WorldWideScience

Sample records for single particle tracking

  1. Dual color single particle tracking via nanobodies

    International Nuclear Information System (INIS)

    Albrecht, David; Winterflood, Christian M; Ewers, Helge

    2015-01-01

    Single particle tracking is a powerful tool to investigate the function of biological molecules by following their motion in space. However, the simultaneous tracking of two different species of molecules is still difficult to realize without compromising the length or density of trajectories, the localization accuracy or the simplicity of the assay. Here, we demonstrate a simple dual color single particle tracking assay using small, bright, high-affinity labeling via nanobodies of accessible targets with widely available instrumentation. We furthermore apply a ratiometric step-size analysis method to visualize differences in apparent membrane viscosity. (paper)

  2. Single particle tracking and single molecule energy transfer

    CERN Document Server

    Bräuchle, Christoph; Michaelis, Jens

    2009-01-01

    Closing a gap in the literature, this handbook gathers all the information on single particle tracking and single molecule energy transfer. It covers all aspects of this hot and modern topic, from detecting virus entry to membrane diffusion, and from protein folding using spFRET to coupled dye systems, as well recent achievements in the field. Throughout, the first-class editors and top international authors present content of the highest quality, making this a must-have for physical chemists, spectroscopists, molecular physicists and biochemists.

  3. Fluorescent detection of single tracks of alpha particles using lithium fluoride crystals

    International Nuclear Information System (INIS)

    Bilski, P.; Marczewska, B.

    2017-01-01

    Lithium fluoride single crystals were successfully used for fluorescent imaging of single tracks of alpha particles. This was realized with a standard wide-field fluorescent microscope equipped with a 100× objective. Alpha particles create F_2 and F_3"+ color centers in LiF crystals. The subsequent illumination with the blue light (wavelength around 445 nm), excites these centers and produces fluorescence with a broad band peaked at 670 nm. The observed tracks of alpha particles have diameter of about 500 nm. Focusing of the microscope at different depths in a LiF crystal, enables imaging changes of shape and position of tracks, allowing for visualization of their paths. These encouraging results are the first step towards practical application of LiF as fluorescent nuclear track detectors.

  4. A multi-parametric particle-pairing algorithm for particle tracking in single and multiphase flows

    International Nuclear Information System (INIS)

    Cardwell, Nicholas D; Vlachos, Pavlos P; Thole, Karen A

    2011-01-01

    Multiphase flows (MPFs) offer a rich area of fundamental study with many practical applications. Examples of such flows range from the ingestion of foreign particulates in gas turbines to transport of particles within the human body. Experimental investigation of MPFs, however, is challenging, and requires techniques that simultaneously resolve both the carrier and discrete phases present in the flowfield. This paper presents a new multi-parametric particle-pairing algorithm for particle tracking velocimetry (MP3-PTV) in MPFs. MP3-PTV improves upon previous particle tracking algorithms by employing a novel variable pair-matching algorithm which utilizes displacement preconditioning in combination with estimated particle size and intensity to more effectively and accurately match particle pairs between successive images. To improve the method's efficiency, a new particle identification and segmentation routine was also developed. Validation of the new method was initially performed on two artificial data sets: a traditional single-phase flow published by the Visualization Society of Japan (VSJ) and an in-house generated MPF data set having a bi-modal distribution of particles diameters. Metrics of the measurement yield, reliability and overall tracking efficiency were used for method comparison. On the VSJ data set, the newly presented segmentation routine delivered a twofold improvement in identifying particles when compared to other published methods. For the simulated MPF data set, measurement efficiency of the carrier phases improved from 9% to 41% for MP3-PTV as compared to a traditional hybrid PTV. When employed on experimental data of a gas–solid flow, the MP3-PTV effectively identified the two particle populations and reported a vector efficiency and velocity measurement error comparable to measurements for the single-phase flow images. Simultaneous measurement of the dispersed particle and the carrier flowfield velocities allowed for the calculation of

  5. Orbital single particle tracking on a commercial confocal microscope using piezoelectric stage feedback

    International Nuclear Information System (INIS)

    Lanzanò, L; Gratton, E

    2014-01-01

    Single Particle Tracking (SPT) is a technique used to locate fluorescent particles with nanometer precision. In the orbital tracking method the position of a particle is obtained analyzing the distribution of intensity along a circular orbit scanned around the particle. In combination with an active feedback this method allows tracking of particles in 2D and 3D with millisecond temporal resolution. Here we describe a SPT setup based on a feedback approach implemented with minimal modification of a commercially available confocal laser scanning microscope, the Zeiss LSM 510, in combination with an external piezoelectric stage scanner. The commercial microscope offers the advantage of a user-friendly software interface and pre-calibrated hardware components. The use of an external piezo-scanner allows the addition of feedback into the system but also represents a limitation in terms of its mechanical response. We describe in detail this implementation of the orbital tracking method and discuss advantages and limitations. As an example of application to live cell experiments we perform the 3D tracking of acidic vesicles in live polarized epithelial cells. (paper)

  6. Multi-Color Single Particle Tracking with Quantum Dots

    DEFF Research Database (Denmark)

    Christensen, Eva Arnspang; Brewer, J. R.; Lagerholm, B. C.

    2012-01-01

    . multiplex single molecule sensitivity applications such as single particle tracking (SPT). In order to fully optimize single molecule multiplex application with QDs, we have in this work performed a comprehensive quantitative investigation of the fluorescence intensities, fluorescence intensity fluctuations......Quantum dots (QDs) have long promised to revolutionize fluorescence detection to include even applications requiring simultaneous multi-species detection at single molecule sensitivity. Despite the early promise, the unique optical properties of QDs have not yet been fully exploited in e. g...... further show that there is only a small size advantage in using blue-shifted QDs in biological applications because of the additional size of the water-stabilizing surface coat. Extending previous work, we finally also show that parallel four color multicolor (MC)-SPT with QDs is possible at an image...

  7. 3D dual-virtual-pinhole assisted single particle tracking microscopy

    International Nuclear Information System (INIS)

    Ma, Ye; Wang, Yifan; Zhou, Xin; Kuang, Cuifang; Liu, Xu

    2014-01-01

    We propose a novel approach for high-speed, three-dimensional single particle tracking (SPT), which we refer to as dual-virtual-pinhole assisted single particle tracking microscopy (DVPaSPTM). DVPaSPTM system can obtain axial information of the sample without optical or mechanical depth scanning, so as to offer numbers of advantages including faster imaging, improved efficiency and a great reduction of photobleaching and phototoxicity. In addition, by the use of the dual-virtual-pinhole, the effect that the quantum yield exerts to the fluorescent signal can be eliminated, which makes the measurement independent of the surroundings and increases the accuracy of the result. DVPaSPTM system measures the intensity within different virtual pinholes of which the radii are given by the host computer. Axial information of fluorophores can be measured by the axial response curve through the ratio of intensity signals. We demonstrated the feasibility of the proposed method by a series of experiments. Results showed that the standard deviation of the axial measurement was 19.2 nm over a 2.5 μm range with 30 ms temporal resolution. (papers)

  8. 4-D single particle tracking of synthetic and proteinaceous microspheres reveals preferential movement of nuclear particles along chromatin - poor tracks.

    Science.gov (United States)

    Bacher, Christian P; Reichenzeller, Michaela; Athale, Chaitanya; Herrmann, Harald; Eils, Roland

    2004-11-23

    The dynamics of nuclear organization, nuclear bodies and RNPs in particular has been the focus of many studies. To understand their function, knowledge of their spatial nuclear position and temporal translocation is essential. Typically, such studies generate a wealth of data that require novel methods in image analysis and computational tools to quantitatively track particle movement on the background of moving cells and shape changing nuclei. We developed a novel 4-D image processing platform (TIKAL) for the work with laser scanning and wide field microscopes. TIKAL provides a registration software for correcting global movements and local deformations of cells as well as 2-D and 3-D tracking software. With this new tool, we studied the dynamics of two different types of nuclear particles, namely nuclear bodies made from GFP-NLS-vimentin and microinjected 0.1 mum - wide polystyrene beads, by live cell time-lapse microscopy combined with single particle tracking and mobility analysis. We now provide a tool for the automatic 3-D analysis of particle movement in parallel with the acquisition of chromatin density data. Kinetic analysis revealed 4 modes of movement: confined obstructed, normal diffusion and directed motion. Particle tracking on the background of stained chromatin revealed that particle movement is directly related to local reorganization of chromatin. Further a direct comparison of particle movement in the nucleoplasm and the cytoplasm exhibited an entirely different kinetic behaviour of vimentin particles in both compartments. The kinetics of nuclear particles were slightly affected by depletion of ATP and significantly disturbed by disruption of actin and microtubule networks. Moreover, the hydration state of the nucleus had a strong impact on the mobility of nuclear bodies since both normal diffusion and directed motion were entirely abolished when cells were challenged with 0.6 M sorbitol. This effect correlated with the compaction of chromatin

  9. Innovative molecular-based fluorescent nanoparticles for multicolor single particle tracking in cells

    International Nuclear Information System (INIS)

    Daniel, Jonathan; Blanchard-Desce, Mireille; Godin, Antoine G; Palayret, Matthieu; Lounis, Brahim; Cognet, Laurent

    2016-01-01

    Based on an original molecular-based design, we present bright and photostable fluorescent organic nanoparticles (FONs) showing excellent colloidal stability in various aqueous environments. Complementary near-infrared emitting and green emitting FONs were prepared using a simple, fast and robust protocol. Both types of FONs could be simultaneously imaged at the single-particle level in solution as well as in biological environments using a monochromatic excitation and a dual-color fluorescence microscope. No evidence of acute cytotoxicity was found upon incubation of live cells with mixed solutions of FONs, and both types of nanoparticles were found internalized in the cells where their motion could be simultaneously tracked at video-rate up to minutes. These fluorescent organic nanoparticles open a novel non-toxic alternative to existing nanoparticles for imaging biological structures, compatible with live-cell experiments and specially fitted for multicolor single particle tracking. (paper)

  10. 4-D single particle tracking of synthetic and proteinaceous microspheres reveals preferential movement of nuclear particles along chromatin – poor tracks

    Directory of Open Access Journals (Sweden)

    Athale Chaitanya

    2004-11-01

    Full Text Available Abstract Background The dynamics of nuclear organization, nuclear bodies and RNPs in particular has been the focus of many studies. To understand their function, knowledge of their spatial nuclear position and temporal translocation is essential. Typically, such studies generate a wealth of data that require novel methods in image analysis and computational tools to quantitatively track particle movement on the background of moving cells and shape changing nuclei. Results We developed a novel 4-D image processing platform (TIKAL for the work with laser scanning and wide field microscopes. TIKAL provides a registration software for correcting global movements and local deformations of cells as well as 2-D and 3-D tracking software. With this new tool, we studied the dynamics of two different types of nuclear particles, namely nuclear bodies made from GFP-NLS-vimentin and microinjected 0.1 μm – wide polystyrene beads, by live cell time-lapse microscopy combined with single particle tracking and mobility analysis. We now provide a tool for the automatic 3-D analysis of particle movement in parallel with the acquisition of chromatin density data. Conclusions Kinetic analysis revealed 4 modes of movement: confined obstructed, normal diffusion and directed motion. Particle tracking on the background of stained chromatin revealed that particle movement is directly related to local reorganization of chromatin. Further a direct comparison of particle movement in the nucleoplasm and the cytoplasm exhibited an entirely different kinetic behaviour of vimentin particles in both compartments. The kinetics of nuclear particles were slightly affected by depletion of ATP and significantly disturbed by disruption of actin and microtubule networks. Moreover, the hydration state of the nucleus had a strong impact on the mobility of nuclear bodies since both normal diffusion and directed motion were entirely abolished when cells were challenged with 0.6 M

  11. 4-D single particle tracking of synthetic and proteinaceous microspheres reveals preferential movement of nuclear particles along chromatin – poor tracks

    Science.gov (United States)

    Bacher, Christian P; Reichenzeller, Michaela; Athale, Chaitanya; Herrmann, Harald; Eils, Roland

    2004-01-01

    Background The dynamics of nuclear organization, nuclear bodies and RNPs in particular has been the focus of many studies. To understand their function, knowledge of their spatial nuclear position and temporal translocation is essential. Typically, such studies generate a wealth of data that require novel methods in image analysis and computational tools to quantitatively track particle movement on the background of moving cells and shape changing nuclei. Results We developed a novel 4-D image processing platform (TIKAL) for the work with laser scanning and wide field microscopes. TIKAL provides a registration software for correcting global movements and local deformations of cells as well as 2-D and 3-D tracking software. With this new tool, we studied the dynamics of two different types of nuclear particles, namely nuclear bodies made from GFP-NLS-vimentin and microinjected 0.1 μm – wide polystyrene beads, by live cell time-lapse microscopy combined with single particle tracking and mobility analysis. We now provide a tool for the automatic 3-D analysis of particle movement in parallel with the acquisition of chromatin density data. Conclusions Kinetic analysis revealed 4 modes of movement: confined obstructed, normal diffusion and directed motion. Particle tracking on the background of stained chromatin revealed that particle movement is directly related to local reorganization of chromatin. Further a direct comparison of particle movement in the nucleoplasm and the cytoplasm exhibited an entirely different kinetic behaviour of vimentin particles in both compartments. The kinetics of nuclear particles were slightly affected by depletion of ATP and significantly disturbed by disruption of actin and microtubule networks. Moreover, the hydration state of the nucleus had a strong impact on the mobility of nuclear bodies since both normal diffusion and directed motion were entirely abolished when cells were challenged with 0.6 M sorbitol. This effect correlated

  12. Optimizing experimental parameters for tracking of diffusing particles

    DEFF Research Database (Denmark)

    Vestergaard, Christian L.

    2016-01-01

    We describe how a single-particle tracking experiment should be designed in order for its recorded trajectories to contain the most information about a tracked particle's diffusion coefficient. The precision of estimators for the diffusion coefficient is affected by motion blur, limited photon st...

  13. Positron emission zone plate holography for particle tracking

    Energy Technology Data Exchange (ETDEWEB)

    Gundogdu, O. [University of Birmingham, School of Physics and Astronomy, Birmingham B15 2TT (United Kingdom)]. E-mail: o.gundogdu@surrey.ac.uk

    2006-01-15

    Positron Emission Particle Tracking (PEPT) is a powerful non-invasive technique that has been used extensively for tracking a single particle. In this paper, we present a study of zone plate holography method in order to track multiple particles, mainly two particles. The main aim is to use as small number of events as possible in the order to make it possible to track particles in fast moving industrial systems. A zone plate with 100% focal efficiency is simulated and applied to the Positron Emission Tomography (PET) data for multiple particle tracking. A simple trajectory code was employed to explore the effects of the nature of the experimental trajectories. A computer holographic reconstruction code that simulates optical reconstruction was developed. The different aspects of the particle location, particle activity ratios for enabling tagging of particles and zone plate and hologram locations are investigated. The effect of the shot noise is investigated and the limitations of the zone plate holography are reported.

  14. Positron emission zone plate holography for particle tracking

    International Nuclear Information System (INIS)

    Gundogdu, O.

    2006-01-01

    Positron Emission Particle Tracking (PEPT) is a powerful non-invasive technique that has been used extensively for tracking a single particle. In this paper, we present a study of zone plate holography method in order to track multiple particles, mainly two particles. The main aim is to use as small number of events as possible in the order to make it possible to track particles in fast moving industrial systems. A zone plate with 100% focal efficiency is simulated and applied to the Positron Emission Tomography (PET) data for multiple particle tracking. A simple trajectory code was employed to explore the effects of the nature of the experimental trajectories. A computer holographic reconstruction code that simulates optical reconstruction was developed. The different aspects of the particle location, particle activity ratios for enabling tagging of particles and zone plate and hologram locations are investigated. The effect of the shot noise is investigated and the limitations of the zone plate holography are reported

  15. Robust model-based analysis of single-particle tracking experiments with Spot-On

    Science.gov (United States)

    Grimm, Jonathan B; Lavis, Luke D

    2018-01-01

    Single-particle tracking (SPT) has become an important method to bridge biochemistry and cell biology since it allows direct observation of protein binding and diffusion dynamics in live cells. However, accurately inferring information from SPT studies is challenging due to biases in both data analysis and experimental design. To address analysis bias, we introduce ‘Spot-On’, an intuitive web-interface. Spot-On implements a kinetic modeling framework that accounts for known biases, including molecules moving out-of-focus, and robustly infers diffusion constants and subpopulations from pooled single-molecule trajectories. To minimize inherent experimental biases, we implement and validate stroboscopic photo-activation SPT (spaSPT), which minimizes motion-blur bias and tracking errors. We validate Spot-On using experimentally realistic simulations and show that Spot-On outperforms other methods. We then apply Spot-On to spaSPT data from live mammalian cells spanning a wide range of nuclear dynamics and demonstrate that Spot-On consistently and robustly infers subpopulation fractions and diffusion constants. PMID:29300163

  16. Single nanoparticle tracking spectroscopic microscope

    Science.gov (United States)

    Yang, Haw [Moraga, CA; Cang, Hu [Berkeley, CA; Xu, Cangshan [Berkeley, CA; Wong, Chung M [San Gabriel, CA

    2011-07-19

    A system that can maintain and track the position of a single nanoparticle in three dimensions for a prolonged period has been disclosed. The system allows for continuously imaging the particle to observe any interactions it may have. The system also enables the acquisition of real-time sequential spectroscopic information from the particle. The apparatus holds great promise in performing single molecule spectroscopy and imaging on a non-stationary target.

  17. Multi-color single particle tracking with quantum dots.

    Directory of Open Access Journals (Sweden)

    Eva C Arnspang

    Full Text Available Quantum dots (QDs have long promised to revolutionize fluorescence detection to include even applications requiring simultaneous multi-species detection at single molecule sensitivity. Despite the early promise, the unique optical properties of QDs have not yet been fully exploited in e. g. multiplex single molecule sensitivity applications such as single particle tracking (SPT. In order to fully optimize single molecule multiplex application with QDs, we have in this work performed a comprehensive quantitative investigation of the fluorescence intensities, fluorescence intensity fluctuations, and hydrodynamic radii of eight types of commercially available water soluble QDs. In this study, we show that the fluorescence intensity of CdSe core QDs increases as the emission of the QDs shifts towards the red but that hybrid CdSe/CdTe core QDs are less bright than the furthest red-shifted CdSe QDs. We further show that there is only a small size advantage in using blue-shifted QDs in biological applications because of the additional size of the water-stabilizing surface coat. Extending previous work, we finally also show that parallel four color multicolor (MC-SPT with QDs is possible at an image acquisition rate of at least 25 Hz. We demonstrate the technique by measuring the lateral dynamics of a lipid, biotin-cap-DPPE, in the cellular plasma membrane of live cells using four different colors of QDs; QD565, QD605, QD655, and QD705 as labels.

  18. Time-Lapse Monitoring of DNA Damage Colocalized With Particle Tracks in Single Living Cells

    Energy Technology Data Exchange (ETDEWEB)

    McFadden, Conor H. [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Hallacy, Timothy M. [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Physics and Astronomy, Rice University, Houston, Texas (United States); Flint, David B. [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Graduate School of Biomedical Sciences, The University of Texas, Houston, Texas (United States); Granville, Dal A. [Department of Medical Physics, The Ottawa Hospital Cancer Centre, Ottawa, Ontario (Canada); Asaithamby, Aroumougame [Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Centre, Dallas, Texas (United States); Sahoo, Narayan [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Akselrod, Mark S. [Crystal Growth Division, Landauer, Inc, Stillwater, Oklahoma (United States); Sawakuchi, Gabriel O., E-mail: gsawakuchi@mdanderson.org [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Graduate School of Biomedical Sciences, The University of Texas, Houston, Texas (United States)

    2016-09-01

    Purpose: Understanding the DNA damage and repair induced by hadron therapy (HT) beams is crucial for developing novel strategies to maximize the use of HT beams to treat cancer patients. However, spatiotemporal studies of DNA damage and repair for beam energies relevant to HT have been challenging. We report a technique that enables spatiotemporal measurement of radiation-induced damage in live cells and colocalization of this damage with charged particle tracks over a broad range of clinically relevant beam energies. The technique uses novel fluorescence nuclear track detectors with fluorescence confocal laser scanning microscopy in the beam line to visualize particle track traversals within the subcellular compartments of live cells within seconds after injury. Methods and Materials: We designed and built a portable fluorescence confocal laser scanning microscope for use in the beam path, coated fluorescence nuclear track detectors with fluorescent-tagged live cells (HT1080 expressing enhanced green fluorescent protein tagged to XRCC1, a single-strand break repair protein), placed the entire assembly into a proton therapy beam line, and irradiated the cells with a fluence of ∼1 × 10{sup 6} protons/cm{sup 2}. Results: We successfully obtained confocal images of proton tracks and foci of DNA single-strand breaks immediately after irradiation. Conclusions: This technique represents an innovative method for analyzing biological responses in any HT beam line at energies and dose rates relevant to therapy. It allows precise determination of the number of tracks traversing a subcellular compartment and monitoring the cellular damage therein, and has the potential to measure the linear energy transfer of each track from therapeutic beams.

  19. Single particle tracking reveals spatial and dynamic organization of the Escherichia coli biofilm matrix

    International Nuclear Information System (INIS)

    Birjiniuk, Alona; Doyle, Patrick S; Billings, Nicole; Ribbeck, Katharina; Nance, Elizabeth; Hanes, Justin

    2014-01-01

    Biofilms are communities of surface-adherent bacteria surrounded by secreted polymers known as the extracellular polymeric substance. Biofilms are harmful in many industries, and thus it is of great interest to understand their mechanical properties and structure to determine ways to destabilize them. By performing single particle tracking with beads of varying surface functionalization it was found that charge interactions play a key role in mediating mobility within biofilms. With a combination of single particle tracking and microrheological concepts, it was found that Escherichia coli biofilms display height dependent charge density that evolves over time. Statistical analyses of bead trajectories and confocal microscopy showed inter-connecting micron scale channels that penetrate throughout the biofilm, which may be important for nutrient transfer through the system. This methodology provides significant insight into a particular biofilm system and can be applied to many others to provide comparisons of biofilm structure. The elucidation of structure provides evidence for the permeability of biofilms to microscale objects, and the ability of a biofilm to mature and change properties over time. (paper)

  20. Symplectic multi-particle tracking on GPUs

    Science.gov (United States)

    Liu, Zhicong; Qiang, Ji

    2018-05-01

    A symplectic multi-particle tracking model is implemented on the Graphic Processing Units (GPUs) using the Compute Unified Device Architecture (CUDA) language. The symplectic tracking model can preserve phase space structure and reduce non-physical effects in long term simulation, which is important for beam property evaluation in particle accelerators. Though this model is computationally expensive, it is very suitable for parallelization and can be accelerated significantly by using GPUs. In this paper, we optimized the implementation of the symplectic tracking model on both single GPU and multiple GPUs. Using a single GPU processor, the code achieves a factor of 2-10 speedup for a range of problem sizes compared with the time on a single state-of-the-art Central Processing Unit (CPU) node with similar power consumption and semiconductor technology. It also shows good scalability on a multi-GPU cluster at Oak Ridge Leadership Computing Facility. In an application to beam dynamics simulation, the GPU implementation helps save more than a factor of two total computing time in comparison to the CPU implementation.

  1. Particle displacement tracking for PIV

    Science.gov (United States)

    Wernet, Mark P.

    1990-01-01

    A new Particle Imaging Velocimetry (PIV) data acquisition and analysis system, which is an order of magnitude faster than any previously proposed system has been constructed and tested. The new Particle Displacement Tracing (PDT) system is an all electronic technique employing a video camera and a large memory buffer frame-grabber board. Using a simple encoding scheme, a time sequence of single exposure images are time coded into a single image and then processed to track particle displacements and determine velocity vectors. Application of the PDT technique to a counter-rotating vortex flow produced over 1100 velocity vectors in 110 seconds when processed on an 80386 PC.

  2. Three-dimensional single-particle tracking in live cells: news from the third dimension

    International Nuclear Information System (INIS)

    Dupont, A; Wehnekamp, F; Katayama, Y; Lamb, D C; Gorelashvili, M; Schüller, V; Arcizet, D; Heinrich, D

    2013-01-01

    Single-particle tracking (SPT) is of growing importance in the biophysical community. It is used to investigate processes such as drug and gene delivery, viral uptake, intracellular trafficking or membrane-bound protein mobility. Traditionally, SPT is performed in two dimensions (2D) because of its technical simplicity. However, life occurs in three dimensions (3D) and many methods have been recently developed to track particles in 3D. Now, is the third dimension worth the effort? Here we investigate the differences between the 2D and 3D analyses of intracellular transport with the 3D development of a time-resolved mean square displacement (MSD) analysis introduced previously. The 3D trajectories, and the 2D projections, of fluorescent nanoparticles were obtained with an orbital tracking microscope in two different cell types: in Dictyostelium discoideum ameba and in adherent, more flattened HuH-7 human cells. As expected from the different 3D organization of both cells’ cytoskeletons, a third of the active transport was lost upon projection in the ameba whereas the identification of the active phases was barely affected in the HuH-7 cells. In both cell types, we found intracellular diffusion to be anisotropic and the diffusion coefficient values derived from the 2D analysis were therefore biased. (paper)

  3. Probing the type of anomalous diffusion with single-particle tracking.

    Science.gov (United States)

    Ernst, Dominique; Köhler, Jürgen; Weiss, Matthias

    2014-05-07

    Many reactions in complex fluids, e.g. signaling cascades in the cytoplasm of living cells, are governed by a diffusion-driven encounter of reactants. Yet, diffusion in complex fluids often exhibits an anomalous characteristic ('subdiffusion'). Since different types of subdiffusion have distinct effects on timing and equilibria of chemical reactions, a thorough determination of the reactants' type of random walk is key to a quantitative understanding of reactions in complex fluids. Here we introduce a straightforward and simple approach for determining the type of subdiffusion from single-particle tracking data. Unlike previous approaches, our method also is sensitive to transient subdiffusion phenomena, e.g. obstructed diffusion below the percolation threshold. We validate our strategy with data from experiment and simulation.

  4. Positron Emission Tomography Particle tracking using cluster analysis

    International Nuclear Information System (INIS)

    Gundogdu, O.

    2004-01-01

    Positron Emission Particle Tracking was successfully used in a wide range of industrial applications. This technique primarily uses a single positron emitting tracer particle. However, using multiple particles would provide more comparative information about the physical processes taking place in a system such as mixing or fluidised beds. In this paper, a unique method that enables us to track more than one particle is presented. This method is based on the midpoint of the closest distance between two trajectories or coincidence vectors. The technique presented in this paper employs a clustering method

  5. Positron Emission Tomography Particle tracking using cluster analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gundogdu, O. [University of Birmingham, School of Physics and Astronomy, Birmingham, B15 2TT (United Kingdom)]. E-mail: o.gundogdu@surrey.ac.uk

    2004-12-01

    Positron Emission Particle Tracking was successfully used in a wide range of industrial applications. This technique primarily uses a single positron emitting tracer particle. However, using multiple particles would provide more comparative information about the physical processes taking place in a system such as mixing or fluidised beds. In this paper, a unique method that enables us to track more than one particle is presented. This method is based on the midpoint of the closest distance between two trajectories or coincidence vectors. The technique presented in this paper employs a clustering method.

  6. A comparison of single particle tracking and temporal image correlation spectroscopy for quantitative analysis of endosome motility

    DEFF Research Database (Denmark)

    Lund, F. W.; Wustner, D.

    2013-01-01

    Single particle tracking (SPT) is becoming a standard method to extract transport parameters from time-lapse image sequences of fluorescent vesicles in living cells. Another method to obtain these data is temporal image correlation spectroscopy (TICS), but this method is less often used for measu......Single particle tracking (SPT) is becoming a standard method to extract transport parameters from time-lapse image sequences of fluorescent vesicles in living cells. Another method to obtain these data is temporal image correlation spectroscopy (TICS), but this method is less often used...... for measurement of intracellular vesicle transport. Here, we present an extensive comparison of SPT and TICS. First we examine the effect of photobleaching, shading and noise on SPT and TICS analysis using simulated image sequences. To this end, we developed a simple photophysical model, which relates spatially...... varying illumination intensity to the bleaching propensity and fluorescence intensity of the moving particles. We found that neither SPT nor TICS are affected by photobleaching per se, but the transport parameters obtained by both methods are sensitive to the signal-to-noise ratio. In addition, the number...

  7. Principles and biophysical applications of single particle super-localization and rotational tracking

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Yan [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    While conventional Single Particle Tracking (SPT) techniques acquire 2D or 3D trajectories of particle probes, we have developed Single Particle Orientation and Rotational Tracking (SPORT) techniques to extract orientation and rotational information. Combined with DIC microscopy, the SPORT technique has been applied in biophysical studies, including membrane diffusion and intracellular transport. The rotational dynamics of nanoparticle vectors on live cell membranes was recorded and its influence on the fate of these nanoparticle vectors was elucidated. The rotational motions of gold nanorods with various surface modifiers were tracked continuously at a temporal resolution of 5 ms under a DIC microscope. We found that the rotational behaviors of gold nanorod vectors are strongly related to their surface charge, specific surface functional groups, and the availability of receptors on cell membranes. The study of rotational Brownian motion of nanoparticles on cell membranes will lead to a better understanding of the mechanisms of drug delivery and provide guidance in designing surface modification strategies for drug delivery vectors under various circumstances. To characterize the rotation mode of surface functionalized gold nanorods on cell membranes, the SPORT technique is combined with the correlation analysis of the bright and dark DIC intensities. The unique capabilities of visualizing and understanding rotational motions of functionalized nanoparticles on live cell membranes allow us to correlate rotational and translational dynamics in unprecedented detail and provide new insights for complex membrane processes, including electrostatic interactions, ligand-receptor binding, and lateral (confined and hopping) diffusion of membrane receptors. Surface-functionalized nanoparticles interact with the membrane in fundamentally different ways and exhibit distinct rotational modes. The early events of particle-membrane approach and attachment are directly visualized

  8. Principles and biophysical applications of single particle super-localization and rotational tracking

    Science.gov (United States)

    Gu, Yan

    While conventional Single Particle Tracking (SPT) techniques acquire 2D or 3D trajectories of particle probes, we have developed Single Particle Orientation and Rotational Tracking (SPORT) techniques to extract orientation and rotational information. Combined with DIC microscopy, the SPORT technique has been applied in biophysical studies, including membrane diffusion and intracellular transport. The rotational dynamics of nanoparticle vectors on live cell membranes was recorded and its influence on the fate of these nanoparticle vectors was elucidated. The rotational motions of gold nanorods with various surface modifiers were tracked continuously at a temporal resolution of 5 ms under a DIC microscope. We found that the rotational behaviors of gold nanorod vectors are strongly related to their surface charge, specific surface functional groups, and the availability of receptors on cell membranes. The study of rotational Brownian motion of nanoparticles on cell membranes will lead to a better understanding of the mechanisms of drug delivery and provide guidance in designing surface modification strategies for drug delivery vectors under various circumstances. To characterize the rotation mode of surface functionalized gold nanorods on cell membranes, the SPORT technique is combined with the correlation analysis of the bright and dark DIC intensities. The unique capabilities of visualizing and understanding rotational motions of functionalized nanoparticles on live cell membranes allow us to correlate rotational and translational dynamics in unprecedented detail and provide new insights for complex membrane processes, including electrostatic interactions, ligand-receptor binding, and lateral (confined and hopping) diffusion of membrane receptors. Surface-functionalized nanoparticles interact with the membrane in fundamentally different ways and exhibit distinct rotational modes. The early events of particle-membrane approach and attachment are directly visualized

  9. Optical tracking of nanoscale particles in microscale environments

    Science.gov (United States)

    Mathai, P. P.; Liddle, J. A.; Stavis, S. M.

    2016-03-01

    The trajectories of nanoscale particles through microscale environments record useful information about both the particles and the environments. Optical microscopes provide efficient access to this information through measurements of light in the far field from nanoparticles. Such measurements necessarily involve trade-offs in tracking capabilities. This article presents a measurement framework, based on information theory, that facilitates a more systematic understanding of such trade-offs to rationally design tracking systems for diverse applications. This framework includes the degrees of freedom of optical microscopes, which determine the limitations of tracking measurements in theory. In the laboratory, tracking systems are assemblies of sources and sensors, optics and stages, and nanoparticle emitters. The combined characteristics of such systems determine the limitations of tracking measurements in practice. This article reviews this tracking hardware with a focus on the essential functions of nanoparticles as optical emitters and microenvironmental probes. Within these theoretical and practical limitations, experimentalists have implemented a variety of tracking systems with different capabilities. This article reviews a selection of apparatuses and techniques for tracking multiple and single particles by tuning illumination and detection, and by using feedback and confinement to improve the measurements. Prior information is also useful in many tracking systems and measurements, which apply across a broad spectrum of science and technology. In the context of the framework and review of apparatuses and techniques, this article reviews a selection of applications, with particle diffusion serving as a prelude to tracking measurements in biological, fluid, and material systems, fabrication and assembly processes, and engineered devices. In so doing, this review identifies trends and gaps in particle tracking that might influence future research.

  10. Improved nano-particle tracking analysis

    International Nuclear Information System (INIS)

    Walker, John G

    2012-01-01

    Nano-particle tracking is a method to estimate a particle size distribution by tracking the movements of individual particles, using multiple images of particles moving under Brownian motion. A novel method to recover a particle size distribution from nano-particle tracking data is described. Unlike a simple histogram-based method, the method described is able to account for the finite number of steps in each particle track and consequently for the measurement uncertainty in the step-length data. Computer simulation and experimental results are presented to demonstrate the performance of the approach compared with the current method. (paper)

  11. Apparatus and method for tracking a molecule or particle in three dimensions

    Science.gov (United States)

    Werner, James H [Los Alamos, NM; Goodwin, Peter M [Los Alamos, NM; Lessard, Guillaume [Santa Fe, NM

    2009-03-03

    An apparatus and method were used to track the movement of fluorescent particles in three dimensions. Control software was used with the apparatus to implement a tracking algorithm for tracking the motion of the individual particles in glycerol/water mixtures. Monte Carlo simulations suggest that the tracking algorithms in combination with the apparatus may be used for tracking the motion of single fluorescent or fluorescently labeled biomolecules in three dimensions.

  12. Dual-modality single particle orientation and rotational tracking of intracellular transport of nanocargos.

    Science.gov (United States)

    Sun, Wei; Gu, Yan; Wang, Gufeng; Fang, Ning

    2012-01-17

    The single particle orientation and rotational tracking (SPORT) technique was introduced recently to follow the rotational motion of plasmonic gold nanorod under a differential interference contrast (DIC) microscope. In biological studies, however, cellular activities usually involve a multiplicity of molecules; thus, tracking the motion of a single molecule/object is insufficient. Fluorescence-based techniques have long been used to follow the spatial and temporal distributions of biomolecules of interest thanks to the availability of multiplexing fluorescent probes. To know the type and number of molecules and the timing of their involvement in a biological process under investigation by SPORT, we constructed a dual-modality DIC/fluorescence microscope to simultaneously image fluorescently tagged biomolecules and plasmonic nanoprobes in living cells. With the dual-modality SPORT technique, the microtubule-based intracellular transport can be unambiguously identified while the dynamic orientation of nanometer-sized cargos can be monitored at video rate. Furthermore, the active transport on the microtubule can be easily separated from the diffusion before the nanocargo docks on the microtubule or after it undocks from the microtubule. The potential of dual-modality SPORT is demonstrated for shedding new light on unresolved questions in intracellular transport.

  13. Single-Particle Tracking of Human Lipoproteins.

    Science.gov (United States)

    de Messieres, Michel; Ng, Abby; Duarte, Cornelio J; Remaley, Alan T; Lee, Jennifer C

    2016-01-05

    Lipoproteins, such as high-density lipoprotein (HDL), low-density lipoprotein (LDL), and very-low density lipoprotein (VLDL), play a critical role in heart disease. Lipoproteins vary in size and shape as well as in their apolipoprotein content. Here, we developed a new experimental framework to study freely diffusing lipoproteins from human blood, allowing analysis of even the smallest HDL with a radius of 5 nm. In an easily constructed confinement chamber, individual HDL, LDL, and VLDL particles labeled with three distinct fluorophores were simultaneously tracked by wide-field fluorescence microscopy and their sizes were determined by their motion. This technique enables studies of individual lipoproteins in solution and allows characterization of the heterogeneous properties of lipoproteins which affect their biological function but are difficult to discern in bulk studies.

  14. Single charged-particle damage to living cells: a new method based on track-etch detectors

    International Nuclear Information System (INIS)

    Durante, M.; Grossi, G.F.; Pugliese, M.; Manti, L.; Nappo, M.; Gialanella, G.

    1994-01-01

    Biological effects of ionizing radiation are usually expressed as a function of the absorbed dose. Low doses of high-LET radiation correspond to one or few particle traversals through the cell. In order to study the biological effectiveness of single charged particles, we have developed a new method based on solid state nuclear track detectors. Cells are seeded on mylar and a LR-115 film is stuck below the mylar base. After irradiation, the LR-115 film is etched and cells observed at a phase contrast microscope connected to a video camera and an image analyzer. In this way, it is possible to measure the number of traversals through the cell nucleus or cytoplasm. Coordinates of each cell on the microscope bench are saved. After incubation for about one week, cells are fixed and stained and the colonies observed at the microscope. The fate of each irradiated cell is therefore correlated to the number of traversals. We have tested this method with two different rodent embryo fibroblast cell lines, C3H 10T1/2 and V79, exposed to 3.2 MeV accelerated α-particles (LET =124 keV/μm). The studied endpoint was cell killing. Preliminary biological results suggest that few α-particle tracks in V79 hamster cells are sufficient to reduce surviving fraction. ((orig.))

  15. Convergence of lateral dynamic measurements in the plasma membrane of live cells from single particle tracking and STED-FCS

    DEFF Research Database (Denmark)

    Lagerholm, B. Christoffer; Andrade, Débora M.; Clausen, Mathias P.

    2017-01-01

    Fluorescence correlation spectroscopy (FCS) in combination with the super-resolution imaging method STED (STED-FCS), and single-particle tracking (SPT) are able to directly probe the lateral dynamics of lipids and proteins in the plasma membrane of live cells at spatial scales much below the diff...

  16. Particle tracking

    International Nuclear Information System (INIS)

    Mais, H.; Ripken, G.; Wrulich, A.; Schmidt, F.

    1986-02-01

    After a brief description of typical applications of particle tracking in storage rings and after a short discussion of some limitations and problems related with tracking we summarize some concepts and methods developed in the qualitative theory of dynamical systems. We show how these concepts can be applied to the proton ring HERA. (orig.)

  17. NIR-emitting molecular-based nanoparticles as new two-photon absorbing nanotools for single particle tracking

    Science.gov (United States)

    Daniel, J.; Godin, A. G.; Clermont, G.; Lounis, B.; Cognet, L.; Blanchard-Desce, M.

    2015-07-01

    In order to provide a green alternative to QDs for bioimaging purposes and aiming at designing bright nanoparticles combining both large one- and two-photon brightness, a bottom-up route based on the molecular engineering of dedicated red to NIR emitting dyes that spontaneously form fluorescent organic nanoparticles (FONs) has been implemented. These fully organic nanoparticles built from original quadrupolar dyes are prepared using a simple, expeditious and green protocol that yield very small molecular-based nanoparticles (radius ~ 7 nm) suspension in water showing a nice NIR emission (λem=710 nm). These FONs typically have absorption coefficient more than two orders larger than popular NIR-emitting dyes (such as Alexa Fluor 700, Cy5.5 ….) and much larger Stokes shift values (i.e. up to over 5500 cm-1). They also show very large two-photon absorption response in the 800-1050 nm region (up to about 106 GM) of major promise for two-photon excited fluorescence microscopy. Thanks to their brightness and enhanced photostability, these FONs could be imaged as isolated nanoparticles and tracked using wide-field imaging. As such, thanks to their size and composition (absence of heavy metals), they represent highly promising alternatives to NIR-emitting QDs for use in bioimaging and single particle tracking applications. Moreover, efficient FONs coating was achieved by using a polymeric additive built from a long hydrophobic (PPO) and a short hydrophilic (PEO) segment and having a cationic head group able to interact with the highly negative surface of FONs. This electrostatically-driven interaction promotes both photoluminescence and two-photon absorption enhancement leading to an increase of two-photon brightness of about one order of magnitude. This opens the way to wide-field single particle tracking under two-photon excitation

  18. Note: Time-gated 3D single quantum dot tracking with simultaneous spinning disk imaging

    International Nuclear Information System (INIS)

    DeVore, M. S.; Stich, D. G.; Keller, A. M.; Phipps, M. E.; Hollingsworth, J. A.; Goodwin, P. M.; Werner, J. H.; Cleyrat, C.; Lidke, D. S.; Wilson, B. S.

    2015-01-01

    We describe recent upgrades to a 3D tracking microscope to include simultaneous Nipkow spinning disk imaging and time-gated single-particle tracking (SPT). Simultaneous 3D molecular tracking and spinning disk imaging enable the visualization of cellular structures and proteins around a given fluorescently labeled target molecule. The addition of photon time-gating to the SPT hardware improves signal to noise by discriminating against Raman scattering and short-lived fluorescence. In contrast to camera-based SPT, single-photon arrival times are recorded, enabling time-resolved spectroscopy (e.g., measurement of fluorescence lifetimes and photon correlations) to be performed during single molecule/particle tracking experiments

  19. Note: Time-gated 3D single quantum dot tracking with simultaneous spinning disk imaging

    Energy Technology Data Exchange (ETDEWEB)

    DeVore, M. S.; Stich, D. G.; Keller, A. M.; Phipps, M. E.; Hollingsworth, J. A.; Goodwin, P. M.; Werner, J. H., E-mail: jwerner@lanl.gov [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Mail Stop G755, Los Alamos, New Mexico 87545 (United States); Cleyrat, C.; Lidke, D. S.; Wilson, B. S. [Department of Pathology and Cancer Research and Treatment Center, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2015-12-15

    We describe recent upgrades to a 3D tracking microscope to include simultaneous Nipkow spinning disk imaging and time-gated single-particle tracking (SPT). Simultaneous 3D molecular tracking and spinning disk imaging enable the visualization of cellular structures and proteins around a given fluorescently labeled target molecule. The addition of photon time-gating to the SPT hardware improves signal to noise by discriminating against Raman scattering and short-lived fluorescence. In contrast to camera-based SPT, single-photon arrival times are recorded, enabling time-resolved spectroscopy (e.g., measurement of fluorescence lifetimes and photon correlations) to be performed during single molecule/particle tracking experiments.

  20. Location-allocation algorithm for multiple particle tracking using Birmingham MWPC positron camera

    International Nuclear Information System (INIS)

    Gundogdu, O.; Tarcan, E.

    2004-01-01

    Positron Emission Particle Tracking is a powerful, non-invasive technique that employs a single radioactive particle. It has been applied to a wide range of industrial systems. This paper presents an original application of a technique, which was mainly developed in economics or resource management. It allows the tracking of multiple particles using small number of trajectories with correct tagging. This technique originally used in economics or resource management provides very encouraging results

  1. Location-allocation algorithm for multiple particle tracking using Birmingham MWPC positron camera

    Energy Technology Data Exchange (ETDEWEB)

    Gundogdu, O. E-mail: o.gundogdu@surrey.ac.uko_gundo@yahoo.co.uko.gundogdu@kingston.ac.uk; Tarcan, E

    2004-05-01

    Positron Emission Particle Tracking is a powerful, non-invasive technique that employs a single radioactive particle. It has been applied to a wide range of industrial systems. This paper presents an original application of a technique, which was mainly developed in economics or resource management. It allows the tracking of multiple particles using small number of trajectories with correct tagging. This technique originally used in economics or resource management provides very encouraging results.

  2. Guidelines for the fitting of anomalous diffusion mean square displacement graphs from single particle tracking experiments.

    Directory of Open Access Journals (Sweden)

    Eldad Kepten

    Full Text Available Single particle tracking is an essential tool in the study of complex systems and biophysics and it is commonly analyzed by the time-averaged mean square displacement (MSD of the diffusive trajectories. However, past work has shown that MSDs are susceptible to significant errors and biases, preventing the comparison and assessment of experimental studies. Here, we attempt to extract practical guidelines for the estimation of anomalous time averaged MSDs through the simulation of multiple scenarios with fractional Brownian motion as a representative of a large class of fractional ergodic processes. We extract the precision and accuracy of the fitted MSD for various anomalous exponents and measurement errors with respect to measurement length and maximum time lags. Based on the calculated precision maps, we present guidelines to improve accuracy in single particle studies. Importantly, we find that in some experimental conditions, the time averaged MSD should not be used as an estimator.

  3. Particle Filter Tracking without Dynamics

    Directory of Open Access Journals (Sweden)

    Jaime Ortegon-Aguilar

    2007-01-01

    Full Text Available People tracking is an interesting topic in computer vision. It has applications in industrial areas such as surveillance or human-machine interaction. Particle Filters is a common algorithm for people tracking; challenging situations occur when the target's motion is poorly modelled or with unexpected motions. In this paper, an alternative to address people tracking is presented. The proposed algorithm is based in particle filters, but instead of using a dynamical model, it uses background subtraction to predict future locations of particles. The algorithm is able to track people in omnidirectional sequences with a low frame rate (one or two frames per second. Our approach can tackle unexpected discontinuities and changes in the direction of the motion. The main goal of the paper is to track people from laboratories, but it has applications in surveillance, mainly in controlled environments.

  4. An analysis of particle track effects on solid mammalian tissues

    International Nuclear Information System (INIS)

    Todd, P.

    1992-01-01

    The relative biological effectiveness (RBE) and quality factor (Q) at extreme values of linear energy transfer (LET) have been determined on the basis of experiments with single-cell systems and specific tissue responses. In typical single-cell systems, each heavy particle (Ar or Fe) passes through a single cell or no cell. In experiments on animal tissues, however, each heavy particle passes through several cells, and the LET can exceed 200 keV μm -1 in every cell. In most laboratory animal tissue systems, however, only a small portion of the hit cells are capable of expressing the end-point being measured, such as cell killing, mutation or carcinogenesis. The following question was therefore addressed: do RBEs and Q factors derived from single-cell experiments properly account for the damage at high LET when multiple cells are hit by HZE tracks? A review is offered in which measured radiation effects and known tissue properties are combined to estimate on the one hand, the number of cells at risk, p 3 n, per track, where n is the number of cells per track based on tissue and organ geometry, and p 3 is the probability that a cell in the track is capable of expressing the experimental end-point. On the other hand, the tissue and single-cell responses are compared by determining the ratio RBE in tissue/RBE in corresponding single cells. Experimental data from the literature indicate that tissue RBEs at very high LET (Fe and Ar ions) are higher than corresponding single-cell RBEs, especially in tissues in which p 3 n is high. (author)

  5. Measurement of fission track of uranium particle by solid state nuclear track detector

    International Nuclear Information System (INIS)

    Son, S. C.; Pyo, H. W.; Ji, K. Y.; Kim, W. H.

    2002-01-01

    In this study, we discussed results of the measurement of fission tracks for the uranium containing particles by solid state nuclear track detector. Uranium containing silica and uranium oxide particles were prepared by uranium sorption onto silica powder in weak acidic medium and laser ablation on uranium pellet, respectively. Fission tracks for the uranium containing silica and uranium oxide particles were detected on Lexan plastic detector. It was found that the fission track size and shapes depend on the particle size uranium content in particles. Correlation of uranium particle diameter with fission track radius was also discussed

  6. Charged particle tracking in high multiplicity events at RHIC

    International Nuclear Information System (INIS)

    Foley, K.J.; Love, W.A.

    1985-01-01

    It is generally accepted that the ability to track some fraction of the charged particles produced in heavy ion collisions is very desirable. At a very minimum, one must detect the occurance of multiple interactions in a single crossing. The very tight beam structure at RHIC does not favor time separation, so the location of separate vertices seems the best solution. The limits of tracking large numbers of tracks in a solid angle approaching 4π have been explored. A model detector considered is a 2.5 m radius TPC, a true 3D tracking device. In order to estimate the particle density of a function of production angle, five Hijet Au-Au central events were used to deduce the particle density distribution as a function of polar angle. An important feature of a tracking detector is the effective ''pixel'' size - the area within which two tracks cannot be resolved. In a TPC with multistep avalanche chamber readout this is approximately 3 mm x 3 mm or approx.0.1 cm 2 . Using this pixel size we have calculated the radius at which the number of particles/pixel is 0.01 and 0.1. With the exception of the region very near the beam expect these distributions aren't expected to change very much with the application of a low (approx. 0.5 tesla) magnetic field. While the actual reconstruction efficiency will depend on the fine details of the apparatus and reconstruction program, the 1% fill fraction is safe for efficiencies in the 80 to 90% region. Tracking is found to be feasible at pseudorapidities up to 3

  7. Single track coincidence measurements of fluorescent and plastic nuclear track detectors in therapeutic carbon beams

    International Nuclear Information System (INIS)

    Osinga, J-M; Jäkel, O; Ambrožová, I; Brabcová, K Pachnerová; Davídková, M; Akselrod, M S; Greilich, S

    2014-01-01

    In this paper we present a method for single track coincidence measurements using two different track detector materials. We employed plastic and fluorescent nuclear track detectors (PNTDs and FNTDs) in the entrance channel of a monoenergetic carbon ion beam covering the therapeutic energy range from 80 to 425 MeV/u. About 99% of all primary particle tracks detected by both detectors were successfully matched, while 1% of the particles were only detected by the FNTDs because of their superior spatial resolution. We conclude that both PNTDs and FNTDs are suitable for clinical carbon beam dosimetry with a detection efficiency of at least 98.82% and 99.83% respectively, if irradiations are performed with low fluence in the entrance channel of the ion beam. The investigated method can be adapted to other nuclear track detectors and offers the possibility to characterize new track detector materials against well-known detectors. Further, by combining two detectors with a restricted working range in the presented way a hybrid-detector system can be created with an extended and optimized working range

  8. Synthesis and characterization of scandium oxide microspheres for their application in radioactive particle tracking experiments

    International Nuclear Information System (INIS)

    Goswami, Sunil; Biswal, Jayashree; Pant, H.J.; Pillai, K.T.; Bamankar, Y.R.

    2012-01-01

    Radioactive particle tracking (RPT) technique, proposed by Lin et al., is a noble technique for understanding mixing mechanisms of fluids and; evaluation and improvement of design of multiphase flow systems. In RPT technique the motion of a single radioactive particle is tracked in a flow system using an array of strategically mounted NaI(Tl) scintillation detectors around the system. The gamma emitting radioactive tracer particle being tracked is designed to be hydrodynamically similar to that of the phase being traced

  9. Mechanism of track formation by charged particles in inorganic and organic solid-state track detectors

    International Nuclear Information System (INIS)

    Doerschel, B.; Pretzsch, G.; Streubel, G.

    1979-01-01

    Knowledge of the individual phases of track formation mechanism is necessary in some applications of solid-state track detectors. The generation of latent tracks is described by energy transfer processes of the charged particles along their paths using several different models. Etchability of the latent tracks is discussed on the basis of some distinct criteria taking into account different fractions of energy release by the primary and secondary particles during track generation. If these etchability criteria for latent tracks are fulfilled, visual particle tracks can be produced by a chemical etching process. Etch pit formation depends on the etching conditions. The geometrical parameters of the etching pits are given on the basis of known etching rates. Evaluation of individual particle tracks or determination of track density yields results depending on both the properties of the particles and the etching conditions. Determination of particle energy and particle fluence is discussed as an example. (author)

  10. Particle Tracking in Circular Accelerators Using the Exact Hamiltonian in SixTrack

    CERN Document Server

    Fjellstrom, Mattias; Hansson, Johan

    2013-12-13

    Particle motion in accelerators is in general complex. Tracking codes are developed to simulate beam dynamics in accelerators. SixTrack is a long lived particle tracking code maintained at CERN, the European Organization for Nuclear Research. A particle accelerator consists of a large number of magnets and other electromagnetic devices that guide the particle through the accelerator. Each device defines its own equation of motion, which often cannot be solved exactly. For this purpose, a number of approximations are introduced in order to facilitate the solution and to speed up the computation. In a high-energy accelerator, the particle has small transverse momentum components. This is exploited in the small-angle approximation. In this approximation the equations of motion are expanded to a low order in the transverse momentum components. In low-energy particle accelerators, or in tracking with large momentum deviations, this approximation is invalid. The equations of motion of a particle passing through a f...

  11. Discovery Mondays - 'Particle tracks: Seeing the invisible'

    CERN Multimedia

    2007-01-01

    Simulation of particle tracks in the CMS detector. How can you 'see' something as infinitesimal and fleeting as an elementary particle that defeats even the most powerful microscope? Well, physicists have detectors to snoop on them. Unlike biologists looking at bacteria, physicists don't see the particles themselves. They study their impact on sensitive materials as they pass through them at ultra high speed, a bit like seeing plane vapour trails in a clear sky. At the next Discovery Monday you will be able to find out about the different methods used at CERN to detect particles. There will be demonstrations of the cloud chamber, where particles leave tell-tale evidence of their passage in tracks of droplets. You will also learn about past and current particle track detection techniques and how the tracks are reconstructed into magnificent composite images. Don't miss this opportunity to learn about the various ways of 'seeing' particles. The event will be conducted in French. Come along to the Microcosm ...

  12. Particle filtering for passive fathometer tracking.

    Science.gov (United States)

    Michalopoulou, Zoi-Heleni; Yardim, Caglar; Gerstoft, Peter

    2012-01-01

    Seabed interface depths and fathometer amplitudes are tracked for an unknown and changing number of sub-bottom reflectors. This is achieved by incorporating conventional and adaptive fathometer processors into sequential Monte Carlo methods for a moving vertical line array. Sediment layering information and time-varying fathometer response amplitudes are tracked by using a multiple model particle filter with an uncertain number of reflectors. Results are compared to a classical particle filter where the number of reflectors is considered to be known. Reflector tracking is demonstrated for both conventional and adaptive processing applied to the drifting array data from the Boundary 2003 experiment. The layering information is successfully tracked by the multiple model particle filter even for noisy fathometer outputs. © 2012 Acoustical Society of America.

  13. 3D scanning particle tracking velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Hoyer, Klaus; Holzner, Markus; Guala, Michele; Liberzon, Alexander; Kinzelbach, Wolfgang [Swiss Federal Institut of Technology Zurich, Institut fuer Hydromechanik und Wasserwirtschaft, Zuerich (Switzerland); Luethi, Beat [Risoe National Laboratory, Roskilde (Denmark)

    2005-11-01

    In this article, we present an experimental setup and data processing schemes for 3D scanning particle tracking velocimetry (SPTV), which expands on the classical 3D particle tracking velocimetry (PTV) through changes in the illumination, image acquisition and analysis. 3D PTV is a flexible flow measurement technique based on the processing of stereoscopic images of flow tracer particles. The technique allows obtaining Lagrangian flow information directly from measured 3D trajectories of individual particles. While for a classical PTV the entire region of interest is simultaneously illuminated and recorded, in SPTV the flow field is recorded by sequential tomographic high-speed imaging of the region of interest. The advantage of the presented method is a considerable increase in maximum feasible seeding density. Results are shown for an experiment in homogenous turbulence and compared with PTV. SPTV yielded an average 3,500 tracked particles per time step, which implies a significant enhancement of the spatial resolution for Lagrangian flow measurements. (orig.)

  14. Theoretical and experimental study of single particle tracking in extreme conditions: single photon imaging

    International Nuclear Information System (INIS)

    Cajgfinger, T.

    2012-10-01

    This manuscript presents my thesis on the high frame rate (500 frames / second) single-photon detector electron-bombarded CMOS (ebCMOS). The first section compares three ultra-sensitive detectors and their methods for improving photon sensitivity: the CMOS low noise (sCMOS), the electron-multiplying CCD (emCCD) with signal multiplication by pixel and the ebCMOS with amplification by applied electric field. The method developed to detect single photon impacts with intra-pixel resolution on the ebCMOS sensor is presented. The second section compares the localization accuracy of these detectors in extreme conditions of very low photon flux (<10 photons/frame). First the theoretical limit is calculated using the Cramer-Rao lower bound for significant parameter sets. An experimental comparison of the detectors is then described. The setup provides one or more point sources controlled in position, signal and background noise. The results allow a comparison of the experimental effectiveness, purity and localization accuracy. The last section describes two experiments with the ebCMOS camera. The first aims at tracking hundreds of quantum dots simultaneously at the Nanoptec center. The second focuses on the swimming of bacteria at the surface at the Joliot Curie Institute. The point sources tracking algorithm using single photons and the Kalman filter implementation developed for these experiments is also described. (author)

  15. Bearings-Only Tracking of Manoeuvring Targets Using Particle Filters

    Directory of Open Access Journals (Sweden)

    M. Sanjeev Arulampalam

    2004-11-01

    Full Text Available We investigate the problem of bearings-only tracking of manoeuvring targets using particle filters (PFs. Three different (PFs are proposed for this problem which is formulated as a multiple model tracking problem in a jump Markov system (JMS framework. The proposed filters are (i multiple model PF (MMPF, (ii auxiliary MMPF (AUX-MMPF, and (iii jump Markov system PF (JMS-PF. The performance of these filters is compared with that of standard interacting multiple model (IMM-based trackers such as IMM-EKF and IMM-UKF for three separate cases: (i single-sensor case, (ii multisensor case, and (iii tracking with hard constraints. A conservative CRLB applicable for this problem is also derived and compared with the RMS error performance of the filters. The results confirm the superiority of the PFs for this difficult nonlinear tracking problem.

  16. Monte Carlo Library Least Square (MCLLS) Method for Multiple Radioactive Particle Tracking in BPR

    Science.gov (United States)

    Wang, Zhijian; Lee, Kyoung; Gardner, Robin

    2010-03-01

    In This work, a new method of radioactive particles tracking is proposed. An accurate Detector Response Functions (DRF's) was developed from MCNP5 to generate library for NaI detectors with a significant speed-up factor of 200. This just make possible for the idea of MCLLS method which is used for locating and tracking the radioactive particle in a modular Pebble Bed Reactor (PBR) by searching minimum Chi-square values. The method was tested to work pretty good in our lab condition with a six 2" X 2" NaI detectors array only. This method was introduced in both forward and inverse ways. A single radioactive particle tracking system with three collimated 2" X 2" NaI detectors is used for benchmark purpose.

  17. Lipid diffusion in the distal and proximal leaflets of supported lipid bilayer membranes studied by single particle tracking

    Science.gov (United States)

    Schoch, Rafael L.; Barel, Itay; Brown, Frank L. H.; Haran, Gilad

    2018-03-01

    Supported lipid bilayers (SLBs) have been studied extensively as simple but powerful models for cellular membranes. Yet, potential differences in the dynamics of the two leaflets of a SLB remain poorly understood. Here, using single particle tracking, we obtain a detailed picture of bilayer dynamics. We observe two clearly separate diffusing populations, fast and slow, that we associate with motion in the distal and proximal leaflets of the SLB, respectively, based on fluorescence quenching experiments. We estimate diffusion coefficients using standard techniques as well as a new method based on the blur of images due to motion. Fitting the observed diffusion coefficients to a two-leaflet membrane hydrodynamic model allows for the simultaneous determination of the intermonolayer friction coefficient and the substrate-membrane friction coefficient, without any prior assumptions on the strengths of the relevant interactions. Remarkably, our calculations suggest that the viscosity of the interfacial water confined between the membrane and the substrate is elevated by ˜104 as compared to bulk water. Using hidden Markov model analysis, we then obtain insight into the transbilayer movement of lipids. We find that lipid flip-flop dynamics are very fast, with half times in the range of seconds. Importantly, we find little evidence for membrane defect mediated lipid flip-flop for SLBs at temperatures well above the solid-to-liquid transition, though defects seem to be involved when the SLBs are cooled down. Our work thus shows that the combination of single particle tracking and advanced hydrodynamic modeling provides a powerful means to obtain insight into membrane dynamics.

  18. Single quantum dot tracking reveals the impact of nanoparticle surface on intracellular state.

    Science.gov (United States)

    Zahid, Mohammad U; Ma, Liang; Lim, Sung Jun; Smith, Andrew M

    2018-05-08

    Inefficient delivery of macromolecules and nanoparticles to intracellular targets is a major bottleneck in drug delivery, genetic engineering, and molecular imaging. Here we apply live-cell single-quantum-dot imaging and tracking to analyze and classify nanoparticle states after intracellular delivery. By merging trajectory diffusion parameters with brightness measurements, multidimensional analysis reveals distinct and heterogeneous populations that are indistinguishable using single parameters alone. We derive new quantitative metrics of particle loading, cluster distribution, and vesicular release in single cells, and evaluate intracellular nanoparticles with diverse surfaces following osmotic delivery. Surface properties have a major impact on cell uptake, but little impact on the absolute cytoplasmic numbers. A key outcome is that stable zwitterionic surfaces yield uniform cytosolic behavior, ideal for imaging agents. We anticipate that this combination of quantum dots and single-particle tracking can be widely applied to design and optimize next-generation imaging probes, nanoparticle therapeutics, and biologics.

  19. Real-time particle tracking at 10,000 fps using optical fiber illumination.

    Science.gov (United States)

    Otto, Oliver; Czerwinski, Fabian; Gornall, Joanne L; Stober, Gunter; Oddershede, Lene B; Seidel, Ralf; Keyser, Ulrich F

    2010-10-25

    We introduce optical fiber illumination for real-time tracking of optically trapped micrometer-sized particles with microsecond time resolution. Our light source is a high-radiance mercury arc lamp and a 600 μm optical fiber for short-distance illumination of the sample cell. Particle tracking is carried out with a software implemented cross-correlation algorithm following image acquisition from a CMOS camera. Our image data reveals that fiber illumination results in a signal-to-noise ratio usually one order of magnitude higher compared to standard Köhler illumination. We demonstrate position determination of a single optically trapped colloid with up to 10,000 frames per second over hours. We calibrate our optical tweezers and compare the results with quadrant photo diode measurements. Finally, we determine the positional accuracy of our setup to 2 nm by calculating the Allan variance. Our results show that neither illumination nor software algorithms limit the speed of real-time particle tracking with CMOS technology.

  20. Rapid, topology-based particle tracking for high-resolution measurements of large complex 3D motion fields.

    Science.gov (United States)

    Patel, Mohak; Leggett, Susan E; Landauer, Alexander K; Wong, Ian Y; Franck, Christian

    2018-04-03

    Spatiotemporal tracking of tracer particles or objects of interest can reveal localized behaviors in biological and physical systems. However, existing tracking algorithms are most effective for relatively low numbers of particles that undergo displacements smaller than their typical interparticle separation distance. Here, we demonstrate a single particle tracking algorithm to reconstruct large complex motion fields with large particle numbers, orders of magnitude larger than previously tractably resolvable, thus opening the door for attaining very high Nyquist spatial frequency motion recovery in the images. Our key innovations are feature vectors that encode nearest neighbor positions, a rigorous outlier removal scheme, and an iterative deformation warping scheme. We test this technique for its accuracy and computational efficacy using synthetically and experimentally generated 3D particle images, including non-affine deformation fields in soft materials, complex fluid flows, and cell-generated deformations. We augment this algorithm with additional particle information (e.g., color, size, or shape) to further enhance tracking accuracy for high gradient and large displacement fields. These applications demonstrate that this versatile technique can rapidly track unprecedented numbers of particles to resolve large and complex motion fields in 2D and 3D images, particularly when spatial correlations exist.

  1. Track-structure simulations for charged particles.

    Science.gov (United States)

    Dingfelder, Michael

    2012-11-01

    Monte Carlo track-structure simulations provide a detailed and accurate picture of radiation transport of charged particles through condensed matter of biological interest. Liquid water serves as a surrogate for soft tissue and is used in most Monte Carlo track-structure codes. Basic theories of radiation transport and track-structure simulations are discussed and differences compared to condensed history codes highlighted. Interaction cross sections for electrons, protons, alpha particles, and light and heavy ions are required input data for track-structure simulations. Different calculation methods, including the plane-wave Born approximation, the dielectric theory, and semi-empirical approaches are presented using liquid water as a target. Low-energy electron transport and light ion transport are discussed as areas of special interest.

  2. Bayesian target tracking based on particle filter

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    For being able to deal with the nonlinear or non-Gaussian problems, particle filters have been studied by many researchers. Based on particle filter, the extended Kalman filter (EKF) proposal function is applied to Bayesian target tracking. Markov chain Monte Carlo (MCMC) method, the resampling step, etc novel techniques are also introduced into Bayesian target tracking. And the simulation results confirm the improved particle filter with these techniques outperforms the basic one.

  3. A simple and rapid method for high-resolution visualization of single-ion tracks

    Directory of Open Access Journals (Sweden)

    Masaaki Omichi

    2014-11-01

    Full Text Available Prompt determination of spatial points of single-ion tracks plays a key role in high-energy particle induced-cancer therapy and gene/plant mutations. In this study, a simple method for the high-resolution visualization of single-ion tracks without etching was developed through the use of polyacrylic acid (PAA-N, N’-methylene bisacrylamide (MBAAm blend films. One of the steps of the proposed method includes exposure of the irradiated films to water vapor for several minutes. Water vapor was found to promote the cross-linking reaction of PAA and MBAAm to form a bulky cross-linked structure; the ion-track scars were detectable at a nanometer scale by atomic force microscopy. This study demonstrated that each scar is easily distinguishable, and the amount of generated radicals of the ion tracks can be estimated by measuring the height of the scars, even in highly dense ion tracks. This method is suitable for the visualization of the penumbra region in a single-ion track with a high spatial resolution of 50 nm, which is sufficiently small to confirm that a single ion hits a cell nucleus with a size ranging between 5 and 20 μm.

  4. A simple and rapid method for high-resolution visualization of single-ion tracks

    Energy Technology Data Exchange (ETDEWEB)

    Omichi, Masaaki [Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka 565-0871 (Japan); Center for Collaborative Research, Anan National College of Technology, Anan, Tokushima 774-0017 (Japan); Choi, Wookjin; Sakamaki, Daisuke; Seki, Shu, E-mail: seki@chem.eng.osaka-u.ac.jp [Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka 565-0871 (Japan); Tsukuda, Satoshi [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577 (Japan); Sugimoto, Masaki [Japan Atomic Energy Agency, Takasaki Advanced Radiation Research Institute, Gunma, Gunma 370-1292 (Japan)

    2014-11-15

    Prompt determination of spatial points of single-ion tracks plays a key role in high-energy particle induced-cancer therapy and gene/plant mutations. In this study, a simple method for the high-resolution visualization of single-ion tracks without etching was developed through the use of polyacrylic acid (PAA)-N, N’-methylene bisacrylamide (MBAAm) blend films. One of the steps of the proposed method includes exposure of the irradiated films to water vapor for several minutes. Water vapor was found to promote the cross-linking reaction of PAA and MBAAm to form a bulky cross-linked structure; the ion-track scars were detectable at a nanometer scale by atomic force microscopy. This study demonstrated that each scar is easily distinguishable, and the amount of generated radicals of the ion tracks can be estimated by measuring the height of the scars, even in highly dense ion tracks. This method is suitable for the visualization of the penumbra region in a single-ion track with a high spatial resolution of 50 nm, which is sufficiently small to confirm that a single ion hits a cell nucleus with a size ranging between 5 and 20 μm.

  5. Better track leads to new particles

    CERN Multimedia

    2006-01-01

    "Dutch researcher Thijs Cornelissen developed an algorithm to reconstruct the particle tracks and that is being used in a European research institute for particle physics. His method provides greater insights into the origine of particles that arise as a result of collisions." (1/2 page)

  6. Fast particle tracking with wake fields

    Energy Technology Data Exchange (ETDEWEB)

    Dohlus, M.; Floettmann, K.; Henning, C.

    2012-01-15

    Tracking calculations of charged particles in electromagnetic fields require in principle the simultaneous solution of the equation of motion and of Maxwell's equations. In many tracking codes a simpler and more efficient approach is used: external fields like that of the accelerating structures are provided as field maps, generated in separate computations and for the calculation of self fields the model of a particle bunch in uniform motion is used. We describe how an externally computed wake function can be approximated by a table of Taylor coefficients and how the wake field kick can be calculated for the particle distribution in a tracking calculation. The integrated kick, representing the effect of a distributed structure, is applied at a discrete time. As an example, we use our approach to calculate the emittance growth of a bunch in an undulator beam pipe due to resistive wall wake field effects. (orig.)

  7. A transition radiation detector which features accurate tracking and dE/dx particle identification

    International Nuclear Information System (INIS)

    O'Brien, E.; Lissauer, D.; McCorkle, S.; Polychronakos, V.; Takai, H.; Chi, C.Y.; Nagamiya, S.; Sippach, W.; Toy, M.; Wang, D.; Wang, Y.F.; Wiggins, C.; Willis, W.; Cherniatin, V.; Dolgoshein, B.; Bennett, M.; Chikanian, A.; Kumar, S.; Mitchell, J.T.; Pope, K.

    1991-01-01

    We describe the results of a test run involving a Transition Radiation Detector that can both distinguish electrons from pions with momenta greater than 0.7 GeV/c and simultaneously track particles passing through the detector. The particle identification is accomplished through a combination of the detection of Transition Radiation from the electron and the differences in electron and pion energy loss (dE/dx) in the detector. The dE/dx particle separation is most efficient below 2 GeV/c while particle ID utilizing Transition Radiation is effective above 1.5 GeV/c. Combined, the electron-pion separation is better than 5 x l0 2 . The single-wire, track-position resolution for the TRD is ∼230μm

  8. Algorithms for tracking of charged particles in circular accelerators

    International Nuclear Information System (INIS)

    Iselin, F.Ch.

    1986-01-01

    An important problem in accelerator design is the determination of the largest stable betatron amplitude. This stability limit is also known as the dynamic aperture. The equations describing the particle motion are non-linear, and the Linear Lattice Functions cannot be used to compute the stability limits. The stability limits are therefore usually searched for by particle tracking. One selects a set of particles with different betatron amplitudes and tracks them for many turns around the machine. The particles which survive a sufficient number of turns are termed stable. This paper concentrates on conservative systems. For this case the particle motion can be described by a Hamiltonian, i.e. tracking particles means application of canonical transformations. Canonical transformations are equivalent to symplectic mappings, which implies that there exist invariants. These invariants should not be destroyed in tracking

  9. TrackArt: the user friendly interface for single molecule tracking data analysis and simulation applied to complex diffusion in mica supported lipid bilayers.

    Science.gov (United States)

    Matysik, Artur; Kraut, Rachel S

    2014-05-01

    Single molecule tracking (SMT) analysis of fluorescently tagged lipid and protein probes is an attractive alternative to ensemble averaged methods such as fluorescence correlation spectroscopy (FCS) or fluorescence recovery after photobleaching (FRAP) for measuring diffusion in artificial and plasma membranes. The meaningful estimation of diffusion coefficients and their errors is however not straightforward, and is heavily dependent on sample type, acquisition method, and equipment used. Many approaches require advanced computing and programming skills for their implementation. Here we present TrackArt software, an accessible graphic interface for simulation and complex analysis of multiple particle paths. Imported trajectories can be filtered to eliminate spurious or corrupted tracks, and are then analyzed using several previously described methodologies, to yield single or multiple diffusion coefficients, their population fractions, and estimated errors. We use TrackArt to analyze the single-molecule diffusion behavior of a sphingolipid analog SM-Atto647N, in mica supported DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) bilayers. Fitting with a two-component diffusion model confirms the existence of two separate populations of diffusing particles in these bilayers on mica. As a demonstration of the TrackArt workflow, we characterize and discuss the effective activation energies required to increase the diffusion rates of these populations, obtained from Arrhenius plots of temperature-dependent diffusion. Finally, TrackArt provides a simulation module, allowing the user to generate models with multiple particle trajectories, diffusing with different characteristics. Maps of domains, acting as impermeable or permeable obstacles for particles diffusing with given rate constants and diffusion coefficients, can be simulated or imported from an image. Importantly, this allows one to use simulated data with a known diffusion behavior as a comparison for results

  10. Alternate Double Single Track Lines

    Energy Technology Data Exchange (ETDEWEB)

    Moraga Contreras, P.; Grande Andrade, Z.; Castillo Ron, E.

    2016-07-01

    The paper discusses the advantages and shortcomings of alternate double single track (ADST) lines with respect to double track lines for high speed lines. ADST lines consists of sequences of double and single track segments optimally selected in order to reduce the construction and maintenance costs of railway lines and to optimize the timetables used to satisfy a given demand. The single tracks are selected to coincide with expensive segments (tunnels and viaducts) and the double tracks are chosen to coincide with flat areas and only where they are necessary. At the same time, departure times are adjusted for trains to cross at the cheap double track segments. This alternative can be used for new lines and also for existing conventional lines where some new tracks are to be constructed to reduce travel time (increase speed). The ADST proposal is illustrated with some examples of both types (new lines and where conventional lines exist), including the Palencia-Santander, the Santiago-Valparaíso-Viña del Mar and the Dublin-Belfast lines, where very important reductions (90 %) are obtained, especially where a railway infrastructure already exist. (Author)

  11. Particle orbit tracking on a parallel computer: Hypertrack

    International Nuclear Information System (INIS)

    Cole, B.; Bourianoff, G.; Pilat, F.; Talman, R.

    1991-05-01

    A program has been written which performs particle orbit tracking on the Intel iPSC/860 distributed memory parallel computer. The tracking is performed using a thin element approach. A brief description of the structure and performance of the code is presented, along with applications of the code to the analysis of accelerator lattices for the SSC. The concept of ''ensemble tracking'', i.e. the tracking of ensemble averages of noninteracting particles, such as the emittance, is presented. Preliminary results of such studies will be presented. 2 refs., 6 figs

  12. Video tracking and post-mortem analysis of dust particles from all tungsten ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Endstrasser, N., E-mail: Nikolaus.Endstrasser@ipp.mpg.de [Max-Planck-Insitut fuer Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, D-85748 Garching (Germany); Brochard, F. [Institut Jean Lamour, Nancy-Universite, Bvd. des Aiguillettes, F-54506 Vandoeuvre (France); Rohde, V., E-mail: Volker.Rohde@ipp.mpg.de [Max-Planck-Insitut fuer Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, D-85748 Garching (Germany); Balden, M. [Max-Planck-Insitut fuer Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, D-85748 Garching (Germany); Lunt, T.; Bardin, S.; Briancon, J.-L. [Institut Jean Lamour, Nancy-Universite, Bvd. des Aiguillettes, F-54506 Vandoeuvre (France); Neu, R. [Max-Planck-Insitut fuer Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, D-85748 Garching (Germany)

    2011-08-01

    2D dust particle trajectories are extracted from fast framing camera videos of ASDEX Upgrade (AUG) by a new time- and resource-efficient code and classified into stationary hot spots, single-frame events and real dust particle fly-bys. Using hybrid global and local intensity thresholding and linear trajectory extrapolation individual particles could be tracked up to 80 ms. Even under challenging conditions such as high particle density and strong vacuum vessel illumination all particles detected for more than 50 frames are tracked correctly. During campaign 2009 dust has been trapped on five silicon wafer dust collectors strategically positioned within the vacuum vessel of the full tungsten AUG. Characterisation of the outer morphology and determination of the elemental composition of 5 x 10{sup 4} particles were performed via automated SEM-EDX analysis. A dust classification scheme based on these parameters was defined with the goal to link the particles to their most probable production sites.

  13. A multi-frame particle tracking algorithm robust against input noise

    International Nuclear Information System (INIS)

    Li, Dongning; Zhang, Yuanhui; Sun, Yigang; Yan, Wei

    2008-01-01

    The performance of a particle tracking algorithm which detects particle trajectories from discretely recorded particle positions could be substantially hindered by the input noise. In this paper, a particle tracking algorithm is developed which is robust against input noise. This algorithm employs the regression method instead of the extrapolation method usually employed by existing algorithms to predict future particle positions. If a trajectory cannot be linked to a particle at a frame, the algorithm can still proceed by trying to find a candidate at the next frame. The connectivity of tracked trajectories is inspected to remove the false ones. The algorithm is validated with synthetic data. The result shows that the algorithm is superior to traditional algorithms in the aspect of tracking long trajectories

  14. Uncovering homo-and hetero-interactions on the cell membrane using single particle tracking approaches

    International Nuclear Information System (INIS)

    Torreno-Pina, Juan A; Manzo, Carlo; Garcia-Parajo, Maria F

    2016-01-01

    The plasma membrane of eukaryotic cells is responsible for a myriad of functions that regulate cell physiology and plays a crucial role in a multitude of processes that include adhesion, migration, signaling recognition and cell–cell communication. This is accomplished by specific interactions between different membrane components such as lipids and proteins on the lipid bilayer but also through interactions with the underlying cortical actin cytoskeleton on the intracellular side and the glycocalyx matrix in close proximity to the extracellular side. Advanced biophysical techniques, including single particle tracking (SPT) have revealed that the lateral diffusion of molecular components on the plasma membrane represents a landmark manifestation of such interactions. Indeed, by studying changes in the diffusivity of individual membrane molecules, including sub-diffusion, confined diffusion and/or transient arrest of molecules in membrane compartments, it has been possible to gain insight on the nature of molecular interactions and to infer on its functional role for cell response. In this review, we will revise some exciting results where SPT has been crucial to reveal homo- and hetero-interactions on the cell membrane. (paper)

  15. Particle filters for object tracking: enhanced algorithm and efficient implementations

    International Nuclear Information System (INIS)

    Abd El-Halym, H.A.

    2010-01-01

    Object tracking and recognition is a hot research topic. In spite of the extensive research efforts expended, the development of a robust and efficient object tracking algorithm remains unsolved due to the inherent difficulty of the tracking problem. Particle filters (PFs) were recently introduced as a powerful, post-Kalman filter, estimation tool that provides a general framework for estimation of nonlinear/ non-Gaussian dynamic systems. Particle filters were advanced for building robust object trackers capable of operation under severe conditions (small image size, noisy background, occlusions, fast object maneuvers ..etc.). The heavy computational load of the particle filter remains a major obstacle towards its wide use.In this thesis, an Excitation Particle Filter (EPF) is introduced for object tracking. A new likelihood model is proposed. It depends on multiple functions: position likelihood; gray level intensity likelihood and similarity likelihood. Also, we modified the PF as a robust estimator to overcome the well-known sample impoverishment problem of the PF. This modification is based on re-exciting the particles if their weights fall below a memorized weight value. The proposed enhanced PF is implemented in software and evaluated. Its results are compared with a single likelihood function PF tracker, Particle Swarm Optimization (PSO) tracker, a correlation tracker, as well as, an edge tracker. The experimental results demonstrated the superior performance of the proposed tracker in terms of accuracy, robustness, and occlusion compared with other methods Efficient novel hardware architectures of the Sample Important Re sample Filter (SIRF) and the EPF are implemented. Three novel hardware architectures of the SIRF for object tracking are introduced. The first architecture is a two-step sequential PF machine, where particle generation, weight calculation and normalization are carried out in parallel during the first step followed by a sequential re

  16. A many particle-tracking detector with drift planes and segmented cathode readout

    International Nuclear Information System (INIS)

    Fischer, J.; Lissauer, D.; Ludlam, T.; Makowiecki, D.; O'Brien, E.; Radeka, V.; Rescia, S.; Rogers, L.; Smith, G.C.; Stephani, D.; Yu, B.; Greene, S.V.; Hemmick, T.K.; Mitchell, J.T.; Shivakumar, B.

    1990-01-01

    We describe the design and performance of a detector system for tracking charged particles in an environment of high track density and rates up to 1 MHz. The system operates in the forward spectrometer of the BNL Heavy Ion experiment E814 and uses principles of general interest in high rate, high multiplicity applications such as at RHIC or SSC. We require our system to perform over a large dynamic range, detecting singly charged particles as well as fully ionized relativistic 28 Si. Results on gas gain saturation, δ-ray suppression, and overall detector performance in the presence of a 14.6 GeV/nucleon 28 Si beam and a 14 GeV proton beam are presented. 6 refs., 9 figs

  17. Track benchmarking method for uncertainty quantification of particle tracking velocimetry interpolations

    International Nuclear Information System (INIS)

    Schneiders, Jan F G; Sciacchitano, Andrea

    2017-01-01

    The track benchmarking method (TBM) is proposed for uncertainty quantification of particle tracking velocimetry (PTV) data mapped onto a regular grid. The method provides statistical uncertainty for a velocity time-series and can in addition be used to obtain instantaneous uncertainty at increased computational cost. Interpolation techniques are typically used to map velocity data from scattered PTV (e.g. tomographic PTV and Shake-the-Box) measurements onto a Cartesian grid. Recent examples of these techniques are the FlowFit and VIC+  methods. The TBM approach estimates the random uncertainty in dense velocity fields by performing the velocity interpolation using a subset of typically 95% of the particle tracks and by considering the remaining tracks as an independent benchmarking reference. In addition, also a bias introduced by the interpolation technique is identified. The numerical assessment shows that the approach is accurate when particle trajectories are measured over an extended number of snapshots, typically on the order of 10. When only short particle tracks are available, the TBM estimate overestimates the measurement error. A correction to TBM is proposed and assessed to compensate for this overestimation. The experimental assessment considers the case of a jet flow, processed both by tomographic PIV and by VIC+. The uncertainty obtained by TBM provides a quantitative evaluation of the measurement accuracy and precision and highlights the regions of high error by means of bias and random uncertainty maps. In this way, it is possible to quantify the uncertainty reduction achieved by advanced interpolation algorithms with respect to standard correlation-based tomographic PIV. The use of TBM for uncertainty quantification and comparison of different processing techniques is demonstrated. (paper)

  18. Tracking and Particle Identification at LHCb and Strange Hadron Production in Events with Z Boson

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00392146; Serra, N.; Mueller, K; Steinkamp, O

    The Lhcb experiment, located at the Large Hadron Collider at CERN, is a high energy particle physics experiment dedicated to precision measurements of events containing beauty and charm quarks. The detector is built as a single-arm forward spectrometer. It uses tracking stations upstream and downstream of its dipole magnet to measure the trajectories and momenta of charged particles. This thesis describes the improvements to the track reconstruction algorithm, which were implemented for the second run of the LHC that started in spring 2015. Furthermore, the method to confirm the performance numbers on data is presented. In addition to the tracking system, the detector uses two Ring Imaging Cherenkov detectors, upstream and downstream of the dipole magnet, together with the calorimeter and muon system, for particle identification. The detector response for the particle identification is known to be poorly modelled, since the dependence on environmental variables like temperature and pressure inside the gas mo...

  19. A transition radiation detector for RHIC featuring accurate tracking and dE/dx particle identification

    Energy Technology Data Exchange (ETDEWEB)

    O`Brien, E.; Lissauer, D.; McCorkle, S.; Polychronakos, V.; Takai, H. [Brookhaven National Lab., Upton, NY (United States); Chi, C.Y.; Nagamiya, S.; Sippach, W.; Toy, M.; Wang, D.; Wang, Y.F.; Wiggins, C.; Willis, W. [Columbia Univ., New York, NY (United States); Cherniatin, V.; Dolgoshein, B. [Moscow Institute of Physics and Engineering, (Russian Federation); Bennett, M.; Chikanian, A.; Kumar, S.; Mitchell, J.T.; Pope, K. [Yale Univ., New Haven, CT (United States)

    1991-12-31

    We describe the results of a test ran involving a Transition Radiation Detector that can both distinguish electrons from pions which momenta greater titan 0.7 GeV/c and simultaneously track particles passing through the detector. The particle identification is accomplished through a combination of the detection of Transition Radiation from the electron and the differences in electron and pion energy loss (dE/dx) in the detector. The dE/dx particle separation is most, efficient below 2 GeV/c while particle ID utilizing Transition Radiation effective above 1.5 GeV/c. Combined, the electron-pion separation is-better than 5 {times} 10{sup 2}. The single-wire, track-position resolution for the TRD is {approximately}230 {mu}m.

  20. Passive target tracking using marginalized particle filter

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A marginalized particle filtering(MPF)approach is proposed for target tracking under the background of passive measurement.Essentially,the MPF is a combination of particle filtering technique and Kalman filter.By making full use of marginalization,the distributions of the tractable linear part of the total state variables are updated analytically using Kalman filter,and only the lower-dimensional nonlinear state variable needs to be dealt with using particle filter.Simulation studies are performed on an illustrative example,and the results show that the MPF method leads to a significant reduction of the tracking errors when compared with the direct particle implementation.Real data test results also validate the effectiveness of the presented method.

  1. Visible light photon counters (VLPCs) for high rate tracking medical imaging and particle astrophysics

    International Nuclear Information System (INIS)

    Atac, M.

    1998-02-01

    This paper is on the operation principles of the Visible Light Photon Counters (VLPCs), application to high luminosity-high multiplicity tracking for High Energy Charged Particle Physics, and application to Medical Imaging and Particle Astrophysics. The VLPCs as Solid State Photomultipliers (SSPMS) with high quantum efficiency can detect down to single photons very efficiently with excellent time resolution and high avalanche gains

  2. Immobilization of pseudorabies virus in porcine tracheal respiratory mucus revealed by single particle tracking.

    Directory of Open Access Journals (Sweden)

    Xiaoyun Yang

    Full Text Available Pseudorabies virus (PRV initially replicates in the porcine upper respiratory tract. It easily invades the mucosae and submucosae for subsequent spread throughout the body via blood vessels and nervous system. In this context, PRV developed ingenious processes to overcome different barriers such as epithelial cells and the basement membrane. Another important but often overlooked barrier is the substantial mucus layer which coats the mucosae. However, little is known about how PRV particles interact with porcine respiratory mucus. We therefore measured the barrier properties of porcine tracheal respiratory mucus, and investigated the mobility of nanoparticles including PRV in this mucus. We developed an in vitro model utilizing single particle tracking microscopy. Firstly, the mucus pore size was evaluated with polyethylene glycol coupled (PEGylated nanoparticles and atomic force microscope. Secondly, the mobility of PRV in porcine tracheal respiratory mucus was examined and compared with that of negative, positive and PEGylated nanoparticles. The pore size of porcine tracheal respiratory mucus ranged from 80 to 1500 nm, with an average diameter of 455±240 nm. PRV (zeta potential: -31.8±1.5 mV experienced a severe obstruction in porcine tracheal respiratory mucus, diffusing 59-fold more slowly than in water. Similarly, the highly negatively (-49.8±0.6 mV and positively (36.7±1.1 mV charged nanoparticles were significantly trapped. In contrast, the nearly neutral, hydrophilic PEGylated nanoparticles (-9.6±0.8 mV diffused rapidly, with the majority of particles moving 50-fold faster than PRV. The mobility of the particles measured was found to be related but not correlated to their surface charge. Furthermore, PEGylated PRV (-13.8±0.9 mV was observed to diffuse 13-fold faster than native PRV. These findings clearly show that the mobility of PRV was significantly hindered in porcine tracheal respiratory mucus, and that the obstruction of PRV

  3. Learning based particle filtering object tracking for visible-light systems.

    Science.gov (United States)

    Sun, Wei

    2015-10-01

    We propose a novel object tracking framework based on online learning scheme that can work robustly in challenging scenarios. Firstly, a learning-based particle filter is proposed with color and edge-based features. We train a. support vector machine (SVM) classifier with object and background information and map the outputs into probabilities, then the weight of particles in a particle filter can be calculated by the probabilistic outputs to estimate the state of the object. Secondly, the tracking loop starts with Lucas-Kanade (LK) affine template matching and follows by learning-based particle filter tracking. Lucas-Kanade method estimates errors and updates object template in the positive samples dataset, and learning-based particle filter tracker will start if the LK tracker loses the object. Finally, SVM classifier evaluates every tracked appearance to update the training set or restart the tracking loop if necessary. Experimental results show that our method is robust to challenging light, scale and pose changing, and test on eButton image sequence also achieves satisfactory tracking performance.

  4. Radiation chemistry of heavy-particle tracks. I. General considerations

    International Nuclear Information System (INIS)

    Magee, J.L.; Chatterjee, A.

    1980-01-01

    The radiation chemistry of heavy-particle tracks in dilute aqueous solution is considered in a unified manner. Emphasis is on the physical and chemical phenomena which are involved rather than on the construction of models to be used in actual calculations although the latter problem is discussed. A differential segment of a heavy-particle track is composed of two parts which we call core and penumbra; elementary considerations show that all properties of such a differential track can be uniquely specified in terms of a two-parameter system, and we choose energy per nucleon (E) and atomic numbers (Z) as independent parameters. The nature of heavy-particle-track processes varies with the magnitude of the energy deposit (LET), and we discuss three categories of track problems, for low-, intermediate-, and high-LET cases, respectively. Scavenger reactions normally terminate radical recombination in a track, and for heavy-particle tracks we find a criterion involving the scavenger concentration for a convenient separation of core and penumbra into essentially noninteracting parts which can be treated independently. Problems of the core expansion in the three regions are considered, and it is found that a versatile model can be constructed on concepts previously introduced by Ganguly and Magee. A model for the penumbra, based on the authors' electron-track theory, is presented and discussed

  5. Measuring the 3D motion of particles in microchannel acoustophoresis using astigmatism particle tracking velocimetry

    DEFF Research Database (Denmark)

    Augustsson, P.; Barnkob, Rune; Bruus, Henrik

    2012-01-01

    We introduce full three-dimensional tracking of particles in an acoustophoresis microchannel using Astigmatism Particle Tracking Velocimetry (APTV) [1]. For the first time the interaction between acoustic streaming and the primary acoustic radiation force in microchannel acoustophoresis are exami...... relative to the influence from the acoustic radiation force. The current study opens the route to optimized acoustophoretic system design and operation to enable manipulation of small biological components such as spores, bacteria and viruses.......We introduce full three-dimensional tracking of particles in an acoustophoresis microchannel using Astigmatism Particle Tracking Velocimetry (APTV) [1]. For the first time the interaction between acoustic streaming and the primary acoustic radiation force in microchannel acoustophoresis...... are examined in three dimensions. We have quantified the velocity of particles driven by the primary acoustic radiation force and acoustic streaming, respectively, using 0.5-μm and 5-μm particles. Increased ultrasound frequency and lowered viscosity of the medium reduced the influence of acoustic streaming...

  6. A CVD diamond beam telescope for charged particle tracking

    CERN Document Server

    Adam, W; Bergonzo, P; de Boer, Wim; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; D'Angelo, P; Dabrowski, W; Delpierre, P A; Dulinski, W; Doroshenko, J; Doucet, M; van Eijk, B; Fallou, A; Fischer, P; Fizzotti, F; Kania, D R; Gan, K K; Grigoriev, E; Hallewell, G D; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kaplon, J; Kass, R; Keil, M; Knöpfle, K T; Koeth, T W; Krammer, Manfred; Meuser, S; Lo Giudice, A; MacLynne, L; Manfredotti, C; Meier, D; Menichelli, D; Mishina, M; Moroni, L; Noomen, J; Oh, A; Pan, L S; Pernicka, Manfred; Perera, L P; Riester, J L; Roe, S; Rudge, A; Russ, J; Sala, S; Sampietro, M; Schnetzer, S; Sciortino, S; Stelzer, H; Stone, R; Suter, B; Trischuk, W; Tromson, D; Vittone, E; Weilhammer, Peter; Wermes, N; Wetstein, M; Zeuner, W; Zöller, M

    2002-01-01

    CVD diamond is a radiation hard sensor material which may be used for charged particle tracking near the interaction region in experiments at high luminosity colliders. The goal of the work described here is to investigate the use of several detector planes made of CVD diamond strip sensors for charged particle tracking. Towards this end a tracking telescope composed entirely of CVD diamond planes has been constructed. The telescope was tested in muon beams and its tracking capability has been investigated.

  7. Particle tracking code of simulating global RF feedback

    International Nuclear Information System (INIS)

    Mestha, L.K.

    1991-09-01

    It is well known in the ''control community'' that a good feedback controller design is deeply rooted in the physics of the system. For example, when accelerating the beam we must keep several parameters under control so that the beam travels within the confined space. Important parameters include the frequency and phase of the rf signal, the dipole field, and the cavity voltage. Because errors in these parameters will progressively mislead the beam from its projected path in the tube, feedback loops are used to correct the behavior. Since the feedback loop feeds energy to the system, it changes the overall behavior of the system and may drive it to instability. Various types of controllers are used to stabilize the feedback loop. Integrating the beam physics with the feedback controllers allows us to carefully analyze the beam behavior. This will not only guarantee optimal performance but will also significantly enhance the ability of the beam control engineer to deal effectively with the interaction of various feedback loops. Motivated by this theme, we developed a simple one-particle tracking code to simulate particle behavior with feedback controllers. In order to achieve our fundamental objective, we can ask some key questions: What are the input and output parameters? How can they be applied to the practical machine? How can one interface the rf system dynamics such as the transfer characteristics of the rf cavities and phasing between the cavities? Answers to these questions can be found by considering a simple case of a single cavity with one particle, tracking it turn-by-turn with appropriate initial conditions, then introducing constraints on crucial parameters. Critical parameters are rf frequency, phase, and amplitude once the dipole field has been given. These are arranged in the tracking code so that we can interface the feedback system controlling them

  8. Confined Diffusion Without Fences of a G-Protein-Coupled Receptor as Revealed by Single Particle Tracking

    Science.gov (United States)

    Daumas, Frédéric; Destainville, Nicolas; Millot, Claire; Lopez, André; Dean, David; Salomé, Laurence

    2003-01-01

    Single particle tracking is a powerful tool for probing the organization and dynamics of the plasma membrane constituents. We used this technique to study the μ-opioid receptor belonging to the large family of the G-protein-coupled receptors involved with other partners in a signal transduction pathway. The specific labeling of the receptor coupled to a T7-tag at its N-terminus, stably expressed in fibroblastic cells, was achieved by colloidal gold coupled to a monoclonal anti T7-tag antibody. The lateral movements of the particles were followed by nanovideomicroscopy at 40 ms time resolution during 2 min with a spatial precision of 15 nm. The receptors were found to have either a slow or directed diffusion mode (10%) or a walking confined diffusion mode (90%) composed of a long-term random diffusion and a short-term confined diffusion, and corresponding to a diffusion confined within a domain that itself diffuses. The results indicate that the confinement is due to an effective harmonic potential generated by long-range attraction between the membrane proteins. A simple model for interacting membrane proteins diffusion is proposed that explains the variations with the domain size of the short-term and long-term diffusion coefficients. PMID:12524289

  9. Particle Tracking and Deposition from CFD Simulations using a Viscoelastic Particle Model

    NARCIS (Netherlands)

    Losurdo, M.

    2009-01-01

    In the present dissertation the mathematical modelling of particle deposition is studied and the solution algorithms for particle tracking, deposition and deposit growth are developed. Particle deposition is modelled according to mechanical impact and contact mechanics taking into account the

  10. Tri-track: free software for large-scale particle tracking.

    Science.gov (United States)

    Vallotton, Pascal; Olivier, Sandra

    2013-04-01

    The ability to correctly track objects in time-lapse sequences is important in many applications of microscopy. Individual object motions typically display a level of dynamic regularity reflecting the existence of an underlying physics or biology. Best results are obtained when this local information is exploited. Additionally, if the particle number is known to be approximately constant, a large number of tracking scenarios may be rejected on the basis that they are not compatible with a known maximum particle velocity. This represents information of a global nature, which should ideally be exploited too. Some time ago, we devised an efficient algorithm that exploited both types of information. The tracking task was reduced to a max-flow min-cost problem instance through a novel graph structure that comprised vertices representing objects from three consecutive image frames. The algorithm is explained here for the first time. A user-friendly implementation is provided, and the specific relaxation mechanism responsible for the method's effectiveness is uncovered. The software is particularly competitive for complex dynamics such as dense antiparallel flows, or in situations where object displacements are considerable. As an application, we characterize a remarkable vortex structure formed by bacteria engaged in interstitial motility.

  11. Canonical particle tracking in undulator fields

    International Nuclear Information System (INIS)

    Wuestefeld, G.; Bahrdt, J.

    1991-01-01

    A new algebraic mapping routine for particle tracking across wiggler and undulator fields in presented. It is based on a power series expansion of the generating function to guarantee fully canonical transformations. This method is 10 to 100 times faster than integration routines, applied in tracking codes like BETA or RACETRACK. The tracking method presented is not restricted to wigglers and undulators, it can be applied to other magnetic fields as well such as fringing fields of quadrupoles or dipoles if the suggested expansion converges

  12. An efficient fluorescent single-particle position tracking system for long-term pulsed measurements of nitrogen-vacancy centers in diamond

    Science.gov (United States)

    Kim, Kiho; Yun, Jiwon; Lee, Donghyuck; Kim, Dohun

    2018-02-01

    A simple and convenient design enables real-time three-dimensional position tracking of nitrogen-vacancy (NV) centers in diamond. The system consists entirely of commercially available components (a single-photon counter, a high-speed digital-to-analog converter, a phase-sensitive detector-based feedback device, and a piezo stage), eliminating the need for custom programming or rigorous optimization processes. With a large input range of counters and trackers combined with high sensitivity of single-photon counting, high-speed position tracking (upper bound recovery time of 0.9 s upon 250 nm of step-like positional shift) not only of bright ensembles, but also of low-photon-collection-efficiency single to few NV centers (down to 103 s-1) is possible. The tracking requires position modulation of only 10 nm, which allows simultaneous position tracking and pulsed measurements in the long term. Therefore, this tracking system enables measuring a single-spin magnetic resonance and Rabi oscillations at a very high resolution even without photon collection optimization. The system is widely applicable to various fields related to NV center quantum manipulation research such as NV optical trapping, NV tracking in fluid dynamics, and biological sensing using NV centers inside a biological cell.

  13. PARTICLE FILTER BASED VEHICLE TRACKING APPROACH WITH IMPROVED RESAMPLING STAGE

    Directory of Open Access Journals (Sweden)

    Wei Leong Khong

    2014-02-01

    Full Text Available Optical sensors based vehicle tracking can be widely implemented in traffic surveillance and flow control. The vast development of video surveillance infrastructure in recent years has drawn the current research focus towards vehicle tracking using high-end and low cost optical sensors. However, tracking vehicles via such sensors could be challenging due to the high probability of changing vehicle appearance and illumination, besides the occlusion and overlapping incidents. Particle filter has been proven as an approach which can overcome nonlinear and non-Gaussian situations caused by cluttered background and occlusion incidents. Unfortunately, conventional particle filter approach encounters particle degeneracy especially during and after the occlusion. Particle filter with sampling important resampling (SIR is an important step to overcome the drawback of particle filter, but SIR faced the problem of sample impoverishment when heavy particles are statistically selected many times. In this work, genetic algorithm has been proposed to be implemented in the particle filter resampling stage, where the estimated position can converge faster to hit the real position of target vehicle under various occlusion incidents. The experimental results show that the improved particle filter with genetic algorithm resampling method manages to increase the tracking accuracy and meanwhile reduce the particle sample size in the resampling stage.

  14. Spin resonance strength calculation through single particle tracking for RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Dutheil, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ranjbar, V. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    The strengths of spin resonances for the polarized-proton operation in the Relativistic Heavy Ion Collider are currently calculated with the code DEPOL, which numerically integrates through the ring based on an analytical approximate formula. In this article, we test a new way to calculate the spin resonance strengths by performing Fourier transformation to the actual transverse magnetic fields seen by a single particle traveling through the ring. Comparison of calculated spin resonance strengths is made between this method and DEPOL.

  15. Weighted-delta-tracking for Monte Carlo particle transport

    International Nuclear Information System (INIS)

    Morgan, L.W.G.; Kotlyar, D.

    2015-01-01

    Highlights: • This paper presents an alteration to the Monte Carlo Woodcock tracking technique. • The alteration improves computational efficiency within regions of high absorbers. • The rejection technique is replaced by a statistical weighting mechanism. • The modified Woodcock method is shown to be faster than standard Woodcock tracking. • The modified Woodcock method achieves a lower variance, given a specified accuracy. - Abstract: Monte Carlo particle transport (MCPT) codes are incredibly powerful and versatile tools to simulate particle behavior in a multitude of scenarios, such as core/criticality studies, radiation protection, shielding, medicine and fusion research to name just a small subset applications. However, MCPT codes can be very computationally expensive to run when the model geometry contains large attenuation depths and/or contains many components. This paper proposes a simple modification to the Woodcock tracking method used by some Monte Carlo particle transport codes. The Woodcock method utilizes the rejection method for sampling virtual collisions as a method to remove collision distance sampling at material boundaries. However, it suffers from poor computational efficiency when the sample acceptance rate is low. The proposed method removes rejection sampling from the Woodcock method in favor of a statistical weighting scheme, which improves the computational efficiency of a Monte Carlo particle tracking code. It is shown that the modified Woodcock method is less computationally expensive than standard ray-tracing and rejection-based Woodcock tracking methods and achieves a lower variance, given a specified accuracy

  16. Radioactive Particle Tracking (RPT): The Powerful Industrial Radiotracer Techniques for Hydrodynamics and Flow Visualization Studies

    International Nuclear Information System (INIS)

    Mohd Amirul Syafiq Mohd Yunos

    2016-01-01

    Full text: Radioactive particle tracking (RPT) techniques have been widely applied in the field of chemical engineering, especially in hydrodynamics in multiphase reactors. This technique is widely used to monitor the motion of the flow inside a reactor by using a single radioactive particle tracer that is neutrally buoyant with respect to the phase is used as a tracker. The particle moves inside the volume of interest and its positions are determined by an array of scintillation detectors counting in coming photons. Particle position reconstruction algorithms have been traditionally used to map measured counts rate into the coordinates by solving a minimization problem between measured events and calibration data. RPT have been used to validate respective-scale CFD models to partial success. This presentation described an introduction to radioactive particle tracking and summarizing a history of such developments and the current state of this method in Malaysian Nuclear Agency, with a perspective towards the future and how these investigations may help scale-up developments. (author)

  17. Development and applications of single particle orientation and rotational tracking in dynamic systems

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kuangcai [Iowa State Univ., Ames, IA (United States)

    2016-02-19

    The goal of this study is to help with future data analysis and experiment designs in rotational dynamics research using DIC-based SPORT technique. Most of the current studies using DIC-based SPORT techniques are technical demonstrations. Understanding the mechanisms behind the observed rotational behaviors of the imaging probes should be the focus of the future SPORT studies. More efforts are still needed in the development of new imaging probes, particle tracking methods, instrumentations, and advanced data analysis methods to further extend the potential of DIC-based SPORT technique.

  18. Ballistic target tracking algorithm based on improved particle filtering

    Science.gov (United States)

    Ning, Xiao-lei; Chen, Zhan-qi; Li, Xiao-yang

    2015-10-01

    Tracking ballistic re-entry target is a typical nonlinear filtering problem. In order to track the ballistic re-entry target in the nonlinear and non-Gaussian complex environment, a novel chaos map particle filter (CMPF) is used to estimate the target state. CMPF has better performance in application to estimate the state and parameter of nonlinear and non-Gassuian system. The Monte Carlo simulation results show that, this method can effectively solve particle degeneracy and particle impoverishment problem by improving the efficiency of particle sampling to obtain the better particles to part in estimation. Meanwhile CMPF can improve the state estimation precision and convergence velocity compared with EKF, UKF and the ordinary particle filter.

  19. Liquid nitrogen enhancement of alpha particle tracks in a polycarbonate detector

    International Nuclear Information System (INIS)

    Pilione, L.J.

    1977-01-01

    Makrofol-E polycarbonate detectors were exposed to 1 to 3 MeV alpha particles and subsequently immersed in liquid nitrogen for various periods of time. The influence of the liquid nitrogen on the track recording properties of the detector has been found by measuring the track densities and diameters. Track densities increase with immersion time with a maximum gain of approximately 9% after 1200 min in liquid nitrogen. Track enhancement decreases with waiting time between the end of alpha particle exposure and the beginning of liquid nitrogen immersion. Track diameters decrease with time after passage of the particles and this process is accelerated by immersion in liquid nitrogen. (author)

  20. Determining of the track parameters in solid state nuclear track detectors Cr 39 due to alpha particles

    International Nuclear Information System (INIS)

    Kostic, D.; Nikezic, D.

    1997-01-01

    An equation of the etch pit wall is proposed to be used for simulation of the track growth and calculating the major and the minor axis of etch pit opening. Dependence on the following parameters is set up: distance along a track from the point where the particle entered the detector, ratio of the track etch wall to the bulk etch rate, integration constant determined from particle penetration depth and normal distance from the particle trajectory to the etch pit wall. The corresponding computer program was written. The input parameters of this program are: alpha particles energy, incidence angle and removed layer; the output gives track parameters. The results obtained by this method are compared to another approach given by Somogy and Szalay (1973) and a reasonably good agreement is found. (author)

  1. Accumulative difference image protocol for particle tracking in fluorescence microscopy tested in mouse lymphonodes.

    Science.gov (United States)

    Villa, Carlo E; Caccia, Michele; Sironi, Laura; D'Alfonso, Laura; Collini, Maddalena; Rivolta, Ilaria; Miserocchi, Giuseppe; Gorletta, Tatiana; Zanoni, Ivan; Granucci, Francesca; Chirico, Giuseppe

    2010-08-17

    The basic research in cell biology and in medical sciences makes large use of imaging tools mainly based on confocal fluorescence and, more recently, on non-linear excitation microscopy. Substantially the aim is the recognition of selected targets in the image and their tracking in time. We have developed a particle tracking algorithm optimized for low signal/noise images with a minimum set of requirements on the target size and with no a priori knowledge of the type of motion. The image segmentation, based on a combination of size sensitive filters, does not rely on edge detection and is tailored for targets acquired at low resolution as in most of the in-vivo studies. The particle tracking is performed by building, from a stack of Accumulative Difference Images, a single 2D image in which the motion of the whole set of the particles is coded in time by a color level. This algorithm, tested here on solid-lipid nanoparticles diffusing within cells and on lymphocytes diffusing in lymphonodes, appears to be particularly useful for the cellular and the in-vivo microscopy image processing in which few a priori assumption on the type, the extent and the variability of particle motions, can be done.

  2. Accumulative difference image protocol for particle tracking in fluorescence microscopy tested in mouse lymphonodes.

    Directory of Open Access Journals (Sweden)

    Carlo E Villa

    Full Text Available The basic research in cell biology and in medical sciences makes large use of imaging tools mainly based on confocal fluorescence and, more recently, on non-linear excitation microscopy. Substantially the aim is the recognition of selected targets in the image and their tracking in time. We have developed a particle tracking algorithm optimized for low signal/noise images with a minimum set of requirements on the target size and with no a priori knowledge of the type of motion. The image segmentation, based on a combination of size sensitive filters, does not rely on edge detection and is tailored for targets acquired at low resolution as in most of the in-vivo studies. The particle tracking is performed by building, from a stack of Accumulative Difference Images, a single 2D image in which the motion of the whole set of the particles is coded in time by a color level. This algorithm, tested here on solid-lipid nanoparticles diffusing within cells and on lymphocytes diffusing in lymphonodes, appears to be particularly useful for the cellular and the in-vivo microscopy image processing in which few a priori assumption on the type, the extent and the variability of particle motions, can be done.

  3. Nuclear track radiography of 'hot' aerosol particles

    International Nuclear Information System (INIS)

    Boulyga, S.F.; Kievitskaja, A.I.; Kievets, M.K.; Lomonosova, E.M.; Zhuk, I.V.; Yaroshevich, O.I.; Perelygin, V.P.; Petrova, R.; Brandt, R.; Vater, P.

    1999-01-01

    Nuclear track radiography was applied to identify aerosol 'hot' particles which contain elements of nuclear fuel and fallout after Chernobyl NPP accident. For the determination of the content of transuranium elements in radioactive aerosols the measurement of the α-activity of 'hot' particles by SSNTD was used in this work, as well as radiography of fission fragments formed as a result of the reactions (n,f) and (γ,f) in the irradiation of aerosol filters by thermal neutrons and high energy gamma quanta. The technique allowed the sizes and alpha-activity of 'hot' particles to be determined without extracting them from the filter, as well as the determination of the uranium content and its enrichment by 235 U, 239 Pu and 241 Pu isotopes. Sensitivity of determination of alpha activity by fission method is 5x10 -6 Bq per particle. The software for the system of image analysis was created. It ensured the identification of track clusters on an optical image of the SSNTD surface obtained through a video camera and the determination of size and activity of 'hot' particles

  4. Canonical harmonic tracking of charged particles in circular accelerators

    International Nuclear Information System (INIS)

    Kvardakov, V.; Levichev, E.

    2006-01-01

    Harmonic tracking is a method used to study non-linear particle dynamics in a circular accelerator. The tracking algorithm is based on numerical solution of the Hamilton equations of motion. An essential feature of the method is the approximation of Hamiltonian perturbation terms by a finite number of azimuthal harmonics, which provides an effective tool for optimization of non-linear particle motion. The equations of motion are solved canonically, with the first-order prediction made using the explicit Lie transformation. The major features of harmonic tracking are presented and examples of its application are discussed

  5. Canonical harmonic tracking of charged particles in circular accelerators

    Science.gov (United States)

    Kvardakov, V.; Levichev, E.

    2006-03-01

    Harmonic tracking is a method used to study non-linear particle dynamics in a circular accelerator. The tracking algorithm is based on numerical solution of the Hamilton equations of motion. An essential feature of the method is the approximation of Hamiltonian perturbation terms by a finite number of azimuthal harmonics, which provides an effective tool for optimization of non-linear particle motion. The equations of motion are solved canonically, with the first-order prediction made using the explicit Lie transformation. The major features of harmonic tracking are presented and examples of its application are discussed.

  6. Single Particle Linear and Nonlinear Dynamics

    International Nuclear Information System (INIS)

    Cai, Y

    2004-01-01

    I will give a comprehensive review of existing particle tracking tools to assess long-term particle stability for small and large accelerators in the presence of realistic magnetic imperfections and machine misalignments. The emphasis will be on the tracking and analysis tools based upon the differential algebra, Lie operator, and ''polymorphism''. Using these tools, a uniform linear and non-linear analysis will be outlined as an application of the normal form

  7. Particle tracking at the SSC

    International Nuclear Information System (INIS)

    Freeman, J.E.; Williams, H.H.

    1984-01-01

    The intent of this study was to get some idea of how difficult tracking will be at √s = 40 TeV for events involving momentum transfers in the vicinity of several hundred GeV. While some studies have been done to determine the minimum separation between two random tracks as a function of radius, the authors know of no previous study in this energy range which has considered the ''observability'' of a track along its entire path length, including the effects of magnetic field and finite double track resolution. They have not considered the effects of pileup due to multiple events, concentrating instead of the inherent difficulties of single high p/sub T/ events

  8. Adaptation of multidimensional group particle tracking and particle wall-boundary condition model to the FDNS code

    Science.gov (United States)

    Chen, Y. S.; Farmer, R. C.

    1992-01-01

    A particulate two-phase flow CFD model was developed based on the FDNS code which is a pressure based predictor plus multi-corrector Navier-Stokes flow solver. Turbulence models with compressibility correction and the wall function models were employed as submodels. A finite-rate chemistry model was used for reacting flow simulation. For particulate two-phase flow simulations, a Eulerian-Lagrangian solution method using an efficient implicit particle trajectory integration scheme was developed in this study. Effects of particle-gas reaction and particle size change to agglomeration or fragmentation were not considered in this investigation. At the onset of the present study, a two-dimensional version of FDNS which had been modified to treat Lagrangian tracking of particles (FDNS-2DEL) had already been written and was operational. The FDNS-2DEL code was too slow for practical use, mainly because it had not been written in a form amenable to vectorization on the Cray, nor was the full three-dimensional form of FDNS utilized. The specific objective of this study was to reorder to calculations into long single arrays for automatic vectorization on the Cray and to implement the full three-dimensional version of FDNS to produce the FDNS-3DEL code. Since the FDNS-2DEL code was slow, a very limited number of test cases had been run with it. This study was also intended to increase the number of cases simulated to verify and improve, as necessary, the particle tracking methodology coded in FDNS.

  9. Particle Tracking Model (PTM) with Coastal Modeling System (CMS)

    Science.gov (United States)

    2015-11-04

    Coastal Inlets Research Program Particle Tracking Model (PTM) with Coastal Modeling System ( CMS ) The Particle Tracking Model (PTM) is a Lagrangian...currents and waves. The Coastal Inlets Research Program (CIRP) supports the PTM with the Coastal Modeling System ( CMS ), which provides coupled wave...and current forcing for PTM simulations. CMS -PTM is implemented in the Surface-water Modeling System, a GUI environment for input development

  10. Single Particle Linear and Nonlinear Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Y

    2004-06-25

    I will give a comprehensive review of existing particle tracking tools to assess long-term particle stability for small and large accelerators in the presence of realistic magnetic imperfections and machine misalignments. The emphasis will be on the tracking and analysis tools based upon the differential algebra, Lie operator, and ''polymorphism''. Using these tools, a uniform linear and non-linear analysis will be outlined as an application of the normal form.

  11. Theoretical aspects of the formation and evolution of charged particle tracks

    CERN Document Server

    Miterev, A M

    2002-01-01

    Theoretical ideas on the formation and evolution of charged particle tracks in a condensed medium are discussed. The historical development of the field is briefly reviewed. The distribution of charged particle energies on quantum states and the volume of the absorbing medium are considered. and conditions for the formation of various track structures are discussed. The structures of extended heavy-ion tracks are compared for some ion parameters and track characteristics take to be the same. Relaxation processes in the tracks of multicharged ions ate analyzed. Track effects ate considered and possible mechanisms for the formation of chemically active defects in a latent track are described

  12. New approach of modeling charged particles track development in CR-39 detectors

    International Nuclear Information System (INIS)

    Azooz, A.A.; Hermsdorf, D.; Al-Jubbori, M.A.

    2013-01-01

    In this work, previous modeling of protons and alpha particles track length development in CR-39 solid state nuclear track detectors SSNTD is modified and further extended. The extension involved the accommodation of heavier ions into the model. These ions include deuteron, lithium, boron, carbon, nitrogen and oxygen ions. The new modeling does not contain any case sensitive free fitting parameters. Model calculation results are found to be in good agreement with both experimental data and SRIM software range energy dependence predictions. The access to a single unified and differentiable track length development equation results in the ability to obtain direct results for track etching rates. - Highlights: • New modeling of ions track length evolution measured by different authors. • Ions considered are p, d, α, Li, B, C, N, O. • Equations obtained to describe L(t) and etch rate for all ions at wide energy range. • Equations obtained do not involve any free fitting parameters. • Ions range values obtained compare well with results of SRIM software

  13. Single Particle Tracking reveals two distinct environments for CD4 receptors at the surface of living T lymphocytes

    International Nuclear Information System (INIS)

    Mascalchi, Patrice; Lamort, Anne Sophie; Salomé, Laurence; Dumas, Fabrice

    2012-01-01

    Highlights: ► We studied the diffusion of single CD4 receptors on living lymphocytes. ► This study reveals that CD4 receptors have either a random or confined diffusion. ► The dynamics of unconfined CD4 receptors was accelerated by a temperature raise. ► The dynamics of confined CD4 receptors was unchanged by a temperature raise. ► Our results suggest the existence of two different environments for CD4 receptors. -- Abstract: We investigated the lateral diffusion of the HIV receptor CD4 at the surface of T lymphocytes at 20 °C and 37 °C by Single Particle Tracking using Quantum Dots. We found that the receptors presented two major distinct behaviors that were not equally affected by temperature changes. About half of the receptors showed a random diffusion with a diffusion coefficient increasing upon raising the temperature. The other half of the receptors was permanently or transiently confined with unchanged dynamics on raising the temperature. These observations suggest that two distinct subpopulations of CD4 receptors with different environments are present at the surface of living T lymphocytes.

  14. Induced fission track distribution from highly radioactive particles in fallout materials

    International Nuclear Information System (INIS)

    Hashimoto, Tetsuo; Okada, Tatemichi

    1987-01-01

    Some highly radioactive fallout particles (GPs) from the 19th Chinese nuclear detonation were followed to the neutron irradiation in a reactor after sandwiched with mica detectors. The interesting star-like fission track patterns were revealed on the etched surface of the mica detectors. The simple chemical separation procedure for the GPs was applied for the separation of U and Pu as fissile elements and the both resultant fractions were examined with the similar high sensitive fission tracking detection. Subsequently, a representative track pattern from a black spherical particle was subjected to the determination of fissile nuclide content; comparing the total fission events evaluated on the basis of the numerical calculation of track densities with the total thermal neutron fluence. The results implied that the uranium is responsible for the main fissile nuclide remaining within a particle as unfissioned fractions and should be certainly enriched with respect to U-235 within such small fallout particles. This sophisticated method was also applied to determine the dead GPs, which have been highly radioactive particles just after the detonations, in the rain and snow-residual materials. Many induced star-like fission tracks verified certainly that there remains a lot of dead particles in the atmosheric environment till nowadays. (author)

  15. Secondary particle tracks generated by ion beam irradiation

    Science.gov (United States)

    García, Gustavo

    2015-05-01

    The Low Energy Particle Track Simulation (LEPTS) procedure is a powerful complementary tool to include the effect of low energy electrons and positrons in medical applications of radiation. In particular, for ion-beam cancer treatments provides a detailed description of the role of the secondary electrons abundantly generated around the Bragg peak as well as the possibility of using transmuted positron emitters (C11, O15) as a complement for ion-beam dosimetry. In this study we present interaction probability data derived from IAM-SCAR corrective factors for liquid environments. Using these data, single electron and positron tracks in liquid water and pyrimidine have been simulated providing information about energy deposition as well as the number and type of interactions taking place in any selected ``nanovolume'' of the irradiated area. In collaboration with Francisco Blanco, Universidad Complutense de Madrid; Antonio Mu noz, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Diogo Almeida, Filipe Ferreira da Silva, Paulo Lim ao-Vieira, Universidade Nova de Lisboa. Supported by the Spanish and Portuguese governments.

  16. Nuclear track radiography of 'hot' aerosol particles

    CERN Document Server

    Boulyga, S F; Kievets, M K; Lomonosova, E M; Zhuk, I V; Yaroshevich, O I; Perelygin, V P; Petrova, R I; Brandt, R; Vater, P

    1999-01-01

    Nuclear track radiography was applied to identify aerosol 'hot' particles which contain elements of nuclear fuel and fallout after Chernobyl NPP accident. For the determination of the content of transuranium elements in radioactive aerosols the measurement of the alpha-activity of 'hot' particles by SSNTD was used in this work, as well as radiography of fission fragments formed as a result of the reactions (n,f) and (gamma,f) in the irradiation of aerosol filters by thermal neutrons and high energy gamma quanta. The technique allowed the sizes and alpha-activity of 'hot' particles to be determined without extracting them from the filter, as well as the determination of the uranium content and its enrichment by sup 2 sup 3 sup 5 U, sup 2 sup 3 sup 9 Pu and sup 2 sup 4 sup 1 Pu isotopes. Sensitivity of determination of alpha activity by fission method is 5x10 sup - sup 6 Bq per particle. The software for the system of image analysis was created. It ensured the identification of track clusters on an optical imag...

  17. Evaluation of a digital optical ionizing radiation particle track detector

    International Nuclear Information System (INIS)

    Hunter, S.R.

    1987-06-01

    An ionizing radiation particle track detector is outlined which can, in principle, determine the three-dimensional spatial distribution of all the secondary electrons produced by the passage of ionizing radiation through a low-pressure (0.1 to 10 kPa) gas. The electrons in the particle track are excited by the presence of a high-frequency AC electric field, and two digital cameras image the optical radiation produced in electronic excitation collisions of the surroundings gas by the electrons. The specific requirements of the detector for neutron dosimetry and microdosimetry are outlined (i.e., operating conditions of the digital cameras, high voltage fields, gas mixtures, etc.) along with an estimate of the resolution and sensitivity achievable with this technique. The proposed detector is shown to compare favorable with other methods for obtaining the details of the track structure, particularly in the quality of the information obtainable about the particle track and the comparative simplicity and adaptability of the detector for measuring the secondary electron track structure for many forms of ionizing radiation over a wide range of energies

  18. Alpha particle track coloration in CR-39: Improved observability

    CERN Document Server

    Oezguemues, A

    1999-01-01

    A comparative study of the observability of alpha particle tracks in CR-39 was performed with an optical microscope before and after coloration. The implantation of ink helped in observing the damage zones. At first glance through the microscope, the coloration makes the tracks stand out right away. This coloration is helpful, from the start, in the morphological study of the tracks (size, area, orientation, shape, perimeter). This operation is advantageous in distinguishing the alpha particle tracks from stains or scratches. Thus, the routine counting of the tracks is more easily performed. Consequently, this procedure allowed us: to decrease significantly the standard deviation of the approximate total of the parameters given from the image analysis system (Olympus CUE2); to envision the possibility of reasonably decreasing the etching time in order to limit the loss of information caused by the destruction of the CR-39 during chemical etching and to use a weaker enlarging lens in order to cover a larger fi...

  19. The radiochromic dye film dose meter as a possible test of particle track theory

    International Nuclear Information System (INIS)

    Hansen, J.W.; Jensen, M.; Katz, R.

    1980-09-01

    The response characteristic of the thin-film radiometric dye cyanide plastic dose meter to ionizing radiation of electrons and heavy charged particles is investigated as a possible test of the particle track theory worked out by Robert Katz and coworkers. Dose response curves for low-LET radiation have been investigated and are used for a quality estimation of the response for protons and oxygen ions at 16 and 4 MeV/amu, respectively. A bleaching effect on the colouration at high doses intimates that the target cannot be interpreted lieerally, but it might still be possinle to transfer the function of the macroscopic dose response to a theoretical dose response curve in a microscopic scale for a single ion. From this relation the macroscopic dose response curve can be determined qhen the film is irradiated with heavy ions. It will be shown theoretically that for protons there is no saturation in the track core, whereas calculations for oxygen ions show a heavy saturation in the track core, which means that a part of the ions loose their energy ineffectively. We can conclude that itis possible qualitatively to predict the dose response curve for high-LET particles by means of the dose response curve for low-LET radiation. (author)

  20. Dual-Channel Particle Filter Based Track-Before-Detect for Monopulse Radar

    Directory of Open Access Journals (Sweden)

    Fei Cai

    2014-01-01

    Full Text Available A particle filter based track-before-detect (PF-TBD algorithm is proposed for the monopulse high pulse repetition frequency (PRF pulse Doppler radar. The actual measurement model is adopted, in which the range is highly ambiguous and the sum and difference channels exist in parallel. A quantization method is used to approximate the point spread function to reduce the computation load. The detection decisions of the PF-TBD are fed to a binary integrator to further improve the detection performance. Simulation results show that the proposed algorithm can detect and track the low SNR target efficiently. The detection performance is improved significantly for both the single frame and the multiframe detection compared with the classical detector. A performance comparison with the PF-TBD using sum channel only is also supplied.

  1. Single particle detecting telescope system

    International Nuclear Information System (INIS)

    Yamamoto, I.; Tomiyama, T.; Iga, Y.; Komatsubara, T.; Kanada, M.; Yamashita, Y.; Wada, T.; Furukawa, S.

    1981-01-01

    We constructed the single particle detecting telescope system for detecting a fractionally charged particle. The telescope consists of position detecting counters, wall-less multi-cell chambers, single detecting circuits and microcomputer system as data I/0 processor. Especially, a frequency of double particle is compared the case of the single particle detecting with the case of an ordinary measurement

  2. Imaging of the vertical particle tracks without any depth scanning

    International Nuclear Information System (INIS)

    Soroko, L.M.

    2001-01-01

    The principle of a new optical microscope which enables us to get the image of a vertical particle track without any depth scanning is described. This new optical microscope contains a spatial transformer which consists of mirror lamellar elements and which produces a secondary in focus image of the vertical particle track. Properties of such a system are presented. A longitudinal resolution is estimated

  3. Three-dimensional simulation of the motion of a single particle under a simulated turbulent velocity field

    Science.gov (United States)

    Moreno-Casas, P. A.; Bombardelli, F. A.

    2015-12-01

    A 3D Lagrangian particle tracking model is coupled to a 3D channel velocity field to simulate the saltation motion of a single sediment particle moving in saltation mode. The turbulent field is a high-resolution three dimensional velocity field that reproduces a by-pass transition to turbulence on a flat plate due to free-stream turbulence passing above de plate. In order to reduce computational costs, a decoupled approached is used, i.e., the turbulent flow is simulated independently from the tracking model, and then used to feed the 3D Lagrangian particle model. The simulations are carried using the point-particle approach. The particle tracking model contains three sub-models, namely, particle free-flight, a post-collision velocity and bed representation sub-models. The free-flight sub-model considers the action of the following forces: submerged weight, non-linear drag, lift, virtual mass, Magnus and Basset forces. The model also includes the effect of particle angular velocity. The post-collision velocities are obtained by applying conservation of angular and linear momentum. The complete model was validated with experimental results from literature within the sand range. Results for particle velocity time series and distribution of particle turbulent intensities are presented.

  4. 3D monolithically stacked CMOS active pixel sensor detectors for particle tracking applications

    International Nuclear Information System (INIS)

    Passeri, D; Placidi, P; Servoli, L; Meroli, S; Magalotti, D; Marras, A

    2012-01-01

    In this work we propose an innovative approach to particle tracking based on CMOS Active Pixel Sensors layers, monolithically integrated in an all-in-one chip featuring multiple, stacked, fully functional detector layers capable to provide momentum measurement (particle impact point and direction) within a single detector. This will results in a very low material detector, thus dramatically reducing multiple scattering issues. To this purpose, we rely on the capabilities of the CMOS vertical scale integration (3D IC) technology. A first chip prototype has been fabricated within a multi-project run using a 130 nm CMOS Chartered/Tezzaron technology, featuring two layers bonded face-to-face. Tests have been carried out on full 3D structures, providing the functionalities of both tiers. To this purpose, laser scans have been carried out using highly focussed spot size obtaining coincidence responses of the two layers. Tests have been made as well with X-ray sources in order to calibrate the response of the sensor. Encouraging results have been found, fostering the suitability of both the adopted 3D-IC vertical scale fabrication technology and the proposed approach for particle tracking applications.

  5. Particle tracking from image sequences of complex plasma crystals

    International Nuclear Information System (INIS)

    Hadziavdic, Vedad; Melandsoe, Frank; Hanssen, Alfred

    2006-01-01

    In order to gather information about the physics of the complex plasma crystals from the experimental data, particles have to be tracked through a sequence of images. An application of the Kalman filter for that purpose is presented, using a one-dimensional approximation of the particle dynamics as a model for the filter. It is shown that Kalman filter is capable of tracking dust particles even with high levels of measurement noise. An inherent part of the Kalman filter, the innovation process, can be used to estimate values of the physical system parameters from the experimental data. The method is shown to be able to estimate the characteristic oscillation frequency from noisy data

  6. A parallel algorithm for 3D particle tracking and Lagrangian trajectory reconstruction

    International Nuclear Information System (INIS)

    Barker, Douglas; Zhang, Yuanhui; Lifflander, Jonathan; Arya, Anshu

    2012-01-01

    Particle-tracking methods are widely used in fluid mechanics and multi-target tracking research because of their unique ability to reconstruct long trajectories with high spatial and temporal resolution. Researchers have recently demonstrated 3D tracking of several objects in real time, but as the number of objects is increased, real-time tracking becomes impossible due to data transfer and processing bottlenecks. This problem may be solved by using parallel processing. In this paper, a parallel-processing framework has been developed based on frame decomposition and is programmed using the asynchronous object-oriented Charm++ paradigm. This framework can be a key step in achieving a scalable Lagrangian measurement system for particle-tracking velocimetry and may lead to real-time measurement capabilities. The parallel tracking algorithm was evaluated with three data sets including the particle image velocimetry standard 3D images data set #352, a uniform data set for optimal parallel performance and a computational-fluid-dynamics-generated non-uniform data set to test trajectory reconstruction accuracy, consistency with the sequential version and scalability to more than 500 processors. The algorithm showed strong scaling up to 512 processors and no inherent limits of scalability were seen. Ultimately, up to a 200-fold speedup is observed compared to the serial algorithm when 256 processors were used. The parallel algorithm is adaptable and could be easily modified to use any sequential tracking algorithm, which inputs frames of 3D particle location data and outputs particle trajectories

  7. Single-organelle tracking by two-photon conversion

    Science.gov (United States)

    Watanabe, Wataru; Shimada, Tomoko; Matsunaga, Sachihiro; Kurihara, Daisuke; Fukui, Kiichi; Shin-Ichi Arimura, Shin-Ichi; Tsutsumi, Nobuhiro; Isobe, Keisuke; Itoh, Kazuyoshi

    2007-03-01

    Spatial and temporal information about intracellular objects and their dynamics within a living cell are essential for dynamic analysis of such objects in cell biology. A specific intracellular object can be discriminated by photoactivatable fluorescent proteins that exhibit pronounced light-induced spectral changes. Here, we report on selective labeling and tracking of a single organelle by using two-photon conversion of a photoconvertible fluorescent protein with near-infrared femtosecond laser pulses. We performed selective labeling of a single mitochondrion in a living tobacco BY-2 cell using two-photon photoconversion of Kaede. Using this technique, we demonstrated that, in plants, the directed movement of individual mitochondria along the cytoskeletons was mediated by actin filaments, whereas microtubules were not required for the movement of mitochondria. This single-organelle labeling technique enabled us to track the dynamics of a single organelle, revealing the mechanisms involved in organelle dynamics. The technique has potential application in direct tracking of selective cellular and intracellular structures.

  8. Robust and Adaptive Block Tracking Method Based on Particle Filter

    Directory of Open Access Journals (Sweden)

    Bin Sun

    2015-10-01

    Full Text Available In the field of video analysis and processing, object tracking is attracting more and more attention especially in traffic management, digital surveillance and so on. However problems such as objects’ abrupt motion, occlusion and complex target structures would bring difficulties to academic study and engineering application. In this paper, a fragmentsbased tracking method using the block relationship coefficient is proposed. In this method, we use particle filter algorithm and object region is divided into blocks initially. The contribution of this method is that object features are not extracted just from a single block, the relationship between current block and its neighbor blocks are extracted to describe the variation of the block. Each block is weighted according to the block relationship coefficient when the block is voted on the most matched region in next frame. This method can make full use of the relationship between blocks. The experimental results demonstrate that our method can provide good performance in condition of occlusion and abrupt posture variation.

  9. Particle tracking in sophisticated CAD models for simulation purposes

    International Nuclear Information System (INIS)

    Sulkimo, J.; Vuoskoski, J.

    1995-01-01

    The transfer of physics detector models from computer aided design systems to physics simulation packages like GEANT suffers from certain limitations. In addition, GEANT is not able to perform particle tracking in CAD models. We describe an application which is able to perform particle tracking in boundary models constructed in CAD systems. The transfer file format used is the new international standard, STEP. The design and implementation of the application was carried out using object-oriented techniques. It will be integrated in the future object-oriented version of GEANT. (orig.)

  10. Particle tracking in sophisticated CAD models for simulation purposes

    Science.gov (United States)

    Sulkimo, J.; Vuoskoski, J.

    1996-02-01

    The transfer of physics detector models from computer aided design systems to physics simulation packages like GEANT suffers from certain limitations. In addition, GEANT is not able to perform particle tracking in CAD models. We describe an application which is able to perform particle tracking in boundary models constructed in CAD systems. The transfer file format used is the new international standard, STEP. The design and implementation of the application was carried out using object-oriented techniques. It will be integrated in the future object-oriented version of GEANT.

  11. The UIC 406 capacity method used on single track sections

    DEFF Research Database (Denmark)

    Landex, Alex; Kaas, Anders H.; Jacobsen, Erik M.

    2007-01-01

    This paper describes the relatively new UIC 406 capacity method which is an easy and effective way of calculating capacity consumption on railway lines. However, it is possible to expound the method in different ways which can lead to different capacity consumptions. This paper describes the UIC...... 406 method for single track lines and how it is expounded in Denmark. Many capacity analyses using the UIC 406 capacity method for double track lines have been carried out and presented internationally but only few capacity analyses using the UIC 406 capacity method on single track lines have been...... presented. Therefore, the differences between capacity analysis for double track lines and single track lines are discussed in the beginning of this paper. Many of the principles of the UIC 406 capacity analyses on double track lines can be used on single track lines – at least when more than one train...

  12. Charged particle spectroscopy with solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Hunyadi, I.; Somogyi, G.

    1984-01-01

    Some of earlier and recent methods for differentiation of charged particles according to their energy, based on the use of polymeric etch-track detectors (CN, CA, PC and CR-39) are outlined. The principle of three track methods suitable for nuclear spectroscopy is discussed. These are based on the analysis of the diameter, surface size and shape of etch-track 'cones' produced by charged particles in polymers, after using shorter or longer chemical etching processes. Examples are presented from the results of the last decade in ATOMKI, Debrecen, Hungary, concerning the application of nuclear track spectroscopy to different low-energy nuclear reaction studies, angular distribution and excitation function measurements. These involve the study of (d,α) reaction on sup(14)N, sup(19)F and sup(27)Al nuclei, (sup(3)He,α) reactions on sup(15)N, (p,α) reaction on sup(27)Al and the process sup(12)C(sup(12)C, sup(8)Be)sup(16)O. (author)

  13. Track models and radiation chemical yields

    International Nuclear Information System (INIS)

    Chatterjee, A.; Magee, J.L.

    1987-01-01

    The authors are concerned only with systems in which single track effects dominate and radiation chemical yields are sums of yields for individual tracks. The authors know that the energy deposits of heavy particle tracks are composed of spurs along the particle trajectory (about one-half of the energy) and a more diffuse pattern composed of the tracks of knock-on electrons, called the penumbra (about one-half of the energy). The simplest way to introduce the concept of a unified track model for heavy particles is to consider the special case of the track of a heavy particle with an LET below 0.2-0.3eV/A, which in practice limits us to protons, deuterons, or particles with energy above 100 MeV per nucleon. At these LET values, to a good approximation, spurs formed by the main particle track can be considered to remain isolated throughout the radiation chemical reactions

  14. Single particle dynamics

    International Nuclear Information System (INIS)

    Siemens, P.J.; Jensen, A.S.

    1985-01-01

    It is shown that the opening of the 3-quasiparticle continuum at 3Δ sets the energy scale for the enhancement of the effective mass near the Fermi surface of nuclei. The authors argue that the spreading width of single-particle states due to coupling with low-lying collective modes is qualitatively different from the two-body collision mechanism, and contributes little to the single-particle lifetime in the sense of the optical model. (orig.)

  15. Using Gaussian Process Annealing Particle Filter for 3D Human Tracking

    Directory of Open Access Journals (Sweden)

    Michael Rudzsky

    2008-01-01

    Full Text Available We present an approach for human body parts tracking in 3D with prelearned motion models using multiple cameras. Gaussian process annealing particle filter is proposed for tracking in order to reduce the dimensionality of the problem and to increase the tracker's stability and robustness. Comparing with a regular annealed particle filter-based tracker, we show that our algorithm can track better for low frame rate videos. We also show that our algorithm is capable of recovering after a temporal target loss.

  16. Heavy particle track structure parameters for biophysical modelling

    International Nuclear Information System (INIS)

    Watt, D.E.

    1994-01-01

    Averaged values of physical track structure parameters are important in radiobiology and radiological protection for the expression of damage mechanisms and for quantifying radiation effects. To provide a ready reference, tables of relevant quantities have been compiled for heavy charged particles in liquid water. The full tables will be published elsewhere but here illustrative examples are given of the trends for the most important quantities. In the tables, data are given for 74 types of heavy charged particle ranging from protons to uranium ions at specific energies between 0.1 keV/u and 1 GeV/u. Aggregate effects in liquid water are taken into account implicitly in the calculations. Results are presented for instantaneous particle energies and for averages over the charged particle equilibrium spectrum. The latter are of special relevance to radiation dosimetry. Quality parameters calculated are: β 2 ; z 2 /β 2 ; linear primary ionisation and the mean free path between ionisations; LET; track and dose-restricted LET with 100 eV cut-off; relative variances; delta-ray energies and ranges; ion energies and ranges and kerma factors. Here, the procedures used in the calculations are indicated. Representative results are shown in graphical form. The role of the physical track properties is discussed with regard to optimisation of the design of experiments intended to elucidate biological damage mechanisms in mammalian cells and their relevance to radiological protection. ((orig.))

  17. Single-particle tracking of quantum dot-conjugated prion proteins inside yeast cells

    Energy Technology Data Exchange (ETDEWEB)

    Tsuji, Toshikazu; Kawai-Noma, Shigeko [Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, B56, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501 (Japan); Pack, Chan-Gi [Cellular Informatics Laboratory, RIKEN Advanced Science Institute, Wako-shi, Saitama 351-0198 (Japan); Terajima, Hideki [Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, B56, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501 (Japan); Yajima, Junichiro; Nishizaka, Takayuki [Department of Physics, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588 (Japan); Kinjo, Masataka [Laboratory of Molecular Cell Dynamics, Graduate School of Life Sciences, Hokkaido University, Sapporo 001-0021 (Japan); Taguchi, Hideki, E-mail: taguchi@bio.titech.ac.jp [Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, B56, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501 (Japan)

    2011-02-25

    Research highlights: {yields} We develop a method to track a quantum dot-conjugated protein in yeast cells. {yields} We incorporate the conjugated quantum dot proteins into yeast spheroplasts. {yields} We track the motions by conventional or 3D tracking microscopy. -- Abstract: Yeast is a model eukaryote with a variety of biological resources. Here we developed a method to track a quantum dot (QD)-conjugated protein in the budding yeast Saccharomyces cerevisiae. We chemically conjugated QDs with the yeast prion Sup35, incorporated them into yeast spheroplasts, and tracked the motions by conventional two-dimensional or three-dimensional tracking microscopy. The method paves the way toward the individual tracking of proteins of interest inside living yeast cells.

  18. Single-particle tracking of quantum dot-conjugated prion proteins inside yeast cells

    International Nuclear Information System (INIS)

    Tsuji, Toshikazu; Kawai-Noma, Shigeko; Pack, Chan-Gi; Terajima, Hideki; Yajima, Junichiro; Nishizaka, Takayuki; Kinjo, Masataka; Taguchi, Hideki

    2011-01-01

    Research highlights: → We develop a method to track a quantum dot-conjugated protein in yeast cells. → We incorporate the conjugated quantum dot proteins into yeast spheroplasts. → We track the motions by conventional or 3D tracking microscopy. -- Abstract: Yeast is a model eukaryote with a variety of biological resources. Here we developed a method to track a quantum dot (QD)-conjugated protein in the budding yeast Saccharomyces cerevisiae. We chemically conjugated QDs with the yeast prion Sup35, incorporated them into yeast spheroplasts, and tracked the motions by conventional two-dimensional or three-dimensional tracking microscopy. The method paves the way toward the individual tracking of proteins of interest inside living yeast cells.

  19. Charged particle track reconstruction using artificial neural networks

    International Nuclear Information System (INIS)

    Glover, C.; Fu, P.; Gabriel, T.; Handler, T.

    1992-01-01

    This paper summarizes the current state of our research in developing and applying artificial neural network (ANN) algorithm described here is based on a crude model of the retina. It takes as input the coordinates of each charged particle's interaction point (''hit'') in the tracking chamber. The algorithm's output is a set of vectors pointing to other hits that most likely to form a track

  20. Particle track membranes with higher porosity

    International Nuclear Information System (INIS)

    Heinrich, B.; Gemende, B.; Lueck, H.B.

    1992-01-01

    Possibilities of improvement of flux and dirt loading capacity of particle track membranes have been examined. Three different ways were investigated: using a divergent ion beam for the irradiation; enlarging the surface porosity through a conical pore shape; creating an asymmetrical membrane structure with two different porosities. Mathematical models and experimental results have been discussed. 9 figs, 3 tabs

  1. A software for computer automated radioactive particle tracking

    International Nuclear Information System (INIS)

    Vieira, Wilson S.; Brandao, Luis E.; Braz, Delson

    2008-01-01

    TRACO-1 is the first software developed in Brazil for optimization and diagnosis of multiphase chemical reactors employing the technique known as 'Computer Automated Radioactive Particle Tracking' whose main idea is to follow the movement of a punctual radioactive particle inside a vessel. Considering that this particle has a behavior similar of the phase under investigation, important conclusions can be achieved. As a preliminary TRACO-1 evaluation, a simulation was carried out with the aid of a commercial software called MICROSHIELD, version 5.05, to obtain values of photon counting rates at four detector surfaces. These counting were related to the emission of gamma radiation from a radioactive source because they are the main TRACO-1 input variables. Although the results that has been found are incipient, the analysis of them suggest that the tracking of a radioactive source using TRACO- 1 can be well succeed, but a better evaluation of the capabilities of this software will only be achieved after its application in real experiments. (author)

  2. A parallel implementation of particle tracking with space charge effects on an INTEL iPSC/860

    International Nuclear Information System (INIS)

    Chang, L.; Bourianoff, G.; Cole, B.; Machida, S.

    1993-05-01

    Particle-tracking simulation is one of the scientific applications that is well-suited to parallel computations. At the Superconducting Super Collider, it has been theoretically and empirically demonstrated that particle tracking on a designed lattice can achieve very high parallel efficiency on a MIMD Intel iPSC/860 machine. The key to such success is the realization that the particles can be tracked independently without considering their interaction. The perfectly parallel nature of particle tracking is broken if the interaction effects between particles are included. The space charge introduces an electromagnetic force that will affect the motion of tracked particles in 3-D space. For accurate modeling of the beam dynamics with space charge effects, one needs to solve three-dimensional Maxwell field equations, usually by a particle-in-cell (PIC) algorithm. This will require each particle to communicate with its neighbor grids to compute the momentum changes at each time step. It is expected that the 3-D PIC method will degrade parallel efficiency of particle-tracking implementation on any parallel computer. In this paper, we describe an efficient scheme for implementing particle tracking with space charge effects on an INTEL iPSC/860 machine. Experimental results show that a parallel efficiency of 75% can be obtained

  3. Kassiopeia: a modern, extensible C++ particle tracking package

    International Nuclear Information System (INIS)

    Furse, Daniel; Trost, Nikolaus; Babutzka, Martin; Barrett, John P.

    2017-01-01

    The Kassiopeia particle tracking framework is an object-oriented software package using modern C++ techniques, written originally to meet the needs of the KATRIN collaboration. Kassiopeia features a new algorithmic paradigm for particle tracking simulations which targets experiments containing complex geometries and electromagnetic fields, with high priority put on calculation efficiency, customizability, extensibility, and ease-of-use for novice programmers. To solve Kassiopeia's target physics problem the software is capable of simulating particle trajectories governed by arbitrarily complex differential equations of motion, continuous physics processes that may in part be modeled as terms perturbing that equation of motion, stochastic processes that occur in flight such as bulk scattering and decay, and stochastic surface processes occurring at interfaces, including transmission and reflection effects. This entire set of computations takes place against the backdrop of a rich geometry package which serves a variety of roles, including initialization of electromagnetic field simulations and the support of state-dependent algorithm-swapping and behavioral changes as a particle's state evolves. Thanks to the very general approach taken by Kassiopeia it can be used by other experiments facing similar challenges when calculating particle trajectories in electromagnetic fields. It is publicly available at https://github.com/KATRIN-Experiment/Kassiopeia.

  4. Markerless human motion tracking using hierarchical multi-swarm cooperative particle swarm optimization.

    Science.gov (United States)

    Saini, Sanjay; Zakaria, Nordin; Rambli, Dayang Rohaya Awang; Sulaiman, Suziah

    2015-01-01

    The high-dimensional search space involved in markerless full-body articulated human motion tracking from multiple-views video sequences has led to a number of solutions based on metaheuristics, the most recent form of which is Particle Swarm Optimization (PSO). However, the classical PSO suffers from premature convergence and it is trapped easily into local optima, significantly affecting the tracking accuracy. To overcome these drawbacks, we have developed a method for the problem based on Hierarchical Multi-Swarm Cooperative Particle Swarm Optimization (H-MCPSO). The tracking problem is formulated as a non-linear 34-dimensional function optimization problem where the fitness function quantifies the difference between the observed image and a projection of the model configuration. Both the silhouette and edge likelihoods are used in the fitness function. Experiments using Brown and HumanEva-II dataset demonstrated that H-MCPSO performance is better than two leading alternative approaches-Annealed Particle Filter (APF) and Hierarchical Particle Swarm Optimization (HPSO). Further, the proposed tracking method is capable of automatic initialization and self-recovery from temporary tracking failures. Comprehensive experimental results are presented to support the claims.

  5. Caustic meso-optical confocal microscope for vertical particle tracks. Proposal

    International Nuclear Information System (INIS)

    Soroko, L.M.

    1995-01-01

    The principal of the proposed caustic meso-optical microscope for vertical particle tracks in the nuclear photoemulsion is explained. The results of the experiments performed to illustrate the main features of this new meso-optical microscope are given. The proposed caustic meso-optical microscope for vertical particle tracks in the nuclear photoemulsion can be effectively used in the experimental investigation of such rare processes as ν μ - ν τ oscillations and of the Pb-Pb interactions. 2 refs., 7 figs

  6. Particle capture by turbulent recirculation zones measured using long-time Lagrangian particle tracking

    Energy Technology Data Exchange (ETDEWEB)

    Siu, Y.W. [Hong Kong Securities Institute, Department of Professional Education and Training, Central (China); Taylor, A.M.K.P. [Imperial College London, Department of Mechanical Engineering, London (United Kingdom)

    2011-07-15

    We have measured the trajectories of particles into, and around, the recirculation zone formed in water flowing through a sudden pipe expansion with radius ratio 1:3.7, at Reynolds numbers between 5,960 and 41,700 over a range of particle Stokes number (here defined as St=(T{sub f})/({tau} p), where T{sub f} is an appropriate mean or turbulent timescale of the fluid flow and a particle relaxation time, {tau}{sub p},) between 6.2 and 51 and drift parameter between 0.3 and 2.8. The particles were thus weakly inertial but nevertheless heavy with a diameter about an order of magnitude larger than the Kolmogorov scale. Trajectories of particles, released individually into the flow, were taken in a Lagrangian framework by a three-dimensional particle tracking velocimeter using a single 25 Hz framing rate intensified CCD camera. Trajectories are quantified by the axial distribution of the locations of particle axial velocity component reversal and the probability distributions of trajectory angle and curvature. The effect of increasing the drift parameter was to reduce the tendency for particles to enter the recirculation zone. For centreline release, the proportion of particles entering the recirculation zone and acquiring a negative velocity decreased from about 80% to none and from about 66% to none, respectively, as the drift parameter increased from 0.3 to 2.8. Almost half of the particles experienced a relatively large change of direction corresponding to a radius of curvature of their trajectory comparable to, or smaller than, the radius of the downstream pipe. This was due to the interaction between these particles and eddies of this size in the downstream pipe and provides experimental evidence that particles are swept by large eddies into the recirculation zone over 1.0 < Z{sup *} < 2.5, where Z{sup *} is axial distance from the expansion plane normalized by the downstream pipe diameter, which was well upstream of the reattachment point at the wall (Z

  7. CONTRIBUTION OF DIFFERENT PARTICLES MEASURED WITH TRACK ETCHED DETECTORS ONBOARD ISS.

    Science.gov (United States)

    Ambrožová, I; Davídková, M; Brabcová, K Pachnerová; Tolochek, R V; Shurshakov, V A

    2017-09-29

    Cosmic radiation consists of primary high-energy galactic and solar particles. When passing through spacecraft walls and astronauts' bodies, the spectrum becomes even more complex due to generating of secondary particles through fragmentation and nuclear interactions. Total radiation exposure is contributed by both these components. With an advantage, space research uses track etched detectors from the group of passive detectors visualizing the tracks of particles, in this case by etching. The detectors can discriminate between various components of cosmic radiation. A method is introduced for the separation of the different types of particles according to their range using track etched detectors. The method is demonstrated using detectors placed in Russian segment of the International Space Station in 2009. It is shown that the primary high-energy heavy ions with long range contribute up to 56% of the absorbed dose and up to 50% to the dose equivalent. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. A hand tracking algorithm with particle filter and improved GVF snake model

    Science.gov (United States)

    Sun, Yi-qi; Wu, Ai-guo; Dong, Na; Shao, Yi-zhe

    2017-07-01

    To solve the problem that the accurate information of hand cannot be obtained by particle filter, a hand tracking algorithm based on particle filter combined with skin-color adaptive gradient vector flow (GVF) snake model is proposed. Adaptive GVF and skin color adaptive external guidance force are introduced to the traditional GVF snake model, guiding the curve to quickly converge to the deep concave region of hand contour and obtaining the complex hand contour accurately. This algorithm realizes a real-time correction of the particle filter parameters, avoiding the particle drift phenomenon. Experimental results show that the proposed algorithm can reduce the root mean square error of the hand tracking by 53%, and improve the accuracy of hand tracking in the case of complex and moving background, even with a large range of occlusion.

  9. A feature point identification method for positron emission particle tracking with multiple tracers

    Energy Technology Data Exchange (ETDEWEB)

    Wiggins, Cody, E-mail: cwiggin2@vols.utk.edu [University of Tennessee-Knoxville, Department of Physics and Astronomy, 1408 Circle Drive, Knoxville, TN 37996 (United States); Santos, Roque [University of Tennessee-Knoxville, Department of Nuclear Engineering (United States); Escuela Politécnica Nacional, Departamento de Ciencias Nucleares (Ecuador); Ruggles, Arthur [University of Tennessee-Knoxville, Department of Nuclear Engineering (United States)

    2017-01-21

    A novel detection algorithm for Positron Emission Particle Tracking (PEPT) with multiple tracers based on optical feature point identification (FPI) methods is presented. This new method, the FPI method, is compared to a previous multiple PEPT method via analyses of experimental and simulated data. The FPI method outperforms the older method in cases of large particle numbers and fine time resolution. Simulated data show the FPI method to be capable of identifying 100 particles at 0.5 mm average spatial error. Detection error is seen to vary with the inverse square root of the number of lines of response (LORs) used for detection and increases as particle separation decreases. - Highlights: • A new approach to positron emission particle tracking is presented. • Using optical feature point identification analogs, multiple particle tracking is achieved. • Method is compared to previous multiple particle method. • Accuracy and applicability of method is explored.

  10. SimTrack: A compact c++ library for particle orbit and spin tracking in accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yun [Brookhaven National Laboratory (BNL), Upton, NY (United States)

    2015-06-24

    SimTrack is a compact c++ library of 6-d symplectic element-by-element particle tracking in accelerators originally designed for head-on beam-beam compensation simulation studies in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. It provides a 6-d symplectic orbit tracking with the 4th order symplectic integration for magnet elements and the 6-d symplectic synchro-beam map for beam-beam interaction. Since its inception in 2009, SimTrack has been intensively used for dynamic aperture calculations with beam-beam interaction for RHIC. Recently, proton spin tracking and electron energy loss due to synchrotron radiation were added. In this article, I will present the code architecture, physics models, and some selected examples of its applications to RHIC and a future electron-ion collider design eRHIC.

  11. SimTrack: A compact c++ code for particle orbit and spin tracking in accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yun

    2015-11-21

    SimTrack is a compact c++ code of 6-d symplectic element-by-element particle tracking in accelerators originally designed for head-on beam–beam compensation simulation studies in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. It provides a 6-d symplectic orbit tracking with the 4th order symplectic integration for magnet elements and the 6-d symplectic synchro-beam map for beam–beam interaction. Since its inception in 2009, SimTrack has been intensively used for dynamic aperture calculations with beam–beam interaction for RHIC. Recently, proton spin tracking and electron energy loss due to synchrotron radiation were added. In this paper, I will present the code architecture, physics models, and some selected examples of its applications to RHIC and a future electron-ion collider design eRHIC.

  12. Single-virus tracking approach to reveal the interaction of Dengue virus with autophagy during the early stage of infection

    Science.gov (United States)

    Chu, Li-Wei; Huang, Yi-Lung; Lee, Jin-Hui; Huang, Long-Ying; Chen, Wei-Jun; Lin, Ya-Hsuan; Chen, Jyun-Yu; Xiang, Rui; Lee, Chau-Hwang; Ping, Yueh-Hsin

    2014-01-01

    Dengue virus (DENV) is one of the major infectious pathogens worldwide. DENV infection is a highly dynamic process. Currently, no antiviral drug is available for treating DENV-induced diseases since little is known regarding how the virus interacts with host cells during infection. Advanced molecular imaging technologies are powerful tools to understand the dynamics of intracellular interactions and molecular trafficking. This study exploited a single-virus particle tracking technology to address whether DENV interacts with autophagy machinery during the early stage of infection. Using confocal microscopy and three-dimensional image analysis, we showed that DENV triggered the formation of green fluorescence protein-fused microtubule-associated protein 1A/1B-light chain 3 (GFP-LC3) puncta, and DENV-induced autophagosomes engulfed DENV particles within 15-min postinfection. Moreover, single-virus particle tracking revealed that both DENV particles and autophagosomes traveled together during the viral infection. Finally, in the presence of autophagy suppressor 3-methyladenine, the replication of DENV was inhibited and the location of DENV particles spread in cytoplasma. In contrast, the numbers of newly synthesized DENV were elevated and the co-localization of DENV particles and autophagosomes was detected while the cells were treated with autophagy inducer rapamycin. Taken together, we propose that DENV particles interact with autophagosomes at the early stage of viral infection, which promotes the replication of DENV.

  13. PEPT: An invaluable tool for 3-D particle tracking and CFD simulation verification in hydrocyclone studies

    Directory of Open Access Journals (Sweden)

    Hoffmann Alex C.

    2013-05-01

    Full Text Available Particle tracks in a hydrocyclone generated both experimentally by positron emission particle tracking (PEPT and numerically with Eulerian-Lagranian CFD have been studied and compared. A hydrocyclone with a cylinder-on-cone design was used in this study, the geometries used in the CFD simulations and in the experiments being identical. It is shown that it is possible to track a fast-moving particle in a hydrocyclone using PEPT with high temporal and spatial resolutions. The numerical 3-D particle trajectories were generated using the Large Eddy Simulation (LES turbulence model for the fluid and Lagrangian particle tracking for the particles. The behaviors of the particles were analyzed in detail and were found to be consistent between experiments and CFD simulations. The tracks of the particles are discussed and related to the fluid flow field visualized in the CFD simulations using the cross-sectional static pressure distribution.

  14. Particle Data Management Software for 3DParticle Tracking Velocimetry and Related Applications – The Flowtracks Package

    Directory of Open Access Journals (Sweden)

    Yosef Meller

    2016-06-01

    Full Text Available The Particle Tracking Velocimetry (PTV community employs several formats of particle information such as position and velocity as function of time, i.e. trajectory data, as a result of diverging needs unmet by existing formats, and a number of different, mostly home-grown, codes for handling the data. Flowtracks is a Python package that provides a single code base for accessing different formats as a database, i.e. storing data and programmatically manipulating them using format-agnostic data structures. Furthermore, it offers an HDF5-based format that is fast and extensible, obviating the need for other formats. The package may be obtained from https://github.com/OpenPTV/postptv and used as-is by many fluid-dynamics labs, or with minor extensions adhering to a common interface, by researchers from other fields, such as biology and population tracking.

  15. Single and multiple object tracking using log-euclidean Riemannian subspace and block-division appearance model.

    Science.gov (United States)

    Hu, Weiming; Li, Xi; Luo, Wenhan; Zhang, Xiaoqin; Maybank, Stephen; Zhang, Zhongfei

    2012-12-01

    Object appearance modeling is crucial for tracking objects, especially in videos captured by nonstationary cameras and for reasoning about occlusions between multiple moving objects. Based on the log-euclidean Riemannian metric on symmetric positive definite matrices, we propose an incremental log-euclidean Riemannian subspace learning algorithm in which covariance matrices of image features are mapped into a vector space with the log-euclidean Riemannian metric. Based on the subspace learning algorithm, we develop a log-euclidean block-division appearance model which captures both the global and local spatial layout information about object appearances. Single object tracking and multi-object tracking with occlusion reasoning are then achieved by particle filtering-based Bayesian state inference. During tracking, incremental updating of the log-euclidean block-division appearance model captures changes in object appearance. For multi-object tracking, the appearance models of the objects can be updated even in the presence of occlusions. Experimental results demonstrate that the proposed tracking algorithm obtains more accurate results than six state-of-the-art tracking algorithms.

  16. A study of CR-39 track response to charged particles from NOVA implosions

    International Nuclear Information System (INIS)

    Phillips, T.W.; Cable, M.D.; Hicks, D.G.; Li, C.K.; Petrasso, R.D.; Seguin, F.H.

    1996-01-01

    We have exposed CR-39 track recording material to a number of NOVA implosions. Radiation from the implosion passed through an array of ranging filters, which aided identification of the incident particles and their energies. The etching procedure was calibrated by including a piece of track exposed to DD protons from a small accelerator. For the same shots, we quantitatively compare the DD neutron yield with the DD proton yield determined from the track. In DT implosions, tracks produced by neutron interactions prevent observation of charged-particle tracks that are produced by the processes of knock-on, secondary or tertiary fusion

  17. Single Particle Entropy in Heated Nuclei

    International Nuclear Information System (INIS)

    Guttormsen, M.; Chankova, R.; Hjorth-Jensen, M.; Rekstad, J.; Siem, S.; Sunde, A. C.; Syed, N. U. H.; Agvaanluvsan, U.; Schiller, A.; Voinov, A.

    2006-01-01

    The thermal motion of single particles represents the largest contribution to level density (or entropy) in atomic nuclei. The concept of single particle entropy is presented and shown to be an approximate extensive (additive) quantity for mid-shell nuclei. A few applications of single particle entropy are demonstrated

  18. A compact solid-state detector for small angle particle tracking

    International Nuclear Information System (INIS)

    Altieri, S.; Barnaba, O.; Braghieri, A.; Cambiaghi, M.; Lanza, A.; Locatelli, T.; Panzeri, A.; Pedroni, P.; Pinelli, T.; Jennewein, P.; Lang, M.; Preobrazhensky, I.; Annand, J.R.M.; Sadiq, F.

    2000-01-01

    MIcrostrip Detector Array System (MIDAS) is a compact silicon-tracking telescope for charged particles emitted at small angles in intermediate energy photonuclear reactions. It was realized to increase the angular acceptance of the DAPHNE detector and used in an experimental program to check the Gerasimov-Drell-Hearn sum rule at the Mainz electron microtron (MAMI). MIDAS provides a trigger for charged hadrons, p/π ± identification and particle tracking in the region 7 deg. <θ<16 deg.. In this paper we present the main characteristics of MIDAS and its measured performances

  19. A compact solid-state detector for small angle particle tracking

    Energy Technology Data Exchange (ETDEWEB)

    Altieri, S.; Barnaba, O.; Braghieri, A. E-mail: alessandro.braghieri@pv.infn.it; Cambiaghi, M.; Lanza, A.; Locatelli, T.; Panzeri, A.; Pedroni, P.; Pinelli, T.; Jennewein, P.; Lang, M.; Preobrazhensky, I.; Annand, J.R.M.; Sadiq, F

    2000-09-21

    MIcrostrip Detector Array System (MIDAS) is a compact silicon-tracking telescope for charged particles emitted at small angles in intermediate energy photonuclear reactions. It was realized to increase the angular acceptance of the DAPHNE detector and used in an experimental program to check the Gerasimov-Drell-Hearn sum rule at the Mainz electron microtron (MAMI). MIDAS provides a trigger for charged hadrons, p/{pi}{sup {+-}} identification and particle tracking in the region 7 deg. <{theta}<16 deg.. In this paper we present the main characteristics of MIDAS and its measured performances.

  20. Nuclear track radiography of 'hot' aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Boulyga, S.F.; Kievitskaja, A.I.; Kievets, M.K.; Lomonosova, E.M.; Zhuk, I.V.; Yaroshevich, O.I.; Perelygin, V.P.; Petrova, R.; Brandt, R.; Vater, P

    1999-06-01

    Nuclear track radiography was applied to identify aerosol 'hot' particles which contain elements of nuclear fuel and fallout after Chernobyl NPP accident. For the determination of the content of transuranium elements in radioactive aerosols the measurement of the {alpha}-activity of 'hot' particles by SSNTD was used in this work, as well as radiography of fission fragments formed as a result of the reactions (n,f) and ({gamma},f) in the irradiation of aerosol filters by thermal neutrons and high energy gamma quanta. The technique allowed the sizes and alpha-activity of 'hot' particles to be determined without extracting them from the filter, as well as the determination of the uranium content and its enrichment by {sup 235}U, {sup 239}Pu and {sup 241}Pu isotopes. Sensitivity of determination of alpha activity by fission method is 5x10{sup -6} Bq per particle. The software for the system of image analysis was created. It ensured the identification of track clusters on an optical image of the SSNTD surface obtained through a video camera and the determination of size and activity of 'hot' particles00.

  1. A software for computer automated radioactive particle tracking

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Wilson S.; Brandao, Luis E. [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)]. E-mails: wilson@ien.gov.br; brandao@ien.gov.br; Braz, Delson [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE)]. E-mail: delson@smb.lin.ufrj.br

    2008-07-01

    TRACO-1 is the first software developed in Brazil for optimization and diagnosis of multiphase chemical reactors employing the technique known as 'Computer Automated Radioactive Particle Tracking' whose main idea is to follow the movement of a punctual radioactive particle inside a vessel. Considering that this particle has a behavior similar of the phase under investigation, important conclusions can be achieved. As a preliminary TRACO-1 evaluation, a simulation was carried out with the aid of a commercial software called MICROSHIELD, version 5.05, to obtain values of photon counting rates at four detector surfaces. These counting were related to the emission of gamma radiation from a radioactive source because they are the main TRACO-1 input variables. Although the results that has been found are incipient, the analysis of them suggest that the tracking of a radioactive source using TRACO- 1 can be well succeed, but a better evaluation of the capabilities of this software will only be achieved after its application in real experiments. (author)

  2. Comparative assessment of pressure field reconstructions from particle image velocimetry measurements and Lagrangian particle tracking

    NARCIS (Netherlands)

    van Gent, P.L.; Michaelis, D; van Oudheusden, B.W.; Weiss, P.E.; de Kat, R.; Laskari, A.; Jeon, Y.J.; David, L; Schanz, D; Huhn, F.; Gesemann, S; Novara, M.; McPhaden, C.; Neeteson, N. J.; Rival, David E.; Schneiders, J.F.G.; Schrijer, F.F.J.

    2017-01-01

    A test case for pressure field reconstruction from particle image velocimetry (PIV) and Lagrangian particle tracking (LPT) has been developed by constructing a simulated experiment from a zonal detached eddy simulation for an axisymmetric base flow at Mach 0.7. The test case comprises sequences

  3. Collaborative research on fluidization employing computer-aided particle tracking

    International Nuclear Information System (INIS)

    Chen, M.M.

    1990-01-01

    The objective of this work is to obtain unique, fundamental information on fluidization dynamics over a wide range of flow regimes using a Transportable Computer-Aided Particle Tracking Apparatus (TCAPTA). The contractor will design and fabricate a transportable version of the Computer-Aided Particle Tracking Facility (CAPTF) he has previously developed. The contractor will install and operate the (TCAPTA) at the METC fluidization research facilities. Quantitative data on particle motion will be obtained and reduced. The data will be used to provide needed information for modeling of bed dynamics, and prediction of bed performance, including erosion. A radioactive tracer particle, identical in size shape and mass to the bed particles under study, is mixed in the bed. The radiation emitted by the tracer particle, monitored continuously by 16 scintillation detectors, allows its position to be determined as a function of time. Stochastic mixing processes intrinsic to fluidization further cause the particle to travel to all active regions of the bed, thus sampling the motion in these regions. After a long test run to insure that a sufficient sampling have been acquired, time-differentiation and other statistical processing will then yield the mean velocity distribution, the fluctuating velocity distribution, many types of auto- and cross correlations, as well as mean fluxes, including the mean momentum fluxes due to random motion, which represent the kinetic contributions to the mean stress tensor

  4. Monte Carlo parametric importance sampling with particle tracks scaling

    International Nuclear Information System (INIS)

    Ragheb, M.M.H.

    1981-01-01

    A method for Monte Carlo importance sampling with parametric dependence is proposed. It depends upon obtaining over a single stage the overall functional dependence of the variance on the importance function parameter over a broad range of its values. Results corresponding to minimum variance are adopted and others rejected. The proposed method is applied to the finite slab penetration problem. When the exponential transformation is used, our method involves scaling of the generated particle tracks, and is a new application of Morton's method of similar trajectories. The method constitutes a generalization of Spanier's multistage importance sampling method, obtained by proper weighting over a single stage the curves he obtains over several stages, and preserves the statistical correlations between histories. It represents an extension of a theory by Frolov and Chentsov on Monte Carlo calculations of smooth curves to surfaces and to importance sampling calculations. By the proposed method, it seems possible to systematically arrive at minimum variance results and to avoid the infinite variances and effective biases sometimes observed in this type of calculation. (orig.) [de

  5. Strategy for fitting source strength and reconstruction procedure in radioactive particle tracking

    International Nuclear Information System (INIS)

    Mosorov, Volodymyr

    2015-01-01

    The Radioactive Particle Tracking (RPT) technique is widely applied to study the dynamic properties of flows inside a reactor. Usually, a single radioactive particle that is neutrally buoyant with respect to the phase is used as a tracker. The particle moves inside a 3D volume of interest, and its positions are determined by an array of scintillation detectors, which count the incoming photons. The particle position coordinates are calculated by using a reconstruction procedure that solves a minimization problem between the measured counts and calibration data. Although previous studies have described the influence of specified factors on the RPT resolution and sensitivities, the question of how to choose an appropriate source strength and reconstruction procedure for the given RPT setup remains an unsolved problem. This work describes and applies the original strategy for fitting both the source strength and the sampling time interval to a specified RPT setup to guarantee a required accuracy of measurements. Additionally, the measurement accuracy of an RPT setup can be significantly increased by changing the reconstruction procedure. The results of the simulations, based on the Monte Carlo approach, have demonstrated that the proposed strategy allows for the successful implementation of the As Low As Reasonably Achievable (ALARA) principle when designing the RPT setup. The limitations and drawbacks of the proposed procedure are also presented. - Highlights: • We develop an original strategy for fitting source strength and measurement time interval in radioactive particle tracking (RPT) technique. • The proposed strategy allows successfully to implement the ALAPA (As Low As Reasonably Achievable) principle in designing of a RPT setup. • Measurement accuracy of a RPT setup can be significantly increased by improvement of the reconstruction procedure. • The algorithm can be applied to monitor the motion of the radioactive tracer in a reactor

  6. Multiple Maneuvering Target Tracking by Improved Particle Filter Based on Multiscan JPDA

    Directory of Open Access Journals (Sweden)

    Jing Liu

    2012-01-01

    Full Text Available The multiple maneuvering target tracking algorithm based on a particle filter is addressed. The equivalent-noise approach is adopted, which uses a simple dynamic model consisting of target state and equivalent noise which accounts for the combined effects of the process noise and maneuvers. The equivalent-noise approach converts the problem of maneuvering target tracking to that of state estimation in the presence of nonstationary process noise with unknown statistics. A novel method for identifying the nonstationary process noise is proposed in the particle filter framework. Furthermore, a particle filter based multiscan Joint Probability Data Association (JPDA filter is proposed to deal with the data association problem in a multiple maneuvering target tracking. In the proposed multiscan JPDA algorithm, the distributions of interest are the marginal filtering distributions for each of the targets, and these distributions are approximated with particles. The multiscan JPDA algorithm examines the joint association events in a multiscan sliding window and calculates the marginal posterior probability based on the multiscan joint association events. The proposed algorithm is illustrated via an example involving the tracking of two highly maneuvering, at times closely spaced and crossed, targets, based on resolved measurements.

  7. Assessing the efficacy of nano- and micro-sized magnetic particles as contrast agents for MRI cell tracking.

    Directory of Open Access Journals (Sweden)

    Arthur Taylor

    Full Text Available Iron-oxide based contrast agents play an important role in magnetic resonance imaging (MRI of labelled cells in vivo. Currently, a wide range of such contrast agents is available with sizes varying from several nanometers up to a few micrometers and consisting of single or multiple magnetic cores. Here, we evaluate the effectiveness of these different particles for labelling and imaging stem cells, using a mouse mesenchymal stem cell line to investigate intracellular uptake, retention and processing of nano- and microsized contrast agents. The effect of intracellular confinement on transverse relaxivity was measured by MRI at 7 T and in compliance with the principles of the '3Rs', the suitability of the contrast agents for MR-based cell tracking in vivo was tested using a chick embryo model. We show that for all particles tested, relaxivity was markedly reduced following cellular internalisation, indicating that contrast agent relaxivity in colloidal suspension does not accurately predict performance in MR-based cell tracking studies. Using a bimodal imaging approach comprising fluorescence and MRI, we demonstrate that labelled MSC remain viable following in vivo transplantation and can be tracked effectively using MRI. Importantly, our data suggest that larger particles might confer advantages for longer-term imaging.

  8. Discovery Mondays - The detectors: tracking particles

    CERN Multimedia

    2005-01-01

    View of a module from the LHCb vertex detector, which will be presented at the next Discovery Monday. How do you observe the invisible? In order to deepen still further our knowledge of the infinitely small, physicists accelerate beams of particles and generate collisions between them at extraordinary energies. The collisions give birth to showers of new particles. What are they? In order to find out, physicists slip into the role of detectives thanks to the detectors. At the next Discovery Monday you will find out about the different methods used at CERN to detect particles. A cloud chamber will allow you to see the tracks of cosmic particles live. You will also be given the chance to see real modules for the ATLAS and for the LHCb experiments. Strange materials will be on hand, such as crystals that are heavier than iron and yet as transparent as glass... Come to the Microcosm and become a top detective yourself! This event will take place in French. Join us at the Microcosm (Reception Building 33, M...

  9. Single-particle tracking: applications to membrane dynamics.

    Science.gov (United States)

    Saxton, M J; Jacobson, K

    1997-01-01

    Measurements of trajectories of individual proteins or lipids in the plasma membrane of cells show a variety of types of motion. Brownian motion is observed, but many of the particles undergo non-Brownian motion, including directed motion, confined motion, and anomalous diffusion. The variety of motion leads to significant effects on the kinetics of reactions among membrane-bound species and requires a revision of existing views of membrane structure and dynamics.

  10. Quantitative comparison of two particle tracking methods in fluorescence microscopy images

    CSIR Research Space (South Africa)

    Mabaso, M

    2013-09-01

    Full Text Available that cannot be analysed efficiently by means of manual analysis. In this study we compare the performance of two computer-based tracking methods for tracking of bright particles in fluorescence microscopy image sequences. The methods under comparison are...

  11. Fish tracking by combining motion based segmentation and particle filtering

    Science.gov (United States)

    Bichot, E.; Mascarilla, L.; Courtellemont, P.

    2006-01-01

    In this paper, we suggest a new importance sampling scheme to improve a particle filtering based tracking process. This scheme relies on exploitation of motion segmentation. More precisely, we propagate hypotheses from particle filtering to blobs of similar motion to target. Hence, search is driven toward regions of interest in the state space and prediction is more accurate. We also propose to exploit segmentation to update target model. Once the moving target has been identified, a representative model is learnt from its spatial support. We refer to this model in the correction step of the tracking process. The importance sampling scheme and the strategy to update target model improve the performance of particle filtering in complex situations of occlusions compared to a simple Bootstrap approach as shown by our experiments on real fish tank sequences.

  12. The particle tracking package Kassiopeia

    Energy Technology Data Exchange (ETDEWEB)

    Groh, Stefan [Karlsruhe Institute of Technology (Germany); Collaboration: KATRIN-Collaboration

    2016-07-01

    The Kassiopeia particle tracking framework is an object-oriented software package utilizing modern C++ techniques, written originally to meet the needs of the Katrin collaboration. Kassiopeia's target consists of simulating particle trajectories governed by arbitrarily complex differential equations of motion, continuous physics processes that may in part be modeled as terms perturbing that equation of motion, stochastic processes that occur in flight such as bulk scattering and decay, and potentially stochastic surface processes occurring at interfaces, including transmission and reflection effects. This entire set of computations takes place against the backdrop of a fully-featured geometry package which serves a variety of roles, including initialization of electromagnetic field simulations, gas flow simulations, and the support of state-dependent algorithm-swapping and behavioral changes. Kassiopeia has been well validated and widely used within the Katrin collaboration, playing a primary role in many theses and refereed publications.

  13. The Timepix Telescope for High Performance Particle Tracking

    CERN Document Server

    Akiba, Kazuyoshi; van Beuzekom, Martin; van Beveren, Vincent; Borghi, Silvia; Boterenbrood, Henk; Buytaert, Jan; Collins, Paula; Dosil Suárez, Alvaro; Dumps, Raphael; Eklund, Lars; Esperante, Daniel; Gallas, Abraham; Gordon, Hamish; van der Heijden, Bas; Hombach, Christoph; Hynds, Daniel; John, Malcolm; Leflat, Alexander; Li, Yi Ming; Longstaff, Ian; Morton, Alexander; Nakatsuka, Noritsugu; Nomerotski, Andre; Parkes, Chris; Perez Trigo, Eliseo; Plackett, Richard; Reid, Matthew M; Rodriguez Perez, Pablo; Schindler, Heinrich; Szumlak, Tomasz; Tsopelas, Panagiotis; Vázquez Sierra, Carlos; Velthuis, Jaap; Wysokinski, Michal

    2013-01-01

    The Timepix particle tracking telescope has been developed as part of the LHCb VELO Upgrade project, supported by the Medipix Collaboration and the AIDA framework. It is a primary piece of infrastructure for the VELO Upgrade project and is being used for the development of new sensors and front end technologies for several upcoming LHC trackers and vertexing systems. The telescope is designed around the dual capability of the Timepix ASICs to provide information about either the deposited charge or the timing information from tracks traversing the 14 x 14mm matrix of 55 x 55 um pixels. The rate of reconstructed tracks available is optimised by taking advantage of the shutter driven readout architecture of the Timepix chip, operated with existing readout systems. Results of tests conducted in the SPS North Area beam facility at CERN show that the telescope typically provides reconstructed track rates during the beam spills of between 3.5 and 7.5 kHz, depending on beam conditions. The tracks are time stamped wi...

  14. High-speed particle tracking in microscopy using SPAD image sensors

    Science.gov (United States)

    Gyongy, Istvan; Davies, Amy; Miguelez Crespo, Allende; Green, Andrew; Dutton, Neale A. W.; Duncan, Rory R.; Rickman, Colin; Henderson, Robert K.; Dalgarno, Paul A.

    2018-02-01

    Single photon avalanche diodes (SPADs) are used in a wide range of applications, from fluorescence lifetime imaging microscopy (FLIM) to time-of-flight (ToF) 3D imaging. SPAD arrays are becoming increasingly established, combining the unique properties of SPADs with widefield camera configurations. Traditionally, the photosensitive area (fill factor) of SPAD arrays has been limited by the in-pixel digital electronics. However, recent designs have demonstrated that by replacing the complex digital pixel logic with simple binary pixels and external frame summation, the fill factor can be increased considerably. A significant advantage of such binary SPAD arrays is the high frame rates offered by the sensors (>100kFPS), which opens up new possibilities for capturing ultra-fast temporal dynamics in, for example, life science cellular imaging. In this work we consider the use of novel binary SPAD arrays in high-speed particle tracking in microscopy. We demonstrate the tracking of fluorescent microspheres undergoing Brownian motion, and in intra-cellular vesicle dynamics, at high frame rates. We thereby show how binary SPAD arrays can offer an important advance in live cell imaging in such fields as intercellular communication, cell trafficking and cell signaling.

  15. GPU Computing For Particle Tracking

    International Nuclear Information System (INIS)

    Nishimura, Hiroshi; Song, Kai; Muriki, Krishna; Sun, Changchun; James, Susan; Qin, Yong

    2011-01-01

    This is a feasibility study of using a modern Graphics Processing Unit (GPU) to parallelize the accelerator particle tracking code. To demonstrate the massive parallelization features provided by GPU computing, a simplified TracyGPU program is developed for dynamic aperture calculation. Performances, issues, and challenges from introducing GPU are also discussed. General purpose Computation on Graphics Processing Units (GPGPU) bring massive parallel computing capabilities to numerical calculation. However, the unique architecture of GPU requires a comprehensive understanding of the hardware and programming model to be able to well optimize existing applications. In the field of accelerator physics, the dynamic aperture calculation of a storage ring, which is often the most time consuming part of the accelerator modeling and simulation, can benefit from GPU due to its embarrassingly parallel feature, which fits well with the GPU programming model. In this paper, we use the Tesla C2050 GPU which consists of 14 multi-processois (MP) with 32 cores on each MP, therefore a total of 448 cores, to host thousands ot threads dynamically. Thread is a logical execution unit of the program on GPU. In the GPU programming model, threads are grouped into a collection of blocks Within each block, multiple threads share the same code, and up to 48 KB of shared memory. Multiple thread blocks form a grid, which is executed as a GPU kernel. A simplified code that is a subset of Tracy++ (2) is developed to demonstrate the possibility of using GPU to speed up the dynamic aperture calculation by having each thread track a particle.

  16. Localisation and identification of radioactive particles in solid samples by means of a nuclear track technique

    International Nuclear Information System (INIS)

    Boehnke, Antje; Treutler, Hanns-Christian; Freyer, Klaus; Schubert, Michael; Holger Weiss

    2005-01-01

    This study is aimed to develop a generally applicable methodology of investigation that can be used for the localisation of single alpha-active particles in solid samples, such as industrial dust or natural soils, sediments and rocks by autoradiography using solid-state nuclear track detectors. The developed technique allows the detection of local enrichments of alpha-emitters in any solid material. The results of such an investigation are of interest from technical, biological and environmental points of view. The idea behind the methodology is to locate the position of alpha-active spots in a sample by attaching the track detector to the sample in a defined manner, thoroughly described in the paper. The located alpha-active particles are subsequently analysed by an electron microscope and an electron microprobe. An example of the application of this methodology is also given. An ultra-fine -grained ore-processing residue, which causes serious environmental pollution in the respective mining district and thus limits possible land use and affects quality of life in the area, was examined using the described technique. The investigation revealed considerable amounts of alpha-active particles in this material

  17. Formation of etchable tracks in plastics

    International Nuclear Information System (INIS)

    Katz, R.

    1984-01-01

    It is proposed that etchable tracks in plastics are formed by the interaction of delta-rays with polymer clusters, paralleling the formation of developable tracks in emulsion. We speak of a latent image, a grain count regime, and a track-width regime for the tracks of single particles. We may speak of 'ion-kill' and 'gamma-kill', as in radiobiology, when dealing with irradiation by a beam of particles. Existing but incomplete experimental evidence is consistent with these concepts. Such evidence as there is suggests that CR-39 is a 1-or more hit detector. (author)

  18. Charged Particle Tracking and Vertex Detection Group summary report

    International Nuclear Information System (INIS)

    Hanson, G.; Meyer, D.

    1984-09-01

    Charged particle tracking is essential in order to investigate the new physics expected at the SSC. The Tracking Group studied radiation damage and rate limitations to tracking devices, vertex detectors, and central tracking. The Group concluded that silicon strips and large wire tracking chambers with small cells can probably survive at the design luminosity of 10 33 cm -2 sec -1 ; however, the presently designed electronics for silicon strip vertex detectors can withstand a luminosity of only 10 31 cm -2 sec -1 . Wire chambers at a radius of less than about 25 cm can withstand a luminosity of less than or equal to 10 32 cm -2 sec -1 only. Actual tracking and pattern recognition in central tracking chambers at a luminosity of 10 33 cm -2 sec -1 will be very difficult because of multiple interactions within the resolving time of the chambers; detailed simulations are needed in order to decide whether tracking is indeed possible at this luminosity. Scintillating glass fibers are an interesting possibility both for vertex detectors and for central trackers, but much research and development is still needed both on the fibers themselves and on the readout

  19. A computational tool to characterize particle tracking measurements in optical tweezers

    International Nuclear Information System (INIS)

    Taylor, Michael A; Bowen, Warwick P

    2013-01-01

    Here, we present a computational tool for optical tweezers which calculates the particle tracking signal measured with a quadrant detector and the shot-noise limit to position resolution. The tool is a piece of Matlab code which functions within the freely available Optical Tweezers Toolbox. It allows the measurements performed in most optical tweezer experiments to be theoretically characterized in a fast and easy manner. The code supports particles with arbitrary size, any optical fields and any combination of objective and condenser, and performs a full vector calculation of the relevant fields. Example calculations are presented which show the tracking signals for different particles, and the shot-noise limit to position sensitivity as a function of the effective condenser NA. (paper)

  20. Delivery of single accelerated particles

    International Nuclear Information System (INIS)

    McNulty, P.J.; Pease, V.P.; Bond, V.P.; Schimmerling, W.; Vosburgh, K.G.; Crebbin, K.; Everette, W.; Howard, J.

    1978-01-01

    It is desirable for certain experiments involving accelerators to have the capability of delivering just a single beam particle to the target area. The essential features of such a one-at-a-time facility are discussed. Two such facilities are described which were implemented at high-energy heavy ion accelerators without having to make major structural changes in the existing beam lines or substantially interfering with other accelerator uses. Two accelerator facilities are described which had the capability of delivering a single beam particle to the target area. This feature is necessary in certain experiments investigating visual phenomena induced by charged particles, other single particle interactions in biology, and other experiments in which the low intensities of cosmic rays need to be simulated. Both facilities were implemented without having to make structural changes in the existing beam lines or substantially interfering with other accelerator uses. (Auth.)

  1. Single-particle colloid tracking in four dimensions.

    Science.gov (United States)

    Anthony, Stephen M; Hong, Liang; Kim, Minsu; Granick, Steve

    2006-11-21

    Coating a close-packed fluorescent colloid monolayer with a nanometer-thick metal film followed by sonication in liquid produces modulated optical nanoprobes. The metal coating modulates the fluorescence as these structures rotate in suspension, enabling the use of these particles as probes to monitor both rotational and center-of-mass (translational) dynamics in complex environments. Here, we demonstrate methods to simultaneously measure two translational and two rotational degrees of freedom, with excellent agreement to theory. The capability to determine two angles of rotation opens several new avenues of future research.

  2. Hardware processor for tracking particles in an alternating-gradient synchrotron

    International Nuclear Information System (INIS)

    Johnson, M.; Avilez, C.

    1987-01-01

    We discuss the design and performance of special-purpose processors for tracking particles through an alternating-gradient synchrotron. We present block diagram designs for two hardware processors. Both processors use algorithms based on the 'kick' approximation, i.e., transport matrices are used for dipoles and quadrupoles, and the thin-lens approximation is used for all higher multipoles. The faster processor makes extensive use of memory look-up tables for evaluating functions. For the case of magnets with multipoles up to pole 30 and using one kick per magnet, this processor can track 19 particles through an accelerator at a rate that is only 220 times slower than the time it takes real particles to travel around the machine. For a model consisting of only thin lenses, it is only 150 times slower than real particles. An additional factor of 2 can be obtained with chips now becoming available. The number of magnets in the accelerator is limited only by the amount of memory available for storing magnet parameters. (author) 20 refs., 7 figs., 2 tabs

  3. CR-39 α track detector and its application in observing of the hot particles in environment

    International Nuclear Information System (INIS)

    Zou Benchuan

    1992-01-01

    CR-39 α track detector is a new α remitting radionuclides plastic detector. It is audio-visual, convenient and economic in the detection of α particle track and the distribution of α emitting radionuclides in environmental samples. CR-39 α track detector is used to observe the hot particles in rock and the hot particles coming from the liquid effluents discharged by spent fuel reprocessing plant in UK in marine environment and got good results

  4. Lagrangian Particle Tracking Simulation for Warm-Rain Processes in Quasi-One-Dimensional Domain

    Science.gov (United States)

    Kunishima, Y.; Onishi, R.

    2017-12-01

    Conventional cloud simulations are based on the Euler method and compute each microphysics process in a stochastic way assuming infinite numbers of particles within each numerical grid. They therefore cannot provide the Lagrangian statistics of individual particles in cloud microphysics (i.e., aerosol particles, cloud particles, and rain drops) nor discuss the statistical fluctuations due to finite number of particles. We here simulate the entire precipitation process of warm-rain, with tracking individual particles. We use the Lagrangian Cloud Simulator (LCS), which is based on the Euler-Lagrangian framework. In that framework, flow motion and scalar transportation are computed with the Euler method, and particle motion with the Lagrangian one. The LCS tracks particle motions and collision events individually with considering the hydrodynamic interaction between approaching particles with a superposition method, that is, it can directly represent the collisional growth of cloud particles. It is essential for trustworthy collision detection to take account of the hydrodynamic interaction. In this study, we newly developed a stochastic model based on the Twomey cloud condensation nuclei (CCN) activation for the Lagrangian tracking simulation and integrated it into the LCS. Coupling with the Euler computation for water vapour and temperature fields, the initiation and condensational growth of water droplets were computed in the Lagrangian way. We applied the integrated LCS for a kinematic simulation of warm-rain processes in a vertically-elongated domain of, at largest, 0.03×0.03×3000 (m3) with horizontal periodicity. Aerosol particles with a realistic number density, 5×107 (m3), were evenly distributed over the domain at the initial state. Prescribed updraft at the early stage initiated development of a precipitating cloud. We have confirmed that the obtained bulk statistics fairly agree with those from a conventional spectral-bin scheme for a vertical column

  5. Color Feature-Based Object Tracking through Particle Swarm Optimization with Improved Inertia Weight.

    Science.gov (United States)

    Guo, Siqiu; Zhang, Tao; Song, Yulong; Qian, Feng

    2018-04-23

    This paper presents a particle swarm tracking algorithm with improved inertia weight based on color features. The weighted color histogram is used as the target feature to reduce the contribution of target edge pixels in the target feature, which makes the algorithm insensitive to the target non-rigid deformation, scale variation, and rotation. Meanwhile, the influence of partial obstruction on the description of target features is reduced. The particle swarm optimization algorithm can complete the multi-peak search, which can cope well with the object occlusion tracking problem. This means that the target is located precisely where the similarity function appears multi-peak. When the particle swarm optimization algorithm is applied to the object tracking, the inertia weight adjustment mechanism has some limitations. This paper presents an improved method. The concept of particle maturity is introduced to improve the inertia weight adjustment mechanism, which could adjust the inertia weight in time according to the different states of each particle in each generation. Experimental results show that our algorithm achieves state-of-the-art performance in a wide range of scenarios.

  6. Measurement and three dimensional reconstruction of particle tracks in emulsion chambers

    International Nuclear Information System (INIS)

    Persson, S.

    1989-01-01

    A software package for making fast and accurate measurements of particle tracks in emulsion chambers is described. In a chamber, which is designed for high particle multiplicities, the emulsion layers are interspersed with air and placed perpendicular to the beam direction during exposure. (orig.)

  7. 3D head pose estimation and tracking using particle filtering and ICP algorithm

    KAUST Repository

    Ben Ghorbel, Mahdi; Baklouti, Malek; Couvet, Serge

    2010-01-01

    This paper addresses the issue of 3D head pose estimation and tracking. Existing approaches generally need huge database, training procedure, manual initialization or use face feature extraction manually extracted. We propose a framework for estimating the 3D head pose in its fine level and tracking it continuously across multiple Degrees of Freedom (DOF) based on ICP and particle filtering. We propose to approach the problem, using 3D computational techniques, by aligning a face model to the 3D dense estimation computed by a stereo vision method, and propose a particle filter algorithm to refine and track the posteriori estimate of the position of the face. This work comes with two contributions: the first concerns the alignment part where we propose an extended ICP algorithm using an anisotropic scale transformation. The second contribution concerns the tracking part. We propose the use of the particle filtering algorithm and propose to constrain the search space using ICP algorithm in the propagation step. The results show that the system is able to fit and track the head properly, and keeps accurate the results on new individuals without a manual adaptation or training. © Springer-Verlag Berlin Heidelberg 2010.

  8. The search for primary particle tracks in nucleon-nucleus interactions with gamma ray energy ΣEγ ≥ 3 TeV registered in stratospheric X-ray emulsion chambers using data of the RUNJOB experiment

    Directory of Open Access Journals (Sweden)

    Zayarnaya I.S.

    2017-01-01

    Full Text Available We present here the result of a retreatment of data from the RUNJOB (RUssia-Nippon JOint Balloon experiment of nucleon-nucleus interactions registered in stratospheric X-ray emulsion chambers (REC using a new method for searching and tracing of galactic particles in nuclear emulsions. In about halfcof these interactions (∼ 50 recorded in REC RUNJOB‘96-3B, RUNJOB‘97-6A and RUNJOB‘99-11A,B with energy released in the electromagnetic component ΣEγ ≥ 3 TeV and ΣEγ ≥ 5 TeV respectively, single charged particle tracks are not found within the search area defined individually by the particle track location accuracy. The absence of primary proton tracks is consistent with the original treatment of the RUNJOB experimental data. There is a difference in the zenith angular distribution for two groups of events in which a single charged particle track is observed or absent. The average penetration depth of the primary particles in REC to the interaction vertex in the zenith angle range from 60∘ to 79∘ differs by a factor two for these groups.

  9. Comparisons of Particle Tracking Techniques and Galerkin Finite Element Methods in Flow Simulations on Watershed Scales

    Science.gov (United States)

    Shih, D.; Yeh, G.

    2009-12-01

    This paper applies two numerical approximations, the particle tracking technique and Galerkin finite element method, to solve the diffusive wave equation in both one-dimensional and two-dimensional flow simulations. The finite element method is one of most commonly approaches in numerical problems. It can obtain accurate solutions, but calculation times may be rather extensive. The particle tracking technique, using either single-velocity or average-velocity tracks to efficiently perform advective transport, could use larger time-step sizes than the finite element method to significantly save computational time. Comparisons of the alternative approximations are examined in this poster. We adapt the model WASH123D to examine the work. WASH123D is an integrated multimedia, multi-processes, physics-based computational model suitable for various spatial-temporal scales, was first developed by Yeh et al., at 1998. The model has evolved in design capability and flexibility, and has been used for model calibrations and validations over the course of many years. In order to deliver a locally hydrological model in Taiwan, the Taiwan Typhoon and Flood Research Institute (TTFRI) is working with Prof. Yeh to develop next version of WASH123D. So, the work of our preliminary cooperationx is also sketched in this poster.

  10. Single-particle dispersion in compressible turbulence

    Science.gov (United States)

    Zhang, Qingqing; Xiao, Zuoli

    2018-04-01

    Single-particle dispersion statistics in compressible box turbulence are studied using direct numerical simulation. Focus is placed on the detailed discussion of effects of the particle Stokes number and turbulent Mach number, as well as the forcing type. When solenoidal forcing is adopted, it is found that the single-particle dispersion undergoes a transition from the ballistic regime at short times to the diffusive regime at long times, in agreement with Taylor's particle dispersion argument. The strongest dispersion of heavy particles is announced when the Stokes number is of order 1, which is similar to the scenario in incompressible turbulence. The dispersion tends to be suppressed as the Mach number increases. When hybrid solenoidal and compressive forcing at a ratio of 1/2 is employed, the flow field shows apparent anisotropic property, characterized by the appearance of large shock wave structures. Accordingly, the single-particle dispersion shows extremely different behavior from the solenoidal forcing case.

  11. Single-particle potential from resummed ladder diagrams

    International Nuclear Information System (INIS)

    Kaiser, N.

    2013-01-01

    A recent work on the resummation of fermionic in-medium ladder diagrams to all orders is extended by calculating the complex single-particle potential U(p, k f ) + i W(p, k f ) p > k f . The on-shell single-particle potential is constructed by means of a complex-valued in-medium loop that includes corrections from a test particle of momentum vector p added to the filled Fermi sea. The single-particle potential U(k f , k f ) at the Fermi surface as obtained from the resummation of the combined particle and hole ladder diagrams is shown to satisfy the Hugenholtz-Van-Hove theorem. The perturbative contributions at various orders a n in the scattering length are deduced and checked against the known analytical results at order a 1 and a 2 . The limit a → ∞ is studied as a special case and a strong momentum dependence of the real (and imaginary) single-particle potential is found. This feature indicates an instability against a phase transition to a state with an empty shell inside the Fermi sphere such that the density gets reduced by about 5%. The imaginary single-particle potential vanishes linearly at the Fermi surface. For comparison, the same analysis is performed for the resummed particle-particle ladder diagrams alone. In this truncation an instability for hole excitations near the Fermi surface is found at strong coupling. For the set of particle-hole ring diagrams the single-particle potential is calculated as well. Furthermore, the resummation of in-medium ladder diagrams to all orders is studied for a two-dimensional Fermi gas with a short-range two-body contact interaction. (orig.)

  12. A systematic investigation of differential effects of cell culture substrates on the extent of artifacts in single-molecule tracking.

    Directory of Open Access Journals (Sweden)

    Laura C Zanetti-Domingues

    Full Text Available Single-molecule techniques are being increasingly applied to biomedical investigation, notwithstanding the numerous challenges they pose in terms of signal-to-noise ratio issues. Non-specific binding of probes to glass substrates, in particular, can produce experimental artifacts due to spurious molecules on glass, which can be particularly deleterious in live-cell tracking experiments. In order to resolve the issue of non-specific probe binding to substrates, we performed systematic testing of a range of available surface coatings, using three different proteins, and then extended our assessment to the ability of these coatings to foster cell growth and retain non-adhesive properties. Linear PEG, a passivating agent commonly used both in immobilized-molecule single-molecule techniques and in tissue engineering, is able to both successfully repel non-specific adhesion of fluorescent probes and to foster cell growth when functionalized with appropriate adhesive peptides. Linear PEG treatment results in a significant reduction of tracking artifacts in EGFR tracking with Affibody ligands on a cell line expressing EGFR-eGFP. The findings reported herein could be beneficial to a large number of experimental situations where single-molecule or single-particle precision is required.

  13. Single particle distributions, ch.2

    International Nuclear Information System (INIS)

    Blokzijl, R.

    1977-01-01

    A survey of inclusive single particle distributions is given for various particles. A comparison of particle cross-sections measured in K - p experiments at different center of mass energies shows that some of these cross-sections remain almost constant over a wide range of incoming K - momenta

  14. Structure modification of particle track membranes

    International Nuclear Information System (INIS)

    Lueck, H.B.; Gemende, B.; Heinrich, B.

    1991-01-01

    Three different structure modifications were studied in order to improve the flux and dirt loading capacity of particle track membranes without affecting their retention characteristic. Divergent irradiation is a very effective tool for decreasing the number of multiple pores and increasing the porosity up to 20 per cent. The technique leads to a remarkable but not efficient enhancement of the surface porosity. Improved surface porosity produced by a double irradiation technique turns out to be very effective with respect to the filtration performance. (author)

  15. Magnetic poly(lactide-co-glycolide) (PLGA) and cellulose particles for MRI-based cell tracking

    Science.gov (United States)

    Nkansah, Michael K.; Thakral, Durga; Shapiro, Erik M.

    2010-01-01

    Biodegradable, superparamagnetic micro- and nanoparticles of poly(lactide-co-glycolide) (PLGA) and cellulose were designed, fabricated and characterized for magnetic cell labeling. Monodisperse nanocrystals of magnetite were incorporated into micro- and nanoparticles of PLGA and cellulose with high efficiency using an oil-in-water single emulsion technique. Superparamagnetic cores had high magnetization (72.1 emu/g). The resulting polymeric particles had smooth surface morphology and high magnetite content (43.3 wt% for PLGA and 69.6 wt% for cellulose). While PLGA and cellulose nanoparticles displayed highest r2* values per millimole of iron (399 s-1mM-1 for cellulose and 505 s-1mM-1 for PLGA), micron-sized PLGA particles had a much higher r2* per particle than either. After incubation for a month in citrate buffer (pH 5.5), magnetic PLGA particles lost close to 50% of their initial r2* molar relaxivity, while magnetic cellulose particles remained intact, preserving over 85% of their initial r2* molar relaxivity. Lastly, mesenchymal stem cells and human breast adenocarcinoma cells were magnetically labeled using these particles with no detectable cytotoxicity. These particles are ideally suited for non-invasive cell tracking in vivo via MRI and due to their vastly different degradation properties, offer unique potential for dedicated use for either short (PLGA-based particles) or long term (cellulose-based particles) experiments. PMID:21404328

  16. Visualisation of γH2AX Foci Caused by Heavy Ion Particle Traversal; Distinction between Core Track versus Non-Track Damage

    Science.gov (United States)

    Nakajima, Nakako Izumi; Brunton, Holly; Watanabe, Ritsuko; Shrikhande, Amruta; Hirayama, Ryoichi; Matsufuji, Naruhiro; Fujimori, Akira; Murakami, Takeshi; Okayasu, Ryuichi; Jeggo, Penny; Shibata, Atsushi

    2013-01-01

    Heavy particle irradiation produces complex DNA double strand breaks (DSBs) which can arise from primary ionisation events within the particle trajectory. Additionally, secondary electrons, termed delta-electrons, which have a range of distributions can create low linear energy transfer (LET) damage within but also distant from the track. DNA damage by delta-electrons distant from the track has not previously been carefully characterised. Using imaging with deconvolution, we show that at 8 hours after exposure to Fe (∼200 keV/µm) ions, γH2AX foci forming at DSBs within the particle track are large and encompass multiple smaller and closely localised foci, which we designate as clustered γH2AX foci. These foci are repaired with slow kinetics by DNA non-homologous end-joining (NHEJ) in G1 phase with the magnitude of complexity diminishing with time. These clustered foci (containing 10 or more individual foci) represent a signature of DSBs caused by high LET heavy particle radiation. We also identified simple γH2AX foci distant from the track, which resemble those arising after X-ray exposure, which we attribute to low LET delta-electron induced DSBs. They are rapidly repaired by NHEJ. Clustered γH2AX foci induced by heavy particle radiation cause prolonged checkpoint arrest compared to simple γH2AX foci following X-irradiation. However, mitotic entry was observed when ∼10 clustered foci remain. Thus, cells can progress into mitosis with multiple clusters of DSBs following the traversal of a heavy particle. PMID:23967070

  17. Evaluation of Railway Networks with Single Track Operation Using the UIC 406 Capacity Method

    DEFF Research Database (Denmark)

    Landex, Alex

    2009-01-01

    lines and single track lines are discussed in this article. The principles of the UIC 406 of double track lines can be applied to single track lines-at least when more than one train follows each other in the same direction. In a presentation of the UIC 406 for single track operations, it is important...

  18. Charged Particle Tracking with the Timepix ASIC

    CERN Document Server

    Akiba, Kazuyoshi; Collins, P; Crossley, M; Dumps, R; Gersabeck, M; Gligorov, Vladimir V; Llopart, X; Nicol, M; Poikela, T; Cabruja, Enric; Fleta, C; Lozano, M; Pellegrini, G; Bates, R; Eklund, L; Hynds, D; Ferre Llin, L; Maneuski, D; Parkes, C; Plackett, R; Rodrigues, E; Stewart, G; Akiba, K; van Beuzekom, M; Heijne, V; Heijne, E H M; Gordon, H; John, M; Gandelman, M; Esperante, D; Gallas, A; Vazquez Regueiro, P; Bayer, F; Michel, T; Needham, M; Artuso, M; Badman, R; Borgia, A; Garofoli, J; Wang, J; Xing, Z; Buytaert, Jan; Leflat, Alexander

    2012-01-01

    A prototype particle tracking telescope has been constructed using Timepix and Medipix ASIC hybrid pixel assemblies as the six sensing planes. Each telescope plane consisted of one 1.4 cm2 assembly, providing a 256x256 array of 55 micron square pixels. The telescope achieved a pointing resolution of 2.3 micron at the position of the device under test. During a beam test in 2009 the telescope was used to evaluate in detail the performance of two Timepix hybrid pixel assemblies; a standard planar 300 micron thick sensor, and 285 micron thick double sided 3D sensor. This paper describes a detailed charge calibration study of the pixel devices, which allows the true charge to be extracted, and reports on measurements of the charge collection characteristics and Landau distributions. The planar sensor achieved a best resolution of 4.0 micron for angled tracks, and resolutions of between 4.4 and 11 micron for perpendicular tracks, depending on the applied bias voltage. The double sided 3D sensor, which has signific...

  19. Monte Carlo charged-particle tracking and energy deposition on a Lagrangian mesh.

    Science.gov (United States)

    Yuan, J; Moses, G A; McKenty, P W

    2005-10-01

    A Monte Carlo algorithm for alpha particle tracking and energy deposition on a cylindrical computational mesh in a Lagrangian hydrodynamics code used for inertial confinement fusion (ICF) simulations is presented. The straight line approximation is used to follow propagation of "Monte Carlo particles" which represent collections of alpha particles generated from thermonuclear deuterium-tritium (DT) reactions. Energy deposition in the plasma is modeled by the continuous slowing down approximation. The scheme addresses various aspects arising in the coupling of Monte Carlo tracking with Lagrangian hydrodynamics; such as non-orthogonal severely distorted mesh cells, particle relocation on the moving mesh and particle relocation after rezoning. A comparison with the flux-limited multi-group diffusion transport method is presented for a polar direct drive target design for the National Ignition Facility. Simulations show the Monte Carlo transport method predicts about earlier ignition than predicted by the diffusion method, and generates higher hot spot temperature. Nearly linear speed-up is achieved for multi-processor parallel simulations.

  20. Dark-field scanning confocal microscope for vertical particle tracks in nuclear emulsion

    International Nuclear Information System (INIS)

    Astakhov, A.Ya.; Batusov, Yu.A.; Soroko, L.M.; Tereshchenko, S.V.; Tereshchenko, V.V.

    1999-01-01

    The principle of the DArk-FIeld Scanning CONfocal (DAFISCON) microscope for selective observation of the vertical particle tracks in nuclear emulsion is described. The construction of the DAFISCON microscope, built on the basis of the 2D measurement microscope, is described. The results of the experimental testing of the DAFISCON microscope, accomplished at high density of the vertical particle tracks, are presented. The 2D plot and the 1D plot of the CCD dark-field image are given. The spatial resolution of our microscope can be increased by using the objective with higher aperture

  1. Developing new optical imaging techniques for single particle and molecule tracking in live cells

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wei [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    Differential interference contrast (DIC) microscopy is a far-field as well as wide-field optical imaging technique. Since it is non-invasive and requires no sample staining, DIC microscopy is suitable for tracking the motion of target molecules in live cells without interfering their functions. In addition, high numerical aperture objectives and condensers can be used in DIC microscopy. The depth of focus of DIC is shallow, which gives DIC much better optical sectioning ability than those of phase contrast and dark field microscopies. In this work, DIC was utilized to study dynamic biological processes including endocytosis and intracellular transport in live cells. The suitability of DIC microscopy for single particle tracking in live cells was first demonstrated by using DIC to monitor the entire endocytosis process of one mesoporous silica nanoparticle (MSN) into a live mammalian cell. By taking advantage of the optical sectioning ability of DIC, we recorded the depth profile of the MSN during the endocytosis process. The shape change around the nanoparticle due to the formation of a vesicle was also captured. DIC microscopy was further modified that the sample can be illuminated and imaged at two wavelengths simultaneously. By using the new technique, noble metal nanoparticles with different shapes and sizes were selectively imaged. Among all the examined metal nanoparticles, gold nanoparticles in rod shapes were found to be especially useful. Due to their anisotropic optical properties, gold nanorods showed as diffraction-limited spots with disproportionate bright and dark parts that are strongly dependent on their orientation in the 3D space. Gold nanorods were developed as orientation nanoprobes and were successfully used to report the self-rotation of gliding microtubules on kinesin coated substrates. Gold nanorods were further used to study the rotational motions of cargoes during the endocytosis and intracellular transport processes in live mammalian

  2. Particle Filter-Based Target Tracking Algorithm for Magnetic Resonance-Guided Respiratory Compensation : Robustness and Accuracy Assessment

    NARCIS (Netherlands)

    Bourque, Alexandra E; Bedwani, Stéphane; Carrier, Jean-François; Ménard, Cynthia; Borman, Pim; Bos, Clemens; Raaymakers, Bas W; Mickevicius, Nikolai; Paulson, Eric; Tijssen, Rob H N

    PURPOSE: To assess overall robustness and accuracy of a modified particle filter-based tracking algorithm for magnetic resonance (MR)-guided radiation therapy treatments. METHODS AND MATERIALS: An improved particle filter-based tracking algorithm was implemented, which used a normalized

  3. Single-track handshake signaling with application to micropipelines and handshake circuits

    NARCIS (Netherlands)

    Berkel, van C.H.; Bink, A.J.

    1996-01-01

    Single-track handshake signaling is using the same wire for request and acknowledge signaling. After each 2-phase handshake the wire is back in its initial state. A sequence of three protocol definitions suggests both a design method for single-track circuits and a trade-off between their robustness

  4. Single track and single layer formation in selective laser melting of niobium solid solution alloy

    Directory of Open Access Journals (Sweden)

    Yueling GUO

    2018-04-01

    Full Text Available Selective laser melting (SLM was employed to fabricate Nb-37Ti-13Cr-2Al-1Si (at% alloy, using pre-alloyed powders prepared by plasma rotating electrode processing (PREP. A series of single tracks and single layers under different processing parameters was manufactured to evaluate the processing feasibility by SLM, including laser power, scanning speed, and hatch distance. Results showed that continuous single tracks could be fabricated using proper laser powers and scanning velocities. Both the width of a single track and its penetration depth into a substrate increased with an increase of the linear laser beam energy density (LED, i.e., an increase of the laser power and a decrease of the scanning speed. Nb, Ti, Si, Cr, and Al elements distributed heterogeneously over the melt pool in the form of swirl-like patterns. An excess of the hatch distance was not able to interconnect neighboring tracks. Under improper processing parameters, a balling phenomenon occurred, but could be eliminated with an increased LED. This work testified the SLM-processing feasibility of Nb-based alloy and promoted the application of SLM to the manufacture of niobium-based alloys. Keywords: Additive manufacturing, Melt pool, Niobium alloy, Powder metallurgy, Selective laser melting

  5. Improvement in the independence of relaxation method-based particle tracking velocimetry

    International Nuclear Information System (INIS)

    Jia, P; Wang, Y; Zhang, Y

    2013-01-01

    New techniques are developed to improve the independence of relaxation method-based particle tracking velocimetry (RM-PTV). Firstly, Delaunay tessellation (DT) is employed to form clusters of neighboring particles with similar motion in the same frame; and then a bidirectional calculation concept is adopted to improve the way of particle pairing. These new techniques are tested with both self-defined particle images and the particle image velocimetry standard synthetic particle images. The results indicate that the DT method performs well and efficiently in determining the particle clusters, and the particle pairing process is well optimized by the bidirectional calculation concept. With these methods, three computation parameters are eliminated, which makes RM-PTV more autonomous in applications. (paper)

  6. A Preliminary Comparison of Three Dimensional Particle Tracking and Sizing using Plenoptic Imaging and Digital In-line Holography

    Energy Technology Data Exchange (ETDEWEB)

    Guildenbecher, Daniel Robert; Munz, Elise Dahnke; Farias, Paul Abraham; Thurow, Brian S [Auburn U

    2015-12-01

    Digital in-line holography and plenoptic photography are two techniques for single-shot, volumetric measurement of 3D particle fields. Here we present a preliminary comparison of the two methods by applying plenoptic imaging to experimental configurations that have been previously investigated with digital in-line holography. These experiments include the tracking of secondary droplets from the impact of a water drop on a thin film of water and tracking of pellets from a shotgun. Both plenoptic imaging and digital in-line holography successfully quantify the 3D nature of these particle fields. This includes measurement of the 3D particle position, individual particle sizes, and three-component velocity vectors. For the initial processing methods presented here, both techniques give out-of-plane positional accuracy of approximately 1-2 particle diameters. For a fixed image sensor, digital holography achieves higher effective in-plane spatial resolutions. However, collimated and coherent illumination makes holography susceptible to image distortion through index of refraction gradients, as demonstrated in the shotgun experiments. On the other hand, plenotpic imaging allows for a simpler experimental configuration. Furthermore, due to the use of diffuse, white-light illumination, plenoptic imaging is less susceptible to image distortion in the shotgun experiments. Additional work is needed to better quantify sources of uncertainty, particularly in the plenoptic experiments, as well as develop data processing methodologies optimized for the plenoptic measurement.

  7. The Feasibility of Performing Particle Tracking Based Flow Measurements with Acoustic Cameras

    Science.gov (United States)

    2017-08-01

    particles . The motion of the light- reflecting tracer particles is observed, generally with a CCD or complementary metal-oxide semiconductor (CMOS) digital...ER D C/ CH L SR -1 7- 1 Dredging Operations and Environmental Research Program The Feasibility of Performing Particle - Tracking-Based...acwc.sdp.sirsi.net/client/default. Dredging Operations and Environmental Research Program ERDC/CHL SR-17-1 August 2017 The Feasibility of Performing Particle

  8. A ''quick DYECET'' method for ECE particle tracks in polymer detectors

    International Nuclear Information System (INIS)

    Sohrabi, M.; Mahdi, S.

    1993-01-01

    The new dyed electrochemically etched track (DEYCET) method recently developed at the National Radiation Protection Department (NRPD) of the Atomic Energy Organization of Iran (AEOI) using sensitization and dyeing steps is a useful and powerful method for dyeing charged particle and neutron-induced-recoil tracks in polymer detectors. This original DYECET method is effective but time consuming due to the steps for sensitization and dyeing which usually takes several hours. A ''Quick DYECET'' method, also recently developed in our laboratory, is introduced in this paper which dyes ECE tracks effectively in different colours within a few minutes. This new method can dye ECE tracks, cracks, fractures and fractals with different water and/or alcohol soluble dyes using cold or hot dyebaths. The method provides a high contrast and a high resolution of ECE tracks for visual track counting especially at high track densities. Some preliminary results are reported and discussed. (author)

  9. Natural tracer test simulation by stochastic particle tracking method

    International Nuclear Information System (INIS)

    Ackerer, P.; Mose, R.; Semra, K.

    1990-01-01

    Stochastic particle tracking methods are well adapted to 3D transport simulations where discretization requirements of other methods usually cannot be satisfied. They do need a very accurate approximation of the velocity field. The described code is based on the mixed hybrid finite element method (MHFEM) to calculated the piezometric and velocity field. The random-walk method is used to simulate mass transport. The main advantages of the MHFEM over FD or FE are the simultaneous calculation of pressure and velocity, which are considered as unknowns; the possibility of interpolating velocities everywhere; and the continuity of the normal component of the velocity vector from one element to another. For these reasons, the MHFEM is well adapted for particle tracking methods. After a general description of the numerical methods, the model is used to simulate the observations made during the Twin Lake Tracer Test in 1983. A good match is found between observed and simulated heads and concentrations. (Author) (12 refs., 4 figs.)

  10. Time-resolved large-scale volumetric pressure fields of an impinging jet from dense Lagrangian particle tracking

    Science.gov (United States)

    Huhn, F.; Schanz, D.; Manovski, P.; Gesemann, S.; Schröder, A.

    2018-05-01

    Time-resolved volumetric pressure fields are reconstructed from Lagrangian particle tracking with high seeding concentration using the Shake-The-Box algorithm in a perpendicular impinging jet flow with exit velocity U=4 m/s (Re˜ 36,000) and nozzle-plate spacing H/D=5. Helium-filled soap bubbles are used as tracer particles which are illuminated with pulsed LED arrays. A large measurement volume has been covered (cloud of tracked particles in a volume of 54 L, ˜ 180,000 particles). The reconstructed pressure field has been validated against microphone recordings at the wall with high correlation coefficients up to 0.88. In a reduced measurement volume (13 L), dense Lagrangian particle tracking is shown to be feasable up to the maximal possible jet velocity of U=16 m/s.

  11. Analysis of Base-Case Particle Tracking Results of the Base-Case Flow Fields (ID:U0160)

    International Nuclear Information System (INIS)

    C.K. Ho

    2000-01-01

    The purpose of this analysis is to provide insight into the unsaturated-zone (UZ) subsystem performance through particle tracking analyses of the base-case flow fields. The particle tracking analyses will not be used directly in total-system performance-assessment (TSPA) calculations per se. The objective of this activity is to evaluate the transport of radionuclides through the unsaturated zone and to determine how different system parameters such as matrix diffusion, sorption, water-table rise, and perched water influence the transport to the water table. Plots will be generated to determine normalized cumulative breakthrough curves for selected radionuclides. The scope of this work is limited to the particle tracking analyses of ''base-case'' flow fields that are to be used by the code FEHM (Finite Element Heat and Mass; Zyvoloski 1997) for particle tracking simulations in ''Total System Performance Assessment-Site Recommendation Report'' (TSPA-SR)

  12. A tracking algorithm for the reconstruction of the daughters of long-lived particles in LHCb

    CERN Document Server

    Dendek, Adam Mateusz

    2018-01-01

    A tracking algorithm for the reconstruction of the daughters of long-lived particles in LHCb 5 Jun 2018, 16:00 1h 30m Library, Centro San Domenico () LHC experiments Posters session Speaker Katharina Mueller (Universitaet Zuerich (CH)) Description The LHCb experiment at CERN operates a high precision and robust tracking system to reach its physics goals, including precise measurements of CP-violation phenomena in the heavy flavour quark sector and searches for New Physics beyond the Standard Model. The track reconstruction procedure is performed by a number of algorithms. One of these, PatLongLivedTracking, is optimised to reconstruct "downstream tracks", which are tracks originating from decays outside the LHCb vertex detector of long-lived particles, such as Ks or Λ0. After an overview of the LHCb tracking system, we provide a detailed description of the LHCb downstream track reconstruction algorithm. Its computational intelligence part is described in details, including the adaptation of the employed...

  13. Cluster analysis of HZE particle tracks as applied to space radiobiology problems

    International Nuclear Information System (INIS)

    Batmunkh, M.; Bayarchimeg, L.; Lkhagva, O.; Belov, O.

    2013-01-01

    A cluster analysis is performed of ionizations in tracks produced by the most abundant nuclei in the charge and energy spectra of the galactic cosmic rays. The frequency distribution of clusters is estimated for cluster sizes comparable to the DNA molecule at different packaging levels. For this purpose, an improved K-mean-based algorithm is suggested. This technique allows processing particle tracks containing a large number of ionization events without setting the number of clusters as an input parameter. Using this method, the ionization distribution pattern is analyzed depending on the cluster size and particle's linear energy transfer

  14. A new paradigm for particle tracking velocimetry, based on graph-theory and pulsed neural network

    International Nuclear Information System (INIS)

    Derou, D.; Herault, L.

    1994-01-01

    The Particle Tracking Velocimetry (PTV) technique works by recording, at different instances in time, positions of small tracers particles following a flow and illuminated by a sheet, or pseudo sheet, of light. It aims to recognize each particle trajectory, constituted of n different spots and determine thus each particle velocity vector. In this paper, we devise a new method, taking into account a global consistency of the trajectories to be extracted, in terms of visual perception and physical properties. It is based on a graph-theoretic formulation of the particle tracking problem and the use of an original neural network, called pulsed neural network. (authors). 4 figs

  15. Investigation of granular impact using positron emission particle tracking

    KAUST Repository

    Marston, Jeremy O.

    2015-04-01

    We present results from an experimental study of granular impact using a combination of high-speed video and positron emission particle tracking (PEPT). The PEPT technique exploits the annihilation of photons from positron decay to determine the position of tracer particles either inside a small granular bed or attached to the object which impacts the bed. We use dense spheres as impactors and the granular beds are comprised of glass beads which are fluidised to achieve a range of different initial packing states. For the first time, we have simultaneously investigated both the trajectory of the sphere, the motion of particles in a 3-D granular bed and particles which jump into the resultant jet, which arises from the collapse of the cavity formed by the impacting sphere.

  16. Local characterization of hindered Brownian motion by using digital video microscopy and 3D particle tracking

    Energy Technology Data Exchange (ETDEWEB)

    Dettmer, Simon L.; Keyser, Ulrich F.; Pagliara, Stefano [Cavendish Laboratory, University of Cambridge, 19 J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2014-02-15

    In this article we present methods for measuring hindered Brownian motion in the confinement of complex 3D geometries using digital video microscopy. Here we discuss essential features of automated 3D particle tracking as well as diffusion data analysis. By introducing local mean squared displacement-vs-time curves, we are able to simultaneously measure the spatial dependence of diffusion coefficients, tracking accuracies and drift velocities. Such local measurements allow a more detailed and appropriate description of strongly heterogeneous systems as opposed to global measurements. Finite size effects of the tracking region on measuring mean squared displacements are also discussed. The use of these methods was crucial for the measurement of the diffusive behavior of spherical polystyrene particles (505 nm diameter) in a microfluidic chip. The particles explored an array of parallel channels with different cross sections as well as the bulk reservoirs. For this experiment we present the measurement of local tracking accuracies in all three axial directions as well as the diffusivity parallel to the channel axis while we observed no significant flow but purely Brownian motion. Finally, the presented algorithm is suitable also for tracking of fluorescently labeled particles and particles driven by an external force, e.g., electrokinetic or dielectrophoretic forces.

  17. Multi-physics modeling of single/multiple-track defect mechanisms in electron beam selective melting

    International Nuclear Information System (INIS)

    Yan, Wentao; Ge, Wenjun; Qian, Ya; Lin, Stephen; Zhou, Bin; Liu, Wing Kam; Lin, Feng; Wagner, Gregory J.

    2017-01-01

    Metallic powder bed-based additive manufacturing technologies have many promising attributes. The single track acts as one fundamental building unit, which largely influences the final product quality such as the surface roughness and dimensional accuracy. A high-fidelity powder-scale model is developed to predict the detailed formation processes of single/multiple-track defects, including the balling effect, single track nonuniformity and inter-track voids. These processes are difficult to observe in experiments; previous studies have proposed different or even conflicting explanations. Our study clarifies the underlying formation mechanisms, reveals the influence of key factors, and guides the improvement of fabrication quality of single tracks. Additionally, the manufacturing processes of multiple tracks along S/Z-shaped scan paths with various hatching distance are simulated to further understand the defects in complex structures. The simulations demonstrate that the hatching distance should be no larger than the width of the remelted region within the substrate rather than the width of the melted region within the powder layer. Thus, single track simulations can provide valuable insight for complex structures.

  18. Particle tracking during Ostwald ripening using time-resolved laboratory X-ray microtomography

    Energy Technology Data Exchange (ETDEWEB)

    Werz, T., E-mail: thomas.werz@uni-ulm.de [Ulm University, Institute of Micro and Nanomaterials, Albert-Einstein-Allee 47, 89081 (Germany); Baumann, M. [Ulm University, Institute of Micro and Nanomaterials, Albert-Einstein-Allee 47, 89081 (Germany); Wolfram, U. [Ulm University, Institute of Orthopaedic Research and Biomechanics, Helmholtzstrasse 14, 89081 (Germany); Krill, C.E. [Ulm University, Institute of Micro and Nanomaterials, Albert-Einstein-Allee 47, 89081 (Germany)

    2014-04-01

    Laboratory X-ray microtomography is investigated as a method for obtaining time-resolved images of microstructural coarsening of the semisolid state of Al–5 wt.% Cu samples during Ostwald ripening. Owing to the 3D imaging capability of tomography, this technique uniquely provides access to the growth rates of individual particles, thereby not only allowing a statistical characterization of coarsening—as has long been possible by conventional metallography—but also enabling quantification of the influence of local environment on particle boundary migration. The latter information is crucial to understanding growth kinetics during Ostwald ripening at high volume fractions of the coarsening phase. Automated image processing and segmentation routines were developed to close gaps in the network of particle boundaries and to track individual particles from one annealing step to the next. The particle tracking success rate places an upper bound of only a few percent on the likelihood of segmentation errors for any given particle. The accuracy of particle size trajectories extracted from the time-resolved tomographic reconstructions is correspondingly high. Statistically averaged coarsening data and individual particle growth rates are in excellent agreement with the results of prior experimental studies and with computer simulations of Ostwald ripening. - Highlights: • Ostwald ripening in Al–5 wt.% Cu measured by laboratory X-ray microtomography • Time-resolved measurement of individual particle growth • Automated segmentation routines developed to close gaps in particle boundary network • Particle growth/shrinkage rates deviate from LSW model prediction.

  19. Vertically integrated monolithic pixel sensors for charged particle tracking and biomedical imaging

    International Nuclear Information System (INIS)

    Ratti, L.; Gaioni, L.; Manghisoni, M.; Re, V.; Traversi, G.

    2011-01-01

    Three-dimensional monolithic pixel sensors have been designed following the same approach that was exploited for the development of the so-called deep N-well (DNW) MAPS in planar CMOS process. The new 3D design relies upon stacking two homogeneous layers fabricated in a 130 nm CMOS technology. One of the two tiers, which are face-to-face bonded, has to be thinned down to about 12μm to expose the through silicon vias connecting the circuits to the back-metal bond pads. As a consequence of the way the two parts of each single chip are designed and fabricated, the prototypes of the 3D monolithic detector will include both samples with a thick substrate underneath the collecting DNW electrode, suitable for charged particle tracking, and samples with a very thin (about 6μm) sensitive volume, which may be used to detect low energy particles in biomedical imaging applications. Device physics simulations have been performed to evaluate the collection properties and detection efficiency of the proposed vertically integrated structures.

  20. Vertically integrated monolithic pixel sensors for charged particle tracking and biomedical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ratti, L., E-mail: lodovico.ratti@unipv.it [Universita di Pavia, Dipartimento di Elettronica, Via Ferrata 1, I-27100 Pavia (Italy); INFN, Sezione di Pavia, Via Bassi 6, I-27100 Pavia (Italy); Gaioni, L. [INFN, Sezione di Pavia, Via Bassi 6, I-27100 Pavia (Italy); Manghisoni, M.; Re, V.; Traversi, G. [Universita di Bergamo, Dipartimento di Ingegneria Industriale, Via Marconi 5, I-24044 Dalmine (Italy); INFN, Sezione di Pavia, Via Bassi 6, I-27100 Pavia (Italy)

    2011-10-01

    Three-dimensional monolithic pixel sensors have been designed following the same approach that was exploited for the development of the so-called deep N-well (DNW) MAPS in planar CMOS process. The new 3D design relies upon stacking two homogeneous layers fabricated in a 130 nm CMOS technology. One of the two tiers, which are face-to-face bonded, has to be thinned down to about 12{mu}m to expose the through silicon vias connecting the circuits to the back-metal bond pads. As a consequence of the way the two parts of each single chip are designed and fabricated, the prototypes of the 3D monolithic detector will include both samples with a thick substrate underneath the collecting DNW electrode, suitable for charged particle tracking, and samples with a very thin (about 6{mu}m) sensitive volume, which may be used to detect low energy particles in biomedical imaging applications. Device physics simulations have been performed to evaluate the collection properties and detection efficiency of the proposed vertically integrated structures.

  1. Saha equation, single and two particle states

    International Nuclear Information System (INIS)

    Kraeft, W.D.; Girardeau, M.D.; Strege, B.

    1990-01-01

    Single and two particle porperties in dense plasma are discussed in connection with their role in the mass action law for a partially ionized plasma. The two particle bound states are nearly density independent, while the continuum is essentially shifted. The single particle states are damped, and their energy has a negative shift and a parabolic behaviour for small momenta. (orig.)

  2. Results of solid state nuclear track detector technique application in radon detection, by alpha particles tracks, for uranium prospecting in Caetite (BA-Brazil)

    International Nuclear Information System (INIS)

    Moraes, M.A.P.V. de; Khouri, M.T.F.C.

    1988-11-01

    The solid state nuclear track detector technique has been used in radon detection, by alpha particles tracks for uranium prospecting on the ground in Caetite city (Bahia-Brazil). The sensitive film to alpha particles used were CA 8015 exposed during 15 days and the results of three anomalies of this region are showed in a form of maps, made with the density of tracks obtained, and were compared with scintillation counter measurements. The technique showed to be simple and an effective auxiliary for the prospection of uranium ore bodies. The initial uranium exploration costs can be reduced by using this technique. (author) [pt

  3. Electrochemical etching amplification of low-let recoil particle tracks in polymers for fast neutron dosimetry

    International Nuclear Information System (INIS)

    Sohrabi, M.; Morgan, K.Z.

    1975-11-01

    An electrochemical etching method for the amplification of fast-neutron-induced recoil particle tracks in polymers was investigated. The technique gave superior results over those obtained by conventional etching methods especially when polycarbonate foils were used for recoil particle track amplification. Electrochemical etching systems capable of multi-foil processing were designed and constructed to demonstrate the feasibility of the techniques for large-scale neutron dosimetry. Electrochemical etching parameters were studied including the nature or type of the polymer foil used, foil thickness and its effect on etching time, the applied voltage and its frequency, the chemical composition, concentration, and temperature of the etchant, distance and angle between the electrodes, and the type of particles such as recoil particles including protons. Recoil particle track density, mean track diameter, and optical density as functions of the mentioned parameters were determined. Each parameter was found to have a distinct effect on the etching results in terms of the measured responses. Several new characteristics of this fast neutron dosimetry method were studied especially for personnel dosimetry using various radiation sources such as nuclear reactors, medical cyclotrons, and isotopic neutron sources. The dose range, neutron energy dependence, directional response, fading characteristics, neutron threshold energy, etc. were investigated

  4. Random set particle filter for bearings-only multitarget tracking

    Science.gov (United States)

    Vihola, Matti

    2005-05-01

    The random set approach to multitarget tracking is a theoretically sound framework that covers joint estimation of the number of targets and the state of the targets. This paper describes a particle filter implementation of the random set multitarget filter. The contribution of this paper to the random set tracking framework is the formulation of a measurement model where each sensor report is assumed to contain at most one measurement. The implemented filter was tested in synthetic bearings-only tracking scenarios containing up to two targets in the presence of false alarms and missed measurements. The estimated target state consisted of 2D position and velocity components. The filter was capable to track the targets fairly well despite of the missing measurements and the relatively high false alarm rates. In addition, the filter showed robustness against wrong parameter values of false alarm rates. The results that were obtained during the limited tests of the filter show that the random set framework has potential for challenging tracking situations. On the other hand, the computational burden of the described implementation is quite high and increases approximately linearly with respect to the expected number of targets.

  5. Efficient Evaluation of Arbitrary Static Fields For Symplectic Particle Tracking

    CERN Document Server

    Bojtar, Lajos

    2018-01-01

    This article describes a method devised for efficient evaluation of arbitrary static magnetic and electric fields in a source free region needed for long time tracking of charged particles. Field values given on the boundary of the region of interest are reproduced inside by an arrangement of hypothetical magnetic or electric monopoles surrounding the boundary surface. The vector and scalar potentials are obtained by summing the contributions of each monopole. The second step of the method improves the evaluation speed of the potentials and their derivatives by orders of magnitude. This comprises covering the region of interest by overlapping spheres, then calculating the spherical harmonic expansion of the potentials on each sphere. During tracking, field values are evaluated by calculating the solid harmonics and their derivatives inside a sphere containing the particle. Software has been developed to test and demonstrate the method on a small particle accelerator. To our knowledge, there is no other meth...

  6. An application of 222Rn alpha particle's tracks to uranium exploration

    International Nuclear Information System (INIS)

    Aguilar H, F.

    1981-01-01

    The uranium exploration method is based on the register of 222 Rn alpha particles; 222 Rn gas is generated in the chain 238 U desintegration. The detection of alpha particles was performed with cellulose nitrate films (NTC), located in a grid at the region in study. The alpha particles produce latent tracks in the NTC films; these tracks may be enlarged by chemical etching and are observed with an ordinary optic microscope, ninety seven NTC films were used, these were distributed in an area of approximately seventeen square kilometers, located in the municipalities of Granados and Huasabas in Sonora Mexico, the detectors remain in the ground for a thirty days mean period. The results obtained show an area with high 222 Rn concentration, this can be related with an underground uranium ore deposit. The more important conclusion is that the results obtained in this work can be used as preliminary results for other prospection methods in this particular area. (author)

  7. Influence of the particle discriminator for producing the microporous nuclear track etched membrane

    International Nuclear Information System (INIS)

    Thongphud, Apaporn; Ratanatongchai, Wichian; Supaphol, Pitt; Visal-athaphand, Pinpan

    2005-10-01

    The particle discriminator was used to focus the fission fragments from nuclear fission reaction between thermal neutron from the Thai Research Reactor and U-235 in uranium screen to strike almost normally to the polycarbonate (PC) film. The latent tracks in the thin 15 mm PC film were revealed after etching in 6N NaOH solution at 70 o C for 60 min. It was found that the tracks were porous. The porosity was more discrete and the pore shape was more circular as well. The track diameter was measured 3.73 +- 0.32 mm. It was also found that using particle discriminators with increasing thickness during exposure gives fewer pores in the PC film, after chemical etching under the same condition as above

  8. Design of tracking photovoltaic systems with a single vertical axis

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzo, E. [Ciudad Universitaria, Madrid (Spain). Instituto de Energeia Solar; Perez, M. [Pol Industrial La Nava, Naavarrsa (Spain). Alternativas Energeticas Solares; Ezpeleta, A. [Energia Hidroelectrica Navarra, Pamplona (Spain); Acedo, J. [Ingeteam SA, Pamplona (Spain)

    2002-07-01

    Solar tracking is used in large grid-connected photovoltaic plants to maximise solar radiation collection and, hence, to reduce the cost of delivered electricity. In particular, single vertical axis tracking, also called azimuth tracking, allows for energy gains up to 40%, compared with optimally tilted fully static arrays. This paper examines the theoretical aspects associated with the design of azimuth tracking, taking into account shadowing between different trackers and back-tracking features. Then, the practical design of the trackers installed at the 1.4 MW Tudela PV plant is presented and discussed. Finally, this tracking alternative is compared with the more conventional fully stationary approach. (author)

  9. Registration of alpha particles in Makrofol-E nuclear track detectors

    Energy Technology Data Exchange (ETDEWEB)

    Rammah, Y.S. [Physics Department, Faculty of Science, Menoufia University, Shebin El-Koom (Egypt); Abdalla, Ayman M., E-mail: aymanabdalla62@hotmail.com [Physics Department, Faculty of Sciences and Arts, Najran University, P. O. Box. 11001, Najran (Saudi Arabia); Promising Centre for Sensors and Electronic Devices, Faculty of Arts and Sciences, Najran University (Saudi Arabia); Ashraf, O., E-mail: osama.ashraf@edu.asu.edu.eg [Physics Department, Faculty of Education, Ain Shams University, Cairo 11575 (Egypt); Ashry, A.H. [Physics Department, Faculty of Education, Ain Shams University, Cairo 11575 (Egypt)

    2016-06-15

    Highlights: • Makrofol-E detectors have been irradiated with alpha particles and fission fragments. • Fast detection of alpha particles in Makrofol-E detectors. • Bulk etching rate was calculated from fission track diameters. - Abstract: Fast detection of alpha particles in the range from 1 to 5 MeV in Makrofol-E polycarbonate nuclear track detectors (PCTDs) using a new chemical etchant was investigated. {sup 252}Cf and {sup 241}Am-thin open sources were used for irradiating Makrofol-E detectors with fission fragments and alpha particles in air at normal pressure and temperature (NPT). A chain of experimental work has been carried out using new etchants to register alpha particle in short time in Makrofol-E polycarbonate detectors. The etching efficiency were exhibited a clear dependence on the amount of methanol in the etching solution and etching time. The optimized chemical condition obtained at this stage of development for 200 μm Makrofol-E detectors are (8 ml of 10 N NaOH + 2 ml CH{sub 3}OH) etching solutions at 60 °C for 3 h. In this study; it is possible to observe energy detection windows for Makrofol-E detectors according to applied etching duration. Makrofol-E introduced the characteristic Bragg peak, which indicates the advantages of this detector as alpha spectrometer. Consequently, the suggested new etchant can be developed for heavy ions detection and monitoring radon levels and its daughters.

  10. Single-particle Glauber matrix elements

    International Nuclear Information System (INIS)

    Oset, E.; Strottman, D.

    1983-01-01

    The single-particle matrix elements of the Glauber profile function are tabulated for harmonic oscillator single-particle wave functions. The tables are presented in such a manner as to be applicable if the hadron--nucleon elementary scattering amplitude is specified by either a partial wave expansion or a Gaussian in momentum transfer squared. The table is complete through the 1 g/sub 9/2/ orbital and contains entries for the 3s/sub 1/2/ orbital for use if realistic wave functions are expanded in terms of harmonic oscillator functions

  11. Studies of isothermal annealing of fission fragment and alpha particle tracks in Cr-39 polymer detectors

    International Nuclear Information System (INIS)

    Zaky, M.F.; Youssef, A.A.

    2002-01-01

    Two groups of CR-39 detectors samples are exposed to two types of charged particle radiation. The first group are severe damaged with fission fragment tracks from 2 52C f source. The second accepted alpha particles resulting from the interaction of highly energetic 1 9F -ions and a copper disk with thickness 1 cm, which are of less damage tracks than fission fragments. , The isothermal annealing of tracks in the temperature range from 175 to 300 degree C in step 25 degree C for annealing time of 10,15,20,25 and 30 minutes has been investigated. The changes introduced in the track density and track diameter for two types of irradiation in the detector have been observed and compared between them. The results indicate that the track density and the size of the tracks are considerably changed due to annealing

  12. Single-particle Schroedinger fluid. I. Formulation

    International Nuclear Information System (INIS)

    Kan, K.K.; Griffin, J.J.

    1976-01-01

    The problem of a single quantal particle moving in a time-dependent external potential well is formulated specifically to emphasize and develop the fluid dynamical aspects of the matter flow. This idealized problem, the single-particle Schroedinger fluid, is shown to exhibit already a remarkably rich variety of fluid dynamical features, including compressible flow and line vortices. It provides also a sufficient framework to encompass simultaneously various simplified fluidic models for nuclei which have earlier been postulated on an ad hoc basis, and to illuminate their underlying restrictions. Explicit solutions of the single-particle Schroedinger fluid problem are studied in the adiabatic limit for their mathematical and physical implications (especially regarding the collective kinetic energy). The basic generalizations for extension of the treatment to the many-body Schroedinger fluid are set forth

  13. Methods for forming particles from single source precursors

    Science.gov (United States)

    Fox, Robert V [Idaho Falls, ID; Rodriguez, Rene G [Pocatello, ID; Pak, Joshua [Pocatello, ID

    2011-08-23

    Single source precursors are subjected to carbon dioxide to form particles of material. The carbon dioxide may be in a supercritical state. Single source precursors also may be subjected to supercritical fluids other than supercritical carbon dioxide to form particles of material. The methods may be used to form nanoparticles. In some embodiments, the methods are used to form chalcopyrite materials. Devices such as, for example, semiconductor devices may be fabricated that include such particles. Methods of forming semiconductor devices include subjecting single source precursors to carbon dioxide to form particles of semiconductor material, and establishing electrical contact between the particles and an electrode.

  14. Parallel computing of a digital hologram and particle searching for microdigital-holographic particle-tracking velocimetry

    International Nuclear Information System (INIS)

    Satake, Shin-ichi; Kanamori, Hiroyuki; Kunugi, Tomoaki; Sato, Kazuho; Ito, Tomoyoshi; Yamamoto, Keisuke

    2007-01-01

    We have developed a parallel algorithm for microdigital-holographic particle-tracking velocimetry. The algorithm is used in (1) numerical reconstruction of a particle image computer using a digital hologram, and (2) searching for particles. The numerical reconstruction from the digital hologram makes use of the Fresnel diffraction equation and the FFT (fast Fourier transform),whereas the particle search algorithm looks for local maximum graduation in a reconstruction field represented by a 3D matrix. To achieve high performance computing for both calculations (reconstruction and particle search), two memory partitions are allocated to the 3D matrix. In this matrix, the reconstruction part consists of horizontally placed 2D memory partitions on the x-y plane for the FFT, whereas, the particle search part consists of vertically placed 2D memory partitions set along the z axes.Consequently, the scalability can be obtained for the proportion of processor elements,where the benchmarks are carried out for parallel computation by a SGI Altix machine

  15. Characterization of Eag1 channel lateral mobility in rat hippocampal cultures by single-particle-tracking with quantum dots.

    Directory of Open Access Journals (Sweden)

    David Gómez-Varela

    2010-01-01

    Full Text Available Voltage-gated ion channels are main players involved in fast synaptic events. However, only slow intracellular mechanisms have so far been described for controlling their localization as real-time visualization of endogenous voltage-gated channels at high temporal and spatial resolution has not been achieved yet. Using a specific extracellular antibody and quantum dots we reveal and characterize lateral mobility as a faster mechanism to dynamically control the number of endogenous ether-a-go-go (Eag1 ion channels inside synapses. We visualize Eag1 entering and leaving synapses by lateral diffusion in the plasma membrane of rat hippocampal neurons. Mathematical analysis of their trajectories revealed how the motion of Eag1 gets restricted when the channels diffuse into the synapse, suggesting molecular interactions between Eag1 and synaptic components. In contrast, Eag1 channels switch to Brownian movement when they exit synapses and diffuse into extrasynaptic membranes. Furthermore, we demonstrate that the mobility of Eag1 channels is specifically regulated inside synapses by actin filaments, microtubules and electrical activity. In summary, using single-particle-tracking techniques with quantum dots nanocrystals, our study shows for the first time the lateral diffusion of an endogenous voltage-gated ion channel in neurons. The location-dependent constraints imposed by cytoskeletal elements together with the regulatory role of electrical activity strongly suggest a pivotal role for the mobility of voltage-gated ion channels in synaptic activity.

  16. Surrogate-driven deformable motion model for organ motion tracking in particle radiation therapy

    Science.gov (United States)

    Fassi, Aurora; Seregni, Matteo; Riboldi, Marco; Cerveri, Pietro; Sarrut, David; Battista Ivaldi, Giovanni; Tabarelli de Fatis, Paola; Liotta, Marco; Baroni, Guido

    2015-02-01

    The aim of this study is the development and experimental testing of a tumor tracking method for particle radiation therapy, providing the daily respiratory dynamics of the patient’s thoraco-abdominal anatomy as a function of an external surface surrogate combined with an a priori motion model. The proposed tracking approach is based on a patient-specific breathing motion model, estimated from the four-dimensional (4D) planning computed tomography (CT) through deformable image registration. The model is adapted to the interfraction baseline variations in the patient’s anatomical configuration. The driving amplitude and phase parameters are obtained intrafractionally from a respiratory surrogate signal derived from the external surface displacement. The developed technique was assessed on a dataset of seven lung cancer patients, who underwent two repeated 4D CT scans. The first 4D CT was used to build the respiratory motion model, which was tested on the second scan. The geometric accuracy in localizing lung lesions, mediated over all breathing phases, ranged between 0.6 and 1.7 mm across all patients. Errors in tracking the surrounding organs at risk, such as lungs, trachea and esophagus, were lower than 1.3 mm on average. The median absolute variation in water equivalent path length (WEL) within the target volume did not exceed 1.9 mm-WEL for simulated particle beams. A significant improvement was achieved compared with error compensation based on standard rigid alignment. The present work can be regarded as a feasibility study for the potential extension of tumor tracking techniques in particle treatments. Differently from current tracking methods applied in conventional radiotherapy, the proposed approach allows for the dynamic localization of all anatomical structures scanned in the planning CT, thus providing complete information on density and WEL variations required for particle beam range adaptation.

  17. Single-particle motion in large-amplitude quadrupole shape transition

    International Nuclear Information System (INIS)

    Yamada, Kazuya

    1991-01-01

    The microscopic structure of the single-particle motion for the spherical-deformed transitional nuclei is analysed by using the self-consistent collective-coordinate method (SCC method). The single-particle motion in the moving-frame of reference called the collective vibrating coordinate frame is introduced by the generalized Bogoliubov transformation depending on the collective coordinate. The numerical calculations of the single-particle (quasi-particle) energy level diagrams and their occupation probabilities for the static deformation are carried out for the Sm isotopes. A clear change of the single-particle distribution structure appears in the course of deformation. (author)

  18. Data needs for the track structure of alpha particles and electrons in water

    International Nuclear Information System (INIS)

    Pagnamenta, A.

    1983-01-01

    We have made calculations of the ionization spectra for alpha particle and electron tracks in water. We have also computed the number of ions created per micrometre of track length, the energy distribution of the secondaries, and the energy expended per ion pair created. Our aim is less toward theoretical derivations than to obtain a numerically accurate description of the track structure at all energies in a form suitable for biomedical applications. 13 references

  19. Charged particle tracking through electrostatic wire meshes using the finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Devlin, L. J.; Karamyshev, O.; Welsch, C. P., E-mail: carsten.welsch@cockcroft.ac.uk [The Cockcroft Institute, Daresbury Laboratory, Warrington (United Kingdom); Department of Physics, University of Liverpool, Liverpool (United Kingdom)

    2016-06-15

    Wire meshes are used across many disciplines to accelerate and focus charged particles, however, analytical solutions are non-exact and few codes exist which simulate the exact fields around a mesh with physical sizes. A tracking code based in Matlab-Simulink using field maps generated using finite element software has been developed which tracks electrons or ions through electrostatic wire meshes. The fields around such a geometry are presented as an analytical expression using several basic assumptions, however, it is apparent that computational calculations are required to obtain realistic values of electric potential and fields, particularly when multiple wire meshes are deployed. The tracking code is flexible in that any quantitatively describable particle distribution can be used for both electrons and ions as well as other benefits such as ease of export to other programs for analysis. The code is made freely available and physical examples are highlighted where this code could be beneficial for different applications.

  20. Developing a particle tracking surrogate model to improve inversion of ground water - Surface water models

    Science.gov (United States)

    Cousquer, Yohann; Pryet, Alexandre; Atteia, Olivier; Ferré, Ty P. A.; Delbart, Célestine; Valois, Rémi; Dupuy, Alain

    2018-03-01

    The inverse problem of groundwater models is often ill-posed and model parameters are likely to be poorly constrained. Identifiability is improved if diverse data types are used for parameter estimation. However, some models, including detailed solute transport models, are further limited by prohibitive computation times. This often precludes the use of concentration data for parameter estimation, even if those data are available. In the case of surface water-groundwater (SW-GW) models, concentration data can provide SW-GW mixing ratios, which efficiently constrain the estimate of exchange flow, but are rarely used. We propose to reduce computational limits by simulating SW-GW exchange at a sink (well or drain) based on particle tracking under steady state flow conditions. Particle tracking is used to simulate advective transport. A comparison between the particle tracking surrogate model and an advective-dispersive model shows that dispersion can often be neglected when the mixing ratio is computed for a sink, allowing for use of the particle tracking surrogate model. The surrogate model was implemented to solve the inverse problem for a real SW-GW transport problem with heads and concentrations combined in a weighted hybrid objective function. The resulting inversion showed markedly reduced uncertainty in the transmissivity field compared to calibration on head data alone.

  1. Recovering the Elemental Composition of Comet Wild 2 Dust in Five Stardust Impact Tracks and Terminal Particles in Aerogel

    International Nuclear Information System (INIS)

    Ishii, H A; Brennan, S; Bradley, J P; Luening, K; Ignatyev, K; Pianetta, P

    2007-01-01

    The elemental (non-volatile) composition of five Stardust impact tracks and terminal particles left from capture of Comet 81P/Wild 2 dust were mapped in a synchrotron x-ray scanning microprobe with full fluorescence spectra at each pixel. Because aerogel includes background levels of several elements of interest, we employ a novel 'dual threshold' approach to discriminate against background contaminants: an upper threshold, above which a spectrum contains cometary material plus aerogel and a lower threshold below which it contains only aerogel. The difference between normalized cometary-plus-background and background-only spectra is attributable to cometary material. The few spectra in between are discarded since misallocation is detrimental: cometary material incorrectly placed in the background spectrum is later subtracted from the cometary spectrum, doubling the loss of reportable cometary material. This approach improves precision of composition quantification. We present the refined whole impact track and terminal particle elemental abundances for the five impact tracks. One track shows mass increases in Cr and Mn (1.4x), Cu, As and K (2x), Zn (4x) and total mass (13%) by dual thresholds compared to a single threshold. Major elements Fe and Ni are not significantly affected. The additional Cr arises from cometary material containing little Fe. We exclude Au intermixed with cometary material because it is found to be a localized surface contaminant carried by comet dust into an impact track. The dual threshold technique can be used in other situations where elements of interest in a small sample embedded in a matrix are also present in the matrix itself

  2. Single-Track Melt-Pool Measurements and Microstructures in Inconel 625

    Science.gov (United States)

    Ghosh, Supriyo; Ma, Li; Levine, Lyle E.; Ricker, Richard E.; Stoudt, Mark R.; Heigel, Jarred C.; Guyer, Jonathan E.

    2018-02-01

    We use single-track laser melting experiments and simulations on Inconel 625 to estimate the dimensions and microstructure of the resulting melt pool. Our work is based on a design-of-experiments approach which uses multiple laser power and scan speed combinations. Single-track experiments generated melt pools of certain dimensions that showed reasonable agreement with our finite-element calculations. Phase-field simulations were used to predict the size and segregation of the cellular microstructure that formed along the melt-pool boundaries for the solidification conditions that changed as a function of melt-pool dimensions.

  3. Single-Track Melt-Pool Measurements and Microstructures in Inconel 625

    Science.gov (United States)

    Ghosh, Supriyo; Ma, Li; Levine, Lyle E.; Ricker, Richard E.; Stoudt, Mark R.; Heigel, Jarred C.; Guyer, Jonathan E.

    2018-06-01

    We use single-track laser melting experiments and simulations on Inconel 625 to estimate the dimensions and microstructure of the resulting melt pool. Our work is based on a design-of-experiments approach which uses multiple laser power and scan speed combinations. Single-track experiments generated melt pools of certain dimensions that showed reasonable agreement with our finite-element calculations. Phase-field simulations were used to predict the size and segregation of the cellular microstructure that formed along the melt-pool boundaries for the solidification conditions that changed as a function of melt-pool dimensions.

  4. Single particle dynamics in circular accelerators

    International Nuclear Information System (INIS)

    Ruth, R.D.

    1986-10-01

    The purpose of this paper is to introduce the reader to the theory associated with the transverse dynamics of single particle, in circular accelerators. The discussion begins with a review of Hamiltonian dynamics and canonical transformations. The case of a single particle in a circular accelerator is considered with a discussion of non-linear terms and chromaticity. The canonical perturbation theory is presented and nonlinear resonances are considered. Finally, the concept of renormalization and residue criterion are examined. (FI)

  5. Fundamental study of single biomass particle combustion

    Energy Technology Data Exchange (ETDEWEB)

    Momeni, M.

    2013-06-01

    This thesis is a comprehensive study of single biomass particle combustion. The effect of particle shape and size and operating conditions on biomass conversion characteristics were investigated experimentally and theoretically. The experimental samples were divided in two groups: particles with regular shapes (spheres and cylinders) and particles with irregular shapes (almost flake-like). A CAMSIZER analyser (Retsch Technology GMBH) was used to determine the size and shape of the particles via Dynamical Digital Image Processing. The experiments were performed in a single particle reactor under well-defined conditions, and the complete combustion processes were recorded as video sequences by a CCD camera installed in the set-up. One of the project objectives is to simulate conditions reasonably close to the conditions in a power plant boiler, i.e., reasonably high temperatures (up to 1600 deg. C) and varying oxygen concentrations in the 5 to 20% range. A one-dimensional mathematical model was used to simulate all the intraparticle conversion processes (drying, recondensation, devolatilisation, char gasification/oxidation and heat/mass/momentum transfer) within single particles of different shapes and size under various conditions. The model also predicts the flame layer domain of a single particle. The model was validated by experimental results under different conditions; good agreement between the model predictions and the experimental data was observed. Both the experimental and modelling results showed that cylindrical particles lose mass faster than spherical particles of a similar volume (mass) and that the burnout time is reduced by increasing the particle aspect ratio (surface area to volume ratio). Very similar conversion times were observed for cylindrical particles with nearly identical surface area to volume ratios. Similar conversion times were also observed for two size classes of pulverised particles (with irregular shapes) made from the same type of

  6. 3D Rainbow Particle Tracking Velocimetry

    Science.gov (United States)

    Aguirre-Pablo, Andres A.; Xiong, Jinhui; Idoughi, Ramzi; Aljedaani, Abdulrahman B.; Dun, Xiong; Fu, Qiang; Thoroddsen, Sigurdur T.; Heidrich, Wolfgang

    2017-11-01

    A single color camera is used to reconstruct a 3D-3C velocity flow field. The camera is used to record the 2D (X,Y) position and colored scattered light intensity (Z) from white polyethylene tracer particles in a flow. The main advantage of using a color camera is the capability of combining different intensity levels for each color channel to obtain more depth levels. The illumination system consists of an LCD projector placed perpendicularly to the camera. Different intensity colored level gradients are projected onto the particles to encode the depth position (Z) information of each particle, benefiting from the possibility of varying the color profiles and projected frequencies up to 60 Hz. Chromatic aberrations and distortions are estimated and corrected using a 3D laser engraved calibration target. The camera-projector system characterization is presented considering size and depth position of the particles. The use of these components reduces dramatically the cost and complexity of traditional 3D-PTV systems.

  7. Distribution of lead in single atmospheric particles

    Science.gov (United States)

    Murphy, D. M.; Hudson, P. K.; Cziczo, D. J.; Gallavardin, S.; Froyd, K. D.; Johnston, M. V.; Middlebrook, A. M.; Reinard, M. S.; Thomson, D. S.; Thornberry, T.; Wexler, A. S.

    2007-06-01

    Three independent single particle mass spectrometers measured Pb in individual aerosol particles. These data provide unprecedented sensitivity and statistical significance for the measurement of Pb in single particles. This paper explores the reasons for the frequency of Pb in fine particles now that most gasoline is unleaded. Trace amounts of Pb were found in 5 to 25% of 250 to 3000 nm diameter particles sampled by both aircraft and surface instruments in the eastern and western United States. Over 5% of particles at a mountain site in Switzerland contained Pb. Particles smaller than 100 nm with high Pb content were also observed by an instrument that was only operated in urban areas. Lead was found on all types of particles, including Pb present on biomass burning particles from remote fires. Less common particles with high Pb contents contributed a majority of the total amount of Pb. Single particles with high Pb content often also contained alkali metals, Zn, Cu, Sn, As, and Sb. The association of Pb with Zn and other metals is also found in IMPROVE network filter data from surface sites. Sources of airborne Pb in the United States are reviewed for consistency with these data. The frequent appearance of trace Pb is consistent with widespread emissions of fine Pb particles from combustion sources followed by coagulation with larger particles during long-range transport. Industrial sources that directly emit Pb-rich particles also contribute to the observations. Clean regions of the western United States show some transport of Pb from Asia but most Pb over the United States comes from North American sources. Resuspension of Pb from soil contaminated by the years of leaded gasoline was not directly apparent.

  8. Distribution of lead in single atmospheric particles

    Directory of Open Access Journals (Sweden)

    D. M. Murphy

    2007-06-01

    Full Text Available Three independent single particle mass spectrometers measured Pb in individual aerosol particles. These data provide unprecedented sensitivity and statistical significance for the measurement of Pb in single particles. This paper explores the reasons for the frequency of Pb in fine particles now that most gasoline is unleaded. Trace amounts of Pb were found in 5 to 25% of 250 to 3000 nm diameter particles sampled by both aircraft and surface instruments in the eastern and western United States. Over 5% of particles at a mountain site in Switzerland contained Pb. Particles smaller than 100 nm with high Pb content were also observed by an instrument that was only operated in urban areas. Lead was found on all types of particles, including Pb present on biomass burning particles from remote fires. Less common particles with high Pb contents contributed a majority of the total amount of Pb. Single particles with high Pb content often also contained alkali metals, Zn, Cu, Sn, As, and Sb. The association of Pb with Zn and other metals is also found in IMPROVE network filter data from surface sites. Sources of airborne Pb in the United States are reviewed for consistency with these data. The frequent appearance of trace Pb is consistent with widespread emissions of fine Pb particles from combustion sources followed by coagulation with larger particles during long-range transport. Industrial sources that directly emit Pb-rich particles also contribute to the observations. Clean regions of the western United States show some transport of Pb from Asia but most Pb over the United States comes from North American sources. Resuspension of Pb from soil contaminated by the years of leaded gasoline was not directly apparent.

  9. Compact 3D Camera for Shake-the-Box Particle Tracking

    Science.gov (United States)

    Hesseling, Christina; Michaelis, Dirk; Schneiders, Jan

    2017-11-01

    Time-resolved 3D-particle tracking usually requires the time-consuming optical setup and calibration of 3 to 4 cameras. Here, a compact four-camera housing has been developed. The performance of the system using Shake-the-Box processing (Schanz et al. 2016) is characterized. It is shown that the stereo-base is large enough for sensible 3D velocity measurements. Results from successful experiments in water flows using LED illumination are presented. For large-scale wind tunnel measurements, an even more compact version of the system is mounted on a robotic arm. Once calibrated for a specific measurement volume, the necessity for recalibration is eliminated even when the system moves around. Co-axial illumination is provided through an optical fiber in the middle of the housing, illuminating the full measurement volume from one viewing direction. Helium-filled soap bubbles are used to ensure sufficient particle image intensity. This way, the measurement probe can be moved around complex 3D-objects. By automatic scanning and stitching of recorded particle tracks, the detailed time-averaged flow field of a full volume of cubic meters in size is recorded and processed. Results from an experiment at TU-Delft of the flow field around a cyclist are shown.

  10. Particle Tracking and Simulation on the .NET Framework

    International Nuclear Information System (INIS)

    Nishimura, Hiroshi; Scarvie, Tom

    2006-01-01

    Particle tracking and simulation studies are becoming increasingly complex. In addition to the use of more sophisticated graphics, interactive scripting is becoming popular. Compatibility with different control systems requires network and database capabilities. It is not a trivial task to fulfill all the various requirements without sacrificing runtime performance. We evaluated the effectiveness of the .NET framework by converting a C++ simulation code to C. The portability to other platforms is mentioned in terms of Mono

  11. Hot particles in industrial waste and mining tailings

    CERN Document Server

    Selchau-Hansen, K; Freyer, K; Treutler, C; Enge, W

    1999-01-01

    Industrial waste was studied concerning its radioactive pollution. Using known properties of the solid state nuclear track detector CR-39 we found among a high concentration of more or less homogeneously distributed single alpha-tracks discrete spots of very high enrichments of alpha-particles created by so called hot particles. We will report about the alpha-activity, the concentration of hot particles and about their ability to be air borne.

  12. Solar Flare Track Exposure Ages in Regolith Particles: A Calibration for Transmission Electron Microscope Measurements

    Science.gov (United States)

    Berger, Eve L.; Keller, Lindsay P.

    2015-01-01

    Mineral grains in lunar and asteroidal regolith samples provide a unique record of their interaction with the space environment. Space weathering effects result from multiple processes including: exposure to the solar wind, which results in ion damage and implantation effects that are preserved in the rims of grains (typically the outermost 100 nm); cosmic ray and solar flare activity, which result in track formation; and impact processes that result in the accumulation of vapor-deposited elements, impact melts and adhering grains on particle surfaces. Determining the rate at which these effects accumulate in the grains during their space exposure is critical to studies of the surface evolution of airless bodies. Solar flare energetic particles (mainly Fe-group nuclei) have a penetration depth of a few millimeters and leave a trail of ionization damage in insulating materials that is readily observable by transmission electron microscope (TEM) imaging. The density of solar flare particle tracks is used to infer the length of time an object was at or near the regolith surface (i.e., its exposure age). Track measurements by TEM methods are routine, yet track production rate calibrations have only been determined using chemical etching techniques [e.g., 1, and references therein]. We used focused ion beam-scanning electron microscope (FIB-SEM) sample preparation techniques combined with TEM imaging to determine the track density/exposure age relations for lunar rock 64455. The 64455 sample was used earlier by [2] to determine a track production rate by chemical etching of tracks in anorthite. Here, we show that combined FIB/TEM techniques provide a more accurate determination of a track production rate and also allow us to extend the calibration to solar flare tracks in olivine.

  13. Features of single tracks in coaxial laser cladding of a NIbased self-fluxing alloy

    Directory of Open Access Journals (Sweden)

    Feldshtein Eugene

    2017-01-01

    Full Text Available In the present paper, the influence of coaxial laser cladding conditions on the dimensions, microstructure, phases and microhardness of Ni-based self-fluxing alloy single tracks is studied. The height and width of single tracks depend on the speed and distance of the laser cladding: increasing the nozzle distance from the deposited surface 1.4 times reduces the width of the track 1.2 - 1.3 times and increases its height 1.2 times. The increase of the laser spot speed 3 times reduces the track width 1.2 - 1.4 times and the height in 1.5 - 1.6 times. At the same time, the increase of the laser spot speed 3 times reduces the track width 1.2 - 1.4 times and the height 1.5 - 1.6 times. Regularities in the formation of single tracks microstructure with different cladding conditions are defined, as well as regularity of distribution of elements over the track depth and in the transient zone. The patterns of microhardness distribution over the track depth for different cladding conditions are found.

  14. Past, present and future of materials, methodology and instrumentation in particle tracks in solids

    International Nuclear Information System (INIS)

    Espinosa, G.

    1991-01-01

    In this presentation I would like to give a brief review of the development of materials, methods and instrumentation in Solid State Nuclear Track Detection, nowadays referred to by the more general term of Particle Tracks in Solids (PTS). We all are convinced of the advantages, good characteristics and qualities of this method which has served to establish a number of procedures in several areas such as Environmental and Personal Dosimetry, Radon Research, Geology, Nuclear Physics, etc. Nevertheless, we have to be conscious of its disadvantages and limitations and above all, the future developments, taking into account all aspects, ranging from track formation models to etching and reading procedures. Above all, I want to emphasize the importance of doing research in new materials with improved properties. The other important challenge refers to instrumentation development, mainly that concerned with reading systems, which is necessary if standard procedures for the measurement and evaluation of particle tracks in solids are to be established. (author)

  15. Particle Tracking Model and Abstraction of Transport Processes

    International Nuclear Information System (INIS)

    Robinson, B.

    2000-01-01

    The purpose of the transport methodology and component analysis is to provide the numerical methods for simulating radionuclide transport and model setup for transport in the unsaturated zone (UZ) site-scale model. The particle-tracking method of simulating radionuclide transport is incorporated into the FEHM computer code and the resulting changes in the FEHM code are to be submitted to the software configuration management system. This Analysis and Model Report (AMR) outlines the assumptions, design, and testing of a model for calculating radionuclide transport in the unsaturated zone at Yucca Mountain. In addition, methods for determining colloid-facilitated transport parameters are outlined for use in the Total System Performance Assessment (TSPA) analyses. Concurrently, process-level flow model calculations are being carrier out in a PMR for the unsaturated zone. The computer code TOUGH2 is being used to generate three-dimensional, dual-permeability flow fields, that are supplied to the Performance Assessment group for subsequent transport simulations. These flow fields are converted to input files compatible with the FEHM code, which for this application simulates radionuclide transport using the particle-tracking algorithm outlined in this AMR. Therefore, this AMR establishes the numerical method and demonstrates the use of the model, but the specific breakthrough curves presented do not necessarily represent the behavior of the Yucca Mountain unsaturated zone

  16. Single particle measurements and two particle interferometry results from CERN experiment NA44

    International Nuclear Information System (INIS)

    Simon-Gillo, J.

    1994-01-01

    CERN experiment NA44 is optimized for the study of identified single and multiple particle distributions to p T = 0 near mid-rapidity. We measure π +- , K +- , p, bar p, d and bar d, in p + A and A + A collisions at 450 and 20OGeV/u, respectively. Two-particle intensity interferometry results from π + π + , K + K + , and K - K - measurements and single particle distributions are presented

  17. Three-dimensional particle tracking velocimetry using dynamic vision sensors

    Science.gov (United States)

    Borer, D.; Delbruck, T.; Rösgen, T.

    2017-12-01

    A fast-flow visualization method is presented based on tracking neutrally buoyant soap bubbles with a set of neuromorphic cameras. The "dynamic vision sensors" register only the changes in brightness with very low latency, capturing fast processes at a low data rate. The data consist of a stream of asynchronous events, each encoding the corresponding pixel position, the time instant of the event and the sign of the change in logarithmic intensity. The work uses three such synchronized cameras to perform 3D particle tracking in a medium sized wind tunnel. The data analysis relies on Kalman filters to associate the asynchronous events with individual tracers and to reconstruct the three-dimensional path and velocity based on calibrated sensor information.

  18. Development of two-dimensional velocity field measurement using particle tracking velocimetry on neutron radiography

    International Nuclear Information System (INIS)

    Saito, Y.; Mishima, K.; Suzuki, T.; Matsubayashi, M.

    2003-01-01

    The structures of liquid metal two-phase flow are investigated for analyzing the core meltdown accident of fast reactor. The experiments of high-density ratio two-phase flow for lead-bismuth molten metal and nitrogen gases are conducted to understand in detail. The liquid phase velocity distributions of lead-bismuth molten metal are measured by neutron radiography using Au-Cd tracer particles. The liquid phase velocity distributions are obtained usually by using particle image velocimetry (PIV) on the neutron radiography. The PIV, however is difficult to get the velocity vector distribution quantitatively. An image of neutron radiography is divided into two images of the bubbles and the tracer particles each in particle tracking velocimetry (PTV), which distinguishes tracer contents in the bubble from them in the liquid phase. The locations of tracer particles in the liquid phase are possible to determine by particle mask correlation method, in which the bubble images are separated from the tracer images by Σ-scaling method. The particle tracking velocimetry give a full detail of the velocity vector distributions of the liquid phase in two-phase flow, in comparison with the PIV method. (M. Suetake)

  19. Fast weighted centroid algorithm for single particle localization near the information limit.

    Science.gov (United States)

    Fish, Jeremie; Scrimgeour, Jan

    2015-07-10

    A simple weighting scheme that enhances the localization precision of center of mass calculations for radially symmetric intensity distributions is presented. The algorithm effectively removes the biasing that is common in such center of mass calculations. Localization precision compares favorably with other localization algorithms used in super-resolution microscopy and particle tracking, while significantly reducing the processing time and memory usage. We expect that the algorithm presented will be of significant utility when fast computationally lightweight particle localization or tracking is desired.

  20. Beam test of a 12-layer scintillating-fiber charged-particle tracking system

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, B.; Howell, B.L.; Koltick, D.; McIlwain, R.L.; Schmitz, C.J.; Shibata, E.I.; Zhou, Z.; Baumbaugh, B.; Ivancic, M.; Jaques, J.; Kehoe, R.; Kelley, M.; Mahoney, M.; Marchant, J.; Ruchti, R.; Wayne, M.; Atac, M.; Baumbaugh, A.; Elias, J.E.; Romero, A.; Chrisman, D.; Park, J.; Adams, M.R.; Chung, M.; Goldberg, H.; Margulies, S.; Solomon, J.; Chaney, R.; Orgeron, J.; Armstrong, T.; Lewis, R.A.; Mitchell, G.S.; Moore, R.S.; Passaneau, J.; Smith, G.A.; Corcoran, M.; Adams, D.; Bird, F.; Fenker, H.; Regan, T.; Thomas, J. (Dept. of Physics, Purdue Univ., West Lafayette, IN (United States) Dept. of Physics, Univ. of Notre Dame, IN (United States) Fermilab, Batavia, IL (United States) Dept. of Physics, Univ. of California, Los Angeles, CA (United States) Dept. of Physics, Univ. of Illinois, Chicago, IL (United States) Dept. of Physics, Univ. of Texas, Richardson, TX (United States) Dept. of Physics, Pennsylvania State Univ., University Park, PA (United States) Dept. of Physics, Rice Univ

    1994-02-01

    A 96-channel, 3-superlayer, scintillating-fiber tracking system has been tested in a 5 GeV/c [pi][sup -] beam. The scintillating fibers were 830 [mu]m in diameter, spaced 850 [mu]m apart, and 4.3 m in length. They were coupled to 6 m long, clear fiber waveguides and finally to visible light photon counters. A spatial resolution of [approx]150 [mu]m for a double-layered ribbon was achieved with this tracking system. This first prototype of a charged-particle tracking system configured for the Solenoidal Detector Collaboration at the Superconducting Super Collider is a benchmark in verifying the expected number of photoelectrons from the fibers. (orig.)

  1. Search for lightly ionizing particles with the MACRO detector

    CERN Document Server

    Ambrosio, M; Auriemma, G; Bakari, D; Baldini, A; Barbarino, G C; Barish, B C; Battistoni, G; Bellotti, R; Bemporad, C; Bernardini, P; Bilokon, H; Bisi, V; Bloise, C; Bower, C; Brigida, M; Bussino, S; Cafagna, F; Calicchio, M; Campana, D; Carboni, M; Cecchini, S; Cei, F; Chiarella, V; Choudhary, B C; Coutu, S; De Cataldo, M A A; Dekhissi, H; De Marzo, C; De Mitri, I; Derkaoui, J E; De Vincenzi, M; Di Credico, A; Erriquez, O; Favuzzi, C; Forti, C; Fusco, P; Giacomelli, G; Giannini, G; Giglietto, N; Giorgini, M; Grassi, M; Gray, L; Grillo, A; Guarino, F; Gustavino, C; Habig, A; Hanson, K; Heinz, R; Iarocci, Enzo; Katsavounidis, E; Katsavounidis, I; Kearns, E T; Kim, H; Kyriazopoulou, S; Lamanna, E; Lane, C; Levin, D S; Lipari, P; Longley, N P; Longo, M J; Loparco, F; Maaroufi, F; Mancarella, G; Mandrioli, G; Margiotta, A; Marini, A; Martello, D; Marzari-Chiesa, A; Mazziotta, M N; Michael, D G; Mikheyev, S P; Miller, L; Monacelli, P; Montaruli, T; Monteno, M; Mufson, S L; Musser, J; Nicolò, D; Nolty, R; Orth, C; Okada, C; Osteria, G; Ouchrif, M; Palamara, O; Patera, V; Patrizii, L; Pazzi, R; Peck, C W; Perrone, L; Petrera, S; Pistilli, P; Popa, V; Rainó, A; Reynoldson, J; Ronga, F; Satriano, C; Satta, L; Scapparone, E; Scholberg, K; Sciubba, A; Serra, P; Sioli, M; Sitta, M; Spinelli, P; Spinetti, M; Spurio, M; Steinberg, R; Stone, J L; Sulak, Lawrence R; Surdo, A; Tarle, G; Togo, V; Vakili, M; Vilela, E; Walter, C W; Webb, R

    2000-01-01

    A search for lightly ionizing particles has been performed with the MACRO detector. This search was sensitive to particles with charges between 1/5 e and close to the charge of an electron, with beta between approximately 0.25 and 1.0. Unlike previous searches both single track events and tracks buried within high multiplicity muon showers were examined. In a period of approximately one year no candidates were observed. Assuming an isotropic flux, for the single track sample this corresponds to a 90% C.L. upper flux limit Phi

  2. Advective isotope transport by mixing cell and particle tracking algorithms

    International Nuclear Information System (INIS)

    Tezcan, L.; Meric, T.

    1999-01-01

    The 'mixing cell' algorithm of the environmental isotope data evaluation is integrated with the three dimensional finite difference ground water flow model (MODFLOW) to simulate the advective isotope transport and the approach is compared with the 'particle tracking' algorithm of the MOC3D, that simulates three-dimensional solute transport with the method of characteristics technique

  3. Label-free tracking of single extracellular vesicles in a nano-fluidic optical fiber (Conference Presentation)

    Science.gov (United States)

    van der Pol, Edwin; Weidlich, Stefan; Lahini, Yoav; Coumans, Frank A. W.; Sturk, Auguste; Nieuwland, Rienk; Schmidt, Markus A.; Faez, Sanli; van Leeuwen, Ton G.

    2016-03-01

    Background: Extracellular vesicles, such as exosomes, are abundantly present in human body fluids. Since the size, concentration and composition of these vesicles change during disease, vesicles have promising clinical applications, including cancer diagnosis. However, since ~70% of the vesicles have a diameter <70 nm, detection of single vesicles remains challenging. Thus far, vesicles <70 nm have only be studied by techniques that require the vesicles to be adhered to a surface. Consequently, the majority of vesicles have never been studied in their physiological environment. We present a novel label-free optical technique to track single vesicles <70 nm in suspension. Method: Urinary vesicles were contained within a single-mode light-guiding silica fiber containing a 600 nm nano-fluidic channel. Light from a diode laser (660 nm wavelength) was coupled to the fiber, resulting in a strongly confined optical mode in the nano-fluidic channel, which continuously illuminated the freely diffusing vesicles inside the channel. The elastic light scattering from the vesicles, in the direction orthogonal to the fiber axis, was collected using a microscope objective (NA=0.95) and imaged with a home-built microscope. Results: We have tracked single urinary vesicles as small as 35 nm by elastic light scattering. Please note that vesicles are low-refractive index (n<1.4) particles, which we confirmed by combining data on thermal diffusion and light scattering cross section. Conclusions: For the first time, we have studied vesicles <70 nm freely diffusing in suspension. The ease-of-use and performance of this technique support its potential for vesicle-based clinical applications.

  4. Exploring Transduction Mechanisms of Protein Transduction Domains (PTDs in Living Cells Utilizing Single-Quantum Dot Tracking (SQT Technology

    Directory of Open Access Journals (Sweden)

    Yasuhiro Suzuki

    2012-01-01

    Full Text Available Specific protein domains known as protein transduction domains (PTDs can permeate cell membranes and deliver proteins or bioactive materials into living cells. Various approaches have been applied for improving their transduction efficacy. It is, therefore, crucial to clarify the entry mechanisms and to identify the rate-limiting steps. Because of technical limitations for imaging PTD behavior on cells with conventional fluorescent-dyes, how PTDs enter the cells has been a topic of much debate. Utilizing quantum dots (QDs, we recently tracked the behavior of PTD that was derived from HIV-1 Tat (TatP in living cells at the single-molecule level with 7-nm special precision. In this review article, we initially summarize the controversy on TatP entry mechanisms; thereafter, we will focus on our recent findings on single-TatP-QD tracking (SQT, to identify the major sequential steps of intracellular delivery in living cells and to discuss how SQT can easily provide direct information on TatP entry mechanisms. As a primer for SQT study, we also discuss the latest findings on single particle tracking of various molecules on the plasma membrane. Finally, we discuss the problems of QDs and the challenges for the future in utilizing currently available QD probes for SQT. In conclusion, direct identification of the rate-limiting steps of PTD entry with SQT should dramatically improve the methods for enhancing transduction efficiency.

  5. Guitarist Fingertip Tracking by Integrating a Bayesian Classifier into Particle Filters

    Directory of Open Access Journals (Sweden)

    Chutisant Kerdvibulvech

    2008-01-01

    Full Text Available We propose a vision-based method for tracking guitar fingerings made by guitar players. We present it as a new framework for tracking colored finger markers by integrating a Bayesian classifier into particle filters. This adds the useful abilities of automatic track initialization and recovery from tracking failures in a dynamic background. Furthermore, by using the online adaptation of color probabilities, this method is able to cope with illumination changes. Augmented Reality Tag (ARTag is then utilized to calculate the projection matrix as an online process which allows the guitar to be moved while being played. Representative experimental results are also included. The method presented can be used to develop the application of human-computer interaction (HCI to guitar playing by recognizing the chord being played by a guitarist in virtual spaces. The aforementioned application would assist guitar learners by allowing them to automatically identify if they are using the correct chords required by the musical piece.

  6. Nuclear particle track-etched anti-bogus mark

    International Nuclear Information System (INIS)

    He Xiangming; Yan Yushun; Zhang Quanrong

    2003-01-01

    Nuclear particle track-etched anti-bogus mark is a new type of forgery-proof product after engraving gravure printing, thermocolour, fluorescence, laser hologram and metal concealed anti-bogus mark. The mark is manufactured by intricate high technology and the state strictly controlled sensitive nuclear facilities to ensure the mark not to be copied. The pattern of the mark is specially characterized by permeability of liquid to be discriminated from forgery. The genuine mark can be distinguished from sham one by transparent liquid (e.g. water), colorful pen and chemical reagent. The mark has passed the official examination of health safety. It is no danger of nuclear irradiation. (author)

  7. Particle Filtering Applied to Musical Tempo Tracking

    Directory of Open Access Journals (Sweden)

    Macleod Malcolm D

    2004-01-01

    Full Text Available This paper explores the use of particle filters for beat tracking in musical audio examples. The aim is to estimate the time-varying tempo process and to find the time locations of beats, as defined by human perception. Two alternative algorithms are presented, one which performs Rao-Blackwellisation to produce an almost deterministic formulation while the second is a formulation which models tempo as a Brownian motion process. The algorithms have been tested on a large and varied database of examples and results are comparable with the current state of the art. The deterministic algorithm gives the better performance of the two algorithms.

  8. Effects of nano-SiO{sub 2} particles on surface tracking characteristics of silicone rubber composites

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yong, E-mail: tjuliuyong@tju.edu.cn; Li, Zhonglei; Du, Boxue [Key Laboratory of Smart Grid of Ministry of Education (Tianjin University), School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China)

    2014-09-08

    Compared with neat silicone rubber composites (SiRCs), SiRCs filled with nano-sized SiO{sub 2} particles at weight ratios from 0.1 to 1.0 wt. % exhibit a higher surface flashover voltage and a greater resistance to surface tracking. Scanning electron microscopy images of tracking morphologies indicate that the SiO{sub 2} particles are situated in close proximity to the polymeric chains and act as bridges to stabilize the chains and maintain the structure of the composite. Higher concentrations of nano-sized SiO{sub 2} particles, however, (above 0.3 wt. %) produce defects in the molecular network which lead to reductions in both the surface flashover voltage and the resistance to surface tracking, although these reduced values are still superior to those of neat SiRCs. Therefore, SiRCs filled with nano-sized SiO{sub 2} particles, especially at an optimal weight ratio (0.1 to 0.3 wt. %), may have significant potential applications as outdoor insulators for power systems.

  9. High throughput on-chip analysis of high-energy charged particle tracks using lensfree imaging

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Wei; Shabbir, Faizan; Gong, Chao; Gulec, Cagatay; Pigeon, Jeremy; Shaw, Jessica; Greenbaum, Alon; Tochitsky, Sergei; Joshi, Chandrashekhar [Electrical Engineering Department, University of California, Los Angeles, California 90095 (United States); Ozcan, Aydogan, E-mail: ozcan@ucla.edu [Electrical Engineering Department, University of California, Los Angeles, California 90095 (United States); Bioengineering Department, University of California, Los Angeles, California 90095 (United States); California NanoSystems Institute (CNSI), University of California, Los Angeles, California 90095 (United States)

    2015-04-13

    We demonstrate a high-throughput charged particle analysis platform, which is based on lensfree on-chip microscopy for rapid ion track analysis using allyl diglycol carbonate, i.e., CR-39 plastic polymer as the sensing medium. By adopting a wide-area opto-electronic image sensor together with a source-shifting based pixel super-resolution technique, a large CR-39 sample volume (i.e., 4 cm × 4 cm × 0.1 cm) can be imaged in less than 1 min using a compact lensfree on-chip microscope, which detects partially coherent in-line holograms of the ion tracks recorded within the CR-39 detector. After the image capture, using highly parallelized reconstruction and ion track analysis algorithms running on graphics processing units, we reconstruct and analyze the entire volume of a CR-39 detector within ∼1.5 min. This significant reduction in the entire imaging and ion track analysis time not only increases our throughput but also allows us to perform time-resolved analysis of the etching process to monitor and optimize the growth of ion tracks during etching. This computational lensfree imaging platform can provide a much higher throughput and more cost-effective alternative to traditional lens-based scanning optical microscopes for ion track analysis using CR-39 and other passive high energy particle detectors.

  10. Impact of electron irradiation on particle track etching response in ...

    Indian Academy of Sciences (India)

    In the present work, attempts have been made to investigate the modification in particle track etching response of polyallyl diglycol carbonate (PADC) due to impact of 2 MeV electrons. PADC samples pre-irradiated to 1, 10, 20, 40, 60, 80 and 100 Mrad doses of 2 MeV electrons were further exposed to 140 MeV 28Si beam ...

  11. Dependence of alpha particle track diameter on the free volume holes size using positron annihilation lifetime technique

    Energy Technology Data Exchange (ETDEWEB)

    El-Gamal, S. [Physics Department, Faculty of Education, Ain Shams University, Roxy, 11711 Cairo (Egypt); Abdalla, Ayman M., E-mail: aymanabdalla62@hotmail.com [Physics Department, Faculty of Arts and Sciences, Najran University, Najran (Saudi Arabia); Centre for Advanced Materials and Nano-Engineering, Najran University, Najran 11001 (Saudi Arabia); Abdel-Hady, E.E. [Physics Department, Faculty of Science, Minia University, BO 61519, Minia (Egypt)

    2015-09-15

    The alpha particle track diameter dependence of the free volume holes size (V{sub f}) in DAM–ADC and CR-39 nuclear track detectors was investigated using positron annihilation lifetime technique. The effect of temperature on the alpha particle track diameter and free volume were also investigated in the T-range (RT-130 °C). The obtained results revealed that the values of ortho-positronium lifetime τ{sub 3} and V{sub f} increases while I{sub 3} slightly increases as T increases for the two detectors. The values of τ{sub 3}, V{sub f} and I{sub 3} are higher in CR-39 than DAM–ADC. The interpretation of obtained results is based on the fact that increasing T leads to significant enhancement of thermal expansion of the polymer matrix and consequently V{sub f} increases. The track diameter increases as T increases. This can be explained by the fact that the increase in T increases the crystal size and V{sub f} in the polymer. A relationship between V{sub f} and the alpha particle track diameter was obtained. Moreover results of detector irradiation, along with free volume evaluation are addressed and thoroughly discussed.

  12. Positron emission particle tracking in pulsatile flow

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Nitant; Ruggles, Arthur [University of Tennessee-Knoxville, Department of Nuclear Engineering, Knoxville, TN (United States); Wiggins, Cody [University of Tennessee-Knoxville, Department of Physics and Astronomy, Knoxville, TN (United States)

    2017-05-15

    Positron emission particle tracking (PEPT) is increasingly used to understand the flow characteristics in complex systems. This research utilizes PEPT to measure pulsatile flow of frequency 2.1 Hz in an elastic Masterkleer PVC tube of 19 mm inner diameter and 3.2 mm wall thickness. Anion exchange resin beads are labeled with {sup 18}F and delivered to a pump driven flow loop with motorized ball valve used to develop the pulsatile flow. Data are collected in the tube with circular cross section, and measurements are also collected with a section of the tube pinched. Nominal flow velocities are near 1 m/s and Reynolds numbers near 20,000. Many thousand PEPT particle traces are collected and synchronized with the flow pulsation. These Lagrangian data are presented as a series of 20 still frames depicting the 3-D velocity field present during each phase of the flow pulsation. Pressure data are also collected to resolve the pressure wave front moving through the open elastic tube at velocity 15.2 m/s. (orig.)

  13. New apparatus of single particle trap system for aerosol visualization

    Science.gov (United States)

    Higashi, Hidenori; Fujioka, Tomomi; Endo, Tetsuo; Kitayama, Chiho; Seto, Takafumi; Otani, Yoshio

    2014-08-01

    Control of transport and deposition of charged aerosol particles is important in various manufacturing processes. Aerosol visualization is an effective method to directly observe light scattering signal from laser-irradiated single aerosol particle trapped in a visualization cell. New single particle trap system triggered by light scattering pulse signal was developed in this study. The performance of the device was evaluated experimentally. Experimental setup consisted of an aerosol generator, a differential mobility analyzer (DMA), an optical particle counter (OPC) and the single particle trap system. Polystylene latex standard (PSL) particles (0.5, 1.0 and 2.0 μm) were generated and classified according to the charge by the DMA. Singly charged 0.5 and 1.0 μm particles and doubly charged 2.0 μm particles were used as test particles. The single particle trap system was composed of a light scattering signal detector and a visualization cell. When the particle passed through the detector, trigger signal with a given delay time sent to the solenoid valves upstream and downstream of the visualization cell for trapping the particle in the visualization cell. The motion of particle in the visualization cell was monitored by CCD camera and the gravitational settling velocity and the electrostatic migration velocity were measured from the video image. The aerodynamic diameter obtained from the settling velocity was in good agreement with Stokes diameter calculated from the electrostatic migration velocity for individual particles. It was also found that the aerodynamic diameter obtained from the settling velocity was a one-to-one function of the scattered light intensity of individual particles. The applicability of this system will be discussed.

  14. Volume-weighted particle-tracking method for solute-transport modeling; Implementation in MODFLOW–GWT

    Science.gov (United States)

    Winston, Richard B.; Konikow, Leonard F.; Hornberger, George Z.

    2018-02-16

    In the traditional method of characteristics for groundwater solute-transport models, advective transport is represented by moving particles that track concentration. This approach can lead to global mass-balance problems because in models of aquifers having complex boundary conditions and heterogeneous properties, particles can originate in cells having different pore volumes and (or) be introduced (or removed) at cells representing fluid sources (or sinks) of varying strengths. Use of volume-weighted particles means that each particle tracks solute mass. In source or sink cells, the changes in particle weights will match the volume of water added or removed through external fluxes. This enables the new method to conserve mass in source or sink cells as well as globally. This approach also leads to potential efficiencies by allowing the number of particles per cell to vary spatially—using more particles where concentration gradients are high and fewer where gradients are low. The approach also eliminates the need for the model user to have to distinguish between “weak” and “strong” fluid source (or sink) cells. The new model determines whether solute mass added by fluid sources in a cell should be represented by (1) new particles having weights representing appropriate fractions of the volume of water added by the source, or (2) distributing the solute mass added over all particles already in the source cell. The first option is more appropriate for the condition of a strong source; the latter option is more appropriate for a weak source. At sinks, decisions whether or not to remove a particle are replaced by a reduction in particle weight in proportion to the volume of water removed. A number of test cases demonstrate that the new method works well and conserves mass. The method is incorporated into a new version of the U.S. Geological Survey’s MODFLOW–GWT solute-transport model.

  15. Direct tracking error characterization on a single-axis solar tracker

    International Nuclear Information System (INIS)

    Sallaberry, Fabienne; Pujol-Nadal, Ramon; Larcher, Marco; Rittmann-Frank, Mercedes Hannelore

    2015-01-01

    Highlights: • The solar tracker of a small-size parabolic trough collector was tested. • A testing procedure for the tracking error characterization of a single-axis tracker was proposed. • A statistical analysis on the tracking error distribution was done regarding different variables. • The optical losses due to the tracking error were calculated based on a ray-tracing simulation. - Abstract: The solar trackers are devices used to orientate solar concentrating systems in order to increase the focusing of the solar radiation on a receiver. A solar concentrator with a medium or high concentration ratio needs to be orientated correctly by an accurate solar tracking mechanism to avoid losing the sunrays out from the receiver. Hence, to obtain an appropriate operation, it is important to know the accuracy of a solar tracker in regard to the required precision of the concentrator in order to maximize the collector optical efficiency. A procedure for the characterization of the accuracy of a solar tracker is presented for a single-axis solar tracker. More precisely, this study focuses on the estimation of the positioning angle error of a parabolic trough collector using a direct procedure. A testing procedure, adapted from the International standard IEC 62817 for photovoltaic trackers, was defined. The results show that the angular tracking error was within ±0.4° for this tracker. The optical losses due to the tracking were calculated using the longitudinal incidence angle modifier obtained by ray-tracing simulation. The acceptance angles for various transversal angles were analyzed, and the average optical loss, due to the tracking, was 0.317% during the whole testing campaign. The procedure presented in this work showed that the tracker precision was adequate for the requirements of the analyzed optical system.

  16. A new dyed ECE track identification method for nuclear particle detection

    International Nuclear Information System (INIS)

    Sohrabi, M.; Bojd, S.S.

    1990-01-01

    A new procedure for obtaining highly contrasted red-dyed electrochemically etched recoil tracks in polymers such as polycarbonate (PC) and CR-39 has been successfully developed for spectrophotometry as applied to neutron dosimetry. The principal rationale in this method has been the provision of highly contrasted, photon-absorbing, large, dyed recoil tracks in an unaffected bulk material. The method consists of: (a) exposing the polymer to charged particles or neutrons; (b) electrochemical etching of the tracks; (c) acid sensitization; (d) dyeing with an appropriate dye. By investigation of the type, concentration, duration and temperature of the acid and the dye, optimized values of 20% by weight acrylic acid at 75 0 C for 3.5 h for sensitization, and 3% by weight eosin bluish dye at 95 0 C for 4 h for dyeing, provided a nearly 100% dyed-track efficiency. Spectrophotometry by UV and infrared radiation track counting, and optical densitometry were applied to the dyed samples. The results have shown some promise for UV absorbance measurements in routine large-scale applications. In this paper, the results of optimization studies and preliminary application of the technique to neutron dosimetry are presented and discussed. (author)

  17. Development of detection techniques for a single-particle of fissile material(II)

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, S. C.; Kim, W. H.; Park, Y. J.; Song, B. C.; Jeon, Y. S.; Jee, K. Y.; Pyo, H. Y.; Kwack, E. H

    2001-06-01

    The Analytical methods and detection limit of signatures, and the particle discrimination techniques of unknown particles by microscope were investigated in this technical report. In connection with pre-treatment of swipe samples, sampling and treatment of particles, etching method, fission track observation and the preparation of sample for the neutron activation analysis were also described in this thchnical report.

  18. Development of detection techniques for a single-particle of fissile material(II)

    International Nuclear Information System (INIS)

    Sohn, S. C.; Kim, W. H.; Park, Y. J.; Song, B. C.; Jeon, Y. S.; Jee, K. Y.; Pyo, H. Y.; Kwack, E. H.

    2001-06-01

    The Analytical methods and detection limit of signatures, and the particle discrimination techniques of unknown particles by microscope were investigated in this technical report. In connection with pre-treatment of swipe samples, sampling and treatment of particles, etching method, fission track observation and the preparation of sample for the neutron activation analysis were also described in this thchnical report

  19. Single-particle density matrix of liquid 4He

    International Nuclear Information System (INIS)

    Vakarchuk, I.A.

    2008-01-01

    The density single-particle matrix in the coordinate notation was calculated based on the expression for the interacting Bose-particle N system density matrix. Under the low temperatures the mentioned matrix in the first approximation enables to reproduce the Bogoliubov theory results. In the classical terms the mentioned theory enables to reproduce the results of the theory of the classical fluids in the approximation of the chaotic phases. On the basis of the density single-particle matrix one managed to obtain the function of the pulse distribution of the particles, the Bose-liquid average kinetic energy, and to study the Bose-Einstein condensation phenomenon [ru

  20. Seasonal characteristics of water exchange in Beibu Gulf based on a particle tracking model

    Science.gov (United States)

    Wang, L.; Pan, W.; Yan, X.

    2016-12-01

    A lagrangian particle tracking model coupled with a three-dimensional Marine Environmental Committee Ocean Model (MEC) is used to study the transport and seasonal characteristics of water exchange in Beibu Gulf. The hydrodynamic model (MEC), which is forced with the daily surface and lateral boundary fluxes, as well as tidal harmonics and monthly climatological river discharges, is applied to simulate the flow field in the gulf during 2014. Using these results, particle tracking method which includes tidal advection and random walk in the horizontal is used to determine the residence times of sub regions within the gulf in response of winter and summer wind forcing. The result shows water exchange processes in the gulf have a similar tendency with seasonal circulation structure. During the sourthwestly prevailing wind in summer, water particles are traped within the gulf that considerably increases the residence time of each sub region. On the contrary, the presence of strong northeastly prevailing wind in winter drives particles to move cyclonicly leading to shorter residence times and rather active water exchanges among sub regions. Similarly, particle tracking is applied to investigate the water transport in Beibu Gulf. As Qiongzhou Strait and the wide opening in the south of the gulf are two significant channels connecting with the open ocean, continuous particle releases are simulated to quantify the influence range and the pathways of these sources water flowing into Beibu Gulf. The results show that water particles originated from Qiongzhou Strait are moving westward due to the year-round strong westward flow transportation. Influencing range in the north of the Beibu Gulf is enlarged by winter northeastly wind, however, it is blocked to the Leizhou Peninsula coastal region by summer westly wind. In the south opening, water particles are transported northward into the gulf along Hainan Island and flushed from Vietnam coastal region to the ocean rapidly by

  1. Performance analysis of a new positron camera geometry for high speed, fine particle tracking

    Science.gov (United States)

    Sovechles, J. M.; Boucher, D.; Pax, R.; Leadbeater, T.; Sasmito, A. P.; Waters, K. E.

    2017-09-01

    A new positron camera arrangement was assembled using 16 ECAT951 modular detector blocks. A closely packed, cross pattern arrangement was selected to produce a highly sensitive cylindrical region for tracking particles with low activities and high speeds. To determine the capabilities of this system a comprehensive analysis of the tracking performance was conducted to determine the 3D location error and location frequency as a function of tracer activity and speed. The 3D error was found to range from 0.54 mm for a stationary particle, consistent for all tracer activities, up to 4.33 mm for a tracer with an activity of 3 MBq and a speed of 4 m · s-1. For lower activity tracers (mineral particles inside a two-inch hydrocyclone and a 142 mm diameter flotation cell. A detailed trajectory, inside the hydrocyclone, of a  -212  +  106 µm (10-1 MBq) quartz particle displayed the expected spiralling motion towards the apex. This was the first time a mineral particle of this size had been successfully traced within a hydrocyclone, however more work is required to develop detailed velocity fields.

  2. Simple scaling for faster tracking simulation in accelerator multiparticle dynamics

    International Nuclear Information System (INIS)

    MacLachlan, J.A.

    2001-01-01

    Macroparticle tracking is a direct and attractive approach to following the evolution of a phase space distribution. When the particles interact through short range wake fields or when inter-particle force is included, calculations of this kind require a large number of macroparticles. It is possible to reduce both the number of macroparticles required and the number of tracking steps per unit simulated time by employing a simple scaling which can be inferred directly from the single-particle equations of motion. In many cases of practical importance the speed of calculation improves with the fourth power of the scaling constant. Scaling has been implemented in an existing longitudinal tracking code; early experience supports the concept and promises major time savings. Limitations on the scaling are discussed

  3. Hopfield neural network in HEP track reconstruction

    International Nuclear Information System (INIS)

    Muresan, Raluca; Pentia, Mircea

    1996-01-01

    This work uses neural network technique (Hopfield method) to reconstruct particle tracks starting from a data set obtained with a coordinate detector system placed around a high energy accelerated particle interaction region. A learning algorithm for finding the optimal connection of the signal points have been elaborated and tested. We used a single layer neutral network with constraints in order to obtain the particle tracks drawn through the detected signal points. The dynamics of the systems is given by the MFT equations which determine the system evolution to a minimum energy function. We carried out a computing program that has been tested on a lot of Monte Carlo simulated data. With this program we obtained good results even for noise/signal ratio 200. (authors)

  4. Single Molecule Applications of Quantum Dots

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Elmelund; Jauffred, Liselotte; Brewer, Jonathan R.

    2013-01-01

    Fluorescent nanocrystals composed of semiconductor materials were first introduced for biological applications in the late 1990s. The focus of this review is to give a brief survey of biological applications of quantum dots (QDs) at the single QD sensitivity level. These are described as follows: 1......) QD blinking and bleaching statistics, 2) the use of QDs in high speed single particle tracking with a special focus on how to design the biofunctional coatings of QDs which enable specific targeting to single proteins or lipids of interest, 3) a hybrid lipid-DNA analogue binding QDs which allows...... for tracking single lipids in lipid bilayers, 4) two-photon fluorescence correlation spectroscopy of QDs and 5) optical trapping and excitation of single QDs. In all of these applications, the focus is on the single particle sensitivity level of QDs. The high applicability of QDs in live cell imaging...

  5. Automated data collection in single particle electron microscopy

    Science.gov (United States)

    Tan, Yong Zi; Cheng, Anchi; Potter, Clinton S.; Carragher, Bridget

    2016-01-01

    Automated data collection is an integral part of modern workflows in single particle electron microscopy (EM) research. This review surveys the software packages available for automated single particle EM data collection. The degree of automation at each stage of data collection is evaluated, and the capabilities of the software packages are described. Finally, future trends in automation are discussed. PMID:26671944

  6. Single particle irradiation effect of digital signal processor

    International Nuclear Information System (INIS)

    Fan Si'an; Chen Kenan

    2010-01-01

    The single particle irradiation effect of high energy neutron on digital signal processor TMS320P25 in dynamic working condition has been studied. The influence of the single particle on the device has been explored through the acquired waveform and working current of TMS320P25. Analysis results, test data and test methods have also been presented. (authors)

  7. Elastic collisions of classical point particles on a finite frictionless linear track with perfectly reflecting endpoints

    Science.gov (United States)

    DeLuca, R.

    2006-03-01

    Repeated elastic collisions of point particles on a finite frictionless linear track with perfectly reflecting endpoints are considered. The problem is analysed by means of an elementary linear algebra approach. It is found that, starting with a state consisting of a projectile particle in motion at constant velocity and a target particle at rest in a fixed known position, the points at which collisions occur on track, when plotted versus progressive numerals, corresponding to the collisions themselves, show periodic patterns for a rather large choice of values of the initial position x(0) and on the mass ratio r. For certain values of these parameters, however, only regular behaviour over a large number of collisions is detected.

  8. Robust visual tracking via multi-task sparse learning

    KAUST Repository

    Zhang, Tianzhu

    2012-06-01

    In this paper, we formulate object tracking in a particle filter framework as a multi-task sparse learning problem, which we denote as Multi-Task Tracking (MTT). Since we model particles as linear combinations of dictionary templates that are updated dynamically, learning the representation of each particle is considered a single task in MTT. By employing popular sparsity-inducing p, q mixed norms (p D; 1), we regularize the representation problem to enforce joint sparsity and learn the particle representations together. As compared to previous methods that handle particles independently, our results demonstrate that mining the interdependencies between particles improves tracking performance and overall computational complexity. Interestingly, we show that the popular L 1 tracker [15] is a special case of our MTT formulation (denoted as the L 11 tracker) when p q 1. The learning problem can be efficiently solved using an Accelerated Proximal Gradient (APG) method that yields a sequence of closed form updates. As such, MTT is computationally attractive. We test our proposed approach on challenging sequences involving heavy occlusion, drastic illumination changes, and large pose variations. Experimental results show that MTT methods consistently outperform state-of-the-art trackers. © 2012 IEEE.

  9. Particle tracking in a small electron storage ring

    International Nuclear Information System (INIS)

    Tsumaki, K.

    1987-01-01

    A particle tracking method for a ring system in which a sextupole magnetic field is distributed along the beam axis has been developed. This method uses Jacobi's elliptic functions inside the bending magnet and the canonical integration method in the fringes. The calculation time for the new method is the same or faster than that of the canonical integration method, and it is ten times faster than the Runge-Kutta-Gill and thin lens approximation. A special characteristic of our method is that the calculation time is always constant, even if the magnet length is increased

  10. A better understanding of biomass co-firing by developing an advanced non-spherical particle tracking model

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse Aistrup; Kær, Søren Knudsen

    2004-01-01

    -area-to-volume ratio and thus experiences a totally different motion and reaction as a non-spherical particle. Therefore, an advanced non-spherical particle-tracking model is developed to calculate the motion and reaction of nonspherical biomass particles. The biomass particles are assumed as solid or hollow cylinders......-gradient force. Since the drag and lift forces are both shape factor- and orientation-dependent, coupled particle rotation equations are resolved to update particle orientation. In the reaction of biomass particles, the actual particle surface area available and the average oxygen mass flux at particle surface...

  11. Single-particle states vs. collective modes: friends or enemies ?

    Science.gov (United States)

    Otsuka, T.; Tsunoda, Y.; Togashi, T.; Shimizu, N.; Abe, T.

    2018-05-01

    The quantum self-organization is introduced as one of the major underlying mechanisms of the quantum many-body systems. In the case of atomic nuclei as an example, two types of the motion of nucleons, single-particle states and collective modes, dominate the structure of the nucleus. The collective mode arises as the balance between the effect of the mode-driving force (e.g., quadrupole force for the ellipsoidal deformation) and the resistance power against it. The single-particle energies are one of the sources to produce such resistance power: a coherent collective motion is more hindered by larger spacings between relevant single particle states. Thus, the single-particle state and the collective mode are "enemies" against each other. However, the nuclear forces are rich enough so as to enhance relevant collective mode by reducing the resistance power by changing single-particle energies for each eigenstate through monopole interactions. This will be verified with the concrete example taken from Zr isotopes. Thus, the quantum self-organization occurs: single-particle energies can be self-organized by (i) two quantum liquids, e.g., protons and neutrons, (ii) monopole interaction (to control resistance). In other words, atomic nuclei are not necessarily like simple rigid vases containing almost free nucleons, in contrast to the naïve Fermi liquid picture. Type II shell evolution is considered to be a simple visible case involving excitations across a (sub)magic gap. The quantum self-organization becomes more important in heavier nuclei where the number of active orbits and the number of active nucleons are larger.

  12. Single wire drift chamber design

    International Nuclear Information System (INIS)

    Krider, J.

    1987-01-01

    This report summarizes the design and prototype tests of single wire drift chambers to be used in Fermilab test beam lines. The goal is to build simple, reliable detectors which require a minimum of electronics. Spatial resolution should match the 300 μm rms resolution of the 1 mm proportional chambers that they will replace. The detectors will be used in beams with particle rates up to 20 KHz. Single track efficiency should be at least 99%. The first application will be in the MT beamline, which has been designed for calibration of CDF detectors. A set of four x-y modules will be used to track and measure the momentum of beam particles

  13. Creation and evolution of excited states in α particle tracks in anthracene crystals

    International Nuclear Information System (INIS)

    Klein, G.

    1977-01-01

    The kinematics of excited states in anthracene crystals bombarded by 5MeV α particles is studied. The elementary processes which account for the transitions from the primary excited states to the lowest singlet S 1 and triplet T 1 excited states is described. The equation governing the evolution of the S 1 and T 1 excitons in the α particle track are then solved, and the scintillation decay curve is calculated. This calculated result is in good agreement with all available experimental results. The experimental part of this work are scintillation decay curves measurements. The scintillation decay was measured between 0.5nsec and 40μsec. The influence of the initial very fast singlet excitons quenching by triplet excitons can be seen in the beginning of scintillation. The delayed component is described by the triplet excitons kinematics. The magnetic field effect on the scintillation was investigated. This effect is attributed to an effect on the T 1 -T 1 annihilation and an effect on the triplet excitons quenching by radicals which are formed in the α particle track

  14. Geometrical optimization of a particle tracking system for proton computed tomography

    International Nuclear Information System (INIS)

    Penfold, S.N.; Rosenfeld, A.B.; Schulte, R.W.; Sadrozinksi, H.-F.W.

    2011-01-01

    Proton computed tomography (pCT) is currently being developed as an imaging modality for improving the accuracy of treatment planning in proton therapy. A tracking telescope comprising eight planes of single-sided silicon strip detectors (SSDs) forms an integral part of our present pCT design. Due to the currently maximum available Si wafer size, the sensitive area of 9 cm × 18 cm of the pCT tracker requires each tracking plane to be composed of two individual SSDs, which creates potential reconstruction problems due to overlap or gaps of the sensitive SSD areas. Furthermore, the spacing of the tracking planes creates competing design requirements between compactness and spatial resolution. Two Monte Carlo simulations were performed to study the effect of tracking detector location on pCT image quality. It was found that a “shingled” detector design suppressed reconstruction artefacts and, for the spatial resolution of the current detector hardware, reconstructed spatial resolution was not improved with a tracking separation of greater than 8 cm.

  15. Passive Target Tracking in Non-cooperative Radar System Based on Particle Filtering

    Institute of Scientific and Technical Information of China (English)

    LI Shuo; TAO Ran

    2006-01-01

    We propose a target tracking method based on particle filtering(PF) to solve the nonlinear non-Gaussian target-tracking problem in the bistatic radar systems using external radiation sources. Traditional nonlinear state estimation method is extended Kalman filtering (EKF), which is to do the first level Taylor series extension. It will cause an inaccuracy or even a scatter estimation result on condition that there is either a highly nonlinear target or a large noise square-error. Besides, Kalman filtering is the optimal resolution under a Gaussian noise assumption, and is not suitable to the non-Gaussian condition. PF is a sort of statistic filtering based on Monte Carlo simulation that is using some random samples (particles) to simulate the posterior probability density of system random variables. This method can be used in any nonlinear random system. It can be concluded through simulation that PF can achieve higher accuracy than the traditional EKF.

  16. Particle Filter with Integrated Voice Activity Detection for Acoustic Source Tracking

    Directory of Open Access Journals (Sweden)

    Anders M. Johansson

    2007-01-01

    Full Text Available In noisy and reverberant environments, the problem of acoustic source localisation and tracking (ASLT using an array of microphones presents a number of challenging difficulties. One of the main issues when considering real-world situations involving human speakers is the temporally discontinuous nature of speech signals: the presence of silence gaps in the speech can easily misguide the tracking algorithm, even in practical environments with low to moderate noise and reverberation levels. A natural extension of currently available sound source tracking algorithms is the integration of a voice activity detection (VAD scheme. We describe a new ASLT algorithm based on a particle filtering (PF approach, where VAD measurements are fused within the statistical framework of the PF implementation. Tracking accuracy results for the proposed method is presented on the basis of synthetic audio samples generated with the image method, whereas performance results obtained with a real-time implementation of the algorithm, and using real audio data recorded in a reverberant room, are published elsewhere. Compared to a previously proposed PF algorithm, the experimental results demonstrate the improved robustness of the method described in this work when tracking sources emitting real-world speech signals, which typically involve significant silence gaps between utterances.

  17. Study on the fragmentation of granite due to the impact of single particle and double particles

    Directory of Open Access Journals (Sweden)

    Yuchun Kuang

    2016-09-01

    Full Text Available Particle Impact Drilling (PID is a novel method to improve the rate of penetration (ROP. In order to further improve the performance of PID, an investigation into the effect of single and double particles: (1 diameter; (2 initial velocity; (3 distance; and (4 angle of incidence was undertaken to investigate their effects on broken volume and penetration depth into hard brittle rock. For this purpose, the laboratory experiment of single particle impact rock was employed. Meanwhile, based on the LS-DYNA, a new finite element (FE simulation of the PID, including single and double particles impact rock, has been presented. The 3-dimensional (3D, aix-symmetric, dynamic-explicit, Lagrangian model has been considered in this simulation. And the Elastic and Holmquist Johnson Cook (HJC material behaviors have been used for particles and rocks, respectively. The FE simulation results of single particle impacting rock are good agreement with experimental data. Furthermore, in this article the optimal impact parameters, including diameter, initial velocity, distance and the angle of incidence, are obtained in PID.

  18. Irradiation of single cells with individual high-LET particles

    International Nuclear Information System (INIS)

    Nelson, J.M.; Braby, L.A.

    1993-01-01

    The dose-limiting normal tissue of concern when irradiating head and neck lesions is often the vascular endothelium within the treatment field. Consequently, the response of capillary endothelial cells exposed to moderate doses of high LET particles is essential for establishing exposure limits for neutron-capture therapy. In an effort to characterize the high-LET radiation biology of cultured endothelial cells, the authors are attempting to measure cellular response to single particles. The single-particle irradiation apparatus, described below, allows them to expose individual cells to known numbers of high-LET particles and follow these cells for extended periods, in order to assess the impact of individual particles on cell growth kinetics. Preliminary cell irradiation experiments have revealed complications related to the smooth and efficient operation of the equipment; these are being resolved. Therefore, the following paragraphs deal primarily with the manner by which high LET particles deposit energy, the requirements for single-cell irradiation, construction and assembly of such apparatus, and testing of experimental procedures, rather than with the radiation biology of endothelial cells

  19. Evaluating the Promise of Single-Track Year-Round Schools.

    Science.gov (United States)

    Haenn, Joseph F.

    1996-01-01

    Describes two single-track year-round elementary schools in Durham, North Carolina, established in discrete attendance zones. Remediation and enrichment activities were provided during intersession. Low-SES students were overrepresented in remediation sessions. Student outcomes data (end-of-grade reading and math test scores) suggest that…

  20. Science and technology with nuclear tracks in solids

    CERN Document Server

    Buford-Price, P

    2005-01-01

    Fission track dating has greatly expanded its usefulness to geology over the last 40 years. It is central to thermochronology—the use of shortened fission tracks to decipher the thermal history, movement, and provenance of rocks. When combined with other indicators, such as zircon color and (U–Th)/He, a range of temperatures from C to C can be studied. Combining fission track analysis with cosmogenic nuclide decay rates, one can study landscape development and denudation of passive margins. Technological applications have expanded from biological filters, radon mapping, and dosimetry to the use of ion track microtechnology in microlithography, micromachining by ion track etching, microscopic field emission tips, magnetic nanowires as magnetoresistive sensors, microfluidic devices, physiology of ion channels in single cells, and so on. In nuclear and particle physics, relatively insensitive glass detectors have been almost single-handedly responsible for our knowledge of cluster radioactivity, and plastic ...

  1. 3D computation of the shape of etched tracks in CR-39 for oblique particle incidence and comparison with experimental results

    International Nuclear Information System (INIS)

    Doerschel, B.; Hermsdorf, D.; Reichelt, U.; Starke, S.; Wang, Y.

    2003-01-01

    Computation of the shape of etch pits needs to know the varying track etch rate along the particle trajectories. Experiments with alpha particles and 7 Li ions entering CR-39 detectors under different angles showed that this function is not affected by the inclination of the particle trajectory with respect to the normal on the detector surface. Track formation for oblique particle incidence can, therefore, be simulated using the track etch rates determined for perpendicular incidence. 3D computation of the track shape was performed applying a model recently described in literature. A special program has been written for computing the x,y,z coordinates of points on the etch pit walls. In addition, the etch pit profiles in sagittal sections as well as the contours of the etch pit openings on the detector surface have been determined experimentally. Computed and experimental results were in good agreement confirming the applicability of the 3D computational model in combination with the functions for the depth-dependent track etch rates determined experimentally

  2. UmUTracker: A versatile MATLAB program for automated particle tracking of 2D light microscopy or 3D digital holography data

    Science.gov (United States)

    Zhang, Hanqing; Stangner, Tim; Wiklund, Krister; Rodriguez, Alvaro; Andersson, Magnus

    2017-10-01

    We present a versatile and fast MATLAB program (UmUTracker) that automatically detects and tracks particles by analyzing video sequences acquired by either light microscopy or digital in-line holographic microscopy. Our program detects the 2D lateral positions of particles with an algorithm based on the isosceles triangle transform, and reconstructs their 3D axial positions by a fast implementation of the Rayleigh-Sommerfeld model using a radial intensity profile. To validate the accuracy and performance of our program, we first track the 2D position of polystyrene particles using bright field and digital holographic microscopy. Second, we determine the 3D particle position by analyzing synthetic and experimentally acquired holograms. Finally, to highlight the full program features, we profile the microfluidic flow in a 100 μm high flow chamber. This result agrees with computational fluid dynamic simulations. On a regular desktop computer UmUTracker can detect, analyze, and track multiple particles at 5 frames per second for a template size of 201 ×201 in a 1024 × 1024 image. To enhance usability and to make it easy to implement new functions we used object-oriented programming. UmUTracker is suitable for studies related to: particle dynamics, cell localization, colloids and microfluidic flow measurement. Program Files doi : http://dx.doi.org/10.17632/fkprs4s6xp.1 Licensing provisions : Creative Commons by 4.0 (CC by 4.0) Programming language : MATLAB Nature of problem: 3D multi-particle tracking is a common technique in physics, chemistry and biology. However, in terms of accuracy, reliable particle tracking is a challenging task since results depend on sample illumination, particle overlap, motion blur and noise from recording sensors. Additionally, the computational performance is also an issue if, for example, a computationally expensive process is executed, such as axial particle position reconstruction from digital holographic microscopy data. Versatile

  3. Laboratory observations of sediment transport using combined particle image and tracking velocimetry (Conference Presentation)

    Science.gov (United States)

    Frank, Donya; Calantoni, Joseph

    2017-05-01

    Improved understanding of coastal hydrodynamics and morphology will lead to more effective mitigation measures that reduce fatalities and property damage caused by natural disasters such as hurricanes. We investigated sediment transport under oscillatory flow over flat and rippled beds with phase-separated stereoscopic Particle Image Velocimetry (PIV). Standard PIV techniques severely limit measurements at the fluid-sediment interface and do not allow for the observation of separate phases in multi-phase flow (e.g. sand grains in water). We have implemented phase-separated Particle Image Velocimetry by adding fluorescent tracer particles to the fluid in order to observe fluid flow and sediment transport simultaneously. While sand grains scatter 532 nm wavelength laser light, the fluorescent particles absorb 532 nm laser light and re-emit light at a wavelength of 584 nm. Optical long-pass filters with a cut-on wavelength of 550 nm were installed on two cameras configured to perform stereoscopic PIV to capture only the light emitted by the fluorescent tracer particles. A third high-speed camera was used to capture the light scattered by the sand grains allowing for sediment particle tracking via particle tracking velocimetry (PTV). Together, these overlapping, simultaneously recorded images provided sediment particle and fluid velocities at high temporal and spatial resolution (100 Hz sampling with 0.8 mm vector spacing for the 2D-3C fluid velocity field). Measurements were made under a wide range of oscillatory flows over flat and rippled sand beds. The set of observations allow for the investigation of the relative importance of pressure gradients and shear stresses on sediment transport.

  4. Considerations of particle vaporization and analyte diffusion in single-particle inductively coupled plasma-mass spectrometry

    International Nuclear Information System (INIS)

    Ho, Koon-Sing; Lui, Kwok-On; Lee, Kin-Ho; Chan, Wing-Tat

    2013-01-01

    The intensity of individual gold nanoparticles with nominal diameters of 80, 100, 150, and 200 nm was measured using single-particle inductively coupled plasma-mass spectrometry (ICP-MS). Since the particles are not perfectly monodisperse, a distribution of ICP-MS intensity was obtained for each nominal diameter. The distribution of particle mass was determined from the transmission electron microscopy (TEM) image of the particles. The distribution of ICP-MS intensity and the distribution of particle mass for each nominal diameter were correlated to give a calibration curve. The calibration curves are linear, but the slope decreases as the nominal diameter increases. The reduced slope is probably due to a smaller degree of vaporization of the large particles. In addition to the degree of particle vaporization, the rate of analyte diffusion in the ICP is an important factor that determines the measured ICP-MS intensity. Simulated ICP-MS intensity versus particle size was calculated using a simple computer program that accounts for the vaporization rate of the gold nanoparticles and the diffusion rate and degree of ionization of the gold atoms. The curvature of the simulated calibration curves changes with sampling depth because the effects of particle vaporization and analyte diffusion on the ICP-MS intensity are dependent on the residence time of the particle in the ICP. Calibration curves of four hypothetical particles representing the four combinations of high and low boiling points (2000 and 4000 K) and high and low analyte diffusion rates (atomic masses of 10 and 200 Da) were calculated to further illustrate the relative effects of particle vaporization and analyte diffusion. The simulated calibration curves show that the sensitivity of single-particle ICP-MS is smaller than that of the ICP-MS measurement of continuous flow of standard solutions by a factor of 2 or more. Calibration using continuous flow of standard solution is semi-quantitative at best. An

  5. Human tracking in thermal images using adaptive particle filters with online random forest learning

    Science.gov (United States)

    Ko, Byoung Chul; Kwak, Joon-Young; Nam, Jae-Yeal

    2013-11-01

    This paper presents a fast and robust human tracking method to use in a moving long-wave infrared thermal camera under poor illumination with the existence of shadows and cluttered backgrounds. To improve the human tracking performance while minimizing the computation time, this study proposes an online learning of classifiers based on particle filters and combination of a local intensity distribution (LID) with oriented center-symmetric local binary patterns (OCS-LBP). Specifically, we design a real-time random forest (RF), which is the ensemble of decision trees for confidence estimation, and confidences of the RF are converted into a likelihood function of the target state. First, the target model is selected by the user and particles are sampled. Then, RFs are generated using the positive and negative examples with LID and OCS-LBP features by online learning. The learned RF classifiers are used to detect the most likely target position in the subsequent frame in the next stage. Then, the RFs are learned again by means of fast retraining with the tracked object and background appearance in the new frame. The proposed algorithm is successfully applied to various thermal videos as tests and its tracking performance is better than those of other methods.

  6. High rate particle tracking and ultra-fast timing with a thin hybrid silicon pixel detector

    Science.gov (United States)

    Fiorini, M.; Aglieri Rinella, G.; Carassiti, V.; Ceccucci, A.; Cortina Gil, E.; Cotta Ramusino, A.; Dellacasa, G.; Garbolino, S.; Jarron, P.; Kaplon, J.; Kluge, A.; Marchetto, F.; Mapelli, A.; Martin, E.; Mazza, G.; Morel, M.; Noy, M.; Nuessle, G.; Perktold, L.; Petagna, P.; Petrucci, F.; Poltorak, K.; Riedler, P.; Rivetti, A.; Statera, M.; Velghe, B.

    2013-08-01

    The Gigatracker (GTK) is a hybrid silicon pixel detector designed for the NA62 experiment at CERN. The beam spectrometer, made of three GTK stations, has to sustain high and non-uniform particle rate (∼ 1 GHz in total) and measure momentum and angles of each beam track with a combined time resolution of 150 ps. In order to reduce multiple scattering and hadronic interactions of beam particles, the material budget of a single GTK station has been fixed to 0.5% X0. The expected fluence for 100 days of running is 2 ×1014 1 MeV neq /cm2, comparable to the one foreseen in the inner trackers of LHC detectors during 10 years of operation. To comply with these requirements, an efficient and very low-mass (< 0.15 %X0) cooling system is being constructed, using a novel microchannel cooling silicon plate. Two complementary read-out architectures have been produced as small-scale prototypes: one is based on a Time-over-Threshold circuit followed by a TDC shared by a group of pixels, while the other makes use of a constant-fraction discriminator followed by an on-pixel TDC. The read-out ASICs are produced in 130 nm IBM CMOS technology and will be thinned down to 100 μm or less. An overview of the Gigatracker detector system will be presented. Experimental results from laboratory and beam tests of prototype bump-bonded assemblies will be described as well. These results show a time resolution of about 170 ps for single hits from minimum ionizing particles, using 200 μm thick silicon sensors.

  7. Report of the working group on single-particle nonlinear dynamics

    International Nuclear Information System (INIS)

    Bazzani, A.; Bongini, L.; Corbett, J.; Dome, G.; Fedorova, A.; Freguglia, P.; Ng, K.; Ohmi, K.; Owen, H.; Papaphilippou, Y.; Robin, D.; Safranek, J.; Scandale, W.; Terebilo, A.; Turchetti, G.; Todesco, E.; Warnock, R.; Zeitlin, M.

    1999-01-01

    The Working Group on single-particle nonlinear dynamics has developed a set of tools to study nonlinear dynamics in a particle accelerator. The design of rings with large dynamic apertures is still far from automatic. The Working Group has concluded that nonlinear single-particle dynamics limits the performance of accelerators. (AIP) copyright 1999 American Institute of Physics

  8. Parallelized Kalman-Filter-Based Reconstruction of Particle Tracks on Many-Core Processors and GPUs

    Science.gov (United States)

    Cerati, Giuseppe; Elmer, Peter; Krutelyov, Slava; Lantz, Steven; Lefebvre, Matthieu; Masciovecchio, Mario; McDermott, Kevin; Riley, Daniel; Tadel, Matevž; Wittich, Peter; Würthwein, Frank; Yagil, Avi

    2017-08-01

    For over a decade now, physical and energy constraints have limited clock speed improvements in commodity microprocessors. Instead, chipmakers have been pushed into producing lower-power, multi-core processors such as Graphical Processing Units (GPU), ARM CPUs, and Intel MICs. Broad-based efforts from manufacturers and developers have been devoted to making these processors user-friendly enough to perform general computations. However, extracting performance from a larger number of cores, as well as specialized vector or SIMD units, requires special care in algorithm design and code optimization. One of the most computationally challenging problems in high-energy particle experiments is finding and fitting the charged-particle tracks during event reconstruction. This is expected to become by far the dominant problem at the High-Luminosity Large Hadron Collider (HL-LHC), for example. Today the most common track finding methods are those based on the Kalman filter. Experience with Kalman techniques on real tracking detector systems has shown that they are robust and provide high physics performance. This is why they are currently in use at the LHC, both in the trigger and offine. Previously we reported on the significant parallel speedups that resulted from our investigations to adapt Kalman filters to track fitting and track building on Intel Xeon and Xeon Phi. Here, we discuss our progresses toward the understanding of these processors and the new developments to port the Kalman filter to NVIDIA GPUs.

  9. Parallelized Kalman-Filter-Based Reconstruction of Particle Tracks on Many-Core Processors and GPUs

    Directory of Open Access Journals (Sweden)

    Cerati Giuseppe

    2017-01-01

    Full Text Available For over a decade now, physical and energy constraints have limited clock speed improvements in commodity microprocessors. Instead, chipmakers have been pushed into producing lower-power, multi-core processors such as Graphical Processing Units (GPU, ARM CPUs, and Intel MICs. Broad-based efforts from manufacturers and developers have been devoted to making these processors user-friendly enough to perform general computations. However, extracting performance from a larger number of cores, as well as specialized vector or SIMD units, requires special care in algorithm design and code optimization. One of the most computationally challenging problems in high-energy particle experiments is finding and fitting the charged-particle tracks during event reconstruction. This is expected to become by far the dominant problem at the High-Luminosity Large Hadron Collider (HL-LHC, for example. Today the most common track finding methods are those based on the Kalman filter. Experience with Kalman techniques on real tracking detector systems has shown that they are robust and provide high physics performance. This is why they are currently in use at the LHC, both in the trigger and offine. Previously we reported on the significant parallel speedups that resulted from our investigations to adapt Kalman filters to track fitting and track building on Intel Xeon and Xeon Phi. Here, we discuss our progresses toward the understanding of these processors and the new developments to port the Kalman filter to NVIDIA GPUs.

  10. Parallelized Kalman-Filter-Based Reconstruction of Particle Tracks on Many-Core Processors and GPUs

    Energy Technology Data Exchange (ETDEWEB)

    Cerati, Giuseppe [Fermilab; Elmer, Peter [Princeton U.; Krutelyov, Slava [UC, San Diego; Lantz, Steven [Cornell U.; Lefebvre, Matthieu [Princeton U.; Masciovecchio, Mario [UC, San Diego; McDermott, Kevin [Cornell U.; Riley, Daniel [Cornell U., LNS; Tadel, Matevž [UC, San Diego; Wittich, Peter [Cornell U.; Würthwein, Frank [UC, San Diego; Yagil, Avi [UC, San Diego

    2017-01-01

    For over a decade now, physical and energy constraints have limited clock speed improvements in commodity microprocessors. Instead, chipmakers have been pushed into producing lower-power, multi-core processors such as Graphical Processing Units (GPU), ARM CPUs, and Intel MICs. Broad-based efforts from manufacturers and developers have been devoted to making these processors user-friendly enough to perform general computations. However, extracting performance from a larger number of cores, as well as specialized vector or SIMD units, requires special care in algorithm design and code optimization. One of the most computationally challenging problems in high-energy particle experiments is finding and fitting the charged-particle tracks during event reconstruction. This is expected to become by far the dominant problem at the High-Luminosity Large Hadron Collider (HL-LHC), for example. Today the most common track finding methods are those based on the Kalman filter. Experience with Kalman techniques on real tracking detector systems has shown that they are robust and provide high physics performance. This is why they are currently in use at the LHC, both in the trigger and offine. Previously we reported on the significant parallel speedups that resulted from our investigations to adapt Kalman filters to track fitting and track building on Intel Xeon and Xeon Phi. Here, we discuss our progresses toward the understanding of these processors and the new developments to port the Kalman filter to NVIDIA GPUs.

  11. Improved Likelihood Function in Particle-based IR Eye Tracking

    DEFF Research Database (Denmark)

    Satria, R.; Sorensen, J.; Hammoud, R.

    2005-01-01

    In this paper we propose a log likelihood-ratio function of foreground and background models used in a particle filter to track the eye region in dark-bright pupil image sequences. This model fuses information from both dark and bright pupil images and their difference image into one model. Our...... enhanced tracker overcomes the issues of prior selection of static thresholds during the detection of feature observations in the bright-dark difference images. The auto-initialization process is performed using cascaded classifier trained using adaboost and adapted to IR eye images. Experiments show good...

  12. Controlled Synthesis and Fluorescence Tracking of Highly Uniform Poly(N-isopropylacrylamide) Microgels.

    Science.gov (United States)

    Virtanen, Otto L J; Purohit, Ashvini; Brugnoni, Monia; Wöll, Dominik; Richtering, Walter

    2016-09-08

    Stimuli-sensitive poly(N-isopropylacrylamide) (PNIPAM) microgels have various prospective practical applications and uses in fundamental research. In this work, we use single particle tracking of fluorescently labeled PNIPAM microgels as a showcase for tuning microgel size by a rapid non-stirred precipitation polymerization procedure. This approach is well suited for prototyping new reaction compositions and conditions or for applications that do not require large amounts of product. Microgel synthesis, particle size and structure determination by dynamic and static light scattering are detailed in the protocol. It is shown that the addition of functional comonomers can have a large influence on the particle nucleation and structure. Single particle tracking by wide-field fluorescence microscopy allows for an investigation of the diffusion of labeled tracer microgels in a concentrated matrix of non-labeled microgels, a system not easily investigated by other methods such as dynamic light scattering.

  13. Dynamic tracking of a nano-particle in fluids under Brownian motions

    International Nuclear Information System (INIS)

    Wu, X C; Zhang, W J; Sammynaiken, R

    2008-01-01

    Most previous studies on H 2 S were devoted to its toxic effects. However, recently there have been increasing evidences which show that endogenously generated H 2 S in specific mammalian tissues has certain significant positive physiological effects such as a neuromodulator and vasorelaxant in a membrane receptor-independent manner. In order to know the functions of endogenous H 2 S, low concentration and high accuracy measurement of H 2 S is a must. Furthermore, this measurement is desired to be real-time and non-invasive. It is reported that low concentration and nano quantity of H 2 S can be detected in water solutions and sera using carbon nanotubes with the fluorescence by confocal laser scanning microscopy. However, because of the Brownian motion of the small particle (carbon nanotube), a control system must be developed to track the movement of the particle in fluids. In this paper, we present a study to track a carbon nanotube which absorbs H 2 S in water or serum using a Raman microscope or confocal laser scanning microscope. In particular, we developed a novel control system for this task. Simulation has shown that our system works very well.

  14. NM-Scale Anatomy of an Entire Stardust Carrot Track

    Science.gov (United States)

    Nakamura-Messenger, K.; Keller, L. P.; Clemett, S. J.; Messenger, S.

    2009-01-01

    Comet Wild-2 samples collected by NASA s Stardust mission are extremely complex, heterogeneous, and have experienced wide ranges of alteration during the capture process. There are two major types of track morphologies: "carrot" and "bulbous," that reflect different structural/compositional properties of the impactors. Carrot type tracks are typically produced by compact or single mineral grains which survive essentially intact as a single large terminal particle. Bulbous tracks are likely produced by fine-grained or organic-rich impactors [1]. Owing to their challenging nature and especially high value of Stardust samples, we have invested considerable effort in developing both sample preparation and analytical techniques tailored for Stardust sample analyses. Our report focuses on our systematic disassembly and coordinated analysis of Stardust carrot track #112 from the mm to nm-scale.

  15. Evolution of single-particle structure of silicon isotopes

    Science.gov (United States)

    Bespalova, O. V.; Fedorov, N. A.; Klimochkina, A. A.; Markova, M. L.; Spasskaya, T. I.; Tretyakova, T. Yu.

    2018-01-01

    New data on proton and neutron single-particle energies E_{nlj} of Si isotopes with neutron number N from 12 to 28 as well as occupation probabilities N_{nlj} of single-particle states of stable isotopes 28, 30Si near the Fermi energy were obtained by the joint evaluation of the stripping and pick-up reaction data and excited state decay schemes of neighboring nuclei. The evaluated data indicate the following features of single-particle structure evolution: persistence of Z = 14 subshell closure with N increase, the new magicity of the number N = 16, and the conservation of the magic properties of the number N = 20 in Si isotopic chain. The features were described by the dispersive optical model. The calculation also predicts the weakening of N = 28 shell closure and demonstrates evolution of a bubble-like structure of the proton density distributions in neutron-rich Si isotopes.

  16. The development of optical microscopy techniques for the advancement of single-particle studies

    Science.gov (United States)

    Marchuk, Kyle

    Single particle orientation and rotational tracking (SPORT) has recently become a powerful optical microscopy tool that can expose many molecular motions. Unfortunately, there is not yet a single microscopy technique that can decipher all particle motions in all environmental conditions, thus there are limitations to current technologies. Within, the two powerful microscopy tools of total internal reflection and interferometry are advanced to determine the position, orientation, and optical properties of metallic nanoparticles in a variety of environments. Total internal reflection is an optical phenomenon that has been applied to microscopy to produce either fluorescent or scattered light. The non-invasive far-field imaging technique is coupled with a near-field illumination scheme that allows for better axial resolution than confocal microscopy and epi-fluorescence microscopy. By controlling the incident illumination angle using total internal reflection fluorescence (TIRF) microscopy, a new type of imaging probe called "non-blinking" quantum dots (NBQDs) were super-localized in the axial direction to sub-10-nm precision. These particles were also used to study the rotational motion of microtubules being propelled by the motor protein kinesin across the substrate surface. The same instrument was modified to function under total internal reflection scattering (TIRS) microscopy to study metallic anisotropic nanoparticles and their dynamic interactions with synthetic lipid bilayers. Utilizing two illumination lasers with opposite polarization directions at wavelengths corresponding to the short and long axis surface plasmon resonance (SPR) of the nanoparticles, both the in-plane and out-of-plane movements of many particles could be tracked simultaneously. When combined with Gaussian point spread function (PSF) fitting for particle super-localization, the binding status and rotational movement could be resolved without degeneracy. TIRS microscopy was also used to

  17. The development of optical microscopy techniques for the advancement of single-particle studies

    Energy Technology Data Exchange (ETDEWEB)

    Marchuk, Kyle [Iowa State Univ., Ames, IA (United States)

    2013-05-15

    Single particle orientation and rotational tracking (SPORT) has recently become a powerful optical microscopy tool that can expose many molecular motions. Unfortunately, there is not yet a single microscopy technique that can decipher all particle motions in all environmental conditions, thus there are limitations to current technologies. Within, the two powerful microscopy tools of total internal reflection and interferometry are advanced to determine the position, orientation, and optical properties of metallic nanoparticles in a variety of environments. Total internal reflection is an optical phenomenon that has been applied to microscopy to produce either fluorescent or scattered light. The non-invasive far-field imaging technique is coupled with a near-field illumination scheme that allows for better axial resolution than confocal microscopy and epi-fluorescence microscopy. By controlling the incident illumination angle using total internal reflection fluorescence (TIRF) microscopy, a new type of imaging probe called “non-blinking” quantum dots (NBQDs) were super-localized in the axial direction to sub-10-nm precision. These particles were also used to study the rotational motion of microtubules being propelled by the motor protein kinesin across the substrate surface. The same instrument was modified to function under total internal reflection scattering (TIRS) microscopy to study metallic anisotropic nanoparticles and their dynamic interactions with synthetic lipid bilayers. Utilizing two illumination lasers with opposite polarization directions at wavelengths corresponding to the short and long axis surface plasmon resonance (SPR) of the nanoparticles, both the in-plane and out-of-plane movements of many particles could be tracked simultaneously. When combined with Gaussian point spread function (PSF) fitting for particle super-localization, the binding status and rotational movement could be resolved without degeneracy. TIRS microscopy was also used to

  18. Range measurements and track kinetics in Dielectric Nuclear Track Detectors (DNTDs)

    Energy Technology Data Exchange (ETDEWEB)

    Aframian, A

    1981-01-01

    Observations of nuclear track development profiles and the kinetics of etched tracks in sensitive dielectric nuclear track detectors indicate three separate phases: the inception phase or the cone phase, the transition phase and the sphere phase. Continued etching of the sphere phase to through-tracks yields accurate range data for particles of different masses and energies and minimum critical angles of registration for each particle. The present results show an energy resolution of 40 keV (fwhm) for 5.48 MeV alpha-particles emitted from Am-241.

  19. Development of a new approach to simulate a particle track under electrochemical etching in polymeric detectors

    International Nuclear Information System (INIS)

    Mostofizadeh, Ali; Huang, Yudong; Kardan, M. Reza; Babakhani, Asad; Sun Xiudong

    2012-01-01

    A numerical approach based on image processing was developed to simulate a particle track in a typical polymeric detector, e.g., polycarbonate, under electrochemical etching. The physical parameters such as applied voltage, detector thickness, track length, the radii of curvature at the tip of track, and the incidence angle of the particle were considered, and then the boundary condition of the problem was defined. A numerical method was developed to solve Laplace equation, and then the distribution of the applied voltage was obtained through the polymer volume. Subsequently, the electric field strengths in the detector elements were computed. In each step of the computation, an image processing technique was applied to convert the computed values to grayscale images. The results showed that a numerical solution to Laplace equation is dedicatedly an attractive approach to provide us the accurate values of electric field strength through the polymeric detector volume as well as the track area. According to the results, for a particular condition of the detector thickness equal to 445 μm, track length of 21 μm, the radii of 2.5 μm at track tip, the incidence angle of 90°, and the applied voltage of 2080 V, after computing Laplace equation for an extremely high population of 4000 × 4000 elements of detector, the average field strength at the tip of track was computed equal to 0.31 MV cm −1 which is in the range of dielectric strength for polymers. The results by our computation confirm Smythe’s model for estimating the ECE-tracks.

  20. Bmad: A relativistic charged particle simulation library

    International Nuclear Information System (INIS)

    Sagan, D.

    2006-01-01

    Bmad is a subroutine library for simulating relativistic charged particle beams in high-energy accelerators and storage rings. Bmad can be used to study both single and multi-particle beam dynamics using routines to track both particles and macroparticles. Bmad has various tracking algorithms including Runge-Kutta and symplectic (Lie algebraic) integration. Various effects such as wakefields, and radiation excitation and damping can be simulated. Bmad has been developed in a modular, object-oriented fashion to maximize flexibility. Interface routines allow Bmad to be called from C/C++ as well as Fortran programs. Bmad is well documented. Every routine is individually annotated, and there is an extensive manual

  1. Development of a real-time internal and external marker tracking system for particle therapy: a phantom study using patient tumor trajectory data.

    Science.gov (United States)

    Cho, Junsang; Cheon, Wonjoong; Ahn, Sanghee; Jung, Hyunuk; Sheen, Heesoon; Park, Hee Chul; Han, Youngyih

    2017-09-01

    Target motion-induced uncertainty in particle therapy is more complicated than that in X-ray therapy, requiring more accurate motion management. Therefore, a hybrid motion-tracking system that can track internal tumor motion and as well as an external surrogate of tumor motion was developed. Recently, many correlation tests between internal and external markers in X-ray therapy have been developed; however, the accuracy of such internal/external marker tracking systems, especially in particle therapy, has not yet been sufficiently tested. In this article, the process of installing an in-house hybrid internal/external motion-tracking system is described and the accuracy level of tracking system was acquired. Our results demonstrated that the developed in-house external/internal combined tracking system has submillimeter accuracy, and can be clinically used as a particle therapy system as well as a simulation system for moving tumor treatment. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  2. Practical Considerations for Detection and Characterization of Sub-Micron Particles in Protein Solutions by Nanoparticle Tracking Analysis.

    Science.gov (United States)

    Gruia, Flaviu; Parupudi, Arun; Polozova, Alla

    2015-01-01

    Nanoparticle Tracking Analysis (NTA) is an emerging analytical technique developed for detection, sizing, and counting of sub-micron particles in liquid media. Its feasibility for use in biopharmaceutical development was evaluated with particle standards and recombinant protein solutions. Measurements of aqueous suspensions of NIST-traceable polystyrene particle standards showed accurate particle concentration detection between 2 × 10(7) and 5 × 10(9) particles/mL. Sizing was accurate for particle standards up to 200 nm. Smaller than nominal value sizes were detected by NTA for the 300-900 nm particles. Measurements of protein solutions showed that NTA performance is solution-specific. Reduced sensitivity, especially in opalescent solutions, was observed. Measurements in such solutions may require sample dilution; however, common sample manipulations, such as dilution and filtration, may result in particle formation. Dilution and filtration case studies are presented to further illustrate such behavior. To benchmark general performance, NTA was compared against asymmetric flow field flow fractionation coupled with multi-angle light scattering (aF4-MALS) and dynamic light scattering, which are other techniques for sub-micron particles. Data shows that all three methods have limitations and may not work equally well under certain conditions. Nevertheless, the ability of NTA to directly detect and count sub-micron particles is a feature not matched by aF4-MALS or dynamic light scattering. Thorough characterization of particulate matter present in protein therapeutics is limited by the lack of analytical methods for particles in the sub-micron size range. Emerging techniques are being developed to bridge this analytical gap. In this study, Nanoparticle Tracking Analysis is evaluated as a potential tool for biologics development. Our results indicate that method performance is molecule-specific and may not work as well under all solution conditions, especially when

  3. Development of a Hough transformation track finder for time projection chambers

    International Nuclear Information System (INIS)

    Heinze, Isa

    2013-12-01

    The International Linear Collider (ILC) is a planned particle physics experiment. One of the two detector concepts is the International Large Detector (ILD) concept for which a time projection chamber is foreseen as the main tracking device. In the ILD the particle flow concept is followed which leads to special requirements for the detector. Especially for the tracking system a very good momentum resolution is required. Several prototypes were build to prove that it is possible to build a TPC which fulfills the requirements for a TPC in the ILD. One is the Large Prototype with which different readout technologies currently under development are tested. In parallel reconstruction software is developed for the reconstruction of Large Prototype data. In this thesis the development of a track finding algorithm based on the Hough transformation is described. It can find curved tracks (with magnetic field) as well as straight tracks (without magnetic field). This package was mainly developed for Large Prototype testbeam data but was also tested on Monte Carlo simulation of tracks in the ILD TPC. Furthermore the analysis of testbeam data regarding the single point resolution is presented. The data were taken with the Large Prototype and a readout module with GEM (gas electron multiplier) amplification. For the reconstruction of these data the software package mentioned above was used. The single point resolution is directly related to the momentum resolution of the detector, thus a good single point resolution is needed to achieve a good momentum resolution.

  4. Development of a Hough transformation track finder for time projection chambers

    Energy Technology Data Exchange (ETDEWEB)

    Heinze, Isa

    2013-12-15

    The International Linear Collider (ILC) is a planned particle physics experiment. One of the two detector concepts is the International Large Detector (ILD) concept for which a time projection chamber is foreseen as the main tracking device. In the ILD the particle flow concept is followed which leads to special requirements for the detector. Especially for the tracking system a very good momentum resolution is required. Several prototypes were build to prove that it is possible to build a TPC which fulfills the requirements for a TPC in the ILD. One is the Large Prototype with which different readout technologies currently under development are tested. In parallel reconstruction software is developed for the reconstruction of Large Prototype data. In this thesis the development of a track finding algorithm based on the Hough transformation is described. It can find curved tracks (with magnetic field) as well as straight tracks (without magnetic field). This package was mainly developed for Large Prototype testbeam data but was also tested on Monte Carlo simulation of tracks in the ILD TPC. Furthermore the analysis of testbeam data regarding the single point resolution is presented. The data were taken with the Large Prototype and a readout module with GEM (gas electron multiplier) amplification. For the reconstruction of these data the software package mentioned above was used. The single point resolution is directly related to the momentum resolution of the detector, thus a good single point resolution is needed to achieve a good momentum resolution.

  5. Modeling reactive transport with particle tracking and kernel estimators

    Science.gov (United States)

    Rahbaralam, Maryam; Fernandez-Garcia, Daniel; Sanchez-Vila, Xavier

    2015-04-01

    Groundwater reactive transport models are useful to assess and quantify the fate and transport of contaminants in subsurface media and are an essential tool for the analysis of coupled physical, chemical, and biological processes in Earth Systems. Particle Tracking Method (PTM) provides a computationally efficient and adaptable approach to solve the solute transport partial differential equation. On a molecular level, chemical reactions are the result of collisions, combinations, and/or decay of different species. For a well-mixed system, the chem- ical reactions are controlled by the classical thermodynamic rate coefficient. Each of these actions occurs with some probability that is a function of solute concentrations. PTM is based on considering that each particle actually represents a group of molecules. To properly simulate this system, an infinite number of particles is required, which is computationally unfeasible. On the other hand, a finite number of particles lead to a poor-mixed system which is limited by diffusion. Recent works have used this effect to actually model incomplete mix- ing in naturally occurring porous media. In this work, we demonstrate that this effect in most cases should be attributed to a defficient estimation of the concentrations and not to the occurrence of true incomplete mixing processes in porous media. To illustrate this, we show that a Kernel Density Estimation (KDE) of the concentrations can approach the well-mixed solution with a limited number of particles. KDEs provide weighting functions of each particle mass that expands its region of influence, hence providing a wider region for chemical reactions with time. Simulation results show that KDEs are powerful tools to improve state-of-the-art simulations of chemical reactions and indicates that incomplete mixing in diluted systems should be modeled based on alternative conceptual models and not on a limited number of particles.

  6. SSCTRK: A particle tracking code for the SSC

    International Nuclear Information System (INIS)

    Ritson, D.

    1990-07-01

    While many indirect methods are available to evaluate dynamic aperture there appears at this time to be no reliable substitute to tracking particles through realistic machine lattices for a number of turns determined by the storage times. Machine lattices are generated by ''Monte Carlo'' techniques from the expected rms fabrication and survey errors. Any given generated machine can potentially be a lucky or unlucky fluctuation from the average. Therefore simulation to serve as a predictor of future performance must be done for an ensemble of generated machines. Further, several amplitudes and momenta are necessary to predict machine performance. Thus to make Monte Carlo type simulations for the SSC requires very considerable computer resources. Hitherto, it has been assumed that this was not feasible, and alternative indirect methods have been proposed or tried to answer the problem. We reexamined the feasibility of using direct computation. Previous codes have represented lattices by a succession of thin elements separated by bend-drifts. With ''kick-drift'' configurations, tracking time is linear in the multipole order included, and the code is symplectic. Modern vector processors simultaneously handle a large number of cases in parallel. Combining the efficiencies of kick drift tracking with vector processing, in fact, makes realistic Monte Carlo simulation entirely feasible. SSCTRK uses the above features. It is structured to have a very friendly interface, a very wide latitude of choice for cases to be run in parallel, and, by using pure FORTRAN 77, to interchangeably run on a wide variety of computers. We describe in this paper the program structure operational checks and results achieved

  7. Single-particle characterization of 'Asian Dust' certified reference materials using low-Z particle electron probe X-ray microanalysis

    International Nuclear Information System (INIS)

    Hwang, Hee Jin; Ro, Chul-Un

    2006-01-01

    In order to clearly elucidate whether Asian Dust particles experience chemical modification during long-range transport, it is necessary to characterize soil particles where Asian Dust particles originate. If chemical compositions of source soil particles are well characterized, then chemical compositions of Asian Dust particles collected outside source regions can be compared with those of source soil particles in order to find out the occurrence of chemical modification. Asian Dust particles are chemically and morphologically heterogeneous, and thus the average composition and the average aerodynamic diameter (obtainable by bulk analysis) are not much relevant if the chemical modifications of the particles must be followed. The major elemental composition and abundance of the particle types that are potential subjects of chemical modification can only be obtained using single-particle analysis. A single particle analytical technique, named low-Z particle electron probe X-ray microanalysis (low-Z particle EPMA), was applied to characterize two certified reference materials (CRMs) for Asian Dust particles, which were collected from a loess plateau area and a desert of China. The CRMs were defined by bulk analyses to provide certified concentrations for 13 chemical elements. Using the low-Z particle EPMA technique, the concentrations of major chemical species such as aluminosilicates, SiO 2 , CaCO 3 , and carbonaceous species were obtained. Elemental concentrations obtained by the low-Z particle EPMA are close to the certified values, with considering that the single particle and bulk analyses employ very different approaches. There are still some discrepancies between those concentration values, resulting from analyses of particles with different sizes, different sample amounts analyzed, and uncertainties involved in the single particle analysis

  8. Solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Medeiros, J.A.; Carvalho, M.L.C.P. de

    1992-12-01

    Solid state nuclear track detectors (SSNTD) are dielectric materials, crystalline or vitreous, which registers tracks of charged nuclear particles, like alpha particles or fission fragments. Chemical etching of the detectors origin tracks that are visible at the optical microscope: track etching rate is higher along the latent track, where damage due to the charged particle increase the chemical potential, and etching rate giving rise to holes, the etched tracks. Fundamental principles are presented as well as some ideas of main applications. (author)

  9. Convergence of lateral dynamic measurements in the plasma membrane of live cells from single particle tracking and STED-FCS

    International Nuclear Information System (INIS)

    Lagerholm, B Christoffer; Eggeling, Christian; Andrade, Débora M; Clausen, Mathias P

    2017-01-01

    Fluorescence correlation spectroscopy (FCS) in combination with the super-resolution imaging method STED (STED-FCS), and single-particle tracking (SPT) are able to directly probe the lateral dynamics of lipids and proteins in the plasma membrane of live cells at spatial scales much below the diffraction limit of conventional microscopy. However, a major disparity in interpretation of data from SPT and STED-FCS remains, namely the proposed existence of a very fast (unhindered) lateral diffusion coefficient, ⩾5 µ m 2 s −1 , in the plasma membrane of live cells at very short length scales, ≈⩽ 100 nm, and time scales, ≈1–10 ms. This fast diffusion coefficient has been advocated in several high-speed SPT studies, for lipids and membrane proteins alike, but the equivalent has not been detected in STED-FCS measurements. Resolving this ambiguity is important because the assessment of membrane dynamics currently relies heavily on SPT for the determination of heterogeneous diffusion. A possible systematic error in this approach would thus have vast implications in this field. To address this, we have re-visited the analysis procedure for SPT data with an emphasis on the measurement errors and the effect that these errors have on the measurement outputs. We subsequently demonstrate that STED-FCS and SPT data, following careful consideration of the experimental errors of the SPT data, converge to a common interpretation which for the case of a diffusing phospholipid analogue in the plasma membrane of live mouse embryo fibroblasts results in an unhindered, intra-compartment, diffusion coefficient of  ≈0.7–1.0 µ m 2 s −1 , and a compartment size of about 100–150 nm. (topical review)

  10. Evolution of single-particle structure of silicon isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Bespalova, O.V.; Klimochkina, A.A.; Spasskaya, T.I.; Tretyakova, T.Yu. [Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); Fedorov, N.A.; Markova, M.L. [Lomonosov Moscow State University, Faculty of Physics, Moscow (Russian Federation)

    2018-01-15

    New data on proton and neutron single-particle energies E{sub nlj} of Si isotopes with neutron number N from 12 to 28 as well as occupation probabilities N{sub nlj} of single-particle states of stable isotopes {sup 28,30}Si near the Fermi energy were obtained by the joint evaluation of the stripping and pick-up reaction data and excited state decay schemes of neighboring nuclei. The evaluated data indicate the following features of single-particle structure evolution: persistence of Z = 14 subshell closure with N increase, the new magicity of the number N = 16, and the conservation of the magic properties of the number N = 20 in Si isotopic chain. The features were described by the dispersive optical model. The calculation also predicts the weakening of N = 28 shell closure and demonstrates evolution of a bubble-like structure of the proton density distributions in neutron-rich Si isotopes. (orig.)

  11. Fragmentation of single-particle states in deformed nuclei

    International Nuclear Information System (INIS)

    Malov, L.A.; Soloviev, V.G.

    1975-01-01

    Fragmentation of single-particle states on levels of deformed nuclei is studied on the example of 239 U and 169 Er nuclei in the framework of the model taking into consideration the interaction of quasiparticles with phonons. The dependence of fragmentation on the Fermi surface is considered from the viewpoint of single-particle levels. It is shown that in the distribution of single-particle strength functions a second maximum appears together with the large asymmetry maximum at high-energy excitation, and the distribution has a long ''tail''. A semimicroscopic approach is proposed for calculating the neutron strength functions. The following values of the strength functions are obtained: for sub(239)U-Ssub(0)sup(cal)=1.2x10sup(-4), Ssub(1)sup(cal)=2.7x10sub(-4) and for sub(169)Er-Ssub(0)sup(cal)=1.10sup(-4), Ssub(1)sup(cal)=1.2x10sup(-4)

  12. Elucidating distinct ion channel populations on the surface of hippocampal neurons via single-particle tracking recurrence analysis

    Science.gov (United States)

    Sikora, Grzegorz; Wyłomańska, Agnieszka; Gajda, Janusz; Solé, Laura; Akin, Elizabeth J.; Tamkun, Michael M.; Krapf, Diego

    2017-12-01

    Protein and lipid nanodomains are prevalent on the surface of mammalian cells. In particular, it has been recently recognized that ion channels assemble into surface nanoclusters in the soma of cultured neurons. However, the interactions of these molecules with surface nanodomains display a considerable degree of heterogeneity. Here, we investigate this heterogeneity and develop statistical tools based on the recurrence of individual trajectories to identify subpopulations within ion channels in the neuronal surface. We specifically study the dynamics of the K+ channel Kv1.4 and the Na+ channel Nav1.6 on the surface of cultured hippocampal neurons at the single-molecule level. We find that both these molecules are expressed in two different forms with distinct kinetics with regards to surface interactions, emphasizing the complex proteomic landscape of the neuronal surface. Further, the tools presented in this work provide new methods for the analysis of membrane nanodomains, transient confinement, and identification of populations within single-particle trajectories.

  13. PTRACK: A particle tracking program for evaluation travel path/travel time uncertainties

    International Nuclear Information System (INIS)

    Thompson, B.M.; Campbell, J.E.; Longsine, D.E.

    1987-12-01

    PTRACK is a model which tracks the path of a radionuclide particle released from a nuclear waste repository into a ground-water flow system in a two-dimensional representation of stratified geologic medium. The code calculates the time required for the particle to travel from the release point (the edge of the disturbed zone) to the specified horizontal or vertical boundary (the accessible environment). The physical properties of the geologic setting and the ground-water flow system can be treated as fixed values or as random variables sampled from their respective probability distributions. In the latter case, PTRACK assigns a sampled value for each parameter and tracks a particle for this trial (realization) of the system. Repeated realizations allow the effects of parameter uncertainty on travel paths/travel times to be quantified. The code can also calculate partial correlation coefficients between dependent variables and independent variables, which are useful in identifying important independent variables. This documentation describes the mathematical basis for the model, the algorithms and solution techniques used, and the computer code design. It also contains a detailed user's manual. The implementation of PTRACK is verified with several systems for which solutions have been calculated by hand. The integration of PTRACK with a Latin hypercube sampling (LHS) code is also discussed, although other sampling methods can be employed in place of LHS. 11 refs., 14 figs., 22 tabs

  14. Modeling of calcination of single kaolinitic clay particle

    DEFF Research Database (Denmark)

    Gebremariam, Abraham Teklay; Yin, Chungen; Rosendahl, Lasse

    The present work aims at modeling of the calcination (dehydroxylation) process of clay particles, specifically kaolinite, and its thermal transformation. For such purpose, 1D single particle calcination model was developed based on the concept of shrinking core model to assess the dehydroxylation...

  15. Wavelet-based tracking of bacteria in unreconstructed off-axis holograms.

    Science.gov (United States)

    Marin, Zach; Wallace, J Kent; Nadeau, Jay; Khalil, Andre

    2018-03-01

    We propose an automated wavelet-based method of tracking particles in unreconstructed off-axis holograms to provide rough estimates of the presence of motion and particle trajectories in digital holographic microscopy (DHM) time series. The wavelet transform modulus maxima segmentation method is adapted and tailored to extract Airy-like diffraction disks, which represent bacteria, from DHM time series. In this exploratory analysis, the method shows potential for estimating bacterial tracks in low-particle-density time series, based on a preliminary analysis of both living and dead Serratia marcescens, and for rapidly providing a single-bit answer to whether a sample chamber contains living or dead microbes or is empty. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Semiempirical formulas for single-particle energies of neutrons and protons

    International Nuclear Information System (INIS)

    Lodhi, M.A.K.; Waak, B.T.

    1978-01-01

    The stepwise multiple linear regression technique has been used to analyze the single-particle energies of neutrons and protons in nuclei along the line of beta stability. Their regular and systematic trends lead to semiempirical model-independent formulas for single-particle energies of neutrons and protons in the bound nuclei as functions of nuclear parameters A and Z for given states specified by nl/sub j/. These formulas are almost as convenient as the harmonic oscillator energy formulas to use. The single-particle energies computed from these formulas have been compared with the experimental data and are found in reasonable agreement

  17. Single molecule tracking

    Science.gov (United States)

    Shera, E. Brooks

    1988-01-01

    A detection system is provided for identifying individual particles or molecules having characteristic emission in a flow train of the particles in a flow cell. A position sensitive sensor is located adjacent the flow cell in a position effective to detect the emissions from the particles within the flow cell and to assign spatial and temporal coordinates for the detected emissions. A computer is then enabled to predict spatial and temporal coordinates for the particle in the flow train as a function of a first detected emission. Comparison hardware or software then compares subsequent detected spatial and temporal coordinates with the predicted spatial and temporal coordinates to determine whether subsequently detected emissions originate from a particle in the train of particles. In one embodiment, the particles include fluorescent dyes which are excited to fluoresce a spectrum characteristic of the particular particle. Photones are emitted adjacent at least one microchannel plate sensor to enable spatial and temporal coordinates to be assigned. The effect of comparing detected coordinates with predicted coordinates is to define a moving sample volume which effectively precludes the effects of background emissions.

  18. Experiments and modeling of single plastic particle conversion in suspension

    DEFF Research Database (Denmark)

    Nakhaei, Mohammadhadi; Wu, Hao; Grévain, Damien

    2018-01-01

    Conversion of single high density polyethylene (PE) particles has been studied by experiments and modeling. The experiments were carried out in a single particle combustor for five different shapes and masses of particles at temperature conditions of 900 and 1100°C. Each experiment was recorded...... against the experiments as well as literature data. Furthermore, a simplified isothermal model appropriate for CFD applications was developed, in order to model the combustion of plastic particles in cement calciners. By comparing predictions with the isothermal and the non–isothermal models under typical...

  19. A variational multiscale method for particle-cloud tracking in turbomachinery flows

    Science.gov (United States)

    Corsini, A.; Rispoli, F.; Sheard, A. G.; Takizawa, K.; Tezduyar, T. E.; Venturini, P.

    2014-11-01

    We present a computational method for simulation of particle-laden flows in turbomachinery. The method is based on a stabilized finite element fluid mechanics formulation and a finite element particle-cloud tracking method. We focus on induced-draft fans used in process industries to extract exhaust gases in the form of a two-phase fluid with a dispersed solid phase. The particle-laden flow causes material wear on the fan blades, degrading their aerodynamic performance, and therefore accurate simulation of the flow would be essential in reliable computational turbomachinery analysis and design. The turbulent-flow nature of the problem is dealt with a Reynolds-Averaged Navier-Stokes model and Streamline-Upwind/Petrov-Galerkin/Pressure-Stabilizing/Petrov-Galerkin stabilization, the particle-cloud trajectories are calculated based on the flow field and closure models for the turbulence-particle interaction, and one-way dependence is assumed between the flow field and particle dynamics. We propose a closure model utilizing the scale separation feature of the variational multiscale method, and compare that to the closure utilizing the eddy viscosity model. We present computations for axial- and centrifugal-fan configurations, and compare the computed data to those obtained from experiments, analytical approaches, and other computational methods.

  20. Evaluation of single tracks of 17-4PH steel manufactured at different power densities and scanning speeds by selective laser melting

    Directory of Open Access Journals (Sweden)

    Makoana, N. W.

    2016-11-01

    Full Text Available In Selective Laser Melting, the initial units produced are single tracks that overlap to create a single layer; from the sequence of layers, a 3D object is manufactured. The properties of the parts produced by SLM depend heavily on the properties of each single track and each layer formed by these tracks. This study evaluates the effect of processing parameters on the geometrical characteristics of single tracks manufactured from 17-4PH stainless steel powder. A single-mode continuous-wave ytterbium fibre laser was used to manufacture single tracks at laser powers in the range of 100-300 W with a constant spot size of ∼80μm. The single tracks produced were subjected to standard metallographic preparation techniques for further analysis with an optical microscope. Deep molten pool shapes were observed at low scan speeds, while shallow molten pool shapes were observed at high scan speeds. At higher laser power densities, under-cutting and humping effects were also observed. The dimensions of single tracks processed without powder generally decrease with increasing scan speed at constant laser power. However, the geometrical features of the single tracks processed with powder revealed pronounced irregularities believed to be caused by non-homogeneity in the deposited powder layer.

  1. Single particle composition measurements of artificial Calcium Carbonate aerosols

    Science.gov (United States)

    Zorn, S. R.; Mentel, T. F.; Schwinger, T.; Croteau, P. L.; Jayne, J.; Worsnop, D. R.; Trimborn, A.

    2012-12-01

    Mineral dust, with an estimated total source from natural and anthropogenic emissions of up to 2800 Tg/yr, is one of the two largest contributors to total aerosol mass, with only Sea salt having a similar source strength (up to 2600 Tg/yr). The composition of dust particles varies strongly depending on the production process and, most importantly, the source location. Therefore, the composition of single dust particles can be used both to trace source regions of air masses as well as to identify chemical aging processes. Here we present results of laboratory studies on generating artificial calcium carbonate (CaCO3) particles, a model compound for carbonaceous mineral dust particles. Particles were generated by atomizing an aqueous hydrogen carbonate solution. Water was removed using a silica diffusion dryer., then the particles were processed in an oven at temperatures up to 900°C, converting the hydrogen carbonate to its anhydrous form. The resulting aerosol was analyzed using an on-line single particle laser ablation aerosol particle time-of-flight mass spectrometer (LAAPTOF). The results confirm the conversion to calcium carbonate, and validate that the produced particles indeed can be used as a model compound for carbonaceous dust aerosols.

  2. 3D particle tracking velocimetry using dynamic discrete tomography for plasma physics applications

    DEFF Research Database (Denmark)

    Moseev, Dmitry; Alpers, Andreas; Gritzmann, Peter

    2013-01-01

    tomography algorithm is efficient for data from two projection directions and exact. The non-uniqueness can be detected and tracked individually. The algorithm performance is proportional to N3 on average where N is the number of particles in the reconstruction. There is a room for further improvement...

  3. Fundamental Study of Single Biomass Particle Combustion

    DEFF Research Database (Denmark)

    Momenikouchaksaraei, Maryam

    This thesis is a comprehensive study of single biomass particle combustion. The effect of particle shape and size and operating conditions on biomass conversion characteristics were investigated experimentally and theoretically. The experimental samples were divided in two groups: particles...... well-defined conditions, and the complete combustion processes were recorded as video sequences by a CCD camera installed in the set-up. One of the project objectives is to simulate conditions reasonably close to the conditions in a power plant boiler, i.e., reasonably high temperatures (up to 1600°C...

  4. Intracellular dynamics and fate of polystyrene nanoparticles in A549 Lung epithelial cells monitored by image (cross-) correlation spectroscopy and single particle tracking.

    Science.gov (United States)

    Deville, Sarah; Penjweini, Rozhin; Smisdom, Nick; Notelaers, Kristof; Nelissen, Inge; Hooyberghs, Jef; Ameloot, Marcel

    2015-10-01

    Novel insights in nanoparticle (NP) uptake routes of cells, their intracellular trafficking and subcellular targeting can be obtained through the investigation of their temporal and spatial behavior. In this work, we present the application of image (cross-) correlation spectroscopy (IC(C)S) and single particle tracking (SPT) to monitor the intracellular dynamics of polystyrene (PS) NPs in the human lung carcinoma A549 cell line. The ensemble kinetic behavior of NPs inside the cell was characterized by temporal and spatiotemporal image correlation spectroscopy (TICS and STICS). Moreover, a more direct interpretation of the diffusion and flow detected in the NP motion was obtained by SPT by monitoring individual NPs. Both techniques demonstrate that the PS NP transport in A549 cells is mainly dependent on microtubule-assisted transport. By applying spatiotemporal image cross-correlation spectroscopy (STICCS), the correlated motions of NPs with the early endosomes, late endosomes and lysosomes are identified. PS NPs were equally distributed among the endolysosomal compartment during the time interval of the experiments. The cotransport of the NPs with the lysosomes is significantly larger compared to the other cell organelles. In the present study we show that the complementarity of ICS-based techniques and SPT enables a consistent elaborate model of the complex behavior of NPs inside biological systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Burnout of pulverized biomass particles in large scale boiler - Single particle model approach

    Energy Technology Data Exchange (ETDEWEB)

    Saastamoinen, Jaakko; Aho, Martti; Moilanen, Antero [VTT Technical Research Centre of Finland, Box 1603, 40101 Jyvaeskylae (Finland); Soerensen, Lasse Holst [ReaTech/ReAddit, Frederiksborgsveij 399, Niels Bohr, DK-4000 Roskilde (Denmark); Clausen, Soennik [Risoe National Laboratory, DK-4000 Roskilde (Denmark); Berg, Mogens [ENERGI E2 A/S, A.C. Meyers Vaenge 9, DK-2450 Copenhagen SV (Denmark)

    2010-05-15

    Burning of coal and biomass particles are studied and compared by measurements in an entrained flow reactor and by modelling. The results are applied to study the burning of pulverized biomass in a large scale utility boiler originally planned for coal. A simplified single particle approach, where the particle combustion model is coupled with one-dimensional equation of motion of the particle, is applied for the calculation of the burnout in the boiler. The particle size of biomass can be much larger than that of coal to reach complete burnout due to lower density and greater reactivity. The burner location and the trajectories of the particles might be optimised to maximise the residence time and burnout. (author)

  6. Optical performance of inclined south-north single-axis tracked solar panels

    International Nuclear Information System (INIS)

    Li, Zhimin; Liu, Xinyue; Tang, Runsheng

    2010-01-01

    To investigate optical performance of the inclined south-north single-axis (ISN-axis, in short) tracked solar panels, a mathematical procedure to estimate the annual collectible radiation on fixed and tracked panels was suggested based on solar geometry and monthly horizontal radiation. For solar panels tracking about ISN-axis, the yearly optimal tilt-angle of ISN-axis for maximizing annual solar gain was about 3 o deviating from the site latitude in most of China except in areas with poor solar resources, and the maximum annual collectible radiation on ISN-axis tracked panels was about 97-98% of that on dual-axis tracked panels; whereas for ISN-axis tracked panels with the tilt-angle of ISN-axis being adjusted four times in a year at three fixed tilt-angles, the annual collectible radiation was almost close to that on dual-axis tracked panels, the optimum date of tilt-angle adjustment of ISN-axis was 23 days from the equinoxes, and the optimum tilt-angle adjustment value for each adjustment was about 22 o . Compared to fixed south-facing solar panels inclined at an optimal tilt-angle, the increase in the annual solar gain due to using ISN-axis sun tracking was above 30% in the areas with abundant solar resources and less than 20% in the areas with poor solar resources.

  7. The Motion of a Single Molecule, the Lambda-Receptor, in the Bacterial Outer Membrane

    DEFF Research Database (Denmark)

    Oddershede, Lene; Dreyer, Jakob Kisbye; Grego, Sonia

    2002-01-01

    Using optical tweezers and single particle tracking, we have revealed the motion of a single protein, the lambda-receptor, in the outer membrane of living Escherichia coli bacteria. We genetically modified the lambda-receptor placing a biotin on an extracellular site of the receptor in vivo....... The efficiency of this in vivo biotinylation is very low, thus enabling the attachment of a streptavidin-coated bead binding specifically to a single biotinylated lambda-receptor. The bead was used as a handle for the optical tweezers and as a marker for the single particle tracking routine. We propose a model...

  8. Automatically processed alpha-track radon monitor

    International Nuclear Information System (INIS)

    Langner, G.H. Jr.

    1993-01-01

    An automatically processed alpha-track radon monitor is provided which includes a housing having an aperture allowing radon entry, and a filter that excludes the entry of radon daughters into the housing. A flexible track registration material is located within the housing that records alpha-particle emissions from the decay of radon and radon daughters inside the housing. The flexible track registration material is capable of being spliced such that the registration material from a plurality of monitors can be spliced into a single strip to facilitate automatic processing of the registration material from the plurality of monitors. A process for the automatic counting of radon registered by a radon monitor is also provided

  9. An Efficient and Robust Method for Lagrangian Magnetic Particle Tracking in Fluid Flow Simulations on Unstructured Grids

    NARCIS (Netherlands)

    Cohen Stuart, D.C.; Kleijn, C.R.; Kenjeres, S.

    2010-01-01

    In this paper we report on a newly developed particle tracking scheme for fluid flow simulations on 3D unstructured grids, aiming to provide detailed insights in the particle behaviour in complex geometries. A possible field of applications is the Magnetic Drug Targeting (MDT) technique, on which

  10. Symplectic Tracking of Multi-Isotopic Heavy-Ion Beams in SixTrack

    CERN Document Server

    Hermes, Pascal; De Maria, Riccardo

    2016-01-01

    The software SixTrack provides symplectic proton tracking over a large number of turns. The code is used for the tracking of beam halo particles and the simulation of their interaction with the collimators to study the efficiency of the LHC collimation system. Tracking simulations for heavy-ion beams require taking into account the mass to charge ratio of each particle because heavy ions can be subject to fragmentation at their passage through the collimators. In this paper we present the derivation of a Hamiltonian for multi-isotopic heavy-ion beams and symplectic tracking maps derived from it. The resulting tracking maps were implemented in the tracking software SixTrack. With this modification, SixTrack can be used to natively track heavy-ion beams of multiple isotopes through a magnetic accelerator lattice.

  11. Laboratory Measurements of Single-Particle Polarimetric Spectrum

    Science.gov (United States)

    Gritsevich, M.; Penttila, A.; Maconi, G.; Kassamakov, I.; Helander, P.; Puranen, T.; Salmi, A.; Hæggström, E.; Muinonen, K.

    2017-12-01

    Measuring scattering properties of different targets is important for material characterization, remote sensing applications, and for verifying theoretical results. Furthermore, there are usually simplifications made when we model targets and compute the scattering properties, e.g., ideal shape or constant optical parameters throughout the target material. Experimental studies help in understanding the link between the observed properties and computed results. Experimentally derived Mueller matrices of studied particles can be used as input for larger-scale scattering simulations, e.g., radiative transfer computations. This method allows to bypass the problem of using an idealized model for single-particle optical properties. While existing approaches offer ensemble- and orientation-averaged particle properties, our aim is to measure individual particles with controlled or known orientation. With the newly developed scatterometer, we aim to offer novel possibility to measure single, small (down to μm-scale) targets and their polarimetric spectra. This work presents an experimental setup that measures light scattered by a fixed small particle with dimensions ranging between micrometer and millimeter sizes. The goal of our setup is nondestructive characterization of such particles by measuring light of multiple wavelengths scattered in 360° in a horizontal plane by an ultrasonically levitating sample, whilst simultaneously controlling its 3D position and orientation. We describe the principles and design of our instrument and its calibration. We also present example measurements of real samples. This study was conducted under the support from the European Research Council, in the frame of the Advanced Grant project No. 320773 `Scattering and Absorption of Electromagnetic Waves in Particulate Media' (SAEMPL).

  12. Clinically viable magnetic poly(lactide-co-glycolide) (PLGA) particles for MRI-based cell tracking

    Science.gov (United States)

    Granot, Dorit; Nkansah, Michael K.; Bennewitz, Margaret F.; Tang, Kevin S.; Markakis, Eleni A.; Shapiro, Erik M.

    2013-01-01

    Purpose To design, fabricate, characterize and in vivo assay clinically viable magnetic particles for MRI-based cell tracking. Methods PLGA encapsulated magnetic nano- and microparticles were fabricated. Multiple biologically relevant experiments were performed to assess cell viability, cellular performance and stem cell differentiation. In vivo MRI experiments were performed to separately test cell transplantation and cell migration paradigms, as well as in vivo biodegradation. Results Highly magnetic nano- (~100 nm) and microparticles (~1–2 μm) were fabricated. Magnetic cell labeling in culture occurred rapidly achieving 3–50 pg Fe/cell at 3 hrs for different particles types, and >100 pg Fe/cell after 10 hours, without the requirement of a transfection agent, and with no effect on cell viability. The capability of magnetically labeled mesenchymal or neural stem cells to differentiate down multiple lineages, or for magnetically labeled immune cells to release cytokines following stimulation, was uncompromised. An in vivo biodegradation study revealed that NPs degraded ~80% over the course of 12 weeks. MRI detected as few as 10 magnetically labeled cells, transplanted into the brains of rats. Also, these particles enabled the in vivo monitoring of endogenous neural progenitor cell migration in rat brains over 2 weeks. Conclusion The robust MRI properties and benign safety profile of these particles make them promising candidates for clinical translation for MRI-based cell tracking. PMID:23568825

  13. Single particle analysis with a 3600 light scattering photometer

    International Nuclear Information System (INIS)

    Bartholdi, M.F.

    1979-06-01

    Light scattering by single spherical homogeneous particles in the diameter range 1 to 20 μm and relative refractive index 1.20 is measured. Particle size of narrowly dispersed populations is determined and a multi-modal dispersion of five components is completely analyzed. A 360 0 light scattering photometer for analysis of single particles has been designed and developed. A fluid stream containing single particles intersects a focused laser beam at the primary focal point of an ellipsoidal reflector ring. The light scattered at angles theta = 2.5 0 to 177.5 0 at phi = 0 0 and 180 0 is reflected onto a circular array of photodiodes. The ellipsoidal reflector is situated in a chamber filled with fluid matching that of the stream to minimize refracting and reflecting interfaces. The detector array consists of 60 photodiodes each subtending 3 0 in scattering angle on 6 0 centers around 360 0 . 32 measurements on individual particles can be acquired at rates of 500 particles per second. The intensity and angular distribution of light scattered by spherical particles are indicative of size and relative refractive index. Calculations, using Lorenz--Mie theory, of differential scattering patterns integrated over angle corresponding to the detector geometry determined the instrument response to particle size. From this the expected resolution and experimental procedures are determined.Ultimately, the photometer will be utilized for identification and discrimination of biological cells based on the sensitivity of light scattering to size, shape, refractive index differences, internal granularity, and other internal morphology. This study has demonstrated the utility of the photometer and indicates potential for application to light scattering studies of biological cells

  14. Single-particle basis and translational invariance in microscopic nuclear calculations

    International Nuclear Information System (INIS)

    Ehfros, V.D.

    1977-01-01

    The approach to the few-body problem is considered which allows to use the simple single-particle basis without violation of the translation invariance. A method is proposed to solve the nuclear reaction problems in the single-particle basis. The method satisfies the Pauli principle and the translation invariance. Calculation of the matrix elements of operators is treated

  15. Design and synthesis of magnetic nanoparticles with gold shells for single particle optical tracking

    Science.gov (United States)

    Lim, Jitkang

    The design, synthesis, and characterization of iron oxide core, gold shell nanoparticles are studied in this thesis. Firstly, nanoparticles with 18 +/- 1.7 nm diameter iron oxide cores with ˜5 nm thick gold shells were synthesized via a new seed-mediated electroless deposition method. The nanoparticles were superparamagnetic at room temperature and could be reversibly collected by a permanent magnet. These nanoparticles displayed a sharp localized surface plasmon resonance peak at 605 nm, as predicted by scattering theory, and their large scattering cross-section allowed them to be individually resolved in darkfield optical microscopy while undergoing Brownian motion in aqueous suspension. Later, commercially available 38 +/- 3.8 nm diameter spherical iron oxide nanoparticles (from Ocean Nanotech, Inc) were employed to make core-shell particles. These particles were decorated with cationic poly(diallyldimethylammonium chloride) (PDDA) which further promotes the attachment of small gold clusters. After gold seeding, the average hydrodynamic diameter of the core-shell particles is 172 +/- 65.9 nm. The magnetophoretic motion of these particles was guided by a piece of magnetized mu-metal. Individual particle trajectories were observed by darkfield optical microscopy. The typical magnetophoretic velocity achieved was within the range of 1--10 mum/sec. Random walk analysis performed on these particles while undergoing Brownian motion confirmed that individual particles were indeed being imaged. The particle size variation within the observed sample obtained through random walk analysis was within the size distribution obtained by dynamic light scattering. When the current to the solenoid used to magnetize the mu-metal was turned off, all the collected core-shell particles were readily redispersed by diffusion back into the surrounding environment. A Peclet number analysis was performed to probe the convective motion of nanospheres and nanorods under the influence of

  16. Factors Influencing the Ignition and Burnout of a Single Biomass Particle

    DEFF Research Database (Denmark)

    Momenikouchaksaraei, Maryam; Kær, Søren Knudsen; Yin, Chungen

    2011-01-01

    Ignition and burnout of a single biomass particle were studied numerically. A one-dimensional particle combustion model was developed which is capable to simulate all the intraparticle conversion processes (drying, recondensation, devolatilization, char gasification/oxidation and heat/mass/moment......Ignition and burnout of a single biomass particle were studied numerically. A one-dimensional particle combustion model was developed which is capable to simulate all the intraparticle conversion processes (drying, recondensation, devolatilization, char gasification/oxidation and heat...... concentration were not very significant. The influences of these factors on particle burnout were much more remarkable than ignition behaviour....

  17. Two-Way Communication with a Single Quantum Particle

    Science.gov (United States)

    Del Santo, Flavio; Dakić, Borivoje

    2018-02-01

    In this Letter we show that communication when restricted to a single information carrier (i.e., single particle) and finite speed of propagation is fundamentally limited for classical systems. On the other hand, quantum systems can surpass this limitation. We show that communication bounded to the exchange of a single quantum particle (in superposition of different spatial locations) can result in "two-way signaling," which is impossible in classical physics. We quantify the discrepancy between classical and quantum scenarios by the probability of winning a game played by distant players. We generalize our result to an arbitrary number of parties and we show that the probability of success is asymptotically decreasing to zero as the number of parties grows, for all classical strategies. In contrast, quantum strategy allows players to win the game with certainty.

  18. Snow particles extracted from X-ray computed microtomography imagery and their single-scattering properties

    Science.gov (United States)

    Ishimoto, Hiroshi; Adachi, Satoru; Yamaguchi, Satoru; Tanikawa, Tomonori; Aoki, Teruo; Masuda, Kazuhiko

    2018-04-01

    Sizes and shapes of snow particles were determined from X-ray computed microtomography (micro-CT) images, and their single-scattering properties were calculated at visible and near-infrared wavelengths using a Geometrical Optics Method (GOM). We analyzed seven snow samples including fresh and aged artificial snow and natural snow obtained from field samples. Individual snow particles were numerically extracted, and the shape of each snow particle was defined by applying a rendering method. The size distribution and specific surface area distribution were estimated from the geometrical properties of the snow particles, and an effective particle radius was derived for each snow sample. The GOM calculations at wavelengths of 0.532 and 1.242 μm revealed that the realistic snow particles had similar scattering phase functions as those of previously modeled irregular shaped particles. Furthermore, distinct dendritic particles had a characteristic scattering phase function and asymmetry factor. The single-scattering properties of particles of effective radius reff were compared with the size-averaged single-scattering properties. We found that the particles of reff could be used as representative particles for calculating the average single-scattering properties of the snow. Furthermore, the single-scattering properties of the micro-CT particles were compared to those of particle shape models using our current snow retrieval algorithm. For the single-scattering phase function, the results of the micro-CT particles were consistent with those of a conceptual two-shape model. However, the particle size dependence differed for the single-scattering albedo and asymmetry factor.

  19. Track theory and nuclear photographic emulsions for Dark Matter searches

    International Nuclear Information System (INIS)

    Ditlov, V.A.

    2013-01-01

    This work is devoted to the analysis of possibilities of nuclear emulsions for Dark Matter search, particles of which can produce slow recoil-nuclei. Tracks of such recoil-nuclei in developed nuclear emulsion consist from several emulsion grains. The analysis was carried out with Monte-Carlo calculations made on the basis of the Track Theory and the various factors influencing Dark Matter particles registration efficiency were investigated. Problems, which should be solved for optimal utilization of nuclear emulsions in Dark Matter search, were formulated. B ody - Highlights: ► Specific features of Dark Matter Search in nuclear photographic emulsions. ► Track theory for WIMP search in nuclear emulsions. ► Primary efficiency for single WIMP registration. ► Properties of primary WIMP registration efficiency. ► Primary registration efficiency of WIMP flow

  20. Tracking molecular dynamics without tracking: image correlation of photo-activation microscopy

    International Nuclear Information System (INIS)

    Pandžić, Elvis; Rossy, Jérémie; Gaus, Katharina

    2015-01-01

    Measuring protein dynamics in the plasma membrane can provide insights into the mechanisms of receptor signaling and other cellular functions. To quantify protein dynamics on the single molecule level over the entire cell surface, sophisticated approaches such as single particle tracking (SPT), photo-activation localization microscopy (PALM) and fluctuation-based analysis have been developed. However, analyzing molecular dynamics of fluorescent particles with intermittent excitation and low signal-to-noise ratio present at high densities has remained a challenge. We overcame this problem by applying spatio-temporal image correlation spectroscopy (STICS) analysis to photo-activated (PA) microscopy time series. In order to determine under which imaging conditions this approach is valid, we simulated PA images of diffusing particles in a homogeneous environment and varied photo-activation, reversible blinking and irreversible photo-bleaching rates. Further, we simulated data with high particle densities that populated mobile objects (such as adhesions and vesicles) that often interfere with STICS and fluctuation-based analysis. We demonstrated in experimental measurements that the diffusion coefficient of the epidermal growth factor receptor (EGFR) fused to PAGFP in live COS-7 cells can be determined in the plasma membrane and revealed differences in the time-dependent diffusion maps between wild-type and mutant Lck in activated T cells. In summary, we have developed a new analysis approach for live cell photo-activation microscopy data based on image correlation spectroscopy to quantify the spatio-temporal dynamics of single proteins. (paper)

  1. Tracking molecular dynamics without tracking: image correlation of photo-activation microscopy

    Science.gov (United States)

    Pandžić, Elvis; Rossy, Jérémie; Gaus, Katharina

    2015-03-01

    Measuring protein dynamics in the plasma membrane can provide insights into the mechanisms of receptor signaling and other cellular functions. To quantify protein dynamics on the single molecule level over the entire cell surface, sophisticated approaches such as single particle tracking (SPT), photo-activation localization microscopy (PALM) and fluctuation-based analysis have been developed. However, analyzing molecular dynamics of fluorescent particles with intermittent excitation and low signal-to-noise ratio present at high densities has remained a challenge. We overcame this problem by applying spatio-temporal image correlation spectroscopy (STICS) analysis to photo-activated (PA) microscopy time series. In order to determine under which imaging conditions this approach is valid, we simulated PA images of diffusing particles in a homogeneous environment and varied photo-activation, reversible blinking and irreversible photo-bleaching rates. Further, we simulated data with high particle densities that populated mobile objects (such as adhesions and vesicles) that often interfere with STICS and fluctuation-based analysis. We demonstrated in experimental measurements that the diffusion coefficient of the epidermal growth factor receptor (EGFR) fused to PAGFP in live COS-7 cells can be determined in the plasma membrane and revealed differences in the time-dependent diffusion maps between wild-type and mutant Lck in activated T cells. In summary, we have developed a new analysis approach for live cell photo-activation microscopy data based on image correlation spectroscopy to quantify the spatio-temporal dynamics of single proteins.

  2. Nonlinear dynamics aspects of particle accelerators

    International Nuclear Information System (INIS)

    Jowett, J.M.; Turner, S.; Month, M.

    1986-01-01

    These proceedings contain the lectures presented at the named winter school. They deal with the application of dynamical systems to accelerator theory. Especially considered are the statistical description of charged-beam plasmas, integrable and nonintegrable Hamiltonian systems, single particle dynamics and nonlinear resonances in circular accelerators, nonlinear dynamics aspects of modern storage rings, nonlinear beam-beam resonances, synchro-betatron resonances, observations of the beam-beam interactions, the dynamics of the beam-beam interactions, beam-beam simulations, the perturbation method in nonlinear dynamics, theories of statistical equilibrium in electron-positron storage rings, nonlinear dissipative phenomena in electron storage rings, the dynamical aperture, the transition to chaos for area-preserving maps, special processors for particle tracking, algorithms for tracking of charged particles in circular accelerators, the breakdown of stability, and a personal perspective of nonlinear dynamics. (HSI)

  3. Mass spectra features of biomass burning boiler and coal burning boiler emitted particles by single particle aerosol mass spectrometer.

    Science.gov (United States)

    Xu, Jiao; Li, Mei; Shi, Guoliang; Wang, Haiting; Ma, Xian; Wu, Jianhui; Shi, Xurong; Feng, Yinchang

    2017-11-15

    In this study, single particle mass spectra signatures of both coal burning boiler and biomass burning boiler emitted particles were studied. Particle samples were suspended in clean Resuspension Chamber, and analyzed by ELPI and SPAMS simultaneously. The size distribution of BBB (biomass burning boiler sample) and CBB (coal burning boiler sample) are different, as BBB peaks at smaller size, and CBB peaks at larger size. Mass spectra signatures of two samples were studied by analyzing the average mass spectrum of each particle cluster extracted by ART-2a in different size ranges. In conclusion, BBB sample mostly consists of OC and EC containing particles, and a small fraction of K-rich particles in the size range of 0.2-0.5μm. In 0.5-1.0μm, BBB sample consists of EC, OC, K-rich and Al_Silicate containing particles; CBB sample consists of EC, ECOC containing particles, while Al_Silicate (including Al_Ca_Ti_Silicate, Al_Ti_Silicate, Al_Silicate) containing particles got higher fractions as size increase. The similarity of single particle mass spectrum signatures between two samples were studied by analyzing the dot product, results indicated that part of the single particle mass spectra of two samples in the same size range are similar, which bring challenge to the future source apportionment activity by using single particle aerosol mass spectrometer. Results of this study will provide physicochemical information of important sources which contribute to particle pollution, and will support source apportionment activities. Copyright © 2017. Published by Elsevier B.V.

  4. An Unscented Kalman-Particle Hybrid Filter for Space Object Tracking

    Science.gov (United States)

    Raihan A. V, Dilshad; Chakravorty, Suman

    2018-03-01

    Optimal and consistent estimation of the state of space objects is pivotal to surveillance and tracking applications. However, probabilistic estimation of space objects is made difficult by the non-Gaussianity and nonlinearity associated with orbital mechanics. In this paper, we present an unscented Kalman-particle hybrid filtering framework for recursive Bayesian estimation of space objects. The hybrid filtering scheme is designed to provide accurate and consistent estimates when measurements are sparse without incurring a large computational cost. It employs an unscented Kalman filter (UKF) for estimation when measurements are available. When the target is outside the field of view (FOV) of the sensor, it updates the state probability density function (PDF) via a sequential Monte Carlo method. The hybrid filter addresses the problem of particle depletion through a suitably designed filter transition scheme. To assess the performance of the hybrid filtering approach, we consider two test cases of space objects that are assumed to undergo full three dimensional orbital motion under the effects of J 2 and atmospheric drag perturbations. It is demonstrated that the hybrid filters can furnish fast, accurate and consistent estimates outperforming standard UKF and particle filter (PF) implementations.

  5. A highly scalable particle tracking algorithm using partitioned global address space (PGAS) programming for extreme-scale turbulence simulations

    Science.gov (United States)

    Buaria, D.; Yeung, P. K.

    2017-12-01

    A new parallel algorithm utilizing a partitioned global address space (PGAS) programming model to achieve high scalability is reported for particle tracking in direct numerical simulations of turbulent fluid flow. The work is motivated by the desire to obtain Lagrangian information necessary for the study of turbulent dispersion at the largest problem sizes feasible on current and next-generation multi-petaflop supercomputers. A large population of fluid particles is distributed among parallel processes dynamically, based on instantaneous particle positions such that all of the interpolation information needed for each particle is available either locally on its host process or neighboring processes holding adjacent sub-domains of the velocity field. With cubic splines as the preferred interpolation method, the new algorithm is designed to minimize the need for communication, by transferring between adjacent processes only those spline coefficients determined to be necessary for specific particles. This transfer is implemented very efficiently as a one-sided communication, using Co-Array Fortran (CAF) features which facilitate small data movements between different local partitions of a large global array. The cost of monitoring transfer of particle properties between adjacent processes for particles migrating across sub-domain boundaries is found to be small. Detailed benchmarks are obtained on the Cray petascale supercomputer Blue Waters at the University of Illinois, Urbana-Champaign. For operations on the particles in a 81923 simulation (0.55 trillion grid points) on 262,144 Cray XE6 cores, the new algorithm is found to be orders of magnitude faster relative to a prior algorithm in which each particle is tracked by the same parallel process at all times. This large speedup reduces the additional cost of tracking of order 300 million particles to just over 50% of the cost of computing the Eulerian velocity field at this scale. Improving support of PGAS models on

  6. Design Of Single-Axis And Dual-Axis Solar Tracking Systems Protected Against High Wind Speeds

    Directory of Open Access Journals (Sweden)

    Mai Salaheldin Elsherbiny

    2017-09-01

    Full Text Available Solar energy is rapidly gaining ground as an important mean of expanding renewable energy use. Solar tracking is employed in order to maximize collected solar radiation by a photovoltaic panel. In this paper we present a prototype for Automatic solar tracker that is designed using Arduino UNO with Wind sensor to Cease Wind effect on panels if wind speed exceeds certain threshold. The Proposed solar tracker tracks the location of the sun anywhere in any time by calculating the position of the sun. For producing the maximum amount of solar energy a solar panel must always be perpendicular to the source of light. Because the sun motion plane varies daily and during the day it moves from east to west one needs two axis tracking to follow the suns position. Maximum possible power is collected when two axis tracking is done. However two axis tracking is relatively costly and complex. A compromise between maximum power collection and system simplicity is obtained by single axis tracking where the plane North south axis is fixed while the east west motion is accomplished. This work deals with the design of both single and two axis tracking systems. Automatic trackers is also compared to Fixed one in terms of Energy generated Efficiency Cost and System reliability.

  7. Novel algorithm and MATLAB-based program for automated power law analysis of single particle, time-dependent mean-square displacement

    Science.gov (United States)

    Umansky, Moti; Weihs, Daphne

    2012-08-01

    In many physical and biophysical studies, single-particle tracking is utilized to reveal interactions, diffusion coefficients, active modes of driving motion, dynamic local structure, micromechanics, and microrheology. The basic analysis applied to those data is to determine the time-dependent mean-square displacement (MSD) of particle trajectories and perform time- and ensemble-averaging of similar motions. The motion of particles typically exhibits time-dependent power-law scaling, and only trajectories with qualitatively and quantitatively comparable MSD should be ensembled. Ensemble averaging trajectories that arise from different mechanisms, e.g., actively driven and diffusive, is incorrect and can result inaccurate correlations between structure, mechanics, and activity. We have developed an algorithm to automatically and accurately determine power-law scaling of experimentally measured single-particle MSD. Trajectories can then categorized and grouped according to user defined cutoffs of time, amplitudes, scaling exponent values, or combinations. Power-law fits are then provided for each trajectory alongside categorized groups of trajectories, histograms of power laws, and the ensemble-averaged MSD of each group. The codes are designed to be easily incorporated into existing user codes. We expect that this algorithm and program will be invaluable to anyone performing single-particle tracking, be it in physical or biophysical systems. Catalogue identifier: AEMD_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEMD_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 25 892 No. of bytes in distributed program, including test data, etc.: 5 572 780 Distribution format: tar.gz Programming language: MATLAB (MathWorks Inc.) version 7.11 (2010b) or higher, program

  8. A New Method for Tracking Individual Particles During Bed Load Transport in a Gravel-Bed River

    Science.gov (United States)

    Tremblay, M.; Marquis, G. A.; Roy, A. G.; Chaire de Recherche Du Canada En Dynamique Fluviale

    2010-12-01

    Many particle tracers (passive or active) have been developed to study gravel movement in rivers. It remains difficult, however, to document resting and moving periods and to know how particles travel from one deposition site to another. Our new tracking method uses the Hobo Pendant G acceleration Data Logger to quantitatively describe the motion of individual particles from the initiation of movement, through the displacement and to the rest, in a natural gravel river. The Hobo measures the acceleration in three dimensions at a chosen temporal frequency. The Hobo was inserted into 11 artificial rocks. The rocks were seeded in Ruisseau Béard, a small gravel-bed river in the Yamaska drainage basin (Québec) where the hydraulics, particle sizes and bed characteristics are well known. The signals recorded during eight floods (Summer and Fall 2008-2009) allowed us to develop an algorithm which classifies the periods of rest and motion. We can differentiate two types of motion: sliding and rolling. The particles can also vibrate while remaining in the same position. The examination of the movement and vibration periods with respect to the hydraulic conditions (discharge, shear stress, stream power) showed that vibration occurred mostly before the rise of hydrograph and allowed us to establish movement threshold and response times. In all cases, particle movements occurred during floods but not always in direct response to increased bed shear stress and stream power. This method offers great potential to track individual particles and to establish a spatiotemporal sequence of the intermittent transport of the particle during a flood and to test theories concerning the resting periods of particles on a gravel bed.

  9. Nuclear fragmentation and the number of particle tracks in tissue

    International Nuclear Information System (INIS)

    Ponomarev, A. L.; Cucinotta, F. A.

    2006-01-01

    For high energy nuclei, the number of particle tracks per cell is modified by local nuclear reactions that occur, with large fluctuations expected for heavy ion tracks. Cells near the interaction site of a reaction will experience a much higher number of tracks than estimated by the average fluence. Two types of reaction products are possible and occur in coincidence; projectile fragments, which generally have smaller charge and similar velocity to that of the projectile, and target fragments, which are produced from the fragmentation of the nuclei of water atoms or other cellular constituents with low velocity. In order to understand the role of fragmentation in biological damage a new model of human tissue irradiated by heavy ions was developed. A box of the tissue is modelled with periodic boundary conditions imposed, which extrapolates the technique to macroscopic volumes of tissue. The cross sections for projectile and target fragmentation products are taken from the quantum multiple scattering fragmentation code previously developed at NASA Johnson Space Center. Statistics of fragmentation pathways occurring in a cell monolayer, as well as in a small volume of 10 x 10 x 10 cells are given. A discussion on approaches to extend the model to describe spatial distributions of inactivated or other cell damage types, as well as highly organised tissues of multiple cell types, is presented. (authors)

  10. A Single Unexpected Change in Target- but Not Distractor Motion Impairs Multiple Object Tracking

    Directory of Open Access Journals (Sweden)

    Hauke S. Meyerhoff

    2013-02-01

    Full Text Available Recent research addresses the question whether motion information of multiple objects contributes to maintaining a selection of objects across a period of motion. Here, we investigate whether target and/or distractor motion information is used during attentive tracking. We asked participants to track four objects and changed either the motion direction of targets, the motion direction of distractors, neither, or both during a brief flash in the middle of a tracking interval. We observed that a single direction change of targets is sufficient to impair tracking performance. In contrast, changing the motion direction of distractors had no effect on performance. This indicates that target- but not distractor motion information is evaluated during tracking.

  11. The measurement of single particle temperature in plasma sprays

    International Nuclear Information System (INIS)

    Fincke, J.R.; Swank, W.D.; Bolsaitis, P.P.; Elliott, J.F.

    1990-01-01

    A measurement technique for simultaneously obtaining the size, velocity, temperature, and relative number density of particles entrained in high temperature flow fields is described. In determining the particle temperature from a two-color pyrometery technique, assumptions about the relative spectral emissivity of the particle are required. For situations in which the particle surface undergoes chemical reactions the assumption of grey body behavior is shown to introduce large Temperature measurement uncertainties. Results from isolated, laser heated, single particle measurements and in-flight data from the plasma spraying of WC-Co are presented. 10 refs., 5 figs

  12. Performance study on the east-west oriented single-axis tracked panel

    International Nuclear Information System (INIS)

    Chang, Tian Pau

    2009-01-01

    A theoretical study on the performance of an east-west oriented single-axis tracked panel was originally proposed in this paper. Mathematic expressions applicable for calculating the angle that the tracked panel should rotate by to follow the Sun are derived. The incident angle of sunlight upon the panel as well as the instantaneous increments of solar energy captured by the panel relative to a fixed horizontal surface are then demonstrated graphically. To simulate different operation environments, three kinds of radiation sources will be considered, i.e. the extraterrestrial radiation, global radiation predicted by empirical models under clear sky situation and global radiation observed in Taiwan. Simulation results show that the yearly gains correlate positively with the radiation level, i.e. 21.2%, 13.5% and 7.4% for the extraterrestrial, predicted and observed radiations, respectively, which are far less than those obtained from a north-south oriented single-axis tracked panel. The irradiation increases with the maximum rotation angle of the panel, the benefit of increasing the rotation in overcast environment is not as good as in clear sky, for annual energy collection 45 o is recommended. The irradiation received decreases with latitude, but it has a greater gain in higher latitude zone.

  13. Single florescent nanodiamond in a three dimensional ABEL trap

    Science.gov (United States)

    Kayci, Metin; Radenovic, Aleksandra

    2015-01-01

    Three dimensional single particle trapping and manipulation is an outstanding challenge in various fields ranging from basic physics to life sciences. By monitoring the response of a trapped particle to a designed environment one can extract its characteristics. In addition, quantum dynamics of a spatially scanned well-known particle can provide environmental information. Precise tracking and positioning of such a particle in aqueous environment is crucial task for achieving nano-scale resolution. Here we experimentally demonstrate three dimensional ABEL trap operating at high frequency by employing a hybrid approach in particle tracking. The particle location in the transverse plane is detected via a scanning laser beam while the axial position is determined by defocused imaging. The scanning of the trapped particle is accomplished through a nano positioning stage integrated to the trap platform. PMID:26559890

  14. Effect of track etch rate on geometric track characteristics for polymeric track detectors

    International Nuclear Information System (INIS)

    Abdel-Naby, A.A.; El-Akkad, F.A.

    2001-01-01

    Analysis of the variable track etch rate on geometric track characteristic for polymeric track detectors has been applied to the case of LR-155 II SSNTD. Spectrometric characteristics of low energy alpha particles response by the polymeric detector have been obtained. The track etching kinematics theory of development of minor diameter of the etched tracks has been applied. The calculations show that, for this type of detector, the energy dependence of the minor track diameter d is linear for small-etched removal layer h. The energy resolution gets better for higher etched removal layer

  15. Quantum dynamics of a particle in a tracking chamber

    International Nuclear Information System (INIS)

    Figari, Rodolfo; INFN, Napoli; Teta, Alessandro

    2014-01-01

    In the original formulation of quantum mechanics the existence of a precise border between a microscopic world, governed by quantum mechanics, and a macroscopic world, described by classical mechanics was assumed. Modern theoretical and experimental physics has moved that border several times, carefully investigating its definition and making available to observation larger and larger quantum systems. The present book examines a paradigmatic case of the transition from quantum to classical behavior: A quantum particle is revealed in a tracking chamber as a trajectory obeying the laws of classical mechanics. The authors provide here a purely quantum-mechanical description of this behavior, thus helping to illuminate the nature of the border between the quantum and the classical.

  16. Simulations of DSB Yields and Radiation-induced Chromosomal Aberrations in Human Cells Based on the Stochastic Track Structure Induced by HZE Particles

    Science.gov (United States)

    Ponomarev, Artem; Plante, Ianik; George, Kerry; Wu, Honglu

    2014-01-01

    The formation of double-strand breaks (DSBs) and chromosomal aberrations (CAs) is of great importance in radiation research and, specifically, in space applications. We are presenting a new particle track and DNA damage model, in which the particle stochastic track structure is combined with the random walk (RW) structure of chromosomes in a cell nucleus. The motivation for this effort stems from the fact that the model with the RW chromosomes, NASARTI (NASA radiation track image) previously relied on amorphous track structure, while the stochastic track structure model RITRACKS (Relativistic Ion Tracks) was focused on more microscopic targets than the entire genome. We have combined chromosomes simulated by RWs with stochastic track structure, which uses nanoscopic dose calculations performed with the Monte-Carlo simulation by RITRACKS in a voxelized space. The new simulations produce the number of DSBs as function of dose and particle fluence for high-energy particles, including iron, carbon and protons, using voxels of 20 nm dimension. The combined model also calculates yields of radiation-induced CAs and unrejoined chromosome breaks in normal and repair deficient cells. The joined computational model is calibrated using the relative frequencies and distributions of chromosomal aberrations reported in the literature. The model considers fractionated deposition of energy to approximate dose rates of the space flight environment. The joined model also predicts of the yields and sizes of translocations, dicentrics, rings, and more complex-type aberrations formed in the G0/G1 cell cycle phase during the first cell division after irradiation. We found that the main advantage of the joined model is our ability to simulate small doses: 0.05-0.5 Gy. At such low doses, the stochastic track structure proved to be indispensable, as the action of individual delta-rays becomes more important.

  17. Robust visual tracking via structured multi-task sparse learning

    KAUST Repository

    Zhang, Tianzhu

    2012-11-09

    In this paper, we formulate object tracking in a particle filter framework as a structured multi-task sparse learning problem, which we denote as Structured Multi-Task Tracking (S-MTT). Since we model particles as linear combinations of dictionary templates that are updated dynamically, learning the representation of each particle is considered a single task in Multi-Task Tracking (MTT). By employing popular sparsity-inducing lp,q mixed norms (specifically p∈2,∞ and q=1), we regularize the representation problem to enforce joint sparsity and learn the particle representations together. As compared to previous methods that handle particles independently, our results demonstrate that mining the interdependencies between particles improves tracking performance and overall computational complexity. Interestingly, we show that the popular L1 tracker (Mei and Ling, IEEE Trans Pattern Anal Mach Intel 33(11):2259-2272, 2011) is a special case of our MTT formulation (denoted as the L11 tracker) when p=q=1. Under the MTT framework, some of the tasks (particle representations) are often more closely related and more likely to share common relevant covariates than other tasks. Therefore, we extend the MTT framework to take into account pairwise structural correlations between particles (e.g. spatial smoothness of representation) and denote the novel framework as S-MTT. The problem of learning the regularized sparse representation in MTT and S-MTT can be solved efficiently using an Accelerated Proximal Gradient (APG) method that yields a sequence of closed form updates. As such, S-MTT and MTT are computationally attractive. We test our proposed approach on challenging sequences involving heavy occlusion, drastic illumination changes, and large pose variations. Experimental results show that S-MTT is much better than MTT, and both methods consistently outperform state-of-the-art trackers. © 2012 Springer Science+Business Media New York.

  18. Tagged particle in single-file diffusion with arbitrary initial conditions

    Science.gov (United States)

    Cividini, J.; Kundu, A.

    2017-08-01

    We compute the full probability distribution of the positions of a tagged particle exactly for the given arbitrary initial positions of the particles, and for general single-particle propagators. We consider the thermodynamic limit of our exact expressions in quenched and annealed settings. For a particular class of single-particle propagators, the exact formula is expressed in a simple integral form in the quenched case whereas in the annealed case, it is expressed as a simple combination of Bessel functions. In particular, we focus on the step and the power-law initial configurations. In the former case, a drift is induced even when the one-particle propagators are symmetric. On the other hand, in the later case the scaling of the cumulants of the position of the tracer differs from the uniform case. We provide numerical verifications of our results.

  19. Tomograms and the quest for single particle nonlocality

    International Nuclear Information System (INIS)

    Anisimov, M A; Caponigro, M; Mancini, S; Man'ko, V I

    2007-01-01

    By using a tomographic approach to quantum states, we rise the problem of nonlocality within a single particle (single degree of freedom). We propose a possible way to look for such effects on a qubit. Although a conclusive answer is far from being reached, we provide some reflections on the foundational ground

  20. Single-particle motion in rapidly rotating nuclei

    International Nuclear Information System (INIS)

    Bengtsson, R.; Frisk, H.

    1985-01-01

    The motion of particles belonging to a single-j shell is described in terms of classical orbitals. The effects of rapid rotation and pairing correlations are discussed and the results are compared with the quantum mechanical orbitals. (orig.)

  1. Damping of unbound single-particle modes

    International Nuclear Information System (INIS)

    Fortier, S.; Beaumel, D.; Gales, S.; Guillot, J.; Langevin-Joliot, H.; Laurent, H.; Maison, J.M.

    1995-07-01

    The (α, 3 He-n) reaction has been investigated at 120 MeV incident energy on 64 Ni, 90 Zr and 120 Sn target nuclei. Neutrons in coincidence with 3 He particles emitted at 0 deg were detected, in order to get information about the decay of single-particle states embedded in the (α, 3 He) continuum. Neutron angular correlations, multiplicity values and branching ratios to low-lying states of the final nuclei have been compared with the predictions of the statistical decay model. Direct branching ratios in 91 Zr deduced from this analysis are compared with the predictions of two nuclear structure models. (author)

  2. Strong reduction of spectral heterogeneity in gold bipyramids for single-particle and single-molecule plasmon sensing.

    Science.gov (United States)

    Peters, S M E; Verheijen, M A; Prins, M W J; Zijlstra, P

    2016-01-15

    Single metal nanoparticles are attractive biomolecular sensors. Binding of analyte to a functional particle results in a plasmon shift that can be conveniently monitored in a far-field optical microscope. Heterogeneities in spectral properties of individual particles in an ensemble affect the reliability of a single-particle plasmon sensor, especially when plasmon shifts are monitored in real-time using a fixed irradiation wavelength. We compare the spectral heterogeneity of different plasmon sensor geometries (gold nanospheres, nanorods, and bipyramids) and correlate this to their size and aspect-ratio dispersion. We show that gold bipyramids exhibit a strongly reduced heterogeneity in aspect ratio and plasmon wavelength compared to commonly used gold nanorods. We show that this translates into a significantly improved homogeneity of the response to molecular binding without compromising single-molecule sensitivity.

  3. High-precision tracking of brownian boomerang colloidal particles confined in quasi two dimensions.

    Science.gov (United States)

    Chakrabarty, Ayan; Wang, Feng; Fan, Chun-Zhen; Sun, Kai; Wei, Qi-Huo

    2013-11-26

    In this article, we present a high-precision image-processing algorithm for tracking the translational and rotational Brownian motion of boomerang-shaped colloidal particles confined in quasi-two-dimensional geometry. By measuring mean square displacements of an immobilized particle, we demonstrate that the positional and angular precision of our imaging and image-processing system can achieve 13 nm and 0.004 rad, respectively. By analyzing computer-simulated images, we demonstrate that the positional and angular accuracies of our image-processing algorithm can achieve 32 nm and 0.006 rad. Because of zero correlations between the displacements in neighboring time intervals, trajectories of different videos of the same particle can be merged into a very long time trajectory, allowing for long-time averaging of different physical variables. We apply this image-processing algorithm to measure the diffusion coefficients of boomerang particles of three different apex angles and discuss the angle dependence of these diffusion coefficients.

  4. Accurately tracking single-cell movement trajectories in microfluidic cell sorting devices.

    Science.gov (United States)

    Jeong, Jenny; Frohberg, Nicholas J; Zhou, Enlu; Sulchek, Todd; Qiu, Peng

    2018-01-01

    Microfluidics are routinely used to study cellular properties, including the efficient quantification of single-cell biomechanics and label-free cell sorting based on the biomechanical properties, such as elasticity, viscosity, stiffness, and adhesion. Both quantification and sorting applications require optimal design of the microfluidic devices and mathematical modeling of the interactions between cells, fluid, and the channel of the device. As a first step toward building such a mathematical model, we collected video recordings of cells moving through a ridged microfluidic channel designed to compress and redirect cells according to cell biomechanics. We developed an efficient algorithm that automatically and accurately tracked the cell trajectories in the recordings. We tested the algorithm on recordings of cells with different stiffness, and showed the correlation between cell stiffness and the tracked trajectories. Moreover, the tracking algorithm successfully picked up subtle differences of cell motion when passing through consecutive ridges. The algorithm for accurately tracking cell trajectories paves the way for future efforts of modeling the flow, forces, and dynamics of cell properties in microfluidics applications.

  5. Accurately tracking single-cell movement trajectories in microfluidic cell sorting devices.

    Directory of Open Access Journals (Sweden)

    Jenny Jeong

    Full Text Available Microfluidics are routinely used to study cellular properties, including the efficient quantification of single-cell biomechanics and label-free cell sorting based on the biomechanical properties, such as elasticity, viscosity, stiffness, and adhesion. Both quantification and sorting applications require optimal design of the microfluidic devices and mathematical modeling of the interactions between cells, fluid, and the channel of the device. As a first step toward building such a mathematical model, we collected video recordings of cells moving through a ridged microfluidic channel designed to compress and redirect cells according to cell biomechanics. We developed an efficient algorithm that automatically and accurately tracked the cell trajectories in the recordings. We tested the algorithm on recordings of cells with different stiffness, and showed the correlation between cell stiffness and the tracked trajectories. Moreover, the tracking algorithm successfully picked up subtle differences of cell motion when passing through consecutive ridges. The algorithm for accurately tracking cell trajectories paves the way for future efforts of modeling the flow, forces, and dynamics of cell properties in microfluidics applications.

  6. Physical and chemical study of single aerosol particles using optical trapping cavity ringdown spectroscopy

    Science.gov (United States)

    2016-08-30

    scope that views the trapped particle walking through the ringdown beam step by step. (b) An image that shows the traces of the particle (MWCNT... walking through the RD beam . 5 a b c Fig.3 The OT-CRDS single particle scope views oscillations of a trapped particle. (a) Image of a trapped...and walking single carbon- nanotube particles of ?50 µm in size and viewing those properties via changes of ringdown time. This single- aerosol

  7. New instrument for tribocharge measurement due to single particle impacts

    International Nuclear Information System (INIS)

    Watanabe, Hideo; Ghadiri, Mojtaba; Matsuyama, Tatsushi; Ding Yulong; Pitt, Kendal G.

    2007-01-01

    During particulate solid processing, particle-particle and particle-wall collisions can generate electrostatic charges. This may lead to a variety of problems ranging from fire and explosion hazards to segregation, caking, and blocking. A fundamental understanding of the particle charging in such situations is therefore essential. For this purpose we have developed a new device that can measure charge transfer due to impact between a single particle and a metal plate. The device consists of an impact test system and two sets of Faraday cage and preamplifier for charge measurement. With current amplifiers, high-resolution measurements of particle charges of approximately 1 and 10 fC have been achieved before and after the impact, respectively. The device allows charge measurements of single particles with a size as small as ∼100 μm impacting on the target at different incident angles with a velocity up to about 80 m/s. Further analyses of the charge transfer as a function of particle initial charge define an equilibrium charge, i.e., an initial charge level prior to impact for which no net charge transfer would occur as a result of impact

  8. Impact of the track structure of heavy charged particles on cytogenetic damage in human blood lymphocytes

    Science.gov (United States)

    Lee, Ryonfa; Nasonova, Elena; Sommer, Sylwetster; Hartel, Carola; Durante, Marco; Ritter, Sylvia

    In space, astronauts are unavoidably exposed to charged particles from protons to irons. For a better estimate of the health risks of astronauts, further knowledge on the biological effects of charged particles, in particular the induction of cytogenetic damage is required. One im-portant factor that determines the biological response is the track structure of particles, i.e. their microscopic dose deposition in cells. The aim of the present study was to assess the influence of track structure of heavy ions on the yield and the quality of cytogenetic damage in human peripheral blood lymphocytes representing normal tissue. Cells were irradiated with 9.5 MeV/u C-ions or 990 MeV/u Fe-ions which have a comparable LET (175 keV/µm and 155 keV/µm, respectively) but a different track radius (2.3 and 6200 µm, respectively). When aberrations were analyzed in first cycle metaphases collected at different post-irradiation times (48-84 h) following fluorescence plus Giemsa staining, an increase in the aberration yield with sampling time was observed for both radiation qualities reflecting a damage dependent cell cycle progression delay to mitosis. The pronounced differences in the aberration frequency per cell are attributable to the stochastic distribution of particle traversals per cell nucleus (radius: 2.8 µm). Following C-ion exposure we found a high fraction of non-aberrant cells in samples collected at 48 h which represent cells not directly hit by a particle and slightly damaged cells that successfully repaired the induced lesions. In addition, at higher C-ion fluences the aberra-tion yield saturated, suggesting that a fraction of lymphocytes receiving multiple particle hits is not able to reach mitosis. On the other hand, at 48 h after Fe-ion exposure the proportion of non-aberrant cells is lower than after C-ion irradiation clearly reflecting the track structure of high energy particles (i.e. more homogeneous dose deposition compared to low energy C

  9. Detection alpha particles and Cf-252 fission fragments with track solid detectors and with surface barrier detectors: efficiency determination

    International Nuclear Information System (INIS)

    Khouri, M.T.F.C.; Koskinas, M.F.; Andrade, C. de; Vilela, E.C.; Hinostroza, H.; Kaschiny, J.R.A.; Costa, M.S. da; Rizzo, P.; Santos, W.M.S.

    1990-01-01

    The technique of particle detection by solid track detectors, types of developing and analysis of results are presented. Efficiency measurements of alpha particle detection with Makrofol e and surface barrier detector are made. Detection of Cf-252 fission fragments is shown. (L.C.)

  10. Ghost hunting—an assessment of ghost particle detection and removal methods for tomographic-PIV

    International Nuclear Information System (INIS)

    Elsinga, G E; Tokgoz, S

    2014-01-01

    This paper discusses and compares several methods, which aim to remove spurious peaks, i.e. ghost particles, from the volume intensity reconstruction in tomographic-PIV. The assessment is based on numerical simulations of time-resolved tomographic-PIV experiments in linear shear flows. Within the reconstructed volumes, intensity peaks are detected and tracked over time. These peaks are associated with particles (either ghosts or actual particles) and are characterized by their peak intensity, size and track length. Peak intensity and track length are found to be effective in discriminating between most ghosts and the actual particles, although not all ghosts can be detected using only a single threshold. The size of the reconstructed particles does not reveal an important difference between ghosts and actual particles. The joint distribution of peak intensity and track length however does, under certain conditions, allow a complete separation of ghosts and actual particles. The ghosts can have either a high intensity or a long track length, but not both combined, like all the actual particles. Removing the detected ghosts from the reconstructed volume and performing additional MART iterations can decrease the particle position error at low to moderate seeding densities, but increases the position error, velocity error and tracking errors at higher densities. The observed trends in the joint distribution of peak intensity and track length are confirmed by results from a real experiment in laminar Taylor–Couette flow. This diagnostic plot allows an estimate of the number of ghosts that are indistinguishable from the actual particles. (paper)

  11. Particle tracking for unsaturated-zone groundwater travel time analysis at Yucca Mountain

    International Nuclear Information System (INIS)

    Arnold, B.W.; Skinner, L.H.; Zieman, N.B.

    1995-01-01

    A particle tracking code developed to link numerical modeling of groundwater flow in the unsaturated zone to the analysis of groundwater travel times was used to produce preliminary estimates of the distribution of groundwater-travel time from a potential repository at Yucca Mountain, Nevada to the water table. Compliance with 10CFR960 requires the demonstration that pre-waste-emplacement groundwater travel time from the disturbed zone to the accessible environment is expected to exceed 1,000 years along any path of likely and significant radionuclide travel. The use of multiple particles and multiple realizations of the geology and parameter distributions in the unsaturated zone allows a probabilistic analysis of groundwater travel times that may be applied for evaluating compliance

  12. Influence of Torrefaction on Single Particle Combustion of Wood

    DEFF Research Database (Denmark)

    Lu, Zhimin; Jian, Jie; Jensen, Peter Arendt

    2016-01-01

    This study focuses on the influence of torrefaction on the char reactivity, char yield, and combustion time of 3-5 mm spherical wood particles in a single particle combustion reactor (SPC) operating at a nominal temperature of 1231 °C. The devolatilization times were reduced and the char burnout...

  13. Extending the Modelling Framework for Gas-Particle Systems

    DEFF Research Database (Denmark)

    Rosendahl, Lasse Aistrup

    , with very good results. Single particle combustion has been tested using a number of different particle combustion models applied to coal and straw particles. Comparing the results of these calculations to measurements on straw burnout, the results indicate that for straw, existing heterogeneous combustion...... models perform well, and may be used in high temperature ranges. Finally, the particle tracking and combustion model is applied to an existing coal and straw co- fuelled burner. The results indicate that again, the straw follows very different trajectories than the coal particles, and also that burnout...

  14. Nonlinear dynamics aspects of particle accelerators. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Jowett, J M; Turner, S; Month, M

    1986-01-01

    These proceedings contain the lectures presented at the named winter school. They deal with the application of dynamical systems to accelerator theory. Especially considered are the statistical description of charged-beam plasmas, integrable and nonintegrable Hamiltonian systems, single particle dynamics and nonlinear resonances in circular accelerators, nonlinear dynamics aspects of modern storage rings, nonlinear beam-beam resonances, synchro-betatron resonances, observations of the beam-beam interactions, the dynamics of the beam-beam interactions, beam-beam simulations, the perturbation method in nonlinear dynamics, theories of statistical equilibrium in electron-positron storage rings, nonlinear dissipative phenomena in electron storage rings, the dynamical aperture, the transition to chaos for area-preserving maps, special processors for particle tracking, algorithms for tracking of charged particles in circular accelerators, the breakdown of stability, and a personal perspective of nonlinear dynamics. (HSI).

  15. WE-H-BRA-08: A Monte Carlo Cell Nucleus Model for Assessing Cell Survival Probability Based On Particle Track Structure Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B [Northwestern Memorial Hospital, Chicago, IL (United States); Georgia Institute of Technology, Atlanta, GA (Georgia); Wang, C [Georgia Institute of Technology, Atlanta, GA (Georgia)

    2016-06-15

    Purpose: To correlate the damage produced by particles of different types and qualities to cell survival on the basis of nanodosimetric analysis and advanced DNA structures in the cell nucleus. Methods: A Monte Carlo code was developed to simulate subnuclear DNA chromatin fibers (CFs) of 30nm utilizing a mean-free-path approach common to radiation transport. The cell nucleus was modeled as a spherical region containing 6000 chromatin-dense domains (CDs) of 400nm diameter, with additional CFs modeled in a sparser interchromatin region. The Geant4-DNA code was utilized to produce a particle track database representing various particles at different energies and dose quantities. These tracks were used to stochastically position the DNA structures based on their mean free path to interaction with CFs. Excitation and ionization events intersecting CFs were analyzed using the DBSCAN clustering algorithm for assessment of the likelihood of producing DSBs. Simulated DSBs were then assessed based on their proximity to one another for a probability of inducing cell death. Results: Variations in energy deposition to chromatin fibers match expectations based on differences in particle track structure. The quality of damage to CFs based on different particle types indicate more severe damage by high-LET radiation than low-LET radiation of identical particles. In addition, the model indicates more severe damage by protons than of alpha particles of same LET, which is consistent with differences in their track structure. Cell survival curves have been produced showing the L-Q behavior of sparsely ionizing radiation. Conclusion: Initial results indicate the feasibility of producing cell survival curves based on the Monte Carlo cell nucleus method. Accurate correlation between simulated DNA damage to cell survival on the basis of nanodosimetric analysis can provide insight into the biological responses to various radiation types. Current efforts are directed at producing cell

  16. Pairing fluctuation effects on the single-particle spectra for the superconducting state

    International Nuclear Information System (INIS)

    Pieri, P.; Pisani, L.; Strinati, G.C.

    2004-01-01

    Single-particle spectra are calculated in the superconducting state for a fermionic system with an attractive interaction, as functions of temperature and coupling strength from weak to strong. The fermionic system is described by a single-particle self-energy that includes pairing-fluctuation effects in the superconducting state. The theory reduces to the ordinary BCS approximation in weak coupling and to the Bogoliubov approximation for the composite bosons in strong coupling. Several features of the single-particle spectral function are shown to compare favorably with experimental data for cuprate superconductors

  17. Large-eddy simulation of heavy particle dispersion in wall-bounded turbulent flows

    Energy Technology Data Exchange (ETDEWEB)

    Salvetti, M.V. [DICI, University of Pisa, I-56122 Pisa (Italy)

    2015-03-10

    Capabilities and accuracy issues in Lagrangian tracking of heavy particles in velocity fields obtained from large-eddy simulations (LES) of wall-bounded turbulent flows are reviewed. In particular, it is shown that, if no subgrid scale (SGS) model is added to the particle motion equations, particle preferential concentration and near-wall accumulation are significantly underestimated. Results obtained with SGS modeling for the particle motion equations based on approximate deconvolution are briefly recalled. Then, the error purely due to filtering in particle tracking in LES flow fields is singled out and analyzed. The statistical properties of filtering errors are characterized in turbulent channel flow both from an Eulerian and a Lagrangian viewpoint. Implications for stochastic SGS modeling in particle motion equations are briefly outlined.

  18. A transient single particle model under FCI conditions

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Yan; SHANG Zhi; XU Ji-Jun

    2005-01-01

    The paper is focused on the coupling effect between film boiling heat transfer and evaporation drag around a hot-particle in cold liquid. Based on the continuity, momentum and energy equations of the vapor film, a transient two-dimensional single particle model has been established. This paper contains a detailed description of HPMC (High-temperature Particle Moving in Coolant) model for studying some aspects of the premixing stage of fuel-coolant interactions (FCIs). The transient process of high-temperature particles moving in coolant can be simulated. Comparisons between the experiment results and the calculations using HPMC model demonstrate that HPMC model achieves a good agreement in predicting the time-varying characteristic of high-temperature spheres moving in coolant.

  19. Optimization of magnetic switches for single particle and cell transport

    Energy Technology Data Exchange (ETDEWEB)

    Abedini-Nassab, Roozbeh; Yellen, Benjamin B., E-mail: yellen@duke.edu [Department of Mechanical Engineering and Materials Science, Duke University, Box 90300 Hudson Hall, Durham, North Carolina 27708 (United States); Joint Institute, University of Michigan—Shanghai Jiao Tong University, Shanghai Jiao Tong University, Shanghai 200240 (China); Murdoch, David M. [Department of Medicine, Duke University, Durham, North Carolina 27708 (United States); Kim, CheolGi [Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873 (Korea, Republic of)

    2014-06-28

    The ability to manipulate an ensemble of single particles and cells is a key aim of lab-on-a-chip research; however, the control mechanisms must be optimized for minimal power consumption to enable future large-scale implementation. Recently, we demonstrated a matter transport platform, which uses overlaid patterns of magnetic films and metallic current lines to control magnetic particles and magnetic-nanoparticle-labeled cells; however, we have made no prior attempts to optimize the device geometry and power consumption. Here, we provide an optimization analysis of particle-switching devices based on stochastic variation in the particle's size and magnetic content. These results are immediately applicable to the design of robust, multiplexed platforms capable of transporting, sorting, and storing single cells in large arrays with low power and high efficiency.

  20. Variation that can be expected when using particle tracking models in connectivity studies

    Science.gov (United States)

    Hufnagl, Marc; Payne, Mark; Lacroix, Geneviève; Bolle, Loes J.; Daewel, Ute; Dickey-Collas, Mark; Gerkema, Theo; Huret, Martin; Janssen, Frank; Kreus, Markus; Pätsch, Johannes; Pohlmann, Thomas; Ruardij, Piet; Schrum, Corinna; Skogen, Morten D.; Tiessen, Meinard C. H.; Petitgas, Pierre; van Beek, Jan K. L.; van der Veer, Henk W.; Callies, Ulrich

    2017-09-01

    Hydrodynamic Ocean Circulation Models and Lagrangian particle tracking models are valuable tools e.g. in coastal ecology to identify the connectivity between offshore spawning and coastal nursery areas of commercially important fish, for risk assessment and more for defining or evaluating marine protected areas. Most studies are based on only one model and do not provide levels of uncertainty. Here this uncertainty was addressed by applying a suite of 11 North Sea models to test what variability can be expected concerning connectivity. Different notional test cases were calculated related to three important and well-studied North Sea fish species: herring (Clupea harengus), and the flatfishes sole (Solea solea) and plaice (Pleuronectes platessa). For sole and plaice we determined which fraction of particles released in the respective spawning areas would reach a coastal marine protected area. For herring we determined the fraction located in a wind park after a predefined time span. As temperature is more and more a focus especially in biological and global change studies, furthermore inter-model variability in temperatures experienced by the virtual particles was determined. The main focus was on the transport variability originating from the physical models and thus biological behavior was not included. Depending on the scenario, median experienced temperatures differed by 3 °C between years. The range between the different models in one year was comparable to this temperature range observed between modelled years. Connectivity between flatfish spawning areas and the coastal protected area was highly dependent on the release location and spawning time. No particles released in the English Channel in the sole scenario reached the protected area while up to 20% of the particles released in the plaice scenario did. Interannual trends in transport directions and connectivity rates were comparable between models but absolute values displayed high variations. Most

  1. Two-Step Single Particle Mass Spectrometry for On-Line Monitoring of Polycyclic Aromatic Hydrocarbons Bound to Ambient Fine Particulate Matter

    Science.gov (United States)

    Zimmermann, R.; Bente, M.; Sklorz, M.

    2007-12-01

    Polycyclic aromatic hydrocarbons (PAH) are formed as trace products in combustion processes and are emitted to the atmosphere. Larger PAH have low vapour pressure and are predominantly bound to the ambient fine particulate matter (PM). Upon inhalation, PAH show both, chronic human toxicity (i.e. many PAH are potent carcinogens) as well as acute human toxicity (i.e. inflammatory effects due to oxi-dative stress) and are discussed to be relevant for the observed health effect of ambient PM. Therefore a better understanding of the occurrence, dynamics and particle size dependence of particle bound-PAH is of great interest. On-line aerosol mass spectrometry in principle is the method of choice to investigate the size resolved changes in the chemical speciation of particles as well the status of internal vs. external mixing of chemical constituents. However the present available aerosol mass spectrometers (ATOFMS and AMS) do not allow detection of PAH from ambient air PM. In order to allow a single particle based monitoring of PAH from ambient PM a new single particle laser ionisation mass spectrometer was built and applied. The system is based on ATOFMS principle but uses a two- step photo-ionization. A tracked and sized particle firstly is laser desorbed (LD) by a IR-laser pulse (CO2-laser, λ=10.2 μm) and subsequently the released PAH are selectively ionized by an intense UV-laser pulse (ArF excimer, λ=248 nm) in a resonance enhanced multiphoton ionisation process (REMPI). The PAH-ions are detected in a time of flight mass spectrometer (TOFMS). A virtual impactor enrichment unit is used to increase the detection frequency of the ambient particles. With the current inlet system particles from about 400 nm to 10 μm are accessible. Single particle based temporal profiles of PAH containing particles ion (size distribution and PAH speciation) have been recorded in Oberschleissheim, Germany from ambient air. Furthermore profiles of relevant emission sources (e

  2. Emissions from Ethanol-Gasoline Blends: A Single Particle Perspective

    Directory of Open Access Journals (Sweden)

    Peter H. McMurry

    2011-06-01

    Full Text Available Due to its agricultural origin and function as a fuel oxygenate, ethanol is being promoted as an alternative biomass-based fuel for use in spark ignition engines, with mandates for its use at state and regional levels. While it has been established that the addition of ethanol to a fuel reduces the particulate mass concentration in the exhaust, little attention has been paid to changes in the physicochemical properties of the emitted particles. In this work, a dynamometer-mounted GM Quad-4 spark ignition engine run without aftertreatment at 1,500 RPM and 100% load was used with four different fuel blends, containing 0, 20, 40 and 85 percent ethanol in gasoline. This allowed the effects of the fuel composition to be isolated from other effects. Instrumentation employed included two Aerosol Time-of-Flight Mass Spectrometers covering different size ranges for analysis of single particle composition, an Aethalometer for black carbon, a Scanning Mobility Particle Sizer for particle size distributions, a Photoelectric Aerosol Sensor for particle-bound polycyclic aromatic hydrocarbon (PAH species and gravimetric filter measurements for particulate mass concentrations. It was found that, under the conditions investigated here, additional ethanol content in the fuel changes the particle size distribution, especially in the accumulation mode, and decreases the black carbon and total particulate mass concentrations. The molecular weight distribution of the PAHs was found to decrease with added ethanol. However, PAHs produced from higher ethanol-content fuels are associated with NO2− (m/z—46 in the single-particle mass spectra, indicating the presence of nitro-PAHs. Compounds associated with the gasoline (e.g., sulfur-containing species are diminished due to dilution as ethanol is added to the fuel relative to those associated with the lubricating oil (e.g., calcium, zinc, phosphate in the single particle spectra. These changes have potential

  3. Statistical fluctuations in heavy-charged-particle tracks

    International Nuclear Information System (INIS)

    Hamm, R.N.; Turner, J.E.; Wright, H.A.

    1985-01-01

    We present the results of the following Monte Carlo track-segment calculations for protons with energies of 1, 2, 5, and 10 MeV in liquid water: (1) radial dose around a long segment of a proton track; (2) energy-loss straggling distributions for protons of different energies in 1 μm of water; (3) the distribution in the average absorbed dose around track segments of various lengths; (4) the relative standard deviations in these distributions as functions of the length of the track segments. Calculations such as those presented here are useful for studying track phenomena on a microdosimetric scale, where statistical fluctuations are substantial

  4. Studies of the neutron single-particle structure of exotic nuclei at the HRIBF

    International Nuclear Information System (INIS)

    Thomas, J.S.; Bardayan, D.W.; Blackmon, J.C.; Cizewski, J.A.; Greife, U.; Gross, C.J.; Johnson, M.S.; Jones, K.L.; Kozub, R.L.; Liang, J.F.; Livesay, R.J.; Ma, Z.; Moazen, B.H.; Nesaraja, C.D.; Shapira, D.; Smith, M.S.

    2004-01-01

    The study of neutron single-particle strengths in neutron-rich nuclei is of interest for nuclear structure and nuclear astrophysics. The distribution of single-particle strengths constrains the effective Hamiltonian and pairing interactions and determines neutron interaction rates that are crucial for understanding the synthesis of heavy nuclei in supernovae via the rapid neutron capture process. Particularly important are the neutron single-particle levels in nuclei near closed neutron shells. Radioactive ion beams from the Holifield Radioactive Ion Beam Facility have been used to study (d,p) reactions in inverse kinematics in order to probe neutron single-particle states in exotic nuclei. The results of a measurement with a 82 Ge beam will be presented

  5. Proceedings of the 3. conference: Particle track membranes and their applications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The materials of the 3rd conference on Particle Track Membranes and Theirs Applications present actual state of art in the topic. The leading world institutions have presented their works on the technology of PTM production by interaction of ion beams with polymeric foils. The broad spectrum of PTM membranes have been shown, their properties have been described and their applicability discussed. A number of possible applications of PTM and also already realized in industry, medicine, biology and physical investigations have been presented. 29 lectures have been made in the course of conference.

  6. Proceedings of the 3. conference: Particle track membranes and their applications

    International Nuclear Information System (INIS)

    1994-01-01

    The materials of the 3rd conference on Particle Track Membranes and Theirs Applications present actual state of art in the topic. The leading world institutions have presented their works on the technology of PTM production by interaction of ion beams with polymeric foils. The broad spectrum of PTM membranes have been shown, their properties have been described and their applicability discussed. A number of possible applications of PTM and also already realized in industry, medicine, biology and physical investigations have been presented. 29 lectures have been made in the course of conference

  7. Fluorescent nuclear track images of Ag-activated phosphate glass irradiated with photons and heavy charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Kurobori, Toshio, E-mail: kurobori@staff.kanazawa-u.ac.jp [Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192 (Japan); Yanagida, Yuka [Oarai Research Center, Chiyoda Technol Corporation, Oarai-machi, Ibaraki 311-1313 (Japan); Kodaira, Satoshi [National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Shirao, Taichi [Nikon Instech Co., Ltd., Tanakanishi, Sakyo-ku, Kyoto 606-8221 (Japan)

    2017-05-21

    In this paper we report about the demonstration of the nuclear track imaging capabilities of Ag-activated phosphate glass. A 375 nm laser and confocal laser scanning microscopy (CLSM) were respectively used for track excitation and detection. Specifically, the blue and orange radiophotoluminescent (RPL) tracks and dose distributions observed after irradiation with soft X-rays, gamma rays and heavy charged particles (HCPs) are examined. In addition, the origins of the reductions in RPL efficiency for high-dose X-ray irradiation and for irradiation with HCPs with high linear energy transfer (LET) values are investigated via a CLSM and a conventional fluorescent reader and discussed. - Highlights: • 3D track images are demonstrated using a confocal laser microscopy. • Fluorescent track detectors are based on RPL Ag-doped phosphate glass. • The dose distributions are examined for X-ray, gamma ray and HCP irradiations. • The origins of the reduction in RPL efficiency are investigated and discussed.

  8. Fluorescent nuclear track images of Ag-activated phosphate glass irradiated with photons and heavy charged particles

    International Nuclear Information System (INIS)

    Kurobori, Toshio; Yanagida, Yuka; Kodaira, Satoshi; Shirao, Taichi

    2017-01-01

    In this paper we report about the demonstration of the nuclear track imaging capabilities of Ag-activated phosphate glass. A 375 nm laser and confocal laser scanning microscopy (CLSM) were respectively used for track excitation and detection. Specifically, the blue and orange radiophotoluminescent (RPL) tracks and dose distributions observed after irradiation with soft X-rays, gamma rays and heavy charged particles (HCPs) are examined. In addition, the origins of the reductions in RPL efficiency for high-dose X-ray irradiation and for irradiation with HCPs with high linear energy transfer (LET) values are investigated via a CLSM and a conventional fluorescent reader and discussed. - Highlights: • 3D track images are demonstrated using a confocal laser microscopy. • Fluorescent track detectors are based on RPL Ag-doped phosphate glass. • The dose distributions are examined for X-ray, gamma ray and HCP irradiations. • The origins of the reduction in RPL efficiency are investigated and discussed.

  9. Quantum dynamics of a particle in a tracking chamber

    CERN Document Server

    Figari, Rodolfo

    2014-01-01

    In the original formulation of quantum mechanics the existence of a precise border between a microscopic world, governed by quantum mechanics, and a macroscopic world, described by classical mechanics was assumed. Modern theoretical and experimental physics has moved that border several times, carefully investigating its definition and making available to observation larger and larger quantum systems. The present book examines a paradigmatic case of the transition from quantum to classical behavior: A quantum particle is revealed in a tracking chamber as a trajectory obeying the laws of classical mechanics. The authors provide here a purely quantum-mechanical description of this behavior, thus helping to illuminate the nature of the border between the quantum and the classical.

  10. Search for long-lived massive particles with the ATLAS detector

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Numerous new physics models predict the existence of massive long-lived particles. Such particles may be produced at the LHC singly or in pairs, and can be detected through abnormal specific energy loss, long time-of-flight, late calorimetric energy deposits, disappearing tracks or displaced vertices. The seminar presents the experimental challenges and recent results from searches for long-lived particles with the ATLAS detector.

  11. Diffracted X-ray tracking: new system for single molecular detection with X-rays

    CERN Document Server

    Sasaki, Y C; Adachi, S; Suzuki, Y; Yagi, N

    2001-01-01

    We propose a new X-ray methodology for direct observations of the behaviors of single molecular units in real time and real space. This new system, which we call Diffracted X-ray Tracking (DXT), monitors the Brownian motions of a single molecular unit by observations of X-ray diffracted spots from a nanocrystal, tightly bound to the individual single molecular unit in bio-systems. DXT does not determine any translational movements, but only orientational movements.

  12. Diffracted X-ray tracking: new system for single molecular detection with X-rays

    International Nuclear Information System (INIS)

    Sasaki, Y.C.; Okumura, Y.; Adachi, S.; Suzuki, Y.; Yagi, N.

    2001-01-01

    We propose a new X-ray methodology for direct observations of the behaviors of single molecular units in real time and real space. This new system, which we call Diffracted X-ray Tracking (DXT), monitors the Brownian motions of a single molecular unit by observations of X-ray diffracted spots from a nanocrystal, tightly bound to the individual single molecular unit in bio-systems. DXT does not determine any translational movements, but only orientational movements

  13. Simulations of DSB Yields and Radiation-induced Chromosomal Aberrations in Human Cells Based on the Stochastic Track Structure iIduced by HZE Particles

    Science.gov (United States)

    Ponomarev, Artem; Plante, Ianik; George, Kerry; Wu, Honglu

    2014-01-01

    The formation of double-strand breaks (DSBs) and chromosomal aberrations (CAs) is of great importance in radiation research and, specifically, in space applications. We are presenting a new particle track and DNA damage model, in which the particle stochastic track structure is combined with the random walk (RW) structure of chromosomes in a cell nucleus. The motivation for this effort stems from the fact that the model with the RW chromosomes, NASARTI (NASA radiation track image) previously relied on amorphous track structure, while the stochastic track structure model RITRACKS (Relativistic Ion Tracks) was focused on more microscopic targets than the entire genome. We have combined chromosomes simulated by RWs with stochastic track structure, which uses nanoscopic dose calculations performed with the Monte-Carlo simulation by RITRACKS in a voxelized space. The new simulations produce the number of DSBs as function of dose and particle fluence for high-energy particles, including iron, carbon and protons, using voxels of 20 nm dimension. The combined model also calculates yields of radiation-induced CAs and unrejoined chromosome breaks in normal and repair deficient cells. The joined computational model is calibrated using the relative frequencies and distributions of chromosomal aberrations reported in the literature. The model considers fractionated deposition of energy to approximate dose rates of the space flight environment. The joined model also predicts of the yields and sizes of translocations, dicentrics, rings, and more complex-type aberrations formed in the G0/G1 cell cycle phase during the first cell division after irradiation. We found that the main advantage of the joined model is our ability to simulate small doses: 0.05-0.5 Gy. At such low doses, the stochastic track structure proved to be indispensable, as the action of individual delta-rays becomes more important.

  14. Single-particle behaviour in circulating fluidized beds

    DEFF Research Database (Denmark)

    Erik Weinell, Claus; Dam-Johansen, Kim; Johnsson, Jan Erik

    1997-01-01

    This paper describes an experimental investigation of single-particle behaviour in a cold pilot-scale model of a circulating fluidized bed combustor (CFBC). In the system, sand is recirculated by means of air. Pressure measurements along the riser are used to determine the suspension density...

  15. Detection of alpha particles and Cf-252 fission fragments with solid track detectors and surface barrier detector. Efficiency calculation

    International Nuclear Information System (INIS)

    Khouri, M.T.F.C.; Koskinas, M.F.; Andrade, C. de; Vilela, E.C.; Hinostroza, H.; Kaschiny, J.E.A.; Costa, M.S. da; Rizzo, P.; Santos, W.M.S.

    1990-01-01

    A technique for particle detection by using track solid detector and also types of revealing and result analysis are presented concerned to Cf-252 fission fragments detection. Measurements of alpha particles detection efficiency using Makrofol E and surface barrier detector are performed. (L.C.J.A.)

  16. An approach to modelling radiation damage by fast ionizing particles

    International Nuclear Information System (INIS)

    Thomas, G.E.

    1987-01-01

    The paper presents a statistical approach to modelling radiation damage in small biological structures such as enzymes, viruses, and some cells. Irreparable damage is assumed to be caused by the occurrence of ionizations within sensitive regions. For structures containing double-stranded DNA, one or more ionizations occurring within each strand of the DNA will cause inactivation; for simpler structures without double-stranded DNA a single ionization within the structure will be sufficient for inactivation. Damaging ionizations occur along tracks of primary irradiating particles or along tracks of secondary particles released at primary ionizations. An inactivation probability is derived for each damage mechanism, expressed in integral form in terms of the radius of the biological structure (assumed spherical), rate of ionization along primary tracks, and maximum energy for secondary particles. The performance of each model is assessed by comparing results from the model with those derived from data from various experimental studies extracted from the literature. For structures where a single ionization is sufficient for inactivation, the model gives qualitatively promising results; for larger more complex structures containing double-stranded DNA, the model requires further refinements. (author)

  17. Calibrations of CR39 and Makrofol nuclear track detectors and search for exotic particles

    CERN Document Server

    Ambrosio, M; Auriemma, G; Bakari, D; Baldini, A; Barbarino, G C; Barish, B C; Battistoni, G; Becherini, Y; Bellotti, R; Bemporad, C; Bernardini, P; Bilokon, H; Bloise, C; Bower, C; Brigida, M; Bussino, S; Cafagna, F; Calicchio, M; Campana, D; Carboni, M; Caruso, R; Cecchini, S; Cei, F; Chiarella, V; Chiarusi, T; Choudhary, B C; Coutu, S; Cozzi, M; De Cataldo, G; De Marzo, C; De Mitri, I; De Vincenzi, M; Dekhissi, H; Derkaoui, J; Di Credico, A; Erriquez, O; Favuzzi, C; Forti, C; Fusco, P; Giacomelli, G; Giannini, G; Giglietto, N; Giorgini, M; Grassi, M; Grillo, A; Guarino, F; Gustavino, C; Habig, A; Hanson, K; Heinz, R; Iarocci, E; Katsavounidis, E; Katsavounidis, I; Kearns, E; Kim, H; Kumar, A; Kyriazopoulou, S; Lamanna, E; Lane, C; Levin, D S; Lipari, P; Longley, N P; Longo, M J; Loparco, F; Maaroufi, F; Mancarella, G; Mandrioli, G; Manzoor, S; Margiotta, A; Marini, A; Martello, D; Marzari-Chiesa, A; Matteuzzi, D; Mazziotta, M N; Michael, D G; Monacelli, P; Montaruli, T; Monteno, M; Mufson, S; Musser, J; Nicolò, D; Nolty, R; Orth, C; Osteria, G; Palamara, O; Patera, V; Patrizii, L; Pazzi, R; Peck, C W; Perrone, L; Petrera, S; Pistilli, P; Popa, V; Rainó, A; Reynoldson, J; Ronga, F; Rrhioua, A; Satriano, C; Scapparone, E; Scholberg, K; Sciubba, A; Serra, P; Sioli, M; Sirri, G; Sitta, M; Spinelli, P; Spinetti, M; Spurio, M; Steinberg, R; Stone, J L; Sulak, L R; Surdo, A; Tarle, G; Togo, V; Vakili, M; Walter, C W; Webb, R; 10.1016/S0920-5632(03)02249-7

    2003-01-01

    We present the final results of the search for exotic massive particles in the cosmic radiation performed with the MACRO underground experiment. Magnetic monopoles and nuclearites flux upper limits obtained with the CR39 nuclear track subdetector, the scintillation and streamer tube subdetectors are given. Searches at high altitude with the SLIM experiment are in progress.

  18. Nuclear Track Detectors. Searches for Exotic Particles

    CERN Document Server

    Giacomelli, Giorgio

    2008-01-01

    We used Nuclear Track Detectors (NTD) CR39 and Makrofol for many purposes: i) Exposures at the SPS and at lower energy accelerator heavy ion beams for calibration purposes and for fragmentation studies. ii) Searches for GUT and Intermediate Mass Magnetic Monopoles (IMM), nuclearites, Q-balls and strangelets in the cosmic radiation. The MACRO experiment in the Gran Sasso underground lab, with ~1000 m^2 of CR39 detectors (plus scintillators and streamer tubes), established an upper limit for superheavy GUT poles at the level of 1.4x10^-16 cm^-2 s^-1 sr^-1 for 4x10^-5 particles. iii) Environmental studies, radiation monitoring, neutron dosimetry.

  19. Capillarity creates single-crystal calcite nanowires from amorphous calcium carbonate.

    Science.gov (United States)

    Kim, Yi-Yeoun; Hetherington, Nicola B J; Noel, Elizabeth H; Kröger, Roland; Charnock, John M; Christenson, Hugo K; Meldrum, Fiona C

    2011-12-23

    Single-crystal calcite nanowires are formed by crystallization of morphologically equivalent amorphous calcium carbonate (ACC) particles within the pores of track etch membranes. The polyaspartic acid stabilized ACC is drawn into the membrane pores by capillary action, and the single-crystal nature of the nanowires is attributed to the limited contact of the intramembrane ACC particle with the bulk solution. The reaction environment then supports transformation to a single-crystal product. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Nonlinear Vibration Signal Tracking of Large Offshore Bridge Stayed Cable Based on Particle Filter

    Directory of Open Access Journals (Sweden)

    Ye Qingwei

    2015-12-01

    Full Text Available The stayed cables are key stress components of large offshore bridge. The fault detection of stayed cable is very important for safe of large offshore bridge. A particle filter model and algorithm of nonlinear vibration signal are used in this paper. Firstly, the particle filter model of stayed cable of large offshore bridge is created. Nonlinear dynamic model of the stayed-cable and beam coupling system is dispersed in temporal dimension by using the finite difference method. The discrete nonlinear vibration equations of any cable element are worked out. Secondly, a state equation of particle filter is fitted by least square algorithm from the discrete nonlinear vibration equations. So the particle filter algorithm can use the accurate state equations. Finally, the particle filter algorithm is used to filter the vibration signal of bridge stayed cable. According to the particle filter, the de-noised vibration signal can be tracked and be predicted for a short time accurately. Many experiments are done at some actual bridges. The simulation experiments and the actual experiments on the bridge stayed cables are all indicating that the particle filter algorithm in this paper has good performance and works stably.

  1. Large Radius Tracking at the ATLAS Experiment

    CERN Document Server

    Lutz, Margaret Susan; The ATLAS collaboration

    2017-01-01

    Many exotics and SUSY models include particles which are long lived resulting in decays which are highly displaced from the proton-proton interaction point (IP). The standard track reconstruction algorithm used by the ATLAS collaboration is optimized for tracks from “primary” particles, which originate close to the IP. Thus, tight restrictions on the transverse and longitudinal impact parameters, as well as on several other tracking variables, are applied to improve the track reconstruction performance and to reduce the fake rate. This track reconstruction is very efficient for primary particles, but not for the non-prompt particles mentioned above.  In order to reconstruct tracks with large impact parameters due to displaced decays, a tracking algorithm has been optimized to re-run with loosened requirements over the hits left over after standard track reconstruction has finished. Enabling this “retracking” has significantly increased the efficiency of reconstructing tracks from displaced decays, wh...

  2. A high-resolution tracking hodoscope based on capillary layers filled with liquid scintillator

    CERN Document Server

    Bay, A; Bruski, N; Buontempo, S; Currat, C; D'Ambrosio, N; Ekimov, A V; Ereditato, A; Fabre, Jean-Paul; Fanti, V; Frekers, D; Frenkel, A; Golovkin, S V; Govorun, V N; Harrison, K; Koppenburg, P; Kozarenko, E N; Kreslo, I E; Liberti, B; Martellotti, G; Medvedkov, A M; Mondardini, M R; Penso, G; Siegmund, W P; Vasilchenko, V G; Vilain, P; Wilquet, G; Winter, Klaus; Wörtche, H J

    2001-01-01

    Results are given on tests of a high-resolution tracking hodoscope based on layers of \\hbox{26-$\\mu$m-bore} glass capillaries filled with organic liquid scintillator (1-methylnaphthalene doped with R39). The detector prototype consisted of three 2-mm-thick parallel layers, with surface areas of $2.1 \\times 21$~cm$^2$. The layers had a centre-to-centre spacing of 6~mm, and were read by an optoelectronic chain comprising two electrostatically focused image intensifiers and an Electron-Bombarded Charge-Coupled Device (EBCCD). Tracks of cosmic-ray particles were recorded and analysed. The observed hit density was 6.6~hits/mm for particles crossing the layers perpendicularly, at a distance of 1~cm from the capillaries' readout end, and 4.2~hits/mm for particles at a distance of 20~cm. A track segment reconstructed in a single layer had an rms residual of $\\sim$~20~$\\mu$m, and allowed determination of the track position in a neighbouring layer with a precision of $\\sim$~170~$\\mu$m. This latter value corresponded to...

  3. Electrostatic deposition of a micro solder particle using a single probe by applying a single rectangular pulse

    International Nuclear Information System (INIS)

    Nakabayashi, Daizo; Sawai, Kenji; Saito, Shigeki; Takahashi, Kunio

    2012-01-01

    Recently, micromanipulation techniques have been in high demand. A technique to deposit a metal microparticle onto a metal substrate by using a single metal probe has been proposed as one of the techniques. A solder particle with a diameter of 20–30 µm, initially adhering to the probe tip, is detached and deposited onto a substrate. The success rate of the particle deposition was 44% in the previous research, and is insufficient for industrial applications. In this paper, a technique of particle deposition by applying a single rectangular pulse is proposed, and the mechanism of the deposition is described. In the mechanism, an electric discharge between the probe and the particle when the particle reaches the substrate plays an important role in the particle deposition. Moreover, the mechanism of the proposed technique is verified by experiments of particle deposition, which are observed using a high-speed camera, a scanning electron microscope (SEM) and an oscilloscope. The success rate of the particle deposition has increased to 93% by the proposed technique. Furthermore, the damage to the particle by the electric discharge is evaluated using an RC circuit model, and the applicability of the proposed technique is discussed. (paper)

  4. Single particle train ordering in microchannel based on inertial and vortex effects

    Science.gov (United States)

    Fan, Liang-Liang; Yan, Qing; Zhe, Jiang; Zhao, Liang

    2018-06-01

    A new microfluidic device for microparticle focusing and ordering in a single particle train is reported. The particle focusing and ordering are based on inertial and vortex effects in a microchannel with a series of suddenly contracted and widely expanded structures on one side. In the suddenly contracted regions, particles located near the contracted structures are subjected to a strong wall-effect lift force and momentum-change-induced inertial force due to the highly curved trajectory, migrating to the straight wall. A horizontal vortex is generated downstream of the contracted structure, which prevents the particle from getting close to the wall. In the widely expanded regions, the streamline is curved and no vortex is generated. The shear-gradient lift force and the momentum-change-induced inertial force are dominant for particle lateral migration, driving particles towards the wall of the expanded structures. Eventually, particles are focused and ordered in a single particle train by the combination effects of the inertial forces and the vortex. In comparison with other single-stream particle focusing methods, this device requires no sheath flow, is easy for fabrication and operation, and can work over a wide range of Reynolds numbers from 19.1–142.9. The highly ordered particle chain could be potentially utilized in a variety of lab-chip applications, including micro-flow cytometer, imaging and droplet-based cell entrapment.

  5. Single-particle energies and density of states in density functional theory

    Science.gov (United States)

    van Aggelen, H.; Chan, G. K.-L.

    2015-07-01

    Time-dependent density functional theory (TD-DFT) is commonly used as the foundation to obtain neutral excited states and transition weights in DFT, but does not allow direct access to density of states and single-particle energies, i.e. ionisation energies and electron affinities. Here we show that by extending TD-DFT to a superfluid formulation, which involves operators that break particle-number symmetry, we can obtain the density of states and single-particle energies from the poles of an appropriate superfluid response function. The standard Kohn- Sham eigenvalues emerge as the adiabatic limit of the superfluid response under the assumption that the exchange- correlation functional has no dependence on the superfluid density. The Kohn- Sham eigenvalues can thus be interpreted as approximations to the ionisation energies and electron affinities. Beyond this approximation, the formalism provides an incentive for creating a new class of density functionals specifically targeted at accurate single-particle eigenvalues and bandgaps.

  6. The gain of single-axis tracked panel according to extraterrestrial radiation

    International Nuclear Information System (INIS)

    Chang, T.P.

    2009-01-01

    In the present study, the gain in extraterrestrial radiation received by a single-axis tracked panel relative to a fixed panel was systematically analyzed over a specific period of time. The dynamic angle that the tracked panel should rotate by in order to follow the sun was derived through a series of spherical trigonometric procedures. The instantaneous incident angle of sunlight upon the panel was then calculated, assuming that the panel would simultaneously follow the sun's position. Thus, instantaneous increments of solar energy received by the tracked panel relative to the fixed panel are originally presented. The results show that the angle the tracked panel has to rotate by is 0 deg. at solar noon, and increases towards dawn or dusk. The incident angle of sunlight upon the tracked panel is always smaller than that upon the fixed panel, except at solar noon. As for panels installed with a yearly optimal tilt angle in Taipei, the gains are between 36.3% and 62.1% for four particular days of year, between 37.8% and 60.8% for the four seasons and 49.3% over the entire year. The amount of radiation collected by the tracked panel is enhanced as the maximum rotation angle is increased. The irradiation ratio of the tracked panel to the fixed panel is close to 1.5 for latitudes below 65 deg. and gradually increases for latitudes above this. The yearly optimal tilt angle of a south-facing fixed panel is approximately equal to 0.9 multiplied by the latitude (i.e. 0.9 x φ) for latitudes below 65 deg. and is about 56 + 0.4 x (φ - 65) otherwise

  7. Microphysical Properties of Single Secondary Organic Aerosol (SOA) Particles

    Science.gov (United States)

    Rovelli, Grazia; Song, Young-Chul; Pereira, Kelly; Hamilton, Jacqueline; Topping, David; Reid, Jonathan

    2017-04-01

    Secondary Organic Aerosols (SOA) deriving from the oxidation of volatile organic compounds (VOCs) can account for a substantial fraction of the overall atmospheric aerosol mass.[1] Therefore, the investigation of SOA microphysical properties is crucial to better comprehend their role in the atmospheric processes they are involved in. This works describes a single particle approach to accurately characterise the hygroscopic response, the optical properties and the gas-particle partitioning kinetics of water and semivolatile components for laboratory generated SOA. SOA was generated from the oxidation of different VOCs precursors (e.g. α-pinene, toluene) in a photo-chemical flow reactor, which consists of a temperature and relative humidity controlled 300 L polyvinyl fluoride bag. Known VOC, NOx and ozone concentrations are introduced in the chamber and UV irradiation is performed by means of a Hg pen-ray. SOA samples were collected with an electrical low pressure impactor, wrapped in aluminium foil and kept refrigerated at -20°C. SOA samples were extracted in a 1:1 water/methanol mixture. Single charged SOA particles were generated from the obtained solution using a microdispenser and confined within an electrodynamic balance (EDB), where they sit in a T (250-320 K) and RH (0-95%) controlled nitrogen flow. Suspended droplets are irradiated with a 532 nm laser and the evolving angularly resolved scattered light is used to keep track of changes in droplet size. One of the key features of this experimental approach is that very little SOA solution is required because of the small volumes needed to load the dispensers (evaporation kinetics experiments (CK-EDB) of suspended probe and sample droplets.[2] The variation of the refractive index of SOA droplets following to water or SVOCs evaporative loss was measured as a function of water activity by fitting the collected light scattering patterns with a generated Mie-Theory library of phase functions.[3] Long trapping

  8. Streamflow Observations From Cameras: Large-Scale Particle Image Velocimetry or Particle Tracking Velocimetry?

    Science.gov (United States)

    Tauro, F.; Piscopia, R.; Grimaldi, S.

    2017-12-01

    Image-based methodologies, such as large scale particle image velocimetry (LSPIV) and particle tracking velocimetry (PTV), have increased our ability to noninvasively conduct streamflow measurements by affording spatially distributed observations at high temporal resolution. However, progress in optical methodologies has not been paralleled by the implementation of image-based approaches in environmental monitoring practice. We attribute this fact to the sensitivity of LSPIV, by far the most frequently adopted algorithm, to visibility conditions and to the occurrence of visible surface features. In this work, we test both LSPIV and PTV on a data set of 12 videos captured in a natural stream wherein artificial floaters are homogeneously and continuously deployed. Further, we apply both algorithms to a video of a high flow event on the Tiber River, Rome, Italy. In our application, we propose a modified PTV approach that only takes into account realistic trajectories. Based on our findings, LSPIV largely underestimates surface velocities with respect to PTV in both favorable (12 videos in a natural stream) and adverse (high flow event in the Tiber River) conditions. On the other hand, PTV is in closer agreement than LSPIV with benchmark velocities in both experimental settings. In addition, the accuracy of PTV estimations can be directly related to the transit of physical objects in the field of view, thus providing tangible data for uncertainty evaluation.

  9. Numerical investigation of pollution transport and environmental improvement measures in a tidal bay based on a Lagrangian particle-tracking model

    Directory of Open Access Journals (Sweden)

    En-jin Zhao

    2018-01-01

    Full Text Available In view of the severity of oceanic pollution, based on the finite volume coastal ocean model (FVCOM, a Lagrangian particle-tracking model was used to numerically investigate the coastal pollution transport and water exchange capability in Tangdao Bay, in China. The severe pollution in the bay was numerically simulated by releasing and tracking particles inside it. The simulation results demonstrate that the water exchange capability in the bay is very low. Once the bay has suffered pollution, a long period will be required before the environment can purify itself. In order to eliminate or at least reduce the pollution level, environmental improvement measures have been proposed to enhance the seawater exchange capability and speed up the water purification inside the bay. The study findings presented in this paper are believed to be instructive and useful for future environmental policy makers and it is also anticipated that the numerical model in this paper can serve as an effective technological tool to study many emerging coastal environment problems. Keywords: Particle-tracking, Water exchange capability, Lagrangian system, Coastal pollution, Tangdao bay, FVCOM

  10. Real-time extraction of bubble chamber tracks using a single vidicon

    International Nuclear Information System (INIS)

    Roos, C.E.

    1978-01-01

    Bubble Chamber pictures show many undesired tracks and background in addition to the tracks of the desired significant event. Settles et al. have described a technique for optical tagging of an event by adding a darkfield photograph taken before significant bubble growth to a later brightfield photograph. The authors describe a system to cancel out all picture detail except for the wanted tracks by using a single vidicon tube as the storage device. In the first exposure, polarized light is imaged on the vidicon after passing through a Ronchi grating placed at a focal plane. Thus half of the target is exposed in a series of vertical stripes. The second exposure uses light polarized orthogonally to the first exposure and is deflected after passing through the Ronchi grating so as to expose the previously occluded stripes on the target. The target is then scanned orthogonally to the stripes; by subtracting the picture contained in one set of stripes from that contained in the other set, only the differences between the two images remains. A simulation was conducted using continuously presented background of one polarization and background plus tracks of the other polarization. The test showed that the added tracks were easily resolved, even though they were not readily discernible by visual inspection prior to subtraction. (Auth.)

  11. Statistical Methods for Single-Particle Electron Cryomicroscopy

    DEFF Research Database (Denmark)

    Jensen, Katrine Hommelhoff

    Electron cryomicroscopy (cryo-EM) is a form of transmission electron microscopy, aimed at reconstructing the 3D structure of a macromolecular complex from a large set of 2D projection images, as they exhibit a very low signal-to-noise ratio (SNR). In the single-particle reconstruction (SPR) probl...

  12. Evaluation of a Lagrangian Soot Tracking Method for the prediction of primary soot particle size under engine-like conditions

    DEFF Research Database (Denmark)

    Cai Ong, Jiun; Pang, Kar Mun; Walther, Jens Honore

    2018-01-01

    This paper reports the implementation and evaluation of a Lagrangian soot tracking (LST) method for the modeling of soot in diesel engines. The LST model employed here has the tracking capability of a Lagrangian method and the ability to predict primary soot particle sizing. The Moss-Brookes soot...... in predicting temporal soot cloud development, mean soot diameter and primary soot size distribution is evaluated using measurements of n-heptane and n-dodecane spray combustion obtained under diesel engine-like conditions. In addition, sensitivity studies are carried out to investigate the influence of soot....... A higher rate of soot oxidation due to OH causes the soot particles to be fully oxidized downstream of the flame. In general, the LST model performs better than the Eulerian method in terms of predicting soot sizing and accessing information of individual soot particles, both of which are shortcomings...

  13. Centroids of effective interactions from measured single-particle energies: An application

    International Nuclear Information System (INIS)

    Cole, B.J.

    1990-01-01

    Centroids of the effective nucleon-nucleon interaction for the mass region A=28--64 are extracted directly from experimental single-particle spectra, by comparing single-particle energies relative to different cores. Uncertainties in the centroids are estimated at approximately 100 keV, except in cases of exceptional fragmentation of the single-particle strength. The use of a large number of inert cores allows the dependence of the interaction on mass or model space to be investigated. The method permits accurate empirical modifications to be made to realistic interactions calculated from bare nucleon-nucleon potentials, which are known to possess defective centroids in many cases. In addition, the centroids can be used as input to the more sophisticated fitting procedures that are employed to produce matrix elements of the effective interaction

  14. PHENIX central arm tracking detectors

    International Nuclear Information System (INIS)

    Adcox, K.; Ajitanand, N.N.; Alexander, J.; Autrey, D.; Averbeck, R.; Azmoun, B.; Barish, K.N.; Baublis, V.V.; Belkin, R.; Bhaganatula, S.; Biggs, J.C.; Borland, D.; Botelho, S.; Bryan, W.L.; Burward-Hoy, J.; Butsyk, S.A.; Chang, W.C.; Christ, T.; Dietzsch, O.; Drees, A.; Rietz, R. du; El Chenawi, K.; Evseev, V.A.; Fellenstein, J.; Ferdousi, T.; Fraenkel, Z.; Franz, A.; Fung, S.Y.; Gannon, J.; Garpman, S.; Godoi, A.L.; Greene, S.V.; Gustafsson, H.-A.; Harder, J.; Hemmick, T.K.; Heuser, J.M.; Holzmann, W.; Hutter, R.; Issah, M.; Ivanov, V.I.; Jacak, B.V.; Jagadish, U.; Jia, J.; Johnson, S.C.; Kandasamy, A.; Kann, M.R.; Kelley, M.A.; Khanzadeev, A.V.; Khomutnikov, A.; Komkov, B.G.; Kopytine, M.L.; Kotchenda, L.; Kotchetkov, D.; Kozlov, V.S.; Kravtsov, P.A.; Kudin, L.G.; Kuriatkov, V.V.; Lacey, R.; Lauret, J.; Lebedev, A.; Lebedev, V.D.; Li, X.H.; Libby, B.; Liccardi, W.; Machnowski, R.; Mahon, J.; Markushin, D.G.; Matathias, F.; Marx, M.D.; Messer, F.; Miftakhov, N.M.; Milan, J.; Miller, T.E.; Milov, A.; Minuzzo, K.; Mioduszewski, S.; Mitchell, J.T.; Muniruzzamann, M.; Nandi, B.K.; Negrin, J.; Nilsson, P.; Nystrand, J.; O'Brien, E.; O'Connor, P.; Oskarsson, A.; Oesterman, L.; Otterlund, I.; Pancake, C.E.; Pantuev, V.S.; Petersen, R.; Pinkenburg, C.H.; Pisani, R.P.; Purwar, A.K.; Rankowitz, S.; Ravinovich, I.; Riabov, V.G.; Riabov, Yu.G.; Rosati, M.; Rose, A.A.; Roschin, E.V.; Samsonov, V.M.; Sangster, T.C.; Seto, R.; Silvermyr, D.; Sivertz, M.; Smith, M.; Solodov, G.P.; Stenlund, E.; Takagui, E.M.; Tarakanov, V.I.; Tarasenkova, O.P.; Thomas, J.L.; Trofimov, V.A.; Tserruya, I.; Tydesjoe, H.; Velkovska, J.; Velkovsky, M.; Vishnevskii, V.I.; Vorobyov, A.A.; Vznuzdaev, E.A.; Vznuzdaev, M.; Wang, H.Q.; Weimer, T.; Wolniewicz, K.; Wu, J.; Xie, W.; Young, G.R.

    2003-01-01

    The PHENIX tracking system consists of Drift Chambers (DC), Pad Chambers (PC) and the Time Expansion Chamber (TEC). PC1/DC and PC2/TEC/PC3 form the inner and outer tracking units, respectively. These units link the track segments that transverse the RICH and extend to the EMCal. The DC measures charged particle trajectories in the r-phi direction to determine p T of the particles and the invariant mass of particle pairs. The PCs perform 3D spatial point measurements for pattern recognition and longitudinal momentum reconstruction and provide spatial resolution of a few mm in both r-phi and z. The TEC tracks particles passing through the region between the RICH and the EMCal. The design and operational parameters of the detectors are presented and running experience during the first year of data taking with PHENIX is discussed. The observed spatial and momentum resolution is given which imposes a limitation on the identification and characterization of charged particles in various momentum ranges

  15. Improved identification of primary biological aerosol particles using single-particle mass spectrometry

    Directory of Open Access Journals (Sweden)

    M. A. Zawadowicz

    2017-06-01

    Full Text Available Measurements of primary biological aerosol particles (PBAP, especially at altitudes relevant to cloud formation, are scarce. Single-particle mass spectrometry (SPMS has been used to probe aerosol chemical composition from ground and aircraft for over 20 years. Here we develop a method for identifying bioaerosols (PBAP and particles containing fragments of PBAP as part of an internal mixture using SPMS. We show that identification of bioaerosol using SPMS is complicated because phosphorus-bearing mineral dust and phosphorus-rich combustion by-products such as fly ash produce mass spectra with peaks similar to those typically used as markers for bioaerosol. We have developed a methodology to differentiate and identify bioaerosol using machine learning statistical techniques applied to mass spectra of known particle types. This improved method provides far fewer false positives compared to approaches reported in the literature. The new method was then applied to two sets of ambient data collected at Storm Peak Laboratory and a forested site in Central Valley, California to show that 0.04–2 % of particles in the 200–3000 nm aerodynamic diameter range were identified as bioaerosol. In addition, 36–56 % of particles identified as biological also contained spectral features consistent with mineral dust, suggesting internal dust–biological mixtures.

  16. Targeting neurotransmitter receptors with nanoparticles in vivo allows single-molecule tracking in acute brain slices

    Science.gov (United States)

    Varela, Juan A.; Dupuis, Julien P.; Etchepare, Laetitia; Espana, Agnès; Cognet, Laurent; Groc, Laurent

    2016-03-01

    Single-molecule imaging has changed the way we understand many biological mechanisms, particularly in neurobiology, by shedding light on intricate molecular events down to the nanoscale. However, current single-molecule studies in neuroscience have been limited to cultured neurons or organotypic slices, leaving as an open question the existence of fast receptor diffusion in intact brain tissue. Here, for the first time, we targeted dopamine receptors in vivo with functionalized quantum dots and were able to perform single-molecule tracking in acute rat brain slices. We propose a novel delocalized and non-inflammatory way of delivering nanoparticles (NPs) in vivo to the brain, which allowed us to label and track genetically engineered surface dopamine receptors in neocortical neurons, revealing inherent behaviour and receptor activity regulations. We thus propose a NP-based platform for single-molecule studies in the living brain, opening new avenues of research in physiological and pathological animal models.

  17. Morphology of single inhalable particle inside public transit biodiesel fueled bus.

    Science.gov (United States)

    Shandilya, Kaushik K; Kumar, Ashok

    2010-01-01

    In an urban-transit bus, fueled by biodiesel in Toledo, Ohio, single inhalable particle samples in October 2008 were collected and detected by scanning electron microscopy and energy dispersive X-ray spectrometry (SEM/EDS). Particle size analysis found bimodal distribution at 0.2 and 0.5 microm. The particle morphology was characterized by 14 different shape clusters: square, pentagon, hexagon, heptagon, octagon, nonagon, decagon, agglomerate, sphere, triangle, oblong, strip, line or stick, and unknown, by quantitative order. The square particles were common in the samples. Round and triangle particles are more, and pentagon, hexagon, heptagon, octagon, nonagon, decagon, strip, line or sticks are less. Agglomerate particles were found in abundance. The surface of most particles was coarse with a fractal edge that can provide a suitable chemical reaction bed in the polluted atmospheric environment. The three sorts of surface patterns of squares were smooth, semi-smooth, and coarse. The three sorts of square surface patterns represented the morphological characteristics of single inhalable particles in the air inside the bus in Toledo. The size and shape distribution results were compared to those obtained for a bus using ultra low sulfur diesel.

  18. A novel robust and efficient algorithm for charge particle tracking in high background flux

    International Nuclear Information System (INIS)

    Fanelli, C; Cisbani, E; Dotto, A Del

    2015-01-01

    The high luminosity that will be reached in the new generation of High Energy Particle and Nuclear physics experiments implies large high background rate and large tracker occupancy, representing therefore a new challenge for particle tracking algorithms. For instance, at Jefferson Laboratory (JLab) (VA,USA), one of the most demanding experiment in this respect, performed with a 12 GeV electron beam, is characterized by a luminosity up to 10 39 cm -2 s -1 . To this scope, Gaseous Electron Multiplier (GEM) based trackers are under development for a new spectrometer that will operate at these high rates in the Hall A of JLab. Within this context, we developed a new tracking algorithm, based on a multistep approach: (i) all hardware - time and charge - information are exploited to minimize the number of hits to associate; (ii) a dedicated Neural Network (NN) has been designed for a fast and efficient association of the hits measured by the GEM detector; (iii) the measurements of the associated hits are further improved in resolution through the application of Kalman filter and Rauch- Tung-Striebel smoother. The algorithm is shortly presented along with a discussion of the promising first results. (paper)

  19. Particle tracking in E - φ space for synchrotron design and diagnosis

    International Nuclear Information System (INIS)

    MacLachlan, J.A.

    1992-01-01

    The single particle equations for the longitudinal motion in a synchrotron can be faithfully represented as a one-turn mapping of a particle's phase space position relative to the synchronous particle. Applied to a distribution of particles, the mapping can be used to model the evolution of bunches to test beam manipulations or to extract the time dependence of quantities like the bunching factor, momentum spread, etc. which can be difficult to calculate. Such modelling requires rather few representative particles, permitting numerical experimentation and exploratory design trials. By modifying the mapping each turn to introduce the collective effects of the distribution, one can model such processes as phase feedback, space-charge effects, coupled bunch motion, etc. Calculations of this type offer quantitative performance predictions, aid diagnosis of existing accelerators, and contribute to the understanding of the underlying dynamics. This talk introduces the tools and some illustrations

  20. Tracks, spurs, blobs and delta-rays

    International Nuclear Information System (INIS)

    Magee, J.L.; Chatterjee, A.

    1983-01-01

    The track of a high-energy particle is the collection of all transient species created by the particle in the total degradation of its energy. Visible electron tracks are called delta rays. A microscopic description of the track with all its knocked-out electrons leads to spurs, blobs, and short tracks. Energy deposition criteria for these three track entities are 6 to 100 eV, 100 to 500 eV, and 500 eV to 5 keV, respectively

  1. Two-particle versus three-particle interactions in single ionization of helium by ion impact

    International Nuclear Information System (INIS)

    Schulz, M; Moshammer, R; Fischer, D; Ullrich, J

    2004-01-01

    We have performed kinematically complete experiments on single ionization of He by 100 MeV amu -1 C 6+ and 3.6 MeV amu -1 Au 24,53+ impact. By analysing doubly differential cross sections (DDCS) as a function of the momenta of all two-particle sub-systems we studied the importance of two-particle interactions. Furthermore, presenting the squared momenta of all three collision fragments simultaneously in a Dalitz plot, we evaluated the role of three-particle interactions. Finally, both for the DDCS and the Dalitz plots the corresponding correlation function was analysed. While the absolute cross sections confirm that ionization predominantly leads to a momentum exchange between the electron and the recoil-ion, the correlation function reveals strong correlations between the particles of any two-particle sub-system. Three-particle correlations, which are not accounted for by perturbative calculations, are quite significant as well, at least for certain kinematic conditions

  2. Use of Particle Tracking to Determine Optimal Release Dates and Locations for Rehabilitated Neonate Sea Turtles

    Directory of Open Access Journals (Sweden)

    Natalie A. Robson

    2017-06-01

    Full Text Available Sea turtles found stranded on beaches are often rehabilitated before being released back into the wild. The location and date of release is largely selected on an informal basis, which may not maximize the chance of survival. As oceanic conditions have a large influence on the movements of neonate sea turtles, this study aimed to identify the best locations and months to release rehabilitated sea turtles that would assist in their transport by ocean currents to the habitat and thermal conditions required for their survival. A particle tracking model, forced by ocean surface velocity fields, was used to simulate the dispersal pathways of millions of passively drifting particles released from different locations in Western Australia. The particles represented rehabilitated, neonate turtles requiring oceanic habitats [green (Chelonia mydas, hawksbill (Eretmochelys imbricata and loggerheads (Caretta caretta] and flatback turtles (Natator depressus which require neritic habitats. The results clearly identified regions and months where ocean currents were more favorable for transport to suitable habitats. Tantabiddi, near Exmouth on the north-west coast, was consistently the best location for release for the oceanic species, with dominant offshore-directed currents and a very narrow continental shelf reducing the time taken for particles to be transported into deep water. In contrast, release locations with more enclosed geography, wide continental shelves, and/or proximity to cooler ocean temperatures were less successful. Our results produced a decision support system for the release of neonate marine turtles in Western Australia and our particle tracking approach has global transferability.

  3. HCP track calculations in Lif:Mg,Ti: 3D modeling of the ''track – escape'' parameter

    International Nuclear Information System (INIS)

    Sattinger, D.; Sharon, A.; Horowitz, Y.S.

    2011-01-01

    The conceptual framework of the track interaction model (TIM) was conceived in the 1970s and mathematically formulated in the 1980s to describe heavy charged particle TL fluence response supralinearity. The extended track interaction model (ETIM) was developed to include saturation effects due to overlapping tracks and has been applied to both proton and alpha particle TL fluence response. One of the parameters of major importance in the TIM is the ''track – escape'' parameter, defined by N e /N w , where N e represents the number of electrons which escape the parent track during heating, and N w is the number of electrons which recombine within the parent track to produce a TL photon. Recently a first attempt was carried out to theoretically model escape parameters calculated in 2D geometry as a function of particle type and energy using trapping center (TC), luminescent center (LC) and competitive center (CC) occupation probabilities calculated from track segment radial dose distributions and optical absorption (OA) dose response. In this study, the calculations are extended to 3D geometry using a Monte Carlo approach which samples the point of creation of the charge carriers according to the TC occupation probabilities and then estimates N w by sampling the chord length to the track exterior. Charge carriers which escape the irradiated track volume contribute to N e . This more sophisticated 3D calculation of N e /N w is expected to increase the reliability of the modeling of heavy charged particle TL fluence response in the framework of the ETIM and enhance our understanding of “track effects” in Heavy Charged Particle (HCP) induced TL.

  4. Single-particle electron microscopy in the study of membrane protein structure.

    Science.gov (United States)

    De Zorzi, Rita; Mi, Wei; Liao, Maofu; Walz, Thomas

    2016-02-01

    Single-particle electron microscopy (EM) provides the great advantage that protein structure can be studied without the need to grow crystals. However, due to technical limitations, this approach played only a minor role in the study of membrane protein structure. This situation has recently changed dramatically with the introduction of direct electron detection device cameras, which allow images of unprecedented quality to be recorded, also making software algorithms, such as three-dimensional classification and structure refinement, much more powerful. The enhanced potential of single-particle EM was impressively demonstrated by delivering the first long-sought atomic model of a member of the biomedically important transient receptor potential channel family. Structures of several more membrane proteins followed in short order. This review recounts the history of single-particle EM in the study of membrane proteins, describes the technical advances that now allow this approach to generate atomic models of membrane proteins and provides a brief overview of some of the membrane protein structures that have been studied by single-particle EM to date. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Solid state nuclear track detection principles, methods and applications

    CERN Document Server

    Durrani, S A; ter Haar, D

    1987-01-01

    Solid State Nuclear Track Detection: Principles, Methods and Applications is the second book written by the authors after Nuclear Tracks in Solids: Principles and Applications. The book is meant as an introduction to the subject solid state of nuclear track detection. The text covers the interactions of charged particles with matter; the nature of the charged-particle track; the methodology and geometry of track etching; thermal fading of latent damage trails on tracks; the use of dielectric track recorders in particle identification; radiation dossimetry; and solid state nuclear track detecti

  6. Parallelized Kalman-Filter-Based Reconstruction of Particle Tracks on Many-Core Architectures

    Energy Technology Data Exchange (ETDEWEB)

    Cerati, Giuseppe [Fermilab; Elmer, Peter [Princeton U.; Krutelyov, Slava [UC, San Diego; Lantz, Steven [Cornell U., Phys. Dept.; Lefebvre, Matthieu [Princeton U.; Masciovecchio, Mario [UC, San Diego; McDermott, Kevin [Cornell U., Phys. Dept.; Riley, Daniel [Cornell U., Phys. Dept.; Tadel, Matevž [UC, San Diego; Wittich, Peter [Cornell U., Phys. Dept.; Würthwein, Frank [UC, San Diego; Yagil, Avi [UC, San Diego

    2017-11-16

    Faced with physical and energy density limitations on clock speed, contemporary microprocessor designers have increasingly turned to on-chip parallelism for performance gains. Examples include the Intel Xeon Phi, GPGPUs, and similar technologies. Algorithms should accordingly be designed with ample amounts of fine-grained parallelism if they are to realize the full performance of the hardware. This requirement can be challenging for algorithms that are naturally expressed as a sequence of small-matrix operations, such as the Kalman filter methods widely in use in high-energy physics experiments. In the High-Luminosity Large Hadron Collider (HL-LHC), for example, one of the dominant computational problems is expected to be finding and fitting charged-particle tracks during event reconstruction; today, the most common track-finding methods are those based on the Kalman filter. Experience at the LHC, both in the trigger and offline, has shown that these methods are robust and provide high physics performance. Previously we reported the significant parallel speedups that resulted from our efforts to adapt Kalman-filter-based tracking to many-core architectures such as Intel Xeon Phi. Here we report on how effectively those techniques can be applied to more realistic detector configurations and event complexity.

  7. On-Chip Magnetic Platform for Single-Particle Manipulation with Integrated Electrical Feedback.

    Science.gov (United States)

    Monticelli, Marco; Torti, Andrea; Cantoni, Matteo; Petti, Daniela; Albisetti, Edoardo; Manzin, Alessandra; Guerriero, Erica; Sordan, Roman; Gervasoni, Giacomo; Carminati, Marco; Ferrari, Giorgio; Sampietro, Marco; Bertacco, Riccardo

    2016-02-17

    Methods for the manipulation of single magnetic particles have become very interesting, in particular for in vitro biological studies. Most of these studies require an external microscope to provide the operator with feedback for controlling the particle motion, thus preventing the use of magnetic particles in high-throughput experiments. In this paper, a simple and compact system with integrated electrical feedback is presented, implementing in the very same device both the manipulation and detection of the transit of single particles. The proposed platform is based on zig-zag shaped magnetic nanostructures, where transverse magnetic domain walls are pinned at the corners and attract magnetic particles in suspension. By applying suitable external magnetic fields, the domain walls move to the nearest corner, thus causing the step by step displacement of the particles along the nanostructure. The very same structure is also employed for detecting the bead transit. Indeed, the presence of the magnetic particle in suspension over the domain wall affects the depinning field required for its displacement. This characteristic field can be monitored through anisotropic magnetoresistance measurements, thus implementing an integrated electrical feedback of the bead transit. In particular, the individual manipulation and detection of single 1-μm sized beads is demonstrated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Localization and force analysis at the single virus particle level using atomic force microscopy

    International Nuclear Information System (INIS)

    Liu, Chih-Hao; Horng, Jim-Tong; Chang, Jeng-Shian; Hsieh, Chung-Fan; Tseng, You-Chen; Lin, Shiming

    2012-01-01

    Highlights: ► Localization of single virus particle. ► Force measurements. ► Force mapping. -- Abstract: Atomic force microscopy (AFM) is a vital instrument in nanobiotechnology. In this study, we developed a method that enables AFM to simultaneously measure specific unbinding force and map the viral glycoprotein at the single virus particle level. The average diameter of virus particles from AFM images and the specificity between the viral surface antigen and antibody probe were integrated to design a three-stage method that sets the measuring area to a single virus particle before obtaining the force measurements, where the influenza virus was used as the object of measurements. Based on the purposed method and performed analysis, several findings can be derived from the results. The mean unbinding force of a single virus particle can be quantified, and no significant difference exists in this value among virus particles. Furthermore, the repeatability of the proposed method is demonstrated. The force mapping images reveal that the distributions of surface viral antigens recognized by antibody probe were dispersed on the whole surface of individual virus particles under the proposed method and experimental criteria; meanwhile, the binding probabilities are similar among particles. This approach can be easily applied to most AFM systems without specific components or configurations. These results help understand the force-based analysis at the single virus particle level, and therefore, can reinforce the capability of AFM to investigate a specific type of viral surface protein and its distributions.

  9. A Single Phase Doubly Grounded Semi-Z-Source Inverter for Photovoltaic (PV Systems with Maximum Power Point Tracking (MPPT

    Directory of Open Access Journals (Sweden)

    Tofael Ahmed

    2014-06-01

    Full Text Available In this paper, a single phase doubly grounded semi-Z-source inverter with maximum power point tracking (MPPT is proposed for photovoltaic (PV systems. This proposed system utilizes a single-ended primary inductor (SEPIC converter as DC-DC converter to implement the MPPT algorithm for tracking the maximum power from a PV array and a single phase semi-Z-source inverter for integrating the PV with AC power utilities. The MPPT controller utilizes a fast-converging algorithm to track the maximum power point (MPP and the semi-Z-source inverter utilizes a nonlinear SPWM to produce sinusoidal voltage at the output. The proposed system is able to track the MPP of PV arrays and produce an AC voltage at its output by utilizing only three switches. Experimental results show that the fast-converging MPPT algorithm has fast tracking response with appreciable MPP efficiency. In addition, the inverter shows the minimization of common mode leakage current with its ground sharing feature and reduction of the THD as well as DC current components at the output during DC-AC conversion.

  10. Influence of quantum dot labels on single molecule movement in the plasma membrane

    DEFF Research Database (Denmark)

    Clausen, Mathias P.; Lagerholm, B. Christoffer

    2011-01-01

    Single particle tracking results are very dependent on the probe that is used. In this study we have investigated the influence that functionalized quantum dots (QDs) have on the recorded movement in single molecule tracking experiments of plasma membrane species in live cells. Potential issues...... for simultaneous investigations of different plasma membrane species in order to discriminate the effect of the label from differences in movement of the target molecules....

  11. Single particle behaviour in circulating fluidized bed combustors

    DEFF Research Database (Denmark)

    Erik Weinell, Claus

    1994-01-01

    An investigation of single particle behaviour in a circulating fluidized bed combustor is described, relating to sulphur capture reactions by limestone under alternate oxidizing and reducing conditions present in a circulating fluidized bed combustor, and to the devolatilization and burn out...

  12. Back-tracking of primary particle trajectories for muons detected at the Earth surface

    Science.gov (United States)

    Shutenko, V. V.

    2017-01-01

    Investigations of cosmic rays on the surface of the Earth allow to derive information of applied character on the conditions of the interplanetary magnetic field and of the geomagnetic field. For this purpose, it is necessary to collate trajectories of particles detected in the ground-based detector to trajectories of primary cosmic rays in the heliosphere. This problem is solved by means of various back-tracking methods. In this work, one of such methods is presented.

  13. Back-tracking of primary particle trajectories for muons detected at the Earth surface

    International Nuclear Information System (INIS)

    Shutenko, V V

    2017-01-01

    Investigations of cosmic rays on the surface of the Earth allow to derive information of applied character on the conditions of the interplanetary magnetic field and of the geomagnetic field. For this purpose, it is necessary to collate trajectories of particles detected in the ground-based detector to trajectories of primary cosmic rays in the heliosphere. This problem is solved by means of various back-tracking methods. In this work, one of such methods is presented. (paper)

  14. An improved FT-TIMS method of measuring uranium isotope ratios in the uranium-bearing particles

    International Nuclear Information System (INIS)

    Chen, Yan; Wang, Fan; Zhao, Yong-Gang; Li, Li-Li; Zhang, Yan; Shen, Yan; Chang, Zhi-Yuan; Guo, Shi-Lun; Wang, Xiao-Ming; Cui, Jian-Yong; Liu, Yu-Ang

    2015-01-01

    An improved method of Fission Track technique combined with Thermal Ionization Mass Spectrometry (FT-TIMS) was established in order to determine isotope ratio of uranium-bearing particle. Working standard of uranium oxide particles with a defined diameter and isotopic composition were prepared and used to review the method. Results showed an excellent agreement with certified values. The developed method was used to analyze isotope ratio of single uranium-bearing particle in swipe samples successfully. The analysis results of uranium-bearing particles in swipe samples accorded with the operation history of the origin. - Highlights: • The developed method was successfully applied in the analysis of real swipe sample. • Uranium-bearing particles were confined in the middle of track detector. • The fission tracks of collodion film and PC film could be confirmed each other. • The thickness of collodion film should be no more than about 60 μm. • The method could avoid losing uranium-bearing particles in the etching step.

  15. A deep convolutional neural network approach to single-particle recognition in cryo-electron microscopy.

    Science.gov (United States)

    Zhu, Yanan; Ouyang, Qi; Mao, Youdong

    2017-07-21

    Single-particle cryo-electron microscopy (cryo-EM) has become a mainstream tool for the structural determination of biological macromolecular complexes. However, high-resolution cryo-EM reconstruction often requires hundreds of thousands of single-particle images. Particle extraction from experimental micrographs thus can be laborious and presents a major practical bottleneck in cryo-EM structural determination. Existing computational methods for particle picking often use low-resolution templates for particle matching, making them susceptible to reference-dependent bias. It is critical to develop a highly efficient template-free method for the automatic recognition of particle images from cryo-EM micrographs. We developed a deep learning-based algorithmic framework, DeepEM, for single-particle recognition from noisy cryo-EM micrographs, enabling automated particle picking, selection and verification in an integrated fashion. The kernel of DeepEM is built upon a convolutional neural network (CNN) composed of eight layers, which can be recursively trained to be highly "knowledgeable". Our approach exhibits an improved performance and accuracy when tested on the standard KLH dataset. Application of DeepEM to several challenging experimental cryo-EM datasets demonstrated its ability to avoid the selection of un-wanted particles and non-particles even when true particles contain fewer features. The DeepEM methodology, derived from a deep CNN, allows automated particle extraction from raw cryo-EM micrographs in the absence of a template. It demonstrates an improved performance, objectivity and accuracy. Application of this novel method is expected to free the labor involved in single-particle verification, significantly improving the efficiency of cryo-EM data processing.

  16. GPU-accelerated 3-D model-based tracking

    International Nuclear Information System (INIS)

    Brown, J Anthony; Capson, David W

    2010-01-01

    Model-based approaches to tracking the pose of a 3-D object in video are effective but computationally demanding. While statistical estimation techniques, such as the particle filter, are often employed to minimize the search space, real-time performance remains unachievable on current generation CPUs. Recent advances in graphics processing units (GPUs) have brought massively parallel computational power to the desktop environment and powerful developer tools, such as NVIDIA Compute Unified Device Architecture (CUDA), have provided programmers with a mechanism to exploit it. NVIDIA GPUs' single-instruction multiple-thread (SIMT) programming model is well-suited to many computer vision tasks, particularly model-based tracking, which requires several hundred 3-D model poses to be dynamically configured, rendered, and evaluated against each frame in the video sequence. Using 6 degree-of-freedom (DOF) rigid hand tracking as an example application, this work harnesses consumer-grade GPUs to achieve real-time, 3-D model-based, markerless object tracking in monocular video.

  17. Projection operator treatment of single particle resonances

    International Nuclear Information System (INIS)

    Lev, A.; Beres, W.P.

    1976-01-01

    A projection operator method is used to obtain the energy and width of a single particle resonance. The resonance energy is found without scanning. An example of the first g/sub 9/2/ neutron resonance in 40 Ca is given and compared with the traditional phase shift method. The results of both approaches are quite similar. 4 figures

  18. Atomic Particle Detection

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Hal

    1970-01-01

    This booklet tells how scientists observe the particles and electromagnetic radiation that emerges from an atomic nucleus. The equipment used falls into two general categories: counters which count each particle as it passes by, and track detectors, which make a photographic record of the particle's track.

  19. Determination of particle-release conditions in microfiltration: A simple single-particle model tested on a model membrane

    NARCIS (Netherlands)

    Kuiper, S.; van Rijn, C.J.M.; Nijdam, W.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt

    2000-01-01

    A simple single-particle model was developed for cross-flow microfiltration with microsieves. The model describes the cross-flow conditions required to release a trapped spherical particle from a circular pore. All equations are derived in a fully analytical way without any fitting parameters. For

  20. Localization and force analysis at the single virus particle level using atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chih-Hao [Institute of Applied Mechanics, Nation Taiwan University, Roosevelt Road, Taipei 10617, Taiwan (China); Horng, Jim-Tong [Department of Biochemistry, Chang Gung University, 259 Wen-Hwa First Road, Kweishan, Taoyuan 333, Taiwan (China); Chang, Jeng-Shian [Institute of Applied Mechanics, Nation Taiwan University, Roosevelt Road, Taipei 10617, Taiwan (China); Hsieh, Chung-Fan [Graduate Institute of Biomedical Sciences, Chang Gung University, Kweishan, Taoyuan 333, Taiwan (China); Tseng, You-Chen [Institute of Applied Mechanics, Nation Taiwan University, Roosevelt Road, Taipei 10617, Taiwan (China); Lin, Shiming, E-mail: til@ntu.edu.tw [Institute of Applied Mechanics, Nation Taiwan University, Roosevelt Road, Taipei 10617, Taiwan (China); Center for Optoelectronic Biomedicine, College of Medicine, Nation Taiwan University, 1-1 Jen-Ai Road, Taipei 10051, Taiwan (China)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Localization of single virus particle. Black-Right-Pointing-Pointer Force measurements. Black-Right-Pointing-Pointer Force mapping. -- Abstract: Atomic force microscopy (AFM) is a vital instrument in nanobiotechnology. In this study, we developed a method that enables AFM to simultaneously measure specific unbinding force and map the viral glycoprotein at the single virus particle level. The average diameter of virus particles from AFM images and the specificity between the viral surface antigen and antibody probe were integrated to design a three-stage method that sets the measuring area to a single virus particle before obtaining the force measurements, where the influenza virus was used as the object of measurements. Based on the purposed method and performed analysis, several findings can be derived from the results. The mean unbinding force of a single virus particle can be quantified, and no significant difference exists in this value among virus particles. Furthermore, the repeatability of the proposed method is demonstrated. The force mapping images reveal that the distributions of surface viral antigens recognized by antibody probe were dispersed on the whole surface of individual virus particles under the proposed method and experimental criteria; meanwhile, the binding probabilities are similar among particles. This approach can be easily applied to most AFM systems without specific components or configurations. These results help understand the force-based analysis at the single virus particle level, and therefore, can reinforce the capability of AFM to investigate a specific type of viral surface protein and its distributions.

  1. Single-particle characterization of the high-Arctic summertime aerosol

    Directory of Open Access Journals (Sweden)

    B. Sierau

    2014-07-01

    Full Text Available Single-particle mass-spectrometric measurements were carried out in the high Arctic north of 80° during summer 2008. The campaign took place onboard the icebreaker Oden and was part of the Arctic Summer Cloud Ocean Study (ASCOS. The instrument deployed was an aerosol time-of-flight mass spectrometer (ATOFMS that provides information on the chemical composition of individual particles and their mixing state in real time. Aerosols were sampled in the marine boundary layer at stations in the open ocean, in the marginal ice zone, and in the pack ice region. The largest fraction of particles detected for subsequent analysis in the size range of the ATOFMS between approximately 200 and 3000 nm in diameter showed mass-spectrometric patterns, indicating an internal mixing state and a biomass burning and/or biofuel source. The majority of these particles were connected to an air mass layer of elevated particle concentration mixed into the surface mixed layer from the upper part of the marine boundary layer. The second largest fraction was represented by sea salt particles. The chemical analysis of the over-ice sea salt aerosol revealed tracer compounds that reflect chemical aging of the particles during their long-range advection from the marginal ice zone, or open waters south thereof prior to detection at the ship. From our findings we conclude that long-range transport of particles is one source of aerosols in the high Arctic. To assess the importance of long-range particle sources for aerosol–cloud interactions over the inner Arctic in comparison to local and regional biogenic primary aerosol sources, the chemical composition of the detected particles was analyzed for indicators of marine biological origin. Only a minor fraction showed chemical signatures of potentially ocean-derived primary particles of that kind. However, a chemical bias in the ATOFMS's detection capabilities observed during ASCOS might suggest the presence of a particle type of

  2. Single-particle characterization of the high-Arctic summertime aerosol

    Science.gov (United States)

    Sierau, B.; Chang, R. Y.-W.; Leck, C.; Paatero, J.; Lohmann, U.

    2014-07-01

    Single-particle mass-spectrometric measurements were carried out in the high Arctic north of 80° during summer 2008. The campaign took place onboard the icebreaker Oden and was part of the Arctic Summer Cloud Ocean Study (ASCOS). The instrument deployed was an aerosol time-of-flight mass spectrometer (ATOFMS) that provides information on the chemical composition of individual particles and their mixing state in real time. Aerosols were sampled in the marine boundary layer at stations in the open ocean, in the marginal ice zone, and in the pack ice region. The largest fraction of particles detected for subsequent analysis in the size range of the ATOFMS between approximately 200 and 3000 nm in diameter showed mass-spectrometric patterns, indicating an internal mixing state and a biomass burning and/or biofuel source. The majority of these particles were connected to an air mass layer of elevated particle concentration mixed into the surface mixed layer from the upper part of the marine boundary layer. The second largest fraction was represented by sea salt particles. The chemical analysis of the over-ice sea salt aerosol revealed tracer compounds that reflect chemical aging of the particles during their long-range advection from the marginal ice zone, or open waters south thereof prior to detection at the ship. From our findings we conclude that long-range transport of particles is one source of aerosols in the high Arctic. To assess the importance of long-range particle sources for aerosol-cloud interactions over the inner Arctic in comparison to local and regional biogenic primary aerosol sources, the chemical composition of the detected particles was analyzed for indicators of marine biological origin. Only a minor fraction showed chemical signatures of potentially ocean-derived primary particles of that kind. However, a chemical bias in the ATOFMS's detection capabilities observed during ASCOS might suggest the presence of a particle type of unknown composition

  3. Single-particle characterization of the High Arctic summertime aerosol

    Science.gov (United States)

    Sierau, B.; Chang, R. Y.-W.; Leck, C.; Paatero, J.; Lohmann, U.

    2014-01-01

    Single-particle mass spectrometric measurements were carried out in the High Arctic north of 80° during summer 2008. The campaign took place onboard the icebreaker Oden and was part of the Arctic Summer Cloud Ocean Study (ASCOS). The instrument deployed was an Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) that provides information on the chemical composition of individual particles and their mixing state in real-time. Aerosols were sampled in the marine boundary layer at stations in the open ocean, in the marginal ice zone, and in the pack ice region. The largest fraction of particles detected for subsequent analysis in the size range of the ATOFMS between approximately 200 nm to 3000 nm in diameter showed mass spectrometric patterns indicating an internal mixing state and a biomass burning and/or biofuel source. The majority of these particles were connected to an air mass layer of elevated particle concentration mixed into the surface mixed layer from the upper part of the marine boundary layer. The second largest fraction was represented by sea salt particles. The chemical analysis of the over-ice sea salt aerosol revealed tracer compounds that reflect chemical aging of the particles during their long-range advection from the marginal ice zone, or open waters south thereof prior to detection at the ship. From our findings we conclude that long-range transport of particles is one source of aerosols in the High Arctic. To assess the importance of long-range particle sources for aerosol-cloud interactions over the inner Arctic in comparison to local and regional biogenic primary aerosol sources, the chemical composition of the detected particles was analyzed for indicators of marine biological origin. Only a~minor fraction showed chemical signatures of potentially ocean-derived primary particles of that kind. However, a chemical bias in the ATOFMS's detection capabilities observed during ASCOS might suggest a presence of a particle type of unknown composition

  4. Study of substrate topographical effects on epithelial cell behavior using etched alpha-particle tracks on PADC films

    International Nuclear Information System (INIS)

    Ng, C.K.M.; Poon, W.L.; Li, W.Y.; Cheung, T.; Cheng, S.H.; Yu, K.N.

    2008-01-01

    Micrometer-size pits on the surface of a polymer (polyallyldiglycol carbonate or PADC) substrate created by alpha-particle irradiation and subsequent chemical etching were used to study the topographical effects alone on cell behavior. Vinculin, the cell adhesion and membrane protrusion protein, was used as an indicator of cytoskeletonal reorganization on the substrate and localization of vinculin was used to demonstrate the presence of focal adhesions. In our experiments, vinculin expressed in epithelial HeLa cells cultured on PADC films with track-etch pits, but not in cells cultured on the raw or chemically etched blank films. In other words, vinculin expression was induced by the topography of track-etch pits, while etching of the substrate alone (without alpha-particle irradiation) did not cause up-regulation of vinculin protein expression. HeLa cells cultured on PADC films with track-etch pits also showed changes in cell proliferation, cell area and cell circularity, and were largely contained by the pits. In other words, the cell membrane edges tended to be in contact with the pits. By comparing the correlation between the positions of HeLa cells and the pits, and that between the positions of cells and computer-simulated pits, the tendency for membrane edges of HeLa cells to be in contact with the pits was recognized. This could be explained by inhibition of membrane protrusion at the pits. In conclusion, substrate track-etch pits were an important determinant of epithelial cell behaviors

  5. Collective and single-particle states at high excitation energy

    International Nuclear Information System (INIS)

    Van den Berg, A.M.; Van der Molen, H.K.T.; Harakeh, M.N.; Akimune, H.; Daito, I.; Fujimura, H.; Fujiwara, M.; Ihara, F.; Inomata, T.

    2000-01-01

    Complete text of publication follows. Damping of high-lying single-particle states was investigated by the study of proton decay from high-lying states in 91 Nb, populated by the 90 Zr(α,t) reaction with E α = 180 MeV. In addition to decay to the ground state of 90 Zr, semi-direct decay was observed to the low-lying (2 + and 3 - ) phonon states, confirming the conclusion from other experiments that these phonon states play an important role in the damping process of the single-particle states. Furthermore, the population and decay of Isobaric Analogue States of 91 Zr, which are located at an excitation energy of about 10 - 12 MeV in 91 Nb, has been studied in the same reaction. (author)

  6. Improved Particle Filter for Passive Target Tracking%改进粒子滤波在被动目标跟踪中的应用

    Institute of Scientific and Technical Information of China (English)

    邓小龙; 谢剑英; 杨煜普

    2005-01-01

    As a new method for dealing with any nonlinear or non-Gaussian distributions, based on the Monte Carlo methods and Bayesian filtering, particle filters (PF) are favored by researchers and widely applied in many fields. Based on particle filtering, an improved extended Kalman filter (EKF) proposal distribution is presented. Evaluation of the weights is simplified and other improved techniques including the residual resampling step and Markov Chain Monte Carlo method are introduced for target tracking. Performances of the EKF, basic PF and the improved PF are compared in target tracking examples. The simulation results confirm that the improved particle filter outperforms the others.

  7. Particle-pair relative velocity measurement in high-Reynolds-number homogeneous and isotropic turbulence using 4-frame particle tracking velocimetry

    Science.gov (United States)

    Dou, Zhongwang; Ireland, Peter J.; Bragg, Andrew D.; Liang, Zach; Collins, Lance R.; Meng, Hui

    2018-02-01

    The radial relative velocity (RV) between particles suspended in turbulent flow plays a critical role in droplet collision and growth. We present a simple and accurate approach to RV measurement in isotropic turbulence—planar 4-frame particle tracking velocimetry—using routine PIV hardware. It improves particle positioning and pairing accuracy over the 2-frame holographic approach by de Jong et al. (Int J Multiphas Flow 36:324-332; de Jong et al., Int J Multiphas Flow 36:324-332, 2010) without using high-speed cameras and lasers as in Saw et al. (Phys Fluids 26:111702, 2014). Homogeneous and isotropic turbulent flow ({R_λ }=357) in a new, fan-driven, truncated iscosahedron chamber was laden with either low-Stokes (mean St=0.09, standard deviation 0.05) or high-Stokes aerosols (mean St=3.46, standard deviation 0.57). For comparison, DNS was conducted under similar conditions ({R_λ }=398; St=0.10 and 3.00, respectively). Experimental RV probability density functions (PDF) and mean inward RV agree well with DNS. Mean inward RV increases with St at small particle separations, r, and decreases with St at large r, indicating the dominance of "path-history" and "inertial filtering" effects, respectively. However, at small r, the experimental mean inward RV trends higher than DNS, possibly due to the slight polydispersity of particles and finite light sheet thickness in experiments. To confirm this interpretation, we performed numerical experiments and found that particle polydispersity increases mean inward RV at small r, while finite laser thickness also overestimates mean inward RV at small r, This study demonstrates the feasibility of accurately measuring RV using routine hardware, and verifies, for the first time, the path-history and inertial filtering effects on particle-pair RV at large particle separations experimentally.

  8. NucliTrack: an integrated nuclei tracking application.

    Science.gov (United States)

    Cooper, Sam; Barr, Alexis R; Glen, Robert; Bakal, Chris

    2017-10-15

    Live imaging studies give unparalleled insight into dynamic single cell behaviours and fate decisions. However, the challenge of reliably tracking single cells over long periods of time limits both the throughput and ease with which such studies can be performed. Here, we present NucliTrack, a cross platform solution for automatically segmenting, tracking and extracting features from fluorescently labelled nuclei. NucliTrack performs similarly to other state-of-the-art cell tracking algorithms, but NucliTrack's interactive, graphical interface makes it significantly more user friendly. NucliTrack is available as a free, cross platform application and open source Python package. Installation details and documentation are at: http://nuclitrack.readthedocs.io/en/latest/ A video guide can be viewed online: https://www.youtube.com/watch?v=J6e0D9F-qSU Source code is available through Github: https://github.com/samocooper/nuclitrack. A Matlab toolbox is also available at: https://uk.mathworks.com/matlabcentral/fileexchange/61479-samocooper-nuclitrack-matlab. sam@socooper.com. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  9. Track reconstruction in CMS high luminosity environment

    CERN Document Server

    AUTHOR|(CDS)2067159

    2016-01-01

    The CMS tracker is the largest silicon detector ever built, covering 200 square meters and providing an average of 14 high-precision measurements per track. Tracking is essential for the reconstruction of objects like jets, muons, electrons and tau leptons starting from the raw data from the silicon pixel and strip detectors. Track reconstruction is widely used also at trigger level as it improves objects tagging and resolution.The CMS tracking code is organized in several levels, known as iterative steps, each optimized to reconstruct a class of particle trajectories, as the ones of particles originating from the primary vertex or displaced tracks from particles resulting from secondary vertices. Each iterative step consists of seeding, pattern recognition and fitting by a kalman filter, and a final filtering and cleaning. Each subsequent step works on hits not yet associated to a reconstructed particle trajectory.The CMS tracking code is continuously evolving to make the reconstruction computing load compat...

  10. Track reconstruction in CMS high luminosity environment

    CERN Document Server

    Goetzmann, Christophe

    2014-01-01

    The CMS tracker is the largest silicon detector ever built, covering 200 square meters and providing an average of 14 high-precision measurements per track. Tracking is essential for the reconstruction of objects like jets, muons, electrons and tau leptons starting from the raw data from the silicon pixel and strip detectors. Track reconstruction is widely used also at trigger level as it improves objects tagging and resolution.The CMS tracking code is organized in several levels, known as iterative steps, each optimized to reconstruct a class of particle trajectories, as the ones of particles originating from the primary vertex or displaced tracks from particles resulting from secondary vertices. Each iterative step consists of seeding, pattern recognition and fitting by a kalman filter, and a final filtering and cleaning. Each subsequent step works on hits not yet associated to a reconstructed particle trajectory.The CMS tracking code is continuously evolving to make the reconstruction computing load compat...

  11. A Monte Carlo Study of the Momentum Dependence on the Results of Tracking Unknown Particle Species in the BaBar Detector

    Energy Technology Data Exchange (ETDEWEB)

    Sewerynek, Stephen; /British Columbia U.

    2007-04-06

    The BABAR experiment is composed of an international collaboration that will test the Standard Model prediction of CP violation. To accomplish this a new detector was constructed at the asymmetric B Factory, located at the Stanford Linear Accelerator Center. The tests will shed some light on the origins of CP violation, which is an important aspect in explaining the matter/antimatter asymmetry in the universe. In particular, the BABAR experiment will measure CP violation in the neutral B meson system. In order to succeed, the BABAR experiment requires excellent track fitting and particle species identification. Prior to the current study, track fitting was done using only one particle species--the pion. But given the momentum dependence on the accuracy of the results from this choice of particle species, a better algorithm needed to be developed. Monte Carlo simulations were carried out and a new algorithm utilizing all five particle species present in the BABAR detector was created.

  12. Fractal and Morphological Characteristics of Single Marble Particle Crushing in Uniaxial Compression Tests

    Directory of Open Access Journals (Sweden)

    Yidong Wang

    2015-01-01

    Full Text Available Crushing of rock particles is a phenomenon commonly encountered in geotechnical engineering practice. It is however difficult to study the crushing of rock particles using classical theory because the physical structure of the particles is complex and irregular. This paper aims at evaluating fractal and morphological characteristics of single rock particle. A large number of particle crushing tests are conducted on single rock particle. The force-displacement curves and the particle size distributions (PSD of crushed particles are analysed based on particle crushing tests. Particle shape plays an important role in both the micro- and macroscale responses of a granular assembly. The PSD of an assortment of rocks are analysed by fractal methods, and the fractal dimension is obtained. A theoretical formula for particle crushing strength is derived, utilising the fractal model, and a simple method is proposed for predicting the probability of particle survival based on the Weibull statistics. Based on a few physical assumptions, simple equations are derived for determining particle crushing energy. The results of applying these equations are tested against the actual experimental data and prove to be very consistent. Fractal theory is therefore applicable for analysis of particle crushing.

  13. Real-time analysis of insoluble particles in glacial ice using single-particle mass spectrometry

    Science.gov (United States)

    Osman, Matthew; Zawadowicz, Maria A.; Das, Sarah B.; Cziczo, Daniel J.

    2017-11-01

    Insoluble aerosol particles trapped in glacial ice provide insight into past climates, but analysis requires information on climatically relevant particle properties, such as size, abundance, and internal mixing. We present a new analytical method using a time-of-flight single-particle mass spectrometer (SPMS) to determine the composition and size of insoluble particles in glacial ice over an aerodynamic size range of ˜ 0.2-3.0 µm diameter. Using samples from two Greenland ice cores, we developed a procedure to nebulize insoluble particles suspended in melted ice, evaporate condensed liquid from those particles, and transport them to the SPMS for analysis. We further determined size-dependent extraction and instrument transmission efficiencies to investigate the feasibility of determining particle-class-specific mass concentrations. We find SPMS can be used to provide constraints on the aerodynamic size, composition, and relative abundance of most insoluble particulate classes in ice core samples. We describe the importance of post-aqueous processing to particles, a process which occurs due to nebulization of aerosols from an aqueous suspension of originally soluble and insoluble aerosol components. This study represents an initial attempt to use SPMS as an emerging technique for the study of insoluble particulates in ice cores.

  14. Single-particle spectral density of the Hubbard model

    NARCIS (Netherlands)

    Mehlig, B.; Eskes, H.; Hayn, R.; Meinders, M.B.J.

    1995-01-01

    We calculate the single-particle spectral function for the Hubbard model within the framework of a projection technique equivalent to the two-pole approximation. We show that the two-pole approximation can be well understood as an average characterization of the upper and the lower Hubbard bands,

  15. SINGLE-PARTICLE SPECTRAL DENSITY OF THE HUBBARD-MODEL

    NARCIS (Netherlands)

    MEHLIG, B; ESKES, H; HAYN, R; MEINDERS, MBJ

    1995-01-01

    We calculate the single-particle spectral function for the Hubbard model within the framework of a projection technique equivalent to the two-pole approximation. We show that the two-pole approximation can be well understood as an average characterization of the upper and the lower Hubbard bands,

  16. Single particle dynamics of many-body systems described by Vlasov-Fokker-Planck equations

    International Nuclear Information System (INIS)

    Frank, T.D.

    2003-01-01

    Using Langevin equations we describe the random walk of single particles that belong to particle systems satisfying Vlasov-Fokker-Planck equations. In doing so, we show that Haissinski distributions of bunched particles in electron storage rings can be derived from a particle dynamics model

  17. Tracking single dynamic MEG dipole sources using the projected Extended Kalman Filter.

    Science.gov (United States)

    Yao, Yuchen; Swindlehurst, A Lee

    2011-01-01

    This paper presents two new algorithms based on the Extended Kalman Filter (EKF) for tracking the parameters of single dynamic magnetoencephalography (MEG) dipole sources. We assume a dynamic MEG dipole source with possibly both time-varying location and dipole orientation. The standard EKF-based tracking algorithm performs well under the assumption that the dipole source components vary in time as a Gauss-Markov process, provided that the background noise is temporally stationary. We propose a Projected-EKF algorithm that is adapted to a more forgiving condition where the background noise is temporally nonstationary, as well as a Projected-GLS-EKF algorithm that works even more universally, when the dipole components vary arbitrarily from one sample to the next.

  18. A Quality Evaluation of Single and Multiple Camera Calibration Approaches for an Indoor Multi Camera Tracking System

    Directory of Open Access Journals (Sweden)

    M. Adduci

    2014-06-01

    Full Text Available Human detection and tracking has been a prominent research area for several scientists around the globe. State of the art algorithms have been implemented, refined and accelerated to significantly improve the detection rate and eliminate false positives. While 2D approaches are well investigated, 3D human detection and tracking is still an unexplored research field. In both 2D/3D cases, introducing a multi camera system could vastly expand the accuracy and confidence of the tracking process. Within this work, a quality evaluation is performed on a multi RGB-D camera indoor tracking system for examining how camera calibration and pose can affect the quality of human tracks in the scene, independently from the detection and tracking approach used. After performing a calibration step on every Kinect sensor, state of the art single camera pose estimators were evaluated for checking how good the quality of the poses is estimated using planar objects such as an ordinate chessboard. With this information, a bundle block adjustment and ICP were performed for verifying the accuracy of the single pose estimators in a multi camera configuration system. Results have shown that single camera estimators provide high accuracy results of less than half a pixel forcing the bundle to converge after very few iterations. In relation to ICP, relative information between cloud pairs is more or less preserved giving a low score of fitting between concatenated pairs. Finally, sensor calibration proved to be an essential step for achieving maximum accuracy in the generated point clouds, and therefore in the accuracy of the produced 3D trajectories, from each sensor.

  19. Damping of unbound single-particle modes

    International Nuclear Information System (INIS)

    Fortier, S.; Beaumel, D.; Gales, S.; Guillot, J.; Langevin-Joliot, H.; Laurent, H.; Maison, J.M.; Bordewijk, J.; Brandenburg, S.; Krasznahorkay, A.; Crawley, G.M.; Massolo, C.P.; Renteria, M.; Khendriche, A.

    1995-01-01

    The (α, 3 He-n) reaction has been investigated at 120 MeV incident energy on 64 Ni, 90 Zr, and 120 Sn target nuclei. Neutrons in coincidence with 3 He particles emitted at 0 degree were detected using the multidetector array EDEN, in order to get information about the decay of single-particle states embedded in the (α, 3 He) continuum. Neutron angular correlations, multiplicity values, and branching ratios to low-lying states of the final nuclei have been compared with the predictions of the statistical decay model. Evidence for a significant nonstatistical decay branch has been observed in the three nuclei below about 15 MeV excitation energy. Direct branching ratios in 91 Zr deduced from this analysis are compared with the predictions of two nuclear structure models. At higher excitation energy, the decay characteristics of the (α, 3 He) continuum are shown to be mainly statistical

  20. Tracking Single Units in Chronic, Large Scale, Neural Recordings for Brain Machine Interface Applications

    Directory of Open Access Journals (Sweden)

    Ahmed eEleryan

    2014-07-01

    Full Text Available In the study of population coding in neurobiological systems, tracking unit identity may be critical to assess possible changes in the coding properties of neuronal constituents over prolonged periods of time. Ensuring unit stability is even more critical for reliable neural decoding of motor variables in intra-cortically controlled brain-machine interfaces (BMIs. Variability in intrinsic spike patterns, tuning characteristics, and single-unit identity over chronic use is a major challenge to maintaining this stability, requiring frequent daily calibration of neural decoders in BMI sessions by an experienced human operator. Here, we report on a unit-stability tracking algorithm that efficiently and autonomously identifies putative single-units that are stable across many sessions using a relatively short duration recording interval at the start of each session. The algorithm first builds a database of features extracted from units' average spike waveforms and firing patterns across many days of recording. It then uses these features to decide whether spike occurrences on the same channel on one day belong to the same unit recorded on another day or not. We assessed the overall performance of the algorithm for different choices of features and classifiers trained using human expert judgment, and quantified it as a function of accuracy and execution time. Overall, we found a trade-off between accuracy and execution time with increasing data volumes from chronically implanted rhesus macaques, with an average of 12 seconds processing time per channel at ~90% classification accuracy. Furthermore, 77% of the resulting putative single-units matched those tracked by human experts. These results demonstrate that over the span of a few months of recordings, automated unit tracking can be performed with high accuracy and used to streamline the calibration phase during BMI sessions.

  1. Detection of Diffusion Heterogeneity in Single Particle Tracking Trajectories Using a Hidden Markov Model with Measurement Noise Propagation

    Science.gov (United States)

    Slator, Paddy J.; Cairo, Christopher W.; Burroughs, Nigel J.

    2015-01-01

    We develop a Bayesian analysis framework to detect heterogeneity in the diffusive behaviour of single particle trajectories on cells, implementing model selection to classify trajectories as either consistent with Brownian motion or with a two-state (diffusion coefficient) switching model. The incorporation of localisation accuracy is essential, as otherwise false detection of switching within a trajectory was observed and diffusion coefficient estimates were inflated. Since our analysis is on a single trajectory basis, we are able to examine heterogeneity between trajectories in a quantitative manner. Applying our method to the lymphocyte function-associated antigen 1 (LFA-1) receptor tagged with latex beads (4 s trajectories at 1000 frames s−1), both intra- and inter-trajectory heterogeneity were detected; 12–26% of trajectories display clear switching between diffusive states dependent on condition, whilst the inter-trajectory variability is highly structured with the diffusion coefficients being related by D 1 = 0.68D 0 − 1.5 × 104 nm2 s−1, suggestive that on these time scales we are detecting switching due to a single process. Further, the inter-trajectory variability of the diffusion coefficient estimates (1.6 × 102 − 2.6 × 105 nm2 s−1) is very much larger than the measurement uncertainty within trajectories, suggesting that LFA-1 aggregation and cytoskeletal interactions are significantly affecting mobility, whilst the timescales of these processes are distinctly different giving rise to inter- and intra-trajectory variability. There is also an ‘immobile’ state (defined as D models within membranes incorporating aggregation, binding to the cytoskeleton, or traversing membrane microdomains. PMID:26473352

  2. Convolutional Deep Belief Networks for Single-Cell/Object Tracking in Computational Biology and Computer Vision

    OpenAIRE

    Zhong, Bineng; Pan, Shengnan; Zhang, Hongbo; Wang, Tian; Du, Jixiang; Chen, Duansheng; Cao, Liujuan

    2016-01-01

    In this paper, we propose deep architecture to dynamically learn the most discriminative features from data for both single-cell and object tracking in computational biology and computer vision. Firstly, the discriminative features are automatically learned via a convolutional deep belief network (CDBN). Secondly, we design a simple yet effective method to transfer features learned from CDBNs on the source tasks for generic purpose to the object tracking tasks using only limited amount of tra...

  3. Mechanical engineering and design of silicon-based particle tracking devices

    International Nuclear Information System (INIS)

    Miller, W.O.; Thompson, T.C.; Gamble, M.T.; Reid, R.S.; Woloshun, K.A.; Dransfield, G.D.; Ziock, H.J.

    1990-01-01

    The Mechanical Engineering and Electronics Division of the Los Alamos National Laboratory has been investigating silicon-based particle tracking device technology as part of the Superconducting Super Collider-sponsored silicon subsystem collaboration. Structural, thermal, and materials issues have been addressed. This paper discussed detector structural integrity and stability, including detailed finite element models of the silicon chip support and predictive methods used in designing with advanced composite materials. Electronic thermal loading and efficient dissipation of such energy using heat pipe technology has been investigated. The use of materials whose coefficients of thermal expansion are engineered to match silicon or to be near zero, as appropriate, have been explored. Material analysis and test results from radiation, chemical, and static loading are compared with analytical predictions and discussed. 1 ref., 2 figs., 1 tab

  4. Reconstructing an icosahedral virus from single-particle diffraction experiments

    Science.gov (United States)

    Saldin, D. K.; Poon, H.-C.; Schwander, P.; Uddin, M.; Schmidt, M.

    2011-08-01

    The first experimental data from single-particle scattering experiments from free electron lasers (FELs) are now becoming available. The first such experiments are being performed on relatively large objects such as viruses, which produce relatively low-resolution, low-noise diffraction patterns in so-called ``diffract-and-destroy'' experiments. We describe a very simple test on the angular correlations of measured diffraction data to determine if the scattering is from an icosahedral particle. If this is confirmed, the efficient algorithm proposed can then combine diffraction data from multiple shots of particles in random unknown orientations to generate a full 3D image of the icosahedral particle. We demonstrate this with a simulation for the satellite tobacco necrosis virus (STNV), the atomic coordinates of whose asymmetric unit is given in Protein Data Bank entry 2BUK.

  5. Direct numerical simulation of 3D particle motion in an evaporating liquid film

    International Nuclear Information System (INIS)

    Hwang, Ho Chan; Son, Gi Hun

    2016-01-01

    A direct numerical simulation method is developed for 3D particle motion in liquid film evaporation. The liquid-gas and fluid-solid interfaces are tracked by a sharp-interface Level-set (LS) method, which includes the effects of evaporation, contact line and solid particles. The LS method is validated through simulation of the interaction between two particles falling in a single-phase fluid. The LS based DNS method is applied to computation of the particle motion in liquid film evaporation to investigate the particle-interface and particle-particle interactions

  6. Single-cell tracking reveals antibiotic-induced changes in mycobacterial energy metabolism.

    Science.gov (United States)

    Maglica, Željka; Özdemir, Emre; McKinney, John D

    2015-02-17

    ATP is a key molecule of cell physiology, but despite its importance, there are currently no methods for monitoring single-cell ATP fluctuations in live bacteria. This is a major obstacle in studies of bacterial energy metabolism, because there is a growing awareness that bacteria respond to stressors such as antibiotics in a highly individualistic manner. Here, we present a method for long-term single-cell tracking of ATP levels in Mycobacterium smegmatis based on a combination of microfluidics, time-lapse microscopy, and Förster resonance energy transfer (FRET)-based ATP biosensors. Upon treating cells with antibiotics, we observed that individual cells undergo an abrupt and irreversible switch from high to low intracellular ATP levels. The kinetics and extent of ATP switching clearly discriminate between an inhibitor of ATP synthesis and other classes of antibiotics. Cells that resume growth after 24 h of antibiotic treatment maintain high ATP levels throughout the exposure period. In contrast, antibiotic-treated cells that switch from ATP-high to ATP-low states never resume growth after antibiotic washout. Surprisingly, only a subset of these nongrowing ATP-low cells stains with propidium iodide (PI), a widely used live/dead cell marker. These experiments also reveal a cryptic subset of cells that do not resume growth after antibiotic washout despite remaining ATP high and PI negative. We conclude that ATP tracking is a more dynamic, sensitive, reliable, and discriminating marker of cell viability than staining with PI. This method could be used in studies to evaluate antimicrobial effectiveness and mechanism of action, as well as for high-throughput screening. New antimicrobials are urgently needed to stem the rising tide of antibiotic-resistant bacteria. All antibiotics are expected to affect bacterial energy metabolism, directly or indirectly, yet tools to assess the impact of antibiotics on the ATP content of individual bacterial cells are lacking. The

  7. Occlusion Handling in Videos Object Tracking: A Survey

    International Nuclear Information System (INIS)

    Lee, B Y; Liew, L H; Cheah, W S; Wang, Y C

    2014-01-01

    Object tracking in video has been an active research since for decades. This interest is motivated by numerous applications, such as surveillance, human-computer interaction, and sports event monitoring. Many challenges related to tracking objects still remain, this can arise due to abrupt object motion, changing appearance patterns of objects and the scene, non-rigid object structures and most significant are occlusion of tracked object be it object-to-object or object-to-scene occlusions. Generally, occlusion in object tracking occur under three situations: self-occlusion, inter-object occlusion by background scene structure. Self-occlusion occurs most frequently while tracking articulated objects when one part of the object occludes another. Inter-object occlusion occurs when two objects being tracked occlude each other whereas occlusion by the background occurs when a structure in the background occludes the tracked objects. Typically, tracking methods handle occlusion by modelling the object motion using linear and non-linear dynamic models. The derived models will be used to continuously predicting the object location when a tracked object is occluded until the object reappears. Example of these method are Kalman filtering and Particle filtering trackers. Researchers have also utilised other features to resolved occlusion, for example, silhouette projections, colour histogram and optical flow. We will present some result from a previously conducted experiment when tracking single object using Kalman filter, Particle filter and Mean Shift trackers under various occlusion situation in this paper. We will also review various other occlusion handling methods that involved using multiple cameras. In a nutshell, the goal of this paper is to discuss in detail the problem of occlusion in object tracking and review the state of the art occlusion handling methods, classify them into different categories, and identify new trends. Moreover, we discuss the important

  8. Occlusion Handling in Videos Object Tracking: A Survey

    Science.gov (United States)

    Lee, B. Y.; Liew, L. H.; Cheah, W. S.; Wang, Y. C.

    2014-02-01

    Object tracking in video has been an active research since for decades. This interest is motivated by numerous applications, such as surveillance, human-computer interaction, and sports event monitoring. Many challenges related to tracking objects still remain, this can arise due to abrupt object motion, changing appearance patterns of objects and the scene, non-rigid object structures and most significant are occlusion of tracked object be it object-to-object or object-to-scene occlusions. Generally, occlusion in object tracking occur under three situations: self-occlusion, inter-object occlusion by background scene structure. Self-occlusion occurs most frequently while tracking articulated objects when one part of the object occludes another. Inter-object occlusion occurs when two objects being tracked occlude each other whereas occlusion by the background occurs when a structure in the background occludes the tracked objects. Typically, tracking methods handle occlusion by modelling the object motion using linear and non-linear dynamic models. The derived models will be used to continuously predicting the object location when a tracked object is occluded until the object reappears. Example of these method are Kalman filtering and Particle filtering trackers. Researchers have also utilised other features to resolved occlusion, for example, silhouette projections, colour histogram and optical flow. We will present some result from a previously conducted experiment when tracking single object using Kalman filter, Particle filter and Mean Shift trackers under various occlusion situation in this paper. We will also review various other occlusion handling methods that involved using multiple cameras. In a nutshell, the goal of this paper is to discuss in detail the problem of occlusion in object tracking and review the state of the art occlusion handling methods, classify them into different categories, and identify new trends. Moreover, we discuss the important

  9. Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells

    Science.gov (United States)

    McGuinness, L. P.; Yan, Y.; Stacey, A.; Simpson, D. A.; Hall, L. T.; MacLaurin, D.; Prawer, S.; Mulvaney, P.; Wrachtrup, J.; Caruso, F.; Scholten, R. E.; Hollenberg, L. C. L.

    2011-06-01

    Fluorescent particles are routinely used to probe biological processes. The quantum properties of single spins within fluorescent particles have been explored in the field of nanoscale magnetometry, but not yet in biological environments. Here, we demonstrate optically detected magnetic resonance of individual fluorescent nanodiamond nitrogen-vacancy centres inside living human HeLa cells, and measure their location, orientation, spin levels and spin coherence times with nanoscale precision. Quantum coherence was measured through Rabi and spin-echo sequences over long (>10 h) periods, and orientation was tracked with effective 1° angular precision over acquisition times of 89 ms. The quantum spin levels served as fingerprints, allowing individual centres with identical fluorescence to be identified and tracked simultaneously. Furthermore, monitoring decoherence rates in response to changes in the local environment may provide new information about intracellular processes. The experiments reported here demonstrate the viability of controlled single spin probes for nanomagnetometry in biological systems, opening up a host of new possibilities for quantum-based imaging in the life sciences.

  10. Non-identical particle femtoscopy in models with single freeze-out

    International Nuclear Information System (INIS)

    Kisiel, Adam

    2007-01-01

    We present femtoscopic results from hydrodynamics-inspired thermal models with single freeze-out. Non-identical particle femtoscopy is studied and compared to results of identical particle correlations. Special emphasis is put on shifts between average space-time emission points of non-identical particles of different masses. They are found to be sensitive to both the spatial shift coming from radial flow, as well as average emission time difference coming from the resonance decays. The Terminator Monte-Carlo program was chosen for this study because it realistically models both of these effects. In order to analyze the results we present and test the methodology of non-identical particle correlations. (author)

  11. Single-particle stochastic heat engine

    Science.gov (United States)

    Rana, Shubhashis; Pal, P. S.; Saha, Arnab; Jayannavar, A. M.

    2014-10-01

    We have performed an extensive analysis of a single-particle stochastic heat engine constructed by manipulating a Brownian particle in a time-dependent harmonic potential. The cycle consists of two isothermal steps at different temperatures and two adiabatic steps similar to that of a Carnot engine. The engine shows qualitative differences in inertial and overdamped regimes. All the thermodynamic quantities, including efficiency, exhibit strong fluctuations in a time periodic steady state. The fluctuations of stochastic efficiency dominate over the mean values even in the quasistatic regime. Interestingly, our system acts as an engine provided the temperature difference between the two reservoirs is greater than a finite critical value which in turn depends on the cycle time and other system parameters. This is supported by our analytical results carried out in the quasistatic regime. Our system works more reliably as an engine for large cycle times. By studying various model systems, we observe that the operational characteristics are model dependent. Our results clearly rule out any universal relation between efficiency at maximum power and temperature of the baths. We have also verified fluctuation relations for heat engines in time periodic steady state.

  12. Temperature dependence of single-particle properties in nuclear matter

    International Nuclear Information System (INIS)

    Zuo, W.; Lu, G.C.; Li, Z.H.; Lombardo, U.; Schulze, H.-J.

    2006-01-01

    The single-nucleon potential in hot nuclear matter is investigated in the framework of the Brueckner theory by adopting the realistic Argonne V 18 or Nijmegen 93 two-body nucleon-nucleon interaction supplemented by a microscopic three-body force. The rearrangement contribution to the single-particle potential induced by the ground state correlations is calculated in terms of the hole-line expansion of the mass operator and provides a significant repulsive contribution in the low-momentum region around and below the Fermi surface. Increasing temperature leads to a reduction of the effect, while increasing density makes it become stronger. The three-body force suppresses somewhat the ground state correlations due to its strong short-range repulsion, increasing with density. Inclusion of the three-body force contribution results in a quite different temperature dependence of the single-particle potential at high enough densities as compared to that adopting the pure two-body force. The effects of three-body force and ground state correlations on the nucleon effective mass are also discussed

  13. Investigating Particle Transport and Fate in the Sacramento–San Joaquin Delta Using a Particle-Tracking Model

    Directory of Open Access Journals (Sweden)

    Wim J. Kimmerer

    2008-02-01

    Full Text Available Movements of pelagic organisms in the tidal freshwater regions of estuaries are sensitive to the movements of water. In the Sacramento-San Joaquin Delta—the tidal freshwater reach of the San Francisco Estuary—such movements are key to losses of fish and other organisms to entrainment in large water-export facilities. We used the Delta Simulation Model-2 hydrodynamic model and its particle tracking model to examine the principal determinants of entrainment losses to the export facilities and how movement of fish through the Delta may be influenced by flow. We modeled 936 scenarios for 74 different conditions of flow, diversions, tides, and removable barriers to address seven questions regarding hydrodynamics and entrainment risk in the Delta. Tide had relatively small effects on fate and residence time of particles. Release location and hydrology interacted to control particle fate and residence time. The ratio of flow into the export facilities to freshwater flow into the Delta (export:inflow or EI ratio was a useful predictor of entrainment probability if the model were allowed to run long enough to resolve particles’ ultimate fate. Agricultural diversions within the Delta increased total entrainment losses and altered local movement patterns. Removable barriers in channels of the southern Delta and gates in the Delta Cross Channel in the northern Delta had minor effects on particles released in the rivers above these channels. A simulation of losses of larval delta smelt showed substantial cumulative losses depending on both inflow and export flow. A simulation mimicking mark–recapture experiments on Chinook salmon smolts suggested that both inflow and export flow may be important factors determining survival of salmon in the upper estuary. To the extent that fish behave passively, this model is probably suitable for describing Delta-wide movement, but it is less suitable for smaller scales or alternative configurations of the Delta.

  14. Double-slit experiment with single wave-driven particles and its relation to quantum mechanics.

    Science.gov (United States)

    Andersen, Anders; Madsen, Jacob; Reichelt, Christian; Rosenlund Ahl, Sonja; Lautrup, Benny; Ellegaard, Clive; Levinsen, Mogens T; Bohr, Tomas

    2015-07-01

    In a thought-provoking paper, Couder and Fort [Phys. Rev. Lett. 97, 154101 (2006)] describe a version of the famous double-slit experiment performed with droplets bouncing on a vertically vibrated fluid surface. In the experiment, an interference pattern in the single-particle statistics is found even though it is possible to determine unambiguously which slit the walking droplet passes. Here we argue, however, that the single-particle statistics in such an experiment will be fundamentally different from the single-particle statistics of quantum mechanics. Quantum mechanical interference takes place between different classical paths with precise amplitude and phase relations. In the double-slit experiment with walking droplets, these relations are lost since one of the paths is singled out by the droplet. To support our conclusions, we have carried out our own double-slit experiment, and our results, in particular the long and variable slit passage times of the droplets, cast strong doubt on the feasibility of the interference claimed by Couder and Fort. To understand theoretically the limitations of wave-driven particle systems as analogs to quantum mechanics, we introduce a Schrödinger equation with a source term originating from a localized particle that generates a wave while being simultaneously guided by it. We show that the ensuing particle-wave dynamics can capture some characteristics of quantum mechanics such as orbital quantization. However, the particle-wave dynamics can not reproduce quantum mechanics in general, and we show that the single-particle statistics for our model in a double-slit experiment with an additional splitter plate differs qualitatively from that of quantum mechanics.

  15. Double-slit experiment with single wave-driven particles and its relation to quantum mechanics

    Science.gov (United States)

    Andersen, Anders; Madsen, Jacob; Reichelt, Christian; Rosenlund Ahl, Sonja; Lautrup, Benny; Ellegaard, Clive; Levinsen, Mogens T.; Bohr, Tomas

    2015-07-01

    In a thought-provoking paper, Couder and Fort [Phys. Rev. Lett. 97, 154101 (2006), 10.1103/PhysRevLett.97.154101] describe a version of the famous double-slit experiment performed with droplets bouncing on a vertically vibrated fluid surface. In the experiment, an interference pattern in the single-particle statistics is found even though it is possible to determine unambiguously which slit the walking droplet passes. Here we argue, however, that the single-particle statistics in such an experiment will be fundamentally different from the single-particle statistics of quantum mechanics. Quantum mechanical interference takes place between different classical paths with precise amplitude and phase relations. In the double-slit experiment with walking droplets, these relations are lost since one of the paths is singled out by the droplet. To support our conclusions, we have carried out our own double-slit experiment, and our results, in particular the long and variable slit passage times of the droplets, cast strong doubt on the feasibility of the interference claimed by Couder and Fort. To understand theoretically the limitations of wave-driven particle systems as analogs to quantum mechanics, we introduce a Schrödinger equation with a source term originating from a localized particle that generates a wave while being simultaneously guided by it. We show that the ensuing particle-wave dynamics can capture some characteristics of quantum mechanics such as orbital quantization. However, the particle-wave dynamics can not reproduce quantum mechanics in general, and we show that the single-particle statistics for our model in a double-slit experiment with an additional splitter plate differs qualitatively from that of quantum mechanics.

  16. A new three-dimensional track fit with multiple scattering

    International Nuclear Information System (INIS)

    Berger, Niklaus; Kozlinskiy, Alexandr; Kiehn, Moritz; Schöning, André

    2017-01-01

    Modern semiconductor detectors allow for charged particle tracking with ever increasing position resolution. Due to the reduction of the spatial hit uncertainties, multiple Coulomb scattering in the detector layers becomes the dominant source for tracking uncertainties. In this case long distance effects can be ignored for the momentum measurement, and the track fit can consequently be formulated as a sum of independent fits to hit triplets. In this paper we present an analytical solution for a three-dimensional triplet(s) fit in a homogeneous magnetic field based on a multiple scattering model. Track fitting of hit triplets is performed using a linearization ansatz. The momentum resolution is discussed for a typical spectrometer setup. Furthermore the track fit is compared with other track fits for two different pixel detector geometries, namely the Mu3e experiment at PSI and a typical high-energy collider experiment. For a large momentum range the triplets fit provides a significantly better performance than a single helix fit. The triplets fit is fast and can easily be parallelized, which makes it ideal for the implementation on parallel computing architectures.

  17. A new three-dimensional track fit with multiple scattering

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Niklaus; Kozlinskiy, Alexandr [Physikalisches Institut, Heidelberg University, Heidelberg (Germany); Institut für Kernphysik and PRISMA cluster of excellence, Mainz University, Mainz (Germany); Kiehn, Moritz; Schöning, André [Physikalisches Institut, Heidelberg University, Heidelberg (Germany)

    2017-02-01

    Modern semiconductor detectors allow for charged particle tracking with ever increasing position resolution. Due to the reduction of the spatial hit uncertainties, multiple Coulomb scattering in the detector layers becomes the dominant source for tracking uncertainties. In this case long distance effects can be ignored for the momentum measurement, and the track fit can consequently be formulated as a sum of independent fits to hit triplets. In this paper we present an analytical solution for a three-dimensional triplet(s) fit in a homogeneous magnetic field based on a multiple scattering model. Track fitting of hit triplets is performed using a linearization ansatz. The momentum resolution is discussed for a typical spectrometer setup. Furthermore the track fit is compared with other track fits for two different pixel detector geometries, namely the Mu3e experiment at PSI and a typical high-energy collider experiment. For a large momentum range the triplets fit provides a significantly better performance than a single helix fit. The triplets fit is fast and can easily be parallelized, which makes it ideal for the implementation on parallel computing architectures.

  18. Flagged uniform particle splitting for variance reduction in proton and carbon ion track-structure simulations

    Science.gov (United States)

    Ramos-Méndez, José; Schuemann, Jan; Incerti, Sebastien; Paganetti, Harald; Schulte, Reinhard; Faddegon, Bruce

    2017-08-01

    Flagged uniform particle splitting was implemented with two methods to improve the computational efficiency of Monte Carlo track structure simulations with TOPAS-nBio by enhancing the production of secondary electrons in ionization events. In method 1 the Geant4 kernel was modified. In method 2 Geant4 was not modified. In both methods a unique flag number assigned to each new split electron was inherited by its progeny, permitting reclassification of the split events as if produced by independent histories. Computational efficiency and accuracy were evaluated for simulations of 0.5-20 MeV protons and 1-20 MeV u-1 carbon ions for three endpoints: (1) mean of the ionization cluster size distribution, (2) mean number of DNA single-strand breaks (SSBs) and double-strand breaks (DSBs) classified with DBSCAN, and (3) mean number of SSBs and DSBs classified with a geometry-based algorithm. For endpoint (1), simulation efficiency was 3 times lower when splitting electrons generated by direct ionization events of primary particles than when splitting electrons generated by the first ionization events of secondary electrons. The latter technique was selected for further investigation. The following results are for method 2, with relative efficiencies about 4.5 times lower for method 1. For endpoint (1), relative efficiency at 128 split electrons approached maximum, increasing with energy from 47.2  ±  0.2 to 66.9  ±  0.2 for protons, decreasing with energy from 51.3  ±  0.4 to 41.7  ±  0.2 for carbon. For endpoint (2), relative efficiency increased with energy, from 20.7  ±  0.1 to 50.2  ±  0.3 for protons, 15.6  ±  0.1 to 20.2  ±  0.1 for carbon. For endpoint (3) relative efficiency increased with energy, from 31.0  ±  0.2 to 58.2  ±  0.4 for protons, 23.9  ±  0.1 to 26.2  ±  0.2 for carbon. Simulation results with and without splitting agreed within 1% (2 standard

  19. Chemical compositions of subway particles in Seoul, Korea determined by a quantitative single particle analysis.

    Science.gov (United States)

    Kang, Sunni; Hwang, HeeJin; Park, YooMyung; Kim, HyeKyoung; Ro, Chul-Un

    2008-12-15

    A novel single particle analytical technique, low-Z particle electron probe X-ray microanalysis, was applied to characterize seasonal subway samples collected at a subway station in Seoul, Korea. For all 8 samples collected twice in each season, 4 major types of subway particles, based on their chemical compositions, are significantly encountered: Fe-containing; soil-derived; carbonaceous; and secondary nitrate and/or sulfate particles. Fe-containing particles are generated indoors from wear processes at rail-wheel-brake interfaces while the others may be introduced mostly from the outdoor urban atmosphere. Fe-containing particles are the most frequently encountered with relative abundances in the range of 61-79%. In this study, it is shown that Fe-containing subway particles almost always exist either as partially or fully oxidized forms in underground subway microenvironments. Their relative abundances of Fe-containing particles increase as particle sizes decrease. Relative abundances of Fe-containing particles are higher in morning samples than in afternoon samples because of heavier train traffic in the morning. In the summertime samples, Fe-containing particles are the most abundantly encountered, whereas soil-derived and nitrate/sulfate particles are the least encountered, indicating the air-exchange between indoor and outdoor environments is limited in the summer, owing to the air-conditioning in the subway system. In our work, it was observed that the relative abundances of the particles of outdoor origin vary somewhat among seasonal samples to a lesser degree, reflecting that indoor emission sources predominate.

  20. Particle-tracking code (track3d) for convective solute transport modelling in the geosphere: Description and user`s manual; Programme de reperage de particules (track3d) pour la modelisation du transport par convection des solutes dans la geosphere: description et manuel de l`utilisateur

    Energy Technology Data Exchange (ETDEWEB)

    Nakka, B W; Chan, T

    1994-12-01

    A deterministic particle-tracking code (TRACK3D) has been developed to compute convective flow paths of conservative (nonreactive) contaminants through porous geological media. TRACK3D requires the groundwater velocity distribution, which, in our applications, results from flow simulations using AECL`s MOTIF code. The MOTIF finite-element code solves the transient and steady-state coupled equations of groundwater flow, solute transport and heat transport in fractured/porous media. With few modifications, TRACK3D can be used to analyse the velocity distributions calculated by other finite-element or finite-difference flow codes. This report describes the assumptions, limitations, organization, operation and applications of the TRACK3D code, and provides a comprehensive user`s manual.