Generating perfect fluid spheres in general relativity
International Nuclear Information System (INIS)
Boonserm, Petarpa; Visser, Matt; Weinfurtner, Silke
2005-01-01
Ever since Karl Schwarzschild's 1916 discovery of the spacetime geometry describing the interior of a particular idealized general relativistic star--a static spherically symmetric blob of fluid with position-independent density--the general relativity community has continued to devote considerable time and energy to understanding the general-relativistic static perfect fluid sphere. Over the last 90 years a tangle of specific perfect fluid spheres has been discovered, with most of these specific examples seemingly independent from each other. To bring some order to this collection, in this article we develop several new transformation theorems that map perfect fluid spheres into perfect fluid spheres. These transformation theorems sometimes lead to unexpected connections between previously known perfect fluid spheres, sometimes lead to new previously unknown perfect fluid spheres, and in general can be used to develop a systematic way of classifying the set of all perfect fluid spheres
Thermodynamical stability for a perfect fluid
Energy Technology Data Exchange (ETDEWEB)
Fang, Xiongjun; Jing, Jiliang [Hunan Normal University, Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Synergetic Innovation Center for Quantum Effects and Applications, Changsha, Hunan (China); He, Xiaokai [Hunan Normal University, Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Synergetic Innovation Center for Quantum Effects and Applications, Changsha, Hunan (China); Hunan First Normal University, School of Mathematics and Computational Science, Changsha (China)
2017-12-15
According to the maximum entropy principle, it has been proved that the gravitational field equations could be derived by the extrema of the total entropy for a perfect fluid, which implies that thermodynamic relations contain information as regards gravity. In this manuscript, we obtain a criterion for the thermodynamical stability of an adiabatic, self-gravitating perfect fluid system by the second variation of the total entropy. We show, for Einstein's gravity with spherical symmetry spacetime, that the criterion is consistent with that for the dynamical stability derived by Chandrasekhar and Wald. We also find that the criterion could be applied to cases without spherical symmetry, or under general perturbations. The result further establishes the connection between thermodynamics and gravity. (orig.)
Thermodynamical stability for a perfect fluid
Fang, Xiongjun; He, Xiaokai; Jing, Jiliang
2017-12-01
According to the maximum entropy principle, it has been proved that the gravitational field equations could be derived by the extrema of the total entropy for a perfect fluid, which implies that thermodynamic relations contain information as regards gravity. In this manuscript, we obtain a criterion for the thermodynamical stability of an adiabatic, self-gravitating perfect fluid system by the second variation of the total entropy. We show, for Einstein's gravity with spherical symmetry spacetime, that the criterion is consistent with that for the dynamical stability derived by Chandrasekhar and Wald. We also find that the criterion could be applied to cases without spherical symmetry, or under general perturbations. The result further establishes the connection between thermodynamics and gravity.
Nonminimal coupling of perfect fluids to curvature
International Nuclear Information System (INIS)
Bertolami, Orfeu; Lobo, Francisco S. N.; Paramos, Jorge
2008-01-01
In this work, we consider different forms of relativistic perfect fluid Lagrangian densities that yield the same gravitational field equations in general relativity (GR). A particularly intriguing example is the case with couplings of the form [1+f 2 (R)]L m , where R is the scalar curvature, which induces an extra force that depends on the form of the Lagrangian density. It has been found that, considering the Lagrangian density L m =p, where p is the pressure, the extra-force vanishes. We argue that this is not the unique choice for the matter Lagrangian density, and that more natural forms for L m do not imply the vanishing of the extra force. Particular attention is paid to the impact on the classical equivalence between different Lagrangian descriptions of a perfect fluid.
Field theory of the Eulerian perfect fluid
Ariki, Taketo; Morales, Pablo A.
2018-01-01
The Eulerian perfect-fluid theory is reformulated from its action principle in a pure field-theoretic manner. Conservation of the convective current is no longer imposed by Lin’s constraints, but rather adopted as the central idea of the theory. Our formulation, for the first time, successfully reduces redundant degrees of freedom promoting one half of the Clebsch variables to true dynamical fields. Interactions on these fields allow for the exchange of the convective current of quantities such as mass and charge, which are uniformly understood as the breaking of the underlying symmetry of the force-free fluid. The Clebsch fields play the essential role of exchanging angular momentum with the force field producing vorticity.
Thermodynamics of perfect fluids from scalar field theory
Ballesteros, Guillermo; Pilo, Luigi
2016-01-01
The low-energy dynamics of relativistic continuous media is given by a shift-symmetric effective theory of four scalar fields. These scalars describe the embedding in spacetime of the medium and play the role of Stuckelberg fields for spontaneously broken spatial and time translations. Perfect fluids are selected imposing a stronger symmetry group or reducing the field content to a single scalar. We explore the relation between the field theory description of perfect fluids to thermodynamics. By drawing the correspondence between the allowed operators at leading order in derivatives and the thermodynamic variables, we find that a complete thermodynamic picture requires the four Stuckelberg fields. We show that thermodynamic stability plus the null energy condition imply dynamical stability. We also argue that a consistent thermodynamic interpretation is not possible if any of the shift symmetries is explicitly broken.
Bianchi type-I massive string magnetized barotropic perfect fluid ...
Indian Academy of Sciences (India)
by either a perfect fluid or a cosmic string in bimetric theory of gravitation. Bali and Prad- han [41] have investigated Bianchi type-III string cosmological model with time-dependent bulk viscosity. In view of the importance of Maxwell's electromagnetic field interactions with a perfect fluid or a cosmic string and there is a lot of ...
Lattice fluid dynamics from perfect discretizations of continuum flows
International Nuclear Information System (INIS)
Katz, E.; Wiese, U.
1998-01-01
We use renormalization group methods to derive equations of motion for large scale variables in fluid dynamics. The large scale variables are averages of the underlying continuum variables over cubic volumes and naturally exist on a lattice. The resulting lattice dynamics represents a perfect discretization of continuum physics, i.e., grid artifacts are completely eliminated. Perfect equations of motion are derived for static, slow flows of incompressible, viscous fluids. For Hagen-Poiseuille flow in a channel with a square cross section the equations reduce to a perfect discretization of the Poisson equation for the velocity field with Dirichlet boundary conditions. The perfect large scale Poisson equation is used in a numerical simulation and is shown to represent the continuum flow exactly. For nonsquare cross sections one can use a numerical iterative procedure to derive flow equations that are approximately perfect. copyright 1998 The American Physical Society
On perfect fluids and black holes in static equilibrium
Energy Technology Data Exchange (ETDEWEB)
Carrasco, Alberto; Mars, Marc; Simon, Walter [Facultad de Ciencias, Universidad de Salamanca, Plaza de la Merced s/n, 37008 Salamanca (Spain)
2007-05-15
Proofs of spherical symmetry of static black holes and of spherical symmetry of static perfect fluids normally require, a priori, 'black holes only' or 'fluid only'. In a recent paper Shiromizu, Yamada and Yoshino admit a priori (and exclude) coexistence of fluids and holes. This work assumes connectedness of the fluid region and the same assumptions on the equation of state as earlier papers on the 'fluid only' case, and requires in addition an upper bound for the fluid mass in terms of the black holes masses. We discuss this paper. As a new result we show that there cannot exist static fluid shells (i.e. fluid regions of the topology of an annulus) even if one a priori admits, inside and outside the shell, any arrangement of black holes or additional matter which satisfies the energy condition.
On perfect fluids and black holes in static equilibrium
International Nuclear Information System (INIS)
Carrasco, Alberto; Mars, Marc; Simon, Walter
2007-01-01
Proofs of spherical symmetry of static black holes and of spherical symmetry of static perfect fluids normally require, a priori, 'black holes only' or 'fluid only'. In a recent paper Shiromizu, Yamada and Yoshino admit a priori (and exclude) coexistence of fluids and holes. This work assumes connectedness of the fluid region and the same assumptions on the equation of state as earlier papers on the 'fluid only' case, and requires in addition an upper bound for the fluid mass in terms of the black holes masses. We discuss this paper. As a new result we show that there cannot exist static fluid shells (i.e. fluid regions of the topology of an annulus) even if one a priori admits, inside and outside the shell, any arrangement of black holes or additional matter which satisfies the energy condition
Hamiltonian formalism for perfect fluids in general relativity
International Nuclear Information System (INIS)
Demaret, J.; Moncrief, V.
1980-01-01
Schutz's Hamiltonian theory of a relativistic perfect fluid, based on the velocity-potential version of classical perfect fluid hydrodynamics as formulated by Seliger and Whitham, is used to derive, in the framework of the Arnowitt, Deser, and Misner (ADM) method, a general partially reduced Hamiltonian for relativistic systems filled with a perfect fluid. The time coordinate is chosen, as in Lund's treatment of collapsing balls of dust, as minus the only velocity potential different from zero in the case of an irrotational and isentropic fluid. A ''semi-Dirac'' method can be applied to quantize astrophysical and cosmological models in the framework of this partially reduced formalism. If one chooses Taub's adapted comoving coordinate system, it is possible to derive a fully reduced ADM Hamiltonian, which is equal to minus the total baryon number of the fluid, generalizing a result previously obtained by Moncrief in the more particular framework of Taub's variational principle, valid for self-gravitating barotropic relativistic perfect fluids. An unconstrained Hamiltonian density is then explicitly derived for a fluid obeying the equation of state p=(gamma-1)rho (1 < or = γ < or = 2), which can adequately describe the phases of very high density attained in a catastrophic collapse or during the early stages of the Universe. This Hamiltonian density, shown to be equivalent to Moncrief's in the particular case of an isentropic fluid, can be simplified for fluid-filled class-A diagonal Bianchi-type cosmological models and appears as a suitable starting point for the study of the canonical quantization of these models
Exact EGB models for spherical static perfect fluids
Energy Technology Data Exchange (ETDEWEB)
Hansraj, Sudan; Chilambwe, Brian; Maharaj, Sunil D. [University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, Private Bag 54001, Durban (South Africa)
2015-06-15
We obtain a new exact solution to the field equations for a 5-dimensional spherically symmetric static distribution in the Einstein-Gauss-Bonnet modified theory of gravity. By using a transformation, the study is reduced to the analysis of a single second order nonlinear differential equation. In general the condition of pressure isotropy produces a first order differential equation which is an Abel equation of the second kind. An exact solution is found. The solution is examined for physical admissibility. In particular a set of constants is found which ensures that a pressure-free hypersurface exists which defines the boundary of the distribution. Additionally the isotropic pressure and the energy density are shown to be positive within the radius of the sphere. The adiabatic sound-speed criterion is also satisfied within the fluid ensuring a subluminal sound speed. Furthermore, the weak, strong and dominant conditions hold throughout the distribution. On setting the Gauss-Bonnet coupling to zero, an exact solution for 5-dimensional perfect fluids in the standard Einstein theory is obtained. Plots of the dynamical quantities for the Gauss-Bonnet and the Einstein case reveal that the pressure is unaffected, while the energy density increases under the influence of the Gauss-Bonnet term. (orig.)
Helicity and other conservation laws in perfect fluid motion
Serre, Denis
2018-03-01
In this review paper, we discuss helicity from a geometrical point of view and see how it applies to the motion of a perfect fluid. We discuss its relation with the Hamiltonian structure, and then its extension to arbitrary space dimensions. We also comment about the existence of additional conservation laws for the Euler equation, and its unlikely integrability in Liouville's sense.
Inhomogeneous generalizations of Bianchi type VIh models with perfect fluid
Roy, S. R.; Prasad, A.
1991-07-01
Inhomogeneous universes admitting an Abelian G2 of isometry and filled with perfect fluid have been derived. These contain as special cases exact homogeneous universes of Bianchi type VIh. Many of these universes asymptotically tend to homogeneous Bianchi VIh universes. The models have been discussed for their physical and kinematical behaviors.
Singularity free non-rotating cosmological solutions for perfect fluids ...
Indian Academy of Sciences (India)
Again an analysis leads to the Senovilla solution with. = ½. ¿ i.e.. Ф = ½. ¿p. 6. Conclusion. Our motivation was to examine whether non-singular non-rotating perfect fluid (with Ф = ) cosmologies exist besides those already discovered and presented in the literature. We have not been able to give an unequivocal answer but ...
On a ''conformal'' perfect fluid in the classical vacuum
International Nuclear Information System (INIS)
Culetu, H.
1993-02-01
A possible existence of a conformal perfect fluid in the classical vacuum is investigated in this letter. It is shown, contrary to Madsen's opinion, that the scalar field stress tensor acquires a perfect fluid form even with a nonminimal coupling (ξ = 1/6) in the Einstein Lagrangian, provided the geometry is the Lorentzian analogue of the Euclidean Hawking wormhole. In addition, our T μν equals (up to a constant factor) the vacuum expectation value of the Fulling stress tensor for a massless scalar field and Visser's one concerning transversible wormholes. On the other side of the light cone, there is a coordinate system (the dimensionally reduced Witten bubble) where the stress tensor becomes diagonal. (author). 13 refs
The Hamiltonian structure of general relativistic perfect fluids
International Nuclear Information System (INIS)
Bao, D.; Houston Univ., TX; Marsden, J.; Walton, R.
1985-01-01
We show that the evolution equations for a perfect fluid coupled to general relativity in a general lapse and shift, are Hamiltonian relative to a certain Poisson structure. For the fluid variables, a Lie-Poisson structure associated to the dual of a semi-direct product Lie algebra is used, while the bracket for the gravitational variables has the usual canonical symplectic structure. The evolution is governed by a Hamiltonian which is equivalent to that obtained from a canonical analysis. The relationship of our Hamiltonian structure with other approaches in the literature, such as Clebsch potentials, Lagrangian to Eulerian transformations, and its use in clarifying linearization stability, are discussed. (orig.)
Shear-free perfect fluids with zero magnetic Weyl tensor
International Nuclear Information System (INIS)
Collins, C.B.
1984-01-01
Rotating, shear-free general-relativistic perfect fluids are investigated. It is first shown that, if the fluid pressure, p, and energy density, μ, are related by a barotropic equation of state p = p( μ) satifying μ+pnot =0, and if the magnetic part of the Weyl tensor (with respect to the fluid flow) vanishes, then the fluid's volume expansion is zero. The class of all such fluids is subsequently characterized. Further analysis of the solutions shows that, in general, the space-times may be regarded as being locally stationary and axisymmetric (they admit a two-dimensional Abelian isometry group with timelike orbits, which is in fact orthogonally transistive), although various specializations can occur, with the ''most special'' case being the well-known Goedel model, which is space-time homogeneous (it admits a five-dimensional isometry group acting multiply transitively on the space-time). all solutions are of Petrov type D. The fact that there are any solutions in the class at all means that a theorem appearing in the literature is invalid, and the existence of some special solutions in which the fluid's vorticity vector is orthogonal to the acceleration reveals the incompleteness of a previous study of a class of space-times, in which there are Killing vectors parallel to the fluid four-velocity and to the vorticity vector
Non-adiabatic perturbations in multi-component perfect fluids
Energy Technology Data Exchange (ETDEWEB)
Koshelev, N.A., E-mail: koshna71@inbox.ru [Ulyanovsk State University, Leo Tolstoy str 42, 432970 (Russian Federation)
2011-04-01
The evolution of non-adiabatic perturbations in models with multiple coupled perfect fluids with non-adiabatic sound speed is considered. Instead of splitting the entropy perturbation into relative and intrinsic parts, we introduce a set of symmetric quantities, which also govern the non-adiabatic pressure perturbation in models with energy transfer. We write the gauge invariant equations for the variables that determine on a large scale the non-adiabatic pressure perturbation and the rate of changes of the comoving curvature perturbation. The analysis of evolution of the non-adiabatic pressure perturbation has been made for several particular models.
Non-adiabatic perturbations in multi-component perfect fluids
International Nuclear Information System (INIS)
Koshelev, N.A.
2011-01-01
The evolution of non-adiabatic perturbations in models with multiple coupled perfect fluids with non-adiabatic sound speed is considered. Instead of splitting the entropy perturbation into relative and intrinsic parts, we introduce a set of symmetric quantities, which also govern the non-adiabatic pressure perturbation in models with energy transfer. We write the gauge invariant equations for the variables that determine on a large scale the non-adiabatic pressure perturbation and the rate of changes of the comoving curvature perturbation. The analysis of evolution of the non-adiabatic pressure perturbation has been made for several particular models
Generating static perfect-fluid solutions of Einstein's equations
Quevedo, Hernando; Toktarbay, Saken
2015-05-01
We present a method for generating exact interior solutions of Einstein's equations in the case of static and axially symmetric perfect-fluid spacetimes. The method is based upon a transformation that involves the metric functions as well as the density and pressure of the seed solution. In the limiting vacuum case, it reduces to the Zipoy-Voorhees transformation that can be used to generate metrics with multipole moments. All the metric functions of the new solution can be calculated explicitly from the seed solution in a simple manner. The physical properties of the resulting new solutions are shown to be completely different from those of the seed solution.
Gravitational perfect fluid collapse in Gauss-Bonnet gravity
Energy Technology Data Exchange (ETDEWEB)
Abbas, G.; Tahir, M. [The Islamia University of Bahawalpur, Department of Mathematics, Bahawalpur (Pakistan)
2017-08-15
The Einstein Gauss-Bonnet theory of gravity is the low-energy limit of heterotic super-symmetric string theory. This paper deals with gravitational collapse of a perfect fluid in Einstein-Gauss-Bonnet gravity by considering the Lemaitre-Tolman-Bondi metric. For this purpose, the closed form of the exact solution of the equations of motion has been determined by using the conservation of the stress-energy tensor and the condition of marginally bound shells. It has been investigated that the presence of a Gauss-Bonnet coupling term α > 0 and the pressure of the fluid modifies the structure and time formation of singularity. In this analysis a singularity forms earlier than a horizon, so the end state of the collapse is a naked singularity depending on the initial data. But this singularity is weak and timelike, which goes against the investigation of general relativity. (orig.)
All static spherically symmetric perfect-fluid solutions of Einstein's equations
International Nuclear Information System (INIS)
Lake, Kayll
2003-01-01
An algorithm based on the choice of a single monotone function (subject to boundary conditions) is presented which generates all regular static spherically symmetric perfect-fluid solutions of Einstein's equations. For physically relevant solutions the generating functions must be restricted by nontrivial integral-differential inequalities. Nonetheless, the algorithm is demonstrated here by the construction of an infinite number of previously unknown physically interesting exact solutions
Cosmological coevolution of Yang-Mills fields and perfect fluids
International Nuclear Information System (INIS)
Barrow, John D.; Jin, Yoshida; Maeda, Kei-ichi
2005-01-01
We study the coevolution of Yang-Mills fields and perfect fluids in Bianchi type I universes. We investigate numerically the evolution of the universe and the Yang-Mills fields during the radiation and dust eras of a universe that is almost isotropic. The Yang-Mills field undergoes small amplitude chaotic oscillations, as do the three expansion scale factors which are also displayed by the expansion scale factors of the universe. The results of the numerical simulations are interpreted analytically and compared with past studies of the cosmological evolution of magnetic fields in radiation and dust universes. We find that, whereas magnetic universes are strongly constrained by the microwave background anisotropy, Yang-Mills universes are principally constrained by primordial nucleosynthesis but the bound is comparatively weak with Ω YM rad
Bianchi Type-V model with a perfect fluid and Λ-term
Indian Academy of Sciences (India)
Abstract. A self-consistent system of gravitational field with a binary mixture of perfect fluid and dark energy given by a cosmological constant has been considered in Bianchi. Type-V universe. The perfect fluid is chosen to be obeying either the equation of state p = γρ with γ ∈ [0, 1] or a van der Waals equation of state.
Bianchi Type-V model with a perfect fluid and Λ-term
Indian Academy of Sciences (India)
A self-consistent system of gravitational field with a binary mixture of perfect fluid and dark energy given by a cosmological constant has been considered in Bianchi Type-V universe. The perfect fluid is chosen to be obeying either the equation of state = ρ with ∈ [0, 1] or a van der Waals equation of state. The role of ...
Structural perfection and residual electric resistance of tungsten single crystals
International Nuclear Information System (INIS)
Tagirova, D.M.; Dyakina, V.P.; Startsev, V.E.; Esin, V.O.
1997-01-01
A study was made into residual relative resistance (RRR) and structural perfection (SP) of tungsten single crystals, grown by electron beam zone melting using seeding crystals of several orientations, namely, , , , . The single crystals were of 99.98 and 99.9995 wt.% purity. The RRR value is found to depend on crystallographic orientation of an axis of crystal growth and to correlate with SP. Single crystals of different purity are differ in the nature of orientational dependences. It is shown that the correlation between RRR and SP of crystals is mainly due to conduction electron scattering by subgrain boundaries (internal size effect)
Bianchi type-V cosmological models with perfect fluid and heat flow ...
Indian Academy of Sciences (India)
2015-11-27
-V cosmological models with perfect fluid and heat flow in Saez–Ballester theory. Shri Ram M ... Proceedings of the International Workshop/Conference on Computational Condensed Matter Physics and Materials Science
A global conformal extension theorem for perfect fluid Bianchi space-times
International Nuclear Information System (INIS)
Luebbe, Christian; Tod, Paul
2008-01-01
A global extension theorem is established for isotropic singularities in polytropic perfect fluid Bianchi space-times. When an extension is possible, the limiting behaviour of the physical space-time near the singularity is analysed
Hypersurface-homogeneous Universe filled with perfect fluid in f ( R ...
Indian Academy of Sciences (India)
homogeneous Universe filled with perfect fluid in the framework of f ( R , T ) theory of gravity (Harko et al, \\emph{Phys. Rev.} D 84, 024020 (2011)) is derived. The physical behaviour of the cosmological model is studied.
Hypersurface-homogeneous Universe filled with perfect fluid in f (R ...
Indian Academy of Sciences (India)
homogeneous Universe filled with perfect fluid in the framework of f ( R , T ) theory of gravity (Harko et al, \\emph{Phys. Rev.} D 84, 024020 (2011)) is derived. The physical behaviour of the cosmological model is studied.
Bianchi type-I massive string magnetized barotropic perfect fluid ...
Indian Academy of Sciences (India)
Bianchi type-I massive string cosmological model for perfect ﬂuid distribution in the presence of magnetic ﬁeld is investigated in Rosen's [Gen. Relativ. Gravit. 4, 435 (1973)] bimetric theory of gravitation. To obtain the deterministic model in terms of cosmic time, we have used the condition A = ( B C ) n , where n is a constant, ...
Rao, V. U. M.; Vinutha, T.; Vijaya Shanthi, M.; Sree Devi Kumari, G.
2008-09-01
Exact Bianchi type-V cosmological models are presented in Einstein’s theory of gravitation with cosmological constant Λ in case of perfect fluid distribution. Also obtained Bianchi type-V cosmological models in a scalar-tensor theory of gravitation proposed by Saez and Ballester (1986) in case of perfect fluid distribution using and without using negative constant deceleration parameter. Some physical and geometrical properties of the models are also discussed.
Some invariant solutions for non-conformal perfect fluid plates in 5 ...
Indian Academy of Sciences (India)
Abstract. A set of six invariant solutions for non-conformal perfect fluid plates in 5- flat form is obtained using one-parametric Lie group of transformations. Out of the six solutions so obtained, three are in implicit form while the remaining three could be expressed explicitly. Each solution describes an accelerating fluid ...
Some invariant solutions for non-conformal perfect fluid plates in 5 ...
Indian Academy of Sciences (India)
A set of six invariant solutions for non-conformal perfect fluid plates in 5-flat form is obtained using one-parametric Lie group of transformations. Out of the six solutions so obtained, three are in implicit form while the remaining three could be expressed explicitly. Each solution describes an accelerating fluid distribution and is ...
Brane world models with bulk perfect fluid and broken 4D Poincaré invariance
Akarsu, Özgür; Chopovsky, Alexey; Eingorn, Maxim; Fakhr, Seyed Hossein; Zhuk, Alexander
2018-02-01
We consider 5D brane world models with broken global 4D Poincaré invariance (4D part of the spacetime metric is not conformal to the Minkowski spacetime). The bulk is filled with the negative cosmological constant and may contain a perfect fluid. In the case of empty bulk (the perfect fluid is absent), it is shown that one brane solution always has either a physical or a coordinate singularity in the bulk. We cut off these singularities in the case of compact two brane model and obtain regular exact solutions for both 4D Poincaré broken and restored invariance. When the perfect fluid is present in the bulk, we get the master equation for the metric coefficients in the case of arbitrary bulk perfect fluid equation of state (EoS) parameters. In two particular cases of EoS, we obtain the analytic solutions for thin and thick branes. First one generalizes the well known Randall-Sundrum model with one brane to the case of the bulk anisotropic perfect fluid. In the second solution, the 4D Poincaré invariance is restored. Here, the spacetime goes asymptotically to the anti-de Sitter one far from the thick brane.
Avelino, P. P.; Azevedo, R. P. L.
2018-03-01
In this paper we show that the on-shell Lagrangian of a perfect fluid depends on microscopic properties of the fluid, giving specific examples of perfect fluids with different on-shell Lagrangians but with the same energy-momentum tensor. We demonstrate that if the fluid is constituted by localized concentrations of energy with fixed rest mass and structure (solitons) then the average on-shell Lagrangian of a perfect fluid is given by Lm=T , where T is the trace of the energy-momentum tensor. We show that our results have profound implications for theories of gravity where the matter Lagrangian appears explicitly in the equations of motion of the gravitational and matter fields, potentially leading to observable deviations from a nearly perfect cosmic microwave background black body spectrum: n -type spectral distortions, affecting the normalization of the spectral energy density. Finally, we put stringent constraints on f (R ,Lm) theories of gravity using the COBE-FIRAS measurement of the spectral radiance of the cosmic microwave background.
Rao, V. U. M.; Jayasudha, L.
2015-07-01
Five dimensional spherically symmetric space-time is considered in the presence of perfect fluid source in the scalar-tensor theory of gravitation proposed by Saez and Ballester (Phys. Lett. A 113:467, 1986). An exact solution of the field equations is obtained using a relation between the metric potentials which represents a stiff fluid model in this theory. Some physical properties of the model are also discussed.
Bianchi type-V cosmological models with perfect fluid and heat flow ...
Indian Academy of Sciences (India)
physics pp. 415–427. Bianchi type-V cosmological models with perfect fluid and heat flow in Saez–Ballester theory. SHRI RAM1, M ZEYAUDDIN1 and C P SINGH2,∗ ... Introduction. In the last few decades there has been much interest in alternative theories of gravitation, especially the scalar–tensor theories proposed by ...
On some properties of Einstein equations with the perfect fluid energy-momentum tensor
International Nuclear Information System (INIS)
Biesiada, M.; Szydlowski, M.; Szczesny, J.
1989-01-01
We discuss the symmetries of Einstein equations with the perfect fluid energy momentum tensor. We show that the symmetries inherited from vacuum equations enforce the equation of state in the form p p 0 = γρ which is the most often used one and contains models with the cosmological constant. 9 refs. (author)
Perfect fluid Bianchi Type-I cosmological models with time varying G ...
Indian Academy of Sciences (India)
Bianchi Type-I cosmological models containing perfect fluid with time varying and have been presented. The solutions obtained represent an expansion scalar bearing a constant ratio to the anisotropy in the direction of space-like unit vector . Of the two models obtained, one has negative vacuum energy density, ...
Inhomogeneous generalizations of Bianchi Type VIh universes with stiff perfect fluid and radiation
Roy, S. R.; Prasad, A.
1995-03-01
Families of inhomogeneous models filled with a stiff perfect fluid and radiation have been derived in which there is no flow of total momentum. The models are generalizations of those of Bianchi Type VIh and are discussed for some particular forms of the arbitrary functions appearing in them.
Bianchi Type-V model with a perfect fluid and Λ-term
Indian Academy of Sciences (India)
type; perfect fluid; lambda term. PACS Nos 04.20.jb; 98.80.Hw. 1. Introduction. In view of its importance in explaining the observational cosmology, many workers have considered cosmological models with dark energy. In a recent paper, Kremer.
Bianchi type-V cosmological models with perfect fluid and heat flow ...
Indian Academy of Sciences (India)
415–427. Bianchi type-V cosmological models with perfect fluid and heat flow in Saez–Ballester theory. SHRI RAM1, M ZEYAUDDIN1 and C P SINGH2,∗. 1Department of Applied Mathematics, Institute of Technology, Banaras Hindu University,. Varanasi 221 005, India. 2Department of Applied Mathematics, Delhi College ...
Perfect fluid Bianchi Type-I cosmological models with time varying G ...
Indian Academy of Sciences (India)
Abstract. Bianchi Type-I cosmological models containing perfect fluid with time vary- ing G and Λ have been presented. The solutions obtained represent an expansion scalar θ bearing a constant ratio to the anisotropy in the direction of space-like unit vector λi. Of the two models obtained, one has negative vacuum energy ...
Self-similar spatially homogeneous cosmologies: orthogonal perfect fluid and vacuum solutions
International Nuclear Information System (INIS)
Hsu, L.; Wainwright, J.
1986-01-01
It is known that the asymptotic states of a large class of spatially homogeneous cosmological models, near the big bang and at late times, are described by exact self-similar solutions. With this as motivation, all spatially homogeneous solutions of the Einstein field equations are found, which have an orthogonal perfect fluid as source, or are vacuum, and admit a similarity group H 4 which acts transitively on spacetime. (author)
Ganiou, M. G.; Houndjo, M. J. S.; Salako, Ines G.; Rodrigues, M. E.; Tossa, J.
2016-07-01
We describe in this paper the observables of inflationary models, in particular the spectrum index of torsion scalar perturbations, the tensor-to-scalar ratio, and the running of the spectral index, in the framework of perfect fluid models and F(T) gravity theories through the reconstruction methods. Then, our results on the perfect fluid and F(T) gravity theories of inflation are compared with recent cosmological observations such as the Planck satellite and BICEP2 experiment. Our studies prove that the perfect fluid and F(T) gravity models can reproduce the inflationary Universe consistent above all with the Planck data. We have reconstructed several models and considered others which give the best fit values compatible with the spectral index of curvature perturbations, the tensor-to-scalar ratio, and the running of the spectral index within the allowed ranges suggested by the Planck and BICEP2 results. By taking the trace-anomaly into consideration, we have shown that the reconstructed models F(T) can not describe a finite de Sitter inflation without an additional constant n that we related to cosmological constant.
The 'spontaneous' acoustic emission of the shock front in a perfect fluid: solving a riddle
International Nuclear Information System (INIS)
Brun, Louis
2013-06-01
In the fifties, S. D'yakov discovered that theory allows for suitable EOS shock fronts to emit acoustic waves 'spontaneously'. Section 90 of Fluid Mechanics of Landau and Lifshitz, 2. Ed., deals with the phenomenon, leaving it unexplained. This open question was chosen to introduce a monograph in progress about 'the shock front in the perfect fluid'. The novelty of our approach consists in having the phenomenon generated - which means it is non-spontaneous -- from an appropriate solicitation of the front and studying its development analytically. The non classical source and mechanism of the emission are thus brought to light. (author)
Beyond the perfect fluid hypothesis for the dark energy equation of state
International Nuclear Information System (INIS)
Cardone, V.F.; Troisi, A.; Tortora, C.; Capozziello, S.
2006-01-01
Abandoning the perfect fluid hypothesis, we investigate here the possibility that the dark energy equation of state (EoS) w is a nonlinear function of the energy density ρ. To this aim, we consider four different EoS describing classical fluids near thermodynamical critical points and discuss the main features of cosmological models made out of dust matter and a dark energy term with the given EoS. Each model is tested against the data on the dimensionless coordinate distance to Type Ia Supernovae and radio galaxies, the shift and the acoustic peak parameters and the positions of the first three peaks in the anisotropy spectrum of the comic microwave background radiation. We propose a possible interpretation of each model in the framework of scalar field quintessence determining the shape of the self-interaction potential V(φ) that gives rise to each one of the considered thermodynamical EoS. As a general result, we demonstrate that replacing the perfect fluid EoS with more general expressions gives both the possibility of successfully solving the problem of cosmic acceleration escaping the resort to phantom models
Equilibrium points of the tilted perfect fluid Bianchi VIh state space
Apostolopoulos, Pantelis S.
2005-05-01
We present the full set of evolution equations for the spatially homogeneous cosmologies of type VIh filled with a tilted perfect fluid and we provide the corresponding equilibrium points of the resulting dynamical state space. It is found that only when the group parameter satisfies h > -1 a self-similar solution exists. In particular we show that for h > -{1/9} there exists a self-similar equilibrium point provided that γ ∈ ({2(3+sqrt{-h})/5+3sqrt{-h}},{3/2}) whereas for h VIh.
On the uniqueness of static perfect-fluid solutions in general relativity
International Nuclear Information System (INIS)
Beig, R.; Simon, W.
1990-01-01
Following earlier work of Masood-ul-Alam, we consider a uniqueness problem for nonrotating stellar models. Given a static, asymptotically flat perfect-fluid spacetime with barotropic equation of state ρ(p), and given another such spacetime which is spherically symmetric and has the same ρ(p) and the same surface potential: we prove that both are identical provided ρ(p) satisfies a certain differential inequality. This inequality is more natural and less restrictive that the conditions required by Masood-ul-Alam. 30 refs. (Authors)
Pradhan, Anirudh; Singh, P. K.; Yadav, A. K.
2007-01-01
A plane-symmetric inhomogeneous cosmological model of perfect fluid distribution with electro-magnetic field is obtained. The source of the magnetic field is due to an electric current produced along the z-axis. $F_{12}$ is the non-vanishing component of electromagnetic field tensor. To get a deterministic solution, we assume the free gravitational field is Petrov type-II non-degenerate. The behaviour of the electro-magnetic field tensor together with some physical aspects of the model are al...
New class of inhomogeneous cosmological perfect-fluid solutions without big-bang singularity
Energy Technology Data Exchange (ETDEWEB)
Senovilla, J.M.M. (Grupo de Fisica Teorica, Departamento de Fisica, Ingenieria y Radiologia Medica, Facultad de Ciencias, Universidad de Salamanca, 37008 Salmanaca (Spain))
1990-05-07
A new class of exact solutions to Einstein's field equations with a perfect-fluid source is presented. The solutions describe spatially inhomogeneous cosmological models and have a realistic equation of state {ital p}={rho}/3. The properties of the solutions are discussed. The most remarkable feature is the absence of an initial singularity, the curvature and matter invariants being regular and smooth everywhere. We also present an alternative interpretation of the solution as a globally regular cylindrically symmetric space-time.
Linear optical implementation of perfect discrimination between single-bit unitary operations
International Nuclear Information System (INIS)
Zhang Pei; Peng Liang; Wang Zhiwei; Ren Xifeng; Liu Biheng; Huang Yunfeng; Guo Guangcan
2008-01-01
Discrimination of unitary operations is a fundamental task of quantum information. Assisted by linear optical elements, we experimentally demonstrate perfect discrimination between single-bit unitary operations using the sequential scheme which is proved by Duan et al (Phys. Rev. Lett. 2007 98 100503). We also make a comparison with another perfect discrimination scheme called the parallel scheme. The complexity and resource consumed are analysed
Transport tensors in perfectly aligned low-density fluids: Self-diffusion and thermal conductivity
International Nuclear Information System (INIS)
Singh, G. S.; Kumar, B.
2001-01-01
The modified Taxman equation for the kinetic theory of low-density fluids composed of rigid aspherical molecules possessing internal degrees of freedom is generalized to obtain the transport tensors in a fluid of aligned molecules. The theory takes care of the shape of the particles exactly but the solution has been obtained only for the case of perfectly aligned hard spheroids within the framework of the first Sonine polynomial approximation. The expressions for the thermal-conductivity components have been obtained for the first time whereas the self-diffusion components obtained here turn out to be exactly the same as those derived by Kumar and Masters [Mol. Phys. >81, 491 (1994)] through the solution of the Lorentz-Boltzmann equation. All our expressions yield correct results in the hard-sphere limit
Perfect fluid of p-branes, 2D dilaton gravity and the big-bang
Energy Technology Data Exchange (ETDEWEB)
Borlaf, J. E-mail: jborlaf@redestb.es
2001-01-15
This paper starts by building the energy-momentum tensor of a perfect fluid of p-branes coupled to (p+4)-dimensional general relativity. Having three homogeneous and isotropic macroscopical spatial dimensions, the system gravity/fluid can be reduced to an effective theory over the branes. For the string fluid (p=1) the effective theory is nothing but the 2D dilaton gravity where the potential for the scalar field, which is the scale factor of the macroscopical space, is fixed by the state equation and the three-dimensional geometry. This theory can be solved allowing us to compare some relevant aspects in our homogeneous and isotropic string cosmologies with those of the Robertson-Walker ones. In particular, unlike the point-particle models, the existence of an initial singularity is strongly sensitive to the state equation, and it is remarkable that this model picks out the radiation state equation as the canonical case where the big-bang is kinematically forbidden. Moreover, we cannot reduce the Robertson-Walker cosmologies to the limit when the string size approaches to zero, because the existence of an upper bound on the string size is not compatible with the big-bang. Some examples are presented.
Perfect fluid of p-branes, 2D dilaton gravity and the big-bang
International Nuclear Information System (INIS)
Borlaf, J.
2001-01-01
This paper starts by building the energy-momentum tensor of a perfect fluid of p-branes coupled to (p+4)-dimensional general relativity. Having three homogeneous and isotropic macroscopical spatial dimensions, the system gravity/fluid can be reduced to an effective theory over the branes. For the string fluid (p=1) the effective theory is nothing but the 2D dilaton gravity where the potential for the scalar field, which is the scale factor of the macroscopical space, is fixed by the state equation and the three-dimensional geometry. This theory can be solved allowing us to compare some relevant aspects in our homogeneous and isotropic string cosmologies with those of the Robertson-Walker ones. In particular, unlike the point-particle models, the existence of an initial singularity is strongly sensitive to the state equation, and it is remarkable that this model picks out the radiation state equation as the canonical case where the big-bang is kinematically forbidden. Moreover, we cannot reduce the Robertson-Walker cosmologies to the limit when the string size approaches to zero, because the existence of an upper bound on the string size is not compatible with the big-bang. Some examples are presented
Rao, V. U. M.; Vijaya Santhi, M.; Vinutha, T.
2008-09-01
Exact Bianchi type-II, VIII and IX cosmological models are obtained in a scalar tensor theory proposed by Saez and Ballester (Phys. Lett. A 113:467, 1986) with perfect fluid as a source. Some physical and geometrical properties of the models are studied. It is observed that the models are free from initial singularities and they are expanding with time.
Lorentz invariant noncommutative algebra for cosmological models coupled to a perfect fluid
Energy Technology Data Exchange (ETDEWEB)
Abreu, Everton M.C.; Marcial, Mateus V.; Mendes, Albert C.R.; Oliveira, Wilson [Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropedica, RJ (Brazil); Universidade Federal de Juiz de Fora, MG (Brazil)
2013-07-01
Full text: In current theoretical physics there is a relevant number of theoretical investigations that lead to believe that at the first moments of our Universe, the geometry was not commutative and the dominating physics at that time was ruled by the laws of noncommutative (NC) geometry. Therefore, the idea is that the physics of the early moments can be constructed based on these concepts. The first published work using the idea of a NC spacetime were carried out by Snyder who believed that NC principles could make the quantum field theory infinities disappear. However, it did not occur and Snyder's ideas were put to sleep for a long time. The main modern motivations that rekindle the investigation about NC field theories came from string theory and quantum gravity. In the context of quantum mechanics for example, R. Banerjee discussed how NC structures appear in planar quantum mechanics providing a useful way for obtaining them. The analysis was based on the NC algebra used in planar quantum mechanics that was originated from 't Hooft's analysis on dissipation and quantization. In this work we carry out a NC algebra analysis of the Friedmann-Robert-Walker model, coupled to a perfect fluid and in the presence of a cosmological constant. The classical field equations are modified, by the introduction of a shift operator, in order to introduce noncommutativity in these models. (author)
Single-particle Schroedinger fluid. I. Formulation
International Nuclear Information System (INIS)
Kan, K.K.; Griffin, J.J.
1976-01-01
The problem of a single quantal particle moving in a time-dependent external potential well is formulated specifically to emphasize and develop the fluid dynamical aspects of the matter flow. This idealized problem, the single-particle Schroedinger fluid, is shown to exhibit already a remarkably rich variety of fluid dynamical features, including compressible flow and line vortices. It provides also a sufficient framework to encompass simultaneously various simplified fluidic models for nuclei which have earlier been postulated on an ad hoc basis, and to illuminate their underlying restrictions. Explicit solutions of the single-particle Schroedinger fluid problem are studied in the adiabatic limit for their mathematical and physical implications (especially regarding the collective kinetic energy). The basic generalizations for extension of the treatment to the many-body Schroedinger fluid are set forth
Zhang, Chi; Hu, Xinhua
2016-12-01
Metamaterials are engineered materials which exhibit fascinating properties unreachable by traditional materials. Here, we report on the design, fabrication, and experimental characterization of a three-dimensional single-port labyrinthine acoustic metamaterial. By using curled perforations with one end closed and with appropriate loss inside, the metamaterial can perfectly absorb airborne sounds in a low-frequency band. Both the position and the relative width of the band can be tuned flexibly. A trade-off is uncovered between the relative absorption bandwidth and thickness of the metamaterial. When the relative absorption bandwidth is as high as 51%, the requirement of deep-subwavelength thickness (0.07 λ ) can still be satisfied. We emphasize that the perfect absorption with large tunability in relative bandwidth (from 9% to >180 % ) was not attainable previously and may find applications ranging from noise reduction to sound imaging.
International Nuclear Information System (INIS)
Gaikwad, N. P.; Borkar, M. S.; Charjan, S. S.
2011-01-01
We investigate the Bianchi type-I massive string magnetized barotropic perfect fluid cosmological model in Rosen's bimetric theory of gravitation with and without a magnetic field by applying the techniques used by Latelier (1979, 1980) and Stachel (1983). To obtain a deterministic model of the universe, it is assumed that the universe is filled with barotropic perfect fluid distribution. The physical and geometrical significance of the model are discussed. By comparing our model with the model of Bali et al. (2007), it is realized that there are no big-bang and big-crunch singularities in our model and T = 0 is not the time of the big bang, whereas the model of Bali et al. starts with a big bang at T = 0. Further, our model is in agreement with Bali et al. (2007) as time increases in the presence, as well as in the absence, of a magnetic field. (geophysics, astronomy, and astrophysics)
Energy Technology Data Exchange (ETDEWEB)
Murugan, G. Senthil, E-mail: nanosen@gmail.com; Ramasamy, P., E-mail: nanosen@gmail.com [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam, Tamilnadu - 603110 (India)
2014-04-24
Polar organic nonlinear optical material, L-tartaric acid single crystals have been grown from slow evaporation solution growth technique. Single crystal X-ray diffraction study indicates that the grown crystal crystallized in monoclinic system with space group P2{sub 1}. Crystalline perfection of the crystal has been evaluated by high resolution X-ray diffraction technique and it reveals that the crystal quality is good and free from structural grain boundaries. Mechanical stability of the crystal has been analyzed by Vickers microhardness measurement and it exhibits reverse indentation size effect. Piezoelectric d{sub 33} co-efficient for the crystal has been examined and its value is 47 pC/N. The ferroelectric behaviour of the crystal was analyzed by polarization-electric field hysteresis loop measurement.
Yang, Jubiao; Yu, Feimi; Krane, Michael; Zhang, Lucy T
2018-01-01
In this work, a non-reflective boundary condition, the Perfectly Matched Layer (PML) technique, is adapted and implemented in a fluid-structure interaction numerical framework to demonstrate that proper boundary conditions are not only necessary to capture correct wave propagations in a flow field, but also its interacted solid behavior and responses. While most research on the topics of the non-reflective boundary conditions are focused on fluids, little effort has been done in a fluid-structure interaction setting. In this study, the effectiveness of the PML is closely examined in both pure fluid and fluid-structure interaction settings upon incorporating the PML algorithm in a fully-coupled fluid-structure interaction framework, the Immersed Finite Element Method. The performance of the PML boundary condition is evaluated and compared to reference solutions with a variety of benchmark test cases including known and expected solutions of aeroacoustic wave propagation as well as vortex shedding and advection. The application of the PML in numerical simulations of fluid-structure interaction is then investigated to demonstrate the efficacy and necessity of such boundary treatment in order to capture the correct solid deformation and flow field without the requirement of a significantly large computational domain.
DEFF Research Database (Denmark)
Xie, Zhinan; Matzen, René; Cristini, Paul
2016-01-01
A time-domain Legendre spectral-element method is described for full-wave simulation of ocean acoustics models, i.e., coupled fluid-solid problems in unbounded or semi-infinite domains, taking into account shear wave propagation in the ocean bottom. The technique can accommodate range......-dependent and depth-dependent wave speed and density, as well as steep ocean floor topography. For truncation of the infinite domain, to efficiently absorb outgoing waves, a fluid-solid complex-frequency-shifted unsplit perfectly matched layer is introduced based on the complex coordinate stretching technique...... because the latter allows for implementation of high-order time schemes, leading to reduced numerical dispersion and dissipation, a topic of importance, in particular, in long-range ocean acoustics simulations. The method is validated for a two dimensional fluid-solid Pekeris waveguide and for a three...
Single-channel labyrinthine metasurfaces as perfect sound absorbers with tunable bandwidth
Liu, Liu; Chang, Huiting; Zhang, Chi; Hu, Xinhua
2017-08-01
Perfect sound absorbers with a deep-subwavelength thickness are important to applications such as noise reduction and sound detection. But their absorption bandwidths are usually narrow and difficult to adjust. A recent solution for this problem relies on multiple-resonator metasurfaces, which are hard to fabricate. Here, we report on the design, fabrication, and characterization of a single-channel labyrinthine metasurface, which allows total sound absorption at resonant frequency when appropriate amounts of porous media (or critical sound losses) are introduced in the channels. The absorption bandwidth can be tuned by changing the cross-sectional areas of channels. A tradeoff is found between the absorption bandwidth and the metasurface thickness. However, large tunability in the relative absorption bandwidth (from 17% to 121%) is still attainable by such metasurfaces with a deep-subwavelength thickness (0.03-0.13λ).
Heat dissipation in relativistic single charged fluids
Garcia-Perciante, A. L.; Sandoval-Villalbazo, A.; Brun-Battistini, D.
2015-11-01
When the temperature of a fluid is increased its out of equilibrium behavior is significantly modified. In particular kinetic theory predicts that the heat flux is not solely driven by a temperature gradient but can also be coupled to other thermodynamic vector forces. We explore the nature of heat conduction in a single component charged fluid in special relativity, where the electromagnetic field is introduced as an external force. We obtain an electrothermal effect, similar to the mixture's cross-effect, which is not present in the non-relativistic simple fluid. The general lines of the corresponding calculation will be shown, emphasizing the importance of reference frame invariance and the origin of the extra heat sources, in particular the role of the modified inertia and the difference in fluid's and molecules' proper times. The constitutive equation for the heat flux obtained using Chapman-Enskog's expansion in Marle's approximation will be analyzed together with the corresponding transport coefficients.The impact of this effect in the overall dynamics of the system here considered will be briefly discussed. The authors acknowledge support from CONACyT through grant CB2011/167563.
Self-propulsion of a body with rigid surface and variable coefficient of lift in a perfect fluid
Ramodanov, Sergey M.; Tenenev, Valentin A.; Treschev, Dmitry V.
2012-11-01
We study the system of a 2D rigid body moving in an unbounded volume of incompressible, vortex-free perfect fluid which is at rest at infinity. The body is equipped with a gyrostat and a so-called Flettner rotor. Due to the latter the body is subject to a lifting force (Magnus effect). The rotational velocities of the gyrostat and the rotor are assumed to be known functions of time (control inputs). The equations of motion are presented in the form of the Kirchhoff equations. The integrals of motion are given in the case of piecewise continuous control. Using these integrals we obtain a (reduced) system of first-order differential equations on the configuration space. Then an optimal control problem for several types of the inputs is solved using genetic algorithms.
Perfect count: a novel approach for the single platform enumeration of absolute CD4+ T-lymphocytes.
Storie, Ian; Sawle, Alex; Goodfellow, Karen; Whitby, Liam; Granger, Vivian; Ward, Rosalie Y; Peel, Janet; Smart, Theresa; Reilly, John T; Barnett, David
2004-01-01
The derivation of reliable CD4(+) T lymphocyte counts is vital for the monitoring of disease progression and therapeutic effectiveness in HIV(+) individuals. Flow cytometry has emerged as the method of choice for CD4(+) T lymphocyte enumeration, with single-platform technology, coupled with reference counting beads, fast becoming the "gold standard." However, although single-platform, bead-based, sample acquisition requires the ratio of beads to cells to remain unchanged, there is no available method, until recently, to monitor this. Perfect Count beads have been developed to address this issue and to incorporate two bead populations, with different densities, to allow the detection of inadequate mixing. Comparison of the relative proportions of both beads with the manufacture's defined limits enables an internal QC check during sample acquisition. In this study, we have compared CD4(+) T lymphocyte counts, obtained from 104 HIV(+) patients, using TruCount beads with MultiSet software (defined as the predicated method) and the new Perfect Count beads, incorporating an in house sequential gating strategy. We have demonstrated an excellent degree of correlation between the predicate method and the Perfect Count system (r(2) = 0.9955; Bland Altman bias +27 CD4(+) T lymphocytes/microl). The Perfect Count system is a robust method for performing single platform absolute counts and has the added advantage of having internal QC checks. Such an approach enables the operator to identify potential problems during sample preparation, acquisition and analysis. Copyright 2003 Wiley-Liss, Inc.
Higher-dimensional inhomogeneous perfect fluid collapse in f(R) gravity
Energy Technology Data Exchange (ETDEWEB)
Abbas, G. [The Islamia University of Bahawalpur, Department of Mathematics, Bahawalpur (Pakistan); Khan, M.S.; Ahmad, Zahid [COMSATS Institute of Information Technology, Department of Mathematics, Abbottabad, KPK (Pakistan); Zubair, M. [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan)
2017-07-15
This paper is about the n + 2-dimensional gravitational contraction of an inhomogeneous fluid without heat flux in the framework of a f(R) metric theory of gravity. Matching conditions for two regions of a star are derived by using the Darmois junction conditions. For the analytic solution of the equations of motion in modified f(R) theory of gravity, we have taken the scalar curvature constant. Hence the final result of gravitational collapse in this framework is the existence of black hole and cosmological horizons, and both of these form earlier than the singularity. It is shown that a constant curvature term f(R{sub 0}) (R{sub 0} is the constant scalar curvature) slows down the collapsing process. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Amouyal, Gregory, E-mail: gregamouyal@hotmail.com; Thiounn, Nicolas, E-mail: nicolas.thiounn@aphp.fr; Pellerin, Olivier, E-mail: olivier.pellerin@aphp.fr [Université Paris Descartes - Sorbonne - Paris - Cité, Faculté de Médecine (France); Yen-Ting, Lin, E-mail: ymerically@gmail.com [Assistance Publique - Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Interventional Radiology Department (France); Giudice, Costantino Del, E-mail: costantino.delgiudice@aphp.fr [Université Paris Descartes - Sorbonne - Paris - Cité, Faculté de Médecine (France); Dean, Carole, E-mail: carole.dean@aphp.fr [Assistance Publique - Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Interventional Radiology Department (France); Pereira, Helena, E-mail: helena.pereira@aphp.fr [Assistance Publique - Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Clinical Research Unit (France); Chatellier, Gilles, E-mail: gilles.chatellier@aphp.fr; Sapoval, Marc, E-mail: marc.sapoval2@aphp.fr [Université Paris Descartes - Sorbonne - Paris - Cité, Faculté de Médecine (France)
2016-03-15
BackgroundProstatic artery embolization (PAE) has been performed for a few years, but there is no report on PAE using the PErFecTED technique outside from the team that initiated this approach.ObjectiveThis single-center retrospective open label study reports our experience and clinical results on patients suffering from symptomatic BPH, who underwent PAE aiming at using the PErFecTED technique.Materials and MethodsWe treated 32 consecutive patients, mean age 65 (52–84 years old) between December 2013 and January 2015. Patients were referred for PAE after failure of medical treatment and refusal or contra-indication to surgery. They were treated using the PErFecTED technique, when feasible, with 300–500 µm calibrated microspheres (two-night hospital stay or outpatient procedure). Follow-up was performed at 3, 6, and 12 months.ResultsWe had a 100 % immediate technical success of embolization (68 % of feasibility of the PErFecTED technique) with no immediate complications. After a mean follow-up of 7.7 months, we observed a 78 % rate of clinical success. Mean IPSS decreased from 15.3 to 4.2 (p = .03), mean QoL from 5.4 to 2 (p = .03), mean Qmax increased from 9.2 to 19.2 (p = .25), mean prostatic volume decreased from 91 to 62 (p = .009) mL. There was no retrograde ejaculation and no major complication.ConclusionPAE using the PErFecTED technique is a safe and efficient technique to treat bothersome LUTS related to BPH. It is of interest to note that the PErFecTED technique cannot be performed in some cases for anatomical reasons.
Accelerating Bianchi Type-V Cosmology with Perfect Fluid and Heat Flow in Sáez-Ballester Theory
Pradhan, Anirudh; Kumar Singh, Ajay; Chouhan, D. S.
2013-01-01
In this paper we discuss the law of variation of scale factor a = (tket)^{1/n} which yields a time-dependent deceleration parameter (DP) representing a new class of models that generate a transition of universe from the early decelerated phase to the recent accelerating phase. Exact solutions of Einstein's modified field equations in Bianchi type-V space-time with perfect fluid and heat conduction are obtained within the framework of Sáez-Ballester scalar-tensor theory of gravitation and the model is found to be in good agreement with recent observations. We find, for n=3, k=1, the present value of DP in derived model as q 0=-0.67 which is very near to the observed value of DP at present epoch. We find that the time-dependent DP is sensible for the present day Universe and give an earmark description of evolution of universe. Some physical and geometric properties of the models are also discussed.
International Nuclear Information System (INIS)
Portugal, R.
1984-01-01
Three processes of solutions of the Einstein-Maxwell equations for Bianchi - I, II, VIII, IX and Kantowski-Sachs-like cosmological models with perfect fluid in magnetohydrolodynamical regimem are presented. Diagonal Bianchi-like models are considered with two anisotropy direction in the maximum. Solutions are found for Bianchi-II and IX-like models with energy conditions to be analyzed. Solutions are found for Bianchi-IX and Kantowski-Sachs-Like models with positive electric conductivity and satisfering to the predominant energy conditions. Solutions are formed for isotropic Kantowski-Sachs-Like models satisfering to the equation of state p=λρ, 0 0, admiting, in addition to the perfect fluid, electric field only. It is shown that a class of Bertotti-Robinson-like solutions is unstable by perturbations and it is carried in Kantowski-Sachs-like models with non-null electric conductivity. (L.C.) [pt
Investigation of nearly perfect magnetic single crystals by means of neutron diffraction
International Nuclear Information System (INIS)
Schmidt, H.H.; Koenig, K.
1978-01-01
Results from some neutron diffraction experiments with crystals of DyFeO 3 are reported. Neutrons of appropriate wavelength (1.26 A) were reflected by a perfect Si crystal monochromator. In most experiments the wavelength used was 1.26 A, the second crystal was to be placed in two different positions, the distance between the first and second crystal being about 6 meters for position 2 and about 7 meters for position 1. Position 2 provided the possibility of applying a magnetic field to the 2 crystal. The intensities of the reflected and transmitted beams were measured by two water- and cadmium-shielded neutron detectors. The magnetic structure of DyFeO 3 leads to the fact, that there are two classes of Bragg reflection, namely one of pure nuclear and another of pure magnetic origin
Cerdá, Jorge I; Sławińska, Jagoda; Le Lay, Guy; Marele, Antonela C; Gómez-Rodríguez, José M; Dávila, María E
2016-10-06
Carbon and silicon pentagonal low-dimensional structures attract a great interest as they may lead to new exotic phenomena such as topologically protected phases or increased spin-orbit effects. However, no pure pentagonal phase has yet been realized for any of them. Here we unveil through extensive density functional theory calculations and scanning tunnelling microscope simulations, confronted to key experimental facts, the hidden pentagonal nature of single- and double-strand chiral Si nano-ribbons perfectly aligned on Ag(110) surfaces whose structure has remained elusive for over a decade. Our study reveals an unprecedented one-dimensional Si atomic arrangement solely comprising almost perfect alternating pentagons residing in the missing row troughs of the reconstructed surface. We additionally characterize the precursor structure of the nano-ribbons, which consists of a Si cluster (nano-dot) occupying a silver di-vacancy in a quasi-hexagonal configuration. The system thus materializes a paradigmatic shift from a silicene-like packing to a pentagonal one.
International Nuclear Information System (INIS)
Freund, A K; Rehm, C
2014-01-01
The present study has been conducted in the framework of the channel-cut crystal design for the Kookaburra ultra-small-angle neutron scattering (USANS) instrument to be installed at the OPAL reactor of ANSTO. This facility is based on the classical Bonse-Hart method that uses two multiple-reflection crystal systems. The dynamical theory of diffraction by perfect crystals distinguishes two cases: the Darwin case applying to infinitely thick crystals and the Ewald solution for very small absorption taking into account the reflection from the rear face of a plane-parallel crystal reflecting in Bragg geometry. The former is preferable because it yields narrower rocking curves. To prevent the neutrons to 'see' the rear face, grooves were machined into the backside of perfect Si test crystals for single reflection and filled with neutron absorbing material. These samples were examined at the S18 instrument of the Institut Laue-Langevin. Unexpectedly the crystals with empty slots showed an increase of the rocking curve width. When filling the slots with an absorber the widths decreased, but without reaching that of the Darwin curve. Understanding the results and achieving a successful crystal design call for the development of a theory that permits to describe neutron diffraction from crystals with a structured back face.
Freund, A. K.; Rehm, C.
2014-07-01
The present study has been conducted in the framework of the channel-cut crystal design for the Kookaburra ultra-small-angle neutron scattering (USANS) instrument to be installed at the OPAL reactor of ANSTO. This facility is based on the classical Bonse-Hart method that uses two multiple-reflection crystal systems. The dynamical theory of diffraction by perfect crystals distinguishes two cases: the Darwin case applying to infinitely thick crystals and the Ewald solution for very small absorption taking into account the reflection from the rear face of a plane-parallel crystal reflecting in Bragg geometry. The former is preferable because it yields narrower rocking curves. To prevent the neutrons to "see" the rear face, grooves were machined into the backside of perfect Si test crystals for single reflection and filled with neutron absorbing material. These samples were examined at the S18 instrument of the Institut Laue-Langevin. Unexpectedly the crystals with empty slots showed an increase of the rocking curve width. When filling the slots with an absorber the widths decreased, but without reaching that of the Darwin curve. Understanding the results and achieving a successful crystal design call for the development of a theory that permits to describe neutron diffraction from crystals with a structured back face.
Cerdá, Jorge I.; Sławińska, Jagoda; Le Lay, Guy; Marele, Antonela C.; Gómez-Rodríguez, José M.; Dávila, María E.
2016-01-01
Carbon and silicon pentagonal low-dimensional structures attract a great interest as they may lead to new exotic phenomena such as topologically protected phases or increased spin–orbit effects. However, no pure pentagonal phase has yet been realized for any of them. Here we unveil through extensive density functional theory calculations and scanning tunnelling microscope simulations, confronted to key experimental facts, the hidden pentagonal nature of single- and double-strand chiral Si nano-ribbons perfectly aligned on Ag(110) surfaces whose structure has remained elusive for over a decade. Our study reveals an unprecedented one-dimensional Si atomic arrangement solely comprising almost perfect alternating pentagons residing in the missing row troughs of the reconstructed surface. We additionally characterize the precursor structure of the nano-ribbons, which consists of a Si cluster (nano-dot) occupying a silver di-vacancy in a quasi-hexagonal configuration. The system thus materializes a paradigmatic shift from a silicene-like packing to a pentagonal one. PMID:27708263
Sullivan, Daniel Y
2003-01-01
Significant contributions by clinicians, researchers, and manufacturers have brought us to a previously almost unimaginable point in time, where it is possible to place and restore a single dental implant in the esthetic zone with a success rate above 96% and with the probability that it will look very much like a natural tooth. In addition, in select cases it is possible to do the extraction, implant placement, and provisional restoration on the same day. There is very little trauma at the implant site, which results in greater comfort for the patient and ultimately greater tissue preservation long-term. We have now observed single-tooth anterior implant cases for 15 years and have every belief that these implants will continue to function in health for many years. So what is next? We will have to wait and see, but it is this clinician's hope that the next 15 years will bring us more of these cooperative efforts that have so dramatically improved our patients' lives.
Directory of Open Access Journals (Sweden)
Naoki Tsukamoto
2013-12-01
Full Text Available Hořava–Lifshitz gravity has covariance only under the foliation-preserving diffeomorphism. This implies that the quantities on the constant-time hypersurfaces should be regular. In the original theory, the projectability condition, which strongly restricts the lapse function, is proposed. We assume that a star is filled with a perfect fluid with no-radial motion and that it has reflection symmetry about the equatorial plane. As a result, we find a no-go theorem for stationary and axisymmetric star solutions in projectable Hořava–Lifshitz gravity under the physically reasonable assumptions in the matter sector. Since we do not use the gravitational action to prove it, our result also works out in other projectable theories and applies to not only strong gravitational fields, but also weak gravitational ones.
International Nuclear Information System (INIS)
Sussman, R.A.
1988-01-01
Geometrical and physical properties of the solutions derived and classified in Part I [J. Math. Phys. 28, 1118 (1987)] are examined in detail. It is shown how the imposition of zero shear restricts the possible choices of equations of state. Two types of singular boundaries arising in these solutions are examined by verifying the local behavior of causal curves approaching these boundaries. For this purpose, a criterion due to C. J. S. Clarke (private communication) is given, allowing one to test the completeness of arbitrary accelerated timelike curves in terms of their acceleration and proper time. One of these boundaries is a spacelike singularity at which causal curves terminate as pressure diverges but matter-energy and charge densities remain finite. At the other boundary, which is timelike if the expansion Θ is finite, proper volume of local fluid elements vanishes as all state variables diverge but causal curves are complete. If Θ diverges at this boundary, a null singularity arises as the end product of the collapse of a two-sphere generated by a given class of timelike curves. The gravitational collapse of bounded spheres matched to a Schwarzschild or Reissner--Nordstroem exterior is also examined in detail. It is shown that the spacelike singularity mentioned above could be naked under certain parameter choices. Solutions presenting the other boundary produce very peculiar black holes in which the ''surface'' of the sphere collapses into the above mentioned null singularity, while the ''interior'' fluid layers avoid this singularity and evolve towards their infinite future
Czech Academy of Sciences Publication Activity Database
Mikula, Pavol; Vrána, Miroslav; Šaroun, Jan; Krejčí, F.; Seong, B. S.; Woo, W.; Furusaka, M.
2013-01-01
Roč. 46, č. 1 (2013), s. 128-134 ISSN 0021-8898 R&D Projects: GA ČR GAP204/10/0654; GA MŠk LM2010011 Institutional support: RVO:61389005 Keywords : multiple reflections * bent perfect crystals * neutron diffraction Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.950, year: 2013
International Nuclear Information System (INIS)
Freund, A.; Schneider, J.R.
1976-01-01
The work is divided into the following three chapters: 1) diffraction by perfect and imperfect crystals, 2) experimental apparatus (describing gamma ray, X-ray and neutron diffractometers), 3) application of diffraction methods to the development of neutron monochromators. (WBU) [de
Moerland, R.J.; van Hulst, N.F.; Gersen, H.; Kuipers, L.
2005-01-01
Recently, the existence of a perfect lens has been predicted, made of an artificial material that has a negative electric permittivity and a negative magnetic permeability. For optical frequencies a poormans version is predicted to exist in the sub-wavelength limit. Then, only the permittivity has
Freund, A.K.; Rehm, C.
2014-01-01
The present study has been conducted in the framework of the channel-cut crystal design for the Kookaburra ultra-small-angle neutron scattering (USANS) instrument to be installed at the OPAL reactor of ANSTO. This facility is based on the classical Bonse-Hart method that uses two multiple-reflection crystal systems. The dynamical theory of diffraction by perfect crystals distinguishes two cases: the Darwin case applying to infinitely thick crystals and the Ewald solution for very small absorp...
DEFF Research Database (Denmark)
Pless, Mette; Sørensen, Niels Ulrik
towards a performance-culture, where it is through performing (perfectly), that one becomes acknowledged as a young person, and where top-performances and the ability to position oneself as a ’winner’ is accentuated in young people’s narratives (Sørensen et al 2013, Jackson 2006). In the paper we ask how...... – and to what extent – performance-culture, and following from this, the narrow concept of normality, is something that different young people relate and define themselves in relation to. At the same time we maintain a focus on how common social demands and structurations affect and are managed by different...
International Nuclear Information System (INIS)
Nouicer, R.
2013-01-01
This thesis for the 'Accreditation to lead research' diploma consists of six chapters. Chapter I provides an overview of my scientific career, including a summary of my research tasks, professional experiences, and scientific output, list of my oral presentations at international conferences and my publications history. Chapter II introduces the background and goals of research in relativistic heavy ion physics, the main axis of research at the RHIC collider facility. Chapter III describes the context of Quarks-Gluon Plasma (QGP) physics including theoretical aspects, experimental aspects, the signatures of deconfinement and the evolution of QGP physics from fixed-target (SPS) to collider (RHIC) beam energies. Chapter IV details my personal contribution to the construction, assembly, installation, operation, evaluation of the signals and the maintenance of (i) the silicon pixel detectors used for the measurements of the charged particles multiplicity in PHOBOS experiment, and also (ii) the silicon vertex tracker (VTX) in PHENIX, with the main goal being to differentiate measurements of the heavy quarks charm and beauty. Chapter V presents my analysis work using the 'hit-counting' method which allows the measurement of the pseudorapidity density distributions of charged particles in PHOBOS at several RHIC energies. This chapter also illustrates my predictions for the LHC as well my publications as principal author and my responsibilities as 'Co-convenor' of the multiplicity group in PHOBOS. Finally, chapter VI presents the highlights of the RHIC results: 'Nearly Perfect Fluid of Quarks and Gluons'. This chapter illustrates a great wealth of scientific discoveries, and some great surprises encountered in the RHIC era which provided new perspectives in quantum chromodynamics (QCD) calculations. At the end of this chapter, I concluded while answering the question about what we have learnt and where we are. (author)
Cryogenic Fluid Transfer Components Using Single Crystal Piezoelectric Actuators, Phase I
National Aeronautics and Space Administration — Cryogenic fluid transfer components using single crystal piezoelectric actuators are proposed to enable low thermal mass, minimal heat leak, low power consumption...
Cryogenic Fluid Transfer Components Using Single Crystal Piezoelectric Actuators, Phase II
National Aeronautics and Space Administration — Cryogenic fluid transfer components using single crystal piezoelectric actuators are proposed to enable low thermal mass, minimal heat leak, low power consumption...
Fluid inclusions and microstructures in experimentally deformed quartz single crystals
Thust, A.; Tarantola, A.; Heilbronner, R.; Stünitz, H.
2009-04-01
The "H2O-weakening" effect that reduces the strength of quartz dramatically (e.g. Griggs & Blacic 1965) is still not understood. For example, Kronenberg & Tullis (1984) conclude that the weakening effect is pressure dependent while Paterson (1989) infers a glide and recovery control of water. Obviously, the spatial distribution and transport of H2O are important factors (Kronenberg et al. 1986, FitzGerald et al. 1991). We have carried out experiments on milky quartz in a Griggs deformation apparatus. Cylinders (6.5 mm in diameter, 12-13 mm in length) from a milky zone of a natural quartz single crystal have been cored in orientations (1) normal to one of the prism planes and (2) 45˚ to and 45˚ to (O+orientation). At 1 GPa confining pressure, 900˚ C and 10-6s-1, the flow strength is 150 MPa for samples with orientation (1). Further experiments are needed to establish the flow strength for orientation (2). FTIR measurements on double-polished thick sections (200-500 μm) in the undeformed quartz material yield an average H2O content of approximately 100 H/106Si. The water is heterogeneously distributed in the sample. Direct measurements on fluid inclusions yield a H2O content of more than 25 000 H/106Si. Thus, the H2O in the undeformed material is predominantly present in fluid inclusions of size from tens to hundred microns. Micro-thermometric measurements at low temperature indicate the presence of different salts in the fluid inclusions. The ice melting temperature, between -6.9 and -7.4˚ C, indicate an average salinity of 10.5 wt% NaCl. After deformation the distribution of H2O is more homogeneous throughout the sample. The majority of the big inclusions have disappeared and very small inclusions of several microns to sub-micron size have formed. FTIR measurements in zones of undulatory extinction and shear bands show an average H2O content of approximately 3000 H/106Si. Moreover, the larger fluid inclusions are characterized by a higher salinity (12 wt%) due
Yao, Ru-Xin; Hailili, Reshalaiti; Cui, Xin; Wang, Li; Zhang, Xian-Ming
2015-02-21
A perfectly aligned 63 helical tubular cuprous bromide single crystal has been synthesized and characterized, which can selectively decompose negatively charged dyes of Methyl Orange (MO) and Kermes Red (KR), and the photocatalytic efficiency is higher than that of nanosized (∼25 nm) TiO2 and ZnO. The direction and magnitude of the dipole moments as well as the band structure were calculated to reveal high photocatalytic efficiency. Moreover, luminescence studies indicate that the CuBr tube materials show very strong yellowish green emissions in the solid state and emulsion even at room temperature, and exhibit extremely high detection sensitivity towards nitro-explosives via fluorescence quenching. Detectable luminescence responses were observed at a very low concentration of 20 ppm with a high quenching efficiency of 94.90%. The results suggest that they may be promising multifunctional materials for photo-catalysis, luminescence and sensing of nitro-explosives.
High-beta axisymmetric equilibria with flow in reduced single-fluid and two-fluid models
Atsushi, ITO; Jes?s J., RAMOS; Noriyoshi, NAKAJIMA
2008-01-01
Reduced single-fluid and two-fluid equations for axisymmetric toroidal equilibria of high-beta plasmas with flow are derived by using asymptotic expansions in terms of the inverse aspect ratio. Two different orderings for the flow velocity, comparable to the poloidal Alfv?n velocity and comparable to the poloidal sound velocity, are considered. For a poloidal-Alfv?nic flow, the two-fluid equilibrium equations with hot ion effects are shown to have a singularity that is shifted by the gyrovisc...
Sivakumar, N.; Kanagathara, N.; Bhagavannarayana, G.; Kalainathan, S.; Anbalagan, G.
2015-09-01
Equimolar amounts of melamine and levulinic acid results an organic crystal of melaminium levulinate monohydrate (MLM) at room temperature. MLM belongs to a monoclinic crystal structure having P21/c space group which was confirmed by single crystal X-ray diffraction study. Functional groups present in the MLM crystal were identified by FT-IR spectral study. HRXRD study dictates the quality of MLM crystal. UV-visble spectrum of MLM reveals the lower cut-off wavelength of 293 nm with 55% optical transparency and optical band gap was found to be 4.20 eV for the prominent plane (1 0 -1). Refractive indices for the three axes of MLM crystal were found to be nx=2.6, ny=2.4 and nz=2.2 respectively. Further the thermal stability and melting point of MLM crystal were investigated by TG/DTA study. Dielectric permittivity tensor components were estimated for the planes (1 0 -1), (0 1 0) and (1 1 1) respectively. The thermal conductivity of the crystal by Wiedemann-Franz law was found to be 5.99×10-11 W/mK at 70 °C. LDT value (2.84 GW/cm2) of MLM was estimated for laser optical device applications.
Sivakumar, N.; Srividya, J.; Mohana, J.; Anbalagan, G.
2015-03-01
l-tryptophan p-nitrophenol trisolvate (LTPN), an organic nonlinear optical material was synthesized using ethanol-water mixed solvent and the crystals were grown by a slow solvent evaporation method. The crystal structure and morphology were studied by single crystal X-ray diffraction analysis. The crystalline perfection of the LTPN crystal was analyzed by high-resolution X-ray diffraction study. The molecular structure of the crystal was confirmed by observing the various characteristic functional groups of the material using vibrational spectroscopy. The cut-off wavelength, optical transmission, refractive index and band gap energy were determined using UV-visible data. The variation of refractive index with wavelength shows the normal behavior. The second harmonic generation of the crystal was confirmed and the efficiency was measured using Kurtz Perry powder method. Single and multiple shot methods were employed to measure surface laser damage of the crystal. The photoluminescence spectral study revealed that the emission may be associated with the radiative recombination of trapped electrons and holes. Microhardness measurements revealed that LTPN belongs to a soft material category.
Everybody's Different Nobody's Perfect
Everybody's Different, Nobody's Perfect Todos somos diferentes, nadie es perfecto Preschool Edition Edición preescolar Adapted for young children from "Everybody's Different, Nobody's Perfect," by Irwin M. Siegel, M.D., ...
Comparison of Single and Two-Fluid Approaches
Llor, Antoine
The results of the "0D" analyses gathered in Tables 5.1 and 6.1 and discussed in Sects. 5.3 and 6.2 provide the basis for comparing Dam's ?-ɛ and Awe's two-fluid models as outlined in Table 7.1. No further comments will be given on this comparison except for one specific point that is crucial to modeling: the energy dissipation circuits. The representation of these circuits in Table 7.1 is rearranged and simplified from Figs. 5.1 and 6.4.
Oulebsir, Fouad; Vermorel, Romain; Galliero, Guillaume
2018-01-16
With the advent of graphene material, membranes based on single-layer nanoporous solids appear as promising devices for fluid separation, be it liquid or gaseous mixtures. The design of such architectured porous materials would greatly benefit from accurate models that can predict their transport and separation properties. More specifically, there is no universal understanding of how parameters such as temperature, fluid loading conditions, or the ratio of the pore size to the fluid molecular diameter influence the permeation process. In this study, we address the problem of pure supercritical fluids diffusing through simplified models of single-layer porous materials. Basically, we investigate a toy model that consists of a single-layer lattice of Lennard-Jones interaction sites with a slit gap of controllable width. We performed extensive equilibrium and biased molecular dynamics simulations to document the physical mechanisms involved at the molecular scale. We propose a general constitutive equation for the diffusional transport coefficient derived from classical statistical mechanics and kinetic theory, which can be further simplified in the ideal gas limit. This transport coefficient relates the molecular flux to the fluid density jump across the single-layer membrane. It is found to be proportional to the accessible surface porosity of the single-layer porous solid and to a thermodynamic factor accounting for the inhomogeneity of the fluid close to the pore entrance. Both quantities directly depend on the potential of mean force that results from molecular interactions between solid and fluid atoms. Comparisons with the simulations data show that the kinetic model captures how narrowing the pore size below the fluid molecular diameter lowers dramatically the value of the transport coefficient. Furthermore, we demonstrate that our general constitutive equation allows for a consistent interpretation of the intricate effects of temperature and fluid loading
International Nuclear Information System (INIS)
Dellacherie, Stephane
2003-01-01
To describe the uranium gas expansion in the field of the Atomic Vapor Laser Isotopic Separation (AVLIS; SILVA in french) with a reasonable CPU time, we have to couple the resolution of the Boltzmann equation with the resolution of the Euler system. The resolution of the Euler system uses a kinetic scheme and the boundary condition at the kinetic-fluid interface - which defines the boundary between the Boltzmann area and the Euler area - is defined with the positive and negative half fluxes of the kinetic scheme. Moreover, in order to take into account the effect of the Knudsen layer through the resolution of the Euler system, we propose to use a Marshak condition to asymptoticaly match the Euler area with the uranium source. Numerical results show an excellent agreement between the results obtained with and without kinetic-fluid coupling
Single-particle excitations in disordered Weyl fluids
Pixley, J. H.; Chou, Yang-Zhi; Goswami, Pallab; Huse, David A.; Nandkishore, Rahul; Radzihovsky, Leo; Das Sarma, S.
2017-06-01
We theoretically study the single-particle Green function of a three-dimensional disordered Weyl semimetal using a combination of techniques. These include analytic T -matrix and renormalization group methods with complementary regimes of validity and an exact numerical approach based on the kernel polynomial technique. We show that at any nonzero disorder, Weyl excitations are not ballistic: They instead have a nonzero linewidth that for weak short-range disorder arises from nonperturbative resonant impurity scattering. Perturbative approaches find a quantum critical point between a semimetal and a metal at a finite disorder strength, but this transition is avoided due to nonperturbative effects. At moderate disorder strength and intermediate energies the avoided quantum critical point renormalizes the scaling of single-particle properties. In this regime we compute numerically the anomalous dimension of the fermion field and find η =0.13 ±0.04 , which agrees well with a renormalization group analysis (η =0.125 ). Our predictions can be directly tested by ARPES and STM measurements in samples dominated by neutral impurities.
Korting, H C; Schäfer-Korting, M; Maass, L; Klesel, N; Mutschler, E
1987-01-01
In gonorrhea therapy, cephalosporins are conventionally administered by intramuscular (i.m.) injection, which rather frequently leads to local side effects. To investigate whether the well-tolerated intravenous (i.v.) injection of cephalosporins may be of comparable gonocidal effect, levels of cefodizime, a new broad-spectrum cephalosporin, in serum and tissue fluid (suction blister and cantharides blister fluid) were determined in six healthy men. Single doses of 1 g of cefodizime were injec...
Fluid and mass transport in a single lymphatic blood vessel
International Nuclear Information System (INIS)
Bestman, A.R.
1987-08-01
The problem considers the single blood vessel model in pulmonary circulation in the presence of gravitation and mass transfer. The tissue surrounding the blood vessel is modelled as a permeable medium distinct from the blood vessel which is a normal free space. On the assumption that the mass concentration varies slowly at the interface between the blood vessel and the tissue, the problem is tackled by asymptotic approximation. A crucial point of the analysis is the dependence of the flow variables on the permeability K of the tissue in a completely arbitrary manner. A primary conjecture of the study is the intimacy of the pathological pulmonary edema and the parameter K. (author). 4 refs
Westerhof, E.; Pratt, J.
2014-01-01
In the presence of electron cyclotron current drive (ECCD), the Ohm's law of single fluid magnetohydrodynamics is modified as E + v × B = η(J – J EC). This paper presents a new closure relation for the EC driven current density appearing in this modified Ohm's law. The new relation
Directory of Open Access Journals (Sweden)
Alexander Yu. Sulimov
2015-01-01
Full Text Available The article is devoted to technique «Perfect demand illusion», which allows to strengthen the competitive advantageof retailers. Also in the paper spells out the golden rules of visual merchandising.The deﬁnition of the method «Demand illusion», formulated the conditions of its functioning, and is determined by the mainhypothesis of the existence of this method.Furthermore, given the deﬁnition of the «Perfect demand illusion», and describes its additional conditions. Also spells out the advantages of the «Perfect demandillusion», before the «Demand illusion».
Mass sensors with mechanical traps for weighing single cells in different fluids.
Weng, Yaochung; Delgado, Francisco Feijó; Son, Sungmin; Burg, Thomas P; Wasserman, Steven C; Manalis, Scott R
2011-12-21
We present two methods by which single cells can be mechanically trapped and continuously monitored within the suspended microchannel resonator (SMR) mass sensor. Since the fluid surrounding the trapped cell can be quickly and completely replaced on demand, our methods are well suited for measuring changes in cell size and growth in response to drugs or other chemical stimuli. We validate our methods by measuring the density of single polystyrene beads and Saccharomyces cerevisiae yeast cells with a precision of approximately 10(-3) g cm(-3), and by monitoring the growth of single mouse lymphoblast cells before and after drug treatment.
Evaluation of water based intelligent fluids for resist stripping in single wafer cleaning tools
Rudolph, Matthias; Esche, Silvio; Hohle, Christoph; Schumann, Dirk; Steinke, Philipp; Thrun, Xaver; von Sonntag, Justus
2016-03-01
The application of phasefluid based intelligent fluids® in the field of photoresist stripping was studied. Due to their highly dynamic inner structure, phasefluids penetrate into the polymer network of photoresists and small gaps between resist layer and substrate and lift off the material from the surface. These non-aggressive stripping fluids were investigated regarding their efficiency in various resist stripping applications including initial results on copper metallization. Furthermore intelligent fluids® have been evaluated on an industry standard high volume single wafer cleaner. A baseline process on 300 mm wafers has been developed and characterized in terms of metallic and ionic impurities and defect level. Finally a general proof of concept for removal of positive tone resist from 300 mm silicon wafers is demonstrated.
Comparative study of Nusselt number for a single phase fluid flow using plate heat exchanger
Directory of Open Access Journals (Sweden)
Shanmugam Rajasekaran
2016-01-01
Full Text Available In this study, the plate heat exchangers are used for various applications in the industries for heat exchange process such as heating, cooling and condensation. The performance of plate heat exchanger depends on many factors such as flow arrangements, plate design, chevron angle, enlargement factor, type of fluid used, etc. The various Nusselt number correlations are developed by considering that the water as a working fluid. The main objective of the present work is to design the experimental set-up for a single phase fluid flow using plate heat exchanger and studied the heat transfer performance. The experiments are carried out for various Reynolds number between 500 and 2200, the heat transfer coefficients are estimated. Based on the experimental results the new correlation is developed for Nusselt number and compared with an existing correlation.
Jones, Meredyth L; Washburn, Kevin E; Fajt, Virginia R; Rice, Somchai; Coetzee, Johann F
2015-02-07
Deep digital septic conditions represent some of the most refractory causes of severe lameness in cattle. The objective of this study was to determine the distribution of tulathromycin, gamithromycin and florfenicol into the synovial fluid of the metatarsophalangeal (MTP) joint of cattle after single subcutaneous administration of drug to evaluate the potential usefulness of these single-dose, long-acting antimicrobials for treating bacterial infections of the joints in cattle. Twelve cross-bred beef cows were randomly assigned to one of the drugs. Following subcutaneous administration, arthrocentesis of the left metatarsophalangeal joint was performed at various time points up to 240 hours post-injection, and samples were analyzed for drug concentration. In synovial fluid, florfenicol pharmacokinetic parameters estimates were: mean Tmax 7 +/- 2 hours, mean t½ 64.9 +/- 20.1 hours and mean AUC0-inf 154.0 +/- 26.2 ug*h/mL. Gamithromycin synovial fluid pharmacokinetic parameters estimates were: mean Tmax 8 hours, mean t½ 77.9 +/- 30.0 hours, and AUC0-inf 6.5 +/- 2.9 ug*h/mL. Tulathromycin pharmacokinetic parameters estimates in synovial fluid were: Tmax 19 +/- 10 hours, t½ 109 +/- 53.9 hours, and AUC0-inf 57.6 +/- 28.2 ug h/mL. In conclusion, synovial fluid concentrations of all three antimicrobials were higher for a longer duration than that of previously reported plasma values. Although clinical data are needed to confirm microbiological efficacy, florfenicol achieved a synovial fluid concentration greater than the MIC90 for F. necrophorum for at least 6 days.
Locomotion in a planar ideal fluid by a singly actuated elastic body
Kelly, Scott; Abrajan-Guerrero, Rodrigo
An aquatic vehicle with a single internal degree of freedom can propel itself by exploiting symmetry-breaking phenomena like vortex shedding, but the manipulation of added-mass effects to achieve locomotion in an ideal fluid - essentially exploiting rather than breaking finite- and infinite-dimensional symmetries - requires a swimming body to execute changes over time in at least two independent shape parameters. Such parameters may be under direct control, and prior work has addressed the design of optimal gaits for swimmers in ideal fluids under this assumption, but may also evolve dynamically as a result of partial actuation and body elasticity. This talk will describe the planar locomotion of a singly actuated jointed robot exploiting limit cycles arising in its internal shape as a result of periodic actuation.
Tabaei, Seyed R; Rabe, Michael; Zetterberg, Henrik; Zhdanov, Vladimir P; Höök, Fredrik
2013-09-25
Imaging of individual lipid vesicles is used to track single-enzyme kinetics of phospholipid hydrolysis. The method is employed to quantify the catalytic activity of phospholipase A2 (PLA2) in both pure and complex biological fluids. The measurements are demonstrated to offer a subpicomolar limit of detection (LOD) of human secretory PLA2 (sPLA2) in up to 1000-fold-diluted cerebrospinal fluid (CSF). An additional new feature provided by the single-enzyme sensitivity is that information about both relative concentration variations of active sPLA2 in CSF and the specific enzymatic activity can be simultaneously obtained. When CSF samples from healthy controls and individuals diagnosed with Alzheimer's disease (AD) are analyzed, the specific enzymatic activity is found to be preserved within 7% in the different CSF samples whereas the enzyme concentration differs by up to 56%. This suggests that the previously reported difference in PLA2 activity in CSF samples from healthy and AD individuals originates from differences in the PLA2 expression level rather than from the enzyme activity. Conventional ensemble averaging methods used to probe sPLA2 activity do not allow one to obtain such information. Together with an improvement in the LOD of at least 1 order of magnitude compared to that of conventional assays, this suggests that the method will become useful in furthering our understanding of the role of PLA2 in health and disease and in detecting the pharmacodynamic effects of PLA2-targeting drug candidates.
Analysis of I-Br-Cl in single fluid inclusions by LA-ICP-MS
Giehl, C.; Fusswinkel, T.; Beermann, O.; Garbe-Schönberg, D.; Scholten, L.; Wagner, T.
2017-12-01
Halogens are excellent tracers of hydrothermal fluid sources and in-situ LA-ICP-MS analysis of Cl and Br in single fluid inclusions has provided fundamentally new insight into hydrothermal fluid flow and ore formation. There is mounting evidence that enrichment and depletion of Br relative to Cl may be caused by a number of processes beyond seawater evaporation and halite dissolution which cannot be discriminated on the basis of Br/Cl ratios alone. Expanding the analytical capabilities of fluid inclusion LA-ICP-MS analysis to include iodine would allow to discern between selective and coupled enrichment processes of Cl, Br and I, even in geologically complex samples that are inaccessible to bulk extraction techniques. We present iodine concentration data determined by LA-ICP-MS analysis of synthetic fluid inclusions, using the Sca17 scapolite reference material for external standardization (Seo et al., 2011). Iodine concentrations in Sca17 were determined using the Durango apatite standard. Four starting solutions containing I (0.3, 1.5, 27, 78 µg/g), Br (941, 1403, 2868, 4275 µg/g), Na (30.7, 94.7 mg/g), and Cl (50, 137 mg/g) (analyzed by ICP-OES and ICP-MS at CAU Kiel) were prepared by dissolving reagent grade chemical powders in ultra-pure water. Spherical inclusions (up to 40 µm) were synthesized from the starting solutions in pre-cracked, HF-treated synthetic quartz crystals which were placed in gold capsules and equilibrated at 600°C, 100/200 MPa in cold seal pressure vessels. Fluid inclusion LA-ICP-MS analysis (University of Helsinki) yielded average I concentrations in excellent agreement with the starting solutions (27.3 µg/g ± 14 %RSD for the 27 µg/g solution and 77.6 µg/g ± 8.3 %RSD for the 78 µg/g solution). Average Br and I concentrations deviate less than 10 % from solution concentration values. For the low I concentration solutions, the synthetic inclusions were too small to detect I. Thus, given suitable standard materials and sufficient
Siljeström, Sandra; Volk, Herbert; George, Simon C.; Lausmaa, Jukka; Sjövall, Peter; Dutkiewicz, Adriana; Hode, Tomas
2013-12-01
Hydrocarbons and organic biomarkers extracted from black shales and other carbonaceous sedimentary rocks are valuable sources of information on the biodiversity and environment of early Earth. However, many Precambrian hydrocarbons including biomarkers are suspected of being younger contamination. An alternative approach is to study biomarkers trapped in oil-bearing fluid inclusions by bulk crushing samples and subsequently analysing the extracted hydrocarbons with gas chromatography-mass spectrometry. However, this method does not constrain the hydrocarbons to one particular oil inclusion, which means that if several different generations of oil inclusions are present in the sample, a mix of the content from these oil inclusions will be analysed. In addition, samples with few and/or small inclusions are often below the detection limit. Recently, we showed that it is possible to detect organic biomarkers in single oil-bearing fluid inclusions using time-of-flight secondary ion mass spectrometry (ToF-SIMS). In the present study, single fluid inclusion analysis has been performed on Proterozoic samples for the first time. Four individual oil-bearing fluid inclusions, found in 1430 Ma sandstone from the Roper Superbasin in Northern Australia, were analysed with ToF-SIMS. The ToF-SIMS spectra of the oil in the different inclusions are very similar to each other and are consistent with the presence of n-alkanes/branched alkanes, monocyclic alkanes, bicyclic alkanes, aromatic hydrocarbons, and tetracyclic and pentacyclic hydrocarbons. These results are in agreement with those obtained from bulk crushing of inclusions trapped in the same samples. The capability to analyse the hydrocarbon and biomarker composition of single oil-bearing fluid inclusions is a major breakthrough, as it opens up a way of obtaining molecular compositional data on ancient oils without the ambiguity of the origin of these hydrocarbons. Additionally, this finding suggests that it will be possible
Bacon, David
2010-01-01
The United States today faces an economic crisis worse than any since the Great Depression of the 1930s. Nowhere is it sharper than in the nation's schools. Last year, California saw a perfect storm of protest in virtually every part of its education system. K-12 teachers built coalitions with parents and students to fight for their jobs and their…
Even distribution/dividing of single-phase fluids by symmetric bifurcation of flow channels
International Nuclear Information System (INIS)
Liu, Hong; Li, Peiwen
2013-01-01
Highlights: ► We addressed an issue of distributing a flow to a number of flow channels uniformly. ► The flow distribution is accomplished through bifurcation of channels. ► Some key parameters to the flow distribution uniformity have been identified. ► Flow uniformity was studied for several versions of flow distributor designs. ► A novel fluid packaging device of high efficiency was provided. -- Abstract: This study addresses a fundamental issue of distributing a single-phase fluid flow into a number of flow channels uniformly. A basic mechanism of flow distribution is accomplished through bifurcation of channels that symmetrically split one flow channel into two downstream channels. Applying the basic mechanism, cascades flow distributions are designed to split one flow into a large number of downstream flows uniformly. Some key parameters decisive to the flow distribution uniformity in such a system have been identified, and the flow distribution uniformity of air was studied for several versions of flow distributor designs using CFD analysis. The effect of the key parameters of the flow channel designs to the flow distribution uniformity was investigated. As an example of industrial application, a novel fluid packaging device of high efficiency was proposed and some CFD analysis results for the device were provided. The optimized flow distributor makes a very good uniform flow distribution which will significantly improve the efficiency of fluid packaging. The technology is expected to be of great significance to many industrial devices that require high uniformity of flow distribution
The swimming of a perfect deforming helix
Koens, Lyndon; Zhang, Hang; Mourran, Ahmed; Lauga, Eric
2017-11-01
Many bacteria rotate helical flagellar filaments in order to swim. When at rest or rotated counter-clockwise these flagella are left handed helices but they undergo polymorphic transformations to right-handed helices when the motor is reversed. These helical deformations themselves can generate motion, with for example Rhodobacter sphaeroides using the polymorphic transformation of the flagellum to generate rotation, or Spiroplasma propagating a change of helix handedness across its body's length to generate forward motion. Recent experiments reported on an artificial helical microswimmer generating motion without a propagating change in handedness. Made of a temperature sensitive gel, these swimmers moved by changing the dimensions of the helix in a non-reciprocal way. Inspired by these results and helix's ubiquitous presence in the bacterial world, we investigate how a deforming helix moves within a viscous fluid. Maintaining a single handedness along its entire length, we discuss how a perfect deforming helix can create a non-reciprocal swimming stroke, identify its principle directions of motion, and calculate the swimming kinematics asymptotically.
Extinction properties of single-walled carbon nanotubes: Two-fluid model
Energy Technology Data Exchange (ETDEWEB)
Moradi, Afshin, E-mail: a.moradi@kut.ac.ir [Department of Basic Sciences, Kermanshah University of Technology, Kermanshah, Iran and Department of Nano Science, Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran (Iran, Islamic Republic of)
2014-03-15
The extinction spectra of a single-walled carbon nanotube are investigated, within the framework of the vector wave function method in conjunction with the hydrodynamic model. Both polarizations of the incident plane wave (TE and TM with respect to the x-z plane) are treated. Electronic excitations on the nanotube surface are modeled by an infinitesimally thin layer of a two-dimensional electron gas represented by two interacting fluids, which takes into account the different nature of the σ and π electrons. Numerical results show that strong interaction between the fluids gives rise to the splitting of the extinction spectra into two peaks in quantitative agreement with the π and σ + π plasmon energies.
Numerical Simulations of Fluid Flow in a Single Fracture under Loading and Unloading Conditions
Kling, T.; Huo, D.; Schwarz, J. O.; Enzmann, F.; Blum, P.; Benson, S. M.
2014-12-01
Hydraulic aperture is one of the most important parameters to describe fluid flow in fractured rocks. Hydraulic apertures are typically determined indirectly by fluid flow experiments or hydraulic field tests based on the cubic law. Alternatively, there are different equations approximating an empirical relation between mechanical and hydraulic aperture. However, these methods most widely neglect mechanisms such as stress changes, where increasing stresses decrease the mechanical aperture and, therefore, also the effective hydraulic aperture. Hence, the objective of the present study is to simulate fluid flow in a single fracture under loading/unloading conditions and validate the results with core flooding experiments. Core flooding data and X-ray CT scans (voxel size 0.5 x 0.5 x 1 mm) of a sandstone sample with a single fracture (measured mean aperture of around 0.1 mm) were obtained by laboratory experiments. The fluid flow simulations are performed by solving the incompressible Navier-Stokes equation by using a finite volume method. Input data are given by experimental flow rates, pressures, applied stress levels and CT images of the fracture. In addition, an error analysis is performed to establish confidence in results. Results of the validation exhibit significant effects of stress on aperture distribution such as channeling and stress-dependent fracture permeability. A significant stress sensitivity of hydraulic aperture compared to the mechanical aperture was found, which can be explained by roughness changes resulting from loading. Observations indicate that with increasing stress, changes in mechanical aperture are small, while changes in hydraulic aperture can be very large. Since previous equations for hydraulic aperture do not consider changes in normal stress, a modification of these equations is proposed, including the stress-dependency of mechanical apertures to provide a better approximation to the observed hydraulic apertures.
On the fluid dynamics of a laboratory scale single-use stirred bioreactor
Odeleye, A.O.O.; Marsh, D.T.J.; Osborne, M.D.; Lye, G.J.; Micheletti, M.
2014-01-01
The commercial success of mammalian cell-derived recombinant proteins has fostered an increase in demand for novel single-use bioreactor (SUB) systems that facilitate greater productivity, increased flexibility and reduced costs (Zhang et al., 2010). These systems exhibit fluid flow regimes unlike those encountered in traditional glass/stainless steel bioreactors because of the way in which they are designed. With such disparate hydrodynamic environments between SUBs currently on the market, traditional scale-up approaches applied to stirred tanks should be revised. One such SUB is the Mobius® 3 L CellReady, which consists of an upward-pumping marine scoping impeller. This work represents the first experimental study of the flow within the CellReady using a Particle Image Velocimetry (PIV) approach, combined with a biological study into the impact of these fluid dynamic characteristics on cell culture performance. The PIV study was conducted within the actual vessel, rather than using a purpose-built mimic. PIV measurements conveyed a degree of fluid compartmentalisation resulting from the up-pumping impeller. Both impeller tip speed and fluid working volume had an impact upon the fluid velocities and spatial distribution of turbulence within the vessel. Cell cultures were conducted using the GS-CHO cell-line (Lonza) producing an IgG4 antibody. Disparity in cellular growth and viability throughout the range of operating conditions used (80–350 rpm and 1–2.4 L working volume) was not substantial, although a significant reduction in recombinant protein productivity was found at 350 rpm and 1 L working volume (corresponding to the highest Reynolds number tested in this work). The study shows promise in the use of PIV to improve understanding of the hydrodynamic environment within individual SUBs and allows identification of the critical hydrodynamic parameters under the different flow regimes for compatibility and scalability across the range of bioreactor
Effective permittivity of single-walled carbon nanotube composites: Two-fluid model
Energy Technology Data Exchange (ETDEWEB)
Moradi, Afshin, E-mail: a.moradi@kut.ac.ir [Department of Engineering Physics, Kermanshah University of Technology, Kermanshah (Iran, Islamic Republic of); Department of Nano Sciences, Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran (Iran, Islamic Republic of); Zangeneh, Hamid Reza; Moghadam, Firoozeh Karimi [Department of Photonics, Faculty of Physics, University of Kashan, Kashan (Iran, Islamic Republic of)
2015-12-15
We develop an effective medium theory to obtain effective permittivity of a composite of two-dimensional (2D) aligned single-walled carbon nanotubes. Electronic excitations on each nanotube surface are modeled by an infinitesimally thin layer of a 2D electron gas represented by two interacting fluids, which takes into account different nature of the σ and π electrons. Calculations of both real and imaginary parts of the effective dielectric function of the system are presented, for different values of the filling factor and radius of carbon nanotubes.
Perfect focusing fusion system
International Nuclear Information System (INIS)
Miyamoto, G.; Takeda, T.; Iwata, G.; Mori, S.; Inoue, K.; Tanaka, M.
1994-01-01
We propose new perfect focusing (perfo) fusion systems in which ion- or atom-beam is used as a target for the fusion reaction, and ions (perfo particles) of different species moving in the perfo field collide with them. The 'efficiency' defined as the ratio of the fusion energy output to the radiation loss is ∼300, ∼20, and ∼4 for the T+D, 3 He+D, and 11 B+H reactions, respectively. (author)
Energy Technology Data Exchange (ETDEWEB)
Goeke, R.; Farnsworth, A.V.; Neumann, C.C.; Sweatt, W.C.; Warren, M.E.; Weed, J.W.
1996-06-01
This report discusses a novel fabrication process to produce nearly perfect optics. The process utilizes vacuum deposition techniques to optimally modify polished optical substrate surfaces. The surface figure, i.e. contour of a polished optical element, is improved by differentially filling in the low spots on the surface using flux from a physical vapor deposition source through an appropriate mask. The process is expected to enable the manufacture of diffraction-limited optical systems for the UV, extreme UV, and soft X-ray spectral regions, which would have great impact on photolithography and astronomy. This same technique may also reduce the fabrication cost of visible region optics with aspheric surfaces.
Thompson, Robert Bruce
2006-01-01
This popular Build-It-Yourself (BIY) PC book covers everything you want to know about building your own system: Planning and picking out the right components, step-by-step instructions for assembling your perfect PC, and an insightful discussion of why you'd want to do it in the first place. Most big brand computers from HP, Dell and others use lower-quality components so they can meet their aggressive pricing targets. But component manufacturers also make high-quality parts that you can either purchase directly, or obtain through distributors and resellers. Consumers and corporations
Single Trial EEG Patterns for the Prediction of Individual Differences in Fluid Intelligence.
Qazi, Emad-Ul-Haq; Hussain, Muhammad; Aboalsamh, Hatim; Malik, Aamir Saeed; Amin, Hafeez Ullah; Bamatraf, Saeed
2016-01-01
Assessing a person's intelligence level is required in many situations, such as career counseling and clinical applications. EEG evoked potentials in oddball task and fluid intelligence score are correlated because both reflect the cognitive processing and attention. A system for prediction of an individual's fluid intelligence level using single trial Electroencephalography (EEG) signals has been proposed. For this purpose, we employed 2D and 3D contents and 34 subjects each for 2D and 3D, which were divided into low-ability (LA) and high-ability (HA) groups using Raven's Advanced Progressive Matrices (RAPM) test. Using visual oddball cognitive task, neural activity of each group was measured and analyzed over three midline electrodes (Fz, Cz, and Pz). To predict whether an individual belongs to LA or HA group, features were extracted using wavelet decomposition of EEG signals recorded in visual oddball task and support vector machine (SVM) was used as a classifier. Two different types of Haar wavelet transform based features have been extracted from the band (0.3 to 30 Hz) of EEG signals. Statistical wavelet features and wavelet coefficient features from the frequency bands 0.0-1.875 Hz (delta low) and 1.875-3.75 Hz (delta high), resulted in the 100 and 98% prediction accuracies, respectively, both for 2D and 3D contents. The analysis of these frequency bands showed clear difference between LA and HA groups. Further, discriminative values of the features have been validated using statistical significance tests and inter-class and intra-class variation analysis. Also, statistical test showed that there was no effect of 2D and 3D content on the assessment of fluid intelligence level. Comparisons with state-of-the-art techniques showed the superiority of the proposed system.
Single-bubble dynamics in pool boiling of one-component fluids
Xu, Xinpeng
2014-06-04
We numerically investigate the pool boiling of one-component fluids with a focus on the effects of surface wettability on the single-bubble dynamics. We employed the dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007)], a diffuse-interface model for liquid-vapor flows involving liquid-vapor transition in nonuniform temperature fields. We first perform simulations for bubbles on homogeneous surfaces. We find that an increase in either the contact angle or the surface superheating can enhance the bubble spreading over the heating surface and increase the bubble departure diameter as well and therefore facilitate the transition into film boiling. We then examine the dynamics of bubbles on patterned surfaces, which incorporate the advantages of both hydrophobic and hydrophilic surfaces. The central hydrophobic region increases the thermodynamic probability of bubble nucleation while the surrounding hydrophilic region hinders the continuous bubble spreading by pinning the contact line at the hydrophobic-hydrophilic intersection. This leads to a small bubble departure diameter and therefore prevents the transition from nucleate boiling into film boiling. With the bubble nucleation probability increased and the bubble departure facilitated, the efficiency of heat transfer on such patterned surfaces is highly enhanced, as observed experimentally [Int. J. Heat Mass Transfer 57, 733 (2013)]. In addition, the stick-slip motion of contact line on patterned surfaces is demonstrated in one-component fluids, with the effect weakened by surface superheating.
Co-existence of Gel and Fluid Lipid Domains in Single-component Phospholipid Membranes
Energy Technology Data Exchange (ETDEWEB)
Armstrong, Clare L [McMaster University; Barrett, M [McMaster University; Toppozini, L [McMaster University; Yamani, Zahra [Canadian Neutron Beam Centre, National Research Council, Chalk River Laboratorie; Kucerka, Norbert [Canadian Neutron Beam Centre and Comelius University (Slovakia); Katsaras, John [ORNL; Fragneto, Giovanna [Institut Laue-Langevin (ILL); Rheinstadter, Maikel C [McMaster University
2012-01-01
Lateral nanostructures in membranes, so-called rafts, are believed to strongly influence membrane properties and functions. The experimental observation of rafts has proven difficult as they are thought to be dynamic structures that likely fluctuate on nano- to microsecond time scales. Using neutron diffraction we present direct experimental evidence for the co-existence of gel and fluid lipid domains in a single-component phospholipid membrane made of DPPC as it undergoes its main phase transition. The coherence length of the neutron beam sets a lower limit for the size of structures that can be observed. Neutron coherence lengths between 30 and 242A used in this study were obtained by varying the incident neutron energy and the resolution of the neutron spectrometer. We observe Bragg peaks corresponding to co-existing nanometer sized structures, both in out-of-plane and in-plane scans, by tuning the neutron coherence length. During the main phase transition, instead of a continuous transition that shows a pseudo-critical behavior, we observe the co-existence of gel and fluid domains.
Single-bubble dynamics in pool boiling of one-component fluids.
Xu, Xinpeng; Qian, Tiezheng
2014-06-01
We numerically investigate the pool boiling of one-component fluids with a focus on the effects of surface wettability on the single-bubble dynamics. We employed the dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007)], a diffuse-interface model for liquid-vapor flows involving liquid-vapor transition in nonuniform temperature fields. We first perform simulations for bubbles on homogeneous surfaces. We find that an increase in either the contact angle or the surface superheating can enhance the bubble spreading over the heating surface and increase the bubble departure diameter as well and therefore facilitate the transition into film boiling. We then examine the dynamics of bubbles on patterned surfaces, which incorporate the advantages of both hydrophobic and hydrophilic surfaces. The central hydrophobic region increases the thermodynamic probability of bubble nucleation while the surrounding hydrophilic region hinders the continuous bubble spreading by pinning the contact line at the hydrophobic-hydrophilic intersection. This leads to a small bubble departure diameter and therefore prevents the transition from nucleate boiling into film boiling. With the bubble nucleation probability increased and the bubble departure facilitated, the efficiency of heat transfer on such patterned surfaces is highly enhanced, as observed experimentally [Int. J. Heat Mass Transfer 57, 733 (2013)]. In addition, the stick-slip motion of contact line on patterned surfaces is demonstrated in one-component fluids, with the effect weakened by surface superheating.
Hu, Guilin; Fan, Jianren
The proton exchange membrane fuel cell (PEMFC) has become a promising candidate for the power source of electrical vehicles because of its low pollution, low noise and especially fast startup and transient responses at low temperatures. A transient, three-dimensional, non-isothermal and single-phase mathematical model based on computation fluid dynamics has been developed to describe the transient process and the dynamic characteristics of a PEMFC with a serpentine fluid channel. The effects of water phase change and heat transfer, as well as electrochemical kinetics and multicomponent transport on the cell performance are taken into account simultaneously in this comprehensive model. The developed model was employed to simulate a single laboratory-scale PEMFC with an electrode area about 20 cm 2. The dynamic behavior of the characteristic parameters such as reactant concentration, pressure loss, temperature on the membrane surface of cathode side and current density during start-up process were computed and are discussed in detail. Furthermore, transient responses of the fuel cell characteristics during step changes and sinusoidal changes in the stoichiometric flow ratio of the cathode inlet stream, cathode inlet stream humidity and cell voltage are also studied and analyzed and interesting undershoot/overshoot behavior of some variables was found. It was also found that the startup and transient response time of a PEM fuel cell is of the order of a second, which is similar to the simulation results predicted by most models. The result is an important guide for the optimization of PEMFC designs and dynamic operation.
Galindo-de-la-Rosa, J; Arjona, N; Moreno-Zuria, A; Ortiz-Ortega, E; Guerra-Balcázar, M; Ledesma-García, J; Arriaga, L G
2017-06-15
The purpose of this work is to evaluate single and double-cell membraneless microfluidic fuel cells (MMFCs) that operate in the presence of simulated body fluids SBF, human serum and blood enriched with ethanol as fuels. The study was performed using the alcohol dehydrogenase enzyme immobilised by covalent binding through an array composed of carbon Toray paper as support and a layer of poly(methylene blue)/tetrabutylammonium bromide/Nafion and glutaraldehyde (3D bioanode electrode). The single MMFC was tested in a hybrid microfluidic fuel cell using Pt/C as the cathode. A cell voltage of 1.035V and power density of 3.154mWcm -2 were observed, which is the highest performance reported to date. The stability and durability were tested through chronoamperometry and polarisation/performance curves obtained at different days, which demonstrated a slow decrease in the power density on day 10 (14%) and day 20 (26%). Additionally, the cell was tested for ethanol oxidation in simulated body fluid (SBF) with ionic composition similar to human blood plasma. Those tests resulted in 0.93V of cell voltage and a power density close to 1.237mWcm -2 . The double cell MMFC (Stack) was tested using serum and human blood enriched with ethanol. The stack operated with blood in a serial connection showed an excellent cell performance (0.716mWcm -2 ), demonstrating the feasibility of employing human blood as energy source. Copyright © 2017 Elsevier B.V. All rights reserved.
Interacting cosmic fluids in power-law Friedmann-Robertson-Walker cosmological models
International Nuclear Information System (INIS)
Cataldo, Mauricio; Mella, Patricio; Minning, Paul; Saavedra, Joel
2008-01-01
We provide a detailed description for power-law scaling Friedmann-Robertson-Walker cosmological scenarios dominated by two interacting perfect fluid components during the expansion. As a consequence of the mutual interaction between the two fluids, neither component is conserved separately and the energy densities are proportional to 1/t 2 . It is shown that in flat FRW cosmological models there can exist interacting superpositions of two perfect fluids (each of them having a positive energy density) which accelerate the expansion of the universe. In this family there also exist flat power-law cosmological scenarios where one of the fluids may have a 'cosmological constant' or 'vacuum energy' equation of state (p=-ρ) interacting with the other component; this scenario exactly mimics the behavior of the standard flat Friedmann solution for a single fluid with a barotropic equation of state. These possibilities of combining interacting perfect fluids do not exist for the non-interacting mixtures of two perfect cosmic fluids, where the general solution for the scale factor is not described by power-law expressions and has a more complicated behavior. In this study is considered also the associated single fluid model interpretation for the interaction between two fluids
Metamaterials for perfect absorption
Lee, Young Pak; Yoo, Young Joon; Kim, Ki Won
2016-01-01
This book provides a comprehensive overview of the theory and practical development of metamaterial-based perfect absorbers (MMPAs). It begins with a brief history of MMPAs which reviews the various theoretical and experimental milestones in their development. The theoretical background and fundamental working principles of MMPAs are then discussed, providing the necessary background on how MMPAs work and are constructed. There then follows a section describing how different MMPAs are designed and built according to the operating frequency of the electromagnetic wave, and how their behavior is changed. Methods of fabricating and characterizing MMPAs are then presented. The book elaborates on the performance and characteristics of MMPAs, including electromagnetically-induced transparency (EIT). It also covers recent advances in MMPAs and their applications, including multi-band, broadband, tunability, polarization independence and incidence independence. Suitable for graduate students in optical sciences and e...
Directory of Open Access Journals (Sweden)
Nikitović Aleksandar
2013-01-01
Full Text Available Early Greek ethics embodied in Cretan and Spartan mores, served as a model for Plato`s political theory. Plato theorized the contents of early Greek ethics, aspiring to justify and revitalize the fundamental principles of a traditional view of the world. However, according to Plato`s new insight, deed is further from the truth than a thought i.e. theory. The dorian model had to renounce its position to the perfect prototype of a righteous state, which is a result of the inner logic of philosophical theorizing in early Greek ethics. Prototype and model of philosophical reflection, in comparison to philosophical theory, becomes minor and deficient. Philosophical theorizing of early Greek ethics philosophically formatted Greek heritage, initiating substantial changes to the content of traditional ethics. Replacement of the myth with ontology, as a new foundation of politics, transformed early Greek ethics in various relevant ways. [Projekat Ministarstva nauke Republike Srbije, br. 179049
Perfect simulation of Hawkes processes
DEFF Research Database (Denmark)
Møller, Jesper; Rasmussen, Jakob Gulddahl
their branching and conditional independence structure, useful approximations of the distribution function for the length of a cluster are derived. This is used to construct upper and lower processes for the perfect simulation algorithm. Examples of applications and empirical results are presented.......This article concerns a perfect simulation algorithm for unmarked and marked Hawkes processes. The usual stratihtforward simulation algorithm suffers from edge effects, whereas our perfect simulation algorithm does not. By viewing Hawkes processes as Poisson cluster processes and using...
Perfect Taxation with Imperfect Competition
Alan J. Auerbach; James R. Hines Jr.
2001-01-01
This paper analyzes features of perfect taxation also known as optimal taxation when one or more private markets is imperfectly competitive. Governments with perfect information and access to lump-sum taxes can provide corrective subsidies that render outcomes efficient in the presence of imperfect competition. Relaxing either of these two conditions removes the government's ability to support efficient resource allocation and changes the perfect policy response. When governments cannot use l...
Buurmans, I.L.C.|info:eu-repo/dai/nl/31406592X; Ruiz Martinez, J.|info:eu-repo/dai/nl/341386405; van Leeuwen, S.L.; van der Beek, D.; Bergwerff, J.A.; Knowles, W.V.; Vogt, Eelco|info:eu-repo/dai/nl/073717398; Weckhuysen, B.M.|info:eu-repo/dai/nl/285484397
2012-01-01
A time-resolved in situ micro-spectroscopic approach has been used to investigate the Brønsted acidic properties of fluid-catalytic-cracking (FCC) catalysts at the single particle level by applying the acid-catalysed styrene oligomerisation probe reaction. The reactivity of individual FCC components
Two-dimensional single fluid MHD simulations of plasma opening switches
International Nuclear Information System (INIS)
Roderick, N.F.; Payne, S.S.; Peterkin, R.E. Jr.; Frese, M.H.; Hussey, T.W.
1989-01-01
Simulations of plasma opening switch have been made using two-dimensional, single fluid, magnetohydrodynamic codes HAM and MACH2. A variety of mechanisms for magnetic field penetration have been investigated. These include plasma convection, classical and microturbulent resistive diffusion, and Hall effect transport. We find that plasma microturbulent models are necessary to explain the broad current channels observed in experiments. Both heuristic and consistent microturbulent models are able to explain observed channel widths and penetration features. The best results are obtained for a consistent model that includes the Buneman, ion acoustic, and lower hybrid microturbulent collision frequencies and threshold conditions. Maximum microturbulent collision frequencies of 5 ω p , are typical. Field transport and current channel profiles are in excellent agreement with experimental observations for GAMBLE I, GAMBLE II, and SUPERMITE experiments. Dominant field penetration mechanisms and center of mass plasma motion are current and density dependent. Including the Hall effect enhanced field penetration. Center of mass motion is negligible for the GAMBLE I experiments but significant for the GAMBLE II conditions. Scaling of plasma opening time with switch length and density can be fit by linear representations for lengths from 0.03 m to 0.24 m and ion densities from 10 18 m -3 to 1.5 times 10 19 m -3 . 15 refs., 7 figs., 1 tab
Perfect simulation of Hawkes processes
DEFF Research Database (Denmark)
Møller, Jesper; Rasmussen, Jakob Gulddahl
2005-01-01
their branching and conditional independence structures, useful approximations of the distribution function for the length of a cluster are derived. This is used to construct upper and lower processes for the perfect simulation algorithm. A tail-lightness condition turns out to be of importance......Our objective is to construct a perfect simulation algorithm for unmarked and marked Hawkes processes. The usual straightforward simulation algorithm suffers from edge effects, whereas our perfect simulation algorithm does not. By viewing Hawkes processes as Poisson cluster processes and using...
... Spread the Word Shop AAP Find a Pediatrician Family Life Medical Home Family Dynamics Adoption & Foster Care ... Español Text Size Email Print Share The "Perfect" Family Page Content Article Body Is there such a ...
Ilinca, A.; Mangini, D.; Mameli, M.; Fioriti, D.; Filippeschi, S.; Araneo, L.; Roth, N.; Marengo, M.
2017-11-01
A Novel Single Loop Pulsating Heat Pipe (SLPHP), with an inner diameter of 2 mm, filled up with two working fluids (Ethanol and FC-72, Filling Ratio of 60%), is tested in Bottom Heated mode varying the heating power and the orientation. The static confinement diameter for Ethanol and FC-72, respectively 3.4 mm and 1.7mm, is above and slightly under the inner diameter of the tube. This is important for a better understanding of the working principle of the device very close to the limit between the Loop Thermosyphon and Pulsating Heat Pipe working modes. With respect to previous SLPHP experiments found in the literature, such device is designed with two transparent inserts mounted between the evaporator and the condenser allowing direct fluid flow visualization. Two highly accurate pressure transducers permit local pressure measurements just at the edges of one of the transparent inserts. Additionally, three heating elements are controlled independently, so as to vary the heating distribution at the evaporator. It is found that peculiar heating distributions promote the slug/plug flow motion in a preferential direction, increasing the device overall performance. Pressure measurements point out that the pressure drop between the evaporator and the condenser are related to the flow pattern. Furthermore, at high heat inputs, the flow regimes recorded for the two fluids are very similar, stressing that, when the dynamic effects start to play a major role in the system, the device classification between Loop Thermosyphon and Pulsating Heat Pipe is not that sharp anymore.
Holographic perfect fluidity, Cotton energy-momentum duality and transport properties
Energy Technology Data Exchange (ETDEWEB)
Mukhopadhyay, Ayan [Centre de Physique Théorique, Ecole Polytechnique, CNRS UMR 7644,Route de Saclay, 91128 Palaiseau Cedex (France); Institut de Physique Théorique, CEA, CNRS URA 2306,91191 Gif-sur-Yvette (France); Petkou, Anastasios C. [Institute of Theoretical Physics, Department of Physics, Aristotle University of Thessaloniki,54124 Thessaloniki (Greece); Petropoulos, P. Marios; Pozzoli, Valentina [Centre de Physique Théorique, Ecole Polytechnique, CNRS UMR 7644,Route de Saclay, 91128 Palaiseau Cedex (France); Siampos, Konstadinos [Service de Mécanique et Gravitation, Université de Mons, UMONS,20 Place du Parc, 7000 Mons (Belgium)
2014-04-23
We investigate background metrics for 2+1-dimensional holographic theories where the equilibrium solution behaves as a perfect fluid, and admits thus a thermodynamic description. We introduce stationary perfect-Cotton geometries, where the Cotton-York tensor takes the form of the energy-momentum tensor of a perfect fluid, i.e. they are of Petrov type D{sub t}. Fluids in equilibrium in such boundary geometries have non-trivial vorticity. The corresponding bulk can be exactly reconstructed to obtain 3+1-dimensional stationary black-hole solutions with no naked singularities for appropriate values of the black-hole mass. It follows that an infinite number of transport coefficients vanish for holographic fluids. Our results imply an intimate relationship between black-hole uniqueness and holographic perfect equilibrium. They also point towards a Cotton/energy-momentum tensor duality constraining the fluid vorticity, as an intriguing boundary manifestation of the bulk mass/nut duality.
Holographic perfect fluidity, Cotton energy-momentum duality and transport properties
International Nuclear Information System (INIS)
Mukhopadhyay, Ayan; Petkou, Anastasios C.; Petropoulos, P. Marios; Pozzoli, Valentina; Siampos, Konstadinos
2014-01-01
We investigate background metrics for 2+1-dimensional holographic theories where the equilibrium solution behaves as a perfect fluid, and admits thus a thermodynamic description. We introduce stationary perfect-Cotton geometries, where the Cotton-York tensor takes the form of the energy-momentum tensor of a perfect fluid, i.e. they are of Petrov type D t . Fluids in equilibrium in such boundary geometries have non-trivial vorticity. The corresponding bulk can be exactly reconstructed to obtain 3+1-dimensional stationary black-hole solutions with no naked singularities for appropriate values of the black-hole mass. It follows that an infinite number of transport coefficients vanish for holographic fluids. Our results imply an intimate relationship between black-hole uniqueness and holographic perfect equilibrium. They also point towards a Cotton/energy-momentum tensor duality constraining the fluid vorticity, as an intriguing boundary manifestation of the bulk mass/nut duality
Energy Technology Data Exchange (ETDEWEB)
Carnevale, Francisco C., E-mail: fcarnevale@uol.com.br [University of Sao Paulo Medical School, Interventional Radiology Unit (Brazil); Iscaife, Alexandre, E-mail: iscaifeboni@yahoo.com.br; Yoshinaga, Eduardo M., E-mail: dumuracca@ig.com.br [University of Sao Paulo Medical School, Division of Urology (Brazil); Moreira, Airton Mota, E-mail: motamoreira@gmail.com [University of Sao Paulo Medical School, Interventional Radiology Unit (Brazil); Antunes, Alberto A., E-mail: antunesuro@uol.com.br; Srougi, Miguel, E-mail: srougi@uol.com.br [University of Sao Paulo Medical School, Division of Urology (Brazil)
2016-01-15
PurposeTo compare clinical and urodynamic results of transurethral resection of the prostate (TURP) to original and PErFecTED prostate artery embolization (PAE) methods for benign prostatic hyperplasia.MethodsWe prospectively randomized 30 patients to receive TURP or original PAE (oPAE) and compared them to a cohort of patients treated by PErFecTED PAE, with a minimum of 1-year follow-up. Patients were assessed for urodynamic parameters, prostate volume, international prostate symptom score (IPSS), and quality of life (QoL).ResultsAll groups were comparable for all pre-treatment parameters except bladder contractility and peak urine flow rate (Q{sub max}), both of which were significantly better in the TURP group, and IIEF score, which was significantly higher among PErFecTED PAE patients than TURP patients. All groups experienced significant improvement in IPSS, QoL, prostate volume, and Q{sub max}. TURP and PErFecTED PAE both resulted in significantly lower IPSS than oPAE but were not significantly different from one another. TURP resulted in significantly higher Q{sub max} and significantly smaller prostate volume than either original or PErFecTED PAE but required spinal anesthesia and hospitalization. Two patients in the oPAE group with hypocontractile bladders experienced recurrence of symptoms and were treated with TURP. In the TURP group, urinary incontinence occurred in 4/15 patients (26.7 %), rupture of the prostatic capsule in 1/15 (6.7 %), retrograde ejaculation in all patients (100 %), and one patient was readmitted for temporary bladder irrigation due to hematuria.ConclusionsTURP and PAE are both safe and effective treatments. TURP and PErFecTED PAE yield similar symptom improvement, but TURP is associated with both better urodynamic results and more adverse events.
Carnevale, Francisco C; Iscaife, Alexandre; Yoshinaga, Eduardo M; Moreira, Airton Mota; Antunes, Alberto A; Srougi, Miguel
2016-01-01
To compare clinical and urodynamic results of transurethral resection of the prostate (TURP) to original and PErFecTED prostate artery embolization (PAE) methods for benign prostatic hyperplasia. We prospectively randomized 30 patients to receive TURP or original PAE (oPAE) and compared them to a cohort of patients treated by PErFecTED PAE, with a minimum of 1-year follow-up. Patients were assessed for urodynamic parameters, prostate volume, international prostate symptom score (IPSS), and quality of life (QoL). All groups were comparable for all pre-treatment parameters except bladder contractility and peak urine flow rate (Q max), both of which were significantly better in the TURP group, and IIEF score, which was significantly higher among PErFecTED PAE patients than TURP patients. All groups experienced significant improvement in IPSS, QoL, prostate volume, and Q max. TURP and PErFecTED PAE both resulted in significantly lower IPSS than oPAE but were not significantly different from one another. TURP resulted in significantly higher Q max and significantly smaller prostate volume than either original or PErFecTED PAE but required spinal anesthesia and hospitalization. Two patients in the oPAE group with hypocontractile bladders experienced recurrence of symptoms and were treated with TURP. In the TURP group, urinary incontinence occurred in 4/15 patients (26.7 %), rupture of the prostatic capsule in 1/15 (6.7 %), retrograde ejaculation in all patients (100 %), and one patient was readmitted for temporary bladder irrigation due to hematuria. TURP and PAE are both safe and effective treatments. TURP and PErFecTED PAE yield similar symptom improvement, but TURP is associated with both better urodynamic results and more adverse events.
Perfect secure domination in graphs
Directory of Open Access Journals (Sweden)
S.V. Divya Rashmi
2017-07-01
Full Text Available Let $G=(V,E$ be a graph. A subset $S$ of $V$ is a dominating set of $G$ if every vertex in $Vsetminus S$ is adjacent to a vertex in $S.$ A dominating set $S$ is called a secure dominating set if for each $vin Vsetminus S$ there exists $uin S$ such that $v$ is adjacent to $u$ and $S_1=(Ssetminus{u}cup {v}$ is a dominating set. If further the vertex $uin S$ is unique, then $S$ is called a perfect secure dominating set. The minimum cardinality of a perfect secure dominating set of $G$ is called the perfect secure domination number of $G$ and is denoted by $gamma_{ps}(G.$ In this paper we initiate a study of this parameter and present several basic results.
Computational Fluid Dynamics Modelling and Experimental Study on a Single Silica Gel Type B
Directory of Open Access Journals (Sweden)
John White
2012-01-01
Full Text Available The application of computational fluid dynamics (CFDs in the area of porous media and adsorption cooling system is becoming more practical due to the significant improvement in computer power. The results from previous studies have shown that CFD can be useful tool for predicting the water vapour flow pattern, temperature, heat transfer and flow velocity and adsorption rate. This paper investigates the effect of silica gel granular size on the water adsorption rate using computational fluid dynamics and gravimetric experimental (TGA method.
The scaling of burnout data for a single fluid at a fixed pressure
International Nuclear Information System (INIS)
Kirby, G.J.
1966-12-01
The success of the scaling factor concept in linking burnout measurements made in two different fluids has been amply demonstrated. This memorandum investigates the possibility of linking measurements made on two different systems in the same fluid. It seems that good accuracy may be obtained for systems whose linear dimensions differ by as much as a factor of two; this offers the possibility of saving very substantial amounts of power in testing reactor fuel element. A novel conclusion is that systems do not need to be geometrically similar in order to be linked by scaling factors. (author)
Designing the ''perfect'' projection screen
Caulfield, H. John
2005-07-01
A perfect diffuser would place 100% of the light leaving the projector in that small region of space where there will be audience eyes to observe it. It would not allow light from sources other than the projector to reach the eyes from the screen. The screen should be affordably priced and cosmetically unremarkable, e.g. seamless. The image seen by any observer should be equally bright over the whole screen. I discuss a way to approximate the perfect projection screen using kinoform diffusers, a Fresnel lens and a mirrored surface.
Simultaneous fluid-flow, heat-transfer and solid-stress computation in a single computer code
Energy Technology Data Exchange (ETDEWEB)
Spalding, D.B. [Concentration Heat and Momentum Ltd, London (United Kingdom)
1997-12-31
Computer simulation of flow- and thermally-induced stresses in mechanical-equipment assemblies has, in the past, required the use of two distinct software packages, one to determine the forces and the temperatures, and the other to compute the resultant stresses. The present paper describes how a single computer program can perform both tasks at the same time. The technique relies on the similarity of the equations governing velocity distributions in fluids to those governing displacements in solids. The same SIMPLE-like algorithm is used for solving both. Applications to 1-, 2- and 3-dimensional situations are presented. It is further suggested that Solid-Fluid-Thermal, ie SFT analysis may come to replace CFD on the one hand and the analysis of stresses in solids on the other, by performing the functions of both. (author) 7 refs.
Directory of Open Access Journals (Sweden)
O. F. Nikitin
2015-01-01
Full Text Available The article deals with the static calculations in designing a high-performance fixed fluid power drive with a single positive-displacement hydraulic motor. Designing is aimed at using a drive that is under development and yet unavailable to find and record the minimum of calculations and maximum of existing hydraulic units that enable clear and unambiguous performance, taking into consideration an available assortment of hydraulic units of hydraulic drives, to have the best efficiency.The specified power (power, moment and kinematics (linear velocity or angular velocity of rotation parameters of the output element of hydraulic motor determine the main output parameters of the hydraulic drive and the useful power of the hydraulic drive under development. The value of the overall efficiency of the hydraulic drive enables us to judge the efficiency of high-performance fixed fluid power drive.The energy analysis of a diagram of the high-performance fixed fluid power drive shows that its high efficiency is achieved when the flow rate of fluid flowing into each cylinder and the magnitude of the feed pump unit (pump are as nearly as possible.The paper considers the ways of determining the geometric parameters of working hydromotors (effective working area or working volume, which allow a selection of the pumping unit parameters. It discusses the ways to improve hydraulic drive efficiency. Using the principle of holding constant conductivity allows us to specify the values of the pressure losses in the hydraulic units used in noncatalog modes. In case of no exact matching between the parameters of existing hydraulic power modes and a proposed characteristics of the pump unit, the nearest to the expected characteristics is taken as a working version.All of the steps allow us to create the high-performance fixed fluid power drive capable of operating at the required power and kinematic parameters with high efficiency.
Rao, Ch. K.; Rao, L. B.
2017-07-01
The problem of stability of fluid-conveying carbon nanotubes embedded in an elastic medium is investigated in this paper. A nonlocal continuum mechanics formulation, which takes the small length scale effects into consideration, is utilized to derive the governing fourth-order partial differential equations. The Fourier series method is used for the case of the pinned-pinned boundary condition of the tube. The Galerkin technique is utilized to find a solution of the governing equation for the case of the clamped-clamped boundary. Closed-form expressions for the critical flow velocity are obtained for different values of the Winkler and Pasternak foundation stiffness parameters. Moreover, new and interesting results are also reported for varying values of the nonlocal length parameter. It is observed that the nonlocal length parameter along with the Winkler and Pasternak foundation stiffness parameters exert considerable effects on the critical velocities of the fluid flow in nanotubes.
Kaiser, Stephan Christian
2015-01-01
Durch die örtliche und zeitliche Modellierung der auftretenden Strömungen bietet die numerische Fluiddynamik (engl. Computational Fluid Dynamics, CFD) das Potenzial detaillierte Untersuchungen der Hydrodynamik in Bioreaktoren durchzuführen. Allerdings sind bisher nur wenige Studien in Verbindung mit Einwegbioreaktoren, die sich durch konstruktiven Besonderheiten von ihren klassischen Gegenspielern aus Glas und/oder Edelstahl unterscheiden, publiziert. Die vorliegende Arbeit soll daher geeigne...
Energy Technology Data Exchange (ETDEWEB)
Furukaw, Kazuo [Tokai Univ., Kanagawa (Japan); Kato, Yoshio [Japan Atom. Ene. Res. Inst., Ibaraki (Japan); Chigrinov, Sergey E. [Academy of Science, Minsk (Belarus)
1995-10-01
For practical/industrial disposition of Pu(TRU) by accelerator facility, not only physical soundness and safety but also the following technological rationality should be required: (1) few R&D items including radiation damage, heat removal and material compatibility; (2) few operation/maintenance/processing works: (3) few reproduction of radioactivity; (4) effective energy production in parallel. This will be achieved by the new modification of Th-fertilizing Single-Fluid type Accelerator Molten-Salt Breeder (AMSB), by which a global nuclear energy strategy for next century might be prepared.
International Nuclear Information System (INIS)
Legoupil, S.
1999-01-01
We present in this work a method for fluid flow visualization in a system using radioactive tracers. The method is based on single photon emission computed tomography techniques, applied to a limited number of discrete detectors. We propose in this work a method for the estimation of the transport matrix of photons, associated to the acquisition system. This method is based on the modelization of profiles acquired for a set of point sources located in the imaged volume. Monte Carlo simulations allow to separate scattered photons from those directly collected by the system. The influence of the energy tracer is exposed. The reconstruction method is based on the maximum likelihood - expectation maximization algorithm. An experimental device, based on 36 detectors was realised for the visualization of water circulation in a vessel. A video monitoring allows to visualize the dye water tracer. Dye and radioactive tracers are injected simultaneously in a water flow circulating in the vessel. Reconstructed and video images are compared. Quantitative and qualitative analysis show that fluid flow visualization is feasible with a limited number of detectors. This method can be applied for system involving circulations of fluids. (author)
Experimental Comparison Of Working Fluids For Organic Rankine Cycle With Single-Screw Expander
Gusev, Sergei; Ziviani, Davide; Bell, Ian; De Paepe, Michel; van den Broek, Martijn
2014-01-01
This paper describes the behavior of an Organic Rankine Cycle (ORC) fed by a heat source with adaptable temperature and mass flow. For a suitable choice of working fluid, the setting of its evaporation pressure is crucial for the performance of an ORC installation. The higher the evaporation pressure, the higher the cycle efficiency on the one hand, but the lower the energy recovered from the heat source due to a higher outlet temperature on the other hand. An optimum has to be found to achie...
Visible light broadband perfect absorbers
Energy Technology Data Exchange (ETDEWEB)
Jia, X. L.; Meng, Q. X.; Yuan, C. X.; Zhou, Z. X.; Wang, X. O., E-mail: wxo@hit.edu.cn [School of Science, Harbin Institute of Technology, Harbin 150001 (China)
2016-03-15
The visible light broadband perfect absorbers based on the silver (Ag) nano elliptical disks and holes array are studied using finite difference time domain simulations. The semiconducting indium silicon dioxide thin film is introduced as the space layer in this sandwiched structure. Utilizing the asymmetrical geometry of the structures, polarization sensitivity for transverse electric wave (TE)/transverse magnetic wave (TM) and left circular polarization wave (LCP)/right circular polarization wave (RCP) of the broadband absorption are gained. The absorbers with Ag nano disks and holes array show several peaks absorbance of 100% by numerical simulation. These simple and flexible perfect absorbers are particularly desirable for various potential applications including the solar energy absorber.
Looking beyond the perfect lens
International Nuclear Information System (INIS)
Wee, W H; Pendry, J B
2010-01-01
The holy grail of imaging is the ability to see through anything. From the conservation of energy, we can easily see that to see through a lossy material would require lenses with gain. The aim of this paper therefore is to propose a simple scheme by which we can construct a general perfect lens, with gain-one that can restore both the phases and amplitudes of near and far fields.
Study of single- and two-phase fluid transfer between subchannels at Kumamoto University
International Nuclear Information System (INIS)
Sadatomi, Michio
2004-01-01
Firstly, the definitions of turbulent mixing, void drift and diversion cross-flow, which are three components of fluid transfer between subchannels, are given together with the relations of each component with equilibrium or non-equilibrium two-phase subchannel flows. Secondly, measuring techniques of the three components are briefly presented in turn together with typical measurement results. In turbulent mixing measurement, a tracer injection method has been adopted at Kumamoto University, while an isokinetic discharge method for both void drift an diversion cross-flow measurements. In the experiment of hydraulically non-equilibrium flow with both void drift and/or diversion cross-flow, experimental data on flow redistribution process have been obtained. The data include the axial variations of gas and liquid flow rates and void fraction in each subchannel and pressure difference between the subchannels. After analyzing these variations, some correlations on the void drift and the diversion cross-flow are obtained. Finally, a subchannel analysis code used at Kumamoto University is presented together with the results of its validation test against the experimental data on flow redistribution process mentioned above. The code is based on a two-phase two-fluid model, and is applicable to adiabatic two-phase flows under steady state condition. Basic equations in the code are the conservation equations of mass, axial momentum and lateral momentum, while the constitutive equations include the correlations of void diffusion coefficient, both interfacial and wall friction coefficients for the cross-flow, etc. (author)
Forensic Body Fluid Identification by Analysis of Multiple RNA Markers Using NanoString Technology
Directory of Open Access Journals (Sweden)
Jong-Lyul Park
2013-12-01
Full Text Available RNA analysis has become a reliable method of body fluid identification for forensic use. Previously, we developed a combination of four multiplex quantitative PCR (qRT-PCR probes to discriminate four different body fluids (blood, semen, saliva, and vaginal secretion. While those makers successfully identified most body fluid samples, there were some cases of false positive and negative identification. To improve the accuracy of the identification further, we tried to use multiple markers per body fluid and adopted the NanoString nCounter system instead of a multiplex qRT-PCR system. After measuring tens of RNA markers, we evaluated the accuracy of each marker for body fluid identification. For body fluids, such as blood and semen, each body fluid-specific marker was accurate enough for perfect identification. However, for saliva and vaginal secretion, no single marker was perfect. Thus, we designed a logistic regression model with multiple markers for saliva and vaginal secretion and achieved almost perfect identification. In conclusion, the NanoString nCounter is an efficient platform for measuring multiple RNA markers per body fluid and will be useful for forensic RNA analysis.
Critical phenomena at perfect and non-perfect surfaces
International Nuclear Information System (INIS)
Pleimling, M
2004-01-01
In the past, perfect surfaces have been shown to yield local critical behaviour that differs from bulk critical behaviour. On the other hand, surface defects, whether they are of natural origin or created artificially, are known to modify local quantities. It is therefore important to clarify whether these defects are relevant or irrelevant for the surface critical behaviour. The purpose of this review is two-fold. In the first part we summarize some of the important results on surface criticality at perfect surfaces. Special attention is thereby paid to new developments such as for example the study of the surface critical behaviour in systems with competing interactions or of surface critical dynamics. In the second part the effect of surface defects (presence of edges, steps, quenched randomness, lines of adatoms, regular geometric patterns) on local critical behaviour in semi-infinite systems and in thin films is discussed in detail. Whereas most of the defects commonly encountered are shown to be irrelevant, some notable exceptions are highlighted. It is shown furthermore that under certain circumstances non-universal local critical behaviour may be observed at surfaces. (topical review)
Dual band metamaterial perfect absorber based on Mie resonances
Energy Technology Data Exchange (ETDEWEB)
Liu, Xiaoming; Lan, Chuwen; Li, Bo; Zhou, Ji, E-mail: zhouji@tsinghua.edu.cn [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Bi, Ke [School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Zhao, Qian [State Key Lab of Tribology, Department of Precision Instruments and Mechanology, Tsinghua University, Beijing 100084 (China)
2016-08-08
We numerically and experimentally demonstrated a polarization insensitive dual-band metamaterial perfect absorber working in wide incident angles based on the two magnetic Mie resonances of a single dielectric “atom” with simple structure. Two absorption bands with simulated absorptivity of 99% and 96%, experimental absorptivity of 97% and 94% at 8.45 and 11.97 GHz were achieved due to the simultaneous magnetic and electric resonances in dielectric “atom” and copper plate. Mie resonances of dielectric “atom” provide a simple way to design metamaterial perfect absorbers with high symmetry.
Ashraf-Khorassani, Mehdi; Taylor, Larry Thomas
2004-05-05
Pure supercritical CO(2) was used to remove >95% of the oil from the grape seeds. Subcritical CO(2) modified with methanol was used for the extraction of monomeric polyphenols, whereas pure methanol was used for the extraction of polyphenolic dimers/trimers and procyanidins from grape seed. At optimum conditions, 40% methanol-modified CO(2) removed >79% of catechin and epicatechin from the grape seed. This extract was light yellow in color, and no higher molecular weight procyanidins were detected. Extraction of the same sample after removal of the oils and polyphenols, but now under enhanced solvent extraction conditions using methanol as a solvent, provided a dark red solution shown via electrospray ionization HPLC-MS to contain a relatively high concentration of procyanidins. The uniqueness of the study is attested to by the use of CO(2)-based fluids and the employment of a single instrumental extraction system.
Computational fluid dynamics simulation of a single cylinder research engine working with biodiesel
Directory of Open Access Journals (Sweden)
Moldovanu Dan
2013-01-01
Full Text Available The main objective of the paper is to present the results of the CFD simulation of a DI single cylinder engine using diesel, biodiesel, or different mixture proportions of diesel and biodiesel and compare the results to a test bed measurement in the same functioning point. The engine used for verifying the results of the simulation is a single cylinder research engine from AVL with an open ECU, so that the injection timings and quantities can be controlled and analyzed. In Romania, until the year 2020 all the fuel stations are obliged to have mixtures of at least 10% biodiesel in diesel [14]. The main advantages using mixtures of biofuels in diesel are: the fact that biodiesel is not harmful to the environment; in order to use biodiesel in your engine no modifications are required; the price of biodiesel is smaller than diesel and also if we compare biodiesel production to the classic petroleum based diesel production, it is more energy efficient; biodiesel assures more lubrication to the engine so the life of the engine is increased; biodiesel is a sustainable fuel; using biodiesel helps maintain the environment and it keeps the people more healthy [1-3].
General model of phospholipid bilayers in fluid phase within the single chain mean field theory
Energy Technology Data Exchange (ETDEWEB)
Guo, Yachong; Baulin, Vladimir A. [Departament d’Enginyeria Química, Universitat Rovira i Virgili, Av. dels Paisos Catalans 26, 43007 Tarragona (Spain); Pogodin, Sergey [Institute of Chemical Research of Catalonia, ICIQ, Av. Paisos Catalans 16, 43007 Tarragona (Spain)
2014-05-07
Coarse-grained model for saturated phospholipids: 1,2-didecanoyl-sn-glycero-3-phosphocholine (DCPC), 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and unsaturated phospholipids: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1,2- dioleoyl-sn-glycero-3-phosphocholine (DOPC) is introduced within the single chain mean field theory. A single set of parameters adjusted for DMPC bilayers gives an adequate description of equilibrium and mechanical properties of a range of saturated lipid molecules that differ only in length of their hydrophobic tails and unsaturated (POPC, DOPC) phospholipids which have double bonds in the tails. A double bond is modeled with a fixed angle of 120°, while the rest of the parameters are kept the same as saturated lipids. The thickness of the bilayer and its hydrophobic core, the compressibility, and the equilibrium area per lipid correspond to experimentally measured values for each lipid, changing linearly with the length of the tail. The model for unsaturated phospholipids also fetches main thermodynamical properties of the bilayers. This model is used for an accurate estimation of the free energies of the compressed or stretched bilayers in stacks or multilayers and gives reasonable estimates for free energies. The proposed model may further be used for studies of mixtures of lipids, small molecule inclusions, interactions of bilayers with embedded proteins.
Laser driven single shock compression of fluid deuterium from 45 to 220 GPa
Energy Technology Data Exchange (ETDEWEB)
Hicks, D; Boehly, T; Celliers, P; Eggert, J; Moon, S; Meyerhofer, D; Collins, G
2008-03-23
The compression {eta} of liquid deuterium between 45 and 220 GPa under laser-driven shock loading has been measured using impedance matching to an aluminum (Al) standard. An Al impedance match model derived from a best fit to absolute Hugoniot data has been used to quantify and minimize the systematic errors caused by uncertainties in the high-pressure Al equation of state. In deuterium below 100 GPa results show that {eta} {approx_equal} 4.2, in agreement with previous impedance match data from magnetically-driven flyer and convergent-explosive shock wave experiments; between 100 and 220 GPa {eta} reaches a maximum of {approx}5.0, less than the 6-fold compression observed on the earliest laser-shock experiments but greater than expected from simple extrapolations of lower pressure data. Previous laser-driven double-shock results are found to be in good agreement with these single-shock measurements over the entire range under study. Both sets of laser-shock data indicate that deuterium undergoes an abrupt increase in compression at around 110 GPa.
A FLUID PRESSURE-LOADED SINGLE CRACK LOCATED IN A ROCK MASSIF PROPAGATION TRAJECTORY CALCULATION
Directory of Open Access Journals (Sweden)
Cherdantsev N.V.
2017-12-01
Full Text Available The task solving results of a single crack filled with liquid under pressure propagation in a rock mass are presented. The rock mass is loaded with an unequal component gravitational field of stresses and represents a homogeneous elastic medium. The causes of the crack occurrence and its loading by internal pressure are not considered. In the task set, the rock mass is under conditions of a flat deformed state. In this paper, the effect of the opening on the stressed state of the rock mass and on crack propagation trajectory is not considered. The task is solved within the framework of classical concepts of the state of a crack, its stable and unstable growth in an infinite plate of brittle material, based on the theories of Griffiths - Irwin. Based on the results of the studies carried out, crack propagation trajectories are constructed for a number of the crack to the horizon inclination angle values, the characteristics associated with the strength of the enclosing rocks. An analysis is given of the critical pressures change during the crack intergrowth
Relativistic thermodynamics of fluids
International Nuclear Information System (INIS)
Souriau, J.-M.
1977-05-01
The relativistic covariant definition of a statistical equilibrium, applied to a perfect gas, involves a 'temperature four-vector', whose direction is the mean velocity of the fluid, and whose length is the reciprocal temperature. The hypothesis of this 'temperature four-vector' being a relevant variable for the description of the dissipative motions of a simple fluid is discussed. The kinematics is defined by using a vector field and measuring the number of molecules. Such a dissipative fluid is subject to motions involving null entropy generation; the 'temperature four-vector' is then a Killing vector; the equations of motion can be completely integrated. Perfect fluids can be studied by this way and the classical results of Lichnerowicz are obtained. In weakly dissipative motions two viscosity coefficient appear together with the heat conductibility coefficient. Two other coefficients perharps measurable on real fluids. Phase transitions and shock waves are described with using the model [fr
The pursuit of perfect packing
Weaire, Denis
2000-01-01
In 1998 Thomas Hales dramatically announced the solution of a problem that has long teased eminent mathematicians: what is the densest possible arrangement of identical spheres? The Pursuit of Perfect Packing recounts the story of this problem and many others that have to do with packing things together. The examples are taken from mathematics, physics, biology, and engineering, including the arrangement of soap bubbles in foam, atoms in a crystal, the architecture of the bee''s honeycomb, and the structure of the Giant''s Causeway. Using an informal style and with key references, the book also includes brief accounts of the lives of many of the scientists who devoted themselves to problems of packing over many centuries, together with wry comments on their efforts. It is an entertaining introduction to the field for both specialists and the more general public.
The pursuit of perfect packing
Weaire, Denis
2008-01-01
Coauthored by one of the creators of the most efficient space packing solution, the Weaire-Phelan structure, The Pursuit of Perfect Packing, Second Edition explores a problem of importance in physics, mathematics, chemistry, biology, and engineering: the packing of structures. Maintaining its mathematical core, this edition continues and revises some of the stories from its predecessor while adding several new examples and applications. The book focuses on both scientific and everyday problems ranging from atoms to honeycombs. It describes packing models, such as the Kepler conjecture, Voronoï decomposition, and Delaunay decomposition, as well as actual structure models, such as the Kelvin cell and the Weaire-Phelan structure. The authors discuss numerous historical aspects and provide biographical details on influential contributors to the field, including emails from Thomas Hales and Ken Brakke. With examples from physics, crystallography, engineering, and biology, this accessible and whimsical bo...
Perfect Liberty or Natural Liberty?
DEFF Research Database (Denmark)
Jacobsen, Stefan Gaarsmand
2012-01-01
The article investigates the concept of natural order as it is used by François Quesnay and Adam Smith in their respective economic writings. While Smith used the concept only after having visited Quesnay and the Physiocrats in France in the 1760s, in The Wealth of Nations he sought to negotiate...... the meaning of what was “natural” about economic life. The Physiocrats believed it possible to identify a model or a perfect regime of natural order – an order that they in fact thought to exist and function in China due to a rigorous system of economic laws. Smith sided with contemporary critics...... successors in political economy, and the problem of ordering the society from the vantage point of an economic science was rephrased as a problem of combining the physiocratic metaphysics of natural order with the ‘business of the world’ as expounded by Smith....
Singularity free non-rotating cosmological solutions for perfect fluids ...
Indian Academy of Sciences (India)
Singularity free cosmological solutions of the type stated in the title known so far are of a very special class and have the following characteristics: (a) The space time is cylindrically symmetric. (b) In case the metric is diagonal, the μ's are of the form μ = a function of time multiplied by a function of the radial coordinate.
Perfect fluid cosmological Universes: One equation of state and the ...
Indian Academy of Sciences (India)
Anadijiban Das
2018-01-04
Jan 4, 2018 ... Abstract. Considering a homogeneous and isotropic Universe characterised by the Friedmann–Lemaître–. Robertson–Walker line element, in this work, we have prescribed a general formalism for the cosmological solutions when the equation of state of the cosmic substance follows the general structure ...
Perfect fluid cosmological Universes: One equation of state and the ...
Indian Academy of Sciences (India)
Anadijiban Das
2018-01-04
Jan 4, 2018 ... 1Department of Mathematics, Simon Fraser University, Burnaby, BC V5A 1S6, Canada. 2Department of Physics, Jadavpur ... carries the information of the geometrical sector, Tμν is the energy–momentum part of the ..... connected by any analytic function ψ, the evolutions equations, mainly, the expansion ...
Perfect fluid cosmological Universes: One equation of state and the ...
Indian Academy of Sciences (India)
Department of Mathematics, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; Department of Physics, Jadavpur University, Kolkata 700 032, India; Department of Mathematics, Jadavpur University, Kolkata 700 032, India; Department of Physical Sciences, Indian Institute of Science Education and Research, Kolkata, ...
International Nuclear Information System (INIS)
Sandoval, Miguel A.; Fuentes, Rosalba; Walsh, Frank C.; Nava, José L.; Ponce de León, Carlos
2016-01-01
Highlights: • Computational fluid dynamic simulations in a filter-press stack of three cells. • The fluid velocity was different in each cell due to local turbulence. • The upper cell link pipe of the filter press cell acts as a fluid mixer. • The fluid behaviour tends towards a continuous mixing flow pattern. • Close agreement between simulations and experimental data was achieved. - Abstract: Computational fluid dynamics (CFD) simulations were carried out for single-phase flow in a pre-pilot filter press flow reactor with a stack of three cells. Velocity profiles and streamlines were obtained by solving the Reynolds-Averaged Navier-Stokes (RANS) equations with a standard k − ε turbulence model. The flow behaviour shows the appearance of jet flow at the entrance to each cell. At lengths from 12 to 15 cm along the cells channels, a plug flow pattern is developed at all mean linear flow rates studied here, 1.2 ≤ u ≤ 2.1 cm s −1 . The magnitude of the velocity profiles in each cell was different, due to the turbulence generated by the change of flow direction in the last fluid manifold. Residence time distribution (RTD) simulations indicated that the fluid behaviour tends towards a continuous mixing flow pattern, owing to flow at the output of each cell across the upper cell link pipe, which acts as a mixer. Close agreement between simulations and experimental RTD was obtained.
Practice makes two hemispheres almost perfect.
Cherbuin, Nicolas; Brinkman, Cobie
2005-08-01
Some tasks produce a performance advantage for conditions that require the processing of stimuli in two visual fields compared to conditions where single hemifield processing is sufficient. This advantage, however, disappears with practice. Although no definitive evidence yet exists, there are several possible mechanisms that might lead to improved performance of within- compared to across-hemisphere processing with practice. These include a shift from a more demanding, algorithmic strategy to a less demanding memory-retrieval strategy (e.g., [G. Logan, Toward an instance theory of automatisation. Psych. Rev. 95 (1988) 492-527]), as discussed by Weissman and Compton [D.H. Weissman, R.J. Compton, Practice makes a hemisphere perfect: the advantage of interhemispheric recruitment is eliminated with practice. Laterality, 8 (4) (2003) 361-375], and/or a more generalised practice effect [K. Kirsner, C. Speelman, Skill acquisition and repetition priming: one principle, many processes? J. Exp. Psychol., Learn. Mem. Cogn., 22 (1996) 563-575]. Contrary to Weissman and Compton findings, our results suggest that although single-hemisphere performance improves with practice, bi-hemispheric performance also improves substantially. Furthermore, these effects do not appear to be due to a shift in strategy but rather due to a general practice effect.
Kusztal, Mariusz; Dzierżek, Przemysław; Gołębiowski, Tomasz; Weyde, Wacław; Klinger, Marian
2015-05-17
Bioelectrical impedance analysis (BIA) is an affordable, non-invasive and fast alternative method to assess body composition. The purpose of this study was to compare two different tetrapolar BIA devices for estimating body fluid volumes and body cell mass (BCM) in a clinical setting among patients with kidney failure. All double measurements were performed by multi-frequency (MF) and single-frequency (SF) BIA analyzers: a Body Composition Monitor (Fresenius Medical Care, Germany) and BIA-101 (Akern, Italy), respectively. All procedures were conducted according to the manufacturers' instructions (dedicated electrodes, measurement sites, positions, etc). Total body water (TBW), extracellular water (ECW), intracellular water (ICW) and BCM were compared. The study included 39 chronic kidney disease patients (stage III-V) with a mean age of 45.8 ± 8 years (21 men and 18 women) who had a wide range of BMI [17-34 kg/m2 (mean 26.6 ±5)]. A comparison of results from patients with BMI obese renal patients.
Triantafillu, Ursula L; Nix, Jaron N; Kim, Yonghyun
2018-01-01
Biological industries commonly rely on bioreactor systems for the large-scale production of cells. Cell aggregation, clumping, and spheroid morphology of certain suspension cells make their large-scale culture challenging. Growing stem cells as spheroids is indispensable to retain their stemness, but large spheroids (>500 µm diameter) suffer from poor oxygen and nutrient diffusion, ultimately resulting in premature cell death in the centers of the spheroids. Despite this, most large-scale bioprocesses do not have an efficient method for dissociating cells into single cells, but rely on costly enzymatic dissociation techniques. Therefore, we tested a proof-of-concept fluid shear-based mechanical dissociator that was designed to dissociate stem cell spheroids and aggregates. Our prototype was able to dissociate cells while retaining high viability and low levels of apoptosis. The dissociator also did not impact long-term cell growth or spheroid formation. Thus, the dissociator introduced here has the potential to replace traditional dissociation methods. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:293-298, 2018. © 2017 American Institute of Chemical Engineers.
Taguchi, Kaori; Fukusaki, Eiichiro; Bamba, Takeshi
2014-10-03
Chromatography techniques usually use a single state in the mobile phase, such as liquid, gas, or supercritical fluid. Chromatographers manage one of these techniques for their purpose but are sometimes required to use multiple methods, or even worse, multiple techniques when the target compounds have a wide range of chemical properties. To overcome this challenge, we developed a single method covering a diverse compound range by means of a "unified" chromatography which completely bridges supercritical fluid chromatography and liquid chromatography. In our method, the phase state was continuously changed in the following order; supercritical, subcritical and liquid. Moreover, the gradient of the mobile phase starting at almost 100% CO2 was replaced with 100% methanol at the end completely. As a result, this approach achieved further extension of the polarity range of the mobile phase in a single run, and successfully enabled the simultaneous analysis of fat- and water-soluble vitamins with a wide logP range of -2.11 to 10.12. Furthermore, the 17 vitamins were exceptionally separated in 4min. Our results indicated that the use of dense CO2 and the replacement of CO2 by methanol are practical approaches in unified chromatography covering diverse compounds. Additionally, this is a first report to apply the novel approach to unified chromatography, and can open another door for diverse compound analysis in a single chromatographic technique with single injection, single column and single system. Copyright © 2014. Published by Elsevier B.V.
Directory of Open Access Journals (Sweden)
Daniel H Johnson
Full Text Available Antiretroviral drugs vary in their central nervous system penetration, with better penetration possibly conferring neurocognitive benefit during human immunodeficiency virus (HIV therapy. The efflux transporter gene ABCB1 is expressed in the blood-brain barrier, and an ABCB1 variant (3435C → T has been reported to affect ABCB1 expression. The integrase inhibitor raltegravir is a substrate for ABCB1. We examined whether ABCB1 3435C → T affects raltegravir disposition into cerebrospinal fluid (CSF, and explored associations with polymorphisms in other membrane transporter genes expressed in the blood-brain barrier.Forty healthy, HIV-negative adults of European descent (20 homozygous for ABCB1 3435 C/C, 20 homozygous for 3435 T/T, each group divided equally between males and females were given raltegravir 400 mg twice daily for 7 days. With the final dose, plasma was collected for pharmacokinetic analysis at 9 timepoints over 12 hours, and CSF collected 4 hours post dose.The 4-hour CSF concentration correlated more strongly with 2-hour (r(2=0.76, P=1.12 x 10(-11 than 4-hour (r(2=0.47, P=6.89 x 10(-6 single timepoint plasma concentration, and correlated strongly with partial plasma area-under-the-curve values (AUC0-4h r(2=0.86, P=5.15 x 10(-16. There was no significant association between ABCB1 3435C → T and ratios of CSF-to-plasma AUC or concentration (p>0.05 for each comparison. In exploratory analyses, CSF-to-plasma ratios were not associated with 276 polymorphisms across 16 membrane transporter genes.Among HIV-negative adults, CSF raltegravir concentrations do not differ by ABCB1 3435C → T genotype but strongly correlate with plasma exposure.ClinicalTrials.gov NCT00729924 http://clinicaltrials.gov/show/NCT00729924.
Multi-channel coherent perfect absorbers
Bai, Ping
2016-05-18
The absorption efficiency of a coherent perfect absorber usually depends on the phase coherence of the incident waves on the surfaces. Here, we present a scheme to create a multi-channel coherent perfect absorber in which the constraint of phase coherence is loosened. The scheme has a multi-layer structure such that incident waves in different channels with different angular momenta can be simultaneously and perfectly absorbed. This absorber is robust in achieving high absorption efficiency even if the incident waves become "incoherent" and possess "random" wave fronts. Our work demonstrates a unique approach to designing highly efficient metamaterial absorbers. © CopyrightEPLA, 2016.
On 4-critical t-perfect graphs
Benchetrit, Yohann
2016-01-01
It is an open question whether the chromatic number of $t$-perfect graphs is bounded by a constant. The largest known value for this parameter is 4, and the only example of a 4-critical $t$-perfect graph, due to Laurent and Seymour, is the complement of the line graph of the prism $\\Pi$ (a graph is 4-critical if it has chromatic number 4 and all its proper induced subgraphs are 3-colorable). In this paper, we show a new example of a 4-critical $t$-perfect graph: the complement of the line gra...
Plasmonic titanium nitride nanostructures for perfect absorbers
DEFF Research Database (Denmark)
Guler, Urcan; Li, Wen-Wei; Kinsey, Nathaniel
2013-01-01
We propose a metamaterial based perfect absorber in the visible region, and investigate the performance of titanium nitride as an alternative plasmonic material. Numerical and experimental results reveal that titanium nitride performs better than gold as a plasmonic absorbing material...
Optically Modulated Multiband Terahertz Perfect Absorber
DEFF Research Database (Denmark)
Seren, Huseyin R.; Keiser, George R.; Cao, Lingyue
2014-01-01
response of resonant metamaterials continues to be a challengingendeavor. Resonant perfect absorbers have flourished as one of the mostpromising metamaterial devices with applications ranging from power har-vesting to terahertz imaging. Here, an optically modulated resonant perfectabsorber is presented...
Xiu, Xiao-Ming; Cui, Cen; Lin, Yan-Fang; Dong, Li; Dong, Hai-Kuan; Gao, Ya-Jun
2018-01-01
With the assistance of weak cross-Kerr nonlinear interaction between photons and coherent states via Kerr media, we propose a scheme to split and acquire quantum information with three-photon perfect W states. By means of a fault-tolerant circuit, the perfect W states are distributed to the participants without being affected by the collective noise. And on this basis we present a scheme for splitting and acquiring a single-photon state with the shared perfect W states. Together with the mature techniques of classical feed-forward, simple and available linear optical elements are applied in the procedure, afford enhancing the feasibility of the theoretical scheme proposed here.
McCullough, J; Keller, H
2018-01-01
Hospital malnutrition is an under-recognized issue that leads to a variety of adverse outcomes, especially for older adults. Food/fluid intake (FFI) monitoring in hospital can be used to identify those who are improving and those who need further treatment. Current monitoring practices such as calorie counts are impractical for all patients and a patient-completed tool, if valid, could support routine FFI monitoring. The aim of this research was to determine whether the patient-completed My Meal Intake Tool (M-MIT) can accurately represent FFI at a single meal. Cross-sectional, multi-site. Four acute care hospitals in Canada. 120 patients (65+ yrs, adequate cognition). Participants completed M-MIT for a single meal. Food and fluid waste was visually estimated by a research dietitian at each hospital. Sensitivity (Se), specificity (Sp) and overall agreement were calculated for both food and fluid intake by comparing M-MIT and dietitian estimations to determine criterion validity of M-MIT. Patient and research dietitian comments were used to make revisions to the M-MIT. Using a cut-point of ≤50% intake, Se was 76.2% and 61.9% and Sp was 74.0% and 80.5% for solid and fluids respectively (pMIT identified a greater proportion of participants (37.2%) as having low FFI (≤50%) than dietitians (25.0%), as well as a greater proportion identified with low fluid intake (28.3% vs. 24.6%). Modest revisions were made to improve the tool. This study has demonstrated initial validity of M-MIT for use in older patients with adequate cognition. Use of M-MIT could promote FFI monitoring as a routine practice to make clinical decisions about care.
Energy Technology Data Exchange (ETDEWEB)
Chen, Mo; Drury, Jason E.; Christianson, David W.; Penning, Trevor M. (UPENN)
2012-10-10
Human aldo-keto reductase 1D1 (AKR1D1) and AKR1C enzymes are essential for bile acid biosynthesis and steroid hormone metabolism. AKR1D1 catalyzes the 5{beta}-reduction of {Delta}{sup 4}-3-ketosteroids, whereas AKR1C enzymes are hydroxysteroid dehydrogenases (HSDs). These enzymes share high sequence identity and catalyze 4-pro-(R)-hydride transfer from NADPH to an electrophilic carbon but differ in that one residue in the conserved AKR catalytic tetrad, His120 (AKR1D1 numbering), is substituted by a glutamate in AKR1D1. We find that the AKR1D1 E120H mutant abolishes 5{beta}-reductase activity and introduces HSD activity. However, the E120H mutant unexpectedly favors dihydrosteroids with the 5{alpha}-configuration and, unlike most of the AKR1C enzymes, shows a dominant stereochemical preference to act as a 3{beta}-HSD as opposed to a 3{alpha}-HSD. The catalytic efficiency achieved for 3{beta}-HSD activity is higher than that observed for any AKR to date. High resolution crystal structures of the E120H mutant in complex with epiandrosterone, 5{beta}-dihydrotestosterone, and {Delta}{sup 4}-androstene-3,17-dione elucidated the structural basis for this functional change. The glutamate-histidine substitution prevents a 3-ketosteroid from penetrating the active site so that hydride transfer is directed toward the C3 carbonyl group rather than the {Delta}{sup 4}-double bond and confers 3{beta}-HSD activity on the 5{beta}-reductase. Structures indicate that stereospecificity of HSD activity is achieved because the steroid flips over to present its {alpha}-face to the A-face of NADPH. This is in contrast to the AKR1C enzymes, which can invert stereochemistry when the steroid swings across the binding pocket. These studies show how a single point mutation in AKR1D1 can introduce HSD activity with unexpected configurational and stereochemical preference.
Dimbleby, G; Mitchell-Innes, A; Murphy, J
2014-12-01
A bone-anchored hearing aid uses the principle of bone conduction and osseointegration to transfer sound vibrations to a functioning inner ear. It consists of a permanent titanium implant, and removable abutment and sound processor. Informed consent requires discussion of the procedural benefits, alternatives and complications. The risks of bone-anchored hearing aid surgery include infection, soft tissue hypertrophy, skin graft or flap failure, osseointegration failure, and the need for further surgery. A case of cerebrospinal fluid leak in a patient undergoing bone-anchored hearing aid surgery is reported and discussed. Bone-anchored hearing aid surgery poses a risk of breaching the inner table of the temporal bone and dura, resulting in a cerebrospinal fluid leak; the risk of meningitis is rare but serious. The surgeon should discuss the possibility of cerebrospinal fluid leak when consenting patients. Pre-operative computerised tomography scanning should be considered in certain individuals to aid implant placement.
Kularatne, Senanayake A M; Weerakoon, Kosala G A D; Munasinghe, Ruwan; Ralapanawa, Udaya K; Pathirage, Manoji
2015-04-08
Meticulous fluid management is the mainstay of treatment in dengue fever that is currently governed by consensus guidelines rather than by strong research evidence. To examine this issue we audited the fluid requirement of a cohort of adult patients with dengue fever (DF) and dengue haemorrhagic fever (DHF) in a tertiary care clinical setting. This retrospective cohort study was conducted from July 2012 to January 2013 in Teaching Hospital, Peradeniya, Sri Lanka. Adult patients with confirmed dengue infection managed according to the national and WHO guidelines were included. Their fluid requirement was audited once data collection was over in both DF and DHF groups. Out of 302 patients, 209 (69%) had serological confirmation of dengue infection, comprising 62 (30%) patients gone into critical phase of DHF. Mean age of the DHF group was 30 years (range 12-63 years) and included more males (n = 42, 68%, p fever on admission and total duration of fever were 4 days and 6 days respectively. DHF group had high incidence of vomiting, abdominal pain and flushing, lowest platelet counts and highest haematocrit values compared to DF group. In DHF group, the mean total daily requirements of fluid from 2(nd) to 7(th) day were 2123, 2733, 2846, 2981, 3139 and 3154 milliliters respectively to maintain a safe haematocrit value and the vital parameters. However, in DF group the fluid requirement was lowest on 3(rd) day (2158 milliliters). DHF group had significantly high fluid requirement on 5(th) -7(th) day compared to DF group (p fever and again on 5(th) to 7(th) day of fever. Despite being an audit, these finding could be useful in future updates of guidelines and designing research.
International Nuclear Information System (INIS)
Soltani, P; Farshidianfar, A; Taherian, M M
2010-01-01
In this study, for the first time, the transverse vibrational model of a viscous-fluid-conveying single-walled carbon nanotube (SWCNT) embedded in biological soft tissue is developed. Nonlocal Euler-Bernoulli beam theory has been used to investigate fluid-induced vibration of the SWCNT while visco-elastic behaviour of the surrounding tissue is simulated by the Kelvin-Voigt model. The results indicate that the resonant frequencies and the critical flow velocity at which structural instability of nanotubes emerges are significantly dependent on the properties of the medium around the nanotube, the boundary conditions, the viscosity of the fluid and the nonlocal parameter. Detailed results are demonstrated for the dependence of damping and elastic properties of the medium on the resonant frequencies and the critical flow velocity. Three standard boundary conditions, namely clamped-clamped, clamped-pinned and pinned-pinned, are applied to study the effect of the supported end conditions. Furthermore, it is found that the visco-elastic foundation causes an obvious reduction in the critical velocity in comparison with the elastic foundation, in particular for a compliant medium, pinned-pinned boundary condition, high viscosity of the fluid and small values of the nonlocal coefficient.
Tembely, Moussa; Alsumaiti, Ali M.; Jouini, Mohamed S.; Rahimov, Khurshed; Dolatabadi, Ali
2017-11-01
Most of the digital rock physics (DRP) simulations focus on Newtonian fluids and overlook the detailed description of rock-fluid interaction. A better understanding of multiphase non-Newtonian fluid flow at pore-scale is crucial for optimizing enhanced oil recovery (EOR). The Darcy scale properties of reservoir rocks such as the capillary pressure curves and the relative permeability are controlled by the pore-scale behavior of the multiphase flow. In the present work, a volume of fluid (VOF) method coupled with an adaptive meshing technique is used to perform the pore-scale simulation on a 3D X-ray micro-tomography (CT) images of rock samples. The numerical model is based on the resolution of the Navier-Stokes equations along with a phase fraction equation incorporating the dynamics contact model. The simulations of a single phase flow for the absolute permeability showed a good agreement with the literature benchmark. Subsequently, the code is used to simulate a two-phase flow consisting of a polymer solution, displaying a shear-thinning power law viscosity. The simulations enable to access the impact of the consistency factor (K), the behavior index (n), along with the two contact angles (advancing and receding) on the relative permeability.
Directory of Open Access Journals (Sweden)
Carpenter Catherine L
2012-12-01
Full Text Available Abstract Background Accumulation of excess body fat increases breast cancer risk after menopause. Whether the localized breast is differently influenced by adipose tissue compared to the rest of the body, has not been well studied. Our purpose was to demonstrate feasibility and preliminarily evaluate serum-based and localized breast biomarker changes resulting from a weight loss intervention among obese postmenopausal women. Methods We conducted a 12-week pilot controlled dietary and exercise intervention among healthy obese postmenopausal women, collected serum and breast ductal fluid before and after the intervention, and estimated the association with systemic and localized biomarker changes. We recruited 7 obese (mean body mass index = 33.6 kg/m2 postmenopausal women. We collected samples at baseline and the 12th week for: anthropometry; phlebotomy; dual-energy x-ray absorptiometry (lean and fat mass; exercise fitness (maximum oxygen consumption (VO2Max; 1-repetition strength maximum; and breast ductal lavage. Results Changes from baseline occurred in body composition and exercise performance including fat mass loss (14% average drop, VO2Max (+36% increase and strength improvement (+26%. Breast ductal fluid markers declined from baseline with estradiol showing a 24% reduction and IL-6 a 20% reduction. We also observed serum biomarker reductions from baseline including leptin (36% decline, estrone sulfate (−10%, estradiol (−25%, and Il-6 (−33%. Conclusions Conduct of the diet and exercise intervention, collection of ductal fluid, and measurement of hormones and cytokines contained in the ductal fluid were all feasible. We preliminarily demonstrated estradiol and IL-6 reductions from baseline in both serum and breast ductal fluid among obese postmenopausal women who participated in the 12-week weight loss diet and exercise intervention.
Overlapped optics induced perfect coherent effects
Li, Jian Jie; Zang, Xiao Fei; Mao, Jun Fa; Tang, Min; Zhu, Yi Ming; Zhuang, Song Lin
2013-12-01
For traditional coherent effects, two separated identical point sources can be interfered with each other only when the optical path difference is integer number of wavelengths, leading to alternate dark and bright fringes for different optical path difference. For hundreds of years, such a perfect coherent condition seems insurmountable. However, in this paper, based on transformation optics, two separated in-phase identical point sources can induce perfect interference with each other without satisfying the traditional coherent condition. This shifting illusion media is realized by inductor-capacitor transmission line network. Theoretical analysis, numerical simulations and experimental results are performed to confirm such a kind of perfect coherent effect and it is found that the total radiation power of multiple elements system can be greatly enhanced. Our investigation may be applicable to National Ignition Facility (NIF), Inertial Confined Fusion (ICF) of China, LED lighting technology, terahertz communication, and so on.
Overlapped optics induced perfect coherent effects.
Li, Jian Jie; Zang, Xiao Fei; Mao, Jun Fa; Tang, Min; Zhu, Yi Ming; Zhuang, Song Lin
2013-12-20
For traditional coherent effects, two separated identical point sources can be interfered with each other only when the optical path difference is integer number of wavelengths, leading to alternate dark and bright fringes for different optical path difference. For hundreds of years, such a perfect coherent condition seems insurmountable. However, in this paper, based on transformation optics, two separated in-phase identical point sources can induce perfect interference with each other without satisfying the traditional coherent condition. This shifting illusion media is realized by inductor-capacitor transmission line network. Theoretical analysis, numerical simulations and experimental results are performed to confirm such a kind of perfect coherent effect and it is found that the total radiation power of multiple elements system can be greatly enhanced. Our investigation may be applicable to National Ignition Facility (NIF), Inertial Confined Fusion (ICF) of China, LED lighting technology, terahertz communication, and so on.
A Hypergraph Dictatorship Test with Perfect Completeness
Chen, Victor
A hypergraph dictatorship test is first introduced by Samorodnitsky and Trevisan and serves as a key component in their unique games based {operatorname{PCP}} construction. Such a test has oracle access to a collection of functions and determines whether all the functions are the same dictatorship, or all their low degree influences are o(1). Their test makes q ≥ 3 queries, has amortized query complexity 1+Oleft(log q/qright), but has an inherent loss of perfect completeness. In this paper we give an (adaptive) hypergraph dictatorship test that achieves both perfect completeness and amortized query complexity 1+Oleft(log q/qright).
Optimal simulation of a perfect entangler
International Nuclear Information System (INIS)
Yu Nengkun; Duan Runyao; Ying Mingsheng
2010-01-01
A 2 x 2 unitary operation is called a perfect entangler if it can generate a maximally entangled state from some unentangled input. We study the following question: How many runs of a given two-qubit entangling unitary operation are required to simulate some perfect entangler with one-qubit unitary operations as free resources? We completely solve this problem by presenting an analytical formula for the optimal number of runs of the entangling operation. Our result reveals an entanglement strength of two-qubit unitary operations.
Perfect 800 Advanced Strategies for Top Students
Celenti, Dan
2010-01-01
Getting into the nation's most competitive universities requires more than a good SAT score, it requires a perfect score. Perfect 800: SAT Math gives advanced students the tools needed to master the SAT math test. Covering areas including arithmetic concepts; algebra; geometry; and additional topics such as probability and weighted average, the book offers exposure to a wide range of degrees of difficulty in a holistic approach that allows students to experience the "real thing," including the impact of time constraints on their performance. By emphasizing critical thinking and analytic skills
Lattice-Like Total Perfect Codes
Directory of Open Access Journals (Sweden)
Araujo Carlos
2014-02-01
Full Text Available A contribution is made to the classification of lattice-like total perfect codes in integer lattices Λn via pairs (G, Φ formed by abelian groups G and homomorphisms Φ: Zn → G. A conjecture is posed that the cited contribution covers all possible cases. A related conjecture on the unfinished work on open problems on lattice-like perfect dominating sets in Λn with induced components that are parallel paths of length > 1 is posed as well.
Optimization of Perfect Absorbers with Multilayer Structures
Li Voti, Roberto
2018-02-01
We study wide-angle and broadband perfect absorbers with compact multilayer structures made of a sequence of ITO and TiN layers deposited onto a silver thick layer. An optimization procedure is introduced for searching the optimal thicknesses of the layers so as to design a perfect broadband absorber from 400 nm to 750 nm, for a wide range of angles of incidence from 0{°} to 50{°}, for both polarizations and with a low emissivity in the mid-infrared. We eventually compare the performances of several optimal structures that can be very promising for solar thermal energy harvesting and collectors.
Directory of Open Access Journals (Sweden)
Mehrdad Nasirshoaibi
2015-01-01
Full Text Available Based on the Rayleigh beam theory, the forced transverse vibrations of a closed double single-walled carbon nanotube (SWCNT system containing a fluid with a Pasternak layer in-between are investigated. It is assumed that the two single-walled carbon nanotubes of the system are continuously joined by a Pasternak layer and both sides of SWCNTs containing a fluid are closed. The dynamic responses of the system caused by arbitrarily distributed continuous loads are obtained. The effect of compressive axial load on the forced vibrations of the double single-walled carbon nanotube system is discussed for one case of particular excitation loading. The properties of the forced transverse vibrations of the system are found to be significantly dependent on the compressive axial load. The steady-state vibration amplitudes of the SWCNT decrease with increasing of length of SWCNT. Vibrations caused by the harmonic exciting forces are discussed, and conditions of resonance and dynamic vibration absorption are formulated. The SWCNT-type dynamic absorber is a new concept of a dynamic vibration absorber (DVA, which can be applied to suppress excessive vibrations of corresponding SWCNT systems.
Bansal, Artee; Chapman, Walter G.; Asthagiri, D.
2017-09-01
We derive an expression for the chemical potential of an associating solute in a solvent relative to the value in a reference fluid using the quasichemical organization of the potential distribution theorem. The fraction of times the solute is not associated with the solvent, the monomer fraction, is expressed in terms of (a) the statistics of occupancy of the solvent around the solute in the reference fluid and (b) the Widom factors that arise because of turning on solute-solvent association. Assuming pair-additivity, we expand the Widom factor into a product of Mayer f-functions and the resulting expression is rearranged to reveal a form of the monomer fraction that is analogous to that used within the statistical associating fluid theory (SAFT). The present formulation avoids all graph-theoretic arguments and provides a fresh, more intuitive, perspective on Wertheim's theory and SAFT. Importantly, multi-body effects are transparently incorporated into the very foundations of the theory. We illustrate the generality of the present approach by considering examples of multiple solvent association to a colloid solute with bonding domains that range from a small patch on the sphere to a Janus particle to a solute whose entire surface is available for association.
Mechanical Energy Changes in Perfectly Inelastic Collisions
Mungan, Carl E.
2013-01-01
Suppose a block of mass "m"[subscript 1] traveling at speed "v"[subscript 1] makes a one-dimensional perfectly inelastic collision with another block of mass "m"[subscript 2]. What else does one need to know to calculate the fraction of the mechanical energy that is dissipated in the collision? (Contains 1 figure.)
Perfectly Secure Oblivious RAM without Random Oracles
DEFF Research Database (Denmark)
Damgård, Ivan Bjerre; Meldgaard, Sigurd Torkel; Nielsen, Jesper Buus
2011-01-01
We present an algorithm for implementing a secure oblivious RAM where the access pattern is perfectly hidden in the information theoretic sense, without assuming that the CPU has access to a random oracle. In addition we prove a lower bound on the amount of randomness needed for implementing...... an information theoretically secure oblivious RAM....
Perfect and Periphrastic Passive Constructions in Danish
DEFF Research Database (Denmark)
Bjerre, Tavs; Bjerre, Anne
2007-01-01
This paper gives an account of the event and argument structure of past participles and the linking between argument structure and valence structure. It further accounts for how participles form perfect and passiv constructions with auxiliaries. We assume that the same participle form is used in ...
Le Perfectionnement en Phonetique (Perfecting Phonetics)
Laroche-Bouvy, Danielle
1975-01-01
This article describes the programs of the Institut d'Etudes Linguistiques et Phonetiques, located in Paris. The program focuses on perfecting the students' phonetic production of French. Both curriculum and teaching methods are described, as well as a course in phonetics for future teachers of French. (Text is in French.) (CLK)
Unconditionally stable perfectly matched layer boundary conditions
De Raedt, H.; Michielsen, K.
2007-01-01
A brief review is given of a systematic, product-formula based approach to construct unconditionally stable algorithms for solving the time-dependent Maxwell equations. The fundamental difficulties that arise when we want to incorporate uniaxial perfectly matched layer boundary conditions into this
Reshaping the perfect electrical conductor cylinder arbitrarily
International Nuclear Information System (INIS)
Chen Huanyang; Zhang Xiaohe; Luo Xudong; Ma Hongru; Chan Cheting
2008-01-01
A general method is proposed to design a cylindrical cloak, concentrator and superscatterer with an arbitrary cross section. The method is demonstrated by the design of a perfect electrical conductor (PEC) reshaper which is able to reshape a PEC cylinder arbitrarily by combining the concept of cloak, concentrator and superscatterer together. Numerical simulations are performed to demonstrate its properties.
Diamagnetic expansions for perfect quantum gases
DEFF Research Database (Denmark)
Briet, Philippe; Cornean, Horia; Louis, Delphine
2006-01-01
In this work we study the diamagnetic properties of a perfect quantum gas in the presence of a constant magnetic field of intensity B. We investigate the Gibbs semigroup associated with the one particle operator at finite volume, and study its Taylor series with respect to the field parameter ome...
Cosmological model with macroscopic spin fluid
Szydlowski, Marek; Krawiec, Adam
2003-01-01
We consider a Friedmann-Robertson-Walker cosmological model with some exotic perfect fluid with spin known as the Weyssenhoff fluid. The possibility that the dark energy may be described in part by the Weyssenhoff fluid is discussed. The observational constraint coming from supernovae type Ia observations is established. This result indicates that, whereas the cosmological constant is still needed to explain current observations, the model with spin fluid is admissible. For high redshifts $z ...
Directory of Open Access Journals (Sweden)
Chao-Jen Li
2014-04-01
Full Text Available In order to obtain high energy efficiency in a concentrated solar thermal power plant, more and more high concentration ratio to solar radiation are applied to collect high temperature thermal energy in modern solar power technologies. This incurs the need of a heat transfer fluid being able to work at more and more high temperatures to carry the heat from solar concentrators to a power plant. To develop the third generation heat transfer fluids targeting at a high working temperature at least 800 ℃, a research team from University of Arizona, Georgia Institute of Technology, and Arizona State University proposed to use eutectic halide salts mixtures in order to obtain the desired properties of low melting point, low vapor pressure, great stability at temperatures at least 800 ℃, low corrosion, and favorable thermal and transport properties. In this paper, a survey of the available thermal and transport properties of single and eutectic mixture of several key halide salts is conducted, providing information of great significance to researchers for heat transfer fluid development.
Directory of Open Access Journals (Sweden)
Taewan Kim
2012-01-01
Full Text Available In order to assess the accuracy and validity of subchannel, system, and computational fluid dynamics codes, the Paul Scherrer Institut has participated in the OECD/NRC PSBT benchmark with the thermal-hydraulic system code TRACE5.0 developed by US NRC, the subchannel code FLICA4 developed by CEA, and the computational fluid dynamic code STAR-CD developed by CD-adapco. The PSBT benchmark consists of a series of void distribution exercises and departure from nucleate boiling exercises. The results reveal that the prediction by the subchannel code FLICA4 agrees with the experimental data reasonably well in both steady-state and transient conditions. The analyses of single-subchannel experiments by means of the computational fluid dynamic code STAR-CD with the CD-adapco boiling model indicate that the prediction of the void fraction has no significant discrepancy from the experiments. The analyses with TRACE point out the necessity to perform additional assessment of the subcooled boiling model and bulk condensation model of TRACE.
A perfectly conducting surface in electrodynamics with Lorentz symmetry breaking
Borges, L. H. C.; Barone, F. A.
2017-10-01
In this paper we consider a model which exhibits explicit Lorentz symmetry breaking due to the presence of a single background vector v^{μ } coupled to the gauge field. We investigate such a theory in the vicinity of a perfectly conducting plate for different configurations of v^{μ }. First we consider no restrictions on the components of the background vector and we treat it perturbatively up to second order. Next, we treat v^{μ } exactly for two special cases: the first one is when it has only components parallel to the plate, and the second one when it has a single component perpendicular to the plate. For all these configurations, the propagator for the gauge field and the interaction force between the plate and a point-like electric charge are computed. Surprisingly, it is shown that the image method is valid in our model and we argue that it is a non-trivial result. We show there arises a torque on the mirror with respect to its positioning in the background field when it interacts with a point-like charge. It is a new effect with no counterpart in theories with Lorentz symmetry in the presence of a perfect mirror.
A perfectly conducting surface in electrodynamics with Lorentz symmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Borges, L.H.C. [UNESP, Campus de Guaratingueta, DFQ, Guaratingueta, SP (Brazil); Barone, F.A. [IFQ, Universidade Federal de Itajuba, Itajuba, MG (Brazil)
2017-10-15
In this paper we consider a model which exhibits explicit Lorentz symmetry breaking due to the presence of a single background vector v{sup μ} coupled to the gauge field. We investigate such a theory in the vicinity of a perfectly conducting plate for different configurations of v{sup μ}. First we consider no restrictions on the components of the background vector and we treat it perturbatively up to second order. Next, we treat v{sup μ} exactly for two special cases: the first one is when it has only components parallel to the plate, and the second one when it has a single component perpendicular to the plate. For all these configurations, the propagator for the gauge field and the interaction force between the plate and a point-like electric charge are computed. Surprisingly, it is shown that the image method is valid in our model and we argue that it is a non-trivial result. We show there arises a torque on the mirror with respect to its positioning in the background field when it interacts with a point-like charge. It is a new effect with no counterpart in theories with Lorentz symmetry in the presence of a perfect mirror. (orig.)
Optimal control for perfect state transfer in linear quantum memory
Nakao, Hideaki; Yamamoto, Naoki
2017-03-01
A quantum memory is a system that enables transfer, storage, and retrieval of optical quantum states by ON/OFF switching of the control signal in each stage of the memory. In particular, it is known that, for perfect transfer of a single-photon state, appropriate shaping of the input pulse is required. However, in general, such a desirable pulse shape has a complicated form, which would be hard to generate in practice. In this paper, for a wide class of linear quantum memory systems, we develop a method that reduces the complexity of the input pulse shape of a single photon while maintaining the perfect state transfer. The key idea is twofold; (i) the control signal is allowed to vary continuously in time to introduce an additional degree of freedom, and then (ii) an optimal control problem is formulated to design a simple-formed input pulse and the corresponding control signal. Numerical simulations are conducted for Λ-type atomic media and networked atomic ensembles, to show the effectiveness of the proposed method.
Lazzarino, Giacomo; Longo, Salvatore; Amorini, Angela Maria; Di Pietro, Valentina; D'Urso, Serafina; Lazzarino, Giuseppe; Belli, Antonio; Tavazzi, Barbara
2017-12-08
Fat-soluble vitamins and antioxidants are of relevance in health and disease. Current methods to extract these compounds from biological fluids mainly need use of multi-steps and multi organic solvents. They are time-consuming and difficult to apply to treat simultaneously large sample number. We here describe a single-step, one solvent extraction of fat-soluble vitamins and antioxidants from biological fluids, and the chromatographic separation of all-trans-retinoic acid, 25-hydroxycholecalciferol, all-trans-retinol, astaxanthin, lutein, zeaxanthin, trans-β-apo-8'-carotenal, γ-tocopherol, β-cryptoxanthin, α-tocopherol, phylloquinone, lycopene, α-carotene, β-carotene and coenzyme Q 10 . Extraction is obtained by adding one volume of biological fluid to two acetonitrile volumes, vortexing for 60s and incubating for 60min at 37°C under agitation. HPLC separation occurs in 30min using Hypersil C18, 100×4.6mm, 5μm particle size column, gradient from 70% methanol+30% H 2 O to 100% acetonitrile, flow rate of 1.0ml/min and 37°C column temperature. Compounds are revealed using highly sensitive UV-VIS diode array detector. The HPLC method suitability was assessed in terms of sensitivity, reproducibility and recovery. Using the present extraction and chromatographic conditions we obtained values of the fat-soluble vitamins and antioxidants in serum from 50 healthy controls similar to those found in literature. Additionally, the profile of these compounds was also measured in seminal plasma from 20 healthy fertile donors. Results indicate that this simple, rapid and low cost sample processing is suitable to extract fat-soluble vitamins and antioxidants from biological fluids and can be applied in clinical and nutritional studies. Copyright © 2017 Elsevier B.V. All rights reserved.
Li, Jun
2013-09-01
We present a single-particle Lennard-Jones (L-J) model for CO2 and N2. Simplified L-J models for other small polyatomic molecules can be obtained following the methodology described herein. The phase-coexistence diagrams of single-component systems computed using the proposed single-particle models for CO2 and N2 agree well with experimental data over a wide range of temperatures. These diagrams are computed using the Markov Chain Monte Carlo method based on the Gibbs-NVT ensemble. This good agreement validates the proposed simplified models. That is, with properly selected parameters, the single-particle models have similar accuracy in predicting gas-phase properties as more complex, state-of-the-art molecular models. To further test these single-particle models, three binary mixtures of CH4, CO2 and N2 are studied using a Gibbs-NPT ensemble. These results are compared against experimental data over a wide range of pressures. The single-particle model has similar accuracy in the gas phase as traditional models although its deviation in the liquid phase is greater. Since the single-particle model reduces the particle number and avoids the time-consuming Ewald summation used to evaluate Coulomb interactions, the proposed model improves the computational efficiency significantly, particularly in the case of high liquid density where the acceptance rate of the particle-swap trial move increases. We compare, at constant temperature and pressure, the Gibbs-NPT and Gibbs-NVT ensembles to analyze their performance differences and results consistency. As theoretically predicted, the agreement between the simulations implies that Gibbs-NVT can be used to validate Gibbs-NPT predictions when experimental data is not available. © 2013 Elsevier Inc.
Population growth rates in perfect contraceptive populations.
Udry, J R; Bauman, K E; Chase, C L
1973-07-01
Abstract Eventually, world population must cease to grow. In many countries attempts are made to decrease population growth by providing family planning services to all who want to prevent pregnancies. In this paper we use the concept 'perfect contraceptive population',(1) - a population in which no unwanted births occur - to derive estimates of the maximum contribution that prevention of unwanted births might make toward attaining a zero rate of natural increase in population.
Another Class of Perfect Nonlinear Polynomial Functions
Directory of Open Access Journals (Sweden)
Menglong Su
2013-01-01
Full Text Available Perfect nonlinear (PN functions have been an interesting subject of study for a long time and have applications in coding theory, cryptography, combinatorial designs, and so on. In this paper, the planarity of the trinomials xpk+1+ux2+vx2pk over GF(p2k are presented. This class of PN functions are all EA-equivalent to x2.
The perfect crime: myth or reality?
Fanton, L; Miras, A; Tilhet-Coartet, S; Achache, P; Malicier, D
1998-09-01
The primum movens of a forensic autopsy is to track down the crime. The perfect crime can be defined as one which will never be suspected and/or one for which the criminal will never be arrested. We have reported several cases that have been adjudicated or are being adjudicated, and we show how actual homicides could have been taken for accidental deaths, suicides, or even natural deaths.
Protein profiling of cerebrospinal fluid
DEFF Research Database (Denmark)
Simonsen, Anja H
2012-01-01
The cerebrospinal fluid (CSF) perfuses the brain and spinal cord. CSF contains proteins and peptides important for brain physiology and potentially also relevant for brain pathology. Hence, CSF is the perfect source to search for new biomarkers to improve diagnosis of neurological diseases as well...
Vidal, Solange; Pérez, Augusto; Eulmesekian, Pablo
2016-08-01
Associations between cumulative fluid balance and a prolonged duration of assisted mechanical ventilation have been described in adults. The aim of this study was to evaluate whether fluid balance in the first 48 hours of assisted mechanical ventilation initiation was associated with a prolonged duration of this process among children in the Pediatric Intensive Care Unit (PICU). Retrospective cohort of patients in the PICU o, Hospital Italiano de Buenos Aires, between 1/1/2010 and 6/30/2012. Balance was calculated in percentage of body weight; prolonged mechanical ventilation was defined as >7 days, and confounders were registered. Univariate and multivariate analyses were performed. Two hundred and forty-nine patients were mechanically ventilated for over 48 hours; 163 were included in the study. Balance during the first 48 hours of mechanical ventilation was 5.7% ± 5.86; 82 patients (50.3%) were on mechanical ventilation for more than 7 days. Age 〈 4 years old (OR 3.21, 95% CI 1.38-7.48, p 0.007), respiratory disease (OR 4.94, 95% CI 1.51-16.10, p 0.008), septic shock (OR 4.66, 95% CI 1.10-19.65, p 0.036), Pediatric Logistic Organ Dysfunction (PELOD) 〉 10 (OR 2.44, 95% CI 1.234.85, p 0.011), and positive balance 〉 13% (OR 4.02, 95% CI 1.08-15.02, p 0.038) were associated with prolonged mechanical ventilation. The multivariate model resulted in an OR 2.58, 95% CI: 1.17-5.58, p= 0.018 for PELOD 〉 10, and an OR 3.7, 95% CI: 0.91-14.94, p= 0.066 for positive balance 〉 13%. Regarding prolonged mechanical ventilation, the multivariate model showed an independent association with organ dysfunction (PELOD 〉 10) and a trend towards an association with positive balance 〉 13%. Sociedad Argentina de Pediatría.
Gray, William G; Miller, Cass T
2009-05-01
This work is the fifth in a series of papers on the thermodynamically constrained averaging theory (TCAT) approach for modeling flow and transport phenomena in multiscale porous medium systems. The general TCAT framework and the mathematical foundation presented in previous works are used to develop models that describe species transport and single-fluid-phase flow through a porous medium system in varying physical regimes. Classical irreversible thermodynamics formulations for species in fluids, solids, and interfaces are developed. Two different approaches are presented, one that makes use of a momentum equation for each entity along with constitutive relations for species diffusion and dispersion, and a second approach that makes use of a momentum equation for each species in an entity. The alternative models are developed by relying upon different approaches to constrain an entropy inequality using mass, momentum, and energy conservation equations. The resultant constrained entropy inequality is simplified and used to guide the development of closed models. Specific instances of dilute and non-dilute systems are examined and compared to alternative formulation approaches.
Wang, Liyun; Keatch, Robert; Zhao, Qi; Wright, John A; Bryant, Clare E; Redmann, Anna L; Terentjev, Eugene M
2018-01-12
Biofilm formation on abiotic surfaces in food and medical industry can cause severe contamination and infection, yet how biological and physical factors determine cellular architecture of early biofilms and bacterial behavior of the constituent cells remains largely unknown. In this study we examine the specific role of type-I fimbriae in nascent stages of biofilm formation and the response of micro-colonies to environmental flow shear at single-cell resolution. The results show that type-I fimbriae are not required for reversible adhesion from plankton, but critical for irreversible adhesion of Escherichia coli ( E.coli ) MG1655 forming biofilms on polyethylene terephthalate (PET) surfaces. Besides establishing a firm cell-surface contact, the irreversible adhesion seems necessary to initiate the proliferation of E.coli on the surface. After application of shear stress, bacterial retention is dominated by the 3D architecture of colonies independent of the population and the multi-layered structure could protect the embedded cells from being insulted by fluid shear, while cell membrane permeability mainly depends on the biofilm population and the duration time of the shear stress. Importance Bacterial biofilms could lead to severe contamination problems in medical devices and food processing equipment. However, biofilms are usually studied at a rough macroscopic level, thus little is known about how individual bacterial behavior within biofilms and multicellular architecture are influenced by bacterial appendages (e.g. pili/fimbriae) and environmental factors during early biofilm formation. We apply Confocal Laser Scanning Microscopy (CLSM) to visualize E.coli micro-colonies at single-cell resolution. Our findings suggest that type-I fimbriae are vital to the initiation of bacterial proliferation on surfaces and that the responses of biofilm architecture and cell membrane permeability of constituent bacteria to fluid shear stress are different, which are
The oil crisis: China, the perfect scapegoat
International Nuclear Information System (INIS)
Lafargue, F.
2008-01-01
The Western economies have been confronted with rising oil prices for the past five years. Political instability in the Middle East, social unrest in Nigeria and Hugo Chavez nationalizations all reinforce our dread of a shortage. This oil crisis is often presented as the consequence of the rapid industrialization of India and China. As so often in Europe, we try to explain our own difficulties by transforming China (and to a lesser extent, India) into the perfect scapegoat; but what is the reality? (author)
Dynamic diffraction of neutrons on perfect crystals
International Nuclear Information System (INIS)
Abov, Yu.G.; Tyulyusov, A.N.; Elyutin, N.O.
2002-01-01
Theory and experimental results are presented for the phenomena observed in the interaction of a thermal neutron beam with a regular periodic system of nuclei, which constitutes a perfect crystal. Recent studies in this field resulted in the appearance of new trends in the neutron optics, such as neutron interferometry and topography. High angular- and energy-resolution neutron crystal spectrometers were designed and manufactured for the investigation of small-angle and diffractive scattering. Passable new theoretical description of neutron dynamic diffraction and new experiments with neutron beams are discussed [ru
Dynamic diffraction of neutrons on perfect crystals
Abov, Y G; Elyutin, N O
2002-01-01
Theory and experimental results are presented for the phenomena observed in the interaction of a thermal neutron beam with a regular periodic system of nuclei, which constitutes a perfect crystal. Recent studies in this field resulted in the appearance of new trends in the neutron optics, such as neutron interferometry and topography. High angular- and energy-resolution neutron crystal spectrometers were designed and manufactured for the investigation of small-angle and diffractive scattering. Passable new theoretical description of neutron dynamic diffraction and new experiments with neutron beams are discussed
The perfection of loss-free counting
International Nuclear Information System (INIS)
Westphal, G.P.; Lemmel, H.
2008-01-01
Pileup losses in nuclear pulse spectrometry also depend on energy as lower energies produce narrower pulses which in turn have better chances to avoid pulse pileup. Consequently, in our present system individual energy-dependent pileup correction factors are calculated for all events, making it what very probably may be called the first perfect implementation of Loss-Free Counting. Temporal response and quantitative performance of the new system are tested over the whole range of counting rates (up to 106 c/s) and counting losses (up to 99%) by means of short-lived isomeric transitions and a fast rabbit system. (author)
Subgame Perfect Punishment for Repeat Offenders
Winand Emons
2002-01-01
First we show that for wealth-constrained agents who may commit an act twice the optimal sanctions are the offender's entire wealth for the first and zero for the second crime. Then we ask the question whether this decreasing sanction scheme is subgame perfect (time consistent), i.e., does a rent-seeking government stick to this sanction scheme after the first crime has occurred. If the benefit and/or the harm from the crime are not too large, this is indeed the case; otherwise, equal sanctio...
Quantum field theory of fluids.
Gripaios, Ben; Sutherland, Dave
2015-02-20
The quantum theory of fields is largely based on studying perturbations around noninteracting, or free, field theories, which correspond to a collection of quantum-mechanical harmonic oscillators. The quantum theory of an ordinary fluid is "freer", in the sense that the noninteracting theory also contains an infinite collection of quantum-mechanical free particles, corresponding to vortex modes. By computing a variety of correlation functions at tree and loop level, we give evidence that a quantum perfect fluid can be consistently formulated as a low-energy, effective field theory. We speculate that the quantum behavior is radically different from both classical fluids and quantum fields.
Apnea of prematurity--perfect storm.
Di Fiore, Juliann M; Martin, Richard J; Gauda, Estelle B
2013-11-01
With increased survival of preterm infants as young as 23 weeks gestation, maintaining adequate respiration and corresponding oxygenation represents a clinical challenge in this unique patient cohort. Respiratory instability characterized by apnea and periodic breathing occurs in premature infants because of immature development of the respiratory network. While short respiratory pauses and apnea may be of minimal consequence if oxygenation is maintained, they can be problematic if accompanied by chronic intermittent hypoxemia. Underdevelopment of the lung and the resultant lung injury that occurs in this population concurrent with respiratory instability creates the perfect storm leading to frequent episodes of profound and recurrent hypoxemia. Chronic intermittent hypoxemia contributes to the immediate and long term co-morbidities that occur in this population. In this review we discuss the pathophysiology leading to the perfect storm, diagnostic assessment of breathing instability in this unique population and therapeutic interventions that aim to stabilize breathing without contributing to tissue injury. Copyright © 2013. Published by Elsevier B.V.
Exciton condensation and perfect Coulomb drag.
Nandi, D; Finck, A D K; Eisenstein, J P; Pfeiffer, L N; West, K W
2012-08-23
Coulomb drag is a process whereby the repulsive interactions between electrons in spatially separated conductors enable a current flowing in one of the conductors to induce a voltage drop in the other. If the second conductor is part of a closed circuit, a net current will flow in that circuit. The drag current is typically much smaller than the drive current owing to the heavy screening of the Coulomb interaction. There are, however, rare situations in which strong electronic correlations exist between the two conductors. For example, double quantum well systems can support exciton condensates, which consist of electrons in one well tightly bound to holes in the other. 'Perfect' drag is therefore expected; a steady transport current of electrons driven through one quantum well should be accompanied by an equal current of holes in the other. Here we demonstrate this effect, taking care to ensure that the electron-hole pairs dominate the transport and that tunnelling of charge between the quantum wells, which can readily compromise drag measurements, is negligible. We note that, from an electrical engineering perspective, perfect Coulomb drag is analogous to an electrical transformer that functions at zero frequency.
Directory of Open Access Journals (Sweden)
M. Oftadeh
2011-07-01
Full Text Available The effective parameters of (5, 0 and (5, 5 single-wall carbon nanotubes during the interaction with carbon dioxide as sensors are determined. The interaction of carbon dioxide molecules with internal and external walls of the nanotubes is studied using Gaussian 03 coding by density functional theory (DFT at the B3LYP/6-311G level of theory. CO2 rotation around tube axles vertically and parallel to the internal and external walls has been investigated. The carbon dioxide molecule is predicted to bind only weakly to nanotubes, and the tube-molecule interactions can be identified as physisorption. CO2 adsorption is stronger on external wallsthan on internal walls, and adsorption on the external wall of (5, 0 is stronger than on the external wall of (5, 5; the adsorption energies are exothermic and equal to -0.8884 and -0.0528 kcal/mol, respectively. The rotation energy barrier for (5, 5 is lower than that for (5, 0 in all rotations, therefore in these interactions (5, 5 is more active. The energy gap significantly changes in the presence of carbon dioxide molecules on the inside surface of (5, 0 and the electric conductivity is affected, but no remarkable change is observed in the electronic structure of (5, 5.
Cressey, Tim R; Siriprakaisil, Oraphan; Klinbuayaem, Virat; Quame-Amaglo, Justice; Kubiak, Rachel W; Sukrakanchana, Pra-Ornsuda; Than-In-At, Kanchana; Baeten, Jared; Sirirungsi, Wasna; Cressey, Ratchada; Drain, Paul K
2017-07-14
Tenofovir disoproxil fumarate (TDF) is key component of pre-exposure prophylaxis (PrEP) and antiretroviral therapy (ART) for HIV, but existing tools to monitor drug adherence are often inaccurate. Detection of tenofovir (TFV) in accessible biological samples, such as fingerprick blood, urine or oral fluid samples could be a novel objective measure of recent TDF adherence. To measure TFV concentrations associated with different levels of TDF adherence, we designed a randomized clinical trial to assess the blood, urine and oral fluid concentrations of TFV in adults with perfect, moderate and low drug adherence. A randomized, open-label, clinical pharmacokinetic study of tenofovir in healthy adult volunteers without HIV or Hepatitis B infection in Thailand. Consenting, eligible participants are randomized (1:1:1) among three groups to receive a controlled number of TDF (300 mg) doses in a combination pill with emtricitabine (FTC, 200 mg) for six weeks. Participants in Group 1 receive a single TDF/FTC tablet once daily (Perfect adherence); Group 2 receive a single TDF/FTC tablet 4 times/week (Moderate adherence); and Group 3 receive a single TDF/FTC tablet 2 times/week (Low adherence). Blood, plasma, urine and oral fluid samples are collected for drug measurement during three study phases: (i) initial 6-week treatment phase; (ii) intensive 24-h blood sampling phase after 6 weeks; (iii) 4-week washout phase. Thirty adults with evaluable pharmacokinetic samples (10 per group) will be enrolled [based on ensuring 25% precision in pharmacokinetic parameter estimates]. Pre-dose drug concentrations during the treatment phase will be descriptive and comparisons between groups performed using a Kruskal-Wallis test. A non-compartmental pharmacokinetic analysis will be performed on the intensive sampling data at Week 7 and the time course of TFV washout in the difference biological matrices will be reported based on the detected concentrations following drug cessation. The
Ozier, Lance
2011-01-01
Pressure for students to produce writing perfection in the classroom often eclipses the emphasis placed on the need for students to practice writing. Occasions for students to choose, challenge, and reflect--to actually risk risking--are too often absent from conversations among students and teachers in countless English classrooms. Tom Romano…
A perfect launch of Space Shuttle Discovery
2000-01-01
Space Shuttle Discovery lifts off Launch Pad 39A against a backdrop of xenon lights (just above the orbiter' nose and at left). On the Mobile Launcher Platform beneath, water begins flooding the area for flame and sound control. The perfect on- time liftoff occurred at 7:17 p.m. EDT, sending a crew of seven on the 100th launch in the history of the Shuttle program. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Discovery's landing is expected Oct. 22 at 2:10 p.m. EDT.
Electromagnetic Detection of a Perfect Carpet Cloak
Shi, Xihang; Gao, Fei; Lin, Xiao; Zhang, Baile
2015-05-01
It has been shown that a spherical invisibility cloak originally proposed by Pendry et al. can be electromagnetically detected by shooting a charged particle through it, whose underlying mechanism stems from the asymmetry of transformation optics applied to motions of photons and charges [PRL 103, 243901 (2009)]. However, the conceptual three-dimensional invisibility cloak that exactly follows specifications of transformation optics is formidably difficult to implement, while the simplified cylindrical cloak that has been experimentally realized is inherently visible. On the other hand, the recent carpet cloak model has acquired remarkable experimental development, including a recently demonstrated full-parameter carpet cloak without any approximation in the required constitutive parameters. In this paper, we numerically investigate the electromagnetic radiation from a charged particle passing through a perfect carpet cloak and propose an experimentally verifiable model to demonstrate symmetry breaking of transformation optics.
A perfect launch viewed across Banana Creek
2000-01-01
Billows of smoke and steam surround Space Shuttle Discovery as it lifts off from Launch Pad 39A on mission STS-92 to the International Space Station. The perfect on-time liftoff occurred at 7:17 p.m. EDT, sending a crew of seven on the 100th launch in the history of the Shuttle program. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Discovery's landing is expected Oct. 22 at 2:10 p.m. EDT.
The surveyors' quest for perfect alignment
2003-01-01
Photogrammetry of a CMS endcap and part of the hadronic calorimeter.The structure was covered with targets photographed by digital cameras. Perfect alignment.... Although CERN's surveyors do not claim to achieve it, they are constantly striving for it and deploy all necessary means to come as close as they can. In their highly specialised field of large-scale metrology, the solution lies in geodesy and photogrammetry, both of which are based on increasingly sophisticated instruments and systems. In civil engineering, these techniques are used for non-destructive inspection of bridges, dams and other structures, while industrial applications include dimensional verification and deformation measurement in large mechanical assemblies. The same techniques also come into play for the metrology of research tools such as large telescopes and of course, particle accelerators. Particle physics laboratories are especially demanding customers, and CERN has often asked for the impossible. As a result, the alignment metro...
Theory of metasurface based perfect absorbers
Alaee, Rasoul; Albooyeh, Mohammad; Rockstuhl, Carsten
2017-12-01
Based on an analytic approach, we present a theoretical review on the absorption, scattering, and extinction of both dipole scatterers and regular arrays composed of such scatterers i.e. metasurfaces. Besides offering a tutorial by outlining the maximum absorption limit for electrically/magnetically resonant dipole particles/metasurfaces, we give an educative analytical approach to their analysis. Moreover, we put forward the analysis of two known alternatives in providing perfect absorbers out of electrically and or magnetically resonant metasurfaces; one is based on the simultaneous presence of both electric and magnetic responses in so called Huygens metasurfaces while the other is established upon the presence of a back reflector in so called Salisbury absorbers. Our work is supported by several numerical examples to clarify the discussions in each stage.
Two-phase cooling fluids; Les fluides frigoporteurs diphasiques
Energy Technology Data Exchange (ETDEWEB)
Lallemand, A. [Institut National des Sciences Appliquees (INSA), 69 - Lyon (France)
1997-12-31
In the framework of the diminution of heat transfer fluid consumption, the concept of indirect refrigerating circuits, using cooling intermediate fluids, is reviewed and the fluids that are currently used in these systems are described. Two-phase cooling fluids advantages over single-phase fluids are presented with their thermophysical characteristics: solid fraction, two-phase mixture enthalpy, thermal and rheological properties, determination of heat and mass transfer characteristics, and cold storage through ice slurry
Nearly perfect fluidity: from cold atomic gases to hot quark gluon plasmas
International Nuclear Information System (INIS)
Schaefer, Thomas; Teaney, Derek
2009-01-01
Shear viscosity is a measure of the amount of dissipation in a simple fluid. In kinetic theory shear viscosity is related to the rate of momentum transport by quasi-particles, and the uncertainty relation suggests that the ratio of shear viscosity η to entropy density s in units of ℎ/k B is bounded by a constant. Here, ℎ is Planck's constant and k B is Boltzmann's constant. A specific bound has been proposed on the basis of string theory where, for a large class of theories, one can show that η/s ≥ ℎ/(4πk B ). We will refer to a fluid that saturates the string theory bound as a perfect fluid. In this review we summarize theoretical and experimental information on the properties of the three main classes of quantum fluids that are known to have values of η/s that are smaller than ℎ/k B . These fluids are strongly coupled Bose fluids, in particular liquid helium, strongly correlated ultracold Fermi gases and the quark gluon plasma. We discuss the main theoretical approaches to transport properties of these fluids: kinetic theory, numerical simulations based on linear response theory and holographic dualities. We also summarize the experimental situation, in particular with regard to the observation of hydrodynamic behavior in ultracold Fermi gases and the quark gluon plasma.
Feedback as the source of imperfection in lossy perfect lenses
Rosenblatt, Gilad; Bartal, Guy; Orenstein, Meir
2016-02-01
The major barrier to realizing a perfect lens with left-handed materials is perceived to be their intrinsic loss. Here we show that only specific designs of perfect lenses are limited by loss—those in which material loss is translated to internal feedback. The asymptotically uniform transmission required for perfect lensing is hindered by such feedback, which generates resonances that lead to a spatial cutoff in the lens transmission. Moreover, uniform transmission and its resonant deterioration stem from completely separate classes of modal excitations. A perfect lens made of lossy left-handed materials is therefore not forbidden in principle. Pursuing perfect lens designs that avoid internal feedback offers a path towards realization of practical perfect lenses.
Coherent perfect absorption and reflection in slow-light waveguides.
Gutman, Nadav; Sukhorukov, Andrey A; Chong, Y D; de Sterke, C Martijn
2013-12-01
We identify a family of unusual slow-light modes occurring in lossy multimode grating waveguides, for which either the forward or backward mode components, or both, are degenerate. In the fully degenerate case, the response can be modulated between coherent perfect absorption (zero reflection) and perfect reflection by varying the wave amplitudes in a uniform input waveguide. The perfectly absorbed wave has anomalously short absorption length, scaling as the inverse one-third power of the absorptivity.
Sénégond, Nicolas; Boulmé, Audren; Plag, Camille; Teston, Franck; Certon, Dominique
2013-07-01
We report a fast time-domain model of fluid-coupled cMUTs developed to predict the transient response-i.e., the impulse pressure response--of an element of a linear 1-D array. Mechanical equations of the cMUT diaphragm are solved with 2-D finite-difference schemes. The time-domain solving method is a fourth--order Runge-Kutta algorithm. The model takes into account the electrostatic nonlinearity and the contact with the bottom electrode when the membrane is collapsed. Mutual acoustic coupling between cells is introduced through the numerical implementation of analytical solutions of the impulse diffraction theory established in the case of acoustic sources with rectangular geometry. Processing times are very short: they vary from a few minutes for a single cell to a maximum of 30 min for one element of an array. After a description of the model, the impact of the nonlinearity and the pull-in/pull-out phenomena on the dynamic behavior of the cMUT diaphragm is discussed. Experimental results of mechanical displacements obtained by interferometric measurements and the acoustic pressure field are compared with simulations. Different excitation signals-high-frequency bandwidth pulses and toneburst excitations of varying central frequency-were chosen to compare theory with experimental results.
Modern problems of perfection of elite light athletic sportsmen’s technical skillfulness perfection
Directory of Open Access Journals (Sweden)
A.V. Kolot
2016-04-01
Full Text Available Purpose: perfection of elite sportsmen’s technical skillfulness in competition kinds of light athletic. Material: the data of more than 60 literature sources were systemized. Expert questioning of 36 coaches, having experience of work with elite sportsmen, was carried out; documents of training process planning were analyzed as well as sportsmen’s diaries (n=244. Results: we have presented main principles of sportsmen’s technical skillfulness perfection and elucidated characteristics of technical training methodic. We have determined main priorities of technical training building for light athletes at every stage of many years’ perfection. Dynamic of competition practice volume has been found as well as main requirements to selection of training means of technical orientation. The data of bio-mechanical criteria of sportsmen’s technical skillfulness assessment have been supplemented. Conclusions: effectiveness of sportsmen’s training methodic is determined by realization of previous stages’ technical potential in final competition results. It can be achieved by determination of means of and methods of different orientation rational correlation.
Modern problems of perfection of elite light athletic sportsmen’s technical skillfulness perfection
Directory of Open Access Journals (Sweden)
Kolot A.V.
2016-02-01
Full Text Available Purpose: perfection of elite sportsmen’s technical skillfulness in competition kinds of light athletic. Material: the data of more than 60 literature sources were systemized. Expert questioning of 36 coaches, having experience of work with elite sportsmen, was carried out; documents of training process planning were analyzed as well as sportsmen’s diaries (n=244. Results: we have presented main principles of sportsmen’s technical skillfulness perfection and elucidated characteristics of technical training methodic. We have determined main priorities of technical training building for light athletes at every stage of many years’ perfection. Dynamic of competition practice volume has been found as well as main requirements to selection of training means of technical orientation. The data of bio-mechanical criteria of sportsmen’s technical skillfulness assessment have been supplemented. Conclusions: effectiveness of sportsmen’s training methodic is determined by realization of previous stages’ technical potential in final competition results. It can be achieved by determination of means of and methods of different orientation rational correlation.
Perfect crystal interferometer and its applications
Energy Technology Data Exchange (ETDEWEB)
Hasegawa, Yuji [Atominstitut der Oesterreichischen Universitaeten, Vienna (Austria)
1996-08-01
The interferometry with angstrom scale wavelength has developed steadily, and various types of interferometers have been investigated. Among them, LLL interferometers are widely used. The first neutron interferometry was achieved in 1962 by Maier-Leibnitz et al. A new type of neutron interferometers was constructed with a perfect crystal, and experimentally performed in 1974 by Rauch et al. The precise measurements with LLL neutron interferometers were performed on scattering length, gravitational effect, coherence, Fizeau effects, spin superposition, complementarity, and post-selection effects. Since the early stage of quantum physics, the double-slit experiment has served as the example of the epistemologically strange features of quantum phenomena, and its course of study is described. The time-delayed interferometry with nuclear resonant scattering of synchrotron radiation and phase transfer in time-delayed interferometry with nuclear resonant scattering were experimented, and are briefly reported. A geometric phase factor was derived for a split beam experiment as an example of cyclic evolution. The geometric phase was observed with a two-loop neutron interferometer. All the experimental results showed complete agreement with the theoretical treatment. (K.I.)
Whole genome association mapping by incompatibilities and local perfect phylogenies
Directory of Open Access Journals (Sweden)
Besenbacher Søren
2006-10-01
Full Text Available Abstract Background With current technology, vast amounts of data can be cheaply and efficiently produced in association studies, and to prevent data analysis to become the bottleneck of studies, fast and efficient analysis methods that scale to such data set sizes must be developed. Results We present a fast method for accurate localisation of disease causing variants in high density case-control association mapping experiments with large numbers of cases and controls. The method searches for significant clustering of case chromosomes in the "perfect" phylogenetic tree defined by the largest region around each marker that is compatible with a single phylogenetic tree. This perfect phylogenetic tree is treated as a decision tree for determining disease status, and scored by its accuracy as a decision tree. The rationale for this is that the perfect phylogeny near a disease affecting mutation should provide more information about the affected/unaffected classification than random trees. If regions of compatibility contain few markers, due to e.g. large marker spacing, the algorithm can allow the inclusion of incompatibility markers in order to enlarge the regions prior to estimating their phylogeny. Haplotype data and phased genotype data can be analysed. The power and efficiency of the method is investigated on 1 simulated genotype data under different models of disease determination 2 artificial data sets created from the HapMap ressource, and 3 data sets used for testing of other methods in order to compare with these. Our method has the same accuracy as single marker association (SMA in the simplest case of a single disease causing mutation and a constant recombination rate. However, when it comes to more complex scenarios of mutation heterogeneity and more complex haplotype structure such as found in the HapMap data our method outperforms SMA as well as other fast, data mining approaches such as HapMiner and Haplotype Pattern Mining (HPM
Fraggedakis, D; Dimakopoulos, Y; Tsamopoulos, J
2016-06-28
The sedimentation of a single particle in materials that exhibit simultaneously elastic, viscous and plastic behavior is examined in an effort to explain phenomena that contradict the nature of purely yield-stress materials. Such phenomena include the loss of the fore-and-aft symmetry with respect to an isolated settling particle under creeping flow conditions and the appearance of the "negative wake" behind it. Despite the fact that similar observations have been reported in studies involving viscoelastic fluids, researchers conjectured that thixotropy is responsible for these phenomena, as the aging of yield-stress materials is another common feature. By means of transient calculations, we study the effect of elasticity on both the fluidized and the solid phase. The latter is considered to behave as an ideal Hookean solid. The material properties of the model are determined under the isotropic kinematic hardening framework via Large Amplitude Oscillatory Shear (LAOS) measurements. In this way, we are able to predict accurately the unusual phenomena observed in experiments with simple yield-stress materials, irrespective of the appearance of slip on the particle surface. Viscoelasticity favors the formation of intense shear and extensional stresses downstream of the particle, significantly changing the entrapment mechanism in comparison to that observed in viscoplastic fluids. Therefore, the critical conditions under which the entrapment of the particle occurs deviate from the well-known criterion established theoretically by Beris et al. (1985) and verified experimentally by Tabuteau et al. (2007) for similar materials under conditions that elastic effects are negligible. Our predictions are in quantitative agreement with published experimental results by Holenberg et al. (2012) on the loss of the fore-aft symmetry and the formation of the negative wake in Carbopol with well-characterized rheology. Additionally, we propose simple expressions for the Stokes drag
Fluid dynamical form of the linear and nonlinear Schroedinger equations
International Nuclear Information System (INIS)
Spiegel, E.A.
1980-01-01
The Hamiltonian theory of perfect fluids admits the generalization to cases where the internal energy density depends on the gradient of mass density. Though the fluid dynamical equations are not greatly modified, when they are transformed into wave equations, special cases of the generalized fluid are seen to correspond to familiar Schroedinger equations. The irrotational nonrelativistic case is presented here and some of the advantages of the fluid point of view are mentioned. (orig.)
Rednikov, A. Ye.; Colinet, P.
2017-12-01
We revisit the Wayner problem of the microregion of a contact line at rest formed by a perfectly wetting single-component liquid on an isothermal superheated flat substrate in an atmosphere of its own pure vapor. The focus is on the evaporation-induced apparent contact angles. The microregion is shaped by the effects of viscosity, Laplace and disjoining pressures (the latter in the form of an inverse-cubic law), and evaporation. The evaporation is in turn determined by heat conduction across the liquid film, kinetic resistance, and the Kelvin effect (i.e., saturation-condition dependence on the liquid-vapor pressure difference). While an asymptotic limit of large kinetic resistances was considered by Morris nearly two decades ago [J. Fluid Mech. 432, 1 (2001)], here we are concerned rather with matched asymptotic expansions in the limits of weak and strong Kelvin effects. Certain extensions are also touched upon within the asymptotic analysis. These are a more general form of the disjoining pressure and account for the Navier slip. Most notably, these also include the possibility of Wayner's extended microfilms (covering macroscopically dry parts of the substrate) actually getting truncated. A number of isolated cases encountered in the literature are thereby systematically recovered.
The Ideology of the Perfect Dictionary: How Efficient Can a ...
African Journals Online (AJOL)
There is no perfect student. Language learners, for whom dictionaries are of great importance, seek user-friendly material which will improve both their fluency in and understanding of the target language, and embed acquired lexis in their long-term memory. Lexicographers, in their search for perfection and in compliance ...
Tie-breaking in games of perfect information
DEFF Research Database (Denmark)
Tranæs, Torben
1998-01-01
The paper suggests that ties in an extensive form game have strategic implications if they represent credible threats or promises. We consider a subset of subgame-perfect Nash equilibria obtained by breaking ties according to their strategic implications, and show that the subset is nonempty for ...... for finite extensive form games of perfect information....
Development of a perfect prognosis probabilistic model for ...
Indian Academy of Sciences (India)
A prediction model based on the perfect prognosis method was developed to predict the probability of lightning and probable time of its occurrence over the south-east Indian region. In the perfect prognosis method, statistical relationships are established using past observed data. For real time applications, the predictors ...
The Ideology of the Perfect Dictionary: How Efficient Can a ...
African Journals Online (AJOL)
rbr
curiosities, archaisms and other vestiges from the past conserved in dictionaries. Is the concept of a perfect dictionary a reality or an ideal? There is no perfect student. Language learners, for whom dictionaries are of great importance, seek user-friendly material which will improve both their fluency in and understanding of ...
Directory of Open Access Journals (Sweden)
Swati Pradeep Patel
2013-01-01
Full Text Available Aims: Resistin is an adipocytokine, which have been studied for its role in insulin resistance and recently in inflammation. The aim of the present study is to assess the concentration of resistin in serum and gingival crevicular fluid (GCF and to compare the levels between subjects with and without periodontitis and type 2 diabetes mellitus (T2DM and to further correlate the resistin levels with the single-nucleotide polymorphism (SNP at −420. Setting and Designs: A total of 96 subjects (48 males and 48 females were divided on the basis of gingival index (GI, probing pocket depth (PD, clinical attachment level (CAL and hemoglobin A 1c levels into healthy (group 1, n = 24, uncontrolled-diabetes related periodontitis (group 2, n = 24, controlled-diabetes related periodontitis (group 3, n = 24 and chronic periodontitis without T2DM (group 4, n = 24. Materials and Methods: The GCF and serum levels of resistin were quantified using the enzyme-linked immunosorbent assay and compared among the study groups. Further, the association of the resistin levels with periodontal inflammation and SNP at −420 was studied. Results and Conclusion: The resistin levels in GCF and serum from patients with periodontitis or diabetes mellitus related periodontitis (controlled or uncontrolled were higher than that of healthy subjects and correlated positively with GI. Further, subjects with GG genotype at −420 showed significantly higher GI, PD, CAL as compared with genotype group CC. Resistin was detected in all serum and GCF samples and was significantly higher in periodontitis. Further, GG genotype at −420 was associated significantly with periodontal inflammation and resistin levels.
Jiménez, Noé; Romero-García, Vicent; Pagneux, Vincent; Groby, Jean-Philippe
2017-10-19
Perfect, broadband and asymmetric sound absorption is theoretically, numerically and experimentally reported by using subwavelength thickness panels in a transmission problem. The panels are composed of a periodic array of varying crosssection waveguides, each of them being loaded by Helmholtz resonators (HRs) with graded dimensions. The low cut-off frequency of the absorption band is fixed by the resonance frequency of the deepest HR, that reduces drastically the transmission. The preceding HR is designed with a slightly higher resonance frequency with a geometry that allows the impedance matching to the surrounding medium. Therefore, reflection vanishes and the structure is critically coupled. This results in perfect sound absorption at a single frequency. We report perfect absorption at 300 Hz for a structure whose thickness is 40 times smaller than the wavelength. Moreover, this process is repeated by adding HRs to the waveguide, each of them with a higher resonance frequency than the preceding one. Using this frequency cascade effect, we report quasi-perfect sound absorption over almost two frequency octaves ranging from 300 to 1000 Hz for a panel composed of 9 resonators with a total thickness of 11 cm, i.e., 10 times smaller than the wavelength at 300 Hz.
Perfect extinction in subwavelength dual metallic transmitting gratings.
Estruch, Thomas; Jaeck, Julien; Pardo, Fabrice; Derelle, Sophie; Primot, Jérôme; Pelouard, Jean-Luc; Haidar, Riad
2011-08-15
We investigate the strong electromagnetic coupling that settles in dual metallic grating structures. This coupling is evidenced to lead to a perfect optical extinction in the transmission spectrum. The behavior of this perfect extinction that strongly depends on the longitudinal space and the lateral displacement between the two gratings can be explained by a simple model that describes the interference between a propagating mode and a couple of evanescent modes. The results show that the electromagnetic transmission of the structure can be tuned by controlling the position of this perfect transmission extinction and thus pave the way to new types of infrared tunable filters. © 2011 Optical Society of America
Scheme for achieving coherent perfect absorption by anisotropic metamaterials
Zhang, Xiujuan
2017-02-22
We propose a unified scheme to achieve coherent perfect absorption of electromagnetic waves by anisotropic metamaterials. The scheme describes the condition on perfect absorption and offers an inverse design route based on effective medium theory in conjunction with retrieval method to determine practical metamaterial absorbers. The scheme is scalable to frequencies and applicable to various incident angles. Numerical simulations show that perfect absorption is achieved in the designed absorbers over a wide range of incident angles, verifying the scheme. By integrating these absorbers, we further propose an absorber to absorb energy from two coherent point sources.
Energy Technology Data Exchange (ETDEWEB)
Messaris, Gerasimos A. T., E-mail: messaris@upatras.gr [Department of Physics, Division of Theoretical Physics, University of Patras, GR 265 04 Rion (Greece); School of Science and Technology, Hellenic Open University, 11 Sahtouri Street, GR 262 22 Patras (Greece); Hadjinicolaou, Maria [School of Science and Technology, Hellenic Open University, 11 Sahtouri Street, GR 262 22 Patras (Greece); Karahalios, George T. [Department of Physics, Division of Theoretical Physics, University of Patras, GR 265 04 Rion (Greece)
2016-08-15
The present work is motivated by the fact that blood flow in the aorta and the main arteries is governed by large finite values of the Womersley number α and for such values of α there is not any analytical solution in the literature. The existing numerical solutions, although accurate, give limited information about the factors that affect the flow, whereas an analytical approach has an advantage in that it can provide physical insight to the flow mechanism. Having this in mind, we seek analytical solution to the equations of the fluid flow driven by a sinusoidal pressure gradient in a slightly curved pipe of circular cross section when the Womersley number varies from small finite to infinite values. Initially the equations of motion are expanded in terms of the curvature ratio δ and the resulting linearized equations are solved analytically in two ways. In the first, we match the solution for the main core to that for the Stokes boundary layer. This solution is valid for very large values of α. In the second, we derive a straightforward single solution valid to the entire flow region and for 8 ≤ α < ∞, a range which includes the values of α that refer to the physiological flows. Each solution contains expressions for the axial velocity, the stream function, and the wall stresses and is compared to the analogous forms presented in other studies. The two solutions give identical results to each other regarding the axial flow but differ in the secondary flow and the circumferential wall stress, due to the approximations employed in the matched asymptotic expansion process. The results on the stream function from the second solution are in agreement with analogous results from other numerical solutions. The second solution predicts that the atherosclerotic plaques may develop in any location around the cross section of the aortic wall unlike to the prescribed locations predicted by the first solution. In addition, it gives circumferential wall stresses
Andrews, J; Honeybourne, D; Jevons, G; Boyce, M; Wise, R; Bello, A; Gajjar, D
2003-03-01
A microbiological assay was used to measure concentrations of garenoxacin (BMS-284756) in plasma, bronchial mucosa (BM), alveolar macrophages (AM) and epithelial lining fluid (ELF), following a single 600 mg oral dose. Twenty-four healthy subjects were allocated into four nominal time intervals after the dose, 2.5-3.5, 4.5-5.5, 10.5-11.5 and 23.5-24.5 h. Mean concentrations in plasma, BM, AM and ELF, respectively, for the four nominal time windows were for 2.5-3.5 h 10.0 mg/L (S.D. 2.8), 7.0 mg/kg (S.D. 1.3), 106.1 mg/L (S.D. 60.3) and 9.2 mg/L (S.D. 3.6); 4.5-5.5 h 8.7 mg/L (S.D. 2.2), 6.0 mg/kg (S.D. 1.9), 158.6 mg/L (S.D. 137.4) and 14.3 mg/L (S.D. 8.2); 10.5-11.5 h 6.1 mg/L (S.D. 1.9), 4.0 mg/kg (S.D. 1.4), 76.0 mg/L (S.D. 47.7) and 7.9 mg/L (S.D. 4.6); and 23.5-24.5 h 2.1 mg/L (S.D. 0.5), 1.7 mg/kg (S.D. 0.7), 30.7 mg/L (S.D. 12.9) and 3.3 mg/L (S.D. 2.3). Concentrations at all sites exceeded MIC(90)s for the common respiratory pathogens Haemophilus influenzae (0.03 mg/L), Moraxella catarrhalis (0.015 mg/L) and Streptococcus pneumoniae (0.06 mg/L). These data suggest that garenoxacin should be effective in the treatment of community-acquired pneumonia and chronic obstructive pulmonary disease.
Perfection and the Bomb: Nuclear Weapons, Teleology, and Motives.
Brummett, Barry
1989-01-01
Uses Kenneth Burke's theory of perfection to explore the vocabularies of nuclear weapons in United States public discourse and how "the Bomb" as a God term has gained imbalanced ascendancy in centers of power. (MS)
Perfect imaging with positive refraction in three dimensions
International Nuclear Information System (INIS)
Leonhardt, Ulf; Philbin, Thomas G.
2010-01-01
Maxwell's fish eye has been known to be a perfect lens within the validity range of ray optics since 1854. Solving Maxwell's equations, we show that the fish-eye lens in three dimensions has unlimited resolution for electromagnetic waves.
Zhang, Rufan; Zhang, Yingying; Wei, Fei
2017-02-21
Carbon nanotubes (CNTs) have drawn intensive research interest in the past 25 years due to their excellent properties and wide applications. Ultralong CNTs refers to the horizontally aligned CNT arrays which are usually grown on flat substrates, parallel with each other with large intertube distances. They usually have perfect structures, excellent properties, and lengths up to centimeters, even decimeters. Ultralong CNTs are promising candidates as building blocks for transparent displays, nanoelectronics, superstrong tethers, aeronautics and aerospace materials, etc. The controlled synthesis of ultralong CNTs with perfect structures is the key to fully exploit the extraordinary properties of CNTs. CNTs are typical one-dimensional single-crystal nanomaterials. It has always been a great challenge how to grow macroscale single-crystals with no defects. Thus, the synthesis of ultralong CNTs with no defect is of significant importance from both fundamental and industrial aspects. In this Account, we focus on our progress on the controlled synthesis of ultralong CNTs with perfect structures and excellent properties. A deep understanding of the CNT growth mechanism is the first step for the controlled synthesis of ultralong CNTs with high quality. We first introduce the growth mechanism for ultralong CNTs and the main factor affecting their structures. We then discuss the strategies to control the defects in the as-grown ultralong CNTs. With these approaches, ultralong high-quality CNTs with different structures can be obtained. By completely eliminating the factors which may induce defects in the CNT walls, ultralong CNTs with perfect structures can be obtained. Their chiral indices keep unchanged for several centimeters long along the axial direction of the CNTs. The defect-free structures render the ultralong CNTs with excellent electrical, mechanical and thermal properties. The as-grown ultralong CNTs exhibit superhigh mechanical strength (>100 GPa) and their
International Nuclear Information System (INIS)
Longhi, Stefano
2014-01-01
Quantum recurrence and dynamic localization are investigated in a class of ac-driven tight-binding Hamiltonians, the Krawtchouk quantum chain, which in the undriven case provides a paradigmatic Hamiltonian model that realizes perfect quantum state transfer and mirror inversion. The equivalence between the ac-driven single-particle Krawtchouk Hamiltonian H -hat (t) and the non-interacting ac-driven bosonic junction Hamiltonian enables to determine in a closed form the quasi energy spectrum of H -hat (t) and the conditions for exact wave packet reconstruction (dynamic localization). In particular, we show that quantum recurrence, which is predicted by the general quantum recurrence theorem, is exact for the Krawtchouk quantum chain in a dense range of the driving amplitude. Exact quantum recurrence provides perfect wave packet reconstruction at a frequency which is fractional than the driving frequency, a phenomenon that can be referred to as fractional dynamic localization
Perfect state transfer without state initialization and remote collaboration
International Nuclear Information System (INIS)
Markiewicz, Marcin; Wiesniak, Marcin
2009-01-01
We present a perfect state transfer protocol via a qubit chain with the evolution governed by the xx Hamiltonian. In contrast to the recent protocol announced in Phys. Rev. Lett. 101, 230502 (2008), our method does not demand any remote-cooperated initialization and sending classical information about measurement outcomes. We achieve the perfect state transfer only with the assumption of access to two spins at each end of the chain, while the initial state of the whole chain is irrelevant.
Zeroth Poisson Homology, Foliated Cohomology and Perfect Poisson Manifolds
Martínez-Torres, David; Miranda, Eva
2018-01-01
We prove that, for compact regular Poisson manifolds, the zeroth homology group is isomorphic to the top foliated cohomology group, and we give some applications. In particular, we show that, for regular unimodular Poisson manifolds, top Poisson and foliated cohomology groups are isomorphic. Inspired by the symplectic setting, we define what a perfect Poisson manifold is. We use these Poisson homology computations to provide families of perfect Poisson manifolds.
Perfect 2-colorings of the generalized Petersen graph
Indian Academy of Sciences (India)
There are no perfect 2-colorings of GP(n, 2) with the matrix A3. Proof. Suppose, contrary to our claim, there is a perfect 2-coloring of GP(n, 2) with the matrix A3. By Lemma 3.4, there are 2 vertices ai and bi, for some 0 ≤ i ≤ n−1, such that they are the same color. By symmetry, without loss of generality, we can assume T (a0) ...
Circuital model for the spherical geodesic waveguide perfect drain
International Nuclear Information System (INIS)
González, Juan C; Grabovičkić, Dejan; Benítez, Pablo; Miñano, Juan C
2012-01-01
The perfect drain for the Maxwell fish eye (MFE) is a non-magnetic dissipative region placed in the focal point to absorb all the incident radiation without reflection or scattering. The perfect drain was recently designed as a material with complex permittivity that depends on frequency. However, this material is only a theoretical material, so it cannot be used in practical devices. The perfect drain has been claimed as necessary for achieving super-resolution (Leonhardt 2009 New J. Phys. 11 093040), which has increased the interest in practical perfect drains suitable for manufacturing. Here, we present a practical perfect drain that is designed using a simple circuit (made of a resistance and a capacitor) connected to the coaxial line. Moreover, we analyze the super-resolution properties of a device equivalent to the MFE, known as a spherical geodesic waveguide, loaded with this perfect drain. The super-resolution analysis for this device is carried out using COMSOL Multiphysics. The results of simulations predict a super-resolution of up to λ/3000. (paper)
Noncommutative geometry and fluid dynamics
International Nuclear Information System (INIS)
Das, Praloy; Ghosh, Subir
2016-01-01
In the present paper we have developed a Non-Commutative (NC) generalization of perfect fluid model from first principles, in a Hamiltonian framework. The noncommutativity is introduced at the Lagrangian (particle) coordinate space brackets and the induced NC fluid bracket algebra for the Eulerian (fluid) field variables is derived. Together with a Hamiltonian this NC algebra generates the generalized fluid dynamics that satisfies exact local conservation laws for mass and energy, thereby maintaining mass and energy conservation. However, nontrivial NC correction terms appear in the charge and energy fluxes. Other non-relativistic spacetime symmetries of the NC fluid are also discussed in detail. This constitutes the study of kinematics and dynamics of NC fluid. In the second part we construct an extension of the Friedmann-Robertson-Walker (FRW) cosmological model based on the NC fluid dynamics presented here. We outline the way in which NC effects generate cosmological perturbations bringing about anisotropy and inhomogeneity in the model. We also derive a NC extended Friedmann equation. (orig.)
Second Order Dissipative Fluid Dynamics and Relativistic Heavy Ion Collisions
International Nuclear Information System (INIS)
Muronga, Azwinndini
2004-01-01
Non-ideal fluid dynamics is used to describe the space-time evolution of matter produced in relativistic nuclear collisions such as those at RHIC in BNL and at LHC in CERN. Dissipation is accounted for by employing causal theory of relativistic dissipative fluid dynamics derived from extended irreversible thermodynamics. The results are compared to those obtained by using Navier-Stokes theory and the ones obtained by perfect fluid approximation
Drazin, Philip
1987-01-01
Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)
DEFF Research Database (Denmark)
Hansen, Klaus Marius
2001-01-01
Fluid interaction, interaction by the user with the system that causes few breakdowns, is essential to many user interfaces. We present two concrete software systems that try to support fluid interaction for different work practices. Furthermore, we present specificity, generality, and minimality...... as design goals for fluid interfaces....
Honeybourne, D; Andrews, J M; Cunningham, B; Jevons, G; Wise, R
1999-01-01
The concentrations of clinafloxacin were measured in serum, bronchial mucosa, alveolar macrophages and epithelial lining fluid after single 200 mg oral doses of clinafloxacin had been administered to 15 subjects who were undergoing bronchoscopy. Concentrations were measured using a microbiological assay method. Mean concentrations in serum, bronchial mucosa, alveolar macrophages and epithelial lining fluid at a mean of 1.27 h post-dose were 1.54, 2.65, 15.60 and 2.71 mg/L respectively. These site concentrations exceeded the MIC90 for common respiratory pathogens and indicate that clinafloxacin is likely to be effective in the treatment of a wide range of respiratory tract infections.
Bianchi Type-I cosmological mesonic stiff fluid models in Lyra's ...
Indian Academy of Sciences (India)
Bianchi Type-I cosmological models in Lyra's geometry are obtained when the source of gravitational field is a perfect fluid coupled with massless mesonic scalar field. Some physical and kinematical properties of the models are also discussed.
Forbidden Structures for Planar Perfect Consecutively Colourable Graphs
Directory of Open Access Journals (Sweden)
Borowiecka-Olszewska Marta
2017-05-01
Full Text Available A consecutive colouring of a graph is a proper edge colouring with posi- tive integers in which the colours of edges incident with each vertex form an interval of integers. The idea of this colouring was introduced in 1987 by Asratian and Kamalian under the name of interval colouring. Sevast- janov showed that the corresponding decision problem is NP-complete even restricted to the class of bipartite graphs. We focus our attention on the class of consecutively colourable graphs whose all induced subgraphs are consecutively colourable, too. We call elements of this class perfect consecutively colourable to emphasise the conceptual similarity to perfect graphs. Obviously, the class of perfect consecutively colourable graphs is induced hereditary, so it can be characterized by the family of induced forbidden graphs. In this work we give a necessary and sufficient conditions that must be satisfied by the generalized Sevastjanov rosette to be an induced forbid- den graph for the class of perfect consecutively colourable graphs. Along the way, we show the exact values of the deficiency of all generalized Sevastjanov rosettes, which improves the earlier known estimating result. It should be mentioned that the deficiency of a graph measures its closeness to the class of consecutively colourable graphs. We motivate the investigation of graphs considered here by showing their connection to the class of planar perfect consecutively colourable graphs.
L2 acquisition of English present perfect interpretations
Directory of Open Access Journals (Sweden)
Sviatlana Karpava
2013-06-01
Full Text Available The present study investigates the role of first language (L1, in our case Cypriot Greek (CG or Standard Greek (SG, in the second language (L2 acquisition of English present perfect in terms of form and meaning possibilities. With respect to native speakers of CG in particular, the primary goal is to determine whether transfer from the mother-tongue, in which present perfect has only a resultative reading and simple past a resultative, an existential or a definite reading, influences the acquisition of the English present perfect. It is assumed that L2 acquisition involves establishing connections between the semantic properties/overt markers for each reading and the English present perfect. Diagnostic tests proposed by Agouraki (2006 are employed in this study, based on the (incompatibility of certain types of adverbial markers with the existential reading and the resultative reading, respectively, as well as on the distinct semantic properties of the two readings. Almost 400 participants took part in this research. The results show that there is a certain effect of L1 on the L2 acquisition of English present perfect by CG- and SG-speaking pupils, which is argued to be mainly due to the different patterns of meanings and forms in CG, SG and English.
Whole or incomplete: the myth of body perfection
Directory of Open Access Journals (Sweden)
Abha Khetarpal
2017-08-01
Full Text Available The media’s and society’s prejudice in favor of ‘ablesim’ propagates the myth of body perfection. As a result we pursue perfection – the concept of ableism invades our minds as well as our culture and we all succumb to it’s lure. Disability is socially constructed; it is ableism that compels people to believe that perfection is normal. This belief is nothing less than social oppression. Even the rehabilitation therapies send out strong signals that persons with disabilities are ‘deficient’ and ‘abnormal’, and that to become a "valued" person they would have to overcome their disabilities. Since the physical component of self-concept is important in maintenance of health and in identity formation, such pressures can lead to a distortion of self-concept. The desire for human perfection can lead to medical conditions such as obsessive compulsive disorder, anorexia nervosa, or depression. It can also impact our understanding of what it means to be human and what signifies a perfect or happy life. This article expounds on why we must achieve, value, and polish psychological maturity through awareness, self-regulation, and honesty.
Fluid dynamics of dilatant fluid
DEFF Research Database (Denmark)
Nakanishi, Hiizu; Nagahiro, Shin-ichiro; Mitarai, Namiko
2012-01-01
A dense mixture of granules and liquid often shows a severe shear thickening and is called a dilatant fluid. We construct a fluid dynamics model for the dilatant fluid by introducing a phenomenological state variable for a local state of dispersed particles. With simple assumptions for an equation...
The simple perfection of quantum correlation in human vision.
Bouman, Maarten A
2006-01-01
A theory is presented that specifies the amount of light that is needed for the perception of any stimulus that is defined in space, time and color. For detection and discrimination mechanistic neural elements with deterministic procedures exist. Twin pairs of red and green cones are ordered in three sets along clockwise and counter clockwise revolving spirals and along circles around the center of the fovea. In the rod-free fovea the red pairs are ordered along the spirals and the green along the circles. Each cone is accompanied by--dependent on retinal eccentricity--up to 100 satellite rods. For the retinal signal processing such a receptor group constitutes a space-quantum in analogy with time-quanta of about 0.04 s. In the peripheral retina the red and green twin pairs of space-quanta are roughly ordered along and at random distributed over the spirals and circles. Over each time-quantum, the cone and rods of a space-quantum sum their responses in a common nerve circuit of the luminosity channel. The summation's results from twin pairs of the same set of space-quanta are correlated by two-fold spatio-temporal coincidence mechanisms in the retina. Their outcome signals the perception of light, movement and edge. In the fused binocular visual field the movement and edge signals of the three sets from both eyes perfectly join vectorially together, provided the responding pairs of space-quanta are binocularly in perfect register as they normally are. The receptor's Weber gain control makes the receptor an all-or-none-system. The space-quantum's De Vries gain control makes its sensitivity equal to the average of the poisson fluctuations in quantum absorption per time-quantum. The controls are based on, respectively, arithmetically feed forward and backward inhibitive nerve mechanisms. The thermal noise of the photo-pigment resets the controls. The response to the second quantum absorption in a time-quantum in the individual rod, red or green cone has accession to
Quantum fluids in the Kähler parametrization
Energy Technology Data Exchange (ETDEWEB)
Holender, L., E-mail: holender@ufrrj.br [Grupo de Física Teórica e Matemática Física, Departamento de Física, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Cx. Postal 23851, BR 465 Km 7, 23890-000 Seropédica, RJ (Brazil); Santos, M.A., E-mail: masantos@cce.ufes.br [Departamento de Física e Química, Universidade Federal do Espírito Santo (UFES), Avenida Fernando Ferarri S/N, Goiabeiras, 29060-900 Vitória, ES (Brazil); Vancea, I.V., E-mail: ionvancea@ufrrj.br [Grupo de Física Teórica e Matemática Física, Departamento de Física, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Cx. Postal 23851, BR 465 Km 7, 23890-000 Seropédica, RJ (Brazil)
2012-03-12
In this Letter we address the problem of the quantization of the perfect relativistic fluids formulated in terms of the Kähler parametrization. This fluid model describes a large set of interesting systems such as the power law energy density fluids, Chaplygin gas, etc. In order to maintain the generality of the model, we apply the BRST method in the reduced phase space in which the fluid degrees of freedom are just the fluid potentials and the fluid current is classically resolved in terms of them. We determine the physical states in this setting, the time evolution and the path integral formulation. -- Highlights: ► We construct the BRST formulation of the quantum relativistic fluid. ► We determine the physical states in the reduced phase space. ► We determine the time evolution of the quantum fluid. ► We find the path integral formulation of the quantum fluid.
International Nuclear Information System (INIS)
Clarke, A.H.; Ing, R.M.Y.; Jones, W.R.; Llewellyn-Jones, D.; Shutt, D.A.
1974-01-01
Antibodies to both prostaglandin F (PGF) and prostaglandin E (PGE) were raised in rabbits after they were immunized with prostaglandin F/sub 2a/ conjugated to bovine serum albumin (PGF/sub 2a/--BSA). The antisera were group specific although the antibodies to the F group of prostaglandins showed greater specificity than those to the E group. The antisera were sufficiently specific however to allow the direct radioimmunoassay of PGF and PGE in human semen and PGF in amniotic fluid during induced abortion. Specificity of the direct radioimmunoassay was checked by chromatographic separation of the prostaglandins prior to analysis. Estimation of the prostaglandins in the semen of 30 men attending the infertility clinic showed that 19 of the men had normal semen levels of PGE and PGF of 68 +- 7 (SE) and 6.0 +- 0.6 μg/ml respectively, as compared with data on normal fertile males, whilst the other 11 men had lower levels of 16 +- 2 (SE) and 0.8 +- 0.1 μg/ml respectively. Application of the method to amniotic fluid showed that the PGF concentration in amniotic fluid during the induction of abortion with extra-ovular saline increased from less than 0.6 ng/ml to 6.4 ng/ml when the induction-abortion intervals ranged from 6 to 48 hours. (U.S.)
International Nuclear Information System (INIS)
Anon.
1991-01-01
Fluids engineering has played an important role in many applications, from ancient flood control to the design of high-speed compact turbomachinery. New applications of fluids engineering, such as in high-technology materials processing, biotechnology, and advanced combustion systems, have kept up unwaining interest in the subject. More accurate and sophisticated computational and measurement techniques are also constantly being developed and refined. On a more fundamental level, nonlinear dynamics and chaotic behavior of fluid flow are no longer an intellectual curiosity and fluid engineers are increasingly interested in finding practical applications for these emerging sciences. Applications of fluid technology to new areas, as well as the need to improve the design and to enhance the flexibility and reliability of flow-related machines and devices will continue to spur interest in fluids engineering. The objectives of the present seminar were: to exchange current information on arts, science, and technology of fluids engineering; to promote scientific cooperation between the fluids engineering communities of both nations, and to provide an opportunity for the participants and their colleagues to explore possible joint research programs in topics of high priority and mutual interest to both countries. The Seminar provided an excellent forum for reviewing the current state and future needs of fluids engineering for the two nations. With the Seminar ear-marking the first formal scientific exchange between Korea and the United States in the area of fluids engineering, the scope was deliberately left broad and general
M-band nonlinear subband decompositions with perfect reconstruction.
Hampson, F J; Pesquet, J C
1998-01-01
We investigate nonlinear multirate filterbanks with maximal decimation and perfect reconstruction. Definitions of the desired properties of such structures are given for general nonlinear filterbanks. We then consider a triangular representation of linear filterbanks and see that it may be easily extended to the nonlinear case. Furthermore, general nonlinear filterbanks are presented, for which perfect reconstruction is either inherently guaranteed or ensured subject to an easily verified condition. Extensions to bidimensional filters are also discussed and an application for nonlinear multiresolution schemes to feature sieves is shown.
Hydrogen can be used as a perfect fuel
International Nuclear Information System (INIS)
Aydin, E.
2005-01-01
At present, hydrogen is one of the new and clean energy production sources. Hydrogen is the perfect partner for electricity, and together they create an integrated energy system based on distributed power generation and use. Hydrogen and electricity are interchangeable using a fuel cell (to convert hydrogen to electricity) or an electrolyzer (for converting electricity to hydrogen). A regenerative fuel cell works either way, converting hydrogen to electricity and vice versa. Hydrogen and electricity are both energy carriers because, unlike naturally occurring hydrocarbon fuels, they must both be produced using a primary energy source. In this study, it will be discussed whether hydrogen is perfect fuel or not
Perfect routing of quantum information in regular cavity QED networks
Behzadi, Naghi; Rudsary, Sobhan Kazemi; Salmasi, Bahram Ahansaz
2013-12-01
We introduce a scheme for perfect routing of quantum states and entanglement in regular cavity QED networks. The couplings between the cavities are quasi-uniform and each cavity is doped with a two-level atom. Quasi-uniform couplings leads the system to evolve in invariant subspaces. Combination the evolutions of the system in its invariant subspaces with quite simple local operations on atoms in the networks, gives the perfect routing of quantum states and entanglement through the network. To provide the protocol be robust due to decoherence arisen from photon loss, the field mode of the cavities are only virtually excited.
International Nuclear Information System (INIS)
Ha, Jae Hyeon; Son, Byeong Jin
2001-04-01
This book tells of definition and classification of fluid machinery, energy equation of incompressible fluid, principle of momentum, classification and structure of pump, size, safety of centrifugal pump, theory and operation of contraction pump, reciprocating pump, rotary pump, special pump, using of water power, classification of water turbine, impulse water turbine, reaction water turbine, pump water turbine, liquid movement apparatus, fluid type control machinery and solid and gas type pneumatic machine.
Charged perfect fluid tori in strong central gravitational and dipolar magnetic fields
Czech Academy of Sciences Publication Activity Database
Kovář, J.; Slaný, P.; Cremaschini, C.; Stuchlík, Z.; Karas, Vladimír; Trova, Audrey
2016-01-01
Roč. 93, June (2016), 124055/1-124055/20 ISSN 1550-7998 R&D Projects: GA ČR GB14-37086G; GA MŠk(CZ) LH14049 Grant - others:GA ČR(CZ) GP14-07753P Institutional support: RVO:67985815 Keywords : black holes * accretion discscretion discs Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.643, year: 2014
From many body wee partons dynamics to perfect fluid: a standard model for heavy ion collisions
Energy Technology Data Exchange (ETDEWEB)
Venugopalan, R.
2010-07-22
We discuss a standard model of heavy ion collisions that has emerged both from experimental results of the RHIC program and associated theoretical developments. We comment briefly on the impact of early results of the LHC program on this picture. We consider how this standard model of heavy ion collisions could be solidified or falsified in future experiments at RHIC, the LHC and a future Electro-Ion Collider.
Hypersurface-homogeneous Universe filled with perfect fluid in f(R ...
Indian Academy of Sciences (India)
2016-11-02
Nov 2, 2016 ... the existence of dark energy and dark matter, several modified theories of gravitation have been proposed as alternative to Einstein's theory. By modifying the geometrical part of Einstein–Hilbert action of general relativity, we obtain the modified gravity. Modified gravity is of great importance because it can ...
Perfect fluid Bianchi Type-I cosmological models with time varying G ...
Indian Academy of Sciences (India)
(27). From eq. (27), we observe that Λ is a constant in the absence of matter (Tij = 0) implying that matter is essential for a time varying Λ. In the field eqs (4), Λ accounts for vacuum energy with its energy density ρv and isotropic pressure pv satisfying the equation of state pv = −ρv = −. Λ. 8πG . The usual conservation law for ...
Some invariant solutions for non-conformal perfect fluid plates in 5 ...
Indian Academy of Sciences (India)
flat form in general relativity. MUKESH KUMAR1,∗ and Y K GUPTA2. 1Department of Mathematics, Motilal Nehru National Institute of Technology,. Allahabad 211 004, India. 2Department of Mathematics, Indian Institute of Technology Roorkee, ...
Hofstetter, Robert; Fassauer, Georg M; Link, Andreas
2018-02-15
On-line solid-phase supercritical fluid extraction (SFE) and chromatography (SFC) coupled to mass spectrometry (MS) has been evaluated for its usefulness with respect to metabolic profiling and pharmacological investigations of ketamine in humans. The aim of this study was to develop and validate a rapid, highly selective and sensitive SFE-SFC-MS method for the quantification of ketamine and its metabolites in miniature amounts in human urine excluding liquid-liquid extraction (LLE). Several conditions were optimized systematically following the requirements of the European Medicines Agency: selectivity, carry-over, calibration curve parameters (LLOQ, range and linearity), within- and between-run accuracy and precision, dilution integrity, matrix effect, and stability. The method, which required a relatively small volume of human urine (20 μL per sample), was validated for pharmacologically and toxicologically relevant concentrations ranging from 25.0 to 1000 ng/mL (r 2 > 0.995). The lower limit of quantification (LLOQ) for all compounds was found to be as low as 0.5 ng. In addition, stability of analytes during removal of water from the urine samples using different conditions (filter paper or ISOLUTE® HM-N) was studied. In conclusion, the method developed in this study can be successfully applied to studies of ketamine metabolites in humans, and may pave the way for routine application of on-line SFE-SFC-MS in clinical investigations. Copyright © 2018 Elsevier B.V. All rights reserved.
The Perfect Storm--Genetic Engineering, Science, and Ethics
Rollin, Bernard E.
2014-01-01
Uncertainty about ethics has been a major factor in societal rejection of biotechnology. Six factors help create a societal "perfect storm" regarding ethics and biotechnology: Social demand for ethical discussion; societal scientific illiteracy; poor social understanding of ethics; a "Gresham's Law for Ethics;" Scientific…
Effective vibration isolation system for perfect-crystal neutron interferometry
International Nuclear Information System (INIS)
Arthur, J.
1985-01-01
Perfect-crystal neutron interferometers are subject to degradation of their performance caused by vibrational accelerations. It is shown that the most seriously offending accelerations are rotational, and an effective and simple vibration isolation system that has been developed at the MIT Neutron Diffraction Laboratory is described
Perfect 2-colorings of the generalized Petersen graph
Indian Academy of Sciences (India)
Perfect 2-colorings of the generalized Petersen graph. MEHDI ALAEIYAN and HAMED KARAMI. ∗. School of Mathematics, Iran University of Science and Technology,. Narmak, Tehran 16846, Iran. *Corresponding author. E-mail: alaeiyan@iust.ac.ir; h_karami@iust.ac.ir. MS received 24 November 2014; revised 26 April ...
Cognitive Learning Styles: Can You Engineer a "Perfect" Match?
Khuzzan, Sharifah Mazlina Syed; Goulding, Jack Steven
2016-01-01
Education and training is widely acknowledged as being one of the key factors for leveraging organisational success. However, it is equally acknowledged that skills development and the acquisition of learning through managed cognitive approaches has yet to provide a "perfect" match. Whilst it is argued that an ideal learning scenario…
Reflection of plane waves in an initially stressed perfectly ...
Indian Academy of Sciences (India)
stress and magnetic field on the reflection coef- ficients and energy ratios of reflected waves in a perfectly conducting initially stressed transversely isotropic elastic solid half-space. The present work is supposed to be useful in further studies of wave propagation in the more realistic models which have been extensively ...
Robust Secure Authentication and Data Storage with Perfect Secrecy
Directory of Open Access Journals (Sweden)
Sebastian Baur
2018-04-01
Full Text Available We consider an authentication process that makes use of biometric data or the output of a physical unclonable function (PUF, respectively, from an information theoretical point of view. We analyse different definitions of achievability for the authentication model. For the secrecy of the key generated for authentication, these definitions differ in their requirements. In the first work on PUF based authentication, weak secrecy has been used and the corresponding capacity regions have been characterized. The disadvantages of weak secrecy are well known. The ultimate performance criteria for the key are perfect secrecy together with uniform distribution of the key. We derive the corresponding capacity region. We show that, for perfect secrecy and uniform distribution of the key, we can achieve the same rates as for weak secrecy together with a weaker requirement on the distribution of the key. In the classical works on PUF based authentication, it is assumed that the source statistics are known perfectly. This requirement is rarely met in applications. That is why the model is generalized to a compound model, taking into account source uncertainty. We also derive the capacity region for the compound model requiring perfect secrecy. Additionally, we consider results for secure storage using a biometric or PUF source that follow directly from the results for authentication. We also generalize known results for this problem by weakening the assumption concerning the distribution of the data that shall be stored. This allows us to combine source compression and secure storage.
Hyper-Achievement, Perfection, and College Student Resilience
Eells, Gregory T.
2017-01-01
Over the past decade, there has been considerable attention given to college students' experience of pressure to pursue perfection through hyper-achievement and the psychological and emotional toll this process takes on them. The popular press has highlighted this phenomenon and raised specific questions about some of the related consequences like…
Indefinite and Continuative Interpretations of the English Present Perfect
Directory of Open Access Journals (Sweden)
Katarina Dea Žetko
2005-06-01
Full Text Available The objective of our paper is to demonstrate that the English present perfect is not by inherent meaning either indefinite or continuative. Notions like indefinite and continuative are contextdependent interpretations of whole constructions and their broader context. However, continuative interpretation can also be triggered by certain adverbials, negative constructions and verbs in the progressive form. But, even these factors do not always guarantee continuative interpretations. Construction, continuative meaning can be cancelled by the context in a broader sense, this fact being a proof that this meaning is merely an implicature. We will demonstrate how different factors interact and trigger either indefinite or continuative interpretations which are not inherent in the present perfect itself. Our paper will attempt to provide sufficient evidence that there is no indefinite/continuative distinction in the English present perfect, the inherent meaning or function of the present perfect is merely to locate the situation somewhere within a period that starts before the time of utterance and leads up to it.
Reflection of plane waves in an initially stressed perfectly ...
Indian Academy of Sciences (India)
Reflection of plane waves is studied at a free surface of a perfectly conducting transversely isotropic elastic solid half-space with initial stress. The governing equations are solved to obtain the velocity equation which indicates the existence of two quasi planar waves in the medium. Reflection coefficients and energy.
The Perfective Past Tense in Greek Adolescents with Down Syndrome
Stathopoulou, Nikolitsa; Clahsen, Harald
2010-01-01
This study investigates the ability of a group of eight Greek-speaking adolescents with Down Syndrome (DS) (aged 12.1-18.7) to handle the perfective past tense using an acceptability judgement task. The performance of the DS participants was compared with that of 16 typically-developing children whose chronological age was matched with the mental…
Quantum propagator in the presence of a perfectly reflecting wall
International Nuclear Information System (INIS)
Cacciari, Ilaria; Lantieri, Marco; Moretti, Paolo
2007-01-01
The transmission propagator for an arbitrary, finite range one-dimensional potential in the presence of a perfectly reflecting wall is calculated starting from the integral form of the Schroedinger equation. After a Laplace transform, the solution is obtained in a new and simple form by using matrix methods; we apply the results to an array of delta potentials
Overemphasis on Perfectly Competitive Markets in Microeconomics Principles Textbooks
Hill, Roderick; Myatt, Anthony
2007-01-01
Microeconomic principles courses focus on perfectly competitive markets far more than other market structures. The authors examine five possible reasons for this but find none of them sufficiently compelling. They conclude that textbook authors should place more emphasis on how economists select appropriate models and test models' predictions…
Perfect Power Prototype for Illinois Institute of Technology
Energy Technology Data Exchange (ETDEWEB)
Shahidehpour, Mohammad [Illinois Inst. Of Technology, Chicago, IL (United States)
2014-09-30
Starting in October 2008, Illinois Institute of Technology (IIT), in collaboration with over 20 participating members, led an extensive effort to develop, demonstrate, promote, and commercialize a microgrid system and offer supporting technologies that will achieve Perfect Power at the main campus of IIT. A Perfect Power system, as defined by the Galvin Electricity Initiative (GEI), is a system that cannot fail to meet the electric needs of the individual end-user. The Principle Investigator of this Perfect Power project was Dr. Mohammad Shahidehpour, Director of the Robert W. Galvin Center for Electricity Innovation at IIT. There were six overall objectives of the Perfect Power project: (1) Demonstrate the higher reliability introduced by the microgrid system at IIT; (2) Demonstrate the economics of microgrid operations; (3) Allow for a decrease of fifty percent (50%) of grid electricity load; (4) Create a permanent twenty percent (20%) decrease in peak load from 2007 level; (5) Defer planned substation through load reduction; (6) Offer a distribution system design that can be replicated in urban communities.
Unity and Duality in Barack Obama's "A More Perfect Union"
Terrill, Robert E.
2009-01-01
Faced with a racialized political crisis that threatened to derail his campaign to become the first African American president of the United States, Barack Obama delivered a speech on race titled "A More Perfect Union." He begins by portraying himself as an embodiment of double consciousness, but then invites his audience to share his…
Reflection of plane waves in an initially stressed perfectly ...
Indian Academy of Sciences (India)
Reflection of plane waves is studied at a free surface of a perfectly conducting transversely isotropic elastic solid half-space with initial stress. The governing equations are solved to obtain the velocity equation which indicates the existence of two quasi planar waves in the medium. Reflection coefficients and energy ratios ...
The Ideology of the Perfect Dictionary: How Efficient Can a ...
African Journals Online (AJOL)
The Ideology of the Perfect Dictionary: How Efficient Can a Dictionary Be? ... Not only have dictionary sales dramatically increased, but the variety of dictionaries and the competition between editors are also very much on the rise. ... FRENCH MONOLINGUAL DICTIONARIES, ELECTRONIC DICTIONARIES, CD-ROMS ...
Perfect Worlds : Utopian Fiction in China and the West
Fokkema, Douwe
2011-01-01
Perfect Worlds biedt een uitgebreide historische analyse van utopische verhalen in de Chinese en Euro-Amerikaanse traditie. Verschillende hoofdstukken gaan onder meer in op de kritiek van Thomas More op Plato, de Europese oriëntalistische speurtocht naar utopieën in China, Dostoevsky’s reactie op
Reprint Series: Prime Numbers and Perfect Numbers. RS-2.
Schaaf, William L., Ed.
This is one in a series of SMSG supplementary and enrichment pamphlets for high school students. This series makes available expository articles which appeared in a variety of mathematical periodicals. Topics covered include: (1) the prime numbers; (2) mathematical sieves; (3) the factorgram; and (4) perfect numbers. (MP)
The Perfect Storm—Genetic Engineering, Science, and Ethics
Rollin, Bernard E.
2012-07-01
Uncertainty about ethics has been a major factor in societal rejection of biotechnology. Six factors help create a societal "perfect storm" regarding ethics and biotechnology: Social demand for ethical discussion; societal scientific illiteracy; poor social understanding of ethics; a "Gresham's Law for Ethics;" Scientific Ideology; vested interests dominating ethical discussion. How this can be remedied is discussed.
Arbitrarily thin metamaterial structure for perfect absorption and giant magnification
DEFF Research Database (Denmark)
Jin, Yi; Xiao, Sanshui; Mortensen, N. Asger
2011-01-01
layer can perfectly absorb or giantly amplify an incident plane wave at a critical angle when the real parts of the permittivity and permeability of the metamaterial are zero while the absolute imaginary parts can be arbitrarily small. The metamaterial layer needs a totally reflective substrate...
Diamagnetic expansions for perfect quantum gases II: uniform bounds
DEFF Research Database (Denmark)
Philippe, Briet; Cornean, Horia; Louis, Delphine
Consider a charged, perfect quantum gas, in the effective mass approximation, and in the grand-canonical ensemble. We prove in this paper that the generalized magnetic susceptibilities admit the thermodynamic limit for all admissible fugacities, uniformly on compacts included in the analyticity d...
Creating the perfect intern anaesthesia rotation: a survey using ...
African Journals Online (AJOL)
Sedation and regional anaesthesia (4.5%); d. Negative comments (3.9%); e. Confining anaesthesia to .... comfortable with certain procedures, as a previous intern so perfectly summarised: 'I had no muscle memory for these sort of ... safe sedation skills and regional anaesthesia. Structure of the intern anaesthesia rotation.
Obtaining global equations for the Young’s modulus of perfect and defective carbon nanotubes
Mahdi Dehghan Pir, Mohammad; Rahmandoust, Moones; Öchsner, Andreas
2017-12-01
There are limited studies which have extracted global equations for calculation of Young’s modulus (E) in both pristine and defective carbon nanotubes (CNT), especially when a combination of different defects such as atom-vacancy and-misplacement exist simultaneously in the studied CNT. In this study, the finite element method was used to investigate E for a large set of perfect and defective single walled carbon nanotubes (2440 finite element models), including armchair, zigzag and chiral tubes. The obtained results were then employed as the basis for achieving accurate global equations for calculation of E in perfect and defective carbon nanotubes at various defect percentages. Despite most previous studies, which were based on the tube’s diameter, the chiral indices (n, m) have been considered here as variables to predict the stiffness of carbon nanotubes. The achieved equations showed to be accurate, with maximum errors below 2% and 10% for perfect and defective tubes, respectively, compared to FE results. Based on the obtained equations, a computer execution file was developed which is capable of calculating E when different percentages of defects are introduced to the structure. The results show that unlike single defect states, the existence of any combination of atom vacancy and atom misplacement defects causes dramatic reduction in the stiffness of carbon nanotubes. Furthermore, the role of vacancy defects in the reduction of tube’s elastic properties revealed to be more significant than misplacement defects. The results not only demonstrate that edge defects influence Young’s modulus more noticeably, but also confirm previous works showing that armchair edged structures are less vulnerable to defects, as compared to zigzag.
International Nuclear Information System (INIS)
Kan, K.K.
1983-01-01
The relationship of nuclear internal flow and collective inertia, the difference of this flow from that of a classical fluid, and the approach of this flow to rigid flow in independent-particle model rotation are elucidated by reviewing the theory of Schroedinger fluid and its implications for collective vibration and rotation. (author)
DEFF Research Database (Denmark)
Brorsen, Michael
These lecture notes are intended mainly for the 7th semester course "Fluid Dynamics" offered by the Study Committee on Civil Engineering, Aalborg University.......These lecture notes are intended mainly for the 7th semester course "Fluid Dynamics" offered by the Study Committee on Civil Engineering, Aalborg University....
Electronic and magnetic properties of perfect and defected germanium nanoribbons
International Nuclear Information System (INIS)
Pang Qing; Zhang Yan; Zhang Jianmin; Ji, Vincent; Xu Kewei
2011-01-01
Highlights: · Perfect AGeNRs are NM semiconductor with three-branch band gaps and decaying profiles. · Perfect ZGeNRs are AFM semiconductor with a decreasing band gap as width increases. · The band gap of AGeNRs can be tuned by mono- or di-vacancy at different positions. · Metallization can be realized in ZGeNRs by mono- or di-vacancy at different positions. · Magnetic properties of ZGeNRs depend closely upon the vacancy positions. - Abstract: The electronic and magnetic properties of both perfect and defected germanium nanoribbons (GeNRs) are investigated by using projector-augmented wave method based on density-functional theory. All the GeNRs with different edge shapes (armchair or zigzag) and widths are cut from the buckled Ge hexagonal sheet which is found to be semi-metallic as the planar graphene sheet. The results show that the perfect armchair GeNRs are nonmagnetic semiconductors and their band gaps exhibit three branches with decaying profiles, while the perfect zigzag GeNRs show the stable antiferromagnetic semiconducting ground state and their band gaps monotonously decrease with increasing ribbon width. These properties of the GeNRs are similar to graphene nanoribbons and should be important for designing new functional Ge-based nanodevices. The effects of the monovacancy or divacancy on the electronic and magnetic properties of the GeNRs are also considered. We found that the band gap of armchair GeNRs can be easily tuned by a monovancancy or divacancy at different positions, which provides a way of band gap engineering of armchair GeNRs for actual applications. Different from the defected armchair GeNRs, the metallization can be realized in zigzag GeNRs by a monovacancy or a divacancy, however, their magnetic properties depend closely upon the vacancy positions.
78 FR 38843 - Single Application Option
2013-06-28
... searchable, accessible text (not an image); Microsoft Word; WordPerfect; Rich Text Format (RTF); or ASCII... notice responding to the question of a single application, all of them positive. On March 28, 2012, the...
Lipidomics by Supercritical Fluid Chromatography
Laboureur, Laurent; Ollero, Mario; Touboul, David
2015-01-01
This review enlightens the role of supercritical fluid chromatography (SFC) in the field of lipid analysis. SFC has been popular in the late 1980s and 1990s before almost disappearing due to the commercial success of liquid chromatography (LC). It is only 20 years later that a regain of interest appeared when new commercial instruments were introduced. As SFC is fully compatible with the injection of extracts in pure organic solvent, this technique is perfectly suitable for lipid analysis and can be coupled with either highly universal (UV or evaporative light scattering) or highly specific (mass spectrometry) detection methods. A short history of the use of supercritical fluids as mobile phase for the separation oflipids will be introduced first. Then, the advantages and drawbacks of SFC are discussed for each class of lipids (fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterols, prenols, polyketides) defined by the LIPID MAPS consortium. PMID:26090714
DEFF Research Database (Denmark)
Shyroki, Dzmitry; Lavrinenko, Andrei
2007-01-01
A complex-coordinate method known under the guise of the perfectly matched layer (PML) method for treating unbounded domains in computational electrodynamics is related to similar techniques in fluid dynamics and classical quantum theory. It may also find use in electronic-structure finite......-difference simulations. Straightforward transfer of the PML formulation to other fields does not seem feasible, however, since it is a unique feature of electrodynamics - the natural invariance - that allows analytic trick of complex coordinate scaling to be represented as pure modification of local material parameters...
Paradeisos: A perfect hashing algorithm for many-body eigenvalue problems
Jia, C. J.; Wang, Y.; Mendl, C. B.; Moritz, B.; Devereaux, T. P.
2018-03-01
We describe an essentially perfect hashing algorithm for calculating the position of an element in an ordered list, appropriate for the construction and manipulation of many-body Hamiltonian, sparse matrices. Each element of the list corresponds to an integer value whose binary representation reflects the occupation of single-particle basis states for each element in the many-body Hilbert space. The algorithm replaces conventional methods, such as binary search, for locating the elements of the ordered list, eliminating the need to store the integer representation for each element, without increasing the computational complexity. Combined with the "checkerboard" decomposition of the Hamiltonian matrix for distribution over parallel computing environments, this leads to a substantial savings in aggregate memory. While the algorithm can be applied broadly to many-body, correlated problems, we demonstrate its utility in reducing total memory consumption for a series of fermionic single-band Hubbard model calculations on small clusters with progressively larger Hilbert space dimension.
A Particular Type of Present Perfect Tense in Shahnameh
Directory of Open Access Journals (Sweden)
Moharram Rezayati Kishekhaleh
2012-04-01
Full Text Available Abstract The Shahnameh, the precious and eternal epic poem of Ferdosi, in the ocean of Persian literature is a deep and immense sea. It is full of shining pearls of Iranian culture, that studying of them could be used by researchers of Persian language and literature for various dimensions of literary, historical, social, mythical, religious, and linguistics, etc. This subject allocates for little part of linguistic characteristics i.e. present perfect tense and its kinds. Initially the history of research was considered briefly then the patterns of structure of this verb were studying in the language of ancient Persian, middle Persian and Dari Persian. We eventually, according to samples from the Shahnameh, scattered notions of researchers and their adding up, describe a certain kind of present perfect tense which, its history of structure and application in addition to Soghdi, Khwarizmi and Pahlavi languages, could be recognized at some today Iranian dialects
A Particular Type of Present Perfect Tense in Shahnameh
Directory of Open Access Journals (Sweden)
Moharram Rezayati Kishekhaleh
2012-03-01
Full Text Available Abstract The Shahnameh, the precious and eternal epic poem of Ferdosi, in the ocean of Persian literature is a deep and immense sea. It is full of shining pearls of Iranian culture, that studying of them could be used by researchers of Persian language and literature for various dimensions of literary, historical, social, mythical, religious, and linguistics, etc. This subject allocates for little part of linguistic characteristics i.e. present perfect tense and its kinds. Initially the history of research was considered briefly then the patterns of structure of this verb were studying in the language of ancient Persian, middle Persian and Dari Persian. We eventually, according to samples from the Shahnameh, scattered notions of researchers and their adding up, describe a certain kind of present perfect tense which, its history of structure and application in addition to Soghdi, Khwarizmi and Pahlavi languages, could be recognized at some today Iranian dialects
Perfect quantum multiple-unicast network coding protocol
Li, Dan-Dan; Gao, Fei; Qin, Su-Juan; Wen, Qiao-Yan
2018-01-01
In order to realize long-distance and large-scale quantum communication, it is natural to utilize quantum repeater. For a general quantum multiple-unicast network, it is still puzzling how to complete communication tasks perfectly with less resources such as registers. In this paper, we solve this problem. By applying quantum repeaters to multiple-unicast communication problem, we give encoding-decoding schemes for source nodes, internal ones and target ones, respectively. Source-target nodes share EPR pairs by using our encoding-decoding schemes over quantum multiple-unicast network. Furthermore, quantum communication can be accomplished perfectly via teleportation. Compared with existed schemes, our schemes can reduce resource consumption and realize long-distance transmission of quantum information.
Quality strategies implemented within the tourism agency Perfect Tour
Directory of Open Access Journals (Sweden)
Madar, A.
2012-01-01
Full Text Available The paper presents the quality strategies adopted by the tourism agency Perfect Tour. The most important advantages of the Romanian agency in comparison with its competitors are: the focus on high quality services, cooperation with other international agencies, entering new fields like medical tourism and sole representative of Disneyland Paris. The strategies adopted explain the good financial results even in the period of crisis.
Perfect posterior simulation for mixture and hidden Marko models
DEFF Research Database (Denmark)
Berthelsen, Kasper Klitgaard; Breyer, Laird A.; Roberts, Gareth O.
2010-01-01
In this paper we present an application of the read-once coupling from the past algorithm to problems in Bayesian inference for latent statistical models. We describe a method for perfect simulation from the posterior distribution of the unknown mixture weights in a mixture model. Our method...... is extended to a more general mixture problem, where unknown parameters exist for the mixture components, and to a hidden Markov model....
A psychogenic dystonia perfect responsive to antidepressant treatment.
Volkan Solmaz; Durdane Aksoy; Betul Cevik; Semiha Gulsum Kurt; Elmas Pekdas; Sema inanir
2014-01-01
After ruling out of organic causes, movement disorders are named as psychogenic movement disorders, it can mimic perfectly Organic movement disorders, but with a good history, clinical observations and detailed examination is very helpful in the diagnosis of this disease. In here we will present a 15 years old male patient, he was complaining of urinary incontinence at night, emerging dystonic posture especially in crowded environments, eating, and during activities that require attention, fo...
Perfect Asset Lifecycle Management. Breaking through old ideas
International Nuclear Information System (INIS)
Roestenberg, B.; De Croon, J.; Broere, E.; TeMeerman, W.; Meijer, D.
2003-01-01
The new idea described in this book provides practical tools to use capital assets in a cost-effective way. Value can be created over the life cycle of such assets. Perfect Asset Lifecycle Management (PALM) outlines a perspective for socially justified enterprising. PALM has been tested in the energy sector where liberalization of the market and the continuity of services appear to be on bad terms. According to the authors PALM can also be applied in other sectors [nl
Perfect independent sets with respect to infinitely many relations
Czech Academy of Sciences Publication Activity Database
Doležal, Martin; Kubiś, Wieslaw
2016-01-01
Roč. 55, č. 7 (2016), s. 847-856 ISSN 0933-5846 R&D Projects: GA ČR(CZ) GA14-07880S Institutional support: RVO:67985840 Keywords : perfect clique * free subgroup * open relation Subject RIV: BA - General Mathematics Impact factor: 0.394, year: 2016 http://link.springer.com/article/10.1007%2Fs00153-016-0498-3
Quantum states representing perfectly secure bits are always distillable
International Nuclear Information System (INIS)
Horodecki, Pawel; Augusiak, Remigiusz
2006-01-01
It is proven that recently introduced states with perfectly secure bits of cryptographic key (private states representing secure bit) [K. Horodecki et al., Phys. Rev. Lett. 94, 160502 (2005)] as well as its multipartite and higher dimension generalizations always represent distillable entanglement. The corresponding lower bounds on distillable entanglement are provided. We also present a simple alternative proof that for any bipartite quantum state entanglement cost is an upper bound on a distillable cryptographic key in a bipartite scenario
Overlapped illusion optics: a perfect lens brings a brighter feature
Energy Technology Data Exchange (ETDEWEB)
Xu Yadong; Gao Lei; Chen Huanyang [School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006 (China); Du Shengwang, E-mail: kenyon@ust.hk [Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)
2011-02-15
In this paper, we show that a perfect lens can be employed to make multiple objects appear like only one object in the far field, leading to a new concept in illusion optics. Numerical simulations have been performed to verify the functionalities for both passive and active objects. The conceptual device can be utilized to enhance the illumination brightness for both incoherent and coherent systems.
Overlapped illusion optics: a perfect lens brings a brighter feature
International Nuclear Information System (INIS)
Xu Yadong; Gao Lei; Chen Huanyang; Du Shengwang
2011-01-01
In this paper, we show that a perfect lens can be employed to make multiple objects appear like only one object in the far field, leading to a new concept in illusion optics. Numerical simulations have been performed to verify the functionalities for both passive and active objects. The conceptual device can be utilized to enhance the illumination brightness for both incoherent and coherent systems.
The perfect family: decision making in biparental care.
Directory of Open Access Journals (Sweden)
Erol Akçay
Full Text Available Previous theoretical work on parental decisions in biparental care has emphasized the role of the conflict between evolutionary interests of parents in these decisions. A prominent prediction from this work is that parents should compensate for decreases in each other's effort, but only partially so. However, experimental tests that manipulate parents and measure their responses fail to confirm this prediction. At the same time, the process of parental decision making has remained unexplored theoretically. We develop a model to address the discrepancy between experiments and the theoretical prediction, and explore how assuming different decision making processes changes the prediction from the theory.We assume that parents make decisions in behavioral time. They have a fixed time budget, and allocate it between two parental tasks: provisioning the offspring and defending the nest. The proximate determinant of the allocation decisions are parents' behavioral objectives. We assume both parents aim to maximize the offspring production from the nest. Experimental manipulations change the shape of the nest production function. We consider two different scenarios for how parents make decisions: one where parents communicate with each other and act together (the perfect family, and one where they do not communicate, and act independently (the almost perfect family.The perfect family model is able to generate all the types of responses seen in experimental studies. The kind of response predicted depends on the nest production function, i.e. how parents' allocations affect offspring production, and the type of experimental manipulation. In particular, we find that complementarity of parents' allocations promotes matching responses. In contrast, the relative responses do not depend on the type of manipulation in the almost perfect family model. These results highlight the importance of the interaction between nest production function and how parents make
Comment on ''Perfect imaging with positive refraction in three dimensions''
International Nuclear Information System (INIS)
Merlin, R.
2010-01-01
Leonhardt and Philbin [Phys. Rev. A 81, 011804(R) (2010)] have recently constructed a mathematical proof that the Maxwell's fish-eye lens provides perfect imaging of electromagnetic waves without negative refraction. In this comment, we argue that the unlimited resolution is an artifact of having introduced an unphysical drain at the position of the geometrical image. The correct solution gives focusing consistent with the standard diffraction limit.
Deinzer, R; Förster, P; Fuck, L; Herforth, A; Stiller-Winkler, R; Idel, H
1999-01-01
This study analyses the effects of academic stress on crevicular interleukin-1beta(I1-1beta) both at experimental gingivitis sites and at sites of perfect oral hygiene. I1-1beta is thought to play a predominant role in periodontal tissue destruction. 13 medical students participating in a major medical exam (exam group) and 13 medical students not participating in any exam throughout the study period (control group) volunteered for the study. In a split-mouth-design, they refrained from any oral hygiene procedures in two opposite quadrants for 21 days (experimental gingivitis) while they maintained perfect hygiene levels at the remaining sites. Crevicular fluid was sampled for further I1-1beta analysis at teeth 5 and 6 of the upper jaw at days 1, 5, 8, 11, 14, 18 and 21 of the experimental gingivitis period. Exam students showed significantly higher I1-1beta levels than controls both at experimental gingivitis sites (area under the curve, exam group: 1240.64+/-140.07; control group: 697.61+/-111.30; p=0.004) and at sites of perfect oral hygiene (exam group: 290.42+/-63.19; control group: 143.98+/-42.71; p = 0.04). These results indicate that stress might affect periodontal health by increasing local I1-1beta levels especially when oral hygiene is neglected.
Hall Effect Influence on a Highly Conducting Fluid
Energy Technology Data Exchange (ETDEWEB)
Witalis, E.A.
1966-11-15
The properties of an incompressible perfect fluid exhibiting Hall effect is investigated in the limit of infinite electrical conductivity and mobility. The magnetic field strength and the fluid velocity are found to obey the equations B = {mu}{rho}/{sigma} x curlV and V -{mu}/({sigma}{mu}{sub 0}) x curlB (MKS units) where {rho}, {sigma} and {mu} denote mass density, conductivity and charge carrier mobility. Some physical interpretations and applications are given.
Müser, Martin H
2014-01-01
In this work, single-asperity contact mechanics is investigated for positive and negative work of adhesion Δγ. In the latter case, finite-range repulsion acts in addition to hard-wall constraints. This constitutes a continuum model for a contact immersed in a strongly wetting fluid, which can only be squeezed out in the center of the contact through a sufficiently large normal load F N. As for positive work of adhesion, two stable solutions can coexist in a finite range of normal loads. The competing solutions can be readily interpreted as contacts with either a load-bearing or a squeezed-out fluid. The possibility for coexistence and the subsequent discontinuous wetting and squeeze-out instabilities depend not only on the Tabor coefficient μT but also on the functional form of the finite-range repulsion. For example, coexistence and discontinuous wetting or squeeze-out do not occur when the repulsion decreases exponentially with distance. For positive work of adhesion, the normal displacement mainly depends on F N, Δγ, and μT but - unlike the contact area - barely on the functional form of the finite-range attraction. The results can benefit the interpretation of atomic force microscopy in liquid environments and the modeling of multi-asperity contacts.
DEFF Research Database (Denmark)
Bøtkjær, Jane Alrø; Borgbo, Tanni; Kløverpris, Søren
2016-01-01
OBJECTIVE: To reveal a possible relationship between two single nucleotide polymorphisms (SNPs) in PAPP-A-1224 (rs7020782) and 327 (rs12375498)-and the level and activity of PAPP-A in follicular fluid (FF) of human small antral follicles, and to analyze the intrafollicular hormone levels. DESIGN......: Laboratory investigation. SETTING: University hospital. PATIENT(S): Fifty volunteer women who contributed a total of 210 samples of FF from normal small antral follicles. INTERVENTION(S): Genotyping and measurement of antigen levels of steroids, PAPP-A, stanniocalcin-2 (STC2), and antimüllerian hormone (AMH......) plus activity of PAPP-A toward insulin-like growth factor binding protein 4 (IGFBP-4). MAIN OUTCOME MEASURE(S): Measurement of PAPP-A levels and hormones with enzyme-linked immunosorbent assay (ELISA) and PAPP-A activity toward radiolabeled IGFBP-4. RESULT(S): Women homozygous for the minor C allele...
Seong, Won Joon
2016-01-01
The purpose of this study was to investigate whether amniotic fluid (AF) CA-125 in patients with preterm labor or preterm premature rupture of membranes can help predict intra-amniotic inflammation (IAI), microbial invasion of the amniotic cavity (MIAC) and imminent delivery. We recruited 36 women who admitted with impending preterm delivery and suspicious AF infection. AF matrix metalloproteinase-8 (MMP-8), white blood cell (WBC) count, glucose levels, and CA-125 levels were measured, and the MMP-8 bedside rapid test was also performed. AF culture and PCR were subsequently performed to confirm MIAC. We compared AF CA-125 levels according to the presence of IAI or MIAC and assessed its predictive value for delivery within 7 days of admission. AF CA-125 levels were significantly higher in the IAI group than in the non-IAI group (mean ± standard deviation: 5608 ± 864 vs 904 ± 84 IU/ml; p = 0.001). AF CA-125 levels showed a negative correlation with gestational age and a positive correlation with AF WBC counts and MMP-8 levels. AF CA-125 levels were higher in the MIAC group, though this difference was not statistically significant (p = 0.064). Delivery within 7 days of admission was significantly more common in patients with higher AF CA-125 levels (cut-off: 1650 IU/ml, sensitivity: 71.4 %, specificity: 86.4 %, p = 0.005). AF CA-125 levels are increased in patients with AF inflammation and can be a predictor of imminent preterm delivery.
Modification of fluid flow equation in saturated porous media ...
African Journals Online (AJOL)
Experimental investigations have shown that variation of porosity and hydraulic gradient are responsible for the deviations from Darcy's law, which is perfectly obeyed only when the fluid flow is laminar in porous media. Previous attempts to modify this equation considered only the effects of porosity of surface-active ...
Electromagnetic Field in Some Anisotropic Stiff Fluid Universes
O, Pimentel L
1995-01-01
The electromagnetic field is studied in a family of exact solutions of the Einstein equations whose material content is a perfect fluid with stiff equation of state (p = $\\epsilon $ ). The field equations are solved exactly for several members of the family.
Wright, Stuart F.; Zadrazil, Ivan; Markides, Christos N.
2017-09-01
Experimental techniques based on optical measurement principles have experienced significant growth in recent decades. They are able to provide detailed information with high-spatiotemporal resolution on important scalar (e.g., temperature, concentration, and phase) and vector (e.g., velocity) fields in single-phase or multiphase flows, as well as interfacial characteristics in the latter, which has been instrumental to step-changes in our fundamental understanding of these flows, and the development and validation of advanced models with ever-improving predictive accuracy and reliability. Relevant techniques rely upon well-established optical methods such as direct photography, laser-induced fluorescence, laser Doppler velocimetry/phase Doppler anemometry, particle image/tracking velocimetry, and variants thereof. The accuracy of the resulting data depends on numerous factors including, importantly, the refractive indices of the solids and liquids used. The best results are obtained when the observational materials have closely matched refractive indices, including test-section walls, liquid phases, and any suspended particles. This paper reviews solid-liquid and solid-liquid-liquid refractive-index-matched systems employed in different fields, e.g., multiphase flows, turbomachinery, bio-fluid flows, with an emphasis on liquid-liquid systems. The refractive indices of various aqueous and organic phases found in the literature span the range 1.330-1.620 and 1.251-1.637, respectively, allowing the identification of appropriate combinations to match selected transparent or translucent plastics/polymers, glasses, or custom materials in single-phase liquid or multiphase liquid-liquid flow systems. In addition, the refractive indices of fluids can be further tuned with the use of additives, which also allows for the matching of important flow similarity parameters such as density and viscosity.
Ricci collineation vectors in fluid space-times
International Nuclear Information System (INIS)
Tsamparlis, M.; Mason, D.P.
1990-01-01
The properties of fluid space-times that admit a Ricci collineation vector (RCV) parallel to the fluid unit four-velocity vector u a are briefly reviewed. These properties are expressed in terms of the kinematic quantities of the timelike congruence generated by u a . The cubic equation derived by Oliver and Davis [Ann. Inst. Henri Poincare 30, 339 (1979)] for the equation of state p=p(μ) of a perfect fluid space-time that admits an RCV, which does not degenerate to a Killing vector, is solved for physically realistic fluids. Necessary and sufficient conditions for a fluid space-time to admit a spacelike RCV parallel to a unit vector n a orthogonal to u a are derived in terms of the expansion, shear, and rotation of the spacelike congruence generated by n a . Perfect fluid space-times are studied in detail and analogues of the results for timelike RCVs parallel to u a are obtained. Properties of imperfect fluid space-times for which the energy flux vector q a vanishes and n a is a spacelike eigenvector of the anisotropic stress tensor π ab are derived. Fluid space-times with anisotropic pressure are discussed as a special case of imperfect fluid space-times for which n a is an eigenvector of π ab
Hernia, mesh, topical antibiotics, especially gentamycin: Seeking the evidence for perfect outcome…
Directory of Open Access Journals (Sweden)
Hakan eKulacoglu
2015-02-01
Full Text Available Inguinal hernia repair is a clean surgical procedure and SSI rate is generally below 2%. Antibiotic prophylaxis is not routinely recommended, but it may be a good choice for institutions with high rates of wound infection (>5 %. Typical prophylaxis is the intravenous application of first or second generation cephalosporins before the skin incision. However, SSI rate remains more than 2% in many centers in spite of intravenous antibiotic prohylaxis. Even a 1% SSI rate may be unacceptable for the surgeons who specifically deal with hernia surgery. A hernia center targets to be a center of excellence not only in respect of recurrence rate but also for other postoperative outcomes, therefore a further measure is required for an excellent result regarding infection control. Topical gentamycin application in combination with preoperative single dose intravenous antibiotic may be a useful to obtain this perfect outcome. Data about this subject is not complete and high grade evidence has not been cumulated yet. Prospective randomized controlled trials can make our knowledge more solid about this subject and help the ssurgeons who seek perfect outcome regarding infection control in inguinal hernia surgery.
Distributed cognitive two-way relay beamformer designs under perfect and imperfect CSI
Pandarakkottilil, Ubaidulla
2011-09-01
In this paper, we present distributed two-way relay beamformer designs for a cognitive radio network (CRN) in which a pair of cognitive (or secondary) transceiver nodes communicate with each other assisted by a set of cognitive two-way relay nodes. The secondary nodes share the spectrum with a licensed primary user (PU) node, and each node is assumed to be equipped with a single transmit/receive antenna. The interference to the PU resulting from the transmission from the cognitive nodes is kept below a specified limit. First, we consider relay beamformer designs assuming the availability of perfect channel state information (CSI). For this case, a mean-square error (MSE)-constrained beamformer that minimizes the total relay transmit power, and an MSE-balancing beamformer with a constraint on the total relay transmit power are proposed. Next, we consider relay beamformer designs assuming that the available CSI is imperfect. For this case too, we consider the same problems as those in the case of perfect CSI, and propose beamformer designs that are robust to the errors in the CSI. We show that the proposed designs can be reformulated as convex optimization problems that can be solved efficiently. Through numerical simulations, we illustrate the performance of the proposed designs. © 2011 IEEE.
Epsilon-Near-Zero Substrate Engineering for Ultrathin-Film Perfect Absorbers
Rensberg, Jura; Zhou, You; Richter, Steffen; Wan, Chenghao; Zhang, Shuyan; Schöppe, Philipp; Schmidt-Grund, Rüdiger; Ramanathan, Shriram; Capasso, Federico; Kats, Mikhail A.; Ronning, Carsten
2017-07-01
Efficient suppression of reflection is a key requirement for perfect absorption of light. Recently, it has been shown that reflection can be effectively suppressed utilizing a single ultrathin film deposited on metals or polar materials featuring phonon resonances. The wavelength at which reflection can be fully suppressed is primarily determined by the nature of these substrates and is pinned to particular values near plasma or phonon resonances—the former typically in the ultraviolet or visible and the latter in the infrared. Here, we explicitly identify the required optical properties of films and substrates for the design of absorbing antireflection coatings based on ultrathin films. We find that completely suppressed reflection using films with thicknesses much smaller than the wavelength of light occurs within a spectral region where the real part of the refractive index of the substrate is n ≲1 , which is characteristic of materials with permittivity close to zero. We experimentally verify this condition by using an ultrathin vanadium dioxide film with dynamically tunable optical properties on several epsilon-near-zero materials, including aluminum-doped zinc oxide. By tailoring the plasma frequency of the aluminum-doped zinc oxide, we are able to tune the epsilon-near-zero point, thus achieving suppressed reflection and near-perfect absorption at wavelengths that continuously span the near-infrared and long-wave midinfrared ranges.
Prarokijjak, Worasak; Soodchomshom, Bumned
2018-04-01
Spin-valley transport and magnetoresistance are investigated in silicene-based N/TB/N/TB/N junction where N and TB are normal silicene and topological barriers. The topological phase transitions in TB's are controlled by electric, exchange fields and circularly polarized light. As a result, we find that by applying electric and exchange fields, four groups of spin-valley currents are perfectly filtered, directly induced by topological phase transitions. Control of currents, carried by single, double and triple channels of spin-valley electrons in silicene junction, may be achievable by adjusting magnitudes of electric, exchange fields and circularly polarized light. We may identify that the key factor behind the spin-valley current filtered at the transition points may be due to zero and non-zero Chern numbers. Electrons that are allowed to transport at the transition points must obey zero-Chern number which is equivalent to zero mass and zero-Berry's curvature, while electrons with non-zero Chern number are perfectly suppressed. Very large magnetoresistance dips are found directly induced by topological phase transition points. Our study also discusses the effect of spin-valley dependent Hall conductivity at the transition points on ballistic transport and reveals the potential of silicene as a topological material for spin-valleytronics.
Pinholes Meet Fabry-Pérot: Perfect and Imperfect Transmission of Waves through Small Apertures
Directory of Open Access Journals (Sweden)
R. Merlin
2012-09-01
Full Text Available Waves, of wavelength λ, transmit poorly through apertures of dimensions ℓ≪λ. Here it is shown that coupling of a subwavelength aperture to an electromagnetic oscillator makes it possible for a focused, diffraction-limited beam that impinges on the aperture to undergo perfect transmission. Ignoring nonradiative losses, and for apertures with closed boundaries in a metallic screen, the transmitted power at the oscillator’s natural frequency is enhanced by a factor of (λ/ℓ^{6} compared with the nonresonant case. As a nontrivial extension to apertures with open boundaries, an analytically solvable problem is introduced and analyzed, which involves a pair of arbitrarily small slits in a two-dimensional waveguide. The system displays perfect transmission at a frequency corresponding to that of a quasilocalized, cavitylike mode bound to the slits, the frequency of which is below that of the cutoff mode of the continuum. In contrast, and remarkably, the Fabry-Pérot-like resonance with the extended cutoff mode leads to imperfect transmission, comparable to that of an individual, nonresonated slit. An explanation of this single-slit-like behavior is presented, which also applies to the closely related phenomenon of light funneling concerning transmission through subwavelength channels [see F. Pardo et al., Light Funneling Mechanism Explained by Magnetoelectric Interference, Phys. Rev. Lett. 107, 093902 (2011PRLTAO0031-900710.1103/PhysRevLett.107.093902, and references therein].
A Dream of the Perfect Map – Calvino’s Invisible Cities
Directory of Open Access Journals (Sweden)
Mario Vrbančić
2012-06-01
Full Text Available The cartographer’s dream is that of a perfect map: a map that perfectly represents a territory, a dream of Divine knowledge; a map that has haunted the ideology of representation throughout history; a map so detailed that it coincides with real space. In a short parable, ‘Museum, on Exactitude in Science’, Borges describes the mysterious gild of cartographers which charts such a map. Although Borges’ narrative finishes with a nostalgic conclusion about a superfluous and forgotten discipline, the cartographer’s dream of a perfect map has never ceased: it has merely varied throughout history. For medieval cartographers the perfect map included the physical cosmos and the spiritual one. In Dante’s time the European ‘mappa mundi’ depicted one single landmass, the Northern Hemisphere, with Jerusalem in the middle and the world is variously shown as dominated or held by God. In the Psalter mappa mundi, which is surmounted by an illustration of the Last Judgement, God holds a little dark red ball, the size of a golf ball – the world. Its size reminds us of the world’s shrinkage due to the advancing technology of transport and communications of the 20th century. Borges’ mystical Aleph on the other hand contains the whole cosmos within its confines (no bigger than the globe held by God on the Hereford map. In a sense the Aleph is a goal of cartography, its theology. Instead of God’s gaze into the unknown distance (as on the Hereford map, Renaissance cartographers imagined the Ptolemaic human gaze looking down on the Earth. The cartographer’s ‘organ of sight’ began to shift from the inner eye of the soul to the physical eye of the body: the idea of the globe as a whole observed by a ‘roving human eye’ is connected to the Renaissance idea of perspectivism. In many respects Renaissance concepts of space laid the foundations for the Enlightenment project. Maps were stripped of spiritual space, of their angels and their
10 CFR 609.16 - Perfection of liens and preservation of collateral.
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Perfection of liens and preservation of collateral. 609.16... THAT EMPLOY INNOVATIVE TECHNOLOGIES § 609.16 Perfection of liens and preservation of collateral. (a... to perfect and maintain liens, as applicable, on assets which are pledged as collateral for the...
Stenger, M. B.; Hargens, A. R.; Dulchavsky, S. A.; Arbeille, P.; Danielson, R. W.; Ebert, D. J.; Garcia, K. M.; Johnston, S. L.; Laurie, S. S.; Lee, S. M. C.;
2017-01-01
Introduction. NASA's Human Research Program is focused on addressing health risks associated with long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but now more than 50 percent of ISS astronauts have experienced more profound, chronic changes with objective structural findings such as optic disc edema, globe flattening and choroidal folds. These structural and functional changes are referred to as the visual impairment and intracranial pressure (VIIP) syndrome. Development of VIIP symptoms may be related to elevated intracranial pressure (ICP) secondary to spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight and to determine if a relation exists with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as any VIIP-related effects of those shifts, are predicted by the crewmember's pre-flight status and responses to acute hemodynamic manipulations, specifically posture changes and lower body negative pressure. Methods. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, and calcaneus tissue thickness (by ultrasound); (3) vascular dimensions by ultrasound (jugular veins, cerebral and carotid arteries, vertebral arteries and veins, portal vein); (4) vascular dynamics by MRI (head/neck blood flow, cerebrospinal fluid
Perfect Undetectable Acoustic Device from Fabry-Pérot Resonances
Chen, Huanyang; Zhou, Yangyang; Zhou, Mengying; Xu, Lin; Liu, Qing Huo
2018-02-01
Transformation acoustics is a method to design novel acoustic devices, while the complexity of the material parameters hinders its progress. In this paper, we analytically present a three-dimensional perfect undetectable acoustic device from Fabry-Pérot resonances and confirm its functionality from Mie theory. Such a mechanism goes beyond the traditional transformation acoustics. In addition, such a reduced version can be realized by holey-structured metamaterials. Our theory paves a way to the implementation of three-dimensional transformation acoustic devices.
Extinction in finite perfect crystals: Case of a sphere
International Nuclear Information System (INIS)
Al Haddad, M.; Becker, P.
1990-01-01
The extinction factor in finite perfect crystals is calculated from pure dynamical theory. In particular, a detailed solution is proposed for a sphere, in which case the extinction factor depends on the Bragg angle θ and the parameter (R/Λ), where R is the radius of the crystal and Λ the extinction length. An approximate solution based on the Laue geometry is proposed and corrections to take care of the complex boundary conditions are presented. An expression easily usable in refinement programs is proposed that fits the exact value to better than 1%. (orig.)
Seeking perfection: a Kantian look at human genetic engineering.
Gunderson, Martin
2007-01-01
It is tempting to argue that Kantian moral philosophy justifies prohibiting both human germ-line genetic engineering and non-therapeutic genetic engineering because they fail to respect human dignity. There are, however, good reasons for resisting this temptation. In fact, Kant's moral philosophy provides reasons that support genetic engineering-even germ-line and non-therapeutic. This is true of Kant's imperfect duties to seek one's own perfection and the happiness of others. It is also true of the categorical imperative. Kant's moral philosophy does, however, provide limits to justifiable genetic engineering.
Whole genome association mapping by incompatibilities and local perfect phylogenies
DEFF Research Database (Denmark)
Mailund, Thomas; Besenbacher, Søren; Schierup, Mikkel Heide
2006-01-01
for this dataset the highest association score is about 60kb from the CYP2D6 gene. Conclusions: Our method has been implemented in the Blossoc (BLOck aSSOCiation) software. Using Blossoc, genome wide chip-based surveys of 3 million SNPs in 1000 cases and 1000 controls can be analysed in less than two CPU hours....... a fast method for accurate localisation of disease causing variants in high density case-control association mapping experiments with large numbers of cases and controls. The method searches for significant clustering of case chromosomes in the "perfect" phylogenetic tree defined by the largest region...
Approximating perfection a mathematician's journey into the world of mechanics
Lebedev, Leonid P
2004-01-01
This is a book for those who enjoy thinking about how and why Nature can be described using mathematical tools. Approximating Perfection considers the background behind mechanics as well as the mathematical ideas that play key roles in mechanical applications. Concentrating on the models of applied mechanics, the book engages the reader in the types of nuts-and-bolts considerations that are normally avoided in formal engineering courses: how and why models remain imperfect, and the factors that motivated their development. The opening chapter reviews and reconsiders the basics of c
Manipulating the loss in electromagnetic cloaks for perfect wave absorption.
Argyropoulos, Christos; Kallos, Efthymios; Zhao, Yan; Hao, Yang
2009-05-11
We examine several ways to manipulate the loss in electro-magnetic cloaks, based on transformation electromagnetics. It is found that, by utilizing inherent electric and magnetic losses of metamaterials, perfect wave absorption can be achieved based on several popular designs of electromagnetic cloaks. A practical implementation of the absorber, consisting of ten discrete layers of metamaterials, is proposed. The new devices demonstrate super-absorptivity over a moderate wideband range, suitable for both microwave and optical applications. It is corroborated that the device is functional with a subwavelength thickness and, hence, advantageous compared to the conventional absorbers.
Analysis of the Perfect Table Fuzzy Rainbow Tradeoff
Directory of Open Access Journals (Sweden)
Byoung-Il Kim
2014-01-01
Full Text Available Cryptanalytic time memory tradeoff algorithms are tools for inverting one-way functions, and they are used in practice to recover passwords that restrict access to digital documents. This work provides an accurate complexity analysis of the perfect table fuzzy rainbow tradeoff algorithm. Based on the analysis results, we show that the lesser known fuzzy rainbow tradeoff performs better than the original rainbow tradeoff, which is widely believed to be the best tradeoff algorithm. The fuzzy rainbow tradeoff can attain higher online efficiency than the rainbow tradeoff and do so at a lower precomputation cost.
Assessing Measures of Order Flow Toxicity via Perfect Trade Classification
DEFF Research Database (Denmark)
Andersen, Torben G.; Bondarenko, Oleg
. The VPIN metric involves decomposing volume into active buys and sells. We use the best-bid-offer (BBO) files from the CME Group to construct (near) perfect trade classification measures for the E-mini S&P 500 futures contract. We investigate the accuracy of the ELO Bulk Volume Classification (BVC) scheme...... and find it inferior to a standard tick rule based on individual transactions. Moreover, when VPIN is constructed from accurate classification, it behaves in a diametrically opposite way to BVC-VPIN. We also find the latter to have forecast power for short-term volatility solely because it generates...
Rothschild, Lynn J.; Greenberg, Daniel T.; Takahashi, Jack R.; Thompson, Kirsten A.; Maheshwari, Akshay J.; Kent, Ryan E.; McCutcheon, Griffin; Shih, Joseph D.; Calvet, Charles; Devlin, Tyler D.;
2015-01-01
The CRISPR (Clustered, Regularly Interspaced, Short Palindromic Repeats)/Cas9 system has revolutionized genome editing by providing unprecedented DNA-targeting specificity. Here we demonstrate that this system can be also applied in vitro to fundamental cloning steps to facilitate efficient plasmid selection for transformation and selective gene insertion into plasmid vectors by cleaving unwanted plasmid byproducts with a single-guide RNA (sgRNA)-Cas9 nuclease complex. Using fluorescent and chromogenic proteins as reporters, we demonstrate that CRISPR/Cas9 cleavage excludes multiple plasmids as well as unwanted ligation byproducts resulting in an unprecedented increase in the transformation success rate from approximately 20% to nearly 100%. Thus, this CRISPR/Cas9-Assisted Transformation-Efficient Reaction (CRATER) protocol is a novel, inexpensive, and convenient application to conventional molecular cloning to achieve near-perfect selective transformation.
Variation in Pockels constants of silicate glass-ceramics prepared by perfect surface crystallization
Takano, Kazuya; Takahashi, Yoshihiro; Miyazaki, Takamichi; Terakado, Nobuaki; Fujiwara, Takumi
2018-01-01
We investigated the Pockels effect in polycrystalline materials consisting of highly oriented polar fresnoite-type Sr2TiSi2O8 fabricated using perfectly surface-crystallized glass-ceramics (PSC-GCs). The chemical composition of the precursor glass was shown to significantly affect the crystallized texture, e.g., the crystal orientation and appearance of amorphous nanoparasites in the domains, resulting in variations in the Pockels constants. Single crystals exhibiting spontaneous polarization possessed large structural anisotropy, leading to a strong dependence of the nonlinear-optical properties on the direction of polarized light. This study suggests that variations in the Pockels constants (r13 and r33) and tuning of the r13/r33 ratio can be realized in PSC-GC materials.
Stachel, T.; Chacko, T.; Luth, R. W.
2017-09-01
Because of the inability of depleted cratonic peridotites to effectively buffer oxygen fugacities when infiltrated by CHO or carbonatitic fluids, it has been proposed recently (Luth and Stachel, 2014) that diamond formation in peridotites typically does not occur by rock-buffered redox reactions as previously thought but by an oxygen-conserving reaction in which minor coexisting CH4 and CO2 components in a water-rich fluid react to form diamond (CO2 + CH4 = 2C + 2H2O). In such fluid-buffered systems, carbon isotope fractionation during diamond precipitation occurs in the presence of two dominant fluid carbon species. Carbon isotope modelling of diamond precipitation from mixed CH4- and CO2-bearing fluids reveals unexpected fundamental differences relative to diamond crystallization from a single carbon fluid species: (1) irrespective of which carbon fluid species (CH4 or CO2) is dominant in the initial fluid, diamond formation is invariably associated with progressive minor (units), the carbon isotope composition of the first-precipitated diamond decreases by 3.7‰. The tight mode in δ13C of - 5 ± 1 ‰ for diamonds worldwide places strict constraints on the dominant range of XCO2 in water-rich fluids responsible for diamond formation. Specifically, precipitation of diamonds with δ13C values in the range -4 to -6‰ from mantle-derived fluids with an average δ13C value of -5‰ (derived from evidence not related to diamonds) requires that diamond-forming fluids were relatively reduced and had methane as the dominant carbon species (XCO2 = 0.1-0.5). Application of our model to a recently published set of in-situ carbon isotope analyses for peridotitic diamonds from Marange, Zimbabwe (Smit et al., 2016), which contain CH4 fluid inclusions, allows us to perfectly match the observed co-variations in δ13 C, δ15 N and N content and at the same time explain the previously counter-intuitive observation of progressive 13C enrichment in diamonds that appear to have
Coordinate transformations make perfect invisibility cloaks with arbitrary shape
International Nuclear Information System (INIS)
Yan Wei; Yan Min; Ruan Zhichao; Qiu Min
2008-01-01
By investigating wave properties at cloak boundaries, invisibility cloaks with arbitrary shape constructed by general coordinate transformations are confirmed to be perfectly invisible to the external incident wave. The differences between line transformed cloaks and point transformed cloaks are discussed. The fields in the cloak medium are found analytically to be related to the fields in the original space via coordinate transformation functions. At the exterior boundary of the cloak, it is shown that no reflection is excited even though the permittivity and permeability do not always have a perfectly matched layer form, whereas at the inner boundary, no reflection is excited either, and in particular no field can penetrate into the cloaked region. However, for the inner boundary of any line transformed cloak, the permittivity and permeability in a specific tangential direction are always required to be infinitely large. Furthermore, the field discontinuity at the inner boundary always exists; the surface current is induced to make this discontinuity self-consistent. A point transformed cloak does not experience such problems. The tangential fields at the inner boundary are all zero, implying that no field discontinuity exists
Are immigrants and natives perfect substitutes in production?
Chiswick, B R; Chiswick, C U; Miller, P W
1985-01-01
This article discusses whether immigrant and native labor are perfect substitutes in production when conventional measures of skill and demographic characteristics are held constant. The ratio of immigrant to native labor and the ratio of immigrant to native earnings are studied in 5 major immigrant receiving countries with other variables held constant. Countries included are 1) the US and Britian, where the foreign born are only about 5% to 6% of the adult male labor force; 2) Canada and Australia, where they are about 20% and 30%, respectively; and 3) Israel, where the foreign born are about 3/4 of the Jewish adult male labor force. The relative earnings of adult male immigrants and the adult male native-born sons of immigrants are found to be lower when the labor supply of immigrants is greater. The estimated elasticity of substitution between immigrant and native labor is high, but significantly less than infinity. Workers who are relatively more intensively in the favorable self selection characteristics of immigrants are not perfect substitutes for workers relatively more intensive in country-specific skills. As immigrants increase in the labor force, their relative earnings tend to fall, although the decline is small. Economies have sufficiently flexible markets and develop institutional arrangements to mitigate the relative fail in immigrant earnings as their relative supply increase.
Superhydrophobicity in perfection: the outstanding properties of the lotus leaf.
Ensikat, Hans J; Ditsche-Kuru, Petra; Neinhuis, Christoph; Barthlott, Wilhelm
2011-01-01
Lotus leaves have become an icon for superhydrophobicity and self-cleaning surfaces, and have led to the concept of the 'Lotus effect'. Although many other plants have superhydrophobic surfaces with almost similar contact angles, the lotus shows better stability and perfection of its water repellency. Here, we compare the relevant properties such as the micro- and nano-structure, the chemical composition of the waxes and the mechanical properties of lotus with its competitors. It soon becomes obvious that the upper epidermis of the lotus leaf has developed some unrivaled optimizations. The extraordinary shape and the density of the papillae are the basis for the extremely reduced contact area between surface and water drops. The exceptional dense layer of very small epicuticular wax tubules is a result of their unique chemical composition. The mechanical robustness of the papillae and the wax tubules reduce damage and are the basis for the perfection and durability of the water repellency. A reason for the optimization, particularly of the upper side of the lotus leaf, can be deduced from the fact that the stomata are located in the upper epidermis. Here, the impact of rain and contamination is higher than on the lower epidermis. The lotus plant has successfully developed an excellent protection for this delicate epistomatic surface of its leaves.
Superhydrophobicity in perfection: the outstanding properties of the lotus leaf
Directory of Open Access Journals (Sweden)
Hans J. Ensikat
2011-03-01
Full Text Available Lotus leaves have become an icon for superhydrophobicity and self-cleaning surfaces, and have led to the concept of the ‘Lotus effect’. Although many other plants have superhydrophobic surfaces with almost similar contact angles, the lotus shows better stability and perfection of its water repellency. Here, we compare the relevant properties such as the micro- and nano-structure, the chemical composition of the waxes and the mechanical properties of lotus with its competitors. It soon becomes obvious that the upper epidermis of the lotus leaf has developed some unrivaled optimizations. The extraordinary shape and the density of the papillae are the basis for the extremely reduced contact area between surface and water drops. The exceptional dense layer of very small epicuticular wax tubules is a result of their unique chemical composition. The mechanical robustness of the papillae and the wax tubules reduce damage and are the basis for the perfection and durability of the water repellency. A reason for the optimization, particularly of the upper side of the lotus leaf, can be deduced from the fact that the stomata are located in the upper epidermis. Here, the impact of rain and contamination is higher than on the lower epidermis. The lotus plant has successfully developed an excellent protection for this delicate epistomatic surface of its leaves.
Coordinate transformations make perfect invisibility cloaks with arbitrary shape
Energy Technology Data Exchange (ETDEWEB)
Yan Wei; Yan Min; Ruan Zhichao; Qiu Min [Laboratory of Optics, Photonics and Quantum Electronics, Department of Microelectronics and Applied Physics, Royal Institute of Technology, 164 40 Kista (Sweden)], E-mail: min@kth.se
2008-04-15
By investigating wave properties at cloak boundaries, invisibility cloaks with arbitrary shape constructed by general coordinate transformations are confirmed to be perfectly invisible to the external incident wave. The differences between line transformed cloaks and point transformed cloaks are discussed. The fields in the cloak medium are found analytically to be related to the fields in the original space via coordinate transformation functions. At the exterior boundary of the cloak, it is shown that no reflection is excited even though the permittivity and permeability do not always have a perfectly matched layer form, whereas at the inner boundary, no reflection is excited either, and in particular no field can penetrate into the cloaked region. However, for the inner boundary of any line transformed cloak, the permittivity and permeability in a specific tangential direction are always required to be infinitely large. Furthermore, the field discontinuity at the inner boundary always exists; the surface current is induced to make this discontinuity self-consistent. A point transformed cloak does not experience such problems. The tangential fields at the inner boundary are all zero, implying that no field discontinuity exists.
Acharya, Ranadip; Bansal, Rohan; Gambone, Justin J.; Das, Suman
2014-12-01
Scanning laser epitaxy (SLE) is a new laser-based additive manufacturing technology under development at the Georgia Institute of Technology. SLE is aimed at the creation of equiaxed, directionally solidified, and single-crystal deposits of nickel-based superalloys through the melting of alloy powders onto superalloy substrates using a fast scanning Nd:YAG laser beam. The fast galvanometer control movement of the laser (0.2 to 2 m/s) and high-resolution raster scanning (20 to 200 µm line spacing) enables superior thermal control over the solidification process and allows the production of porosity-free, crack-free deposits of more than 1000 µm thickness. Here, we present a combined thermal and fluid flow model of the SLE process applied to alloy CMSX-4 with temperature-dependent thermo-physical properties. With the scanning beam described as a moving line source, the instantaneous melt pool assumes a convex hull shape with distinct leading edge and trailing edge characteristics. Temperature gradients at the leading and trailing edges are of order 2 × 105 and 104 K/m, respectively. Detailed flow analysis provides insights on the flow characteristics of the powder incorporating into the melt pool, showing velocities of order 1 × 10-4 m/s. The Marangoni effect drives this velocity from 10 to 15 times higher depending on the operating parameters. Prediction of the solidification microstructure is based on conditions at the trailing edge of the melt pool. Time tracking of solidification history is incorporated into the model to couple the microstructure prediction model to the thermal-fluid flow model, and to predict the probability of the columnar-to-equiaxed transition. Qualitative agreement is obtained between simulation and experimental result.
DEFF Research Database (Denmark)
Dohn, Anders; Garza-Villarreal, Eduardo A.; Heaton, Pamela
2012-01-01
Perfect pitch, also known as absolute pitch (AP), refers to the rare ability to identify or produce a musical tone correctly without the benefit of an external reference. AP is often considered to reflect musical giftedness, but it has also been associated with certain disabilities due to increased...... (APs), 18 musicians without AP (non-APs), and 16 non-musicians. In addition, we measured AP ability by a pitch identification test with sine wave tones and piano tones. We found a significantly higher degree of autism traits in APs than in non-APs and non-musicians, and autism scores were significantly...
Pnueli, David; Gutfinger, Chaim
1997-01-01
This text is intended for the study of fluid mechanics at an intermediate level. The presentation starts with basic concepts, in order to form a sound conceptual structure that can support engineering applications and encourage further learning. The presentation is exact, incorporating both the mathematics involved and the physics needed to understand the various phenomena in fluid mechanics. Where a didactical choice must be made between the two, the physics prevails. Throughout the book the authors have tried to reach a balance between exact presentation, intuitive grasp of new ideas, and creative applications of concepts. This approach is reflected in the examples presented in the text and in the exercises given at the end of each chapter. Subjects treated are hydrostatics, viscous flow, similitude and order of magnitude, creeping flow, potential flow, boundary layer flow, turbulent flow, compressible flow, and non-Newtonian flows. This book is ideal for advanced undergraduate students in mechanical, chemical, aerospace, and civil engineering. Solutions manual available.
Relativistic viscoelastic fluid mechanics.
Fukuma, Masafumi; Sakatani, Yuho
2011-08-01
A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.
Relativistic viscoelastic fluid mechanics
International Nuclear Information System (INIS)
Fukuma, Masafumi; Sakatani, Yuho
2011-01-01
A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.
Cryogenic Fluid Management Facility
Eberhardt, R. N.; Bailey, W. J.
1985-01-01
The Cryogenic Fluid Management Facility is a reusable test bed which is designed to be carried within the Shuttle cargo bay to investigate the systems and technologies associated with the efficient management of cryogens in space. Cryogenic fluid management consists of the systems and technologies for: (1) liquid storage and supply, including capillary acquisition/expulsion systems which provide single-phase liquid to the user system, (2) both passive and active thermal control systems, and (3) fluid transfer/resupply systems, including transfer lines and receiver tanks. The facility contains a storage and supply tank, a transfer line and a receiver tank, configured to provide low-g verification of fluid and thermal models of cryogenic storage and transfer processes. The facility will provide design data and criteria for future subcritical cryogenic storage and transfer system applications, such as Space Station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, and ground-based and space-based orbit transfer vehicles (OTV).
Ruban, Anatoly I
This is the first book in a four-part series designed to give a comprehensive and coherent description of Fluid Dynamics, starting with chapters on classical theory suitable for an introductory undergraduate lecture course, and then progressing through more advanced material up to the level of modern research in the field. The present Part 1 consists of four chapters. Chapter 1 begins with a discussion of Continuum Hypothesis, which is followed by an introduction to macroscopic functions, the velocity vector, pressure, density, and enthalpy. We then analyse the forces acting inside a fluid, and deduce the Navier-Stokes equations for incompressible and compressible fluids in Cartesian and curvilinear coordinates. In Chapter 2 we study the properties of a number of flows that are presented by the so-called exact solutions of the Navier-Stokes equations, including the Couette flow between two parallel plates, Hagen-Poiseuille flow through a pipe, and Karman flow above an infinite rotating disk. Chapter 3 is d...
Output analysis of multiclass fluid models with static priorities
Tzenova, E.I.; Adan, I.J.B.F.; Kulkarni, V.G.
2008-01-01
We consider a stochastic fluid flow model with a single server and K infinite capacity buffers. The input to the k-th buffer is a Markovian on-off process that transmits fluid at a constant rate p(k) while it is on and at rate 0 while it is off. The fluid is emptied from the buffers by a single
Energy Technology Data Exchange (ETDEWEB)
Chuang, Hsiao-Chi [School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan (China); Cheng, Yi-Ling; Lei, Yu-Chen [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Chang, Hui-Hsien [Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Cheng, Tsun-Jen, E-mail: tcheng@ntu.edu.tw [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan (China)
2013-02-01
Pulmonary epithelial lining fluid (ELF) is the first substance to make contact with inhaled particulate matter (PM) and interacts chemically with PM components. The objective of this study was to determine the role of ELF in oxidative stress, DNA damage and the production of proinflammatory cytokines following physicochemical exposure to PM. Ultrafine carbon black (ufCB, 15 nm; a model carbonaceous core), ferrous sulphate (FeSO{sub 4}; a model transition metal) and a diesel exhaust particle (DEP) extract (a model organic compound) were used to examine the acellular oxidative potential of synthetic ELF and non-ELF systems. We compared the effects of exposure to ufCB, FeSO{sub 4} and DEP extract on human alveolar epithelial Type II (A549) cells to determine the levels of oxidative stress, DNA single-strand breaks and interleukin-8 (IL-8) production in ELF and non-ELF systems. The effects of ufCB and FeSO{sub 4} on the acellular oxidative potential, cellular oxidative stress and DNA single-strand breakage were mitigated significantly by the addition of ELF, whereas there was no decrease following treatment with the DEP extract. There was no significant effect on IL-8 production following exposure to samples that were suspended in ELF/non-ELF systems. The results of the present study indicate that ELF plays an important role in the initial defence against PM in the pulmonary environment. Experimental components, such as ufCB and FeSO{sub 4}, induced the production of oxidative stress and led to DNA single-strand breaks, which were moderately prevented by the addition of ELF. These findings suggest that ELF plays a protective role against PM-driven oxidative stress and DNA damage. -- Highlights: ► To determine the role of ELF in ROS, DNA damage and IL-8 after exposure to PM. ► ufCB, FeSO{sub 4} and DEP extract were used to examine the protective effects of ELF. ► PM-driven oxidative stress and DNA single-strand breakage were mitigated by ELF. ► The findings
Planning the annual cycle in groups of cadet combat sports perfection
Directory of Open Access Journals (Sweden)
Ananchenko Konstantin
2016-08-01
Full Text Available Within a large training cycle in conditions of high general level of stress the authors recommend optimal implementation of planning undulating dynamics of cadets’ combat exercise stress. The article proves the efficiency of one-cycle construction of training highly- qualified single-combat cadets at the stage of maximal realization of sporting possibilities, which includes both features of traditional cycles (preparatory, competitional, transitional and module-sectional composition of training. It scientifically substantiates, that the choice of those or other types of microcycles which present the structure of mesocycles is determined by a few basic factors which must be necessarily taken into account while planning the training process of sportsmen of different qualification. It is suggested to use certain varieties of microcycles in the practice of preparation of single combat cadets. It is substantiated that accounting in planning the annual cycle in groups of sporting perfection of students of the educed types of microcycles for every type of single combats is an actual task of further scientific research.
No-signaling, perfect bipartite dichotomic correlations and local randomness
International Nuclear Information System (INIS)
Seevinck, M. P.
2011-01-01
The no-signaling constraint on bi-partite correlations is reviewed. It is shown that in order to obtain non-trivial Bell-type inequalities that discern no-signaling correlations from more general ones, one must go beyond considering expectation values of products of observables only. A new set of nontrivial no-signaling inequalities is derived which have a remarkably close resemblance to the CHSH inequality, yet are fundamentally different. A set of inequalities by Roy and Singh and Avis et al., which is claimed to be useful for discerning no-signaling correlations, is shown to be trivially satisfied by any correlation whatsoever. Finally, using the set of newly derived no-signaling inequalities a result with potential cryptographic consequences is proven: if different parties use identical devices, then, once they have perfect correlations at spacelike separation between dichotomic observables, they know that because of no-signaling the local marginals cannot but be completely random.
The Volume-Outcome Relationship Revisited: Practice Indeed Makes Perfect.
Hentschker, Corinna; Mennicken, Roman
2018-02-01
To examine the causal effect of a hospital's experience with treating hip fractures (volume) on patient treatment outcomes. We use a full sample of administrative data from German hospitals for 2007. The data provide detailed information on patients and hospitals. We also reference the hospitals' addresses and the zip codes of patients' place of residence. We apply an instrumental variable approach to address endogeneity concerns due to reverse causality and unobserved patient heterogeneity. As instruments for case volume, we use the number of potential patients and number of other hospitals in the region surrounding each hospital. Our results indicate that after applying an instrumental variables (IV) regression of volume on outcome, volume significantly increases quality. We provide evidence for the practice-makes-perfect hypothesis by showing that volume is a driving factor for quality. © Health Research and Educational Trust.
Simulation of MILD combustion using Perfectly Stirred Reactor model
Chen, Z.
2016-07-06
A simple model based on a Perfectly Stirred Reactor (PSR) is proposed for moderate or intense low-oxygen dilution (MILD) combustion. The PSR calculation is performed covering the entire flammability range and the tabulated chemistry approach is used with a presumed joint probability density function (PDF). The jet, in hot and diluted coflow experimental set-up under MILD conditions, is simulated using this reactor model for two oxygen dilution levels. The computed results for mean temperature, major and minor species mass fractions are compared with the experimental data and simulation results obtained recently using a multi-environment transported PDF approach. Overall, a good agreement is observed at three different axial locations for these comparisons despite the over-predicted peak value of CO formation. This suggests that MILD combustion can be effectively modelled by the proposed PSR model with lower computational cost.
Efficient and stable perfectly matched layer for CEM
Duru, Kenneth
2014-02-01
An efficient unsplit perfectly matched layer for numerical simulation of electromagnetic waves in unbounded domains is derived via a complex change of variables. In order to surround a Cartesian grid with the PML, the time-dependent PML requires only one (scalar) auxiliary variable in two space dimensions and six (scalar) auxiliary variables in three space dimensions. It is therefore cheap and straightforward to implement. We use Fourier and energy methods to prove the stability of the PML. We extend the stability result to a semi-discrete PML approximated by central finite differences of arbitrary order of accuracy and to a fully discrete problem for the \\'Leap-Frog\\' schemes. This makes precise the usefulness of the derived PML model for longtime simulations. Numerical experiments are presented, illustrating the accuracy and stability of the PML. © 2013 IMACS.
International Nuclear Information System (INIS)
Vejko, N.N.; Spitkovskij, D.M.
2000-01-01
The evidences of stability of the human ribosomal gene in the transcribing range (TR-rDNA) to fragmentation are presented in two groups of experiments: 1) in the case of availability of the fragments in the cells of sectional corpse material (necrosis and apoptosis) and by pathologies accompanied by the cells death through the apoptosis or necrosis mechanism; 2) in the model experiments, wherein the separated genomes DNA is subjected to the impact of nucleases initiating single-strand breaks (SB), or chemical introduction with a subsequent comparative analysis of stability to fragmentation of various DNA sequences including TR-rDNA. The DNA solutions were subjected to γ-radiation with the dose rate of 4.8 Gy/min. It is shown that in spite of the great number of the SBs the TR-rDNA is characterized by increased stability to fragmentation, which makes it possible to propose this DNA fragment for application as a cell death marker in biological fluids [ru
International Nuclear Information System (INIS)
Paraschivoiu, I.; Prud'homme, M.; Robillard, L.; Vasseur, P.
2003-01-01
This book constitutes at the same time theoretical and practical base relating to the phenomena associated with fluid mechanics. The concept of continuum is at the base of the approach developed in this work. The general advance proceeds of simple balances of forces as into hydrostatic to more complex situations or inertias, the internal stresses and the constraints of Reynolds are taken into account. This advance is not only theoretical but contains many applications in the form of solved problems, each chapter ending in a series of suggested problems. The major part of the applications relates to the incompressible flows
DEFF Research Database (Denmark)
and in architectural design. Aesthetics, psychoacoustics, perception, and cognition are all present in this expanding field embracing such categories as soundscape composition, sound art, sonic art, sound design, sound studies and auditory culture. Of greatest significance to the overall field is the investigation...... of sound, site and the social, and how the spatial, the visual, and the bodily interact in sonic environments, how they are constructed and how they are entangled in other practices. With the Seismograf special issue Fluid Sounds, we bring this knowledge into the dissemination of audio research itself...
International Nuclear Information System (INIS)
Kreider, J.F.
1985-01-01
This book is an introduction on fluid mechanics incorporating computer applications. Topics covered are as follows: brief history; what is a fluid; two classes of fluids: liquids and gases; the continuum model of a fluid; methods of analyzing fluid flows; important characteristics of fluids; fundamentals and equations of motion; fluid statics; dimensional analysis and the similarity principle; laminar internal flows; ideal flow; external laminar and channel flows; turbulent flow; compressible flow; fluid flow measurements
Fluid discrimination based on rock physics templates
International Nuclear Information System (INIS)
Liu, Qian; Yin, Xingyao; Li, Chao
2015-01-01
Reservoir fluid discrimination is an indispensable part of seismic exploration. Reliable fluid discrimination helps to decrease the risk of exploration and to increase the success ratio of drilling. There are many kinds of fluid indicators that are used in fluid discriminations, most of which are single indicators. But single indicators do not always work well under complicated reservoir conditions. Therefore, combined fluid indicators are needed to increase accuracies of discriminations. In this paper, we have proposed an alternative strategy for the combination of fluid indicators. An alternative fluid indicator, the rock physics template-based indicator (RPTI) has been derived to combine the advantages of two single indicators. The RPTI is more sensitive to the contents of fluid than traditional indicators. The combination is implemented based on the characteristic of the fluid trend in the rock physics template, which means few subjective factors are involved. We also propose an inversion method to assure the accuracy of the RPTI input data. The RPTI profile is an intuitionistic interpretation of fluid content. Real data tests demonstrate the applicability and validity. (paper)
Glaeser, R.M.; McMullan, G.; Faruqi, A.R.; Henderson, R.
2013-01-01
Quantitative analysis of electron microscope images of organic and biological two-dimensional crystals has previously shown that the absolute contrast reached only a fraction of that expected theoretically from the electron diffraction amplitudes. The accepted explanation for this is that irradiation of the specimen causes beam-induced charging or movement, which in turn causes blurring of the image due to image or specimen movement. In this paper, we used three different approaches to try to overcome this image-blurring problem for monolayer crystals of paraffin. Our first approach was to use an extreme form of spotscan imaging, in which a single image was assembled on film by the successive illumination of up to 50,000 spots each of diameter around 7nm. The second approach was to use the Medipix II detector with its zero-noise readout to assemble a time-sliced series of images of the same area in which each frame from a movie with up to 400 frames had an exposure of only 500 electrons. In the third approach, we simply used a much thicker carbon support film to increase the physical strength and conductivity of the support. Surprisingly, the first two methods involving dose fractionation respectively in space or time produced only partial improvements in contrast whereas the third approach produced many virtually perfect images, in which the absolute contrast predicted from the electron diffraction amplitudes was observed in the images. We conclude that it is possible to obtain consistently almost perfect images of beam-sensitive specimens if they are attached to an appropriately strong and conductive support, but great care is needed in practice and the problem of how best to image ice-embedded biological structures in the absence of a strong, conductive support film requires more work. PMID:21185452
On uniformly perfect boundary of stable domains in iteration of meromorphic functions II
Jian-Hua, Zheng
2002-05-01
We investigate uniform perfectness of the Julia set of a transcendental meromorphic function with finitely many poles and prove that the Julia set of such a meromorphic function is not uniformly perfect if it has only bounded components. The Julia set of an entire function is uniformly perfect if and only if the Julia set including infinity is connected and every component of the Fatou set is simply connected. Furthermore if an entire function has a finite deficient value in the sense of Nevanlinna, then it has no multiply connected stable domains. Finally, we give some examples of meromorphic functions with uniformly perfect Julia sets.
On stagnation pressure increases in calorically perfect, ideal gases
International Nuclear Information System (INIS)
Williams, D.M.; Kamenetskiy, D.S.; Spalart, P.R.
2016-01-01
Highlights: • Unaveraged transport equation is obtained for the stagnation pressure. • Reynolds-averaged transport equation is obtained for the stagnation pressure. • Transport equations apply to compressible flow of calorically perfect, ideal gas. • Stagnation pressure is shown to be capable of naturally or artificially increasing. • Spurious overshoots likely in shear layers displaying convex streamline curvature. - Abstract: When stagnation pressure rises in a natural or numerically simulated flow it is frequently a cause for concern, as one usually expects viscosity and turbulence to cause stagnation pressure to decrease. In fact, if stagnation pressure increases, one may suspect measurement or numerical errors. However, this need not be the case, as the laws of nature do not require that stagnation pressure continually decreases. In order to help clarify matters, the objective of this work is to understand the conditions under which stagnation pressure will rise in the unsteady/steady flows of compressible, viscous, calorically perfect, ideal gases. Furthermore, at a more practical level, the goal is to understand the conditions under which stagnation pressure will increase in flows simulated with the Reynolds averaged Navier–Stokes equations and eddy-viscosity turbulence models. In order to provide an improved understanding of increases in stagnation pressure for both these scenarios, transport equations are derived that govern its behavior in the unaveraged and Reynolds averaged settings. These equations are utilized to precisely determine the relationship between changes in stagnation pressure and zeroth, first, and second derivatives of fundamental flow quantities. Furthermore, these equations are utilized to demonstrate the relationship between changes in stagnation pressure and fundamental non-dimensional quantities that govern the conductivity, viscosity, and compressibility of the flow. In addition, based on an analysis of the Reynolds
Energy Technology Data Exchange (ETDEWEB)
Kerbel, G.D.
1981-01-20
A study is made of a scale model in three dimensions of a guiding center plasma within the purview of gyroelastic (also known as finite gyroradius-near theta pinch) magnetohydrodynamics. The (nonlinear) system sustains a particular symmetry called isorrhopy which permits the decoupling of fluid modes from drift modes. Isorrhopic equilibria are analyzed within the framework of geometrical optics resulting in (local) dispersion relations and ray constants. A general scheme is developed to evolve an arbitrary linear perturbation of a screwpinch equilibrium as an invertible integral transform (over the complete set of generalized eigenfunctions defined naturally by the equilibrium). Details of the structure of the function space and the associated spectra are elucidated. Features of the (global) dispersion relation owing to the presence of gyroelastic stabilization are revealed. An energy principle is developed to study the stability of the tubular screwpinch.
International Nuclear Information System (INIS)
Kerbel, G.D.
1981-01-01
A study is made of a scale model in three dimensions of a guiding center plasma within the purview of gyroelastic (also known as finite gyroradius-near theta pinch) magnetohydrodynamics. The (nonlinear) system sustains a particular symmetry called isorrhopy which permits the decoupling of fluid modes from drift modes. Isorrhopic equilibria are analyzed within the framework of geometrical optics resulting in (local) dispersion relations and ray constants. A general scheme is developed to evolve an arbitrary linear perturbation of a screwpinch equilibrium as an invertible integral transform (over the complete set of generalized eigenfunctions defined naturally by the equilibrium). Details of the structure of the function space and the associated spectra are elucidated. Features of the (global) dispersion relation owing to the presence of gyroelastic stabilization are revealed. An energy principle is developed to study the stability of the tubular screwpinch
THE PERFECT ONLINE COURSE: Best Practices for Designing and Teaching
Directory of Open Access Journals (Sweden)
Reviewed by Cengiz Hakan AYDIN
2010-07-01
Full Text Available The growth of online learning all over the world arise new challenges. One of the major challenges is the issue of quality. What should an online course look like? What kinds of instructional strategies should be provided? To what extent various kinds of interactions must be required? What are the effective learning activities? For what functions should different technologies be used? How can learning be assessed? And similar and more questions have yet no standardized answers although they have been around since early implementations of online learning. Each provider uses different standards developed by either themselves or some institutions or some researchers. Sloan-C: Pillars of Quality, Robley and Wince’s Rubric for Quality Interactions, Concord Model, Schrum’s Qualities of Successful Students, Quality Matters, and E-excellence: Quality Manual for E-learning in Higher Education are among many of these standards.The book, entitled as The Perfect Online Course: Best Practices for Designing and Teaching is also trying to establish a list of standards about how to design and implement an effective online course.The main goal of the book is to create a framework of quality educational guidelines that can be used to offer “perfect” online course.
Measuring Individual Differences in the Perfect Automation Schema.
Merritt, Stephanie M; Unnerstall, Jennifer L; Lee, Deborah; Huber, Kelli
2015-08-01
A self-report measure of the perfect automation schema (PAS) is developed and tested. Researchers have hypothesized that the extent to which users possess a PAS is associated with greater decreases in trust after users encounter automation errors. However, no measure of the PAS currently exists. We developed a self-report measure assessing two proposed PAS factors: high expectations and all-or-none thinking about automation performance. In two studies, participants responded to our PAS measure, interacted with imperfect automated aids, and reported trust. Each of the two PAS measure factors demonstrated fit to the hypothesized factor structure and convergent and discriminant validity when compared with propensity to trust machines and trust in a specific aid. However, the high expectations and all-or-none thinking scales showed low intercorrelations and differential relationships with outcomes, suggesting that they might best be considered two separate constructs rather than two subfactors of the PAS. All-or-none thinking had significant associations with decreases in trust following aid errors, whereas high expectations did not. Results therefore suggest that the all-or-none thinking scale may best represent the PAS construct. Our PAS measure (specifically, the all-or-none thinking scale) significantly predicted the severe trust decreases thought to be associated with high PAS. Further, it demonstrated acceptable psychometric properties across two samples. This measure may be used in future work to assess levels of PAS in users of automated systems in either research or applied settings. © 2015, Human Factors and Ergonomics Society.
Broadband Reflectionless Metasheets: Frequency-Selective Transmission and Perfect Absorption
Directory of Open Access Journals (Sweden)
V. S. Asadchy
2015-07-01
Full Text Available Energy of propagating electromagnetic waves can be fully absorbed in a thin lossy layer, but only in a narrow frequency band, as follows from the causality principle. On the other hand, it appears that there are no fundamental limitations on broadband matching of thin resonant absorbing layers. However, known thin absorbers produce significant reflections outside of the resonant absorption band. In this paper, we explore possibilities to realize a thin absorbing layer that produces no reflected waves in a very wide frequency range, while the transmission coefficient has a narrow peak of full absorption. Here we show, both theoretically and experimentally, that a thin resonant absorber, invisible in reflection in a very wide frequency range, can be realized if one and the same resonant mode of the absorbing array unit cells is utilized to create both electric and magnetic responses. We test this concept using chiral particles in each unit cell, arranged in a periodic planar racemic array, utilizing chirality coupling in each unit cell but compensating the field coupling at the macroscopic level. We prove that the concept and the proposed realization approach also can be used to create nonreflecting layers for full control of transmitted fields. Our results can have a broad range of potential applications over the entire electromagnetic spectrum including, for example, perfect ultracompact wave filters and selective multifrequency sensors.
Perfect spin filtering by symmetry in molecular junctions
Li, Dongzhe; Dappe, Yannick J.; Smogunov, Alexander
2016-05-01
Obtaining highly spin-polarized currents in molecular junctions is crucial and important for nanoscale spintronics devices. Motivated by our recent symmetry-based theoretical argument for complete blocking of one spin conductance channel in model molecular junctions [A. Smogunov and Y. J. Dappe, Nano Lett. 15, 3552 (2015), 10.1021/acs.nanolett.5b01004], we explore the generality of the proposed mechanism and the degree of achieved spin-polarized current for realistic molecular junctions made of various ferromagnetic electrodes (Ni, Co, Fe) connected by different molecules (quaterthiophene or p -quaterphenyl). A simple analysis of the spin-resolved local density of states of a free electrode allowed us to identify the Fe(110) as the most optimal electrode, providing perfect spin filtering and high conductance at the same time. These results are confirmed by ab initio quantum transport calculations and are similar to those reported previously for model junctions. It is found, moreover, that the distortion of the p -quaterphenyl molecule plays an important role, reducing significantly the overall conductance.
Improving The Perfect Storm: Overcoming Barriers To Climate Literacy
Tillinger, D.
2015-12-01
Students and scientists are trained to speak different languages. Climate science, and the geosciences more broadly, are strictly classroom topics, not subjects appropriate for casual conversation, social media, or creative projects. When students are aware of climate change through the mainstream media, it is nearly always in a political or technological context rather than a scientific one. However, given the opportunity, students are perfectly capable of not only understanding the science behind climate change, but communicating it to their peers. At the American Museum of Natural History, a group of underprivileged high school students visited Nature's Fury: The Science of Natural Disasters to learn about volcanoes, earthquakes, and climate change impacts. They were then able to write pitches and develop trailers for scientifically accurate, but still compelling, disaster movies. Arts in Parts, a creative outreach group formed as a response to Hurricane Sandy, facilitated a workshop in which younger children made mobiles from beach debris they collected while learning about the the threat of sea level rise locally and globally. Participants in an undergraduate natural disasters class wrote guides to understanding climate change that remained factual while showing great creativity and reflecting the personality of each student. Art, humor, and popular culture are the languages that society chooses to use; scientific literacy might benefit from their inclusion.
Search for a perfect generator of random numbers
International Nuclear Information System (INIS)
Musyck, E.
1977-01-01
Theoretical tests have been carried out by COVEYOU and MAC PHERSON to verify the applications of the LEHMER algorithm. In a similar way, a theoretical method is proposed to evaluate in a rigorous way the random character of numbers generated by a shift register. This theory introduces the concept of ''degree of randomness'' of the elements, taken in a definite order, of a shift register. It permits making the judicious choice of the elements of the shift register which will produce the bits of the random numbers. On the other hand, a calculation method is developed in order to verify the primitive character of any shift register of high complexity. A new test, called ''slice test'', of empirical and theoretical use is also described; it constitutes a significant contribution to the understanding of certain properties of pseudo-random sequences. As a practical example, a random number generator structure formed with 32 bits, built out of a shift register with 61 elements and 60 modulo-2 adder circuits was made. The author is convinced that this generator can be considered to be practically perfect for all empirical applications of random numbers, particularly for the solution of Monte-Carlo problems. (author)
A psychogenic dystonia perfect responsive to antidepressant treatment.
Directory of Open Access Journals (Sweden)
Volkan Solmaz
2014-03-01
Full Text Available After ruling out of organic causes, movement disorders are named as psychogenic movement disorders, it can mimic perfectly Organic movement disorders, but with a good history, clinical observations and detailed examination is very helpful in the diagnosis of this disease. In here we will present a 15 years old male patient, he was complaining of urinary incontinence at night, emerging dystonic posture especially in crowded environments, eating, and during activities that require attention, for 5 years. Self and family history was unremarkable. His physical and neurological examination was normal except for dystonic posture esipecially writing and when doing skilled jobs. All the tests were normal for the differential diagnosis. Taking into account the patient\\s clinical findings and cilinical test, the patient was diagnosed as psychogenic dystonia. He gave a very good response to treatment with antidepressants and psychotherapy. As a result, in clinical practice both the diagnostic and therapeutic challenges the psychogenic movement disorders is an important problem, and to get rid of the negative effects of unnecessary diagnostic test and side efects of treatment, you need to keep in mind this diagnosis. [J Contemp Med 2014; 4(1.000: 29-31
Building the perfect parasite: cell division in apicomplexa.
Directory of Open Access Journals (Sweden)
Boris Striepen
2007-06-01
Full Text Available Apicomplexans are pathogens responsible for malaria, toxoplasmosis, and crytposporidiosis in humans, and a wide range of livestock diseases. These unicellular eukaryotes are stealthy invaders, sheltering from the immune response in the cells of their hosts, while at the same time tapping into these cells as source of nutrients. The complexity and beauty of the structures formed during their intracellular development have made apicomplexans the darling of electron microscopists. Dramatic technological progress over the last decade has transformed apicomplexans into respectable genetic model organisms. Extensive genomic resources are now available for many apicomplexan species. At the same time, parasite transfection has enabled researchers to test the function of specific genes through reverse and forward genetic approaches with increasing sophistication. Transfection also introduced the use of fluorescent reporters, opening the field to dynamic real time microscopic observation. Parasite cell biologists have used these tools to take a fresh look at a classic problem: how do apicomplexans build the perfect invasion machine, the zoite, and how is this process fine-tuned to fit the specific niche of each pathogen in this ancient and very diverse group? This work has unearthed a treasure trove of novel structures and mechanisms that are the focus of this review.
Shekhar, Chander; Maher, Ben; Forde, Colm; Mahon, Brinder Singh
2017-11-09
Endoscopic ultrasound-guided drainage is a minimally invasive first-line modality for the drainage of pancreatic fluid collection (PFC) resulting in a shorter hospital stay and less morbidity compared with surgical cystogastrostomy. Our aim is to evaluate potential differences in the outcomes of endoscopic ultrasound (EUS) guided transmural drainage (EUS-TD) drainage of pancreatic pseudocyst (PP) and walled-off necrosis (WON). We retrospectively reviewed 100 consecutive EUS-guided drainages of PFC utilising EUS reports; clinical notes and imaging with follow-up (FU) to 12 months. All procedures were undertaken under conscious sedation with EUS guidance alone (without fluoroscopy) and placement of plastic double pigtail stents. In these 100 sequential cases, there were 78 cases of PP and 22 cases of WON. All 22/22(100%) cases of WON had successful EUS-guided stent placement. In 2/22(9%), there was little or no clinical improvement. These two patients required further computed tomography (CT)-guided drainage and one of these patients (1/22) (4.5%) developed recurrence within 12 months FU after removal of stents. In case of PP, overall stent placement was successful in 76/78 (97%) patients, but 6/78(8%) required 2nd EUS procedure after failure to show clinical improvement; 3/78(2.5%) required further CT-guided drainage. The overall complication rate was 9%(9/100) with 4%(4/100) requiring endoscopic or CT-guided intervention with no overall 30-day mortality. This is the largest series from a single UK centre demonstrating that EUS-guided cystogastrostomy of PFC drainage using plastic double pigtail stents is sufficient in majority of cases with PFC including that of WON, with or without infection.
International Nuclear Information System (INIS)
Ottino, J.M.
1989-01-01
What do the eruption of Krakatau, the manufacture of puff pastry and the brightness of stars have in common? Each involves some aspect of mixing. Mixing also plays a critical role in modern technology. Chemical engineers rely on mixing to ensure that substances react properly, to produce polymer blends that exhibit unique properties and to disperse drag-reducing agents in pipelines. Yet in spite of its of its ubiquity in nature and industry, mixing is only imperfectly under-stood. Indeed, investigators cannot even settle on a common terminology: mixing is often referred to as stirring by oceanographers and geophysicists, as blending by polymer engineers and as agitation by process engineers. Regardless of what the process is called, there is little doubt that it is exceedingly complex and is found in a great variety of systems. In constructing a theory of fluid mixing, for example, one has to take into account fluids that can be miscible or partially miscible and reactive or inert, and flows that are slow and orderly or very fast and turbulent. It is therefore not surprising that no single theory can explain all aspect of mixing in fluids and that straightforward computations usually fail to capture all the important details. Still, both physical experiments and computer simulations can provide insight into the mixing process. Over the past several years the authors and his colleague have taken both approaches in an effort to increase understanding of various aspect of the process-particularly of mixing involving slow flows and viscous fluids such as oils
Thermophysical Properties of Fluids and Fluid Mixtures
Energy Technology Data Exchange (ETDEWEB)
Sengers, Jan V.; Anisimov, Mikhail A.
2004-05-03
The major goal of the project was to study the effect of critical fluctuations on the thermophysical properties and phase behavior of fluids and fluid mixtures. Long-range fluctuations appear because of the presence of critical phase transitions. A global theory of critical fluctuations was developed and applied to represent thermodynamic properties and transport properties of molecular fluids and fluid mixtures. In the second phase of the project, the theory was extended to deal with critical fluctuations in complex fluids such as polymer solutions and electrolyte solutions. The theoretical predictions have been confirmed by computer simulations and by light-scattering experiments. Fluctuations in fluids in nonequilibrium states have also been investigated.
Standardization of Thermo-Fluid Modeling in Modelica.Fluid
Energy Technology Data Exchange (ETDEWEB)
Franke, Rudiger; Casella, Francesco; Sielemann, Michael; Proelss, Katrin; Otter, Martin; Wetter, Michael
2009-09-01
This article discusses the Modelica.Fluid library that has been included in the Modelica Standard Library 3.1. Modelica.Fluid provides interfaces and basic components for the device-oriented modeling of onedimensional thermo-fluid flow in networks containing vessels, pipes, fluid machines, valves and fittings. A unique feature of Modelica.Fluid is that the component equations and the media models as well as pressure loss and heat transfer correlations are decoupled from each other. All components are implemented such that they can be used for media from the Modelica.Media library. This means that an incompressible or compressible medium, a single or a multiple substance medium with one or more phases might be used with one and the same model as long as the modeling assumptions made hold. Furthermore, trace substances are supported. Modeling assumptions can be configured globally in an outer System object. This covers in particular the initialization, uni- or bi-directional flow, and dynamic or steady-state formulation of mass, energy, and momentum balance. All assumptions can be locally refined for every component. While Modelica.Fluid contains a reasonable set of component models, the goal of the library is not to provide a comprehensive set of models, but rather to provide interfaces and best practices for the treatment of issues such as connector design and implementation of energy, mass and momentum balances. Applications from various domains are presented.
Sakellaris, P. C. (Inventor)
1977-01-01
Fluid automatically flows to individual dispensing units at predetermined times from a fluid supply and is available only for a predetermined interval of time after which an automatic control causes the fluid to drain from the individual dispensing units. Fluid deprivation continues until the beginning of a new cycle when the fluid is once again automatically made available at the individual dispensing units.
The Quest for Instantaneous Perfection and the Demand for "Push-Button" Administration
Batagiannis, Stella C.
2009-01-01
Educational leaders in the United States are faced with a society seeking instantaneous perfection, immediate and perfect solutions. In education, this leads to a demand for push-button administration and an abandonment of trust in educators' judgment. As exemplified by the No Child Left Behind Act (2002), the search for quick fixes results in…
On the Galois cohomology of unipotent groups and extensions of non-perfect fields
International Nuclear Information System (INIS)
Nguyen Duy Tan; Nguyen Quoc Thang
2006-12-01
In this note we discuss, in the case of unipotent groups over non-perfect fields, an analog of Serre's conjectures for unipotent algebraic group schemes, which relates properties of Galois (or flat) cohomology of unipotent group schemes to finite extensions of non-perfect fields, and Russel's defining equations of one-dimensional unipotent groups. (author)
Construction of Subgame-Perfect Mixed Strategy Equilibria in Repeated Games
Berg, Kimmo; Schoenmakers, Gijsbertus
2017-01-01
This paper examines how to construct subgame-perfect mixed-strategy equilibria in discounted repeated games with perfect monitoring.We introduce a relatively simple class of strategy profiles that are easy to compute and may give rise to a large set of equilibrium payoffs. These sets are called
Some Hints on the Teaching of the Present Perfect to Iranian Students.
Keyvani, M.
1980-01-01
Describes how, through the use of two diagrams, one can teach the English present-perfect to Iranian students. One diagram consists of a time-line divided into "past" and "non-past." The other uses an oval to indicate a time-span including the present. Both facilitate comprehension of present-perfect meaning. (PJM)
10 CFR 611.108 - Perfection of liens and preservation of collateral.
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Perfection of liens and preservation of collateral. 611... of collateral. (a) The Agreement and other documents related thereto shall provide that: (1) DOE and... necessary to perfect and maintain liens, as applicable, on assets which are pledged as collateral for the...
On the perfectness of C^{∞,s}-diffeomorphism groups on a foliated manifold
Jacek Lech
2008-01-01
The notion of \\(C^{r,s}\\) and \\(C^{\\infty,s}\\)-diffeomorphisms is introduced. It is shown that the identity component of the group of leaf preserving \\(C^{\\infty,s}\\)-diffeomorphisms with compact supports is perfect. This result is a modification of the Mather and Epstein perfectness theorem.
Diamagnetic expansions for perfect quantum gases II: Uniform bounds
DEFF Research Database (Denmark)
Briet, Philippe; Cornean, Horia; Louis, Delphine
2008-01-01
Abstract. Consider a charged, perfect quantum gas, in the effective mass approximation, and in the grand-canonical ensemble. Consider a charged, perfect quantum gas, in the effective mass approximation, and in the grand-canonical ensemble. We prove in this paper that the generalized magnetic susc...
Dohn, Anders; Garza-Villarreal, Eduardo A; Heaton, Pamela; Vuust, Peter
2012-01-01
Perfect pitch, also known as absolute pitch (AP), refers to the rare ability to identify or produce a musical tone correctly without the benefit of an external reference. AP is often considered to reflect musical giftedness, but it has also been associated with certain disabilities due to increased prevalence of AP in individuals with sensory and developmental disorders. Here, we determine whether individual autistic traits are present in people with AP. We quantified subclinical levels of autism traits using the Autism-Spectrum Quotient (AQ) in three matched groups of subjects: 16 musicians with AP (APs), 18 musicians without AP (non-APs), and 16 non-musicians. In addition, we measured AP ability by a pitch identification test with sine wave tones and piano tones. We found a significantly higher degree of autism traits in APs than in non-APs and non-musicians, and autism scores were significantly correlated with pitch identification scores (r = .46, p = .003). However, our results showed that APs did not differ from non-APs on diagnostically crucial social and communicative domain scores and their total AQ scores were well below clinical thresholds for autism. Group differences emerged on the imagination and attention switching subscales of the AQ. Thus, whilst these findings do link AP with autism, they also show that AP ability is most strongly associated with personality traits that vary widely within the normal population.
Zmyj, Norbert; Klein-Radukic, Sarah
2015-01-01
During the first months of life, infants switch from a preference for perfect contingent feedback to a preference for less-than-perfect contingent feedback of their own movements. This is an indicator of increasing social interest since others provide less-than-perfect contingent feedback whereas the self provides perfect contingent feedback. We presented 117 6-month-olds with real-time and delayed video feedback of self-performed leg movements and asked parents about difficulties in various socioemotional domains. It was hypothesized that the more infants prefer real-time and therefore perfect contingent feedback over 7 s delayed and therefore perceived noncontingent feedback, the more difficulties parents will report in interaction and communication with their child. Preference for real-time feedback was related to difficulties in interaction, but not to difficulties in communication. Implications of this finding for infants' socioemotional development and health are discussed. © 2015 Michigan Association for Infant Mental Health.
Carrier mobility and crystal perfection of tetracene thin film FET
International Nuclear Information System (INIS)
Moriguchi, N.; Nishikawa, T.; Anezaki, T.; Unno, A.; Tachibana, M.; Kojima, K.
2006-01-01
It is well-known that the carrier mobility of an organic field effect semiconductor (FET) depended on the crystal quality and/or the crystal perfection of the organic thin films [T.W. Kelly, D.V. Muyres, P.F. Baude, T.P. Smith, T.D. Jones, Mater. Res. Soc. Symp. Proc. 771 (2003) L6.5.1; D.J. Gundlach, J.A. Nichols, L. Zhou, T.N. Jackson, Appl. Phys. Lett. 80 (2002) 2925; H.K. Lauk, M. Halik, U. Zschieschang, G. Schmid, W. Radlik, J. Appl. Phys. 92 (2002) 5259; M. Shtein, J. Mapel, J.B. Benziger, S.R. Forrest, Appl. Phys. Lett. 81 (2002) 268; D. Knipp, R.A. Street, A.R. Volkel, Appl. Phys. Lett. 82 (2003) 3907; R. Ruiz, A.C. Mayer, G.G. Malliaras, Appl. Phys. Lett. 85 (2004) 4926; R.W.I. de Boer, M.E. Gershenson, A.F. Morpurgo, V. Podzorov, Phys. Stat. Sol. A 201 (2004) 1031]. To improve the crystal quality of the thin film many efforts were made. One of the important improvements was the surface treatment of the substrate. The tetracene thin film FET (top contact structure) was fabricated using the substrate, which was coated by a spin-coating method with a 0.1% poly α-methylstyrene (AMS) solution. The crystal quality was improved by this treatment so that the carrier mobility was higher than that of non-treatment. The maximum mobility of the AMS-treated sample was obtained to be 0.12 cm 2 /V s
A perfect storm? Welfare, care, gender and generations in Uruguay.
Filgueira, Fernando; Gutiérrez, Magdalena; Papadópulos, Jorge
2011-01-01
This article claims that welfare states modelled on a contributory basis and with a system of entitlements that assumes stable two-parent families, a traditional breadwinner model, full formal employment and a relatively young age structure are profoundly flawed in the context of present-day challenges. While this is true for affluent countries modelled on the Bismarckian type of welfare system, the costs of the status quo are even more devastating in middle-income economies with high levels of inequality. A gendered approach to welfare reform that introduces the political economy and the economy of care and unpaid work is becoming critical to confront what may very well become a perfect storm for the welfare of these nations and their peoples. Through an in-depth study of the Uruguayan case, the authors show how the decoupling of risk and protection has torn asunder the efficacy of welfare devices in the country. An ageing society that has seen a radical transformation of its family and labour market landscapes, Uruguay maintained during the 1980s and 1990s a welfare state that was essentially contributory, elderly and male-oriented, and centred on cash entitlements. This contributed to the infantilization of poverty, increased the vulnerability of women and exacerbated fiscal stress for the system as a whole. Furthermore, because of high levels of income and asset inequality, the redistribution of risk between upper- and lower-income groups presented a deeply regressive pattern. The political economy of care and welfare has begun to change in the last decade or so, bringing about mild reforms in the right direction; but these might prove to be too little and too late.
Fluid Mechanics and Fluid Power (FMFP)
Indian Academy of Sciences (India)
Amitabh Bhattacharya
decades, mainly due to the rapid improvement in computational efficiency, cameras, optics and instrumentation, both computational and experimental techniques have improved significantly, allowing researchers in Fluid Mechanics to build better mechanistic and analytical models for processes involving dynamics of fluids.
Equilibrium and nonequilibrium dynamics of soft sphere fluids.
Ding, Yajun; Mittal, Jeetain
2015-07-14
We use computer simulations to test the freezing-point scaling relationship between equilibrium transport coefficients (self-diffusivity, viscosity) and thermodynamic parameters for soft sphere fluids. The fluid particles interact via the inverse-power potential (IPP), and the particle softness is changed by modifying the exponent of the distance-dependent potential term. In the case of IPP fluids, density and temperature are not independent variables and can be combined to obtain a coupling parameter to define the thermodynamic state of the system. We find that the rescaled coupling parameter, based on its value at the freezing point, can approximately collapse the diffusivity and viscosity data for IPP fluids over a wide range of particle softness. Even though the collapse is far from perfect, the freezing-point scaling relationship provides a convenient and effective way to compare the structure and dynamics of fluid systems with different particle softness. We further show that an alternate scaling relationship based on two-body excess entropy can provide an almost perfect collapse of the diffusivity and viscosity data below the freezing transition. Next, we perform nonequilibrium molecular dynamics simulations to calculate the shear-dependent viscosity and to identify the distinct role of particle softness in underlying structural changes associated with rheological properties. Qualitatively, we find a similar shear-thinning behavior for IPP fluids with different particle softness, though softer particles exhibit stronger shear-thinning tendency. By investigating the distance and angle-dependent pair correlation functions in these systems, we find different structural features in the case of IPP fluids with hard-sphere like and softer particle interactions. Interestingly, shear-thinning in hard-sphere like fluids is accompanied by enhanced translational order, whereas softer fluids exhibit loss of order with shear. Our results provide a systematic evaluation
Wang, J.-K.; Siegal, Y.; Lü, C.; Mazur, E.
1992-07-01
We use self-phase modulation in a single-mode fiber to produce broadband femtosecond laser pulses. Subsequent amplification through two Bethune cells yields high-energy, tunable, pulses synchronized with the output of an amplified colliding-pulse-modelocked (CPM) laser. We routinely obtain tunable 200 μJ pulses of 42 fs (fwhm) duration with a nearly perfect gaussian spatial profile. Although self-phase modulation in a single-mode fiber is widely used in femtosecond laser systems, amplification of a fiber-generated supercontinuum in a Bethune cell amplifier is a new feature which maintains the high-quality spatial profile while providing high gain. This laser system is particularly well suited for high energy dual-wavelength pump=probe experiments and time-resolved four-wave mixing spectroscopy.
Analysis of giant electrorheological fluids.
Seo, Youngwook P; Seo, Yongsok
2013-07-15
The yield stress dependence on electric field strength for giant electrorheological (GER) fluids over the full range of electric fields was examined using Seo's scaling function which incorporated both the polarization and the conductivity models. If a proper scaling was applied to the yield stress data to collapse them onto a single curve, the Seo's scaling function could correctly fit the yield stress behavior of GER suspensions, even at very high electric field strengths. The model predictions were also compared with recently proposed Choi et al.'s model to allow a consideration of the universal framework of ER fluids. Copyright © 2013 Elsevier Inc. All rights reserved.
Fluid Mechanics and Fluid Power (FMFP)
Indian Academy of Sciences (India)
Amitabh Bhattacharya
of renewable energy (e.g., via wind, hydrokinetic generators), creating low-cost healthcare (e.g., via point-of-care medical testing) and improvement of energy efficiency of fluid power systems, depends on improving our understanding of Fluid. Mechanics. Fluids are ubiquitous in both nature and technological applications, ...
Concentration-dependent diffusion instability in reactive miscible fluids.
Bratsun, Dmitry; Kostarev, Konstantin; Mizev, Aleksey; Mosheva, Elena
2015-07-01
We report on chemoconvective pattern formation phenomena observed in a two-layer system of miscible fluids filling a vertical Hele-Shaw cell. We show both experimentally and theoretically that the concentration-dependent diffusion coupled with frontal acid-base neutralization can give rise to the formation of a local unstable zone low in density, resulting in a perfectly regular cell-type convective pattern. The described effect gives an example of yet another powerful mechanism which allows the reaction-diffusion processes to govern the flow of reacting fluids under gravity conditions.
Broadband plasmonic perfect light absorber in the visible spectrum for solar cell applications
Mudachathi, Renilkumar; Tanaka, Takuo
2018-03-01
The coupling of electromagnetic waves with subwavelength metal structures results in the perfect light absorption and has been extensively explored in the recent years for many possible applications like photovoltaics, sensing, photodetectors, emitters and camouflaging systems to name a few. Herein we present the design and fabrication of a broadband plasmonic light absorber using aluminum as functional material for operation in the visible frequency range. The metal structures can be tuned in size to manipulate the plasmonic resonance; thereby light absorption at any desired wavelengths could be realized. Thus the broadband light absorber in the visible spectrum is designed using metal structures of different sizes supporting non-overlapping individual resonances at regular intervals of wavelengths. The metal structures of different sizes are grouped in to a single unit cell and the absorber is fabricated by periodically arranging these unit cells in a square lattice. Light absorption of more than 90% for over a broad wavelength range of 200 nm from 425 nm to 650 nm in the visible spectrum is demonstrated.
SNV-PPILP: refined SNV calling for tumor data using perfect phylogenies and ILP.
van Rens, Karen E; Mäkinen, Veli; Tomescu, Alexandru I
2015-04-01
Recent studies sequenced tumor samples from the same progenitor at different development stages and showed that by taking into account the phylogeny of this development, single-nucleotide variant (SNV) calling can be improved. Accurate SNV calls can better reveal early-stage tumors, identify mechanisms of cancer progression or help in drug targeting. We present SNV-PPILP, a fast and easy to use tool for refining GATK's Unified Genotyper SNV calls, for multiple samples assumed to form a phylogeny. We tested SNV-PPILP on simulated data, with a varying number of samples, SNVs, read coverage and violations of the perfect phylogeny assumption. We always match or improve the accuracy of GATK, with a significant improvement on low read coverage. SNV-PPILP, available at cs.helsinki.fi/gsa/snv-ppilp/, is written in Python and requires the free ILP solver lp_solve. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Yoo, Joseph; Yan, Linda; Hasan, Raza; Somalya, Saana; Nieto, Jose; Siddiqui, Ali A.
2017-01-01
Background and Objectives: There are currently limited data available regarding the safety of endoscopic ultrasound (EUS)-guided drainage of pancreatic fluid collections (PFCs) using the lumen-apposing metal stent without fluoroscopic guidance. This study aims to evaluate clinical outcomes and safety of EUS-guided drainage of PFC using the electrocautery-enhanced lumen-apposing metal stents (EC-LAMSs) without fluoroscopic guidance. Methods: We conducted a retrospective study on patients with symptomatic PFC who underwent EUS-guided drainage using EC-LAMS without fluoroscopy. All patients were followed clinically until resolution of their PFC. Technical success (successful placement of EC-LAMS), number of patients who achieved complete resolution of PFC without additional intervention and adverse events were noted. Results: We evaluated 25 patients, including three with pancreatic pseudocysts and 22 with walled-off necrosis (WON). The etiology of the patient's pancreatitis was gallstones (42%), alcohol (27%), and other causes (31%). The mean cyst size was 82 mm (range, 60–170 mm). The indications for endoscopic drainage were abdominal pain, infected WON, or gastric outlet obstruction. Technical success with placement of the EC-LAMS was achieved in all 25 patients. There were no procedure-related complications. The mean patient follow-up was 7.8 months. PFCs resolved in 24 (96%) patients; the one failure was in a patient with WON. Stent occlusion was seen in one patient. There was a spontaneous migration of one stent into the enteral lumen after resolution of WONs. The EC-LAMS were successfully removed using a snare in all the remaining patients. The median number of endoscopy sessions to achieve PFCs resolution was 2 (range, 2–6). Conclusions: Single-step EUS-guided drainage of PFCs without fluoroscopic guidance using the novel EC-LAMS is a safe and effective endoscopic technique for drainage of PFCs with excellent technical and clinical success rates and no
Andrews, J; Honeybourne, D; Ashby, J; Jevons, G; Fraise, A; Fry, P; Warrington, S; Hawser, S; Wise, R
2007-09-01
A validated microbiological assay was used to measure concentrations of iclaprim (AR-100) in plasma, bronchial mucosa (BM), alveolar macrophages (AM) and epithelial lining fluid (ELF) after a single 1.6 mg/kg intravenous 60 min iv infusion of iclaprim. Male volunteers were randomly allocated to three nominal sampling time intervals 1-2 h (Group A), 3-4 h (Group B) and 5.5-7.0 h (Group C) after the start of the drug infusion. Mean iclaprim concentrations in plasma, BM, AM and ELF, respectively, were for Group A 0.59 mg/L (SD 0.18), 0.51 mg/kg (SD 0.17), 24.51 mg/L (SD 21.22) and 12.61 mg/L (SD 7.33); Group B 0.24 mg/L (SD 0.05), 0.35 mg/kg (SD 0.17), 7.16 mg/L (SD 1.91) and 6.38 mg/L (SD 5.17); and Group C 0.14 mg/L (SD 0.05), no detectable level in BM, 5.28 mg/L (SD 2.30) and 2.66 mg/L (SD 2.08). Iclaprim concentrations in ELF and AM exceeded the MIC(90) for penicillin-susceptible Streptococcus pneumoniae (MIC90 0.06 mg/L), penicillin-intermediate S. pneumoniae (MIC90 2 mg/L), penicillin-resistant S. pneumoniae (MIC90 4 mg/L) for 7, 7 and 4 h, respectively, and Chlamydia pneumoniae (MIC90 0.5 mg/L) for 7 h. Mean iclaprim concentrations in ELF exceeded the MIC90 for Haemophilus influenzae (MIC90 4 mg/L) and Moraxella catarrhalis (MIC90 8 mg/L) for up to 4 and 2 h, respectively; in AM the MIC90 was exceeded for up to 7 h. Furthermore, the MIC90 for methicillin-resistant Staphylococcus aureus of 0.12 mg/L was exceeded at all sites for up to 7 h. These data suggest that iclaprim reaches lung concentrations that should be effective in the treatment of community-acquired pneumonia.
Kovář, Jiří; Slaný, Petr; Stuchlík, Zdeněk; Karas, Vladimír; Trova, Audrey
2017-12-01
We introduce a general transformation leading to an integral form of pressure equations characterizing equilibrium configurations of charged perfect fluid circling in strong gravitational and combined electromagnetic fields. The transformation generalizes our recent analytical treatment applicable to electric or magnetic fields treated separately along with the gravitational one. As an example, we present a particular solution for a fluid circling close to a charged rotating black hole immersed in an asymptotically uniform magnetic field.
High gliding fluid power generation system with fluid component separation and multiple condensers
Mahmoud, Ahmad M; Lee, Jaeseon; Radcliff, Thomas D
2014-10-14
An example power generation system includes a vapor generator, a turbine, a separator and a pump. In the separator, the multiple components of the working fluid are separated from each other and sent to separate condensers. Each of the separate condensers is configured for condensing a single component of the working fluid. Once each of the components condense back into a liquid form they are recombined and exhausted to a pump that in turn drives the working fluid back to the vapor generator.
Implementation of a perfect metamaterial absorber into multi-functional sensor applications
Akgol, O.; Karaaslan, M.; Unal, E.; Sabah, C.
2017-05-01
Perfect metamaterial absorber (MA)-based sensor applications are presented and investigated in the microwave frequency range. It is also experimentally analyzed and tested to verify the behavior of the MA. Suggested perfect MA-based sensor has a simple configuration which introduces flexibility to sense the dielectric properties of a material and the pressure of the medium. The investigated applications include pressure and density sensing. Besides, numerical simulations verify that the suggested sensor achieves good sensing capabilities for both applications. The proposed perfect MA-based sensor variations enable many potential applications in medical or food technologies.
Near-perfect conversion of a propagating plane wave into a surface wave using metasurfaces
Tcvetkova, S. N.; Kwon, D.-H.; Díaz-Rubio, A.; Tretyakov, S. A.
2018-03-01
In this paper theoretical and numerical studies of perfect/nearly perfect conversion of a plane wave into a surface wave are presented. The problem of determining the electromagnetic properties of an inhomogeneous lossless boundary which would fully transform an incident plane wave into a surface wave propagating along the boundary is considered. An approximate field solution which produces a slowly growing surface wave and satisfies the energy conservation law is discussed and numerically demonstrated. The results of the study are of great importance for the future development of such devices as perfect leaky-wave antennas and can potentially lead to many novel applications.
Computing a quasi-perfect equilibrium of a two-player game
DEFF Research Database (Denmark)
Miltersen, Peter Bro; Sørensen, Troels Bjerre
2010-01-01
Refining an algorithm due to Koller, Megiddo and von Stengel, we show how to apply Lemke's algorithm for solving linear complementarity programs to compute a quasi-perfect equilibrium in behavior strategies of a given two-player extensive-form game of perfect recall. A quasi-perfect equilibrium...... of a zero-sum game, we devise variants of the algorithm that rely on linear programming rather than linear complementarity programming and use the simplex algorithm or other algorithms for linear programming rather than Lemke's algorithm. We argue that these latter algorithms are relevant for recent...
The computational complexity of trembling hand perfection and other equilibrium refinements
DEFF Research Database (Denmark)
Hansen, Kristoffer Arnsfelt; Miltersen, Peter Bro; Sørensen, Troels Bjerre
2010-01-01
The king of refinements of Nash equilibrium is trembling hand perfection. We show that it is NP-hard and Sqrt-Sum-hard to decide if a given pure strategy Nash equilibrium of a given three-player game in strategic form with integer payoffs is trembling hand perfect. Analogous results are shown...... for a number of other solution concepts, including proper equilibrium, (the strategy part of) sequential equilibrium, quasi-perfect equilibrium and CURB. The proofs all use a reduction from the problem of comparing the minmax value of a three-player game in strategic form to a given rational number...
Bianchi Type-I cosmological mesonic stiff fluid models in Lyra's ...
Indian Academy of Sciences (India)
Introduction. Based on the cosmological principle, Einstein introduced the cosmological constant into his field equations in order to obtain a static model of the Universe since ... momentum tensor Tij is not conserved in Lyra's geometry. ... are respectively the energy–momentum tensors corresponding to perfect fluid and.
Tilted Bianchi type I dust fluid cosmological model in general relativity
Indian Academy of Sciences (India)
Abstract. In this paper, we have investigated a tilted Bianchi type I cosmological model filled with dust of perfect fluid in general relativity. To get a determinate solution, we have assumed a condition. A. Bn between metric potentials. The physical and geometrical aspects of the model together with singularity in the model are ...
Energy Technology Data Exchange (ETDEWEB)
Yu, Hong; Cui, Jian Ling; Cui, Sheng Jie; Sun, Ying Cal; Cui, Feng Zhen [Dept. of Radiology, The Third Hospital of Hebei Medical University, Hebei Province Biomechanical Key Laborary of Orthopedics, Shijiazhuang, Hebei (China)
2014-12-15
To analyze different fluid-fluid level features between benign and malignant bone tumors on magnetic resonance imaging (MRI). This study was approved by the hospital ethics committee. We retrospectively analyzed 47 patients diagnosed with benign (n = 29) or malignant (n = 18) bone tumors demonstrated by biopsy/surgical resection and who showed the intratumoral fluid-fluid level on pre-surgical MRI. The maximum length of the largest fluid-fluid level and the ratio of the maximum length of the largest fluid-fluid level to the maximum length of a bone tumor in the sagittal plane were investigated for use in distinguishing benign from malignant tumors using the Mann-Whitney U-test and a receiver operating characteristic (ROC) analysis. Fluid-fluid level was categorized by quantity (multiple vs. single fluid-fluid level) and by T1-weighted image signal pattern (high/low, low/high, and undifferentiated), and the findings were compared between the benign and malignant groups using the chi2 test. The ratio of the maximum length of the largest fluid-fluid level to the maximum length of bone tumors in the sagittal plane that allowed statistically significant differentiation between benign and malignant bone tumors had an area under the ROC curve of 0.758 (95% confidence interval, 0.616-0.899). A cutoff value of 41.5% (higher value suggests a benign tumor) had sensitivity of 73% and specificity of 83%. The ratio of the maximum length of the largest fluid-fluid level to the maximum length of a bone tumor in the sagittal plane may be useful to differentiate benign from malignant bone tumors.
International Nuclear Information System (INIS)
Farquhar, N.G.; Schwab, J.A.
1977-01-01
A system of heat exchangers is disclosed for cooling process fluids. The system is particularly applicable to cooling steam generator blowdown fluid in a nuclear plant prior to chemical purification of the fluid in which it minimizes the potential of boiling of the plant cooling water which cools the blowdown fluid
Fluid mechanics in fluids at rest.
Brenner, Howard
2012-07-01
Using readily available experimental thermophoretic particle-velocity data it is shown, contrary to current teachings, that for the case of compressible flows independent dye- and particle-tracer velocity measurements of the local fluid velocity at a point in a flowing fluid do not generally result in the same fluid velocity measure. Rather, tracer-velocity equality holds only for incompressible flows. For compressible fluids, each type of tracer is shown to monitor a fundamentally different fluid velocity, with (i) a dye (or any other such molecular-tagging scheme) measuring the fluid's mass velocity v appearing in the continuity equation and (ii) a small, physicochemically and thermally inert, macroscopic (i.e., non-Brownian), solid particle measuring the fluid's volume velocity v(v). The term "compressibility" as used here includes not only pressure effects on density, but also temperature effects thereon. (For example, owing to a liquid's generally nonzero isobaric coefficient of thermal expansion, nonisothermal liquid flows are to be regarded as compressible despite the general perception of liquids as being incompressible.) Recognition of the fact that two independent fluid velocities, mass- and volume-based, are formally required to model continuum fluid behavior impacts on the foundations of contemporary (monovelocity) fluid mechanics. Included therein are the Navier-Stokes-Fourier equations, which are now seen to apply only to incompressible fluids (a fact well-known, empirically, to experimental gas kineticists). The findings of a difference in tracer velocities heralds the introduction into fluid mechanics of a general bipartite theory of fluid mechanics, bivelocity hydrodynamics [Brenner, Int. J. Eng. Sci. 54, 67 (2012)], differing from conventional hydrodynamics in situations entailing compressible flows and reducing to conventional hydrodynamics when the flow is incompressible, while being applicable to both liquids and gases.
Videotapes and Movies on Fluid Dynamics and Fluid Machines
Carr, Bobbie; Young, Virginia E.
1996-01-01
Chapter 17 of Handbook of Fluid Dynamics and Fluid Machinery: Experimental and Computational Fluid Dynamics, Volume 11. A list of videorecordings and 16mm motion pictures about Fluid Dynamics and Fluid Machines.
Huang, Tsung-Yu; Tseng, Ching-Wei; Yeh, Ting-Tso; Yeh, Tien-Tien; Luo, Chih-Wei; Akalin, Tahsin; Yen, Ta-Jen
2015-12-01
We design and demonstrate a flexible, ultrathin and double-sided metamaterial perfect absorber (MPA) at 2.39 terahertz (THz), which enables excellent light absorbance under incidences from two opposite sides. Herein, the MPA is fabricated on a λ0/10.1-thick flexible polyethylene terephthalate substrate of εr = 2.75 × (1 + 0.12i), sandwiched by two identical randomized metallic patterns by our stochastic design process. Such an MPA provides tailored permittivity and permeability to approach the impedance of free space for minimizing reflectance and a great imaginary part of the refractive index for reducing transmittance and finally results in high absorbance. Both experimental measurement and numerical simulation are in a good agreement. The flexible, ultrathin and double-sided MPA significantly differs from traditional quarter-wavelength absorbers and other single-sided perfect absorbers, paving a way toward practical THz applications in thermal emission, sensing and imaging, communications, stealth technique, and even energy harvesting.
Non-Ideal Compressible Fluid Dynamics: A Challenge for Theory
Kluwick, A.
2017-03-01
The possibility that compression as well as rarefaction shocks may form in single phase vapours was envisaged first by Bethe (1942). However calculations based on the Van der Waals equation of state indicated that the latter type of shock is possible only if the specific heat at constant volume cv divided by the universal gas constant R is larger than about 17.5 which he considered too large to be satisfied by real fluids. This conclusion was contested by Thompson (1971) who showed that the type of shock capable of forming in arbitrary fluids is determined by the sign of the thermodynamic quantity to which he referred to as fundamental derivative of gas dynamics. Here v, p, s and c denote the specific volume, the pressure, the entropy and the speed of sound. Thompson and co-workers also showed that the required condition for the existence of rarefaction shocks, that Γ may take on negative values, is indeed satisfied for a number of hydrocarbon and fluorocarbon vapours. This finding spawned a burst of theoretical studies elaborating on the unusual and often counterintuitive behaviour of shocks with rarefaction shocks present. These produced both results of theoretical character but also results suggesting the practical importance of Non-Ideal Compressible Fluid Dynamics in general. The present paper addresses some of the challenges encountered in connection with the theoretical treatment of the associated flow behaviour. Weakly nonlinear acoustic waves of finite amplitude serve as a starting point. Here mixed rather than strictly positive nonlinearity generates a wealth of phenomena not possible in perfect gases. Examples of steady flows where these non-classical effects play a decisive role (and which may be useful also for future experimental work) are quasi one-dimensional nozzle flows and transonic two-dimensional flows past corners. The study of viscous effects concentrates on laminar flows of boundary layer type. Here non-classical phenomena are caused by the
Op zoek naar de perfecte match in vrijwilligersland
Directory of Open Access Journals (Sweden)
Els van Gilst
2015-06-01
Full Text Available Finding the perfect volunteer matchOrganizations that are (partially staffed by volunteers in the Netherlands are experiencing a growing need for volunteers. This relates to stricter laws and regulations, the changing deployment of volunteers and reforms in the care system (Bekkers & Boezeman, 2009; Devilee, 2005; MOVISIE, 2014; Rutte & Samsom, 2012.Volunteer centres can form part of the solution to the growing demand for volunteers. There are about 240 volunteer centres in the Netherlands. They promote volunteering and provide information, training, advice and support in this area. In addition, they play an active role as brokers in bringing together supply (volunteers and demand (volunteer-involving organizations. This intermediary role is often the core business of volunteer centres (Ploegmakers, Merkus & Terpstra, 2011; Terpstra, Ploegmakers & van Laar, 2008.The success of volunteer brokerage remains relatively limited, however. Offline brokerage (at the office of the volunteer centre is in about half of the cases successful. This falls to 37 percent for online brokerage. Volunteer brokerage is classed as successful when a volunteer is placed at an organization for a short-term project or a period of three months (Ploegmakers et al., 2011.Literature research (Van Gilst, Schalk, Garretsen & Van de Goor, 2011 was carried out to determine how the results of volunteer brokerage can be improved. The motivation and feelings of pride and respect on the part of a volunteer are found to be important for the level of satisfaction and willingness to keep on volunteering in both the short term and the long term.This article examines how success factors such as motivation, pride and respect can be incorporated into the daily brokerage practices of volunteer centres. Two research questions are central to this article:1. How does volunteer brokerage occur in practice?2. When and how can success factors for matching volunteers and organizations (partially
Advanced working fluids: Thermodynamic properties
Lee, Lloyd L.; Gering, Kevin L.
1990-10-01
Electrolytes are used as working fluids in gas fired heat pump chiller engine cycles. To find out which molecular parameters of the electrolytes impact on cycle performance, a molecular theory is developed for calculating solution properties, enthalpies, vapor-liquid equilibria, and engine cycle performance. Aqueous and ammoniac single and mixed salt solutions in single and multisolvent systems are investigated. An accurate correlation is developed to evaluate properties for concentrated electrolyte solutions. Sensitivity analysis is used to determine the impact of molecular parameters on the thermodynamic properties and cycle performance. The preferred electrolytes are of 1-1 valence type, small ion size, high molecular weight, and in strongly colligative cosolvent. The operating windows are determined for a number of absorption fluids of industrial importance.
Topology of helical fluid flow
DEFF Research Database (Denmark)
Andersen, Morten; Brøns, Morten
2014-01-01
Phys. Fluids 25, 1949–1952) contains an infinite sum of modified Bessel functions. Using the approach by Okulov (Okulov, V. L. 1995 Russ. J. Eng. Thermophys. 5, 63–75) we obtain a closed-form approximation which is considerably easier to analyse. Critical points of the stream function can be found from...... function for the topology of the streamline pattern in incompressible flows. On this basis, we perform a comprehensive study of the topology of the flow field generated by a helical vortex filament in an ideal fluid. The classical expression for the stream function obtained by Hardin (Hardin, J. C. 1982...... the zeroes of a single real function of one variable, and we show that three different flow topologies can occur, depending on a single dimensionless parameter. By including the self-induced velocity on the vortex filament by a localised induction approximation, the stream function is slightly modified...
De Matteis, Giovanni; Martina, Luigi
2012-03-01
A system of partial differential equations, describing one-dimensional nematic liquid crystals is studied by Lie group analysis. These equations are the Euler-Lagrange equations associated with a free energy functional that depends on the mass density and the gradient of the mass density. The group analysis is an algorithmic approach that allows us to show all the point symmetries of the system, to determine all possible symmetry reductions and, finally, to obtain invariant solutions in the form of travelling waves. The Hamiltonian formulation of the dynamical equations is also considered and the conservation laws found by exploiting the local symmetries.
Gysel, Rob; Gusfield, Dan
2011-01-01
The multistate perfect phylogeny problem is a classic problem in computational biology. When no perfect phylogeny exists, it is of interest to find a set of characters to remove in order to obtain a perfect phylogeny in the remaining data. This is known as the character removal problem. We show how to use chordal graphs and triangulations to solve the character removal problem for an arbitrary number of states, which was previously unsolved. We outline a preprocessing technique that speeds up the computation of the minimal separators of a graph. Minimal separators are used in our solution to the missing data character removal problem and to Gusfield's solution of the perfect phylogeny problem with missing data.
Ministers have the power to avert this 'perfect storm' - and strike action.
2017-08-02
Nursing is facing a 'perfect storm', according to the RCN. Rising vacancies, shrinking nurse numbers, increasing pressure of work, falling pay - and that's before staff numbers feel the full impact of Brexit.
A hybrid of monopoly and perfect competition model for hi-tech products
Yang, P. C.; Wee, H. M.; Pai, S.; Yang, H. J.; Wee, P. K. P.
2010-11-01
For Hi-tech products, the demand rate, the component cost as well as the selling price usually decline significantly with time. In the case of perfect competition, shortages usually result in lost sales; while in a monopoly, shortages will be completely backordered. However, neither perfect competition nor monopoly exists. Therefore, there is a need to develop a replenishment model considering a hybrid of perfect competition and monopoly when the cost, price and demand are decreasing simultaneously. A numerical example and sensitivity analysis are carried out to illustrate this model. The results show that a higher decline-rate in the component cost leads to a smaller service level and a larger replenishment interval. When the component cost decline rate increases and the selling price decline rate decreases simultaneously, the replenishment interval decreases. In perfect competition it is better to have a high service level, while for the case with monopoly, keeping a low service level is better due to complete backordering.
Femtosecond dynamics of a spaser and unidirectional emission from a perfectly spherical nanoparticle
Gongora, J. S. Totero
2015-01-01
We investigate the femtosecond dynamics of the spaser emission by combining ab-initio simulations and thermodynamic analysis. Interestingly, the emission is characterized by rotational evolution, opening to the generation of unidirectional emission from perfectly spherical nanoparticles. © OSA 2015.
Analysis of experience of feet functions perfection in rhythmic gymnastic exercises
Nesterova T.V.; Makarova O.V.
2009-01-01
Trainers and gymnasts take the problem of the special preparation feet and developments of method of its perfection to the number of the actual. The results of the pedagogical testing are shown that basic (basic, pushed, amortisation) and specific (aesthetic, manipulation, integral) functions feet have a different degree of display. They will be realized in exercises on all of the stages of long-term preparation of sportswomen. Most dynamic perfection of functions feet gymnasts take place on ...
Diffraction of love waves by two staggered perfectly weak half-planes
International Nuclear Information System (INIS)
Asghar, S.; Zaman, F.D.; Sajida Asghar
1989-01-01
Love wave travelling in a layer of uniform thickness overlying a half-space is assumed to be incident on two parallel but staggered perfectly weak half-planes lying in the upper layer. The diffracted fields is calculated using the modified Wiener-Hopf technique and contour integration method. The diffracted waves satisfy the dispersion relations appropriate to different regions formed by the perfectly weak half-planes
Directory of Open Access Journals (Sweden)
E. V. Buloichyk
2014-01-01
Full Text Available Technical perfection improvement of microprocessor current protection of distribution networks lines is provided by introduction of asymmetrical fault mode determination and fault location functions in the algorithm of its functioning. As a result of computing experiment the basic indices of the technical perfection of current protection have been obtained in the paper. The paper proves high efficiency of the proposed methods that ensure selective and proper operation in the different modes of the controlled line.
The aorist and the perfect of the Old Indian causatives in the light of natural morphosyntax
Directory of Open Access Journals (Sweden)
Varja Cvetko-Orešnik
2006-12-01
Full Text Available The Old Indian causative conjugation features a reduplicated aorist and a peri phrastic perfect. Within Natural Syntax, an attempt is made at predicting this state of affairs . Morphologically, the causative conjugation, the reduplicated aorist , and the periphrastic perfect are the most complicated structures within the verb system. The rules of alignment valid in Natural Syntax therefore predict the existing pairing of the two tenses within the causative conjugation.
Effects of fluid dynamics on cleaning efficacy of supercritical fluids
Energy Technology Data Exchange (ETDEWEB)
Phelps, M.R.; Willcox, W.A.; Silva, L.J.; Butner, R.S.
1993-03-01
Pacific Northwest Laboratory (PNL) and Boeing Aerospace Company are developing a process to clean metal parts using a supercritical solvent. This work is part of an effort to address issues inhibiting the rapid commercialization of Supercritical Fluid Parts Cleaning (SFPC). PNL assembled a SFPC test stand to observe the relationship between the fluid dynamics of the system and the mass transfer of a contaminant from the surface of a contaminated metal coupon into the bulk fluid. The bench-scale test stand consists of a Berty'' autoclave modified for these tests and supporting hardware to achieve supercritical fluids parts cleaning. Three separate sets of tests were conducted using supercritical carbon dioxide. For the first two tests, a single stainless steel coupon was cleaned with organic solvents to remove surface residue, doped with a single contaminant, and then cleaned in the SFPC test stand. Contaminants studied were Dow Corning 200 fluid (dimethylpolysiloxane) and Castle/Sybron X-448 High-temperature Oil (a polybutane/mineral oil mixture). A set of 5-minute cleaning runs was conducted for each dopant at various autoclave impeller speeds. Test results from the first two sets of experiments indicate that precision cleaning for difficult-to-remove contaminants can be dramatically improved by introducing and increasing turbulence within the system. Metal coupons that had been previously doped with aircraft oil were used in a third set of tests. The coupons were placed in the SFPC test stand and subjected to different temperatures, pressures, and run times at a constant impeller speed. The cleanliness of each part was measured by Optically Stimulated Electron Emission. The third set of tests show that levels of cleanliness attained with supercritical carbon dioxide compare favorably with solvent and aqueous cleaning levels.
Effects of fluid dynamics on cleaning efficacy of supercritical fluids
Energy Technology Data Exchange (ETDEWEB)
Phelps, M.R.; Willcox, W.A.; Silva, L.J.; Butner, R.S.
1993-03-01
Pacific Northwest Laboratory (PNL) and Boeing Aerospace Company are developing a process to clean metal parts using a supercritical solvent. This work is part of an effort to address issues inhibiting the rapid commercialization of Supercritical Fluid Parts Cleaning (SFPC). PNL assembled a SFPC test stand to observe the relationship between the fluid dynamics of the system and the mass transfer of a contaminant from the surface of a contaminated metal coupon into the bulk fluid. The bench-scale test stand consists of a ``Berty`` autoclave modified for these tests and supporting hardware to achieve supercritical fluids parts cleaning. Three separate sets of tests were conducted using supercritical carbon dioxide. For the first two tests, a single stainless steel coupon was cleaned with organic solvents to remove surface residue, doped with a single contaminant, and then cleaned in the SFPC test stand. Contaminants studied were Dow Corning 200 fluid (dimethylpolysiloxane) and Castle/Sybron X-448 High-temperature Oil (a polybutane/mineral oil mixture). A set of 5-minute cleaning runs was conducted for each dopant at various autoclave impeller speeds. Test results from the first two sets of experiments indicate that precision cleaning for difficult-to-remove contaminants can be dramatically improved by introducing and increasing turbulence within the system. Metal coupons that had been previously doped with aircraft oil were used in a third set of tests. The coupons were placed in the SFPC test stand and subjected to different temperatures, pressures, and run times at a constant impeller speed. The cleanliness of each part was measured by Optically Stimulated Electron Emission. The third set of tests show that levels of cleanliness attained with supercritical carbon dioxide compare favorably with solvent and aqueous cleaning levels.
DEFF Research Database (Denmark)
Borgbo, T; Jeppesen, J V; Lindgren, I
2015-01-01
The most pronounced effects of FSH signalling are potentially displayed in the follicle fluid, which acts as a reservoir for FSH-induced granulosa cell (GC) secreted hormones. This study investigates the effects of two common polymorphisms of FSHR, FSHR 307 (rs6165) and FSHR 680 (rs6166...... small antral follicles collected under physiological FSH conditions....
An efficient closed-form design method for nearly perfect reconstruction of non-uniform filter bank.
Kumar, A; Pooja, R; Singh, G K
2016-03-01
In this paper, an efficient closed form method for the design of multi-channel nearly perfect reconstruction of non-uniform filter bank with the prescribed stopband attenuation and channel overlapping is presented. In this method, the design problem of multi-channel non-uniform filter bank (NUFB) is considered as the design of a prototype filter whose magnitude response at quadrature frequency is 0.707, which is exploited for finding the optimum passband edge frequency through empirical formula instead of using single or multivariable optimization technique. Two main attributes used in assessing the performance of filter bank are peak reconstruction error (PRE) and computational time (CPU time). As compared to existing methods, this method is very simple and easy to implement for NUFBs. To implement this algorithm, a Matlab program has been developed, and several examples are presented to illustrate the performance of proposed method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
FOREWORD Fluid Mechanics and Fluid Power (FMFP)
Indian Academy of Sciences (India)
This section of the Special Issue carries selected articles from the Fluid Mechanics and Fluid. Power Conference held during 12–14 December 2013 at the National Institute of Technology,. Hamirpur (HP). The section includes three review articles and nine original research articles. These were selected on the basis of their ...
On the Contribution of Slovenian Linguistics to the History of the Ancient Greek Perfect
Directory of Open Access Journals (Sweden)
Jerneja Kavčič
2010-12-01
Full Text Available An important contribution to the history of the Ancient Greek perfect is the study of Erika Mihevc-Gabrovec, The Disappearance of the Perfect in Late Greek (La disparition du parfait dans le grec de la basse époque. In terms of theory and content, her study continues the work of Pierre Chantraine, but somewhat diverges from her predecessor’s views on the issue of the merger between the aorist and the perfect, identifying examples of the use of the perfect even in an – according to Pierre Chantraine – relatively late period. Some years after the publication of Erika Mihevc-Gabrovec’s book, the question of when the aorist and the perfect may have merged was raised again, to be addressed by McKay in a number of articles. Today, the views on the subject are strongly divided. As argued by the author of this paper, one of the setbacks in examining the merger between the aorist and the perfect concerns the methodology, since researchers have tended to rely exclusively on their sense of language. A possible new approach is offered in the framework of the Slovenian theory of Natural Syntax, which has from the start paid considerable attention to English sentences of the I believe her to be intelligent type. The paper describes similar sentences in New Testament Greek, terming them “sentences of the λέγουσινἀνάστασινμὴεἶναι type”. In New Testament Greek, they display a tendency to use the present infinitive of stative verbs; relatively frequent is also the perfect infinitive (of non-stative verbs, while, as already noted in other studies, these sentences – at least in New Testament Greek – avoid the aorist infinitive. Such sentences thus bear witness to the fact that the aorist and the perfect were not fully interchangeable in New Testament Greek; the status of the aorist and perfect infinitives in sentences of the λέγουσινἀνάστασινμὴεἶναι type should also be taken into
Phase space density representations in fluid dynamics
International Nuclear Information System (INIS)
Ramshaw, J.D.
1989-01-01
Phase space density representations of inviscid fluid dynamics were recently discussed by Abarbanel and Rouhi. Here it is shown that such representations may be simply derived and interpreted by means of the Liouville equation corresponding to the dynamical system of ordinary differential equations that describes fluid particle trajectories. The Hamiltonian and Poisson bracket for the phase space density then emerge as immediate consequences of the corresponding structure of the dynamics. For barotropic fluids, this approach leads by direct construction to the formulation presented by Abarbanel and Rouhi. Extensions of this formulation to inhomogeneous incompressible fluids and to fluids in which the state equation involves an additional transported scalar variable are constructed by augmenting the single-particle dynamics and phase space to include the relevant additional variable
Prevalence, extension and characteristics of fluid-fluid levels in bone and soft tissue tumors
Energy Technology Data Exchange (ETDEWEB)
Dyck, P. van; Venstermans, C.; Gielen, J.; Parizel, P.M. [University Hospital Antwerp, Department of Radiology, Edegem (Belgium); Vanhoenacker, F.M. [University Hospital Antwerp, Department of Radiology, Edegem (Belgium); AZ St-Maarten, Department of Radiology, Duffel/Mechelen (Belgium); Vogel, J. [Leiden University Medical Centre, Department of Orthopedics, Leiden (Netherlands); Kroon, H.M.; Bloem, J.L. [Leiden University Medical Centre, Department of Radiology, Leiden (Netherlands); Schepper, A.M.A. de [University Hospital Antwerp, Department of Radiology, Edegem (Belgium); Leiden University Medical Centre, Department of Radiology, Leiden (Netherlands)
2006-12-15
The purpose of this study was to determine the prevalence, extension and signal characteristics of fluid-fluid levels in a large series of 700 bone and 700 soft tissue tumors. Out of a multi-institutional database, MRI of 700 consecutive patients with a bone tumor and MRI of 700 consecutive patients with a soft tissue neoplasm were retrospectively reviewed for the presence of fluid-fluid levels. Extension (single, multiple and proportion of the lesion occupied by fluid-fluid levels) and signal characteristics on magnetic resonance imaging of fluid-fluid levels were determined. In all patients, pathologic correlation was available. Of 700 patients with a bone tumor, 19 (10 male and 9 female; mean age, 29 years) presented with a fluid-fluid level (prevalence 2.7%). Multiple fluid-fluid levels occupying at least one half of the total volume of the lesion were found in the majority of patients. Diagnoses included aneurysmal bone cyst (ten cases), fibrous dysplasia (two cases), osteoblastoma (one case), simple bone cyst (one case), telangiectatic osteosarcoma (one case), ''brown tumor'' (one case), chondroblastoma (one case) and giant cell tumor (two cases). Of 700 patients with a soft tissue tumor, 20 (9 males and 11 females; mean age, 34 years) presented with a fluid-fluid level (prevalence 2.9%). Multiple fluid-fluid levels occupying at least one half of the total volume of the lesion were found in the majority of patients. Diagnoses included cavernous hemangioma (12 cases), synovial sarcoma (3 cases), angiosarcoma (1 case), aneurysmal bone cyst of soft tissue (1 case), myxofibrosarcoma (1 case) and high-grade sarcoma ''not otherwise specified'' (2 cases). In our series, the largest reported in the literature to the best of our knowledge, the presence of fluid-fluid levels is a rare finding with a prevalence of 2.7 and 2.9% in bone and soft tissue tumors, respectively. Fluid-fluid levels remain a non-specific finding and can
Prevalence, extension and characteristics of fluid-fluid levels in bone and soft tissue tumors
International Nuclear Information System (INIS)
Dyck, P. van; Venstermans, C.; Gielen, J.; Parizel, P.M.; Vanhoenacker, F.M.; Vogel, J.; Kroon, H.M.; Bloem, J.L.; Schepper, A.M.A. de
2006-01-01
The purpose of this study was to determine the prevalence, extension and signal characteristics of fluid-fluid levels in a large series of 700 bone and 700 soft tissue tumors. Out of a multi-institutional database, MRI of 700 consecutive patients with a bone tumor and MRI of 700 consecutive patients with a soft tissue neoplasm were retrospectively reviewed for the presence of fluid-fluid levels. Extension (single, multiple and proportion of the lesion occupied by fluid-fluid levels) and signal characteristics on magnetic resonance imaging of fluid-fluid levels were determined. In all patients, pathologic correlation was available. Of 700 patients with a bone tumor, 19 (10 male and 9 female; mean age, 29 years) presented with a fluid-fluid level (prevalence 2.7%). Multiple fluid-fluid levels occupying at least one half of the total volume of the lesion were found in the majority of patients. Diagnoses included aneurysmal bone cyst (ten cases), fibrous dysplasia (two cases), osteoblastoma (one case), simple bone cyst (one case), telangiectatic osteosarcoma (one case), ''brown tumor'' (one case), chondroblastoma (one case) and giant cell tumor (two cases). Of 700 patients with a soft tissue tumor, 20 (9 males and 11 females; mean age, 34 years) presented with a fluid-fluid level (prevalence 2.9%). Multiple fluid-fluid levels occupying at least one half of the total volume of the lesion were found in the majority of patients. Diagnoses included cavernous hemangioma (12 cases), synovial sarcoma (3 cases), angiosarcoma (1 case), aneurysmal bone cyst of soft tissue (1 case), myxofibrosarcoma (1 case) and high-grade sarcoma ''not otherwise specified'' (2 cases). In our series, the largest reported in the literature to the best of our knowledge, the presence of fluid-fluid levels is a rare finding with a prevalence of 2.7 and 2.9% in bone and soft tissue tumors, respectively. Fluid-fluid levels remain a non-specific finding and can occur in a wide range of bone and soft
Van Dam, Jeremy Daniel; Turnquist, Norman Arnold; Raminosoa, Tsarafidy; Shah, Manoj Ramprasad; Shen, Xiaochun
2015-09-29
An electric machine is presented. The electric machine includes a hollow rotor; and a stator disposed within the hollow rotor, the stator defining a flow channel. The hollow rotor includes a first end portion defining a fluid inlet, a second end portion defining a fluid outlet; the fluid inlet, the fluid outlet, and the flow channel of the stator being configured to allow passage of a fluid from the fluid inlet to the fluid outlet via the flow channel; and wherein the hollow rotor is characterized by a largest cross-sectional area of hollow rotor, and wherein the flow channel is characterized by a smallest cross-sectional area of the flow channel, wherein the smallest cross-sectional area of the flow channel is at least about 25% of the largest cross-sectional area of the hollow rotor. An electric fluid pump and a power generation system are also presented.
A hydraulic brake fluid consisting of diethylene glycol , monoethyl ether of diethylene glycol , and castor oil has been improved as described in the patent by adding the fluid tributyl ether of orthophosphoric acid.
Shinbrot, Marvin
2012-01-01
Readable and user-friendly, this high-level introduction explores the derivation of the equations of fluid motion from statistical mechanics, classical theory, and a portion of the modern mathematical theory of viscous, incompressible fluids. 1973 edition.
Gram stain of pleural fluid ... mixing it with a violet stain (called a Gram stain). A laboratory specialist uses a microscope to ... reveals an abnormal collection of pleural fluid. The Gram stain can help identify the bacteria that might ...
International Nuclear Information System (INIS)
Myeong, Hyeon Guk
1999-06-01
This book deals with computational fluid dynamics with basic and history of numerical fluid dynamics, introduction of finite volume method using one-dimensional heat conduction equation, solution of two-dimensional heat conduction equation, solution of Navier-Stokes equation, fluid with heat transport, turbulent flow and turbulent model, Navier-Stokes solution by generalized coordinate system such as coordinate conversion, conversion of basic equation, program and example of calculation, application of abnormal problem and high speed solution of numerical fluid dynamics.
Chasing Perfection and Catching Excellence in Graduate Medical Education.
Andolsek, Kathryn M
2015-09-01
The author reflects on the chapter titled "Preserving Excellence in Residency Training and Medical Care" in Dr. Kenneth Ludmerer's book Let Me Heal: The Opportunity to Preserve Excellence in American Medicine. Rather than assuming that the status quo represents excellence, however, the author asserts that we must make an informed judgment regarding the quality of graduate medical education (GME) by applying an evidence-based approach, carefully measuring performance against specific criteria. But what are the right criteria to judge excellence in GME? The author posits that the first criterion for excellence is the foundational concept identified by the Josiah Macy Jr. Foundation, that of accountability to the public. The author argues that for GME to be truly excellent it must produce a workforce "of sufficient size, specialty mix, and skill" needed to serve the public good. For GME to be truly excellent it must produce the right composition (reflecting the population it serves), use the right pedagogy, and be embedded within the right clinical learning environment. Implementation of competency-based education must be bolder and accelerated. The process of culling out service from education in GME must be more honest, not because all service cannot in some ways be educational but because it is simply too expensive to squander a single minute of time in training. Finally, the epidemic of burnout must be addressed urgently and innovatively.
Perfect sound insulation property of reclaimed waste tire rubber
Ubaidillah, Harjana, Yahya, Iwan; Kristiani, Restu; Muqowi, Eki; Mazlan, Saiful Amri
2016-03-01
This article reports an experimental investigation of sound insulation and absorption performance of a materials made of reclaimed ground tire rubber which is known as un-recyclable thermoset. The bulk waste tire is processed using single step recycling methods namely high-pressure high-temperature sintering (HPHTS). The bulk waste tire is simply placed into a mold and then a pressure load of 3 tons and a heating temperature of 200°C are applied to the mold. The HPHTS conducted for an hour and then it is cooled in room temperature. The resulted product is then evaluated the acoustical properties namely sound transmission loss (STL) and sound absorption coefficient using B&K Tube Kit Type 4206-T based on ISO 10534-2, ASTM E1050 and ASTM E2611. The sound absorption coefficient is found about 0.04 until 0.08 while STL value ranges between 50 to 60 dB. The sound absorption values are found to be very low (<0.1), while the average STL is higher than other elastomeric matrix found in previous work. The reclaimed tire rubber through HPHTS technique gives good soundproof characteristic.
Fluid dynamic transient analysis
International Nuclear Information System (INIS)
Vilhena Reigosa, R. de
1992-01-01
This paper describes the methodology adopted at NUCLEN for the fluid dynamic analyses for ANGRA 2. The fluid dynamic analysis allows, through computer codes to simulate and quantify the loads resulting from fluid dynamic transients caused by postulated ruptures or operational transients, in the piping of the safety systems and of the important operational systems. (author)
Beall, M. H.; van den Wijngaard, J. P. H. M.; van Gemert, M. J. C.; Ross, M. G.
2007-01-01
Water arrives in the mammalian gestation from the maternal circulation across the placenta. It then circulates between the fetal water compartments, including the fetal body compartments, the placenta and the amniotic fluid. Amniotic fluid is created by the flow of fluid from the fetal lung and
Indian Academy of Sciences (India)
BOOK I REVIEW. Fundamental Fluid. Mechanics. Good Text Book Material. V H Arakeri. Fluid Mechanics for Engineers. P N Chatterjee. MacMillan India Limited. Vol. 1, pp. 367. RS.143. Vo1.2, pp.306. RS.130. Fluid Mechanics for Engineers in two vol- umes by P N Chatterjee contains standard material for a first level ...
Effective high-order solver with thermally perfect gas model for hypersonic heating prediction
International Nuclear Information System (INIS)
Jiang, Zhenhua; Yan, Chao; Yu, Jian; Qu, Feng; Ma, Libin
2016-01-01
Highlights: • Design proper numerical flux for thermally perfect gas. • Line-implicit LUSGS enhances efficiency without extra memory consumption. • Develop unified framework for both second-order MUSCL and fifth-order WENO. • The designed gas model can be applied to much wider temperature range. - Abstract: Effective high-order solver based on the model of thermally perfect gas has been developed for hypersonic heat transfer computation. The technique of polynomial curve fit coupling to thermodynamics equation is suggested to establish the current model and particular attention has been paid to the design of proper numerical flux for thermally perfect gas. We present procedures that unify five-order WENO (Weighted Essentially Non-Oscillatory) scheme in the existing second-order finite volume framework and a line-implicit method that improves the computational efficiency without increasing memory consumption. A variety of hypersonic viscous flows are performed to examine the capability of the resulted high order thermally perfect gas solver. Numerical results demonstrate its superior performance compared to low-order calorically perfect gas method and indicate its potential application to hypersonic heating predictions for real-life problem.
Verstuyf, Joke; Van Petegem, Stijn; Vansteenkiste, Maarten; Soenens, Bart; Boone, Liesbet
2014-02-01
Adolescents are exposed to images depicting the thin or muscular ideal almost on a daily basis. When the body perfect ideal is adopted, adolescents are at increased risk for developing unhealthy and disordered eating behaviors. The aim of the current 3-wave longitudinal study among adolescents (N = 418; 54% girls) was to investigate whether different styles of identity exploration (i.e., information-oriented, normative, and diffuse-avoidant) are associated differentially with changes in adoption of the body perfect ideal, which, in turn, would relate to changes in appearance-focused and health-focused eating regulation. Results indicated that the information-oriented style predicted decreases and the normative style predicted increases in adoption of the body perfect ideal. In turn, adoption of the body perfect ideal predicted significant increases in appearance-focused eating regulation but not in health-focused eating regulation. A diffuse-avoidant style was unrelated to changes in adoption of the body perfect, yet directly predicted decreases in health-focused eating regulation. Theoretical and clinical implications of these findings are discussed.
The Perfect Glass Paradigm: Disordered Hyperuniform Glasses Down to Absolute Zero.
Zhang, G; Stillinger, F H; Torquato, S
2016-11-28
Rapid cooling of liquids below a certain temperature range can result in a transition to glassy states. The traditional understanding of glasses includes their thermodynamic metastability with respect to crystals. However, here we present specific examples of interactions that eliminate the possibilities of crystalline and quasicrystalline phases, while creating mechanically stable amorphous glasses down to absolute zero temperature. We show that this can be accomplished by introducing a new ideal state of matter called a "perfect glass". A perfect glass represents a soft-interaction analog of the maximally random jammed (MRJ) packings of hard particles. These latter states can be regarded as the epitome of a glass since they are out of equilibrium, maximally disordered, hyperuniform, mechanically rigid with infinite bulk and shear moduli, and can never crystallize due to configuration-space trapping. Our model perfect glass utilizes two-, three-, and four-body soft interactions while simultaneously retaining the salient attributes of the MRJ state. These models constitute a theoretical proof of concept for perfect glasses and broaden our fundamental understanding of glass physics. A novel feature of equilibrium systems of identical particles interacting with the perfect-glass potential at positive temperature is that they have a non-relativistic speed of sound that is infinite.
Perfect Lighting for Facial Photography in Aesthetic Surgery: Ring Light.
Dölen, Utku Can; Çınar, Selçuk
2016-04-01
Photography is indispensable for plastic surgery. On-camera flashes can result in bleached out detail and colour. This is why most of the plastic surgery clinics prefer studio lighting similar to professional photographers'. In this article, we want to share a simple alternative to studio lighting that does not need extra space: Ring light. We took five different photographs of the same person with five different camera and lighting settings: Smartphone and ring light; point and shoot camera and on-camera flash; point and shoot camera and studio lighting; digital single-lens reflex (DLSR) camera and studio lighting; DSLR and ring light. Then, those photographs were assessed objectively with an online survey of five questions answered by three distinct populations: plastic surgeons (n: 28), professional portrait photographers (n: 24) and patients (n: 22) who had facial aesthetic procedures. Compared to the on-camera flash, studio lighting better showed the wrinkles of the subject. The ring light facilitated the perception of the wrinkles by providing homogenous soft light in a circular shape rather than bursting flashes. The combination of a DSLR camera and ring light gave the oldest looking subject according to 64 % of responders. The DSLR camera and the studio lighting demonstrated the youngest looking subject according to 70 % of the responders. The majority of the responders (78 %) chose the combination of DSLR camera and ring light that exhibited the wrinkles the most. We suggest using a ring light to obtain well-lit photographs without loss of detail, with any type of cameras. However, smartphones must be avoided if standard pictures are desired. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.
Michell, S J
2013-01-01
Fluid and Particle Mechanics provides information pertinent to hydraulics or fluid mechanics. This book discusses the properties and behavior of liquids and gases in motion and at rest. Organized into nine chapters, this book begins with an overview of the science of fluid mechanics that is subdivided accordingly into two main branches, namely, fluid statics and fluid dynamics. This text then examines the flowmeter devices used for the measurement of flow of liquids and gases. Other chapters consider the principle of resistance in open channel flow, which is based on improper application of th
Fluid inclusion geothermometry
Cunningham, C.G.
1977-01-01
Fluid inclusions trapped within crystals either during growth or at a later time provide many clues to the histories of rocks and ores. Estimates of fluid-inclusion homogenization temperature and density can be obtained using a petrographic microscope with thin sections, and they can be refined using heating and freezing stages. Fluid inclusion studies, used in conjunction with paragenetic studies, can provide direct data on the time and space variations of parameters such as temperature, pressure, density, and composition of fluids in geologic environments. Changes in these parameters directly affect the fugacity, composition, and pH of fluids, thus directly influencing localization of ore metals. ?? 1977 Ferdinand Enke Verlag Stuttgart.
Energy Technology Data Exchange (ETDEWEB)
Legoupil, S
1999-07-01
We present in this work a method for fluid flow visualization in a system using radioactive tracers. The method is based on single photon emission computed tomography techniques, applied to a limited number of discrete detectors. We propose in this work a method for the estimation of the transport matrix of photons, associated to the acquisition system.This method is based on the modelization of profiles acquired for a set of point sources located in the imaged volume. Monte Carlo simulations allow to separate scattered photons from those directly collected by the system. The influence of the energy tracer is exposed. The reconstruction method is based on the maximum likelihood - expectation maximization algorithm. An experimental device, based on 36 detectors was realised for the visualization of water circulation in a vessel. A video monitoring allows to visualize the dye water tracer. Dye and radioactive tracers are injected simultaneously in a water flow circulating in the vessel. Reconstructed and video images are compared. Quantitative and qualitative analysis show that fluid flow visualization is feasible with a limited number of detectors. This method can be applied for system involving circulations of fluids. (author)
Failure and nonfailure of fluid filaments in extension
DEFF Research Database (Denmark)
Hassager, Ole; Kolte, Mette Irene; Renardy, Michael
1998-01-01
The phenomenon of ductile failure of Newtonian and viscoelastic fluid filaments without surface tension is studied by a 2D finite element method and by ID non-linear analysis. The viscoelastic fluids are described by single integral constitutive equations. The main conclusions are: (1) Newtonian...... fluid filaments do not exhibit ductile failure without surface tension; (2) some viscoelastic fluids form stable filaments while other fluids exhibit ductile failure as a result of an elastic instability; (3) for large Deborah numbers, the Considere condition may be used to predict the Hencky strain...
Miller, Jan D; Hupka, Jan; Aranowski, Robert
2012-11-20
A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.
Intravenous fluids: balancing solutions.
Hoorn, Ewout J
2017-08-01
The topic of intravenous (IV) fluids may be regarded as "reverse nephrology", because nephrologists usually treat to remove fluids rather than to infuse them. However, because nephrology is deeply rooted in fluid, electrolyte, and acid-base balance, IV fluids belong in the realm of our specialty. The field of IV fluid therapy is in motion due to the increasing use of balanced crystalloids, partly fueled by the advent of new solutions. This review aims to capture these recent developments by critically evaluating the current evidence base. It will review both indications and complications of IV fluid therapy, including the characteristics of the currently available solutions. It will also cover the use of IV fluids in specific settings such as kidney transplantation and pediatrics. Finally, this review will address the pathogenesis of saline-induced hyperchloremic acidosis, its potential effect on outcomes, and the question if this should lead to a definitive switch to balanced solutions.
Quantum private query with perfect user privacy against a joint-measurement attack
International Nuclear Information System (INIS)
Yang, Yu-Guang; Liu, Zhi-Chao; Li, Jian; Chen, Xiu-Bo; Zuo, Hui-Juan; Zhou, Yi-Hua; Shi, Wei-Min
2016-01-01
The joint-measurement (JM) attack is the most powerful threat to the database security for existing quantum-key-distribution (QKD)-based quantum private query (QPQ) protocols. Wei et al. (2016) [28] proposed a novel QPQ protocol against the JM attack. However, their protocol relies on two-way quantum communication thereby affecting its real implementation and communication efficiency. Moreover, it cannot ensure perfect user privacy. In this paper, we present a new one-way QPQ protocol in which the special way of classical post-processing of oblivious key ensures the security against the JM attack. Furthermore, it realizes perfect user privacy and lower complexity of communication. - Highlights: • A special classical post-processing ensures the security against the JM attack. • It ensures perfect user privacy. • It ensures lower complexity of communication. Alice's conclusive key rate is 1/6.
Ultra-broadband and wide-angle perfect absorber based on composite metal-semiconductor grating
Li, Xu; Wang, Zongpeng; Hou, Yumin
2018-01-01
In this letter, we present an ultra-broadband and wide-angle perfect absorber based on composite Ge-Ni grating. Near perfect absorption above 90% is achieved in a wide frequency range from 150 nm to 4200 nm, which covers almost the full spectrum of solar radiation. The absorption keeps robust in a wide range of incident angle from 0º to 60º. The upper triangle Ge grating works as an antireflection coating. The lower Ni grating works as a reflector and an effective energy trapper. The guided modes inside Ge grating are excited due to reflection of the lower Ni grating surface. In longer wavelength band, gap surface plasmons (GSPs) in the Ni grating are excited and couple with the guided modes inside the Ge grating. The coupled modes extend the perfect absorption band to the near-infrared region (150 nm-4200 nm). This design has potential application in photovoltaic devices and thermal emitters.
Maxwell's fish-eye lens and the mirage of perfect imaging
International Nuclear Information System (INIS)
Merlin, R
2011-01-01
Recent claims that Maxwell's fish-eye is a perfect lens, capable of providing images with deep subwavelength resolution, are examined. We show that the imaging properties of a dispersionless fish-eye are very similar to those of an ideal spherical cavity. Using this correspondence, we prove that the correct solution to Maxwell equations in the fish-eye gives image sizes that are consistent with the standard diffraction limit. Perfect focusing is an optical illusion that results from placing a time-reversed source at the position of the geometrical image which, when combined with the field due to the primary (object) source, mimics the behavior of a perfect drain. Issues of causality are briefly discussed. We also demonstrate that passive outlets are not a good alternative to time-reversed sources for broadband drain-like behavior and that, even if they were, they could not do a better job than conventional optical systems at providing high resolution
Perfectly secure steganography: Hiding information in the quantum noise of a photograph
Sanguinetti, Bruno; Traverso, Giulia; Lavoie, Jonathan; Martin, Anthony; Zbinden, Hugo
2016-01-01
We show that it is possible to hide information perfectly within a photograph. The proposed protocol works by selecting each pixel value from two images that differ only by shot noise. Pixel values are never modified, but only selected, making the resulting stego image provably indistinguishable from an untampered image, and the protocol provably secure. We demonstrate that a perfect steganographic protocol is also a perfectly secure cryptographic protocol, and therefore has at least the same requirements: a truly random key as long as the message. In our system, we use a second image as the key, satisfying length requirements, and the randomness is provided by the naturally occurring quantum noise which is dominant in images taken with modern sensors. We conclude that, given a photograph, it is impossible to tell whether it contains any hidden information.
The Gaze of the Perfect Search Engine: Google as an Infrastructure of Dataveillance
Zimmer, M.
Web search engines have emerged as a ubiquitous and vital tool for the successful navigation of the growing online informational sphere. The goal of the world's largest search engine, Google, is to "organize the world's information and make it universally accessible and useful" and to create the "perfect search engine" that provides only intuitive, personalized, and relevant results. While intended to enhance intellectual mobility in the online sphere, this chapter reveals that the quest for the perfect search engine requires the widespread monitoring and aggregation of a users' online personal and intellectual activities, threatening the values the perfect search engines were designed to sustain. It argues that these search-based infrastructures of dataveillance contribute to a rapidly emerging "soft cage" of everyday digital surveillance, where they, like other dataveillance technologies before them, contribute to the curtailing of individual freedom, affect users' sense of self, and present issues of deep discrimination and social justice.
Fuzzy Perfect Mappings and Q-Compactness in Smooth Fuzzy Topological Spaces
Directory of Open Access Journals (Sweden)
C. Kalaivani
2014-03-01
Full Text Available We point out that the product of two fuzzy closed sets of smooth fuzzy topological spaces need not be fuzzy closed with respect to the the existing notion of product smooth fuzzy topology. To get this property, we introduce a new suitable product smooth fuzzy topology. We investigate whether F1×F2 and (F,H are weakly smooth fuzzy continuity whenever F1, F2, F and H are weakly smooth fuzzy continuous. Using this new product smooth fuzzy topology, we define smooth fuzzy perfect mapping and prove that composition of two smooth fuzzy perfect mappings is smooth fuzzy perfect under some additional conditions. We also introduce two new notions of compactness called Q-compactness and Q-α-compactness; and discuss the compactness of the image of a Q-compact set (Q-α-compact set under a weakly smooth fuzzy continuous function ((α,β-weakly smooth fuzzy continuous function.
Single-electron thermal noise.
Nishiguchi, Katsuhiko; Ono, Yukinori; Fujiwara, Akira
2014-07-11
We report the observation of thermal noise in the motion of single electrons in an ultimately small dynamic random access memory (DRAM). The nanometer-scale transistors that compose the DRAM resolve the thermal noise in single-electron motion. A complete set of fundamental tests conducted on this single-electron thermal noise shows that the noise perfectly follows all the aspects predicted by statistical mechanics, which include the occupation probability, the law of equipartition, a detailed balance, and the law of kT/C. In addition, the counting statistics on the directional motion (i.e., the current) of the single-electron thermal noise indicate that the individual electron motion follows the Poisson process, as it does in shot noise.
Prospective associations between perceived barriers to condom: use and "perfect use".
Crosby, Richard A; Charnigo, Richard; Shrier, Lydia A
2014-07-01
Identifying malleable predictors of condom use in a clinic-based population may benefit efforts to prevent sexually transmitted infections (STIs). To prospectively test associations between three measures (relational-trust factors, fit and feel, and dislike of condom use) and perfect condom use in patients attending clinics diagnosing STIs. A convenience sample was recruited from five clinics in three U.S. cities. Data were collected from December 2007 through April 2011. Daily electronic diaries were completed for up to 180 days. Occasions of penile-vaginal intercourse (PVI) involving condom use without any of four errors/problems were classified as "perfect use." Three subscales (relational-trust factors, fit and feel, and dislike of condom use) were developed from baseline data. Generalized estimating equations were used to account for non-independence of PVI events. Among 17,156 reported occasions of PVI, condoms were either not used or used with errors/problems in 8,857 (51.6%) instances. The remaining 8,829 occasions (48.4%) involved perfect use. Relational-trust (p=0.054) and fit and feel (p=0.13) issues were not significantly associated with perfect use. Dislike of condom use (p=0.005) was significantly associated with perfect use (estimated OR=0.93, 95% CI=0.89, 0.98). Significant interactions with race, age, or gender were not observed. Clinic attendees may be more likely to use condoms perfectly if three perceptions are reduced in magnitude: I won't use condoms, condoms spoil the mood, and I get turned off when my partner suggests we use condoms. Findings support a paradigm shift in the way clinics promote condom use to patients. Copyright © 2014 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Pucciarelli, A.; Ambrosini, W.
2016-01-01
Highlights: • A methodology for fluid-to-fluid scaling of heat transfer to supercritical fluids is proposed. • The methodology is based on a dimensionless formulation. • A first assessment of the methodology is obtained on the basis of RANS calculations. - Abstract: A methodology for fluid-to-fluid scaling of predicted heat transfer phenomena with supercritical pressure fluids is being developed with the aid of RANS calculations. The proposed approach rephrases and further develops a previous attempt, whose preliminary validation was limited by the considerable inaccuracy of the adopted turbulence models when applied to deteriorated heat transfer. A recent improvement in the accuracy of heat transfer predictions allowed this further step, also based on the broader experience gained in the mean time in the prediction of experimental data. Four representative experimental data cases related to water and CO 2 , for which reasonably accurate results have been obtained by RANS turbulence equations, are addressed by changing the working fluid and imposing an approximate invariance of the dimensionless trends of fluid enthalpy at the wall and in bulk. Intrinsic differences in the thermal behaviour of the considered fluids (e.g., in the Prandtl number) are reflected in corresponding changes in the value of a single dimensionless parameter, following an indication coming from simple theoretical considerations. Results of RANS models for different fluids are used as a preliminary support to the validity of the approach, showing an interesting persistence of heat transfer behaviour in dimensionless form in the four addressed cases. The present uncertainties in the proposed methodology are mainly a consequence of the limited accuracy of the adopted simulation models. The obtained indications can be used in planning experimental or better resolved computational analyses (LES, DNS) which may better clarify the promising features of this approach.
Analysis of experience of feet functions perfection in rhythmic gymnastic exercises
Directory of Open Access Journals (Sweden)
Nesterova T.V.
2009-10-01
Full Text Available Trainers and gymnasts take the problem of the special preparation feet and developments of method of its perfection to the number of the actual. The results of the pedagogical testing are shown that basic (basic, pushed, amortisation and specific (aesthetic, manipulation, integral functions feet have a different degree of display. They will be realized in exercises on all of the stages of long-term preparation of sportswomen. Most dynamic perfection of functions feet gymnasts take place on the stages of initial and preliminary base preparation.
Application Of Elastic Perfectly Plastic Cyclic Analysis To Assessment Of Creep Strain
Energy Technology Data Exchange (ETDEWEB)
Carter, Peter [Stress Engineering Services Inc.; Jetter, Robert I [Consultant; Sham, Sam [ORNL
2012-01-01
A cyclic elastic-perfectly plastic analysis method is proposed which provides a conservative estimate to cyclic creep strain accumulation within the ratchet boundary. The method is to check for ratcheting based on an elastic-perfectly material with a temperature-dependent pseudo yield stress defined by temperature, time and stress to give 1% creep strain. It does not require stress classification and is also applicable to a full range of temperature above and below the creep regime. This simplified method could be used as a rapid screening calculation, with full time-dependent creep analysis used if necessary.
Simulation on monochromators of double focusing perfect crystal and vertical focusing mosaic crystal
International Nuclear Information System (INIS)
Chen Yanzhou; Sun Guang'ai; Huang Chaoqiang; Chen Bo
2010-01-01
In order to satisfy both high flux and high resolution of residual stress neutron diffractometer, the monochromator was simulated using Monte Carlo simulation code SIMRES. A series of factors,including the diffraction geometries (symmetric diffraction, asymmetric diffraction and fully asymmetric diffraction), focusing conditions (vertical and horizontal focusing curvatures) and crystal types (perfect crystal and mosaic crystal), were considered in the simulation to study, taking the figure of merit (FoM) as a comparison measure, the influences of flux on resolution of the diffractometer. The results show that use of symmetric diffraction and perfect crystal double focusing could achieve the best performance. (authors)
The perfect man in the literary opus of John Climacus and Ibn Arabi
Directory of Open Access Journals (Sweden)
Rašić Dunja
2015-01-01
Full Text Available In search of the perfect man of the Islamic and Christian mysticisms, this paper also discusses the nature of mystical knowledge, to whose domain the perfect man, as the highest model of human existence and spiritual life, indisputably belongs. This study belongs to the philosophical discipline of comparative philosophy. Hence, searching for the lost paradise of human existence, still remembering the taste of bliss of residence filled only with infinite happiness, this paper will consider the extent to which the methodology of Paul Masson-Oursel and Henry Corbin, as two well-known comparative philosophy research methods can try to measure their strength with cryptic teachings of mysticism.
Perfect imaging, epsilon-near zero phenomena and waveguiding in the scope of nonlocal effects
DEFF Research Database (Denmark)
David, Christin; Mortensen, N. Asger; Christensen, Johan
2013-01-01
Plasmons in metals can oscillate on a sub-wavelength length scale and this large-k response constitutes an inherent prerequisite for fascinating effects such as perfect imaging and intriguing wave phenomena associated with the epsilon-near-zero (ENZ) regime. While there is no upper cut-off within...... response, we show that perfect imaging is surprisingly only marginally affected by nonlocal properties of a metal slab, even for a deep subwavelength case and an extremely thin film. Similarly, for the ENZ response we find no indications of nonlocal response jeopardizing the basic behaviors anticipated...
A simple route to scalable fabrication of perfectly ordered ZnO nanorod arrays
International Nuclear Information System (INIS)
Liu, D F; Xiang, Y J; Liao, Q; Zhang, J P; Wu, X C; Zhang, Z X; Liu, L F; Ma, W J; Shen, J; Zhou, W Y; Xie, S S
2007-01-01
ZnO nanorod arrays with perfect order and uniformity were prepared using a simple, low-cost, commonly available and scalable nanosphere lithography for patterning gold catalyst particles and a successive bottom-up growth technique in a tube furnace chemical vapor deposition system. Each rod in the arrays had perfect surface facets, sharp edges and uniform size. For all of the rods, their sides were oriented the same. This bottom-up assembly method may accelerate the use of ZnO nanorods in real device applications
The influence of a high-frequency magnetic field on the neutron diffraction by perfect crystals
International Nuclear Information System (INIS)
Michalec, R.; Chalupa, B.; Vavra, J.
1989-01-01
Measurements of the influence of a high-frequency magnetic field on the neutron diffraction by perfect monocrystals of InSb were performed at a frequency of 25 MHz. The ratios of the integrated reflectivities with and without a magnetic field as a function of the output voltage from the amplifier are shown for different parts of the crystal. The time dependence of the integrated reflectivity after switching on and off the high-frequency field is given. Results may be interpreted on the basis of the dynamical theory of diffraction on elastically deformed crystals (caused by the temperature gradient). Similar phenomena were observed also with a perfect Si monocrystal
Fyodorov, Yan V.; Suwunnarat, Suwun; Kottos, Tsampikos
2017-07-01
We employ the random matrix theory framework to calculate the density of zeroes of an M-channel scattering matrix describing a chaotic cavity with a single localized absorber embedded in it. Our approach extends beyond the weak-coupling limit of the cavity with the channels and applies for any absorption strength. Importantly it provides an insight for the optimal amount of loss needed to realize a chaotic coherent perfect absorbing trap. Our predictions are tested against simulations for two types of traps: a complex network of resonators and quantum graphs.
Angel, S. Michael
1989-01-01
Particular gases or liquids are detected with a fiber optic element (11, 11a to 11j) having a cladding or coating of a material (23, 23a to 23j) which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector (24, 24a to 24j) may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses.
Packing frustration in dense confined fluids.
Nygård, Kim; Sarman, Sten; Kjellander, Roland
2014-09-07
Packing frustration for confined fluids, i.e., the incompatibility between the preferred packing of the fluid particles and the packing constraints imposed by the confining surfaces, is studied for a dense hard-sphere fluid confined between planar hard surfaces at short separations. The detailed mechanism for the frustration is investigated via an analysis of the anisotropic pair distributions of the confined fluid, as obtained from integral equation theory for inhomogeneous fluids at pair correlation level within the anisotropic Percus-Yevick approximation. By examining the mean forces that arise from interparticle collisions around the periphery of each particle in the slit, we calculate the principal components of the mean force for the density profile--each component being the sum of collisional forces on a particle's hemisphere facing either surface. The variations of these components with the slit width give rise to rather intricate changes in the layer structure between the surfaces, but, as shown in this paper, the basis of these variations can be easily understood qualitatively and often also semi-quantitatively. It is found that the ordering of the fluid is in essence governed locally by the packing constraints at each single solid-fluid interface. A simple superposition of forces due to the presence of each surface gives surprisingly good estimates of the density profiles, but there remain nontrivial confinement effects that cannot be explained by superposition, most notably the magnitude of the excess adsorption of particles in the slit relative to bulk.
Metalworking and machining fluids
Erdemir, Ali; Sykora, Frank; Dorbeck, Mark
2010-10-12
Improved boron-based metal working and machining fluids. Boric acid and boron-based additives that, when mixed with certain carrier fluids, such as water, cellulose and/or cellulose derivatives, polyhydric alcohol, polyalkylene glycol, polyvinyl alcohol, starch, dextrin, in solid and/or solvated forms result in improved metalworking and machining of metallic work pieces. Fluids manufactured with boric acid or boron-based additives effectively reduce friction, prevent galling and severe wear problems on cutting and forming tools.
DEFF Research Database (Denmark)
Wøhlk, Sanne; Laporte, Gilbert
2017-01-01
The aim of this paper is to computationally compare several algorithms for the Minimum Cost Perfect Matching Problem on an undirected complete graph. Our work is motivated by the need to solve large instances of the Capacitated Arc Routing Problem (CARP) arising in the optimization of garbage...