal stability (over 350∘C, and longer lifespan (over 250 times than the commercial polydimethylsiloxane fibre. The developed method was successfully applied to determine target organophosphorus pesticides in real samples.

  10. Direct synthesis of pure single-crystalline Magnéli phase Ti8O15 nanowires as conductive carbon-free materials for electrocatalysis

    Science.gov (United States)

    He, Chunyong; Chang, Shiyong; Huang, Xiangdong; Wang, Qingquan; Mei, Ao; Shen, Pei Kang

    2015-02-01

    The Magnéli phase Ti8O15 nanowires (NWs) have been grown directly on a Ti substrate by a facile one-step evaporation-deposition synthesis method under a hydrogen atmosphere. The Ti8O15 NWs exhibit an outstanding electrical conductivity at room temperature. The electrical conductivity of a single Ti8O15 nanowire is 20.6 S cm-1 at 300 K. Theoretical calculations manifest that the existence of a large number of oxygen vacancies changes the band structure, resulting in the reduction of the electronic resistance. The Magnéli phase Ti8O15 nanowires have been used as conductive carbon-free supports to load Pt nanoparticles for direct methanol oxidation reaction (MOR). The Pt/Ti8O15 NWs show an enhanced activity and extremely high durability compared with commercial Pt/C catalysts.The Magnéli phase Ti8O15 nanowires (NWs) have been grown directly on a Ti substrate by a facile one-step evaporation-deposition synthesis method under a hydrogen atmosphere. The Ti8O15 NWs exhibit an outstanding electrical conductivity at room temperature. The electrical conductivity of a single Ti8O15 nanowire is 20.6 S cm-1 at 300 K. Theoretical calculations manifest that the existence of a large number of oxygen vacancies changes the band structure, resulting in the reduction of the electronic resistance. The Magnéli phase Ti8O15 nanowires have been used as conductive carbon-free supports to load Pt nanoparticles for direct methanol oxidation reaction (MOR). The Pt/Ti8O15 NWs show an enhanced activity and extremely high durability compared with commercial Pt/C catalysts. Electronic supplementary information (ESI) available: Additional data for the characterization and experimental details see DOI: 10.1039/c4nr05806b

  11. Magnetic single-walled carbon nanotubes-dispersive solid-phase extraction method combined with liquid chromatography-tandem mass spectrometry for the determination of paraquat in urine.

    Science.gov (United States)

    Ruan, Xiao-Lin; Qiu, Jing-Jing; Wu, Chuan; Huang, Tao; Meng, Rui-Bo; Lai, Yong-Qiang

    2014-08-15

    In this study, magnetic single-walled carbon nanotubes (MSWCNTs) were prepared by impregnating magnetic Fe3O4 nanoparticles onto the surfaces of carboxylic single-walled carbon nanotubes based on electrostatic interactions. The prepared MSWCNTs were used as the adsorbent for the dispersive solid-phase extraction (DSPE) of paraquat from human urine. After adsorption, the paraquat was quantitatively desorbed with 5%TFA in acetonitrile and determined by HPLC-MS. Extraction parameters such as the type of CNT adsorbent, extraction time, sample volume, wash solvent, and the type and volume of desorption solvent were optimized to obtain high DSPE recoveries and extraction efficiencies. Under the optimized conditions, the calibration curve was linear in the range 3.75-375.0 μg/L with a correlation coefficient of 0.999 45. The LOD (S/N=3) and LOQ (S/N=10) were 0.94 and 2.82 μg/L, respectively. The recoveries ranged from 92.89 to 108.9% for spiked real urine samples with RSDs below 3.21%. Finally, the new method was successfully used to determine paraquat in urine samples of suspected paraquat poisoning patients. The MSWCNTs exhibited suitable properties and a high adsorption capacity for the extraction of paraquat. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Single-Step Fabrication Using a Phase Inversion Method of Poly(vinylidene fluoride) (PVDF) Activated Carbon Air Cathodes for Microbial Fuel Cells

    KAUST Repository

    Yang, Wulin

    2014-10-14

    Air cathodes used in microbial fuel cells (MFCs) need to have high catalytic activity for oxygen reduction, but they must also be easy to manufacture, inexpensive, and watertight. A simple one-step, phase inversion process was used here to construct an inexpensive MFC cathode using a poly(vinylidene fluoride) (PVDF) binder and an activated carbon catalyst. The phase inversion process enabled cathode preparation at room temperatures, without the need for additional heat treatment, and it produced for the first time a cathode that did not require a separate diffusion layer to prevent water leakage. MFCs using this new type of cathode produced a maximum power density of 1470 ± 50 mW m–2 with acetate as a substrate, and 230 ± 10 mW m–2 with domestic wastewater. These power densities were similar to those obtained using cathodes made using more expensive materials or more complex procedures, such as cathodes with a polytetrafluoroethylene (PTFE) binder and a poly(dimethylsiloxane) (PDMS) diffusion layer, or a Pt catalyst. Even though the PVDF cathodes did not have a diffusion layer, they withstood up to 1.22 ± 0.04 m of water head (∼12 kPa) without leakage, compared to 0.18 ± 0.02 m for cathodes made using PTFE binder and PDMS diffusion layer. The cost of PVDF and activated carbon ($3 m–2) was less than that of the stainless steel mesh current collector ($12 m–2). PVDF-based AC cathodes therefore are inexpensive, have excellent performance in terms of power and water leakage, and they can be easily manufactured using a single phase inversion process at room temperature.

  13. Many Phases of Carbon

    Indian Academy of Sciences (India)

    carbo' meaning charcoal. Carbon is known as the king of elements owing to its versatility and diversity in all fields, which is unquestionable. It is widely distributed in N a- ture, from molecules of life to matter in outer cosmos. It holds the sixth place ...

  14. Single-phase to three-phase power conversion interface

    Science.gov (United States)

    Wu, Jinn-Chang; Wang, Yung-Shan; Jou, Hurng-Liahng; Lu, Wei-Tso

    2016-07-01

    This study proposes a single-phase to three-phase power conversion interface which converts the power from a single-phase utility to three-phase power for a three-phase load. The proposed single-phase to three-phase power conversion interface comprises a bridge-type switch set, a set of three-phase inductors, a transformer set and a set of three-phase capacitors. A current-mode control controls the switching of bridge-type switch set, to generate a set of nonzero-sequence (NZS) currents and a set of zero-sequence (ZS) currents. The transformer set is used to decouple the NZS currents and the ZS currents. The NZS currents are used to generate a high-quality three-phase voltage that supplies power to a three-phase load. The ZS currents flow to the single-phase utility so that the utility current is sinusoidal and in phase with the utility voltage. Accordingly, only a bridge-type switch set is used in the single-phase to three-phase power conversion interface to simply the power circuit. A prototype is developed and tested to verify the performance of the proposed single-phase to three-phase power conversion interface.

  15. Noncovalent functionalization of pristine CVD single-walled carbon nanotubes with 3d metal(II) phthalocyanines by adsorption from the gas phase

    Science.gov (United States)

    Basiuk, Vladimir A.; Flores-Sánchez, Laura J.; Meza-Laguna, Victor; Flores-Flores, José Ocotlán; Bucio-Galindo, Lauro; Puente-Lee, Iván; Basiuk, Elena V.

    2018-04-01

    Noncovalent hybrids of carbon nanotubes (CNTs) with phthalocyanines (Pcs) is a subject of growing research effort focused on the development of new efficient organic photovoltaic cells, heterogeneous catalysts, lithium batteries, gas sensors, field effect transistors, among other possible applications. The main advantage of using unsubstituted Pcs is their very moderate cost and easy commercial availability. Unfortunately, the deposition of unsubstituted Pcs onto CNT sidewalls via the traditional liquid-phase strategy proves to be very problematic due to an extremely poor solubility of Pcs. At the same time, unsubstituted free-base H2Pc ligand and many of its transition metal complexes exhibit high thermal stability and volatility under reduced pressure, which allows for their physical vapor deposition onto solid surfaces. In the present work, we demonstrated the possibility of simple, fast, efficient and environmentally friendly noncovalent functionalization of single-walled CNTs (SWNTs) with a series of 3d metal(II) phthalocyanines Me(II)Pc, where Me = Co, Ni, Cu and Zn. The functionalization can be performed at 400-500 °C under moderate vacuum, and takes about 2-3 h only. The nanohybrids obtained were characterized by means of Fourier-transform infrared, Raman, UV-vis and energy-dispersive X-ray spectroscopy (EDS), thermogravimetric analysis (TGA), scanning and transmission electron microscopy. TGA suggested that Pc weight content is 30%, 17% and 35% for NiPc, CuPc and ZnPc, respectively (CoPc exhibited anomalous behavior), which is close to the estimates from EDS spectra of 24-39%, 27-36% and 27-44% for CoPc, CuPc and ZnPc, respectively. A strong increase in intensity of D band in the Raman spectra of SWNT‒Pc hybrids, as compared to that of pristine nanotubes, was interpreted as very strong interactions between Pc molecules and SWNT sidewalls. Very high absolute values of binding energies of 32.46-37.12 kcal/mol and the patterns of HOMO and LUMO distribution

  16. Single electron-ics with carbon nanotubes

    NARCIS (Netherlands)

    Götz, G.T.J.

    2010-01-01

    We experimentally investigate Quantum Dots, formed in Carbon Nanotubes. The first part of this thesis deals with charge sensing on such quantum dots. The charge sensor is a metallic Single-electron-transistor, sensitive to the charge of a single electron on the quantum dot. We use this technique for

  17. Novel phase of carbon, ferromagnetism, and conversion into diamond

    International Nuclear Information System (INIS)

    Narayan, Jagdish; Bhaumik, Anagh

    2015-01-01

    We report the discovery of a new phase of carbon (referred to as Q-carbon) and address fundamental issues related to direct conversion of carbon into diamond at ambient temperatures and pressures in air without any need for catalyst and presence of hydrogen. The Q-carbon is formed as result of quenching from super undercooled state by using high-power nanosecond laser pulses. We discuss the equilibrium phase diagram (P vs. T) of carbon and show that by rapid quenching kinetics can shift thermodynamic graphite/diamond/liquid carbon triple point from 5000 K/12 GPa to super undercooled carbon at atmospheric pressure in air. It is shown that nanosecond laser heating of diamond-like amorphous carbon on sapphire, glass, and polymer substrates can be confined to melt carbon in a super undercooled state. By quenching the carbon from the super undercooled state, we have created a new state of carbon (Q-carbon) from which nanodiamond, microdiamond, microneedles, and single-crystal thin films are formed depending upon the nucleation and growth times allowed for diamond formation. The Q-carbon quenched from liquid is a new state of solid carbon with a higher mass density than amorphous carbon and a mixture of mostly fourfold sp 3 (75%–85%) with the rest being threefold sp 2 bonded carbon (with distinct entropy). It is expected to have new and improved mechanical hardness, electrical conductivity, chemical, and physical properties, including room-temperature ferromagnetism (RTFM) and enhanced field emission. Here we present interesting results on RTFM, enhanced electrical conductivity and surface potential of Q-carbon to emphasize its unique properties. The Q-carbon exhibits robust bulk ferromagnetism with estimated Curie temperature of about 500 K and saturation magnetization value of 20 emu g −1 . From the Q-carbon, diamond phase is nucleated and a variety of micro- and nanostructures and large-area single-crystal diamond sheets are grown by allowing growth times

  18. Control of Single-Stage Single-Phase PV inverter

    DEFF Research Database (Denmark)

    Ciobotaru, Mihai; Teodorescu, Remus; Blaabjerg, Frede

    2005-01-01

    In this paper the issue of control strategies for single-stage photovoltaic (PV) inverter is addressed. Two different current controllers have been implemented and an experimental comparison between them has been made. A complete control structure for the single-phase PV system is also presented...

  19. Preparation of single phase molybdenum boride

    International Nuclear Information System (INIS)

    Camurlu, Hasan Erdem

    2011-01-01

    Highlights: → Formation of Mo and a mixture of molybdenum boride phases take place in preparation of molybdenum borides. → It is intricate to prepare single phase molybdenum borides. → Formation of single phase MoB from MoO 3 + B 2 O 3 + Mg mixtures has not been reported previously. → Single phase MoB was successfully prepared through a combination of mechanochemical synthesis and annealing process. - Abstract: The formation of MoB through volume combustion synthesis (VCS), and through mechanochemical synthesis (MCS) followed by annealing has been investigated. MoO 3 , B 2 O 3 and Mg were used as reactants while MgO and NaCl were introduced as diluents. Products were leached in dilute HCl solution and were subjected to X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) examinations. Mo was the major phase component in the VCS products under all the experimental conditions. Mo 2 B, MoB, MoB 2 and Mo 2 B 5 were found as minor phases. Products of MCS contained a mixture of Mo 2 B, MoB, MoB 2 and Mo. After annealing the MCS product at 1400 deg. C for 3 h, single phase α-MoB was obtained.

  20. Conductivity of single-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Gets, A. V.; Krainov, V. P., E-mail: vpkrainov@mail.ru [Moscow Institute of Physics and Technology (Russian Federation)

    2016-12-15

    The conductivity of single-walled carbon nanotubes at low temperatures is calculated. It is shown that it is much higher than the well-known conductivity of a model 1D Fermi system. This is a purely quantum-mechanical effect.

  1. Regenerable Carbon Filter, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A Regenerable Carbon Filter (RCF) is proposed for the removal of carbonaceous particulate matter produced in Environmental Control and Life Support (ECLS) processes....

  2. Dependency of single-phase FAC of carbon and low-alloy steels for NPP system piping on pH, orifice distance and material

    International Nuclear Information System (INIS)

    Moon, Jeong Ho; Chung, Hung Ho; Sung, Ki Woung; Kim, Uh Chul; Rho, Jae Seong

    2005-01-01

    To investigate the Flow-Accelerated Corrosion (FAC) dependency of carbon steel (A106 Gr. B) and low-alloy steels (1Cr-1/2Mo, 2 1/4Cr-1Mo) on pH, orifice distance, and material, experiments were carried out. These experiments were performed using a flow velocity of 4 m/sec (partly 9 m/sec) at pH 8.0∼10.0 in an oxygen-free aqueous solution re-circulated in an Erosion-Corrosion Test Loop at 130 .deg. ... for 500 hours. The weight loss of the carbon steel specimens appeared to be positively dependent on the flow velocity. That of the carbon and low-alloy steel specimens also showed to be distinguishably dependent on the pH. At pH levels of 8.0∼9.5 it decreased, but increased from 9.5 to 10.0. Utility water chemistry personnel should carefully consider this kind of pH dependency to control the water system pH to mitigate FAC of the piping system material. The weight loss of the specimens located further from the orifice in the distance range of 6.8∼27.2 mm was shown to be greater, except for 2 1/4Cr-1Mo, which showed no orifice distance dependency. Low alloy steel specimens exhibited a factor of two times better resistance to FAC than that of the carbon steel. Based on this kind of FAC dependency of the carbon and low-alloy steels on the orifice distance and material, we conclude that it is necessary to alternate the composition of the secondary piping system material of NPPs, using low-alloy steels, such as 2 1/4Cr-1Mo, particularly when the system piping has to be replaced

  3. Single phase induction motor with starting performance

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, M.; Demeter, E. [Research Institute for Electrical Machines, ICPE-ME, Bucharest (Romania); Navrapescu, V. [University `Politehnica` Bucharest, Electrical Engineering Faculty Splaiul Independentei, Bucharest (Romania)

    1997-12-31

    The paper presents problems related to a special type of single phase induction motor. The main novelty consists in the use of a conducting (aluminium casted) shell distributed on the periferic region of the rotor. As a result the starting performance, as well as the rated ones, is much improved in comparison with the conventional construction. (orig.) 4 refs.

  4. Preparation and thermal properties characterization of carbonate salt/carbon nanomaterial composite phase change material

    International Nuclear Information System (INIS)

    Tao, Y.B.; Lin, C.H.; He, Y.L.

    2015-01-01

    Highlights: • Nanocomposite phase change materials were prepared and characterized. • Larger specific surface area is more efficient to enhance specific heat. • Columnar structure is more efficient to enhance thermal conductivity. • Thermal conductivity enhancement is the key. • Single walled carbon nanotube is the optimal nanomaterial additive. - Abstract: To enhance the performance of high temperature salt phase change material, four kinds of carbon nanomaterials with different microstructures were mixed into binary carbonate eutectic salts to prepare carbonate salt/nanomaterial composite phase change material. The microstructures of the nanomaterial and composite phase change material were characterized by scanning electron microscope. The thermal properties such as melting point, melting enthalpy, specific heat, thermal conductivity and total thermal energy storage capacity were characterized. The results show that the nanomaterial microstructure has great effects on composite phase change material thermal properties. The sheet structure Graphene is the best additive to enhance specific heat, which could be enhanced up to 18.57%. The single walled carbon nanotube with columnar structure is the best additive to enhance thermal conductivity, which could be enhanced up to 56.98%. Melting point increases but melting enthalpy decreases with nanomaterial specific surface area increase. Although the additives decrease the melting enthalpy of composite phase change material, they also enhance the specific heat. As a combined result, the additives have little effects on thermal energy storage capacity. So, for phase change material performance enhancement, more emphasis should be placed on thermal conductivity enhancement and single walled carbon nanotube is the optimal nanomaterial additive

  5. Control of Single-Stage Single-Phase PV inverter

    DEFF Research Database (Denmark)

    Ciobotaru, Mihai; Teodorescu, Remus; Blaabjerg, Frede

    2005-01-01

    In this paper the issue of control strategies for single-stage photovoltaic (PV) inverter is addressed. Two different current controllers have been implemented and an experimental comparison between them has been made. A complete control structure for the single-phase PV system is also presented......-forward; - and the grid current controller implemented in two different ways, using the classical proportional integral (PI) and the novel proportional resonant (PR) controllers. The control strategy was tested experimentally on 1.5 kW PV inverter........ The main elements of the PV control structure are: - a maximum power point tracker (MPPT) algorithm using the incremental conductance method; - a synchronization method using the phase-locked-loop (PLL), based on delay; - the input power control using the dc voltage controller and power feed...

  6. Carbon nanotube stationary phases for microchip electrochromatography

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Bøggild, Peter; Kutter, Jörg Peter

    The use of nanomaterials in separation science has increased rapidly in the last decade. The reason for this is to take advantage of the unique properties of these materials, such as a very high surface-to-volume ratio and favourable sorbent behaviour. Carbon nanostructures, such as carbon...... surface can furthermore be used directly as a stationary phase in reverse-phase separations, thereby avoiding subsequent functionalization of the nanostructures. This significantly reduces the fabrication time and possibly also increases the reproducibility of the column performance. In this presentation......, microfluidic devices with microfabricated carbon nanotube columns for electrochromatographic separations will be presented. The electrically conductive carbon nanotube layer has been patterned into hexoganol micropillars in order to support electroosmotic flow without forming gas bubbles from electrolysis...

  7. Superconductivity in single wall carbon nanotubes

    Directory of Open Access Journals (Sweden)

    H Yavari

    2009-08-01

    Full Text Available   By using Greens function method we first show that the effective interaction between two electrons mediated by plasmon exchange can become attractive which in turn can lead to superconductivity at a high critical temperature in a singl wall carbon nanotubes (SWCNT. The superconducting transition temperature Tc for the SWCNT (3,3 obtained by this mechanism agrees with the recent experimental result. We also show as the radius of SWCNT increases, plasmon frequency becomes lower and leads to lower Tc.

  8. Phase transitions in biogenic amorphous calcium carbonate.

    Science.gov (United States)

    Gong, Yutao U T; Killian, Christopher E; Olson, Ian C; Appathurai, Narayana P; Amasino, Audra L; Martin, Michael C; Holt, Liam J; Wilt, Fred H; Gilbert, P U P A

    2012-04-17

    Crystalline biominerals do not resemble faceted crystals. Current explanations for this property involve formation via amorphous phases. Using X-ray absorption near-edge structure (XANES) spectroscopy and photoelectron emission microscopy (PEEM), here we examine forming spicules in embryos of Strongylocentrotus purpuratus sea urchins, and observe a sequence of three mineral phases: hydrated amorphous calcium carbonate (ACC · H(2)O) → dehydrated amorphous calcium carbonate (ACC) → calcite. Unexpectedly, we find ACC · H(2)O-rich nanoparticles that persist after the surrounding mineral has dehydrated and crystallized. Protein matrix components occluded within the mineral must inhibit ACC · H(2)O dehydration. We devised an in vitro, also using XANES-PEEM, assay to identify spicule proteins that may play a role in stabilizing various mineral phases, and found that the most abundant occluded matrix protein in the sea urchin spicules, SM50, stabilizes ACC · H(2)O in vitro.

  9. Center for Applications of Single-Walled Carbon Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Resasco, Daniel E

    2008-02-21

    This report describes the activities conducted under a Congressional Direction project whose goal was to develop applications for Single-walled carbon nanotubes, under the Carbon Nanotube Technology Center (CANTEC), a multi-investigator program that capitalizes on OU’s advantageous position of having available high quality carbon nanotubes. During the first phase of CANTEC, 11 faculty members and their students from the College of Engineering developed applications for carbon nanotubes by applying their expertise in a number of areas: Catalysis, Reaction Engineering, Nanotube synthesis, Surfactants, Colloid Chemistry, Polymer Chemistry, Spectroscopy, Tissue Engineering, Biosensors, Biochemical Engineering, Cell Biology, Thermal Transport, Composite Materials, Protein synthesis and purification, Molecular Modeling, Computational Simulations. In particular, during this phase, the different research groups involved in CANTEC made advances in the tailoring of Single-Walled Carbon Nanotubes (SWNT) of controlled diameter and chirality by Modifying Reaction Conditions and the Nature of the catalyst; developed kinetic models that quantitatively describe the SWNT growth, created vertically oriented forests of SWNT by varying the density of metal nanoparticles catalyst particles, and developed novel nanostructured SWNT towers that exhibit superhydrophobic behavior. They also developed molecular simulations of the growth of Metal Nanoparticles on the surface of SWNT, which may have applications in the field of fuell cells. In the area of biomedical applications, CANTEC researchers fabricated SWNT Biosensors by a novel electrostatic layer-by-layer (LBL) deposition method, which may have an impact in the control of diabetes. They also functionalized SWNT with proteins that retained the protein’s biological activity and also retained the near-infrared light absorbance, which finds applications in the treatment of cancer.

  10. Single-Receiver GPS Phase Bias Resolution

    Science.gov (United States)

    Bertiger, William I.; Haines, Bruce J.; Weiss, Jan P.; Harvey, Nathaniel E.

    2010-01-01

    Existing software has been modified to yield the benefits of integer fixed double-differenced GPS-phased ambiguities when processing data from a single GPS receiver with no access to any other GPS receiver data. When the double-differenced combination of phase biases can be fixed reliably, a significant improvement in solution accuracy is obtained. This innovation uses a large global set of GPS receivers (40 to 80 receivers) to solve for the GPS satellite orbits and clocks (along with any other parameters). In this process, integer ambiguities are fixed and information on the ambiguity constraints is saved. For each GPS transmitter/receiver pair, the process saves the arc start and stop times, the wide-lane average value for the arc, the standard deviation of the wide lane, and the dual-frequency phase bias after bias fixing for the arc. The second step of the process uses the orbit and clock information, the bias information from the global solution, and only data from the single receiver to resolve double-differenced phase combinations. It is called "resolved" instead of "fixed" because constraints are introduced into the problem with a finite data weight to better account for possible errors. A receiver in orbit has much shorter continuous passes of data than a receiver fixed to the Earth. The method has parameters to account for this. In particular, differences in drifting wide-lane values must be handled differently. The first step of the process is automated, using two JPL software sets, Longarc and Gipsy-Oasis. The resulting orbit/clock and bias information files are posted on anonymous ftp for use by any licensed Gipsy-Oasis user. The second step is implemented in the Gipsy-Oasis executable, gd2p.pl, which automates the entire process, including fetching the information from anonymous ftp

  11. Estimation of mechanical properties of single wall carbon nanotubes ...

    Indian Academy of Sciences (India)

    - rent work to evaluate the mechanical properties of Zigzag, Armchair and Chiral Single wall Carbon Nanotubes (SWCNT) of different diameters and chiralities. Three dif- ferent types of atomic bonds, that is Carbon–Carbon covalent bond and ...

  12. Methods for Gas Sensing with Single-Walled Carbon Nanotubes

    Science.gov (United States)

    Kaul, Anupama B. (Inventor)

    2013-01-01

    Methods for gas sensing with single-walled carbon nanotubes are described. The methods comprise biasing at least one carbon nanotube and exposing to a gas environment to detect variation in temperature as an electrical response.

  13. Optical Characterization and Applications of Single Walled Carbon Nanotubes

    Science.gov (United States)

    Strano, Michael S.

    2005-03-01

    have a tunable n-IR emission that responds to changes in the local dielectric function but remains stable to permanent photobleaching. We report the synthesis and successful testing of solution phase, near-infrared sensors, with β-D-glucose sensing as a model system, using single walled carbon nanotubes that modulate their emission in response to the adsorption of specific biomolecules. New types of non-covalent functionalization using electron withdrawing molecules are shown to provide sites for transferring electrons in and out of the nanotube. We also show two distinct mechanisms of signal transduction -- fluorescence quenching and charge transfer. The results demonstrate new opportunities for nanoparticle optical sensors that operate in strongly absorbing media of relevance to medicine or biology.

  14. Investigation of Chirality Selection Mechanism of Single Walled Carbon Nanotube

    Science.gov (United States)

    2016-12-13

    AFRL-AFOSR-JP-TR-2017-0007 Investigation of Chirality Selection Mechanism of Single -Walled Carbon Nanotube Seun Min Kim KOREA INSTITUTE OF SCIENCE...Selection Mechanism of Single -Walled Carbon Nanotube 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-15-1-4099 5c.  PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR...research involved investigation of two fundamental mechanisms of carbon nanotube (CNT) growth: chirality selection of single -walled CNT (SWCNT) and

  15. Instability of single-phase natural circulation

    International Nuclear Information System (INIS)

    Xie Heng; Zhang Jinling; Jia Dounan

    1997-01-01

    The author has investigated the instability of single-phase flows in natural circulation loops. The momentum equation and energy equation are made dimensionless according to some definitions, and some important dimensionless parameters are gotten. The authors decomposed the mean mass flowrate and temperature into a steady solution and a small disturbance equations. Through solving the disturbance equations, the authors get the neutral stability curves. The authors have studied the effect of the two parameters which represent the ratio of buoyancy force to the friction loss in the loop on the stability of loops. The authors also have studied the effect of the difference of height between the center of heat source and the heat sink on the stability

  16. Electrostatic sensing and electrochemistry with single carbon nanotubes

    NARCIS (Netherlands)

    Heller, I.

    2009-01-01

    This thesis describes the experimental study of devices based on single carbon nanotubes in the context of (bio)sensing in aqueous solutions. Carbon nanotubes are cylindrical molecules of sp2- carbon, about one nanometer in diameter and typically several micrometers long, which have semiconducting

  17. Offset configurations for single- and double-strand DNA inside single-walled carbon nanotubes.

    Science.gov (United States)

    Alshehri, Mansoor H; Cox, Barry J; Hill, James M

    2014-01-01

    Nanotechnology is a rapidly expanding research area, and it is believed that the unique properties of molecules at the nano-scale will prove to be of substantial benefit to mankind, especially so in medicine and electronics. Here we use applied mathematical modelling exploiting the basic principles of mechanics and the 6-12 Lennard-Jones potential function together with the continuum approximation, which assumes that intermolecular interactions can be approximated by average atomic surface densities. We consider the equilibrium offset positions for both single-strand and double-strand DNA molecules inside a single-walled carbon nanotube, and we predict offset positions with reference to the cross-section of the carbon nanotube. For the double-strand DNA, the potential energy is determined for the general case for any helical phase angle ϕ, but we also consider a special case when ϕ = π, which leads to a substantial simplification in the analytical expression for the energy. As might be expected, our results confirm that the global minimum energy positions for a single-strand DNA molecule and a double-strand DNA molecule will lie off axis and they become closer to the tube wall as the radius of the tube increases.

  18. Surprising synthesis of nanodiamond from single-walled carbon nanotubes by the spark plasma sintering process

    Science.gov (United States)

    Mirzaei, Ali; Ham, Heon; Na, Han Gil; Kwon, Yong Jung; Kang, Sung Yong; Choi, Myung Sik; Bang, Jae Hoon; Park, No-Hyung; Kang, Inpil; Kim, Hyoun Woo

    2016-10-01

    Nanodiamond (ND) was successfully synthesized using single-walled carbon nanotubes (SWCNTs) as a pure solid carbon source by means of a spark plasma sintering process. Raman spectra and X-ray diffraction patterns revealed the generation of the cubic diamond phase by means of the SPS process. Lattice-resolved TEM images confirmed that diamond nanoparticles with a diameter of about ˜10 nm existed in the products. The NDs were generated mainly through the gas-phase nucleation of carbon atoms evaporated from the SWCNTs. [Figure not available: see fulltext.

  19. Ordered phases of encapsulated diamondoids into carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Legoas, S B [Departamento de Fisica, CCT, Universidade Federal de Roraima, 69304-000, Boa Vista, Roraima (Brazil); Dos Santos, R P B; Troche, K S; Galvao, D S [Instituto de Fisica ' Gleb Wataghin' , Universidade Estadual de Campinas, 13083-970, Campinas, Sao Paulo (Brazil); Coluci, V R, E-mail: paupitz@ifi.unicamp.br [Faculdade de Tecnologia, Universidade Estadual de Campinas, 13484-332, Limeira, Sao Paulo (Brazil)

    2011-08-05

    Diamondoids are hydrogen-terminated nanosized diamond fragments that are present in petroleum crude oil at low concentrations. These fragments are found as oligomers of the smallest diamondoid, adamantane (C{sub 10}H{sub 16}). Due to their small size, diamondoids can be encapsulated into carbon nanotubes to form linear arrangements. We have investigated the encapsulation of diamondoids into single walled carbon nanotubes with diameters between 1.0 and 2.2 nm using fully atomistic simulations. We performed classical molecular dynamics and energy minimizations calculations to determine the most stable configurations. We observed molecular ordered phases (e.g. double, triple, 4- and 5-stranded helices) for the encapsulation of adamantane, diamantane, and dihydroxy diamantane. Our results also indicate that the functionalization of diamantane with hydroxyl groups can lead to an improvement on the molecular packing factor when compared to non-functionalized compounds. Comparisons to hard-sphere models revealed differences, especially when more asymmetrical diamondoids were considered. For larger diamondoids (i.e., adamantane tetramers), we have not observed long-range ordering but only a tendency to form incomplete helical structures. Our calculations predict that thermally stable (at least up to room temperature) complex ordered phases of diamondoids can be formed through encapsulation into carbon nanotubes.

  20. Organic carbon in Hanford single-shell tank waste

    International Nuclear Information System (INIS)

    Toth, J.J.; Willingham, C.E.; Heasler, P.G.; Whitney, P.D.

    1994-07-01

    This report documents an analysis performed by Pacific Northwest Laboratory (PNL) involving the organic carbon laboratory measurement data for Hanford single-shell tanks (SSTS) obtained from a review of the laboratory analytical data. This activity was undertaken at the request of Westinghouse Hanford Company (WHC). The objective of this study is to provide a best estimate, including confidence levels, of total organic carbon (TOC) in each of the 149 SSTs at Hanford. The TOC analyte information presented in this report is useful as part of the criteria to identify SSTs for additional measurements or monitoring for the organic safety program. This report is a precursor to an investigation of TOC and moisture in Hanford SSTS, in order to provide best estimates for each together in one report. Measured laboratory data were obtained for 75 of the 149 SSTS. The data represent a thorough investigation of data from 224 tank characterization datasets, including core-sampling and process laboratory data. Liquid and solid phase TOC values were investigated by examining selected tanks with both reported TOC values in solid and liquid phases. Some relationships were noted, but there was no clustering of data or significance between the solid and liquid phases. A methodology was developed for estimating the distribution and levels of TOC in SSTs using a logarithmic scale and an analysis of variance (ANOVA) technique. The methodology grouped tanks according to waste type using the Sort On Radioactive Waste Type (SORWT) grouping method. The SORWT model categorizes Hanford SSTs into groups of tanks expected to exhibit similar characteristics based on major waste types and processing histories. The methodology makes use of laboratory data for the particular tank and information about the SORWT group of which the tank is a member. Recommendations for a simpler tank grouping strategy based on organic transfer records were made

  1. Thermogravimetric Analysis of Single-Wall Carbon Nanotubes

    Science.gov (United States)

    Arepalli, Sivram; Nikolaev, Pavel; Gorelik, Olga

    2010-01-01

    An improved protocol for thermogravimetric analysis (TGA) of samples of single-wall carbon nanotube (SWCNT) material has been developed to increase the degree of consistency among results so that meaningful comparisons can be made among different samples. This improved TGA protocol is suitable for incorporation into the protocol for characterization of carbon nanotube material. In most cases, TGA of carbon nanotube materials is performed in gas mixtures that contain oxygen at various concentrations. The improved protocol is summarized.

  2. Applications of a single carbon electrode | Skelskey | SINET ...

    African Journals Online (AJOL)

    A single carbon electrode used with a common arc welder has been successfully used on steel to weld, to surface harden, to spot weld sheet, to pierce holes and to do simple brazing. Key words/phrases: Arc, carbon, dry cell, plasma, welding. SINET: Ethiopian Journal of Science Vol.26(2) 2003: 173-176 ...

  3. Synthesis of single wall carbon nanotubes from a lamellar type ...

    Indian Academy of Sciences (India)

    Wintec

    These nanotubes are applicable to store more hydrogen. Keywords. AlPO4-L; single wall carbon nanotubes. 1. Introduction. Carbon nanotubes (Iijima 1991) are nano-scale structures formed by self assembly. They possess excellent chemical and physical properties (Rodney and Donald 1995; Chen et al 1998) that make ...

  4. Applications of a single carbon electrode | Skelskey | SINET ...

    African Journals Online (AJOL)

    Abstract. A single carbon electrode used with a common arc welder has been successfully used on steel to weld, to surface harden, to spot weld sheet, to pierce holes and to do simple brazing. Key words/phrases: Arc, carbon, dry cell, plasma, welding. SINET: Ethiopian Journal of Science Vol.26(2) 2003: 173-176 ...

  5. Estimation of mechanical properties of single wall carbon nanotubes ...

    Indian Academy of Sciences (India)

    Molecular mechanics based finite element analysis is adopted in the current work to evaluate the mechanical properties of Zigzag, Armchair and Chiral Single wall Carbon Nanotubes (SWCNT) of different diameters and chiralities. Three different types of atomic bonds, that is Carbon–Carbon covalent bond and two types of ...

  6. A new method of preparing single-walled carbon nanotubes

    Indian Academy of Sciences (India)

    A novel method of purification for single-walled carbon nanotubes, prepared by an arc-discharge method, is described. The method involves a combination of acid washing followed by high temperature hydrogen treatment to remove the metal nanoparticles and amorphous carbon present in the as-synthesized singlewalled ...

  7. Molecular mechanics applied to single-walled carbon nanotubes

    OpenAIRE

    Ávila,Antonio Ferreira; Lacerda,Guilherme Silveira Rachid

    2008-01-01

    Single-walled carbon nanotubes, with stiffness of 1.0 TPa and strength of 60 GPa, are a natural choice for high strength materials. A problem, however, arises when experimental data are compiled. The large variability of experimental data leads to the development of numerical models denominated molecular mechanics, which is a "symbiotic" association of molecular dynamics and solid mechanics. This paper deals with molecular mechanics simulations of single-walled carbon nanotubes. To be able to...

  8. Current Harmonics from Single-Phase Grid-Connected Inverters

    DEFF Research Database (Denmark)

    Yang, Yongheng; Zhou, Keliang; Blaabjerg, Frede

    2016-01-01

    factor, or in the low voltage ride through mode with reactive current injection. In this paper, the mechanism of the harmonic current injection from grid-connected single-phase inverter systems is thus explored, and the analysis is conducted on single-phase PV systems. In particular, the analysis......-phase applications as a promising harmonic mitigation solution. Experiments on single-phase grid-connected systems have verified the correctness of the relevant analysis and also the effectiveness of the tailor-made control solution in terms of good harmonic mitigation....

  9. Single-superfield helical-phase inflation

    Energy Technology Data Exchange (ETDEWEB)

    Ketov, Sergei V., E-mail: ketov@tmu.ac.jp [Department of Physics, Tokyo Metropolitan University, Minami-ohsawa 1-1, Hachioji-shi, Tokyo 192-0397 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (IPMU), The University of Tokyo, Chiba 277-8568 (Japan); Institute of Physics and Technology, Tomsk Polytechnic University, 30 Lenin Ave., Tomsk 634050 (Russian Federation); Terada, Takahiro, E-mail: takahiro@hep-th.phys.s.u-tokyo.ac.jp [Department of Physics, The University of Tokyo, Tokyo 113-0033 (Japan); Deutsches Elektronen-Synchrotron (DESY), 22607 Hamburg (Germany)

    2016-01-10

    Large-field inflation in supergravity requires the approximate global symmetry needed to protect flatness of the scalar potential. In helical-phase inflation, the U(1) symmetry of the Kähler potential is assumed, the phase part of the complex scalar of a chiral superfield plays the role of inflaton, and the radial part is strongly stabilized. The original model of helical phase inflation, proposed by Li, Li and Nanopoulos (LLN), employs an extra (stabilizer) superfield. We propose a more economical new class of the helical phase inflationary models without a stabilizer superfield. As the specific examples, the quadratic, the natural, and the Starobinsky-type inflationary models are studied in our approach.

  10. APPLICATIONS OF A SINGLE CARBON ELECTRODE

    African Journals Online (AJOL)

    Preferred Customer

    applications: welding, spot welding, hole piercing, etc. The metal tube holding the carbon electrodes is banded with a piece of copper tubing that has been flattened into a strap and fitted with a screw for tightening. The perpendicular free end of the copper strap is inserted into the jaws of the electrode holder of an arc welder ...

  11. MPC of Single Phase Inverter for PV System

    OpenAIRE

    Irtaza M. Syed; Kaamran Raahemifar

    2014-01-01

    This paper presents a model predictive control (MPC) of a utility interactive (UI) single phase inverter (SPI) for a photovoltaic (PV) system at residential/distribution level. The proposed model uses single-phase phase locked loop (PLL) to synchronize SPI with the grid and performs MPC control in a dq reference frame. SPI model consists of boost converter (BC), maximum power point tracking (MPPT) control, and a full bridge (FB) voltage source inverter (VSI). No PI regula...

  12. Electronic properties of single-walled chiral carbon nanotube

    International Nuclear Information System (INIS)

    Mensah, S.Y.; Allotey, F.K.A.; Mensah, N.G.; Nkrumah, G.

    2001-09-01

    The electronic properties of single-walled chiral carbon nanotube has been studied using the model based on infinitely long carbon atoms wrapped along a base helix of single-walled carbon nanotubes(SWNTs). The problem is solved semiclassically, and current density J, resistivity ρ, thermopower α z , and electrical power factor P calculated. It is noted that the current density j displays negative differential conductivity, whiles the resistivity ρ increases with increasing electrical field. ρ also slowly increases at low temperatures and then gradually increases with increasing temperature. The thermopower α z shows interesting behaviour. Very intriguing is the electrical power factor which shows relatively large values. (author)

  13. Carbon Monoxide Silicate Reduction System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Carbon Monoxide Silicate Reduction System (COSRS) is an innovative method that for the first time uses the strong reductant carbon monoxide to both reduce iron...

  14. A Novel Single Phase Hybrid Switched Reluctance Motor Drive System

    DEFF Research Database (Denmark)

    Liang, Jianing; Xu, Guoqing; Jian, Linni

    2011-01-01

    phase boost converter is applied to improve the performance of this motor. It is easy to generate a double dclink voltage and dc-link voltage and switch both of them. The voltage of boost capacitor is self balance, so the protective circuit is not need to consider. The fast excitation mode helps hybrid......In this paper, a novel single phase hybrid switched reluctance motor(SRM) drive system is proposed. It integrated a single phase hybrid SRM and a novel single phase boost converter. This motor can reduce the number of phase switch. And the permanent magnet which is used in the motor can improve...... the performance and efficiency of SR motor. However, the inherent characteristic of this motor is that the negative torque is very sensitive with the excitation current near the turn-on angle. The slow excitation current limits the torque generation region and reduces the average torque. Therefore, a novel single...

  15. Regeneration of phase unlocked serial multiplexed DPSK signals in a single phase sensitive amplifier

    DEFF Research Database (Denmark)

    Guan, Pengyu; Da Ros, Francesco; Kjøller, Niels-Kristian

    2017-01-01

    We demonstrate phase-regeneration of phase unlocked OTDM-DPSK serial signals in a single phase sensitive amplifier through optical cross-phase modulation. The BER of an 8×10 Gbit/s OTDM-DPSK signal is improved by 2 orders of magnitude....

  16. LENA Conversion Foils Using Single-Layer Graphene, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Our key innovation will be the use of single-layer graphene as LENA conversion foils, with appropriate microgrids and nanogrids to support the foils. Phase I...

  17. High Energy Single Frequency Resonant Amplifier, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase I project proposes a single frequency high energy resonant amplifier for remote sensing. Current state-of-art technologies can not provide all...

  18. Non Invasive Instrumentation For Single Event Effects (NIISEE), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — On this Phase 1 project, Adventium will identify and address key hurdles to achieve Radiation Hardening by Software (RHS) for Single Event Effects (SEEs) for modern...

  19. Production of single-walled carbon nanotube grids

    Science.gov (United States)

    Hauge, Robert H; Xu, Ya-Qiong; Pheasant, Sean

    2013-12-03

    A method of forming a nanotube grid includes placing a plurality of catalyst nanoparticles on a grid framework, contacting the catalyst nanoparticles with a gas mixture that includes hydrogen and a carbon source in a reaction chamber, forming an activated gas from the gas mixture, heating the grid framework and activated gas, and controlling a growth time to generate a single-wall carbon nanotube array radially about the grid framework. A filter membrane may be produced by this method.

  20. Single-walled carbon nanotube-induced mitotic disruption⋆

    OpenAIRE

    Sargent, L.M.; Hubbs, A.F.; Young, S.-H.; Kashon, M.L.; Dinu, C.Z.; Salisbury, J.L.; Benkovic, S.A.; Lowry, D.T.; Murray, A.R.; Kisin, E.R.; Siegrist, K.J.; Battelli, L.; Mastovich, J.; Sturgeon, J.L.; Bunker, K.L.

    2011-01-01

    Carbon nanotubes were among the earliest products of nanotechnology and have many potential applications in medicine, electronics, and manufacturing. The low density, small size, and biological persistence of carbon nanotubes create challenges for exposure control and monitoring and make respiratory exposures to workers likely. We have previously shown mitotic spindle aberrations in cultured primary and immortalized human airway epithelial cells exposed to 24, 48 and 96 μg/cm2 single-walled c...

  1. Fabrication of single-walled carbon nanohorns incorporated a monolithic column for capillary electrochromatography.

    Science.gov (United States)

    Zhao, Hongyan; Wang, Yizhou; Cheng, Heyong; Wang, Yuanchao

    2017-08-01

    Single-walled carbon nanohorns have received great interest for their unique properties and diverse potential applications. Herein, we demonstrated the feasibility of single-walled carbon nanohorns incorporated poly(styrene-divinylbenzene) monolith as the stationary phase for capillary electrochromatography, which were prepared by one-step in situ copolymerization. Single-walled carbon nanohorns were dispersed in styrene to give a stable and homogeneous suspension. The monolithic column gave effective separation for a wide range of aromatic compounds, which was based on hydrophobicity and π-π electrostatic stacking of single-walled carbon nanohorns. The precisions of migration time and peak area varied in the ranges of 1.4-1.9% for intraday trials and 1.7-3.5% for interday trials, and 3.2-6.7% for intraday trials and 4.1-7.4% for interday trials, and 3.6-7.2% for inter-column trials and 5.2-21.3% for inter-column trials, respectively, indicating the good reproducibility of single-walled carbon nanohorns embedded monolithic columns. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Roles of Mineralogical Phases in Aqueous Carbonation of Steelmaking Slag

    Directory of Open Access Journals (Sweden)

    Huining Zhang

    2016-05-01

    Full Text Available Mineralogical phases of steelmaking slags have significant influences on the carbonation of the slags. In this paper, the effects of temperature and reaction time on the conversion of calcium-related phases and the carbonation degree of a slag sample were studied. The experimental conditions were a liquid-to-solid ratio of 20 mL/g, a carbon dioxide flow rate of 1 L/min and a slag particle size of 38–75 μm. The results show that the optimum carbonation temperature and reaction time are 60 °C and 90 min, respectively, and calcite phase content is about 26.78% while the conversion rates of Ca3Al2O6, CaSiO3, Ca2SiO4 and free CaO are about 40%, 42.46%, 51% and 100%, respectively, and the carbon dioxide sequestration efficiency is about 170 g/kg slag.

  3. Photon Cascade from a Single Crystal Phase Nanowire Quantum Dot

    DEFF Research Database (Denmark)

    Bouwes Bavinck, Maaike; Jöns, Klaus D; Zieliński, Michal

    2016-01-01

    We report the first comprehensive experimental and theoretical study of the optical properties of single crystal phase quantum dots in InP nanowires. Crystal phase quantum dots are defined by a transition in the crystallographic lattice between zinc blende and wurtzite segments and therefore offe...

  4. Silicon Whisker and Carbon Nanofiber Composite Anode, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. (PSI) proposes to develop a silicon whisker and carbon nanofiber composite anode for lithium ion batteries on a Phase I program. This anode...

  5. Silicon Whisker and Carbon Nanofiber Composite Anode, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. (PSI) has successfully developed a silicon whisker and carbon nanofiber composite anode for lithium ion batteries on a Phase I program. PSI...

  6. Precision Remote Sensor for Oxygen and Carbon Dioxide, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Phase II project will lead to the design, construction, and field-testing of a prototype PHOCS instrument for atmospheric column retrievals of oxygen and carbon...

  7. Reticulated Vitreous Carbon Electrodes for Gas Phase Pulsed Corona Reactors

    National Research Council Canada - National Science Library

    Locke, B

    1998-01-01

    A new design for gas phase pulsed corona reactors incorporating reticulated vitreous carbon electrodes is demonstrated to be effective for the removal of nitrogen oxides from synthetic air mixtures...

  8. Reticulated Vitreous Carbon Electrodes for Gas Phase Pulsed Corona Reactors

    National Research Council Canada - National Science Library

    LOCKE, B

    1999-01-01

    A new design for gas phase pulsed corona reactors incorporating reticulated vitreous carbon electrodes is demonstrated to be effective for the removal of nitrogen oxides from synthetic air mixtures...

  9. Unconventional phase transitions in a constrained single polymer chain

    International Nuclear Information System (INIS)

    Klushin, L I; Skvortsov, A M

    2011-01-01

    Phase transitions were recognized among the most fascinating phenomena in physics. Exactly solved models are especially important in the theory of phase transitions. A number of exactly solved models of phase transitions in a single polymer chain are discussed in this review. These are three models demonstrating the second order phase transitions with some unusual features: two-dimensional model of β-structure formation, the model of coil–globule transition and adsorption of a polymer chain grafted on the solid surface. We also discuss models with first order phase transitions in a single macromolecule which admit not only exact analytical solutions for the partition function with explicit finite-size effects but also the non-equilibrium free energy as a function of the order parameter (Landau function) in closed analytical form. One of them is a model of mechanical desorption of a macromolecule, which demonstrates an unusual first order phase transition with phase coexistence within a single chain. Features of first and second order transitions become mixed here due to phase coexistence which is not accompanied by additional interfacial free energy. Apart from that, there exist several single-chain models belonging to the same class (adsorption of a polymer chain tethered near the solid surface or liquid–liquid interface, and escape transition upon compressing a polymer between small pistons) that represent examples of a highly unconventional first order phase transition with several inter-related unusual features: no simultaneous phase coexistence, and hence no phase boundary, non-concave thermodynamic potential and non-equivalence of conjugate ensembles. An analysis of complex zeros of partition functions upon approaching the thermodynamic limit is presented for models with and without phase coexistence. (topical review)

  10. A simple output voltage control scheme for single phase wavelet ...

    African Journals Online (AJOL)

    DR OKE

    Wavelet based techniques have been extensively used in various power engineering applications. Recently, wavelet has also been proposed to generate switching signal for single-phase pulse-width-modulated (PWM) dc-ac inverter. The main advantage of the wavelet modulated (WM) scheme is that a single synthesis ...

  11. Phototransformation-Induced Aggregation of Functionalized Single-Walled Carbon Nanotubes: The Importance of Amorphous Carbon

    Science.gov (United States)

    Single-walled carbon nanotubes (SWCNTs) with proper functionalization are desirable for applications that require dispersion in aqueous and biological environments, and functionalized SWCNTs also serve as building blocks for conjugation with specific molecules in these applicatio...

  12. Carbon concentration measurements by atom probe tomography in the ferritic phase of high-silicon steels

    International Nuclear Information System (INIS)

    Rementeria, Rosalia; Poplawsky, Jonathan D.; Aranda, Maria M.; Guo, Wei; Jimenez, Jose A.; Garcia-Mateo, Carlos; Caballero, Francisca G.

    2017-01-01

    Recent studies using atom probe tomography (APT) show that bainitic ferrite formed at low temperature contains more carbon than what is consistent with the paraequilibrium phase diagram. However, nanocrystalline bainitic ferrite exhibits a non-homogeneous distribution of carbon atoms in arrangements with specific compositions, i.e. Cottrell atmospheres, carbon clusters, and carbides, in most cases with a size of a few nanometers. The ferrite volume within a single platelet that is free of these carbon-enriched regions is extremely small. Proximity histograms can be compromised on the ferrite side, and a great deal of care should be taken to estimate the carbon content in regions of bainitic ferrite free from carbon agglomeration. For this purpose, APT measurements were first validated for the ferritic phase in a pearlitic sample and further performed for the bainitic ferrite matrix in high-silicon steels isothermally transformed between 200 °C and 350 °C. Additionally, results were compared with the carbon concentration values derived from X-ray diffraction (XRD) analyses considering a tetragonal lattice and previous APT studies. The present results reveal a strong disagreement between the carbon content values in the bainitic ferrite matrix as obtained by APT and those derived from XRD measurements. Those differences have been attributed to the development of carbon-clustered regions with an increased tetragonality in a carbon-depleted matrix.

  13. Phase-predictable tuning of single-frequency optical synthesizers.

    Science.gov (United States)

    Rohde, Felix; Benkler, Erik; Puppe, Thomas; Unterreitmayer, Reinhard; Zach, Armin; Telle, Harald R

    2014-07-15

    We investigate the tuning behavior of a novel type of single-frequency optical synthesizers by phase comparison of the output signals of two identical devices. We achieve phase-stable and cycle-slip free frequency tuning over 28.1 GHz with a maximum zero-to-peak phase deviation of 62 mrad. In contrast to previous implementations of single-frequency optical synthesizers, no comb line order switching is needed when tuned over more than one comb line spacing range of the employed frequency comb.

  14. Experimental determination of boron and carbon thermodynamic activities in the carbide phase of the boron-carbon system

    International Nuclear Information System (INIS)

    Froment, A.K.

    1990-01-01

    - The boron-carbon phase diagram presents a single phase area ranging from 9 to 20 atomic percent of carbon. The measurement of carbon activity, in this range of composition, has been measured according to the following methods: - quantitative analysis of the methane-hydrogen mixture in equilibrium with the carbide, - high temperature mass spectrometry measurements. The first method turned out to be a failure; however, the apparatus used enabled the elaboration of a B 4 C composition pure phase from a two-phase (B 4 C + graphite) industrial product. The results obtained with the other two methods are consistent and lead to a law expressing the increase of the carbon activity in relation with the amount of this element; the high temperature mass spectrometry method has also made it possible to measure the boron activity which decreases when the carbon activity increases, but with a variation of amplitude much lower, according to the theoretical calculations. These results are a first step towards the knowledge of the boron carbide thermodynamical data for compositions different from B 4 C [fr

  15. Aerospace Grade Carbon Felt Preform, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Fiber Materials, Inc. (FMI) will develop an aerospace-grade carbon felt preform by employing application specific materials with effective processes and fabrication...

  16. Enhanced Carbon Nanotube Ultracapacitors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation utilizes carbon nanotubes (CNTs) coated with pseudo-capacitive MnO2 material as nano-composite electrode and ionic electrolyte for the...

  17. Carbon Monoxide Silicate Reduction System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Carbon Monoxide Silicate Reduction System (COSRS) is a novel technology for producing large quantities of oxygen on the Moon. Oxygen yields of 15 kilograms per...

  18. Self Assembled Carbon Nanotube Enhanced Ultracapacitors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this NASA STTR program is to develop single wall carbon nanotube (SWCNT) based ultracapacitors for energy storage devices (ESD) application, using...

  19. Bipolar single-wall carbon nanotube field-effect transistor

    OpenAIRE

    Babic, Bakir; Iqbal, Mahdi; Schonenberger, Christian

    2002-01-01

    We use a simultaneous flow of ethylene and hydrogen gases to grow single wall carbon nanotubes by chemical vapor deposition. Strong coupling to the gate is inferred from transport measurements for both metallic and semiconducting tubes. At low-temperatures, our samples act as single-electron transistors where the transport mechanism is mainly governed by Coulomb blockade. The measurements reveal very rich quantized energy level spectra spanning from valence to conduction band. The Coulomb dia...

  20. Single-phase DECT with VNCT compared with three-phase CTU in patients with haematuria

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung Jae; Park, Byung Kwan; Kim, Chan Kyo [Sungkyunkwan University School of Medicine, Department of Radiology, Samsung Medical Center, Seoul (Korea, Republic of)

    2016-10-15

    To retrospectively evaluate the diagnostic performance of single-phase dual-energy CT (DECT) with virtual non-contrast CT (VNCT) compared with three-phase CT urography (CTU) in patients with haematuria. A total of 296 patients underwent three-phase CTU (NCT at 120 kVp; nephrographic phase and excretory phase DECTs at 140 kVp and 80 kVp) owing to haematuria. Diagnostic performances of CT scans were compared for detecting urothelial tumours and urinary stones. Dose-length product (DLP) was compared in relation to single-phase DECT and three-phase CTU Dose-length product (DLP) was compared in relation to single-phase DECT and three-phase CTU. Sensitivity and specificity for tumour were 95 % (19/20) and 98.9 % (273/276) on CTU, 95 % (19/20) and 98.2 % (271/276) on nephrographic phase DECT, and 90 % (18/20) and 98.2 % (271/276) on excretory phase DECT (P > 0.1). Of the 148 stones detected on NCT, 108 (73 %) and 100 (67.6 %) were detected on nephrographic phase and excretory phase VNCTs, respectively. The mean size of stones undetected on nephrographic and excretory VNCTs was measured as 1.5 ± 0.5 mm and 1.6 ± 0.6 mm, respectively. The mean DLPs of three-phase CTU, nephrographic phase DECT and excretory phase DECT were 1076 ± 248 mGy . cm, 410 ± 98 mGy . cm, and 360 ± 87 mGy . cm, respectively (P < 0.001). Single-phase DECT has a potential to replace three-phase CTU for detecting tumours with a lower radiation dose. (orig.)

  1. A single phase multilevel inverter as power converter for 3-phase ...

    African Journals Online (AJOL)

    A single phase multilevel inverter as power converter for 3-phase electric loads. ... m-phase maker was simulated using MATLAB and the results confirmed the excellent perfor-mance of the RBNPS. The listed advantages attained could be incorporated in the design and operation of a converter for an electric drive of a car.

  2. Synthesis of single walled carbon nanotubes by dual laser vaporization

    CSIR Research Space (South Africa)

    Moodley, MK et al.

    2006-02-27

    Full Text Available Single-walled carbon nanotubes were synthesised by the laser vaporisation of graphite composite targets in a tube furnace. Two pulsed Nd:YAG lasers operating at fundamental (1 064 nm) and 2nd harmonic (532 nm) were combined, focused and evaporated...

  3. Hydrogen adsorption on N-decorated single wall carbon nanotubes

    International Nuclear Information System (INIS)

    Rangel, Eduardo; Ruiz-Chavarria, Gregorio; Magana, L.F.; Arellano, J.S.

    2009-01-01

    Using density functional theory and molecular dynamics we found that N-decorated single walled (8,0) carbon nanotubes are potential high capacity hydrogen storage media. This system could store up to 6.0 wt% hydrogen at 300 K and ambient pressure, with average adsorption energy of -80 meV/(H 2 ). Nitrogen coverage was C 8 N.

  4. A new method of preparing single-walled carbon nanotubes

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 115; Issue 5-6. A new method of preparing single-walled carbon nanotubes ... Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur PO, Bangalore 560 064, India; Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, ...

  5. A new method of preparing single-walled carbon nanotubes

    Indian Academy of Sciences (India)

    Unknown

    A new method of preparing single-walled carbon nanotubes. ¶. S R C VIVEKCHAND1 and A GOVINDARAJ1,2,*. 1Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for. Advanced Scientific Research, Jakkur PO, Bangalore 560 064, India. 2Solid State and Structural Chemistry Unit, Indian Institute of Science ...

  6. Estimation of mechanical properties of single wall carbon nanotubes ...

    Indian Academy of Sciences (India)

    40, Part 4, June 2015, pp. 1301–1311. c Indian Academy of Sciences. Estimation of mechanical properties of single wall carbon nanotubes using molecular mechanics approach. P SUBBA RAO1,2,∗, SUNIL ANANDATHEERTHA3,. G NARAYANA NAIK1 and S GOPALAKRISHNAN1. 1Department of Aerospace Engineering ...

  7. A Computational Experiment on Single-Walled Carbon Nanotubes

    Science.gov (United States)

    Simpson, Scott; Lonie, David C.; Chen, Jiechen; Zurek, Eva

    2013-01-01

    A computational experiment that investigates single-walled carbon nanotubes (SWNTs) has been developed and employed in an upper-level undergraduate physical chemistry laboratory course. Computations were carried out to determine the electronic structure, radial breathing modes, and the influence of the nanotube's diameter on the…

  8. Phonon and thermal properties of achiral single wall carbon ...

    Indian Academy of Sciences (India)

    A detailed theoretical study of the phonon and thermal properties of achiral single wall carbon nanotubes has been carried out using force constant model considering up to third nearest-neighbor interactions. We have calculated the phonon dispersions, density of states, radial breathing modes (RBM) and the specific heats ...

  9. Functionalization of oxidized single-walled carbon nanotubes with 4 ...

    Indian Academy of Sciences (India)

    The low-dimension and remarkable physical proper- ties of single-walled carbon nanotubes (SWCNTs) ren- der them unique material properties with a wide range of potential applications.1,2 However, the lack of sol- ubility in solvents presents a considerable impediment toward harnessing of their applications.

  10. Improvements in Production of Single-Walled Carbon Nanotubes

    Science.gov (United States)

    Balzano, Leandro; Resasco, Daniel E.

    2009-01-01

    A continuing program of research and development has been directed toward improvement of a prior batch process in which single-walled carbon nanotubes are formed by catalytic disproportionation of carbon monoxide in a fluidized-bed reactor. The overall effect of the improvements has been to make progress toward converting the process from a batch mode to a continuous mode and to scaling of production to larger quantities. Efforts have also been made to optimize associated purification and dispersion post processes to make them effective at large scales and to investigate means of incorporating the purified products into composite materials. The ultimate purpose of the program is to enable the production of high-quality single-walled carbon nanotubes in quantities large enough and at costs low enough to foster the further development of practical applications. The fluidized bed used in this process contains mixed-metal catalyst particles. The choice of the catalyst and the operating conditions is such that the yield of single-walled carbon nanotubes, relative to all forms of carbon (including carbon fibers, multi-walled carbon nanotubes, and graphite) produced in the disproportionation reaction is more than 90 weight percent. After the reaction, the nanotubes are dispersed in various solvents in preparation for end use, which typically involves blending into a plastic, ceramic, or other matrix to form a composite material. Notwithstanding the batch nature of the unmodified prior fluidized-bed process, the fluidized-bed reactor operates in a continuous mode during the process. The operation is almost entirely automated, utilizing mass flow controllers, a control computer running software specific to the process, and other equipment. Moreover, an important inherent advantage of fluidized- bed reactors in general is that solid particles can be added to and removed from fluidized beds during operation. For these reasons, the process and equipment were amenable to

  11. Organic carbon in Hanford single-shell tank waste

    International Nuclear Information System (INIS)

    Toth, J.J.; Willingham, C.E.; Heasler, P.G.; Whitney, P.D.

    1994-04-01

    Safety of Hanford single-shell tanks (SSTs) containing organic carbon is a concern because the carbon in the presence of oxidizers (NO 3 or NO 2 ) is combustible when sufficiently concentrated and exposed to elevated temperatures. A propagating chemical reaction could potentially occur at high temperature (above 200 C). The rapid increase in temperature and pressure within a tank might result in the release of radioactive waste constituents to the environment. The purpose of this study is to gather available laboratory information about the organic carbon waste inventories stored in the Hanford SSTs. Specifically, the major objectives of this investigation are: Review laboratory analytical data and measurements for SST composite core and supernatant samples for available organic data; Assess the correlation of organic carbon estimated utilizing the TRAC computer code compared to laboratory measurements; and From the laboratory analytical data, estimate the TOC content with confidence levels for each of the 149 SSTs

  12. Modification of single wall carbon nanotubes (SWNT) for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Rashidi, A.M.; Nouralishahi, A.; Karimi, A.; Kashefi, K. [Nanotechnology Research Center, Research Institute of petroleum industry (RIPI), Tehran (Iran); Khodadadi, A.A.; Mortazavi, Y. [Chemical engineering Department, University of Tehran, Tehran (Iran)

    2010-09-15

    Due to unique structural, mechanical and electrical properties of single wall carbon nanotubes, SWNTs, they have been proposed as promising hydrogen storage materials especially in automotive industries. This research deals with investing of CNT's and some activated carbons hydrogen storage capacity. The CNT's were prepared through natural gas decomposition at a temperature of 900 C over cobalt-molybdenum nanoparticles supported by nanoporous magnesium oxide (Co-Mo/MgO) during a chemical vapor deposition (CVD) process. The effects of purity of CNT (80-95%wt.) on hydrogen storage were investigated here. The results showed an improvement in the hydrogen adsorption capacity with increasing the purity of CNT's. Maximum adsorption capacity was 0.8%wt. in case of CNT's with 95% purity and it may be raised up with some purification to 1%wt. which was far less than the target specified by DOE (6.5%wt.). Also some activated carbons were manufactured and the results compared to CNTs. There were no considerable H{sub 2}-storage for carbon nanotubes and activated carbons at room-temperature due to insufficient binding between H{sub 2} molecules carbon nanostructures. Therefore, hydrogen must be adsorbed via interaction of atomic hydrogen with the storage environment in order to achieve DOE target, because the H atoms have a very stronger interaction with carbon nanostructures. (author)

  13. Instantaneous power flow determination for single-phase UPFC

    Energy Technology Data Exchange (ETDEWEB)

    Dobrucky, B.; Drozdy, S.; Pokorny, M.; Pavlanin, R. [Zilina Univ., Zilina (Slovakia)

    2007-07-01

    The parallel shunt active filter in a unified power flow conditioner (UPFC) can filter and compensate the reactive power of basic and higher current harmonics. This paper reported on a study in which a new theory of orthogonal transform was used to control a single-phase UPFC system and transform it into a two-axes system. In addition to estimating the load current phase shifts, the study also determined the instantaneous active and reactive powers. The new theory is based on the premise that ordinary single-phase quantity can be complemented by a virtual fictitious phase so that both of them will create an orthogonal system, as is usual in three-phase systems. The theory uses efficient methods of analysis, such as time-sub-optimal determination of fundamental harmonics; average- and/or root-mean-square values; or instantaneous reactive power methods. The load current phase shift can be used to compensate for voltage drops. This paper outlined a practical application of the method in a case of active and reactive power determination for single-phase UPFC. It also presented some examples of the successful simulation experiments results focused on regulation output voltage of UPFC. 9 refs., 13 figs., 1 appendix.

  14. Single phase inverter for a three phase power generation and distribution system

    Science.gov (United States)

    Lindena, S. J.

    1976-01-01

    A breadboard design of a single-phase inverter with sinusoidal output voltage for a three-phase power generation and distribution system was developed. The three-phase system consists of three single-phase inverters, whose output voltages are connected in a delta configuration. Upon failure of one inverter the two remaining inverters will continue to deliver three-phase power. Parallel redundancy as offered by two three-phase inverters is substituted by one three-phase inverter assembly with high savings in volume, weight, components count and complexity, and a considerable increase in reliability. The following requirements must be met: (1) Each single-phase, current-fed inverter must be capable of being synchronized to a three-phase reference system such that its output voltage remains phaselocked to its respective reference voltage. (2) Each single-phase, current-fed inverter must be capable of accepting leading and lagging power factors over a range from -0.7 through 1 to +0.7.

  15. Carbon nanotube based stationary phases for microchip chromatography

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Kutter, Jörg Peter

    2012-01-01

    already been demonstrated in more classical formats, for improved separation performance in gas and liquid chromatography, and for unique applications in solid phase extraction. Carbon nanotubes are now also entering the field of microfluidics, where there is a large potential to be able to provide......The objective of this article is to provide an overview and critical evaluation of the use of carbon nanotubes and related carbon-based nanomaterials for microchip chromatography. The unique properties of carbon nanotubes, such as a very high surface area and intriguing adsorptive behaviour, have...... integrated, tailor-made nanotube columns by means of catalytic growth of the nanotubes inside the fluidic channels. An evaluation of the different implementations of carbon nanotubes and related carbon-based nanomaterials for microfluidic chromatography devices is given in terms of separation performance...

  16. Stable single helical C- and I-chains inside single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Yao Z; Li Y; Jing X D; Meng F S; Zhao X; Li J H; Qiu Z Y; Yuan Q; Wang W X; Bi L; Liu H; Zhang Y P; Liu C J; Zheng S P; Liu B B

    2016-01-01

    The helicity of stable single helical carbon chains and iodine chains inside single-walled carbon nanotubes (SWCNTs) is studied by calculating the systematic van der Waals interaction energy. The results show that the optimal helical radius increases linearly with increasing tube radius, which produces a constant separation between the chain structure and the tube wall. The helical angle exhibits a ladder-like decrease with increasing tube radius, indicating that a large tube can produce a small helicity in the helical structures. (paper)

  17. Single Nucleotide Polymorphism Detection Using Au-Decorated Single-Walled Carbon Nanotube Field Effect Transistors

    Directory of Open Access Journals (Sweden)

    Keum-Ju Lee

    2011-01-01

    Full Text Available We demonstrate that Au-cluster-decorated single-walled carbon nanotubes (SWNTs may be used to discriminate single nucleotide polymorphism (SNP. Nanoscale Au clusters were formed on the side walls of carbon nanotubes in a transistor geometry using electrochemical deposition. The effect of Au cluster decoration appeared as hole doping when electrical transport characteristics were examined. Thiolated single-stranded probe peptide nucleic acid (PNA was successfully immobilized on Au clusters decorating single-walled carbon nanotube field-effect transistors (SWNT-FETs, resulting in a conductance decrease that could be explained by a decrease in Au work function upon adsorption of thiolated PNA. Although a target single-stranded DNA (ssDNA with a single mismatch did not cause any change in electrical conductance, a clear decrease in conductance was observed with matched ssDNA, thereby showing the possibility of SNP (single nucleotide polymorphism detection using Au-cluster-decorated SWNT-FETs. However, a power to discriminate SNP target is lost in high ionic environment. We can conclude that observed SNP discrimination in low ionic environment is due to the hampered binding of SNP target on nanoscale surfaces in low ionic conditions.

  18. Ultrafast Switching Superjunction MOSFETs for Single Phase PFC Applications

    DEFF Research Database (Denmark)

    Hernandez Botella, Juan Carlos; Petersen, Lars Press; Andersen, Michael A. E.

    2014-01-01

    This paper presents a guide on characterizing state-of-the-art silicon superjunction (SJ) devices in the 600V range for single phase power factor correction (PFC) applications. The characterization procedure is based on a minimally inductive double pulse tester (DPT) with a very low intrusive...... investigates the latest SJ devices in order to set a reference for future research on improvement over silicon (Si) attained with the introduction of wide bandgap devices in single phase PFC applications. The obtained results show that the latest generation of SJ devices set a new benchmark for its wide...

  19. The Single-Phase ProtoDUNE Technical Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Abi, B. [Univ. of Padova (Italy); et al.

    2017-06-21

    ProtoDUNE-SP is the single-phase DUNE Far Detector prototype that is under construction and will be operated at the CERN Neutrino Platform (NP) starting in 2018. ProtoDUNE-SP, a crucial part of the DUNE effort towards the construction of the first DUNE 10-kt fiducial mass far detector module (17 kt total LAr mass), is a significant experiment in its own right. With a total liquid argon (LAr) mass of 0.77 kt, it represents the largest monolithic single-phase LArTPC detector to be built to date. It's technical design is given in this report.

  20. Crystallization and mechanical properties of functionalized single-walled carbon nanotubes/polyvinylidene fluoride composites

    DEFF Research Database (Denmark)

    Ma, Jing; Iftekharul Haque, Rubaiyet; Larsen, Mikael

    2012-01-01

    Single-walled carbon nanotubes were purified and functionalized by nitric acid and octadecylamine. Raman and Fourier transform infrared spectroscopy were used to characterize the functionalization of the single-walled carbon nanotubes. Polyvinylidene flouride nanocomposites containing 1 wt......% purified or functionalized single-walled carbon nanotubes were prepared by solution blending and injection molding. The dispersion of different carbon nanotubes in dimethylformamide and in polyvinylidene flouride has been investigated. Mechanical properties show that adding single-walled carbon nanotubes...

  1. Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cDPC.

    Directory of Open Access Journals (Sweden)

    Zachary F Phillips

    Full Text Available We present a new technique for quantitative phase and amplitude microscopy from a single color image with coded illumination. Our system consists of a commercial brightfield microscope with one hardware modification-an inexpensive 3D printed condenser insert. The method, color-multiplexed Differential Phase Contrast (cDPC, is a single-shot variant of Differential Phase Contrast (DPC, which recovers the phase of a sample from images with asymmetric illumination. We employ partially coherent illumination to achieve resolution corresponding to 2× the objective NA. Quantitative phase can then be used to synthesize DIC and phase contrast images or extract shape and density. We demonstrate amplitude and phase recovery at camera-limited frame rates (50 fps for various in vitro cell samples and c. elegans in a micro-fluidic channel.

  2. Two dimensional reversed-phase-reversed-phase separations isomeric separations incorporating C18 and carbon clad zirconia stationary phases.

    Science.gov (United States)

    Gray, Michael; Dennis, Gary R; Wormell, Paul; Shalliker, R Andrew; Slonecker, Patrick

    2002-11-01

    Informational theory and a geometric approach to factor analysis were employed to evaluate the degree of orthogonality of a two-dimensional reversed-phase-reversed-phase chromatographic system. The system incorporated a C18 column as one dimension and a carbon clad zirconia column as the second dimension. In order to study the resolving power of this system, the separation of a sample matrix containing an artificial mix of 32 isomers (structural and diastereoisomers) was evaluated. Using this system, between 25 and 28 of the 32 isomers could be separated, depending on the mobile phase combinations--with resolution that could not possibly be achieved in a single one dimensional separation. The results from this study indicate that in order to fully evaluate the resolving power of a 2D system multiple methods of analysis are most appropriate. This becomes increasingly important when the sample contains components that are very closely related and the retention of solutes is clustered in one quadrant of the 2D space. Ultimately, the usefulness of the 2D separation is determined by the goals of analyst.

  3. Investigation of effect of single phase electrical faults at LOFT

    International Nuclear Information System (INIS)

    Yeates, J.A.

    1978-01-01

    This LTR presents the general basic engineering facts related to an open phase fault in a three phase power system commonly referred to as a single phase condition. It describes the probable results to electrical motors and describes the LOFT system design factors which minimize the likelihood of such a fault occurring at LOFT. It recognizes that the hazard of such a fault is a realistic threat and notes the types of relays designed to provide protection. Recommendations are made to perform a detailed engineering study to determine the most advantageous protective relay design, and to implement such a design by installation of the necessary devices and controls

  4. Ultrafast electric phase control of a single exciton qubit

    Science.gov (United States)

    Widhalm, Alex; Mukherjee, Amlan; Krehs, Sebastian; Sharma, Nandlal; Kölling, Peter; Thiede, Andreas; Reuter, Dirk; Förstner, Jens; Zrenner, Artur

    2018-03-01

    We report on the coherent phase manipulation of quantum dot excitons by electric means. For our experiments, we use a low capacitance single quantum dot photodiode which is electrically controlled by a custom designed SiGe:C BiCMOS chip. The phase manipulation is performed and quantified in a Ramsey experiment, where ultrafast transient detuning of the exciton energy is performed synchronous to double pulse π/2 ps laser excitation. We are able to demonstrate electrically controlled phase manipulations with magnitudes up to 3π within 100 ps which is below the dephasing time of the quantum dot exciton.

  5. Planktic foraminifera form their shells via metastable carbonate phases.

    Science.gov (United States)

    Jacob, D E; Wirth, R; Agbaje, O B A; Branson, O; Eggins, S M

    2017-11-02

    The calcium carbonate shells of planktic foraminifera provide our most valuable geochemical archive of ocean surface conditions and climate spanning the last 100 million years, and play an important role in the ocean carbon cycle. These shells are preserved in marine sediments as calcite, the stable polymorph of calcium carbonate. Here, we show that shells of living planktic foraminifers Orbulina universa and Neogloboquadrina dutertrei originally form from the unstable calcium carbonate polymorph vaterite, implying a non-classical crystallisation pathway involving metastable phases that transform ultimately to calcite. The current understanding of how planktic foraminifer shells record climate, and how they will fare in a future high-CO 2 world is underpinned by analogy to the precipitation and dissolution of inorganic calcite. Our findings require a re-evaluation of this paradigm to consider the formation and transformation of metastable phases, which could exert an influence on the geochemistry and solubility of the biomineral calcite.

  6. the steady-state performance characteristics of single phase transfer

    African Journals Online (AJOL)

    2012-11-03

    Nov 3, 2012 ... The paper reports the derivation of the steady- state equivalent circuit of a single phase transfer ... series opposition between the two halves of the ma- ..... from its equivalent circuit of fig 6 for different values of slip. Impedance due to forward field. Zf = Rf + jXf = Rr. 2(2s - 1). + jxr. 2. (19) in parallel with jxm. 2.

  7. An Asymmetrical Space Vector Method for Single Phase Induction Motor

    DEFF Research Database (Denmark)

    Cui, Yuanhai; Blaabjerg, Frede; Andersen, Gert Karmisholt

    2002-01-01

    Single phase induction motors are the workhorses in low-power applications in the world, and also the variable speed is necessary. Normally it is achieved either by the mechanical method or by controlling the capacitor connected with the auxiliary winding. Any above method has some drawback which...

  8. Improvement of Torque Production in Single-Phase Induction Motors ...

    African Journals Online (AJOL)

    Existing single phase induction motors exhibit low starting torque. Moreover, during accelerating time and at steady state, they produce a significant level of torque pulsations which gives rise to noise and vibration in the machine. As part of efforts to mitigate these problems, a performance improvement strategy using a PWM ...

  9. experimental implementation of single-phase, three-level, sinusoidal

    African Journals Online (AJOL)

    Experimental Implementation of SPWM VSI with R-L Load. 3. Figure 2: Switching pattern of the proposed single-phase, three-level PWM inverter. Figure 3: Prototype setup. (a) Power circuits for both inverters. (b) Logic and Driver circuits. Nigerian Journal of Technology. Vol. 31, No. 1, March 2012.

  10. A single phase photovoltaic inverter control for grid connected system

    Indian Academy of Sciences (India)

    This paper presents a control scheme for single phase grid connected photovoltaic (PV) system operating under both grid connected and isolated grid mode. The control techniques include voltage and current control of grid-tie PV inverter. During grid connected mode, grid controls the amplitude and frequency of the PV ...

  11. Load compensation for single phase system using series active filter ...

    African Journals Online (AJOL)

    In this paper a new control strategy for series active filter has been proposed for improvement of power quality problems in single phase system. Since the non linear loads in the system comprises of both voltage source harmonic and current source harmonic loads and the dominancy of each type of load varies from time to ...

  12. Single particle composition measurements of artificial Calcium Carbonate aerosols

    Science.gov (United States)

    Zorn, S. R.; Mentel, T. F.; Schwinger, T.; Croteau, P. L.; Jayne, J.; Worsnop, D. R.; Trimborn, A.

    2012-12-01

    Mineral dust, with an estimated total source from natural and anthropogenic emissions of up to 2800 Tg/yr, is one of the two largest contributors to total aerosol mass, with only Sea salt having a similar source strength (up to 2600 Tg/yr). The composition of dust particles varies strongly depending on the production process and, most importantly, the source location. Therefore, the composition of single dust particles can be used both to trace source regions of air masses as well as to identify chemical aging processes. Here we present results of laboratory studies on generating artificial calcium carbonate (CaCO3) particles, a model compound for carbonaceous mineral dust particles. Particles were generated by atomizing an aqueous hydrogen carbonate solution. Water was removed using a silica diffusion dryer., then the particles were processed in an oven at temperatures up to 900°C, converting the hydrogen carbonate to its anhydrous form. The resulting aerosol was analyzed using an on-line single particle laser ablation aerosol particle time-of-flight mass spectrometer (LAAPTOF). The results confirm the conversion to calcium carbonate, and validate that the produced particles indeed can be used as a model compound for carbonaceous dust aerosols.

  13. Light Induced Aggregation of Specific Single Walled Carbon Nanotubes

    OpenAIRE

    Gopannagari, Madhusudana; Chaturvedi, Harsh

    2015-01-01

    We report optically induced aggregation and consequent separation of specific diameter of pristine single walled carbon nanotubes (SWNT) from stable solution. Well dispersed solution of pristine SWNTs, without any surfactant or functionalization, show rapid aggregation by uniform exposure to UV, visible and NIR illumination. Optically induced aggregation linearly increases with consequent increase in the intensity of light. Aggregated SWNTs were separated from the dispersed supernatant and ch...

  14. Dysprosium Acetylacetonato Single-Molecule Magnet Encapsulated in Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Ryo Nakanishi

    2016-12-01

    Full Text Available Dy single-molecule magnets (SMMs, which have several potential uses in a variety of applications, such as quantum computing, were encapsulated in multi-walled carbon nanotubes (MWCNTs by using a capillary method. Encapsulation was confirmed by using transmission electron microscopy (TEM. In alternating current magnetic measurements, the magnetic susceptibilities of the Dy acetylacetonato complexes showed clear frequency dependence even inside the MWCNTs, meaning that this hybrid can be used as magnetic materials in devices.

  15. Titanium dioxide, single-walled carbon nanotube composites

    Science.gov (United States)

    Yao, Yuan; Li, Gonghu; Gray, Kimberly; Lueptow, Richard M.

    2015-07-14

    The present invention provides titanium dioxide/single-walled carbon nanotube composites (TiO.sub.2/SWCNTs), articles of manufacture, and methods of making and using such composites. In certain embodiments, the present invention provides membrane filters and ceramic articles that are coated with TiO.sub.2/SWCNT composite material. In other embodiments, the present invention provides methods of using TiO.sub.2/SWCNT composite material to purify a sample, such as a water or air sample.

  16. Iron in carbonate containing AFm phases

    International Nuclear Information System (INIS)

    Dilnesa, B.Z.; Lothenbach, B.; Le Saout, G.; Renaudin, G.; Mesbah, A.; Filinchuk, Y.; Wichser, A.; Wieland, E.

    2011-01-01

    One of the AFm phases in hydrated Portland cement is Ca 3 (Al x Fe 2 - x )O 6 .CaCO 3 .nH 2 O. It is based on hexagonal and platey structural elements and the interlayer structure incorporates CO 3 2- . The solid phases were experimentally synthesized and characterized by different techniques including X-ray techniques (XRD and EXAFS) and vibrational spectroscopy techniques (IR, Raman). Fe-monocarbonate (Fe-Mc) and Al-monocarbonate (Al-Mc) were found to be stable up to 50 o C, while Fe-hemicarbonate (Fe-Hc) was unstable with respect to Fe-Mc in the presence of calcite. Fe-Mc has a rhombohedral R3-barc symmetry which is different from the triclinic of the Al analogue. Both XRD and thermodynamic modelling of the liquid compositions indicated that Al-Mc and the Fe-Mc phases do not form solid solution. The solubility products were calculated experimentally at 20 o C and 50 o C. Under standards condition the solubility products and other thermodynamic parameters were estimated using temperature-solubility product extrapolation and found to be logK S0 (Fe-Mc) = -34.59 ± 0.50, logK S0 (Fe-Hc) = -30.83 ± 0.50 and logK S0 (Al-Mc) = -31.32 ± 0.50.

  17. protoDUNE-Single Phase and protDUNE-DualPhase

    CERN Multimedia

    Brice, Maximilien

    2016-01-01

    At the EHN1 two big 8m x 8m x8m detector prototypes (protoDUNE-Single Phase and protDUNE-DualPhase) are being constructed. The aim is to test technologies and detector performances for DUNE, a new generation of LBN neutr

  18. Single-Phase Phase-Locked Loop Based on Derivative Elements

    DEFF Research Database (Denmark)

    Guan, Qingxin; Zhang, Yu; Kang, Yong

    2017-01-01

    High-performance phase-locked loops (PLLs) are critical for power control in grid-connected systems. This paper presents a new method of designing a PLL for single-phase systems based on derivative elements (DEs). The quadrature signal generator (QSG) is constructed by two DEs with the same...

  19. High resolution transmission electron microscopic study of nanoporous carbon consisting of curved single graphite sheets

    International Nuclear Information System (INIS)

    Bourgeois, L.N.; Bursill, L.A.

    1997-01-01

    A high resolution transmission electron microscopic study of a nanoporous carbon rich in curved graphite monolayers is presented. Observations of very thin regions. including the effect of tilting the specimen with respect to the electron beam, are reported. The initiation of single sheet material on an oriented graphite substrate is also observed. When combined with image simulations and independent measurements of the density (1.37g cm -3 ) and sp 3 /sp 2 +sp 2 bonding fraction (0.16), these observations suggest that this material is a two phase mixture containing a relatively low density aggregation of essentially capped single shells like squat nanotubes and polyhedra, plus a relatively dense 'amorphous' carbon structure which may be described using a random-Schwarzite model. Some negatively-curved sheets were also identified in the low density phase. Finally, some discussion is offered regarding the growth mechanisms responsible for this nanoporous carbon and its relationship with the structures of amorphous carbons across a broad range of densities, porosities and sp 3 /sp 2 +sp 3 bonding fractions

  20. High resolution transmission electron microscopic study of nanoporous carbon consisting of curved single graphite sheets

    Energy Technology Data Exchange (ETDEWEB)

    Bourgeois, L.N.; Bursill, L.A.

    1997-12-31

    A high resolution transmission electron microscopic study of a nanoporous carbon rich in curved graphite monolayers is presented. Observations of very thin regions. including the effect of tilting the specimen with respect to the electron beam, are reported. The initiation of single sheet material on an oriented graphite substrate is also observed. When combined with image simulations and independent measurements of the density (1.37g cm {sup -3}) and sp{sup 3}/sp{sup 2}+sp{sup 2} bonding fraction (0.16), these observations suggest that this material is a two phase mixture containing a relatively low density aggregation of essentially capped single shells like squat nanotubes and polyhedra, plus a relatively dense `amorphous` carbon structure which may be described using a random-Schwarzite model. Some negatively-curved sheets were also identified in the low density phase. Finally, some discussion is offered regarding the growth mechanisms responsible for this nanoporous carbon and its relationship with the structures of amorphous carbons across a broad range of densities, porosities and sp{sup 3}/sp{sup 2}+sp{sup 3} bonding fractions. 29 refs., 8 figs., 2 tabs.

  1. 2H nuclear magnetic resonance spectroscopy of deuterium adsorption on single-walled carbon nanotubes

    Science.gov (United States)

    Shen, Kai; Pietraß, Tanja

    2004-03-01

    2H nuclear magnetic resonance (NMR) spectroscopy was employed to study the interaction between deuterated hydrogen gas and single walled carbon nanotubes before and after purification. Transmission electron micrographs revealed strong bundling of the tubes. After purification, very little amorphous carbon and no graphitic particles were present, implying that the interactions observed are truly due to the nanotubes. In the parent material, the NMR signal is dominated by interaction of hydrogen with residual metal catalyst particles. For purified material, hydrogen in the gas phase is discernible from adsorbed hydrogen. The two phases do not exchange with each other on a ms time scale. The hydrogen molecules move among different adsorption sites, presumably outer tube surfaces and interstitial channels. This process is diffusion limited in the pressure range investigated.

  2. New Method Developed To Purify Single Wall Carbon Nanotubes for Aerospace Applications

    Science.gov (United States)

    Lebron, Marisabel; Meador, Michael A.

    2003-01-01

    Single wall carbon nanotubes have attracted considerable attention because of their remarkable mechanical properties and electrical and thermal conductivities. Use of these materials as primary or secondary reinforcements in polymers or ceramics could lead to new materials with significantly enhanced mechanical strength and electrical and thermal conductivity. Use of carbon-nanotube-reinforced materials in aerospace components will enable substantial reductions in component weight and improvements in durability and safety. Potential applications for single wall carbon nanotubes include lightweight components for vehicle structures and propulsion systems, fuel cell components (bipolar plates and electrodes) and battery electrodes, and ultra-lightweight materials for use in solar sails. A major barrier to the successful use of carbon nanotubes in these components is the need for methods to economically produce pure carbon nanotubes in large enough quantities to not only evaluate their suitability for certain applications but also produce actual components. Most carbon nanotube synthesis methods, including the HiPCO (high pressure carbon monoxide) method developed by Smalley and others, employ metal catalysts that remain trapped in the final product. These catalyst impurities can affect nanotube properties and accelerate their decomposition. The development of techniques to remove most, if not all, of these impurities is essential to their successful use in practical applications. A new method has been developed at the NASA Glenn Research Center to purify gram-scale quantities of single wall carbon nanotubes. This method, a modification of a gas phase purification technique previously reported by Smalley and others, uses a combination of high-temperature oxidations and repeated extractions with nitric and hydrochloric acid. This improved procedure significantly reduces the amount of impurities (catalyst and nonnanotube forms of carbon) within the nanotubes, increasing

  3. TWO-PHASE EJECTOR of CARBON DIOXIDE HEAT PUMP CALCULUS

    Directory of Open Access Journals (Sweden)

    Sit B.M.

    2010-12-01

    Full Text Available It is presented the calculus of the two-phase ejector for carbon dioxide heat pump. The method of calculus is based on the method elaborated by S.M. Kandil, W.E. Lear, S.A. Sherif, and is modified taking into account entrainment ratio as the input for the calculus.

  4. Improved PLL structures for single-phase grid inverters

    DEFF Research Database (Denmark)

    Ciobotaru, Mihai; Teodorescu, Remus; Blaabjerg, Frede

    2005-01-01

    of the reference signals. This paper presents two improved phase-locked-loop (PLL) methods for single-phase grid connected systems. The investigated PLL methods are based on a transport delay method and an inverse Park transformation method. The improvements in the case of using the delay-based PLL are: non......-frequency dependent and better filtering of the harmonics. For the other investigated PLL method based on inverse Park transformation the improvement consists of better filtering of the harmonics. Experimental results validate the effectiveness of the two proposed methods....

  5. Dynamics Assessment of Advanced Single-Phase PLL Structures

    DEFF Research Database (Denmark)

    Golestan, Saeed; Monfarad, Mohammad; Freijedo, Francisco D.

    2013-01-01

    , and desired performance under frequency-varying and harmonically distorted grid conditions. Despite the wide acceptance and use of these two advanced PLLs, no comprehensive design guidelines to fine-tune their parameters have been reported yet. Through a detailed mathematical analysis it is shown......Recently, several advanced phase locked loop (PLL) techniques have been proposed for single-phase applications. Among these, the Park-PLL, and the second order generalized integrator (SOGI) based PLL are very attractive, owing to their simple digital implementation, low computational burden...

  6. Ferroelectric phase transition in Ga2Te3 single crystals

    Science.gov (United States)

    Gamal, G. A.; Abdalrahman, M. M.; Ashraf, M. I.; Eman, H. J.

    2005-01-01

    Measurements of the electrical conductivity and Hall effect were carried out in a wide temperature range (200-500 K) for Ga2Te3 crystals. The crystals were grown in single crystalline form by making a modification of the travelling heater method technique. The measurements revealed unusual observations in the electric conductivity and Hall mobility indicating the presence of some type of phase transitions at about 430 K. So, ferroelectric behavior was examined for confirming the presence of second-order (ferroelectric) phase transition. An energy gap of 1.21 eV and depth of the impurity center of 0.11 eV were found.

  7. Evaluation of thromboembolic disease using single dose dual phase scintigraphy

    International Nuclear Information System (INIS)

    Sharma, A.R.; Charan, S.; Silva, I.

    2004-01-01

    Introduction: Clinical presentation of thromboembolic disease (TED) is caused by three mechanisms 1) obstruction to venous outflow 2) vascular inflammation and 3) pulmonary emboli. Single Dose (Tc-99m MAA) Dual Phases (Veno-Pulmonary) scintigraphy is theoretically capable of evaluating two of three above mentioned patho-physiological factors. Therefore, a prospective study was designed to explore potential of Single Dose Dual Phase (SDDP) scintigraphy in the evaluation of thromboembolic disease. Materials and methods: Sixty consecutive patients with high clinical likelihood of thromboembolic disease (onset of painful and edematous lower limb, chest pain, shortness of breath, presence of risk factors for DVT, H/o of previous episode of DVT, right ventricular strain on ECHO, hypoxaemia on blood gas analysis), were included in this study. There were 43 men and 17 women (mean age 36 years). They were subjected to single dose dual phase (SDDP) scintigraphy using Tc-99m MAA (4 mci). Firstly venous phase of imaging was obtained with simultaneous injection of Tc-99m MAA diluted in 10 ml normal saline in syringe into superficial veins of dorsum of both feet (large volume continuous flow technique) in whole body acquisition mode on Dual Detectors Gamma Camera; followed by lung perfusion scintigraphy in conventional projections as second phase of study. Venous phase (Venography) was interpreted as per Ziffer's criteria in four venous segments (Unpaired- Inferior Vena Cava, 3 paired - Iliac, Femoral and Popliteal). Interpretation of lung perfusion scan was made as per PIOPED Criteria. Results: Forty-one of sixty patients (67%) showed scintigraphic evidence of venous occlusion (DVT) during venous phase. Out of these, 17 patients eventually had high probability lung scan for pulmonary embolism (29%). None of the patient with negative venous phase (n=19) showed perfusion defects on lung perfusion scan. Venous thrombosis most commonly affected the left lower limb (n=29, 71%). In 5

  8. Effects of single particle on shape phase transitions and phase coexistence in odd-even nuclei

    Science.gov (United States)

    Yu, Xiang-Ru; Hu, Jing; Li, Xiao-Xue; An, Si-Yu; Zhang, Yu

    2018-02-01

    A classical analysis of shape phase transitions and phase coexistence in odd-even nuclei has been performed in the framework of the interacting boson-fermion model. The results indicate that the effects of a single particle may influence different types of transitions in different ways. Especially, it is revealed that phase coexistence can clearly emerge in the critical region and thus be taken as a indicator of the shape phase transitions in odd-even nuclei. Supported by National Natural Science Foundation of China (11375005)

  9. Carbon dioxide adsorption on H2 O 2 treated single-walled carbon nanohorns

    Science.gov (United States)

    Migone, Aldo; Krungleviciute, Vaiva; Banjara, Shree; Yudasaka, Masako; Iijima, Sumio

    2011-03-01

    Carbon nanohorns are closed single-wall structures with a hollow interior. Unlike SWNTs, which assemble into cylindrical bundles, nanohorns form spherical aggregates. In our experiments we used dahlia-like carbon nanohorn aggregates. Our sample underwent treatment with H2 O2 which opened access to the interior spaces of the individual nanohorns. We measured carbon dioxide adsorption at several temperatures between 167 and 195 K. We calculated the isosteric heat as a function of loading, and the binding energy values for CO2 on the nanohorn aggregates from the isotherm data. Results on the H2 O2 -treated nanohorns will be compared with those obtained on other carbon substrates. We have also determined detailed equilibration profiles for CO2 adsorption on the nanohorn aggregates; these results will also be presented. This work was supported by the NSF through grants DMR-1006428 and DMR-0705077.

  10. Pressure Drop Correlations of Single-Phase and Two-Phase Flow in Rolling Tubes

    International Nuclear Information System (INIS)

    Xia-xin Cao; Chang-qi Yan; Pu-zhen Gao; Zhong-ning Sun

    2006-01-01

    A series of experimental studies of frictional pressure drop for single phase and two-phase bubble flow in smooth rolling tubes were carried out. The tube inside diameters were 15 mm, 25 mm and 34.5 mm respectively, the rolling angles of tubes could be set as 10 deg. and 20 deg., and the rolling periods could be set as 5 s, 10 s and 15 s. Combining with the analysis of single-phase water motion, it was found that the traditional correlations for calculating single-phase frictional coefficient were not suitable for the rolling condition. Based on the experimental data, a new correlation for calculating single-phase frictional coefficient under rolling condition was presented, and the calculations not only agreed well with the experimental data, but also could display the periodically dynamic characteristics of frictional coefficients. Applying the new correlation to homogeneous flow model, two-phase frictional pressure drop of bubble flow in rolling tubes could be calculated, the results showed that the relative error between calculation and experimental data was less than ± 25%. (authors)

  11. Overview of Single-Phase Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede

    2017-01-01

    A continuous booming installation of solar photovoltaic (PV) systems has been witnessed worldwide. It is mainly driven by the imperative demand of “clean” power generation from renewables. Grid-connected PV systems will thus become an even more active player in the future mixed power systems, which...... systems. This chapter thus gives an overview of the advancement of power electronics converters in single-phase grid-connected PV systems, being commonly used in residential applications. Demands to single-phase grid-connected PV systems and the general control strategies are also addressed...... are linked together by a vast of power electronics converters and the power grid. In order to achieve a reliable and efficient power generation from PV systems, more stringent demands have been imposed on the entire PV system. It, in return, advances the development of the power converter technology in PV...

  12. Translocation events in a single-walled carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    He Jin; Lindsay, Stuart [Biodesign Institute, Arizona State University, Tempe, AZ 85287 (United States); Liu Hao [Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287 (United States); Pang Pei; Cao Di, E-mail: jinhe@asu.ed [Department of Physics, Arizona State University, Tempe, AZ 85287 (United States)

    2010-11-17

    Translocation of DNA oligomers through a single-walled carbon nanotube was demonstrated recently. Translocation events are accompanied by giant current pulses, the origin of which remains obscure. Here, we show that the introduction of a nucleotide, guanosine triphosphate, alone into the input reservoir of a carbon nanotube nanofluidic device also gives giant current pulses. Taken together with data on oligomer translocation, these new results suggest that the pulse width has a nonlinear, power-law dependence on the number of nucleotides in a DNA molecule. We have also measured the time for the onset of DNA translocation pulses after bias reversal, finding that the time for the onset of translocation is directly proportional to the period of the bias reversal.

  13. Translocation events in a single-walled carbon nanotube

    International Nuclear Information System (INIS)

    He Jin; Lindsay, Stuart; Liu Hao; Pang Pei; Cao Di

    2010-01-01

    Translocation of DNA oligomers through a single-walled carbon nanotube was demonstrated recently. Translocation events are accompanied by giant current pulses, the origin of which remains obscure. Here, we show that the introduction of a nucleotide, guanosine triphosphate, alone into the input reservoir of a carbon nanotube nanofluidic device also gives giant current pulses. Taken together with data on oligomer translocation, these new results suggest that the pulse width has a nonlinear, power-law dependence on the number of nucleotides in a DNA molecule. We have also measured the time for the onset of DNA translocation pulses after bias reversal, finding that the time for the onset of translocation is directly proportional to the period of the bias reversal.

  14. Synthesis and Cytotoxicity of POSS Modified Single Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Yuhua Xue

    2015-01-01

    Full Text Available Single walled carbon nanotubes (SWNTs decorated with polyhedral oligomeric silsesquioxane (POSS were synthesized via the amide linkages between the acid treated SWNTs and amine-functionalized POSS. The successful modification of SWNTs with POSS was confirmed by Fourier transform infrared spectroscopy (FTIR, X-ray photoelectron spectroscopy (XPS, and UV-Vis spectra. The resulting SWNTs-POSS can be dispersed in both water and organic solutions. The biocompatibility and cytotoxicity of the SWNTs and SWNTs-POSS were evaluated by CCK-8 viability assays, which indicated that SWNTs-POSS exhibit very extremely low toxicity. The low toxicity of the POSS modified SWNTs leads to more opportunities for using carbon nanotubes in biomedical fields.

  15. Berry-phase blockade in single-molecule magnets

    OpenAIRE

    Gonzalez, Gabriel; Leuenberger, Michael N.

    2006-01-01

    We formulate the problem of electron transport through a single-molecule magnet (SMM) in the Coulomb blockade regime taking into account topological interference effects for the tunneling of the large spin of a SMM. The interference originates from spin Berry phases associated with different tunneling paths. We show that in the case of incoherent spin states it is essential to place the SMM between oppositely spin-polarized source and drain leads in order to detect the spin tunneling in the s...

  16. Nucleation and Epitaxy-Mediated Phase Transformation of a Precursor Cadmium Carbonate Phase at the Calcite/Water Interface

    Energy Technology Data Exchange (ETDEWEB)

    Riechers, Shawn L.; Rosso, Kevin M.; Kerisit, Sebastien N.

    2017-02-24

    Mineral nucleation can be catalyzed by the presence of mineral substrates; however, the mechanisms of heterogeneous nucleation remain poorly understood. A combination of in situ time-sequenced measurements and nano-manipulation experiments were performed using atomic force microscopy (AFM) to probe the mechanisms of heteroepitaxial nucleation of otavite (CdCO3) on calcite (CaCO3) single crystals that exposed the (10-14) surface. Otavite and calcite are isostructural carbonates that display a 4% lattice mismatch, based on their (10-14) surface areas. AFM observations revealed a two-stage process in the nucleation of cadmium carbonate surface precipitates. As evidenced by changes in height, shape, growth behavior, and friction signal of the precipitates, a precursor phase was observed to initially form on the surface and subsequently undergo an epitaxy-mediated phase transformation to otavite, which then grew epitaxially. Nano-manipulation experiments, in which the applied force was increased progressively until precipitates were removed from the surface, showed that adhesion of the precursor phase to the substrate was distinctively weaker than that of the epitaxial phase, consistent with that of an amorphous phase. These findings demonstrate for the first time that heterogeneous mineral nucleation can follow a non-classical pathway like that found in homogenous aqueous conditions.

  17. Neon adsorption on oxidized single-walled carbon nanohorns

    Science.gov (United States)

    Krungleviciute, Vaiva; Migone, Aldo; Yudasaka, Masako; Iijima, Sumio

    2012-02-01

    We will present the results of a study of neon adsorption on oxidized single-walled carbon nanohorns. Our adsorption isotherm measurements were conducted at temperatures below 24.5 K, the triple point for Ne. Results for the effective specific surface area and for the effective pore volume of the nanohorn aggregates will be presented. We will also report on the sorbent-loading dependence of the isosteric heat of neon on the nanohorns, and on the binding energy. Our results for this system will be compared with those obtained for Ne on a sample of dahlia-like nanohorns annealed at 520 K.

  18. Electrochemical Charging of Individual Single-Walled Carbon Nanotubes

    Czech Academy of Sciences Publication Activity Database

    Kalbáč, Martin; Farhat, H.; Kavan, Ladislav; Kong, J.; Sasaki, K.; Saito, R.; Dresselhaus, M. S.

    2009-01-01

    Roč. 3, č. 8 (2009), s. 2320-2328 ISSN 1936-0851 R&D Projects: GA ČR GC203/07/J067; GA AV ČR IAA400400804; GA AV ČR IAA400400911; GA AV ČR KAN200100801; GA MŠk ME09060 Institutional research plan: CEZ:AV0Z40400503 Keywords : single-walled carbon nanotubes * Raman spectroscopy * electrochemical gating * spectroelectrochemistry Subject RIV: CG - Electrochemistry Impact factor: 7.493, year: 2009

  19. Induced Magnetic Moment in Defected Single-Walled Carbon Nanotubes

    International Nuclear Information System (INIS)

    Liu Hong

    2006-01-01

    The existence of a large induced magnetic moment in defect single-walled carbon nanotube(SWNT) is predicted using the Green's function method. Specific to this magnetic moment of defect SWNT is its magnitude which is several orders of magnitude larger than that of perfect SWNT. The induced magnetic moment also shows certain remarkable features. Therefore, we suggest that two pair-defect orientations in SWNT can be distinguished in experiment through the direction of the induced magnetic moment at some Specific energy points

  20. Pre-Combustion Carbon Dioxide Capture by a New Dual Phase Ceramic-Carbonate Membrane Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jerry Y. S. [Arizona State Univ., Tempe, AZ (United States)

    2015-01-31

    This report documents synthesis, characterization and carbon dioxide permeation and separation properties of a new group of ceramic-carbonate dual-phase membranes and results of a laboratory study on their application for water gas shift reaction with carbon dioxide separation. A series of ceramic-carbonate dual phase membranes with various oxygen ionic or mixed ionic and electronic conducting metal oxide materials in disk, tube, symmetric, and asymmetric geometric configurations was developed. These membranes, with the thickness of 10 μm to 1.5 mm, show CO2 permeance in the range of 0.5-5×10-7 mol·m-2·s-1·Pa-1 in 500-900°C and measured CO2/N2 selectivity of up to 3000. CO2 permeation mechanism and factors that affect CO2 permeation through the dual-phase membranes have been identified. A reliable CO2 permeation model was developed. A robust method was established for the optimization of the microstructures of ceramic-carbonate membranes. The ceramic-carbonate membranes exhibit high stability for high temperature CO2 separations and water gas shift reaction. Water gas shift reaction in the dual-phase membrane reactors was studied by both modeling and experiments. It is found that high temperature syngas water gas shift reaction in tubular ceramic-carbonate dual phase membrane reactor is feasible even without catalyst. The membrane reactor exhibits good CO2 permeation flux, high thermal and chemical stability and high thermal shock resistance. Reaction and separation conditions in the membrane reactor to produce hydrogen of 93% purity and CO2 stream of >95% purity, with 90% CO2 capture have been identified. Integration of the ceramic-carbonate dual-phase membrane reactor with IGCC process for carbon dioxide capture was analyzed. A methodology was developed to identify optimum operation conditions for a

  1. Single-layer dual germanene phases on Ag(111)

    Science.gov (United States)

    Lin, Chung-Huang; Huang, Angus; Pai, Woei Wu; Chen, Wei-Chuan; Chen, Ting-Yu; Chang, Tay-Rong; Yukawa, Ryu; Cheng, Cheng-Maw; Mou, Chung-Yu; Matsuda, Iwao; Chiang, T.-C.; Jeng, H.-T.; Tang, S.-J.

    2018-02-01

    Two-dimensional (2D) honeycomb lattices beyond graphene promise new physical properties such as quantum spin Hall effect. While there have been claims of growth of such lattices (silicene, germanene, stanene), their existence needs further support and their preparation and characterization remain a difficult challenge. Our findings suggest that two distinct phases associated with germanene, the analog of graphene made of germanium (Ge) instead of carbon, can be grown on Ag(111) as observed by scanning tunneling microscopy, low-energy electron diffraction, and angle-resolved photoemission spectroscopy. One such germanene exhibits an atom-resolved alternatively buckled full honeycomb lattice, which is tensile strained and partially commensurate with the substrate to form a striped phase (SP). The other, a quasifreestanding phase (QP), is also consistent with a honeycomb lattice with a lattice constant incommensurate with the substrate but very close to the theoretical value for freestanding germanene. The SP, with a lower atomic density, can be driven into the QP and coexist with the QP by additional Ge deposition. Band mapping and first-principles calculations with proposed SP and QP models reveal an interface state exists only in the SP but the characteristic σ band of freestanding germanene emerges only in the QP—this leads to an important conclusion that adlayer-substrate commensurability plays a key role to affect the electronic structure of germanene. The evolution of the dual germanene phases manifests the competitive formation of Ge-Ge covalent and Ge-Ag interfacial bonds.

  2. Generalizing thermodynamic properties of bulk single-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Kenneth R. Rodriguez

    2014-12-01

    Full Text Available The enthalpy and Gibbs free energy thermodynamical potentials of single walled carbon nanotubes were studied of all types (armchairs, zig-zags, chirals (n>m, and chiral (nsingle equation for the thermodynamical potential of Δ H AB 298   K or Δ G AB 298   K (assembly of nanotubes from atoms versus the chiral vector indexes n and m for any given nanotube. The equations show a good level of accuracy in predicting thermodynamic potentials for practical applications.

  3. Excitons in single-walled carbon nanotubes: environmental effect

    International Nuclear Information System (INIS)

    Smyrnov, O.A.

    2010-01-01

    The properties of excitons in semiconducting single-walled carbon nanotubes (SWCNTs) isolated in vacuum or a medium and their contributions to the optical spectra of nanotubes are studied within the elementary potential model, in which an exciton is represented as a bound state of two oppositely charged quasiparticles confined to the nanotube surface. The emphasis is given on the influence of the dielectric environment surrounding a nanotube on the exciton spectra. For nanotubes in the environment with a permittivity less than ∼ 1:8; the ground-state exciton binding energies exceed the respective energy gaps, whereas the obtained binding energies of excitons in nanotubes in a medium with permittivity greater than ∼ 4 are in good accordance with the corresponding experimental data and consistent with the known scaling relation for the environmental effect. The stabilization of a single-electron spectrum in SWCNTs in media with rather low permittivities is discussed.

  4. Investigation on a Novel Discontinuous Pulse-Width Modulation Algorithm for Single-phase Voltage Source Rectifier

    DEFF Research Database (Denmark)

    Qu, Hao; Yang, Xijun; Guo, Yougui

    2014-01-01

    Single-phase voltage source converter (VSC) is an important power electronic converter (PEC), including single-phase voltage source inverter (VSI), single-phase voltage source rectifier (VSR), single-phase active power filter (APF) and single-phase grid-connection inverter (GCI). Single-phase VSC...

  5. Synthesis, assembly, and applications of single-walled carbon nanotube

    Science.gov (United States)

    Ryu, Koungmin

    This dissertation presents the synthesis and assembly of aligned carbon nanotubes, and their applications in both nano-electronics such as transistor and integrated circuits and macro-electronics in energy conversion devices as transparent conducting electrodes. Also, the high performance chemical sensor using metal oxide nanowire has been demonstrated. Chapter 1 presents a brief introduction of carbon nanotube, followed by discussion of a new synthesis technique using nanosphere lithography to grow highly aligned single-walled carbon nanotubes atop quartz and sapphire substrates. This method offers great potential to produce carbon nanotube arrays with simultaneous control over the nanotube orientation, position, density, diameter and even chirality. Chapter 3 introduces the wafer-scale integration and assembly of aligned carbon nanotubes, including full-wafer scale synthesis and transfer of massively aligned carbon nanotube arrays, and nanotube device fabrication on 4 inch Si/SiO2 wafer to yield submicron channel transistors with high on-current density ˜ 20 muA/mum and good on/off ratio and CMOS integrated circuits. In addition, various chemical doping methods for n-type nanotube transistors are studied to fabricate CMOS integrated nanotube circuits such as inverter, NAND and NOR logic devices. Furthermore, defect-tolerant circuit design for NAND and NOR is proposed and demonstrated to guarantee the correct operation of logic circuit, regardless of the presence of mis-aligned or mis-positioned nanotubes. Carbon nanotube flexible electronics and smart textiles for ubiquitous computing and sensing are demonstrated in chapter 4. A facile transfer printing technique has been introduced to transfer massively aligned single-walled carbon nanotubes from the original sapphire/quartz substrates to virtually any other substrates, including glass, silicon, polymer sheets, and even fabrics. The characterization of transferred nanotubes reveals that the transferred

  6. Signal Integrity Analysis in Single and Bundled Carbon Nanotube Interconnects

    International Nuclear Information System (INIS)

    Majumder, M.K.; Pandya, N.D.; Kaushik, B.K.; Manhas, S.K.

    2013-01-01

    Carbon nanotube (CN T) can be considered as an emerging interconnect material in current nano scale regime. They are more promising than other interconnect materials such as Al or Cu because of their robustness to electromigration. This research paper aims to address the crosstalk-related issues (signal integrity) in interconnect lines. Different analytical models of single- (SWCNT), double- (DWCNT), and multiwalled CNTs (MWCNT) are studied to analyze the crosstalk delay at global interconnect lengths. A capacitively coupled three-line bus architecture employing CMOS driver is used for accurate estimation of crosstalk delay. Each line in bus architecture is represented with the equivalent RLC models of single and bundled SWCNT, DWCNT, and MWCNT interconnects. Crosstalk delay is observed at middle line (victim) when it switches in opposite direction with respect to the other two lines (aggressors). Using the data predicted by ITRS 2012, a comparative analysis on the basis of crosstalk delay is performed for bundled SWCNT/DWCNT and single MWCNT interconnects. It is observed that the overall crosstalk delay is improved by 40.92% and 21.37% for single MWCNT in comparison to bundled SWCNT and bundled DWCNT interconnects, respectively.

  7. Low-power switching of phase-change materials with carbon nanotube electrodes.

    Science.gov (United States)

    Xiong, Feng; Liao, Albert D; Estrada, David; Pop, Eric

    2011-04-29

    Phase-change materials (PCMs) are promising candidates for nonvolatile data storage and reconfigurable electronics, but high programming currents have presented a challenge to realize low-power operation. We controlled PCM bits with single-wall and small-diameter multi-wall carbon nanotubes. This configuration achieves programming currents of 0.5 microampere (set) and 5 microamperes (reset), two orders of magnitude lower than present state-of-the-art devices. Pulsed measurements enable memory switching with very low energy consumption. Analysis of over 100 devices finds that the programming voltage and energy are highly scalable and could be below 1 volt and single femtojoules per bit, respectively.

  8. Sea Urchin Spine Calcite Forms via a Transient Amorphous Calcium Carbonate Phase

    Science.gov (United States)

    Politi, Yael; Arad, Talmon; Klein, Eugenia; Weiner, Steve; Addadi, Lia

    2004-11-01

    The skeletons of adult echinoderms comprise large single crystals of calcite with smooth convoluted fenestrated morphologies, raising many questions about how they form. By using water etching, infrared spectroscopy, electron diffraction, and environmental scanning electron microscopy, we show that sea urchin spine regeneration proceeds via the initial deposition of amorphous calcium carbonate. Because most echinoderms produce the same type of skeletal material, they probably all use this same mechanism. Deposition of transient amorphous phases as a strategy for producing single crystals with complex morphology may have interesting implications for the development of sophisticated materials.

  9. Photophysics of covalently functionalized single wall carbon nanotubes with verteporfin

    Science.gov (United States)

    Staicu, Angela; Smarandache, Adriana; Pascu, Alexandru; Pascu, Mihail Lucian

    2017-09-01

    Covalently functionalized single wall carbon nanotubes (SWCNT) with the photosensitizer verteporfin (VP) were synthesized and studied. Photophysical properties of the obtained compounds like optical absorption, laser-induced fluorescence and generated singlet oxygen were investigated. In order to highlight the features of the conjugated compound, its photophysical characteristics were compared with those of the mixtures of the initial components. The optical absorption data evidenced a compound that combines features of the primary SWCNTs and VP. This is the also the case of the laser induced fluorescence of the synthesized product. Moreover, fluorescence quantum yield (Φf) of the compound (Φf = 2.4%) is smaller than for the mixture of SWCNT and VP in (Φf = 3.2%). The behavior is expected, because linked VP (carrying the fluorescent moiety) transfers easier a part of its excitation energy to the SWCNT in the covalent structure. Relative to the quantum yield of singlet oxygen generation (ΦΔ) by Methylene Blue, it was found that the ΦΔ for the conjugated VP-SWCNT is 51% while for the mixture ΦΔ is 23%. The results indicate covalently functionalized single walled carbon nanotubes with verteporfin as potential compounds of interest in targeted drug delivery and photodynamic therapy.

  10. Simulation of the phenomenon of single-phase and two-phase natural circulation

    International Nuclear Information System (INIS)

    Castrillo, Lazara Silveira

    1998-02-01

    Natural convection phenomenon is often used to remove the residual heat from the surfaces of bodies where the heat is generated e.g. during accidents or transients of nuclear power plants. Experimental study of natural circulation can be done in small scale experimental circuits and the results can be extrapolated for larger operational facilities. The numerical analysis of transients can be carried out by using large computational codes that simulate the thermohydraulic behavior in such facilities. The computational code RELAP5/MOD2, (Reactor Excursion and Leak Analysis Program) was developed by U.S. Nuclear Regulatory Commissions's. Division of Reactor Safety Research with the objective of analysis of transients and postulated accidents in the light water reactor (LWR) systems, including small and large ruptures with loss of coolant accidents (LOCA's). The results obtained by the simulation of single-phase and two-phase natural circulation, using the RELAP5/MOD2, are presented in this work. The study was carried out using the experimental circuit built at the 'Departamento de Engenharia Quimica da Escola Politecnica da Universidade de Sao Paulo'. In the circuit, two experiments were carried out with different conditions of power and mass flow, obtaining a single-phase regime with a level of power of 4706 W and flow of 5.10 -5 m 3 /s (3 l/min) and a two-phase regime with a level of power of 6536 W and secondary flow 2,33.10 -5 m 3 /s (1,4 l/min). The study allowed tio evaluate the capacity of the code for representing such phenomena as well as comparing the transients obtained theoretically with the experimental results. The comparative analysis shows that the code represents fairly well the single-phase transient, but the results for two-phase transients, starting from the nodalization and calibration used for the case single-phase transient, did not reproduce faithfully some experimental results. (author)

  11. A New 5-Phase Equation of State for Carbon

    Energy Technology Data Exchange (ETDEWEB)

    Coe, Joshua Damon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Gammel, J. Tinka [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division

    2016-09-06

    We describe the development of SESAME 7835, a new tabular equation of state (EOS) for carbon containing the diamond, bc8, simple cubic, simple hexagonal, and liquid/plasma phases. We compare the EOS against a wide variety of experimental data and simulation results, including static compression, dynamic compression, specific heat, and thermal expansion. To the extent that the reference data agree amongst themselves, the results are satisfactory in all cases.

  12. Phase diagram of boron carbide with variable carbon composition

    Science.gov (United States)

    Yao, Sanxi; Gao, Qin; Widom, Michael

    2017-02-01

    Boron carbide exhibits intrinsic substitutional disorder over a broad composition range. The structure consists of 12-atom icosahedra placed at the vertices of a rhombohedral lattice, together with a 3-atom chain along the threefold axis. In the high-carbon limit, one or two carbon atoms can replace boron atoms on the icosahedra while the chains are primarily of type C-B-C. We fit an interatomic pair interaction model to density-functional-theory total energies to investigate the substitutional carbon disorder. Monte Carlo simulations with sampling improved by replica exchange and augmented by two-dimensional multiple histogram analysis predict three phases. The low-temperature, high-carbon-composition monoclinic C m structure disorders through a pair of phase transitions, first via an Ising-like transition to a monoclinic centrosymmetric state with space group C 2 /m , then via a first-order three-state Potts-like transition to the experimentally observed rhombohedral R 3 ¯m symmetry.

  13. Berry-Phase Blockade in Single-Molecule Magnets

    Science.gov (United States)

    González, Gabriel; Leuenberger, Michael N.

    2007-06-01

    We formulate the problem of electron transport through a single-molecule magnet (SMM) in the Coulomb blockade regime taking into account topological interference effects for the tunneling of the large spin of a SMM. The interference originates from spin Berry phases associated with different tunneling paths. We show that, in the case of incoherent spin states, it is essential to place the SMM between oppositely spin-polarized source and drain leads in order to detect the spin tunneling in the stationary current, which exhibits topological zeros as a function of the transverse magnetic field.

  14. Solution Concept of Modular Single Phase Active Power Filters

    Directory of Open Access Journals (Sweden)

    Marek Roch

    2006-01-01

    Full Text Available This paper investigates a modular or a decentralised single-phase active power filter control strategy. It is based on the evaluation of the harmonic reference load currents for the active power filter blocks operating under specific harmonic frequencies. The underlying principle of the modular active power filter is explained and it is shown how the required reference harmonic currents can be evaluated. Simulation results demonstrated the improvement in the dynamic performance of the modular active power filter presented here in comparison with the conventional type.

  15. A Transformer-less Single Phase Inverter For photovoltaic Systems

    DEFF Research Database (Denmark)

    Mostaan, Ali; Alizadeh, Ebrahim; Qu, Ying

    2017-01-01

    A single phase transformer-less inverter is introduced in this paper. The negative polarities of the input voltage and output terminal have common ground. Therefore, the leakage current problem that is common in PV systems is eliminated naturally. In addition, the proposed inverter has fewer...... components compared with its counterparts and only one switch conducts during the active states which enhance the inverter efficiency. The proposed inverter is analyzed in details and compared with some existing topologies. The performance of the proposed inverter is validated using the simulation results....

  16. Capillary electrophoresis of covalently functionalized single-chirality carbon nanotubes.

    Science.gov (United States)

    He, Pingli; Meany, Brendan; Wang, Chunyan; Piao, Yanmei; Kwon, Hyejin; Deng, Shunliu; Wang, YuHuang

    2017-07-01

    We demonstrate the separation of chirality-enriched single-walled carbon nanotubes (SWCNTs) by degree of surface functionalization using high-performance CE. Controlled amounts of negatively charged and positively charged functional groups were attached to the sidewall of chirality-enriched SWCNTs through covalent functionalization using 4-carboxybenzenediazonium tetrafluoroborate or 4-diazo-N,N-diethylaniline tetrafluoroborate, respectively. Surfactant- and pH-dependent studies confirmed that under conditions that minimized ionic screening effects, separation of these functionalized SWCNTs was strongly dependent on the surface charge density introduced through covalent surface chemistry. For both heterogeneous mixtures and single-chirality-enriched samples, covalently functionalized SWCNTs showed substantially increased peak width in electropherogram spectra compared to nonfunctionalized SWCNTs, which can be attributed to a distribution of surface charges along the functionalized nanotubes. Successful separation of functionalized single-chirality SWCNTs by functional density was confirmed with UV-Vis-NIR absorption and Raman scattering spectroscopies of fraction collected samples. These results suggest a high degree of structural heterogeneity in covalently functionalized SWCNTs, even for chirality-enriched samples, and show the feasibility of applying CE for high-performance separation of nanomaterials based on differences in surface functional density. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Spontaneous and controlled-diameter synthesis of single-walled and few-walled carbon nanotubes

    Science.gov (United States)

    Inoue, Shuhei; Lojindarat, Supanat; Kawamoto, Takahiro; Matsumura, Yukihiko; Charinpanitkul, Tawatchai

    2018-05-01

    In this study, we explored the spontaneous and controlled-diameter growth of carbon nanotubes. We evaluated the effects of catalyst density, reduction time, and a number of catalyst coating on the substrate (for multi-walled carbon nanotubes) on the diameter of single-walled carbon nanotubes and the number of layers in few-walled carbon nanotubes. Increasing the catalyst density and reduction time increased the diameters of the carbon nanotubes, with the average diameter increasing from 1.05 nm to 1.86 nm for single-walled carbon nanotubes. Finally, we succeeded in synthesizing a significant double-walled carbon nanotube population of 24%.

  18. Fossil fuel derivatives with reduced carbon. Phase I final report

    Energy Technology Data Exchange (ETDEWEB)

    Kennel, E.B.; Zondlo, J.W.; Cessna, T.J.

    1999-06-30

    This project involves the simultaneous production of clean fossil fuel derivatives with reduced carbon and sulfur, along with value-added carbon nanofibers. This can be accomplished because the nanofiber production process removes carbon via a catalyzed pyrolysis reaction, which also has the effect of removing 99.9% of the sulfur, which is trapped in the nanofibers. The reaction is mildly endothermic, meaning that net energy production with real reductions in greenhouse emissions are possible. In Phase I research, the feasibility of generating clean fossil fuel derivatives with reduced carbon was demonstrated by the successful design, construction and operation of a facility capable of utilizing coal as well as natural gas as an inlet feedstock. In the case of coal, for example, reductions in CO{sub 2} emissions can be as much as 70% (normalized according to kilowatts produced), with the majority of carbon safely sequestered in the form of carbon nanofibers or coke. Both of these products are value-added commodities, indicating that low-emission coal fuel can be done at a profit rather than a loss as is the case with most clean-up schemes. The main results of this project were as follows: (1) It was shown that the nanofiber production process produces hydrogen as a byproduct. (2) The hydrogen, or hydrogen-rich hydrocarbon mixture can be consumed with net release of enthalpy. (3) The greenhouse gas emissions from both coal and natural gas are significantly reduced. Because coal consumption also creates coke, the carbon emission can be reduced by 75% per kilowatt-hour of power produced.

  19. Sequestration of Single-Walled Carbon Nanotubes in a Polymer

    Science.gov (United States)

    Bley, Richard A.

    2007-01-01

    Sequestration of single-walled carbon nanotubes (SWCNs) in a suitably chosen polymer is under investigation as a means of promoting the dissolution of the nanotubes into epoxies. The purpose of this investigation is to make it possible to utilize SWCNs as the reinforcing fibers in strong, lightweight epoxy-matrix/carbon-fiber composite materials. SWCNs are especially attractive for use as reinforcing fibers because of their stiffness and strength-to-weight ratio: Their Young s modulus has been calculated to be 1.2 TPa, their strength has been calculated to be as much as 100 times that of steel, and their mass density is only one-sixth that of steel. Bare SWCNs cannot be incorporated directly into composite materials of the types envisioned because they are not soluble in epoxies. Heretofore, SWCNS have been rendered soluble by chemically attaching various molecular chains to them, but such chemical attachments compromise their structural integrity. In the method now under investigation, carbon nanotubes are sequestered in molecules of poly(m-phenylenevinylene-co-2,5-dioctyloxy-p-phenylenevinylene) [PmPV]. The strength of the carbon nanotubes is preserved because they are not chemically bonded to the PmPV. This method exploits the tendency of PmPV molecules to wrap themselves around carbon nanotubes: the wrapping occurs partly because there exists a favorable interface between the conjugated face of a nanotube and the conjugated backbone of the polymer and partly because of the helical molecular structure of PmPV. The constituents attached to the polymer backbones (the side chains) render the PmPV-wrapped carbon nanotubes PmPV soluble in organic materials that, in turn, could be used to suspend the carbon nanotubes in epoxy precursors. At present, this method is being optimized: The side chains on the currently available form of PmPV are very nonpolar and unable to react with the epoxy resins and/or hardeners; as a consequence, SWCN/PmPV composites have been

  20. Hybrid Three-Phase/Single-Phase Microgrid Architecture with Power Management Capabilities

    DEFF Research Database (Denmark)

    Sun, Qiuye; Zhou, Jianguo; Guerrero, Josep M.

    2015-01-01

    With the fast proliferation of single-phase distributed generation (DG) units and loads integrated into residential microgrids, independent power sharing per phase and full use of the energy generated by DGs have become crucial. To address these issues, this paper proposes a hybrid microgrid...... control of load power sharing among phases, as well as to allow fully utilization of the energy generated by DGs. Meanwhile, the method combining the modified adaptive backstepping-sliding mode control approach and droop control is also proposed to design the SPBTB system controllers. With the application...... of the proposed PSU and its power management strategy, the loads among different phases can be properly supplied and the energy can be fully utilized as well as obtaining better load sharing. Simulation and experimental results are provided to demonstrate the validity of the proposed hybrid microgrid structure...

  1. Orbital Signals in Carbon Isotopes: Phase Distortion as a Signature of the Carbon Cycle

    Science.gov (United States)

    Laurin, Jiří; Rąžek, Bohuslav; Giorgioni, Martino

    2017-11-01

    Isotopic mass balance models are employed here to study the response of carbon isotope composition (δ13C) of the ocean-atmosphere system to amplitude-modulated perturbations on Milankovitch time scales. We identify a systematic phase distortion, which is inherent to a leakage of power from the carrier precessional signal to the modulating eccentricity terms in the global carbon cycle. The origin is partly analogous to the simple cumulative effect in sinusoidal signals, reflecting the residence time of carbon in the ocean-atmosphere reservoir. The details of origin and practical implications are, however, different. In amplitude-modulated signals, the deformation is manifested as a lag of the 405 kyr eccentricity cycle behind amplitude modulation (AM) of the short ( 100 kyr) eccentricity cycle. Importantly, the phase of AM remains stable during the carbon cycle transfer, thus providing a reference framework against which to evaluate distortion of the 405 kyr term. The phase relationships can help to (1) identify depositional and diagenetic signatures in δ13C and (2) interpret the pathways of astronomical signal through the climate system. The approach is illustrated by case studies of Albian and Oligocene records using a new computational tool EPNOSE (Evaluation of Phase in uNcertain and nOisy SEries). Analogous phase distortions occur in other components of the carbon cycle including atmospheric CO2 levels; hence, to fully understand the causal relationships on astronomical time scales, paleoclimate models may need to incorporate realistic, amplitude-modulated insolation instead of monochromatic sinusoidal approximations. Finally, detection of the lagged δ13C response can help to reduce uncertainties in astrochronological age models that are tuned to the 405 kyr cycle.

  2. SINGLE-PHASE AND TWO-PHASE SECONDARY COOLANTS: SIMULATION AND EVALUATION OF THEIR THERMOPHYSICAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Pedro Samuel Gomes Medeiros

    2011-09-01

    Full Text Available This paper makes a comparative analysis of the thermophysical properties of ice slurry with conventional single-phase secondary fluids used in thermal storage cooling systems. The ice slurry is a two-phase fluid consisting of water, antifreeze and ice crystals. It is a new technology that has shown great energy potential. In addition to transporting energy as a heat transfer fluid, it has thermal storage properties due to the presence of ice, storing coolness by latent heat of fusion. The single-phase fluids analyzed are water-NaCl and water-propylene glycol solutions, which also operate as carrier fluids in ice slurry. The presence of ice changes the thermophysical properties of aqueous solutions and a number of these properties were determined: density, thermal conductivity and dynamic viscosity. Data were obtained by software simulation. The results show that the presence of 10% by weight of ice provides a significant increase in thermal conductivity and dynamic viscosity, without causing changes in density. The rheological behavior of ice slurries, associated with its high viscosity, requires higher pumping power; however, this was not significant because higher thermal conductivity allows a lower mass flow rate without the use of larger pumps. Thus, the ice slurry ensures its high potential as a secondary fluid in thermal storage cooling systems, proving to be more efficient than single-phase secondary fluids.

  3. Finite single wall capped carbon nanotubes under hydrostatic pressure

    International Nuclear Information System (INIS)

    Baltazar, S E; Romero, A H; RodrIguez-Lopez, J L; Martonak, R

    2006-01-01

    We report a classical molecular dynamics isothermal-isobaric ensemble (NPT) implementation for the simulation of pressure effects on finite systems. The method is based on calculating the enclosed surface area by means of the Delauney triangulation method, which results in a fairly accurate description of the surface and the system volume. The external pressure is applied to the system by external forces acting on the triangulated surface covering the nanostructure. Pressure is exerted perpendicularly to every one of the Delauney triangles, by equally distributing the force to every corner of a triangle. We applied the method to finite single wall capped carbon nanotubes (SWCNTs) with different chiralities and different tube lengths ranging from 4 nm up to 30 nm. Pressure effects are studied as a function of the radii and the nanotube length, as well as as a function of temperature. Our results are in very good agreement when compared with both experimental and other theoretical results

  4. The synthesis and filling of single-walled carbon nanotubes

    CERN Document Server

    Friedrichs, S

    2002-01-01

    This thesis is concerned with the synthesis, properties and application of single-walled carbon nanotubes (SWNTs). The two main objectives of the work were the development of a continuous-flow synthesis of SWNTs, using chemical vapour deposition (CVD) techniques, and the application of the hollow SWNTs as moulds for the study of the crystallisation behaviour of inorganic materials in the confined space of their inner cavity. The latter study was mainly performed by interpreting high-resolution transmission electron microscopy (HRTEM) images of the filled SWNTs. A so-called focal series restoration approach, which enhances the resolution of the images and thereby increases the information content, was employed where possible. Chapter I reviews the previous work in the field of SWNTs and introduces their basic structure, symmetry, physical and mechanical properties and the common methods of SWNT synthesis. The chapter ends with an overview of the techniques used in the present work for the characterisation of c...

  5. Radiation Protection Using Single-Wall Carbon Nanotube Derivatives

    Science.gov (United States)

    Tour, James M.; Lu, Meng; Lucente-Schultz, Rebecca; Leonard, Ashley; Doyle, Condell Dewayne; Kosynkin, Dimitry V.; Price, Brandi Katherine

    2011-01-01

    This invention is a means of radiation protection, or cellular oxidative stress mitigation, via a sequence of quenching radical species using nano-engineered scaffolds, specifically single-wall carbon nanotubes (SWNTs) and their derivatives. The material can be used as a means of radiation protection by reducing the number of free radicals within, or nearby, organelles, cells, tissue, organs, or living organisms, thereby reducing the risk of damage to DNA and other cellular components (i.e., RNA, mitochondria, membranes, etc.) that can lead to chronic and/or acute pathologies, including but not limited to cancer, cardiovascular disease, immuno-suppression, and disorders of the central nervous system. In addition, this innovation could be used as a prophylactic or antidote for accidental radiation exposure, during high-altitude or space travel where exposure to radiation is anticipated, or to protect from exposure from deliberate terrorist or wartime use of radiation- containing weapons.

  6. Review of Electronics Based on Single-Walled Carbon Nanotubes.

    Science.gov (United States)

    Cao, Yu; Cong, Sen; Cao, Xuan; Wu, Fanqi; Liu, Qingzhou; Amer, Moh R; Zhou, Chongwu

    2017-08-14

    Single-walled carbon nanotubes (SWNTs) are extremely promising materials for building next-generation electronics due to their unique physical and electronic properties. In this article, we will review the research efforts and achievements of SWNTs in three electronic fields, namely analog radio-frequency electronics, digital electronics, and macroelectronics. In each SWNT-based electronic field, we will present the major challenges, the evolutions of the methods to overcome these challenges, and the state-of-the-art of the achievements. At last, we will discuss future directions which could lead to the broad applications of SWNTs. We hope this review could inspire more research on SWNT-based electronics, and accelerate the applications of SWNTs.

  7. Determination of moisture content of single-wall carbon nanotubes.

    Science.gov (United States)

    Sturgeon, Ralph E; Lam, Joseph W; Windust, Anthony; Grinberg, Patricia; Zeisler, Rolf; Oflaz, Rabia; Paul, Rick L; Lang, Brian E; Fagan, Jeffrey A; Simard, Benoit; Kingston, Christopher T

    2012-01-01

    Several techniques were evaluated for the establishment of reliable water/moisture content of single-wall carbon nanotubes. Karl Fischer titration (KF) provides a direct measure of the water content and was used for benchmarking against results obtained by conventional oven drying, desiccation over anhydrous magnesium perchlorate as well as by thermogravimetry and prompt gamma-ray activation analysis. Agreement amongst results was satisfactory with the exception of thermogravimetry, although care must be taken with oven drying as it is possible to register mass gain after an initial moisture loss if prolonged drying time or elevated temperatures (120 °C) are used. Thermogravimetric data were precise but a bias was evident that could be accounted for by considering the non-selective loss of mass as volatile carbonaceous components. Simple drying over anhydrous magnesium perchlorate for a minimum period of 8-10 days is recommended if KF is not available for this measurement.

  8. New results for single stage low energy carbon AMS

    International Nuclear Information System (INIS)

    Klody, G.M.; Schroeder, J.B.; Norton, G.A.; Loger, R.L.; Kitchen, R.L.; Sundquist, M.L.

    2005-01-01

    A new configuration of the NEC single stage, low energy carbon AMS system (U.S. Patent 6,815,666 B2) has been built and tested. The injector includes two 40-sample ion sources, electrostatic and magnetic analysis, and fast sequential injection. The gas stripper, analyzing magnet, electrostatic analyzer, and detector are on an open air 250 kV deck. Both 12 C and 13 C currents are measured on the deck after the stripper, and an SSB detector is used for 14 C counting. Injected 12 C and mass 13 ( 13 C and 12 CH) currents are also measured. Automated controls follow a user-specified run list for unattended operation. Initial test results show precision for 14 C/ 12 C ratios of better than 5 per mil, and backgrounds for unprocessed graphite of less than 0.005 x modern. We will report final results for precision, background, and throughput and discuss related design features

  9. Printable Thin Film Supercapacitors Using Single-Walled Carbon Nanotubes

    KAUST Repository

    Kaempgen, Martti

    2009-05-13

    Thin film supercapacitors were fabricated using printable materials to make flexible devices on plastic. The active electrodes were made from sprayed networks of single-walled carbon nanotubes (SWCNTs) serving as both electrodes and charge collectors. Using a printable aqueous gel electrolyte as well as an organic liquid electrolyte, the performances of the devices show very high energy and power densities (6 W h/kg for both electrolytes and 23 and 70 kW/kg for aqueous gel electrolyte and organic electrolyte, respectively) which is comparable to performance in other SWCNT-based supercapacitor devices fabricated using different methods. The results underline the potential of printable thin film supercapacitors. The simplified architecture and the sole use of printable materials may lead to a new class of entirely printable charge storage devices allowing for full integration with the emerging field of printed electronics. © 2009 American Chemical Society.

  10. Synthesis and magnetic properties of single phase titanomagnetites

    Energy Technology Data Exchange (ETDEWEB)

    Schoenthal, W., E-mail: wms@andrew.cmu.edu; Liu, X.; Cox, T.; Laughlin, D. E.; McHenry, M. E. [Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Mesa, J. L.; Diaz-Michelena, M. [Instituto Nacional de Tecnica Aeroespacial, Madrid (Spain); Maicas, M. [Universidad Politecnica de Madrid, ISOM-ETSIT, Madrid (Spain)

    2014-05-07

    The focus of this paper is the study of cation distributions and resulting magnetizations in titanomagnetites (TMs), (1−x)Fe{sub 3}O{sub 4−x}Fe{sub 2}TiO{sub 4} solid solutions. TM remnant states are hypothesized to contribute to planetary magnetic field anomalies. This work correlates experimental data with proposed models for the TM pseudobinary. Improved synthesis procedures are reported for single phase Ulvöspinel (Fe{sub 2}TiO{sub 4}), and TM solid solutions were made using solid state synthesis techniques. X-ray diffraction and scanning electron microscopy show samples to be single phase solid solutions. M-H curves of TM75, 80, 85, 90, and 95 (TMX where X = at. % of ulvöspinel) were measured using a Physical Property Measurement System at 10 K, in fields of 0 to 8 T. The saturation magnetization was found to be close to that predicted by the Neel model for cation distribution in TMs. M-T curves of the remnant magnetization were measured from 10 K to 350 K. The remnant magnetization was acquired at 10 K by applying an 8 T field and then releasing the field. Experimental Neel temperatures are reported for samples in the Neel model ground state.

  11. Noncovalent functionalization of single-walled carbon nanotubes.

    Science.gov (United States)

    Zhao, Yan-Li; Stoddart, J Fraser

    2009-08-18

    Single-walled carbon nanotubes (SWNTs) have attracted much attention on account of their potential to be transformed into new materials that can be employed to address a wide range of applications. The insolubility of the SWNTs in most solvents and the difficulties of handling these highly intractable carbon nanostructures, however, are restricting their real-life applications at the present time. To improve upon the properties of the SWNTs, low-cost and industrially feasible approaches to their modifications are constantly being sought by chemists and materials scientists. Together, they have shown that noncovalent functionalization of the SWNTs can do much to preserve the desired properties of the SWNTs while remarkably improving their solubilities. This Account describes recent advances in the design, synthesis, and characterization of SWNT hybrids and evaluates applications of these new hybrid materials based on noncovalently functionalized SWNTs. Their solubilization enables the characterization of these hybrids as well as the investigation of the properties of the SWNTs using solution-based techniques. Cognizant of the structural properties of the functional molecules on the SWNTs, we present some of the recent work carried out by ourselves and others under the umbrella of the following three subtopics: (i) aromatic small-molecule-based noncovalent functionalization, (ii) biomacromolecule-based noncovalent functionalization, and (iii) polymer-based noncovalent functionalization. Several examples for the applications of noncovalently functionalized SWNT hybrids in the fabrication of field-effect transistor (FET) devices, chemical sensors, molecular switch tunnel junctions (MSTJs), and photovoltaic devices are highlighted and discussed. The blossoming of new methods for the noncovalent functionalization of the SWNTs promises a new generation of SWNT hybrid-based integrated multifunctional sensors and devices, an outcome which is essential for the development of

  12. Selective etching of thin single-walled carbon nanotubes.

    Science.gov (United States)

    Kalbác, Martin; Kavan, Ladislav; Dunsch, Lothar

    2009-04-01

    Raman spectroscopy and in situ Raman spectroelectrochemistry were applied to study the selective etching of thin tubes by lithium vapor in doped single-walled carbon nanotubes (SWCNTs). A strong doping of SWCNTs after the reaction with Li vapor was confirmed by the vanishing of the radial breathing mode (RBM) and by a strong attenuation of the tangential displacement (TG) band in the Raman spectra. The Raman spectra of the Li-vapor-treated SWCNTs after subsequent reaction with water showed changes in the diameter distribution compared with that of a pristine sample (nanotubes with diameters of <1 nm disappeared from the Raman spectra). The samples were tested by the Raman pattern with five different laser lines, and a removal of narrower tubes was confirmed. The remaining wider tubes were not significantly damaged by the treatment with Li, as indicated by the D line in the Raman spectra. Furthermore, the small-diameter tubes are converted not into amorphous carbon but into lithium carbide, which could easily be removed by hydrolysis. The treated samples were further charged electrochemically. It was shown by spectroelectrochemistry that anodic charging may lead to removal of the residual chemical doping from the thicker nanotubes in the sample, but the thin nanotubes did not appear in the spectra. This is a further confirmation of the removal of the small-diameter tubes.

  13. Single-Walled Carbon Nanotubes in Solar Cells.

    Science.gov (United States)

    Jeon, Il; Matsuo, Yutaka; Maruyama, Shigeo

    2018-01-22

    Photovoltaics, more generally known as solar cells, are made from semiconducting materials that convert light into electricity. Solar cells have received much attention in recent years due to their promise as clean and efficient light-harvesting devices. Single-walled carbon nanotubes (SWNTs) could play a crucial role in these devices and have been the subject of much research, which continues to this day. SWNTs are known to outperform multi-walled carbon nanotubes (MWNTs) at low densities, because of the difference in their optical transmittance for the same current density, which is the most important parameter in comparing SWNTs and MWNTs. SWNT films show semiconducting features, which make SWNTs function as active or charge-transporting materials. This chapter, consisting of two sections, focuses on the use of SWNTs in solar cells. In the first section, we discuss SWNTs as a light harvester and charge transporter in the photoactive layer, which are reviewed chronologically to show the history of the research progress. In the second section, we discuss SWNTs as a transparent conductive layer outside of the photoactive layer, which is relatively more actively researched. This section introduces SWNT applications in silicon solar cells, organic solar cells, and perovskite solar cells each, from their prototypes to recent results. As we go along, the science and prospects of the application of solar cells will be discussed.

  14. Broadband Spectroscopic Thermoacoustic Characterization of Single-Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Daniel R. Bauer

    2015-01-01

    Full Text Available Carbon nanotubes have attracted interest as contrast agents for biomedical imaging because they strongly absorb electromagnetic radiation in the optical and microwave regions. This study applies thermoacoustic (TA imaging and spectroscopy to measure the frequency-dependent absorption profile of single-walled carbon nanotubes (SWNT in the ranges of 2.7–3.1 GHz and 7–9 GHz using two tunable microwave sources. Between 7 and 9 GHz, the peak TA signal for solutions containing semiconducting and metallic SWNTs increased monotonically with a slope of 1.75 AU/GHz (R2=0.95 and 2.8 AU/GHz (R2=0.93, respectively, relative to a water baseline. However, after compensating for the background signal from water, it was revealed that the TA signal from metallic SWNTs increased exponentially within this frequency band. Results suggest that TA imaging and spectroscopy could be a powerful tool for quantifying the absorption properties of SWNTs and optimizing their performance as contrast agents for imaging or heat sources for thermal therapy.

  15. Giant electrical power factor in single-walled chiral carbon nanotube

    International Nuclear Information System (INIS)

    Mensah, S.Y.; Allotey, F.K.A.; Mensah, N.G.; Nkrumah, G.

    2001-10-01

    Using the semiclassical approach we studied the thermoelectrical properties of single-walled chiral carbon nanotubes (SWNTs). We predict a giant electrical power factor and hence proposed the use of carbon nanotubes as thermoelements for refrigeration. (author)

  16. Single phase and two-phase flow pressure losses through restrictions, expansions and inserts

    International Nuclear Information System (INIS)

    Glenat, P.; Solignac, P.

    1984-11-01

    We give a selection of methods to predict pressure losses through retrictions, expansions and inserts. In single phase flow, we give the classical method based on the one-dimensional momentum and mass balances. In two-phase flow, we propose the method given by Harshe et al. and an empirical approach suggested by Chisholm. We notice the distinction between long and short inserts depends upon wether or not the vena contracta lies within insert. Finally, we propose three correlations to calculate void fraction through the singularities which have been considered [fr

  17. Analysis of organic carbon and moisture in Hanford single-shell tank waste

    Energy Technology Data Exchange (ETDEWEB)

    Toth, J.J.; Heasler, P.G.; Lerchen, M.E.; Hill, J.G.; Whitney, P.D.

    1995-05-01

    This report documents a revised analysis performed by Pacific Northwest Laboratory involving the organic carbon laboratory measurement data for Hanford single-shell tanks (SSTs) obtained from a review of the laboratory analytical data. This activity has as its objective to provide a best-estimate, including confidence levels, of total organic carbon (TOC) and moisture in each of the 149 SSTs at Hanford. The TOC and moisture information presented in this report is useful as part of the criteria to identify SSTs for additional measurements, or monitoring for the Organic Safety Program. In April 1994, an initial study of the organic carbon in Hanford single-shell tanks was completed at PNL. That study reflected the estimates of TOC based on tank characterizations datasets that were available at the time. Also in that study, estimation of dry basis TOC was based on generalized assumptions pertaining to the moisture of the tank wastes. The new information pertaining to tank moisture and TOC data that has become available from the current study influences the best estimates of TOC in each of the SSTs. This investigation of tank TOC and moisture has resulted in improved estimates based on waste phase: saltcake, sludge, or liquid. This report details the assumptions and methodologies used to develop the estimates of TOC and moisture in each of the 149 SSTs at Hanford.

  18. Analysis of organic carbon and moisture in Hanford single-shell tank waste

    International Nuclear Information System (INIS)

    Toth, J.J.; Heasler, P.G.; Lerchen, M.E.; Hill, J.G.; Whitney, P.D.

    1995-05-01

    This report documents a revised analysis performed by Pacific Northwest Laboratory involving the organic carbon laboratory measurement data for Hanford single-shell tanks (SSTs) obtained from a review of the laboratory analytical data. This activity has as its objective to provide a best-estimate, including confidence levels, of total organic carbon (TOC) and moisture in each of the 149 SSTs at Hanford. The TOC and moisture information presented in this report is useful as part of the criteria to identify SSTs for additional measurements, or monitoring for the Organic Safety Program. In April 1994, an initial study of the organic carbon in Hanford single-shell tanks was completed at PNL. That study reflected the estimates of TOC based on tank characterizations datasets that were available at the time. Also in that study, estimation of dry basis TOC was based on generalized assumptions pertaining to the moisture of the tank wastes. The new information pertaining to tank moisture and TOC data that has become available from the current study influences the best estimates of TOC in each of the SSTs. This investigation of tank TOC and moisture has resulted in improved estimates based on waste phase: saltcake, sludge, or liquid. This report details the assumptions and methodologies used to develop the estimates of TOC and moisture in each of the 149 SSTs at Hanford

  19. Reducing Electromagnetic Interference in a Grid Tied Single Phase Power Inverter

    Science.gov (United States)

    2016-09-01

    ELECTROMAGNETIC INTERFERENCE IN A GRID TIED SINGLE PHASE POWER INVERTER by Jason Hassan Valiani September 2016 Thesis Advisor: Giovanna Oriti...3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE REDUCING ELECTROMAGNETIC INTERFERENCE IN A GRID TIED SINGLE PHASE POWER...The addition of a passive filter proved to minimize the conducted EMI for a single -phase grid-tied inverter. 14. SUBJECT TERMS single -phase

  20. Equivalence of two models in single-phase multicomponent flow simulations

    KAUST Repository

    Wu, Yuanqing

    2016-02-28

    In this work, two models to simulate the single-phase multicomponent flow in reservoirs are introduced: single-phase multicomponent flow model and two-phase compositional flow model. Because the single-phase multicomponent flow is a special case of the two-phase compositional flow, the two-phase compositional flow model can also simulate the case. We compare and analyze the two models when simulating the single-phase multicomponent flow, and then demonstrate the equivalence of the two models mathematically. An experiment is also carried out to verify the equivalence of the two models.

  1. Coating individual single-walled carbon nanotubes with nylon 6,10 through emulsion polymerization.

    Science.gov (United States)

    Chen, Wei-Chiang; Wang, Randy K; Ziegler, Kirk J

    2009-08-01

    Solvent microenvironments are formed around individual single-walled carbon nanotubes (SWNTs) by mixing SWNT suspensions with water-immiscible organic solvents. These microenvironments are used to encapsulate the SWNTs with the monomer sebacoyl chloride. Hexamethylene diamine is then injected into the aqueous phase so the formation of nylon 6,10 is restricted to the interface between the microenvironment and water. This emulsion polymerization process results in uniform coatings of nylon 6,10 around individual SWNTs. The nylon-coated SWNTs remain dispersed in the aqueous phase and are highly luminescent at pH values ranging from 3 to 12. This emulsion polymerization method provides a general approach to coat nanotubes with various polymers.

  2. Towards parallel fabrication of single electron transistors using carbon nanotubes.

    Science.gov (United States)

    Islam, Muhammad R; Joung, Daeha; Khondaker, Saiful I

    2015-06-07

    Single electron transistors (SETs) are considered to be promising building blocks for post CMOS era electronic devices, however, a major bottleneck for practical realization of SET based devices is a lack of a parallel fabrication approach. Here, we have demonstrated a technique for the scalable fabrication of SETs using single-walled carbon nanotubes (SWNTs). The approach is based on the integration of solution processed individual SWNTs via dielectrophoresis (DEP) at the selected position of the circuit with a 100 nm channel length, where the metal-SWNT Schottky contact works as a tunnel barrier. Measurements carried out at a low temperature (4.2 K) show that the majority of the devices with a contact resistance (RT) > 100 kΩ display SET behavior. For the devices with 100 kΩ 1 MΩ) multiple QD behavior was observed. From the transport study of 50 SWNT devices, a total of 38 devices show SET behavior giving a yield of 76%. The results presented here are a significant step forward for the practical realization of SET based devices.

  3. Single-Walled Carbon Nanohorns for Energy Applications

    Directory of Open Access Journals (Sweden)

    Zhichao Zhang

    2015-10-01

    Full Text Available With the growth of the global economy and population, the demand for energy is increasing sharply. The development of environmentally a benign and reliable energy supply is very important and urgent. Single-walled carbon nanohorns (SWCNHs, which have a horn-shaped tip at the top of single-walled nanotube, have emerged as exceptionally promising nanomaterials due to their unique physical and chemical properties since 1999. The high purity and thermal stability, combined with microporosity and mesoporosity, high surface area, internal pore accessibility, and multiform functionalization make SWCNHs promising candidates in many applications, such as environment restoration, gas storage, catalyst support or catalyst, electrochemical biosensors, drug carrier systems, magnetic resonance analysis and so on. The aim of this review is to provide a comprehensive overview of SWCNHs in energy applications, including energy conversion and storage. The commonly adopted method to access SWCNHs, their structural modifications, and their basic properties are included, and the emphasis is on their application in different devices such as fuel cells, dye-sensitized solar cells, supercapacitors, Li-ion batteries, Li-S batteries, hydrogen storage, biofuel cells and so forth. Finally, a perspective on SWCNHs’ application in energy is presented.

  4. Time domain spectral phase encoding/DPSK data modulation using single phase modulator for OCDMA application.

    Science.gov (United States)

    Wang, Xu; Gao, Zhensen; Kataoka, Nobuyuki; Wada, Naoya

    2010-05-10

    A novel scheme using single phase modulator for simultaneous time domain spectral phase encoding (SPE) signal generation and DPSK data modulation is proposed and experimentally demonstrated. Array- Waveguide-Grating and Variable-Bandwidth-Spectrum-Shaper based devices can be used for decoding the signal directly in spectral domain. The effects of fiber dispersion, light pulse width and timing error on the coding performance have been investigated by simulation and verified in experiment. In the experiment, SPE signal with 8-chip, 20GHz/chip optical code patterns has been generated and modulated with 2.5 Gbps DPSK data using single modulator. Transmission of the 2.5 Gbps data over 34km fiber with BEROCDMA) and secure optical communication applications. (c) 2010 Optical Society of America.

  5. Simplified paraboloid phase model-based phase tracker for demodulation of a single complex fringe.

    Science.gov (United States)

    He, A; Deepan, B; Quan, C

    2017-09-01

    A regularized phase tracker (RPT) is an effective method for demodulation of single closed-fringe patterns. However, lengthy calculation time, specially designed scanning strategy, and sign-ambiguity problems caused by noise and saddle points reduce its effectiveness, especially for demodulating large and complex fringe patterns. In this paper, a simplified paraboloid phase model-based regularized phase tracker (SPRPT) is proposed. In SPRPT, first and second phase derivatives are pre-determined by the density-direction-combined method and discrete higher-order demodulation algorithm, respectively. Hence, cost function is effectively simplified to reduce the computation time significantly. Moreover, pre-determined phase derivatives improve the robustness of the demodulation of closed, complex fringe patterns. Thus, no specifically designed scanning strategy is needed; nevertheless, it is robust against the sign-ambiguity problem. The paraboloid phase model also assures better accuracy and robustness against noise. Both the simulated and experimental fringe patterns (obtained using electronic speckle pattern interferometry) are used to validate the proposed method, and a comparison of the proposed method with existing RPT methods is carried out. The simulation results show that the proposed method has achieved the highest accuracy with less computational time. The experimental result proves the robustness and the accuracy of the proposed method for demodulation of noisy fringe patterns and its feasibility for static and dynamic applications.

  6. Phase behaviour of binary systems of lactones in carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Bender, Joao P.; Feitein, Mirian; Franceschi, Elton; Corazza, Marcos L. [Department of Food Engineering, URI - Campus de Erechim, Av. Sete de Setembro, 1621, Erechim, RS, 99700-000 (Brazil); Oliveira, J. Vladimir, E-mail: vladimir@uricer.edu.b [Department of Food Engineering, URI - Campus de Erechim, Av. Sete de Setembro, 1621, Erechim, RS, 99700-000 (Brazil)

    2010-01-15

    Experimental phase equilibrium data for binary systems involving epsilon-caprolactone, delta-hexalactone, and gamma-caprolactone with carbon dioxide have been measured applying the synthetic method using a high-pressure, variable-volume view cell over the temperature range of (303 to 343) K and pressures up to 21 MPa. For the systems investigated, (vapour + liquid) (VLE), (liquid + liquid) (LLE), and (vapour + liquid + liquid) (VLLE) equilibrium were visually recorded. It was observed that an increase in temperature or in carbon dioxide concentration led to a pronounced raise in transition pressure values. The experimental results were modelled using the Peng-Robinson equation of state with the conventional quadratic mixing rule, affording a satisfactory representation of the experimental values.

  7. A solution phase fabrication of magnetic nanoparticles encapsulated in carbon

    International Nuclear Information System (INIS)

    Wei Xianwen; Zhu Guoxing; Xia Chuanjun; Ye Yin

    2006-01-01

    To avoid high energy consumption, intensive use of hardware and high cost in the manufacture of nanoparticles encapsulated in carbon, a simple, efficient and economical solution-phase method for the fabrication of FeNi at C nanostructures has been explored. The reaction to the magnetic metal at C structures here is conducted at a relatively low temperature (160 deg. C) and this strategy can be transferred to prepare other transition metal at C core-shell nanostructures. The saturation magnetization of metal in metal at C nanostructures is similar to those of the corresponding buck metals. Magnetic metal at C nanostructures with magnetic metal nanoparticles inside and a functionalized carbon surface outside may not only provide the opportunity to tailor the magnetic properties for magnetic storage devices and therapeutics but also make possible the loading of other functional molecules (e.g. enzymes, antigens) for clinic diagnostics, molecular biology, bioengineering, and catalysis

  8. Single Photon Sensitive HgCdTe Avalanche Photodiode Detector (APD), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Leveraging Phase I SBIR successes, in Phase II, a single photon sensitive LIDAR receiver will be fabricated and delivered to NASA. In Phase I, high-gain,...

  9. Electronic properties of Cs-intercalated single-walled carbon nanotubes derived from nuclear magnetic resonance

    KAUST Repository

    Abou-Hamad, E

    2011-05-24

    We report on the electronic properties of Cs-intercalated single-walled carbon nanotubes (SWNTs). A detailed analysis of the 13C and 133Cs nuclear magnetic resonance (NMR) spectra reveals an increased metallization of the pristine SWNTs under Cs intercalation. The \\'metallization\\' of CsxC materials where x=0–0.144 is evidenced from the increased local electronic density of states (DOS) n(EF) at the Fermi level of the SWNTs as determined from spin–lattice relaxation measurements. In particular, there are two distinct electronic phases called α and β and the transition between these occurs around x=0.05. The electronic DOS at the Fermi level increases monotonically at low intercalation levels x<0.05 (α-phase), whereas it reaches a plateau in the range 0.05≤x≤0.143 at high intercalation levels (β-phase). The new β-phase is accompanied by a hybridization of Cs(6s) orbitals with C(sp2) orbitals of the SWNTs. In both phases, two types of metallic nanotubes are found with a low and a high local n(EF), corresponding to different local electronic band structures of the SWNTs.

  10. MECHANICAL CHARACTERISTICS OF THREE-PHASE INDUCTION MOTORS WITH SINGLE-PHASE POWER SUPPLY

    Directory of Open Access Journals (Sweden)

    V.S. Malyar

    2016-06-01

    Full Text Available Aim. Development of a method for calculating mechanical characteristics of three-phase induction motors with single-phase power supply. Methods. The developed algorithm is based on the high-adequacy mathematical model of motor and projection method for solving the boundary problem for equations of electrical circuits balance presented in the three-phase coordinate system. As a result of asymmetry of power supply to the stator windings, in steady state, flux-linkage and current change according to the periodic law. They are determined by solving the boundary problem. Results. The developed mathematical model allows determining periodic dependence of coordinates as a function of slip and, based on them, mechanical characteristics of motors. Academic novelty. The developed method relies on a completely new mathematical approach to calculation of stationary modes of nonlinear electromagnetic circuits, which allows obtaining periodic solution in a timeless domain. Practical value. Using the developed calculation algorithm, one can select capacitance required to start an induction motor with single-phase power supply and calculate static mechanical characteristics at a given capacitance.

  11. Model Based Control of Single-Phase Marine Cooling Systems

    DEFF Research Database (Denmark)

    Hansen, Michael

    2014-01-01

    these systems. Traditionally, control for this type of cooling system has been limited to open-loop control of pumps combined with a couple of local PID controllers for bypass valves to keep critical temperatures within design limits. This research considers improvements in a retrofit framework to the control...... linearization, an H∞-control design is applied to the resulting linear system. Disturbance rejection capabilities and robustness of performance for this control design methodology is compared to a baseline design derived from classical control theory. This shows promising results for the nonlinear robust design......This thesis is concerned with the problem of designing model-based control for a class of single-phase marine cooling systems. While this type of cooling system has been in existence for several decades, it is only recently that energy efficiency has become a focus point in the design and operation...

  12. Modeling of a single-phase photovoltaic inverter

    Energy Technology Data Exchange (ETDEWEB)

    Maris, T.I. [Department of Electrical Engineering, Technological Educational Institute of Chalkida, 334 40 Psachna Evias (Greece); Kourtesi, St. [Hellenic Public Power Corporation S.A., 22 Chalcocondyli Str., 104 32 Athens (Greece); Ekonomou, L. [Hellenic American University, 12 Kaplanon Str., 106 80 Athens (Greece); Fotis, G.P. [National Technical University of Athens, School of Electrical and Computer Engineering, High Voltage Laboratory, 9 Iroon Politechniou St., Zografou, 157 80 Athens (Greece)

    2007-11-06

    The paper presents the design of a single-phase photovoltaic inverter model and the simulation of its performance. Furthermore, the concept of moving real and reactive power after coupling this inverter model with an a.c. source representing the main power distribution grid was studied. Brief technical information is given on the inverter design, with emphasis on the operation of the circuit used. In the technical information section, a description of real and reactive power components is given with special reference to the control of these power components by controlling the power angle or the difference in voltage magnitudes between two voltage sources. This a.c. converted voltage has practical interest, since it is useful for feeding small house appliances. (author)

  13. Benchmarks for single-phase flow in fractured porous media

    Science.gov (United States)

    Flemisch, Bernd; Berre, Inga; Boon, Wietse; Fumagalli, Alessio; Schwenck, Nicolas; Scotti, Anna; Stefansson, Ivar; Tatomir, Alexandru

    2018-01-01

    This paper presents several test cases intended to be benchmarks for numerical schemes for single-phase fluid flow in fractured porous media. A number of solution strategies are compared, including a vertex and two cell-centred finite volume methods, a non-conforming embedded discrete fracture model, a primal and a dual extended finite element formulation, and a mortar discrete fracture model. The proposed benchmarks test the schemes by increasing the difficulties in terms of network geometry, e.g. intersecting fractures, and physical parameters, e.g. low and high fracture-matrix permeability ratio as well as heterogeneous fracture permeabilities. For each problem, the results presented are the number of unknowns, the approximation errors in the porous matrix and in the fractures with respect to a reference solution, and the sparsity and condition number of the discretized linear system. All data and meshes used in this study are publicly available for further comparisons.

  14. Realization of single-phase single-stage grid-connected PV system

    Directory of Open Access Journals (Sweden)

    Osama M. Arafa

    2017-05-01

    Full Text Available This paper presents a single phase single stage grid-tied PV system. Grid angle detection is introduced to allow operation at any arbitrary power factor but unity power factor is chosen to utilize the full inverter capacity. The system ensures MPPT using the incremental conductance method and it can track the changes in insolation level without oscillations. A PI voltage controller and a dead-beat current controller are used to ensure high quality injected current to the grid. The paper investigates the system structure and performance through numerical simulation using Matlab/Simulink. An experimental setup controlled by the MicrolabBox DSP prototyping platform is utilized to realize the system and study its performance. The precautions for smooth and safe system operation including the startup sequence are fully considered in the implementation.

  15. A grid-connected single-phase photovoltaic micro inverter

    Science.gov (United States)

    Wen, X. Y.; Lin, P. J.; Chen, Z. C.; Wu, L. J.; Cheng, S. Y.

    2017-11-01

    In this paper, the topology of a single-phase grid-connected photovoltaic (PV) micro-inverter is proposed. The PV micro-inverter consists of DC-DC stage with high voltage gain boost and DC-AC conversion stage. In the first stage, we apply the active clamp circuit and two voltage multipliers to achieve soft switching technology and high voltage gain. In addition, the flower pollination algorithm (FPA) is employed for the maximum power point tracking (MPPT) in the PV module in this stage. The second stage cascades a H-bridge inverter and LCL filter. To feed high quality sinusoidal power into the grid, the software phase lock, outer voltage loop and inner current loop control method are adopted as the control strategy. The performance of the proposed topology is tested by Matlab/Simulink. A PV module with maximum power 300W and maximum power point voltage 40V is applied as the input source. The simulation results indicate that the proposed topology and the control strategy are feasible.

  16. Single Scattering Detection in Turbin Media Using Single-Phase Structured Illumination Filtering

    Science.gov (United States)

    Berrocal, E.; Johnsson, J.; Kristensson, E.; Alden, M.

    2012-05-01

    This work shows a unique possibility of visualizing the exponential intensity decay due to light extinction, when laser adiation propagates through a homogeneous scattering edium. This observation implies that the extracted intensity mostly riginates from single scattering events. The filtering of this single light scattering intensity is performed by means of a single-phase structured illumination filtering approach. Results from numerical Monte Carlo simulation confirm the experimental findings for an extinction coefficient of μ_e = 0.36 mm^-1. This article demonstrates an original and reliable way of measuring the extinction coefficient of particulate turbid media based on sidescattering imaging. Such an approach has capabilities to replace the commonly used transmission measurement within the intermediate single-to multiple scattering regime where the optical depth ranges between 1 procedure and set-up. Applications of the technique has potential in probing challenging homogeneous scattering media, such as biomedical tissues, turbid emulsions, etc, in situations where dilution cannot be applied and where conventional transmission measurements fail.

  17. Single Membrane Reactor Configuration for Separation of Hydrogen, Carbon Dioxide and Hydrogen Sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Micheal Roberts; Robert Zabransky; Shain Doong; Jerry Lin

    2008-05-31

    The objective of the project was to develop a novel complementary membrane reactor process that can consolidate two or more downstream unit operations of a coal gasification system into a single module for production of a pure stream of hydrogen and a pure stream of carbon dioxide. The overall goals were to achieve higher hydrogen production efficiencies, lower capital costs and a smaller overall footprint than what could be achieved by utilizing separate components for each required unit process/operation in conventional coal-to-hydrogen systems. Specifically, this project was to develop a novel membrane reactor process that combines hydrogen sulfide removal, hydrogen separation, carbon dioxide separation and water-gas shift reaction into a single membrane configuration. The carbon monoxide conversion of the water-gas-shift reaction from the coal-derived syngas stream is enhanced by the complementary use of two membranes within a single reactor to separate hydrogen and carbon dioxide. Consequently, hydrogen production efficiency is increased. The single membrane reactor configuration produces a pure H{sub 2} product and a pure CO{sub 2} permeate stream that is ready for sequestration. This project focused on developing a new class of CO{sub 2}-selective membranes for this new process concept. Several approaches to make CO{sub 2}-selective membranes for high-temperature applications have been tested. Membrane disks using the technique of powder pressing and high temperature sintering were successfully fabricated. The powders were either metal oxide or metal carbonate materials. Experiments on CO{sub 2} permeation testing were also performed in the temperature range of 790 to 940 C for the metal carbonate membrane disks. However, no CO{sub 2} permeation rate could be measured, probably due to very slow CO{sub 2} diffusion in the solid state carbonates. To improve the permeation of CO{sub 2}, one approach is to make membranes containing liquid or molten carbonates

  18. Application of Phased Array Ultrasonic Testing (PAUT) on Single V-Butt Weld Integrity Determination

    International Nuclear Information System (INIS)

    Amry Amin Abas; Mohd Kamal Shah Shamsudin; Norhazleena Azaman

    2015-01-01

    Phased Array Ultrasonic Testing (PAUT) utilizes arrays of piezoelectric elements that are embedded in an epoxy base. The benefit of having such kind of array is that beam forming such as steering and focusing the beam front possible. This enables scanning patterns such as linear scan, sectorial scan and depth focusing scan to be performed. Ultrasonic phased array systems can potentially be employed in almost any test where conventional ultrasonic flaw detectors have traditionally been used. Weld inspection and crack detection are the most important applications, and these tests are done across a wide range of industries including aerospace, power generation, petrochemical, metal billet and tubular goods suppliers, pipeline construction and maintenance, structural metals, and general manufacturing. Phased arrays can also be effectively used to profile remaining wall thickness in corrosion survey applications. The benefits of PAUT are simplifying inspection of components of complex geometry, inspection of components with limited access, testing of welds with multiple angles from a single probe and increasing the probability of detection while improving signal-to-noise ratio. This paper compares the result of inspection on several specimens using PAUT as to digital radiography. The specimens are welded plates with single V-butt weld made of carbon steel. Digital radiography is done using blue imaging plate with x-ray source. PAUT is done using Olympus MX2 with 5 MHz probe consisting of 64 elements. The location, size and length of defect is compared. (author)

  19. Thermal and quantum phase slips in niobium-nitride nanowires based on suspended carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Kohei; Takagi, Tasuku; Hashimoto, Takayuki [Department of Applied Physics and Physico-Informatics, Faculty of Science and Technology, Keio University, Hiyoshi, Yokohama 223-8522 (Japan); Moriyama, Satoshi, E-mail: MORIYAMA.Satoshi@nims.go.jp; Komatsu, Katsuyoshi [International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Morita, Yoshifumi, E-mail: morita@gunma-u.ac.jp [Faculty of Engineering, Gunma University, Kiryu, Gunma 376-8515 (Japan); Miki, Norihisa [Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, Hiyoshi, Yokohama 223-8522 (Japan); Tanabe, Takasumi [Department of Electronics and Electrical Engineering, Faculty of Science and Technology, Keio University, Hiyoshi, Yokohama 223-8522 (Japan); Maki, Hideyuki, E-mail: maki@appi.keio.ac.jp [Department of Applied Physics and Physico-Informatics, Faculty of Science and Technology, Keio University, Hiyoshi, Yokohama 223-8522 (Japan); JST-PRESTO, Honcho, Kawaguchi, Saitama 332-0012 (Japan)

    2016-05-30

    Superconducting nanowires have attracted considerable attention due to their unique quantum-mechanical properties, as well as their potential as next-generation quantum nanodevices, such as single-photon detectors, phase-slip (PS) qubits, and other hybrid structures. In this study, we present the results of one-dimensional (1D) superconductivity in nanowires fabricated by coating suspended carbon nanotubes with a superconducting thin niobium nitride (NbN) film. In the resistance-temperature characteristic curves, hallmarks of 1D superconductivity with PS events are observed with unconventional negative magnetoresistance. We also confirm that a crossover occurs between thermal and quantum PSs as the temperature is lowered.

  20. Pitch-based carbon foam heat sink with phase change material

    Science.gov (United States)

    Klett, James W.; Burchell, Timothy D.

    2004-08-24

    A process for producing a carbon foam heat sink is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications. The foam is encased and filled with a phase change material to provide a very efficient heat sink device.

  1. A Single-Walled Carbon Nanotube Network Gas Sensing Device

    Directory of Open Access Journals (Sweden)

    I-Ju Teng

    2011-08-01

    Full Text Available The goal of this research was to develop a chemical gas sensing device based on single-walled carbon nanotube (SWCNT networks. The SWCNT networks are synthesized on Al2O3-deposted SiO2/Si substrates with 10 nm-thick Fe as the catalyst precursor layer using microwave plasma chemical vapor deposition (MPCVD. The development of interconnected SWCNT networks can be exploited to recognize the identities of different chemical gases by the strength of their particular surface adsorptive and desorptive responses to various types of chemical vapors. The physical responses on the surface of the SWCNT networks cause superficial changes in the electric charge that can be converted into electronic signals for identification. In this study, we tested NO2 and NH3 vapors at ppm levels at room temperature with our self-made gas sensing device, which was able to obtain responses to sensitivity changes with a concentration of 10 ppm for NO2 and 24 ppm for NH3.

  2. Reinforced Thermoplastic Polyimide with Dispersed Functionalized Single Wall Carbon Nanotubes

    Science.gov (United States)

    Lebron-Colon, Marisabel; Meador, Michael A.; Gaier, James R.; Sola, Francisco; Scheiman, Daniel A.; McCorkle, Linda S.

    2010-01-01

    Molecular pi-complexes were formed from pristine HiPCO single-wall carbon nanotubes (SWCNTs) and 1-pyrene- N-(4- N'-(5-norbornene-2,3-dicarboxyimido)phenyl butanamide, 1. Polyimide films were prepared with these complexes as well as uncomplexed SWCNTs and the effects of nanoadditive addition on mechanical, thermal, and electrical properties of these films were evaluated. Although these properties were enhanced by both nanoadditives, larger increases in tensile strength and thermal and electrical conductivities were obtained when the SWCNT/1 complexes were used. At a loading level of 5.5 wt %, the Tg of the polyimide increased from 169 to 197 C and the storage modulus increased 20-fold (from 142 to 3045 MPa). The addition of 3.5 wt % SWCNT/1 complexes increased the tensile strength of the polyimide from 61.4 to 129 MPa; higher loading levels led to embrittlement and lower tensile strengths. The electrical conductivities (DC surface) of the polyimides increased to 1 x 10(exp -4) Scm(exp -1) (SWCNT/1 complexes loading level of 9 wt %). Details of the preparation of these complexes and their effects on polyimide film properties are discussed.

  3. Coarse-grained potentials of single-walled carbon nanotubes

    Science.gov (United States)

    Zhao, Junhua; Jiang, Jin-Wu; Wang, Lifeng; Guo, Wanlin; Rabczuk, Timon

    2014-11-01

    We develop the coarse-grained (CG) potentials of single-walled carbon nanotubes (SWCNTs) in CNT bundles and buckypaper for the study of the static and dynamic behaviors. The explicit expressions of the CG stretching, bending and torsion potentials for the nanotubes are obtained by the stick-spiral and the beam models, respectively. The non-bonded CG potentials between two different CG beads are derived from analytical results based on the cohesive energy between two parallel and crossing SWCNTs from the van der Waals interactions. We show that the CG model is applicable to large deformations of complex CNT systems by combining the bonded potentials with non-bonded potentials. Checking against full atom molecular dynamics calculations and our analytical results shows that the present CG potentials have high accuracy. The established CG potentials are used to study the mechanical properties of the CNT bundles and buckypaper efficiently at minor computational cost, which shows great potential for the design of micro- and nanomechanical devices and systems.

  4. Single-Walled Carbon-Nanotubes-Based Organic Memory Structures

    Directory of Open Access Journals (Sweden)

    Sundes Fakher

    2016-09-01

    Full Text Available The electrical behaviour of organic memory structures, based on single-walled carbon-nanotubes (SWCNTs, metal–insulator–semiconductor (MIS and thin film transistor (TFT structures, using poly(methyl methacrylate (PMMA as the gate dielectric, are reported. The drain and source electrodes were fabricated by evaporating 50 nm gold, and the gate electrode was made from 50 nm-evaporated aluminium on a clean glass substrate. Thin films of SWCNTs, embedded within the insulating layer, were used as the floating gate. SWCNTs-based memory devices exhibited clear hysteresis in their electrical characteristics (capacitance–voltage (C–V for MIS structures, as well as output and transfer characteristics for transistors. Both structures were shown to produce reliable and large memory windows by virtue of high capacity and reduced charge leakage. The hysteresis in the output and transfer characteristics, the shifts in the threshold voltage of the transfer characteristics, and the flat-band voltage shift in the MIS structures were attributed to the charging and discharging of the SWCNTs floating gate. Under an appropriate gate bias (1 s pulses, the floating gate is charged and discharged, resulting in significant threshold voltage shifts. Pulses as low as 1 V resulted in clear write and erase states.

  5. Single-Walled Carbon-Nanotubes-Based Organic Memory Structures.

    Science.gov (United States)

    Fakher, Sundes; Nejm, Razan; Ayesh, Ahmad; Al-Ghaferi, Amal; Zeze, Dagou; Mabrook, Mohammed

    2016-09-02

    The electrical behaviour of organic memory structures, based on single-walled carbon-nanotubes (SWCNTs), metal-insulator-semiconductor (MIS) and thin film transistor (TFT) structures, using poly(methyl methacrylate) (PMMA) as the gate dielectric, are reported. The drain and source electrodes were fabricated by evaporating 50 nm gold, and the gate electrode was made from 50 nm-evaporated aluminium on a clean glass substrate. Thin films of SWCNTs, embedded within the insulating layer, were used as the floating gate. SWCNTs-based memory devices exhibited clear hysteresis in their electrical characteristics (capacitance-voltage (C-V) for MIS structures, as well as output and transfer characteristics for transistors). Both structures were shown to produce reliable and large memory windows by virtue of high capacity and reduced charge leakage. The hysteresis in the output and transfer characteristics, the shifts in the threshold voltage of the transfer characteristics, and the flat-band voltage shift in the MIS structures were attributed to the charging and discharging of the SWCNTs floating gate. Under an appropriate gate bias (1 s pulses), the floating gate is charged and discharged, resulting in significant threshold voltage shifts. Pulses as low as 1 V resulted in clear write and erase states.

  6. Phase Balancing by Means of Electric Vehicles Single-Phase Connection Shifting in a Low Voltage Danish Grid

    DEFF Research Database (Denmark)

    Lico, Pasqualino; Marinelli, Mattia; Knezovic, Katarina

    2015-01-01

    In Denmark, household consumers are supplied with three phase with neutral cable. In addition, the distribution service operator cannot decide to which phase electrical appliance are connected. The technician who realizes the installation connects the loads according to his technical expertise...... stations are equipped with single-phase converters. According to the designed control strategy, the charging spot can select the phase to be used for the charge. The selection is done according to a phase voltage measurement....

  7. Direct observation of spin-injection in tyrosinate-functionalized single-wall carbon nanotubes

    NARCIS (Netherlands)

    Tsoufis, Theodoros; Ampoumogli, Asem; Gournis, Dimitrios; Georgakilas, Vasilios; Jankovic, Lubos; Christoforidis, Konstantinos C.; Deligiannakis, Yiannis; Mavrandonakis, Andreas; Froudakis, George E.; Maccallini, Enrico; Rudolf, Petra; Mateo-Alonso, Aurelio; Prato, Maurizio

    In this work, we report on the interaction of a tyrosinate radical with single wall carbon nanotubes (CNT). The tyrosinate radical was formed from tyrosine (ester) by Fenton's reagent and, reacted in situ with carbon nanotubes resulting in novel tyrosinated carbon nanotube derivatives. The covalent

  8. Raman study on single-walled carbon nanotubes with different laser ...

    Indian Academy of Sciences (India)

    TECS

    Abstract. The industrial use of carbon nanotubes is increasing day by day; therefore, it is very important to identify the nature of carbon nanotubes in a bundle. In this study, we have used the Raman spectroscopic analysis on vertically aligned single-walled carbon nanotubes (SWCNTs) grown by the chemical vapour depo-.

  9. Photovoltaic device using single wall carbon nanotubes and method of fabricating the same

    Science.gov (United States)

    Biris, Alexandru S.; Li, Zhongrui

    2012-11-06

    A photovoltaic device and methods for forming the same. In one embodiment, the photovoltaic device has a silicon substrate, and a film comprising a plurality of single wall carbon nanotubes disposed on the silicon substrate, wherein the plurality of single wall carbon nanotubes forms a plurality of heterojunctions with the silicon in the substrate.

  10. Study on the Microwave Permittivity of Single-Walled Carbon Nanotube

    Science.gov (United States)

    Liu, Xiaolai; Zhao, Donglin

    2009-01-01

    In this article, we studied the microwave permittivity of the complex of the single-walled carbon nanotube and paraffin in 2-18GHz. In the range, the dielectric loss of single-walled carbon nanotube is higher, and the real part and the imaginary part of the dielectric constant decrease with the increase of frequency, and the dielectric constant…

  11. Single-walled carbon nanotubes as near-infrared optical biosensors for life sciences and biomedicine.

    Science.gov (United States)

    Jain, Astha; Homayoun, Aida; Bannister, Christopher W; Yum, Kyungsuk

    2015-03-01

    Single-walled carbon nanotubes that emit photostable near-infrared fluorescence have emerged as near-infrared optical biosensors for life sciences and biomedicine. Since the discovery of their near-infrared fluorescence, researchers have engineered single-walled carbon nanotubes to function as an optical biosensor that selectively modulates its fluorescence upon binding of target molecules. Here we review the recent advances in the single-walled carbon nanotube-based optical sensing technology for life sciences and biomedicine. We discuss the structure and optical properties of single-walled carbon nanotubes, the mechanisms for molecular recognition and signal transduction in single-walled carbon nanotube complexes, and the recent development of various single-walled carbon nanotube-based optical biosensors. We also discuss the opportunities and challenges to translate this emerging technology into biomedical research and clinical use, including the biological safety of single-walled carbon nanotubes. The advances in single-walled carbon nanotube-based near-infrared optical sensing technology open up a new avenue for in vitro and in vivo biosensing with high sensitivity and high spatial resolution, beneficial for many areas of life sciences and biomedicine. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Ultrashort single-walled carbon nanotubes in a lipid bilayer as a new nanopore sensor

    Science.gov (United States)

    Liu, Lei; Yang, Chun; Zhao, Kai; Li, Jingyuan; Wu, Hai-Chen

    2013-01-01

    An important issue in nanopore sensing is to construct stable and versatile sensors that can discriminate analytes with minute differences. Here we report a means of creating nanopores that comprise ultrashort single-walled carbon nanotubes inserted into a lipid bilayer. We investigate the ion transport and DNA translocation through single-walled carbon nanotube nanopores and find that our results are fundamentally different from previous studies using much longer single-walled carbon nanotubes. Furthermore, we utilize the new single-walled carbon nanotube nanopores to selectively detect modified 5-hydroxymethylcytosine in single-stranded DNA, which may have implications in screening specific genomic DNA sequences. This new nanopore platform can be integrated with many unique properties of carbon nanotubes and might be useful in molecular sensing such as DNA-damage detection, nanopore DNA sequencing and other nanopore-based applications. PMID:24352224

  13. Servo characteristics of single-phase spindle motor in DVD-ROM

    Science.gov (United States)

    Wang, KingYin; Kuei, ChingPing; Chang, SungSan; Lee, YaoYu; Kuo, YuHung

    2000-07-01

    The single-phase DC motor has the low-cost advantage over 3- phase DC motor owing to its easy-assembling and high yield- rate, however, it has larger torque ripple and cogging torque. Single-phase DC motor is currently applied to low profit margin products such as cooling fan. In order to utilize single-phase DC motor to high precision system, for instance, DVD (Digital Versatile Disk), the vibration caused by torque ripple and cogging torque needs to be solved. In this paper, focusing error, tracking error, seeking ability and some velocity control performances are studied when single-phase DC motor is used in DVD related products.

  14. Power Based Phase-Locked Loop Under Adverse Conditions with Moving Average Filter for Single-Phase System

    OpenAIRE

    Menxi Xie; CanYan Zhu; BingWei Shi; Yong Yang

    2017-01-01

    High performance synchronization methord is citical for grid connected power converter. For single-phase system, power based phase-locked loop(pPLL) uses a multiplier as phase detector(PD). As single-phase grid voltage is distorted, the phase error information contains ac disturbances oscillating at integer multiples of fundamental frequency which lead to detection error. This paper presents a new scheme based on moving average filter(MAF) applied in-loop of pPLL. The signal characteristic of...

  15. Performance Improvement of Single Phase Inverter using SPWM

    Science.gov (United States)

    Gavaskar Reddy, B., Dr; Maheswari, L., Dr; Ganeswari Kale, Adi

    2017-08-01

    This paper concentrates on modelling and simulation of single phase inverter as a frequency changer modulated by Pulse Width Modulation (PWM). An inverter is a circuit that converts DC sources to AC sources. Pulse Width Modulation is a method that utilization as an approach to abatement add up to harmonic distortion in inverter circuit. The model is executed utilizing MATLAB/Simulink software with the SimPower System Block Set in light of PC simulation. PC simulation assumes an imperative part in the plan, investigation, and assessment of force electronic converter and their controller. MATLAB is a successful instrument to examine a PWM inverter. Preferences of utilizing MATLAB are the accompanying: Faster reaction, accessibility of different simulation devices and utilitarian squares and the nonappearance of joining issues. Safe-replacement methodology need be actualized is to explain exchanging Transients. In this way, Insulated Gate Bipolar Transistor (IGBT) is use as exchanging gadgets. IGBT is ideal since it is anything but difficult to control and low misfortunes. The outcome from Simulink was checked utilizing MATLAB simulation.

  16. Self-assembled single-phase perovskite nanocomposite thin films.

    Science.gov (United States)

    Kim, Hyun-Suk; Bi, Lei; Paik, Hanjong; Yang, Dae-Jin; Park, Yun Chang; Dionne, Gerald F; Ross, Caroline A

    2010-02-10

    Thin films of perovskite-structured oxides with general formula ABO(3) have great potential in electronic devices because of their unique properties, which include the high dielectric constant of titanates, (1) high-T(C) superconductivity in cuprates, (2) and colossal magnetoresistance in manganites. (3) These properties are intimately dependent on, and can therefore be tailored by, the microstructure, orientation, and strain state of the film. Here, we demonstrate the growth of cubic Sr(Ti,Fe)O(3) (STF) films with an unusual self-assembled nanocomposite microstructure consisting of (100) and (110)-oriented crystals, both of which grow epitaxially with respect to the Si substrate and which are therefore homoepitaxial with each other. These structures differ from previously reported self-assembled oxide nanocomposites, which consist either of two different materials (4-7) or of single-phase distorted-cubic materials that exhibit two or more variants. (8-12) Moreover, an epitaxial nanocomposite SrTiO(3) overlayer can be grown on the STF, extending the range of compositions over which this microstructure can be formed. This offers the potential for the implementation of self-organized optical/ferromagnetic or ferromagnetic/ferroelectric hybrid nanostructures integrated on technologically important Si substrates with applications in magnetooptical or spintronic devices.

  17. Single particle detection: Phase control in submicron Hall sensors

    International Nuclear Information System (INIS)

    Di Michele, Lorenzo; Shelly, Connor; Gallop, John; Kazakova, Olga

    2010-01-01

    We present a phase-sensitive ac-dc Hall magnetometry method which allows a clear and reliable separation of real and parasitic magnetic signals of a very small magnitude. High-sensitivity semiconductor-based Hall crosses are generally accepted as a preferential solution for non-invasive detection of superparamagnetic nanobeads used in molecular biology, nanomedicine, and nanochemistry. However, detection of such small beads is often hindered by inductive pick-up and other spurious signals. The present work demonstrates an unambiguous experimental route for detection of small magnetic moments and provides a simple theoretical background for it. The reliability of the method has been tested for a variety of InSb Hall sensors in the range 600 nm-5 μm. Complete characterization of empty devices, involving Hall coefficients and noise measurements, has been performed and detection of a single FePt bead with diameter of 140 nm and magnetic moment of μ≅10 8 μ B has been achieved with a 600 nm-wide sensor.

  18. Noncovalent functionalization of single-walled carbon nanotubes with porphyrins

    Energy Technology Data Exchange (ETDEWEB)

    Bassiouk, María; Basiuk, Vladimir A. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 México D.F. (Mexico); Basiuk, Elena V., E-mail: elenagd@unam.mx [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 México D.F. (Mexico); Álvarez-Zauco, Edgar [Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior C.U., 04510 México D.F. (Mexico); Martínez-Herrera, Melchor [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 México D.F. (Mexico); Rojas-Aguilar, Aaron [Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, 07360 México D.F. (Mexico); Puente-Lee, Iván [Facultad de Química, Universidad Nacional Autónoma de México, Circuito Exterior C.U., 04510 México D.F. (Mexico)

    2013-06-15

    The covalent and noncovalent interactions of porphyrins and related tetraazamacrocyclic compounds with single-walled carbon nanotubes (SWNTs) is a subject of increasing research effort, directed toward the design of novel hybrid nanomaterials combining unique electronic and optical properties of both molecular species. In this report, we used different experimental techniques as well as molecular mechanics (MM) calculations to analyze the adsorption of meso-tetraphenylporphine (or 5,10,15,20-tetraphenyl-21H,23H-porphine, H{sub 2}TPP) and its complexes with Ni(II) and Co(II) (NiTPP and CoTPP, respectively), as well as hemin (a natural porphyrin), onto the surface of SWNTs. Altogether, the results suggested that all four porphyrin species noncovalently interact with SWNTs, forming hybrid nanomaterials. Nevertheless, of all four porphyrin species, the strongest interaction with SWNTs occurs in the case of CoTPP, which is able to intercalate and considerably disperse SWNT bundles, and therefore absorb onto the surface of individual SWNTs. In contrast, NiTPP, CoTPP and hemin, due to a weaker interaction, are unable to do so and therefore are only capable to adsorb onto the surface of SWNT bundles. According to the scanning tunneling microscopy (STM) imaging and MM results, the adsorption of CoTPP onto SWNT sidewalls results in the formation of porphyrin arrays in the shape of long-period interacting helixes with variable periodicity, possibly due to different diameters and chiralities of SWNTs present in the samples. Since the remaining porphyrin species were found to adsorb onto the surface of SWNT bundles, the precise geometry of the corresponding porphyrin/SWNT complexes is difficult to characterize.

  19. Noncovalent functionalization of single-walled carbon nanotubes with porphyrins

    International Nuclear Information System (INIS)

    Bassiouk, María; Basiuk, Vladimir A.; Basiuk, Elena V.; Álvarez-Zauco, Edgar; Martínez-Herrera, Melchor; Rojas-Aguilar, Aaron; Puente-Lee, Iván

    2013-01-01

    The covalent and noncovalent interactions of porphyrins and related tetraazamacrocyclic compounds with single-walled carbon nanotubes (SWNTs) is a subject of increasing research effort, directed toward the design of novel hybrid nanomaterials combining unique electronic and optical properties of both molecular species. In this report, we used different experimental techniques as well as molecular mechanics (MM) calculations to analyze the adsorption of meso-tetraphenylporphine (or 5,10,15,20-tetraphenyl-21H,23H-porphine, H 2 TPP) and its complexes with Ni(II) and Co(II) (NiTPP and CoTPP, respectively), as well as hemin (a natural porphyrin), onto the surface of SWNTs. Altogether, the results suggested that all four porphyrin species noncovalently interact with SWNTs, forming hybrid nanomaterials. Nevertheless, of all four porphyrin species, the strongest interaction with SWNTs occurs in the case of CoTPP, which is able to intercalate and considerably disperse SWNT bundles, and therefore absorb onto the surface of individual SWNTs. In contrast, NiTPP, CoTPP and hemin, due to a weaker interaction, are unable to do so and therefore are only capable to adsorb onto the surface of SWNT bundles. According to the scanning tunneling microscopy (STM) imaging and MM results, the adsorption of CoTPP onto SWNT sidewalls results in the formation of porphyrin arrays in the shape of long-period interacting helixes with variable periodicity, possibly due to different diameters and chiralities of SWNTs present in the samples. Since the remaining porphyrin species were found to adsorb onto the surface of SWNT bundles, the precise geometry of the corresponding porphyrin/SWNT complexes is difficult to characterize.

  20. Semi-Crystalline Polymer based Single Walled Carbon Nanotube Nanocomposites

    Science.gov (United States)

    Mitchell, Cynthia; Krishnamoorti, Ramanan

    2004-03-01

    The reinforcement of polymers with nanometer scale inorganic materials has stimulated much scientific and technological interest because, when compared to traditional composites, nanocomposites exhibit improved thermal, mechanical and physical properties at much lower particle loading. Development of single walled carbon nanotube (SWNT) based polymer nanocomposites is attractive because of the possibility of combining the extraordinary array of properties of SWNTs with the light-weight character of polymers to develop unique and tailorable materials. Important areas of concern in the development of SWNT composites are ensuring homogeneity of dispersion, good interfacial compatibility with the polymeric matrix and the exfoliation of the ropes and bundles. Several strategies for developing well-dispersed SWNT polymer nanocomposites have been undertaken in the current research and we demonstrate the development of well dispersed SWNT nanocomposites with poly(e-caprolactone) (PCL). PCL is a model, low melting analog of nylon-6, an important commercial material, and additionally is a biocompatible and biodegradable crystalline polymer. Compatibility between PCL and SWNT is anticipated based on the fact that the monomer e-caprolactone disperses SWNTs effectively. Preparation of the composites was accomplished by in-situ polymerization and also by solution blending a model polymer with functionalized or unfunctionalized SWNTs. Composites were characterized extensively utilizing UV- Vis - NearIR spectroscopy, FTIR, DSC, X-ray scattering and diffraction, AFM, melt state rheology and electrical conductivity. Controlling the interactions by covalently linking the polymer to the nanotube or by use of a dispersing aid before the introduction of the polymer and the extensive characterization of the resulting system could lead to the development of structure property relationships that would be beneficial to the tailoring of ultra lightweight materials with exceptional mechanical

  1. ESTABLISHED MODES AND STATIC CHARACTERISTICS OF THREE-PHASE ASYNCHRONOUS MOTOR POWERED WITH SINGLE PHASE NETWORK

    Directory of Open Access Journals (Sweden)

    V. S. Malyar

    2016-01-01

    Full Text Available A mathematical model is developed to study the operation of three-phase asynchronous motor with squirrel-cage rotor when the stator winding is powered from a single phase network. To create a rotating magnetic field one of the phases is fed through the capacitor. Due to the asymmetry of power feed not only transients, but the steady-state regimes are dynamic, so they are described by differential equations in any coordinate system. Their study cannot be carried out with sufficient adequacy on the basis of known equivalent circuits and require the use of dynamic parameters. In the mathematical model the state equations of the circuits of the stator and rotor are composed in the stationary three phase coordinate system. Calculation of the established mode is performed by solving the boundary problem that makes it possible to obtain the coordinate dependences over the period, without calculation of the transient process. In order to perform it, the original nonlinear differential equations are algebraized by approximating the variables with the use of cubic splines. The resulting nonlinear system of algebraic equations is a discrete analogue of the initial system of differential equations. It is solved by parameter continuation method. To calculate the static characteristics as a function of a certain variable, the system is analytically differentiated, and then numerically integrated over this variable. In the process of integration, Newton's refinement is performed at each step or at every few steps, making it possible to implement the integration in just a few steps using Euler's method. Jacobi matrices in both cases are the same. To account for the current displacement in the rods of the squirrel-cage rotor, each of them, along with the squirrel-cage rings, is divided in height into several elements. This results in several squirrel-cage rotor windings which are represented by three-phase windings with magnetic coupling between them.

  2. Carbon nanotubes as solid-phase extraction sorbents prior to atomic spectrometric determination of metal species: A review

    Energy Technology Data Exchange (ETDEWEB)

    Herrero Latorre, C., E-mail: carlos.herrero@usc.es [Universidad de Santiago de Compostela, Dpto. Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Alfonso X el Sabio s/n, 27002 Lugo (Spain); Alvarez Mendez, J.; Barciela Garcia, J.; Garcia Martin, S.; Pena Crecente, R.M. [Universidad de Santiago de Compostela, Dpto. Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Alfonso X el Sabio s/n, 27002 Lugo (Spain)

    2012-10-24

    Highlights: Black-Right-Pointing-Pointer The use of CNTs as sorbent for metal species in solid phase extraction has been described. Black-Right-Pointing-Pointer Physical and chemical strategies for functionalization of carbon nanotubes have been discussed. Black-Right-Pointing-Pointer Published analytical methods concerning solid phase extraction and atomic spectrometric determination have been reviewed. - Abstract: New materials have significant impact on the development of new methods and instrumentation for chemical analysis. From the discovery of carbon nanotubes in 1991, single and multi-walled carbon nanotubes - due to their high adsorption and desorption capacities - have been employed as sorption substrates in solid-phase extraction for the preconcentration of metal species from diverse matrices. Looking for successive improvements in sensitivity and selectivity, in the past few years, carbon nanotubes have been utilized as sorbents for solid phase extraction in three different ways: like as-grown, oxidized and functionalized nanotubes. In the present paper, an overview of the recent trends in the use of carbon nanotubes for solid phase extraction of metal species in environmental, biological and food samples is presented. The determination procedures involved the adsorption of metals on the nanotube surface, their quantitative desorption and subsequent measurement by means of atomic spectrometric techniques such as flame atomic absorption spectrometry, electrothermal atomic absorption spectrometry or inductively coupled plasma atomic emission spectrometry/mass spectrometry, among others. Synthesis, purification and types of carbon nanotubes, as well as the diverse chemical and physical strategies for their functionalization are described. Based on 140 references, the performance and general properties of the applications of solid phase extraction based on carbon nanotubes for metal species atomic spectrometric determination are discussed.

  3. High-resolution 13C nuclear magnetic resonance evidence of phase transition of Rb,Cs-intercalated single-walled nanotubes

    KAUST Repository

    Bouhrara, M.

    2011-09-06

    We present 13 C high-resolution magic-angle-turning (MAT) and magic angle spinning nuclear magnetic resonance data of Cs and Rb intercalated single walled carbon nanotubes. We find two distinct phases at different intercalation levels. A simple charge transfer is applicable at low intercalation level. The new phase at high intercalation level is accompanied by a hybridization of alkali (s) orbitals with the carbon (sp2) orbitals of the single walled nanotubes, which indicate bundle surface sites is the most probable alkali site.

  4. Three-Phase Carbon Fiber Amine Functionalized Carbon Nanotubes Epoxy Composite: Processing, Characterisation, and Multiscale Modeling

    Directory of Open Access Journals (Sweden)

    Kamal Sharma

    2014-01-01

    Full Text Available The present paper discusses the key issues of carbon nanotube (CNT dispersion and effect of functionalisation on the mechanical properties of multiscale carbon epoxy composites. In this study, CNTs were added in epoxy matrix and further reinforced with carbon fibres. Predetermined amounts of optimally amine functionalised CNTs were dispersed in epoxy matrix, and unidirectional carbon fiber laminates were produced. The effect of the presence of CNTs (1.0 wt% in the resin was reflected by pronounced increase in Young’s modulus, inter-laminar shear strength, and flexural modulus by 51.46%, 39.62%, and 38.04%, respectively. However, 1.5 wt% CNT loading in epoxy resin decreased the overall properties of the three-phase composites. A combination of Halpin-Tsai equations and micromechanics modeling approach was also used to evaluate the mechanical properties of multiscale composites and the differences between the predicted and experimental values are reported. These multiscale composites are likely to be used for potential missile and aerospace structural applications.

  5. Single Carbon Fibers with a Macroscopic-Thickness, 3D Highly Porous Carbon Nanotube Coating.

    Science.gov (United States)

    Zou, Mingchu; Zhao, Wenqi; Wu, Huaisheng; Zhang, Hui; Xu, Wenjing; Yang, Liusi; Wu, Shiting; Wang, Yunsong; Chen, Yijun; Xu, Lu; Cao, Anyuan

    2018-02-19

    Carbon fiber (CF) grafted with a layer of carbon nanotubes (CNTs) plays an important role in composite materials and other fields; to date, the applications of CNTs@CF multiscale fibers are severely hindered by the limited amount of CNTs grafted on individual CFs and the weak interfacial binding force. Here, monolithic CNTs@CF fibers consisting of a 3D highly porous CNT sponge layer with macroscopic-thickness (up to several millimeters), which is directly grown on a single CF, are fabricated. Mechanical tests reveal high sponge-CF interfacial strength owing to the presence of a thin transitional layer, which completely inhibits the CF slippage from the matrix upon fracture in CNTs@CF fiber-epoxy composites. The porous conductive CNTs@CF hybrid fibers also act as a template for introducing active materials (pseudopolymers and oxides), and a solid-state fiber-shaped supercapacitor and a fiber-type lithium-ion battery with high performances are demonstrated. These CNTs@CF fibers with macroscopic CNT layer thickness have many potential applications in areas such as hierarchically reinforced composites and flexible energy-storage textiles. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Metal Oxide-Carbon Nanocomposites for Aqueous and Nonaqueous Supercapacitors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I effort focuses on development of novel metal-oxide-carbon nanocomposites for application in pseudocapacitive...

  7. Retracted-Enhanced X-Ray Absorption Property of Gold-Doped Single Wall Carbon Nanotube

    Directory of Open Access Journals (Sweden)

    Alimin Alimin

    2015-11-01

    Full Text Available Enhanced X-ray absorption property of single wall carbon nanotube (SWCNT through gold (Au doping (Au@SWCNT has been studied. Mass attenuation coefficient of SWCNT increased 5.2-fold after Au doping treatment. The use of ethanol in the liquid phase adsorption could produce Au nanoparticles as confirmed by the X-ray Diffraction (XRD patterns. The possibility of gold nanoparticles encapsulated in the internal tube space of SWCNT was observed by transmission electron microscope technique. A significant decrease of nitrogen uptakes and upshifts of Radial Breathing Mode (RBM of Au@SWCNT specimen suggest that the nanoparticles might be encapsulated in the internal tube spaces of the nanotube. In addition, a decrease intensity of XRD pattern of Au@SWCNT at around 2θ ≈ 2.6° supports the suggestion that Au nanoparticles are really encapsulated into SWCNT.

  8. Single-phase and two phase bubbly flow in a T connection: theoretical and experimental study

    International Nuclear Information System (INIS)

    Hervieu, Eric

    1988-01-01

    The objective of this research thesis is to highlight the driving factors of the separation of phases of a bubbly flow in a T junction, and to develop a prediction model. In a first part, the author reports the rigorous formulation of equations averaged on the T volume. He shows that it's not possible to solve globally the problem with these equations. Then, he reports a bibliographical study on the modelling of a bubbly flow, and, based upon this study, highlights intrinsic characteristics of the flow, and explains its dynamic mechanisms. He reports the development of the theoretical model, and describes the experimental installation used to validate it. In the third part, he reports the study of the liquid-gas interaction, and presents the adopted approach: study of the behaviour of an isolated bubble within a single-phase flow. Experimentation is used to check theoretical predictions. Results are used to compute phase separation. The obtained results are again compared with experimental results to validate the global relevance of the model [fr

  9. Single Electron Transistor Platform for Microgravity Proteomics, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase II program builds from the successful Phase I efforts to demonstrate that Quantum Logic Devices' nanoelectronic platform for biological detection could...

  10. Interactions of phospholipid monolayer with single-walled carbon nanotube wrapped by lysophospholipid

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Siwool; Kim, Hyungsu, E-mail: hkim@dku.edu

    2012-10-01

    In this study, we prepared single-walled carbon nanotubes (SWNTs) wrapped by 1-stearoyl-2-hydroxy-sn-glycero-3-phospho-(1 Prime -rac-glycerol) (LPG), leading to a complex of SWNT-LPG. In an attempt to investigate the interactions of SWNT-LPG with a mimicked cell surface, SWNT-LPG solution was injected into the sub-phase of Langmuir trough to form a mixed monolayer with dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG), respectively. In addition to the measurement of typical surface pressure-area isotherms under compression mode, area changes occurring during insertion of SWNT-LPG into the monolayer were recorded at various surface pressures. Changes in surface potential were also measured for evident tracing of the degree of interactions between sub-phase and monolayer. A systematic comparison of relaxation patterns and insertion behavior along with surface potential data provided a rational basis to distinguish the degree of interactions between SWNT-LPG and the designated monolayer. The observed tendencies were found to be in accordance with the surface topography as revealed by the tapping mode atomic force microscopy. It was consistently observed that SWNT-LPG interacted with DPPC to a greater extent than with DPPG, when the sufficient coverage of nanotube surface by LPG molecules was assured. - Highlights: Black-Right-Pointing-Pointer Complex of single-walled carbon nanotubes and lysophospholipid (SWNT-LPG) is formed. Black-Right-Pointing-Pointer Composite monolayer is formed by inserting SWNT-LPG into the phospholipid monolayer. Black-Right-Pointing-Pointer We measure area-pressure responses and dipole potentials during the insertion process. Black-Right-Pointing-Pointer Properties of composite monolayer depend on the kind of phospholipid and LPG content.

  11. Roflumilast - A reversible single-crystal to single-crystal phase transition at 50 °C

    Science.gov (United States)

    Viertelhaus, Martin; Holst, Hans Christof; Volz, Jürgen; Hummel, Rolf-Peter

    2013-01-01

    Roflumilast is a selective phosphodiesterase type 4 inhibitor and is marketed under the brand names Daxas®, Daliresp® and Libertec®. A phase transition of the drug substance roflumilast was observed at 50 °C. The low temperature form, the high temperature form and the phase transition were characterised by differential scanning calorimetry, variable temperature powder X-ray diffraction and single crystal X-ray diffraction, Raman spectroscopy and solid state NMR spectroscopy. The phase transition of roflumilast at 50 °C is completely reversible, the high temperature form cannot be stabilised by quench cooling and the phase transition does not influence the quality of the active pharmaceutical ingredient (API) and the drug product. It was observed to be a single crystal to single crystal phase transition.

  12. Charging of carbon thin films in scanning and phase-plate transmission electron microscopy.

    Science.gov (United States)

    Hettler, Simon; Kano, Emi; Dries, Manuel; Gerthsen, Dagmar; Pfaffmann, Lukas; Bruns, Michael; Beleggia, Marco; Malac, Marek

    2018-01-01

    A systematic study on charging of carbon thin films under intense electron-beam irradiation was performed in a transmission electron microscope to identify the underlying physics for the functionality of hole-free phase plates. Thin amorphous carbon films fabricated by different deposition techniques and single-layer graphene were studied. Clean thin films at moderate temperatures show small negative charging while thin films kept at an elevated temperature are stable and not prone to beam-generated charging. The charging is attributed to electron-stimulated desorption (ESD) of chemisorbed water molecules from the thin-film surfaces and an accompanying change of work function. The ESD interpretation is supported by experimental results obtained by electron-energy loss spectroscopy, hole-free phase plate imaging, secondary electron detection and x-ray photoelectron spectroscopy as well as simulations of the electrostatic potential distribution. The described ESD-based model explains previous experimental findings and is of general interest to any phase-related technique in a transmission electron microscope. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  13. Polyvinylchloride-Single-Walled Carbon Nanotube Composites: Thermal and Spectroscopic Properties

    Directory of Open Access Journals (Sweden)

    Mircea Chipara

    2012-01-01

    Full Text Available Nanocomposites of single-walled carbon nanotubes dispersed within polyvinylchloride have been obtained by using the solution path. High-power sonication was utilized to achieve a good dispersion of carbon nanotubes. Thermogravimetric analysis revealed that during the synthesis, processing, or thermal analysis of these nanocomposites the released chlorine is functionalizing the single-walled carbon nanotubes. The loading of polyvinylchloride by single-walled carbon nanotubes increases the glass transition temperature of the polymeric matrix, demonstrating the interactions between macromolecular chains and filler. Wide Angle X-Ray Scattering data suggested a drop of the crystallite size and of the degree of crystallinity as the concentration of single-walled carbon nanotubes is increased. The in situ chlorination and amorphization of nanotube during the synthesis (sonication step is confirmed by Raman spectroscopy.

  14. Multifunctional Carbon Electromagnetic Materials - Motors & Actuators, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of the proposal is to apply multifunctional carbon electromagnetic materials, including carbon nanotube electrical thread (replaces copper wire) and...

  15. Direct Vapor-Phase Bromination of Multiwall Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Ilya Mazov

    2012-01-01

    Full Text Available We present the simple procedure of the vapor-phase bromination of multiwall carbon nanotubes (MWNTs at moderate temperatures. MWNTs with average diameter 9±3 nm were treated with Br2 vapors at 250°C to produce Br-functionalized product. Transmission electron microscopy analysis was used to prove low damage of MWNT walls during bromination. X-ray photoelectron spectroscopy (XPS and differential thermal analysis (DTA were used to investigate chemical composition of the surface of initial and brominated nanotubes. The experimental results show that the structure of MWNTs is not affected by the bromination process and the total amount of Br-containing surface functions reaches 2.5 wt. %. Electrophysical properties of initial and brominated MWNTs were investigated showing decrease of conductivity for functionalized sample. Possible mechanism of the vapor-phase bromination via surface defects and oxygen-containing functional groups was proposed according to data obtained. Additional experiments with bromination of annealed low-defected MWNTs were performed giving Br content a low as 0.75 wt. % proving this hypothesis.

  16. Synergistic effect of single-electron-trapped oxygen vacancies and carbon species on the visible light photocatalytic activity of carbon-modified TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaodong, E-mail: donguser@henu.edu.cn; Xue, Xiaoxiao; Liu, Xiaogang; Xing, Xing; Li, Qiuye; Yang, Jianjun

    2015-03-01

    Carbon-modified TiO{sub 2} (CT) nanoparticles were prepared via a two-step method of heat treatment without the resorcinol-formaldehyde (RF) polymer. As-prepared CT nanoparticles were characterized by means of X-ray diffraction (XRD), UV–Vis diffuse reflectance spectroscopy (UV–Vis/DRS), transmission electron microscopy (TEM), N{sub 2} adsorption–desorption isotherms, thermal analysis (TA), electron spin resonance (ESR), and X-ray photoelectron spectroscopy (XPS). The visible light photocatalytic activities were evaluated on the basis of the degradation of methyl orange (MO). The synergistic effect of single-electron-trapped oxygen vacancies (SETOVs) and the carbon species on the visible light photocatalytic activities of the CT nanoparticles were discussed. It was found that the crystalline phase, the morphology, and particle size of the CT nanoparticles depended on the second heat-treatment temperature instead of the first heat-treatment temperature. The visible light photocatalytic activities were attributed to the synergistic effect of SETOVs and the carbon species, and also depended on the specific surface area of the photocatalysts. - Highlights: • Carbon-modified TiO{sub 2} particles have been prepared without RF polymer. • The visible light photocatalytic activities of the particles have been evaluated. • The band gap energy structure of the carbon-modified TiO{sub 2} has been proposed. • Synergistic effect of SETOVs and carbon species has been discussed. • The activities also depend on the specific surface area of the catalysts.

  17. Synthesis of single walled carbon nanotubes by dual laser vaporization

    CSIR Research Space (South Africa)

    Moodley, MK

    2006-07-01

    Full Text Available ., Fujita M., Dresselhaus G. and Dresselhaus M.S. (1992). Electronic structure of graphene tubules based C60. Phys. Rev B. 46, 1804–1811. 5. Ajayan P.M, Stephan O., Colliex C. and Trauth D. (1994). Aligned carbon nanotube arrays formed by cutting a... and nanoropes. Phys. Rev. Lett. 79(7), 1297–1300. 8. Harris P.J.F. (1999). Carbon Nanotubes and Related Structures. Cambridge University Press, Cambridge. 9. Dresselhaus M.S., Dresselhaus G. and Avouris Ph. (eds) (2000). Carbon Nanotubes: Synthesis...

  18. Controlling geometric phase optically in a single spin in diamond

    Science.gov (United States)

    Yale, Christopher G.

    Geometric phase, or Berry phase, is an intriguing quantum mechanical phenomenon that arises from the cyclic evolution of a quantum state. Unlike dynamical phases, which rely on the time and energetics of the interaction, the geometric phase is determined solely by the geometry of the path travelled in parameter space. As such, it is robust to certain types of noise that preserve the area enclosed by the path, and shows promise for the development of fault-tolerant logic gates. Here, we demonstrate the optical control of geometric phase within a solid-state spin qubit, the nitrogen-vacancy center in diamond. Using stimulated Raman adiabatic passage (STIRAP), we evolve a coherent dark state along `tangerine slice' trajectories on the Bloch sphere and probe these paths through time-resolved state tomography. We then measure the accumulated geometric phase through phase reference to a third ground spin state. In addition, we examine the limits of this control due to adiabatic breakdown as well as the longer timescale effect of far-detuned optical fields. Finally, we intentionally introduce noise into the experimental control parameters, and measure the distributions of the resulting phases to probe the resilience of the phase to differing types of noise. We also examine this robustness as a function of traversal time as well as the noise amplitude. Through these studies, we demonstrate that geometric phase is a promising route toward fault-tolerant quantum information processing. This work is supported by the AFOSR, the NSF, and the German Research Foundation.

  19. Single wall carbon nanotube supports for portable direct methanol fuel cells.

    Science.gov (United States)

    Girishkumar, G; Hall, Timothy D; Vinodgopal, K; Kamat, Prashant V

    2006-01-12

    Single-wall and multiwall carbon nanotubes are employed as carbon supports in direct methanol fuel cells (DMFC). The morphology and electrochemical activity of single-wall and multiwall carbon nanotubes obtained from different sources have been examined to probe the influence of carbon support on the overall performance of DMFC. The improved activity of the Pt-Ru catalyst dispersed on carbon nanotubes toward methanol oxidation is reflected as a shift in the onset potential and a lower charge transfer resistance at the electrode/electrolyte interface. The evaluation of carbon supports in a passive air breathing DMFC indicates that the observed power density depends on the nature and source of carbon nanostructures. The intrinsic property of the nanotubes, dispersion of the electrocatalyst and the electrochemically active surface area collectively influence the performance of the membrane electrode assembly (MEA). As compared to the commercial carbon black support, single wall carbon nanotubes when employed as the support for anchoring the electrocatalyst particles in the anode and cathode sides of MEA exhibited a approximately 30% enhancement in the power density of a single stack DMFC operating at 70 degrees C.

  20. Carbon-Carbon High Melt Coating for Nozzle and Nozzle Extensions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — C-CAT, which has proven carbon-carbon fabrication capabilities, will investigate use of ACC-6 High Melt oxidation protective system on carbon-carbon for use on the...

  1. Electrical conduction and photoresponses of gamma-ray-irradiated single-stranded DNA/single-walled carbon nanotube composite systems

    Energy Technology Data Exchange (ETDEWEB)

    Hong, W.; Lee, E.M.; Kim, D.W.; Lee, Cheol Eui, E-mail: rscel@korea.ac.kr

    2015-04-15

    Highlights: •Effects of gamma-ray irradiation on single-stranded DNA (ssDNA)/single-walled carbon nanotube (SWNT) composite films. •Barrier for thermally activated conduction in the composite systems modified by the gamma-ray irradiation. •Photoresponses reveal photoexcitation and oxygen photodesorption modified by gamma-ray irradiation. -- Abstract: Effects of gamma-ray irradiation on the electrical conductivity and photoresponse have been studied for single-stranded DNA (ssDNA)/single-walled carbon nanotube (SWNT) composite films. The temperature-dependent electrical conductivity of the ssDNA/SWNT composite films, well described by a fluctuation-induced tunneling model, indicated modification of the barrier for thermally activated conduction by the gamma-ray irradiation. Besides, the photoresponse measurements indicated modified photoexcited charge carrier generation and oxygen photodesorption in the composite systems due to the gamma-ray irradiation.

  2. Industrial-scale separation of high-purity single-chirality single-wall carbon nanotubes for biological imaging

    Science.gov (United States)

    Yomogida, Yohei; Tanaka, Takeshi; Zhang, Minfang; Yudasaka, Masako; Wei, Xiaojun; Kataura, Hiromichi

    2016-06-01

    Single-chirality, single-wall carbon nanotubes are desired due to their inherent physical properties and performance characteristics. Here, we demonstrate a chromatographic separation method based on a newly discovered chirality-selective affinity between carbon nanotubes and a gel containing a mixture of the surfactants. In this system, two different selectivities are found: chiral-angle selectivity and diameter selectivity. Since the chirality of nanotubes is determined by the chiral angle and diameter, combining these independent selectivities leads to high-resolution single-chirality separation with milligram-scale throughput and high purity. Furthermore, we present efficient vascular imaging of mice using separated single-chirality (9,4) nanotubes. Due to efficient absorption and emission, blood vessels can be recognized even with the use of ~100-fold lower injected dose than the reported value for pristine nanotubes. Thus, 1 day of separation provides material for up to 15,000 imaging experiments, which is acceptable for industrial use.

  3. 16 channel WDM regeneration in a single phase-sensitive amplifier through optical Fourier transformation

    DEFF Research Database (Denmark)

    Guan, Pengyu; Da Ros, Francesco; Lillieholm, Mads

    2016-01-01

    We demonstrate simultaneous phase regeneration of 16-WDM DPSK channels using optical Fourier transformation and a single phase-sensitive amplifier. The BERs of 16-WDM×10-Gbit/s phase noise degraded DPSK signals are improved by 0.4-1.3 orders of magnitude......We demonstrate simultaneous phase regeneration of 16-WDM DPSK channels using optical Fourier transformation and a single phase-sensitive amplifier. The BERs of 16-WDM×10-Gbit/s phase noise degraded DPSK signals are improved by 0.4-1.3 orders of magnitude...

  4. Phase diagram of methane and carbon dioxide hydrates computed by Monte Carlo simulations

    NARCIS (Netherlands)

    Waage, Magnus H.; Vlugt, T.J.H.; Kjelstrup, Signe

    2017-01-01

    Molecular Monte Carlo simulations are used to compute the three-phase (hydrate-liquid water-gas) equilibrium lines of methane and carbon dioxide hydrates, using the Transferable Potentials for Phase Equilibria model for carbon dioxide, the united atom optimized potential for liquid simulations

  5. Composite single crystal silicon scan mirror substrates, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Single crystal silicon is a desirable mirror substrate for scan mirrors in space telescopes. As diameters of mirrors become larger, existing manufacturing...

  6. Single phase and two phase erosion corrosion in broilers of gas-cooled reactors

    International Nuclear Information System (INIS)

    Harrison, G.S.; Fountain, M.J.

    1988-01-01

    Erosion-corrosion is a phenomenon causing metal wastage in a variety of locations in water and water-steam circuits throughout the power generation industry. Erosion-corrosion can occur in a number of regions of the once-through boiler designs used in the later Magnox and AGR type of gas cooled nuclear reactor. This paper will consider two cases of erosion-corrosion damage (single and two phase) in once through boilers of gas cooled reactors and will describe the solutions that have been developed. The single phase problem is associated with erosion-corrosion damage of mild steel downstream of a boiler inlet flow control orifice. With metal loss rates of up to 1 mm/year at 150 deg. C and pH in the range 9.0-9.4 it was found that 5 μg/kg oxygen was sufficient to reduce erosion-corrosion rates to less than 0.02 mm/year. A combined oxygen-ammonia-hydrazine feedwater regime was developed and validated to eliminate oxygen carryover and hence give protection from stress corrosion in the austenitic section of the AGR once through boiler whilst still providing erosion-corrosion control. Two phase erosion-corrosion tube failures have occurred in the evaporator of the mild steel once through boilers of the later Magnox reactors operating at pressures in the range 35-40 bar. Rig studies have shown that amines dosed in the feedwater can provide a significant reduction in metal loss rates and a tube lifetime assessment technique has been developed to predict potential tube failure profiles in a fully operational boiler. The solutions identified for both problems have been successfully implemented and the experience obtained following implementation including any problems or other benefits arising from the introduction of the new regimes will be presented. Methods for monitoring and evaluating the efficiency of the solutions have been developed and the results from these exercises will also be discussed. Consideration will also be given to the similarities in the metal loss

  7. Transformation of amorphous calcium carbonate to rod-like single crystal calcite via "copying" collagen template.

    Science.gov (United States)

    Xue, Zhonghui; Hu, Binbin; Dai, Shuxi; Du, Zuliang

    2015-10-01

    Collagen Langmuir films were prepared by spreading the solution of collagen over deionized water, CaCl2 solution and Ca(HCO3)2 solution. Resultant collagen Langmuir monolayers were then compressed to a lateral pressure of 10 mN/m and held there for different duration, allowing the crystallization of CaCO3. The effect of crystallization time on the phase composition and microstructure of CaCO3 was investigated. It was found that amorphous calcium carbonate (ACC) was obtained at a crystallization time of 6 h. The amorphous CaCO3 was transformed to rod-like single crystal calcite crystals at an extended crystallization time of 12 h and 24 h, via "copying" the symmetry and dimensionalities of collagen fibers. Resultant calcite crystallites were well oriented along the longitudinal axis of collagen fibers. The ordered surface structure of collagen fibers and electrostatic interactions played key roles in tuning the oriented nucleation and growth of the calcite crystallites. The mineralized collagen possessing both desired mechanical properties of collagen fiber and good biocompatibility of calcium carbonate may be assembled into an ideal biomaterial for bone implants. Copyright © 2015. Published by Elsevier B.V.

  8. Continuous growth of single-wall carbon nanotubes using chemical vapor deposition

    Science.gov (United States)

    Grigorian, Leonid [Raymond, OH; Hornyak, Louis [Evergreen, CO; Dillon, Anne C [Boulder, CO; Heben, Michael J [Denver, CO

    2008-10-07

    The invention relates to a chemical vapor deposition process for the continuous growth of a carbon single-wall nanotube where a carbon-containing gas composition is contacted with a porous membrane and decomposed in the presence of a catalyst to grow single-wall carbon nanotube material. A pressure differential exists across the porous membrane such that the pressure on one side of the membrane is less than that on the other side of the membrane. The single-wall carbon nanotube growth may occur predominately on the low-pressure side of the membrane or, in a different embodiment of the invention, may occur predominately in between the catalyst and the membrane. The invention also relates to an apparatus used with the carbon vapor deposition process.

  9. Vertical Alignment of Single-Walled Carbon Nanotubes on Nanostructure Fabricated by Atomic Force Microscope

    National Research Council Canada - National Science Library

    Lee, Haiwon

    2007-01-01

    This project focused on the behavior of single-wall carbon nanotubes (SWCNTs) in the electrophoresis cells and aligned growth of SWCNTs by thermal chemical vapor deposition on selectively deposited metallic nanoparticle...

  10. Power Based Phase-Locked Loop Under Adverse Conditions with Moving Average Filter for Single-Phase System

    Directory of Open Access Journals (Sweden)

    Menxi Xie

    2017-06-01

    Full Text Available High performance synchronization methord is citical for grid connected power converter. For single-phase system, power based phase-locked loop(pPLL uses a multiplier as phase detector(PD. As single-phase grid voltage is distorted, the phase error information contains ac disturbances oscillating at integer multiples of fundamental frequency which lead to detection error. This paper presents a new scheme based on moving average filter(MAF applied in-loop of pPLL. The signal characteristic of phase error is dissussed in detail. A predictive rule is adopted to compensate the delay induced by MAF, thus achieving fast dynamic response. In the case of frequency deviate from nomimal, estimated frequency is fed back to adjust the filter window length of MAF and buffer size of predictive rule. Simulation and experimental results show that proposed PLL achieves good performance under adverse grid conditions.

  11. Synthesis of PbI(2) single-layered inorganic nanotubes encapsulated within carbon nanotubes.

    Science.gov (United States)

    Cabana, Laura; Ballesteros, Belén; Batista, Eudar; Magén, César; Arenal, Raúl; Oró-Solé, Judith; Rurali, Riccardo; Tobias, Gerard

    2014-04-02

    The template assisted growth of single-layered inorganic nanotubes is reported. Single-crystalline lead iodide single-layered nanotubes have been prepared using the inner cavities of carbon nanotubes as hosting templates. The diameter of the resulting inorganic nanotubes is merely dependent on the diameter of the host. This facile method is highly versatile opening up new horizons in the preparation of single-layered nanostructures. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Analysis of phase-locked loop influence on the stability of single-phase grid-connected inverter

    DEFF Research Database (Denmark)

    Zhang, Chong; Wang, Xiongfei; Blaabjerg, Frede

    2015-01-01

    A controlled power inverter can cause instability at the point of common coupling (PCC) with its output filter and the grid. This paper analyzes the influence of the Phase-Locked Loop (PLL) on the output admittance of single-phase current-controlled inverters with different grid stiffness. It shows...

  13. Investigation of Chirality Selection Mechanism of Single Walled Carbon Nanotube-3

    Science.gov (United States)

    2017-12-14

    paper as a result of the grant titled: Synthesis of CNT forest with narrow diameter distribution from the Fe ion implanted wafer, Carbon , vol. 123, pp...Jin Park, Seung Min Kim*, and Kun-Hong Lee*, “Synthesis of CNT forest with narrow diameter distribution from the Fe ion implanted wafer”, Carbon ...AFRL-AFOSR-JP-TR-2017-0078 Investigation of Chirality Selection Mechanism of Single-Walled Carbon Nanotube-3 Seun Min Kim KOREA INSTITUTE OF SCIENCE

  14. Structure and magnetism of single-phase epitaxial gamma '-Fe4N

    NARCIS (Netherlands)

    Costa-Kramer, JL; Borsa, DM; Garcia-Martin, JM; Martin-Gonzalez, MS; Boerma, DO; Briones, F

    Single phase epitaxial pure gamma(')-Fe4N films are grown on MgO (001) by molecular beam epitaxy of iron in the presence of nitrogen obtained from a radio frequency atomic source. The epitaxial, single phase nature of the films is revealed by x-ray diffraction and by the local magnetic environment

  15. new topology for single-phase, three-level, spwm vsi with lc filter

    African Journals Online (AJOL)

    level PWM inverter. However, this is not the case with single-phase PWM inverters. In these days, the popular single-phase inverters adopt the full-bridge type using approximate sinusoidal modulation technique. The output voltage in them has two values: zero and pos- itive supply dc voltage levels in the positive half cycle.

  16. Torque Analysis With Saturation Effects for Non-Salient Single-Phase Permanent-Magnet Machines

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Ritchie, Ewen

    2011-01-01

    The effects of saturation on torque production for non-salient, single-phase, permanent-magnet machines are studied in this paper. An analytical torque equation is proposed to predict the instantaneous torque with saturation effects. Compared to the existing methods, it is computationally faster......-element results, and experimental results obtained on a prototype single-phase permanent-magnet machine....

  17. Conjugated Polymer-Assisted Dispersion of Single-Wall Carbon Nanotubes : The Power of Polymer Wrapping

    NARCIS (Netherlands)

    Samanta, Suman Kalyan; Fritsch, Martin; Scherf, Ullrich; Gomulya, Widianta; Bisri, Satria Zulkarnaen; Loi, Maria Antonietta

    CONSPECTUS: The future application of single-walled carbon nanotubes (SWNTs) in electronic (nano)devices is closely coupled to the availability of pure, semiconducting SWNTs and preferably, their defined positioning on suited substrates. Commercial carbon nanotube raw mixtures contain metallic as

  18. Raman study on single-walled carbon nanotubes with different laser ...

    Indian Academy of Sciences (India)

    TECS

    identify the nature of carbon nanotubes in a bundle. In this study, we have used the Raman spectroscopic analysis on vertically aligned single-walled carbon nanotubes (SWCNTs) grown by the chemical vapour depo- sition (CVD) technique. The grown sample is excited with two laser excitation wavelengths, 633 nm from ...

  19. The influence of transport phenomena on the fluidized bed combustion of a single carbon particle

    NARCIS (Netherlands)

    Prins, W.; van Swaaij, Willibrordus Petrus Maria

    1990-01-01

    The burning rate and temperature of the carbon particles are known to affect the efficiency of a fluidized bed combustor, and also the emission levels of undesired noxious components. The main results of an extensive study on the fluidized bed combustion behaviour of a single carbon particle [1] are

  20. Evaluation of Single-Step Steam Pyrolysis-Activated Carbons from ...

    African Journals Online (AJOL)

    Activated carbon has been widely used worldwide as an effective filtration or adsorption material for removing biological and chemical contaminants from drinking water. The potential of producing activated carbon (AC) from local agroforestry residues by single-step steam pyrolysis processes was investigated. The research ...

  1. Dissolved organic carbon enhances the mass transfer of hydrophobic organic compounds from Nonaqueous Phase Liquids (NAPLs) into the aqueous phase

    NARCIS (Netherlands)

    Smith, K.E.C.; Thullner, M.; Wick, L.Y.; Harms, H.

    2011-01-01

    The hypothesis that dissolved organic carbon (DOC) enhances the mass transfer of hydrophobic organic compounds from nonaqueous phase liquids (NAPLs) into the aqueous phase above that attributable to dissolved molecular diffusion alone was tested. In controlled experiments, mass transfer rates of

  2. Robust optical carbon dioxide isotope analyzer, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Isotopic analysis of carbon dioxide is an important tool for characterization of the exchange and transformation of carbon between the biosphere and the atmosphere....

  3. Developments in Analytical Chemistry: Acoustically Levitated Drop Reactors for Enzyme Reaction Kinetics and Single-Walled Carbon Nanotube-Based Sensors for Detection of Toxic Organic Phosphonates

    Science.gov (United States)

    Field, Christopher Ryan

    2009-01-01

    Developments in analytical chemistry were made using acoustically levitated small volumes of liquid to study enzyme reaction kinetics and by detecting volatile organic compounds in the gas phase using single-walled carbon nanotubes. Experience gained in engineering, electronics, automation, and software development from the design and…

  4. A one-step single source route to carbon nanotubes

    Indian Academy of Sciences (India)

    Abstract. Carbon nanotubes (CNTs) have been synthesized via directly pyrolyzing ferrocene in the autoclave. The nanotubes with several micrometers in length have outer and inner diameters in the range of 40–100 nm and 20–40 nm, respectively. An yield of ~70% of CNTs can be obtained without any accessorial ...

  5. single coal particle combustion in carbon dioxide atmosphere

    African Journals Online (AJOL)

    Palo Steltenpohl

    2013-03-13

    Mar 13, 2013 ... glycerol as a carbon source for cell growth and yeast cells were accumulated to high cell density. Cell dry weight concentration around ... children with chronic renal failure, girls with Turner's syndrome and adults with .... Both of YEPD and BSM culture were incubated at 30°C with 200 rpm shaking rate. The.

  6. A one-step single source route to carbon nanotubes

    Indian Academy of Sciences (India)

    Carbon nanotubes (CNTs) have been synthesized via directly pyrolyzing ferrocene in the autoclave. The nanotubes with several micrometers in length have outer and inner diameters in the range of 40–100 nm and 20–40 nm, respectively. An yield of ∼70% of CNTs can be obtained without any accessorial solvents and ...

  7. Improved synthesis of carbon nanotubes with junctions and of single ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Pyrolysis of thiophene over nickel nanoparticles dispersed on silica is shown to yield Y- junction carbon nanotubes with smaller diameters than those obtained by the pyrolysis of organometallic- thiophene mixtures. In the presence of water vapour, the pyrolysis of organometallic-hydrocarbon mixtures.

  8. Single Crystal Bimorph Array Driven Deformable Mirrors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research (SBIR) Phase I project will research a novel deformable mirror design for NASA adaptive optics telescope applications . The...

  9. Planktic foraminifera form their shells via metastable carbonate phases

    OpenAIRE

    Jacob, D. E.; Wirth, R.; Agbaje, O. B. A.; Branson, O.; Eggins, S. M.

    2017-01-01

    The calcium carbonate shells of planktic foraminifera provide our most valuable geochemical archive of ocean surface conditions and climate spanning the last 100 million years, and play an important role in the ocean carbon cycle. These shells are preserved in marine sediments as calcite, the stable polymorph of calcium carbonate. Here, we show that shells of living planktic foraminifers Orbulina universa and Neogloboquadrina dutertrei originally form from the unstable calcium carbonate polym...

  10. Electrospun single-walled carbon nanotube/polyvinyl alcohol composite nanofibers: structure-property relationships

    International Nuclear Information System (INIS)

    Naebe, Minoo; Lin Tong; Wang Xungai; Staiger, Mark P; Dai Liming

    2008-01-01

    Polyvinyl alcohol (PVA) nanofibers and single-walled carbon nanotube (SWNT)/PVA composite nanofibers have been produced by electrospinning. An apparent increase in the PVA crystallinity with a concomitant change in its main crystalline phase and a reduction in the crystalline domain size were observed in the SWNT/PVA composite nanofibers, indicating the occurrence of a SWNT-induced nucleation crystallization of the PVA phase. Both the pure PVA and SWNT/PVA composite nanofibers were subjected to the following post-electrospinning treatments: (i) soaking in methanol to increase the PVA crystallinity, and (ii) cross-linking with glutaric dialdehyde to control the PVA morphology. Effects of the PVA morphology on the tensile properties of the resultant electrospun nanofibers were examined. Dynamic mechanical thermal analyses of both pure PVA and SWNT/PVA composite electrospun nanofibers indicated that SWNT-polymer interaction facilitated the formation of crystalline domains, which can be further enhanced by soaking the nanofiber in methanol and/or cross-linking the polymer with glutaric dialdehyde

  11. Synthesis of single-crystal-like nanoporous carbon membranes and their application in overall water splitting

    KAUST Repository

    Wang, Hong

    2017-01-04

    Nanoporous graphitic carbon membranes with defined chemical composition and pore architecture are novel nanomaterials that are actively pursued. Compared with easy-to-make porous carbon powders that dominate the porous carbon research and applications in energy generation/conversion and environmental remediation, porous carbon membranes are synthetically more challenging though rather appealing from an application perspective due to their structural integrity, interconnectivity and purity. Here we report a simple bottom–up approach to fabricate large-size, freestanding and porous carbon membranes that feature an unusual single-crystal-like graphitic order and hierarchical pore architecture plus favourable nitrogen doping. When loaded with cobalt nanoparticles, such carbon membranes serve as high-performance carbon-based non-noble metal electrocatalyst for overall water splitting.

  12. 1.26 Single Frequency Fiber Laser, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is for the development of an innovative compact, high power, and extremely reliable 1.26 micron Ho-doped single frequency fiber laser. The proposed...

  13. 1.26 Single Frequency Fiber Laser, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is for the development of an innovative compact, high power, and extremely reliable 1.26 micron Ho-doped single frequency fiber laser. The proposed...

  14. Single Molecule Scanning of DNA Radiation Oxidative Damage, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal will develop an assay to map genomic DNA, at the single molecule level and in a nanodevice, for oxidative DNA damage arising from radiation exposure;...

  15. Natural circulation in single-phase and two-phase flow

    International Nuclear Information System (INIS)

    Cheung, F.B.; El-Genk, M.S.

    1989-01-01

    Natural circulation usually arises in a closed loop between a heat source and a heat sink were the fluid motion is driven by density difference. It may also occur in enclosures or cavities where the flow is induced primarily by temperature or concentration gradients within the fluid. The subject has recently received special attention by the heat transfer and nuclear reactor safety communities because of it importance to the areas of energy extraction, decay, heat removal in nuclear reactors, solar and geothermal heating, and cooling of electronic equipment. Although many new results and physical insights have been gained of the various natural circulation phenomena, a number of critical issues remain unresolved. These include, for example, transition from laminar to turbulent flow, buoyancy-induced turbulent flow modeling, change of flow regimes, flow field visualization, variable property effects, and flow instability. This symposium volume contains papers presented in the Natural Circulation in Single-Phase and Two-Phase Flow session at the 1989 Winter Annual Meeting of ASME, by authors from different countries including the United States, Japan, Canada, and Brazil. The papers deal with experimental and theoretical studies as well as state-of-the-art reviews, covering a broad spectrum of topics in natural circulation including: variable-conductance thermosyphons, microelectronic chip cooling, natural circulation in anisotropic porous media and in cavities, heat transfer in flat plat solar collectors, shutdown heat removal in fast reactors, cooling of light-water and heavy-water reactors. The breadth of papers contained in this volume clearly reflect the importance of the current interest in natural circulation as a means for passive cooling and heating

  16. Quenching of Single-Walled Carbon Nanotube Fluorescence by Dissolved Oxygen Reveals Selective Single-Stranded DNA Affinities.

    Science.gov (United States)

    Zheng, Yu; Bachilo, Sergei M; Weisman, R Bruce

    2017-05-04

    The selective interactions between short oligomers of single-stranded DNA (ssDNA) and specific structures of single-walled carbon nanotubes have been exploited in powerful methods for nanotube sorting. We report here that nanotubes coated with ssDNA also display selective interactions through the selective quenching of nanotube fluorescence by dissolved oxygen. In aqueous solutions equilibrated under 1 atm of O 2 , emission intensity from semiconducting nanotubes is reduced by between 9 and 40%, varying with the combination of ssDNA sequence and nanotube structure. This quenching reverses promptly and completely on the removal of dissolved O 2 and may be due to physisorption on nanotube surfaces. Fluorescence quenching offers a simple, nondestructive approach for studying the structure-selective interactions of ssDNA with single-walled carbon nanotubes and identifying recognition sequences.

  17. Carbon nanotube based stationary phases for microchip chromatography

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Kutter, Jörg Peter

    2012-01-01

    The objective of this article is to provide an overview and critical evaluation of the use of carbon nanotubes and related carbon-based nanomaterials for microchip chromatography. The unique properties of carbon nanotubes, such as a very high surface area and intriguing adsorptive behaviour, have...... integrated, tailor-made nanotube columns by means of catalytic growth of the nanotubes inside the fluidic channels. An evaluation of the different implementations of carbon nanotubes and related carbon-based nanomaterials for microfluidic chromatography devices is given in terms of separation performance...

  18. Analysis and MPPT control of a wind-driven three-phase induction generator feeding single-phase utility grid

    Directory of Open Access Journals (Sweden)

    Krishnan Arthishri

    2017-05-01

    Full Text Available In this study, a three-phase diode bridge rectifier and a single-phase voltage source inverter topology has been proposed for feeding single-phase utility grid employing a three-phase induction generator fed from wind energy. A self-excited induction generator configuration has been chosen for wide speed operation of wind turbine system, which gives the scope for extracting maximum power available in the wind. In addition to maximum power point tracking (MPPT, the generator can be loaded to its rated capacity for feeding single-phase utility grid using a three-phase induction machine, whereas it is not possible with existing configurations because of the absence of power converters. For the proposed system, MPPT algorithm has been devised by continuously monitoring the grid current and a proportional resonant controller has been employed for grid synchronisation of voltage source inverter with single-phase grid. A MATLAB/Simulink model of the proposed system has been developed to ascertain its successful working by predetermining the overall performance characteristics. The present proposal has also been tested with sag, swell and distortion in the grid voltage. The control strategy has been implemented using field programmable gate array (FPGA controller with modularised programming approach. The efficacy of the system has been demonstrated with the results obtained from an experimental set-up in the laboratory.

  19. In situ Raman studies of single-walled carbon nanotubes grown by local catalyst heating

    Science.gov (United States)

    Dittmer, S.; Olofsson, N.; Ek Weis, J.; Nerushev, O. A.; Gromov, A. V.; Campbell, E. E. B.

    2008-05-01

    Using in situ Raman spectroscopy we investigate single wall carbon nanotube growth on Mo electrodes, using a highly localized resistive heating technique. Small diameter semiconducting single wall nanotubes grow very rapidly when the catalyst support is heated to a temperature of 800 °C. The G/D ratio shows an interesting time-dependent behaviour. It first decreases, indicating the presence of amorphous carbon and then significantly increases again after ca. 5 min growth while retaining the position and shape expected for predominantly semiconducting carbon nanotubes.

  20. Single-walled carbon nanotubes as stabilizing agents in red phosphorus Li-ion battery anodes

    KAUST Repository

    Smajic, Jasmin

    2017-08-16

    Phosphorus boasts extremely high gravimetric and volumetric capacities but suffers from poor electrochemical stability with significant capacity loss immediately after the first cycle. We propose to circumvent this issue by mixing amorphous red phosphorus with single-walled carbon nanotubes. Employing a non-destructive sublimation–deposition method, we have synthesized composites where the synergetic effect between red phosphorus and single-walled carbon nanotubes allows for a considerable improvement in the electrochemical stability of battery anodes. In contrast to the average 40% loss of capacity after 50 cycles for other phosphorus–carbon composites in the literature, our material shows losses of just 22% under analogous cycling conditions.

  1. Encapsulation of Ni0.8Zn0.2Fe2O4 single crystals in multiwall carbon nanotubes.

    Science.gov (United States)

    Yahya, Noorhana; Akhtar, Majid Niaz; Koziol, Krzysztof

    2012-10-01

    Magnetic nanoparticles in the hollow region of carbon nanotubes have attraction due to their changing physical electrical and magnetic properties. Nickel zinc ferrite plays an important role in many applications due to its superior magnetic properties. Ni0.8Zn0.2Fe2O4 single crystals were encapsulated in multiwall carbon nanotubes (MWCNTs). The magnetic nano crystals were prepared using a sol-gel self combustion method at the sintering temperature of 750 degrees C and were characterized by XRD, FESEM, TEM and VSM. Initial permeability, Q-factor and relative loss factor were measured by impedance vector network analyzer. XRD patterns were used for the phase identification. FESEM images show morphology and dimensions of the grains of Ni0.8Zn0.2Fe2O4 single crystals and Ni0.8Zn0.2Fe2O4 single crystals in MWCNTs. TEM images were used to investigate single crystal and encapsulation of Ni0.8Zn0.2Fe2O4 single crystals in the MWCNTs. VSM results confirmed super paramagnetic behaviour of encapsulated Ni0.8Zn0.2Fe2O4 single crystals. It was also attributed that encapsulated Ni0.8Zn0.2Fe2O4 single crystals in MWCNTs showed a higher initial permeability (51.608), Q-factor (67.069), and low loss factor (0.0002) as compared to Ni0.8Zn0.2Fe2O4 single crystals. The new encapsulated Ni0.8Zn0.2Fe2O4 single crystals in the MWCNTs may have potential applications in electronic and medical industries.

  2. Evaluation of single-step steam pyrolysis-activated carbons

    African Journals Online (AJOL)

    Mgina

    415m2/g), iodine number (52.2 to 100.3 g/100g), solubility (2 to 5%) and pH (8.34 to 9.76), all the four investigated agro- forestry wastes – AS, MS, PC and PS – gave ACs of good quality by simple steam pyrolysis process. With the exception of. MS, all the other raw materials gave relatively high yields of activated carbon, up.

  3. Selective Etching of Thin Single-Walled Carbon Nanotubes

    Czech Academy of Sciences Publication Activity Database

    Kalbáč, Martin; Kavan, Ladislav; Dunsch, L.

    2009-01-01

    Roč. 131, č. 12 (2009), s. 4529-4534 ISSN 0002-7863 R&D Projects: GA AV ČR IAA400400804; GA ČR GC203/07/J067; GA AV ČR IAA400400911 Institutional research plan: CEZ:AV0Z40400503 Keywords : carbon nanotubes * Raman spectroelectrochemistry * Raman spectroscopy Subject RIV: CG - Electrochemistry Impact factor: 8.580, year: 2009

  4. A single-component liquid-phase hydrogen storage material.

    Science.gov (United States)

    Luo, Wei; Campbell, Patrick G; Zakharov, Lev N; Liu, Shih-Yuan

    2011-12-07

    The current state-of-the-art for hydrogen storage is compressed H(2) at 700 bar. The development of a liquid-phase hydrogen storage material has the potential to take advantage of the existing liquid-based distribution infrastructure. We describe a liquid-phase hydrogen storage material that is a liquid under ambient conditions (i.e., at 20 °C and 1 atm pressure), air- and moisture-stable, and recyclable; releases H(2) controllably and cleanly at temperatures below or at the proton exchange membrane fuel cell waste-heat temperature of 80 °C; utilizes catalysts that are cheap and abundant for H(2) desorption; features reasonable gravimetric and volumetric storage capacity; and does not undergo a phase change upon H(2) desorption. © 2011 American Chemical Society

  5. Structure-Processing-Property Interrelationships of Vapor Grown Carbon Nanofiber, Single-Walled Carbon Nanotube and Functionalized Single-Walled Carbon Nanotube - Polypropylene Nanocomposites

    Science.gov (United States)

    Radhakrishnan, Vinod Karumathil

    This dissertation describes the first use of a design of experiments approach to investigate the interrelationships between structure, processing, and properties of melt extruded polypropylene (PP) carbon nanomaterial composites. The effect of nanomaterial structure was evaluated by exploring the incorporation of vapor grown carbon nanofibers (VGCFs), or pristine or functionalized single-walled carbon nanotubes (SWNTs or C12SWNTs) in polypropylene, while the effect of processing was investigated by studying the influence of melt extrusion temperature, speed, and time. The nanomaterials and PP were combined by an initial mixing method prior to melt extrusion. The nanocomposite properties were characterized by a combination of morphological, rheological, and thermal methods. Preliminary investigations into the effects of the initial mixing method revealed that the distribution of nanomaterials obtained after the mixing had a considerable influence on the properties of the final melt extruded nanocomposite. Dry mixing (DM) resulted in minimal adhesion between nanomaterials and PP during initial mixing; the majority of nanomaterials descended to the bottom. Hot coagulation (HC) mixing resulted in extremely high degrees of interaction between the nanomaterials and PP chains. Rotary evaporation (RE) mixing resulted in nanomaterial distribution uniformity between that obtained from DM and HC. Employing design of experiments to investigate the effects of structure and processing conditions on melt extruded PP nanocomposite properties revealed several interesting effects. The effect of processing conditions varied depending on the degree of nanomaterial distribution in PP attained prior to melt processing. Increasing melt extrusion temperature increased the decomposition temperature (Td) of PP/C12SWNT obtained from HC mixing but decreased T d of PP/C12SWNT obtained from RE mixing. Higher melt extrusion screw speed, on the other hand, significantly improved the nanocomposite

  6. Theoretical modelling and experimental investigation of single-phase and two-phase flow division at a tee-junction

    International Nuclear Information System (INIS)

    Lemonnier, H.; Hervieu, E.

    1991-01-01

    Phase separation in a tee-junction is modelled in the particular case of bubbly-flow. The model is based on a two-dimensional approach and hence, uses local equations. The first step consists in modelling the single-phase flow in the tee-junction. The free streamline theory is used to predict the flow of the continuous phase. The two recirculation zones which are presented in this case are predicted by the model. The second step consists in predicting the gas bubble paths as a result of the actions of the single-phase flow. Finally, the trajectories of gas bubbles are used to predict the separation characteristics of the tee-junction. Each step of the modelling procedure has been carefully tested by an in-depth experimental investigation. Excellent quantitative agreement is obtained between experimental results and model predictions. Moreover, the phase separation phenomenon is found to be clearly described by the model. (orig.)

  7. An Adaptive Quadrature Signal Generation Based Single-Phase Phase-Locked Loop for Grid-Connected Applications

    DEFF Research Database (Denmark)

    Golestan, Saeed; Guerrero, Josep M.; Abusorrah, Abdullah

    2017-01-01

    The quadrature signal generation based phase-locked loops (QSG-PLLs) are highly popular for synchronization purposes in single-phase systems. The main difference among these PLLs often lies in the technique they use for creating the fictitious quadrature component. One of the easiest QSG approaches...... is delaying the original single-phase signal by a quarter of a cycle. The PLL with such QSG technique is often called the transfer delay based PLL (TD-PLL). The TD-PLL benefits from a simple structure, rather fast dynamic response, and a good detection accuracy when the grid frequency is at its nominal value......, but it suffers from a phase offset error and double frequency oscillatory error in the estimated phase and frequency in the presence of frequency drifts. In this paper, a simple yet effective approach to remove the aforementioned errors of the TD-PLL is proposed. The resultant PLL structure is called...

  8. Activated carbon and single-walled carbon nanotube based electrochemical capacitor in 1 M LiPF{sub 6} electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Azam, M.A., E-mail: asyadi@utem.edu.my [Carbon Research Technology Research Group, Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia); Jantan, N.H.; Dorah, N.; Seman, R.N.A.R.; Manaf, N.S.A. [Carbon Research Technology Research Group, Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia); Kudin, T.I.T. [Ionics Materials & Devices Research Laboratory, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor (Malaysia); Yahya, M.Z.A. [Ionics Materials & Devices Research Laboratory, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor (Malaysia); National Defence University of Malaysia, Kem Sungai Besi, 57000 Kuala Lumpur (Malaysia)

    2015-09-15

    Highlights: • Activated carbon and single-walled CNT based electrochemical capacitor. • Electrochemical analysis by means of CV, charge/discharge and impedance. • 1 M LiPF{sub 6} non-aqueous solution as an electrolyte. • AC/SWCNT electrode exhibits a maximum capacitance of 60.97 F g{sup −1}. - Abstract: Carbon nanotubes have been extensively studied because of their wide range of potential application such as in nanoscale electric circuits, textiles, transportation, health, and the environment. Carbon nanotubes feature extraordinary properties, such as electrical conductivities higher than those of copper, hardness and thermal conductivity higher than those of diamond, and strength surpassing that of steel, among others. This research focuses on the fabrication of an energy storage device, namely, an electrochemical capacitor, by using carbon materials, i.e., activated carbon and single-walled carbon nanotubes, of a specific weight ratio as electrode materials. The electrolyte functioning as an ion carrier is 1 M lithium hexafluorophosphate. Variations in the electrochemical performance of the device, including its capacitance, charge/discharge characteristics, and impedance, are reported in this paper. The electrode proposed in this work exhibits a maximum capacitance of 60.97 F g{sup −1} at a scan rate of 1 mV s{sup −1}.

  9. Nanopattern formation using localized plasma for growth of single-standing carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Javadi, Mohammad; Abdi, Yaser, E-mail: y.abdi@ut.ac.ir [University of Tehran, Nanophysics Research Laboratory, Department of Physics (Iran, Islamic Republic of)

    2017-01-15

    We report a novel method for formation of self-organized single-standing carbon nanotubes by customizing a plasma-based process. The growth of carbon nanotubes by plasma-enhanced chemical vapor deposition provides suitable grounds to utilize plasma–solid interactions for nanopatterning. The bulk plasma is utilized to fabricate carbon nanotubes on the prepatterned Ni catalyst which in turn can confine the plasma to the growth region. The plasma localization leads to a dielectrophoretic force exerted on Ni atoms and can be engineered in order to grow a specific pattern of self-organized single-standing carbon nanotubes. Numerical simulations based on the plasma localization and dielectrophoretic force confirmed the experimental results. This method provides a simple and cost-effective approach to obtain nanopatterned arrays of carbon nanotubes which can be used for fabrication of photonic and phononic crystals, self-gated field emission-based transistors and displays.

  10. Vibrational Analysis of Curved Single-Walled Carbon Nanotube on a Pasternak Elastic Foundation

    DEFF Research Database (Denmark)

    Mehdipour, I.; Barari, Amin; Kimiaeifar, Amin

    2012-01-01

    Continuum mechanics and an elastic beam model were employed in the nonlinear force vibrational analysis of an embedded, curved, single-walled carbon nanotube. The analysis considered the effects of the curvature or waviness and midplane stretching of the nanotube on the nonlinear frequency....... By utilizing He’s Energy Balance Method (HEBM), the relationships of the nonlinear amplitude and frequency were expressed for a curved, single-walled carbon nanotube. The amplitude frequency response curves of the nonlinear free vibration were obtained for a curved, single-walled carbon nanotube embedded...... in a Pasternak elastic foundation. Finally, the influence of the amplitude of the waviness, midplane stretching nonlinearity, shear foundation modulus, surrounding elastic medium, radius, and length of the curved carbon nanotube on the amplitude frequency response characteristics are discussed. As a result...

  11. Single-Walled Carbon Nanotubes as Fluorescence Biosensors for Pathogen Recognition in Water Systems

    Directory of Open Access Journals (Sweden)

    Venkata K. K. Upadhyayula

    2008-01-01

    Full Text Available The possibility of using single-walled carbon nanotubes (SWCNTs aggregates as fluorescence sensors for pathogen recognition in drinking water treatment applications has been studied. Batch adsorption study is conducted to adsorb large concentrations of Staphylococcus aureus aureus SH 1000 and Escherichia coli pKV-11 on single-walled carbon nanotubes. Subsequently the immobilized bacteria are detected with confocal microscopy by coating the nanotubes with fluorescence emitting antibodies. The Freundlich adsorption equilibrium constant (k for S.aureus and E.coli determined from batch adsorption study was found to be 9×108 and 2×108 ml/g, respectively. The visualization of bacterial cells adsorbed on fluorescently modified carbon nanotubes is also clearly seen. The results indicate that hydrophobic single-walled carbon nanotubes have excellent bacterial adsorption capacity and fluorescent detection capability. This is an important advancement in designing fluorescence biosensors for pathogen recognition in water systems.

  12. Synergistic Impacts of Electrolyte Adsorption on the Thermoelectric Properties of Single-Walled Carbon Nanotubes.

    Science.gov (United States)

    Nakano, Motohiro; Nakashima, Takuya; Kawai, Tsuyoshi; Nonoguchi, Yoshiyuki

    2017-08-01

    Single-walled carbon nanotubes are promising candidates for light-weight and flexible energy materials. Recently, the thermoelectric properties of single-walled carbon nanotubes have been dramatically improved by ionic liquid addition; however, controlling factors remain unsolved. Here the thermoelectric properties of single-walled carbon nanotubes enhanced by electrolytes are investigated. Complementary characterization with absorption, Raman, and X-ray photoelectron spectroscopy reveals that shallow hole doping plays a partial role in the enhanced electrical conductivity. The molecular factors controlling the thermoelectric properties of carbon nanotubes are systematically investigated in terms of the ionic functionalities of ionic liquids. It is revealed that appropriate ionic liquids show a synergistic enhancement in conductivity and the Seebeck coefficient. The discovery of significantly precise doping enables the generation of thermoelectric power factor exceeding 460 µW m - 1 K -2 . © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Advanced Thermal Protection Systems (ATPS), Aerospace Grade Carbon Bonded Carbon Fiber Material, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Carbon bonded carbon fiber (CBCF) insulating material is the basis for several highly successful NASA developed thermal protection systems (TPS). Among the...

  14. Advanced Thermal Protection Systems (ATPS), Aerospace Grade Carbon Bonded Carbon Fiber Material, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Carbon bonded carbon fiber (CBCF) insulating material is the basis for several highly successful NASA developed thermal protection systems (TPS). Included among...

  15. Migration of carbon nanotubes from liquid phase to vapor phase in the refrigerant-based nanofluid pool boiling

    Science.gov (United States)

    2011-01-01

    The migration characteristics of carbon nanotubes from liquid phase to vapor phase in the refrigerant-based nanofluid pool boiling were investigated experimentally. Four types of carbon nanotubes with the outside diameters from 15 to 80 nm and the lengths from 1.5 to 10 μm were used in the experiments. The refrigerants include R113, R141b and n-pentane. The oil concentration is from 0 to 10 wt.%, the heat flux is from 10 to 100 kW·m-2, and the initial liquid-level height is from 1.3 to 3.4 cm. The experimental results indicate that the migration ratio of carbon nanotube increases with the increase of the outside diameter or the length of carbon nanotube. For the fixed type of carbon nanotube, the migration ratio decreases with the increase of the oil concentration or the heat flux, and increases with the increase of the initial liquid-level height. The migration ratio of carbon nanotube increases with the decrease of dynamic viscosity of refrigerant or the increase of liquid phase density of refrigerant. A model for predicting the migration ratio of carbon nanotubes in the refrigerant-based nanofluid pool boiling is proposed, and the predictions agree with 92% of the experimental data within a deviation of ±20%. PMID:21711730

  16. A triple quantum dot in a single-wall carbon nanotube

    DEFF Research Database (Denmark)

    Grove-Rasmussen, Kasper; Jørgensen, Henrik Ingerslev; Hayashi, T.

    2008-01-01

    A top-gated single-wall carbon nanotube is used to define three coupled quantum dots in series between two electrodes. The additional electron number on each quantum dot is controlled by top-gate voltages allowing for current measurements of single, double, and triple quantum dot stability diagrams...

  17. Selective formation and efficient photocurrent generation of [70]fullerene-single-walled carbon nanotube composites

    NARCIS (Netherlands)

    Umeyama, Tomokazu; Tezuka, Noriyasu; Seki, Shu; Matano, Yoshihiro; Nishi, Masayuki; Hirao, Kazuyuki; Lehtivuori, Heli; Tkachenko, Nikolai V.; Lemmetyinen, Helge; Nakao, Yoshihide; Sakaki, Shigeyoshi; Imahori, Hiroshi

    2010-01-01

    For the first time nanocarbon composites with C 70 molecules aligned on the sidewall of single-walled carbon nanotubes (SWNTs) are demonstrated. The C70-SWNT photoelectrochemical devices exhibit efficient photocurrent generation properties that result from selective formation of a single composite

  18. An Asymmetrical Space Vector Method for Single Phase Induction Motor

    DEFF Research Database (Denmark)

    Cui, Yuanhai; Blaabjerg, Frede; Andersen, Gert Karmisholt

    2002-01-01

    the motor torque performance is not good enough. This paper addresses a new control method, an asymmetrical space vector method with PWM modulation, also a three-phase inverter is used for the main winding and the auxiliary winding. This method with PWM modulation is implemented to control the motor speed...

  19. A single phase photovoltaic inverter control for grid connected system

    Indian Academy of Sciences (India)

    during light load condition the excess energy generated from the PV inverter is fed to the grid and; during an overload condition or in case of unfavorable atmospheric conditions the load demand is met by both PV inverter and the grid. In order to synchronize the PV inverter with the grid a dual transport delay based phase ...

  20. Evaluation of Different Single-Walled Carbon Nanotube Surface Coatings for Single-Particle Tracking Applications in Biological Environments.

    Science.gov (United States)

    Gao, Zhenghong; Danné, Noémie; Godin, Antoine Guillaume; Lounis, Brahim; Cognet, Laurent

    2017-11-16

    Fluorescence imaging of biological systems down to the single-molecule level has generated many advances in cellular biology. For applications within intact tissue, single-walled carbon nanotubes (SWCNTs) are emerging as distinctive single-molecule nanoprobes, due to their near-infrared photoluminescence properties. For this, SWCNT surfaces must be coated using adequate molecular moieties. Yet, the choice of the suspension agent is critical since it influences both the chemical and emission properties of the SWCNTs within their environment. Here, we compare the most commonly used surface coatings for encapsulating photoluminescent SWCNTs in the context of bio-imaging applications. To be applied as single-molecule nanoprobes, encapsulated nanotubes should display low cytotoxicity, and minimal unspecific interactions with cells while still being highly luminescent so as to be imaged and tracked down to the single nanotube level for long periods of time. We tested the cell proliferation and cellular viability of each surface coating and evaluated the impact of the biocompatible surface coatings on nanotube photoluminescence brightness. Our study establishes that phospholipid-polyethylene glycol-coated carbon nanotube is the best current choice for single nanotube tracking experiments in live biological samples.

  1. Nanocatalyst shape and composition during nucleation of single-walled carbon nanotubes.

    Science.gov (United States)

    Gomez-Ballesteros, Jose L; Burgos, Juan C; Lin, Pin Ann; Sharma, Renu; Balbuena, Perla B

    The dynamic evolution of nanocatalyst particle shape and carbon composition during the initial stages of single-walled carbon nanotube growth by chemical vapor deposition synthesis is investigated. Classical reactive and ab initio molecular dynamics simulations are used, along with environmental transmission electron microscope video imaging analyses. A clear migration of carbon is detected from the nanocatalyst/substrate interface, leading to a carbon gradient showing enrichment of the nanocatalyst layers in the immediate vicinity of the contact layer. However, as the metal nanocatalyst particle becomes saturated with carbon, a dynamic equilibrium is established, with carbon precipitating on the surface and nucleating a carbon cap that is the precursor of nanotube growth. A carbon composition profile decreasing towards the nanoparticle top is clearly revealed by the computational and experimental results that show a negligible amount of carbon in the nanoparticle region in contact with the nucleating cap. The carbon composition profile inside the nanoparticle is accompanied by a well-defined shape evolution of the nanocatalyst driven by the various opposing forces acting upon it both from the substrate and from the nascent carbon nanostructure. This new understanding suggests that tuning the nanoparticle/substrate interaction would provide unique ways of controlling the nanotube synthesis.

  2. A single phase photovoltaic inverter control for grid connected system

    Indian Academy of Sciences (India)

    Melo G and Canesin C A 2013 Evaluation of the main MPPT techniques for photovoltaic applications. IEEE Trans. Ind. Electron. 60(3): 1156–1167. [7] Jain S and Agarwal V 2007 Comparison of the perfor- mance of maximum power point tracking schemes applied to single-stage grid-connected photovoltaic systems.

  3. Carbon Fiber Reinforced, Zero CME Composites, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Technical Abstract: This project proposes to develop moisture insensitive, high performance, carbon fiber laminates for future missions. Current space-qualified...

  4. Analysis of free-surface flows through energy considerations: Single-phase versus two-phase modeling.

    Science.gov (United States)

    Marrone, Salvatore; Colagrossi, Andrea; Di Mascio, Andrea; Le Touzé, David

    2016-05-01

    The study of energetic free-surface flows is challenging because of the large range of interface scales involved due to multiple fragmentations and reconnections of the air-water interface with the formation of drops and bubbles. Because of their complexity the investigation of such phenomena through numerical simulation largely increased during recent years. Actually, in the last decades different numerical models have been developed to study these flows, especially in the context of particle methods. In the latter a single-phase approximation is usually adopted to reduce the computational costs and the model complexity. While it is well known that the role of air largely affects the local flow evolution, it is still not clear whether this single-phase approximation is able to predict global flow features like the evolution of the global mechanical energy dissipation. The present work is dedicated to this topic through the study of a selected problem simulated with both single-phase and two-phase models. It is shown that, interestingly, even though flow evolutions are different, energy evolutions can be similar when including or not the presence of air. This is remarkable since, in the problem considered, with the two-phase model about half of the energy is lost in the air phase while in the one-phase model the energy is mainly dissipated by cavity collapses.

  5. Cloning single wall carbon nanotubes for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Tour, James M [Rice Univ., Houston, TX (United States); Kittrell, Carter [Rice Univ., Houston, TX (United States)

    2012-08-30

    The purpose of this research is to development the technology required for producing 3-D nano-engineered frameworks for hydrogen storage based on sp2 carbon media, which will have high gravimetric and especially high volumetric uptake of hydrogen, and in an aligned fibrous array that will take advantage of the exceptionally high thermal conductivity of sp2 carbon materials to speed up the fueling process while minimizing or eliminating the need for internal cooling systems. A limitation for nearly all storage media using physisorption of the hydrogen molecule is the large amount of surface area (SA) occupied by each H2 molecule due to its large zero-point vibrational energy. This creates a conundrum that in order to maximize SA, the physisorption media is made more tenuous and the density is decreased, usually well below 1 kg/L, so that there comes a tradeoff between volumetric and gravimetric uptake. Our major goal was to develop a new type of media with high density H2 uptake, which favors volumetric storage and which, in turn, has the capability to meet the ultimate DoE H2 goals.

  6. Single-arm phase II trial design under parametric cure models.

    Science.gov (United States)

    Wu, Jianrong

    2015-01-01

    The current practice of designing single-arm phase II survival trials is limited under the exponential model. Trial design under the exponential model may not be appropriate when a portion of patients are cured. There is no literature available for designing single-arm phase II trials under the parametric cure model. In this paper, a test statistic is proposed, and a sample size formula is derived for designing single-arm phase II trials under a class of parametric cure models. Extensive simulations showed that the proposed test and sample size formula perform very well under different scenarios. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Functionalization of oxidized single-walled carbon nanotubes with 4 ...

    Indian Academy of Sciences (India)

    with phase transfer catalyst.7 Along with our previ- ous work on ... typically proper segments to make a junction with larger globular organic .... DMF. Scheme 2. Functionalization of SWCNTs-COOH with 4-amino benzo-9-crown-3 ether (5). LiCl/ H2O-DMF. Li+. ,1h. SWCNT-CE -Li. +. (8). SWCNT-CE (7). O. O. O. NH3. +. C. O.

  8. Synthesis and Characterization of Quenched and Crystalline Phases: Q-Carbon, Q-BN, Diamond and Phase-Pure c-BN

    Science.gov (United States)

    Bhaumik, Anagh; Narayan, Jagdish

    2018-01-01

    We report the synthesis and characterization of quenched (Q-carbon and Q-BN) and crystalline (diamond and c-BN) phases using a non-equilibrium technique. These phases are formed as a result of the melting and subsequent quenching of amorphous carbon and nanocrystalline h-BN in a super undercooled state by using high-power nanosecond laser pulses. Pulsed laser annealing also leads to the formation of nanoneedles, microneedles and single-crystal thin films of diamond and c-BN. This formation is dependent on the nucleation and growth times, which are controlled by laser energy density and thermal conductivities of substrate and as-deposited thin film. The diamond nuclei present in the Q-carbon structure ( 80% sp 3) can also be grown to larger sizes using the equilibrium hot filament chemical vapor deposition process. The texture of diamond and c-BN crystals is 〈111〉 under epitaxial growth and 〈110〉 under rapid unseeded crystallization. Our nanosecond laser processing opens up a roadmap to the fabrication of novel phases on heat-sensitive substrates.

  9. High-quality single crystalline NiO with twin phases grown on sapphire substrate by metalorganic vapor phase epitaxy

    Directory of Open Access Journals (Sweden)

    Kazuo Uchida

    2012-12-01

    Full Text Available High-quality single crystalline twin phase NiO grown on sapphire substrates by metalorganic vapor phase epitaxy is reported. X-ray rocking curve analysis of NiO films grown at different temperatures indicates a minimum full width at half maximum of the cubic (111 diffraction peak of 0.107° for NiO film grown at as low as 550 °C. Detailed microstructural analysis by Φ scan X-ray diffraction and transmission electron microscopy reveal that the NiO film consists of large single crystalline domains with two different crystallographic orientations which are rotated relative to each other along the [111] axis by 60°. These single crystal domains are divided by the twin phase boundaries.

  10. Single-shot femtosecond-pulsed phase-shifting digital holography.

    Science.gov (United States)

    Kakue, Takashi; Itoh, Seiya; Xia, Peng; Tahara, Tatsuki; Awatsuji, Yasuhiro; Nishio, Kenzo; Ura, Shogo; Kubota, Toshihiro; Matoba, Osamu

    2012-08-27

    Parallel phase-shifting digital holography is capable of three-dimensional measurement of a dynamically moving object with a single-shot recording. In this letter, we demonstrated a parallel phase-shifting digital holography using a single femtosecond light pulse whose central wavelength and temporal duration were 800 nm and 96 fs, respectively. As an object, we set spark discharge in atmospheric pressure air induced by applying a high voltage to between two electrodes. The instantaneous change in phase caused by the spark discharge was clearly reconstructed. The reconstructed phase image shows the change of refractive index of air was -3.7 × 10(-4).

  11. Spin transport properties of single metallocene molecules attached to single-walled carbon nanotubes via nickel adatoms

    Science.gov (United States)

    Wei, Peng; Sun, Lili; Benassi, Enrico; Shen, Ziyong; Sanvito, Stefano; Hou, Shimin

    2011-06-01

    The spin-dependent transport properties of single ferrocene, cobaltocene, and nickelocene molecules attached to the sidewall of a (4,4) armchair single-walled carbon nanotube via a Ni adatom are investigated by using a self-consistent ab initio approach that combines the non-equilibrium Green's function formalism with the spin density functional theory. Our calculations show that the Ni adatom not only binds strongly to the sidewall of the nanotube, but also maintains the spin degeneracy and affects little the transmission around the Fermi level. When the Ni adatom further binds to a metallocene molecule, its density of states is modulated by that of the molecule and electron scattering takes place in the nanotube. In particular, we find that for both cobaltocene and nickelocene the transport across the nanotube becomes spin-polarized. This demonstrates that metallocene molecules and carbon nanotubes can become a promising materials platform for applications in molecular spintronics.

  12. Single-Phase Direct Boost AC-AC Converter

    Directory of Open Access Journals (Sweden)

    URSARU, O.

    2017-11-01

    Full Text Available This paper introduces and studies a boost AC-AC converter circuit that can be used to supply power to the 220V receivers in the 110V grids or to increase and adjust voltage at the end of long lines. High frequency AC-AC converters have better specifications than alternative voltage phase control drives with thyristors or TRIACs. When frequency exceeds 20kHz, noise is eliminated, filters are smaller and efficiency is higher. The current waveform is much better, the output voltage can be higher than the input voltage and voltage control is more accurate.

  13. Experimental determination and modeling of the phase behavior for the direct synthesis of dimethyl carbonate from methanol and carbon dioxide

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Musko, Nikolai E.; Baiker, Alfons

    2013-01-01

    -Plus-Association (CPA) equation of state was applied to model the phase behavior of the experimentally studied systems. In this regard, the CPA binary interaction parameters were estimated based on experimental data for the corresponding binary systems available in the literature, and subsequently the model was applied......This study focuses on the investigation of the phase behavior of mixtures relevant to the direct synthesis of dimethyl carbonate from methanol and carbon dioxide. The bubble points of corresponding quaternary mixtures of varying composition were experimentally determined. The Cubic...

  14. Soft cutting of single-wall carbon nanotubes by low temperature ultrasonication in a mixture of sulfuric and nitric acids.

    Science.gov (United States)

    Shuba, M V; Paddubskaya, A G; Kuzhir, P P; Maksimenko, S A; Ksenevich, V K; Niaura, G; Seliuta, D; Kasalynas, I; Valusis, G

    2012-12-14

    To decrease single-wall carbon nanotube (SWCNT) lengths to a value of 100-200 nm, aggressive cutting methods, accompanied by a high loss of starting material, are frequently used. We propose a cutting approach based on low temperature intensive ultrasonication in a mixture of sulfuric and nitric acids. The method is nondestructive with a yield close to 100%. It was applied to cut nanotubes produced in three different ways: gas-phase catalysis, chemical vapor deposition, and electric-arc-discharge methods. Raman and Fourier transform infrared spectroscopy were used to demonstrate that the cut carbon nanotubes have a low extent of sidewall degradation and their electronic properties are close to those of the untreated tubes. It was proposed to use the spectral position of the far-infrared absorption peak as a simple criterion for the estimation of SWCNT length distribution in the samples.

  15. A Novel Model Predictive Control for Single-Phase Grid-Connected Photovoltaic Inverters

    DEFF Research Database (Denmark)

    Zangeneh Bighash, Esmaeil; Sadeghzadeh, Seyed Mohammad; Ebrahimzadeh, Esmaeil

    2017-01-01

    Single-phase grid-connected inverters with LCL filter are widely used to connect photovoltaic systems to the utility grid. Among the existing control schemes, predictive control methods are faster and more accurate but also more complicated to implement. Recently, the Model Predictive Control (MPC......) algorithm for single-phase inverter has been presented, where the algorithm implementation is straightforward. In the MPC approach, all switching states are considered in each switching period to achieve the control objectives. However, since the number of switching states in single-phase inverters is small...... vectors. Simulation results show that the proposed approach lead to a lower THD in the injected current combined with fast dynamics. The proposed predictive control has been simulated and implemented on a 1 kW single-phase HERIC (highly efficient and reliable inverter concept) inverter with an LCL filter...

  16. High Energy Single Frequency Fiber Laser at Low Repetition Rate, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase I project proposes a tunable single frequency high energy fiber laser system for coherent Lidar systems for remote sensing. Current state-of-art...

  17. Tunable High-Power Single-Frequency Laser at 2050 nm, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a novel new architecture for a low-phase noise electronically tunable laser single-frequency laser at 2.05 microns that meets all the demanding...

  18. High Energy Single Frequency Fiber Laser at Low Repetition Rate, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase II project proposes a single frequency high energy fiber laser system operating at low repetition rate of 10 Hz to 1 kHz for coherent Lidar systems...

  19. Pulsed, Single-Frequency, 2-um Seed Source for Coherent LIDAR Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The primary objective of the proposed Phase I effort is to develop and demonstrate a low-average power, pulsed, single-frequency, 2-um Ho-laser source for...

  20. Light-Weight, Low-Cost, Single-Phase, Liquid-Cooled Cold Plate (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Narumanchi, S.

    2013-07-01

    This presentation, 'Light-Weight, Low-Cost, Single-Phase Liquid-Cooled Cold Plate,' directly addresses program goals of increased power density, specific power, and lower cost of power electronics components through improved thermal management.

  1. A High Energy and High Efficiency Spectral Shaping Single Frequency Fiber Laser, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase II project proposes a single frequency high energy fiber laser system for coherent Lidar systems for remote sensing. Current state-of-art...

  2. Standard Specification for Sampling Single-Phase Geothermal Liquid or Steam for Purposes of Chemical Analysis

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1983-01-01

    1.1 This specification covers the basic requirements for equipment to be used for the collection of uncontaminated and representative samples from single-phase geothermal liquid or steam. Geopressured liquids are included. See Fig 1.

  3. A High Energy and High Efficiency Spectral Shaping Single Frequency Fiber Laser, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase I project proposes a tunable single frequency high energy fiber laser system for coherent Lidar systems for remote sensing. Current state-of-art...

  4. High Power Compact Single-Frequency Volume Bragg Er-Doped Fiber Laser, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this NASA SBIR Phase I proposal is to develop the prototype of a compact single-frequency mode one longitudinal and one transverse mode laser...

  5. Noncovalent Attachment of PbS Quantum Dots to Single- and Multiwalled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Anirban Das

    2014-01-01

    Full Text Available Attachment of PbS quantum dots (QD to single-walled carbon nanotubes (SWNT and multiwalled carbon nanotubes (MWCNT is described; wherein commercially obtained PbS-QD of size 2.7 nm, stabilized by oleic acid, are added to a suspension of single- or multiwalled carbon nanotubes (CNT prefunctionalized noncovalently with 1,2-benzenedimethanethiol (1,2-BDMT in ethanol. The aromatic part of 1,2-BDMT attaches to the CNT by π-π stacking interactions, noncovalently functionalizing the CNT. The thiol part of the 1,2-BDMT on the functionalized CNT replaces oleic acid on the surface of the QD facilitating the noncovalent attachment of the QD to the CNT. The composites were characterized by TEM and FTIR spectroscopy. Quenching of NIR fluorescence of the PbS-QD on attachment to the carbon nanotubes (CNT was observed, indicating FRET from the QD to the CNT.

  6. Ultrananocrystalline diamond decoration on to the single wall carbon nano tubes

    Science.gov (United States)

    Sinha, Bhavesh; Late, Datta; Jejurikar, Suhas M.

    2017-10-01

    We have demonstrated the decoration of the ultrananocrystalline diamonds on single walled carbon nanotubes using a hot filament assisted chemical vapor deposition. Study reveals the critical influence of the filament to substrate distance on the formation of ultrananocrystalline diamonds on to the single walled carbon nanotubes. It is also observed that etching of carbon nanotubes, due to the presence of unavoidable atomic hydrogen throughout the chemical vapor deposition processes, can be significantly reduced by adjusting the filament to substrate distance. Morphological and structural investigations performed using high resolution transmission electron microscope suggests the growth of ultrananocrystalline diamond is subsequent to the formation of crystalline sp2 carbon layer on the nanotube wall, enabling us to suggest a growth model. The composite synthesized can be thought not only to use as a fuel cell catalyst support but also as chemical sensors, bio-sensors and micro electromechanical systems (MEMS).

  7. Direct single to two/three phase power electronic conversion for AC traction applications

    Energy Technology Data Exchange (ETDEWEB)

    Dobrucky, B.; Pavlanin, R.; Pokorny, M. [Zilina Univ. (Slovakia). Faculty of Electrical Engineering

    2008-07-01

    This paper discussed single to 3-phase power electronic converters. Conversion rates were evaluated using a middle frequency transformer with matrix converters. The use of a matrix converter subsystem with a 2-phase orthogonal induction motor was compared with conventional drives as a means of reducing the number of converter power switching elements. The converter was a high voltage modular multilevel converter where the transformer was fed directly by the single phase converter system operating on an AC line voltage. The converter offered sinusoidal input and output harmonics, eliminated the need for a DC link circuit, and decreased the number of switching elements for converters in AC-AC drives. A power active filter was used to improve the harmonic content of the input and output currents. Simulations of the 2-phase matrix converter orthogonal driving concept indicated that the converter can be used to provide solutions for single phase electric traction applications. 21 refs., 15 figs.

  8. Design And Development Of An Automatic Single Phase Protective Device Using Ssr

    Directory of Open Access Journals (Sweden)

    Michael E.

    2017-10-01

    Full Text Available Since the discovery of energy safety has been a paramount subject matter. This we can see in todays electrical systems where protective devices such as fuse and circuit breakers are used to prevent fire hazards resulting from overload overvoltage and short circuits. However with all the revolution in technology these options may be considered less smart since the fuse made with wire strands calculated for specific current capacity faults permanently when the specified current rating is exceeded. While the circuit breaker which is made up of mechanical switch fails as a result of carbon forming and the wearing away of the contacts because of arcing. As a means of improvement this paper presents the design and development of an automatic single phase protective device using solid state relay SSR. This study is to ensure automatic cut off from power supply in cases of overvoltage above 240 V AC or when overload and short circuit current above 8amps is detected without permanent damage of a fuse placed along current path. Also the design will ensure that there is an automatic close circuit whenever the trigger switch is momentary switch is closed. The system is achieved via the use of PIC micro-controller current sensor and other discrete components. The system is tested and works well inhibiting the frequent faulting of fuses. It also helps to prevent hazard as a result of overvoltage overload and short circuit and ensures a close circuit when the trigger switch is closed.

  9. Charging of carbon thin films in scanning and phase-plate transmission electron microscopy

    DEFF Research Database (Denmark)

    Hettler, Simon; Kano, Emi; Dries, Manuel

    2018-01-01

    A systematic study on charging of carbon thin films under intense electron-beam irradiation was performed in a transmission electron microscope to identify the underlying physics for the functionality of hole-free phase plates. Thin amorphous carbon films fabricated by different deposition...... as simulations of the electrostatic potential distribution. The described ESD-based model explains previous experimental findings and is of general interest to any phase-related technique in a transmission electron microscope....

  10. Copper hexacyanoferrate functionalized single-walled carbon nano-tubes for selective cesium extraction

    International Nuclear Information System (INIS)

    Draouil, H.; Alvarez, L.; Bantignies, J.L.; Causse, J.; Cambedouzou, J.; Flaud, V.; Zaibi, M.A.; Oueslati, M.

    2017-01-01

    Single-walled carbon nano-tubes (SWCNTs) are functionalized with copper hexacyanoferrate (CuHCF) nanoparticles to prepare solid substrates for sorption of cesium ions (Cs + ) from liquid outflows. The high mechanical resistance and large electrical conductivity of SWCNTs are associated with the ability of CuHCF nanoparticles to selectively complex Cs + ions in order to achieve membrane-like buckypapers presenting high loading capacity of cesium. The materials are thoroughly characterized using electron microscopy, Raman scattering, X-ray photoelectron spectroscopy and thermogravimetric analyses. Cs sorption isotherms are plotted after having measured the Cs + concentration by liquid phase ionic chromatography in the solution before and after exposure to the materials. It is found that the total sorption capacity of the material reaches 230 mg.g -1 , and that about one third of the sorbed Cs (80 mg.g -1 ) is selectively complexed in the CuHCF nanoparticles grafted on SWCNTs. The quantification of Cs + ions on different sorption sites is made for the first time, and the high sorption rates open interesting outlooks in the integration of such materials in devices for the controlled sorption and desorption of these ions. (authors)

  11. Viscosity and Morphology Modification of Length Sorted Single-Walled Carbon Nanotubes in PIB Matrices

    Directory of Open Access Journals (Sweden)

    Hanxiao Huang

    2017-01-01

    Full Text Available This work evaluates the effectiveness of nanoscale particulates in producing non-Einstein-like responses in polymer matrices, to reduce their negative effects in low shear rate processing. This is of value to material processing applications which encompass extrusion, flow into cold mold, and generalized processing of nanocomposites. Through control and understanding of the structure processing relationships entailed through nanoscale additive materials, we begin to manage dispersion characteristics for more reliable and defect-free product development. In pursuit of identifying system characteristics that produce non-Einstein-like responses we isolate and characterize homogenous fractions of single-walled carbon nanotubes (SWNTs with singular lengths. This enables the definition of a well-defined nanoscale particulate phase, within the polymer matrices. The effect of nanotube length and weight fraction on the polyisobutylene (PIB matrices was evaluated with thermal and rheological testing. Our findings show that the viscosity of the produced nanocomposite systems has a length dependence and does not demonstrate the expected monotonous increases in the viscosity with an increase in weight fraction of nanotube additive within the matrix, demonstrating a non-Einstein-like viscosity response. Furthermore, we demonstrate length dependent crystallization in the studied systems, as an intermediate length nanotube initiates crystallization of polyisobutylene (PIB affecting viscosity and mechanical properties.

  12. Large-scale separation of single-walled carbon nanotubes by electronic type using click chemistry

    Science.gov (United States)

    Um, Jo-Eun; Song, Sun Gu; Yoo, Pil J.; Song, Changsik; Kim, Woo-Jae

    2018-01-01

    Single-walled carbon nanotubes (SWCNTs) can be either metallic or semiconducting, making their separation critical for applications in nanoelectronics, biomedical materials, and solar cells. Herein, we investigate a novel solution-phase separation method based on click chemistry (azide-alkyne Huisgen cycloaddition) and determine its efficiency and scalability. In this method, metallic SWCNTs in metallic/semiconducting SWCNT mixtures are selectively functionalized with alkyne groups by being reacted with 4-propargyloxybenezenediazonium tetrafluoroborate. Subsequently, silica nanoparticles are functionalized with azide groups and reacted with alkyne-bearing metallic SWCNTs in the SWCNT mixture in the presence of a Cu catalyst. As a result, metallic SWCNTs are anchored on silica powder, whereas non-functionalized semiconducting SWCNTs remain in solution. Low-speed centrifugation effectively removes the silica powder with attached metallic SWCNTs, furnishing a solution of highly pure semiconducting SWCNTs, as confirmed by Raman and UV-vis/near-infrared absorption measurements. This novel separation scheme exhibits the advantage of simultaneously separating both metallic and semiconducting SWCNTs from their mixtures, being cost-effective and therefore applicable at an industrial scale.

  13. Molecular Modeling of PEGylated Peptides, Dendrimers, and Single-Walled Carbon Nanotubes for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Hwankyu Lee

    2014-03-01

    Full Text Available Polyethylene glycol (PEG has been conjugated to many drugs or drug carriers to increase their solubility and circulating lifetime, and reduce toxicity. This has motivated many experimental studies to understand the effect of PEGylation on delivery efficiency. To complement the experimental findings and uncover the mechanism that cannot be captured by experiments, all-atom and coarse-grained molecular dynamics (MD simulations have been performed. This has become possible, due to recent advances in simulation methodologies and computational power. Simulations of PEGylated peptides show that PEG chains wrap antimicrobial peptides and weaken their binding interactions with lipid bilayers. PEGylation also influences the helical stability and tertiary structure of coiled-coil peptides. PEGylated dendrimers and single-walled carbon nanotubes (SWNTs were simulated, showing that the PEG size and grafting density significantly modulate the conformation and structure of the PEGylated complex, the interparticle aggregation, and the interaction with lipid bilayers. In particular, simulations predicted the structural transition between the dense core and dense shell of PEGylated dendrimers, the phase behavior of self-assembled complexes of lipids, PEGylated lipids, and SWNTs, which all favorably compared with experiments. Overall, these new findings indicate that simulations can now predict the experimentally observed structure and dynamics, as well as provide atomic-scale insights into the interactions of PEGylated complexes with other molecules.

  14. Small angle neutron scattering study of isolated single wall carbon nano tubes in water

    International Nuclear Information System (INIS)

    Doe, Chang-Woo; Kim, Tae-Hwan; Choi, Sung-Min; Kline, Steven R.

    2007-01-01

    As an effort to provide more practical approaches to a wide range of potential applications of carbon nano tubes, we report a new type of noncovalently functionalized isolated single-walled carbon nano tube(SWNT) which is easily dispersible in water by only ten minutes of mild vortex mixing. The structure and quality of dispersion have been investigated using small angle neutron scattering (SANS) technique

  15. Hydrogen storage in single-wall carbon nano-tubes by means of laser excitation

    International Nuclear Information System (INIS)

    Oksengorn, B.

    2010-01-01

    A new mode for hydrogen adsorption and storage in single-wall carbon nano-tubes is used, on the basis of laser excitation. Remember that this method has been useful to obtain, in the case of the fullerene C 60 , many complex C 60 -atoms or C 60 -molecules, where atoms or molecular particles are trapped inside the C 60 -molecules. We think this method might be important to store many hydrogen molecules inside carbon nano-tubes. (author)

  16. Dynamic Raman Spectroelectrochemistry of Single Walled Carbon Nanotubes modified electrodes using a Langmuir-Schaefer method

    OpenAIRE

    Ibáñez, David; Romero, Edna Cecilia; Colina, Álvaro; Heras, Aránzazu

    2014-01-01

    Raman spectroelectrochemistry is a fundamental technique to characterize single walled carbon nanotube (SWCNT) films. In this work, we have performed the study of SWCNT films transferred to a glassy carbon electrode using a Langmuir-Schaefer method. Langmuir balance has allowed us to control the characteristics of the film that can be easily transferred to the electrode support. Time-resolved Raman spectroelectrochemistry experiments at scan rates between 20 and 400 mV s−1 were done in two di...

  17. Fabrication of spintronics device by direct synthesis of single-walled carbon nanotubes from ferromagnetic electrodes

    Directory of Open Access Journals (Sweden)

    Mohd Ambri Mohamed, Nobuhito Inami, Eiji Shikoh, Yoshiyuki Yamamoto, Hidenobu Hori and Akihiko Fujiwara

    2008-01-01

    Full Text Available We describe an alternative method for realizing a carbon nanotube spin field-effect transistor device by the direct synthesis of single-walled carbon nanotubes (SWNTs on substrates by alcohol catalytic chemical vapor deposition. We observed hysteretic magnetoresistance (MR at low temperatures due to spin-dependent transport. In these devices, the maximum ratio in resistance variation of MR was found to be 1.8%.

  18. Shape transition of unstrained flattest single-walled carbon nanotubes under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Weihua, E-mail: whmu@mit.edu, E-mail: muwh@itp.ac.cn [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, The Chinese Academy of Sciences, P. O. Box 2735 Beijing 100190 (China); Kavli Institute for Theoretical Physics China, The Chinese Academy of Sciences, P. O. Box 2735 Beijing 100190 (China); Cao, Jianshu, E-mail: jianshu@mit.edu [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Singapore-MIT Alliance for Research and Technology (SMART), Singapore 138602 (Singapore); Ou-Yang, Zhong-can [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, The Chinese Academy of Sciences, P. O. Box 2735 Beijing 100190 (China); Kavli Institute for Theoretical Physics China, The Chinese Academy of Sciences, P. O. Box 2735 Beijing 100190 (China); Singapore-MIT Alliance for Research and Technology (SMART), Singapore 138602 (Singapore); Center for Advanced Study, Tsinghua University, Beijing 100084 (China)

    2014-01-28

    Single walled carbon nanotube's (SWCNT's) cross section can be flattened under hydrostatic pressure. One example is the cross section of a single walled carbon nanotube successively deforms from the original round shape to oval shape, then to peanut-like shape. At the transition point of reversible deformation between convex shape and concave shape, the side wall of nanotube is flattest. This flattest tube has many attractive properties. In the present work, an approximate approach is developed to determine the equilibrium shape of this unstrained flattest tube and the curvature distribution of this tube. Our results are in good agreement with recent numerical results, and can be applied to the study of pressure controlled electric properties of single walled carbon nanotubes. The present method can also be used to study other deformed inorganic and organic tube-like structures.

  19. Analytical approach to phonons and electron-phonon interactions in single-walled zigzag carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Kandemir, B S; Keskin, M [Department of Physics, Faculty of Sciences, Ankara University, 06100 Tandogan, Ankara (Turkey)

    2008-08-13

    In this paper, exact analytical expressions for the entire phonon spectra in single-walled carbon nanotubes with zigzag geometry are presented by using a new approach, originally developed by Kandemir and Altanhan. This approach is based on the concept of construction of a classical lattice Hamiltonian of single-walled carbon nanotubes, wherein the nearest and next nearest neighbor and bond bending interactions are all included, then its quantization and finally diagonalization of the resulting second quantized Hamiltonian. Furthermore, within this context, explicit analytical expressions for the relevant electron-phonon interaction coefficients are also investigated for single-walled carbon nanotubes having this geometry, by the phonon modulation of the hopping interaction.

  20. Analytical approach to phonons and electron-phonon interactions in single-walled zigzag carbon nanotubes

    International Nuclear Information System (INIS)

    Kandemir, B S; Keskin, M

    2008-01-01

    In this paper, exact analytical expressions for the entire phonon spectra in single-walled carbon nanotubes with zigzag geometry are presented by using a new approach, originally developed by Kandemir and Altanhan. This approach is based on the concept of construction of a classical lattice Hamiltonian of single-walled carbon nanotubes, wherein the nearest and next nearest neighbor and bond bending interactions are all included, then its quantization and finally diagonalization of the resulting second quantized Hamiltonian. Furthermore, within this context, explicit analytical expressions for the relevant electron-phonon interaction coefficients are also investigated for single-walled carbon nanotubes having this geometry, by the phonon modulation of the hopping interaction

  1. Electrochemical Reactor for Producing Oxygen From Carbon Dioxide, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — An electrochemical reactor is proposed by MicroCell Technologies, LLC to electrochemically reduce carbon dioxide to oxygen. In support of NASA's advanced life...

  2. Simple, Micro-Miniature Total Organic Carbon Analyzer, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of a simple method for on-orbit or advanced mission Total Organic Carbon (TOC) monitoring has been a goal for many years. This proposal seeks to develop...

  3. Proximity Glare Suppression using Carbon Nanotubes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Carbon nanotubes (CNT) are the darkest material known to man and are an enabling technology for scientific instrumentation of interest to NASA. The chemical vapor...

  4. Compact in situ Polyethylene Production from Carbon Dioxide, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Opus 12 has redesigned the cathode of the commercially available PEM water electrolyzer such that it can support the reduction of carbon dioxide into ethylene and...

  5. CI, CII, and CO as tracers of gas phase carbon

    International Nuclear Information System (INIS)

    Keene, J.

    1990-01-01

    In the dense interstellar medium, we find that about 20 percent of the total carbon abundance is in the form of CO, about 3 percent in C I , and 100 percent in C II with uncertainties of factors of order 2. The abundance of other forms of gaseous carbon is negligible. CO is widespread throughout molecular clouds as is C I . C II has only been observed near bright star-formation regions so far because of its high excitation energy. Further from ultraviolet sources it may be less abundant. Altogether we have accounted for about 1/3 of the total carbon abundance associated with dense molecular clouds. Since the other gaseous forms are thought to have negligible abundances, the rest of the carbon is probably in solid form

  6. Precision remote sensor for oxygen and carbon dioxide, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Mesa Photonics proposes development of a passive optical sensor for simultaneous high-precision measurement of oxygen and carbon dioxide profiles within the full...

  7. Electrochemical Reactor for Producing Oxygen From Carbon Dioxide, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An electrochemical reactor is proposed by MicroCell Technologies, LLC to electrochemically reduce carbon dioxide to oxygen. In support of NASA's advanced life...

  8. Alternative Fabrication Designs for Carbon-Carbon (C-C) Nozzle Extensions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In order for carbon-carbon nozzle extensions and exit cones to serve as practical, low cost components for future Earth-to-Orbit propulsion systems, it is necessary...

  9. Lyocell Based Carbon Carbon Composite for Use as a Large Exit Cone Material, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA Office of the Chief Technologist (OCT) has identified a "carbon-carbon nozzle (domestic source)" as a "Top Technical Challenge" in the 2011-2016 timeframe...

  10. Coordinated single-phase control scheme for voltage unbalance reduction in low voltage network.

    Science.gov (United States)

    Pullaguram, Deepak; Mishra, Sukumar; Senroy, Nilanjan

    2017-08-13

    Low voltage (LV) distribution systems are typically unbalanced in nature due to unbalanced loading and unsymmetrical line configuration. This situation is further aggravated by single-phase power injections. A coordinated control scheme is proposed for single-phase sources, to reduce voltage unbalance. A consensus-based coordination is achieved using a multi-agent system, where each agent estimates the averaged global voltage and current magnitudes of individual phases in the LV network. These estimated values are used to modify the reference power of individual single-phase sources, to ensure system-wide balanced voltages and proper power sharing among sources connected to the same phase. Further, the high X / R ratio of the filter, used in the inverter of the single-phase source, enables control of reactive power, to minimize voltage unbalance locally. The proposed scheme is validated by simulating a LV distribution network with multiple single-phase sources subjected to various perturbations.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).

  11. Searching for Next Single-Phase High-Entropy Alloy Compositions

    Directory of Open Access Journals (Sweden)

    David E. Alman

    2013-10-01

    Full Text Available There has been considerable technological interest in high-entropy alloys (HEAs since the initial publications on the topic appeared in 2004. However, only several of the alloys investigated are truly single-phase solid solution compositions. These include the FCC alloys CoCrFeNi and CoCrFeMnNi based on 3d transition metals elements and BCC alloys NbMoTaW, NbMoTaVW, and HfNbTaTiZr based on refractory metals. The search for new single-phase HEAs compositions has been hindered by a lack of an effective scientific strategy for alloy design. This report shows that the chemical interactions and atomic diffusivities predicted from ab initio molecular dynamics simulations which are closely related to primary crystallization during solidification can be used to assist in identifying single phase high-entropy solid solution compositions. Further, combining these simulations with phase diagram calculations via the CALPHAD method and inspection of existing phase diagrams is an effective strategy to accelerate the discovery of new single-phase HEAs. This methodology was used to predict new single-phase HEA compositions. These are FCC alloys comprised of CoFeMnNi, CuNiPdPt and CuNiPdPtRh, and HCP alloys of CoOsReRu.

  12. Enhanced mechanical properties of single-walled carbon nanotubes due to chemical functionalization.

    Science.gov (United States)

    He, X Q; Kuang, Y D; Chen, C Y; Li, G Q

    2009-05-27

    Recent studies have shown that the chemical functionalization of carbon nanotubes weakens most of their mechanical properties such as the critical buckling force under compression and the critical buckling moment under torsion. However, the mechanical properties including the critical bending curvature and the critical bending moment of single-walled carbon nanotubes can be improved after functionalization as shown in this paper. The molecular mechanics simulations reveal that there exists an optimum functionalization degree at which the critical curvatures of the functionalized carbon nanotubes reaches its maximum value. The critical curvatures of the carbon nanotubes increase with increasing functionalization degree below the optimum value, while the critical curvatures change little as the functionalization degree is beyond the optimum value. The influences of the bending directions and the aspect ratios of the functionalized carbon nanotubes are also examined via molecular mechanics simulations.

  13. The effect of fibronectin on structural and biological properties of single walled carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Mottaghitalab, Fatemeh [Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Farokhi, Mehdi [National cell bank of Iran, Pasteur Institute, Tehran (Iran, Islamic Republic of); Atyabi, Fatemeh [Department of Pharmaceutical Nanoechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Omidvar, Ramin [Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran (Iran, Islamic Republic of); Shokrgozar, Mohammad Ali, E-mail: mashokrgozar@pasteur.ac.ir [National cell bank of Iran, Pasteur Institute, Tehran (Iran, Islamic Republic of); Sadeghizadeh, Majid, E-mail: sadeghma@modares.ac.ir [Department Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of)

    2015-06-01

    Highlights: • Increasing the cytocompatibility of single walled carbon nanotube by loading fibronectin. • Enhancing the hydrophilicity and nanosurface roughness of single walled carbon nanotube after loading fibronectin. • Fibronectin makes the surface properties of single walled carbon nanotube more suitable for cell proliferation and growth. - Abstract: Despite the attractive properties of carbon nanotubes (CNTs), cytoxicity and hydrophobicity are two main considerable features which limit their application in biomedical fields. It was well established that treating CNTs with extracellular matrix components could reduce these unfavourable characteristics. In an attempt to address these issues, fibronectin (FN) with different concentrations was loaded on single walled carbon nanotubes (SWCNTs) substrate. Scanning electron microscope, atomic force microscopy (AFM), contact angles and X-ray photoelectron spectroscopy (XPS) were preformed in order to characterize FN loaded SWCNTs substrates. According to XPS and AFM results, FN could interact with SWCNTs and for this, the hydrophilicity of SWCNTs was improved. Additionally, SWCNT modified with FN showed less cytotoxicity compared with neat SWCNT. Finally, FN was shown to act as an interesting extracellular component for enhancing the biological properties of SWCNT.

  14. The effect of fibronectin on structural and biological properties of single walled carbon nanotube

    International Nuclear Information System (INIS)

    Mottaghitalab, Fatemeh; Farokhi, Mehdi; Atyabi, Fatemeh; Omidvar, Ramin; Shokrgozar, Mohammad Ali; Sadeghizadeh, Majid

    2015-01-01

    Highlights: • Increasing the cytocompatibility of single walled carbon nanotube by loading fibronectin. • Enhancing the hydrophilicity and nanosurface roughness of single walled carbon nanotube after loading fibronectin. • Fibronectin makes the surface properties of single walled carbon nanotube more suitable for cell proliferation and growth. - Abstract: Despite the attractive properties of carbon nanotubes (CNTs), cytoxicity and hydrophobicity are two main considerable features which limit their application in biomedical fields. It was well established that treating CNTs with extracellular matrix components could reduce these unfavourable characteristics. In an attempt to address these issues, fibronectin (FN) with different concentrations was loaded on single walled carbon nanotubes (SWCNTs) substrate. Scanning electron microscope, atomic force microscopy (AFM), contact angles and X-ray photoelectron spectroscopy (XPS) were preformed in order to characterize FN loaded SWCNTs substrates. According to XPS and AFM results, FN could interact with SWCNTs and for this, the hydrophilicity of SWCNTs was improved. Additionally, SWCNT modified with FN showed less cytotoxicity compared with neat SWCNT. Finally, FN was shown to act as an interesting extracellular component for enhancing the biological properties of SWCNT

  15. Growth of single-wall carbon nanotubes by chemical vapor deposition for electrical devices

    OpenAIRE

    Furer, Jürg

    2006-01-01

    Carbon emerges in di®erent forms. Diamond and graphite have been well known mate- rials for centuries. Moreover fullerenes and nanotubes were discovered only a few years ago. H. W. Kroto et al. depicted the fullerenes in 1985 [1]. A few years later, in 1991, S. Iijima described carbon nanotubes (CNTs) for the ¯rst time [2] (Figure 1.1). CNTs have a close relation to graphite, since a single-wall carbon nanotube is like a rolled-up graphite mono layer. However a nanotube has wi...

  16. Fabrication and electrochemical behavior of single-walled carbon nanotube/graphite-based electrode

    International Nuclear Information System (INIS)

    Moghaddam, Abdolmajid Bayandori; Ganjali, Mohammad Reza; Dinarvand, Rassoul; Razavi, Taherehsadat; Riahi, Siavash; Rezaei-Zarchi, Saeed; Norouzi, Parviz

    2009-01-01

    An electrochemical method for determining the dihydroxybenzene derivatives on glassy carbon (GC) has been developed. In this method, the performance of a single-walled carbon nanotube (SWCNT)/graphite-based electrode, prepared by mixing SWCNTs and graphite powder, was described. The resulting electrode shows an excellent behavior for redox of 3,4-dihydroxybenzoic acid (DBA). SWCNT/graphite-based electrode presents a significant decrease in the overvoltage for DBA oxidation as well as a dramatic improvement in the reversibility of DBA redox behavior in comparison with graphite-based and glassy carbon (GC) electrodes. In addition, scanning electron microscopy (SEM) and atomic force microscopy (AFM) procedures performed for used SWCNTs

  17. Visualizing the growth dynamics of individual single-wall carbon nanotubes

    DEFF Research Database (Denmark)

    Wagner, Jakob Birkedal; Zhang, Lili; He, Maoshuai

    In order to meet the increasing demand of faster and more flexible electronics and optical devices and at the same time decrease the use of the critical metals, carbon based devices are in fast development. Single walled carbon nanotube (SWCNT) based electronics is a way of addressing...... around the studied sample at elevated temperature gives a unique way of monitoring gas-solid interactions such as CNT growth. Here we show the direct experimental evidence on the growth dynamics of SW-CNTs from Co/MgO catalysts using CO as carbon source inside the environmental TEM. The evolution...

  18. Results of single borehole hydraulic testing in the Mizunami Underground Research Laboratory project. Phase 2

    International Nuclear Information System (INIS)

    Daimaru, Shuji; Takeuchi, Ryuji; Onoe, Hironori; Saegusa, Hiromitsu

    2012-09-01

    This report summarize the results of the single borehole hydraulic tests of 79 sections conducted as part of the Construction phase (Phase 2) in the Mizunami Underground Research Laboratory (MIU) Project. The details of each test (test interval depth, geology, etc.) as well as the interpreted hydraulic parameters and analytical method used are presented in this report. (author)

  19. Synchronization in single-phase grid-connected photovoltaic systems under grid faults

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede

    2012-01-01

    under grid faults. The focus of this paper is put on the benchmarking of synchronization techniques, mainly about phase locked loop (PLL) based methods, in single-phase PV power systems operating under grid faults. Some faulty mode cases are studied at the end of this paper in order to compare...

  20. Monolithic carbon structures including suspended single nanowires and nanomeshes as a sensor platform.

    Science.gov (United States)

    Lim, Yeongjin; Heo, Jeong-Il; Madou, Marc; Shin, Heungjoo

    2013-11-20

    With the development of nanomaterial-based nanodevices, it became inevitable to develop cost-effective and simple nanofabrication technologies enabling the formation of nanomaterial assembly in a controllable manner. Herein, we present suspended monolithic carbon single nanowires and nanomeshes bridging two bulk carbon posts, fabricated in a designed manner using two successive UV exposure steps and a single pyrolysis step. The pyrolysis step is accompanied with a significant volume reduction, resulting in the shrinkage of micro-sized photoresist structures into nanoscale carbon structures. Even with the significant elongation of the suspended carbon nanowire induced by the volume reduction of the bulk carbon posts, the resultant tensional stress along the nanowire is not significant but grows along the wire thickness; this tensional stress gradient and the bent supports of the bridge-like carbon nanowire enhance structural robustness and alleviate the stiction problem that suspended nanostructures frequently experience. The feasibility of the suspended carbon nanostructures as a sensor platform was demonstrated by testing its electrochemical behavior, conductivity-temperature relationship, and hydrogen gas sensing capability.

  1. Efficient organometallic spin filter between single-wall carbon nanotube or graphene electrodes

    DEFF Research Database (Denmark)

    Koleini, Mohammad; Paulsson, Magnus; Brandbyge, Mads

    2007-01-01

    We present a theoretical study of spin transport in a class of molecular systems consisting of an organometallic benzene-vanadium cluster placed in between graphene or single-wall carbon-nanotube-model contacts. Ab initio modeling is performed by combining spin density functional theory and noneq......We present a theoretical study of spin transport in a class of molecular systems consisting of an organometallic benzene-vanadium cluster placed in between graphene or single-wall carbon-nanotube-model contacts. Ab initio modeling is performed by combining spin density functional theory...

  2. Preliminary experiments on phase conjugation for flow visualization. [barium titanate single crystals

    Science.gov (United States)

    Weimer, D.; Howes, W. L.

    1984-01-01

    Barium titanate single crystals are discussed in the context of: the procedure for polarizing a crystal; a test for phase conjugation; transients in the production of phase conjugation; real time readout by a separate laser of a hologram induced within the crystal, including conjugation response times to on-off switching of each beam; and a demonstration of a Twyman-Green interferometer utilizing phase conjugation.

  3. A review of single-phase grid-connected inverters for photovoltaic modules

    DEFF Research Database (Denmark)

    Kjaer, Soren Baekhoej; Pedersen, John Kim; Blaabjerg, Frede

    2005-01-01

    This review focuses on inverter technologies for connecting photovoltaic (PV) modules to a single-phase grid. The inverters are categorized into four classifications: 1) the number of power processing stages in cascade; 2) the type of power decoupling between the PV module(s) and the single...

  4. A Direct Maximum Power Point Tracking Method for Single-Phase Grid Connected PV Inverters

    DEFF Research Database (Denmark)

    EL Aamri, Faicel; Maker, Hattab; Sera, Dezso

    2018-01-01

    in dynamic conditions, especially in low irradiance when the measurement of signals becomes more sensitive to noise. The proposed MPPT is designed for single-phase single-stage grid-connected PV inverters, and is based on estimating the instantaneous PV power and voltage ripples, using second...

  5. Fabrication of single phase 2D homologous perovskite microplates by mechanical exfoliation

    Science.gov (United States)

    Li, Junze; Wang, Jun; Zhang, Yingjun; Wang, Haizhen; Lin, Gaoming; Xiong, Xuan; Zhou, Weihang; Luo, Hongmei; Li, Dehui

    2018-04-01

    The two-dimensional (2D) Ruddlesden-Popper type perovskites have attracted intensive interest for their great environmental stability and various potential optoelectronic applications. Fundamental understanding of the photophysical and electronic properties of the 2D perovskites with pure single phase is essential for improving the performance of the optoelectronic devices and designing devices with new architectures. Investigating the optical and electronic properties of these materials with pure single phase is required to obtain pure single phase 2D perovskites. Here, we report on an alternative approach to fabricate (C4H9NH3)2(CH3NH3) n-1Pb n I3n+1 microplates with pure single n-number perovskite phase for n  >  2 by mechanical exfoliation. Micro-photoluminescence and absorption spectroscopy studies reveal that the as-synthesized 2D perovskite plates for n  >  2 are comprised by dominant n-number phase and small inclusions of hybrid perovskite phases with different n values, which is supported by excitation power dependent photoluminescence. By mechanical exfoliation method, 2D perovskite microplates with the thickness of around 20 nm are obtained, which surprisingly have single n-number perovskite phase for n  =  2-5. In addition, we have demonstrated that the exfoliated 2D perovskite microplates can be integrated with other 2D layered materials such as boron nitride, and are able to be transferred to prefabricated electrodes for photodetections. Our studies not only provide a strategy to prepare 2D perovskites with a single n-number perovskite phase allowing us to extract the basic optical and electronic parameters of pure phase perovskites, but also demonstrate the possibility to integrate the 2D perovskites with other 2D layered materials to extend the device’s functionalities.

  6. Mask-based approach to phasing of single-particle diffraction data.

    Science.gov (United States)

    Lunin, Vladimir Y; Lunina, Natalia L; Petrova, Tatiana E; Baumstark, Manfred W; Urzhumtsev, Alexandre G

    2016-01-01

    A Monte Carlo-type approach for low- and medium-resolution phasing of single-particle diffraction data is suggested. Firstly, the single-particle phase problem is substituted with the phase problem for an imaginary crystal. A unit cell of this crystal contains a single isolated particle surrounded by a large volume of bulk solvent. The developed phasing procedure then generates a large number of connected and finite molecular masks, calculates their Fourier coefficients, selects the sets with magnitudes that are highly correlated with the experimental values and finally aligns the selected phase sets and calculates the averaged phase values. A test with the known structure of monomeric photosystem II resulted in phases that have 97% correlation with the exact phases in the full 25 Å resolution shell (1054 structure factors) and correlations of 99, 94, 81 and 79% for the resolution shells ∞-60, 60-40, 40-30 and 30-25 Å, respectively. The same procedure may be used for crystallographic ab initio phasing.

  7. Compact Monitor for Airborne Carbon Dioxide Measurements, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Eltron Research we anticipate a TRL of 4 by the end of Phase I. By the end of the Phase II program, a prototype instrument will be built with ±0.1 ppm resolution in...

  8. Stability boundary analysis in single-phase grid-connected inverters with PLL by LTP theory

    OpenAIRE

    Salis, Valerio; Costabeber, Alessando; Cox, Stephen M.; Zanchetta, Pericle; Formentini, Andrea

    2017-01-01

    Stability analysis of power converters in AC net¬works is complex due to the non-linear nature of the conversion systems. Whereas interactions of converters in DC networks can be studied by linearising about the operating point, the extension of the same approach to AC systems poses serious challenges, especially for single-phase or unbalanced three-phase systems. A general method for stability analysis of power converters suitable for single-phase or unbalanced AC networks is presented in th...

  9. LIDAR forest inventory with single-tree, double- and single-phase procedures

    Science.gov (United States)

    Robert C. Parker; David L. Evans

    2009-01-01

    Light Detection and Ranging (LIDAR) data at 0.5- to 2-m postings were used with doublesample, stratified inventory procedures involving single-tree attribute relationships in mixed, natural, and planted species stands to yield sampling errors (one-half the confidence interval expressed as a percentage of the mean) ranging from ±2.1 percent to ±11.5...

  10. Similarity analysis and scaling criteria for LWRs under single-phase and two-phase natural circulation

    International Nuclear Information System (INIS)

    Ishii, M.; Kataoka, I.

    1983-03-01

    Scaling criteria for a natural circulation loop under single phase and two-phase flow conditions have been derived. For a single phase case the continuity, integral momentum, and energy equations in one-dimensional area average forms have been used. From this, the geometrical similarity groups, friction number, Richardson number, characteristic time constant ratio, Biot number, and heat source number are obtained. The Biot number involves the heat transfer coefficient which may cause some difficulties in simulating the turbulent flow regime. For a two-phase flow case, the similarity groups obtained from a perturbation analysis based on the one-dimensional drift-flux model have been used. The physical significance of the phase change number, subcooling number, drift-flux number, friction number are discussed and conditions imposed by these groups are evaluated. In the two-phase flow case, the critical heat flux is one of the most important transients which should be simulated in a scale model. The above results are applied to the LOFT facility in case of a natural circulation simulation. Some preliminary conclusions on the feasibility of the facility have been obtained

  11. Similarity analysis and scaling criteria for LWRs under single-phase and two-phase natural circulation

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, M.; Kataoka, I.

    1983-03-01

    Scaling criteria for a natural circulation loop under single phase and two-phase flow conditions have been derived. For a single phase case the continuity, integral momentum, and energy equations in one-dimensional area average forms have been used. From this, the geometrical similarity groups, friction number, Richardson number, characteristic time constant ratio, Biot number, and heat source number are obtained. The Biot number involves the heat transfer coefficient which may cause some difficulties in simulating the turbulent flow regime. For a two-phase flow case, the similarity groups obtained from a perturbation analysis based on the one-dimensional drift-flux model have been used. The physical significance of the phase change number, subcooling number, drift-flux number, friction number are discussed and conditions imposed by these groups are evaluated. In the two-phase flow case, the critical heat flux is one of the most important transients which should be simulated in a scale model. The above results are applied to the LOFT facility in case of a natural circulation simulation. Some preliminary conclusions on the feasibility of the facility have been obtained.

  12. Investigation of the interaction of carbon dioxide fluid with internal and external single-wall carbon nanotubes by DFT

    Directory of Open Access Journals (Sweden)

    M. Oftadeh

    2011-07-01

    Full Text Available The effective parameters of (5, 0 and (5, 5 single-wall carbon nanotubes during the interaction with carbon dioxide as sensors are determined. The interaction of carbon dioxide  molecules with internal and external walls of the nanotubes is studied using Gaussian 03 coding by density functional theory (DFT at the B3LYP/6-311G level of theory. CO2 rotation around tube axles vertically and parallel to the internal and external walls has been investigated. The carbon dioxide molecule is predicted to bind only weakly to nanotubes, and the tube-molecule interactions can be identified as physisorption. CO2 adsorption is stronger on external wallsthan on internal walls, and adsorption on the external wall of (5, 0 is stronger than on the external wall of (5, 5; the adsorption energies are exothermic and equal to -0.8884 and -0.0528 kcal/mol, respectively. The rotation energy barrier for (5, 5 is lower than that for (5, 0 in all rotations, therefore in these interactions (5, 5 is more active. The energy gap significantly changes in the presence of  carbon  dioxide molecules on the inside surface of (5, 0 and the electric conductivity is affected, but no remarkable change is observed in the electronic structure of (5, 5.

  13. SINGLE PHASE ANALYTICAL MODELS FOR TERRY TURBINE NOZZLE

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Haihua; Zhang, Hongbin; Zou, Ling; O' Brien, James

    2016-11-01

    benchmarked with CFD simulations. The analytical models generally agree well with the experimental data and CFD simulations. The analytical models are suitable for implementation into a reactor system analysis code or severe accident code as part of mechanistic and dynamical models to understand the RCIC behaviors. The cases with two-phase flow at the turbine inlet will be pursued in future work.

  14. Carbon in condensed hydrocarbon phases, steels and cast irons

    Directory of Open Access Journals (Sweden)

    GAFAROVA Victoria Alexandrovna

    2017-11-01

    Full Text Available The article presents a review of studies carried out mainly by the researchers of the Ufa State Petroleum Technological University, which are aimed at detection of new properties of carbon in such condensed media as petroleum and coal pitches, steels and cast irons. Carbon plays an important role in the industry of construction materials being a component of road and roof bitumen and setting the main mechanical properties of steels. It was determined that crystal-like structures appear in classical glass-like substances – pitches which contain several thousands of individual hydrocarbons of various compositions. That significantly extends the concept of crystallinity. In structures of pitches, the control parameter of the staged structuring process is paramagnetism of condensed aromatic hydrocarbons. Fullerenes were detected in steels and cast irons and identified by various methods of spectrometry and microscopy. Fullerene С60, which contains 60 carbon atoms, has diameter of 0,7 nm and is referred to the nanoscale objects, which have a significant influence on the formation of steel and cast iron properties. It was shown that fullerenes appear at all stages of manufacture of cast irons; they are formed during introduction of carbon from the outside, during crystallization of metal in welded joints. Creation of modified fullerene layers in steels makes it possible to improve anticorrosion and tribological properties of structural materials. At the same time, outside diffusion of carbon from the carbon deposits on the metal surface also leads to formation of additional amount of fullerenes. This creates conditions for occurrence of local microdistortions of the structure, which lead to occurrence of cracks. Distribution of fullerenes in iron matrix is difficult to study as the method is labor-intensive, it requires dissolution of the matrix in the hydrofluoric acid and stage fullerene separation with further identification by spectral methods.

  15. Thermal Protection Performance of Carbon Aerogels Filled with Magnesium Chloride Hexahydrate as a Phase Change Material

    Directory of Open Access Journals (Sweden)

    Ali Kazemi

    2014-02-01

    Full Text Available Carbon aerogels are comprised of a class of low density open-cell foams with large void space, nanometer pore size and composed of sparsely semi-colloidal nanometer sized particles forming an open porous structure. Phase change materials are those with high heat of fusion that could absorb and release a large amount of energy at the time of phase transition. These materials are mostly used as thermal energy storage materials but in addition they could serve as an obstacle for passage of heat during phase changes and this has led to their use in thermal protection systems. In this study, the effect of magnesium chloride hexahydrate, as a phase change material (melting point 115°C, on thermal properties of carbon aerogels is investigated. Thermal performance tests are designed and used for comparing the temperature-time behavior of the samples. DSC is applied to obtain the latent heat of melting of the phase change materials and the SEM tests are used to analyze the microstructure and morphology of carbon aerogels. The results show that the low percentage of phase change materials in carbon aerogels does not have any significant positive effect on carbon aerogels thermal properties. However, these properties are improved by increasing the percentage of phase change materials. With high percentage of phase change materials, a sample surface at 300°C would display an opposite surface with a significant drop in temperature increases, while at 115-200°C, with carbon aerogels, having no phase change materials, there is a severe reduction in the rate of temperature increase of the sample.

  16. Improved relationships for the thermodynamic properties of carbon phases at detonation conditions

    International Nuclear Information System (INIS)

    Stiel, L I; Baker, E L; Murphy, D J

    2014-01-01

    Accurate volumetric and heat capacity relationships have been developed for graphite and diamond carbon forms for use with the Jaguar thermochemical equilibrium program for the calculation of the detonation properties of explosives. Available experimental thermodynamic properties and Hugoniot values have been analyzed to establish the equations of state for the carbon phases. The diamond-graphite transition curve results from the equality of the chemical potentials of the phases. The resulting relationships are utilized to examine the actual phase behaviour of carbon under shock conditions. The existence of metastable carbon states is established by analyses of Hugoniot data for hydrocarbons and explosives at elevated temperatures and pressures. The accuracy of the resulting relationships is demonstrated by comparisons for several properties, including the Hugoniot behaviour of oxygen-deficient explosives at overdriven conditions.

  17. Ion beam induced single phase nanocrystalline TiO2 formation

    Science.gov (United States)

    Rukade, Deepti A.; Tribedi, L. C.; Bhattacharyya, Varsha

    2014-06-01

    Single phase TiO2 nanostructures are fabricated by oxygen ion implantation (60 keV) at fluence ranging from 1×1016 ions/cm2 to 1×1017 ions/cm2 in titanium thin films deposited on fused silica substrate and subsequent thermal annealing in argon atmosphere. GAXRD and Raman spectroscopy study reveals formation of single rutile phases of TiO2. Particle size is found to vary from 29 nm to 35 nm, establishing nanostructure formation. Nanostructure formation is also confirmed by the quantum confinement effect manifested by the blueshift of the UV-vis absorption spectra. Photoluminescence spectra show peaks corresponding to TiO2 rutile phase and reveal the presence of oxygen defects due to implantation. The controlled synthesis of single phase nanostructure is attributed to ion induced defects and post-implantation annealing. It is observed that the size of the nanostructures formed is strongly dependent on the ion fluence.

  18. Effects of Two Purification Pretreatments on Electroless Copper Coating over Single-Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Zhong Zheng

    2014-01-01

    Full Text Available To achieve the reinforcement of copper matrix composite by single-walled carbon nanotubes, a three-step-refluxing purification of carbon nanotubes sample with HNO3-NaOH-HCl was proposed and demonstrated. A previously reported purification process using an electromagnetic stirring with H2O2/HCl mixture was also repeated. Then, the purified carbon nanotubes were coated with copper by the same electroless plating process. At the end, the effects of the method on carbon nanotubes themselves and on copper coating were determined by transmission electron microscope spectroscopy, scanning electron microscope spectroscopy, X-ray diffractometry, thermogravimetric analysis, Fourier transformed infrared spectroscopy, and energy dispersive spectrometry. It was clearly confirmed that both of the two processes could remove most of iron catalyst particles and carbonaceous impurities without significant damage to carbon nanotubes. The thermal stability of the sample purified by H2O2/HCl treatment was slightly higher than that purified by HNO3-NaOH-HCl treatment. Nevertheless, the purification by HNO3-NaOH-HCl treatment was more effective for carboxyl functionalization on nanotubes than that by H2O2/HCl treatment. The Cu-coating on carbon nanotubes purified by both purification processes was complete, homogenous, and continuous. However, the Cu-coating on carbon nanotubes purified by H2O2/HCl was oxidized more seriously than those on carbon nanotubes purified by HNO3-NaOH-HCl treatment.

  19. Preparation and Characterization of Single Walled Carbon Nanotubes Poly(3-hexylthiophene) Nanohybrids

    OpenAIRE

    Sfuncia, Gianfranco

    2014-01-01

    In this work a purification method for carbon nanotubes was first developed. Purified nanotubes were characterized by AFM, TGA, RAMAN, NIR-PL and then used to prepare composite materials in conjunction with semiconducting polymers. Electrical and optical properties of this composite material were investigated and finally a nanostructuring technique able to create thin hybrid films with nanoscale phase separation was developed.

  20. The impact of carbon on single crystal nickel-base superalloys: Carbide behavior and alloy performance

    Science.gov (United States)

    Wasson, Andrew Jay

    Advanced single crystal nickel-base superalloys are prone to the formation of casting grain defects, which hinders their practical implementation in large gas turbine components. Additions of carbon (C) have recently been identified as a means of reducing grain defects, but the full impact of C on single crystal superalloy behavior is not entirely understood. A study was conducted to determine the effects of C and other minor elemental additions on the behavior of CMSX-4, a commercially relevant 2nd generation single crystal superalloy. Baseline CMSX-4 and three alloy modifications (CMSX-4 + 0.05 wt. % C, CMSX-4 + 0.05 wt. % C and 68 ppm boron (B), and CMSX-4 + 0.05 wt. % C and 23 ppm nitrogen (N)) were heat treated before being tested in high temperature creep and high cycle fatigue (HCF). Select samples were subjected to long term thermal exposure (1000 °C/1000 hrs) to assess microstructural stability. The C modifications resulted in significant differences in microstructure and alloy performance as compared to the baseline. These variations were generally attributed to the behavior of carbide phases in the alloy modifications. The C modification and the C+B modification, which both exhibited script carbide networks, were 25% more effective than the C+N modification (small blocky carbides) and 10% more effective than the baseline at preventing grain defects in cast bars. All C-modified alloys exhibited reduced as-cast gamma/gamma' eutectic and increased casting porosity as compared to baseline CMSX-4. The higher levels of porosity (volume fractions 0.002 - 0.005 greater than the baseline) were attributed to carbides blocking molten fluid flow during the final stages of solidification. Although the minor additions resulted in reduced solidus temperature by up to 16 °C, all alloys were successfully heat treated without incipient melting by modifying commercial heat treatment schedules. In the B-containing alloy, heat treatment resulted in the transformation of

  1. Understanding phase-change behaviors of carbon-doped Ge₂Sb₂Te₅ for phase-change memory application.

    Science.gov (United States)

    Zhou, Xilin; Xia, Mengjiao; Rao, Feng; Wu, Liangcai; Li, Xianbin; Song, Zhitang; Feng, Songlin; Sun, Hongbo

    2014-08-27

    Phase-change materials are highly promising for next-generation nonvolatile data storage technology. The pronounced effects of C doping on structural and electrical phase-change behaviors of Ge2Sb2Te5 material are investigated at the atomic level by combining experiments and ab initio molecular dynamics. C dopants are found to fundamentally affect the amorphous structure of Ge2Sb2Te5 by altering the local environments of Ge-Te tetrahedral units with stable C-C chains. The incorporated C increases the amorphous stability due to the enhanced covalent nature of the material with larger tetrahedral Ge sites. The four-membered rings with alternating atoms are reduced greatly with carbon addition, leading to sluggish phase transition and confined crystal grains. The lower RESET power is presented in the PCM cells with carbon-doped material, benefiting from its high resistivity and low thermal conductivity.

  2. Phase transitions and optical properties of the semiconducting and metallic phases of single-layer MoS₂.

    Science.gov (United States)

    Fair, K M; Ford, M J

    2015-10-30

    We report density functional theory calculations for single layer MoS2 in its 2H, semiconducting and 1T metallic phases in order to understand the relative stability of these two phases and transition between them in the presence of adsorbed lithium atoms and under compressive strain. We have determined the diffusion barriers between the two phases and demonstrate how the presence of Li adatoms or strain can significantly reduce these barriers. We show that the 2H and 1T structures have the same energy under 15% biaxial, compressive strain. This is the same strain value posited by Lin et al (2014 Nat. Nanotechnology 9 391-396) for their intermediate α phase. Calculations of the 1T and 2H permittivity and electron energy loss spectrum are also performed and characterized.

  3. Crystal phases of calcium carbonate within otoliths of Cyprinus ...

    African Journals Online (AJOL)

    Yomi

    2012-04-26

    Apr 26, 2012 ... of asterisci is dominated by calcium carbonate, with the minor elements As, Ba, Sr, and Zn; and the ... inert concentric layer structure deposits, formed by .... as control. XRD analysis. XRD analysis was carried out in the X-Ray Laboratory of China. University of Geosciences. A new method for powder-like.

  4. System and method for single-phase, single-stage grid-interactive inverter

    Science.gov (United States)

    Liu, Liming; Li, Hui

    2015-09-01

    The present invention provides for the integration of distributed renewable energy sources/storages utilizing a cascaded DC-AC inverter, thereby eliminating the need for a DC-DC converter. The ability to segment the energy sources and energy storages improves the maintenance capability and system reliability of the distributed generation system, as well as achieve wide range reactive power compensation. In the absence of a DC-DC converter, single stage energy conversion can be achieved to enhance energy conversion efficiency.

  5. Single-shot X-ray phase-contrast imaging using two-dimensional gratings

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Genta; Itoh, Hidenosuke; Nagai, Kentaro; Nakamura, Takashi; Yamaguchi, Kimiaki; Kondoh, Takeshi; Handa, Soichiro; Ouchi, Chidane; Teshima, Takayuki; Setomoto, Yutaka; Den, Toru [Frontier Research Center, Corporate R and D Headquarters, Canon Inc., 3-30-2 Shimomaruko, Ohta-ku, Tokyo 146-8501 (Japan); Optics Technology Development Center, Corporate R and D Headquarters, Canon Inc., 23-10, Kiyohara-Kogyodanchi, Utsunomiya Tochigi 321-3231 (Japan); Nanotechnology R and D Center, Corporate R and D Headquarters, Canon Inc., 3-30-2 Shimomaruko, Ohta-ku, Tokyo 146-8501 (Japan)

    2012-07-31

    We developed a two-dimensional gratings-based X-ray interferometer that requires only a single exposure for clinical radiography. The interferometer consisted of a checkerboard phase grating for {pi} phase modulation and a latticed amplitude grating. Using a synchrotron radiation source, the phase grating modulates the X-rays and generates a self-image, transformed to a moire fringe by the amplitude grating. To allow use of a conventional X-ray tube, the latticed source grating was installed downstream from the X-ray tube. Differential phase-contrast and scattering images in two orthogonal directions were obtained by Fourier analysis of the single moire fringe image and an absorption image. Results show that characteristic features of soft tissue in two orthogonal directions were clearly shown in the differential phase-contrast images.

  6. Carbon contamination in scanning transmission electron microscopy and its impact on phase-plate applications.

    Science.gov (United States)

    Hettler, Simon; Dries, Manuel; Hermann, Peter; Obermair, Martin; Gerthsen, Dagmar; Malac, Marek

    2017-05-01

    We analyze electron-beam induced carbon contamination in a transmission electron microscope. The study is performed on thin films potentially suitable as phase plates for phase-contrast transmission electron microscopy. Electron energy-loss spectroscopy and phase-plate imaging is utilized to analyze the contamination. The deposited contamination layer is identified as a graphitic carbon layer which is not prone to electrostatic charging whereas a non-conductive underlying substrate charges. Several methods that inhibit contamination are evaluated and the impact of carbon contamination on phase-plate imaging is discussed. The findings are in general interesting for scanning transmission electron microscopy applications. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  7. Tailoring Thermal Conductivity of Single-stranded Carbon-chain Polymers through Atomic Mass Modification.

    Science.gov (United States)

    Liao, Quanwen; Zeng, Lingping; Liu, Zhichun; Liu, Wei

    2016-10-07

    Tailoring the thermal conductivity of polymers is central to enlarge their applications in the thermal management of flexible integrated circuits. Progress has been made over the past decade by fabricating materials with various nanostructures, but a clear relationship between various functional groups and thermal properties of polymers remains to be established. Here, we numerically study the thermal conductivity of single-stranded carbon-chain polymers with multiple substituents of hydrogen atoms through atomic mass modification. We find that their thermal conductivity can be tuned by atomic mass modifications as revealed through molecular dynamics simulations. The simulation results suggest that heavy homogeneous substituents do not assist heat transport and trace amounts of heavy substituents can in fact hinder heat transport substantially. Our analysis indicates that carbon chain has the biggest contribution (over 80%) to the thermal conduction in single-stranded carbon-chain polymers. We further demonstrate that atomic mass modifications influence the phonon bands of bonding carbon atoms, and the discrepancies of phonon bands between carbon atoms are responsible for the remarkable drops in thermal conductivity and large thermal resistances in carbon chains. Our study provides fundamental insight into how to tailor the thermal conductivity of polymers through variable substituents.

  8. Criterion for traffic phases in single vehicle data and empirical test of a microscopic three-phase traffic theory

    International Nuclear Information System (INIS)

    Kerner, Boris S; Klenov, Sergey L; Hiller, Andreas

    2006-01-01

    Based on empirical and numerical microscopic analyses, the physical nature of a qualitatively different behaviour of the wide moving jam phase in comparison with the synchronized flow phase-microscopic traffic flow interruption within the wide moving jam phase-is found. A microscopic criterion for distinguishing the synchronized flow and wide moving jam phases in single vehicle data measured at a single freeway location is presented. Based on this criterion, empirical microscopic classification of different local congested traffic states is performed. Simulations made show that the microscopic criterion and macroscopic spatiotemporal objective criteria lead to the same identification of the synchronized flow and wide moving jam phases in congested traffic. Microscopic models in the context of three-phase traffic theory have been tested based on the microscopic criterion for the phases in congested traffic. It is found that microscopic three-phase traffic models can explain both microscopic and macroscopic empirical congested pattern features. It is obtained that microscopic frequency distributions for vehicle speed difference as well as fundamental diagrams and speed correlation functions can depend on the spatial co-ordinate considerably. It turns out that microscopic optimal velocity (OV) functions and time headway distributions are not necessarily qualitatively different, even if local congested traffic states are qualitatively different. The reason for this is that important spatiotemporal features of congested traffic patterns are lost in these as well as in many other macroscopic and microscopic traffic characteristics, which are widely used as the empirical basis for a test of traffic flow models, specifically, cellular automata traffic flow models

  9. Ceramic Oxygen Generator for Carbon Dioxide Electrolysis Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR Phase I proposal (Topic X9.01), NexTech Materials, Ltd. proposes to develop a high efficiency ceramic oxygen generation system which will separate O2...

  10. Carbon footprint estimator, phase II : volume I - GASCAP model.

    Science.gov (United States)

    2014-03-01

    The GASCAP model was developed to provide a software tool for analysis of the life-cycle GHG : emissions associated with the construction and maintenance of transportation projects. This phase : of development included techniques for estimating emiss...

  11. Carbon footprint estimator, phase II : volume II - technical appendices.

    Science.gov (United States)

    2014-03-01

    The GASCAP model was developed to provide a software tool for analysis of the life-cycle GHG : emissions associated with the construction and maintenance of transportation projects. This phase : of development included techniques for estimating emiss...

  12. Synthesis of dark brown single-walled carbon nanotubes and their ...

    Indian Academy of Sciences (India)

    Abstract. We report here a simple and effective approach to the covalent attachment of single-walled carbon .... appear to be flexible and the fibre-like entities having ... arising from hydroxyl proton with intramolecular H- bonding. The protons in toluene moiety were reso- nated at 7.89 and 7.38ppm as doublets (3 J ∼= 8 Hz).

  13. Computational and experimental studies of the interaction between single-walled carbon nanotubes and folic acid

    DEFF Research Database (Denmark)

    Castillo, John J.; Rozo, Ciro E.; Castillo-León, Jaime

    2013-01-01

    This work involved the preparation of a conjugate between single-walled carbon nanotubes and folic acid that was obtained without covalent chemical functionalization using a simple “one pot” synthesis method. Subsequently, the conjugate was investigated by a computational hybrid method: our own N...

  14. Raman study of bromine-doped single-walled carbon nanotubes under high pressure

    CERN Document Server

    Liu Bing Bing; Yu Miao; Zou Guang Tian; Carlsten, J; Wagberg, T; Sundqvist, B

    2002-01-01

    Raman results for different single-walled carbon nanotube bundles doped with Br sub 2 were studied both at ambient pressure and under high pressure up to 6 GPa. Our study indicates that bromine resides in the interstitial channel of nanotube bundles as a form of polymer.

  15. Imaging 0.4nm single-walled carbon nanotubes with atomic force microscopy

    NARCIS (Netherlands)

    Zhang, Xieqiu; Ye, Jianting; Yang, Hongwei; Zhang, Chun; Ho, Kin Ming; Su, Tao; Wang, Ning; Tang, Zikang; Xiao, Xudong

    The discovery of the single-walled carbon nanotubes (SWCNTs) with a diameter of 0.4 nm has attracted extensive attentions. In this paper we report our attempt with two methods to directly observe these SWCNTs by AFM. The first one is to deposit the SWCNTs extracted from the zeolite matrix to a. at

  16. Comparative Study of Single- and Multi-Wall Carbon Nanotubes with Application in Cerebral Aneurysm

    Directory of Open Access Journals (Sweden)

    Rodica-Mariana Ion

    2011-01-01

    Full Text Available Helping improve humanity is one of the promises of nanotech-
    nology and nanomedicine. This paper will highlight some of the research findings in the nanomedicine area by testing some single- and multi-walls carbon nanotubues in rats cerebral aneurisms.

  17. Effect of medium dielectric constant on the physical properties of single-walled carbon nanotubes

    NARCIS (Netherlands)

    Gao, J.; Gomulya, W.; Loi, M. A.

    2013-01-01

    The photophysical properties of semiconducting single walled carbon nanotubes (SWNTs) in different environments are analyzed by steady-state and time-resolved photoluminescence (PL) spectroscopy. The PL emission of SWNTs shows a red shift with the increase of the dielectric constant of the

  18. Production of vertical arrays of small diameter single-walled carbon nanotubes

    Science.gov (United States)

    Hauge, Robert H; Xu, Ya-Qiong

    2013-08-13

    A hot filament chemical vapor deposition method has been developed to grow at least one vertical single-walled carbon nanotube (SWNT). In general, various embodiments of the present invention disclose novel processes for growing and/or producing enhanced nanotube carpets with decreased diameters as compared to the prior art.

  19. Nitrite electrochemical sensor based on prussian blue/single-walled carbon nanotubes modified pyrolytic graphite electrode

    CSIR Research Space (South Africa)

    Adekunle, AS

    2011-09-01

    Full Text Available that single-walled carbon nanotubes-Prussian blue hybrid (SWCNT-PB) modified electrode demonstrated greater sensitivity and catalysis towards nitrite compared to PB or a SWCNT modified electrode. The current response of the electrode was reduced...

  20. Synthesis of dark brown single-walled carbon nanotubes and their ...

    Indian Academy of Sciences (India)

    Abstract. We report here a simple and effective approach to the covalent attachment of single-walled carbon nanotubes (SWCNTs) and azo compounds. The functionalized SWCNTs prepared (through a radical mecha- nism) have been used for a diazonium coupling reaction. The results showed that the chemical method ...

  1. Plasma excitations in a single-walled carbon nanotube with an ...

    Indian Academy of Sciences (India)

    The effect of different uniform transverse external magnetic fields in plasma frequency when propagated parallel to the surface of the single-walled metallic carbon nanotubes is studied. The classical electrodynamics as well as Maxwell's equations are used in the calculations. Equations are developed for both short- and ...

  2. Synthesis of dark brown single-walled carbon nanotubes and their ...

    Indian Academy of Sciences (India)

    We report here a simple and effective approach to the covalent attachment of single-walled carbon nanotubes (SWCNTs) and azo compounds. The functionalized SWCNTs prepared (through a radical mechanism) have been used for a diazonium coupling reaction. The results showed that the chemical method used has ...

  3. Synthesis of single-walled carbon nanotubes by the pyrolysis of a ...

    Indian Academy of Sciences (India)

    Synthesis of single-walled carbon nanotubes by the pyrolysis of a compression activated iron(II) phthalocyanine/phthalocyanine metal-free derivative/ferric acetate mixture. TAWANDA MUGADZAa,b,∗, EDITH ANTUNESb and TEBELLO NYOKONGb. aDepartment of Chemical Technology, Midlands State University, Bag ...

  4. Weighing a single atom using a coupled plasmon–carbon nanotube system

    Directory of Open Access Journals (Sweden)

    Jin-Jin Li and Ka-Di Zhu

    2012-01-01

    Full Text Available We propose an optical weighing technique with a sensitivity down to a single atom, using a surface plasmon and a doubly clamped carbon nanotube resonator. The mass of a single atom is determined via the vibrational frequency shift of the carbon nanotube while the atom attaches to the nanotube surface. Owing to the ultralight mass and high quality factor of the carbon nanotube, and the spectral enhancement by the use of surface plasmon, this method results in a narrow linewidth (kHz and high sensitivity (2.3×10−28 Hzcenterdot g−1, which is five orders of magnitude more sensitive than traditional electrical mass detection techniques.

  5. Single-Wall Carbon Nanotube-Coated Cotton Yarn for Electrocardiography Transmission

    Directory of Open Access Journals (Sweden)

    Yuliang Zhao

    2018-03-01

    Full Text Available We fabricated a type of conductive fabric, specifically single-wall carbon nanotube-coated cotton yarns (SWNT-CYs, for electrocardiography (ECG signal transmission utilizing a “dipping and drying” method. The conductive cotton yarns were prepared by dipping cotton yarns in SWNTs (single-wall carbon nanotubes solutions and then drying them at room temperature—a simple process that shows consistency in successfully coating cotton yarns with conductive carbon nanotubes (CNTs. The influence of fabrication conditions on the conductivity properties of SWNT-CYs was investigated. The results demonstrate that our conductive yarns can transmit weak bio-electrical (i.e., ECG signals without significant attenuation and distortion. Our conductive cotton yarns, which combine the flexibility of conventional fabrics and the good conductivity of SWNTs, are promising materials for wearable electronics and sensor applications in the future.

  6. Electrochemical impedance-based DNA sensor using a modified single walled carbon nanotube electrode

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Jessica E. [Department of Mechanical Engineering, University of South Florida, Tampa, FL (United States); Nanomaterials and Nanomanufacturing Research Center, University of South Florida, Tampa, FL (United States); Pillai, Shreekumar [Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL (United States); Ram, Manoj Kumar, E-mail: mkram@usf.edu [Department of Mechanical Engineering, University of South Florida, Tampa, FL (United States); Nanomaterials and Nanomanufacturing Research Center, University of South Florida, Tampa, FL (United States); Kumar, Ashok [Department of Mechanical Engineering, University of South Florida, Tampa, FL (United States); Nanomaterials and Nanomanufacturing Research Center, University of South Florida, Tampa, FL (United States); Singh, Shree R. [Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL (United States)

    2011-07-20

    Carbon nanotubes have become promising functional materials for the development of advanced electrochemical biosensors with novel features which could promote electron-transfer with various redox active biomolecules. This paper presents the detection of Salmonella enterica serovar Typhimurium using chemically modified single walled carbon nanotubes (SWNTs) with single stranded DNA (ssDNA) on a polished glassy carbon electrode. Hybridization with the corresponding complementary ssDNA has shown a shift in the impedance studies due to a higher charge transfer in ssDNA. The developed biosensor has revealed an excellent specificity for the appropriate targeted DNA strand. The methodologies to prepare and functionalize the electrode could be adopted in the development of DNA hybridization biosensor.

  7. Single-phase ProtoDUNE, the Prototype of a Single-Phase Liquid Argon TPC for DUNE at the CERN Neutrino Platform

    CERN Document Server

    Cavanna, F; Touramanis, C

    2017-01-01

    ProtoDUNE-SP is the single-phase DUNE Far Detector prototype that is under construction and will be operated at the CERN Neutrino Platform (NP) starting in 2018. It was proposed to the CERN SPSC in June 2015 (SPSC-P-351) and was approved in December 2015 as experiment NP04 (ProtoDUNE). ProtoDUNE-SP, a crucial part of the DUNE effort towards the construction of the first DUNE 10-kt fiducial mass far detector module (17 kt total LAr mass), is a significant experiment in its own right. With a total liquid argon (LAr) mass of 0.77 kt, it represents the largest monolithic single phase LArTPC detector to be built to date. It is housed in an extension to the EHN1 hall in the North Area, where the CERN NP is providing a new dedicated charged-particle test beamline. ProtoDUNE-SP aims to take its first beam data before the LHC long shutdown (LS2) at the end of 2018. ProtoDUNE-SP prototypes the designs of most of the single-phase DUNE far detector module (DUNE-SP) components at a 1:1 scale, with an extrapolation of abo...

  8. Innovation design of beta test loop system for heat transfer experiments in single-phase and two-phase flows

    International Nuclear Information System (INIS)

    Kiswanta; Edy Sumarno; Joko Prasetio W; Ainur Rosidi; G B Heru K

    2013-01-01

    Innovation design of BETA test loop has been done. BETA test loop is a research facility used as a support for experiments of reactor accident simulation. The innovation was performed to prepare experimental facilities in order to study flow of heat transfer in single-phase and two-phase flows. The design was executed by modifying new piping of UUB's primary system, addition of heat flux measurements and imaging thermal for easiness of experimental result analysis. UUB development and experiments were carried out to understand heat transfer process in the narrow gap of two-phase flow considering this phenomenon is one of the conditions postulated in PWR typed nuclear power plant accident scenario. The innovation design of BETA test loop is still in the planning stages so that the design has not been constructed. Piping systems made of SS-304 with the ability to use a maximum pressure of 10 bar with a diameter of % inch pipe to, from the calculation of minimal design that is 7.27 mm. If the tube SS-304 - ASTM B88 is the wall thickness of 0.083 inches. From this design it is indicated that the design is able to be fabricated and used for experimental study of heat transfer in single-phase and two-phase flows. (author)

  9. Influence of the contact geometry on single-walled carbon nanotube/Si photodetector response

    Science.gov (United States)

    Scagliotti, Mattia; Salvato, Matteo; De Crescenzi, Maurizio; Boscardin, Maurizio; Castrucci, Paola

    2018-03-01

    A systematic study of the optical response of photodetectors based on carbon nanotube/Si heterojunctions is performed by measuring the responsivity, the detectivity and the time response of the devices with different contact configurations. The sensors are obtained by dry transferring single-walled carbon nanotube films on the surface of n-doped Si substrate provided with a multifinger contact geometry. The experimental data show a consistent improvement of the photodetector parameters with the increase of the number of fingers without affecting the carbon nanotube film thickness for increase its optical transmittance as in previous experiments. The role of the electrical resistance of the carbon nanotube film is discussed. The obtained results confirm the method and suggest new perspectives in the use of nanostructured materials as part of semiconducting optical devices.

  10. Capillarity creates single-crystal calcite nanowires from amorphous calcium carbonate.

    Science.gov (United States)

    Kim, Yi-Yeoun; Hetherington, Nicola B J; Noel, Elizabeth H; Kröger, Roland; Charnock, John M; Christenson, Hugo K; Meldrum, Fiona C

    2011-12-23

    Single-crystal calcite nanowires are formed by crystallization of morphologically equivalent amorphous calcium carbonate (ACC) particles within the pores of track etch membranes. The polyaspartic acid stabilized ACC is drawn into the membrane pores by capillary action, and the single-crystal nature of the nanowires is attributed to the limited contact of the intramembrane ACC particle with the bulk solution. The reaction environment then supports transformation to a single-crystal product. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A simple and consistent equation of state for sodium in the single phase and two phase regions

    International Nuclear Information System (INIS)

    Breton, J.P.

    1976-01-01

    An equation of state valid over an extended temperature and density range has been derived. Then, the following properties have been deduced : coefficient of thermal expansion, isothermal coefficient of bulk compressibility, thermal pressure coefficient, heat capacity at constant pressure, at constant volume, along the saturation curve for liquid, for vapor, heat of vaporization, speed of sound, and finally the Mollier diagram and the entropy diagram. All the obtained properties are thermodynamically consistent and satisfy the basic relations of thermodynamics for both single phase and two-phase regions. Experimental results were always used when available. (auth.)

  12. Scalable WDM phase regeneration in a single phase-sensitive amplifier through optical time lenses

    DEFF Research Database (Denmark)

    Guan, Pengyu; Da Ros, Francesco; Lillieholm, Mads

    2018-01-01

    elusive, constituting a key challenge, which must be overcome for optical regeneration to have any prospect of being adapted in actual communication systems. Here we report a scalable wavelength-division multiplexing (WDM) regeneration scheme for phase only regeneration, which satisfies the multichannel...

  13. Carbon-Carbon High Melt Coating for Nozzle Extensions, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The High Melt Coating system is applied to a carbon-carbon structure and embeds HfC, ZrB2 in the outer layers. ACC High Melt builds on the time tested base material...

  14. Phase-Change Aminopyridines as Carbon Dioxide Capture Solvents

    Energy Technology Data Exchange (ETDEWEB)

    Malhotra, Deepika [Energy Processes and Materials; Page, Jordan P. [Energy Processes and Materials; Bowden, Mark E. [Energy Processes and Materials; Karkamkar, Abhijeet [Energy Processes and Materials; Heldebrant, David J. [Energy Processes and Materials; Glezakou, Vassiliki-Alexandra [Energy Processes and Materials; Rousseau, Roger [Energy Processes and Materials; Koech, Phillip K. [Energy Processes and Materials

    2017-06-22

    Carbon dioxide is the main atmospheric greenhouse gas released from industrial point sources. In order to mitigate adverse environmental effects of these emissions, carbon capture, storage and utilization is required. To this end, several CO2 capture technologies are being developed for application in carbon capture, which include aqueous amines and water-lean solvents. Herein we report new aminopyridine solvents with the potential for CO2 capture from coal-fired power plants. These four solvents 2-picolylamine, 3-picolylamine, 4-picolylamine and N’-(pyridin-4-ylmethyl)ethane-1,2-diamine are liquids that rapidly bind CO2 to form crystalline solids at standard room temperature and pressure. These solvents have displayed high CO2 capture capacity (11 - 20 wt%) and can be regenerated at temperatures in the range of 120 - 150 C. The advantage of these primary aminopyridine solvents is that crystalline salt product can be separated, making it possible to regenerate only the CO2-rich solid ultimately resulting in reduced energy penalty.

  15. Effect of CO2 partial pressure and different CO2 phases on carbon steel corrosion

    Science.gov (United States)

    Mahlobo, MGR; Premlall, K.; Olubambi, PA

    2017-12-01

    Carbon capture and storage (CCS) is the recent promising technology aimed at reducing greenhouse gas emission. Like many other developed technologies, CCS is faced with great challenges such as pipeline transportation failure due to corrosion. There are many factors contributing to steel corrosion during the pipeline transportation of carbon dioxide (CO2). This study focuses on CO2 partial pressure and different phases of CO2 as some of the factors contributing to steel corrosion. Carbon steel was used as a testing specimen. High pressure reactor was used in this study to compress CO2 from low to high pressures ultimately changing the CO2 from gaseous phase to gas/liquid phase (subcritical) and to dense phase (supercritical). Weight loss method was employed to determine the corrosion rate while scanning electron microscopy (SEM) and X-Ray diffraction (XRD) were used to study the carbon steel morphology and phase analysis. Using low magnification digital camera, the type of corrosion that took place on the carbon steel surface was identified.

  16. Eutectic Formation During Solidification of Ni-Based Single-Crystal Superalloys with Additional Carbon

    Science.gov (United States)

    Wang, Fu; Ma, Dexin; Bührig-Polaczek, Andreas

    2017-11-01

    γ/ γ' eutectics' nucleation behavior during the solidification of a single-crystal superalloy with additional carbon was investigated by using directional solidification quenching method. The results show that the nucleation of the γ/ γ' eutectics can directly occur on the existing γ dendrites, directly in the remaining liquid, or on the primary MC-type carbides. The γ/γ' eutectics formed through the latter two mechanisms have different crystal orientations than that of the γ matrix. This suggests that the conventional Ni-based single-crystal superalloy castings with additional carbon only guarantee the monocrystallinity of the γ matrix and some γ/ γ' eutectics and, in addition to the carbides, there are other misoriented polycrystalline microstructures existing in macroscopically considered "single-crystal" superalloy castings.

  17. Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled carbon nanotube material.

    Science.gov (United States)

    Maynard, Andrew D; Baron, Paul A; Foley, Michael; Shvedova, Anna A; Kisin, Elena R; Castranova, Vincent

    2004-01-09

    Carbon nanotubes represent a relatively recently discovered allotrope of carbon that exhibits unique properties. While commercial interest in the material is leading to the development of mass production and handling facilities, little is known of the risk associated with exposure. In a two-part study, preliminary investigations have been carried out into the potential exposure routes and toxicity of single-walled carbon nanotube material (SWCNT)--a specific form of the allotrope. The material is characterized by bundles of fibrous carbon molecules that may be a few nanometers in diameter, but micrometers in length. The two production processes investigated use-transition metal catalysts, leading to the inclusion of nanometer-scale metallic particles within unrefined SWCNT material. A laboratory-based study was undertaken to evaluate the physical nature of the aerosol formed from SWCNT during mechanical agitation. This was complemented by a field study in which airborne and dermal exposure to SWCNT was investigated while handling unrefined material. Although laboratory studies indicated that with sufficient agitation, unrefined SWCNT material can release fine particles into the air, concentrations generated while handling material in the field were very low. Estimates of the airborne concentration of nanotube material generated during handling suggest that concentrations were lower than 53 microg/m(3) in all cases. Glove deposits of SWCNT during handling were estimated at between 0.2 mg and 6 mg per hand.

  18. Molecular dynamics study of radiation damage and microstructure evolution of zigzag single-walled carbon nanotubes under carbon ion incidence

    Science.gov (United States)

    Li, Huan; Tang, Xiaobin; Chen, Feida; Huang, Hai; Liu, Jian; Chen, Da

    2016-07-01

    The radiation damage and microstructure evolution of different zigzag single-walled carbon nanotubes (SWCNTs) were investigated under incident carbon ion by molecular dynamics (MD) simulations. The radiation damage of SWCNTs under incident carbon ion with energy ranging from 25 eV to 1 keV at 300 K showed many differences at different incident sites, and the defect production increased to the maximum value with the increase in incident ion energy, and slightly decreased but stayed fairly stable within the majority of the energy range. The maximum damage of SWCNTs appeared when the incident ion energy reached 200 eV and the level of damage was directly proportional to incident ion fluence. The radiation damage was also studied at 100 K and 700 K and the defect production decreased distinctly with rising temperature because radiation-induced defects would anneal and recombine by saturating dangling bonds and reconstructing carbon network at the higher temperature. Furthermore, the stability of a large-diameter tube surpassed that of a thin one under the same radiation environments.

  19. Effect of tetrahedral amorphous carbon coating on the resistivity and wear of single-walled carbon nanotube network

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, Ajai, E-mail: ajai.iyer@aalto.fi; Etula, Jarkko; Liu, Xuwen; Koskinen, Jari [Department of Materials Science and Engineering, School of Chemical Technology, Aalto University, P.O. Box 16200, 00076 Espoo (Finland); Kaskela, Antti; Kauppinen, Esko I. [NanoMaterials Group, Department of Applied Physics, School of Science, Aalto University, P.O. Box 15100, 00076 Espoo (Finland); Novikov, Serguei [Department of Micro and Nanosciences, Aalto University, P.O. Box 13500, 00076 Aalto (Finland)

    2016-05-14

    Single walled carbon nanotube networks (SWCNTNs) were coated by tetrahedral amorphous carbon (ta-C) to improve the mechanical wear properties of the composite film. The ta-C deposition was performed by using pulsed filtered cathodic vacuum arc method resulting in the generation of C+ ions in the energy range of 40–60 eV which coalesce to form a ta-C film. The primary disadvantage of this process is a significant increase in the electrical resistance of the SWCNTN post coating. The increase in the SWCNTN resistance is attributed primarily to the intrinsic stress of the ta-C coating which affects the inter-bundle junction resistance between the SWCNTN bundles. E-beam evaporated carbon was deposited on the SWCNTNs prior to the ta-C deposition in order to protect the SWCNTN from the intrinsic stress of the ta-C film. The causes of changes in electrical resistance and the effect of evaporated carbon thickness on the changes in electrical resistance and mechanical wear properties have been studied.

  20. Current Status of Single-Agent Phase I Trials in Japan: Toward Globalization.

    Science.gov (United States)

    Mizugaki, Hidenori; Yamamoto, Noboru; Fujiwara, Yutaka; Nokihara, Hiroshi; Yamada, Yasuhide; Tamura, Tomohide

    2015-06-20

    In Japan, phase I trials, except first-in-human trials, are usually initiated from approximately 50% of the maximum-tolerated dose (MTD) or maximum administered dose (MAD) determined during the initial phase I trials in North America and Europe (the West). However, the key findings of phase I trials in Japan and the West, such as dose-limiting toxicity (DLT) profiles and MTD or MAD levels, have not been compared. We retrospectively analyzed data for patients enrolled onto single-agent phase I trials at the National Cancer Center Hospital between 1995 and 2012. DLT profiles, MTDs, and MADs of single-agent phase I trials in Japan were compared with those from trials in the West that were obtained from the literature. A total of 777 patients were enrolled onto 54 single-agent phase I trials, including five first-in-human trials. DLTs were observed in 11.1% of the patients. Importantly, 66.4% of the DLTs were observed within a dose range (80% to 120%) similar to those reported for the trials in the West. The majority of MTDs or MADs could be considered similar between patients, and 80.3% of the drugs had similar MTDs or MADs in the West. The toxicity profiles of single-agent phase I agents determined from trials conducted in Japan were comparable to those obtained from trials in the West. We believe that phase I trials in Japan could be conducted over timelines similar to those in the West, allowing for global or parallel phase I clinical trials. © 2015 by American Society of Clinical Oncology.

  1. The Influence of phase-locked loop on the stability of single-phase grid-connected inverter

    DEFF Research Database (Denmark)

    Zhang, Chong; Wang, Xiongfei; Blaabjerg, Frede

    2015-01-01

    admittance of single-phase current-controlled inverters with different grid stiffness is analyzed in this paper. It shows that the PLL introduces a negative paralleled admittance into the output admittance of the inverter, which may lead to unintentional low-order harmonic oscillation in a weak grid...... for avoiding the PLL induced instability in single-phase inverters. At last the relationship between PLL bandwidth and the Short Circuit Ratio (SCR) of the grid has been derived to guide the design of the PLL. Experimental results are presented in order to verify this analysis, and the resonant frequencies can...... be predicted by the method. The possible instability due to different PLL bandwidth is also demonstrated....

  2. Determination of the concentration of single-walled carbon nanotubes in aqueous dispersions using UV-visible absorption spectroscopy.

    Science.gov (United States)

    Attal, S; Thiruvengadathan, R; Regev, O

    2006-12-01

    Stable, homogeneous, aqueous dispersions of single-walled carbon nanotubes (SWNTs) are prepared by nonspecific physical adsorption of surfactants enhanced by sonication. Upon centrifugation, supernatant and precipitate phases are obtained. The initial weights of the SWNTs and the surfactant are divided between these two phases, and the respective SWNT concentration in each phase is unknown. The focus of this work is on the determination of the true concentration of raw, exfoliated HiPCO SWNTs in the supernatant phase. A UV-visible absorption-based approach is suggested for a direct measurement of the SWNT and the surfactant concentration in the supernatant. UV-visible absorbance spectra of SWNTs-surfactant dispersions and surfactants alone reveal that the intensity of a certain peak, attributed to the pi-plasmon resonance absorption, is unaffected by the presence of most surfactants. A calibration plot is then made by monitoring the intensity of the peak as a function of the true concentration of the exfoliated SWNTs. Thus, we are able to determine the unknown concentration of surfactant-dispersed HiPCO SWNTs in the supernatant solution, simply by measuring its optical absorbance. Moreover, we can now calculate the surfactant efficiency in dispersing SWNTs. Cryogenic-transmission electron microscopy and thermogravimetric analysis techniques are used for the characterization of these dispersions and to complement the UV-visible measurements.

  3. Reliability Evaluation of a Single-phase H-bridge Inverter with Integrated Active Power Decoupling

    DEFF Research Database (Denmark)

    Tang, Junchaojie; Wang, Haoran; Ma, Siyuan

    2016-01-01

    Various power decoupling methods have been proposed recently to replace the DC-link Electrolytic Capacitors (E-caps) in single-phase conversion system, in order to extend the lifetime and improve the reliability of the DC-link. However, it is still an open question whether the converter level...... reliability becomes better or not, since additional components are introduced and the loading of the existing components may be changed. This paper aims to study the converter level reliability of a single-phase full-bridge inverter with two kinds of active power decoupling module and to compare...... it with the traditional passive DC-link solution. The converter level reliability is obtained by component level electro-thermal stress modeling, lifetime model, Weibull distribution, and Reliability Block Diagram (RBD) method. The results are demonstrated by a 2 kW single-phase inverter application....

  4. Field-circuit analysis and measurements of a single-phase self-excited induction generator

    Science.gov (United States)

    Makowski, Krzysztof; Leicht, Aleksander

    2017-12-01

    The paper deals with a single-phase induction machine operating as a stand-alone self-excited single-phase induction generator for generation of electrical energy from renewable energy sources. By changing number of turns and size of wires in the auxiliary stator winding, an improvement of performance characteristics of the generator were obtained as regards no-load and load voltage of the stator windings as well as stator winding currents of the generator. Field-circuit simulation models of the generator were developed using Flux2D software package for the generator with shunt capacitor in the main stator winding. The obtained results have been validated experimentally at the laboratory setup using the single-phase capacitor induction motor of 1.1 kW rated power and 230 V voltage as a base model of the generator.

  5. Benchmarking of grid fault modes in single-phase grid-connected photovoltaic systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede; Zou, Zhixiang

    2012-01-01

    Pushed by the booming installations of single-phase photovoltaic (PV) systems, the grid demands regarding the integration of PV systems are expected to be modified. Hence, the future PV systems should become more active with functionalities of low voltage ride-through (LVRT) and the grid support...... capability. The control methods, together with grid synchronization techniques, are responsible for the generation of appropriate reference signals in order to handle ride-through grid faults. Thus, it is necessary to evaluate the behaviors of grid synchronization methods and control possibilities in single...... phase systems under grid faults. The intent of this paper is to present a benchmarking of grid fault modes that might come in future single-phase PV systems. In order to map future challenges, the relevant detection and control strategies are discussed. Some faulty modes are studied experimentally...

  6. Contaminant Interactions and Biological Effects of Single-walled Carbon Nanotubes in a Benthic Estuarine System

    Science.gov (United States)

    Parks, Ashley Nicole

    The fate, bioavailability, bioaccumulation and toxicity of single-walled carbon nanotubes (SWNT) have not been extensively studied to date. Pristine SWNT are highly hydrophobic and have been shown to strongly associate with natural particulate matter in aquatic environments. In light of this, I have focused my research to examine the influence of sediment and food exposure routes on bioavailability, bioaccumulation, and toxicity of structurally diverse SWNT in several ecologically-important marine invertebrate species. No significant mortality was observed in any organism at concentrations up to 1000 mg/kg. Evidence of biouptake after ingestion was observed for pristine semiconducting SWNT using NIRF spectroscopy and for oxidized 14C-SWNT using liquid scintillation counting. After a 24 hour depuration period, the pristine semiconducting SWNT were eliminated from organisms to below the method detection limit (5 microg/mL), and the 14C-SWNT body burden was decreased by an order of magnitude to a bioaccumulation factor (BAF) of Trametes versicolor, the natural bacterial communities present in NBH sediment, and municipal wastewater treatment plant sludge could degrade or mineralize oxidized 14C-SWNT. Over a six month time period, no significant degradation or mineralization was observed. In all treatments, approximately 99% of the 14C-SWNT remained associated with the solid phase, with only approximately 0.8% of added 14C present as dissolved species and only 0.1% present as 14CO2. These small pools of non-SWNT 14C were likely due to trace impurities, as no differences in production were observed between treatments and abiotic (killed) controls. (Abstract shortened by UMI.)

  7. Reversible Phase Transfer of Carbon Dots between an Organic Phase and Aqueous Solution Triggered by CO2.

    Science.gov (United States)

    Pei, Xiaoyan; Xiong, Dazhen; Wang, Huiyong; Gao, Shuaiqi; Zhang, Xinying; Zhang, Suojiang; Wang, Jianji

    2018-03-26

    Carbon dots (CDs) have attracted increasing attention in applications such as bio-imaging, sensors, catalysis, and drug delivery. However, unlike metallic and semiconductor nanoparticles, the transfer of CDs between polar and non-polar phases is little understood. A class of amine-terminated CDs is developed and their phase transfer behavior has been investigated. It is found that these CDs can reversibly transfer between aqueous and organic solvents by alternatively bubbling and removing CO 2 at atmospheric pressure. The mechanism of such CO 2 -switched phase transfer involves reversible acid-base reaction of amine-terminated CDs with CO 2 and the reversible formation of hydrophilic ammonium salts. By using the CDs as catalysts, the phase transfer is applied in the Knoevenagel reaction for efficient homogeneous reaction, heterogeneous separation, and recycling of the catalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Ab initio study of aspirin adsorption on single-walled carbon and carbon nitride nanotubes

    Science.gov (United States)

    Lee, Yongju; Kwon, Dae-Gyeon; Kim, Gunn; Kwon, Young-Kyun

    We use ab intio density functional theory to investigate the adsorption properties of acetylsalicylic acid or aspirin on a (10, 0) carbon nanotube (CNT) and a (8, 0) triazine-based graphitic carbon nitride nanotube (CNNT). It is found that an aspirin molecule binds stronger to the CNNT with its adsorption energy of 0.67 eV than to the CNT with 0.51 eV. The stronger adsorption energy on the CNNT is ascribed to the high reactivity of its N atoms with high electron affinity. The CNNT exhibits local electric dipole moments, which cause strong charge redistribution in the aspirin molecule adsorbed on the CNNT than on the CNT. We also explore the influence of an external electric field on the adsorption properties of aspirin on these nanotubes by examining the modifications in their electronic band structures, partial densities of states, and charge distributions. It is found that an electric field applied along a particular direction induces aspirin molecular states in the in-gap region of the CNNT implying a potential application of aspirin detection.

  9. Phase retrieval from a single fringe pattern by using empirical wavelet transform

    International Nuclear Information System (INIS)

    Guo, Xiaopeng; Zhao, Hong; Wang, Xin

    2015-01-01

    Phase retrieval from a single fringe pattern is one of the key tasks in optical metrology. In this paper, we present a new method for phase retrieval from a single fringe pattern based on empirical wavelet transform. In the proposed method, a fringe pattern can be effectively divided into three components: nonuniform background, fringes and random noise, which are described in different sub-pass. So the phase distribution information can be robustly extracted from fringes representing a fundamental frequency component. In simulation and a practical projection fringes test, the performance of the present method is successfully verified by comparing with the conventional wavelet transform method in terms of both image quality and phase estimation errors. (paper)

  10. Algorithms for image recovery calculation in extended single-shot phase-shifting digital holography

    Science.gov (United States)

    Hasegawa, Shin-ya; Hirata, Ryo

    2018-02-01

    The single-shot phase-shifting method of image recovery using an inclined reference wave has the advantages of reducing the effects of vibration, being capable of operating in real time, and affording low-cost sensing. In this method, relatively low reference angles compared with that in the conventional method using phase shift between three or four pixels has been required. We propose an extended single-shot phase-shifting technique which uses the multiple-step phase-shifting algorithm and the corresponding multiple pixels which are the same as that of the period of an interference fringe. We have verified the theory underlying this recovery method by means of Fourier spectral analysis and its effectiveness by evaluating the visibility of the image using a high-resolution pattern. Finally, we have demonstrated high-contrast image recovery experimentally using a resolution chart. This method can be used in a variety of applications such as color holographic interferometry.

  11. Algorithms for image recovery calculation in extended single-shot phase-shifting digital holography

    Science.gov (United States)

    Hasegawa, Shin-ya; Hirata, Ryo

    2018-04-01

    The single-shot phase-shifting method of image recovery using an inclined reference wave has the advantages of reducing the effects of vibration, being capable of operating in real time, and affording low-cost sensing. In this method, relatively low reference angles compared with that in the conventional method using phase shift between three or four pixels has been required. We propose an extended single-shot phase-shifting technique which uses the multiple-step phase-shifting algorithm and the corresponding multiple pixels which are the same as that of the period of an interference fringe. We have verified the theory underlying this recovery method by means of Fourier spectral analysis and its effectiveness by evaluating the visibility of the image using a high-resolution pattern. Finally, we have demonstrated high-contrast image recovery experimentally using a resolution chart. This method can be used in a variety of applications such as color holographic interferometry.

  12. Single-phase dual-energy CT urography in the evaluation of haematuria.

    Science.gov (United States)

    Ascenti, G; Mileto, A; Gaeta, M; Blandino, A; Mazziotti, S; Scribano, E

    2013-02-01

    To assess the value of a single-phase dual-energy computed tomography (DECT) urography protocol with synchronous nephrographic-excretory phase enhancement and to calculate the potential dose reduction by omitting the unenhanced scan. Eighty-four patients referred for haematuria underwent CT urography using a protocol that included single-energy unenhanced and dual-energy contrast-enhanced with synchronous nephrographic-excretory phase scans. DECT-based images [virtual unenhanced (VUE), weighted average, and colour-coded iodine overlay] were reconstructed. Opacification degree by contrast media of the upper urinary tract, and image quality of virtual unenhanced images were independently evaluated using a four-point scale. The diagnostic accuracy in detecting urothelial tumours on DECT-based images was determined. The dose of a theoretical dual-phase single-energy protocol was obtained by multiplying the effective dose of the unenhanced single-energy acquisition by two. Radiation dose saving by omitting the unenhanced scan was calculated. The degree of opacification was scored as optimal or good in 86.9% of cases (k = 0.72); VUE image quality was excellent or good in 83.3% of cases (k = 0.82). Sensitivity, specificity, positive predictive value, and negative predictive value for urothelial tumours detection were 85.7, 98.6, 92.3, and 97.1%. Omission of the unenhanced scan led to a mean dose reduction of 42.7 ± 5%. Single-phase DECT urography with synchronous nephrographic-excretory phase enhancement represents an accurate "all-in-one'' approach with a radiation dose saving up to 45% compared with a standard dual-phase protocol. Copyright © 2012 The Royal College of Radiologists. All rights reserved.

  13. Single-phase dual-energy CT urography in the evaluation of haematuria

    International Nuclear Information System (INIS)

    Ascenti, G.; Mileto, A.; Gaeta, M.; Blandino, A.; Mazziotti, S.; Scribano, E.

    2013-01-01

    Aim: To assess the value of a single-phase dual-energy computed tomography (DECT) urography protocol with synchronous nephrographic–excretory phase enhancement and to calculate the potential dose reduction by omitting the unenhanced scan. Materials and methods: Eighty-four patients referred for haematuria underwent CT urography using a protocol that included single-energy unenhanced and dual-energy contrast-enhanced with synchronous nephrographic–excretory phase scans. DECT-based images [virtual unenhanced (VUE), weighted average, and colour-coded iodine overlay] were reconstructed. Opacification degree by contrast media of the upper urinary tract, and image quality of virtual unenhanced images were independently evaluated using a four-point scale. The diagnostic accuracy in detecting urothelial tumours on DECT-based images was determined. The dose of a theoretical dual-phase single-energy protocol was obtained by multiplying the effective dose of the unenhanced single-energy acquisition by two. Radiation dose saving by omitting the unenhanced scan was calculated. Results: The degree of opacification was scored as optimal or good in 86.9% of cases (k = 0.72); VUE image quality was excellent or good in 83.3% of cases (k = 0.82). Sensitivity, specificity, positive predictive value, and negative predictive value for urothelial tumours detection were 85.7, 98.6, 92.3, and 97.1%. Omission of the unenhanced scan led to a mean dose reduction of 42.7 ± 5%. Conclusion: Single-phase DECT urography with synchronous nephrographic–excretory phase enhancement represents an accurate “all-in-one’’ approach with a radiation dose saving up to 45% compared with a standard dual-phase protocol.

  14. Isotherm, thermodynamic, kinetics, and adsorption mechanism studies of Ethidium bromide by single-walled carbon nanotube and carboxylate group functionalized single-walled carbon nanotube.

    Science.gov (United States)

    Moradi, Omid; Fakhri, Ali; Adami, Saeideh; Adami, Sepideh

    2013-04-01

    The studies of kinetics and thermodynamics of adsorption of Ethidium bromide in aqueous solutions on single-walled carbon nanotube (SWCNT) and carboxylate group functionalized single-walled carbon nanotube (SWCNT-COOH) surfaces were by UV-Vis spectroscopy. The adsorption kinetics for SWCNT-COOH and SWCNTs were well described by a intra-particle diffusion model, while Langmuir, Freundlich, Harkins-Jura, and Halsey isotherms described the adsorption isotherms, and the adsorption thermodynamic parameters of equilibrium constant (K0), standard free energy (ΔG0), standard enthalpy (ΔH0), and standard entropy changes (ΔS0) were measured. The maximum surface coverage for SWCNTs is 36.10% and for SWCNT-COOH is 38.42%. The values of ΔH0 and ΔG0 suggested that the adsorption of EtBr on SWCNT-COOH and SWCNTs was endothermic and spontaneous. The adsorption of EtBr on SWCNT-COOH is more than SWCNTs surfaces. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. The Application Three-phase to Single-phase Z-Source Matrix Converter in Wind Turbine

    Directory of Open Access Journals (Sweden)

    vahid asadi rad

    2017-01-01

    Full Text Available In this paper a new idea of direct three-phase to single-phase Z-source matrix converter (impedance-source matrix converter applicable in stand-alone wind turbine is introduced. In the direct Z-source matrix converter amplitude of output voltage and frequency regulation are of importance to control system. In wind turbines, input voltage and frequency are usually changing due to wind speed variation that these alterations could be easily regulated by means of a direct Z-source matrix converter. A scheme is also offered to control the proposed direct three-phase to single-phase Z-source matrix converter. the control strategy would be able to adjust the output voltage and frequency at desired value as well as producing low THD (total harmonic distortion at the output voltage. The proposed structure and the control methodology are simulated using matlab simulink software and results are investigated and discussed to confirm the performance of the direct Z-source matrix converter in wind turbine.

  16. Indirect Matrix Converter for Hybrid Electric Vehicle Application with Three-Phase and Single-Phase Outputs

    Directory of Open Access Journals (Sweden)

    Yeongsu Bak

    2015-04-01

    Full Text Available This paper presents an indirect matrix converter (IMC topology for hybrid electric vehicle (HEV application with three-phase and single-phase outputs. The HEV includes mechanical, electrical, control, and electrochemical systems among others. In the mechanical system, a traction motor and a compressor motor are used to drive the HEV. The traction motor and the compressor motor are usually operated as three-phase and single-phase motors, respectively. In this respect, a dual AC-drive system can operate the traction and the compressor motor simultaneously. Furthermore, compared to a conventional dual matrix converter system, the proposed topology can reduce the number of switches that the dual outputs share with a DC-link. The application of this system for HEV has advantages, like long lifetime and reduced volume due to the lack of a DC-link. The proposed control strategy and modulation schemes ensure the sinusoidal input and output waveforms and bidirectional power transmission. The proposed system for the HEV application is verified by simulation and experiments.

  17. Preparation and Properties of Paraffin/TiO2/Active-carbon Composite Phase Change Materials

    Directory of Open Access Journals (Sweden)

    HAO Yong-gan

    2016-11-01

    Full Text Available A novel composite phase change materials (PCMs of paraffin/TiO2/active-carbon was prepared by a microemulsion method, where paraffin acted as a PCM and titanium dioxide (TiO2 as matrix material, and a small amount of active carbon was added to improve the thermal conductivity. The compositions, morphology and thermal properties of the paraffin/TiO2/active-carbon composite PCMs were characterized by XRD, SEM, TGA and DSC respectively. The shape stability during phase change process of this composite was also tested. The results show that paraffin is well encapsulated by TiO2 matrix, and thus exhibiting excellent shape-stabilized phase change feature. Besides, this composite PCM also presents superhydrophobic property. Therefore, these multifunctional features will endow PCMs with important application potential in energy efficient buildings.

  18. Single-carrier phase-disposition PWM implementation for multilevel flying capacitor converters

    OpenAIRE

    Ghias, Amer M.Y.M; Pou Félix, Josep; Capellá Frau, Gabriel José; Agelidis, Vassilios; Aguilera, Ricardo P; Meynard, Thierry A.

    2015-01-01

    This letter proposes a new implementation of phase-disposition pulse-width modulation (PD-PWM) for multilevel flying capacitor (FC) converters using a single triangular carrier. The proposed implementation is much simpler than conventional PD-PWM techniques based on multiple trapezoidal-shaped carriers, generates the same results as far as natural capacitor voltage balance is concerned and offers better quality line-to-line voltages when compared to phase-shifted PWM. The proposed algorithm i...

  19. A re-look at critical factors influencing single-phase formation of Ba2 ...

    Indian Academy of Sciences (India)

    TECS

    BaSnO3, B2O3 etc, single-phase 2: 9 has been achieved through solid-state route (Yu et al 1994; Lin and Robert. 1999; Wang et al 2003). It is recorded in literature that phase pure 2:9 ceramics without any stabilizing agent will result in better material for microwave dielectric applica- tions (Lin et al 1997; Lin and Robert ...

  20. Single-phase power distribution system power flow and fault analysis

    Science.gov (United States)

    Halpin, S. M.; Grigsby, L. L.

    1992-01-01

    Alternative methods for power flow and fault analysis of single-phase distribution systems are presented. The algorithms for both power flow and fault analysis utilize a generalized approach to network modeling. The generalized admittance matrix, formed using elements of linear graph theory, is an accurate network model for all possible single-phase network configurations. Unlike the standard nodal admittance matrix formulation algorithms, the generalized approach uses generalized component models for the transmission line and transformer. The standard assumption of a common node voltage reference point is not required to construct the generalized admittance matrix. Therefore, truly accurate simulation results can be obtained for networks that cannot be modeled using traditional techniques.

  1. Common-Ground-Type Tansformerless Inverters for Single-Phase Solar Photovoltaic Systems

    DEFF Research Database (Denmark)

    Siwakoti, Yam Prasad; Blaabjerg, Frede

    2018-01-01

    This paper proposes a family of novel flying capacitor transformerless inverters for single-phase photovoltaic (PV) systems. Each of the new topologies proposed is based on a flying capacitor principle and requires only four power switches and/or diodes, one capacitor, and a small filter at the o......This paper proposes a family of novel flying capacitor transformerless inverters for single-phase photovoltaic (PV) systems. Each of the new topologies proposed is based on a flying capacitor principle and requires only four power switches and/or diodes, one capacitor, and a small filter...

  2. Challenges in thermal design of industrial single-phase power inverter

    Directory of Open Access Journals (Sweden)

    Ninković Predrag

    2016-01-01

    Full Text Available This paper presents the influence of thermal aspects in design process of an industrial single-phase inverter, choice of its topology and components. Stringent design inputs like very high overload level, demand for natural cooling and very wide input voltage range have made conventional circuit topology inappropriate therefore asking for alternative solution. Different power losses calculations in semiconductors are performed and compared, outlining the guidelines how to choose the final topology. Some recommendations in power magnetic components design are given. Based on the final project, a 20kVA single-phase inverter for thermal power plant supervisory and control system is designed and commissioned.

  3. Referential ZMP Trajectory for Minimizing Variation of COG Velocity in Single Support Phase of Biped Robot

    Science.gov (United States)

    Sato, Tomoya; Ohnishi, Kouhei

    The referential ZMP (Zero-Moment Point) trajectory that minimizes the variation of COG (Center of Gravity) velocity in the single support phase of a biped robot is shown. Two advantages of using this ZMP trajectory are discussed. The first advantage is that the variation of COG velocity is gradual. The second advantage is that the biped robot enables the heel-contact motion and the toe-off motion in the single support phase. The trajectory planning based on this ZMP trajectory is proposed. In simulation and experiment, the validity of the proposed method was confirmed.

  4. Soft-Switched Neutral-Point-Clamped Single-Phase Boost Rectifier

    Science.gov (United States)

    Itoh, Ryozo; Ishizaka, Kouichi

    A soft-switched neutral-point-clamped single-phase boost rectifier capable of compensating the imbalance load voltage is studied. This is based on a single-phase rectifier, in which an inductor is placed in series with the AC supply to resonate with a capacitor connected across the DC output of a full-bridge rectifier and the switching transition is mainly governed by a series resonance. The experimental prototype using insulated-gate bipolar transistors is implemented to investigate the operation under the charge control. The experimental results confirm that the rectifier has a neutral-point-clamp feature providing a good quality AC current.

  5. Electromagnetic absorption behaviour of ferrite loaded three phase carbon fabric composites

    Science.gov (United States)

    Jagatheesan, Krishnasamy; Ramasamy, Alagirusamy; Das, Apurba; Basu, Ananjan

    2018-02-01

    This article investigates the electromagnetic absorption behaviours of carbon helical yarn fabric reinforced composites and manganese-zinc (Mn-Zn) ferrite particles loaded 3 phase fabric composites. A carbon helical yarn having stainless steel core was prepared and made into single jersey knitted fabric. The composite was prepared by sandwiching a fabric with polypropylene films and thermal pressed. The absorption values of helical yarn fabric composite was observed to be less in the C band region (4-8 GHz). For improving the absorption coefficients of composite, Mn-Zn ferrite particles were dispersed in the polypropylene (PP) composite. The ferrite loaded PP composites exhibited better permittivity and permeability values, hence the absorption loss of the composite was improved. The helical yarn fabric reinforced with Mn-Zn ferrite/PP composite showed larger absorption coefficients than virgin PP/fabric composite. The change in thermal stability and particle size distribution in the Mn-Zn ferrite/PP composite was also analyzed. At higher ferrite concentration, bimodal particle distribution was observed which increased the conductivity and shielding effectiveness (SE) of the composite. In addition, complex permittivity value was also increased for higher incident frequency (4-8 GHz). As the ferrite content increases, the dielectric loss and magnetic permeability of PP/ferrite increases due to increased magnetic loss. Hence, ferrite loaded PP composite showed the total SE of -14.2 dB with the absorption coefficients of 0.717. The S1C7 fabric composite having ferrite dispersion showed the better absorption loss and lower reflection coefficient of 14.2 dB and 0.345 respectively compared to virgin PP/helical yarn fabric composite. The increasing ferrite content (45 wt%) improved the absorption loss and total SE. Though, ferrite based fabric composite exhibits moderate absorptive shielding, it can be used as shielding panels in the electronic industries.

  6. Carbohydrate conjugation through microwave-assisted functionalization of single-walled carbon nanotubes using perfluorophenyl azides.

    Science.gov (United States)

    Kong, Na; Shimpi, Manishkumar R; Ramström, Olof; Yan, Mingdi

    2015-03-20

    Carbohydrate-functionalized single-walled carbon nanotubes (SWNTs) were synthesized using microwave-assisted reaction of perfluorophenyl azide with the nanotubes. The results showed that microwave radiation provides a rapid and effective means to covalently attach carbohydrates to SWNTs, producing carbohydrate-SWNT conjugates for biorecognition. The carbohydrate-functionalized SWNTs were furthermore shown to interact specifically with cognate carbohydrate-specific proteins (lectins), resulting in predicted recognition patterns. The carbohydrate-presenting SWNTs constitute a new platform for sensitive protein- or cell recognition, which pave the way for glycoconjugated carbon nanomaterials in biorecognition applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. The electronic fine structure of 4-nitrophenyl functionalized single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Chakraborty, Amit K; Coleman, Karl S; Dhanak, Vinod R

    2009-01-01

    Controlling the electronic structure of carbon nanotubes (CNTs) is of great importance to various CNT based applications. Herein the electronic fine structure of single-walled carbon nanotube films modified with 4-nitrophenyl groups, produced following reaction with 4-nitrobenzenediazonium tetrafluoroborate, was investigated for the first time. Various techniques such as x-ray and ultra-violet photoelectron spectroscopy, and near edge x-ray absorption fine structure studies were used to explore the electronic structure, and the results were compared with the measured electrical resistances. A reduction in number of the π electronic states in the valence band consistent with the increased resistance of the functionalized nanotube films was observed.

  8. Immobilization of Lipase on Single Walled Carbon Nanotubes in Ionic Liquid

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Han Ki; Lee, Jae Kwan; Kim, Mahn Joo [Pohang University of Science and Technology, Pohang (Korea, Republic of); Lee, Cheol Jin [Korea University, Seoul (Korea, Republic of)

    2010-03-15

    A lipase from Pseudomonas cepacia was immobilized onto single walled carbon nanotubes (SWNTs) in two different ways in each of two solvent systems (buffer and ionic liquid). The most efficient immobilization was achieved in ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate, BMIM-BF4). In this procedure, carbon nanotubes were first functionalized noncovalently with 1-pyrenebutyric acid N-hydroxysuccinimide ester and then subject to the coupling reaction with the lipase in ionic liquid. The resulting immobilized enzyme displayed the highest activity in the transesterification of 1-phenylethyl alcohol in the presence of vinyl acetate in toluene.

  9. Reactivity of cycloparaphenylenes: Studying the possible growth of single-walled carbon nanotubes with DFT methods

    Science.gov (United States)

    Reche-Tamayo, M.; Pérez-Guardiola, A.; Pérez-Jiménez, A. J.; Sancho-García, J. C.

    2018-04-01

    We perform a theoretical study on a set of carbon nanorings (CycloParaPhenylenes or CPP) envisioned as molecular templates for the selective synthesis of carbon nanotubes. The shape of these precursors, originating from bending n phenylene units in para position until forming the corresponding nanoring [n]CPP, may drive the growth of armchair single-walled nanotubes. This kinetic and thermodynamic study covers a set of molecules with different diameters, analyzing the exothermicity and the reaction path of a CPP-based radicaloid mechanism. The methodology employed is based on validated density functionals for mechanistic studies, shedding light on the viability of this synthetic pathway.

  10. Structure of single-wall carbon nanotubes purified and cut using polymer

    Science.gov (United States)

    Zhang, M.; Yudasaka, M.; Koshio, A.; Jabs, C.; Ichihashi, T.; Iijima, S.

    2002-01-01

    Following on from our previous report that a monochlorobenzene solution of polymethylmethacrylate is useful for purifying and cutting single-wall carbon nanotubes (SWNTs) and thinning SWNT bundles, we show in this report that polymer and residual amorphous carbon can be removed by burning in oxygen gas. The SWNTs thus obtained had many holes (giving them a worm-eaten look) and were thermally unstable. Such severe damage caused by oxidation is unusual for SWNTs; we think that they were chemically damaged during ultrasonication in the monochlorobenzene solution of polymethylmethacrylate.

  11. Effective permittivity of single-walled carbon nanotube composites: Two-fluid model

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, Afshin, E-mail: a.moradi@kut.ac.ir [Department of Engineering Physics, Kermanshah University of Technology, Kermanshah (Iran, Islamic Republic of); Department of Nano Sciences, Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran (Iran, Islamic Republic of); Zangeneh, Hamid Reza; Moghadam, Firoozeh Karimi [Department of Photonics, Faculty of Physics, University of Kashan, Kashan (Iran, Islamic Republic of)

    2015-12-15

    We develop an effective medium theory to obtain effective permittivity of a composite of two-dimensional (2D) aligned single-walled carbon nanotubes. Electronic excitations on each nanotube surface are modeled by an infinitesimally thin layer of a 2D electron gas represented by two interacting fluids, which takes into account different nature of the σ and π electrons. Calculations of both real and imaginary parts of the effective dielectric function of the system are presented, for different values of the filling factor and radius of carbon nanotubes.

  12. Synthesis of Carbon Blacks from HDPE plastic by 3-phase AC thermal plasma

    OpenAIRE

    Fabry, Frédéric; Fulcheri, Laurent

    2017-01-01

    International audience; This paper reviews the last results obtained on the 3-phase AC plasma technology developed at the Centre PERSEE, MINES ParisTech, PSL for the treatment ofdomiciliary and industrial wastes for nanomaterial synthesis with a special focus on preliminary results obtained for the production of carbon blacks from plastics (HDPE pellets). Carbon blacks obtained from HDPE have shown a highly nanostructured organization very similar to those of acetylene black.

  13. ABOUT MECHANISM OF STRUCTURE FORMATION OF PARTICULAR SOLID CARBONIC PHASE IN NANOCOMPOSITE ON THE BASIS OF IRON AND NANO-DISPERSE CARBON

    Directory of Open Access Journals (Sweden)

    D. V. Kuis

    2010-01-01

    Full Text Available The mechanism of structure formation in super-solid carbon phase in nanocomposite on the basis of iron and nano-disperse carbon, which can be used at development of technology and composition of creation of new materials using inexpensive nano-carbon materials is offered.

  14. Carbon Nanotube (CNT) and Carbon Fiber Reinforced SiC Optical Components, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — M Cubed has developed and patented technology to make carbon fiber reinforced SiC composites and components. In addition, the feasibility of doubling the toughness...

  15. Self-Assembled CNT-Polymer Hybrids in Single-Walled Carbon Nanotubes Dispersed Aqueous Triblock Copolymer Solutions

    Science.gov (United States)

    Vijayaraghavan, D.; Manjunatha, A. S.; Poojitha, C. G.

    2018-04-01

    We have carried out scanning electron microscopy (SEM), differential scanning calorimetry (DSC), small angle X-ray scattering (SAXS), electrical conductivity, and 1H NMR studies as a function of temperature on single-walled carbon nanotubes (SWCNTs) dispersed aqueous triblock copolymer (P123) solutions. The single-walled carbon nanotubes in this system aggregate to form bundles, and the bundles aggregate to form net-like structures. Depending on the temperature and phases of the polymer, this system exhibits three different self-assembled CNT-polymer hybrids. We find CNT-unimer hybrid at low temperatures, CNT-micelle hybrid at intermediate temperatures wherein the polymer micelles are adsorbed in the pores of the CNT nets, and another type of CNT-micelle hybrid at high temperatures wherein the polymer micelles are adsorbed on the surface of the CNT bundles. Our DSC thermogram showed two peaks related to these structural changes in the CNT-polymer hybrids. Temperature dependence of the 1H NMR chemical shifts of the molecular groups of the polymer and the AC electrical conductivity of the composite also showed discontinuous changes at the temperatures at which the CNT-polymer hybrid's structural changes are seen. Interestingly, for a higher CNT concentration (0.5 wt.%) in the system, the aggregated polymer micelles adsorbed on the CNTs exhibit cone-like and cube-like morphologies at the intermediate and at high temperatures respectively.

  16. In Situ Observations of Phase Transitions in Metastable Nickel (Carbide)/Carbon Nanocomposites

    Science.gov (United States)

    2016-01-01

    Nanocomposite thin films comprised of metastable metal carbides in a carbon matrix have a wide variety of applications ranging from hard coatings to magnetics and energy storage and conversion. While their deposition using nonequilibrium techniques is established, the understanding of the dynamic evolution of such metastable nanocomposites under thermal equilibrium conditions at elevated temperatures during processing and during device operation remains limited. Here, we investigate sputter-deposited nanocomposites of metastable nickel carbide (Ni3C) nanocrystals in an amorphous carbon (a-C) matrix during thermal postdeposition processing via complementary in situ X-ray diffractometry, in situ Raman spectroscopy, and in situ X-ray photoelectron spectroscopy. At low annealing temperatures (300 °C) we observe isothermal Ni3C decomposition into face-centered-cubic Ni and amorphous carbon, however, without changes to the initial finely structured nanocomposite morphology. Only for higher temperatures (400–800 °C) Ni-catalyzed isothermal graphitization of the amorphous carbon matrix sets in, which we link to bulk-diffusion-mediated phase separation of the nanocomposite into coarser Ni and graphite grains. Upon natural cooling, only minimal precipitation of additional carbon from the Ni is observed, showing that even for highly carbon saturated systems precipitation upon cooling can be kinetically quenched. Our findings demonstrate that phase transformations of the filler and morphology modifications of the nanocomposite can be decoupled, which is advantageous from a manufacturing perspective. Our in situ study also identifies the high carbon content of the Ni filler crystallites at all stages of processing as the key hallmark feature of such metal–carbon nanocomposites that governs their entire thermal evolution. In a wider context, we also discuss our findings with regard to the much debated potential role of metastable Ni3C as a catalyst phase in graphene and

  17. Global land carbon sink response to temperature and precipitation varies with ENSO phase

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yuanyuan; Michalak, Anna M.; Schwalm, Christopher R.; Huntzinger, Deborah N.; Berry, Joseph A.; Ciais, Philippe; Piao, Shilong; Poulter, Benjamin; Fisher, Joshua B.; Cook, Robert B.; Hayes, Daniel; Huang, Maoyi; Ito, Akihiko; Jain, Atul; Lei, Huimin; Lu, Chaoqun; Mao, Jiafu; Parazoo, Nicholas C.; Peng, Shushi; Ricciuto, Daniel M.; Shi, Xiaoying; Tao, Bo; Tian, Hanqin; Wang, Weile; Wei, Yaxing; Yang, Jia

    2017-05-01

    Climate variability associated with the El Niño-Southern Oscillation (ENSO) and its consequent impacts on land carbon sink interannual variability have been used as a basis for investigating carbon cycle responses to climate variability more broadly, and to inform the sensitivity of the tropical carbon budget to climate change. Past studies have presented opposing views about whether temperature or precipitation is the primary factor driving the response of the land carbon sink to ENSO. Here, we show that the dominant driver varies with ENSO phase. Whereas tropical temperature explains sink dynamics following El Niño conditions (rTG,P=0.59, p<0.01), the post La Niña sink is driven largely by tropical precipitation (rPG,T=-0.46, p=0.04). This finding points to an ENSO-phase-dependent interplay between water availability and temperature in controlling the carbon uptake response to climate variations in tropical ecosystems. We further find that none of a suite of ten contemporary terrestrial biosphere models captures these ENSO-phase-dependent responses, highlighting a key uncertainty in modeling climate impacts on the future of the global land carbon sink.

  18. Taguchi analysis of parameters for small-diameter single wall carbon nanotube growth

    Directory of Open Access Journals (Sweden)

    DaeJin Kang

    2017-09-01

    Full Text Available Small diameter single wall carbon nanotubes are desirable for various physical and electrical properties of carbon nanotubes. Here, we report the sensitivities of parameters and the optimal conditions for small diameter carbon nanotube growth by chemical vapor deposition (CVD. These results were obtained using the Taguchi method, which is commonly used to find the optimal parameters of various processes. The possible parameter ranges given by the experimental equipment and laboratory conditions, we attempted several times to determine the proper ranges, using photoluminescence (PL imaging to determine the exact positions of suspended carbon nanotubes on the quartz substrates after synthesis. The diameters of the carbon nanotubes were then determined from the radial breathing modes (RBM using Raman spectroscopy with a 785nm wavelength laser. Among the 4 major parameters listed above, we concluded that the temperature was the most significant parameter in determining carbon nanotube diameter, hydrogen flow rate was the second most significant, the ethanol and argon gas flow rate was the third, and finally time was the least significant factor.

  19. Study on electroactive and electrocatalytic surfaces of single walled carbon nanotube-modified electrodes

    International Nuclear Information System (INIS)

    Salinas-Torres, David; Huerta, Francisco; Montilla, Francisco; Morallon, Emilia

    2011-01-01

    An investigation of the electrocatalysis of single-walled carbon nanotubes modified electrodes has been performed in this work. Nanotube-modified electrodes present a surface area much higher than the bare glassy carbon surfaces as determined by capacitance measurements. Several redox probes were selected for checking the reactivity of specific sites at the carbon nanotube surface. The presence of carbon nanotubes on the electrode improves the kinetics for all the reactions studied compared with the bare glassy carbon electrode with variations of the heterogeneous electron transfer rate constant up to 5 orders of magnitude. The most important effects are observed for the benzoquinone/hydroquinone and ferrocene/ferricinium redox couples, which show a remarkable improvement of their electron transfer kinetics on SWCNT-modified electrodes, probably due to strong π-π interaction between the organic molecules and the walls of the carbon nanotubes. For many of the reactions studied, less than 1% of the nanotube-modified electrode surface is transferring charge to species in solution. This result suggests that only nanotube tips are active sites for the electron transfer in such cases. On the contrary, the electroactive surface for the reactions of ferrocene and quinone is higher indicating that the electron transfer is produced also from the nanotube walls.

  20. Detection of Bond Defects in Carbon Fiber Reinforced Polymer Strengthened Concrete Using Pulse Phase Thermography

    Science.gov (United States)

    Mabry, Nehemiah James

    As externally bonded fiber-reinforced polymers (FRP) are finding regular use in the strengthening of existing concrete structures, common installation practices still allow for the likelihood of defects forming at the interface of these bond-critical systems. Though published guidelines exist to provide recommendations for handling this issue in the field, significant research is still needed to determine critical defects, their identification using rapid methods of nondestructive evaluation (NDE) techniques, and the effect of such defects on the overall performance. This dissertation examines the use of pulsed phase infrared thermography (PPT) as a method to determine the location, size and depth of bond defects in wet lay-up carbon FRP (CFRP) systems. A series of small scale, single lap shear pull-tests were also performed to examine the effect detectable defects have on the strength of the CFRP strengthened concrete joints. Environmental conditioning protocols, namely submersion and freeze-thaw cycles, were also subjected to a subsample of specimens in order to observe durability effects on ultimate loads and strains. Results from PPT inspection and structural tests were then compared to present an effective approach for monitoring and evaluation. Finally a set of conclusions were presented regarding PPT inspection and the criticality of defects found in CFRP strengthened concrete governed by the common debonding mechanism.

  1. HPLC profiling of radiolytic products of nitrobenzene - carbon tetrachloride - water two-phase systems

    International Nuclear Information System (INIS)

    Sahoo, M.K.; Kuruc, J.; Svec, A.; Cech, R.; Hutta, M.

    1992-01-01

    Radiolytic products of the two-phase systems of nitrobenzene - carbon tetrachloride - water mixtures have been identified using HPLC adsorption chromatography on SEPARON SIX silica gel column under an elution gradient from n-hexane to ethyl acetate. That the product formation is a function of the mixture composition is indicated by the chromatograms. Para-nitrophenol constitutes one of the major radiolytic products in the system where the volume ratio of nitrobenzene is more than that of carbon tetrachloride and its radiation yield is dependent on the volume ratio of the aqueous phase. (author) 10 refs.; 4 figs.; 1 tabs

  2. Thermophysical Properties and Phase Behavior of Fluids for Application in Carbon Capture and Storage Processes.

    Science.gov (United States)

    Trusler, J P Martin

    2017-06-07

    Phase behavior and thermophysical properties of mixtures of carbon dioxide with various other substances are very important for the design and operation of carbon capture and storage (CCS) processes. The available empirical data are reviewed, together with some models for the calculation of these properties. The systems considered in detail are, first, mixtures of carbon dioxide, water, and salts; second, carbon dioxide-rich nonelectrolyte mixtures; and third, mixtures of carbon dioxide with water and amines. The empirical data and the plethora of available models permit the estimation of key fluid properties required in the design and operation of CCS processes. The engineering community would benefit from the further development, and delivery in convenient form, of a small number of these models sufficient to encompass the component slate and operating conditions of CCS processes.

  3. Analytical study of bound states in graphene nanoribbons and carbon nanotubes: The variable phase method and the relativistic Levinson theorem

    Energy Technology Data Exchange (ETDEWEB)

    Miserev, D. S., E-mail: d.miserev@student.unsw.edu.au, E-mail: erazorheader@gmail.com [University of New South Wales, School of Physics (Australia)

    2016-06-15

    The problem of localized states in 1D systems with a relativistic spectrum, namely, graphene stripes and carbon nanotubes, is studied analytically. The bound state as a superposition of two chiral states is completely described by their relative phase, which is the foundation of the variable phase method (VPM) developed herein. Based on our VPM, we formulate and prove the relativistic Levinson theorem. The problem of bound states can be reduced to the analysis of closed trajectories of some vector field. Remarkably, the Levinson theorem appears as the Poincaré index theorem for these closed trajectories. The VPM equation is also reduced to the nonrelativistic and semiclassical limits. The limit of a small momentum p{sub y} of transverse quantization is applicable to an arbitrary integrable potential. In this case, a single confined mode is predicted.

  4. Estimation of phase derivative from a single fringe pattern using Riesz transforms

    Science.gov (United States)

    Tounsi, Yassine; Zada, Sara; Muhire, Desire; Siari, Ahmed; Nassim, Abdelkrim

    2017-11-01

    We propose a technique to estimate the phase derivative in both x and y directions based on Riesz transform from a single speckle correlation fringes. The originality of this technique is to exploit Riesz transform for phase derivatives estimation, spatial modulation, speckle denoising, and measure of features similarity. Phase modulation process is realized by combining a digital spatial carrier and Riesz quadrature; speckle denoising is computed using Riesz wavelets transform, and the performance is evaluated by Riesz features SIMilarity. Before applying our method on real speckle correlation fringes, its performance is tested by numerical simulation.

  5. A control strategy for induction motors fed from single phase supply

    DEFF Research Database (Denmark)

    Søndergård, Lars Møller

    1993-01-01

    It is often required that a three-phased asynchronous motor can run at variable speed, which makes it necessary to use a three-phase inverter driven from a DC-source. Today, most inverters are driven from the network using a simple diode bridge and an electrolytic capacitor. The problem...... with the simple diode bridge and the electrolytic capacitor is that current is only drawn for short periods, which gives rise to harmonic currents in the network. For small drive systems (motor+inverter), i.e. less than 1.5 kW, a single phase network outlet is often used. The author describes a method whereby...

  6. Single-molecule detection of protein efflux from microorganisms using fluorescent single-walled carbon nanotube sensor arrays

    Science.gov (United States)

    Landry, Markita Patricia; Ando, Hiroki; Chen, Allen Y.; Cao, Jicong; Kottadiel, Vishal Isaac; Chio, Linda; Yang, Darwin; Dong, Juyao; Lu, Timothy K.; Strano, Michael S.

    2017-05-01

    A distinct advantage of nanosensor arrays is their ability to achieve ultralow detection limits in solution by proximity placement to an analyte. Here, we demonstrate label-free detection of individual proteins from Escherichia coli (bacteria) and Pichia pastoris (yeast) immobilized in a microfluidic chamber, measuring protein efflux from single organisms in real time. The array is fabricated using non-covalent conjugation of an aptamer-anchor polynucleotide sequence to near-infrared emissive single-walled carbon nanotubes, using a variable chemical spacer shown to optimize sensor response. Unlabelled RAP1 GTPase and HIV integrase proteins were selectively detected from various cell lines, via large near-infrared fluorescent turn-on responses. We show that the process of E. coli induction, protein synthesis and protein export is highly stochastic, yielding variability in protein secretion, with E. coli cells undergoing division under starved conditions producing 66% fewer secreted protein products than their non-dividing counterparts. We further demonstrate the detection of a unique protein product resulting from T7 bacteriophage infection of E. coli, illustrating that nanosensor arrays can enable real-time, single-cell analysis of a broad range of protein products from various cell types.

  7. High pressures phase equilibria of (carbon dioxide + 1-undecanol) system and their potential role in carbon capture and storage

    International Nuclear Information System (INIS)

    Secuianu, Catinca; Ioniţă, Simona; Feroiu, Viorel; Geană, Dan

    2016-01-01

    Highlights: • Isothermal VLE and VLLE data for (CO 2 + 1-undecanol) system are reported. • The P–T data of the LLV curve up to the upper critical endpoint was measured. • The new data and all available literature data are modeled with GEOS, PR, SRK EoS. • The solubility of CO 2 in 1-undecanol decreases as temperature increases. - Abstract: The influence of a large molecular alcohol on thermodynamic phase behaviour is investigated for its potential use in CCS. New isothermal (vapour + liquid) equilibria and (vapour + liquid + liquid) equilibria data for the (carbon dioxide + 1-undecanol) system are reported at several temperatures (303.15, 313.15, 323.15, and 333.15) K and pressures up to 15 MPa, together with the pressure–temperature data of the three phases (liquid + liquid + vapour) equilibrium curve up to the upper critical endpoint. A static-analytical method with phases sampling was used. The experimental results of this study are compared with literature data when available, and discussed. The new data and all available literature data for the (carbon dioxide + 1-undecanol) binary system are modelled with three cubic equations of state, namely the General Equation of State, Peng–Robinson, and Soave–Redlich–Kwong with classical van der Waals mixing rules. The aforementioned EoS were used to model the phase behaviour of the (carbon dioxide + 1-undecanol) binary system (critical curves, the three phases equilibrium curve, isothermal VLE, and (vapour + liquid + liquid) equilibria, using a semi-predictive approach. The calculations results are compared to the new data reported in this work and to all available literature data. The results show a satisfactory agreement between the models and the experimental values.

  8. Single and two-phase flow pressure drop for CANFLEX bundle

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joo Hwan; Jun, Ji Su; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Dimmick, G. R.; Bullock, D. E. [Atomic Energy of Canada Limited, Ontario (Canada)

    1998-12-31

    Friction factor and two-phase flow frictional multiplier for a CANFLEX bundle are newly developed and presented in this paper. CANFLEX as a 43-element fuel bundle has been developed jointly by AECL/KAERI to provide greater operational flexibility for CANDU reactor operators and designers. Friction factor and two-phase flow frictional multiplier have been developed by using the experimental data of pressure drops obtained from two series of Freon-134a (R-134a) CHF tests with a string of simulated CANFLEX bundles in a single phase and a two-phase flow conditions. The friction factor for a CANFLEX bundle is found to be about 20% higher than that of Blasius for a smooth circular pipe. The pressure drop predicted by using the new correlations of friction factor and two-phase frictional multiplier are well agreed with the experimental pressure drop data of CANFLEX bundle within {+-} 5% error. 11 refs., 5 figs. (Author)

  9. XPS Protocol for the Characterization of Pristine and Functionalized Single Wall Carbon Nanotubes

    Science.gov (United States)

    Sosa, E. D.; Allada, R.; Huffman, C. B.; Arepalli, S.

    2009-01-01

    Recent interest in developing new applications for carbon nanotubes (CNT) has fueled the need to use accurate macroscopic and nanoscopic techniques to characterize and understand their chemistry. X-ray photoelectron spectroscopy (XPS) has proved to be a useful analytical tool for nanoscale surface characterization of materials including carbon nanotubes. Recent nanotechnology research at NASA Johnson Space Center (NASA-JSC) helped to establish a characterization protocol for quality assessment for single wall carbon nanotubes (SWCNTs). Here, a review of some of the major factors of the XPS technique that can influence the quality of analytical data, suggestions for methods to maximize the quality of data obtained by XPS, and the development of a protocol for XPS characterization as a complementary technique for analyzing the purity and surface characteristics of SWCNTs is presented. The XPS protocol is then applied to a number of experiments including impurity analysis and the study of chemical modifications for SWCNTs.

  10. Quantum dot-like excitonic behavior in individual single walled-carbon nanotubes

    Science.gov (United States)

    Wang, Xu; Alexander-Webber, Jack A.; Jia, Wei; Reid, Benjamin P. L.; Stranks, Samuel D.; Holmes, Mark J.; Chan, Christopher C. S.; Deng, Chaoyong; Nicholas, Robin J.; Taylor, Robert A.

    2016-11-01

    Semiconducting single-walled carbon nanotubes are one-dimensional materials with great prospects for applications such as optoelectronic and quantum information devices. Yet, their optical performance is hindered by low fluorescent yield. Highly mobile excitons interacting with quenching sites are attributed to be one of the main non-radiative decay mechanisms that shortens the exciton lifetime. In this paper we report on time-integrated photoluminescence measurements on individual polymer wrapped semiconducting carbon nanotubes. An ultra narrow linewidth we observed demonstrates intrinsic exciton dynamics. Furthermore, we identify a state filling effect in individual carbon nanotubes at cryogenic temperatures as previously observed in quantum dots. We propose that each of the CNTs is segmented into a chain of zero-dimensional states confined by a varying local potential along the CNT, determined by local environmental factors such as the amount of polymer wrapping. Spectral diffusion is also observed, which is consistent with the tunneling of excitons between these confined states.

  11. Measurement of Neutron Reaction Cross Sections in Carbon using a Single Crystal Diamond Detector

    Energy Technology Data Exchange (ETDEWEB)

    Pillon, M.; Angelone, M. [Associazione EURATOM-ENEA sulla Fusione, ENEA C.R. Frascati, via E. Fermi, 45 0044 Frascati, Rome (Italy); Krasa, A.; Plompen, A. J. M.; Schillebeeckx, P. [European Commission, Joint Research Centre, Institute for Reference Materials and Measurements, - 2440 Geel (Belgium); Sergi, M. L. [Dipartimento di Fisica e Astronomia, Universita di Catania e INFN-Laboratori Nazionali del Sud, Catania (Italy)

    2011-12-13

    A single crystal diamond detector was exposed to the quasi mono-energetic neutron fields in the energy range from 7 MeV to 20.5 MeV produced by the Van de Graaff neutron generator of the EC-JRC-IRMM. Pulse Height Spectra (PHS) of the neutron interaction with the diamond (carbon) were recorded in order to derive the experimental response function of this detector to neutrons in view of its use as a compact fast neutron spectrometer. Several peaks produced by outgoing charged particles produced when neutrons interact with carbon were identified using the reaction Q-values. The corresponding nuclear reactions, such as (n,{alpha}), (n,p), (n,d) for different excitation states were identified in the PHS. The analysis of the peaks allows the derivation of some neutron reaction cross sections in carbon. The results are presented in this paper together with the associated uncertainties.

  12. Measurement of Neutron Reaction Cross Sections in Carbon using a Single Crystal Diamond Detector

    Science.gov (United States)

    Pillon, M.; Angelone, M.; Krása, A.; Plompen, A. J. M.; Schillebeeckx, P.; Sergi, M. L.

    2011-12-01

    A single crystal diamond detector was exposed to the quasi mono-energetic neutron fields in the energy range from 7 MeV to 20.5 MeV produced by the Van de Graaff neutron generator of the EC-JRC-IRMM. Pulse Height Spectra (PHS) of the neutron interaction with the diamond (carbon) were recorded in order to derive the experimental response function of this detector to neutrons in view of its use as a compact fast neutron spectrometer. Several peaks produced by outgoing charged particles produced when neutrons interact with carbon were identified using the reaction Q-values. The corresponding nuclear reactions, such as (n,α), (n,p), (n,d) for different excitation states were identified in the PHS. The analysis of the peaks allows the derivation of some neutron reaction cross sections in carbon. The results are presented in this paper together with the associated uncertainties.

  13. Interaction between fullerene halves C{sub n} (n ≤ 40) and single wall carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Amrish, E-mail: amrish99@gmail.com; Kaur, Sandeep, E-mail: sipusukhn@gmail.com [Department of Physics, Punjabi University, Patiala (India); Mudahar, Isha, E-mail: isha@pbi.ac.in [Department of Basic and Applied Sciences, Punjabi University, Patiala (India)

    2016-05-06

    We have investigated the structural and electronic properties of carbon nanotube with small fullerene halves C{sub n} (n ≤ 40) which are covalently bonded to the side wall of an armchair single wall carbon nanotube (SWCNT) using first principle method based on density functional theory. The fullerene size results in weak bonding between fullerene halves and carbon nanotube (CNT). Further, it was found that the C-C bond distance that attaches the fullerene half and CNT is of the order of 1.60 Å. The calculated binding energies indicate the stability of the complexes formed. The HOMO-LUMO gaps and electron density of state plots points towards the metallicity of the complex formed. Our calculations on charge transfer reveal that very small amount of charge is transferred from CNT to fullerene halves.

  14. In situ bend testing of niobium-reinforced alumina nanocomposites with and without single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Thomson, Katherine E.; Jiang Dongtao; Lemberg, Joseph A.; Koester, Kurt J.; Ritchie, Robert O.; Mukherjee, Amiya K.

    2008-01-01

    Alumina-based nanocomposites were fabricated and consolidated via spark plasma sintering. The effect of single-walled carbon nanotube (SWCNT) and niobium additions to nanocrystalline alumina was examined by in situ bend testing. The addition of 10 vol.% niobium to nanocrystalline alumina provided substantial improvement of fracture toughness (6.1 MPa m 1/2 )-almost three times that of nanocrystalline alumina. Observation of cracks emanating from Vickers indents, as well as bend specimen fracture surfaces, reveal the operation of ductile phase toughening in the Nb-Al 2 O 3 nanocomposites. Further addition of 5 vol.% SWCNTs to the 10 vol.%Nb-Al 2 O 3 revealed a more porous structure and less impressive fracture toughness-having an indentation and bend fracture toughness of 2.9 MPa m 1/2 and 3.3 MPa m 1/2 , respectively

  15. Extrusion of single-wall carbon nanotubes via formation of small particles condensed near an arc evaporation source

    Science.gov (United States)

    Saito, Yahachi; Okuda, Mitsumasa; Tomita, Masato; Hayashi, Takayoshi

    1995-04-01

    Single-wall (SW) tubes were produced by co-evaporation of carbon and lanthanum in helium gas and examined by transmission electron microscopy (TEM). TEM samples were collected directly from a space near the arc evaporation source during evaporation. SW tubes growing radially from compound particles were observed 4 cm above the source, but not 2 cm. The 'sea urchin'-like morphology of these tubes were similar to those observed for soot deposited on the inner walls of the reaction chamber, suggesting that soot particles were formed first in the gas phase and SW tubes grew from them before deposition on the chamber wall. The temperature distribution and flow velocity of convection around the source are used for discussion of the growth mechanism of the SW tubes.

  16. Single phase computed tomography is equivalent to dual phase method for localizing hyperfunctioning parathyroid glands in patients with primary hyperparathyroidism: a retrospective review

    Directory of Open Access Journals (Sweden)

    Fanny Morón

    2017-08-01

    Full Text Available Objective This study aims to compare the sensitivity of dual phase (non-contrast and arterial versus single phase (arterial CT for detection of hyper-functioning parathyroid glands in patients with primary hyperparathyroidism. Methods The CT scans of thirty-two patients who have biochemical evidence of primary hyperparathyroidism, pathologically proven parathyroid adenomas, and pre-operative multiphase parathyroid imaging were evaluated retrospectively in order to compare the adequacy of single phase vs. dual phase CT scans for the detection of parathyroid adenomas. Results The parathyroid adenomas were localized in 83% of cases on single arterial phase CT and 80% of cases on dual phase CT. The specificity for localization of parathyroid tumor was 96% for single phase CT and 97% for dual phase CT. The results were not significantly different (p = 0.695. These results are similar to those found in the literature for multiphase CT of 55–94%. Conclusions Our study supports the use of a single arterial phase CT for the detection of hyperfunctioning parathyroid adenomas. Advances in knowledge: a single arterial phase CT has similar sensitivity for localizing parathyroid adenomas as dual phase CT and significantly reduces radiation dose to the patient.

  17. Structural modeling of dahlia-type single-walled carbon nanohorn aggregates by molecular dynamics.

    Science.gov (United States)

    Hawelek, L; Brodka, A; Dore, John C; Hannon, Alex C; Iijima, S; Yudasaka, M; Ohba, T; Kaneko, K; Burian, A

    2013-09-19

    The structure of dahlia-type single-walled carbon nanohorn aggregates has been modeled by classical molecular dynamics simulations, and the validity of the model has been verified by neutron diffraction. Computer-generated models consisted of an outer part formed from single-walled carbon nanohorns with diameters of 20-50 Å and a length of 400 Å and an inner turbostratic graphite-like core with a diameter of 130 Å. The diffracted intensity and the pair correlation function computed for such a constructed model are in good agreement with the neutron diffraction experimental data. The proposed turbostratic inner core explains the occurrence of the additional (002) and (004) graphitic peaks in the diffraction pattern of the studied sample and provides information about the interior structure of the dahlia-type aggregates.

  18. Production and characterization of polymer nanocomposite with aligned single wall carbon nanotubes

    International Nuclear Information System (INIS)

    Chen Wei; Tao Xiaoming

    2006-01-01

    We reported a simple method to fabricate polymer nanocomposites with single-walled carbon nanotubes (SWNTs) having exceptional alignment and improved mechanical properties. The composite films were fabricated by casting a suspension of single walled carbon nanotubes in a solution of thermoplastic polyurethane and tetrahydrofuran. The orientation as well as dispersion of nanotubes was determined by scanning electron microscopy, transmission electron microscopy and polarized Raman spectroscopy. The macroscopic alignment probably results from solvent-polymer interaction induced orientation of soft segment chain during swelling and moisture curing. The tensile behavior of the aligned nanotube composite film was also studied. At a 0.5 wt.% nanotube loading, a 1.9-fold increase in Young's modulus was achieved

  19. Stable double helical iodine chains inside single-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Zhen [College of Science, Liaoning University of Technology, Jinzhou, Liaoning, 121001 (China); Liu, Chun-Jian [College of Mathematics and Physics, Bohai University, Jinzhou, Liaoning, 121000 (China); Lv, Hang [Institute of New Energy, Bohai University, Jinzhou, Liaoning, 121000 (China); Liu, Bing-Bing, E-mail: liubb@jlu.edu.cn [State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012 (China)

    2016-08-12

    The helicity of stable double helical iodine chains inside single-walled carbon nanotubes (SWCNTs) is studied by calculating the systematic interaction energy. Our results present clear images of stable double helical structures inside SWCNTs. The optimum helical radius and helical angle increase and decrease with increasing diameter, respectively. The tube's diameter plays a leading role in the helicity of encapsulated structures, while the tube's chirality may induce different metastable structures. This study indicates that the observed double helical iodine chains in experiments are not necessarily the optimum structures, but may also be metastable structures. - Highlights: • The stable double helical iodine chain inside single-walled carbon nanotubes is proposed. • The influence of tube's diameter and chirality on the stability of encapsulated iodine chains is studied. • The metastable double helical structures may be co-existence with the stable structure but not in the same tubes.

  20. Rings and rackets from single-wall carbon nanotubes: manifestations of mesoscale mechanics.

    Science.gov (United States)

    Wang, Yuezhou; Semler, Matthew R; Ostanin, Igor; Hobbie, Erik K; Dumitrică, Traian

    2014-11-21

    We combine experiments and distinct element method simulations to understand the stability of rings and rackets formed by single-walled carbon nanotubes assembled into ropes. Bending remains a soft deformation mode in ropes because intra-rope sliding of the constituent nanotubes occurs with ease. Our simulations indicate that the formation of these aggregates can be attributed to the mesoscopic mechanics of entangled nanotubes and to the sliding at the contacts. Starting from the single-walled carbon nanotubes, the sizes of the rings and rackets' heads increase with the rope diameter, indicating that the stability of the experimental aggregates can be largely explained by the competition between bending and van der Waals adhesion energies. Our results and simulation method should be useful for understanding nanoscale fibers in general.

  1. The kinetics of phase transformations during tempering of low alloy medium carbon steel

    OpenAIRE

    J. Krawczyk; J. Pacyna; P. Bała

    2007-01-01

    Purpose: This work contains a detailed description of the kinetics of phase transformations during tempering ofhardened low alloy medium carbon steel. Moreover, the differences in hardness and microstructure of samples ofthe investigated steel in relationship to the heat treatment were evaluated.Design/methodology/approach: CHT diagram, illustrating the kinetics of phase transformations duringcontinuous heating (tempering) from as-quenched state of investigated steel, was elaborated using a D...

  2. Improving Formate and Methanol Fuels: Catalytic Activity of Single Pd Coated Carbon Nanotubes.

    Science.gov (United States)

    Li, Xiuting; Hodson, Hannah; Batchelor-McAuley, Christopher; Shao, Lidong; Compton, Richard G

    2016-10-07

    The oxidations of formate and methanol on nitrogen-doped carbon nanotubes decorated with palladium nanoparticles were studied at both the single-nanotube and ensemble levels. Significant voltammetric differences were seen. Pd oxide formation as a competitive reaction with formate or methanol oxidation is significantly inhibited at high overpotentials under the high mass transport conditions associated with single-particle materials in comparison with that seen with ensembles, where slower diffusion prevails. Higher electro-oxidation efficiency for the organic fuels is achieved.

  3. A Novel Flying Capacitor Transformerless Inverter for Single-Phase Grid Connected Solar Photovoltaic System

    DEFF Research Database (Denmark)

    Siwakoti, Yam Prasad; Blaabjerg, Frede

    2016-01-01

    This paper proposes a new single-phase flying capacitor transformerless PV inverter for grid-connected photovoltaic (PV) systems. The neutral of the grid can be directly connected to the negative terminal of the source (PV). It consists of four power switches, one diode, one capacitor and a small...

  4. Low Voltage Ride-Through of Single-Phase Transformerless Photovoltaic Inverters

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede; Wang, Huai

    2014-01-01

    , e.g. Low Voltage Ride-Through (LVRT) under grid faults and grid support service. In order to map future challenges, the LVRT capability of three mainstream single-phase transformerless PV inverters under grid faults are explored in this paper. Control strategies with reactive power injections...

  5. PI and repetitive control for single phase inverter based on virtual rotating coordinate system

    Science.gov (United States)

    Li, Mengqi; Tong, Yibin; Jiang, Jiuchun; Liang, Jiangang

    2018-03-01

    Microgrid technology developed rapidly and nonlinear loads were connected increasingly. A new control strategy was proposed for single phase inverter when connected nonlinear loads under island condition. PI and repetitive compound controller was realized under synchronous rotating coordinate system and acquired high quality sinusoidal voltage output without voltage spike when loads step changed. Validity and correctness were verified by simulation using MATLAB/Simulink.

  6. Single-Phase 3L PR Controlled qZS Inverter Connected to the Distorted Grid

    DEFF Research Database (Denmark)

    Makovenko, Elena; Husev, Oleksandr; Roncero-Clemente, Carlos

    2016-01-01

    This paper presents a single-phase three-level NPC qZS inverter connected to a distorted grid using PID and PR regulators. A case study system along with the control strategy are described. Tuning approaches for PID and PR regulators are addressed and validated by means of simulation results...

  7. A double parameters measurement of steam-water two-phase flow with single orifice

    International Nuclear Information System (INIS)

    Zhong Shuoping; Tong Yunxian; Yu Meiying

    1992-08-01

    A double parameters measurement of steam-water two-phase flow with single orifice is described. An on-line measurement device based on micro-computer has been developed. The measured r.m.s error of steam quality is less than 6.5% and the measured relative r.m.s. error of mass flow rate is less than 9%

  8. Hybrid Control Method for a Single Phase PFC using a Low Cost Microcontroller

    DEFF Research Database (Denmark)

    Jakobsen, Lars Tønnes; Nielsen, Nils; Wolf, Christian

    2005-01-01

    This paper presents a hybrid control method for single phase boost PFCs. The high bandwidth current loop is analog while the voltage loop is implemented in an 8-bit microcontroller. The design focuses on minimizing the number of calculations done in the microcontroller. A 1kW prototype has been...

  9. Novel Motion Sensorless Control of Single Phase Brushless D.C. PM Motor Drive, with experiments

    DEFF Research Database (Denmark)

    Lepure, Liviu Ioan; Boldea, Ion; Andreescu, Gheorghe Daniel

    2010-01-01

    A motion sensorless control for single phase permanent magnet brushless d.c. (PM-BLDC) motor drives, based on flux integration and prior knowledge of the PM flux/position characteristic is proposed here and an adequate correction algorithm is adopted, in order to increase the robustness to noise...

  10. Control Method of Single-phase Inverter Based Grounding System in Distribution Networks

    DEFF Research Database (Denmark)

    Wang, Wen; Yan, L.; Zeng, X.

    2016-01-01

    of neutral-to-ground voltage is critical for the safety of distribution networks. An active grounding system based on single-phase inverter is proposed to achieve this objective. Relationship between output current of the system and neutral-to-ground voltage is derived to explain the principle of neutral...

  11. Self-phase modulation of a single-cycle THz pulse

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, M. C.

    2013-01-01

    We demonstrate self-phase modulation (SPM) of a single-cycle THz pulse in a semiconductor, using bulk n-GaAs as a model system. The SPM arises from the heating of free electrons in the electric field of the THz pulse. Electron heating leads to an ultrafast reduction of the plasma frequency, which...

  12. Single phase cascaded H5 inverter with leakage current elimination for transformerless photovoltaic system

    DEFF Research Database (Denmark)

    Guo, Xiaoqiang; Jia, X.; Lu, Z.

    2016-01-01

    Leakage current reduction is one of the important issues for the transformelress PV systems. In this paper, the transformerless single-phase cascaded H-bridge PV inverter is investigated. The common mode model for the cascaded H4 inverter is analyzed. And the reason why the conventional cascade H...

  13. A Generic Topology Derivation Method for Single-phase Converters with Active Capacitive DC-links

    DEFF Research Database (Denmark)

    Wang, Haoran; Wang, Huai; Zhu, Guorong

    2016-01-01

    capacitive DCDC- link solutions, but important aspects of the topology assess-ment, such as the total energy storage, overall capacitive energy buffer ratio, cost, and reliability are still not available. This paper proposes a generic topology derivation method of single-phase power converters...

  14. Modeling and Control of a Single-Phase Marine Cooling System

    DEFF Research Database (Denmark)

    Hansen, Michael; Stoustrup, Jakob; Bendtsen, Jan Dimon

    2013-01-01

    This paper presents two model-based control design approaches for a single-phase marine cooling system. Models are derived from first principles and aim at describing significant system dynamics including nonlinearities and transport delays, while keeping the model complexity low. The two...

  15. A re-look at critical factors influencing single-phase formation of Ba2 ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 30; Issue 4. A re-look at critical factors influencing single-phase formation of Ba2Ti9O20 microwave dielectrics. Unnikrishnan Gopinath Dhanya Chandran Seema Ansari Bindu Krishnan Rani Panicker Raghu Natarajan. Electrical Properties Volume 30 Issue 4 August ...

  16. Analysis of Variable-Speed Operation of Drives with Single-Phase Machines

    Czech Academy of Sciences Publication Activity Database

    Chomát, Miroslav; Schreier, Luděk; Bendl, Jiří

    2007-01-01

    Roč. 52, č. 2 (2007), s. 139-147 ISSN 0001-7043 R&D Projects: GA ČR GA102/06/0215 Institutional research plan: CEZ:AV0Z20570509 Keywords : single-phase machines * induction machines * variable-speed drives Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  17. Single-plane multiple speckle pattern phase retrieval using a deformable mirror

    DEFF Research Database (Denmark)

    Almoro, Percival F.; Glückstad, Jesper; Hanson, Steen Grüner

    2010-01-01

    A design for a single-plane multiple speckle pattern phase retrieval technique using a deformable mirror (DM) is analyzed within the formalism of complex ABCD-matrices, facilitating its use in conjunction with dynamic wavefronts. The variable focal length DM positioned at a Fourier plane of a lens...

  18. Flux Concentration and Pole Shaping in a Single Phase Hybrid Switched Reluctance Motor Drive

    DEFF Research Database (Denmark)

    Jakobsen, Uffe; Lu, Kaiyuan

    2010-01-01

    The single phase hybrid switched reluctance motor (HSRM) may be a good candidate for low-cost drives used for pump applications. This paper presents a new design of the HSRM with improved starting torque achieved by stator pole shaping, and a better arrangement of the embedded stator permanent...

  19. Southwest Regional Partnership on Carbon Sequestration Phase II

    Energy Technology Data Exchange (ETDEWEB)

    James Rutledge

    2011-02-01

    The Southwest Regional Partnership (SWP) on Carbon Sequestration designed and deployed a medium-scale field pilot test of geologic carbon dioxide (CO2) sequestration in the Aneth oil field. Greater Aneth oil field, Utah's largest oil producer, was discovered in 1956 and has produced over 455 million barrels of oil (72 million m3). Located in the Paradox Basin of southeastern Utah, Greater Aneth is a stratigraphic trap producing from the Pennsylvanian Paradox Formation. Because it represents an archetype oil field of the western U.S., Greater Aneth was selected as one of three geologic pilots to demonstrate combined enhanced oil recovery (EOR) and CO2 sequestration under the auspices of the SWP on Carbon Sequestration, sponsored by the U.S. Department of Energy. The pilot demonstration focuced on the western portion of the Aneth Unit as this area of the field was converted from waterflood production to CO2 EOR starting in late 2007. The Aneth Unit is in the northwestern part of the field and has produced 149 million barrels (24 million m3) of the estimated 450 million barrels (71.5 million m3) of the original oil in place - a 33% recovery rate. The large amount of remaining oil makes the Aneth Unit ideal to demonstrate both CO2 storage capacity and EOR by CO2 flooding. This report summarizes the geologic characterization research, the various field monitoring tests, and the development of a geologic model and numerical simulations conducted for the Aneth demonstration project. The Utah Geological Survey (UGS), with contributions from other Partners, evaluated how the surface and subsurface geology of the Aneth Unit demonstration site will affect sequestration operations and engineering strategies. The UGS-research for the project are summarized in Chapters 1 through 7, and includes (1) mapping the surface geology including stratigraphy, faulting, fractures, and deformation bands, (2) describing the local Jurassic and Cretaceous stratigraphy, (3) mapping the

  20. Terahertz Spectroscopy of Individual Single-Walled Carbon Nanotubes as a Probe of Luttinger Liquid Physics.

    Science.gov (United States)

    Chudow, Joel D; Santavicca, Daniel F; Prober, Daniel E

    2016-08-10

    Luttinger liquid theory predicts that collective electron excitations due to strong electron-electron interactions in a one-dimensional (1D) system will result in a modification of the collective charge-propagation velocity. By utilizing a circuit model for an individual metallic single-walled carbon nanotube as a nanotransmission line, it has been shown that the frequency-dependent terahertz impedance of a carbon nanotube can probe this expected 1D Luttinger liquid behavior. We excite terahertz standing-wave resonances on individual antenna-coupled metallic single-walled carbon nanotubes. The terahertz signal is rectified using the nanotube contact nonlinearity, allowing for a low-frequency readout of the coupled terahertz current. The charge velocity on the nanotube is determined from the terahertz spectral response. Our measurements show that a carbon nanotube can behave as a Luttinger liquid system with charge-propagation velocities that are faster than the Fermi velocity. Understanding what determines the charge velocity in low-dimensional conductors is important for the development of next generation nanodevices.