WorldWideScience

Sample records for single particle diffusion

  1. Single particle raster image analysis of diffusion.

    Science.gov (United States)

    Longfils, M; Schuster, E; Lorén, N; Särkkä, A; Rudemo, M

    2017-04-01

    As a complement to the standard RICS method of analysing Raster Image Correlation Spectroscopy images with estimation of the image correlation function, we introduce the method SPRIA, Single Particle Raster Image Analysis. Here, we start by identifying individual particles and estimate the diffusion coefficient for each particle by a maximum likelihood method. Averaging over the particles gives a diffusion coefficient estimate for the whole image. In examples both with simulated and experimental data, we show that the new method gives accurate estimates. It also gives directly standard error estimates. The method should be possible to extend to study heterogeneous materials and systems of particles with varying diffusion coefficient, as demonstrated in a simple simulation example. A requirement for applying the SPRIA method is that the particle concentration is low enough so that we can identify the individual particles. We also describe a bootstrap method for estimating the standard error of standard RICS. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  2. Single particle raster image analysis of diffusion for particle mixtures.

    Science.gov (United States)

    Longfils, M; Röding, M; Altskär, A; Schuster, E; Lorén, N; Särkkä, A; Rudemo, M

    2018-03-01

    Recently we complemented the raster image correlation spectroscopy (RICS) method of analysing raster images via estimation of the image correlation function with the method single particle raster image analysis (SPRIA). In SPRIA, individual particles are identified and the diffusion coefficient of each particle is estimated by a maximum likelihood method. In this paper, we extend the SPRIA method to analyse mixtures of particles with a finite set of diffusion coefficients in a homogeneous medium. In examples with simulated and experimental data with two and three different diffusion coefficients, we show that SPRIA gives accurate estimates of the diffusion coefficients and their proportions. A simple technique for finding the number of different diffusion coefficients is also suggested. Further, we study the use of RICS for mixtures with two different diffusion coefficents and investigate, by plotting level curves of the correlation function, how large the quotient between diffusion coefficients needs to be in order to allow discrimination between models with one and two diffusion coefficients. We also describe a minor correction (compared to published papers) of the RICS autocorrelation function. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  3. Optimal estimation of diffusion coefficients from single-particle trajectories

    DEFF Research Database (Denmark)

    Vestergaard, Christian L.; Blainey, Paul C.; Flyvbjerg, Henrik

    2014-01-01

    How does one optimally determine the diffusion coefficient of a diffusing particle from a single-time-lapse recorded trajectory of the particle? We answer this question with an explicit, unbiased, and practically optimal covariance-based estimator (CVE). This estimator is regression-free and is far...... substrate, the CVE is biased by substrate motion. However, given some long time series and a substrate under some tension, an extended MLE can separate particle diffusion on the substrate from substrate motion in the laboratory frame. This provides benchmarks that allow removal of bias caused by substrate...

  4. Analysis of single particle diffusion with transient binding using particle filtering.

    Science.gov (United States)

    Bernstein, Jason; Fricks, John

    2016-07-21

    Diffusion with transient binding occurs in a variety of biophysical processes, including movement of transmembrane proteins, T cell adhesion, and caging in colloidal fluids. We model diffusion with transient binding as a Brownian particle undergoing Markovian switching between free diffusion when unbound and diffusion in a quadratic potential centered around a binding site when bound. Assuming the binding site is the last position of the particle in the unbound state and Gaussian observational error obscures the true position of the particle, we use particle filtering to predict when the particle is bound and to locate the binding sites. Maximum likelihood estimators of diffusion coefficients, state transition probabilities, and the spring constant in the bound state are computed with a stochastic Expectation-Maximization (EM) algorithm. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Insight into interrelation between single-particle and collective diffusion in binary melts

    Science.gov (United States)

    Levchenko, Elena V.; Evteev, Alexander V.

    2018-01-01

    The interrelation between the kinetics of single-particle (tracer) and collective diffusion in a binary melt is investigated theoretically within the framework of the Mori-Zwanzig formalism of statistical mechanics. An analytical expression for the Onsager coefficient for mass transport and two self-diffusion coefficients of species in a binary melt is derived using analysis based on the generalized Langevin equation. The derived expression naturally accounts for manifestation of microscopic (dynamic) cross-correlation effects in the kinetics of collective diffusion. Hence, it presents an explicit extension of the well-known Darken equation which is currently often used for expressing collective interdiffusion in terms of the two self-diffusion coefficients. An application of our analysis for interpretation of recent experimental data on the interrelation between the kinetics of single-particle and collective diffusion in Al-rich Ni-Al melts is demonstrated.

  6. Single-particle thermal diffusion of charged colloids: Double-layer theory in a temperature gradient

    NARCIS (Netherlands)

    Dhont, J.K.G.; Briels, Willem J.

    2008-01-01

    The double-layer contribution to the single-particle thermal diffusion coefficient of charged, spherical colloids with arbitrary double-layer thickness is calculated and compared to experiments. The calculation is based on an extension of the Debye-Hückel theory for the double-layer structure that

  7. Considerations of particle vaporization and analyte diffusion in single-particle inductively coupled plasma-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Koon-Sing; Lui, Kwok-On; Lee, Kin-Ho; Chan, Wing-Tat, E-mail: wtchan@hku.hk

    2013-11-01

    The intensity of individual gold nanoparticles with nominal diameters of 80, 100, 150, and 200 nm was measured using single-particle inductively coupled plasma-mass spectrometry (ICP-MS). Since the particles are not perfectly monodisperse, a distribution of ICP-MS intensity was obtained for each nominal diameter. The distribution of particle mass was determined from the transmission electron microscopy (TEM) image of the particles. The distribution of ICP-MS intensity and the distribution of particle mass for each nominal diameter were correlated to give a calibration curve. The calibration curves are linear, but the slope decreases as the nominal diameter increases. The reduced slope is probably due to a smaller degree of vaporization of the large particles. In addition to the degree of particle vaporization, the rate of analyte diffusion in the ICP is an important factor that determines the measured ICP-MS intensity. Simulated ICP-MS intensity versus particle size was calculated using a simple computer program that accounts for the vaporization rate of the gold nanoparticles and the diffusion rate and degree of ionization of the gold atoms. The curvature of the simulated calibration curves changes with sampling depth because the effects of particle vaporization and analyte diffusion on the ICP-MS intensity are dependent on the residence time of the particle in the ICP. Calibration curves of four hypothetical particles representing the four combinations of high and low boiling points (2000 and 4000 K) and high and low analyte diffusion rates (atomic masses of 10 and 200 Da) were calculated to further illustrate the relative effects of particle vaporization and analyte diffusion. The simulated calibration curves show that the sensitivity of single-particle ICP-MS is smaller than that of the ICP-MS measurement of continuous flow of standard solutions by a factor of 2 or more. Calibration using continuous flow of standard solution is semi-quantitative at best. An

  8. Estimating the anomalous diffusion exponent for single particle tracking data with measurement errors - An alternative approach.

    Science.gov (United States)

    Burnecki, Krzysztof; Kepten, Eldad; Garini, Yuval; Sikora, Grzegorz; Weron, Aleksander

    2015-06-11

    Accurately characterizing the anomalous diffusion of a tracer particle has become a central issue in biophysics. However, measurement errors raise difficulty in the characterization of single trajectories, which is usually performed through the time-averaged mean square displacement (TAMSD). In this paper, we study a fractionally integrated moving average (FIMA) process as an appropriate model for anomalous diffusion data with measurement errors. We compare FIMA and traditional TAMSD estimators for the anomalous diffusion exponent. The ability of the FIMA framework to characterize dynamics in a wide range of anomalous exponents and noise levels through the simulation of a toy model (fractional Brownian motion disturbed by Gaussian white noise) is discussed. Comparison to the TAMSD technique, shows that FIMA estimation is superior in many scenarios. This is expected to enable new measurement regimes for single particle tracking (SPT) experiments even in the presence of high measurement errors.

  9. First passage times for a tracer particle in single file diffusion and fractional Brownian motion.

    Science.gov (United States)

    Sanders, Lloyd P; Ambjörnsson, Tobias

    2012-05-07

    We investigate the full functional form of the first passage time density (FPTD) of a tracer particle in a single-file diffusion (SFD) system whose population is: (i) homogeneous, i.e., all particles having the same diffusion constant and (ii) heterogeneous, with diffusion constants drawn from a heavy-tailed power-law distribution. In parallel, the full FPTD for fractional Brownian motion [fBm-defined by the Hurst parameter, H ∈ (0, 1)] is studied, of interest here as fBm and SFD systems belong to the same universality class. Extensive stochastic (non-Markovian) SFD and fBm simulations are performed and compared to two analytical Markovian techniques: the method of images approximation (MIA) and the Willemski-Fixman approximation (WFA). We find that the MIA cannot approximate well any temporal scale of the SFD FPTD. Our exact inversion of the Willemski-Fixman integral equation captures the long-time power-law exponent, when H ≥ 1/3, as predicted by Molchan [Commun. Math. Phys. 205, 97 (1999)] for fBm. When H well the FPTD for all times for homogeneous SFD and sub-diffusive fBm systems.

  10. Guidelines for the fitting of anomalous diffusion mean square displacement graphs from single particle tracking experiments.

    Directory of Open Access Journals (Sweden)

    Eldad Kepten

    Full Text Available Single particle tracking is an essential tool in the study of complex systems and biophysics and it is commonly analyzed by the time-averaged mean square displacement (MSD of the diffusive trajectories. However, past work has shown that MSDs are susceptible to significant errors and biases, preventing the comparison and assessment of experimental studies. Here, we attempt to extract practical guidelines for the estimation of anomalous time averaged MSDs through the simulation of multiple scenarios with fractional Brownian motion as a representative of a large class of fractional ergodic processes. We extract the precision and accuracy of the fitted MSD for various anomalous exponents and measurement errors with respect to measurement length and maximum time lags. Based on the calculated precision maps, we present guidelines to improve accuracy in single particle studies. Importantly, we find that in some experimental conditions, the time averaged MSD should not be used as an estimator.

  11. Optimal estimation of single-particle diffusion coefficients and kinetics of hOgg1 repair protein on DNA

    DEFF Research Database (Denmark)

    Flyvbjerg, Henrik

    How does one optimally determine the diffusion coefficient of a diffusing particle from a single-time-lapse recorded trajectory of the particle? We answer this question with an explicit, unbiased, and practically optimal covariance-based estimator (CVE). This estimator is regression-free and is far...... substrate, the CVE is biased by substrate motion. However, given some long time series and a substrate under some tension, an extended MLE can separate particle diffusion on the substrate from substrate motion in the laboratory frame. This provides benchmarks that allow removal of bias caused by substrate...

  12. Single-Molecule Fluorescence Microscopy Reveals Local Diffusion Coefficients in the Pore Network of an Individual Catalyst Particle

    NARCIS (Netherlands)

    Hendriks, Frank|info:eu-repo/dai/nl/412642697; Meirer, Florian; Kubarev, Alexey V.; Ristanovic, Zoran|info:eu-repo/dai/nl/328233005; Roeffaers, Maarten B J; Vogt, Eelco T. C.|info:eu-repo/dai/nl/073717398; Bruijnincx, Pieter C. A.|info:eu-repo/dai/nl/33799529X; Weckhuysen, Bert M.|info:eu-repo/dai/nl/285484397

    2017-01-01

    We used single-molecule fluorescence microscopy to study self-diffusion of a feedstock-like probe molecule with nanometer accuracy in the macropores of a micrometer-sized, real-life fluid catalytic cracking (FCC) particle. Movies of single fluorescent molecules allowed their movement through the

  13. Optimal Estimation of Diffusion Coefficients from Noisy Time-Lapse-Recorded Single-Particle Trajectories

    DEFF Research Database (Denmark)

    Vestergaard, Christian Lyngby

    2012-01-01

    Optimal Estimation of Diusion Coecients from Noisy Time-Lapse- Measurements of Single-Particle Trajectories Single-particle tracking techniques allow quantitative measurements of diusion at the single-molecule level. Recorded time-series are mostly short and contain considerable measurement noise....... The standard method for estimating diusion coecients from single-particle trajectories is based on leastsquares tting to the experimentally measured mean square displacements. This method is highly inecient, since it ignores the high correlations inherent in these. We derive the exact maximum likelihood...... parameter values. We extend the methods to particles diusing on a uctuating substrate, e.g., exible or semi exible polymers such as DNA, and show that uctuations induce an important bias in the estimates of diusion coecients if they are not accounted for. We apply the methods to obtain precise estimates...

  14. Confined Diffusion Without Fences of a G-Protein-Coupled Receptor as Revealed by Single Particle Tracking

    Science.gov (United States)

    Daumas, Frédéric; Destainville, Nicolas; Millot, Claire; Lopez, André; Dean, David; Salomé, Laurence

    2003-01-01

    Single particle tracking is a powerful tool for probing the organization and dynamics of the plasma membrane constituents. We used this technique to study the μ-opioid receptor belonging to the large family of the G-protein-coupled receptors involved with other partners in a signal transduction pathway. The specific labeling of the receptor coupled to a T7-tag at its N-terminus, stably expressed in fibroblastic cells, was achieved by colloidal gold coupled to a monoclonal anti T7-tag antibody. The lateral movements of the particles were followed by nanovideomicroscopy at 40 ms time resolution during 2 min with a spatial precision of 15 nm. The receptors were found to have either a slow or directed diffusion mode (10%) or a walking confined diffusion mode (90%) composed of a long-term random diffusion and a short-term confined diffusion, and corresponding to a diffusion confined within a domain that itself diffuses. The results indicate that the confinement is due to an effective harmonic potential generated by long-range attraction between the membrane proteins. A simple model for interacting membrane proteins diffusion is proposed that explains the variations with the domain size of the short-term and long-term diffusion coefficients. PMID:12524289

  15. Tagged particle in single-file diffusion with arbitrary initial conditions

    Science.gov (United States)

    Cividini, J.; Kundu, A.

    2017-08-01

    We compute the full probability distribution of the positions of a tagged particle exactly for the given arbitrary initial positions of the particles, and for general single-particle propagators. We consider the thermodynamic limit of our exact expressions in quenched and annealed settings. For a particular class of single-particle propagators, the exact formula is expressed in a simple integral form in the quenched case whereas in the annealed case, it is expressed as a simple combination of Bessel functions. In particular, we focus on the step and the power-law initial configurations. In the former case, a drift is induced even when the one-particle propagators are symmetric. On the other hand, in the later case the scaling of the cumulants of the position of the tracer differs from the uniform case. We provide numerical verifications of our results.

  16. Detection of Diffusion Heterogeneity in Single Particle Tracking Trajectories Using a Hidden Markov Model with Measurement Noise Propagation

    Science.gov (United States)

    Slator, Paddy J.; Cairo, Christopher W.; Burroughs, Nigel J.

    2015-01-01

    We develop a Bayesian analysis framework to detect heterogeneity in the diffusive behaviour of single particle trajectories on cells, implementing model selection to classify trajectories as either consistent with Brownian motion or with a two-state (diffusion coefficient) switching model. The incorporation of localisation accuracy is essential, as otherwise false detection of switching within a trajectory was observed and diffusion coefficient estimates were inflated. Since our analysis is on a single trajectory basis, we are able to examine heterogeneity between trajectories in a quantitative manner. Applying our method to the lymphocyte function-associated antigen 1 (LFA-1) receptor tagged with latex beads (4 s trajectories at 1000 frames s−1), both intra- and inter-trajectory heterogeneity were detected; 12–26% of trajectories display clear switching between diffusive states dependent on condition, whilst the inter-trajectory variability is highly structured with the diffusion coefficients being related by D 1 = 0.68D 0 − 1.5 × 104 nm2 s−1, suggestive that on these time scales we are detecting switching due to a single process. Further, the inter-trajectory variability of the diffusion coefficient estimates (1.6 × 102 − 2.6 × 105 nm2 s−1) is very much larger than the measurement uncertainty within trajectories, suggesting that LFA-1 aggregation and cytoskeletal interactions are significantly affecting mobility, whilst the timescales of these processes are distinctly different giving rise to inter- and intra-trajectory variability. There is also an ‘immobile’ state (defined as D models within membranes incorporating aggregation, binding to the cytoskeleton, or traversing membrane microdomains. PMID:26473352

  17. Connecting diffusion and entropy of bulk water at the single particle ...

    Indian Academy of Sciences (India)

    The relation between the dynamic (e.g., diffusion) and thermodynamic (e.g., entropy) properties of water and water-like liquids has been an active area of research for a long time. Although several studies have investigated the diffusivity and entropy for different systems, these studies have probed either the configurational ...

  18. Connecting diffusion and entropy of bulk water at the single particle ...

    Indian Academy of Sciences (India)

    DEBASIS SAHA

    coefficients of water molecules at these temperatures. We find that diffusion also shows the well-known fragile to strong crossover transition at around the same temperature where transition in entropy values has been seen. We have calculated both kinetic and thermodynamic fragilities and crossover points using diffusion ...

  19. Lipid diffusion in the distal and proximal leaflets of supported lipid bilayer membranes studied by single particle tracking

    Science.gov (United States)

    Schoch, Rafael L.; Barel, Itay; Brown, Frank L. H.; Haran, Gilad

    2018-03-01

    Supported lipid bilayers (SLBs) have been studied extensively as simple but powerful models for cellular membranes. Yet, potential differences in the dynamics of the two leaflets of a SLB remain poorly understood. Here, using single particle tracking, we obtain a detailed picture of bilayer dynamics. We observe two clearly separate diffusing populations, fast and slow, that we associate with motion in the distal and proximal leaflets of the SLB, respectively, based on fluorescence quenching experiments. We estimate diffusion coefficients using standard techniques as well as a new method based on the blur of images due to motion. Fitting the observed diffusion coefficients to a two-leaflet membrane hydrodynamic model allows for the simultaneous determination of the intermonolayer friction coefficient and the substrate-membrane friction coefficient, without any prior assumptions on the strengths of the relevant interactions. Remarkably, our calculations suggest that the viscosity of the interfacial water confined between the membrane and the substrate is elevated by ˜104 as compared to bulk water. Using hidden Markov model analysis, we then obtain insight into the transbilayer movement of lipids. We find that lipid flip-flop dynamics are very fast, with half times in the range of seconds. Importantly, we find little evidence for membrane defect mediated lipid flip-flop for SLBs at temperatures well above the solid-to-liquid transition, though defects seem to be involved when the SLBs are cooled down. Our work thus shows that the combination of single particle tracking and advanced hydrodynamic modeling provides a powerful means to obtain insight into membrane dynamics.

  20. Connecting diffusion and entropy of bulk water at the single particle ...

    Indian Academy of Sciences (India)

    DEBASIS SAHA

    of the velocity auto correlation function (VACF). Diffusion coefficients were calculated from VACF using the following. Green-Kubo relation,41. D = 1 d. ∫ ∞. 0 dt〈V(0).V(t)〉,. (4) where d is the dimensionality and V is the velocity vector. The ... lations, the method known as permutation reduction (PR)43,44 developed by ...

  1. Particle diffusion in a spheromak

    International Nuclear Information System (INIS)

    Meyerhofer, D.D.; Levinton, F.M.; Yamada, M.

    1988-01-01

    The local carbon particle diffusion coefficient was measured in the Proto S-1/C spheromak using a test particle injection scheme. When the plasma was not in a force-free Taylor state, and when there were pressure gradients in the plasma, the particle diffusion was five times that predicted by Bohm and was consistent with collisional drift wave diffusion. The diffusion appears to be driven by correlations of the fluctuating electric field and density. During the decay phase of the discharge when the plasma was in the Taylor state, the diffusion coefficient of the carbon was classical. 23 refs., 4 figs

  2. Turbulent diffusion of small particles

    Energy Technology Data Exchange (ETDEWEB)

    Margolin, L.G.

    1977-11-01

    The diffusion of small, spherical, rigid particles suspended in an incompressible turbulent fluid, but not interacting with each other, was studied. As a stochastic process, the turbulent fluid velocity field is assumed to be homogeneous, isotropic and stationary. Assuming the Stokes regime, a particle of equation of motion is used which includes only the effects of Stokes drag and a virtual mass force and an exact solution is found for the particle velocity correlation function, for all times and initial conditions, in terms of a fluid velocity correlation function measured along the motion of the particle. This shows that for times larger than a certain time scale, the particle velocity correlation becomes stationary. The effect of small shears in the fluid velocity was considered, under the additional restrictions of a certain high frequency regime for the turbulence. The shears convected past the particle much faster than the growth of the boundary layer. New force terms due to the presence of such shears are calculated and incorporated into the equation of motion. A perturbation solution to this equation is constructed, and the resultant particle velocity correlation function and diffusion coefficient are calculated. To lowest order, the particle diffusivity is found to be unaltered by the presence of small mean flow shears. The last model treated is one in which particles traverse a turbulent fluid with a large mean velocity. Among other restrictions, linearized form drag is assumed. The diffusion coefficient for such particles was calculated, and found to be much smaller than the passive scalar diffusion coefficient. This agrees within 5 percent with the experimental results of Snyder and Lumley.

  3. Turbulent diffusion of small particles

    International Nuclear Information System (INIS)

    Margolin, L.G.

    1977-11-01

    The diffusion of small, spherical, rigid particles suspended in an incompressible turbulent fluid, but not interacting with each other, was studied. As a stochastic process, the turbulent fluid velocity field is assumed to be homogeneous, isotropic and stationary. Assuming the Stokes regime, a particle of equation of motion is used which includes only the effects of Stokes drag and a virtual mass force and an exact solution is found for the particle velocity correlation function, for all times and initial conditions, in terms of a fluid velocity correlation function measured along the motion of the particle. This shows that for times larger than a certain time scale, the particle velocity correlation becomes stationary. The effect of small shears in the fluid velocity was considered, under the additional restrictions of a certain high frequency regime for the turbulence. The shears convected past the particle much faster than the growth of the boundary layer. New force terms due to the presence of such shears are calculated and incorporated into the equation of motion. A perturbation solution to this equation is constructed, and the resultant particle velocity correlation function and diffusion coefficient are calculated. To lowest order, the particle diffusivity is found to be unaltered by the presence of small mean flow shears. The last model treated is one in which particles traverse a turbulent fluid with a large mean velocity. Among other restrictions, linearized form drag is assumed. The diffusion coefficient for such particles was calculated, and found to be much smaller than the passive scalar diffusion coefficient. This agrees within 5 percent with the experimental results of Snyder and Lumley

  4. A study of the diffusion dynamics and concentration distribution of gold nanospheres (GNSs) without fluorescent labeling inside live cells using fluorescence single particle spectroscopy.

    Science.gov (United States)

    Liu, Fangchao; Dong, Chaoqing; Ren, Jicun

    2018-03-15

    Colloidal gold nanospheres (GNSs) have become important nanomaterials in biomedical applications due to their special optical properties, good chemical stability, and biocompatibility. However, measuring the diffusion coefficients or concentration distribution of GNSs within live cells accurately without any extra fluorescent labeling in situ has still not been resolved. In this work, a single particle method is developed to study the concentration distribution of folic acid-modified GNSs (FA-GNSs) internalized via folate receptors, and investigates their diffusion dynamics within live cells using single particle fluorescence correlation spectroscopy (FCS). We optimized the experimental conditions and verified the feasibility of 30 nm GNSs without extra fluorescence labeling being used for single particle detection inside live cells. Then, the FCS characterization strategy was used to measure the concentration and diffusion coefficient distributions of GNSs inside live cells and the obtained results were basically in agreement with those obtained by TEM. The results demonstrate that our strategy is characterized as an in situ, nondestructive, rapid and dynamic method for the assay of live cells, and it may be widely used in the further design of GNP-based drug delivery and therapeutics.

  5. Free-Propagator Reweighting Integrator for Single-Particle Dynamics in Reaction-Diffusion Models of Heterogeneous Protein-Protein Interaction Systems

    Directory of Open Access Journals (Sweden)

    Margaret E. Johnson

    2014-09-01

    Full Text Available We present a new algorithm for simulating reaction-diffusion equations at single-particle resolution. Our algorithm is designed to be both accurate and simple to implement, and to be applicable to large and heterogeneous systems, including those arising in systems biology applications. We combine the use of the exact Green’s function for a pair of reacting particles with the approximate free-diffusion propagator for position updates to particles. Trajectory reweighting in our free-propagator reweighting (FPR method recovers the exact association rates for a pair of interacting particles at all times. FPR simulations of many-body systems accurately reproduce the theoretically known dynamic behavior for a variety of different reaction types. FPR does not suffer from the loss of efficiency common to other path-reweighting schemes, first, because corrections apply only in the immediate vicinity of reacting particles and, second, because by construction the average weight factor equals one upon leaving this reaction zone. FPR applications include the modeling of pathways and networks of protein-driven processes where reaction rates can vary widely and thousands of proteins may participate in the formation of large assemblies. With a limited amount of bookkeeping necessary to ensure proper association rates for each reactant pair, FPR can account for changes to reaction rates or diffusion constants as a result of reaction events. Importantly, FPR can also be extended to physical descriptions of protein interactions with long-range forces, as we demonstrate here for Coulombic interactions.

  6. Diffusion of Finite-Size Particles in Confined Geometries

    KAUST Repository

    Bruna, Maria

    2013-05-10

    The diffusion of finite-size hard-core interacting particles in two- or three-dimensional confined domains is considered in the limit that the confinement dimensions become comparable to the particle\\'s dimensions. The result is a nonlinear diffusion equation for the one-particle probability density function, with an overall collective diffusion that depends on both the excluded-volume and the narrow confinement. By including both these effects, the equation is able to interpolate between severe confinement (for example, single-file diffusion) and unconfined diffusion. Numerical solutions of both the effective nonlinear diffusion equation and the stochastic particle system are presented and compared. As an application, the case of diffusion under a ratchet potential is considered, and the change in transport properties due to excluded-volume and confinement effects is examined. © 2013 Society for Mathematical Biology.

  7. Diffusion of finite-size particles in confined geometries.

    Science.gov (United States)

    Bruna, Maria; Chapman, S Jonathan

    2014-04-01

    The diffusion of finite-size hard-core interacting particles in two- or three-dimensional confined domains is considered in the limit that the confinement dimensions become comparable to the particle's dimensions. The result is a nonlinear diffusion equation for the one-particle probability density function, with an overall collective diffusion that depends on both the excluded-volume and the narrow confinement. By including both these effects, the equation is able to interpolate between severe confinement (for example, single-file diffusion) and unconfined diffusion. Numerical solutions of both the effective nonlinear diffusion equation and the stochastic particle system are presented and compared. As an application, the case of diffusion under a ratchet potential is considered, and the change in transport properties due to excluded-volume and confinement effects is examined.

  8. Diffusion of spherical particles in microcavities

    OpenAIRE

    Imperio, A.; Padding, J. T.; Briels, W. J.

    2011-01-01

    The diffusive motion of a colloidal particle trapped inside a small cavity filled with fluid is reduced by hydrodynamic interactions with the confining walls. In this work, we study these wall effects on a spherical particle entrapped in a closed cylinder. We calculate the diffusion coefficient along the radial, azimuthal and axial direction for different particle positions. At all locations the diffusion is smaller than in a bulk fluid and it becomes anisotropic near the container's walls. W...

  9. Activation energy for mobility of dyes and proteins in polymer solutions: from diffusion of single particles to macroscale flow.

    Science.gov (United States)

    Sozański, Krzysztof; Wiśniewska, Agnieszka; Kalwarczyk, Tomasz; Hołyst, Robert

    2013-11-27

    We measure the activation energy Ea for the diffusion of molecular probes (dyes and proteins of radii from 0.52 to 6.9 nm) and for macroscopic flow in a model complex liquid-aqueous solutions of polyethylene glycol. We cover a broad range of polymer molecular weights, concentrations, and temperatures. Fluorescence correlation spectroscopy and rheometry experiments reveal a relationship between the excess of the activation energy in polymer solutions over the one in pure solvent ΔEa and simple parameters describing the structure of the system: probe radius, polymer hydrodynamic radius, and correlation length. ΔEa varies by more than an order of magnitude in the investigated systems (in the range of ca. 1-15 kJ/mol) and for probes significantly larger than the polymer hydrodynamic radius approaches the value measured for macroscopic flow. We develop an explicit formula describing the smooth transition of ΔEa from the diffusion of molecular probes to macroscopic flow. This formula is a reference for the quantitative analysis of specific interactions of moving nano-objects with their environment as well as active transport. For instance, the power developed by a molecular motor moving at constant velocity u is proportional to u2exp(Ea/RT).

  10. Single file diffusion into a semi-infinite tube.

    Science.gov (United States)

    Farrell, Spencer G; Brown, Aidan I; Rutenberg, Andrew D

    2015-11-23

    We investigate single file diffusion (SFD) of large particles entering a semi-infinite tube, such as luminal diffusion of proteins into microtubules or flagella. While single-file effects have no impact on the evolution of particle density, we report significant single-file effects for individually tracked tracer particle motion. Both exact and approximate ordering statistics of particles entering semi-infinite tubes agree well with our stochastic simulations. Considering initially empty semi-infinite tubes, with particles entering at one end starting from an initial time t = 0, tracked particles are initially super-diffusive after entering the system, but asymptotically diffusive at later times. For finite time intervals, the ratio of the net displacement of individual single-file particles to the average displacement of untracked particles is reduced at early times and enhanced at later times. When each particle is numbered, from the first to enter (n = 1) to the most recent (n = N), we find good scaling collapse of this distance ratio for all n. Experimental techniques that track individual particles, or local groups of particles, such as photo-activation or photobleaching of fluorescently tagged proteins, should be able to observe these single-file effects. However, biological phenomena that depend on local concentration, such as flagellar extension or luminal enzymatic activity, should not exhibit single-file effects.

  11. Single-particle dispersion in compressible turbulence

    Science.gov (United States)

    Zhang, Qingqing; Xiao, Zuoli

    2018-04-01

    Single-particle dispersion statistics in compressible box turbulence are studied using direct numerical simulation. Focus is placed on the detailed discussion of effects of the particle Stokes number and turbulent Mach number, as well as the forcing type. When solenoidal forcing is adopted, it is found that the single-particle dispersion undergoes a transition from the ballistic regime at short times to the diffusive regime at long times, in agreement with Taylor's particle dispersion argument. The strongest dispersion of heavy particles is announced when the Stokes number is of order 1, which is similar to the scenario in incompressible turbulence. The dispersion tends to be suppressed as the Mach number increases. When hybrid solenoidal and compressive forcing at a ratio of 1/2 is employed, the flow field shows apparent anisotropic property, characterized by the appearance of large shock wave structures. Accordingly, the single-particle dispersion shows extremely different behavior from the solenoidal forcing case.

  12. A single particle energies

    Energy Technology Data Exchange (ETDEWEB)

    Bodmer, A.R. [Illinois Univ., Chicago, IL (United States). Dept. of Physics]|[Argonne National Lab., IL (United States); Usmani, Q.N.; Sami, M. [Jamia Millia Islamia, New Delhi (India). Dept. of Physics

    1993-09-01

    We consider the binding energies of {Lambda} hypernuclei (HN), in particular the single-particle (s.p.) energy data, which have been obtained for a wide range of HN with mass numbers A {le} 89 and for orbital angular momenta {ell}{sub {Lambda}} {le} 4. We briefly review some of the relevant properties of A hypernuclei. These are nuclei {sub {Lambda}}{sup A}Z with baryon number A in which a single {Lambda} hyperon (baryon number = 1) is bound to an ordinary nucleus {sup A}Z consisting of A - 1 nucleons = Z protons + N neutrons. The {Lambda} hyperon is neutral, has spin 1/2, strangeness S = {minus}1, isospin I = O and a mass M{sub {Lambda}} = 1116 MeV/c{sup 2}. Although the {Lambda} interacts with a nucleon, its interaction is only about half as strong as that between two nucleons, and thus very roughly V{sub {Lambda}N} {approx} 0.5 V{sub NN}. As a result, the two-body {Lambda}N system is unbound, and the lightest bound HN is the three-body hypertriton {sub {Lambda}}{sup 3}H in which the {Lambda} is bound to a deuteron with the {Lambda}-d separation energy being only {approx} 0.1 MeV corresponding to an exponential tail of radius {approx} 15 fm! In strong interactions the strangeness S is of course conserved, and the {Lambda} is distinct from the nucleons. In a HN strangeness changes only in the weak decays of the {Lambda} which can decay either via ``free`` pionic decay {Lambda} {yields} N + {pi} or via induced decay {Lambda} + N {yields} N + N which is only possible in the presence of nucleons. Because of the small energy release the pionic decay is strongly suppressed in all but the lightest HN and the induced decay dominates. However, the weak decay lifetime {approx} 10{sup {minus}10}s is in fact close to the lifetime of a free {Lambda}. Since this is much longer than the strong interaction time {approx} 10{sup {minus}22}s we can ignore the weak interactions when considering the binding of HN, just as for ordinary nuclei.

  13. A single particle energies

    International Nuclear Information System (INIS)

    Bodmer, A.R.; Usmani, Q.N.; Sami, M.

    1993-01-01

    We consider the binding energies of Λ hypernuclei (HN), in particular the single-particle (s.p.) energy data, which have been obtained for a wide range of HN with mass numbers A ≤ 89 and for orbital angular momenta ell Λ ≤ 4. We briefly review some of the relevant properties of A hypernuclei. These are nuclei Λ A Z with baryon number A in which a single Λ hyperon (baryon number = 1) is bound to an ordinary nucleus A Z consisting of A - 1 nucleons = Z protons + N neutrons. The Λ hyperon is neutral, has spin 1/2, strangeness S = -1, isospin I = O and a mass M Λ = 1116 MeV/c 2 . Although the Λ interacts with a nucleon, its interaction is only about half as strong as that between two nucleons, and thus very roughly V ΛN ∼ 0.5 V NN . As a result, the two-body ΛN system is unbound, and the lightest bound HN is the three-body hypertriton Λ 3 H in which the Λ is bound to a deuteron with the Λ-d separation energy being only ∼ 0.1 MeV corresponding to an exponential tail of radius ∼ 15 fm exclamation point In strong interactions the strangeness S is of course conserved, and the Λ is distinct from the nucleons. In a HN strangeness changes only in the weak decays of the Λ which can decay either via ''free'' pionic decay Λ → N + π or via induced decay Λ + N → N + N which is only possible in the presence of nucleons. Because of the small energy release the pionic decay is strongly suppressed in all but the lightest HN and the induced decay dominates. However, the weak decay lifetime ∼ 10 -10 s is in fact close to the lifetime of a free Λ. Since this is much longer than the strong interaction time ∼ 10 -22 s we can ignore the weak interactions when considering the binding of HN, just as for ordinary nuclei

  14. Particle diffusion in complex nanoscale pore networks

    DEFF Research Database (Denmark)

    Müter, Dirk; Sørensen, Henning Osholm; Bock, H.

    2015-01-01

    We studied the diffusion of particles in the highly irregular pore networks of chalk, a very fine-grained rock, by combining three-dimensional X-ray imaging and dissipative particle dynamics (DPD) simulations. X-ray imaging data were collected at 25 nm voxel dimension for two chalk samples...... with very different porosities (4% and 26%). The three-dimensional pore systems derived from the tomograms were imported into DPD simulations and filled with spherical particles of variable diameter and with an optional attractive interaction to the pore surfaces. We found that diffusion significantly...

  15. Particle Simulation of Fractional Diffusion Equations

    KAUST Repository

    Allouch, Samer

    2017-07-12

    This work explores different particle-based approaches to the simulation of one-dimensional fractional subdiffusion equations in unbounded domains. We rely on smooth particle approximations, and consider four methods for estimating the fractional diffusion term. The first method is based on direct differentiation of the particle representation, it follows the Riesz definition of the fractional derivative and results in a non-conservative scheme. The other three methods follow the particle strength exchange (PSE) methodology and are by construction conservative, in the sense that the total particle strength is time invariant. The first PSE algorithm is based on using direct differentiation to estimate the fractional diffusion flux, and exploiting the resulting estimates in an integral representation of the divergence operator. Meanwhile, the second one relies on the regularized Riesz representation of the fractional diffusion term to derive a suitable interaction formula acting directly on the particle representation of the diffusing field. A third PSE construction is considered that exploits the Green\\'s function of the fractional diffusion equation. The performance of all four approaches is assessed for the case of a one-dimensional diffusion equation with constant diffusivity. This enables us to take advantage of known analytical solutions, and consequently conduct a detailed analysis of the performance of the methods. This includes a quantitative study of the various sources of error, namely filtering, quadrature, domain truncation, and time integration, as well as a space and time self-convergence analysis. These analyses are conducted for different values of the order of the fractional derivatives, and computational experiences are used to gain insight that can be used for generalization of the present constructions.

  16. Diffusivity measurements of volatile organics in levitated viscous aerosol particles

    Directory of Open Access Journals (Sweden)

    S. Bastelberger

    2017-07-01

    Full Text Available Field measurements indicating that atmospheric secondary organic aerosol (SOA particles can be present in a highly viscous, glassy state have spurred numerous studies addressing low diffusivities of water in glassy aerosols. The focus of these studies is on kinetic limitations of hygroscopic growth and the plasticizing effect of water. In contrast, much less is known about diffusion limitations of organic molecules and oxidants in viscous matrices. These may affect atmospheric chemistry and gas–particle partitioning of complex mixtures with constituents of different volatility. In this study, we quantify the diffusivity of a volatile organic in a viscous matrix. Evaporation of single particles generated from an aqueous solution of sucrose and small amounts of volatile tetraethylene glycol (PEG-4 is investigated in an electrodynamic balance at controlled relative humidity (RH and temperature. The evaporative loss of PEG-4 as determined by Mie resonance spectroscopy is used in conjunction with a radially resolved diffusion model to retrieve translational diffusion coefficients of PEG-4. Comparison of the experimentally derived diffusivities with viscosity estimates for the ternary system reveals a breakdown of the Stokes–Einstein relationship, which has often been invoked to infer diffusivity from viscosity. The evaporation of PEG-4 shows pronounced RH and temperature dependencies and is severely depressed for RH ≲ 30 %, corresponding to diffusivities < 10−14 cm2 s−1 at temperatures < 15 °C. The temperature dependence is strong, suggesting a diffusion activation energy of about 300 kJ mol−1. We conclude that atmospheric volatile organic compounds can be subject to severe diffusion limitations in viscous organic aerosol particles. This may enable an important long-range transport mechanism for organic material, including pollutant molecules such as polycyclic aromatic hydrocarbons (PAHs.

  17. Diffusion of tagged particle in an exclusion process.

    Science.gov (United States)

    Barkai, E; Silbey, R

    2010-04-01

    We study the diffusion of tagged hard-core interacting Brownian point particles under the influence of an external force field in one dimension. Using the Jepsen line we map this many-particle problem onto a single particle one. We obtain general equations for the distribution and the mean-square displacement of the tagged center particle valid for rather general external force fields and initial conditions. The case of symmetric distribution of initial conditions around the initial position of the tagged particle on x=0 and symmetric potential fields V(x)=V(-x) yields zero drift =0 and is investigated in detail. We find =R(1-R)/2Nr2 where 2N is the (large) number of particles in the system. R is a single particle reflection coefficient, i.e., the probability that a particle free of collisions starts on x0>0 and remains in x>0 while r is the probability density of noninteracting particles on the origin. We show that this equation is related to the mathematical theory of order statistics and it can be used to find even when the motion between collision events is not Brownian (e.g., it might be ballistic or anomalous diffusion). As an example we derive the Percus relation for non-Gaussian diffusion. A wide range of physical behaviors emerge which are very different than the classical single file subdiffusion approximately t1/2 found for uniformly distributed particles in an infinite space and in the absence of force fields.

  18. Diffusion of single oxidation pond

    Directory of Open Access Journals (Sweden)

    Song Ruo-Yuan

    2016-01-01

    Full Text Available The hydraulic characteristic of an oxidation pond was studied by the tracer experiment, and an empirical formula of Peclet number was obtained, which can be well applied to the model of plug flow reactor with longitudinal diffusion.

  19. Single particle tracking and single molecule energy transfer

    CERN Document Server

    Bräuchle, Christoph; Michaelis, Jens

    2009-01-01

    Closing a gap in the literature, this handbook gathers all the information on single particle tracking and single molecule energy transfer. It covers all aspects of this hot and modern topic, from detecting virus entry to membrane diffusion, and from protein folding using spFRET to coupled dye systems, as well recent achievements in the field. Throughout, the first-class editors and top international authors present content of the highest quality, making this a must-have for physical chemists, spectroscopists, molecular physicists and biochemists.

  20. First-passage dynamics of obstructed tracer particle diffusion in one-dimensional systems

    OpenAIRE

    Forsling, Robin; Sanders, Lloyd; Ambjörnsson, Tobias; Lizana, Ludvig

    2014-01-01

    The standard setup for single-file diffusion is diffusing particles in one dimension which cannot overtake each other, where the dynamics of a tracer (tagged) particle is of main interest. In this article we generalise this system and investigate first-passage properties of a tracer particle when flanked by crowder particles which may, besides diffuse, unbind (rebind) from (to) the one-dimensional lattice with rates $k_{\\rm off}$ ($k_{\\rm on}$). The tracer particle is restricted to diffuse wi...

  1. Single Crystal Diffuse Neutron Scattering

    Directory of Open Access Journals (Sweden)

    Richard Welberry

    2018-01-01

    Full Text Available Diffuse neutron scattering has become a valuable tool for investigating local structure in materials ranging from organic molecular crystals containing only light atoms to piezo-ceramics that frequently contain heavy elements. Although neutron sources will never be able to compete with X-rays in terms of the available flux the special properties of neutrons, viz. the ability to explore inelastic scattering events, the fact that scattering lengths do not vary systematically with atomic number and their ability to scatter from magnetic moments, provides strong motivation for developing neutron diffuse scattering methods. In this paper, we compare three different instruments that have been used by us to collect neutron diffuse scattering data. Two of these are on a spallation source and one on a reactor source.

  2. Diffusive separation of particles by diffusion in swirled turbulent flows

    International Nuclear Information System (INIS)

    Arbuzov, V.N.; Shiliaev, M.I.

    1984-01-01

    An analysis of the dynamics of turbulent flow and diffusive separation of solid particles in a centrifugal air separator (consisting of two flat disks rotating at the same angular velocity) is presented. A closed set of balances for all the components of the tensor of turbulent stresses, extended to the entire flow region, is employed in the numerical analysis of transition and turbulent air flows between the rotating disks. The analytical relationships obtained for the case of the mixed flow for the various components of the average velocity, energy of fluctuations, and turbulence level in the circumferential direction agreed well with the theoretical and experimental distributions of Bakke, et al. (1973). It is shown that at high Reynolds numbers the flow is isotropic, the dependence of the circumferential component of the average velocity obeys a power law, and the generation of the radial component is controlled by the local centrifugal field. The sharpness of particle separation was calculated by the eddy diffusion equation and was found to depend on the geometry and the operating conditions. 8 references

  3. Mapping intracellular diffusion distribution using single quantum dot tracking: compartmentalized diffusion defined by endoplasmic reticulum.

    Science.gov (United States)

    Li, Hui; Dou, Shuo-Xing; Liu, Yu-Ru; Li, Wei; Xie, Ping; Wang, Wei-Chi; Wang, Peng-Ye

    2015-01-14

    The crowded intracellular environment influences the diffusion-mediated cellular processes, such as metabolism, signaling, and transport. The hindered diffusion of macromolecules in heterogeneous cytoplasm has been studied over years, but the detailed diffusion distribution and its origin still remain unclear. Here, we introduce a novel method to map rapidly the diffusion distribution in single cells based on single-particle tracking (SPT) of quantum dots (QDs). The diffusion map reveals the heterogeneous intracellular environment and, more importantly, an unreported compartmentalization of QD diffusions in cytoplasm. Simultaneous observations of QD motion and green fluorescent protein-tagged endoplasmic reticulum (ER) dynamics provide direct evidence that the compartmentalization results from micron-scale domains defined by ER tubules, and ER cisternae form perinuclear areas that restrict QDs to enter. The same phenomenon was observed using fluorescein isothiocyanate-dextrans, further confirming the compartmentalized diffusion. These results shed new light on the diffusive movements of macromolecules in the cell, and the mapping of intracellular diffusion distribution may be used to develop strategies for nanoparticle-based drug deliveries and therapeutics.

  4. Single Particle Entropy in Heated Nuclei

    International Nuclear Information System (INIS)

    Guttormsen, M.; Chankova, R.; Hjorth-Jensen, M.; Rekstad, J.; Siem, S.; Sunde, A. C.; Syed, N. U. H.; Agvaanluvsan, U.; Schiller, A.; Voinov, A.

    2006-01-01

    The thermal motion of single particles represents the largest contribution to level density (or entropy) in atomic nuclei. The concept of single particle entropy is presented and shown to be an approximate extensive (additive) quantity for mid-shell nuclei. A few applications of single particle entropy are demonstrated

  5. Oxygen diffusion in single crystal barium titanate.

    Science.gov (United States)

    Kessel, Markus; De Souza, Roger A; Martin, Manfred

    2015-05-21

    Oxygen diffusion in cubic, nominally undoped, (100) oriented BaTiO3 single crystals has been studied by means of (18)O2/(16)O2 isotope exchange annealing and subsequent determination of the isotope profiles in the solid by time-of-flight secondary ion mass spectrometry (ToF-SIMS). Experiments were carried out as a function of temperature 973 < T/K < 1173, at an oxygen activity of aO2 = 0.200, and as a function of oxygen activity 0.009 < aO2 < 0.900 at T = 1073 K. The oxygen isotope profiles comprise two parts: slow diffusion through a space-charge zone at the surface depleted of oxygen vacancies followed by faster diffusion in a homogeneous bulk phase. The entire isotope profile can be described by a single solution to the diffusion equation involving only three fitting parameters: the surface exchange coefficient ks*, the space-charge potential Φ0 and the bulk diffusion coefficient D*(∞). Analysis of the temperature and oxygen activity dependencies of D*(∞) and Φ0 yields a consistent picture of both the bulk and the interfacial defect chemistry of BaTiO3. Values of the oxygen vacancy diffusion coefficient DV extracted from measured D*(∞) data are compared with literature data; consequently a global expression for the vacancy diffusivity in BaTiO3 for the temperature range 466 < T/K < 1273 is obtained, with an activation enthalpy of vacancy migration, ΔHmig,V = (0.70 ± 0.04) eV.

  6. Nanoscale Rheology and Anisotropic Diffusion Using Single Gold Nanorod Probes

    Science.gov (United States)

    Molaei, Mehdi; Atefi, Ehsan; Crocker, John C.

    2018-03-01

    The complex rotational and translational Brownian motion of anisotropic particles depends on their shape and the viscoelasticity of their surroundings. Because of their strong optical scattering and chemical versatility, gold nanorods would seem to provide the ultimate probes of rheology at the nanoscale, but the suitably accurate orientational tracking required to compute rheology has not been demonstrated. Here we image single gold nanorods with a laser-illuminated dark-field microscope and use optical polarization to determine their three-dimensional orientation to better than one degree. We convert the rotational diffusion of single nanorods in viscoelastic polyethylene glycol solutions to rheology and obtain excellent agreement with bulk measurements. Extensions of earlier models of anisotropic translational diffusion to three dimensions and viscoelastic fluids give excellent agreement with the observed motion of single nanorods. We find that nanorod tracking provides a uniquely capable approach to microrheology and provides a powerful tool for probing nanoscale dynamics and structure in a range of soft materials.

  7. Particle diffusion by magnetic perturbations of axisymmetric geometries

    Energy Technology Data Exchange (ETDEWEB)

    Mynick, H.E.; Krommes, J.A.

    1979-08-01

    The quasilinear theory of collisionless test particle diffusion in stochastic magnetic fields is extended to include the effects of finite gyroradius, particle drifts, and magnetic trapping. Runaway confinement is substantially improved relative to earlier estimates which assumed that particles exactly followed field lines. Trapped particles are not expected to be stochastic.

  8. Saha equation, single and two particle states

    Science.gov (United States)

    Kraeft, W. D.; Girardeau, M. D.; Strege, B.

    1990-01-01

    Single- and two-particle properties in a dense plasma are discussed in connection with their role in the mass action law for a partially ionized plasma. The two-particle-bound states are nearly density independent, while the continuum is essentially shifted. The single-particle states are damped, and their energy has a negative shift and a parabolic behavior for small momenta.

  9. Brightness calibrates particle size in single particle fluorescence imaging.

    Science.gov (United States)

    Liu, Zhihe; Sun, Zezhou; Di, Weihua; Qin, Weiping; Yuan, Zhen; Wu, Changfeng

    2015-04-01

    This Letter provides a novel approach to quantify the particle sizes of highly bright semiconductor polymer dots (Pdots) for single-particle imaging and photobleaching studies. A quadratic dependence of single-particle brightness on particle size was determined by single-particle fluorescence imaging and intensity statistics. In terms of the same imaging conditions, the particle diameter can be quantified by comparing the individual brightness intensity with associated calibration curve. Based on this sizing method, photobleaching trajectories and overall photon counts emitted by single particles were analyzed. It is found that photobleaching rate constants of different sized Pdots are not strongly dependent on particle diameter except the sparsely occurring fluorescence blinking in certain dim particles and the rapid photobleaching component in some bright particles. The overall photon counts increase with increasing particle diameter. However, those larger than 30 nm deviate away from the increasing tendency. These results reveal the significance of selecting appropriate Pdots (≤30  nm) for single-particle imaging and tracking applications.

  10. Rotational diffusion of particles in turbulence

    OpenAIRE

    Meyer, Colin R.; Variano, Evan A.

    2013-01-01

    Through laboratory measurements, we compare the rotation of spherical and ellipsoidal particles in homogeneous, isotropic turbulence. We find that the particles' angular velocity statistics are well described by an Ornstein-Uhlenbeck (OU) process. This theoretical model predicts that the Lagrangian autocovariance of particles' angular velocity will decay exponentially. We measure the autocovariance using stereoscopic particle image velocimetry (SPIV) applied to particles whose size is within ...

  11. Diffusion properties of active particles with directional reversal

    International Nuclear Information System (INIS)

    Großmann, R; Bär, M; Peruani, F

    2016-01-01

    The diffusion properties of self-propelled particles which move at constant speed and, in addition, reverse their direction of motion repeatedly are investigated. The internal dynamics of particles triggering these reversal processes is modeled by a stochastic clock. The velocity correlation function as well as the mean squared displacement is investigated and, furthermore, a general expression for the diffusion coefficient for self-propelled particles with directional reversal is derived. Our analysis reveals the existence of an optimal, finite rotational noise amplitude which maximizes the diffusion coefficient. We comment on the relevance of these results with regard to biological systems and suggest further experiments in this context. (paper)

  12. Universal large deviations for the tagged particle in single-file motion.

    Science.gov (United States)

    Hegde, Chaitra; Sabhapandit, Sanjib; Dhar, Abhishek

    2014-09-19

    We consider a gas of point particles moving in a one-dimensional channel with a hard-core interparticle interaction that prevents particle crossings--this is called single-file motion. Starting from equilibrium initial conditions we observe the motion of a tagged particle. It is well known that if the individual particle dynamics is diffusive, then the tagged particle motion is subdiffusive, while for ballistic particle dynamics, the tagged particle motion is diffusive. Here we compute the exact large deviation function for the tagged particle displacement and show that this is universal, independent of the individual dynamics.

  13. Parsing anomalous versus normal diffusive behavior of bedload sediment particles

    Science.gov (United States)

    Fathel, Siobhan; Furbish, David; Schmeeckle, Mark

    2016-01-01

    Bedload sediment transport is the basic physical ingredient of river evolution. Formulae exist for estimating transport rates, but the diffusive contribution to the sediment flux, and the associated spreading rate of tracer particles, are not clearly understood. The start-and-stop motions of sediment particles transported as bedload on a streambed mimic aspects of the Einstein–Smoluchowski description of the random-walk motions of Brownian particles. Using this touchstone description, recent work suggests the presence of anomalous diffusion, where the particle spreading rate differs from the linear dependence with time of Brownian behavior. We demonstrate that conventional measures of particle spreading reveal different attributes of bedload particle behavior depending on details of the calculation. When we view particle motions over start-and-stop timescales obtained from high-speed (250 Hz) imaging of coarse-sand particles, high-resolution measurements reveal ballistic-like behavior at the shortest (10−2 s) timescale, followed by apparent anomalous behavior due to correlated random walks in transition to normal diffusion (>10−1 s) – similar to Brownian particle behavior but involving distinctly different physics. However, when treated as a ‘virtual plume’ over this timescale range, particles exhibit inhomogeneous diffusive behavior because both the mean and the variance of particle travel distances increase nonlinearly with increasing travel times, a behavior that is unrelated to anomalous diffusion or to Brownian-like behavior. Our results indicate that care is needed in suggesting anomalous behavior when appealing to conventional measures of diffusion formulated for ideal particle systems.

  14. IUTAM symposium on hydrodynamic diffusion of suspended particles

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.H. [ed.

    1995-12-31

    Hydrodynamic diffusion refers to the fluctuating motion of nonBrownian particles (or droplets or bubbles) which occurs in a dispersion due to multiparticle interactions. For example, in a concentrated sheared suspension, particles do not move along streamlines but instead exhibit fluctuating motions as they tumble around each other. This leads to a net migration of particles down gradients in particle concentration and in shear rate, due to the higher frequency of encounters of a test particle with other particles on the side of the test particle which has higher concentration or shear rate. As another example, suspended particles subject to sedimentation, centrifugation, or fluidization, do not generally move relative to the fluid with a constant velocity, but instead experience diffusion-like fluctuations in velocity due to interactions with neighboring particles and the resulting variation in the microstructure or configuration of the suspended particles. In flowing granular materials, the particles interact through direct collisions or contacts (rather than through the surrounding fluid); these collisions also cause the particles to undergo fluctuating motions characteristic of diffusion processes. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  15. Charged Particle Diffusion in Isotropic Random Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Subedi, P.; Matthaeus, W. H.; Chuychai, P.; Parashar, T. N.; Chhiber, R. [Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716 (United States); Sonsrettee, W. [Faculty of Engineering and Technology, Panyapiwat Institute of Management, Nonthaburi 11120 (Thailand); Blasi, P. [INAF/Osservatorio Astrofisico di Arcetri, Largo E. Fermi, 5—I-50125 Firenze (Italy); Ruffolo, D. [Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Montgomery, D. [Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Dmitruk, P. [Departamento de Física Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Ciudad Universitaria, 1428 Buenos Aires (Argentina); Wan, M. [Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055 (China)

    2017-03-10

    The investigation of the diffusive transport of charged particles in a turbulent magnetic field remains a subject of considerable interest. Research has most frequently concentrated on determining the diffusion coefficient in the presence of a mean magnetic field. Here we consider the diffusion of charged particles in fully three-dimensional isotropic turbulent magnetic fields with no mean field, which may be pertinent to many astrophysical situations. We identify different ranges of particle energy depending upon the ratio of Larmor radius to the characteristic outer length scale of turbulence. Two different theoretical models are proposed to calculate the diffusion coefficient, each applicable to a distinct range of particle energies. The theoretical results are compared to those from computer simulations, showing good agreement.

  16. Distribution of lead in single atmospheric particles

    Science.gov (United States)

    Murphy, D. M.; Hudson, P. K.; Cziczo, D. J.; Gallavardin, S.; Froyd, K. D.; Johnston, M. V.; Middlebrook, A. M.; Reinard, M. S.; Thomson, D. S.; Thornberry, T.; Wexler, A. S.

    2007-06-01

    Three independent single particle mass spectrometers measured Pb in individual aerosol particles. These data provide unprecedented sensitivity and statistical significance for the measurement of Pb in single particles. This paper explores the reasons for the frequency of Pb in fine particles now that most gasoline is unleaded. Trace amounts of Pb were found in 5 to 25% of 250 to 3000 nm diameter particles sampled by both aircraft and surface instruments in the eastern and western United States. Over 5% of particles at a mountain site in Switzerland contained Pb. Particles smaller than 100 nm with high Pb content were also observed by an instrument that was only operated in urban areas. Lead was found on all types of particles, including Pb present on biomass burning particles from remote fires. Less common particles with high Pb contents contributed a majority of the total amount of Pb. Single particles with high Pb content often also contained alkali metals, Zn, Cu, Sn, As, and Sb. The association of Pb with Zn and other metals is also found in IMPROVE network filter data from surface sites. Sources of airborne Pb in the United States are reviewed for consistency with these data. The frequent appearance of trace Pb is consistent with widespread emissions of fine Pb particles from combustion sources followed by coagulation with larger particles during long-range transport. Industrial sources that directly emit Pb-rich particles also contribute to the observations. Clean regions of the western United States show some transport of Pb from Asia but most Pb over the United States comes from North American sources. Resuspension of Pb from soil contaminated by the years of leaded gasoline was not directly apparent.

  17. METAL DIFFUSION IN SMOOTHED PARTICLE HYDRODYNAMICS SIMULATIONS OF DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, David; Martel, Hugo [Département de physique, de génie physique et d’optique, Université Laval, Québec, QC, G1V 0A6 (Canada); Kawata, Daisuke, E-mail: david-john.williamson.1@ulaval.ca [Mullard Space Science Laboratory, University College London, Holmbury St Mary, Dorking, Surrey (United Kingdom)

    2016-05-10

    We perform a series of smoothed particle hydrodynamics simulations of isolated dwarf galaxies to compare different metal mixing models. In particular, we examine the role of diffusion in the production of enriched outflows and in determining the metallicity distributions of gas and stars. We investigate different diffusion strengths by changing the pre-factor of the diffusion coefficient, by varying how the diffusion coefficient is calculated from the local velocity distribution, and by varying whether the speed of sound is included as a velocity term. Stronger diffusion produces a tighter [O/Fe]–[Fe/H] distribution in the gas and cuts off the gas metallicity distribution function at lower metallicities. Diffusion suppresses the formation of low-metallicity stars, even with weak diffusion, and also strips metals from enriched outflows. This produces a remarkably tight correlation between “metal mass-loading” (mean metal outflow rate divided by mean metal production rate) and the strength of diffusion, even when the diffusion coefficient is calculated in different ways. The effectiveness of outflows at removing metals from dwarf galaxies and the metal distribution of the gas is thus dependent on the strength of diffusion. By contrast, we show that the metallicities of stars are not strongly dependent on the strength of diffusion, provided that some diffusion is present.

  18. Single particle composition measurements of artificial Calcium Carbonate aerosols

    Science.gov (United States)

    Zorn, S. R.; Mentel, T. F.; Schwinger, T.; Croteau, P. L.; Jayne, J.; Worsnop, D. R.; Trimborn, A.

    2012-12-01

    Mineral dust, with an estimated total source from natural and anthropogenic emissions of up to 2800 Tg/yr, is one of the two largest contributors to total aerosol mass, with only Sea salt having a similar source strength (up to 2600 Tg/yr). The composition of dust particles varies strongly depending on the production process and, most importantly, the source location. Therefore, the composition of single dust particles can be used both to trace source regions of air masses as well as to identify chemical aging processes. Here we present results of laboratory studies on generating artificial calcium carbonate (CaCO3) particles, a model compound for carbonaceous mineral dust particles. Particles were generated by atomizing an aqueous hydrogen carbonate solution. Water was removed using a silica diffusion dryer., then the particles were processed in an oven at temperatures up to 900°C, converting the hydrogen carbonate to its anhydrous form. The resulting aerosol was analyzed using an on-line single particle laser ablation aerosol particle time-of-flight mass spectrometer (LAAPTOF). The results confirm the conversion to calcium carbonate, and validate that the produced particles indeed can be used as a model compound for carbonaceous dust aerosols.

  19. Multidimensional and memory effects on diffusion of a particle

    International Nuclear Information System (INIS)

    Bao, Jing-Dong

    2001-01-01

    The diffusion of an overdamped Brownian particle in the two-dimensional (2D) channel bounded periodically by a parabola is studied, where the particle is subject to an additive white or colored noise. The diffusion rate constant D * of the particle is evaluated by the quasi-2D approximation and the effective potential approach, and the theoretical result is compared with the Langevin simulation. The properties of the diffusion rate constant are stressed for weak and strong noise cases. It is shown that, in an entropy channel, the value of D * in units of Q decreases with increasing intensity of the colored noise. In the presence of energetic barriers, a nonmonotonic behavior of the reduced diffusion rate constant D * Q -1 as a function of the noise intensity is shown

  20. Multiplex single particle analysis in microfluidics.

    Science.gov (United States)

    Dannhauser, D; Romeo, G; Causa, F; De Santo, I; Netti, P A

    2014-10-21

    A straightforward way to measure separated micrometric sized particles in microfluidic flow is reported. The light scattering profile (LSP) of each single particle is fully characterized by using a CMOS-camera based small angle light scattering (SALS) apparatus, ranging from 2° up to 30°. To ensure controlled particle passage through the incident laser, a viscoelastic 3D alignment effect by viscoelastic induced particle migration has been implemented in a simple and cost-effective microfluidic device. Different polystyrene particle sizes are measured in microfluidic flows and the obtained scattering signatures are matched with the Lorenz-Mie based scattering theory. The results confirm the possibility of using this apparatus for real multiplex particle analyses in microfluidic particle flows.

  1. Diffusion of particles over dynamically disordered lattice

    Czech Academy of Sciences Publication Activity Database

    Tarasenko, Alexander; Jastrabík, Lubomír

    2011-01-01

    Roč. 13, č. 6 (2011), s. 2300-2306 ISSN 1463-9076 R&D Projects: GA AV ČR KAN301370701; GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : diffusion * Monte Carlo simulations * dynamic disordered lattice Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.573, year: 2011

  2. Determining Pitch-angle Diffusion Coefficients from Test Particle Simulations

    Science.gov (United States)

    Ivascenko, Alex; Lange, Sebastian; Spanier, Felix; Vainio, Rami

    2016-12-01

    The transport and acceleration of charged particles in turbulent media are topics of great interest in space physics and interstellar astrophysics. These processes are dominated by the scattering of particles off magnetic irregularities. The scattering process itself is usually described by small-angle scattering, with the pitch-angle coefficient {D}μ μ playing a major role. Since the diffusion coefficient {D}μ μ can be determined analytically only for the approximation of quasilinear theory, the determination of this coefficient from numerical simulations has become more important. So far these simulations have yielded particle tracks for small-scale scattering, which can then be interpreted using the running diffusion coefficients. This method has a limited range of validity. This paper presents two new methods that allow for the calculation of the pitch-angle diffusion coefficient from numerical simulations. These methods no longer analyze particle trajectories and instead examine the change of particle distribution functions. It is shown that these methods provide better resolved results and allow for the analysis of strong turbulence. The application of these methods to Monte Carlo simulations of particle scattering and hybrid MHD-particle simulations is presented. Both analysis methods are able to recover the diffusion coefficients used as input for the Monte Carlo simulations and provide better results in MHD simulations, especially for stronger turbulence.

  3. The probe rules in single particle tracking

    DEFF Research Database (Denmark)

    Clausen, Mathias P.; Lagerholm, B. Christoffer

    2011-01-01

    Single particle tracking (SPT) enables light microscopy at a sub-diffraction limited spatial resolution by a combination of imaging at low molecular labeling densities and computational image processing. SPT and related single molecule imaging techniques have found a rapidly expanded use within...

  4. Reaction Gradients Viewed Inside Single Photoactive Particles

    Science.gov (United States)

    Alpert, P.; Corral Arroyo, P.; Dou, J.; Kreiger, U.; Luo, B.; Peter, T.; Ammann, M.

    2017-12-01

    In terms of chemical selectivity and spatial resolution, a technique known as scanning transmission X-ray microscopy coupled to near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS) is unmatched and will remain so for years into the future. We present a recent development coupling STXM/NEXAFS to a custom-built photochemical environmental reactor in which aerosol particles reside allowing for in situ chemical imaging. A laboratory investigation of metal-organic complex photochemistry was conducted. Transition metals are of great importance to atmospheric chemistry and aerosol photochemical aging due to their ability to catalyze oxidation reactions. Aerosol particles composed of mixtures of citric acid and iron citrate were probed for their organic carbon composition and iron oxidation state under atmospherically relevant conditions. At 40% relative humidity, oxygen diffusion and reaction was severely limited. Fe was reoxidized in the first 200 nm of the particle surface leaving reduced iron in the core. Similar gradients were observed at 60% RH, however waiting approximately 2 hours in the dark resulted in a recovery of the initial Fe(III) concentration. We draw two main conclusions from our findings. Frist, the oxidation gradients must have been the result of anoxic conditions at the interior of aerosol particles. This was predicted using a newly developed model for molecular diffusion through multiple layers with a reaction framework describing the photochemical processing of the metal organic matrix. Second, the lifetime of organic radicals in an anoxic diffusion limited organic matrix must be considerably long ( hours) to completely reoxidize iron as they wait for molecular oxygen. Long radical lifetimes in viscous organic aerosol in turn, could create high radical concentrations or favor radical-radical reactions in particles typically not considered when oxygen is plentiful. Our results impact predictions of aerosol physiochemical properties, e

  5. Single Particle Tracking: Analysis Techniques for Live Cell Nanoscopy

    Science.gov (United States)

    Relich, Peter Kristopher, II

    Single molecule experiments are a set of experiments designed specifically to study the properties of individual molecules. It has only been in the last three decades where single molecule experiments have been applied to the life sciences; where they have been successfully implemented in systems biology for probing the behaviors of sub-cellular mechanisms. The advent and growth of super-resolution techniques in single molecule experiments has made the fundamental behaviors of light and the associated nano-probes a necessary concern amongst life scientists wishing to advance the state of human knowledge in biology. This dissertation disseminates some of the practices learned in experimental live cell microscopy. The topic of single particle tracking is addressed here in a format that is designed for the physicist who embarks upon single molecule studies. Specifically, the focus is on the necessary procedures to generate single particle tracking analysis techniques that can be implemented to answer biological questions. These analysis techniques range from designing and testing a particle tracking algorithm to inferring model parameters once an image has been processed. The intellectual contributions of the author include the techniques in diffusion estimation, localization filtering, and trajectory associations for tracking which will all be discussed in detail in later chapters. The author of this thesis has also contributed to the software development of automated gain calibration, live cell particle simulations, and various single particle tracking packages. Future work includes further evaluation of this laboratory's single particle tracking software, entropy based approaches towards hypothesis validations, and the uncertainty quantification of gain calibration.

  6. Fundamental study of single biomass particle combustion

    Energy Technology Data Exchange (ETDEWEB)

    Momeni, M.

    2013-06-01

    This thesis is a comprehensive study of single biomass particle combustion. The effect of particle shape and size and operating conditions on biomass conversion characteristics were investigated experimentally and theoretically. The experimental samples were divided in two groups: particles with regular shapes (spheres and cylinders) and particles with irregular shapes (almost flake-like). A CAMSIZER analyser (Retsch Technology GMBH) was used to determine the size and shape of the particles via Dynamical Digital Image Processing. The experiments were performed in a single particle reactor under well-defined conditions, and the complete combustion processes were recorded as video sequences by a CCD camera installed in the set-up. One of the project objectives is to simulate conditions reasonably close to the conditions in a power plant boiler, i.e., reasonably high temperatures (up to 1600 deg. C) and varying oxygen concentrations in the 5 to 20% range. A one-dimensional mathematical model was used to simulate all the intraparticle conversion processes (drying, recondensation, devolatilisation, char gasification/oxidation and heat/mass/momentum transfer) within single particles of different shapes and size under various conditions. The model also predicts the flame layer domain of a single particle. The model was validated by experimental results under different conditions; good agreement between the model predictions and the experimental data was observed. Both the experimental and modelling results showed that cylindrical particles lose mass faster than spherical particles of a similar volume (mass) and that the burnout time is reduced by increasing the particle aspect ratio (surface area to volume ratio). Very similar conversion times were observed for cylindrical particles with nearly identical surface area to volume ratios. Similar conversion times were also observed for two size classes of pulverised particles (with irregular shapes) made from the same type of

  7. Particle segmentation algorithm for flexible single particle reconstruction.

    Science.gov (United States)

    Zhou, Qiang; Zhou, Niyun; Wang, Hong-Wei

    2017-01-01

    As single particle cryo-electron microscopy has evolved to a new era of atomic resolution, sample heterogeneity still imposes a major limit to the resolution of many macromolecular complexes, especially those with continuous conformational flexibility. Here, we describe a particle segmentation algorithm towards solving structures of molecules composed of several parts that are relatively flexible with each other. In this algorithm, the different parts of a target molecule are segmented from raw images according to their alignment information obtained from a preliminary 3D reconstruction and are subjected to single particle processing in an iterative manner. This algorithm was tested on both simulated and experimental data and showed improvement of 3D reconstruction resolution of each segmented part of the molecule than that of the entire molecule.

  8. Driven Anisotropic Diffusion at Boundaries: Noise Rectification and Particle Sorting

    Science.gov (United States)

    Bo, Stefano; Eichhorn, Ralf

    2017-08-01

    We study the diffusive dynamics of a Brownian particle in the proximity of a flat surface under nonequilibrium conditions, which are created by an anisotropic thermal environment with different temperatures being active along distinct spatial directions. By presenting the exact time-dependent solution of the Fokker-Planck equation for this problem, we demonstrate that the interplay between anisotropic diffusion and hard-core interaction with the plain wall rectifies the thermal fluctuations and induces directed particle transport parallel to the surface, without any deterministic forces being applied in that direction. Based on current micromanipulation technologies, we suggest a concrete experimental setup to observe this novel noise-induced transport mechanism. We furthermore show that it is sensitive to particle characteristics, such that this setup can be used for sorting particles of different sizes.

  9. Single-particle Schroedinger fluid. I. Formulation

    International Nuclear Information System (INIS)

    Kan, K.K.; Griffin, J.J.

    1976-01-01

    The problem of a single quantal particle moving in a time-dependent external potential well is formulated specifically to emphasize and develop the fluid dynamical aspects of the matter flow. This idealized problem, the single-particle Schroedinger fluid, is shown to exhibit already a remarkably rich variety of fluid dynamical features, including compressible flow and line vortices. It provides also a sufficient framework to encompass simultaneously various simplified fluidic models for nuclei which have earlier been postulated on an ad hoc basis, and to illuminate their underlying restrictions. Explicit solutions of the single-particle Schroedinger fluid problem are studied in the adiabatic limit for their mathematical and physical implications (especially regarding the collective kinetic energy). The basic generalizations for extension of the treatment to the many-body Schroedinger fluid are set forth

  10. Study of diffusion of Ag in Cu single crystals

    CERN Document Server

    Wang, R

    2002-01-01

    4.0 MeV sup 7 Li sup + sup + RBS and AES were used for investigations of thermal diffusion of Ag in Cu single crystals. The annealing of samples was carried out in vacuum in the temperature range from 498 to 613 K. The element depth concentration profiles transformed from RBS spectra indicate that the diffusion of Ag into Cu is a typical volume diffusion. The Arrhenius parameters corresponding to the diffusion were obtained.

  11. Diffusion of massive particles around an Abelian-Higgs string

    Science.gov (United States)

    Saha, Abhisek; Sanyal, Soma

    2018-03-01

    We study the diffusion of massive particles in the space time of an Abelian Higgs string. The particles in the early universe plasma execute Brownian motion. This motion of the particles is modeled as a two dimensional random walk in the plane of the Abelian Higgs string. The particles move randomly in the space time of the string according to their geodesic equations. We observe that for certain values of their energy and angular momentum, an overdensity of particles is observed close to the string. We find that the string parameters determine the distribution of the particles. We make an estimate of the density fluctuation generated around the string as a function of the deficit angle. Though the thickness of the string is small, the length is large and the overdensity close to the string may have cosmological consequences in the early universe.

  12. Dual color single particle tracking via nanobodies

    International Nuclear Information System (INIS)

    Albrecht, David; Winterflood, Christian M; Ewers, Helge

    2015-01-01

    Single particle tracking is a powerful tool to investigate the function of biological molecules by following their motion in space. However, the simultaneous tracking of two different species of molecules is still difficult to realize without compromising the length or density of trajectories, the localization accuracy or the simplicity of the assay. Here, we demonstrate a simple dual color single particle tracking assay using small, bright, high-affinity labeling via nanobodies of accessible targets with widely available instrumentation. We furthermore apply a ratiometric step-size analysis method to visualize differences in apparent membrane viscosity. (paper)

  13. Single particle tomography in EMAN2.

    Science.gov (United States)

    Galaz-Montoya, Jesús G; Flanagan, John; Schmid, Michael F; Ludtke, Steven J

    2015-06-01

    Single particle tomography (SPT or subtomogram averaging) offers a powerful alternative to traditional 2-D single particle reconstruction for studying conformationally or compositionally heterogeneous macromolecules. It can also provide direct observation (without labeling or staining) of complexes inside cells at nanometer resolution. The development of computational methods and tools for SPT remains an area of active research. Here we present the EMAN2.1 SPT toolbox, which offers a full SPT processing pipeline, from particle picking to post-alignment analysis of subtomogram averages, automating most steps. Different algorithm combinations can be applied at each step, providing versatility and allowing for procedural cross-testing and specimen-specific strategies. Alignment methods include all-vs-all, binary tree, iterative single-model refinement, multiple-model refinement, and self-symmetry alignment. An efficient angular search, Graphic Processing Unit (GPU) acceleration and both threaded and distributed parallelism are provided to speed up processing. Finally, automated simulations, per particle reconstruction of subtiltseries, and per-particle Contrast Transfer Function (CTF) correction have been implemented. Processing examples using both real and simulated data are shown for several structures. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Projection operator treatment of single particle resonances

    International Nuclear Information System (INIS)

    Lev, A.; Beres, W.P.

    1976-01-01

    A projection operator method is used to obtain the energy and width of a single particle resonance. The resonance energy is found without scanning. An example of the first g/sub 9/2/ neutron resonance in 40 Ca is given and compared with the traditional phase shift method. The results of both approaches are quite similar. 4 figures

  15. Nanoscale three-dimensional single particle tracking.

    Science.gov (United States)

    Dupont, Aurélie; Lamb, Don C

    2011-11-01

    Single particle tracking (SPT) in biological systems is a quickly growing field. Many new technologies are being developed providing new tracking capabilities, which also lead to higher demands and expectations for SPT. Following a single biomolecule as it performs its function provides quantitative mechanistic information that cannot be obtained in classical ensemble methods. From the 3D trajectory, information is available over the diffusional behavior of the particle and precise position information can also be used to elucidate interactions of the tracked particle with its surroundings. Thus, three-dimensional (3D) SPT is a very valuable tool for investigating cellular processes. This review presents recent progress in 3D SPT, from image-based techniques toward more sophisticated feedback approaches. We focus mainly on the feedback technique known as orbital tracking. We present here a modified version of the original orbital tracking in which the intensities from two z-planes are simultaneously measured allowing a concomitant wide-field imaging. The system can track single particles with a precision down to 5 nm in the x-y plane and 7 nm in the axial direction. The capabilities of the system are demonstrated using single virus tracing to follow the infection pathway of Prototype Foamy Virus in living cells.

  16. Normal and anomalous diffusion of gravel tracer particles in rivers

    Science.gov (United States)

    Ganti, Vamsi; Meerschaert, Mark M.; Foufoula-Georgiou, Efi; Viparelli, Enrica; Parker, Gary

    2010-06-01

    One way to study the mechanism of gravel bed load transport is to seed the bed with marked gravel tracer particles within a chosen patch and to follow the pattern of migration and dispersal of particles from this patch. In this study, we invoke the probabilistic Exner equation for sediment conservation of bed gravel, formulated in terms of the difference between the rate of entrainment of gravel into motion and the rate of deposition from motion. Assuming an active layer formulation, stochasticity in particle motion is introduced by considering the step length (distance traveled by a particle once entrained until it is deposited) as a random variable. For step lengths with a relatively thin (e.g., exponential) tail, the above formulation leads to the standard advection-diffusion equation for tracer dispersal. However, the complexity of rivers, characterized by a broad distribution of particle sizes and extreme flood events, can give rise to a heavy-tailed distribution of step lengths. This consideration leads to an anomalous advection-diffusion equation involving fractional derivatives. By identifying the probabilistic Exner equation as a forward Kolmogorov equation for the location of a randomly selected tracer particle, a stochastic model describing the temporal evolution of the relative concentrations is developed. The normal and anomalous advection-diffusion equations are revealed as its long-time asymptotic solution. Sample numerical results illustrate the large differences that can arise in predicted tracer concentrations under the normal and anomalous diffusion models. They highlight the need for intensive data collection efforts to aid the selection of the appropriate model in real rivers.

  17. Microorganism characterization by single particle mass spectrometry.

    Science.gov (United States)

    Russell, Scott C

    2009-01-01

    In recent years a major effort by several groups has been undertaken to identify bacteria by mass spectrometry at the single cell level. The intent of this review is to highlight the recent progress made in the application of single particle mass spectrometry to the analysis of microorganisms. A large portion of the review highlights improvements in the ionization and mass analysis of bio-aerosols, or particles that contain biologically relevant molecules such as peptides or proteins. While these are not direct applications to bacteria, the results have been central to a progression toward single cell mass spectrometry. Developments in single particle matrix-assisted laser desorption/ionization (MALDI) are summarized. Recent applications of aerosol laser desorption/ionization (LDI) to the analysis of single microorganisms are highlighted. Successful applications of off-line and on-the-fly aerosol MALDI to microorganism detection are discussed. Limitations to current approaches and necessary future achievements are also addressed. (c) 2009 Wiley Periodicals, Inc.

  18. Single atom self-diffusion on nickel surfaces

    International Nuclear Information System (INIS)

    Tung, R.T.; Graham, W.R.

    1980-01-01

    Results of a field ion microscope study of single atom self-diffusion on Ni(311), (331), (110), (111) and (100) planes are presented, including detailed information on the self-diffusion parameters on (311), (331), and (110) surfaces, and activation energies for diffusion on the (111), and (100) surfaces. Evidence is presented for the existence of two types of adsorption site and surface site geometry for single nickel atoms on the (111) surface. The presence of adsorbed hydrogen on the (110), (311), and (331) surfaces is shown to lower the onset temperature for self-diffusion on these planes. (orig.)

  19. Dynamics of Single Chains of Suspended Ferrofluid Particles

    Science.gov (United States)

    Cutillas, S.; Liu, J.

    1999-01-01

    We present an experimental study of the dynamics of isolated chains made of super-paramagnetic particles under the influence of a magnetic field. The motivation of this work is to understand if the chain fluctuations exist and, if it does, how does the fluctuation affect chain aggregation. We find that single chains strongly fluctuate and that the characteristic frequency of their fluctuations is inversely proportional to the magnetic field strength. The higher the field the lower the characteristic frequency of the chain fluctuations. In the high magnetic field limit, chains behave like rigid rods without any internal motions. In this work, we used ferrofluid particles suspended in water. These particles do not have any intrinsic magnetization. Once a magnetic field is applied, a dipole moment is induced in each particle, proportional to the magnetic field. A dipolar magnetic interaction then occurs between particles. If dipole-dipole magnetic energy is higher than the thermal energy, the result is a structure change inside the dipolar fluid. The ratio of these two energies is expressed by a coupling constant lambda as: lambda = (pi(a(exp 3))(chi(exp 2))(mu(sub 0))(H(sub 0))(exp 2))/18kT Where a is the particle radius, mu(sub 0) is the vacuum magnetic permeability, H(sub 0) the applied magnetic field, k the Boltzmann constant and T the absolute temperature. If lambda > 1, magnetic particles form chains along the field direction. The lateral coalescence of several chains may form bigger aggregates especially if the particle volume fraction is high. While many studies and applications deal with the rheological properties and the structural changes of these dipolar fluids, this work focuses on the understanding of the chain dynamics. In order to probe the chain dynamics, we used dynamic light scattering (DLS) in self-beating mode as our experimental technique. The experimental geometry is such that the scattering plane is perpendicular to the magnetic field

  20. Shear-limited test particle diffusion in 2-dimensional plasmas

    International Nuclear Information System (INIS)

    Anderegg, Francois; Driscoll, C. Fred; Dubin, Daniel H.E.

    2002-01-01

    Measurements of test-particle diffusion in pure ion plasmas show 2D enhancements over the 3D rates, limited by shear in the plasma rotation ω E (r). The diffusion is due to 'long-range' ion-ion collisions in the quiescent, steady-state Mg + plasma. For short plasma length L p and low shear S≡r∂ω E /∂r, thermal ions bounce axially many times before shear separates them in θ, so the ions move in (r,θ) as bounce averaged 'rods' of charge (i.e. 2D point vortices). Experimentally, we vary the number of bounces over the range 0.2≤N b ≤10,000. For long plasmas with N b ≤1, we observe diffusion in quantitative agreement with the 3D theory of long-range ExB drift collisions. For shorter plasmas or lower shear, with N b >1, we measure diffusion rates enhanced by up to 100x. For exceedingly small she0ar, i.e. N b ≥1000, we observe diffusion rates consistent with the Taylor-McNamara estimates for a shear-free thermal plasma. Overall, the data shows fair agreement with Dubin's new theory of 2D diffusion in shear, which predicts an enhancement of D 2D /D 3D ≅N b up to the Taylor-McNamara limit

  1. Arnold Diffusion of Charged Particles in ABC Magnetic Fields

    Science.gov (United States)

    Luque, Alejandro; Peralta-Salas, Daniel

    2017-06-01

    We prove the existence of diffusing solutions in the motion of a charged particle in the presence of ABC magnetic fields. The equations of motion are modeled by a 3DOF Hamiltonian system depending on two parameters. For small values of these parameters, we obtain a normally hyperbolic invariant manifold and we apply the so-called geometric methods for a priori unstable systems developed by A. Delshams, R. de la Llave and T.M. Seara. We characterize explicitly sufficient conditions for the existence of a transition chain of invariant tori having heteroclinic connections, thus obtaining global instability (Arnold diffusion). We also check the obtained conditions in a computer-assisted proof. ABC magnetic fields are the simplest force-free-type solutions of the magnetohydrodynamics equations with periodic boundary conditions, and can be considered as an elementary model for the motion of plasma-charged particles in a tokamak.

  2. Single particle closed orbits in Yukawa potential

    Science.gov (United States)

    Mukherjee, R.; Sounda, S.

    2018-02-01

    Orbit of a single particle moving under the Yukawa potential is studied and there exists precessing ellipse type orbits. The amount of precession can be tuned through the coupling parameter α. With a suitable choice of the coupling parameter; we get a closed bound orbit. In some cases few petals are observed which is possessed of a closed bound nature for suitably chosen coupling parameter. Threshold energy has also been calculated for bound orbits.

  3. A Diffusive-Particle Theory of Free Recall.

    Science.gov (United States)

    Fumarola, Francesco

    2017-01-01

    Diffusive models of free recall have been recently introduced in the memory literature, but their potential remains largely unexplored. In this paper, a diffusive model of short-term verbal memory is considered, in which the psychological state of the subject is encoded as the instantaneous position of a particle diffusing over a semantic graph. The model is particularly suitable for studying the dependence of free-recall observables on the semantic properties of the words to be recalled. Besides predicting some well-known experimental features (forward asymmetry, semantic clustering, word-length effect), a novel prediction is obtained on the relationship between the contiguity effect and the syllabic length of words; shorter words, by way of their wider semantic range, are predicted to be characterized by stronger forward contiguity. A fresh analysis of archival free-recall data allows to confirm this prediction.

  4. Eddy diffusivity of quasi-neutrally-buoyant inertial particles

    Science.gov (United States)

    Martins Afonso, Marco; Muratore-Ginanneschi, Paolo; Gama, Sílvio M. A.; Mazzino, Andrea

    2018-04-01

    We investigate the large-scale transport properties of quasi-neutrally-buoyant inertial particles carried by incompressible zero-mean periodic or steady ergodic flows. We show how to compute large-scale indicators such as the inertial-particle terminal velocity and eddy diffusivity from first principles in a perturbative expansion around the limit of added-mass factor close to unity. Physically, this limit corresponds to the case where the mass density of the particles is constant and close in value to the mass density of the fluid, which is also constant. Our approach differs from the usual over-damped expansion inasmuch as we do not assume a separation of time scales between thermalization and small-scale convection effects. For a general flow in the class of incompressible zero-mean periodic velocity fields, we derive closed-form cell equations for the auxiliary quantities determining the terminal velocity and effective diffusivity. In the special case of parallel flows these equations admit explicit analytic solution. We use parallel flows to show that our approach sheds light onto the behavior of terminal velocity and effective diffusivity for Stokes numbers of the order of unity.

  5. FLAMMABLE GAS DIFFUSION THROUGH SINGLE SHELL TANK (SST) DOMES

    Energy Technology Data Exchange (ETDEWEB)

    MEACHAM, J.E.

    2003-11-10

    This report quantified potential hydrogen diffusion through Hanford Site Single-Shell tank (SST) domes if the SSTs were hypothetically sealed airtight. Results showed that diffusion would keep headspace flammable gas concentrations below the lower flammability limit in the 241-AX and 241-SX SST. The purpose of this document is to quantify the amount of hydrogen that could diffuse through the domes of the SSTs if they were hypothetically sealed airtight. Diffusion is assumed to be the only mechanism available to reduce flammable gas concentrations. The scope of this report is limited to the 149 SSTs.

  6. A phenomenological model for particle retention in single, saturated fractures.

    Science.gov (United States)

    Rodrigues, Sandrina; Dickson, Sarah

    2014-01-01

    Fractured aquifers are some of the most poorly characterized subsurface environments despite posing one of the highest risks to the protection of potable groundwater. This research was designed to improve the understanding of the factors affecting particle transport through fractures by developing a phenomenological model based on laboratory-scale transport data. The model presented in this research employed data from over 70 particle tracer tests conducted in single, saturated, variable-aperture fractures that were obtained from the natural environment and fractured in the laboratory or cast from epoxy in the laboratory. The particles employed were Escherichia coli RS2-GFP and microspheres. The tracer experiments were conducted in natural (dolomitic limestone and granite) as well as epoxy replicas of the natural fractures. The multiple linear regression analysis revealed that the most important factors influencing particle retention in fractures are the ratio of the ionic strength of solution to collector charge, the ratio of particle to collector charge, and the ratio of advective to diffusive forces as described by the Peclet number. The model was able to reasonably (R(2)  = 0.64) predict the fraction of particles retained; however, it is evident that some factors not accounted for in the model also contributed to retention. This research presents a novel approach to understanding particle transport in fractures, and illustrates the relative importance of various factors affecting the transport mechanisms. The utility of this model lies in the increased understanding of particle transport in fractures, which is extremely useful for directing future research. © 2013, National Ground Water Association.

  7. Rotational diffusion in polymer nanocomposites as probed by anisotropic particles

    Science.gov (United States)

    Clarke, Laura

    2014-03-01

    Metal nanoparticles strongly absorb specific wavelengths of light with no (or only a very weak) radiative relaxation by which to release this energy. As a result, the absorbed energy is efficiently converted to local heat (a photothermal effect). With an effective cross-section of up to 10 times its physical size, each particle acts as a ``super-sized'' absorber even when embedded within a transparent material environment such as a polymer, resulting in dramatic heating originating at the particles. Thus, with spatially-uniform illumination, one can metaphorically reach inside a polymer nanocomposite and apply heat to pre-selected subsets (e.g., causing them to dramatically change properties due to actuation, cross-linking, crystallization, or chemical reaction) without heating the sample surface or strongly affecting the remainder of the material. By utilizing optically-accessible additives including the particles themselves, the thermal gradient from the particle outward can be experimentally determined. In particular, rotational diffusion of anisotropic particles can be used to measure the temperature at the nanoparticle, which is the warmest point in a polymeric film or nanofiber under photothermal heating. Conversely, the same technique can be utilized to measure polymer dynamics in nanocomposites in the immediate vicinity of the particle. Funding: National Science Foundation CMMI-1069108.

  8. Damping of unbound single-particle modes

    International Nuclear Information System (INIS)

    Fortier, S.; Beaumel, D.; Gales, S.; Guillot, J.; Langevin-Joliot, H.; Laurent, H.; Maison, J.M.; Bordewijk, J.; Brandenburg, S.; Krasznahorkay, A.; Crawley, G.M.; Massolo, C.P.; Renteria, M.; Khendriche, A.

    1995-01-01

    The (α, 3 He-n) reaction has been investigated at 120 MeV incident energy on 64 Ni, 90 Zr, and 120 Sn target nuclei. Neutrons in coincidence with 3 He particles emitted at 0 degree were detected using the multidetector array EDEN, in order to get information about the decay of single-particle states embedded in the (α, 3 He) continuum. Neutron angular correlations, multiplicity values, and branching ratios to low-lying states of the final nuclei have been compared with the predictions of the statistical decay model. Evidence for a significant nonstatistical decay branch has been observed in the three nuclei below about 15 MeV excitation energy. Direct branching ratios in 91 Zr deduced from this analysis are compared with the predictions of two nuclear structure models. At higher excitation energy, the decay characteristics of the (α, 3 He) continuum are shown to be mainly statistical

  9. Point-particle method to compute diffusion-limited cellular uptake

    Science.gov (United States)

    Sozza, A.; Piazza, F.; Cencini, M.; De Lillo, F.; Boffetta, G.

    2018-02-01

    We present an efficient point-particle approach to simulate reaction-diffusion processes of spherical absorbing particles in the diffusion-limited regime, as simple models of cellular uptake. The exact solution for a single absorber is used to calibrate the method, linking the numerical parameters to the physical particle radius and uptake rate. We study the configurations of multiple absorbers of increasing complexity to examine the performance of the method by comparing our simulations with available exact analytical or numerical results. We demonstrate the potential of the method to resolve the complex diffusive interactions, here quantified by the Sherwood number, measuring the uptake rate in terms of that of isolated absorbers. We implement the method in a pseudospectral solver that can be generalized to include fluid motion and fluid-particle interactions. As a test case of the presence of a flow, we consider the uptake rate by a particle in a linear shear flow. Overall, our method represents a powerful and flexible computational tool that can be employed to investigate many complex situations in biology, chemistry, and related sciences.

  10. Different approach to the modeling of nonfree particle diffusion

    Science.gov (United States)

    Buhl, Niels

    2018-03-01

    A new approach to the modeling of nonfree particle diffusion is presented. The approach uses a general setup based on geometric graphs (networks of curves), which means that particle diffusion in anything from arrays of barriers and pore networks to general geometric domains can be considered and that the (free random walk) central limit theorem can be generalized to cover also the nonfree case. The latter gives rise to a continuum-limit description of the diffusive motion where the effect of partially absorbing barriers is accounted for in a natural and non-Markovian way that, in contrast to the traditional approach, quantifies the absorptivity of a barrier in terms of a dimensionless parameter in the range 0 to 1. The generalized theorem gives two general analytic expressions for the continuum-limit propagator: an infinite sum of Gaussians and an infinite sum of plane waves. These expressions entail the known method-of-images and Laplace eigenfunction expansions as special cases and show how the presence of partially absorbing barriers can lead to phenomena such as line splitting and band gap formation in the plane wave wave-number spectrum.

  11. Single-Particle States in $^{133}$Sn

    CERN Multimedia

    Huck, A

    2002-01-01

    % IS338 \\\\ \\\\ It is suggested to investigate the $\\beta^- $-decay of $^{133}$In and $^{134}$In in order to determine the single-particle states in $^{133}$Sn, which are so far unknown and needed for the shell-model description of the region close to $^{132}$Sn. Large hyper-pure Ge-detectors will be used for the $\\gamma$-ray spectroscopy. In the experiments with $^{134}$In, delayed neutrons in coincidence with $\\gamma$-rays from excited states in $^{133}$Sn provide the opportunity for a very selective detection of the states in question.

  12. Performance of single mechanoluminescent particle as ubiquitous light source.

    Science.gov (United States)

    Terasaki, Nao; Xu, Chao-Nan

    2014-08-01

    In this study, we have investigated mechanoluminescent (ML) performance of single ML particle as ubiquitous light source. When using high-speed CCD camera with image intensifier and microscopic equipment, mechanoluminescence from single particle was observed. As to the quantitative ML evaluation of the single ML particle was carried out using photomultiplier, and successfully estimated the performance of the single ML particle as an intensity controllable light source in nW order. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Damping of unbound single-particle modes

    Energy Technology Data Exchange (ETDEWEB)

    Fortier, S.; Beaumel, D.; Gales, S.; Guillot, J.; Langevin-Joliot, H.; Laurent, H.; Maison, J.M.; Bordewijk, J.; Brandenburg, S.; Krasznahorkay, A.; Crawley, G.M.; Massolo, C.P.; Renteria, M.; Khendriche, A. [Institut de Physique Nucleaire, IN2P3-CNRS, 91406 Orsay Cedex (France)]|[Kernfysisch Versneller Instituut, 9747 AA Groningen (Netherlands)]|[Nuclear Research Institute, Debrecen P.O. Box 51, H-4001 (Hungary)]|[NSCL, Michigan State University, East Lansing, Michigan 48824 (United States)]|[Dep. Fisica, Fac. Cs. Exactas, UNLP, CC Nio 67, 1900 La Plata (Argentina)]|[Institut de Sciences Exactes,Universite de Tizi-Ouzou, 15000 Tizi-Ouzou (Algeria)

    1995-11-01

    The ({alpha},{sup 3}He-{ital n}) reaction has been investigated at 120 MeV incident energy on {sup 64}Ni, {sup 90}Zr, and {sup 120}Sn target nuclei. Neutrons in coincidence with {sup 3}He particles emitted at 0{degree} were detected using the multidetector array EDEN, in order to get information about the decay of single-particle states embedded in the ({alpha},{sup 3}He) continuum. Neutron angular correlations, multiplicity values, and branching ratios to low-lying states of the final nuclei have been compared with the predictions of the statistical decay model. Evidence for a significant nonstatistical decay branch has been observed in the three nuclei below about 15 MeV excitation energy. Direct branching ratios in {sup 91}Zr deduced from this analysis are compared with the predictions of two nuclear structure models. At higher excitation energy, the decay characteristics of the ({alpha},{sup 3}He) continuum are shown to be mainly statistical.

  14. Single particle level scheme for alpha decay

    International Nuclear Information System (INIS)

    Mirea, M.

    1998-01-01

    The fine structure phenomenon in alpha decay was evidenced by Rosenblum. In this process the kinetic energy of the emitted particle has several determined values related to the structure of the parent and the daughter nucleus. The probability to find the daughter in a low lying state was considered strongly dependent on the spectroscopic factor defined as the square of overlap between the wave function of the parent in the ground state and the wave functions of the specific excited states of the daughter. This treatment provides a qualitative agreement with the experimental results if the variations of the penetrability between different excited states are neglected. Based on single particle structure during fission, a new formalism explained quantitatively the fine structure of the cluster decay. It was suggested that this formalism can be applied also to alpha decay. For this purpose, the first step is to construct the level scheme of this type of decay. Such a scheme, obtained with the super-asymmetric two-center potential, is plotted for the alpha decay of 223 Ra. It is interesting to note that, diabatically, the level with spin 3/2 emerging from 1i 11/2 (ground state of the parent) reaches an excited state of the daughter in agreement with the experiment. (author)

  15. Self-diffusion in single crystalline silicon nanowires

    Science.gov (United States)

    Südkamp, T.; Hamdana, G.; Descoins, M.; Mangelinck, D.; Wasisto, H. S.; Peiner, E.; Bracht, H.

    2018-04-01

    Self-diffusion experiments in single crystalline isotopically controlled silicon nanowires with diameters of 70 and 400 nm at 850 and 1000 °C are reported. The isotope structures were first epitaxially grown on top of silicon substrate wafers. Nanowires were subsequently fabricated using a nanosphere lithography process in combination with inductively coupled plasma dry reactive ion etching. Three-dimensional profiling of the nanosized structure before and after diffusion annealing was performed by means of atom probe tomography (APT). Self-diffusion profiles obtained from APT analyses are accurately described by Fick's law for self-diffusion. Data obtained for silicon self-diffusion in nanowires are equal to the results reported for bulk silicon crystals, i.e., finite size effects and high surface-to-volume ratios do not significantly affect silicon self-diffusion. This shows that the properties of native point defects determined from self-diffusion in bulk crystals also hold for nanosized silicon structures with diameters down to 70 nm.

  16. Optimal fits of diffusion constants from single-time data points of Brownian trajectories.

    Science.gov (United States)

    Boyer, Denis; Dean, David S; Mejía-Monasterio, Carlos; Oshanin, Gleb

    2012-12-01

    Experimental methods based on single particle tracking (SPT) are being increasingly employed in the physical and biological sciences, where nanoscale objects are visualized with high temporal and spatial resolution. SPT can probe interactions between a particle and its environment but the price to be paid is the absence of ensemble averaging and a consequent lack of statistics. Here we address the benchmark question of how to accurately extract the diffusion constant of one single Brownian trajectory. We analyze a class of estimators based on weighted functionals of the square displacement. For a certain choice of the weight function these functionals provide the true ensemble averaged diffusion coefficient, with a precision that increases with the trajectory resolution.

  17. On the existence of hydrodynamic instability in single diffusive ...

    Indian Academy of Sciences (India)

    existence of hydrodynamic instability in single diffusive bottom heavy systems, when considered in the more ... sive bottom heavy system, with permeable boundaries at which the boundary condition of Beavers and .... and this expression gives the critical Rayleigh number Rc = 27π4/4 (1 − α2T0) identical with that obtained ...

  18. On the existence of hydrodynamic instability in single diffusive ...

    Indian Academy of Sciences (India)

    ... Refresher Courses · Symposia · Live Streaming. Home; Journals; Proceedings – Mathematical Sciences; Volume 121; Issue 4. On the Existence of Hydrodynamic Instability in Single Diffusive Bottom Heavy Systems with Permeable Boundaries. A K Gupta R G Shandil. Volume 121 Issue 4 November 2011 pp 495-501 ...

  19. Accuracy of the detection of binding events using 3D single particle tracking.

    Science.gov (United States)

    Carozza, Sara; Culkin, Jamie; van Noort, John

    2017-01-01

    Nanoparticles can be used as markers to track the position of biomolecules, such as single proteins, inside living cells. The activity of a protein can sometimes be inferred from changes in the mobility of the attached particle. Mean Square Displacement analysis is the most common method to obtain mobility information from trajectories of tracked particles, such as the diffusion coefficient D . However, the precision of D sets a limit to discriminate changes in mobility caused by biological events from changes that reflect the stochasticity inherent to diffusion. This issue is of particular importance in an experiment aiming to quantify dynamic processes. Here, we present simulations and 3D tracking experiments with Gold Nanorods freely diffusing in glycerol solution to establish the best analysis parameters to extract the diffusion coefficient. We applied this knowledge to the detection of a temporary change in diffusion, as it can occur due to the transient binding of a particle to an immobile structure within the cell, and tested its dependence on the magnitude of the change in diffusion and duration of this event. The simulations show that the spatial accuracy of particle tracking generally does not limit the detection of short binding events. Careful analysis of the magnitude of the change in diffusion and the number of frames per binding event is required for accurate quantification of such events.

  20. Fundamental Study of Single Biomass Particle Combustion

    DEFF Research Database (Denmark)

    Momenikouchaksaraei, Maryam

    results showed that cylindrical particles lose mass faster than spherical particles of a similar volume (mass) and that the burnout time is reduced by increasing the particle aspect ratio (surface area to volume ratio). Very similar conversion times were observed for cylindrical particles with nearly...... identical surface area to volume ratios. Similar conversion times were also observed for two size classes of pulverised particles (with irregular shapes) made from the same type of wood because of their similar surface area to volume ratios. The ignition, devolatilisation and burnout times of particles were...

  1. The Diffusion Process in Small Particles and Brownian Motion

    Science.gov (United States)

    Khoshnevisan, M.

    Albert Einstein in 1926 published his book entitled ''INVESTIGATIONS ON THE THEORY OF THE BROWNIAN MOVEMENT''. He investigated the process of diffusion in an undissociated dilute solution. The diffusion process is subject to Brownian motion. Furthermore, he elucidated the fact that the heat content of a substance will change the position of the single molecules in an irregular fashion. In this paper, I have shown that in order for the displacement of the single molecules to be proportional to the square root of the time, and for v/2 - v 1 Δ =dv/dx , (where v1 and v2 are the concentrations in two cross sections that are separated by a very small distance), ∫ - ∞ ∞ Φ (Δ) dΔ = I and I/τ ∫ - ∞ ∞Δ2/2 Φ (Δ) dΔ = D conditions to hold, then equation (7a) D =√{ 2 D }√{ τ} must be changed to Δ =√{ 2 D }√{ τ} . I have concluded that D =√{ 2 D }√{ τ} is an unintended error, and it has not been amended for almost 90 years in INVESTIGATIONS ON THE THEORY OF THE BROWNIAN MOVEMENT, 1926 publication.

  2. Single particle electrochemical sensors and methods of utilization

    Science.gov (United States)

    Schoeniger, Joseph [Oakland, CA; Flounders, Albert W [Berkeley, CA; Hughes, Robert C [Albuquerque, NM; Ricco, Antonio J [Los Gatos, CA; Wally, Karl [Lafayette, CA; Kravitz, Stanley H [Placitas, NM; Janek, Richard P [Oakland, CA

    2006-04-04

    The present invention discloses an electrochemical device for detecting single particles, and methods for using such a device to achieve high sensitivity for detecting particles such as bacteria, viruses, aggregates, immuno-complexes, molecules, or ionic species. The device provides for affinity-based electrochemical detection of particles with single-particle sensitivity. The disclosed device and methods are based on microelectrodes with surface-attached, affinity ligands (e.g., antibodies, combinatorial peptides, glycolipids) that bind selectively to some target particle species. The electrodes electrolyze chemical species present in the particle-containing solution, and particle interaction with a sensor element modulates its electrolytic activity. The devices may be used individually, employed as sensors, used in arrays for a single specific type of particle or for a range of particle types, or configured into arrays of sensors having both these attributes.

  3. Model for diffusion of a narrow beam of charged particles

    International Nuclear Information System (INIS)

    Eisenhauer, C.

    1980-01-01

    A simple analytic expression is presented to describe the three-dimensioned spatial distribution of flux or energy deposition by a narrow beam of charged particles. In this expression distances are expressed in terms of a scaling parameter that is proportional to the mean square scattering angle in a single collision. Finite ranges are expressed in terms of the continuous-slowing-down range. Track-length distributions for one-velocity particles and energy deposition for electrons are discussed. Comparisons with rigorous Monte Carlo calculations show that departures from the analytic expression can be expressed as a slowly varying function of order unity. This function can be used as a basis for interpolation over a wide range of source energies and materials

  4. HIGH-SPEED SINGLE QUANTUM DOT IMAGING OF IN LIVE CELLS REVEAL HOP DIFFUSION

    DEFF Research Database (Denmark)

    Lagerholm, B. Christoffer; Clausen, Mathias P.

    2011-01-01

    Ultra high-speed single particle tracking (image frame rates 40-50 kHz) experiments with 40 nm gold particles has indicated that lipids and proteins in the plasma membrane undergo hop-diffusion between nanometer sized compartments (Fujiwara et al. (2002) J Cell Biol. 157:1071-81). These findings...... have yet to be independently confirmed. In this work, we show that high-speed single particle tracking with quantum dots (QDs) and using a standard wide-field fluorescence microscope and an EMCCD is possible at image acquisition rates of up to ~2000 Hz. The spatial precision in these experiments is ~40...... nm (as determined from the standard deviation of repeated position measurements of an immobile QD on a cell). Using this system, we show that membrane proteins and lipids, which have been exogenously labeled with functionalized QDs, show examples of three types of motion in the plasma membrane...

  5. High rate discharge capability of single particle electrode of LiCoO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Dokko, Kaoru [Department of Chemistry and Biotechnology, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501 (Japan); Nakata, Natsuko; Kanamura, Kiyoshi [Department of Applied Chemistry, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192-0397 (Japan)

    2009-04-01

    The electrochemical properties of a single particle of LiCoO{sub 2} (8 {mu}m in diameter) in an organic electrolyte were characterized using a microelectrode technique, and the high rate capability of commercially available micron-sized LiCoO{sub 2} was examined in this study. A Pt microfilament (10 {mu}m in diameter) was attached to the single LiCoO{sub 2} particle in the electrolyte during optical microscope observation, and galvanostatic charge-discharge tests were carried out. The discharge capacity of the single LiCoO{sub 2} particle (8 {mu}m diameter) was 0.157 nA h in the potential range of 3.0-4.2 V vs. Li/Li{sup +}, which was close to the theoretical capacity. The discharge rate capability of the single LiCoO{sub 2} particle was excellent, and the particle exhibited its full-discharge capacity up to a high rate of 30 C (5 nA). The discharge reaction of the single particle was not controlled by the solid-state diffusion of Li{sup +}, but by the charge transfer process at a rate lower than 30 C. The discharge capacity of the particle measured at a high rate of 300 C (50 nA) was 0.12 nA h, which was more than 75% of the full capacity of a single particle. (author)

  6. High rate discharge capability of single particle electrode of LiCoO 2

    Science.gov (United States)

    Dokko, Kaoru; Nakata, Natsuko; Kanamura, Kiyoshi

    The electrochemical properties of a single particle of LiCoO 2 (8 μm in diameter) in an organic electrolyte were characterized using a microelectrode technique, and the high rate capability of commercially available micron-sized LiCoO 2 was examined in this study. A Pt microfilament (10 μm in diameter) was attached to the single LiCoO 2 particle in the electrolyte during optical microscope observation, and galvanostatic charge-discharge tests were carried out. The discharge capacity of the single LiCoO 2 particle (8 μm diameter) was 0.157 nA h in the potential range of 3.0-4.2 V vs. Li/Li +, which was close to the theoretical capacity. The discharge rate capability of the single LiCoO 2 particle was excellent, and the particle exhibited its full-discharge capacity up to a high rate of 30 C (5 nA). The discharge reaction of the single particle was not controlled by the solid-state diffusion of Li +, but by the charge transfer process at a rate lower than 30 C. The discharge capacity of the particle measured at a high rate of 300 C (50 nA) was 0.12 nA h, which was more than 75% of the full capacity of a single particle.

  7. Many-particle nucleon-nucleon forces from nuclear single-particle states

    OpenAIRE

    Birbrair, B. L.; Ryazanov, V. I.

    1999-01-01

    As follows from the energies of single-particle states in ^{40}Ca, ^{90}Zr and ^{208}Pb nuclei the contribution of many-particle NN forces to the nuclear single-particle potential is at least the sum of repulsive and attractive parts resulting from three-particle and four-particle forces respectively. In addition the specified nucleon density distributions in the above nuclei are determined from both the 1 GeV proton-nucleus elastic scattering and the single-particle energies.

  8. Stochastic transport of particles across single barriers

    International Nuclear Information System (INIS)

    Kreuter, Christian; Siems, Ullrich; Henseler, Peter; Nielaba, Peter; Leiderer, Paul; Erbe, Artur

    2012-01-01

    Transport phenomena of interacting particles are of high interest for many applications in biology and mesoscopic systems. Here we present measurements on colloidal particles, which are confined in narrow channels on a substrate and interact with a barrier, which impedes the motion along the channel. The substrate of the particle is tilted in order for the particles to be driven towards the barrier and, if the energy gained by the tilt is large enough, surpass the barrier by thermal activation. We therefore study the influence of this barrier as well as the influence of particle interaction on the particle transport through such systems. All experiments are supported with Brownian dynamics simulations in order to complement the experiments with tests of a large range of parameter space which cannot be accessed in experiments.

  9. Non-linear diffusion of charged particles due to stochastic electromagnetic fields

    International Nuclear Information System (INIS)

    Martins, A.M.; Balescu, R.; Mendonca, J.T.

    1989-01-01

    It is well known that the energy confinement times observed in tokamak cannot be explained by the classical or neo-classical transport theory. The alternative explanations are based on the existence of various kinds of micro-instabilities, or on the stochastic destruction of the magnetic surfaces, due to the interaction of magnetic islands of different helicities. In the absence of a well established theory of anomalous transport it is perhaps important to study in some detail the diffusion coefficient of single charged particles in the presence of electromagnetic fluctuation, because it can provide the physical grounds for more complete and self-consistent calculations. In the present work we derive a general expression for the transverse diffusion coefficient of electrons and ions in a constant magnetic field and in the presence of space and time dependent electromagnetic fluctuation. We neglect macroscopic drifts due to inhomogeneity and field curvatures, but retain finite Larmor radius effects. (author) 3 refs

  10. Single-particle behaviour in circulating fluidized beds

    DEFF Research Database (Denmark)

    Erik Weinell, Claus; Dam-Johansen, Kim; Johnsson, Jan Erik

    1997-01-01

    . A radioactive tracking facility, which detects single radioactive particles, is developed and applied to determine the dynamic picture of the particle trajectories in the simulated boiler. The tracer particles are observed to move between the zone above and below the secondary air inlet with a mean frequency...

  11. Microprocessor-based single particle calibration of scintillation counter

    Science.gov (United States)

    Mazumdar, G. K. D.; Pathak, K. M.

    1985-01-01

    A microprocessor-base set-up is fabricated and tested for the single particle calibration of the plastic scintillator. The single particle response of the scintillator is digitized by an A/D converter, and a 8085 A based microprocessor stores the pulse heights. The digitized information is printed. Facilities for CRT display and cassette storing and recalling are also made available.

  12. Automated data collection in single particle electron microscopy

    Science.gov (United States)

    Tan, Yong Zi; Cheng, Anchi; Potter, Clinton S.; Carragher, Bridget

    2016-01-01

    Automated data collection is an integral part of modern workflows in single particle electron microscopy (EM) research. This review surveys the software packages available for automated single particle EM data collection. The degree of automation at each stage of data collection is evaluated, and the capabilities of the software packages are described. Finally, future trends in automation are discussed. PMID:26671944

  13. Exclusive many-particle diffusion in disordered media and correlation functions for random vertex models

    International Nuclear Information System (INIS)

    Schuetz, G.; Sandow, S.

    1993-05-01

    We consider systems of particles hopping stochastically on d-dimensional lattices with space-dependent probabilities. We map the master equation in a Fock space where the dynamics are given by a quantum Hamiltonian (continuous time) or a transfer matrix resp. (discrete time). We show that under certain conditions the time-dependent two-point density correlation function in N-particle steady state can be computed from the probability distribution of a single particle moving in the same environment. Focussing on exclusion models where the lattice site can be occupied by at most one particle we discuss as an example for such a stochastic process a generalized Heisenberg antiferromagnet where the strength of the spin-spin coupling in space-dependent. In discrete time one obtains for one dimensional systems the diagonal-to-diagonal transfer matrix of the two dimensional six vertex model with space dependent vertex weights. For a random distribution of the vertex weights one obtains a version of the random barrier model describing diffusion of particles in disordered media. We derive exact expressions for the average two-point density correlation function in the presence of weak, correlated disorder. (authors)

  14. New apparatus of single particle trap system for aerosol visualization

    Science.gov (United States)

    Higashi, Hidenori; Fujioka, Tomomi; Endo, Tetsuo; Kitayama, Chiho; Seto, Takafumi; Otani, Yoshio

    2014-08-01

    Control of transport and deposition of charged aerosol particles is important in various manufacturing processes. Aerosol visualization is an effective method to directly observe light scattering signal from laser-irradiated single aerosol particle trapped in a visualization cell. New single particle trap system triggered by light scattering pulse signal was developed in this study. The performance of the device was evaluated experimentally. Experimental setup consisted of an aerosol generator, a differential mobility analyzer (DMA), an optical particle counter (OPC) and the single particle trap system. Polystylene latex standard (PSL) particles (0.5, 1.0 and 2.0 μm) were generated and classified according to the charge by the DMA. Singly charged 0.5 and 1.0 μm particles and doubly charged 2.0 μm particles were used as test particles. The single particle trap system was composed of a light scattering signal detector and a visualization cell. When the particle passed through the detector, trigger signal with a given delay time sent to the solenoid valves upstream and downstream of the visualization cell for trapping the particle in the visualization cell. The motion of particle in the visualization cell was monitored by CCD camera and the gravitational settling velocity and the electrostatic migration velocity were measured from the video image. The aerodynamic diameter obtained from the settling velocity was in good agreement with Stokes diameter calculated from the electrostatic migration velocity for individual particles. It was also found that the aerodynamic diameter obtained from the settling velocity was a one-to-one function of the scattered light intensity of individual particles. The applicability of this system will be discussed.

  15. Probing the Evaporation Dynamics of Mixed SOA/Squalane Particles Using Size-Resolved Composition and Single-Particle Measurements.

    Science.gov (United States)

    Robinson, Ellis Shipley; Saleh, Rawad; Donahue, Neil M

    2015-08-18

    An analysis of the formation and evaporation of mixed-particles containing squalane (a surrogate for hydrophobic primary organic aerosol, POA) and secondary organic aerosol (SOA) is presented. In these experiments, one material (D62-squalane or SOA from α-pinene + O3) was prepared first to serve as surface area for condensation of the other, forming the mixed-particles. The mixed-particles were then subjected to a heating-ramp from 22 to 44 °C. We were able to determine that (1) almost all of the SOA mass is comprised of material less volatile than D62-squalane; (2) AMS collection efficiency in these mixed-particle systems can be parametrized as a function of the relative mass fraction of the components; and (3) the vast majority of D62-squalane is able to evaporate from the mixed particles, and does so on the same time scale regardless of the order of preparation. We also performed two-population mixing experiments to directly test whether D62-squalane and SOA from α-pinene + O3 form a single solution or two separate phases. We find that these two OA types are immiscible, which informs our inference of the morphology of the mixed-particles. If the morphology is core-shell and dictated by the order of preparation, these data indicate that squalane is able to diffuse relatively quickly through the SOA shell, implying that there are no major diffusion limitations.

  16. Modeling of calcination of single kaolinitic clay particle

    DEFF Research Database (Denmark)

    Gebremariam, Abraham Teklay; Yin, Chungen; Rosendahl, Lasse

    The present work aims at modeling of the calcination (dehydroxylation) process of clay particles, specifically kaolinite, and its thermal transformation. For such purpose, 1D single particle calcination model was developed based on the concept of shrinking core model to assess the dehydroxylation...... distribution within the clay particle and simultaneous density changes due to the reaction kinetics. Accordingly, a particular residence time was noticed as a point where kaolinitic clay particles attain optimum conversion to metakaolinite which is pozzolanic....

  17. Single Particle Studies of Heterogeneous Atmospheric Chemistry on Aluminum Oxide Particles in a Quadrupole Trap

    National Research Council Canada - National Science Library

    Hunter, A

    2000-01-01

    ... on upper atmospheric chemical cycles and ozone. The experimental investigation employs a laboratory quadrupole trap electrodynamic levitation apparatus to study heterogeneous processes on single aluminum oxide particles representative...

  18. Correlated diffusion of colloidal particles near a liquid-liquid interface.

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    Full Text Available Optical microscopy and multi-particle tracking are used to investigate the cross-correlated diffusion of quasi two-dimensional colloidal particles near an oil-water interface. The behaviors of the correlated diffusion along longitudinal and transverse direction are asymmetric. It is shown that the characteristic length for longitudinal and transverse correlated diffusion are particle diameter d and the distance z from particle center to the interface, respectively, for large particle separation z. The longitudinal and transverse correlated diffusion coefficient D||(r and D[perpendicular](r are independent of the colloidal area fraction n when n 0.4 the power law exponent for the spatial decay of [Formula: see text] begins to decrease, which suggests the HIs are more contributed from the 2D particle monolayer self for large n.

  19. Radial diffusion of toroidally trapped particles induced by lower hybrid and fast waves

    International Nuclear Information System (INIS)

    Krlin, L.

    1992-10-01

    The interaction of RF field with toroidally trapped particles (bananas) can cause their intrinsic stochastically diffusion both in the configuration and velocity space. In RF heating and/or current drive regimes, RF field can interact with plasma particles and with thermonuclear alpha particles. The aim of this contribution is to give some analytical estimates of induced radial diffusion of alphas and of ions. (author)

  20. 4-D single particle tracking of synthetic and proteinaceous microspheres reveals preferential movement of nuclear particles along chromatin - poor tracks.

    Science.gov (United States)

    Bacher, Christian P; Reichenzeller, Michaela; Athale, Chaitanya; Herrmann, Harald; Eils, Roland

    2004-11-23

    The dynamics of nuclear organization, nuclear bodies and RNPs in particular has been the focus of many studies. To understand their function, knowledge of their spatial nuclear position and temporal translocation is essential. Typically, such studies generate a wealth of data that require novel methods in image analysis and computational tools to quantitatively track particle movement on the background of moving cells and shape changing nuclei. We developed a novel 4-D image processing platform (TIKAL) for the work with laser scanning and wide field microscopes. TIKAL provides a registration software for correcting global movements and local deformations of cells as well as 2-D and 3-D tracking software. With this new tool, we studied the dynamics of two different types of nuclear particles, namely nuclear bodies made from GFP-NLS-vimentin and microinjected 0.1 mum - wide polystyrene beads, by live cell time-lapse microscopy combined with single particle tracking and mobility analysis. We now provide a tool for the automatic 3-D analysis of particle movement in parallel with the acquisition of chromatin density data. Kinetic analysis revealed 4 modes of movement: confined obstructed, normal diffusion and directed motion. Particle tracking on the background of stained chromatin revealed that particle movement is directly related to local reorganization of chromatin. Further a direct comparison of particle movement in the nucleoplasm and the cytoplasm exhibited an entirely different kinetic behaviour of vimentin particles in both compartments. The kinetics of nuclear particles were slightly affected by depletion of ATP and significantly disturbed by disruption of actin and microtubule networks. Moreover, the hydration state of the nucleus had a strong impact on the mobility of nuclear bodies since both normal diffusion and directed motion were entirely abolished when cells were challenged with 0.6 M sorbitol. This effect correlated with the compaction of chromatin

  1. Residual sweeping errors in turbulent particle pair diffusion in a Lagrangian diffusion model.

    Directory of Open Access Journals (Sweden)

    Nadeem A Malik

    Full Text Available Thomson, D. J. & Devenish, B. J. [J. Fluid Mech. 526, 277 (2005] and others have suggested that sweeping effects make Lagrangian properties in Kinematic Simulations (KS, Fung et al [Fung J. C. H., Hunt J. C. R., Malik N. A. & Perkins R. J. J. Fluid Mech. 236, 281 (1992], unreliable. However, such a conclusion can only be drawn under the assumption of locality. The major aim here is to quantify the sweeping errors in KS without assuming locality. Through a novel analysis based upon analysing pairs of particle trajectories in a frame of reference moving with the large energy containing scales of motion it is shown that the normalized integrated error [Formula: see text] in the turbulent pair diffusivity (K due to the sweeping effect decreases with increasing pair separation (σl, such that [Formula: see text] as σl/η → ∞; and [Formula: see text] as σl/η → 0. η is the Kolmogorov turbulence microscale. There is an intermediate range of separations 1 < σl/η < ∞ in which the error [Formula: see text] remains negligible. Simulations using KS shows that in the swept frame of reference, this intermediate range is large covering almost the entire inertial subrange simulated, 1 < σl/η < 105, implying that the deviation from locality observed in KS cannot be atributed to sweeping errors. This is important for pair diffusion theory and modeling. PACS numbers: 47.27.E?, 47.27.Gs, 47.27.jv, 47.27.Ak, 47.27.tb, 47.27.eb, 47.11.-j.

  2. Single-mode theory of diffusive layers in thermohaline convection

    Science.gov (United States)

    Gough, D. O.; Toomre, J.

    1982-01-01

    A two-layer configuration of thermohaline convection is studied, with the principal aim of explaining the observed independence of the buoyancy-flux ratio on the stability parameter when the latter is large. Temperature is destabilizing and salinity is stabilizing, so diffusive interfaces separate the convecting layers. The convection is treated in the single-mode approximation, with a prescribed horizontal planform and wavenumber. Surveys of numerical solutions are presented for a selection of Rayleigh numbers R, stability parameters lambda and horizontal wavenumbers. The solutions yield a buoyancy flux ratio chi that is insensitive to lambda, in accord with laboratory experiments. However chi increases with increasing R, in contradiction to laboratory observations.

  3. DAMPING OF UNBOUND SINGLE-PARTICLE MODES

    NARCIS (Netherlands)

    FORTIER, S; BEAUMEL, D; GALES, S; GUILLOT, J; LANGEVINJOLIOT, H; LAURENT, H; MAISON, JM; BORDEWIJK, J; BRANDENBURG, S; KRASZNAHORKAY, A; CRAWLEY, GM; MASSOLO, CP; RENTERIA, M; KHENDRICHE, A

    1995-01-01

    The (alpha, He-3-n) reaction has been investigated at 120 MeV incident energy on Ni-64, Zr-90, and Sn-120 target nuclei. Neutrons in coincidence with He-3 particles emitted at 0 degrees were detected using the multidetector array EDEN, in order to get information about the decay of the

  4. Single-particle density matrix of liquid 4He

    International Nuclear Information System (INIS)

    Vakarchuk, I.A.

    2008-01-01

    The density single-particle matrix in the coordinate notation was calculated based on the expression for the interacting Bose-particle N system density matrix. Under the low temperatures the mentioned matrix in the first approximation enables to reproduce the Bogoliubov theory results. In the classical terms the mentioned theory enables to reproduce the results of the theory of the classical fluids in the approximation of the chaotic phases. On the basis of the density single-particle matrix one managed to obtain the function of the pulse distribution of the particles, the Bose-liquid average kinetic energy, and to study the Bose-Einstein condensation phenomenon [ru

  5. Microphysical Properties of Single Secondary Organic Aerosol (SOA) Particles

    Science.gov (United States)

    Rovelli, Grazia; Song, Young-Chul; Pereira, Kelly; Hamilton, Jacqueline; Topping, David; Reid, Jonathan

    2017-04-01

    Secondary Organic Aerosols (SOA) deriving from the oxidation of volatile organic compounds (VOCs) can account for a substantial fraction of the overall atmospheric aerosol mass.[1] Therefore, the investigation of SOA microphysical properties is crucial to better comprehend their role in the atmospheric processes they are involved in. This works describes a single particle approach to accurately characterise the hygroscopic response, the optical properties and the gas-particle partitioning kinetics of water and semivolatile components for laboratory generated SOA. SOA was generated from the oxidation of different VOCs precursors (e.g. α-pinene, toluene) in a photo-chemical flow reactor, which consists of a temperature and relative humidity controlled 300 L polyvinyl fluoride bag. Known VOC, NOx and ozone concentrations are introduced in the chamber and UV irradiation is performed by means of a Hg pen-ray. SOA samples were collected with an electrical low pressure impactor, wrapped in aluminium foil and kept refrigerated at -20°C. SOA samples were extracted in a 1:1 water/methanol mixture. Single charged SOA particles were generated from the obtained solution using a microdispenser and confined within an electrodynamic balance (EDB), where they sit in a T (250-320 K) and RH (0-95%) controlled nitrogen flow. Suspended droplets are irradiated with a 532 nm laser and the evolving angularly resolved scattered light is used to keep track of changes in droplet size. One of the key features of this experimental approach is that very little SOA solution is required because of the small volumes needed to load the dispensers (evaporation kinetics experiments (CK-EDB) of suspended probe and sample droplets.[2] The variation of the refractive index of SOA droplets following to water or SVOCs evaporative loss was measured as a function of water activity by fitting the collected light scattering patterns with a generated Mie-Theory library of phase functions.[3] Long trapping

  6. Rapid calculation of maximum particle lifetime for diffusion in complex geometries

    Science.gov (United States)

    Carr, Elliot J.; Simpson, Matthew J.

    2018-03-01

    Diffusion of molecules within biological cells and tissues is strongly influenced by crowding. A key quantity to characterize diffusion is the particle lifetime, which is the time taken for a diffusing particle to exit by hitting an absorbing boundary. Calculating the particle lifetime provides valuable information, for example, by allowing us to compare the timescale of diffusion and the timescale of the reaction, thereby helping us to develop appropriate mathematical models. Previous methods to quantify particle lifetimes focus on the mean particle lifetime. Here, we take a different approach and present a simple method for calculating the maximum particle lifetime. This is the time after which only a small specified proportion of particles in an ensemble remain in the system. Our approach produces accurate estimates of the maximum particle lifetime, whereas the mean particle lifetime always underestimates this value compared with data from stochastic simulations. Furthermore, we find that differences between the mean and maximum particle lifetimes become increasingly important when considering diffusion hindered by obstacles.

  7. Lattice diffusion of a single molecule in solution

    Science.gov (United States)

    Ruggeri, Francesca; Krishnan, Madhavi

    2017-12-01

    The ability to trap a single molecule in an electrostatic potential well in solution has opened up new possibilities for the use of molecular electrical charge to study macromolecular conformation and dynamics at the level of the single entity. Here we study the diffusion of a single macromolecule in a two-dimensional lattice of electrostatic traps in solution. We report the ability to measure both the size and effective electrical charge of a macromolecule by observing single-molecule transport trajectories, typically a few seconds in length, using fluorescence microscopy. While, as shown previously, the time spent by the molecule in a trap is a strong function of its effective charge, we demonstrate here that the average travel time between traps in the landscape yields its hydrodynamic radius. Tailoring the pitch of the lattice thus yields two different experimentally measurable time scales that together uniquely determine both the size and charge of the molecule. Since no information is required on the location of the molecule between consecutive departure and arrival events at lattice sites, the technique is ideally suited to measurements on weakly emitting entities such as single molecules.

  8. Structure, single-particle and many-particle coefficients of Lennard ...

    Indian Academy of Sciences (India)

    We investigate the effects of temperature and density on the single-particle and many-particle coefficients as well as on the structures of homogenous systems in which the particles are assumed to interact via a continuous soft sphere potential in the microcanonical ensemble. The pair distribution function and therefore the ...

  9. Single particle measurements and two particle interferometry results from CERN experiment NA44

    International Nuclear Information System (INIS)

    Simon-Gillo, J.

    1994-01-01

    CERN experiment NA44 is optimized for the study of identified single and multiple particle distributions to p T = 0 near mid-rapidity. We measure π +- , K +- , p, bar p, d and bar d, in p + A and A + A collisions at 450 and 20OGeV/u, respectively. Two-particle intensity interferometry results from π + π + , K + K + , and K - K - measurements and single particle distributions are presented

  10. Single-camera, three-dimensional particle tracking velocimetry.

    Science.gov (United States)

    Peterson, Kevin; Regaard, Boris; Heinemann, Stefan; Sick, Volker

    2012-04-09

    This paper introduces single-camera, three-dimensional particle tracking velocimetry (SC3D-PTV), an image-based, single-camera technique for measuring 3-component, volumetric velocity fields in environments with limited optical access, in particular, optically accessible internal combustion engines. The optical components used for SC3D-PTV are similar to those used for two-camera stereoscopic-µPIV, but are adapted to project two simultaneous images onto a single image sensor. A novel PTV algorithm relying on the similarity of the particle images corresponding to a single, physical particle produces 3-component, volumetric velocity fields, rather than the 3-component, planar results obtained with stereoscopic PIV, and without the reconstruction of an instantaneous 3D particle field. The hardware and software used for SC3D-PTV are described, and experimental results are presented.

  11. Single particle orbitals of the heaviest known actinide nuclei

    International Nuclear Information System (INIS)

    Ahmad, I.

    1992-01-01

    Single particle states in the actinide nuclei have been well characterized by decay scheme, (n, γ) and one nucleon transfer reaction studies. The energies of the single particle states are used to calculate the shell corrections which may give rise to stable superheavy elements. Large shell corrections for the superheavy elements arise from the gaps in the proton single-particle spectrum at Z = 114 and in the neutron single-particle spectrum at N = 184. The gap at Z = 114 is determined by the splitting of the f 7/2 and f 5/2 orbitals and the gap at N = 184 is determined by the locations of the h 11/2 , k 17/2 and j 13/2 spherical orbitals. Many of these states have been identified in very heavy actinide nuclei. Experiments identifying these states and the relation of the observed energies to the stability of superheavy elements are discussed

  12. Single-particle dynamics - RF acceleration

    International Nuclear Information System (INIS)

    Montague, B.W.

    1977-01-01

    In this paper the rf acceleration of both synchronous and non-synchronous particles is discussed and a simple linearized equation of small amplitude synchrotron oscillations is derived. Phase stability, the hamiltonian for synchrotron oscillations, oscillation amplitudes and adiabatic damping are then briefly discussed. The final sections of the paper contain a description of the basic principles of rf beam stacking in the longitudinal phase space of intersecting Storage Rings and a description of phase displacement acceleration which inspite of certain disadvantages, remains an attractive technique for proton storage rings. (B.D.)

  13. Single particle mass spectral signatures from vehicle exhaust particles and the source apportionment of on-line PM2.5by single particle aerosol mass spectrometry.

    Science.gov (United States)

    Yang, Jian; Ma, Shexia; Gao, Bo; Li, Xiaoying; Zhang, Yanjun; Cai, Jing; Li, Mei; Yao, Ling'ai; Huang, Bo; Zheng, Mei

    2017-09-01

    In order to accurately apportion the many distinct types of individual particles observed, it is necessary to characterize fingerprints of individual particles emitted directly from known sources. In this study, single particle mass spectral signatures from vehicle exhaust particles in a tunnel were performed. These data were used to evaluate particle signatures in a real-world PM 2.5 apportionment study. The dominant chemical type originating from average positive and negative mass spectra for vehicle exhaust particles are EC species. Four distinct particle types describe the majority of particles emitted by vehicle exhaust particles in this tunnel. Each particle class is labeled according to the most significant chemical features in both average positive and negative mass spectral signatures, including ECOC, NaK, Metal and PAHs species. A single particle aerosol mass spectrometry (SPAMS) was also employed during the winter of 2013 in Guangzhou to determine both the size and chemical composition of individual atmospheric particles, with vacuum aerodynamic diameter (d va ) in the size range of 0.2-2μm. A total of 487,570 particles were chemically analyzed with positive and negative ion mass spectra and a large set of single particle mass spectra was collected and analyzed in order to identify the speciation. According to the typical tracer ions from different source types and classification by the ART-2a algorithm which uses source fingerprints for apportioning ambient particles, the major sources of single particles were simulated. Coal combustion, vehicle exhaust, and secondary ion were the most abundant particle sources, contributing 28.5%, 17.8%, and 18.2%, respectively. The fraction with vehicle exhaust species particles decreased slightly with particle size in the condensation mode particles. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Single-sheet identification method of heavy charged particles using ...

    Indian Academy of Sciences (India)

    of the single-sheet particle identification technique in CR-39 and CN-85 polycarbonate by plotting track cone length ... in neutron dosimetry, gamma and cosmic rays detection, heavy ion and nuclear physics and corpuscular ..... [13] R P Henke and E V Benton, Charged particle tracks in polymers: No. 5-A com- puter code for ...

  15. Calibration of single particle sizing velocimeters using photomask reticles

    Science.gov (United States)

    Hirleman, E. D.; Holve, D. J.; Hovenac, E. A.

    1988-01-01

    The development of photomask reticle calibration standards for single particle instruments is discussed. The calibration method studied involves the use of photomask reticles where the particle artifacts are actually disks of chrome thin film in the clear field reticles produced by photolithography and etching processes. Consideration is given to various aspects of theory, design, and performance.

  16. Influence of Torrefaction on Single Particle Combustion of Wood

    DEFF Research Database (Denmark)

    Lu, Zhimin; Jian, Jie; Jensen, Peter Arendt

    2016-01-01

    This study focuses on the influence of torrefaction on the char reactivity, char yield, and combustion time of 3-5 mm spherical wood particles in a single particle combustion reactor (SPC) operating at a nominal temperature of 1231 °C. The devolatilization times were reduced and the char burnout...

  17. Modelling large-particle diffusion in porous media as anisotropic continuous-time random walk

    Science.gov (United States)

    Amitai, Shahar; Blumenfeld, Raphael

    We test the fidelity of modelling diffusion of finite-size particles in porous media by continuous-time random walk (CTRW), where the step-size and waiting-time distributions of the former, Pl and Pt, are used as input to the latter. As the particle size is increased, the diffusion undergoes a transition from normal to anomalous. We find that, based only on Pl and Pt, CTRW does not predict correctly this transition. We show that the discrepancy is due to the change in effective connectivity (topology) of the porous media with increasing particle size. We propose a method to capture this within the CTRW model by adding anisotropy. This adjustment yields good agreement with the simulated diffusion process, making it possible to use CTRW, with all its advantages, to model diffusion of any finite size particle in confined geometries.

  18. Infrared absorption spectroscopy of single particles using photophoresis

    International Nuclear Information System (INIS)

    Lin, H.

    1985-01-01

    In situ absorption spectroscopy was performed on a single suspended salt particle using photophoresis. The charged ammonium sulfate particle was levitated in an electric-quadrpole field and illuminated by a CO 2 laser. The size-dependent absorption spectrum of ammonium sulfate particles was observed for the first time to our knowledge at 930-1080 cm -1 . The effects of gas pressure and laser power were also determined. For particles approximately 10 μm in diameter, the photophoretic force was observed to be negative

  19. Magnetophoretic circuits for digital control of single particles and cells

    Science.gov (United States)

    Lim, Byeonghwa; Reddy, Venu; Hu, Xinghao; Kim, Kunwoo; Jadhav, Mital; Abedini-Nassab, Roozbeh; Noh, Young-Woock; Lim, Yong Taik; Yellen, Benjamin B.; Kim, Cheolgi

    2014-05-01

    The ability to manipulate small fluid droplets, colloidal particles and single cells with the precision and parallelization of modern-day computer hardware has profound applications for biochemical detection, gene sequencing, chemical synthesis and highly parallel analysis of single cells. Drawing inspiration from general circuit theory and magnetic bubble technology, here we demonstrate a class of integrated circuits for executing sequential and parallel, timed operations on an ensemble of single particles and cells. The integrated circuits are constructed from lithographically defined, overlaid patterns of magnetic film and current lines. The magnetic patterns passively control particles similar to electrical conductors, diodes and capacitors. The current lines actively switch particles between different tracks similar to gated electrical transistors. When combined into arrays and driven by a rotating magnetic field clock, these integrated circuits have general multiplexing properties and enable the precise control of magnetizable objects.

  20. Trapped-ion anomalous diffusion coefficient on the basis of single mode saturation

    International Nuclear Information System (INIS)

    Koshi, Yuji; Hatayama, Akiyoshi; Ogasawara, Masatada.

    1982-03-01

    Expressions of the anomalous diffusion coefficient due to the dissipative trapped ion instability (DTII) are derived for the case with and without the effect of magnetic shear. Derivation is made by taking into account of the single mode saturation of the DTII previously obtained numerically. In the absence of the shear effect, the diffusion coefficient is proportional to #betta#sub(i)a 2 (#betta#sub(i) is the effective collision frequency of the trapped ions and a is the minor radius of a torus) and is much larger than the neoclassical ion heat conductivity. In the presence of the shear effect, the diffusion coefficient is much smaller than the Kadomtsev and Pogutse's value and is the same order of magnitude as the neoclassical ion heat conductivity. Dependences of the diffusion coefficient on the temperature and on the total particle number density are rather complicated due to the additional spectral cut-off, which is introduced to regularize the short wavelength modes in the numerical analysis. (author)

  1. Influence of Particle Theory Conceptions on Pre-Service Science Teachers' Understanding of Osmosis and Diffusion

    Science.gov (United States)

    AlHarbi, Nawaf N. S.; Treagust, David F.; Chandrasegaran, A. L.; Won, Mihye

    2015-01-01

    This study investigated the understanding of diffusion, osmosis and particle theory of matter concepts among 192 pre-service science teachers in Saudi Arabia using a 17-item two-tier multiple-choice diagnostic test. The data analysis showed that the pre-service teachers' understanding of osmosis and diffusion concepts was mildly correlated with…

  2. Diffusion mechanism of non-interacting Brownian particles through a deformed substrate

    Science.gov (United States)

    Arfa, Lahcen; Ouahmane, Mehdi; El Arroum, Lahcen

    2018-02-01

    We study the diffusion mechanism of non-interacting Brownian particles through a deformed substrate. The study is done at low temperature for different values of the friction. The deformed substrate is represented by a periodic Remoissenet-Peyrard potential with deformability parameter s. In this potential, the particles (impurity, adatoms…) can diffuse. We ignore the interactions between these mobile particles consider them merely as non-interacting Brownian particles and this system is described by a Fokker-Planck equation. We solve this equation numerically using the matrix continued fraction method to calculate the dynamic structure factor S(q , ω) . From S(q , ω) some relevant correlation functions are also calculated. In particular, we determine the half-width line λ(q) of the peak of the quasi-elastic dynamic structure factor S(q , ω) and the diffusion coefficient D. Our numerical results show that the diffusion mechanism is described, depending on the structure of the potential, either by a simple jump diffusion process with jump length close to the lattice constant a or by a combination of a jump diffusion model with jump length close to lattice constant a and a liquid-like motion inside the unit cell. It shows also that, for different friction regimes and various potential shapes, the friction attenuates the diffusion mechanism. It is found that, in the high friction regime, the diffusion process is more important through a deformed substrate than through a non-deformed one.

  3. Theory of the Thermal Diffusion of Microgel Particles in Highly Compressed Suspensions

    Science.gov (United States)

    Sokoloff, Jeffrey; Maloney, Craig; Ciamarra, Massimo; Bi, Dapeng

    One amazing property of microgel colloids is the ability of the particles to thermally diffuse, even when they are compressed to a volume well below their swollen state volume, despite the fact that they are surrounded by and pressed against other particles. A glass transition is expected to occur when the colloid is sufficiently compressed for diffusion to cease. It is proposed that the diffusion is due to the ability of the highly compressed particles to change shape with little cost in free energy. It will be shown that most of the free energy required to compress microgel particles is due to osmotic pressure resulting from either counterions or monomers inside of the gel, which depends on the particle's volume. There is still, however, a cost in free energy due to polymer elasticity when particles undergo the distortions necessary for them to move around each other as they diffuse through the compressed colloid, even if it occurs at constant volume. Using a scaling theory based on simple models for the linking of polymers belonging to the microgel particles, we examine the conditions under which the cost in free energy needed for a particle to diffuse is smaller than or comparable to thermal energy, which is a necessary condition for particle diffusion. Based on our scaling theory, we predict that thermally activated diffusion should be possible when the mean number of links along the axis along which a distortion occurs is much larger than N 1 / 5, where Nis the mean number of monomers in a polymer chain connecting two links in the gel.

  4. Modeling of Particle Acceleration at Multiple Shocks via Diffusive Shock Acceleration: Preliminary Results

    Science.gov (United States)

    Parker, L. Neergaard; Zank, G. P.

    2013-01-01

    Successful forecasting of energetic particle events in space weather models require algorithms for correctly predicting the spectrum of ions accelerated from a background population of charged particles. We present preliminary results from a model that diffusively accelerates particles at multiple shocks. Our basic approach is related to box models in which a distribution of particles is diffusively accelerated inside the box while simultaneously experiencing decompression through adiabatic expansion and losses from the convection and diffusion of particles outside the box. We adiabatically decompress the accelerated particle distribution between each shock by either the method explored in Melrose and Pope (1993) and Pope and Melrose (1994) or by the approach set forth in Zank et al. (2000) where we solve the transport equation by a method analogous to operator splitting. The second method incorporates the additional loss terms of convection and diffusion and allows for the use of a variable time between shocks. We use a maximum injection energy (E(sub max)) appropriate for quasi-parallel and quasi-perpendicular shocks and provide a preliminary application of the diffusive acceleration of particles by multiple shocks with frequencies appropriate for solar maximum (i.e., a non-Markovian process).

  5. Three-dimensional single particle tracking in dense dust clouds by stereoscopy of fluorescent particles

    Science.gov (United States)

    Himpel, Michael; Killer, Carsten; Buttenschön, Birger; Melzer, André

    2012-12-01

    In dense dust clouds of a dusty plasma single particle trajectories are impossible to follow due to occlusion of particles and ambiguities in particle correspondences. By stereoscopic imaging of fluorescent tracer particles, we were able to reconstruct 3D single particle trajectories within dense dust clouds. Several measurements are shown that justify to regard the tracer particles as suitable representatives for the whole dust system. A first analysis of dust density waves in dense clouds already shows that these waves exhibit three-dimensional dynamics at larger wave amplitudes that cannot be resolved by 2D imaging techniques: a broad velocity distribution perpendicular to the oscillation plane due to dust-dust collisions is seen, while the velocity distribution in the oscillation direction is bimodal and shifted due to the bulk wave propagation.

  6. Three-dimensional single particle tracking in dense dust clouds by stereoscopy of fluorescent particles

    Energy Technology Data Exchange (ETDEWEB)

    Himpel, Michael; Killer, Carsten; Buttenschoen, Birger; Melzer, Andre [Ernst-Moritz-Arndt-University, 17489 Greifswald (Germany)

    2012-12-15

    In dense dust clouds of a dusty plasma single particle trajectories are impossible to follow due to occlusion of particles and ambiguities in particle correspondences. By stereoscopic imaging of fluorescent tracer particles, we were able to reconstruct 3D single particle trajectories within dense dust clouds. Several measurements are shown that justify to regard the tracer particles as suitable representatives for the whole dust system. A first analysis of dust density waves in dense clouds already shows that these waves exhibit three-dimensional dynamics at larger wave amplitudes that cannot be resolved by 2D imaging techniques: a broad velocity distribution perpendicular to the oscillation plane due to dust-dust collisions is seen, while the velocity distribution in the oscillation direction is bimodal and shifted due to the bulk wave propagation.

  7. Particle deposition due to turbulent diffusion in the upper respiratory system

    Science.gov (United States)

    Hamill, P.

    1979-01-01

    Aerosol deposition in the upper respiratory system (trachea to segmental bronchi) is considered and the importance of turbulent diffusion as a deposition mechanism is evaluated. It is demonstrated that for large particles (diameter greater than about 5 microns), turbulent diffusion is the dominant deposition mechanism in the trachea. Conditions under which turbulent diffusion may be important in successive generations of the pulmonary system are determined. The probability of particle deposition is compared with probabilities of deposition, as determined by the equations generally used in regional deposition models. The analysis is theoretical; no new experimental data is presented.

  8. Diffusion of particles, adsorbed on a reconstructive surface

    Czech Academy of Sciences Publication Activity Database

    Tarasenko, Alexander; Jastrabík, Lubomír

    532-535, - (2003), s. 588-593 ISSN 0039-6028 R&D Projects: GA MŠk LN00A015 Institutional research plan: CEZ:AV0Z1010914 Keywords : models of surface kinetics * non-equilibrium thermodynamics and statistical mechanics * surface diffusion Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.063, year: 2003

  9. Characterization of biomass combustion at high temperatures based on an upgraded single particle model

    International Nuclear Information System (INIS)

    Li, Jun; Paul, Manosh C.; Younger, Paul L.; Watson, Ian; Hossain, Mamdud; Welch, Stephen

    2015-01-01

    Highlights: • High temperature rapid biomass combustion is studied based on single particle model. • Particle size changes in devolatilization and char oxidation models are addressed. • Time scales of various thermal sub-processes are compared and discussed. • Potential solutions are suggested to achieve better biomass co-firing performances. - Abstract: Biomass co-firing is becoming a promising solution to reduce CO 2 emissions, due to its renewability and carbon neutrality. Biomass normally has high moisture and volatile contents, complicating its combustion behavior, which is significantly different from that of coal. A computational fluid dynamics (CFD) combustion model of a single biomass particle is employed to study high-temperature rapid biomass combustion. The two-competing-rate model and kinetics/diffusion model are used to model biomass devolatilization reaction and char burnout process, respectively, in which the apparent kinetics used for those two models were from high temperatures and high heating rates tests. The particle size changes during the devolatilization and char burnout are also considered. The mass loss properties and temperature profile during the biomass devolatilization and combustion processes are predicted; and the timescales of particle heating up, drying, devolatilization, and char burnout are compared and discussed. Finally, the results shed light on the effects of particle size on the combustion behavior of biomass particle

  10. Bed load transport for a mixture of particle sizes: Downstream sorting rather than anomalous diffusion

    Science.gov (United States)

    Fan, Niannian; Xie, Yushu; Nie, Ruihua

    2017-10-01

    The stochastic nature of bed load transport induces diffusion of sediment tracers, which is governed by the dynamics of their bulk behavior over time. By deploying both numerical simulations and flume experiments, the emergent particle diffusion regimes for both uniform and mixed tracer particles were studied and compared. For uniform particles, power-law-distributed resting times Tr produced super-, sub- or normal diffusion regimes for certain values of the tail exponent ν . Based on the assumption that heterogeneity in particle size leads to a power-law distribution of Tr , a completely different diffusion regime emerges in mixtures compared with those obtained from uniform particles with the same value of the tail exponent ν . Mixtures exhibited the same ballistic regime (the variance of travel distance grows as time squared) for different values of ν , and ballistic regimes for mixtures also emerged from several other tested models. Furthermore, our experimental results confirmed the ballistic regime; however, the decreasing number of tracked particles may result in apparent but deceptive sub-diffusion. We conclude that ballistic regimes for mixtures result from violations of the independent and identically distributed (i.i.d.) assumptions, attributing to downstream sorting processes.

  11. Single-particle detection of transcription following rotavirus entry.

    Science.gov (United States)

    Salgado, Eric N; Upadhyayula, Srigokul; Harrison, Stephen C

    2017-07-12

    Infectious rotavirus particles are triple-layered, icosahedral assemblies. The outer layer proteins, VP4 (cleaved to VP8* and VP5*) and VP7, surround a transcriptionally competent, double-layer particle (DLP), which they deliver into the cytosol. During entry of rhesus rotavirus, VP8* interacts with cell-surface gangliosides, allowing engulfment into a membrane vesicle by a clathrin-independent process. Escape into the cytosol and outer-layer shedding depend on interaction of a hydrophobic surface on VP5* with the membrane bilayer and on a large-scale conformational change. We report here experiments that detect the fate of released DLPs and their efficiency in initiating RNA synthesis. By replacing the outer layer with fluorescently tagged, recombinant proteins and also tagging the DLP, we distinguish particles that have lost their outer layer and entered the cytosol (uncoated) from those still within membrane vesicles. We used fluorescent in situ hybridization with probes for nascent transcripts to determine how soon after uncoating transcription began and what fraction of the uncoated particles were active in initiating RNA synthesis. We detected RNA synthesis by uncoated particles as early as 15 minutes after adding virus. Uncoating efficiency was 20-50%; of the uncoated particles, about 10% synthesized detectable RNA. In the format of our experiments, about 1% of the added particles attached to the cell surface, giving an overall added-particle to RNA-synthesizing particle ratio of between 1000 and 5000 to 1, in good agreement with the particle-to-focus-forming unit determined by infectivity assays. Thus, RNA synthesis by even a single, uncoated particle can initiate infection in a cell. IMPORTANCE The pathways by which a virus enters a cell transform its packaged genome into an active one. Contemporary fluorescence microscopy can detect individual virus particles as they enter cells, allowing us to map their multi-step entry pathways. Rotaviruses, like most

  12. High sensitivity fluorescent single particle and single molecule detection apparatus and method

    Science.gov (United States)

    Mathies, Richard A.; Peck, Konan; Stryer, Lubert

    1990-01-01

    Apparatus is described for ultrasensitive detection of single fluorescent particles down to the single fluorescent molecule limit in a fluid or on a substrate comprising means for illuminating a predetermined volume of the fluid or area of the substrate whereby to emit light including background light from the fluid and burst of photons from particles residing in the area. The photon burst is detected in real time to generate output representative signal. The signal is received and the burst of energy from the fluorescent particles is distinguished from the background energy to provide an indication of the number, location or concentration of the particles or molecules.

  13. Diffusion of a particle in the spatially correlated exponential random energy landscape: Transition from normal to anomalous diffusion

    Science.gov (United States)

    Novikov, S. V.

    2018-01-01

    Diffusive transport of a particle in a spatially correlated random energy landscape having exponential density of states has been considered. We exactly calculate the diffusivity in the nondispersive quasi-equilibrium transport regime for the 1D transport model and found that for slow decaying correlation functions the diffusivity becomes singular at some particular temperature higher than the temperature of the transition to the true non-equilibrium dispersive transport regime. It means that the diffusion becomes anomalous and does not follow the usual ∝ t1/2 law. In such situation, the fully developed non-equilibrium regime emerges in two stages: first, at some temperature there is the transition from the normal to anomalous diffusion, and then at lower temperature the average velocity for the infinite medium goes to zero, thus indicating the development of the true dispersive regime. Validity of the Einstein relation is discussed for the situation where the diffusivity does exist. We provide also some arguments in favor of conservation of the major features of the new transition scenario in higher dimensions.

  14. Evolution of single-particle structure of silicon isotopes

    Science.gov (United States)

    Bespalova, O. V.; Fedorov, N. A.; Klimochkina, A. A.; Markova, M. L.; Spasskaya, T. I.; Tretyakova, T. Yu.

    2018-01-01

    New data on proton and neutron single-particle energies E_{nlj} of Si isotopes with neutron number N from 12 to 28 as well as occupation probabilities N_{nlj} of single-particle states of stable isotopes 28, 30Si near the Fermi energy were obtained by the joint evaluation of the stripping and pick-up reaction data and excited state decay schemes of neighboring nuclei. The evaluated data indicate the following features of single-particle structure evolution: persistence of Z = 14 subshell closure with N increase, the new magicity of the number N = 16, and the conservation of the magic properties of the number N = 20 in Si isotopic chain. The features were described by the dispersive optical model. The calculation also predicts the weakening of N = 28 shell closure and demonstrates evolution of a bubble-like structure of the proton density distributions in neutron-rich Si isotopes.

  15. Modelling component diffusion in aerosol particles using Maxwell-Stefan's laws and the implications for cloud particle formation .

    Science.gov (United States)

    Fowler, K.; Connolly, P.; Topping, D. O.

    2016-12-01

    Until now, non-reactive mixing through secondary organic aerosols has been modelled using the Fickian laws of diffusion (Shiraiwa, 2013). Atmospheric aerosols are comprised of components with varying physical and chemical properties, including solubility. This is confirmed by virtue of the fact that liquid-liquid phase separations can exist within individual aerosol particles (Bertram, 2011). This spectrum of solubility means that modelling diffusion according to the Fickian definition is subject to unknown errors.In this study, we introduce a new framework of diffusion through aerosol particles based on Maxwell-Stefan's law. This framework uses a gradient in chemical potential to drive mixing through individual particles, for which we use the UNIFAC model. Including non-ideal effects of diffusion allows mixing to occur against the concentration gradient and liquid-liquid phase separations to be treated alongside any changes in viscosity of the mixture. Results from this framework give new insights on the interplay between thermodynamic factors and phase state changes on aerosol-cloud interactions. We further confirm that understanding the composition of aerosol particles is essential to better model their interactions in cloud systems.

  16. Diffusion of particles on the patchwise bivariate surfaces

    Czech Academy of Sciences Publication Activity Database

    Tarasenko, Alexander; Jastrabík, Lubomír

    2015-01-01

    Roč. 458, Feb (2015), s. 27-34 ISSN 0921-4526 R&D Projects: GA TA ČR TA01010517; GA ČR GAP108/12/1941; GA TA ČR TA03010743 Institutional support: RVO:68378271 Keywords : kinetic Monte Carlo simulations * lattice-gas model * patchwise lattice * surface diffusion Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.352, year: 2015

  17. Large Silver Halide Single Crystals as Charged Particle Track Detectors

    Science.gov (United States)

    Kusmiss, J. H.

    1972-01-01

    The trajectory of the particle is made visible under a microscope by the accumulation of metallic silver at regions of the lattice damaged by the particle. This decoration of the particle track is accomplished by exposure of the crystal to light. The decoration of normally present lattice imperfections such as dislocations can be suppressed by the addition to the crystal of less than ten parts per million of a suitable polyvalent metal impurity. An account of some preliminary attempts to grow thin single crystals of AgCl is given also, and suggestions for a more refined technique are offered.

  18. Single particle labeling of RNA virus in live cells.

    Science.gov (United States)

    Liu, Xiaohui; Ouyang, Ting; Ouyang, Hongsheng; Ren, Linzhu

    2017-06-02

    Real-time and visual tracking of viral infection is crucial for elucidating the infectious and pathogenesis mechanisms. To track the virus successfully, an efficient labeling method is necessary. In this review, we first discuss the practical labeling techniques for virus tracking in live cells. We then describe the current knowledge of interactions between RNA viruses (especially influenza viruses, immunodeficiency viruses, and Flaviviruses) and host cellular structures, obtained using single particle labeling techniques combined with real-time fluorescence microscopy. Single particle labeling provides an easy system for understanding the RNA virus life cycle. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Single Particle Nanoplasmonic Sensing in Individual Nanofluidic Channels.

    Science.gov (United States)

    Fritzsche, Joachim; Albinsson, David; Fritzsche, Michael; Antosiewicz, Tomasz J; Westerlund, Fredrik; Langhammer, Christoph

    2016-12-14

    Nanoplasmonics allows label-free optical sensing and spectroscopy at the single nanoparticle level by exploiting plasmonic excitations in metal nanoparticles. Nanofluidics offers exclusive possibilities for applying and controlling fluid flow and mass transport at the nanoscale and toward nanosized objects. Here, we combine these two concepts in a single device, by integrating single particle nanoplasmonic sensing with nanofluidics using advanced nanofabrication. The developed devices enable on-chip referenced parallel single particle nanoplasmonic sensing inside multiple individual nanofluidic channels with dimensions down to the 100 nm range. Beyond detailed discussion of the nanofabrication, general device characterization, and parallelized single particle plasmonic readout concepts, we demonstrate device function on two examples: (i) in situ measurements of local buffer concentrations inside a nanofluidic channel; (ii) real time binding kinetics of alkanethiol molecules to a single plasmonic nanonatenna sensor in a single nanochannel. Our concept thus provides a powerful solution for controlling mass transport to and from individual (plasmonic) nanoparticles, which in a long-term perspective offers unique opportunities for label-free detection of analyte molecules at low concentrations and for fundamental studies of fluids in extreme confinement.

  20. Single particle analysis with a 3600 light scattering photometer

    International Nuclear Information System (INIS)

    Bartholdi, M.F.

    1979-06-01

    Light scattering by single spherical homogeneous particles in the diameter range 1 to 20 μm and relative refractive index 1.20 is measured. Particle size of narrowly dispersed populations is determined and a multi-modal dispersion of five components is completely analyzed. A 360 0 light scattering photometer for analysis of single particles has been designed and developed. A fluid stream containing single particles intersects a focused laser beam at the primary focal point of an ellipsoidal reflector ring. The light scattered at angles theta = 2.5 0 to 177.5 0 at phi = 0 0 and 180 0 is reflected onto a circular array of photodiodes. The ellipsoidal reflector is situated in a chamber filled with fluid matching that of the stream to minimize refracting and reflecting interfaces. The detector array consists of 60 photodiodes each subtending 3 0 in scattering angle on 6 0 centers around 360 0 . 32 measurements on individual particles can be acquired at rates of 500 particles per second. The intensity and angular distribution of light scattered by spherical particles are indicative of size and relative refractive index. Calculations, using Lorenz--Mie theory, of differential scattering patterns integrated over angle corresponding to the detector geometry determined the instrument response to particle size. From this the expected resolution and experimental procedures are determined.Ultimately, the photometer will be utilized for identification and discrimination of biological cells based on the sensitivity of light scattering to size, shape, refractive index differences, internal granularity, and other internal morphology. This study has demonstrated the utility of the photometer and indicates potential for application to light scattering studies of biological cells

  1. Emissions from Ethanol-Gasoline Blends: A Single Particle Perspective

    Directory of Open Access Journals (Sweden)

    Peter H. McMurry

    2011-06-01

    Full Text Available Due to its agricultural origin and function as a fuel oxygenate, ethanol is being promoted as an alternative biomass-based fuel for use in spark ignition engines, with mandates for its use at state and regional levels. While it has been established that the addition of ethanol to a fuel reduces the particulate mass concentration in the exhaust, little attention has been paid to changes in the physicochemical properties of the emitted particles. In this work, a dynamometer-mounted GM Quad-4 spark ignition engine run without aftertreatment at 1,500 RPM and 100% load was used with four different fuel blends, containing 0, 20, 40 and 85 percent ethanol in gasoline. This allowed the effects of the fuel composition to be isolated from other effects. Instrumentation employed included two Aerosol Time-of-Flight Mass Spectrometers covering different size ranges for analysis of single particle composition, an Aethalometer for black carbon, a Scanning Mobility Particle Sizer for particle size distributions, a Photoelectric Aerosol Sensor for particle-bound polycyclic aromatic hydrocarbon (PAH species and gravimetric filter measurements for particulate mass concentrations. It was found that, under the conditions investigated here, additional ethanol content in the fuel changes the particle size distribution, especially in the accumulation mode, and decreases the black carbon and total particulate mass concentrations. The molecular weight distribution of the PAHs was found to decrease with added ethanol. However, PAHs produced from higher ethanol-content fuels are associated with NO2− (m/z—46 in the single-particle mass spectra, indicating the presence of nitro-PAHs. Compounds associated with the gasoline (e.g., sulfur-containing species are diminished due to dilution as ethanol is added to the fuel relative to those associated with the lubricating oil (e.g., calcium, zinc, phosphate in the single particle spectra. These changes have potential

  2. Particle pitch angle diffusion due to nonadiabatic effects in the plasma sheet

    International Nuclear Information System (INIS)

    Gray, P.C.; Lee, L.C.

    1982-01-01

    In order to understand certain aspects of the plasma sheet dynamics, a numerical study of the nonadiabatic behavior of particles in a model field geometry is performed. The particle's magnetic moment as a function of time is calculated for various initial parameters, corresponding to various particle energies and degrees of field curvature. It is shown that the magnetic moment changes as the particle passes through the plasma sheet and that the magnitude of the change is related to the curvature of the field at the middle of the plasma sheet. The relation of the magnitude of the change in magnetic moment to the particle's pitch and phase angles as it passes through the sheet is numerically resolved. The nature of the change may be considered as a mechanism for pitch angle diffusion, and the diffusion coefficient is calculated. This scattering mechanism is significant for plasma sheet ions (1--10 keV) as well as energetic electrons (>100 keV)

  3. A development of simulation and analytical program for through-diffusion experiments for a single layer of diffusion media

    International Nuclear Information System (INIS)

    Sato, Haruo

    2001-01-01

    A program (TDROCK1. FOR) for simulation and analysis of through-diffusion experiments for a single layer of diffusion media was developed. This program was made by Pro-Fortran language, which was suitable for scientific and technical calculations, and relatively easy explicit difference method was adopted for an analysis. In the analysis, solute concentration in the tracer cell as a function of time that we could not treat to date can be input and the decrease in the solute concentration as a function of time by diffusion from the tracer cell to the measurement cell, the solute concentration distribution in the porewater of diffusion media and the solute concentration in the measurement cell as a function of time can be calculated. In addition, solution volume in both cells and diameter and thickness of the diffusion media are also variable as an input condition. This simulation program could well explain measured result by simulating solute concentration in the measurement cell as a function of time for case which apparent and effective diffusion coefficients were already known. Based on this, the availability and applicability of this program to actual analysis and simulation were confirmed. This report describes the theoretical treatment for the through-diffusion experiments for a single layer of diffusion media, analytical model, an example of source program and the manual. (author)

  4. Spatially Resolved Sensitivity of Single-Particle Plasmon Sensors.

    Science.gov (United States)

    Beuwer, Michael A; van Hoof, Bas; Zijlstra, Peter

    2018-03-01

    The high sensitivity of localized surface plasmon resonance sensors to the local refractive index allows for the detection of single-molecule binding events. Though binding events of single objects can be detected by their induced plasmon shift, the broad distribution of observed shifts remains poorly understood. Here, we perform a single-particle study wherein single nanospheres bind to a gold nanorod, and relate the observed plasmon shift to the binding location using correlative microscopy. To achieve this we combine atomic force microscopy to determine the binding location, and single-particle spectroscopy to determine the corresponding plasmon shift. As expected, we find a larger plasmon shift for nanospheres binding at the tip of a rod compared to its sides, in good agreement with numerical calculations. However, we also find a broad distribution of shifts even for spheres that were bound at a similar location to the nanorod. Our correlative approach allows us to disentangle effects of nanoparticle dimensions and binding location, and by comparison to numerical calculations we find that the biggest contributor to this observed spread is the dispersion in nanosphere diameter. These experiments provide insight into the spatial sensitivity and signal-heterogeneity of single-particle plasmon sensors and provides a framework for signal interpretation in sensing applications.

  5. A new Insight Into Microscale Soil Organic Matter Dynamics - From Single Particles to Aggregates

    Science.gov (United States)

    Mueller, C. W.; Heister, K.; Hillion, F.; Herrmann, A. M.; Koegel-Knabner, I.

    2008-12-01

    Both mineral interactions and the spatial inaccessibility due to aggregation are key-factors affecting the stabilization of soil organic matter (SOM). Knowledge about the factors controlling the preservation of SOM and underlying stabilization mechanisms has improved significantly over the last years. Nevertheless, in situ processes remain almost unclear and are still challenging to evaluate. In the presented work, we studied the alteration of spatial distribution of fresh introduced OM over time on single particles and in intact soil aggregates. Single particles of a fine silt and clay mixture (resin embedded. Samples were then analyzed by scanning electron microscopy (SEM) and nano-scale secondary ion mass spectrometry (nanoSIMS50). We will demonstrate the spatial distribution of OM on single particles and in intact soil aggregates at the microscale by SEM and nanoSIMS. In addition, with the isotopic sensitivity of nanoSIMS, we are able to follow the fate of 13C and 15N, which is expected to be influenced by diffusion, sorption and microbial activity. From these results, we propose how OM in soil can be stabilized on single soil particles and at complex soil aggregates.

  6. Study on the fragmentation of granite due to the impact of single particle and double particles

    Directory of Open Access Journals (Sweden)

    Yuchun Kuang

    2016-09-01

    Full Text Available Particle Impact Drilling (PID is a novel method to improve the rate of penetration (ROP. In order to further improve the performance of PID, an investigation into the effect of single and double particles: (1 diameter; (2 initial velocity; (3 distance; and (4 angle of incidence was undertaken to investigate their effects on broken volume and penetration depth into hard brittle rock. For this purpose, the laboratory experiment of single particle impact rock was employed. Meanwhile, based on the LS-DYNA, a new finite element (FE simulation of the PID, including single and double particles impact rock, has been presented. The 3-dimensional (3D, aix-symmetric, dynamic-explicit, Lagrangian model has been considered in this simulation. And the Elastic and Holmquist Johnson Cook (HJC material behaviors have been used for particles and rocks, respectively. The FE simulation results of single particle impacting rock are good agreement with experimental data. Furthermore, in this article the optimal impact parameters, including diameter, initial velocity, distance and the angle of incidence, are obtained in PID.

  7. Decay properties of high-lying single-particles modes

    NARCIS (Netherlands)

    Beaumel, D; Fortier, S; Gales, S; Guillot, J; LangevinJoliot, H; Laurent, H; Maison, JM; Vernotte, J; Bordewijck, J; Brandenburg, S; Krasznahorkay, A; Crawley, GM; Massolo, CP; Renteria, M; Khendriche, A

    1996-01-01

    The neutron decay of high-lying single-particle states in Ni-64, Zr-90, Sn-120 and (208)pb excited by means of the (alpha,He-3) reaction has been investigated at 120 MeV incident energy using the multidetector EDEN. The characteristics of this reaction are studied using inclusive spectra and angular

  8. Single-particle spectral density of the Hubbard model

    NARCIS (Netherlands)

    Mehlig, B.; Eskes, H.; Hayn, R.; Meinders, M.B.J.

    1995-01-01

    We calculate the single-particle spectral function for the Hubbard model within the framework of a projection technique equivalent to the two-pole approximation. We show that the two-pole approximation can be well understood as an average characterization of the upper and the lower Hubbard bands,

  9. SINGLE-PARTICLE SPECTRAL DENSITY OF THE HUBBARD-MODEL

    NARCIS (Netherlands)

    MEHLIG, B; ESKES, H; HAYN, R; MEINDERS, MBJ

    1995-01-01

    We calculate the single-particle spectral function for the Hubbard model within the framework of a projection technique equivalent to the two-pole approximation. We show that the two-pole approximation can be well understood as an average characterization of the upper and the lower Hubbard bands,

  10. Ergodicity of a single particle confined in a nanopore

    DEFF Research Database (Denmark)

    Bernardi, S.; Hansen, Jesper Schmidt; Frascolli, F.

    2012-01-01

    -ergodic component of the phase space for energy levels typical of experiments, is surprisingly small, i.e. we conclude that the ergodic hypothesis is a reasonable approximation even for a single particle trapped in a nanopore. Due to the numerical scope of this work, our focus will be the onset of ergodic behavior...

  11. Single particle degrees of freedom in the interacting boson model

    NARCIS (Netherlands)

    Scholten, O.

    1985-01-01

    An overview is given of different aspects of the Interacting Boson Fermion Model, the extension of the interacting Boson Model to odd mass nuclei. The microscopic model for the coupling of single-particle degrees of freedom to the system of bosons is outlined and the interaction between the bosons

  12. Single-particle cryo-electron microscopy of macromolecular complexes.

    Science.gov (United States)

    Skiniotis, Georgios; Southworth, Daniel R

    2016-02-01

    Recent technological breakthroughs in image acquisition have enabled single-particle cryo-electron microscopy (cryo-EM) to achieve near-atomic resolution structural information for biological complexes. The improvements in image quality coupled with powerful computational methods for sorting distinct particle populations now also allow the determination of compositional and conformational ensembles, thereby providing key insights into macromolecular function. However, the inherent instability and dynamic nature of biological assemblies remain a tremendous challenge that often requires tailored approaches for successful implementation of the methodology. Here, we briefly describe the fundamentals of single-particle cryo-EM with an emphasis on covering the breadth of techniques and approaches, including low- and high-resolution methods, aiming to illustrate specific steps that are crucial for obtaining structural information by this method. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Single Molecule Raman Detection of Enkephalin on Silver Colloidal Particles

    DEFF Research Database (Denmark)

    Kneipp, Katrin; Kneipp, Holger; Abdali, Salim

    2004-01-01

    the Raman signal the enkephalin molecules have been attached to silver colloidal cluster structures. The experiments demonstrate that the SERS signal of the strongly enhanced ring breathing vibration of phenylalanine at 1000 cm-1 can be used as “intrinsic marker” for detecting a single enkephalin molecule...... and for monitoring its diffusion on the surface of the silver colloidal cluster without using a specific label molecule....

  14. Measurement of the local particle diffusion coefficient in a magnetized plasma

    International Nuclear Information System (INIS)

    Meyerhofer, D.D.; Levinton, F.M.

    1987-02-01

    Local impurity particle diffusion coefficients have been measured in a low temperature plasma by the injection of test particles at the center of the plasma. The injection is accomplished by a high voltage discharge between two small graphite electrodes on a probe. The probe can be located anywhere in the plasma. The diffusion is observed spectroscopically. An analysis of the spatial and temporal evolution of the CII radiation from the carbon discharge can determine the parallel and perpendicular diffusion of the impurity ions. Results with the diagnostic have been obtained in the Proto S-1/C spheromak. The measured value of the diffusion coefficient in the afterglow plasma is in good agreement with classical predictions

  15. Reconstructing an icosahedral virus from single-particle diffraction experiments

    Science.gov (United States)

    Saldin, D. K.; Poon, H.-C.; Schwander, P.; Uddin, M.; Schmidt, M.

    2011-08-01

    The first experimental data from single-particle scattering experiments from free electron lasers (FELs) are now becoming available. The first such experiments are being performed on relatively large objects such as viruses, which produce relatively low-resolution, low-noise diffraction patterns in so-called ``diffract-and-destroy'' experiments. We describe a very simple test on the angular correlations of measured diffraction data to determine if the scattering is from an icosahedral particle. If this is confirmed, the efficient algorithm proposed can then combine diffraction data from multiple shots of particles in random unknown orientations to generate a full 3D image of the icosahedral particle. We demonstrate this with a simulation for the satellite tobacco necrosis virus (STNV), the atomic coordinates of whose asymmetric unit is given in Protein Data Bank entry 2BUK.

  16. Strange particles: production by Cosmotron beams as observed in diffusion cloud chambers

    International Nuclear Information System (INIS)

    Fowler, W.B.

    1989-01-01

    Proton beams, from the 1GeV Cosmotron accelerator at Brookhaven, were used in the 1950s to produce strange particles. One big leap forward technologically was the development of the diffusion cloud chamber which made detecting particle tracks more accurate and sensitive. A large co-operative team worked on its development. By the mid 1950s enough tracks had been observed to show the associated production of strange particles. It was the same Brookhaven workers who developed the eighty-inch hydrogen bubble chamber which took the first photograph of the long predicted omega minus particle at the end of the decade. (UK)

  17. Fast Diffusion of Long Guest Rods in a Lamellar Phase of Short Host Particles

    Science.gov (United States)

    Alvarez, Laura; Lettinga, M. Paul; Grelet, Eric

    2017-04-01

    We investigate the dynamic behavior of long guest rodlike particles immersed in liquid crystalline phases formed by shorter host rods, tracking both guest and host particles by fluorescence microscopy. Counterintuitively, we evidence that long rods diffuse faster than short rods forming the one-dimensional ordered smectic-A phase. This results from the larger and noncommensurate size of the guest particles as compared to the wavelength of the energy landscape set by the lamellar stack of liquid slabs. The long guest particles are also shown to be still mobile in the crystalline smectic-B phase, as they generate their own voids in the adjacent layers.

  18. Single-camera, three-dimensional particle tracking velocimetry

    OpenAIRE

    Peterson, K.; Regaard, B.; Heinemann, S.; Sick, V.

    2012-01-01

    This paper introduces single-camera, three-dimensional particle tracking velocimetry (SC3D-PTV), an image-based, single-camera technique for measuring 3-component, volumetric velocity fields in environments with limited optical access, in particular, optically accessible internal combustion engines. The optical components used for SC3D-PTV are similar to those used for two-camera stereoscopic-PIV, but are adapted to project two simultaneous images onto a single image sensor. A novel PTV algor...

  19. Calculation of ternary interdiffusion coefficients using a single diffusion couple

    Czech Academy of Sciences Publication Activity Database

    Čermák, Jiří; Rothová, Věra

    2016-01-01

    Roč. 54, č. 5 (2016), s. 305-314 ISSN 0023-432X R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : diffusion * interdiffusion * ternary alloys * ternary diffusion coefficients Subject RIV: BJ - Thermodynamic s Impact factor: 0.366, year: 2016

  20. Diffusivity of dicarboxylic acids molecules to secondary organic material governed by particle phase state

    Science.gov (United States)

    Han, Y.; Gong, Z.; Liu, P.; de Sá, S. S.; McKinney, K. A.; Martin, S. T.

    2017-12-01

    Atmospheric secondary organic material (SOM) from oxidation of volatile organic compounds can exist in amorphous solid, semisolid, and liquid states depending on a range of factors such as relative humidity (RH), temperature, and reaction history. The phase state of SOM affects the dynamic exchange and reactivity between particles and gas-phase molecules. Dicarboxylic acids are ubiquitous in ambient atmosphere and the uptake of which may lead to substantial changes in hygroscopicity, absorption property, and light scattering of aerosol particles. This study investigates the diffusivity of dicarboxylic acids to the matrix of SOM particles. SOM was generated from dark ozonolysis of a-pinene in Harvard Environmental Chamber. The produced SOM particles were passed through an ozone scrubber to remove gas-phase chemistry before being led into a flask reactor, where gas-phase dicarboxylic acid was injected continuously and RH was varied from 5% to 85%. The probe dicarboxylic acids molecules including malonic acid and a-ketoglutaric acid have been investigated for the uptake to SOM particles. Organic composition in the outflow of the flask was measured with a high-resolution time-of-flight aerosol mass spectrometer. The mass fractions of tracer ions in total organic mass for both malonic acid and a-ketoglutaric acid increased substantially with the increase of RH values. The tracer ions of malonic acid were also more abundant in a-pinene SOM particles with increased gas-phase concentrations. These results suggest that the diffusion of the studied dicarboxylic acids molecules to a-pinene SOM particles was enhanced at increased RH values, which is possibly due to the phase transition of a-pinene SOM particles from non-liquid to liquid states. Therefore, particle phase state may be an important factor governing the diffusivity of dicarboxylic acids molecules to a-pinene SOM. Further dicarboxylic acids with various functional groups will be investigated to understand the

  1. Two-Way Communication with a Single Quantum Particle

    Science.gov (United States)

    Del Santo, Flavio; Dakić, Borivoje

    2018-02-01

    In this Letter we show that communication when restricted to a single information carrier (i.e., single particle) and finite speed of propagation is fundamentally limited for classical systems. On the other hand, quantum systems can surpass this limitation. We show that communication bounded to the exchange of a single quantum particle (in superposition of different spatial locations) can result in "two-way signaling," which is impossible in classical physics. We quantify the discrepancy between classical and quantum scenarios by the probability of winning a game played by distant players. We generalize our result to an arbitrary number of parties and we show that the probability of success is asymptotically decreasing to zero as the number of parties grows, for all classical strategies. In contrast, quantum strategy allows players to win the game with certainty.

  2. High-Speed Single Quantum Dot Imaging of Artificial Lipids in Live Cells Reveal Partial Hop Diffusion

    DEFF Research Database (Denmark)

    Lagerholm, B. Christoffer; Clausen, Mathias P.; Christensen, Eva Arnspang

    2010-01-01

    Ultra high-speed single particle tracking (image frame rates 40-50,000 Hz) experiments with 40 nm gold particles has indicated that lipids and proteins in the plasma membrane undergo hop-diffusion between nanometer sized compartments (Fujiwara et al. (2002) J Cell Biol. 157: 1071......-81). These findings have yet to be independently confirmed. In this work, we show that high-speed single particle tracking with quantum dots(QDs)and using a standard wide-field fluorescence microscope and an EMCCD is possible at image acquisition rates of up to ~2000 Hz with an image integration time of ~0.5 msec....... The spatial precision in these experiments is ~40 nm (as determined from the standard deviation of repeated position measurements of an immobile QD on a cell). Using this system, we further show that an artificial lipid, biotin-cap-DPPE, inserted in a mouse embryo fibroblast (MEF), labeled with sAv-QD655...

  3. Estimating Outer Zone Radial Diffusion Coefficients from Drift Scale Fluctuations in Van Allen Particle Data

    Science.gov (United States)

    O'Brien, T. P., III; Claudepierre, S. G.

    2017-12-01

    During geomagnetic storms, the Earth's outer radiation belt experiences enhanced radial transport. This transport occurs via phase-dependent radial displacements of particles, either by impulsive events or drift resonant waves. Because transport is phase dependent, it produces drift phase bunching, which can be observed with in situ particle detectors. We provide bounds on the radial diffusion coefficients derived from this drift phase structure as seen by NASA's Van Allen Probes. We compare these bounds to published radial diffusion coefficient models, particularly those derived independently from electromagnetic field observations.

  4. Convective and diffusive effects on particle transport in asymmetric periodic capillaries.

    Directory of Open Access Journals (Sweden)

    Nazmul Islam

    Full Text Available We present here results of a theoretical investigation of particle transport in longitudinally asymmetric but axially symmetric capillaries, allowing for the influence of both diffusion and convection. In this study we have focused attention primarily on characterizing the influence of tube geometry and applied hydraulic pressure on the magnitude, direction and rate of transport of particles in axi-symmetric, saw-tooth shaped tubes. Three initial value problems are considered. The first involves the evolution of a fixed number of particles initially confined to a central wave-section. The second involves the evolution of the same initial state but including an ongoing production of particles in the central wave-section. The third involves the evolution of particles a fully laden tube. Based on a physical model of convective-diffusive transport, assuming an underlying oscillatory fluid velocity field that is unaffected by the presence of the particles, we find that transport rates and even net transport directions depend critically on the design specifics, such as tube geometry, flow rate, initial particle configuration and whether or not particles are continuously introduced. The second transient scenario is qualitatively independent of the details of how particles are generated. In the third scenario there is no net transport. As the study is fundamental in nature, our findings could engender greater understanding of practical systems.

  5. A model for diffusion of water into a swelling particle with a free boundary: Application to a super absorbent polymer particle

    NARCIS (Netherlands)

    Sweijen, T.; van Duijn, C.J.; Hassanizadeh, S.M.

    2017-01-01

    In this work, a model is developed for describing the swelling of an individual particle, made of Super Absorbent Polymers (SAP). Governing equations for the water uptake at the particle surface, diffusion of water into the particle and the subsequent swelling of the particle are developed for an

  6. Particle interactions of fluticasone propionate and salmeterol xinafoate detected with single particle aerosol mass spectrometry (SPAMS).

    Science.gov (United States)

    Jetzer, Martin W; Morrical, Bradley D; Fergenson, David P; Imanidis, Georgios

    2017-10-30

    Particle co-associations between the active pharmaceutical ingredients fluticasone propionate and salmeterol xinafoate were examined in dry powder inhaled (DPI) and metered dose inhaled (MDI) combination products. Single Particle Aerosol Mass Spectrometry was used to investigate the particle interactions in Advair Diskus ® (500/50 mcg) and Seretide ® (125/25 mcg). A simple rules tree was used to identify each compound, either alone or co-associated at the level of the individual particle, using unique marker peaks in the mass spectra for the identification of each drug. High levels of drug particle co-association (fluticasone-salmeterol) were observed in the aerosols emitted from Advair Diskus ® and Seretide ® . The majority of the detected salmeterol particles were found to be in co-association with fluticasone in both tested devices. Another significant finding was that rather coarse fluticasone particles (in DPI) and fine salmeterol particles (both MDI and DPI) were forming the particle co-associations. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The diffusion mechanism of alkali metal ions in the particles of cerium(IV)antimonate

    International Nuclear Information System (INIS)

    El-Naggar, I.M.; Zakaria, E.S.; Abd El-Wahab, M.A.; Belacy, N.; Aly, H.F.

    1996-01-01

    The kinetic behaviour of Li + , Na + , K + and Cs + ions exchange on cerium(IV)antimonate were investigated under conditions of particle diffusion and the limited batch technique. Values for the diffusion coefficients, activation energy and entropy of activation were calculated and their significance were discussed. The values of the effective diffusion coefficient increased in the order Cs + K + Na + Li + , which parallels the ionic radii and the ionic mobility. The activation energy (E a ) was found to decrease with decreases in the entropy change of the system. The data obtained for this exchanger were compared with those for organic resins and other inorganic ion exchangers

  8. Rotational diffusion affects the dynamical self-assembly pathways of patchy particles

    Science.gov (United States)

    Newton, Arthur C.; Groenewold, Jan; Kegel, Willem K.; Bolhuis, Peter G.

    2015-01-01

    Predicting the self-assembly kinetics of particles with anisotropic interactions, such as colloidal patchy particles or proteins with multiple binding sites, is important for the design of novel high-tech materials, as well as for understanding biological systems, e.g., viruses or regulatory networks. Often stochastic in nature, such self-assembly processes are fundamentally governed by rotational and translational diffusion. Whereas the rotational diffusion constant of particles is usually considered to be coupled to the translational diffusion via the Stokes–Einstein relation, in the past decade it has become clear that they can be independently altered by molecular crowding agents or via external fields. Because virus capsids naturally assemble in crowded environments such as the cell cytoplasm but also in aqueous solution in vitro, it is important to investigate how varying the rotational diffusion with respect to transitional diffusion alters the kinetic pathways of self-assembly. Kinetic trapping in malformed or intermediate structures often impedes a direct simulation approach of a kinetic network by dramatically slowing down the relaxation to the designed ground state. However, using recently developed path-sampling techniques, we can sample and analyze the entire self-assembly kinetic network of simple patchy particle systems. For assembly of a designed cluster of patchy particles we find that changing the rotational diffusion does not change the equilibrium constants, but significantly affects the dynamical pathways, and enhances (suppresses) the overall relaxation process and the yield of the target structure, by avoiding (encountering) frustrated states. Besides insight, this finding provides a design principle for improved control of nanoparticle self-assembly. PMID:26621742

  9. Uncovering non-ergodicity on the cell membrane using single particle tracking approaches

    OpenAIRE

    Symeonidou Besi, Parthena

    2013-01-01

    Treball final de màster oficial fet en col·laboració amb Universitat Autònoma de Barcelona (UAB), Universitat de Barcelona (UB) i Institut de Ciències Fotòniques (ICFO) [ANGLES] In this work, we study the diffusion on the plasma membrane of the receptor DC-SIGN. The data we used were obtained by Single Particle Tracking technique and hence consist of individual trajectories. Motivated by investigating the dynamics of this receptor, our analysis comprises not only of standard statistical ap...

  10. Design and analysis of a radial diffuser in a single-stage centrifugal pump

    Directory of Open Access Journals (Sweden)

    Ming-Gao Tan

    2016-01-01

    Full Text Available Radial diffusers can improve the flow uniformity in pumps and affect the hydraulic performance of centrifugal pumps directly. The diffusion coefficient d is an important parameter in fluid machinery but it has seldom been used in the diffuser design of single-stage centrifugal pumps. To improve the design method of radial diffuser use in centrifugal pumps, the diffusion coefficient was introduced into the design of radial diffusers based on a single-arc hydraulic design method and it was found that the vane outlet angle, vane outlet thickness and vane number have a significant impact on the design results. A single-stage centrifugal pump with a radial diffuser was selected as the research model. The inner flow was simulated using the commercial computational fluid dynamics (CFD program CFX and verified by experiment. The results indicate that the head and efficiency of the pump are best when the vane outlet angle is 6°. The flow area decreases and the flow velocity at radial diffuser outlet increase when the outlet thickness is greater than 2 mm. The hydraulic loss is minimum and the head and efficiency are better when the vane number is 8 at different flow rates. So, the optimal range of the diffusion coefficient for the model pump is around 1.6 to 2. The study indicates that it is feasible to design radial diffusers according to the diffusion coefficient.

  11. Real-time analysis of insoluble particles in glacial ice using single-particle mass spectrometry

    Science.gov (United States)

    Osman, Matthew; Zawadowicz, Maria A.; Das, Sarah B.; Cziczo, Daniel J.

    2017-11-01

    Insoluble aerosol particles trapped in glacial ice provide insight into past climates, but analysis requires information on climatically relevant particle properties, such as size, abundance, and internal mixing. We present a new analytical method using a time-of-flight single-particle mass spectrometer (SPMS) to determine the composition and size of insoluble particles in glacial ice over an aerodynamic size range of ˜ 0.2-3.0 µm diameter. Using samples from two Greenland ice cores, we developed a procedure to nebulize insoluble particles suspended in melted ice, evaporate condensed liquid from those particles, and transport them to the SPMS for analysis. We further determined size-dependent extraction and instrument transmission efficiencies to investigate the feasibility of determining particle-class-specific mass concentrations. We find SPMS can be used to provide constraints on the aerodynamic size, composition, and relative abundance of most insoluble particulate classes in ice core samples. We describe the importance of post-aqueous processing to particles, a process which occurs due to nebulization of aerosols from an aqueous suspension of originally soluble and insoluble aerosol components. This study represents an initial attempt to use SPMS as an emerging technique for the study of insoluble particulates in ice cores.

  12. Single-particle response function in finite nuclei

    International Nuclear Information System (INIS)

    Shlomo, S.; Texas A and M Univ., College Station

    1982-01-01

    I derive expressions for the single-particle response (structure) function S(E, q) and its sum rule, (Pauli blocking factor) P(q) = ∫ dE S(E, q), in terms of the Wiqner transforms (WTs) of the single-particle wave functions and the scattering probe sigma(q, r) and discuss the semi-classical phase-space interpretation of the results. For sigma(q, r) = esup(iq x r), I derive simple expressions for S(E, q) and P(q) for finite nuclei within the harmonic-oscillator model and compare the results with the well-known results of the Fermi-gas model. (orig.)

  13. Single Particle Orientation and Rotational Tracking (SPORT) in biophysical studies

    Science.gov (United States)

    Gu, Yan; Ha, Ji Won; Augspurger, Ashley E.; Chen, Kuangcai; Zhu, Shaobin; Fang, Ning

    2013-10-01

    The single particle orientation and rotational tracking (SPORT) techniques have seen rapid development in the past 5 years. Recent technical advances have greatly expanded the applicability of SPORT in biophysical studies. In this feature article, we survey the current development of SPORT and discuss its potential applications in biophysics, including cellular membrane processes and intracellular transport.The single particle orientation and rotational tracking (SPORT) techniques have seen rapid development in the past 5 years. Recent technical advances have greatly expanded the applicability of SPORT in biophysical studies. In this feature article, we survey the current development of SPORT and discuss its potential applications in biophysics, including cellular membrane processes and intracellular transport. Electronic supplementary information (ESI) available: Three supplementary movies and an experimental section. See DOI: 10.1039/c3nr02254d

  14. Laboratory Measurements of Single-Particle Polarimetric Spectrum

    Science.gov (United States)

    Gritsevich, M.; Penttila, A.; Maconi, G.; Kassamakov, I.; Helander, P.; Puranen, T.; Salmi, A.; Hæggström, E.; Muinonen, K.

    2017-12-01

    Measuring scattering properties of different targets is important for material characterization, remote sensing applications, and for verifying theoretical results. Furthermore, there are usually simplifications made when we model targets and compute the scattering properties, e.g., ideal shape or constant optical parameters throughout the target material. Experimental studies help in understanding the link between the observed properties and computed results. Experimentally derived Mueller matrices of studied particles can be used as input for larger-scale scattering simulations, e.g., radiative transfer computations. This method allows to bypass the problem of using an idealized model for single-particle optical properties. While existing approaches offer ensemble- and orientation-averaged particle properties, our aim is to measure individual particles with controlled or known orientation. With the newly developed scatterometer, we aim to offer novel possibility to measure single, small (down to μm-scale) targets and their polarimetric spectra. This work presents an experimental setup that measures light scattered by a fixed small particle with dimensions ranging between micrometer and millimeter sizes. The goal of our setup is nondestructive characterization of such particles by measuring light of multiple wavelengths scattered in 360° in a horizontal plane by an ultrasonically levitating sample, whilst simultaneously controlling its 3D position and orientation. We describe the principles and design of our instrument and its calibration. We also present example measurements of real samples. This study was conducted under the support from the European Research Council, in the frame of the Advanced Grant project No. 320773 `Scattering and Absorption of Electromagnetic Waves in Particulate Media' (SAEMPL).

  15. Spin resonance strength calculation through single particle tracking for RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Dutheil, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ranjbar, V. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    The strengths of spin resonances for the polarized-proton operation in the Relativistic Heavy Ion Collider are currently calculated with the code DEPOL, which numerically integrates through the ring based on an analytical approximate formula. In this article, we test a new way to calculate the spin resonance strengths by performing Fourier transformation to the actual transverse magnetic fields seen by a single particle traveling through the ring. Comparison of calculated spin resonance strengths is made between this method and DEPOL.

  16. Chaotic diffusion across a magnetic island due to a single electrostatic drift wave

    International Nuclear Information System (INIS)

    Misguich, J.H.

    1990-05-01

    It is shown that the guiding center motion around a single chain of magnetic islands in a Tokamak can become chaotic in the presence of a single electrostatic drift wave. This process leads to radial diffusion across the islands without magnetic braiding. The chaotic diffusion appears to be selective in velocity space. Realistic values of the physical parameters are considered to deduce that this process can be effective in usual conditions: with the observed islands, and electrostatic field values corresponding to measured density fluctuations, this diffusion concerns ions with velocities higher than thermal, and almost all of the electron population. The consequences for radial diffusion are discussed

  17. Strong atmospheric disturbances as a possible origin of inner zone particle diffusion

    Directory of Open Access Journals (Sweden)

    O. A. Pokhotelov

    Full Text Available A new mechanism of the atmosphere-magnetosphere interaction, which might be called "acoustic-magnetospheric cyclotron accelerator", is proposed. The idea of this mechanism stems from the fact that strong acoustical perturbations in the ionosphere (e.g., due to earthquakes, thunderstorms, etc. may generate magnetic disturbances in the magnetosphere. Then, the latter will induce local resonant acceleration and subsequent inward diffusion of trapped particles. This idea may be fruitful in the interpretation of some occasional increases in inner zone particle fluxes which do not correlate with the solar or magnetospheric activities.

    Key words. Ionosphere (active experiments; ionosphere-atmosphere interactions; particle acceleration

  18. Understanding particle size and distance driven competition of interparticle interactions and effective single-particle anisotropy

    Czech Academy of Sciences Publication Activity Database

    Pacáková, Barbara; Mantlíková, Alice; Nižňanský, D.; Kubíčková, Simona; Vejpravová, Jana

    2016-01-01

    Roč. 28, č. 20 (2016), 1-11, č. článku 206004. ISSN 0953-8984 R&D Projects: GA ČR(CZ) GA15-01953S Institutional support: RVO:68378271 Keywords : magnetic nanoparticles * single-particle anisotropy * dipolar energy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.649, year: 2016

  19. Diffusivities of Ag, Cs, Sr, and Kr in TRISO fuel particles and graphite

    Energy Technology Data Exchange (ETDEWEB)

    Collin, Blaise Paul [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Tri-structural isotropic (TRISO) coated particles have been developed and studied since the late 1950s when the concept of coated particles was invented by Roy Huddle of the United Kingdom Atomic Energy Authority. Several decades of work by half a dozen countries on fission product transport in TRISO fuel through numerous irradiation and heating experiments have led to several recommendations of transport data and to the adoption of various sets of diffusion coefficients. In 1997, the International Atomic Energy Agency (IAEA) gathered all these historical results and issued a technical document (TECDOC-978 [IAEA]) that summarizes these sets of recommended diffusion coefficients. Table 1 shows the reference literature articles for the diffusivities that have historically been recommended by the American and German TRISO fuel development programs and that are summarized in the IAEA report (see section 7 for full references of these articles).

  20. Simulation of particle diffusion in a spectrum of electrostatic turbulence. Low frequency Bohm or percolation scaling

    International Nuclear Information System (INIS)

    Reuss, J.D.; Misguich, J.H.

    1996-02-01

    An important point for turbulent transport consists in determining the scaling law for the diffusion coefficient D due to electrostatic turbulence. It is well-known that for weak amplitudes or large frequencies, the reduced diffusion coefficient has a quasi-linear like (or gyro-Bohm like) scaling, while for large amplitudes or small frequencies it has been traditionally believed that the scaling is Bohm-like. The aim of this work consists to test this prediction for a given realistic model. This problem is studied by direct simulation of particle trajectories. Guiding centre diffusion in a spectrum of electrostatic turbulence is computed for test particles in a model spectrum, by means of a new parallelized code RADIGUET 2. The results indicate a continuous transition for large amplitudes toward a value which is compatible with the Isichenko percolation prediction. (author)

  1. Diffuse-interface modeling of liquid-vapor coexistence in equilibrium drops using smoothed particle hydrodynamics.

    Science.gov (United States)

    Sigalotti, Leonardo Di G; Troconis, Jorge; Sira, Eloy; Peña-Polo, Franklin; Klapp, Jaime

    2014-07-01

    We study numerically liquid-vapor phase separation in two-dimensional, nonisothermal, van der Waals (vdW) liquid drops using the method of smoothed particle hydrodynamics (SPH). In contrast to previous SPH simulations of drop formation, our approach is fully adaptive and follows the diffuse-interface model for a single-component fluid, where a reversible, capillary (Korteweg) force is added to the equations of motion to model the rapid but smooth transition of physical quantities through the interface separating the bulk phases. Surface tension arises naturally from the cohesive part of the vdW equation of state and the capillary forces. The drop models all start from a square-shaped liquid and spinodal decomposition is investigated for a range of initial densities and temperatures. The simulations predict the formation of stable, subcritical liquid drops with a vapor atmosphere, with the densities and temperatures of coexisting liquid and vapor in the vdW phase diagram closely matching the binodal curve. We find that the values of surface tension, as determined from the Young-Laplace equation, are in good agreement with the results of independent numerical simulations and experimental data. The models also predict the increase of the vapor pressure with temperature and the fitting to the numerical data reproduces very well the Clausius-Clapeyron relation, thus allowing for the calculation of the vaporization pressure for this vdW fluid.

  2. Diffuse-interface modeling of liquid-vapor coexistence in equilibrium drops using smoothed particle hydrodynamics

    Science.gov (United States)

    Klapp, Jaime; di G Sigalotti, Leonardo; Troconis, Jorge; Sira, Eloy; Pena, Franklin; ININ-IVIC Team; Cinvestav-UAM-A Team

    2014-11-01

    We study numerically liquid-vapor phase separation in two-dimensional, nonisothermal, van der Waals (vdW) liquid drops using the method of Smoothed Particle Hydrodynamics (SPH). In contrast to previous SPH simulations of drop formation, our approach is fully adaptive and follows the diffuse interface model for a single-component fluid, where a reversible, capillary (Korteweg) force is added to the equations of motion to model the rapid but smooth transition of physical quantities through the interface separating the bulk phases. Surface tension arises naturally from the cohesive part of the vdW equation of state and the capillary forces. The drop models all start from a square-shaped liquid and spinodal decomposition is investigated for a range of initial densities and temperatures. The simulations predict the formation of stable, subcritical liquid drops with a vapor atmosphere, with the densities and temperatures of coexisting liquid and vapor in the vdW phase diagram closely matching the binodal curve. We find that the values of surface tension, as determined from the Young-Laplace equation, are in good agreement with the results of independent numerical simulations and experimental data. The models also predict the increase of the vapor pressure with temperature and the fitting to the numerical data reproduces very well the Clausius-Clapeyron relation, thus allowing for the calculation of the vaporization pressure for this vdW fluid. Cinvestav-Abacus.

  3. Automated single particle detection and tracking for large microscopy datasets.

    Science.gov (United States)

    Wilson, Rhodri S; Yang, Lei; Dun, Alison; Smyth, Annya M; Duncan, Rory R; Rickman, Colin; Lu, Weiping

    2016-05-01

    Recent advances in optical microscopy have enabled the acquisition of very large datasets from living cells with unprecedented spatial and temporal resolutions. Our ability to process these datasets now plays an essential role in order to understand many biological processes. In this paper, we present an automated particle detection algorithm capable of operating in low signal-to-noise fluorescence microscopy environments and handling large datasets. When combined with our particle linking framework, it can provide hitherto intractable quantitative measurements describing the dynamics of large cohorts of cellular components from organelles to single molecules. We begin with validating the performance of our method on synthetic image data, and then extend the validation to include experiment images with ground truth. Finally, we apply the algorithm to two single-particle-tracking photo-activated localization microscopy biological datasets, acquired from living primary cells with very high temporal rates. Our analysis of the dynamics of very large cohorts of 10 000 s of membrane-associated protein molecules show that they behave as if caged in nanodomains. We show that the robustness and efficiency of our method provides a tool for the examination of single-molecule behaviour with unprecedented spatial detail and high acquisition rates.

  4. Simulating Biomass Fast Pyrolysis at the Single Particle Scale

    Energy Technology Data Exchange (ETDEWEB)

    Ciesielski, Peter [National Renewable Energy Laboratory (NREL); Wiggins, Gavin [ORNL; Daw, C Stuart [ORNL; Jakes, Joseph E. [U.S. Forest Service, Forest Products Laboratory, Madison, Wisconsin, USA

    2017-07-01

    Simulating fast pyrolysis at the scale of single particles allows for the investigation of the impacts of feedstock-specific parameters such as particle size, shape, and species of origin. For this reason particle-scale modeling has emerged as an important tool for understanding how variations in feedstock properties affect the outcomes of pyrolysis processes. The origins of feedstock properties are largely dictated by the composition and hierarchical structure of biomass, from the microstructural porosity to the external morphology of milled particles. These properties may be accounted for in simulations of fast pyrolysis by several different computational approaches depending on the level of structural and chemical complexity included in the model. The predictive utility of particle-scale simulations of fast pyrolysis can still be enhanced substantially by advancements in several areas. Most notably, considerable progress would be facilitated by the development of pyrolysis kinetic schemes that are decoupled from transport phenomena, predict product evolution from whole-biomass with increased chemical speciation, and are still tractable with present-day computational resources.

  5. A theorem on the single particle energy in a Fermi gas with interaction

    NARCIS (Netherlands)

    Hugenholtz, N.M.; Hove, Léon van

    1958-01-01

    This paper investigates single particle properties in a Fermi gas with interaction at the absolute zero of temperature. In such a system a single particle energy has only a meaning for particles of momentum k close to the Fermi momentum kF. These single particle states are metastable with a

  6. Viscous organic aerosol particles in the upper troposphere: diffusivity-controlled water uptake and ice nucleation?

    Directory of Open Access Journals (Sweden)

    D. M. Lienhard

    2015-12-01

    secondary organic aerosol (SOA material produced by oxidation of α-pinene and in a number of organic/inorganic model mixtures (3-methylbutane-1,2,3-tricarboxylic acid (3-MBTCA, levoglucosan, levoglucosan/NH4HSO4, raffinose are presented. These indicate that water diffusion coefficients are determined by several properties of the aerosol substance and cannot be inferred from the glass transition temperature or bouncing properties. Our results suggest that water diffusion in SOA particles is faster than often assumed and imposes no significant kinetic limitation on water uptake and release at temperatures above 220 K. The fast diffusion of water suggests that heterogeneous ice nucleation on a glassy core is very unlikely in these systems. At temperatures below 220 K, model simulations of SOA particles suggest that heterogeneous ice nucleation may occur in the immersion mode on glassy cores which remain embedded in a liquid shell when experiencing fast updraft velocities. The particles absorb significant quantities of water during these updrafts which plasticize their outer layers such that these layers equilibrate readily with the gas phase humidity before the homogeneous ice nucleation threshold is reached. Glass formation is thus unlikely to restrict homogeneous ice nucleation. Only under most extreme conditions near the very high tropical tropopause may the homogeneous ice nucleation rate coefficient be reduced as a consequence of slow condensed-phase water diffusion. Since the differences between the behavior limited or non limited by diffusion are small even at the very high tropical tropopause, condensed-phase water diffusivity is unlikely to have significant consequences on the direct climatic effects of SOA particles under tropospheric conditions.

  7. The effect of transitional particles driven by single wave

    International Nuclear Information System (INIS)

    Qiu Yunqing; Xia Mengfen

    1987-05-01

    The unperturbed separatrix crossing driven by a single wave in a tokamak plasma is discussed. The separatrix crossing is followed by a mixing process, and a small-scale structure occurs in the distribution function in h-ψ plane. The separatrix crossing is a convective process in h-ψ plane, and there is a definite crossing channel. The convective flux and the net flux in h-direction are calculated. The separatrix crossing is accompanied by a radial flux, which is composed of a directional flux and a diffusion flux. (author). 7 refs, 6 figs

  8. Drift correction of the dissolved signal in single particle ICPMS.

    Science.gov (United States)

    Cornelis, Geert; Rauch, Sebastien

    2016-07-01

    A method is presented where drift, the random fluctuation of the signal intensity, is compensated for based on the estimation of the drift function by a moving average. It was shown using single particle ICPMS (spICPMS) measurements of 10 and 60 nm Au NPs that drift reduces accuracy of spICPMS analysis at the calibration stage and during calculations of the particle size distribution (PSD), but that the present method can again correct the average signal intensity as well as the signal distribution of particle-containing samples skewed by drift. Moreover, deconvolution, a method that models signal distributions of dissolved signals, fails in some cases when using standards and samples affected by drift, but the present method was shown to improve accuracy again. Relatively high particle signals have to be removed prior to drift correction in this procedure, which was done using a 3 × sigma method, and the signals are treated separately and added again. The method can also correct for flicker noise that increases when signal intensity is increased because of drift. The accuracy was improved in many cases when flicker correction was used, but when accurate results were obtained despite drift, the correction procedures did not reduce accuracy. The procedure may be useful to extract results from experimental runs that would otherwise have to be run again. Graphical Abstract A method is presented where a spICP-MS signal affected by drift (left) is corrected (right) by adjusting the local (moving) averages (green) and standard deviations (purple) to the respective values at a reference time (red). In combination with removing particle events (blue) in the case of calibration standards, this method is shown to obtain particle size distributions where that would otherwise be impossible, even when the deconvolution method is used to discriminate dissolved and particle signals.

  9. Advection diffusion model for particles deposition in Rayleigh-Benard turbulent flows

    International Nuclear Information System (INIS)

    Oresta, P.; Lippolis, A.; Verzicco, R.; Soldati, A.

    2005-01-01

    In this paper, Direct Numerical Simulation (DNS) and Lagrangian Particle Tracking are used to precisely investigate the turbulent thermally driven flow and particles dispersion in a closed, slender cylindrical domain. The numerical simulations are carried out for Rayleigh (Ra) and Prandtl numbers (Pr) equal to Ra = 2X10 8 and Pr = 0.7, considering three sets of particles with Stokes numbers, based on Kolmogorov scale, equal to St k 1.3, St k 0.65 and St k = 0.13. This data are used to calculate a priori the drift velocity and the turbulent diffusion coefficient for the Advection Diffusion model. These quantities are function of the Stokes, Froude, Rayleigh and Prandtl numbers only. One dimensional, time dependent, Advection- Diffusion Equation (ADE) is presented to predict particles deposition in Rayleigh-Benard flow in the cylindrical domain. This archetype configuration models flow and aerosol dynamics, produced in case of accident in the passive containment cooling system (PCCS) of a nuclear reactor. ADE results show a good agreement with DNS data for all the sets of particles investigated. (author)

  10. Drag force, diffusion coefficient, and electric mobility of small particles. II. Application.

    Science.gov (United States)

    Li, Zhigang; Wang, Hai

    2003-12-01

    We propose a generalized treatment of the drag force of a spherical particle due to its motion in a laminar fluid media. The theory is equally applicable to analysis of particle diffusion and electric mobility. The focus of the current analysis is on the motion of spherical particles in low-density gases with Knudsen number Kn>1. The treatment is based on the gas-kinetic theory analysis of drag force in the specular and diffuse scattering limits obtained in a preceding paper [Z. Li and H. Wang, Phys. Rev. E., 68, 061206 (2003)]. Our analysis considers the influence of van der Waals interactions on the momentum transfer upon collision of a gas molecule with the particle and expresses this influence in terms of an effective, reduced collision integral. This influence is shown to be significant for nanosized particles. In the present paper, the reduced collision integral values are obtained for specular and diffuse scattering, using a Lennard-Jones-type potential energy function suitable for the interactions of a gas molecule with a particle. An empirical formula for the momentum accommodation function, used to determine the effective, reduced collision integral, is obtained from available experimental data. The resulting treatment is shown to be accurate for interpreting the mobility experiments for particles as small as approximately 1 nm in radius. The treatment is subsequently extended to the entire range of the Knudsen number, following a semiempirical, gas-kinetic theory analysis. We demonstrate that the proposed formula predicts very well Millikan's oil-droplet experiments [R. A. Millikan, Philos. Mag. 34, 1 (1917); Phys. Rev. 22, 1 (1923)]. The rigorous theoretical foundation of the proposed formula in the Kn>1 limit makes the current theory far more general than the semiempirical Stokes-Cunningham formula in terms of the particle size and condition of the fluid and, therefore, more attractive than the Stokes-Cunningham formula.

  11. Surface diffusion of a Brownian particle subjected to an external harmonic noise

    Science.gov (United States)

    Bai, Zhan-Wu; Ding, Li-Ping

    2017-05-01

    Langevin simulation is performed to investigate the diffusion coefficient of a Brownian particle subjected to an external harmonic noise in a two-dimensional coupled periodic potential. Resonant diffusion phenomenon is observed as a result of the coupling between the central frequency of the spectral density of the harmonic noise and the frequency of the potential well bottom. The diffusion coefficient presents approximately linear functions of the strengths of the internal and external noises for low values of the strengths, these functions can be understood by the local linearization approximation of the potential force. The damping coefficient dependence of the diffusion coefficient in lower damping is well fitted by a negative power function, as an internal Gaussian white noise case does, but with a power whose absolute value is larger than 1.

  12. Single-particle absorption spectroscopy by photothermal contrast.

    Science.gov (United States)

    Yorulmaz, Mustafa; Nizzero, Sara; Hoggard, Anneli; Wang, Lin-Yung; Cai, Yi-Yu; Su, Man-Nung; Chang, Wei-Shun; Link, Stephan

    2015-05-13

    Removing effects of sample heterogeneity through single-molecule and single-particle techniques has advanced many fields. While background free luminescence and scattering spectroscopy is widely used, recording the absorption spectrum only is rather difficult. Here we present an approach capable of recording pure absorption spectra of individual nanostructures. We demonstrate the implementation of single-particle absorption spectroscopy on strongly scattering plasmonic nanoparticles by combining photothermal microscopy with a supercontinuum laser and an innovative calibration procedure that accounts for chromatic aberrations and wavelength-dependent excitation powers. Comparison of the absorption spectra to the scattering spectra of the same individual gold nanoparticles reveals the blueshift of the absorption spectra, as predicted by Mie theory but previously not detectable in extinction measurements that measure the sum of absorption and scattering. By covering a wavelength range of 300 nm, we are furthermore able to record absorption spectra of single gold nanorods with different aspect ratios. We find that the spectral shift between absorption and scattering for the longitudinal plasmon resonance decreases as a function of nanorod aspect ratio, which is in agreement with simulations.

  13. Single Molecule Raman Detection of Enkephalin on Silver Colloidal Particles

    DEFF Research Database (Denmark)

    Kneipp, Katrin; Kneipp, Holger; Abdali, Salim

    2004-01-01

    Enkephalin, an endogeneous substance in the human brain showing morphine-like biological functions, has been detected at the single molecule level based on the surface-enhanced Raman signal of the ring breathing mode of phenylalanine, which is one building block of the molecule. For enhancing...... the Raman signal the enkephalin molecules have been attached to silver colloidal cluster structures. The experiments demonstrate that the SERS signal of the strongly enhanced ring breathing vibration of phenylalanine at 1000 cm-1 can be used as “intrinsic marker” for detecting a single enkephalin molecule...... and for monitoring its diffusion on the surface of the silver colloidal cluster without using a specific label molecule....

  14. Photoresponsive Release from Azobenzene-Modified Single Cubic Crystal NaCl/Silica Particles

    Directory of Open Access Journals (Sweden)

    Xingmao Jiang

    2011-01-01

    Full Text Available Azobenzene ligands were uniformly anchored to the pore surfaces of nanoporous silica particles with single crystal NaCl using 4-(3-triethoxysilylpropylureidoazobenzene (TSUA. The functionalization delayed the release of NaCl significantly. The modified particles demonstrated a photocontrolled release by trans/cis isomerization of azobenzene moieties. The addition of amphiphilic solvents, propylene glycol (PG, propylene glycol propyl ether (PGPE, and dipropylene glycol propyl ether (DPGPE delayed the release in water, although the wetting behavior was improved and the delay is the most for the block molecules with the longest carbon chain. The speedup by UV irradiation suggests a strong dependence of diffusion on the switchable pore size. TGA, XRD, FTIR, and NMR techniques were used to characterize the structures.

  15. Single-molecule diffusion and conformational dynamics by spatial integration of temporal fluctuations

    KAUST Repository

    Serag, Maged F.

    2014-10-06

    Single-molecule localization and tracking has been used to translate spatiotemporal information of individual molecules to map their diffusion behaviours. However, accurate analysis of diffusion behaviours and including other parameters, such as the conformation and size of molecules, remain as limitations to the method. Here, we report a method that addresses the limitations of existing single-molecular localization methods. The method is based on temporal tracking of the cumulative area occupied by molecules. These temporal fluctuations are tied to molecular size, rates of diffusion and conformational changes. By analysing fluorescent nanospheres and double-stranded DNA molecules of different lengths and topological forms, we demonstrate that our cumulative-area method surpasses the conventional single-molecule localization method in terms of the accuracy of determined diffusion coefficients. Furthermore, the cumulative-area method provides conformational relaxation times of structurally flexible chains along with diffusion coefficients, which together are relevant to work in a wide spectrum of scientific fields.

  16. Volumetric particle image velocimetry with a single plenoptic camera

    Science.gov (United States)

    Fahringer, Timothy W.; Lynch, Kyle P.; Thurow, Brian S.

    2015-11-01

    A novel three-dimensional (3D), three-component (3C) particle image velocimetry (PIV) technique based on volume illumination and light field imaging with a single plenoptic camera is described. A plenoptic camera uses a densely packed microlens array mounted near a high resolution image sensor to sample the spatial and angular distribution of light collected by the camera. The multiplicative algebraic reconstruction technique (MART) computed tomography algorithm is used to reconstruct a volumetric intensity field from individual snapshots and a cross-correlation algorithm is used to estimate the velocity field from a pair of reconstructed particle volumes. This work provides an introduction to the basic concepts of light field imaging with a plenoptic camera and describes the unique implementation of MART in the context of plenoptic image data for 3D/3C PIV measurements. Simulations of a plenoptic camera using geometric optics are used to generate synthetic plenoptic particle images, which are subsequently used to estimate the quality of particle volume reconstructions at various particle number densities. 3D reconstructions using this method produce reconstructed particles that are elongated by a factor of approximately 4 along the optical axis of the camera. A simulated 3D Gaussian vortex is used to test the capability of single camera plenoptic PIV to produce a 3D/3C vector field, where it was found that lateral displacements could be measured to approximately 0.2 voxel accuracy in the lateral direction and 1 voxel in the depth direction over a 300× 200× 200 voxel volume. The feasibility of the technique is demonstrated experimentally using a home-built plenoptic camera based on a 16-megapixel interline CCD camera and a 289× 193 array of microlenses and a pulsed Nd:YAG laser. 3D/3C measurements were performed in the wake of a low Reynolds number circular cylinder and compared with measurements made using a conventional 2D/2C PIV system. Overall, single camera

  17. Fourier transforms of single-particle wave functions in cylindrical coordinates

    International Nuclear Information System (INIS)

    Rizea, M.; Carjan, N.

    2016-01-01

    A formalism and the corresponding numerical procedures that calculate the Fourier transform of a single-particle wave function defined on a grid of cylindrical (ρ, z) coordinates is presented. Single-particle states in spherical and deformed nuclei have been chosen in view of future applications in the field of nuclear reactions. Bidimensional plots of the probability that the nucleon's momentum has a given value K = √(k ρ 2 +k z 2 ) are produced and from them the K -distributions are deduced. Three potentials have been investigated: (a) a sharp surface spherical well (i.e., of constant depth), (b) a spherical Woods-Saxon potential (i.e., diffuse surface) and (c) a deformed potential of Woods-Saxon type. In the first case the momenta are as well defined as allowed by the uncertainty principle. Depending on the state, their distributions have up to three separated peaks as a consequence of the up to three circular ridges of the bidimensional probabilities plots. In the second case the diffuseness allows very low momenta to be always populated thus creating tails towards the origin (K = 0). The peaks are still present but not well separated. In the third case the deformation transforms the above mentioned circular ridges into ellipses thus spreading the K-values along them. As a consequence the K-distributions have only one broad peak. (orig.)

  18. Life and death of a single catalytic cracking particle

    Science.gov (United States)

    Meirer, Florian; Kalirai, Sam; Morris, Darius; Soparawalla, Santosh; Liu, Yijin; Mesu, Gerbrand; Andrews, Joy C.; Weckhuysen, Bert M.

    2015-01-01

    Fluid catalytic cracking (FCC) particles account for 40 to 45% of worldwide gasoline production. The hierarchical complex particle pore structure allows access of long-chain feedstock molecules into active catalyst domains where they are cracked into smaller, more valuable hydrocarbon products (for example, gasoline). In this process, metal deposition and intrusion is a major cause for irreversible catalyst deactivation and shifts in product distribution. We used x-ray nanotomography of industrial FCC particles at differing degrees of deactivation to quantify changes in single-particle macroporosity and pore connectivity, correlated to iron and nickel deposition. Our study reveals that these metals are incorporated almost exclusively in near-surface regions, severely limiting macropore accessibility as metal concentrations increase. Because macropore channels are “highways” of the pore network, blocking them prevents feedstock molecules from reaching the catalytically active domains. Consequently, metal deposition reduces conversion with time on stream because the internal pore volume, although itself unobstructed, becomes largely inaccessible. PMID:26601160

  19. Diffusion of particles adsorbed on a triangular lattice: pairwise and three-particle interactions

    Czech Academy of Sciences Publication Activity Database

    Tarasenko, A. A.; Nieto, F.; Jastrabík, Lubomír; Uebing, C.

    2003-01-01

    Roč. 536, - (2003), s. 1-14 ISSN 0039-6028 R&D Projects: GA MŠk LN00A015 Grant - others:NATO(XX) SfP -972523 Institutional research plan: CEZ:AV0Z1010914 Keywords : Monte Carlo simulations * surface diffusion * Ising models * adsorption isotherms * adsorption kinetics * surface thermodynamics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.063, year: 2003

  20. Robust model-based analysis of single-particle tracking experiments with Spot-On.

    Science.gov (United States)

    Hansen, Anders S; Woringer, Maxime; Grimm, Jonathan B; Lavis, Luke D; Tjian, Robert; Darzacq, Xavier

    2018-01-04

    Single-particle tracking (SPT) has become an important method to bridge biochemistry and cell biology since it allows direct observation of protein binding and diffusion dynamics in live cells. However, accurately inferring information from SPT studies is challenging due to biases in both data analysis and experimental design. To address analysis bias, we introduce 'Spot-On', an intuitive web-interface. Spot-On implements a kinetic modeling framework that accounts for known biases, including molecules moving out-of-focus, and robustly infers diffusion constants and subpopulations from pooled single-molecule trajectories. To minimize inherent experimental biases, we implement and validate stroboscopic photo-activation SPT (spaSPT), which minimizes motion-blur bias and tracking errors. We validate Spot-On using experimentally realistic simulations and show that Spot-On outperforms other methods. We then apply Spot-On to spaSPT data from live mammalian cells spanning a wide range of nuclear dynamics and demonstrate that Spot-On consistently and robustly infers subpopulation fractions and diffusion constants. © 2018, Hansen et al.

  1. Crosslinked Functional Polymer Nanowire Formation Along Single Particle Tracks

    International Nuclear Information System (INIS)

    Tagawa, S.

    2006-01-01

    The use of high-energy charged particles has extended to many fields in recent years. In medicine, non-homogeneous energy deposition along an ion trajectory (ion track) plays a crucial role in cancer radiotherapy, allowing for high spatial selectivity in the distribution of the radiation dose. The direct observation and application of ion tracks in media have also attracted interest in materials science, where it is known as nuclear track fabrication. Since the discovery that high-energy particle leave latent tracks in inorganic and organic polymer materials, the technique has also been applied to the production of micro- and nano-sized pores in materials through chemical etching of the tracks. The clear correlation between the etched pore and the characteristics of the incident charged particle has been utilized for measurement of the velocity and mass of the incident particles, and such organic film detectors are widely used in dosimetry, and in particular for galactic cosmic rays in space. The scope of the present paper is the direct nano-structure formation based on crosslinking reactions induced in nano-scale ultra-small spaces of single particle tracks. We have developed the simple one-step formation processes of nanowires without using any chemical etching or refilling processes. The present technique is in striking contrast to the previous 'nuclear track' nanofabrication techniques. According to its high feasibility for the preparation of 1-D nanowires based on 'any' kinds of polymeric materials, the present paper demonstrates the formation of not only simple polymer nanowires but also ceramic and/or multi-segment multi-functional nanowires

  2. Inclusive photoproduction of single charged particles at high p T

    Science.gov (United States)

    Apsimon, R. J.; Atkinson, M.; Baake, M.; Bagdasarian, L. S.; Barberis, D.; Brodbeck, T. J.; Brook, N.; Charity, T.; Clegg, A. B.; Coyle, P.; Danaher, S.; Danagulian, S.; Davenport, M.; Dickinson, B.; Diekmann, B.; Donnachie, A.; Doyle, A. T.; Eades, J.; Ellison, R. J.; Flower, P. S.; Foster, J. M.; Galbraith, W.; Galumian, P. I.; Gapp, C.; Gebert, F.; Hallewell, G.; Heinloth, K.; Henderson, R. C. W.; Hickman, M. T.; Hoeger, C.; Holzkamp, S.; Hughes-Jones, R. E.; Ibbotson, M.; Jakob, H. P.; Joseph, D.; Keemer, N. R.; Kingler, J.; Koersgen, G.; Kolya, S. D.; Lafferty, G. D.; McCann, H.; McClatchey, R.; McManus, C.; Mercer, D.; Morris, J. A. G.; Morris, J. V.; Newton, D.; O'Connor, A.; Oedingen, R.; Oganesian, A. G.; Ottewell, P. J.; Paterson, C. N.; Paul, E.; Reid, D.; Rotscheidt, H.; Sharp, P. H.; Soeldner-Rembold, S.; Thacker, N. A.; Thompson, L.; Thompson, R. J.; Voigtlaender-Tetzner, A.; Waterhouse, J.; Weigend, A. S.; Wilson, G. W.

    1989-03-01

    Single charged-particle inclusive cross sections for photon, pion and kaon beams on hydrogen at the CERN-SPS are presented as functions of p T and x F . Data cover the range 0.01.6 GeV/c for the photon-induced data. Using the hadron-induced data to estimate the hadronic behaviour of the photon, the difference distributions and ratios of cross sections are a measure of the contribution of the point-like photon interactions. The data are compared with QCD calculations and show broadly similar features.

  3. Decay properties of high-lying single-particles modes

    Science.gov (United States)

    Beaumel, D.; Fortier, S.; Galès, S.; Guillot, J.; Langevin-Joliot, H.; Laurent, H.; Maison, J. M.; Vernotte, J.; Bordewijck, J.; Brandenburg, S.; Krasznahorkay, A.; Crawley, G. M.; Massolo, C. P.; Renteria, M.; Khendriche, A.

    1996-02-01

    The neutron decay of high-lying single-particle states in 64Ni, 90Zr, 120Sn and 208Pb excited by means of the (α, 3He) reaction has been investigated at 120 MeV incident energy using the multidetector EDEN. The characteristics of this reaction are studied using inclusive spectra and angular correlation analysis. The structure located between 11 and 15 MeV in 91Zr, and between 8 and 12 MeV excitation energy in 209Pb display large departures from a pure statistical decay. The corresponding non-statistical branching ratios are compared with the results of two theoretical calculations.

  4. Real stabilization method for nuclear single-particle resonances

    International Nuclear Information System (INIS)

    Zhang Li; Zhou Shangui; Meng Jie; Zhao Enguang

    2008-01-01

    We develop the real stabilization method within the framework of the relativistic mean-field (RMF) model. With the self-consistent nuclear potentials from the RMF model, the real stabilization method is used to study single-particle resonant states in spherical nuclei. As examples, the energies, widths, and wave functions of low-lying neutron resonant states in 120 Sn are obtained. These results are compared with those from the scattering phase-shift method and the analytic continuation in the coupling constant approach and satisfactory agreements are found

  5. Single-particle cryo-EM at crystallographic resolution

    Science.gov (United States)

    Cheng, Yifan

    2015-01-01

    Until only a few years ago, single-particle electron cryo-microscopy (cryo-EM) was usually not the first choice for many structural biologists due to its limited resolution in the range of nanometer to subnanometer. Now, this method rivals X-ray crystallography in terms of resolution and can be used to determine atomic structures of macromolecules that are either refractory to crystallization or difficult to crystallize in specific functional states. In this review, I discuss the recent breakthroughs in both hardware and software that transformed cryo-microscopy, enabling understanding of complex biomolecules and their functions at atomic level. PMID:25910205

  6. Coupled cluster approach to the single-particle Green's function

    International Nuclear Information System (INIS)

    Nooijen, M.; Snijders, J.G.

    1992-01-01

    Diagrammatic and coupled cluster techniques are used to develop an approach to the single-particle Green's function G which concentrates on G directly rather than first approximating the irreducible self-energy and then solving Dyson's equation. As a consequence the ionization and attachment parts of the Green's function satisfy completely decoupled sets of equations. The proposed coupled cluster Green's function method (CCGF) is intimately connected to both coupled cluster linear response theory (CCLRT) and the normal coupled cluster method (NCCM). These relations are discussed in detail

  7. Understanding particle size and distance driven competition of interparticle interactions and effective single-particle anisotropy.

    Science.gov (United States)

    Pacakova, B; Mantlikova, A; Niznansky, D; Kubickova, S; Vejpravova, J

    2016-05-25

    Magnetic response of single-domain nanoparticles (NPs) in concentrated systems is strongly affected by mutual interparticle interactions. However, particle proximity significantly influences single-particle effective anisotropy. To solve which of these two phenomena plays a dominant role in the magnetic response of real NP systems, systematic study on samples with well-defined parameters is required. In our work, we prepared a series of nanocomposites constituted of highly-crystalline and well-isolated CoFe2O4 NPs embedded in an amorphous SiO2 matrix using a single-molecule precursor method. This preparation method enabled us to reach a wide interval of particle size and concentration. We observed that the characteristic parameters of the single-domain state (coercivity, blocking temperature) and dipole-dipole interaction energy ([Formula: see text]) scaled with each other and increased with increasing [Formula: see text], where d XRD was the NP diameter and r was the interparticle distance. Our results are in excellent agreement with Monte-Carlo simulations of the particle growth. Moreover, we demonstrated that the contribution of [Formula: see text] acting as an additional energetic barrier to the superspin reversal or as an average static field did not sufficiently explain how the concentrated NP systems responded to an external magnetic field. Alternations in the blocking temperature and coercivity of our NP systems accounted for reformed relaxations of the NP superspins and modified effective anisotropy energy of the interacting NPs. Therefore, the concept of modified NP effective anisotropy explains the magnetic response of our concentrated NP systems better than the concept of the energy barrier influenced by interparticle interactions.

  8. Single Event Rates for Devices Sensitive to Particle Energy

    Science.gov (United States)

    Edmonds, L. D.; Scheick, L. Z.; Banker, M. W.

    2012-01-01

    Single event rates (SER) can include contributions from low-energy particles such that the linear energy transfer (LET) is not constant. Previous work found that the environmental description that is most relevant to the low-energy contribution to the rate is a "stopping rate per unit volume" even when the physical mechanisms for a single-event effect do not require an ion to stop in some device region. Stopping rate tables are presented for four heavy-ion environments that are commonly used to assess device suitability for space applications. A conservative rate estimate utilizing limited test data is derived, and the example of SEGR rate in a power MOSFET is presented.

  9. Fluidity evaluation of cell membrane model formed on graphene oxide with single particle tracking using quantum dot

    Science.gov (United States)

    Okamoto, Yoshiaki; Motegi, Toshinori; Iwasa, Seiji; Sandhu, Adarsh; Tero, Ryugo

    2015-04-01

    The lipid bilayer is the fundamental structure of plasma membranes, and artificial lipid bilayer membranes are used as model systems of cell membranes. Recently we reported the formation of a supported lipid bilayer (SLB) on graphene oxide (GO) by the vesicle fusion method. In this study, we conjugated a quantum dot (Qdot) on the SLB surface as a fluorescence probe brighter than dye-labeled lipid molecules, to qualitatively evaluate the fluidity of the SLB on GO by the single particle tracking method. We obtained the diffusion coefficient of the Qdot-conjugated lipids in the SLB on GO. We also performed the Qdot conjugation on the SLB containing a lipid conjugated with polyethylene glycol, to prevent the nonspecific adsorption of Qdots. The difference in the diffusion coefficients between the SLBs on the GO and the bare SiO2 regions was evaluated from the trajectory of single Qdot-conjugated lipid diffusing between the two regions.

  10. Diffusion of helium and neon isotopes in rubidium chloride single crystals

    International Nuclear Information System (INIS)

    Gulin, L.V.; Volobuev, P.V.; Korolev, I.A.; Suetin, P.E.

    1977-01-01

    Diffusion and solubility coefficients of 3 He, 4 He, 20 Ne, and 22 Ne isotopes in RbCl single crystals have been measured at 473-823 K by the method of desorption from presaturated specimens. The solubility coefficients measured are analyzed in terms of the model treating a soluted atom as an Einstein oscillator. The isotopic effects on the solubility and the diffusion of 3 He and 4 He are determined. The solubility and diffusion of both helium and neon isotopes in RbCl single crystals are concluded to be governed by the interstitial mechanism

  11. Design of a Single-Layer Microchannel for Continuous Sheathless Single-Stream Particle Inertial Focusing.

    Science.gov (United States)

    Zhang, Yan; Zhang, Jun; Tang, Fei; Li, Weihua; Wang, Xiaohao

    2018-02-06

    High-throughput, high-precision single-stream focusing of microparticles has a potentially wide range of applications in biochemical analysis and clinical diagnosis. In this work, we develop a sheathless three-dimensional (3D) particle-focusing method in a single-layer microchannel. This novel microchannel consists of periodic high-aspect-ratio curved channels and straight channels. The proposed method takes advantage of both the curved channels, which induce Dean flow to promote particle migration, and straight channels, which suppress the remaining stirring effects of Dean flow to stabilize the achieved particle focusing. The 3D particle focusing is demonstrated experimentally, and the mechanism is analyzed theoretically. The effects of flow rate, particle size, and cycle number on the focusing performance were also investigated. The experimental results demonstrate that polystyrene particles with diameters of 5-20 μm can be focused into a 3D single file within seven channel cycles, with the focusing accuracy up to 98.5% and focusing rate up to 98.97%. The focusing throughput could reach up to ∼10 5 counts/min. Furthermore, its applicability to biological cells is also demonstrated by 3D focusing of HeLa and melanoma cells and bovine blood cells in the proposed microchannel. The proposed sheathless passive focusing scheme, featuring a simple channel structure, small footprint (9 mm × 1.2 mm), compact layout, and uncomplicated fabrication procedure, holds great promise as an efficient 3D focusing unit for the development of next-generation on-chip flow cytometry.

  12. On the impact of particle size on the characteristics of specular and diffuse reflectance spectra

    Science.gov (United States)

    Mall, U.; Schmidt, B.; Dabrowski, B.; Hoenicke, L.; Kloskowski, D.

    2017-09-01

    The remote identification of minerals or rocks by reflectance measurements uses the fact that reflectance spectra in the UV-VIS-NIR and thermal infrared (TIR) wavelength regions contain a number of diagnostic features. Among these features particle size play an important role. We report on the characteristics of NIR measurements of pure minerals of well-defined grain sizes relevant for remote sensing studies of soils in specular and diffuse reflectance.

  13. Cytotoxicity of ferrite particles by MTT and agar diffusion methods for hyperthermic application

    International Nuclear Information System (INIS)

    Kim, Dong-Hyun; Lee, Se-Ho; Kim, Kyoung-Nam; Kim, Kwang-Mahn; Shim, In-Bo; Lee, Yong-Keun

    2005-01-01

    We investigated the cytotoxicity of the prepared various ferrites (Fe-, Li-, Ni/Zn/Cu-, Ba-, Sr-, Co-, Co/Ni-ferrites) using MTT assay as well as agar diffusion method. Their cytotoxicity was compared with that of alginate-encapsulated ferrites. In the MTT assay, Fe 3 O 4 and SrFe 12 O 19 ferrite showed the highest cell viability of 90%. Alginate-encapsulated Ba-ferrite was ranked mildly cytotoxic, whereas their ferrite particles were ranked cytotoxic

  14. Conformational changes of a single magnetic particle string within gels.

    Science.gov (United States)

    An, Hai-Ning; Groenewold, Jan; Picken, S J; Mendes, Eduardo

    2014-02-21

    Magnetorheological (MR) gels consist of micron sized magnetic particles inside a gel matrix. Before physical cross-linking, the suspension is subjected to a small magnetic field which creates a particle string structure. After cross-linking, the string is kept within the gel at room temperature. Under an external homogeneous magnetic field and mechanical deformation, the soft swollen gel matrix allows the string to largely rearrange at microscopic scales. With the help of two homemade magneto cells mounted on an optical microscope, we were able to follow the conformational change and instabilities of a single magnetic particle string under the combined influence of shear (or stretch) and the magnetic field. In the absence of mechanical deformation, an external magnetic field, applied in the perpendicular direction to the string, breaks it into small pieces generating periodic structures like sawteeth. When an external magnetic field is applied parallel to the pre-aligned string, it exhibits a length contraction. However, under shear strain perpendicular to the original pre-structured string (and magnetic field), the string breaks and short string segments tilt, making an angle with the original direction that is smaller than that of the applied shear (non-affine). The difference in tilt angle scales with the inverse length of the small segments L-1 and the magnetic flux density B, reflecting the ability of the gel matrix to expel solvents under local stress.

  15. NON-AXISYMMETRIC PERPENDICULAR DIFFUSION OF CHARGED PARTICLES AND THEIR TRANSPORT ACROSS TANGENTIAL MAGNETIC DISCONTINUITIES

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, R. D.; Engelbrecht, N. E.; Dunzlaff, P. [Center for Space Research, North-West University, Potchefstroom, 2522 (South Africa); Roux, J. A. le [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL 3585 (United States); Ruffolo, D., E-mail: dutoit.strauss@nwu.ac.za [Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand)

    2016-07-01

    We investigate the transport of charged particles across magnetic discontinuities, focusing specifically on stream interfaces associated with co-rotating interaction regions in the solar wind. We argue that the magnetic field fluctuations perpendicular to the magnetic discontinuity, and usually also perpendicular to the mean magnetic field, are strongly damped in the vicinity of such a magnetic structure, leading to anisotropic perpendicular diffusion. Assuming that perpendicular diffusion arises from drifts in a turbulent magnetic field, we adopt a simplified approach to derive the relevant perpendicular diffusion coefficient. This approach, which we believe gives the correct principal dependences as expected from more elaborate calculations, allows us to investigate transport in different turbulent geometries, such as longitudinal compressional turbulence that may be present near the heliopause. Although highly dependent on the (possibly anisotropic) perpendicular length scales and turbulence levels, we generally find perpendicular diffusion to be strongly damped at magnetic discontinuities, which may in turn provide an explanation for the large particle gradients associated with these structures.

  16. High resolution single particle refinement in EMAN2.1.

    Science.gov (United States)

    Bell, James M; Chen, Muyuan; Baldwin, Philip R; Ludtke, Steven J

    2016-05-01

    EMAN2.1 is a complete image processing suite for quantitative analysis of grayscale images, with a primary focus on transmission electron microscopy, with complete workflows for performing high resolution single particle reconstruction, 2-D and 3-D heterogeneity analysis, random conical tilt reconstruction and subtomogram averaging, among other tasks. In this manuscript we provide the first detailed description of the high resolution single particle analysis pipeline and the philosophy behind its approach to the reconstruction problem. High resolution refinement is a fully automated process, and involves an advanced set of heuristics to select optimal algorithms for each specific refinement task. A gold standard FSC is produced automatically as part of refinement, providing a robust resolution estimate for the final map, and this is used to optimally filter the final CTF phase and amplitude corrected structure. Additional methods are in-place to reduce model bias during refinement, and to permit cross-validation using other computational methods. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Single-particle excitations in disordered Weyl fluids

    Science.gov (United States)

    Pixley, J. H.; Chou, Yang-Zhi; Goswami, Pallab; Huse, David A.; Nandkishore, Rahul; Radzihovsky, Leo; Das Sarma, S.

    2017-06-01

    We theoretically study the single-particle Green function of a three-dimensional disordered Weyl semimetal using a combination of techniques. These include analytic T -matrix and renormalization group methods with complementary regimes of validity and an exact numerical approach based on the kernel polynomial technique. We show that at any nonzero disorder, Weyl excitations are not ballistic: They instead have a nonzero linewidth that for weak short-range disorder arises from nonperturbative resonant impurity scattering. Perturbative approaches find a quantum critical point between a semimetal and a metal at a finite disorder strength, but this transition is avoided due to nonperturbative effects. At moderate disorder strength and intermediate energies the avoided quantum critical point renormalizes the scaling of single-particle properties. In this regime we compute numerically the anomalous dimension of the fermion field and find η =0.13 ±0.04 , which agrees well with a renormalization group analysis (η =0.125 ). Our predictions can be directly tested by ARPES and STM measurements in samples dominated by neutral impurities.

  18. 4-D single particle tracking of synthetic and proteinaceous microspheres reveals preferential movement of nuclear particles along chromatin – poor tracks

    Directory of Open Access Journals (Sweden)

    Athale Chaitanya

    2004-11-01

    Full Text Available Abstract Background The dynamics of nuclear organization, nuclear bodies and RNPs in particular has been the focus of many studies. To understand their function, knowledge of their spatial nuclear position and temporal translocation is essential. Typically, such studies generate a wealth of data that require novel methods in image analysis and computational tools to quantitatively track particle movement on the background of moving cells and shape changing nuclei. Results We developed a novel 4-D image processing platform (TIKAL for the work with laser scanning and wide field microscopes. TIKAL provides a registration software for correcting global movements and local deformations of cells as well as 2-D and 3-D tracking software. With this new tool, we studied the dynamics of two different types of nuclear particles, namely nuclear bodies made from GFP-NLS-vimentin and microinjected 0.1 μm – wide polystyrene beads, by live cell time-lapse microscopy combined with single particle tracking and mobility analysis. We now provide a tool for the automatic 3-D analysis of particle movement in parallel with the acquisition of chromatin density data. Conclusions Kinetic analysis revealed 4 modes of movement: confined obstructed, normal diffusion and directed motion. Particle tracking on the background of stained chromatin revealed that particle movement is directly related to local reorganization of chromatin. Further a direct comparison of particle movement in the nucleoplasm and the cytoplasm exhibited an entirely different kinetic behaviour of vimentin particles in both compartments. The kinetics of nuclear particles were slightly affected by depletion of ATP and significantly disturbed by disruption of actin and microtubule networks. Moreover, the hydration state of the nucleus had a strong impact on the mobility of nuclear bodies since both normal diffusion and directed motion were entirely abolished when cells were challenged with 0.6 M

  19. 4-D single particle tracking of synthetic and proteinaceous microspheres reveals preferential movement of nuclear particles along chromatin – poor tracks

    Science.gov (United States)

    Bacher, Christian P; Reichenzeller, Michaela; Athale, Chaitanya; Herrmann, Harald; Eils, Roland

    2004-01-01

    Background The dynamics of nuclear organization, nuclear bodies and RNPs in particular has been the focus of many studies. To understand their function, knowledge of their spatial nuclear position and temporal translocation is essential. Typically, such studies generate a wealth of data that require novel methods in image analysis and computational tools to quantitatively track particle movement on the background of moving cells and shape changing nuclei. Results We developed a novel 4-D image processing platform (TIKAL) for the work with laser scanning and wide field microscopes. TIKAL provides a registration software for correcting global movements and local deformations of cells as well as 2-D and 3-D tracking software. With this new tool, we studied the dynamics of two different types of nuclear particles, namely nuclear bodies made from GFP-NLS-vimentin and microinjected 0.1 μm – wide polystyrene beads, by live cell time-lapse microscopy combined with single particle tracking and mobility analysis. We now provide a tool for the automatic 3-D analysis of particle movement in parallel with the acquisition of chromatin density data. Conclusions Kinetic analysis revealed 4 modes of movement: confined obstructed, normal diffusion and directed motion. Particle tracking on the background of stained chromatin revealed that particle movement is directly related to local reorganization of chromatin. Further a direct comparison of particle movement in the nucleoplasm and the cytoplasm exhibited an entirely different kinetic behaviour of vimentin particles in both compartments. The kinetics of nuclear particles were slightly affected by depletion of ATP and significantly disturbed by disruption of actin and microtubule networks. Moreover, the hydration state of the nucleus had a strong impact on the mobility of nuclear bodies since both normal diffusion and directed motion were entirely abolished when cells were challenged with 0.6 M sorbitol. This effect correlated

  20. Single Particle Soot Photometer intercomparison at the AIDA chamber

    Directory of Open Access Journals (Sweden)

    M. Laborde

    2012-12-01

    Full Text Available Soot particles, consisting of black carbon (BC, organic carbon (OC, inorganic salts, and trace elements, are emitted into the atmosphere during incomplete combustion. Accurate measurements of atmospheric BC are important as BC particles cause adverse health effects and impact the climate.

    Unfortunately, the accurate measurement of the properties and mass concentrations of BC particles remains difficult. The Single Particle Soot Photometer (SP2 can contribute to improving this situation by measuring the mass of refractory BC in individual particles as well as its mixing state.

    Here, the results of the first detailed SP2 intercomparison, involving 6 SP2s from 6 different research groups, are presented, including the most evolved data products that can presently be calculated from SP2 measurements.

    It was shown that a detection efficiency of almost 100% down to 1 fg BC per particle can readily be achieved, and that this limit can be pushed down to ∼0.2 fg BC with optimal SP2 setup. Number and mass size distributions of BC cores agreed within ±5% and ±10%, respectively, in between the SP2s, with larger deviations in the range below 1 fg BC.

    The accuracy of the SP2's mass concentration measurement depends on the calibration material chosen. The SP2 has previously been shown to be equally sensitive to fullerene soot and ambient BC from sources where fossil fuel was dominant and less sensitive to fullerene soot than to Aquadag. Fullerene soot was therefore chosen as the standard calibration material by the SP2 user community; however, many data sets rely solely on Aquadag calibration measurements. The difference in SP2 sensitivity was found to be almost equal (fullerene soot to Aquadag response ratio of ∼0.75 at 8.9 fg BC for all SP2s. This allows the calculation of a fullerene soot equivalent calibration curve from a measured Aquadag calibration, when no fullerene soot calibration is available. It could be

  1. Single potassium niobate nano/microsized particles as local mechano-optical Brownian probes

    Science.gov (United States)

    Mor, Flavio M.; Sienkiewicz, Andrzej; Magrez, Arnaud; Forró, László; Jeney, Sylvia

    2016-03-01

    Perovskite alkaline niobates, due to their strong nonlinear optical properties, including birefringence and the capability to produce second-harmonic generation (SHG) signals, attract a lot of attention as potential candidates for applications as local nano/microsized mechano-optical probes. Here, we report on an implementation of photonic force microscopy (PFM) to explore the Brownian motion and optical trappability of monocrystalline potassium niobate (KNbO3) nano/microsized particles having sizes within the range of 50 to 750 nm. In particular, we exploit the anisotropic translational diffusive regime of the Brownian motion to quantify thermal fluctuations and optical forces of singly-trapped KNbO3 particles within the optical trapping volume of a PFM microscope. We also show that, under near-infrared (NIR) excitation of the highly focused laser beam of the PFM microscope, a single optically-trapped KNbO3 particle reveals a strong SHG signal manifested by a narrow peak (λem = 532 nm) at half the excitation wavelength (λex = 1064 nm). Moreover, we demonstrate that the thus induced SHG emission can be used as a local light source that is capable of optically exciting molecules of an organic dye, Rose Bengal (RB), which adhere to the particle surface, through the mechanism of luminescence energy transfer (LET).Perovskite alkaline niobates, due to their strong nonlinear optical properties, including birefringence and the capability to produce second-harmonic generation (SHG) signals, attract a lot of attention as potential candidates for applications as local nano/microsized mechano-optical probes. Here, we report on an implementation of photonic force microscopy (PFM) to explore the Brownian motion and optical trappability of monocrystalline potassium niobate (KNbO3) nano/microsized particles having sizes within the range of 50 to 750 nm. In particular, we exploit the anisotropic translational diffusive regime of the Brownian motion to quantify thermal

  2. Diffusion of fish from a single release point

    DEFF Research Database (Denmark)

    Sparrevohn, Claus Reedtz; Nielsen, Anders; Støttrup, Josianne

    2002-01-01

    In a field experiment, 3529 turbot (Psetta maxima) were released in order to estimate and describe the movements of hatchery-reared fish by applying diffusion theory. After liberation, the development of the population density was estimated during the following 9 days, and from that, the rate...... that the sampling of fish during the experiment did not have any detectable effect on the population density. The activity of the released turbot resulted in an individual daily displacement of 151 m-day(-1), except for the first 2 days at liberty, where the displacement was estimated to be considerably lower....... Advection was significant and was related to the displacement of the water body. Further, it was possible to estimate the postrelease mortality as 14%.day(-1) and the catchability of the turbot when caught with a young fish trawl as 28%....

  3. Actinide transport in Topopah Spring Tuff: Pore size, particle size, and diffusion

    International Nuclear Information System (INIS)

    Buchholtz ten Brink, M.; Phinney, D.L.; Smith, D.K.

    1991-04-01

    Diffusive transport rates for aqueous species in a porous medium are a function of sorption, molecular diffusion, and sample tortuosity. With heterogeneous natural samples, an understanding of the effect of multiple transport paths and sorption mechanisms is particularly important since a small amount of radioisotope traveling via a faster-than-anticipated transport path may invalidate the predictions of transport codes which assume average behavior. Static-diffusion experiments using aqueous 238 U tracer in tuff indicated that U transport was faster in regions of greater porosity and that apparent diffusion coefficients depended on the scale (m or μm) over which concentration gradients were measured in Topopah Spring Tuff. If a significant fraction of actinides in high-level waste are released to the environment in forms that do not sorb to the matrix, they may be similarly transported along fast paths in porous regions of the tuff. To test this, aqueous diffusion rates in tuff were measured for 238 U and 239 Pu leached from doped glass. Measured transport rates and patterns were consistent in both systems with a dual-porosity transported moeld. In addition, filtration or channelling of actinides associated with colloidal particles may significantly affect the radionuclide transport rate in Topopah Spring tuff. 9 refs., 7 figs

  4. Application of diffusion theory to the transport of neutral particles in fusion plasmas

    International Nuclear Information System (INIS)

    Hasan, M.Z.

    1985-01-01

    It is shown that the widely held view that diffusion theory can not provide good accuracy for the transport of neutral particles in fusion plasmas is misplaced. In fact, it is shown that multigroup diffusion theory gives quite good accuracy as compared to the transport theory. The reasons for this are elaborated and some of the physical and theoretical reasons which make the multigroup diffusion theory provide good accuracy are explained. Energy dependence must be taken into consideration to obtain a realistic neutral atom distribution in fusion plasmas. There are two reasons for this; presence of either is enough to necessitate an energy dependent treatment. First, the plasma temperature varies spatially, and second, the ratio of charge-exchange to total plasma-neutral interaction cross section (c) is not close to one. A computer code to solve the one-dimensional multigroup diffusion theory in general geometry (slab, cylindrical and spherical) has been written for use on Cray computers, and its results are compared with those from the one-dimensional transport code ANISN to support the above finding. A fast, compact and versatile two-dimensional finite element multigroup diffusion theory code, FINAT, in X-Y and R-Z cylindrical/toroidal geometries has been written for use on CRAY computers. This code has been compared with the two dimensional transport code DOT-4.3. The accuracy is very good, and FENAT runs much faster compared even to DOT-4.3 which is a finite difference code

  5. Influence of the history force on inertial particle advection: gravitational effects and horizontal diffusion.

    Science.gov (United States)

    Guseva, Ksenia; Feudel, Ulrike; Tél, Tamás

    2013-10-01

    We analyze the effect of the Basset history force on the sedimentation or rising of inertial particles in a two-dimensional convection flow. When memory effects are neglected, the system exhibits rich dynamics, including periodic, quasiperiodic, and chaotic attractors. Here we show that when the full advection dynamics is considered, including the history force, both the nature and the number of attractors change, and a fractalization of their basins of attraction appears. In particular, we show that the history force significantly weakens the horizontal diffusion and changes the speed of sedimentation or rising. The influence of the history force is dependent on the size of the advected particles, being stronger for larger particles.

  6. Modeling single-file diffusion with step fractional Brownian motion and a generalized fractional Langevin equation

    International Nuclear Information System (INIS)

    Lim, S C; Teo, L P

    2009-01-01

    Single-file diffusion behaves as normal diffusion at small time and as subdiffusion at large time. These properties can be described in terms of fractional Brownian motion with variable Hurst exponent or multifractional Brownian motion. We introduce a new stochastic process called Riemann–Liouville step fractional Brownian motion which can be regarded as a special case of multifractional Brownian motion with a step function type of Hurst exponent tailored for single-file diffusion. Such a step fractional Brownian motion can be obtained as a solution of the fractional Langevin equation with zero damping. Various kinds of fractional Langevin equations and their generalizations are then considered in order to decide whether their solutions provide the correct description of the long and short time behaviors of single-file diffusion. The cases where the dissipative memory kernel is a Dirac delta function, a power-law function and a combination of these functions are studied in detail. In addition to the case where the short time behavior of single-file diffusion behaves as normal diffusion, we also consider the possibility of a process that begins as ballistic motion

  7. Modeling single-file diffusion with step fractional Brownian motion and a generalized fractional Langevin equation

    Science.gov (United States)

    Lim, S. C.; Teo, L. P.

    2009-08-01

    Single-file diffusion behaves as normal diffusion at small time and as subdiffusion at large time. These properties can be described in terms of fractional Brownian motion with variable Hurst exponent or multifractional Brownian motion. We introduce a new stochastic process called Riemann-Liouville step fractional Brownian motion which can be regarded as a special case of multifractional Brownian motion with a step function type of Hurst exponent tailored for single-file diffusion. Such a step fractional Brownian motion can be obtained as a solution of the fractional Langevin equation with zero damping. Various kinds of fractional Langevin equations and their generalizations are then considered in order to decide whether their solutions provide the correct description of the long and short time behaviors of single-file diffusion. The cases where the dissipative memory kernel is a Dirac delta function, a power-law function and a combination of these functions are studied in detail. In addition to the case where the short time behavior of single-file diffusion behaves as normal diffusion, we also consider the possibility of a process that begins as ballistic motion.

  8. Soot particle size measurements in ethylene diffusion flames at elevated pressures

    KAUST Repository

    Steinmetz, Scott

    2016-05-07

    Soot particle size is investigated in laminar nitrogen-diluted ethylene coflow diffusion flames at 4, 8, 12 and 16 atm. Line of sight attenuation and scattering are used to measure two-dimensional soot volume fraction and particle size fields for the first time at elevated pressures. Soot volume fraction dependence on pressure is consistent with the observations of similar studies, scaling approximately with the square of pressure. Scattering intensity is analyzed through Rayleigh and Rayleigh-Debye-Gans polydisperse fractal aggregate theories to provide two estimates of particle size. An increase in overall particle sizes with pressure is found, consistent with similar one-dimensional studies. Particle diameters in the annulus of the flame increase faster with pressure than those on centerline. Contrary to previous studies, the dependence of particle size on pressure was found to taper off between 8 and 12 atm, with little observed growth beyond 12 atm. The measurements provide additional data for one of the International Sooting Flame (ISF) workshop\\'s target pressurized flames.

  9. Decay properties of high-lying single-particles modes

    Energy Technology Data Exchange (ETDEWEB)

    Beaumel, D. [Institut de Physique Nucleaire, 91 - Orsay (France); Fortier, S. [Institut de Physique Nucleaire, 91 - Orsay (France); Gales, S. [Institut de Physique Nucleaire, 91 - Orsay (France); Guillot, J. [Institut de Physique Nucleaire, 91 - Orsay (France); Langevin-Joliot, H. [Institut de Physique Nucleaire, 91 - Orsay (France); Laurent, H. [Institut de Physique Nucleaire, 91 -Orsay (France); Maison, J.M. [Institut de Physique Nucleaire, 91 - Orsay (France); Vernotte, J. [Institut de Physique Nucleaire, 91 - Orsay (France); Bordewijck, J. [Kernfysisch Versneller Instituut, 9747 Groningen (Netherlands); Brandenburg, S. [Kernfysisch Versneller Instituut, 9747 Groningen (Netherlands); Krasznahorkay, A. [Kernfysisch Versneller Instituut, 9747 Groningen (Netherlands); Crawley, G.M. [NSCL, Michigan State University, East Lansing, MI 48824 (United States); Massolo, C.P. [Universitad Nacional de La Plata, 1900 La Plata (Argentina); Renteria, M. [Universitad Nacional de La Plata, 1900 La Plata (Argentina); Khendriche, A. [University of Tizi-Ouzou, Tizi-Ouzou (Algeria)

    1996-03-18

    The neutron decay of high-lying single-particle states in {sup 64}Ni, {sup 90}Zr, {sup 120}Sn and {sup 208}Pb excited by means of the ({alpha},{sup 3}He) reaction has been investigated at 120 MeV incident energy using the multidetector EDEN. The characteristics of this reaction are studied using inclusive spectra and angular correlation analysis. The structure located between 11 and 15 MeV in {sup 91}Zr, and between 8 and 12 MeV excitation energy in {sup 209}Pb display large departures from a pure statistical decay. The corresponding non-statistical branching ratios are compared with the results of two theoretical calculations. (orig.).

  10. Classification using diffraction patterns for single-particle analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Hongli; Zhang, Kaiming [Department of Biophysics, the Health Science Centre, Peking University, Beijing 100191 (China); Meng, Xing, E-mail: xmeng101@gmail.com [Wadsworth Centre, New York State Department of Health, Albany, New York 12201 (United States)

    2016-05-15

    An alternative method has been assessed; diffraction patterns derived from the single particle data set were used to perform the first round of classification in creating the initial averages for proteins data with symmetrical morphology. The test protein set was a collection of Caenorhabditis elegans small heat shock protein 17 obtained by Cryo EM, which has a tetrahedral (12-fold) symmetry. It is demonstrated that the initial classification on diffraction patterns is workable as well as the real-space classification that is based on the phase contrast. The test results show that the information from diffraction patterns has the enough details to make the initial model faithful. The potential advantage using the alternative method is twofold, the ability to handle the sets with poor signal/noise or/and that break the symmetry properties. - Highlights: • New classification method. • Create the accurate initial model. • Better in handling noisy data.

  11. Classification using diffraction patterns for single-particle analysis

    International Nuclear Information System (INIS)

    Hu, Hongli; Zhang, Kaiming; Meng, Xing

    2016-01-01

    An alternative method has been assessed; diffraction patterns derived from the single particle data set were used to perform the first round of classification in creating the initial averages for proteins data with symmetrical morphology. The test protein set was a collection of Caenorhabditis elegans small heat shock protein 17 obtained by Cryo EM, which has a tetrahedral (12-fold) symmetry. It is demonstrated that the initial classification on diffraction patterns is workable as well as the real-space classification that is based on the phase contrast. The test results show that the information from diffraction patterns has the enough details to make the initial model faithful. The potential advantage using the alternative method is twofold, the ability to handle the sets with poor signal/noise or/and that break the symmetry properties. - Highlights: • New classification method. • Create the accurate initial model. • Better in handling noisy data.

  12. Single image defogging based on particle swarm optimization

    Science.gov (United States)

    Guo, Fan; Zhou, Cong; Liu, Li-jue; Tang, Jin

    2017-11-01

    Due to the lack of enough information to solve the equation of image degradation model, existing defogging methods generally introduce some parameters and set these values fixed. Inappropriate parameter setting leads to difficulty in obtaining the best defogging results for different input foggy images. Therefore, a single image defogging algorithm based on particle swarm optimization (PSO) is proposed in this letter to adaptively and automatically select optimal parameter values for image defogging algorithms. The proposed method is applied to two representative defogging algorithms by selecting the two main parameters and optimizing them using the PSO algorithm. Comparative study and qualitative evaluation demonstrate that the better quality results are obtained by using the proposed parameter selection method.

  13. Search for single photons from supersymmetric particle production

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, E.; Ford, W.T.; Qi, N.; Read A.L. Jr.; Smith, J.G.; Camporesi, T.; De Sangro, R.; Marini, A.; Peruzzi, I.; Piccolo, M.; Ronga, F.; Blume, H.T.; Hurst, R.B.; Venuti, J.P.; Wald, H.B.; Weinstein, R.; Band, H.R.; Gettner, M.W.; Goderre, G.P.; Meyer, O.A.; Moromisato, J.H.; Polvado, R.O.; Shambroom, W.D.; Sleeman, J.C.; von Goeler, E.; Ash, W.W.; Chadwick, G.B.; Clearwater, S.H.; Coombes, R.W.; Kaye, H.S.; Lau, K.H.; Leedy, R.E.; Lynch, H.L.; Messner, R.L.; Moss, L.J.; Muller, F.; Nelson, H.N.; Ritson, D.M.; Rosenberg, L.J.; Wiser, D.E.; Zdarko, R.W.; Groom, D.E.; Lee, H.Y.; Delfino, M.C.; Heltsley, B.K.; Johnson, J.R.; Lavine, T.L.; Maruyama, T.; Prepost, R.

    1985-03-18

    A search in e/sup +/e/sup -/ annihilation for final states which contain only a single energetic photon has been performed at ..sqrt..s = 29 GeV with the MAC detector at PEP. The upper limit on an anomalous signal has been interpreted in terms of mass limits for supersymmetric particles under the assumption of radiative pair paroduction of either supersymmetric photons or neutrinos. For the supersymmetric electron (e) this limit is m/sub e/>37 GeV/c/sup 2/ at the 90% confidence level if M/sub e//sub L/ = m/sub e//sub R/ and the supersymmetric photo (gamma-tilde) has m/sub gamma-tilde/ = 0.

  14. Average velocity and effective diffusion of a Brownian particle driven by a constant force over a static periodic potential

    OpenAIRE

    Wang, Hongyun

    2006-01-01

    In this manuscript, we consider the case where a Brownian particle is subject to a static periodic potential and is driven by a constant force. We derive analytic formulas for the average velocity and the effective diffusion.

  15. Modeling of the interplay between single-file diffusion and conversion reaction in mesoporous systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing [Iowa State Univ., Ames, IA (United States)

    2013-01-11

    We analyze the spatiotemporal behavior of species concentrations in a diffusion-mediated conversion reaction which occurs at catalytic sites within linear pores of nanometer diameter. A strict single-file (no passing) constraint occurs in the diffusion within such narrow pores. Both transient and steady-state behavior is precisely characterized by kinetic Monte Carlo simulations of a spatially discrete lattice–gas model for this reaction–diffusion process considering various distributions of catalytic sites. Exact hierarchical master equations can also be developed for this model. Their analysis, after application of mean-field type truncation approximations, produces discrete reaction–diffusion type equations (mf-RDE). For slowly varying concentrations, we further develop coarse-grained continuum hydrodynamic reaction–diffusion equations (h-RDE) incorporating a precise treatment of single-file diffusion (SFD) in this multispecies system. Noting the shortcomings of mf-RDE and h-RDE, we then develop a generalized hydrodynamic (GH) formulation of appropriate gh-RDE which incorporates an unconventional description of chemical diffusion in mixed-component quasi-single-file systems based on a refined picture of tracer diffusion for finite-length pores. The gh-RDE elucidate the non-exponential decay of the steady-state reactant concentration into the pore and the non-mean-field scaling of the reactant penetration depth. Then an extended model of a catalytic conversion reaction within a functionalized nanoporous material is developed to assess the effect of varying the reaction product – pore interior interaction from attractive to repulsive. The analysis is performed utilizing the generalized hydrodynamic formulation of the reaction-diffusion equations which can reliably capture the complex interplay between reaction and restricted transport for both irreversible and reversible reactions.

  16. A photo-tunable membrane based on inter-particle crosslinking for decreasing diffusion rates

    KAUST Repository

    Li, Song

    2015-01-01

    Functional polymeric membranes are widely used to adjust and control the diffusion of molecules. Herein, photosensitive poly(hydroxycinnamic acid) (PHCA) microspheres, which were fabricated by an emulsification solvent-evaporation method, were embedded into an ethyl cellulose matrix to fabricate composite membranes with a photo-tunable property. The photoreaction of PHCA is based on the [2 + 2] cycloaddition of cinnamic moieties upon irradiation with 365 nm light. Intra-particle crosslinking in PHCA microspheres was confirmed in the solution phase, while inter-particle crosslinking between adjacent PHCA microspheres dominated the solid membrane phase. The inter-particle crosslinking turned down the permeability of the composite membranes by 74%. To prove the applicability of the designed system, the composite membrane was coated on a model drug reservoir tablet. Upon irradiating the tablet with UV light, the original permeability decreased by 57%, and consequently the diffusion rate of the cargo (Rhodamine B) from the tablet slowed down. Most importantly, the tablet showed sustained release for over 10 days. This controllability can be further tuned by adjusting the membrane thickness. Composite membranes showed excellent processing reproducibility together with consistent mechanical properties. These results demonstrate that the incorporation of photosensitive PHCA microspheres in polymeric membranes provides a promising photo-tunable material for different applications including coating and separation. This journal is © The Royal Society of Chemistry 2015.

  17. A spin echo sequence with a single-sided bipolar diffusion gradient pulse to obtain snapshot diffusion weighted images in moving media

    Science.gov (United States)

    Freidlin, R. Z.; Kakareka, J. W.; Pohida, T. J.; Komlosh, M. E.; Basser, P. J.

    2012-08-01

    In vivo MRI data can be corrupted by motion. Motion artifacts are particularly troublesome in Diffusion Weighted MRI (DWI), since the MR signal attenuation due to Brownian motion can be much less than the signal loss due to dephasing from other types of complex tissue motion, which can significantly degrade the estimation of self-diffusion coefficients, diffusion tensors, etc. This paper describes a snapshot DWI sequence, which utilizes a novel single-sided bipolar diffusion sensitizing gradient pulse within a spin echo sequence. The proposed method shortens the diffusion time by applying a single refocused bipolar diffusion gradient on one side of a refocusing RF pulse, instead of a set of diffusion sensitizing gradients, separated by a refocusing RF pulse, while reducing the impact of magnetic field inhomogeneity by using a spin echo sequence. A novel MRI phantom that can exhibit a range of complex motions was designed to demonstrate the robustness of the proposed DWI sequence.

  18. A review of progress in single particle tracking: from methods to biophysical insights

    Science.gov (United States)

    Manzo, Carlo; Garcia-Parajo, Maria F.

    2015-12-01

    Optical microscopy has for centuries been a key tool to study living cells with minimum invasiveness. The advent of single molecule techniques over the past two decades has revolutionized the field of cell biology by providing a more quantitative picture of the complex and highly dynamic organization of living systems. Amongst these techniques, single particle tracking (SPT) has emerged as a powerful approach to study a variety of dynamic processes in life sciences. SPT provides access to single molecule behavior in the natural context of living cells, thereby allowing a complete statistical characterization of the system under study. In this review we describe the foundations of SPT together with novel optical implementations that nowadays allow the investigation of single molecule dynamic events with increasingly high spatiotemporal resolution using molecular densities closer to physiological expression levels. We outline some of the algorithms for the faithful reconstruction of SPT trajectories as well as data analysis, and highlight biological examples where the technique has provided novel insights into the role of diffusion regulating cellular function. The last part of the review concentrates on different theoretical models that describe anomalous transport behavior and ergodicity breaking observed from SPT studies in living cells.

  19. Particle-level simulations of flocculation in a fiber suspension flowing through a diffuser

    Directory of Open Access Journals (Sweden)

    Andrić Jelena S.

    2017-01-01

    Full Text Available We investigate flocculation in dilute suspensions of rigid, straight fibers in a decelerating flow field of a diffuser. We carry out numerical studies using a particle-level simulation technique that takes into account the fiber inertia and the non-creeping fiber-flow interactions. The fluid flow is governed by the Reynolds-averaged Navier-Stokes equations with the standard k-omega eddy-viscosity turbulence model. A one-way coupling between the fibers and the flow is considered with a stochastic model for the fiber dispersion due to turbulence. The fibers interact through short-range attractive forces that cause them to aggregate into flocs when fiber-fiber collisions occur. We show that ballistic deflection of fibers greatly increases the flocculation in the diffuser. The inlet fiber kinematics and the fiber inertia are the main parameters that affect fiber flocculation in the prediffuser region.

  20. Analytical-numerical method for treatment of turbulent diffusion of particles in the air

    International Nuclear Information System (INIS)

    Arsov, L.J.

    1976-01-01

    This work deals with the problem of air pollution around a stationary punctual source. For description of air pollution from a punctual source a mathematical model is suggested, and for calculation of effluents concentration an analytical-numerical algorithm is given. In addition to the analitical treatment the mathematical model is far more flexible and complete. Eddy diffusivity is represented by an arbitrary function, and an arbitrary wind velocity profile ahs been proposed. The apsorption of the ground is introduced through a variable apsorption coefficient, and the sedimentation through the mean velocity of deposition. To determine the movement of particles a parabolic equation of diffusion is used. The method has been tested through calculation of effluents concentration for different values of physical parameters

  1. Cytotoxicity of ferrite particles by MTT and agar diffusion methods for hyperthermic application

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Hyun [Brain Korea 21 Project for Medical Science, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Lee, Se-Ho [Brain Korea 21 Project for Medical Science, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Kim, Kyoung-Nam [Brain Korea 21 Project for Medical Science, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Kim, Kwang-Mahn [Brain Korea 21 Project for Medical Science, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Shim, In-Bo [Department of Electronic Physics, Kookmin University, Seoul 136-702 (Korea, Republic of); Lee, Yong-Keun [Brain Korea 21 Project for Medical Science, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of) and Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of)]. E-mail: leeyk@yumc.yonsei.ac.kr

    2005-05-15

    We investigated the cytotoxicity of the prepared various ferrites (Fe-, Li-, Ni/Zn/Cu-, Ba-, Sr-, Co-, Co/Ni-ferrites) using MTT assay as well as agar diffusion method. Their cytotoxicity was compared with that of alginate-encapsulated ferrites. In the MTT assay, Fe{sub 3}O{sub 4} and SrFe{sub 12}O{sub 19} ferrite showed the highest cell viability of 90%. Alginate-encapsulated Ba-ferrite was ranked mildly cytotoxic, whereas their ferrite particles were ranked cytotoxic.

  2. Determination of the particle size distribution of an aerosol using a diffusion battery

    International Nuclear Information System (INIS)

    Maigne, Jean-Pierre

    1974-02-01

    The principal methods for the treatment of concentration measurements both upstream and downstream of a diffusion battery are reviewed and discussed, the purpose of the measurements being the determination of the aerosol particle size distribution. It is then demonstrated that the resolution of the equations arising from the problem leads to the imposing of physical constraints on the distribution sought, these constraints being more and more restrictive with increasing experimental inaccuracies. An algorithm is proposed which provides an approximate solution to the system of equations, certain predetermined criteria, and the constraints imposed on the distribution being taken into account. (author)

  3. Measurements of the electron particle diffusion coefficient with the JET multichannel reflectometer

    International Nuclear Information System (INIS)

    Sips, A.C.C.; Haas, J.C.M. de; Costley, A.E.; Prentice, R.

    1989-01-01

    Experimental determinations of the cross-field particle diffusion coefficient (D p ) are important in studies of transport in tokamak plasmas. D p has been determined from measurements of density perturbations following a sawtooth collapse, oscillating gas puff, and injected high velocity pellets. In each case the density changes have been measured using multichord interferometry and D p is obtained with an accuracy of typically 20%. In this paper, we present our most recent measurements of D p . The experimental data are compared with the prediction of a comprehensive numerical transport model which includes both outward going and inward going density pulses. (author) 8 refs., 6 figs

  4. Model of alpha particle diffusion in the outer limiter shadow of TFTR

    International Nuclear Information System (INIS)

    Wang, S.; Academia Sinica, Hefei, Anhui; Zweben, S.J.

    1996-05-01

    A new code, Monte Carlo Collisional Stochastic Orbit Retracing (MCCSOR), has been developed to model the alpha particle loss signal as measured by the outer midplane scintillator detector in TFTR. The shadowing effects due to the outer limiters and the detector itself have been included, along with a pitch angle scattering and stochastic ripple diffusion. Shadowing by the outer limiters has a strong effect on both the magnitude and pitch angle distribution of the calculated loss. There is at least qualitative agreement between the calculated results and the experimental data

  5. Single Particle Tracking reveals two distinct environments for CD4 receptors at the surface of living T lymphocytes

    International Nuclear Information System (INIS)

    Mascalchi, Patrice; Lamort, Anne Sophie; Salomé, Laurence; Dumas, Fabrice

    2012-01-01

    Highlights: ► We studied the diffusion of single CD4 receptors on living lymphocytes. ► This study reveals that CD4 receptors have either a random or confined diffusion. ► The dynamics of unconfined CD4 receptors was accelerated by a temperature raise. ► The dynamics of confined CD4 receptors was unchanged by a temperature raise. ► Our results suggest the existence of two different environments for CD4 receptors. -- Abstract: We investigated the lateral diffusion of the HIV receptor CD4 at the surface of T lymphocytes at 20 °C and 37 °C by Single Particle Tracking using Quantum Dots. We found that the receptors presented two major distinct behaviors that were not equally affected by temperature changes. About half of the receptors showed a random diffusion with a diffusion coefficient increasing upon raising the temperature. The other half of the receptors was permanently or transiently confined with unchanged dynamics on raising the temperature. These observations suggest that two distinct subpopulations of CD4 receptors with different environments are present at the surface of living T lymphocytes.

  6. The effect of, within the sphere confined, particle diffusion on the line shape of incoherent cold neutron scattering spectra

    International Nuclear Information System (INIS)

    Cvikl, B.; Dahlborg, U.; Calvo-Dahlborg, M.

    1999-01-01

    Based upon the model of particles diffusion within the sphere of partially absorbing boundaries, the possibilities of the detection, by the incoherent cold neutron scattering method, of particle precipitation on the boundary walls, has been investigated. The calculated scattering law as a function of the boundary absorption properties exhibits distinct characteristic which might, under favorable conditions, make such an experimental attempt feasible.(author)

  7. Mass spectra features of biomass burning boiler and coal burning boiler emitted particles by single particle aerosol mass spectrometer.

    Science.gov (United States)

    Xu, Jiao; Li, Mei; Shi, Guoliang; Wang, Haiting; Ma, Xian; Wu, Jianhui; Shi, Xurong; Feng, Yinchang

    2017-11-15

    In this study, single particle mass spectra signatures of both coal burning boiler and biomass burning boiler emitted particles were studied. Particle samples were suspended in clean Resuspension Chamber, and analyzed by ELPI and SPAMS simultaneously. The size distribution of BBB (biomass burning boiler sample) and CBB (coal burning boiler sample) are different, as BBB peaks at smaller size, and CBB peaks at larger size. Mass spectra signatures of two samples were studied by analyzing the average mass spectrum of each particle cluster extracted by ART-2a in different size ranges. In conclusion, BBB sample mostly consists of OC and EC containing particles, and a small fraction of K-rich particles in the size range of 0.2-0.5μm. In 0.5-1.0μm, BBB sample consists of EC, OC, K-rich and Al_Silicate containing particles; CBB sample consists of EC, ECOC containing particles, while Al_Silicate (including Al_Ca_Ti_Silicate, Al_Ti_Silicate, Al_Silicate) containing particles got higher fractions as size increase. The similarity of single particle mass spectrum signatures between two samples were studied by analyzing the dot product, results indicated that part of the single particle mass spectra of two samples in the same size range are similar, which bring challenge to the future source apportionment activity by using single particle aerosol mass spectrometer. Results of this study will provide physicochemical information of important sources which contribute to particle pollution, and will support source apportionment activities. Copyright © 2017. Published by Elsevier B.V.

  8. Single-molecule study on polymer diffusion in a melt state: Effect of chain topology

    KAUST Repository

    Habuchi, Satoshi

    2013-08-06

    We report a new methodology for studying diffusion of individual polymer chains in a melt state, with special emphasis on the effect of chain topology. A perylene diimide fluorophore was incorporated into the linear and cyclic poly(THF)s, and real-time diffusion behavior of individual chains in a melt of linear poly(THF) was measured by means of a single-molecule fluorescence imaging technique. The combination of mean squared displacement (MSD) and cumulative distribution function (CDF) analysis demonstrated the broad distribution of diffusion coefficient of both the linear and cyclic polymer chains in the melt state. This indicates the presence of spatiotemporal heterogeneity of the polymer diffusion which occurs at much larger time and length scales than those expected from the current polymer physics theory. We further demonstrated that the cyclic chains showed marginally slower diffusion in comparison with the linear counterparts, to suggest the effective suppression of the translocation through the threading-entanglement with the linear matrix chains. This coincides with the higher activation energy for the diffusion of the cyclic chains than of the linear chains. These results suggest that the single-molecule imaging technique provides a powerful tool to analyze complicated polymer dynamics and contributes to the molecular level understanding of the chain interaction. © 2013 American Chemical Society.

  9. Real-Time Measurement of Fluorescence Spectra From Single Airborne Biological Particles

    National Research Council Canada - National Science Library

    Hill, Steven

    1999-01-01

    ... (total and spectrally dispersed) of individual airborne particles, and describe our present system, which can measure fluorescence spectra or single micrometer-sized bioaerosol particles with good signal-to-noise ratios...

  10. Coarse-grained variables for particle-based models: diffusion maps and animal swarming simulations

    Science.gov (United States)

    Liu, Ping; Safford, Hannah R.; Couzin, Iain D.; Kevrekidis, Ioannis G.

    2014-12-01

    As microscopic (e.g. atomistic, stochastic, agent-based, particle-based) simulations become increasingly prevalent in the modeling of complex systems, so does the need to systematically coarse-grain the information they provide. Before even starting to formulate relevant coarse-grained equations, we need to determine the right macroscopic observables—the right variables in terms of which emergent behavior will be described. This paper illustrates the use of data mining (and, in particular, diffusion maps, a nonlinear manifold learning technique) in coarse-graining the dynamics of a particle-based model of animal swarming. Our computational data-driven coarse-graining approach extracts two coarse (collective) variables from the detailed particle-based simulations, and helps formulate a low-dimensional stochastic differential equation in terms of these two collective variables; this allows the efficient quantification of the interplay of "informed" and "naive" individuals in the collective swarm dynamics. We also present a brief exploration of swarm breakup and use data-mining in an attempt to identify useful predictors for it. In our discussion of the scope and limitations of the approach we focus on the key step of selecting an informative metric, allowing us to usefully compare different particle swarm configurations.

  11. Diffusion of Brownian particles in a tilted periodic potential under the influence of an external Ornstein-Uhlenbeck noise

    Science.gov (United States)

    Bai, Zhan-Wu; Zhang, Wei

    2018-01-01

    The diffusion behaviors of Brownian particles in a tilted periodic potential under the influence of an internal white noise and an external Ornstein-Uhlenbeck noise are investigated through numerical simulation. In contrast to the case when the bias force is smaller or absent, the diffusion coefficient exhibits a nonmonotonic dependence on the correlation time of the external noise when bias force is large. A mechanism different from locked-to-running transition theory is presented for the diffusion enhancement by a bias force in intermediate to large damping. In the underdamped regime and the presence of external noise, the diffusion coefficient is a monotonically decreasing function of low temperature rather than a nonmonotonic function when external noise is absent. The diffusive process undergoes four regimes when bias force approaches but is less than its critical value and noises intensities are small. These behaviors can be attributed to the locked-to-running transition of particles.

  12. Denoising of brain DW-MR data by single and multiple diffusion kernels Denoising of brain DW-MR data by single and multiple diffusion kernels

    Directory of Open Access Journals (Sweden)

    Manzar Ashtari

    2012-02-01

    Full Text Available Las imágenes por resonancia magnética pesadas en difusión son ampliamente utilizadaspara el estudio de las estructuras cerebrales dentro de la materia blanca del cerebro. Sinembargo, recuperar las orientaciones de los axones puede ser susceptible a errores por elruido dentro de la señal. Una regularización espacial puede mejorar la estimación, perodebe ser realizada cuidadosamente dado que puede remover información espacial ó introducirfalsas orientaciones. En este trabajo se investigaron las ventajas de aplicar un filtroanisotrópico basado en simples y múltiples kerneles de orientación de manojos de axones.Para esto, hemos calculado kerneles locales de difusión basados en modelos de tensoresde difusión y multi tensores de difusión. Mostraremos los beneficios de nuestra propuestaen 3 tipos diferentes de imágenes obtenidas por resonancia magnética pesada en difusión:Datos sintéticos, imágenes humanas tomadas en vivo, y datos obtenidos de un fantasmasimulador de difusión.Diffusion Weighted Magnetic Resonance Imaging is widely used to study the structure ofthe fiber pathways of white matter in the brain. However, the recovered axon orientationscan be prone to error because of the low signal to noise ratio. Spatial regularization canreduce the error, but it must be done carefully so that real spatial information is not removedand false orientations are not introduced. In this paper we investigate the advantagesof applying an anisotropic filter based on single and multiple axon bundle orientation kernels.To this end, we compute local diffusion kernels based on Diffusion Tensor and multiDiffusion Tensor models. We show the benefits of our approach to three different types ofDW-MRI data: synthetic, in vivo human, and acquired from a diffusion phantom.

  13. Direct in situ observations of single Fe atom catalytic processes and anomalous diffusion at graphene edges

    Science.gov (United States)

    Zhao, Jiong; Deng, Qingming; Avdoshenko, Stanislav M.; Fu, Lei; Eckert, Jürgen; Rümmeli, Mark H.

    2014-01-01

    Single-atom catalysts are of great interest because of their high efficiency. In the case of chemically deposited sp2 carbon, the implementation of a single transition metal atom for growth can provide crucial insight into the formation mechanisms of graphene and carbon nanotubes. This knowledge is particularly important if we are to overcome fabrication difficulties in these materials and fully take advantage of their distinct band structures and physical properties. In this work, we present atomically resolved transmission EM in situ investigations of single Fe atoms at graphene edges. Our in situ observations show individual iron atoms diffusing along an edge either removing or adding carbon atoms (viz., catalytic action). The experimental observations of the catalytic behavior of a single Fe atom are in excellent agreement with supporting theoretical studies. In addition, the kinetics of Fe atoms at graphene edges are shown to exhibit anomalous diffusion, which again, is in agreement with our theoretical investigations. PMID:25331874

  14. The single-particle microbeam facility at CEA-Saclay

    Energy Technology Data Exchange (ETDEWEB)

    Khodja, H. [DSM/IRAMIS/SIS2M, CEA Saclay, F-91191 Gif-sur-Yvette Cedex (France); CNRS, UMR9956, Laboratoire Pierre Suee, F-91191 Gif-sur-Yvette Cedex (France)], E-mail: hicham.khodja@cea.fr; Hanot, M.; Carriere, M.; Hoarau, J. [DSM/IRAMIS/SIS2M, CEA Saclay, F-91191 Gif-sur-Yvette Cedex (France); CNRS, UMR9956, Laboratoire Pierre Suee, F-91191 Gif-sur-Yvette Cedex (France); Angulo, J.F. [DSV, IRCM, SRO, Laboratoire de Genetique de la Radiosensibilite, F-92265 Fontenay aux Roses (France)

    2009-06-15

    Low dose and non-targeted effect studies continue to attract the attention of a growing number of radiobiologists. Experimental setups based on light ion microbeams constitute a tool of choice for this kind of investigations. However, a careful attention must be given to experimental conditions, as setup-induced stress levels should be well below those induced by the irradiation itself. Here, we present the current status of the single-particle microbeam facility that has been developed these last years at the nuclear microprobe of Saclay. The driving idea was to build a facility in which local irradiation studies are performed in an environment close to cellular biology standards. This facility includes unique features, such as (i) a compact setup that allows easy access and vertical irradiation mode, (ii) a collimated beam that can be mechanically positioned under the desired cells at a very fast speed, avoiding the requirement of a focusing element and (iii) a controlled environment (temperature, CO{sub 2}, humidity) that allows performing of very long term experiments on cultured cells. Fluorescent techniques are implemented and permit in situ monitoring of cellular responses to irradiations. Several radiobiological studies are already underway and this will be illustrated with recent results regarding DNA damage and reactive oxygen species signaling time courses following targeted irradiations.

  15. Surface chemistry and morphology in single particle optical imaging

    Science.gov (United States)

    Ekiz-Kanik, Fulya; Sevenler, Derin Deniz; Ünlü, Neşe Lortlar; Chiari, Marcella; Ünlü, M. Selim

    2017-05-01

    Biological nanoparticles such as viruses and exosomes are important biomarkers for a range of medical conditions, from infectious diseases to cancer. Biological sensors that detect whole viruses and exosomes with high specificity, yet without additional labeling, are promising because they reduce the complexity of sample preparation and may improve measurement quality by retaining information about nanoscale physical structure of the bio-nanoparticle (BNP). Towards this end, a variety of BNP biosensor technologies have been developed, several of which are capable of enumerating the precise number of detected viruses or exosomes and analyzing physical properties of each individual particle. Optical imaging techniques are promising candidates among broad range of label-free nanoparticle detectors. These imaging BNP sensors detect the binding of single nanoparticles on a flat surface functionalized with a specific capture molecule or an array of multiplexed capture probes. The functionalization step confers all molecular specificity for the sensor's target but can introduce an unforeseen problem; a rough and inhomogeneous surface coating can be a source of noise, as these sensors detect small local changes in optical refractive index. In this paper, we review several optical technologies for label-free BNP detectors with a focus on imaging systems. We compare the surface-imaging methods including dark-field, surface plasmon resonance imaging and interference reflectance imaging. We discuss the importance of ensuring consistently uniform and smooth surface coatings of capture molecules for these types of biosensors and finally summarize several methods that have been developed towards addressing this challenge.

  16. Mathematical modelling of the combustion of a single wood particle

    Energy Technology Data Exchange (ETDEWEB)

    Porteiro, J.; Miguez, J.L.; Granada, E.; Moran, J.C. [Departamento de Ingenieria Mecanica, Maquinas y Motores Termicos y Fluidos. Universidad de Vigo, Lagoas Marcosende 9 36200 Vigo (Spain)

    2006-01-15

    A mathematical model describing the thermal degradation of densified biomass particles is presented here. The model uses a novel discretisation scheme and combines intra-particle combustion processes with extra-particle transport processes, thereby including thermal and diffusional control mechanisms. The influence of structural changes on the physical-thermal properties of wood in its different stages is studied together with shrinkage of the particle during its degradation. The model is used to compare the predicted data with data on the mass loss dynamics and internal temperature of several particles from previous works and relevant literature, with good agreement. (author)

  17. Lupus-related single nucleotide polymorphisms and risk of diffuse large B-cell lymphoma

    NARCIS (Netherlands)

    Bernatsky, Sasha; Velásquez García, Héctor A; Spinelli, John; Gaffney, Patrick; Smedby, Karin E; Ramsey-Goldman, Rosalind; Wang, Sophia S.; Adami, Hans-Olov; Albanes, Demetrius; Angelucci, Emanuele; Ansell, Stephen M.; Asmann, Yan W.; Becker, Nikolaus; Benavente, Yolanda; Berndt, Sonja I.; Bertrand, Kimberly A.; Birmann, Brenda M.; Boeing, Heiner; Boffetta, Paolo; Bracci, Paige M.; Brennan, Paul; Brooks-Wilson, Angela R.; Cerhan, James R.; Chanock, Stephen J.; Clavel, Jacqueline; Conde, Lucia; Cotenbader, Karen H; Cox, David G; Cozen, Wendy; Crouch, Simon; De Roos, Anneclaire J.; De Sanjose, Silvia; Di Lollo, Simonetta; Diver, W. Ryan; Dogan, Ahmet; Foretova, Lenka; Ghesquières, Hervé; Giles, Graham G.; Glimelius, Bengt; Habermann, Thomas M.; Haioun, Corinne; Hartge, Patricia; Hjalgrim, Henrik; Holford, Theodore R.; Holly, Elizabeth A.; Jackson, Rebecca D.; Kaaks, Rudolph; Kane, Eleanor; Kelly, Rachel S.; Klein, Robert J.; Kraft, Peter; Kricker, Anne; Lan, Qing; Lawrence, Charles; Liebow, Mark; Lightfoot, Tracy; Link, Brian K.; Maynadie, Marc; McKay, James; Melbye, Mads; Molina, Thierry Jo; Monnereau, Alain; Morton, Lindsay M.; Nieters, Alexandra; North, Kari E.; Novak, Anne J.; Offit, Kenneth; Purdue, Mark P.; Rais, Marco; Riby, Jacques; Roman, Eve; Rothman, Nathaniel; Salles, Gilles; Severi, Gianluca; Severson, Richard K.; Skibola, Christine F.; Slager, Susan L.; Smith, Alex; Smith, Martyn T.; Southey, Melissa C.; Staines, Anthony; Teras, Lauren R.; Thompson, Carrie A.; Tilly, Hervé; Tinker, Lesley F.; Tjonneland, Anne; Turner, Jenny; Vajdic, Claire M.; Vermeulen, Roel C H; Vijai, Joseph; Vineis, Paolo; Virtamo, Jarmo; Wang, Zhaoming; Weinstein, Stephanie; Witzig, Thomas E.; Zelenetz, Andrew; Zeleniuch-Jacquotte, Anne; Zhang, Yawei; Zheng, Tongzhang; Zucca, Mariagrazia; Clarke, Ann E

    2017-01-01

    Objective: Determinants of the increased risk of diffuse large B-cell lymphoma (DLBCL) in SLE are unclear. Using data from a recent lymphoma genome-wide association study (GWAS), we assessed whether certain lupus-related single nucleotide polymorphisms (SNPs) were also associated with DLBCL.

  18. Stability results for a reaction-diffusion system with a single measurement

    Energy Technology Data Exchange (ETDEWEB)

    Ramoul, Hichem [Centre universitaire de Khenchela, Route de Batna, BP 1252, Liberte, 40004 Khenchela (Algeria); Gaitan, Patricia [Laboratoire d' analyse, topologie, probabilites CNRS UMR 6632, Marseille (France) and Universite Aix-Marseille II (France); Cristofol, Michel [Laboratoire d' analyse, topologie, probabilites CNRS UMR 6632, Marseille, France and Universite Aix-Marseille III (France)

    2007-06-15

    For a two by two reaction-diffusion system on a bounded domain we give a simultaneous stability result for one coefficient and for the initial conditions. The key ingredient is a global Carleman-type estimate with a single observation acting on a subdomain.

  19. Standard Practice for Continuous Sizing and Counting of Airborne Particles in Dust-Controlled Areas and Clean Rooms Using Instruments Capable of Detecting Single Sub-Micrometre and Larger Particles

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This practice covers the determination of the particle concentration, by number, and the size distribution of airborne particles in dust-controlled areas and clean rooms, for particles in the size range of approximately 0.01 to 5.0 m. Particle concentrations not exceeding 3.5 106 particles/m3 (100 000/ft 3) are covered for all particles equal to and larger than the minimum size measured. 1.2 This practice uses an airborne single particle counting device (SPC) whose operation is based on measuring the signal produced by an individual particle passing through the sensing zone. The signal must be directly or indirectly related to particle size. Note 1The SPC type is not specified here. The SPC can be a conventional optical particle counter (OPC), an aerodynamic particle sizer, a condensation nucleus counter (CNC) operating in conjunction with a diffusion battery or differential mobility analyzer, or any other device capable of counting and sizing single particles in the size range of concern and of sampling...

  20. Development of a Charged Particle Microbeam for Single-Particle Subcellular Irradiations at the MIT Laboratory for Accelerator Beam Application

    International Nuclear Information System (INIS)

    Yanch, Jacquelyn C.

    2004-01-01

    The development of a charged particle microbeam for single particle, subcellular irradiations at the Massachusetts Institute of Technology Laboratory for Accelerator Beam Applications (MIT LABA) was initiated under this NEER aeard. The Microbeam apparatus makes use of a pre-existing electrostatic accelerator with a horizontal beam tube

  1. Smoothed particle hydrodynamics model for Landau-Lifshitz-Navier-Stokes and advection-diffusion equations.

    Science.gov (United States)

    Kordilla, Jannes; Pan, Wenxiao; Tartakovsky, Alexandre

    2014-12-14

    We propose a novel smoothed particle hydrodynamics (SPH) discretization of the fully coupled Landau-Lifshitz-Navier-Stokes (LLNS) and stochastic advection-diffusion equations. The accuracy of the SPH solution of the LLNS equations is demonstrated by comparing the scaling of velocity variance and the self-diffusion coefficient with kinetic temperature and particle mass obtained from the SPH simulations and analytical solutions. The spatial covariance of pressure and velocity fluctuations is found to be in a good agreement with theoretical models. To validate the accuracy of the SPH method for coupled LLNS and advection-diffusion equations, we simulate the interface between two miscible fluids. We study formation of the so-called "giant fluctuations" of the front between light and heavy fluids with and without gravity, where the light fluid lies on the top of the heavy fluid. We find that the power spectra of the simulated concentration field are in good agreement with the experiments and analytical solutions. In the absence of gravity, the power spectra decay as the power -4 of the wavenumber-except for small wavenumbers that diverge from this power law behavior due to the effect of finite domain size. Gravity suppresses the fluctuations, resulting in much weaker dependence of the power spectra on the wavenumber. Finally, the model is used to study the effect of thermal fluctuation on the Rayleigh-Taylor instability, an unstable dynamics of the front between a heavy fluid overlaying a light fluid. The front dynamics is shown to agree well with the analytical solutions.

  2. Single-particle Analyses of Compositions, Morphology, and Viscosity of Aerosol Particles Collected During GoAmazon2014

    Science.gov (United States)

    Adachi, K.; Gong, Z.; Bateman, A. P.; Martin, S. T.; Cirino, G. G.; Artaxo, P.; Sedlacek, A. J., III; Buseck, P. R.

    2014-12-01

    Single-particle analysis using transmission electron microscopy (TEM) shows composition and morphology of individual aerosol particles collected during the GoAmazon2014 campaign. These TEM results indicate aerosol types and mixing states, both of which are important for evaluating particle optical properties and cloud condensation nuclei activity. The samples were collected at the T3 site, which is located in the Amazon forest with influences from the urban pollution plume from Manaus. Samples were also collected from the T0 site, which is in the middle of the jungle with minimal to no influences of anthropogenic sources. The aerosol particles mainly originated from 1) anthropogenic pollution (e.g., nanosphere soot, sulfate), 2) biogenic emissions (e.g., primary biogenic particles, organic aerosols), and 3) long-range transport (e.g., sea salts). We found that the biogenic organic aerosol particles contain homogeneously distributed potassium. Particle viscosity is important for evaluating gas-particle interactions and atmospheric chemistry for the particles. Viscosity can be estimated from the rebounding behavior at controlled relative humidities, i.e., highly viscous particles display less rebound on a plate than low-viscosity particles. We collected 1) aerosol particles from a plate (non-rebounded), 2) those that had rebounded from the plate and were then captured onto an adjacent sampling plate, and 3) particles from ambient air using a separate impactor sampler. Preliminary results show that more than 90% of non-rebounded particles consisted of nanosphere soot with or without coatings. The coatings mostly consisted of organic matter. Although rebounded particles also contain nanosphere soot (number fraction 64-69%), they were mostly internally mixed with sulfate, organic matter, or their mixtures. TEM tilted images suggested that the rebounded particles were less deformed on the substrate, whereas the non-rebounded particles were more deformed, which could

  3. Mixing state of particles with secondary species by single particle aerosol mass spectrometer in an atmospheric pollution event

    Science.gov (United States)

    Xu, Lingling; Chen, Jinsheng

    2016-04-01

    Single particle aerosol mass spectrometer (SPAMS) was used to characterize size distribution, chemical composition, and mixing state of particles in an atmospheric pollution event during 20 Oct. - 5 Nov., 2015 in Xiamen, Southeast China. A total of 533,012 particle mass spectra were obtained and clustered into six groups, comprising of industry metal (4.5%), dust particles (2.6%), carbonaceous species (70.7%), K-Rich particles (20.7%), seasalt (0.6%) and other particles (0.9%). Carbonaceous species were further divided into EC (70.6%), OC (28.5%), and mixed ECOC (0.9%). There were 61.7%, 58.3%, 4.0%, and 14.6% of particles internally mixed with sulfate, nitrate, ammonium and C2H3O, respectively, indicating that these particles had undergone significant aging processing. Sulfate was preferentially mixed with carbonaceous particles, while nitrate tended to mix with metal-containing and dust particles. Compared to clear days, the fractions of EC-, metal- and dust particles remarkably increased, while the fraction of OC-containing particles decreased in pollution days. The mixing state of particles, excepted for OC-containing particles with secondary species was much stronger in pollution days than that in clear days, which revealed the significant influence of secondary particles in atmospheric pollution. The different activity of OC-containing particles might be related to their much smaller aerodynamic diameter. These results could improve our understanding of aerosol characteristics and could be helpful to further investigate the atmospheric process of particles.

  4. Experimental Study on Effects of Particle Shape and Operating Conditions on Combustion Characteristics of Single Biomass Particles

    DEFF Research Database (Denmark)

    Momeni, M.; Yin, Chungen; Kær, Søren Knudsen

    2013-01-01

    An experimental study is performed to investigate the ignition, devolatilization, and burnout of single biomass particles of various shapes and sizes under process conditions that are similar to those in an industrial combustor. A chargecoupled device (CCD) camera is used to record the whole...... combustion process. For the particles with similar volume (mass), cylindrical particles are found to lose mass faster than spherical particles and the burnout time is shortened by increasing the particle aspect ratio (surface area). The conversion times of cylindrical particles with almost the same surface...... area/volume ratio are very close to each other. The ignition, devolatilization, and burnout times of cylindrical particles are also affected by the oxidizer temperature and oxygen concentration, in which the oxygen concentration is found to have a more pronounced effect on the conversion times at lower...

  5. Diffusion of dust particles from a point-source above ground level

    International Nuclear Information System (INIS)

    Hassan, M.H.A.; Eltayeb, I.A.

    1998-10-01

    A pollutant of small particles is emitted by a point source at a height h above ground level in an atmosphere in which a uni-directional wind speed, U, is prevailing. The pollutant is subjected to diffusion in all directions in the presence of advection and settling due to gravity. The equation governing the concentration of the pollutant is studied with the wind speed and the different components of diffusion tensor are proportional to the distance above ground level and the source has a uniform strength. Adopting a Cartesian system of coordinates in which the x-axis lies along the direction of the wind velocity, the z-axis is vertically upwards and the y-axis completes the right-hand triad, the solution for the concentration c(x,y,z) is obtained in closed form. The relative importance of the components of diffusion along the three axes is discussed. It is found that for any plane y=constant (=A), c(x,y,z) is concentrated along a curve of ''extensive pollution''. In the plane A=0, the concentration decreases along the line of extensive pollution as we move away from the source. However, for planes A≅0, the line of extensive pollution possesses a point of accumulation, which lies at a nonzero value of x. As we move away from the plane A=0, the point of accumulation moves laterally away from the plane x=0 and towards the plane z=0. The presence of the point of accumulation is entirely due to the presence of lateral diffusion. (author)

  6. Convergence of lateral dynamic measurements in the plasma membrane of live cells from single particle tracking and STED-FCS

    DEFF Research Database (Denmark)

    Lagerholm, B. Christoffer; Andrade, Débora M.; Clausen, Mathias P.

    2017-01-01

    Fluorescence correlation spectroscopy (FCS) in combination with the super-resolution imaging method STED (STED-FCS), and single-particle tracking (SPT) are able to directly probe the lateral dynamics of lipids and proteins in the plasma membrane of live cells at spatial scales much below the diff......Fluorescence correlation spectroscopy (FCS) in combination with the super-resolution imaging method STED (STED-FCS), and single-particle tracking (SPT) are able to directly probe the lateral dynamics of lipids and proteins in the plasma membrane of live cells at spatial scales much below...... the diffraction limit of conventional microscopy. However, a major disparity in interpretation of data from SPT and STED-FCS remains, namely the proposed existence of a very fast (unhindered) lateral diffusion coefficient, ≥5 μm2 s-1, in the plasma membrane of live cells at very short length scales, ≈ 100 nm...

  7. Raman Spectroscopy of Optically Trapped Single Biological Micro-Particles

    Directory of Open Access Journals (Sweden)

    Brandon Redding

    2015-08-01

    Full Text Available The combination of optical trapping with Raman spectroscopy provides a powerful method for the study, characterization, and identification of biological micro-particles. In essence, optical trapping helps to overcome the limitation imposed by the relative inefficiency of the Raman scattering process. This allows Raman spectroscopy to be applied to individual biological particles in air and in liquid, providing the potential for particle identification with high specificity, longitudinal studies of changes in particle composition, and characterization of the heterogeneity of individual particles in a population. In this review, we introduce the techniques used to integrate Raman spectroscopy with optical trapping in order to study individual biological particles in liquid and air. We then provide an overview of some of the most promising applications of this technique, highlighting the unique types of measurements enabled by the combination of Raman spectroscopy with optical trapping. Finally, we present a brief discussion of future research directions in the field.

  8. Uncertainty in counting ice nucleating particles with continuous flow diffusion chambers

    Science.gov (United States)

    Garimella, Sarvesh; Rothenberg, Daniel A.; Wolf, Martin J.; David, Robert O.; Kanji, Zamin A.; Wang, Chien; Rösch, Michael; Cziczo, Daniel J.

    2017-09-01

    This study investigates the measurement of ice nucleating particle (INP) concentrations and sizing of crystals using continuous flow diffusion chambers (CFDCs). CFDCs have been deployed for decades to measure the formation of INPs under controlled humidity and temperature conditions in laboratory studies and by ambient aerosol populations. These measurements have, in turn, been used to construct parameterizations for use in models by relating the formation of ice crystals to state variables such as temperature and humidity as well as aerosol particle properties such as composition and number. We show here that assumptions of ideal instrument behavior are not supported by measurements made with a commercially available CFDC, the SPectrometer for Ice Nucleation (SPIN), and the instrument on which it is based, the Zurich Ice Nucleation Chamber (ZINC). Non-ideal instrument behavior, which is likely inherent to varying degrees in all CFDCs, is caused by exposure of particles to different humidities and/or temperatures than predicated from instrument theory of operation. This can result in a systematic, and variable, underestimation of reported INP concentrations. We find here variable correction factors from 1.5 to 9.5, consistent with previous literature values. We use a machine learning approach to show that non-ideality is most likely due to small-scale flow features where the aerosols are combined with sheath flows. Machine learning is also used to minimize the uncertainty in measured INP concentrations. We suggest that detailed measurement, on an instrument-by-instrument basis, be performed to characterize this uncertainty.

  9. Single particle dynamics and nonlinear resonances in circular accelerators

    International Nuclear Information System (INIS)

    Ruth, R.D.

    1985-11-01

    The purpose of this paper is to introduce the reader to single particle dynamics in circular accelerators with an emphasis on nonlinear resonances. We begin with the Hamiltonian and the equations of motion in the neighborhood of the design orbit. In the linear theory this yields linear betatron oscillations about a closed orbit. It is useful then to introduce the action-angle variables of the linear problem. Next we discuss the nonlinear terms which are present in an actual accelerator, and in particular, we motivate the inclusion of sextupoles to cure chromatic effects. To study the effects of the nonlinear terms, we next discuss canonical perturbation theory which leads us to nonlinear resonances. After showing a few examples of perturbation theory, we abandon it when very close to a resonance. This leads to the study of an isolated resonance in one degree of freedom with a 'time'-dependent Hamiltonian. We see the familiar resonance structure in phase space which is simply closed islands when the nonlinear amplitude dependence of the frequency or 'tune' is included. To show the limits of the validity of the isolated resonance approximation, we discuss two criteria for the onset of chaotic motion. Finally, we study an isolated coupling resonance in two degrees of freedom with a 'time'-dependent Hamiltonian and calculate the two invariants in this case. This leads to a surface of section which is a 2-torus in 4-dimensional phase space. However, we show that it remains a 2-torus when projected into particular 3-dimensional subspaces, and thus can be viewed in perspective

  10. Study of water diffusion on single-supported bilayer lipid membranes by quasielastic neutron scattering

    DEFF Research Database (Denmark)

    Bai, M.; Miskowiec, A.; Hansen, F. Y.

    2012-01-01

    High-energy-resolution quasielastic neutron scattering has been used to elucidate the diffusion of water molecules in proximity to single bilayer lipid membranes supported on a silicon substrate. By varying sample temperature, level of hydration, and deuteration, we identify three different types...... of diffusive water motion: bulk-like, confined, and bound. The motion of bulk-like and confined water molecules is fast compared to those bound to the lipid head groups (7-10 H2O molecules per lipid), which move on the same nanosecond time scale as H atoms within the lipid molecules. Copyright (C) EPLA, 2012...

  11. Evaluation of Diffusion Coefficient in a Dextrin-Based Photo-Curable Material by Single Molecule Tracking

    Science.gov (United States)

    Ito, Syoji; Itoh, Kou; Pramanik, Smritimoy; Kusumi, Takatsugu; Takei, Satoshi; Miyasaka, Hiroshi

    2009-07-01

    The translational diffusion coefficient of a perylenediimide (PDI) derivative in a dextrin-based photo-curable material was evaluated by single molecule tracking. Irradiation by UV light for 1.0 s led to a sudden decrease in the diffusion coefficients of ca. 70% of dye molecules, while that of the remaining 30% diffused as fast as in the uncured sample. The number of fast diffusing molecules decreased with increasing UV irradiation time. The diffusion coefficient decreased due to photoinduced network formation and reached a steady value after UV irradiation >8.0 s. This slow diffusion did not cease even after UV irradiation for 32 s.

  12. Single particle aerosol mass spectrometry of coal combustion particles associated with high lung cancer rates in Xuanwei and Fuyuan, China.

    Science.gov (United States)

    Lu, Senlin; Tan, Zhengying; Liu, Pinwei; Zhao, Hui; Liu, Dingyu; Yu, Shang; Cheng, Ping; Win, Myat Sandar; Hu, Jiwen; Tian, Linwei; Wu, Minghong; Yonemochi, Shinich; Wang, Qingyue

    2017-11-01

    Coal combustion particles (CCPs) are linked to the high incidence of lung cancer in Xuanwei and in Fuyuan, China, but studies on the chemical composition of the CCPs are still limited. Single particle aerosol mass spectrometry (SPAMS) was recently developed to measure the chemical composition and size of single particles in real-time. In this study, SPAMS was used to measure individual combustion particles emitted from Xuanwei and Fuyuan coal samples and the results were compared with those by ICP-MS and transmission electron microscopy (TEM). The total of 38,372 particles mass-analyzed by SPAMS can be divided into 9 groups based on their chemical composition and their number percentages: carbonaceous, Na-rich, K-rich, Al-rich, Fe-rich, Si-rich, Ca-rich, heavy metal-bearing, and PAH-bearing particles. The carbonaceous and PAH-bearing particles are enriched in the size range below 0.56 μm, Fe-bearing particles range from 0.56 to 1.0 μm in size, and heavy metals such as Ti, V, Cr, Cu, Zn, and Pb have diameters below 1 μm. The TEM results show that the particles from Xuanwei and Fuyuan coal combustion can be classified into soot aggregates, Fe-rich particles, heavy metal containing particles, and mineral particles. Non-volatile particles detected by SPAMS could also be observed with TEM. The number percentages by SPAMS also correlate with the mass concentrations measured by ICP-MS. Our results could provide valuable insight for understanding high lung cancer incidence in the area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Real time analysis of lead-containing atmospheric particles in Beijing during springtime by single particle aerosol mass spectrometry.

    Science.gov (United States)

    Ma, Li; Li, Mei; Huang, Zhengxu; Li, Lei; Gao, Wei; Nian, Huiqing; Zou, Lilin; Fu, Zhong; Gao, Jian; Chai, Fahe; Zhou, Zhen

    2016-07-01

    Using a single particle aerosol mass spectrometer (SPAMS), the chemical composition and size distributions of lead (Pb)-containing particles with diameter from 0.1 μm to 2.0 μm in Beijing were analyzed in the spring of 2011 during clear, hazy, and dusty days. Based on mass spectral features of particles, cluster analysis was applied to Pb-containing particles, and six major classes were acquired consisting of K-rich, carboneous, Fe-rich, dust, Pb-rich, and Cl-rich particles. Pb-containing particles accounted for 4.2-5.3%, 21.8-22.7%, and 3.2% of total particle number during clear, hazy and dusty days, respectively. K-rich particles are a major contribution to Pb-containing particles, varying from 30.8% to 82.1% of total number of Pb-containing particles, lowest during dusty days and highest during hazy days. The results reflect that the chemical composition and amount of Pb-containing particles has been affected by meteorological conditions as well as the emissions of natural and anthropogenic sources. K-rich particles and carbonaceous particles could be mainly assigned to the emissions of coal combustion. Other classes of Pb-containing particles may be associated with metallurgical processes, coal combustion, dust, and waste incineration etc. In addition, Pb-containing particles during dusty days were first time studied by SPAMS. This method could provide a powerful tool for monitoring and controlling of Pb pollution in real time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Life and death of a single catalytic cracking particle

    NARCIS (Netherlands)

    Meirer, Florian; Kalirai, Samanbir; Morris, Darius; Soparawalla, Santosh; Liu, Yijin; Mesu, Gerbrand; Andrews, Joy C; Weckhuysen, Bert M

    Fluid catalytic cracking (FCC) particles account for 40 to 45% of worldwide gasoline production. The hierarchical complex particle pore structure allows access of long-chain feedstock molecules into active catalyst domains where they are cracked into smaller, more valuable hydrocarbon products (for

  15. Particle-size segregation and diffusive remixing in shallow granular avalanches

    Science.gov (United States)

    Gray, J. M. N. T.; Chugunov, V. A.

    2006-12-01

    Segregation and mixing of dissimilar grains is a problem in many industrial and pharmaceutical processes, as well as in hazardous geophysical flows, where the size-distribution can have a major impact on the local rheology and the overall run-out. In this paper, a simple binary mixture theory is used to formulate a model for particle-size segregation and diffusive remixing of large and small particles in shallow gravity-driven free-surface flows. This builds on a recent theory for the process of kinetic sieving, which is the dominant mechanism for segregation in granular avalanches provided the density-ratio and the size-ratio of the particles are not too large. The resulting nonlinear parabolic segregation remixing equation reduces to a quasi-linear hyperbolic equation in the no-remixing limit. It assumes that the bulk velocity is incompressible and that the bulk pressure is lithostatic, making it compatible with most theories used to compute the motion of shallow granular free-surface flows. In steady-state, the segregation remixing equation reduces to a logistic type equation and the ‘S’-shaped solutions are in very good agreement with existing particle dynamics simulations for both size and density segregation. Laterally uniform time-dependent solutions are constructed by mapping the segregation remixing equation to Burgers equation and using the Cole Hopf transformation to linearize the problem. It is then shown how solutions for arbitrary initial conditions can be constructed using standard methods. Three examples are investigated in which the initial concentration is (i) homogeneous, (ii) reverse graded with the coarse grains above the fines, and, (iii) normally graded with the fines above the coarse grains. Time-dependent two-dimensional solutions are also constructed for plug-flow in a semi-infinite chute.

  16. Experimental and Monte Carlo investigation of visible diffuse-reflectance imaging sensitivity to diffusing particle size changes in an optical model of a bladder wall

    Science.gov (United States)

    Kalyagina, N.; Loschenov, V.; Wolf, D.; Daul, C.; Blondel, W.; Savelieva, T.

    2011-11-01

    We have investigated the influence of scatterer size changes on the laser light diffusion, induced by collimated monochromatic laser irradiation, in tissue-like optical phantoms using diffuse-reflectance imaging. For that purpose, three-layer optical phantoms were prepared, in which nano- and microsphere size varied in order to simulate the scattering properties of healthy and cancerous urinary bladder walls. The informative areas of the surface diffuse-reflected light distributions were about 15×18 pixels for the smallest scattering particles of 0.05 μm, about 21×25 pixels for the medium-size particles of 0.53 μm, and about 25×30 pixels for the largest particles of 5.09 μm. The computation of the laser spot areas provided useful information for the analysis of the light distribution with high measurement accuracy of up to 92%. The minimal stability of 78% accuracy was observed for superficial scattering signals on the phantoms with the largest particles. The experimental results showed a good agreement with the results obtained by the Monte Carlo simulations. The presented method shows a good potential to be useful for a tissue-state diagnosis of the urinary bladder.

  17. Factors Influencing the Ignition and Burnout of a Single Biomass Particle

    DEFF Research Database (Denmark)

    Momenikouchaksaraei, Maryam; Kær, Søren Knudsen; Yin, Chungen

    2011-01-01

    Ignition and burnout of a single biomass particle were studied numerically. A one-dimensional particle combustion model was developed which is capable to simulate all the intraparticle conversion processes (drying, recondensation, devolatilization, char gasification/oxidation and heat/mass/moment......Ignition and burnout of a single biomass particle were studied numerically. A one-dimensional particle combustion model was developed which is capable to simulate all the intraparticle conversion processes (drying, recondensation, devolatilization, char gasification/oxidation and heat...... concentration were not very significant. The influences of these factors on particle burnout were much more remarkable than ignition behaviour....

  18. The mechanism of diffusion and ionic transport of alkali metal ions in the particles of tin(IV) antimonate

    International Nuclear Information System (INIS)

    El-Naggar, I.M.; El-Absy, M.A.; Aly, S.I.; Atomic Energy Establishment, Cairo

    1992-01-01

    The kinetics of exchange Li + , Na + , K + and Cs + ions of tin(IV) antimonate with H + form was studied under particle-diffusion-control conditions at different temperatures. The value of activation energy, diffusion coefficient and entropy of activation increase with the ionic mobilities and radii, and decrease with the hydration energy of the alkali metal ions. On the basis of the kinetic parameters, the exchange of alkali metal ions occurs in the unhydrated form. (author). 29 refs.; 4 figs.; 2 tabs

  19. Planck scale physics of the single-particle Schrödinger equation ...

    Indian Academy of Sciences (India)

    August 2002 physics pp. 375–383. Planck scale physics of the single-particle Schrödinger equation with gravitational self-interaction. VIKRAM SONI. National Physical Laboratory, K.S. Krishnan Marg, New Delhi 110 016, India. Abstract. We consider the modification of a single-particle Schrödinger equation by the inclusion.

  20. Burnout of pulverized biomass particles in large scale boiler – Single particle model approach

    DEFF Research Database (Denmark)

    Saastamoinen, Jaakko; Aho, Martti; Moilanen, Antero

    2010-01-01

    the particle combustion model is coupled with one-dimensional equation of motion of the particle, is applied for the calculation of the burnout in the boiler. The particle size of biomass can be much larger than that of coal to reach complete burnout due to lower density and greater reactivity. The burner...... location and the trajectories of the particles might be optimised to maximise the residence time and burnout....

  1. Effect of Structural Heterogeneity in Chemical Composition on Online Single-Particle Mass Spectrometry Analysis of Sea Spray Aerosol Particles.

    Science.gov (United States)

    Sultana, Camille M; Collins, Douglas B; Prather, Kimberly A

    2017-04-04

    Knowledge of the surface composition of sea spray aerosols (SSA) is critical for understanding and predicting climate-relevant impacts. Offline microscopy and spectroscopy studies have shown that dry supermicron SSA tend to be spatially heterogeneous particles with sodium- and chloride-rich cores surrounded by organic enriched surface layers containing minor inorganic seawater components such as magnesium and calcium. At the same time, single-particle mass spectrometry reveals several different mass spectral ion patterns, suggesting that there may be a number of chemically distinct particle types. This study investigates factors controlling single particle mass spectra of nascent supermicron SSA. Depth profiling experiments conducted on SSA generated by a fritted bubbler and total ion intensity analysis of SSA generated by a marine aerosol reference tank were compared with observations of ambient SSA observed at two coastal locations. Analysis of SSA produced by utilizing controlled laboratory methods reveals that single-particle mass spectra with weak sodium ion signals can be produced by the desorption of the surface of typical dry SSA particles composed of salt cores and organic-rich coatings. Thus, this lab-based study for the first time unifies findings from offline and online measurements as well as lab and field studies of the SSA particle-mixing state.

  2. Studies on the Ion Exchange Properties and the Diffusion Mechanism of Some Fission Products on the Particles of Silicon Titanate

    International Nuclear Information System (INIS)

    El-Naggar, I.M.; Belacy, N.; Zakaria, E.S.; Mohamed, D.A.; Aly, H.F.

    1999-01-01

    The Kinetic behaviour of Na +, Cs +, Co 2+ and Sr 2+ in new exchanger of silicon titanate have been investigated under conditions of particle diffusion and the limited batch technique. The physical thermodynamic parameters such as activation energies and entropies of activation have been evaluated. The values of diffusion coefficient of Cs + , Na + , Sr 2+ and Co 2+ were determined as a function of particle size and reaction temperatures and these values inside the exchanger take the order Co 2+ > Sr 2+ > Cs +> Na +

  3. Online single particle analysis of ice particle residuals from mountain-top mixed-phase clouds using laboratory derived particle type assignment

    Science.gov (United States)

    Schmidt, Susan; Schneider, Johannes; Klimach, Thomas; Mertes, Stephan; Schenk, Ludwig Paul; Kupiszewski, Piotr; Curtius, Joachim; Borrmann, Stephan

    2017-01-01

    In situ single particle analysis of ice particle residuals (IPRs) and out-of-cloud aerosol particles was conducted by means of laser ablation mass spectrometry during the intensive INUIT-JFJ/CLACE campaign at the high alpine research station Jungfraujoch (3580 m a.s.l.) in January-February 2013. During the 4-week campaign more than 70 000 out-of-cloud aerosol particles and 595 IPRs were analyzed covering a particle size diameter range from 100 nm to 3 µm. The IPRs were sampled during 273 h while the station was covered by mixed-phase clouds at ambient temperatures between -27 and -6 °C. The identification of particle types is based on laboratory studies of different types of biological, mineral and anthropogenic aerosol particles. The outcome of these laboratory studies was characteristic marker peaks for each investigated particle type. These marker peaks were applied to the field data. In the sampled IPRs we identified a larger number fraction of primary aerosol particles, like soil dust (13 ± 5 %) and minerals (11 ± 5 %), in comparison to out-of-cloud aerosol particles (2.4 ± 0.4 and 0.4 ± 0.1 %, respectively). Additionally, anthropogenic aerosol particles, such as particles from industrial emissions and lead-containing particles, were found to be more abundant in the IPRs than in the out-of-cloud aerosol. In the out-of-cloud aerosol we identified a large fraction of aged particles (31 ± 5 %), including organic material and secondary inorganics, whereas this particle type was much less abundant (2.7 ± 1.3 %) in the IPRs. In a selected subset of the data where a direct comparison between out-of-cloud aerosol particles and IPRs in air masses with similar origin was possible, a pronounced enhancement of biological particles was found in the IPRs.

  4. Diffusive phenomena and pseudoelasticity in Cu-Al-Be single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Sade, M., E-mail: sade@cab.cnea.gov.ar [Centro Atómico Bariloche (CNEA), Av. E. Bustillo km. 9500, 8400 S.C. de Bariloche (Argentina); CONICET (Argentina); Instituto Balseiro, Universidad Nacional de Cuyo, Av. E. Bustillo km. 9500, 8400 S.C. de Bariloche (Argentina); Pelegrina, J.L., E-mail: jlp201@cab.cnea.gov.ar [Centro Atómico Bariloche (CNEA), Av. E. Bustillo km. 9500, 8400 S.C. de Bariloche (Argentina); CONICET (Argentina); Instituto Balseiro, Universidad Nacional de Cuyo, Av. E. Bustillo km. 9500, 8400 S.C. de Bariloche (Argentina); Yawny, A., E-mail: yawny@cab.cnea.gov.ar [Centro Atómico Bariloche (CNEA), Av. E. Bustillo km. 9500, 8400 S.C. de Bariloche (Argentina); CONICET (Argentina); Instituto Balseiro, Universidad Nacional de Cuyo, Av. E. Bustillo km. 9500, 8400 S.C. de Bariloche (Argentina); Lovey, F.C., E-mail: lovey@cab.cnea.gov.ar [Centro Atómico Bariloche (CNEA), Av. E. Bustillo km. 9500, 8400 S.C. de Bariloche (Argentina); Instituto Balseiro, Universidad Nacional de Cuyo, Av. E. Bustillo km. 9500, 8400 S.C. de Bariloche (Argentina)

    2015-02-15

    Highlights: • Diffusive phenomena occurring under load were analyzed in Cu-Al-Be single crystals. • Stabilization of stress induced martensite was detected in a range of temperatures. • Ageing the austenite under load shifts the austenite/martensite stability field. • A free energy model is proposed considering interchanges between Cu and Be atoms. • Different kinetics for the recovery of the austenite are rationalized. - Abstract: Cu-Al-Be single crystals show pseudoelasticity and the shape memory effect in a well-defined composition range. The β{sub 3}-18R martensitic transition is the origin of these phenomena. The transformation temperatures and the critical stresses to induce the martensitic transition are affected by diffusive phenomena taking place both in the parent phase and in martensite. Pseudoelastic cycles were used to obtain quantitative data concerning the effect of diffusive phenomena like stabilization of martensite, ordering of the parent phase under load and recovery of this phase on the critical stresses to transform. Information was then obtained on changes in the relative phase stability. A model is presented to explain those changes taking place in the parent phase aged under load and in the martensitic 18R structure. Experimental data on the kinetics of diffusive phenomena is also presented and analyzed.

  5. Soil thermal diffusivity estimated from data of soil temperature and single soil component properties

    Directory of Open Access Journals (Sweden)

    Quirijn de Jong van Lier

    2013-02-01

    Full Text Available Under field conditions, thermal diffusivity can be estimated from soil temperature data but also from the properties of soil components together with their spatial organization. We aimed to determine soil thermal diffusivity from half-hourly temperature measurements in a Rhodic Kanhapludalf, using three calculation procedures (the amplitude ratio, phase lag and Seemann procedures, as well as from soil component properties, for a comparison of procedures and methods. To determine thermal conductivity for short wave periods (one day, the phase lag method was more reliable than the amplitude ratio or the Seemann method, especially in deeper layers, where temperature variations are small. The phase lag method resulted in coherent values of thermal diffusivity. The method using properties of single soil components with the values of thermal conductivity for sandstone and kaolinite resulted in thermal diffusivity values of the same order. In the observed water content range (0.26-0.34 m³ m-3, the average thermal diffusivity was 0.034 m² d-1 in the top layer (0.05-0.15 m and 0.027 m² d-1 in the subsurface layer (0.15-0.30 m.

  6. Enhanced nitrogen removal in single-chamber microbial fuel cells with increased gas diffusion areas

    KAUST Repository

    Yan, Hengjing

    2012-11-23

    Single-chamber microbial fuel cells (MFCs) with nitrifiers pre-enriched at the air cathodes have previously been demonstrated as a passive strategy for integrating nitrogen removal into current-generating bioelectrochemical systems. To further define system design parameters for this strategy, we investigated in this study the effects of oxygen diffusion area and COD/N ratio in continuous-flow reactors. Doubling the gas diffusion area by adding an additional air cathode or a diffusion cloth significantly increased the ammonia and COD removal rates (by up to 115% and 39%), ammonia removal efficiency (by up to 134%), the cell voltage and cathode potentials, and the power densities (by a factor of approximately 2). When the COD/N ratio was lowered from 13 to 3, we found up to 244% higher ammonia removal rate but at least 19% lower ammonia removal efficiency. An increase of COD removal rate by up to 27% was also found when the COD/N ratio was lowered from 11 to 3. The Coulombic efficiency was not affected by the additional air cathode, but decreased by an average of 11% with the addition of a diffusion cloth. Ammonia removal by assimilation was also estimated to understand the ammonia removal mechanism in these systems. These results showed that the doubling of gas diffusion area enhanced N and COD removal rates without compromising electrochemical performance. © 2012 Wiley Periodicals, Inc.

  7. Proposal of experimental study on particle diffusion in superficially confined plasma by magnetic multi-dipole fields

    International Nuclear Information System (INIS)

    Ferreira, J.L.; Ferreira, J.G.; Sandonato, G.M.; Damasio, W.C.; Montes, A.; Ludwig, G.O.

    1989-08-01

    The anomalous particle diffusion in regions near to magnetic confinement walls due to ion acoustic turbulence in superficially confined quiescent plasma is studied comparing the measured diffusion coefficient with the Bohm diffusion coefficient. The plasma diagnostics are carried out using Langmuir probe, electron and ion energy analyzers, emission probes for measuring plasma potential and, mass spectrometer, the purchase of data acquisition system composed by storage unit and signal register interfaced with IBM PC computer is proposed for simultaneous measurements with several diagnostics in the quiescent plasma machine of LAP-INPE operating in pulsed regime. (M.C.K.)

  8. Fractal and Morphological Characteristics of Single Marble Particle Crushing in Uniaxial Compression Tests

    Directory of Open Access Journals (Sweden)

    Yidong Wang

    2015-01-01

    Full Text Available Crushing of rock particles is a phenomenon commonly encountered in geotechnical engineering practice. It is however difficult to study the crushing of rock particles using classical theory because the physical structure of the particles is complex and irregular. This paper aims at evaluating fractal and morphological characteristics of single rock particle. A large number of particle crushing tests are conducted on single rock particle. The force-displacement curves and the particle size distributions (PSD of crushed particles are analysed based on particle crushing tests. Particle shape plays an important role in both the micro- and macroscale responses of a granular assembly. The PSD of an assortment of rocks are analysed by fractal methods, and the fractal dimension is obtained. A theoretical formula for particle crushing strength is derived, utilising the fractal model, and a simple method is proposed for predicting the probability of particle survival based on the Weibull statistics. Based on a few physical assumptions, simple equations are derived for determining particle crushing energy. The results of applying these equations are tested against the actual experimental data and prove to be very consistent. Fractal theory is therefore applicable for analysis of particle crushing.

  9. Pseudospectral operational matrix for numerical solution of single and multiterm time fractional diffusion equation

    OpenAIRE

    GHOLAMI, SAEID; BABOLIAN, ESMAIL; JAVIDI, MOHAMMAD

    2016-01-01

    This paper presents a new numerical approach to solve single and multiterm time fractional diffusion equations. In this work, the space dimension is discretized to the Gauss$-$Lobatto points. We use the normalized Grunwald approximation for the time dimension and a pseudospectral successive integration matrix for the space dimension. This approach shows that with fewer numbers of points, we can approximate the solution with more accuracy. Some examples with numerical results in tables and fig...

  10. The two-parametric scaling and new temporal asymptotic of survival probability of diffusing particle in the medium with traps.

    Science.gov (United States)

    Arkhincheev, V E

    2017-03-01

    The new asymptotic behavior of the survival probability of particles in a medium with absorbing traps in an electric field has been established in two ways-by using the scaling approach and by the direct solution of the diffusion equation in the field. It has shown that at long times, this drift mechanism leads to a new temporal behavior of the survival probability of particles in a medium with absorbing traps.

  11. Principles and biophysical applications of single particle super-localization and rotational tracking

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Yan [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    While conventional Single Particle Tracking (SPT) techniques acquire 2D or 3D trajectories of particle probes, we have developed Single Particle Orientation and Rotational Tracking (SPORT) techniques to extract orientation and rotational information. Combined with DIC microscopy, the SPORT technique has been applied in biophysical studies, including membrane diffusion and intracellular transport. The rotational dynamics of nanoparticle vectors on live cell membranes was recorded and its influence on the fate of these nanoparticle vectors was elucidated. The rotational motions of gold nanorods with various surface modifiers were tracked continuously at a temporal resolution of 5 ms under a DIC microscope. We found that the rotational behaviors of gold nanorod vectors are strongly related to their surface charge, specific surface functional groups, and the availability of receptors on cell membranes. The study of rotational Brownian motion of nanoparticles on cell membranes will lead to a better understanding of the mechanisms of drug delivery and provide guidance in designing surface modification strategies for drug delivery vectors under various circumstances. To characterize the rotation mode of surface functionalized gold nanorods on cell membranes, the SPORT technique is combined with the correlation analysis of the bright and dark DIC intensities. The unique capabilities of visualizing and understanding rotational motions of functionalized nanoparticles on live cell membranes allow us to correlate rotational and translational dynamics in unprecedented detail and provide new insights for complex membrane processes, including electrostatic interactions, ligand-receptor binding, and lateral (confined and hopping) diffusion of membrane receptors. Surface-functionalized nanoparticles interact with the membrane in fundamentally different ways and exhibit distinct rotational modes. The early events of particle-membrane approach and attachment are directly visualized

  12. Ambiguity in measuring matrix diffusion with single-well injection/recovery tracer tests

    Science.gov (United States)

    Lessoff, S.C.; Konikow, Leonard F.

    1997-01-01

    Single-well injection/recovery tracer tests are considered for use in characterizing and quantifying matrix diffusion in dual-porosity aquifers. Numerical modeling indicates that neither regional drift in homogeneous aquifers, nor heterogeneity in aquifers having no regional drift, nor hydrodynamic dispersion significantly affects these tests. However, when drift is coupled simultaneously with heterogeneity, they can have significant confounding effects on tracer return. This synergistic effect of drift and heterogeneity may help explain irreversible flow and inconsistent results sometimes encountered in previous single-well injection/recovery tracer tests. Numerical results indicate that in a hypothetical single-well injection/recovery tracer test designed to demonstrate and measure dual-porosity characteristics in a fractured dolomite, the simultaneous effects of drift and heterogeneity sometimes yields responses similar to those anticipated in a homogeneous dual-porosity formation. In these cases, tracer recovery could provide a false indication of the occurrence of matrix diffusion. Shortening the shut-in period between injection and recovery periods may make the test less sensitive to drift. Using multiple tracers having different diffusion characteristics, multiple tests having different pumping schedules, and testing the formation at more than one location would decrease the ambiguity in the interpretation of test data.

  13. Single particle tracking-based reaction progress kinetic analysis reveals a series of molecular mechanisms of cetuximab-induced EGFR processes in a single living cell.

    Science.gov (United States)

    Kim, Do-Hyeon; Kim, Dong-Kyun; Zhou, Kai; Park, Soyeon; Kwon, Yonghoon; Jeong, Min Gyu; Lee, Nam Ki; Ryu, Sung Ho

    2017-07-01

    Cellular processes occur through the orchestration of multi-step molecular reactions. Reaction progress kinetic analysis (RPKA) can provide the mechanistic details to elucidate the multi-step molecular reactions. However, current tools have limited ability to simultaneously monitor dynamic variations in multiple complex states at the single molecule level to apply RPKA in living cells. In this research, a single particle tracking-based reaction progress kinetic analysis (sptRPKA) was developed to simultaneously determine the kinetics of multiple states of protein complexes in the membrane of a single living cell. The subpopulation ratios of different states were quantitatively (and statistically) reliably extracted from the diffusion coefficient distribution rapidly acquired by single particle tracking at constant and high density over a long period of time using super-resolution microscopy. Using sptRPKA, a series of molecular mechanisms of epidermal growth factor receptor (EGFR) cellular processing induced by cetuximab were investigated. By comprehensively measuring the rate constants and cooperativity of the molecular reactions involving four EGFR complex states, a previously unknown intermediate state was identified that represents the rate limiting step responsible for the selectivity of cetuximab-induced EGFR endocytosis to cancer cells.

  14. Diffuse neutron scattering from an in situ grown α-AgI single crystal

    International Nuclear Information System (INIS)

    Keen, D.A.; Nield, V.M.; McGreevy, R.L.

    1994-01-01

    A large single crystal of α-AgI was grown in situ from the melt on the SXD single-crystal neutron time-of-flight Laue diffractometer using a specially designed furnace. A wide range of reciprocal space was accessed with minimal rotation of the arbitrarily aligned sample. Weak rings of diffuse scattering were observed together with strong scattering around some Bragg peaks. The results are discussed with reference to earlier powder diffraction data and indicate significant correlations between the motion of the silver ions and the vibrations of the iodide ions. (orig.)

  15. Single-Particle Soot Photometer (SP2) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Sedlacek, Arthur [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-02-01

    The SP2 is an instrument that measures, in situ, the time-dependent scattering and incandescence signals produced by individual BC-containing particles as they travel through a continuous-wave laser beam. Any particle traversing the laser beam will scatter light, and the BC component of a BC-containing particle will absorb some of the laser energy until its temperature is raised to the point at which it incandesces (hereafter we adopt the standard terminology of the SP2 community and denote any substance determined by the SP2 to be BC as refractory black carbon (rBC)). The amplitude of the rBC incandescence signal is related to the amount of refractory material contained in the illuminated particle. By binning the individual incandescence signals per unit sample volume, the mass concentration [ng/m3] of rBC can be derived. By binning the individual signals by volume equivalent diameter the size distribution (dN/dlogDVED) per unit time can be derived. The rBC mass loading per unit time and the rBC size distribution unit time are the core data products produced by the SP2. Additionally, the scattering channel can be used to provide information on the rBC particle population-based mixing states within ambient aerosols. However, this data product is produced on a requested-basis since additional detailed analysis and QC/QA must be conducted.

  16. Single scattering from nonspherical Chebyshev particles: A compendium of calculations

    Science.gov (United States)

    Wiscombe, W. J.; Mugnai, A.

    1986-01-01

    A large set of exact calculations of the scattering from a class of nonspherical particles known as Chebyshev particles' has been performed. Phase function and degree of polarization in random orientation, and parallel and perpendicular intensities in fixed orientations, are plotted for a variety of particles shapes and sizes. The intention is to furnish a data base against which both experimental data, and the predictions of approximate methods, can be tested. The calculations are performed with the widely-used Extended Boundary Condition Method. An extensive discussion of this method is given, including much material that is not easily available elsewhere (especially the analysis of its convergence properties). An extensive review is also given of all extant methods for nonspherical scattering calculations, as well as of the available pool of experimental data.

  17. HybTrack: A hybrid single particle tracking software using manual and automatic detection of dim signals.

    Science.gov (United States)

    Lee, Byung Hun; Park, Hye Yoon

    2018-01-09

    Single particle tracking is a compelling technique for investigating the dynamics of nanoparticles and biological molecules in a broad range of research fields. In particular, recent advances in fluorescence microscopy have made single molecule tracking a prevalent method for studying biomolecules with a high spatial and temporal precision. Particle tracking algorithms have matured over the past three decades into more easily accessible platforms. However, there is an inherent difficulty in tracing particles that have a low signal-to-noise ratio and/or heterogeneous subpopulations. Here, we present a new MATLAB based tracking program which combines the benefits of manual and automatic tracking methods. The program prompts the user to manually locate a particle when an ambiguous situation occurs during automatic tracking. We demonstrate the utility of this program by tracking the movement of β-actin mRNA in the dendrites of cultured hippocampal neurons. We show that the diffusion coefficient of β-actin mRNA decreases upon neuronal stimulation by bicuculline treatment. This tracking method enables an efficient dissection of the dynamic regulation of biological molecules in highly complex intracellular environments.

  18. Response of microchannel plates in ionization mode to single particles and electromagnetic showers

    Science.gov (United States)

    Barnyakov, A. Yu.; Barnyakov, M. Yu.; Brianza, L.; Cavallari, F.; Cipriani, M.; Ciriolo, V.; del Re, D.; Gelli, S.; Ghezzi, A.; Gotti, C.; Govoni, P.; Katcin, A. A.; Malberti, M.; Martelli, A.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Pigazzini, S.; Preiato, F.; Prisekin, V. G.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Tabarelli de Fatis, T.

    2018-01-01

    Hundreds of concurrent collisions per bunch crossing are expected at future hadron colliders. Precision timing calorimetry has been advocated as a way to mitigate the pileup effects and, thanks to their excellent time resolution, microchannel plates (MCPs) are good candidate detectors for this goal. We report on the response of MCPs, used as secondary emission detectors, to single relativistic particles and to electromagnetic showers. Several prototypes, with different geometries and characteristics, were exposed to particle beams at the INFN-LNF Beam Test Facility and at CERN. Their time resolution and efficiency are measured for single particles and as a function of the multiplicity of particles. Efficiencies between 50% and 90% to single relativistic particles are reached, and up to 100% in presence of a large number of particles. Time resolutions between 20 ps and 30 ps are obtained.

  19. Double-slit experiment with single wave-driven particles and its relation to quantum mechanics

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Madsen, Jacob; Reichelt, Christian Günther

    2015-01-01

    even though it is possible to determine unambiguously which slit the walking droplet passes. Here we argue, however, that the single-particle statistics in such an experiment will be fundamentally different from the single-particle statistics of quantum mechanics. Quantum mechanical interference takes......¨dinger equation with a source term originating from a localized particle that generates a wave while being simultaneously guided by it. We show that the ensuing particle-wave dynamics can capture some characteristics of quantum mechanics such as orbital quantization. However, the particle-wave dynamics can...... not reproduce quantum mechanics in general, and we show that the single-particle statistics for our model in a double-slit experiment with an additional splitter plate differs qualitatively from that of quantum mechanics....

  20. A new analytical formulation of retention effects on particle diffusion processes

    Directory of Open Access Journals (Sweden)

    Luiz Bevilacqua

    2011-12-01

    Full Text Available The ultimate purpose of this paper is to present a new analytical formulation to simulate diffusion with retention in a reactive medium under stable thermodynamic conditions. The analysis of diffusion with retention in a continuum medium is developed after the solution of an equivalent problem using a discrete approach. The new law may be interpreted as the reduction of all diffusion processes with retention to a unifying phenomenon that can adequately simulate the retention effect namely a circulatory motion. It is remarkable that the governing equation requires a fourth order differential term as suggested by the discrete approach. The relative fraction of diffusion particles β is introduced as a control parameter in the diffusion-retention law as suggested by the discrete approach. This control parameter is essential to avoid retention isolated from the diffusion process. Two matrices referring to material properties are introduced and related to the real phenomenon through the circulation hypothesis. The governing equation may be highly non-linear even if the material properties are constant, but the retention effect is a function of the concentration level, that is, β is a function of the concentration.O objetivo último desse trabalho é apresentar uma nova formulação analítica para simular difusão com retenção em um meio reativo sob condições termodinamicamente estáveis. A análise da difusão com retenção em um meio contínuo é desenvolvida a partir da solução de um problema equivalente usando uma abordagem discreta. A nova lei pode ser interpretada como a redução de todos os processos de difusão com retenção a um fenômeno unificador que pode simular adequadamente a retenção. O propósito principal desse trabalho é apresentar uma nova formulação analítica para simular difusão com retenção em meio reativo termodinamicamente estável. A análise da difusão com retenção em um meio contínuo é desenvolvido

  1. Magnetic tweezers for manipulation of magnetic particles in single cells

    Science.gov (United States)

    Ebrahimian, H.; Giesguth, M.; Dietz, K.-J.; Reiss, G.; Herth, S.

    2014-02-01

    Magnetic tweezers gain increasing interest for applications in biology. Here, a setup of magnetic tweezers is introduced using micropatterned conducting lines on transparent glass slides. Magnetic particles of 1 μm diameter were injected in barley cell vacuoles using a microinject system under microscopic control. Time dependent tracking of the particles after application of a magnetic field was used to determine the viscosity of vacuolar sap in vivo relative to water and isolated vacuolar fluid. The viscosity of vacuolar sap in cells was about 2-fold higher than that of extracted vacuolar fluid and 5 times higher than that of water.

  2. Single particle behaviour in circulating fluidized bed combustors

    DEFF Research Database (Denmark)

    Erik Weinell, Claus

    1994-01-01

    of fuel particles in a boiler. A cold pilot scale model of a circulating fluidized bed combustor was used. Here sand was recirculated by means of air. Pressure measurements along the riser determined suspension density. A radioactive tracking facility to determined the dynamic picture of the particle...... trajectories in the simulated boiler. In the splash zone, closest to the secondary air inlet an exponential decay in the solids suspension density with the riser height was observed. A transport zone was characterized by an exponential decay in the solids suspension but with a smaller decay constant...

  3. Single Gradientless Light Beam Drags Particles as Tractor Beams

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Qiu, Cheng-Wei; Wang, Haifeng

    2011-01-01

    is the strong nonparaxiality of the light beam, which contributes to the pulling force owing to momentum conservation. The nonparaxiality of the Bessel beam can be manipulated to possess a dragging force along both the radial longitudinal directions, i.e., a "tractor beam" with stable trajectories is achieved......Usually a light beam pushes a particle when the photons act upon it. We investigate the optical forces by nonparaxial gradientless beams and find that the forces can drag suitable particles all the way towards the light source. The major criterion of realizing the backward dragging force...

  4. Detection and characterization of chemical aerosol using laser-trapping single-particle Raman spectroscopy.

    Science.gov (United States)

    Kalume, Aimable; Beresnev, Leonid A; Santarpia, Joshua; Pan, Yong-Le

    2017-08-10

    Detection and characterization of the presence of chemical agent aerosols in various complex atmospheric environments is an essential defense mission. Raman spectroscopy has the ability to identify chemical molecules, but there are limited numbers of photons detectable from single airborne aerosol particles as they are flowing through a detection system. In this paper, we report on a single-particle Raman spectrometer system that can measure strong spontaneous, stimulated, and resonance Raman spectral peaks from a single laser-trapped chemical aerosol particle, such as a droplet of the VX nerve agent chemical simulant diethyl phthalate. Using this system, time-resolved Raman spectra and elastic scattered intensities were recorded to monitor the chemical properties and size variation of the trapped particle. Such a system supplies a new approach for the detection and characterization of single airborne chemical aerosol particles.

  5. Self-organization of single filaments and diffusive plasmas during a single pulse in dielectric-barrier discharges

    International Nuclear Information System (INIS)

    Babaeva, Natalia Yu; Kushner, Mark J

    2014-01-01

    Self-organization of filaments in dielectric-barrier discharges (DBDs) probably has many origins. However, the dominant cause is proposed to be the accumulation of charge on the surfaces of the bounding dielectrics that reinforces successive discharge pulses to occur at the same locations. A secondary cause is the electrostatic repulsion of individual plasma filaments. Self-organization typically develops over many discharge pulses. In this paper, we discuss the results of a computational investigation of plasma filaments in overvoltage DBDs that, under select conditions, display self-organized patterns (SOPs) of plasma density during a single discharge pulse. (Overvoltage refers to the rapid application of a voltage in excess of the quasi-dc breakdown voltage.) The origin of the SOPs is a synergistic relationship between the speed of the surface-ionization waves that propagate along each dielectric and the rate at which avalanche occurs across the gap. For our test conditions, SOPs were not observed at lower voltages and gradually formed at higher voltages. The same conditions that result in SOPs, i.e. the application of an overvoltage, also produce more diffuse discharges. A transition from a single narrow filament to a more diffuse structure was observed as overvoltage was approached. The sensitivity of SOPs to the orientation and permittivity of the bounding dielectrics is discussed. (paper)

  6. Modelling of flash pyrolysis of a single wood particle.

    NARCIS (Netherlands)

    Janse, A.M.C.; Janse, A.M.C.; Westerhout, R.W.J.; Westerhout, R.W.J.; Prins, W.

    2000-01-01

    Reactors for flash pyrolysis of biomass are designed to maximize the yield of bio-oil, at the expense of the by-products gas and char. To understand which chemical and physical factors influence the yield to bio-oil, the flash pyrolysis of a cylindrical wood particle with a maximum diameter of 1000

  7. Single-sheet identification method of heavy charged particles using ...

    Indian Academy of Sciences (India)

    The theoretical and experimental investigations of the penetration of charged particles in matter played a very important role in the development of modern physics. Solid state nuclear track detectors have become one of the most important tools for many branches of science and technology. An attempt has been made to ...

  8. Fluorescence preselection of bioaerosol for single-particle mass spectrometry

    NARCIS (Netherlands)

    Stowers, M.A.; Van Wuijckhuijse, A.L.; Marijnissen, J.C.M.; Kientz, C.E.; Ciach, T.

    2006-01-01

    We have designed, constructed, and tested a system that preselects the biological fraction of airborne particles from the overall aerosol. The preselection is based on fluorescence emission excited by a continuous 266 nm laser beam. This beam is one of two cw beams used to measure the aerodynamic

  9. Characteristic rotational behaviors of rod-shaped cargo revealed by automated five-dimensional single particle tracking.

    Science.gov (United States)

    Chen, Kuangcai; Gu, Yan; Sun, Wei; Bin Dong; Wang, Gufeng; Fan, Xinxin; Xia, Tian; Fang, Ning

    2017-10-12

    We report an automated single particle tracking technique for tracking the x, y, z coordinates, azimuthal and elevation angles of anisotropic plasmonic gold nanorod probes in live cells. These five spatial coordinates are collectively referred to as 5D. This method overcomes a long-standing challenge in distinguishing rotational motions from translational motions in the z-axis in differential interference contrast microscopy to result in full disclosure of nanoscale motions with high accuracy. Transferrin-coated endocytic gold nanorod cargoes initially undergo active rotational diffusion and display characteristic rotational motions on the membrane. Then as the cargoes being enclosed in clathrin-coated pits, they slow down the active rotation and experience a quiet period before they restore active rotational diffusion after fission and eventually being transported away from the original entry spots. Finally, the 3D trajectories and the accompanying rotational motions of the cargoes are resolved accurately to render the intracellular transport process in live cells.Distinguishing rotational motions from translational motions in the z-axis has been a long-standing challenge. Here the authors develop a five-dimensional single particle tracking method to detect rotational behaviors of nanocargos during clathrin-mediated endocytosis and intracellular transport.

  10. Characterizing uranium oxide reference particles for isotopic abundances and uranium mass by single particle isotope dilution mass spectrometry

    International Nuclear Information System (INIS)

    Kraiem, M.; Richter, S.; Erdmann, N.; Kühn, H.; Hedberg, M.; Aregbe, Y.

    2012-01-01

    Highlights: ► A method to quantify the U mass in single micron particles by ID-TIMS was developed. ► Well-characterized monodisperse U-oxide particles produced by an aerosol generator were used. ► A linear correlation between the mass of U and the volume of particle(s) was found. ► The method developed is suitable for determining the amount of U in a particulate reference material. - Abstract: Uranium and plutonium particulate test materials are becoming increasingly important as the reliability of measurement results has to be demonstrated to regulatory bodies responsible for maintaining effective nuclear safeguards. In order to address this issue, the Institute for Reference Materials and Measurements (IRMM) in collaboration with the Institute for Transuranium Elements (ITU) has initiated a study to investigate the feasibility of preparing and characterizing a uranium particle reference material for nuclear safeguards, which is finally certified for isotopic abundances and for the uranium mass per particle. Such control particles are specifically required to evaluate responses of instruments based on mass spectrometric detection (e.g. SIMS, TIMS, LA-ICPMS) and to help ensuring the reliability and comparability of measurement results worldwide. In this paper, a methodology is described which allows quantifying the uranium mass in single micron particles by isotope dilution thermal ionization mass spectrometry (ID-TIMS). This methodology is characterized by substantial improvements recently achieved at IRMM in terms of sensitivity and measurement accuracy in the field of uranium particle analysis by TIMS. The use of monodisperse uranium oxide particles prepared using an aerosol generation technique developed at ITU, which is capable of producing particles of well-characterized size and isotopic composition was exploited. The evidence of a straightforward correlation between the particle volume and the mass of uranium was demonstrated in this study

  11. Particle sizes of the Uranus delta ring's inner diffuse companion through comparison of RSS and PPS Voyager occultation data

    Science.gov (United States)

    Hui, John; Horn, Linda J.; Lane, Arthur L.

    1991-01-01

    In January, 1976, Voyager 2's photopolarimeter and UV spectrometer observed Delta Sagitarii and Beta Persei during their occultation by the Uranian delta ring. An inner diffuse companion of this ring was detected and found to have an average width of 12 km. By comparing the widths and equivalent depths of the two sets of data, it is established that the particles making the greatest contribution to the integrated opacities of the companion are of greater-than-several-cm sizes. The particles appear to be located away from the photopolarimetry edges, where there may be particles smaller than those observed elsewhere.

  12. Theoretical and experimental study of trapped particle echoes in a magnetic mirror machine. Application to diffusion study

    International Nuclear Information System (INIS)

    Chatelier, Michel.

    1976-01-01

    A simple mechanical model is used to investigate the various physical mechanisms originating the echoes. The model is applied to nuclear spins and echoes from particles trapped in a magnetostatic well. The theory of echoes from trapped ions in a magnetic machine is developed. The effects that may be observed when two magnetic perturbations are applied to the plasma are described. Diffusion effects in the velocity space are then taken into account when the diffusion is due either to Coulomb collisions or to a microturbulence at the ion cyclotron frequency. The experimental results obtained with the DECA II B machine are described. Emphasis is put upon the effects observed when magnetic perturbations are applied to the plasma and echoes observation independently of the diffusion study, as it is the first time that trapped particle echoes are observed in a hot plasma [fr

  13. Homogeneous vs heterogeneous polymerization catalysis revealed by single-particle fluorescence microscopy.

    Science.gov (United States)

    Esfandiari, N Melody; Blum, Suzanne A

    2011-11-16

    A high-sensitivity and high-resolution single-particle fluorescence microscopy technique differentiated between homogeneous and heterogeneous metathesis polymerization catalysis by imaging the location of the early stages of polymerization. By imaging single polymers and single crystals of Grubbs II, polymerization catalysis was revealed to be solely homogeneous rather than heterogeneous or both.

  14. Low aspect ratio micropores for single-particle and single-cell analysis.

    Science.gov (United States)

    Goyal, Gaurav; Mulero, Rafael; Ali, Jamel; Darvish, Armin; Kim, Min Jun

    2015-05-01

    This paper describes microparticle and bacterial translocation studies using low aspect ratio solid-state micropores. Micropores, 5 μm in diameter, were fabricated in 200 nm thick free-standing silicon nitride membranes, resulting in pores with an extremely low aspect ratio, nominally 0.04. For microparticle translocation experiments, sulfonated polystyrene microparticles and magnetic microbeads in size range of 1-4 μm were used. Using the microparticle translocation characteristics, we find that particle translocations result in a change only in the pore's geometrical resistance while the access resistance remains constant. Furthermore, we demonstrate the ability of our micropore to probe high-resolution shape information of translocating analytes using concatenated magnetic microspheres. Distinct current drop peaks were observed for each microsphere of the multibead architecture. For bacterial translocation experiments, nonflagellated Escherichia coli (strain HCB 5) and wild type flagellated Salmonella typhimurium (strain SJW1103) were used. Distinct current signatures for the two bacteria were obtained and this difference in translocation behavior was attributed to different surface protein distributions on the bacteria. Our findings may help in developing low aspect ratio pores for high-resolution microparticle characterization and single-cell analysis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Detection and Sizing of Ti-Containing Particles in Recreational Waters Using Single Particle ICP-MS.

    Science.gov (United States)

    Venkatesan, Arjun K; Reed, Robert B; Lee, Sungyun; Bi, Xiangyu; Hanigan, David; Yang, Yu; Ranville, James F; Herckes, Pierre; Westerhoff, Paul

    2018-01-01

    Single particle inductively coupled plasma mass spectrometry (spICP-MS) was used to detect Ti-containing particles in heavily-used bathing areas of a river (Salt River) and five swimming pools. Ti-containing particle concentrations in swimming pools ranged from 2.8 × 10 3 to 4.4 × 10 3 particles/mL and were an order of magnitude lower than those detected in the Salt River. Measurements from the Salt River showed an 80% increase in Ti-containing particle concentration over baseline concentration during peak recreational activity (at 16:00 h) in the river. Cloud point extraction followed by transmission electron microscopy with energy dispersive X-ray analysis confirmed presence of aggregated TiO 2 particles in river samples, showing morphological similarity to particles present in an over-the-counter sunscreen product. The maximum particle mass concentration detected in a sample from the Salt River (659 ng/L) is only slightly lower than the predicted no effect concentration for TiO 2 to aquatic organisms (< 1 μg/L).

  16. ISDD: A computational model of particle sedimentation, diffusion and target cell dosimetry for in vitro toxicity studies

    Directory of Open Access Journals (Sweden)

    Chrisler William B

    2010-11-01

    Full Text Available Abstract Background The difficulty of directly measuring cellular dose is a significant obstacle to application of target tissue dosimetry for nanoparticle and microparticle toxicity assessment, particularly for in vitro systems. As a consequence, the target tissue paradigm for dosimetry and hazard assessment of nanoparticles has largely been ignored in favor of using metrics of exposure (e.g. μg particle/mL culture medium, particle surface area/mL, particle number/mL. We have developed a computational model of solution particokinetics (sedimentation, diffusion and dosimetry for non-interacting spherical particles and their agglomerates in monolayer cell culture systems. Particle transport to cells is calculated by simultaneous solution of Stokes Law (sedimentation and the Stokes-Einstein equation (diffusion. Results The In vitro Sedimentation, Diffusion and Dosimetry model (ISDD was tested against measured transport rates or cellular doses for multiple sizes of polystyrene spheres (20-1100 nm, 35 nm amorphous silica, and large agglomerates of 30 nm iron oxide particles. Overall, without adjusting any parameters, model predicted cellular doses were in close agreement with the experimental data, differing from as little as 5% to as much as three-fold, but in most cases approximately two-fold, within the limits of the accuracy of the measurement systems. Applying the model, we generalize the effects of particle size, particle density, agglomeration state and agglomerate characteristics on target cell dosimetry in vitro. Conclusions Our results confirm our hypothesis that for liquid-based in vitro systems, the dose-rates and target cell doses for all particles are not equal; they can vary significantly, in direct contrast to the assumption of dose-equivalency implicit in the use of mass-based media concentrations as metrics of exposure for dose-response assessment. The difference between equivalent nominal media concentration exposures on a

  17. ISDD: A computational model of particle sedimentation, diffusion and target cell dosimetry for in vitro toxicity studies

    Science.gov (United States)

    2010-01-01

    Background The difficulty of directly measuring cellular dose is a significant obstacle to application of target tissue dosimetry for nanoparticle and microparticle toxicity assessment, particularly for in vitro systems. As a consequence, the target tissue paradigm for dosimetry and hazard assessment of nanoparticles has largely been ignored in favor of using metrics of exposure (e.g. μg particle/mL culture medium, particle surface area/mL, particle number/mL). We have developed a computational model of solution particokinetics (sedimentation, diffusion) and dosimetry for non-interacting spherical particles and their agglomerates in monolayer cell culture systems. Particle transport to cells is calculated by simultaneous solution of Stokes Law (sedimentation) and the Stokes-Einstein equation (diffusion). Results The In vitro Sedimentation, Diffusion and Dosimetry model (ISDD) was tested against measured transport rates or cellular doses for multiple sizes of polystyrene spheres (20-1100 nm), 35 nm amorphous silica, and large agglomerates of 30 nm iron oxide particles. Overall, without adjusting any parameters, model predicted cellular doses were in close agreement with the experimental data, differing from as little as 5% to as much as three-fold, but in most cases approximately two-fold, within the limits of the accuracy of the measurement systems. Applying the model, we generalize the effects of particle size, particle density, agglomeration state and agglomerate characteristics on target cell dosimetry in vitro. Conclusions Our results confirm our hypothesis that for liquid-based in vitro systems, the dose-rates and target cell doses for all particles are not equal; they can vary significantly, in direct contrast to the assumption of dose-equivalency implicit in the use of mass-based media concentrations as metrics of exposure for dose-response assessment. The difference between equivalent nominal media concentration exposures on a μg/mL basis and target cell

  18. destiny: diffusion maps for large-scale single-cell data in R.

    Science.gov (United States)

    Angerer, Philipp; Haghverdi, Laleh; Büttner, Maren; Theis, Fabian J; Marr, Carsten; Buettner, Florian

    2016-04-15

    : Diffusion maps are a spectral method for non-linear dimension reduction and have recently been adapted for the visualization of single-cell expression data. Here we present destiny, an efficient R implementation of the diffusion map algorithm. Our package includes a single-cell specific noise model allowing for missing and censored values. In contrast to previous implementations, we further present an efficient nearest-neighbour approximation that allows for the processing of hundreds of thousands of cells and a functionality for projecting new data on existing diffusion maps. We exemplarily apply destiny to a recent time-resolved mass cytometry dataset of cellular reprogramming. destiny is an open-source R/Bioconductor package "bioconductor.org/packages/destiny" also available at www.helmholtz-muenchen.de/icb/destiny A detailed vignette describing functions and workflows is provided with the package. carsten.marr@helmholtz-muenchen.de or f.buettner@helmholtz-muenchen.de Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Glass coated single grid for charged particle acceleration

    Science.gov (United States)

    Banks, B. A.; Nakanishi, S.

    1968-01-01

    Glass coating is used on a single grid accelerator system for ion thrusters. The uniformly thin, smooth, dense, impervious glass coating has a high dielectric strength and is firmly bonded to the accelerator grid.

  20. An instrument for charge measurement due to a single collision between two spherical particles.

    Science.gov (United States)

    Xie, L; Bao, N; Jiang, Y; Han, K; Zhou, J

    2016-01-01

    It universally exists in moving particular systems that particles can be electrified, in which the particles are chemically identical, just as toner particles, coal dust, and pharmaceutical powders. However, owing to the limit of experimental instruments, so far, there are yet no experiments to illustrate whether a particle can be electrified due to a single collision between two spherical particles, and there are also no experiments to measure the charge carried by a single particle due to a single collision between two particles. So we have developed an instrument for charge measurement due to a single collision between two spheres. The instrument consists of two-sphere collision device, collision charge measurement apparatus, and particles' trajectory tracking system. By using this instrument, we can investigate the collision contact electrification due to a single collision between two spheres and simultaneously record the moving trajectories of spheres after the collision to calculate the rebound angles to identify the contribution of the triboelectrification due to the rubbing between the contact surfaces and the collision contact electrification due to the normal pressure between the contact surfaces.

  1. Comprehensive study of ignition and combustion of single wooden particles

    DEFF Research Database (Denmark)

    Momenikouchaksaraei, Maryam; Yin, Chungen; Kær, Søren Knudsen

    2013-01-01

    How quickly large biomass particles can ignite and burn out when transported into a pulverized-fuel (pf) furnace and suddenly exposed to a hot gas flow containing oxygen is very important in biomass co-firing design and optimization. In this paper, the ignition and burnout of the largest possible...... for all the test conditions. As the particle is further heated up and the volume-weighted average temperature reaches the onset of rapid decomposition of hemicellulose and cellulose, a secondary homogeneous ignition occurs. The model-predicted ignition delays and burnout times show a good agreement...... with the experimental results. Homogeneous ignition delays are found to scale with specific surface areas while heterogeneous ignition delays show less dependency on the areas. The ignition and burnout are also affected by the process conditions, in which the oxygen concentration is found to have a more pronounced...

  2. Motion blur filtering: A statistical approach for extracting confinement forces and diffusivity from a single blurred trajectory

    Science.gov (United States)

    Calderon, Christopher P.

    2016-05-01

    Single particle tracking (SPT) can aid in understanding a variety of complex spatiotemporal processes. However, quantifying diffusivity and confinement forces from individual live cell trajectories is complicated by inter- and intratrajectory kinetic heterogeneity, thermal fluctuations, and (experimentally resolvable) statistical temporal dependence inherent to the underlying molecule's time correlated confined dynamics experienced in the cell. The problem is further complicated by experimental artifacts such as localization uncertainty and motion blur. The latter is caused by the tagged molecule emitting photons at different spatial positions during the exposure time of a single frame. The aforementioned experimental artifacts induce spurious time correlations in measured SPT time series that obscure the information of interest (e.g., confinement forces and diffusivity). We develop a maximum likelihood estimation (MLE) technique that decouples the above noise sources and systematically treats temporal correlation via time series methods. This ultimately permits a reliable algorithm for extracting diffusivity and effective forces in confined or unconfined environments. We illustrate how our approach avoids complications inherent to mean square displacement or autocorrelation techniques. Our algorithm modifies the established Kalman filter (which does not handle motion blur artifacts) to provide a likelihood based time series estimation procedure. The result extends A. J. Berglund's motion blur model [Phys. Rev. E 82, 011917 (2010), 10.1103/PhysRevE.82.011917] to handle confined dynamics. The approach can also systematically utilize (possibly time dependent) localization uncertainty estimates afforded by image analysis if available. This technique, which explicitly treats confinement and motion blur within a time domain MLE framework, uses an exact likelihood (time domain methods facilitate analyzing nonstationary signals). Our estimator is demonstrated to be

  3. A deep convolutional neural network approach to single-particle recognition in cryo-electron microscopy.

    Science.gov (United States)

    Zhu, Yanan; Ouyang, Qi; Mao, Youdong

    2017-07-21

    Single-particle cryo-electron microscopy (cryo-EM) has become a mainstream tool for the structural determination of biological macromolecular complexes. However, high-resolution cryo-EM reconstruction often requires hundreds of thousands of single-particle images. Particle extraction from experimental micrographs thus can be laborious and presents a major practical bottleneck in cryo-EM structural determination. Existing computational methods for particle picking often use low-resolution templates for particle matching, making them susceptible to reference-dependent bias. It is critical to develop a highly efficient template-free method for the automatic recognition of particle images from cryo-EM micrographs. We developed a deep learning-based algorithmic framework, DeepEM, for single-particle recognition from noisy cryo-EM micrographs, enabling automated particle picking, selection and verification in an integrated fashion. The kernel of DeepEM is built upon a convolutional neural network (CNN) composed of eight layers, which can be recursively trained to be highly "knowledgeable". Our approach exhibits an improved performance and accuracy when tested on the standard KLH dataset. Application of DeepEM to several challenging experimental cryo-EM datasets demonstrated its ability to avoid the selection of un-wanted particles and non-particles even when true particles contain fewer features. The DeepEM methodology, derived from a deep CNN, allows automated particle extraction from raw cryo-EM micrographs in the absence of a template. It demonstrates an improved performance, objectivity and accuracy. Application of this novel method is expected to free the labor involved in single-particle verification, significantly improving the efficiency of cryo-EM data processing.

  4. Online single particle measurement of fireworks pollution during Chinese New Year in Nanning.

    Science.gov (United States)

    Li, Jingyan; Xu, Tingting; Lu, Xiaohui; Chen, Hong; Nizkorodov, Sergey A; Chen, Jianmin; Yang, Xin; Mo, Zhaoyu; Chen, Zhiming; Liu, Huilin; Mao, Jingying; Liang, Guiyun

    2017-03-01

    Time-resolved single-particle measurements were conducted during Chinese New Year in Nanning, China. Firework displays resulted in a burst of SO 2 , coarse mode, and accumulation mode (100-500nm) particles. Through single particle mass spectrometry analysis, five different types of particles (fireworks-metal, ash, dust, organic carbon-sulfate (OC-sulfate), biomass burning) with different size distributions were identified as primary emissions from firework displays. The fireworks-related particles accounted for more than 70% of the total analyzed particles during severe firework detonations. The formation of secondary particulate sulfate and nitrate during firework events was investigated on single particle level. An increase of sulfite peak (80SO 3 - ) followed by an increase of sulfate peaks (97HSO 4 - +96SO 4 - ) in the mass spectra during firework displays indicated the aqueous uptake and oxidation of SO 2 on particles. High concentration of gaseous SO 2 , high relative humidity and high particle loading likely promoted SO 2 oxidation. Secondary nitrate formed through gas-phase oxidation of NO 2 to nitric acid, followed by the condensation into particles as ammonium nitrate. This study shows that under worm, humid conditions, both primary and secondary aerosols contribute to the particulate air pollution during firework displays. Copyright © 2016. Published by Elsevier B.V.

  5. Source characterization of urban particles from meat smoking activities in Chongqing, China using single particle aerosol mass spectrometry.

    Science.gov (United States)

    Chen, Yang; Wenger, John C; Yang, Fumo; Cao, Junji; Huang, Rujin; Shi, Guangming; Zhang, Shumin; Tian, Mi; Wang, Huanbo

    2017-09-01

    A Single Particle Aerosol Mass Spectrometer (SPAMS) was deployed in the urban area of Chongqing to characterize the particles present during a severe particulate pollution event that occurred in winter 2014-2015. The measurements were made at a time when residents engaged in traditional outdoor meat smoking activities to preserve meat before the Chinese Spring Festival. The measurement period was predominantly characterized by stagnant weather conditions, highly elevated levels of PM 2.5 , and low visibility. Eleven major single particle types were identified, with over 92.5% of the particles attributed to biomass burning emissions. Most of the particle types showed appreciable signs of aging in the stagnant air conditions. To simulate the meat smoking activities, a series of controlled smoldering experiments was conducted using freshly cut pine and cypress branches, both with and without wood logs. SPAMS data obtained from these experiments revealed a number of biomass burning particle types, including an elemental and organic carbon (ECOC) type that proved to be the most suitable marker for meat smoking activities. The traditional activity of making preserved meat in southwestern China is shown here to be a major source of particulate pollution. Improved measures to reduce emissions from the smoking of meat should be introduced to improve air quality in regions where smoking meat activity prevails. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals

    KAUST Repository

    Shi, Dong

    2015-01-29

    The fundamental properties and ultimate performance limits of organolead trihalide MAPbX3(MA = CH3NH3 +; X = Br- or I- ) perovskites remain obscured by extensive disorder in polycrystalline MAPbX3 films. We report an antisolvent vapor-assisted crystallization approach that enables us to create sizable crack-free MAPbX3 single crystals with volumes exceeding 100 cubic millimeters. These large single crystals enabled a detailed characterization of their optical and charge transport characteristics.We observed exceptionally low trap-state densities on the order of 109 to 1010 per cubic centimeter in MAPbX3 single crystals (comparable to the best photovoltaic-quality silicon) and charge carrier diffusion lengths exceeding 10 micrometers. These results were validated with density functional theory calculations.

  7. Experimental study on effects of particle shape and operating conditions on combustion characteristics of single biomass particles

    DEFF Research Database (Denmark)

    Momenikouchaksaraei, Maryam; Yin, Chungen; Kær, Søren Knudsen

    2013-01-01

    An experimental study is performed to investigate the ignition, devolatilization, and burnout of single biomass particles of various shapes and sizes under process conditions that are similar to those in an industrial combustor. A charge-coupled device (CCD) camera is used to record the whole...

  8. Strong reduction of spectral heterogeneity in gold bipyramids for single-particle and single-molecule plasmon sensing.

    Science.gov (United States)

    Peters, S M E; Verheijen, M A; Prins, M W J; Zijlstra, P

    2016-01-15

    Single metal nanoparticles are attractive biomolecular sensors. Binding of analyte to a functional particle results in a plasmon shift that can be conveniently monitored in a far-field optical microscope. Heterogeneities in spectral properties of individual particles in an ensemble affect the reliability of a single-particle plasmon sensor, especially when plasmon shifts are monitored in real-time using a fixed irradiation wavelength. We compare the spectral heterogeneity of different plasmon sensor geometries (gold nanospheres, nanorods, and bipyramids) and correlate this to their size and aspect-ratio dispersion. We show that gold bipyramids exhibit a strongly reduced heterogeneity in aspect ratio and plasmon wavelength compared to commonly used gold nanorods. We show that this translates into a significantly improved homogeneity of the response to molecular binding without compromising single-molecule sensitivity.

  9. Single-particle characterization of ice-nucleating particles and ice particles residuals sampled by three different techniques

    Science.gov (United States)

    Kandler, Konrad; Worringen, Annette; Benker, Nathalie; Dirsch, Thomas; Mertes, Stephan; Schenk, Ludwig; Kästner, Udo; Frank, Fabian; Nillius, Björn; Bundke, Ulrich; Rose, Diana; Curtius, Joachim; Kupiszewski, Piotr; Weingartner, Ernest; Vochezer, Paul; Schneider, Johannes; Schmidt, Susan; Weinbruch, Stephan; Ebert, Martin

    2015-04-01

    During January/February 2013, at the High Alpine Research Station Jungfraujoch a measurement campaign was carried out, which was centered on atmospheric ice-nucleating particles (INP) and ice particle residuals (IPR). Three different techniques for separation of INP and IPR from the non-ice-active particles are compared. The Ice Selective Inlet (ISI) and the Ice Counterflow Virtual Impactor (Ice-CVI) sample ice particles from mixed phase clouds and allow for the analysis of the residuals. The combination of the Fast Ice Nucleus Chamber (FINCH) and the Ice Nuclei Pumped Counterflow Virtual Impactor (IN-PCVI) provides ice-activating conditions to aerosol particles and extracts the activated INP for analysis. Collected particles were analyzed by scanning electron microscopy and energy-dispersive X-ray microanalysis to determine size, chemical composition and mixing state. All INP/IPR-separating techniques had considerable abundances (median 20 - 70 %) of instrumental contamination artifacts (ISI: Si-O spheres, probably calibration aerosol; Ice-CVI: Al-O particles; FINCH+IN-PCVI: steel particles). Also, potential sampling artifacts (e.g., pure soluble material) occurred with a median abundance of metal oxides were the major INP/IPR particle types separated by all three techniques. Soot was a minor contributor. Lead was detected in less than 10 % of the particles, of which the majority were internal mixtures with other particle types. Sea-salt and sulfates were identified by all three methods as INP/IPR. Most samples showed a maximum of the INP/IPR size distribution at 400 nm geometric diameter. In a few cases, a second super-micron maximum was identified. Soot/carbonaceous material and metal oxides were present mainly in the submicron range. ISI and FINCH yielded silicates and Ca-rich particles mainly with diameters above 1 µm, while the Ice-CVI also separated many submicron IPR. As strictly parallel sampling could not be performed, a part of the discrepancies between

  10. Reacto-Diffusive Length of N2O5 in Aqueous Sulfate- and Chloride-Containing Aerosol Particles.

    Science.gov (United States)

    Gaston, Cassandra J; Thornton, Joel A

    2016-02-25

    Heterogeneous reactions of dinitrogen pentoxide (N2O5) on aerosol particles impact air quality and climate, yet aspects of the relevant physical chemistry remain unresolved. One important consideration is the competing effects of diffusion and the rate of chemical reaction within the particle, which determines the length that N2O5 travels within a particle before reacting, referred to as the reacto-diffusive length (l). Large values of l imply a dependence of the reactive uptake efficiency of N2O5, i.e., γ(N2O5), on particle size. We present measurements of the size dependence of γ(N2O5) on aqueous sodium chloride, ammonium sulfate, and ammonium bisulfate particles. γ(N2O5) on ammonium sulfate and ammonium bisulfate particles ranged from 0.016 ± 0.005 to 0.036 ± 0.001 as the surface-area-weighted particle radius increased from 39 to 127 nm, resulting in an estimated l of 32 ± 6 nm. In contrast, γ(N2O5) on sodium chloride particles was independent of particle size, suggesting a near-surface reaction dominated the uptake of N2O5. Differences in the reactivity of the N2O5 intermediate, NO2(+), with water and chloride can explain the observed dependencies. These results allow for parameterizations in atmospheric models to determine a more robust population mean value of γ(N2O5) that accounts for the distribution of particle sizes.

  11. Single-particle characterization of ice-nucleating particles and ice particle residuals sampled by three different techniques

    Science.gov (United States)

    Worringen, A.; Kandler, K.; Benker, N.; Dirsch, T.; Mertes, S.; Schenk, L.; Kästner, U.; Frank, F.; Nillius, B.; Bundke, U.; Rose, D.; Curtius, J.; Kupiszewski, P.; Weingartner, E.; Vochezer, P.; Schneider, J.; Schmidt, S.; Weinbruch, S.; Ebert, M.

    2015-04-01

    In the present work, three different techniques to separate ice-nucleating particles (INPs) as well as ice particle residuals (IPRs) from non-ice-active particles are compared. The Ice Selective Inlet (ISI) and the Ice Counterflow Virtual Impactor (Ice-CVI) sample ice particles from mixed-phase clouds and allow after evaporation in the instrument for the analysis of the residuals. The Fast Ice Nucleus Chamber (FINCH) coupled with the Ice Nuclei Pumped Counterflow Virtual Impactor (IN-PCVI) provides ice-activating conditions to aerosol particles and extracts the activated particles for analysis. The instruments were run during a joint field campaign which took place in January and February 2013 at the High Alpine Research Station Jungfraujoch (Switzerland). INPs and IPRs were analyzed offline by scanning electron microscopy and energy-dispersive X-ray microanalysis to determine their size, chemical composition and mixing state. Online analysis of the size and chemical composition of INP activated in FINCH was performed by laser ablation mass spectrometry. With all three INP/IPR separation techniques high abundances (median 20-70%) of instrumental contamination artifacts were observed (ISI: Si-O spheres, probably calibration aerosol; Ice-CVI: Al-O particles; FINCH + IN-PCVI: steel particles). After removal of the instrumental contamination particles, silicates, Ca-rich particles, carbonaceous material and metal oxides were the major INP/IPR particle types obtained by all three techniques. In addition, considerable amounts (median abundance mostly a few percent) of soluble material (e.g., sea salt, sulfates) were observed. As these soluble particles are often not expected to act as INP/IPR, we consider them as potential measurement artifacts. Minor types of INP/IPR include soot and Pb-bearing particles. The Pb-bearing particles are mainly present as an internal mixture with other particle types. Most samples showed a maximum of the INP/IPR size distribution at 200

  12. Comparison of mineral dust and droplet residuals measured with two single particle aerosol mass spectrometers

    Science.gov (United States)

    Wonaschütz, Anna; Ludwig, Wolfgang; Zawadowicz, Maria; Hiranuma, Naruki; Hitzenberger, Regina; Cziczo, Daniel; DeMott, Paul; Möhler, Ottmar

    2017-04-01

    Single Particle mass spectrometers are used to gain information on the chemical composition of individual aerosol particles, aerosol mixing state, and other valuable aerosol characteristics. During the Mass Spectrometry Intercomparison at the Fifth Ice Nucleation (FIN-01) Workshop, the new LAAPTOF single particle aerosol mass spectrometer (AeroMegt GmbH) was conducting simultaneous measurements together with the PALMS (Particle Analysis by Laser Mass Spectrometry) instrument. The aerosol particles were sampled from the AIDA chamber during ice cloud expansion experiments. Samples of mineral dust and ice droplet residuals were measured simultaneously. In this work, three expansion experiments are chosen for a comparison between the two mass spectrometers. A fuzzy clustering routine is used to group the spectra. Cluster centers describing the ensemble of particles are compared. First results show that while differences in the peak heights are likely due to the use of an amplifier in PALMS, cluster centers are comparable.

  13. Optical trap for both transparent and absorbing particles in air using a single shaped laser beam.

    Science.gov (United States)

    Redding, Brandon; Pan, Yong-Le

    2015-06-15

    Optical trapping of airborne particles is emerging as an essential tool in applications ranging from online characterization of living cells and aerosols to particle transport and delivery. However, existing optical trapping techniques using a single laser beam can trap only transparent particles (via the radiative pressure force) or absorbing particles (via the photophoretic force), but not particles of either type-limiting the utility of trapping-enabled aerosol characterization techniques. Here, we present the first optical trapping technique capable of trapping both transparent and absorbing particles with arbitrary morphology using a single shaped laser beam. Such a general-purpose optical trapping mechanism could enable new applications such as trapping-enabled aerosol characterization with high specificity.

  14. Single-particle characterization of municipal solid waste (MSW) ash particles using low- Z particle electron probe X-ray microanalysis

    Science.gov (United States)

    Hwang, HeeJin; Ro, Chul-Un

    Environmentally benign treatment of municipal solid waste (MSW) ashes has been a worldwide issue since more countries are implementing incineration to reduce waste volume. A single-particle analytical technique, named low- Z particle electron probe X-ray microanalysis (low- Z particle EPMA) was applied to characterize MSW fly- and bottom-ash particle samples collected from two municipal incinerators in Korea. According to their chemical composition, many distinctive particle types were identified. For fly ash sample collected in one incinerator (sample S1), where lime slurry injection is used for acid-gas treatment, CaCO 3-containing particles (28.4%) are the most abundantly encountered, followed by carbonaceous (23.6%), SiO 2-containing (13.8%), NaCl-containing (13.1%), and iron-containing (10.5%) particles. For fly ash sample collected at the other incinerator (sample S2), NaCl-containing particles (40.4%) are the most abundantly encountered, followed by iron-containing (29.1%), carbonaceous (11.8%), CaCO 3-containing (2.2%), and SiO 2-containing (7.0%) particles. For bottom ash sample collected at one incinerator (sample S3), iron-containing particles (46.6%) are the most abundantly encountered, followed by CaCO 3-containing (17.3%), carbonaceous (16.6%), and Si and/or Al oxide-containing (15.8%) particles. For bottom ash sample collected in the other incinerator (sample S4), iron-containing particles (63.4%) are also the most abundantly encountered, followed by carbonaceous (14.0%), CaCO 3-containing (10.0%), and Si and/or Al oxide-containing (6.1%) particles. Chemical compositions of the two bottom ash samples are not much different compared to those of the two fly ash samples. It was demonstrated that the single-particle characterization using this low- Z particle EPMA technique provided detailed information on various types of chemical species in the MSW ash samples. In addition, the technique has advantage over conventional analytical techniques in the

  15. Single crystal particles of a mesoporous mixed transition metal oxide with a wormhole structure.

    Science.gov (United States)

    Lee, B; Lu, D; Kondo, J N; Domen, K

    2001-10-21

    A new type of mesoporous mixed transition metal oxide of Nb and Ta (NbTa-TIT-1) has been prepared through a two-step calcination, which consists of single crystal particles with wormhole mesoporous structure.

  16. Single breath-hold diffusion-weighted MRI of the liver with parallel imaging: initial experience

    International Nuclear Information System (INIS)

    Oner, A.Y.; Celik, H.; Oktar, S.O.; Tali, T.

    2006-01-01

    Aim: To evaluate prospectively the improvement in the signal:noise ratio (SNR), with the use of parallel technique in single breath-hold diffusion-weighted imaging (DWI) of the liver and its affect on apparent diffusion coefficient (ADC) measurements. Materials and methods: This study was approved by our institutional review board. Written informed consent was obtained from all participants. Fifteen patients underwent single breath-hold DWI of the liver with and without parallel imaging technique. SNR and ADC values were measured over a lesion-free right hepatic lobe by two radiologists in both series. When a focal hepatic lesion was present the contrast:noise ratio (CNR) and ADC were also measured. Paired Student's t-tests were used for statistical analysis. Results: Mean SNR values of the liver were 20.82 ± 7.54 and 15.83 ± 5.95 for DWI with and without parallel imaging, respectively. SNR values measured in DWI using parallel imaging were found to be significantly higher (p -3 mm 2 /s and 1.56 ± 0.28 x 10 -3 mm 2 /s for DWI with and without parallel imaging, respectively. No significant difference was found between the two sequences for hepatic ADC measurement (p > 0.05). Overall lesion CNR was found to be higher in DWI with parallel imaging. Conclusion: Parallel imaging is useful in improving SNR of single breath-hold DWI of the liver without compromising ADC measurements

  17. Monte Carlo Modelling of Single-Crystal Diffuse Scattering from Intermetallics

    Directory of Open Access Journals (Sweden)

    Darren J. Goossens

    2016-02-01

    Full Text Available Single-crystal diffuse scattering (SCDS reveals detailed structural insights into materials. In particular, it is sensitive to two-body correlations, whereas traditional Bragg peak-based methods are sensitive to single-body correlations. This means that diffuse scattering is sensitive to ordering that persists for just a few unit cells: nanoscale order, sometimes referred to as “local structure”, which is often crucial for understanding a material and its function. Metals and alloys were early candidates for SCDS studies because of the availability of large single crystals. While great progress has been made in areas like ab initio modelling and molecular dynamics, a place remains for Monte Carlo modelling of model crystals because of its ability to model very large systems; important when correlations are relatively long (though still finite in range. This paper briefly outlines, and gives examples of, some Monte Carlo methods appropriate for the modelling of SCDS from metallic compounds, and considers data collection as well as analysis. Even if the interest in the material is driven primarily by magnetism or transport behaviour, an understanding of the local structure can underpin such studies and give an indication of nanoscale inhomogeneity.

  18. Single-particle colloid tracking in four dimensions.

    Science.gov (United States)

    Anthony, Stephen M; Hong, Liang; Kim, Minsu; Granick, Steve

    2006-11-21

    Coating a close-packed fluorescent colloid monolayer with a nanometer-thick metal film followed by sonication in liquid produces modulated optical nanoprobes. The metal coating modulates the fluorescence as these structures rotate in suspension, enabling the use of these particles as probes to monitor both rotational and center-of-mass (translational) dynamics in complex environments. Here, we demonstrate methods to simultaneously measure two translational and two rotational degrees of freedom, with excellent agreement to theory. The capability to determine two angles of rotation opens several new avenues of future research.

  19. Single Particle energy levels in ODD-A Nuclei

    International Nuclear Information System (INIS)

    Lasijo, R.S.

    1997-01-01

    Singe particle energies for atomic nuclei with odd-A number of nucleons, i.e. nuclei possessing odd number of protons or odd number of neutrons, were calculated based on Nilsson's theory, and then the diagrams were made. the energy diagram is in the from of plot of energies as function of deformations, entities identifying the deviations from the spherical shape. The energy calculations were done using FORTRAN 77 language of PC (Personal Computer) version with Microsoft Fortran Power Station compiler, which was then combined with WORD version 6.0 and EXCEL version 5.0 of WINDOWS WORKGROUP to make the plot

  20. Single particle aerodynamic relaxation time analyzer. [for aerosol pollutants

    Science.gov (United States)

    Mazumder, M. K.; Kirsch, K. J.

    1977-01-01

    An instrument employing a laser Doppler velocimeter and a microphone to measure the phase lag of the motion of aerosol particulates relative to the motion of the fluid medium within an acoustic field is described. The relaxation times and aerodynamic diameters of the particles or droplets are determined in real time from the measured values of phase lag; thus, the size analysis is independent of the electrostatic charges and refractive indices of the particulates. The instrument is suitable for analyzing the aerodynamic size spectrum of atmospheric particulate pollutants with aerodynamic diameters ranging from 0.1 to 10.0 microns.

  1. A clustering approach to multireference alignment of single-particle projections in electron microscopy

    OpenAIRE

    Sorzano, C.O.S.; Bilbao-Castro, J.R.; Shkolnisky, Y.; Alcorlo, M.; Melero, R.; Caffarena-Fernández, G.; Li, M.; Xu, G.; Marabini, R.; Carazo, J.M.

    2010-01-01

    Two-dimensional analysis of projections of single particles acquired by an electron microscope is a useful tool to help identifying the different kinds of projections present in a dataset and their different projection directions. Such analysis is also useful to distinguish between different kinds of particles or different particle conformations. In this paper we introduce a new algorithm for performing two-dimensional multireference alignment and classification that is based on a Hierarchica...

  2. Technical Note: The single particle soot photometer fails to reliably detect PALAS soot nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Gysel

    2012-12-01

    Full Text Available The single particle soot photometer (SP2 uses laser-induced incandescence (LII for the measurement of atmospheric black carbon (BC particles. The BC mass concentration is obtained by combining quantitative detection of BC mass in single particles with a counting efficiency of 100% above its lower detection limit. It is commonly accepted that a particle must contain at least several tenths of a femtogram BC in order to be detected by the SP2.

    Here we show the result that most BC particles from a PALAS spark discharge soot generator remain undetected by the SP2, even if their BC mass, as independently determined with an aerosol particle mass analyser (APM, is clearly above the typical lower detection limit of the SP2. Comparison of counting efficiency and effective density data of PALAS soot with flame generated soot (combustion aerosol standard burner, CAST, fullerene soot and carbon black particles (Cabot Regal 400R reveals that particle morphology can affect the SP2's lower detection limit. PALAS soot particles are fractal-like agglomerates of very small primary particles with a low fractal dimension, resulting in a very low effective density. Such loosely packed particles behave like "the sum of individual primary particles" in the SP2's laser. Accordingly, most PALAS soot particles remain undetected as the SP2's laser intensity is insufficient to heat the primary particles to their vaporisation temperature because of their small size (Dpp ≈ 5–10 nm. Previous knowledge from pulsed laser-induced incandescence indicated that particle morphology might have an effect on the SP2's lower detection limit, however, an increase of the lower detection limit by a factor of ∼5–10, as reported here for PALAS soot, was not expected.

    In conclusion, the SP2's lower detection limit at a certain laser power depends primarily on the total BC mass per particle for compact particles with sufficiently high effective

  3. The influence of transport phenomena on the fluidized bed combustion of a single carbon particle

    NARCIS (Netherlands)

    Prins, W.; van Swaaij, Willibrordus Petrus Maria

    1990-01-01

    The burning rate and temperature of the carbon particles are known to affect the efficiency of a fluidized bed combustor, and also the emission levels of undesired noxious components. The main results of an extensive study on the fluidized bed combustion behaviour of a single carbon particle [1] are

  4. Efficiencies of dynamic Monte Carlo algorithms for off-lattice particle systems with a single impurity

    KAUST Repository

    Novotny, M.A.

    2010-02-01

    The efficiency of dynamic Monte Carlo algorithms for off-lattice systems composed of particles is studied for the case of a single impurity particle. The theoretical efficiencies of the rejection-free method and of the Monte Carlo with Absorbing Markov Chains method are given. Simulation results are presented to confirm the theoretical efficiencies. © 2010.

  5. Multi-Color Single Particle Tracking with Quantum Dots

    DEFF Research Database (Denmark)

    Christensen, Eva Arnspang; Brewer, J. R.; Lagerholm, B. C.

    2012-01-01

    Quantum dots (QDs) have long promised to revolutionize fluorescence detection to include even applications requiring simultaneous multi-species detection at single molecule sensitivity. Despite the early promise, the unique optical properties of QDs have not yet been fully exploited in e. g...

  6. Role of the potential landscape on the single-file diffusion through channels.

    Science.gov (United States)

    Goldt, S D; Terentjev, E M

    2014-12-14

    Transport of colloid particles through narrow channels is ubiquitous in cell biology as well as becoming increasingly important for microfluidic applications or targeted drug delivery. Membrane channels in cells are useful models for artificial designs because of their high efficiency, selectivity, and robustness to external fluctuations. Here, we model the passive channels that let cargo simply diffuse through them, affected by a potential profile along the way. Passive transporters achieve high levels of efficiency and specificity from binding interactions with the cargo inside the channel. This however leads to a paradox: why should channels which are so narrow that they are blocked by their cargo evolve to have binding regions for their cargo if that will effectively block them? Using Brownian dynamics simulations, we show that different potentials, notably symmetric, increase the flux through narrow passive channels - and investigate how shape and depth of potentials influence the flux. We find that there exist optimal depths for certain potential shapes and that it is most efficient to apply a small force over an extended region of the channel. On the other hand, having several spatially discrete binding pockets will not alter the flux significantly. We also explore the role of many-particle effects arising from pairwise particle interactions with their neighbours and demonstrate that the relative changes in flux can be accounted for by the kinetics of the absorption reaction at the end of the channel.

  7. Role of single-particle and pair condensates in Bose systems with arbitrary intensity of interaction

    Directory of Open Access Journals (Sweden)

    A.S. Peletminskii

    2013-03-01

    Full Text Available We study a superfluid Bose system with single-particle and pair condensates on the basis of a half-phenomenological theory of a Bose liquid not involving the weakness of interparticle interaction. The coupled equations describing the equilibrium state of such system are derived from the variational principle for entropy. These equations are analyzed at zero temperature both analytically and numerically. It is shown that the fraction of particles in the single-particle and pair condensates essentially depends on the total density of the system. At densities attainable in condensates of alkali-metal atoms, almost all particles are in the single-particle condensate. The pair condensate fraction grows with increasing total density and becomes dominant. It is shown that at density of liquid helium, the single-particle condensate fraction is less than 10% that agrees with experimental data on inelastic neutron scattering, Monte Carlo calculations and other theoretical predictions. The ground state energy, pressure, and compressibility are found for the system under consideration. The spectrum of single-particle excitations is also analyzed.

  8. Mesoporous zeolite single crystal catalysts: Diffusion and catalysis in hierarchical zeolites

    DEFF Research Database (Denmark)

    Christensen, Christina Hviid; Johannsen, Kim; Toernqvist, Eric

    2007-01-01

    in the zeolite micropores. Here, we briefly discuss the most important ways of introducing mesopores into zeolites and, for the first time, we show experimentally that the presence of mesopores dramatically increases the rate of diffusion in zeolite catalysts. This is done by studying the elution of iso-butane...... from packed beds of conventional and mesoporous zeolite catalysts. Moreover, we discuss in detail the recent observation of improved activity and selectivity in the alkylation of benzene with ethene using mesoporous zeolite single crystal catalysts. For this reaction, we show by calculation...

  9. Fabrication of engineered particle-doped light diffuser with a soft transparent mold of UV-curable polymer

    Science.gov (United States)

    Zhu, Jicheng; Liu, Yanhua; Shen, Su; Wu, Jianhong

    2017-11-01

    Engineered particle-doped light diffuser is realized by a simple, low-cost soft lithographic method. A flexible photopolymerizable mold is employed as an intermediate transferring template directly from the developed photoresist texture to fabricate engineered particle-doped light diffuser. The well-designed surface microstructure can directionally scatter the incident light, while the doped ultra-violet curable resin with low concentration of the 2 μm-diameter organosilicone particles can homogenize the scattering light without decreasing transmittance. Experimental results show that the measured transmittance can be as high as 96.9% with little backscattering effect over the whole visible regime. Meanwhile, the haze raises from 30% to 75% with increased dopant concentration from 1 wt% to 7 wt% and thickness of the residual layer from 10 μm to 40 μm remained in the imprinting process. The proposed engineered particle-doped light diffuser can manage scattering angle, luminance uniformity and haze, thus it has the capability of homogenizing light and eliminating striations to create more visually pleasing structured lighting in commercial and residential environments. We anticipate that the approach appears to be a strong candidate for future development because of its scalable nature, environmentally-friendly process and relatively low cost.

  10. Development and characterization of a single particle laser ablation mass spectrometer (SPLAM for organic aerosol studies

    Directory of Open Access Journals (Sweden)

    F. Gaie-Levrel

    2012-01-01

    Full Text Available A single particle instrument was developed for real-time analysis of organic aerosol. This instrument, named Single Particle Laser Ablation Mass Spectrometry (SPLAM, samples particles using an aerodynamic lens system for which the theoretical performances were calculated. At the outlet of this system, particle detection and sizing are realized by using two continuous diode lasers operating at λ = 403 nm. Polystyrene Latex (PSL, sodium chloride (NaCl and dioctylphtalate (DOP particles were used to characterize and calibrate optical detection of SPLAM. The optical detection limit (DL and detection efficiency (DE were determined using size-selected DOP particles. The DE ranges from 0.1 to 90% for 100 and 350 nm DOP particles respectively and the SPLAM instrument is able to detect and size-resolve particles as small as 110–120 nm. During optical detection, particle scattered light from the two diode lasers, is detected by two photomultipliers and the detected signals are used to trigger UV excimer laser (λ = 248 nm used for one-step laser desorption ionization (LDI of individual aerosol particles. The formed ions are analyzed by a 1 m linear time-of-flight mass spectrometer in order to access to the chemical composition of individual particles. The TOF-MS detection limit for gaseous aromatic compounds was determined to be 0.85 × 10−15 kg (∼4 × 103 molecules. DOP particles were also used to test the overall operation of the instrument. The analysis of a secondary organic aerosol, formed in a smog chamber by the ozonolysis of indene, is presented as a first application of the instrument. Single particle mass spectra were obtained with an effective hit rate of 8%. Some of these mass spectra were found to be very different from one particle to another possibly reflecting chemical differences within the investigated indene SOA particles. Our study shows that an exhaustive statistical analysis, over hundreds of particles

  11. Single particle studies of black liquor gasification under pressurized conditions

    Energy Technology Data Exchange (ETDEWEB)

    Whitty, K.; Backman, R.; Hupa, M.; Backman, P.; Ek, P.; Hulden, S.T.; Kullberg, M.; Sorvari, V.

    1997-10-01

    The purpose of this project is to provide experimental data relevant to pressurized black liquor gasification concepts. Specifically, the following two goals will be achieved: Data on swelling, char yields and component release during pressurized pyrolysis of small samples of black liquor will be obtained. The reactivity and physical behavior of single black liquor droplets during simultaneous pyrolysis and gasification will be investigated. The structure and composition of black liquor char during formation and conversion will be studied. (orig.)

  12. Single-particle and collective states in transfer reactions

    International Nuclear Information System (INIS)

    Lhenry, I.; Suomijaervi, T.; Giai, N. van

    1993-01-01

    The possibility to excite collective states in transfer reactions induced by heavy ions is studied. Collective states are described within the Random Phase Approximation (RPA) and the collectivity is defined according to the number of configurations contributing to a given state. The particle transfer is described within the Distorted Wave Born Approximation (DWBA). Calculations are performed for two different stripping reactions: 207 Pb( 20 Ne, 19 Ne) 208 Pb and 59 Co( 20 Ne, 19 F) 60 Ni at 48 MeV/nucleon for which experimental data are available. The calculation shows that a sizeable fraction of collective strength can be excited in these reactions. The comparison with experiment shows that this parameter-free calculation qualitatively explains the data. (author) 19 refs.; 10 figs

  13. Crystalline Bis-urea Nanochannel Architectures Tailored for Single-File Diffusion Studies.

    Science.gov (United States)

    Bowers, Clifford R; Dvoyashkin, Muslim; Salpage, Sahan R; Akel, Christopher; Bhase, Hrishi; Geer, Michael F; Shimizu, Linda S

    2015-06-23

    Urea is a versatile building block that can be modified to self-assemble into a multitude of structures. One-dimensional nanochannels with zigzag architecture and cross-sectional dimensions of only ∼3.7 Å × 4.8 Å are formed by the columnar assembly of phenyl ether bis-urea macrocycles. Nanochannels formed by phenylethynylene bis-urea macrocycles have a round cross-section with a diameter of ∼9.0 Å. This work compares the Xe atom packing and diffusion inside the crystalline channels of these two bis-ureas using hyperpolarized Xe-129 NMR. The elliptical channel structure of the phenyl ether bis-urea macrocycle produces a Xe-129 powder pattern line shape characteristic of an asymmetric chemical shift tensor with shifts extending to well over 300 ppm with respect to the bulk gas, reflecting extreme confinement of the Xe atom. The wider channels formed by phenylethynylene bis-urea, in contrast, present an isotropic dynamically average electronic environment. Completely different diffusion dynamics are revealed in the two bis-ureas using hyperpolarized spin-tracer exchange NMR. Thus, a simple replacement of phenyl ether with phenylethynylene as the rigid linker unit results in a transition from single-file to Fickian diffusion dynamics. Self-assembled bis-urea macrocycles are found to be highly suitable materials for fundamental molecular transport studies on micrometer length scales.

  14. Cantilever-based micro-particle filter with simultaneous single particle detection

    DEFF Research Database (Denmark)

    Noeth, Nadine-Nicole; Keller, Stephan Sylvest; Boisen, Anja

    2011-01-01

    -particles from a liquid. A hole-array is integrated into a micro-cantilever, which is inserted into a microfluidic channel perpendicular to the flow. A metal pad at the apex of the cantilever enables an optical read-out of the deflection of the cantilever. When a micro-particle is too large to pass a hole...... in the cantilever, clogging of the holes increases the flow resistance of the cantilever. This causes a bending of the device, which can be detected by the optical read-out system. By arranging an array of such cantilevers with different hole sizes, separation by size can be achieved. In this paper a proof...

  15. Single molecule experiments challenge the strict wave-particle dualism of light.

    Science.gov (United States)

    Greulich, Karl Otto

    2010-01-21

    Single molecule techniques improve our understanding of the photon and light. If the single photon double slit experiment is performed at the "single photon limit" of a multi-atom light source, faint light pulses with more than one photon hamper the interpretation. Single molecules, quantum dots or defect centres in crystals should be used as light source. "Single photon detectors" do not meet their promise-only "photon number resolving single photon detectors" do so. Particularly, the accumulation time argument, the only safe basis for the postulate of a strictly particle like photon, has so far not yet been verified.

  16. Single Molecule Experiments Challenge the Strict Wave-Particle Dualism of Light

    Directory of Open Access Journals (Sweden)

    Karl Otto Greulich

    2010-01-01

    Full Text Available Single molecule techniques improve our understanding of the photon and light. If the single photon double slit experiment is performed at the “single photon limit” of a multi-atom light source, faint light pulses with more than one photon hamper the interpretation. Single molecules, quantum dots or defect centres in crystals should be used as light source. “Single photon detectors” do not meet their promise―only “photon number resolving single photon detectors” do so. Particularly, the accumulation time argument, the only safe basis for the postulate of a strictly particle like photon, has so far not yet been verified.

  17. Dynamic micro-organization of P2X7 receptors revealed by PALM based single particle tracking

    Directory of Open Access Journals (Sweden)

    Amulya Nidhi Shrivastava

    2013-11-01

    Full Text Available Adenosine triphosphate (ATP-gated P2X7 receptors (P2X7Rs are members of the purinergic receptor family that are expressed in several cell types including neurons. A high concentration of ATP is required for the channel opening of P2X7Rs compared to other members of this receptor family. Recent work suggests that ATP binding to members of the P2X receptor family determines the diffusion and localization of these receptors on the plasma membrane of neurons. Here, we employed single particle tracking photoactivated localization microscopy (sptPALM to study the diffusion and ATP-dependence of rat P2X7Rs. Dendra2-tagged P2X7Rs were transfected in hippocampal neurons and imaged on proximal dendrites. Our results suggest the presence of two populations of P2X7Rs within the extra-synaptic membrane: a population composed of rapidly diffusing receptors and one stabilized within nanoclusters (~100 nm diameter. P2X7R trajectories were rarely observed at synaptic sites. P2X7R mutations in the ATP-binding site (K64A or the conserved phosphorylation site (K17A resulted in faster- and slower-diffusing receptors, respectively. Furthermore, ATP differentially accelerated wild type and K17A-mutant receptors but not K64A-mutant receptors. Our results indicate that receptor conformation plays a critical role in regulating ATP-mediated changes in P2X7R diffusion and micro-organization.

  18. Convergence of lateral dynamic measurements in the plasma membrane of live cells from single particle tracking and STED-FCS

    Science.gov (United States)

    Lagerholm, B. Christoffer; Andrade, Débora M.; Clausen, Mathias P.; Eggeling, Christian

    2017-02-01

    Fluorescence correlation spectroscopy (FCS) in combination with the super-resolution imaging method STED (STED-FCS), and single-particle tracking (SPT) are able to directly probe the lateral dynamics of lipids and proteins in the plasma membrane of live cells at spatial scales much below the diffraction limit of conventional microscopy. However, a major disparity in interpretation of data from SPT and STED-FCS remains, namely the proposed existence of a very fast (unhindered) lateral diffusion coefficient, ⩾5 µm2 s-1, in the plasma membrane of live cells at very short length scales, ≈⩽ 100 nm, and time scales, ≈1-10 ms. This fast diffusion coefficient has been advocated in several high-speed SPT studies, for lipids and membrane proteins alike, but the equivalent has not been detected in STED-FCS measurements. Resolving this ambiguity is important because the assessment of membrane dynamics currently relies heavily on SPT for the determination of heterogeneous diffusion. A possible systematic error in this approach would thus have vast implications in this field. To address this, we have re-visited the analysis procedure for SPT data with an emphasis on the measurement errors and the effect that these errors have on the measurement outputs. We subsequently demonstrate that STED-FCS and SPT data, following careful consideration of the experimental errors of the SPT data, converge to a common interpretation which for the case of a diffusing phospholipid analogue in the plasma membrane of live mouse embryo fibroblasts results in an unhindered, intra-compartment, diffusion coefficient of  ≈0.7-1.0 µm2 s-1, and a compartment size of about 100-150 nm.

  19. Single particle radiation between high spin states in /sup 147/Gd

    Energy Technology Data Exchange (ETDEWEB)

    Borggreen, J.; Sletten, G.; Bjoernholm, S.; Pedersen, J.; Del Zoppo, A.; Radford, D.C.; Janssens, R.V.F.; Chowdhury, P.; Emling, H.; Frekers, D.

    1987-05-04

    Transitions above the T/sub 1/2/=550 ns, 8.59 MeV isomer in /sup 147/Gd have been studied using the (/sup 30/Si, 5n) reaction. Results from ..gamma gamma.. coincidence, angular distribution and recoil distance measurements are combined to establish a level scheme up to 16.9 MeV and I approx. = 79/2. Single particle configurations are assigned on the basis of the deformed independent particle model. The single particle nature of the highest spin states and the apparent lack of collectivity is discussed.

  20. Measurement of switching field reduction of single domain particles in a two-dimensional array

    Science.gov (United States)

    Vértesy, G.; Pardavi-Horvath, M.

    2001-12-01

    The mechanism of switching of uniaxial, single domain, single crystalline epitaxial garnet particles on a two-dimensional square array was investigated, and the reason for the wide distribution of switching fields was studied. In spite that the particles were found very uniform, the existence of soft magnetic defects, not connected to visible crystalline or manufacturing defects of the material, was found to be responsible for the broad distribution of the switching field, Hc=280±85 Oe, as measured on a large number of individual particles. Very good quantitative correlation was found between the strength of the these defects and the switching field.

  1. [Analysis of Single Particle Aging and Mixing State at an Agriculture Site (Quzhou) in the North China Plain in Summer Using a Single Particle Aerosol Mass Spectrometer].

    Science.gov (United States)

    Huang, Zi-long; Zeng, Li-mm; Dong, I-Iua-Bin; Li, Mei; Zhu, Tong

    2016-04-15

    To characterize the size distribution and chemical ompsitins f abiet prtices t a agicuturesit intheNorh o Chinese Plain, a single particle aerosol mass spectrometer (SPAMS) was deployed from June 30 to July 8, 2013. A total of 230,152 particles in the size range of 0.2-2.0 pm were chemically analyzed with both positive and negative ion spectra. The results revealed that aerosol could he classified into eight dominant groups, including elemental carbon (EC, 55.5%), organic carbon (OC, 10.7%), alkalis (Na-K, 17.4%), other metals (1.7%), Fe-rich (6.3%), Pb-rich (3.1%), dust (4.8%), and other (0.8%). The observed eight types of particles contained secondary components such as 46NO2-, 62NO3-, 96SO3-, 96SO4-, 97HSO4-, showing that they probably went through different aging processes. The analysis of particle size distribution showed that 700-800 nm was the peak value of all particles, and that dust and Fe particles were mainly in the coarse size range. EC particles subtype group research revealed EC particles tended to be aging with the above mentioned secondary ions and eventually led to a particle type conversion from EC to the less aging ECN and the more serious aging ECS, the diurnal variation of which was obviously negatively correlated, and there was a possibility of forming OC/EC mixture with the adsorption of secondary organic matter on EC surface.

  2. Effect of particle shape and structure on the results of single-particle light-scattering size analysis.

    Science.gov (United States)

    Umhauer, H; Bottlinger, M

    1991-11-20

    To evaluate quantitatively the influence exerted by the shape and structure of nonspherical, nonideal particles on the results of single-particle scattered-light size analysis, measurements were conducted with individual particles of different materials (glass, limestone, and quartz). For this purpose, the particles were suspended in an electrodynamic balance and repeatedly passed through the analyzer's measuring volume with a continually changing random orientation. The scattered-light signal spectra thus obtained specify the probability with which a certain pulse height is induced when the particle passes once through the measuring volume at a given coincidental orientation. The spectra reflect the material-characteristic influence. They allow the loss of resolution of common scattered-light size analyses to be assessed and algorithms (matrices) to be compiled with which the shape and structure influence may be mathematically eliminated. Because a shape and structure independent size parameter is also determined from the individual particles, exact calibration curves can be derived in which the shape and structure influence are incorporated.

  3. Hydrogen self-diffusion in single crystal olivine and electrical conductivity of the Earth's mantle.

    Science.gov (United States)

    Novella, Davide; Jacobsen, Benjamin; Weber, Peter K; Tyburczy, James A; Ryerson, Frederick J; Du Frane, Wyatt L

    2017-07-13

    Nominally anhydrous minerals formed deep in the mantle and transported to the Earth's surface contain tens to hundreds of ppm wt H 2 O, providing evidence for the presence of dissolved water in the Earth's interior. Even at these low concentrations, H 2 O greatly affects the physico-chemical properties of mantle materials, governing planetary dynamics and evolution. The diffusion of hydrogen (H) controls the transport of H 2 O in the Earth's upper mantle, but is not fully understood for olivine ((Mg, Fe) 2 SiO 4 ) the most abundant mineral in this region. Here we present new hydrogen self-diffusion coefficients in natural olivine single crystals that were determined at upper mantle conditions (2 GPa and 750-900 °C). Hydrogen self-diffusion is highly anisotropic, with values at 900 °C of 10 -10.9 , 10 -12.8 and 10 -11.9 m 2 /s along [100], [010] and [001] directions, respectively. Combined with the Nernst-Einstein relation, these diffusion results constrain the contribution of H to the electrical conductivity of olivine to be σ H  = 10 2.12 S/m·C H2O ·exp -187kJ/mol/(RT) . Comparisons between the model presented in this study and magnetotelluric measurements suggest that plausible H 2 O concentrations in the upper mantle (≤250 ppm wt) can account for high electrical conductivity values (10 -2 -10 -1  S/m) observed in the asthenosphere.

  4. Single-Particle Time-of-Flight Mass Spectrometry Utilizing a Femtosecond Desorption and Ionization Laser.

    Science.gov (United States)

    Zawadowicz, Maria A; Abdelmonem, Ahmed; Mohr, Claudia; Saathoff, Harald; Froyd, Karl D; Murphy, Daniel M; Leisner, Thomas; Cziczo, Daniel J

    2015-12-15

    Single-particle time-of-flight mass spectrometry has now been used since the 1990s to determine particle-to-particle variability and internal mixing state. Instruments commonly use 193 nm excimer or 266 nm frequency-quadrupled Nd:YAG lasers to ablate and ionize particles in a single step. We describe the use of a femtosecond laser system (800 nm wavelength, 100 fs pulse duration) in combination with an existing single-particle time-of-flight mass spectrometer. The goal of this project was to determine the suitability of a femtosecond laser for single-particle studies via direct comparison to the excimer laser (193 nm wavelength, ∼10 ns pulse duration) usually used with the instrument. Laser power, frequency, and polarization were varied to determine the effect on mass spectra. Atmospherically relevant materials that are often used in laboratory studies, ammonium nitrate and sodium chloride, were used for the aerosol. Detection of trace amounts of a heavy metal, lead, in an ammonium nitrate matrix was also investigated. The femtosecond ionization had a large air background not present with the 193 nm excimer and produced more multiply charged ions. Overall, we find that femtosecond laser ablation and ionization of aerosol particles is not radically different than that provided by a 193 nm excimer.

  5. Deflection of high energy channeled charged particles by elastically bent silicon single crystals

    International Nuclear Information System (INIS)

    Gibson, W.M.; Kim, I.J.; Pisharodoy, M.; Salman, S.M.; Sun, C.R.; Wang, G.H.; Wijayawardana, R.; Forster, J.S.; Mitchell, I.V.; Baker, S.I.; Carrigan, R.A. Jr.; Toohig, T.E.; Avdeichikov, V.V.; Ellison, J.A.; Siffert, P.

    1984-01-01

    An experiment has been carried out to observe the deflection of charged particles by planar channeling in bent single crystals of silicon for protons with energy up to 180 GeV. Anomolous loss of particles from the center point of a three point bending apparatus was observed at high incident particle energy. This effect has been exploited to fashion a 'dechanneling spectrometer' to study dechanneling effects due to centripital displacement of channeled particle trajectories in a bent crystal. The bending losses generally conform to the predictions of calculations based on a classical model. (orig.)

  6. The on-line analysis of aerosol-delivered pharmaceuticals via single particle aerosol mass spectrometry.

    Science.gov (United States)

    Morrical, Bradley D; Balaxi, Maria; Fergenson, David

    2015-07-15

    The use of single particle aerosol mass spectrometry (SPAMS) was evaluated for the analysis of inhaled pharmaceuticals to determine the mass distribution of the individual active pharmaceutical ingredients (API) in both single ingredient and combination drug products. SPAMS is an analytical technique where the individual aerodynamic diameters and chemical compositions of many aerosol particles are determined in real-time. The analysis was performed using a Livermore Instruments SPAMS 3.0, which allowed the efficient analysis of aerosol particles with broad size distributions and can acquire data even under a very large particle load. Data similar to what would normally require roughly three days of experimentation and analysis was collected in a five minute period and analyzed automatically. The results were computed to be comparable to those returned by a typical Next Generation Impactor (NGI) particle size distribution experiment. Copyright © 2015. Published by Elsevier B.V.

  7. Magnetic field dependence of the diffusion of single dextran molecules within a hydrogel containing magnetite nanoparticles.

    Science.gov (United States)

    Al-Baradi, Ateyyah M; Mykhaylyk, Oleksandr O; Blythe, Harry J; Geoghegan, Mark

    2011-03-07

    We consider the effect of applied magnetic fields on the diffusion of single dextran molecules labeled with fluorescein isothiocyanate within a ferrogel [a composite of magnetite nanoparticles in a poly(methacrylic acid) hydrogel] using fluorescence correlation spectroscopy. We show that the mesh size of the ferrogel is controlled by the applied magnetic field, B, and scales as exp(-(4)√ξ(3)B(2)/2μ(0)k(B)T), where ξ is a correlation length, μ(0) the magnetic constant, k(B) the Boltzmann constant, and T is the absolute temperature. The diffusion coefficient of the dextran can be modeled with a simple Stokes-Einstein law, containing the same scaling behavior with magnetic field as the swelling of the hydrogel. Furthermore, the magnetic field-dependent release of dextran from the hydrogel is also controlled by the same relationship. The samples were characterized by small angle x-ray scattering (SAXS) and magnetometry experiments. Magnetic hysteresis loops from these ferrogels and zero field cooled∕field cooled measurements reveal single domain ferromagnetic behavior at room temperature with a similar coercivity for both as-prepared and fully swollen ferrogels, and for increasing magnetic nanoparticle concentration. SAXS experiments, such as the hysteresis loops, show that magnetite does not aggregate in these gels. © 2011 American Institute of Physics.

  8. Single-fiber electromyography analysis of botulinum toxin diffusion in patients with fatigue and pseudobotulism.

    Science.gov (United States)

    Ruet, Alexis; Durand, Marie Christine; Denys, Pierre; Lofaso, Frederic; Genet, François; Schnitzler, Alexis

    2015-06-01

    To characterize electromyographic abnormalities according to symptoms (asymptomatic, fatigue, pseudobotulism) reported 1 month after botulinum toxin injection. Retrospective, single-center study comparing single-fiber electromyography (SFEMG) in the extensor digitorum communis (EDC) or orbicularis oculi (OO) muscles. Hospital. Four groups of adults treated for spasticity or neurologic bladder hyperactivity (N=55): control group (asymptomatic patients: n=17), fatigue group (unusual fatigue with no weakness: n=15), pseudobotulism group (muscle weakness and/or visual disturbance: n=20), and botulism group (from intensive care unit of the same hospital: n=3). Not applicable. Mean jitter, percentage of pathologic fibers, and percentage of blocked fibers were compared between groups. SFEMG was abnormal for 17.6% of control patients and 75% of patients in the pseudobotulism group. There were no differences between the control and fatigue groups. Mean jitter, percentage of pathologic fibers, and percentage of blocked fibers of the EDC muscle were significantly higher in the pseudobotulism group than in the fatigue and control groups. There were no differences between groups for the OO muscle. The SFEMG results in the botulism group were qualitatively similar to those of the pseudobotulism group. SFEMG of the EDC muscle confirmed diffusion of the toxin into muscles distant from the injection site in the pseudobotulism group. SFEMG in the OO muscle is not useful for the diagnosis of diffusion. No major signs of diffusion of botulinum toxin type A were found away from the injection site in patients with fatigue but no motor weakness. Such fatigue may be related to other mechanisms. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  9. Silver nanoflowers for single-particle SERS with 10 pM sensitivity.

    Science.gov (United States)

    Roy, Shrawan; Muhammed Ajmal, C; Baik, Seunghyun; Kim, Jeongyong

    2017-11-17

    Surface-enhanced Raman scattering (SERS) has received considerable attention as a noninvasive optical sensing technique with ultrahigh sensitivity. While numerous types of metallic particles have been actively investigated as SERS substrates, the development of new SERS agents with high sensitivity and their reliable characterization are still required. Here we report the preparation and characterization of flower-shaped silver (Ag) nanoparticles that exhibit high-sensitivity single-particle SERS performance. Ag nanoflowers (NFs) with bud sizes in the range 220-620 nm were synthesized by the wet synthesis method. The densely packed nanoscale petals with thicknesses in the range 9-22 nm exhibit a large number of hot spots that significantly enhance their plasmonic activity. A single Ag NF particle (530-620 nm) can detect as little as 10 -11 M 4-mercaptobenzoic acid, and thus provides a sensitivity three orders of SERS magnitude greater than that of a spherical Ag nanoparticle. The analytical enhancement factors for single Ag NF particles were found to be as high as 8.0 × 10 9 , providing unprecedented high SERS detectivity at the single particle level. Here we present an unambiguous and systematic assessment of the SERS performances of the Ag NFs and demonstrate that they provide highly sensitive sensing platforms by single SERS particle.

  10. Improved focal liver lesion detection: comparison of single-shot diffusion-weighted echoplanar and single-shot T-2 weighted turbo spin echo techniques

    NARCIS (Netherlands)

    Coenegrachts, K.; Delanote, J.; ter Beek, L.; Haspeslagh, M.; Bipat, S.; Stoker, J.; van Kerkhove, F.; Steyaert, L.; Rigauts, H.; Casselman, J. W.

    2007-01-01

    The purpose of this study was to compare diffusion-weighted respiratory-triggered single-shot spin echo echoplanar imaging (SS SE-EPI) sequence using four b-values (b=0, b=20, b=300, b=800 s mm(-2)) and single-shot T-2 weighted turbo spin echo (T2W SS TSE) in patients with focal liver lesions, with

  11. Quantitative determination of carbonaceous particle mixing state in Paris using single-particle mass spectrometer and aerosol mass spectrometer measurements

    Directory of Open Access Journals (Sweden)

    R. M. Healy

    2013-09-01

    Full Text Available Single-particle mixing state information can be a powerful tool for assessing the relative impact of local and regional sources of ambient particulate matter in urban environments. However, quantitative mixing state data are challenging to obtain using single-particle mass spectrometers. In this study, the quantitative chemical composition of carbonaceous single particles has been determined using an aerosol time-of-flight mass spectrometer (ATOFMS as part of the MEGAPOLI 2010 winter campaign in Paris, France. Relative peak areas of marker ions for elemental carbon (EC, organic aerosol (OA, ammonium, nitrate, sulfate and potassium were compared with concurrent measurements from an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS, a thermal–optical OCEC analyser and a particle into liquid sampler coupled with ion chromatography (PILS-IC. ATOFMS-derived estimated mass concentrations reproduced the variability of these species well (R2 = 0.67–0.78, and 10 discrete mixing states for carbonaceous particles were identified and quantified. The chemical mixing state of HR-ToF-AMS organic aerosol factors, resolved using positive matrix factorisation, was also investigated through comparison with the ATOFMS dataset. The results indicate that hydrocarbon-like OA (HOA detected in Paris is associated with two EC-rich mixing states which differ in their relative sulfate content, while fresh biomass burning OA (BBOA is associated with two mixing states which differ significantly in their OA / EC ratios. Aged biomass burning OA (OOA2-BBOA was found to be significantly internally mixed with nitrate, while secondary, oxidised OA (OOA was associated with five particle mixing states, each exhibiting different relative secondary inorganic ion content. Externally mixed secondary organic aerosol was not observed. These findings demonstrate the range of primary and secondary organic aerosol mixing states in Paris. Examination of the

  12. Mass Spectrometry of Single Particles Levitated in an Electrodynamic Balance: Applications to Laboratory Atmospheric Chemistry Research

    Science.gov (United States)

    Birdsall, A.; Krieger, U. K.; Keutsch, F. N.

    2017-12-01

    Dynamic changes to atmospheric aerosol particle composition (e.g., originating from evaporation/condensation, oxidative aging, or aqueous-phase chemical reactions) impact particle properties with importance for understanding particle effects on climate and human health. These changes can take place over the entire lifetime of an atmospheric particle, which can extend over multiple days. Previous laboratory studies of such processes have included analyzing single particles suspended in a levitation device, such as an electrodynamic balance (EDB), an optical levitator, or an acoustic trap, using optical detection techniques. However, studying chemically complex systems can require an analytical method, such as mass spectrometry, that provides more molecular specificity. Existing work coupling particle levitation with mass spectrometry is more limited and largely has consisted of acoustic levitation of millimeter-sized droplets.In this work an EDB has been coupled with a custom-built ionization source and commercial time-of-flight mass spectrometer (MS) as a platform for laboratory atmospheric chemistry research. Single charged particles (radius 10 μm) have been injected into an EDB, levitated for an arbitrarily long period of time, and then transferred to a vaporization-corona discharge ionization region for MS analysis. By analyzing a series of particles of identical composition, residing in the controlled environment of the EDB for varying times, we can trace the chemical evolution of a particle over hours or days, appropriate timescales for understanding transformations of atmospheric particles.To prove the concept of our EDB-MS system, we have studied the evaporation of particles consisting of polyethylene glycol (PEG) molecules of mixed chain lengths, used as a benchmark system. Our system can quantify the composition of single particles (see Figure for sample spectrum of a single PEG-200 particle: PEG parent ions labeled with m/z, known PEG fragment ions

  13. Digital atom interferometer with single particle control on a discretized space-time geometry.

    Science.gov (United States)

    Steffen, Andreas; Alberti, Andrea; Alt, Wolfgang; Belmechri, Noomen; Hild, Sebastian; Karski, Michał; Widera, Artur; Meschede, Dieter

    2012-06-19

    Engineering quantum particle systems, such as quantum simulators and quantum cellular automata, relies on full coherent control of quantum paths at the single particle level. Here we present an atom interferometer operating with single trapped atoms, where single particle wave packets are controlled through spin-dependent potentials. The interferometer is constructed from a sequence of discrete operations based on a set of elementary building blocks, which permit composing arbitrary interferometer geometries in a digital manner. We use this modularity to devise a space-time analogue of the well-known spin echo technique, yielding insight into decoherence mechanisms. We also demonstrate mesoscopic delocalization of single atoms with a separation-to-localization ratio exceeding 500; this result suggests their utilization beyond quantum logic applications as nano-resolution quantum probes in precision measurements, being able to measure potential gradients with precision 5 x 10(-4) in units of gravitational acceleration g.

  14. Single particle transfer for quantitative analysis with total-reflection X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Esaka, Fumitaka; Esaka, Konomi T.; Magara, Masaaki; Sakurai, Satoshi; Usuda, Shigekazu; Watanabe, Kazuo

    2006-01-01

    The technique of single particle transfer was applied to quantitative analysis with total-reflection X-ray fluorescence (TXRF) spectrometry. The technique was evaluated by performing quantitative analysis of individual Cu particles with diameters between 3.9 and 13.2 μm. The direct quantitative analysis of the Cu particle transferred onto a Si carrier gave a discrepancy between measured and calculated Cu amounts due to the absorption effects of incident and fluorescent X-rays within the particle. By the correction for the absorption effects, the Cu amounts in individual particles could be determined with the deviation within 10.5%. When the Cu particles were dissolved with HNO 3 solution prior to the TXRF analysis, the deviation was improved to be within 3.8%. In this case, no correction for the absorption effects was needed for quantification

  15. Particle image velocimetry measurement of complex flow structures in the diffuser and spherical casing of a reactor coolant pump

    Directory of Open Access Journals (Sweden)

    Yongchao Zhang

    2018-04-01

    Full Text Available Understanding of turbulent flow in the reactor coolant pump (RCP is a premise of the optimal design of the RCP. Flow structures in the RCP, in view of the specially devised spherical casing, are more complicated than those associated with conventional pumps. Hitherto, knowledge of the flow characteristics of the RCP has been far from sufficient. Research into the nonintrusive measurement of the internal flow of the RCP has rarely been reported. In the present study, flow measurement using particle image velocimetry is implemented to reveal flow features of the RCP model. Velocity and vorticity distributions in the diffuser and spherical casing are obtained. The results illuminate the complexity of the flows in the RCP. Near the lower end of the discharge nozzle, three-dimensional swirling flows and flow separation are evident. In the diffuser, the imparity of the velocity profile with respect to different axial cross sections is verified, and the velocity increases gradually from the shroud to the hub. In the casing, velocity distribution is nonuniform over the circumferential direction. Vortices shed consistently from the diffuser blade trailing edge. The experimental results lend sound support for the optimal design of the RCP and provide validation of relevant numerical algorithms. Keywords: Diffuser, Flow Structures, Particle Image Velocimetry, Reactor Coolant Pump, Spherical Casing, Velocity Distribution

  16. Single step preparation of NdFeB alloy by magnesiothermic reduction-diffusion process

    International Nuclear Information System (INIS)

    Singha, Vinay Kant; Surendranathana, A.O.; John Berchmans, L.

    2014-01-01

    Magnesiothermic reduction is a new approach to produce the NdFeB alloy on a commercial scale. Similar studies were conducted for the preparation of LaNi 5 and SmCo 5 using magnesium as the reductant. In the present investigation NdFeB Hard magnetic bulk materials were synthesized by metallothermic 'Reduction – Diffusion (R-D) Process' using Magnesium as a reductant. For this process oxide precursors of Nd, Fe and B were blended with flux (LiCl/CaCl 2 ) and Mg chips were sandwiched in alternate layers. Thermal analysis (TGA/DTA) was carried out to find the dissociation and decomposition temperature of the reactants. The phase analysis, structure, and elemental composition were assessed by X-ray diffraction (XRD) and electron dispersive spectrometry (EDS). The infrared (IR) spectra were recorded by Fourier transform infrared spectrometer (FTIR). The morphological features and particle size was assessed by scanning electron microscope (SEM). The magnetic behaviour of the alloy was assessed using electron paramagnetic resonance (EPR) and vibratory sample magnetometer (VSM). From these studies it has been concluded that the NdFeB magnetic particles can be prepared using magnesium as the reductant. The process is faster and consumes very less amount of energy for the completion as compared to conventional calciothermic reduction process. Traces of MgO were detected in the alloy which increases the perpendicular anisotropy, thus increasing the coercivity of the material

  17. Diffusion inside living human cells

    DEFF Research Database (Denmark)

    Leijnse, N.; Jeon, J. -H.; Loft, Steffen

    2012-01-01

    Naturally occurring lipid granules diffuse in the cytoplasm and can be used as tracers to map out the viscoelastic landscape inside living cells. Using optical trapping and single particle tracking we found that lipid granules exhibit anomalous diffusion inside human umbilical vein endothelial...

  18. Single particle detection: Phase control in submicron Hall sensors

    International Nuclear Information System (INIS)

    Di Michele, Lorenzo; Shelly, Connor; Gallop, John; Kazakova, Olga

    2010-01-01

    We present a phase-sensitive ac-dc Hall magnetometry method which allows a clear and reliable separation of real and parasitic magnetic signals of a very small magnitude. High-sensitivity semiconductor-based Hall crosses are generally accepted as a preferential solution for non-invasive detection of superparamagnetic nanobeads used in molecular biology, nanomedicine, and nanochemistry. However, detection of such small beads is often hindered by inductive pick-up and other spurious signals. The present work demonstrates an unambiguous experimental route for detection of small magnetic moments and provides a simple theoretical background for it. The reliability of the method has been tested for a variety of InSb Hall sensors in the range 600 nm-5 μm. Complete characterization of empty devices, involving Hall coefficients and noise measurements, has been performed and detection of a single FePt bead with diameter of 140 nm and magnetic moment of μ≅10 8 μ B has been achieved with a 600 nm-wide sensor.

  19. Double-slit experiment with single wave-driven particles and its relation to quantum mechanics.

    Science.gov (United States)

    Andersen, Anders; Madsen, Jacob; Reichelt, Christian; Rosenlund Ahl, Sonja; Lautrup, Benny; Ellegaard, Clive; Levinsen, Mogens T; Bohr, Tomas

    2015-07-01

    In a thought-provoking paper, Couder and Fort [Phys. Rev. Lett. 97, 154101 (2006)] describe a version of the famous double-slit experiment performed with droplets bouncing on a vertically vibrated fluid surface. In the experiment, an interference pattern in the single-particle statistics is found even though it is possible to determine unambiguously which slit the walking droplet passes. Here we argue, however, that the single-particle statistics in such an experiment will be fundamentally different from the single-particle statistics of quantum mechanics. Quantum mechanical interference takes place between different classical paths with precise amplitude and phase relations. In the double-slit experiment with walking droplets, these relations are lost since one of the paths is singled out by the droplet. To support our conclusions, we have carried out our own double-slit experiment, and our results, in particular the long and variable slit passage times of the droplets, cast strong doubt on the feasibility of the interference claimed by Couder and Fort. To understand theoretically the limitations of wave-driven particle systems as analogs to quantum mechanics, we introduce a Schrödinger equation with a source term originating from a localized particle that generates a wave while being simultaneously guided by it. We show that the ensuing particle-wave dynamics can capture some characteristics of quantum mechanics such as orbital quantization. However, the particle-wave dynamics can not reproduce quantum mechanics in general, and we show that the single-particle statistics for our model in a double-slit experiment with an additional splitter plate differs qualitatively from that of quantum mechanics.

  20. Double-slit experiment with single wave-driven particles and its relation to quantum mechanics

    Science.gov (United States)

    Andersen, Anders; Madsen, Jacob; Reichelt, Christian; Rosenlund Ahl, Sonja; Lautrup, Benny; Ellegaard, Clive; Levinsen, Mogens T.; Bohr, Tomas

    2015-07-01

    In a thought-provoking paper, Couder and Fort [Phys. Rev. Lett. 97, 154101 (2006), 10.1103/PhysRevLett.97.154101] describe a version of the famous double-slit experiment performed with droplets bouncing on a vertically vibrated fluid surface. In the experiment, an interference pattern in the single-particle statistics is found even though it is possible to determine unambiguously which slit the walking droplet passes. Here we argue, however, that the single-particle statistics in such an experiment will be fundamentally different from the single-particle statistics of quantum mechanics. Quantum mechanical interference takes place between different classical paths with precise amplitude and phase relations. In the double-slit experiment with walking droplets, these relations are lost since one of the paths is singled out by the droplet. To support our conclusions, we have carried out our own double-slit experiment, and our results, in particular the long and variable slit passage times of the droplets, cast strong doubt on the feasibility of the interference claimed by Couder and Fort. To understand theoretically the limitations of wave-driven particle systems as analogs to quantum mechanics, we introduce a Schrödinger equation with a source term originating from a localized particle that generates a wave while being simultaneously guided by it. We show that the ensuing particle-wave dynamics can capture some characteristics of quantum mechanics such as orbital quantization. However, the particle-wave dynamics can not reproduce quantum mechanics in general, and we show that the single-particle statistics for our model in a double-slit experiment with an additional splitter plate differs qualitatively from that of quantum mechanics.

  1. Morphology of single inhalable particle inside public transit biodiesel fueled bus.

    Science.gov (United States)

    Shandilya, Kaushik K; Kumar, Ashok

    2010-01-01

    In an urban-transit bus, fueled by biodiesel in Toledo, Ohio, single inhalable particle samples in October 2008 were collected and detected by scanning electron microscopy and energy dispersive X-ray spectrometry (SEM/EDS). Particle size analysis found bimodal distribution at 0.2 and 0.5 microm. The particle morphology was characterized by 14 different shape clusters: square, pentagon, hexagon, heptagon, octagon, nonagon, decagon, agglomerate, sphere, triangle, oblong, strip, line or stick, and unknown, by quantitative order. The square particles were common in the samples. Round and triangle particles are more, and pentagon, hexagon, heptagon, octagon, nonagon, decagon, strip, line or sticks are less. Agglomerate particles were found in abundance. The surface of most particles was coarse with a fractal edge that can provide a suitable chemical reaction bed in the polluted atmospheric environment. The three sorts of surface patterns of squares were smooth, semi-smooth, and coarse. The three sorts of square surface patterns represented the morphological characteristics of single inhalable particles in the air inside the bus in Toledo. The size and shape distribution results were compared to those obtained for a bus using ultra low sulfur diesel.

  2. Single-molecule imaging reveals topological isomer-dependent diffusion by 4-armed star and dicyclic 8-shaped polymers

    KAUST Repository

    Habuchi, Satoshi

    2015-04-21

    Diffusion dynamics of topological isomers of polymer molecules was investigated at the single-molecule level in a melt state by employing the fluorophore-incorporated 4-armed star and the corresponding doubly-cyclized, 8-shaped poly(THF) chains. While the single-molecule fluorescence imaging experiment revealed that the diffusion of the 4-armed star polymer was described by a single Gaussian distribution, the diffusion of the 8-shaped polymer exhibited a double Gaussian distribution behaviour. We reasoned that the two 8-shaped polymeric isomers have distinct diffusion modes in the melt state, although ensemble-averaged experimental methods cannot detect differences in overall conformational state of the isomers. The single-molecule experiments suggested that one of the 8-shaped polymeric isomer, having the horizontally oriented form, causes an efficient threading with the linear matrix chains which leads to the slower diffusion compared with the corresponding 4-armed star polymer, while the other 8-shaped polymeric isomer, having the vertically oriented form, displayed faster diffusion by the suppression of effective threading with the linear matrix chains due to its contracted chain conformation.

  3. The single-breath diffusing capacity of CO and NO in healthy children of European descent.

    Science.gov (United States)

    Thomas, Astrid; Hanel, Birgitte; Marott, Jacob L; Buchvald, Frederik; Mortensen, Jann; Nielsen, Kim G

    2014-01-01

    The diffusing capacity (DL) of the lung can be divided into two components: the diffusing capacity of the alveolar membrane (Dm) and the pulmonary capillary volume (Vc). DL is traditionally measured using a single-breath method, involving inhalation of carbon monoxide, and a breath hold of 8-10 seconds (DL,CO). This method does not easily allow calculation of Dm and Vc. An alternative single-breath method (DL,CO,NO), involving simultaneous inhalation of carbon monoxide and nitric oxide, and traditionally a shorter breath hold, allows calculation of Dm and Vc and the DL,NO/DL,CO ratio in a single respiratory maneuver. The clinical utility of Dm, Vc, and DL,NO/DL,CO in the pediatric age range is currently unknown but also restricted by lack of reference values. The aim of this study was to establish reference ranges for the outcomes of DL,CO,NO with a 5 second breath hold, including the calculated outcomes Dm, Vc, and the DL,NO/DL,CO ratio, as well as to establish reference values for the outcomes of the traditional DL,CO method, with a 10 second breath hold in children. DL,CO,NO and DL,CO were measured in healthy children, of European descent, aged 5-17 years using a Jaeger Masterscreen PFT. The data were analyzed using the Generalized Additive Models for Location Scale and Shape (GAMLSS) statistical method. A total of 326 children were eligible for diffusing capacity measurements, resulting in 312 measurements of DL,CO,NO and 297 of DL,CO, respectively. Reference equations were established for the outcomes of DL,CO,NO and DL,CO, including the calculated values: Vc, Dm, and the DL,NO/DL,CO ratio. These reference values are based on the largest sample of children to date and may provide a basis for future studies of their clinical utility in differentiating between alterations in the pulmonary circulation and changes in the alveolar membrane in pediatric patients.

  4. The single-breath diffusing capacity of CO and NO in healthy children of European descent.

    Directory of Open Access Journals (Sweden)

    Astrid Thomas

    Full Text Available The diffusing capacity (DL of the lung can be divided into two components: the diffusing capacity of the alveolar membrane (Dm and the pulmonary capillary volume (Vc. DL is traditionally measured using a single-breath method, involving inhalation of carbon monoxide, and a breath hold of 8-10 seconds (DL,CO. This method does not easily allow calculation of Dm and Vc. An alternative single-breath method (DL,CO,NO, involving simultaneous inhalation of carbon monoxide and nitric oxide, and traditionally a shorter breath hold, allows calculation of Dm and Vc and the DL,NO/DL,CO ratio in a single respiratory maneuver. The clinical utility of Dm, Vc, and DL,NO/DL,CO in the pediatric age range is currently unknown but also restricted by lack of reference values.The aim of this study was to establish reference ranges for the outcomes of DL,CO,NO with a 5 second breath hold, including the calculated outcomes Dm, Vc, and the DL,NO/DL,CO ratio, as well as to establish reference values for the outcomes of the traditional DL,CO method, with a 10 second breath hold in children.DL,CO,NO and DL,CO were measured in healthy children, of European descent, aged 5-17 years using a Jaeger Masterscreen PFT. The data were analyzed using the Generalized Additive Models for Location Scale and Shape (GAMLSS statistical method.A total of 326 children were eligible for diffusing capacity measurements, resulting in 312 measurements of DL,CO,NO and 297 of DL,CO, respectively. Reference equations were established for the outcomes of DL,CO,NO and DL,CO, including the calculated values: Vc, Dm, and the DL,NO/DL,CO ratio.These reference values are based on the largest sample of children to date and may provide a basis for future studies of their clinical utility in differentiating between alterations in the pulmonary circulation and changes in the alveolar membrane in pediatric patients.

  5. Nonlinear optical susceptibilities in the diffusion modified AlxGa1-xN/GaN single quantum well

    Science.gov (United States)

    Das, T.; Panda, S.; Panda, B. K.

    2018-05-01

    Under thermal treatment of the post growth AlGaN/GaN single quantum well, the diffusion of Al and Ga atoms across the interface is expected to form the diffusion modified quantum well with diffusion length as a quantitative parameter for diffusion. The modification of confining potential and position-dependent effective mass in the quantum well due to diffusion is calculated taking the Fick's law. The built-in electric field which arises from spontaneous and piezoelectric polarizations in the wurtzite structure is included in the effective mass equation. The electronic states are calculated from the effective mass equation using the finite difference method for several diffusion lengths. Since the effective well width decreases with increasing diffusion length, the energy levels increase with it. The intersubband energy spacing in the conduction band decreases with diffusion length due to built-in electric field and reduction of effective well width. The linear susceptibility for first-order and the nonlinear second-order and third-order susceptibilities are calculated using the compact density matrix approach taking only two levels. The calculated susceptibilities are red shifted with increase in diffusion lengths due to decrease in intersubband energy spacing.

  6. Thin film growth by 3D multi-particle diffusion limited aggregation model: Anomalous roughening and fractal analysis

    Science.gov (United States)

    Nasehnejad, Maryam; Nabiyouni, G.; Gholipour Shahraki, Mehran

    2018-03-01

    In this study a 3D multi-particle diffusion limited aggregation method is employed to simulate growth of rough surfaces with fractal behavior in electrodeposition process. A deposition model is used in which the radial motion of the particles with probability P, competes with random motions with probability 1 - P. Thin films growth is simulated for different values of probability P (related to the electric field) and thickness of the layer(related to the number of deposited particles). The influence of these parameters on morphology, kinetic of roughening and the fractal dimension of the simulated surfaces has been investigated. The results show that the surface roughness increases with increasing the deposition time and scaling exponents exhibit a complex behavior which is called as anomalous scaling. It seems that in electrodeposition process, radial motion of the particles toward the growing seeds may be an important mechanism leading to anomalous scaling. The results also indicate that the larger values of probability P, results in smoother topography with more densely packed structure. We have suggested a dynamic scaling ansatz for interface width has a function of deposition time, scan length and probability. Two different methods are employed to evaluate the fractal dimension of the simulated surfaces which are "cube counting" and "roughness" methods. The results of both methods show that by increasing the probability P or decreasing the deposition time, the fractal dimension of the simulated surfaces is increased. All gained values for fractal dimensions are close to 2.5 in the diffusion limited aggregation model.

  7. Diffusion of Supercritical Fluids through Single-Layer Nanoporous Solids: Theory and Molecular Simulations.

    Science.gov (United States)

    Oulebsir, Fouad; Vermorel, Romain; Galliero, Guillaume

    2018-01-16

    With the advent of graphene material, membranes based on single-layer nanoporous solids appear as promising devices for fluid separation, be it liquid or gaseous mixtures. The design of such architectured porous materials would greatly benefit from accurate models that can predict their transport and separation properties. More specifically, there is no universal understanding of how parameters such as temperature, fluid loading conditions, or the ratio of the pore size to the fluid molecular diameter influence the permeation process. In this study, we address the problem of pure supercritical fluids diffusing through simplified models of single-layer porous materials. Basically, we investigate a toy model that consists of a single-layer lattice of Lennard-Jones interaction sites with a slit gap of controllable width. We performed extensive equilibrium and biased molecular dynamics simulations to document the physical mechanisms involved at the molecular scale. We propose a general constitutive equation for the diffusional transport coefficient derived from classical statistical mechanics and kinetic theory, which can be further simplified in the ideal gas limit. This transport coefficient relates the molecular flux to the fluid density jump across the single-layer membrane. It is found to be proportional to the accessible surface porosity of the single-layer porous solid and to a thermodynamic factor accounting for the inhomogeneity of the fluid close to the pore entrance. Both quantities directly depend on the potential of mean force that results from molecular interactions between solid and fluid atoms. Comparisons with the simulations data show that the kinetic model captures how narrowing the pore size below the fluid molecular diameter lowers dramatically the value of the transport coefficient. Furthermore, we demonstrate that our general constitutive equation allows for a consistent interpretation of the intricate effects of temperature and fluid loading

  8. Permeability and Diffusion Coefficients of Single Methyl Lactate Enantiomers in Nafion® and Cellophane Membranes Measured in Diffusion Cell.

    Czech Academy of Sciences Publication Activity Database

    Hovorka, Š.; Randová, A.; Borbášová, T.; Sysel, P.; Vychodilová, Hana; Červenková Šťastná, Lucie; Brožová, Libuše; Žitka, Jan; Storch, Jan; Kačírková, Marie; Drašar, P.; Izák, Pavel

    2016-01-01

    Roč. 158, JAN 28 (2016), s. 322-332 ISSN 1383-5866 R&D Projects: GA ČR(CZ) GAP106/12/0569 Institutional support: RVO:67985858 ; RVO:61389013 Keywords : diffusion coefficient measurement * permeability * nafion * cellophane * chirality of polymer membrane Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.359, year: 2016

  9. Single-molecule-sensitive fluorescence resonance energy transfer in freely-diffusing attoliter droplets

    Energy Technology Data Exchange (ETDEWEB)

    Rahmanseresht, Sheema; Ramos, Kieran P.; Gamari, Ben D.; Goldner, Lori S., E-mail: lgoldner@physics.umass.edu [Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003 (United States); Milas, Peker [Department of Neuroscience, University of Wisconsin, Madison, Wisconsin 53705 (United States)

    2015-05-11

    Fluorescence resonance energy transfer (FRET) from individual, dye-labeled RNA molecules confined in freely-diffusing attoliter-volume aqueous droplets is carefully compared to FRET from unconfined RNA in solution. The use of freely-diffusing droplets is a remarkably simple and high-throughput technique that facilitates a substantial increase in signal-to-noise for single-molecular-pair FRET measurements. We show that there can be dramatic differences between FRET in solution and in droplets, which we attribute primarily to an altered pH in the confining environment. We also demonstrate that a sufficient concentration of a non-ionic surfactant mitigates this effect and restores FRET to its neutral-pH solution value. At low surfactant levels, even accounting for pH, we observe differences between the distribution of FRET values in solution and in droplets which remain unexplained. Our results will facilitate the use of nanoemulsion droplets as attoliter volume reactors for use in biophysical and biochemical assays, and also in applications such as protein crystallization or nanoparticle synthesis, where careful attention to the pH of the confined phase is required.

  10. A nonlocal and periodic reaction-diffusion-advection model of a single phytoplankton species.

    Science.gov (United States)

    Peng, Rui; Zhao, Xiao-Qiang

    2016-02-01

    In this article, we are concerned with a nonlocal reaction-diffusion-advection model which describes the evolution of a single phytoplankton species in a eutrophic vertical water column where the species relies solely on light for its metabolism. The new feature of our modeling equation lies in that the incident light intensity and the death rate are assumed to be time periodic with a common period. We first establish a threshold type result on the global dynamics of this model in terms of the basic reproduction number R0. Then we derive various characterizations of R0 with respect to the vertical turbulent diffusion rate, the sinking or buoyant rate and the water column depth, respectively, which in turn give rather precise conditions to determine whether the phytoplankton persist or become extinct. Our theoretical results not only extend the existing ones for the time-independent case, but also reveal new interesting effects of the modeling parameters and the time-periodic heterogeneous environment on persistence and extinction of the phytoplankton species, and thereby suggest important implications for phytoplankton growth control.

  11. ReaDDy--a software for particle-based reaction-diffusion dynamics in crowded cellular environments.

    Directory of Open Access Journals (Sweden)

    Johannes Schöneberg

    Full Text Available We introduce the software package ReaDDy for simulation of detailed spatiotemporal mechanisms of dynamical processes in the cell, based on reaction-diffusion dynamics with particle resolution. In contrast to other particle-based reaction kinetics programs, ReaDDy supports particle interaction potentials. This permits effects such as space exclusion, molecular crowding and aggregation to be modeled. The biomolecules simulated can be represented as a sphere, or as a more complex geometry such as a domain structure or polymer chain. ReaDDy bridges the gap between small-scale but highly detailed molecular dynamics or Brownian dynamics simulations and large-scale but little-detailed reaction kinetics simulations. ReaDDy has a modular design that enables the exchange of the computing core by efficient platform-specific implementations or dynamical models that are different from Brownian dynamics.

  12. ReaDDy - A Software for Particle-Based Reaction-Diffusion Dynamics in Crowded Cellular Environments

    Science.gov (United States)

    Schöneberg, Johannes; Noé, Frank

    2013-01-01

    We introduce the software package ReaDDy for simulation of detailed spatiotemporal mechanisms of dynamical processes in the cell, based on reaction-diffusion dynamics with particle resolution. In contrast to other particle-based reaction kinetics programs, ReaDDy supports particle interaction potentials. This permits effects such as space exclusion, molecular crowding and aggregation to be modeled. The biomolecules simulated can be represented as a sphere, or as a more complex geometry such as a domain structure or polymer chain. ReaDDy bridges the gap between small-scale but highly detailed molecular dynamics or Brownian dynamics simulations and large-scale but little-detailed reaction kinetics simulations. ReaDDy has a modular design that enables the exchange of the computing core by efficient platform-specific implementations or dynamical models that are different from Brownian dynamics. PMID:24040218

  13. The utility of electron microscopy in detecting asbestos fibers and particles in BALF in diffuse lung diseases.

    Science.gov (United States)

    Kido, Takashi; Morimoto, Yasuo; Yatera, Kazuhiro; Ishimoto, Hiroshi; Ogoshi, Takaaki; Oda, Keishi; Yamasaki, Kei; Kawanami, Toshinori; Shimajiri, Shohei; Mukae, Hiroshi

    2017-04-21

    In patients with diffuse lung diseases, differentiating occupational lung diseases from other diseases is clinically important. However, the value of assessing asbestos and particles in bronchoalveolar lavage fluid (BALF) in diffuse lung diseases by electron microscopy (EM) remains unclear. We evaluated the utility of EM in detecting asbestos fibers and particles in patients with diffuse lung diseases. The BALF specimens of 107 patients with diffuse lung diseases were evaluated. First, detection of asbestos by EM and light microscopy (LM) were compared. Second, the detection of asbestos using surgically obtained lung tissues of 8 of 107 patients were compared with the results of EM and LM in BALF. Third, we compared the results of mineralogical components of particles in patients with (n = 48) and without (n = 59) a history of occupational exposure to inorganic dust. BALF asbestos were detected in 11 of 48 patients with a history of occupational exposure by EM; whereas asbestos as asbestos bodies (ABs) were detected in BALF in 4 of these 11 patients by LM. Eight of 107 patients in whom lung tissue samples were surgically obtained, EM detected BALF asbestos at a level of >1,000 fibers/ml in all three patients who had ABs in lung tissue samples by LM at a level of >1,000 fibers/g. The BALF asbestos concentration by EM and in lung tissue by LM were positively correlated. The particle fractions of iron and phosphorus were increased in patients with a history of occupational exposure and both correlated with a history of occupational exposure by a multiple regression analysis. EM using BALF seemed to be superior to LM using BALF and displayed a similar sensitivity to LM using surgically-obtained lung tissue samples in the detection of asbestos. Our results also suggest that detection of elements, such as iron and phosphorus in particles, is useful for evaluating occupational exposure. We conclude that the detection of asbestos and iron and phosphorus in

  14. SYN3D: a single-channel, spatial flux synthesis code for diffusion theory calculations

    Energy Technology Data Exchange (ETDEWEB)

    Adams, C. H.

    1976-07-01

    This report is a user's manual for SYN3D, a computer code which uses single-channel, spatial flux synthesis to calculate approximate solutions to two- and three-dimensional, finite-difference, multigroup neutron diffusion theory equations. SYN3D is designed to run in conjunction with any one of several one- and two-dimensional, finite-difference codes (required to generate the synthesis expansion functions) currently being used in the fast reactor community. The report describes the theory and equations, the use of the code, and the implementation on the IBM 370/195 and CDC 7600 of the version of SYN3D available through the Argonne Code Center.

  15. SYN3D: a single-channel, spatial flux synthesis code for diffusion theory calculations

    International Nuclear Information System (INIS)

    Adams, C.H.

    1976-07-01

    This report is a user's manual for SYN3D, a computer code which uses single-channel, spatial flux synthesis to calculate approximate solutions to two- and three-dimensional, finite-difference, multigroup neutron diffusion theory equations. SYN3D is designed to run in conjunction with any one of several one- and two-dimensional, finite-difference codes (required to generate the synthesis expansion functions) currently being used in the fast reactor community. The report describes the theory and equations, the use of the code, and the implementation on the IBM 370/195 and CDC 7600 of the version of SYN3D available through the Argonne Code Center

  16. Single particle Green's functions calculation of the electrical conductivity of strong correlated systems

    International Nuclear Information System (INIS)

    Rodrigues Junior, W.A.

    A calculation of the electrical conductivity for Hubbard materials is presented which is valid when U/t >> 1 (U being the Coulomb repulsion and t the nearest neighbor hopping energy) for arbitrary electron concentration and temperature. The derivation emploies the single particle Green's functions with real and imaginary times instead of the usual two-particle real time Green's function. The result is compared with the experimental data available for some organic charge transfer salts [pt

  17. A new seniority scheme for non-degenerate single particle orbits

    International Nuclear Information System (INIS)

    Otsuka, T.; Arima, A.

    1978-01-01

    A new method is proposed in the treatment of the seniority scheme. The method enables one to evaluate analytically the contribution from J = 0 Cooper pairs in non-degenerate single-particle orbits to many-body matrix elements. It includes the SU(2) quasi-spin and the BCS approximation as two extreme limits. The effect of particle number conservation is properly taken into account. (Auth.)

  18. Centroids of effective interactions from measured single-particle energies: An application

    International Nuclear Information System (INIS)

    Cole, B.J.

    1990-01-01

    Centroids of the effective nucleon-nucleon interaction for the mass region A=28--64 are extracted directly from experimental single-particle spectra, by comparing single-particle energies relative to different cores. Uncertainties in the centroids are estimated at approximately 100 keV, except in cases of exceptional fragmentation of the single-particle strength. The use of a large number of inert cores allows the dependence of the interaction on mass or model space to be investigated. The method permits accurate empirical modifications to be made to realistic interactions calculated from bare nucleon-nucleon potentials, which are known to possess defective centroids in many cases. In addition, the centroids can be used as input to the more sophisticated fitting procedures that are employed to produce matrix elements of the effective interaction

  19. Single Particle ICP-MS: Advances toward routine analysis of nanomaterials.

    Science.gov (United States)

    Montaño, Manuel D; Olesik, John W; Barber, Angela G; Challis, Katie; Ranville, James F

    2016-07-01

    From its early beginnings in characterizing aerosol particles to its recent applications for investigating natural waters and waste streams, single particle inductively coupled plasma-mass spectrometry (spICP-MS) has proven to be a powerful technique for the detection and characterization of aqueous dispersions of metal-containing nanomaterials. Combining the high-throughput of an ensemble technique with the specificity of a single particle counting technique and the elemental specificity of ICP-MS, spICP-MS is capable of rapidly providing researchers with information pertaining to size, size distribution, particle number concentration, and major elemental composition with minimal sample perturbation. Recently, advances in data acquisition, signal processing, and the implementation of alternative mass analyzers (e.g., time-of-flight) has resulted in a wider breadth of particle analyses and made significant progress toward overcoming many of the challenges in the quantitative analysis of nanoparticles. This review provides an overview of spICP-MS development from a niche technique to application for routine analysis, a discussion of the key issues for quantitative analysis, and examples of its further advancement for analysis of increasingly complex environmental and biological samples. Graphical Abstract Single particle ICP-MS workflow for the analysis of suspended nanoparticles.

  20. Impact of KCl impregnation on single particle combustion of wood and torrefied wood

    DEFF Research Database (Denmark)

    Lu, Zhimin; Jian, Jie; Jensen, Peter Arendt

    2017-01-01

    In this work, single particle combustion of raw and torrefied 4 mm wood particles with different potassium content obtained by KCl impregnation and washing was studied experimentally under a condition of 1225 °C, 3.1% O2 and 26.1% H2O. The ignition time and devolatilization time depended almost......, and unchanged by torrefaction. Compared to the raw wood particle, the char conversion time was increased by torrefaction, decreased by washing, and almost unchanged by KCl impregnation due to its promoting effect on both char yield and reactivity....

  1. A versatile optical microscope for time-dependent single-molecule and single-particle spectroscopy.

    Science.gov (United States)

    Li, Hao; Yang, Haw

    2018-03-28

    This work reports the design and implementation of a multi-function optical microscope for time-dependent spectroscopy on single molecules and single nanoparticles. It integrates the now-routine single-object measurements into one standalone platform so that no reconfiguration is needed when switching between different types of sample or spectroscopy modes. The illumination modes include evanescent field through total internal reflection, dark-field illumination, and epi-excitation onto a diffraction-limited spot suitable for confocal detection. The detection modes include spectrally resolved line imaging, wide-field imaging with dual-color capability, and two-color single-element photon-counting detection. The switch between different spectroscopy and data acquisition modes is fully automated and executed through computer programming. The capability of this microscope is demonstrated through selected proof-of-principle experiments.

  2. A versatile optical microscope for time-dependent single-molecule and single-particle spectroscopy

    Science.gov (United States)

    Li, Hao; Yang, Haw

    2018-03-01

    This work reports the design and implementation of a multi-function optical microscope for time-dependent spectroscopy on single molecules and single nanoparticles. It integrates the now-routine single-object measurements into one standalone platform so that no reconfiguration is needed when switching between different types of sample or spectroscopy modes. The illumination modes include evanescent field through total internal reflection, dark-field illumination, and epi-excitation onto a diffraction-limited spot suitable for confocal detection. The detection modes include spectrally resolved line imaging, wide-field imaging with dual-color capability, and two-color single-element photon-counting detection. The switch between different spectroscopy and data acquisition modes is fully automated and executed through computer programming. The capability of this microscope is demonstrated through selected proof-of-principle experiments.

  3. Quantum chaos in nuclear single-particle motion and damping of giant resonances

    International Nuclear Information System (INIS)

    Pal, Santanu; Mukhopadhyay, Tapan

    1995-01-01

    The spectral statistics of single particle motion in deformed cavities with axial symmetry are presented. The single particle motion in the cavities considered are non-integrable and the systematics of the fluctuation measures of the spectra reveal a transition from regular to chaotic regime in the corresponding classical systems. Quantitative estimate of the degree of chaos enables us to introduce a correction factor to the one-body wall formula for the damping widths of isoscalar giant resonances. The damping widths calculated with this correction factor give much better agreement with experimental values than earlier calculations of one-body damping widths. (author). 21 refs., 5 figs

  4. The application of single particle hydrodynamics in continuum models of multiphase flow

    Science.gov (United States)

    Decker, Rand

    1988-01-01

    A review of the application of single particle hydrodynamics in models for the exchange of interphase momentum in continuum models of multiphase flow is presented. Considered are the equations of motion for a laminar, mechanical two phase flow. Inherent to this theory is a model for the interphase exchange of momentum due to drag between the dispersed particulate and continuous fluid phases. In addition, applications of two phase flow theory to de-mixing flows require the modeling of interphase momentum exchange due to lift forces. The applications of single particle analysis in deriving models for drag and lift are examined.

  5. Preparation of Disease-Related Protein Assemblies for Single Particle Electron Microscopy.

    Science.gov (United States)

    Cameron Varano, A; Harafuji, Naoe; Dearnaley, William; Guay-Woodford, Lisa; Kelly, Deborah F

    2017-01-01

    Electron microscopy (EM) is a rapidly growing area of structural biology that permits us to decode biological assemblies at the nanoscale. To examine biological materials for single particle EM analysis, purified assemblies must be obtained using biochemical separation techniques. Here, we describe effective methodologies for isolating histidine (his)-tagged protein assemblies from the nucleus of disease-relevant cell lines. We further demonstrate how isolated assemblies are visualized using single particle EM techniques and provide representative results for each step in the process.

  6. Report of particle diffusion experimental study project in superficial confined plasma by magnetic multi dipole fields

    International Nuclear Information System (INIS)

    Ferreira, J.L.; Damasio, W.C.; Ferreira, J.C.; Sandonato, G.M.; Alves, M.V.; Montes, A.; Ludwig, G.O.

    1990-01-01

    This work reports the activities of the experimental study group on plasma confinement. It discusses the study of diffusion coefficient, data acquisition systems and the use of electrostatic probes. (A.C.A.S.)

  7. Synthesis and characterization of Gold and Silver nano-particles using different leaf extracts namely Catharanthus roseus, Datura metel and Azadirachta indica and Estimation of antimicrobial activity of silver nano-particles using disc diffusion method

    OpenAIRE

    Sarbjeet Singh Gujral

    2014-01-01

    Objective: synthesis of gold and silver nano-particles using leaf extracts of Catharanthus roseus, Datura metel and Azadirachta indica and Estimation of antimicrobial activity of silver nano-particles using disc diffusion method. Method: Green approach has been utilized for the synthesis of gold and silver nano-particles. Different aqueous plant extracts has been prepared which was then utilized for the biosynthesis of gold and silver nano-particles. Estimation for the synthesis of nano-parti...

  8. Depth Distribution Studies of Carbon in Steel Surfaces by Means of Charged Particle Activation Analysis with an Account of Heat and Diffusion Effects in the Sample

    International Nuclear Information System (INIS)

    Brune, D.; Lorenzen, J.; Witalis, E.

    1972-05-01

    Depth distribution studies of carbon in steel and iron were carried out in the concentration range 0.05-1 %, using proton activation analysis. Surface content studies were performed in the concentration range 0.01-1 % using deuteron activation analysis. The following reactions were utilized: 12 C(p,γ) 13 N and 12 C(d,n) 13 N Evaluations of depth distribution were based on resonances in the excitation function. The carbon content was determined with the aid of the positron emitter, 13 N, using either single-peak or coincidence measurements. The heat dissipation in the irradiated region of the samples was calculated, and the temperature rise was measured using thermocouples. The temperature distribution within the hot zone subjected to irradiation by charged particles, together with the temperature distribution around this zone, was studied in order to estimate any effect this might have on the carbon diffusion. A device for automatic sample exchange which is remotely controlled is described

  9. Single-particle characterization of the high-Arctic summertime aerosol

    Directory of Open Access Journals (Sweden)

    B. Sierau

    2014-07-01

    Full Text Available Single-particle mass-spectrometric measurements were carried out in the high Arctic north of 80° during summer 2008. The campaign took place onboard the icebreaker Oden and was part of the Arctic Summer Cloud Ocean Study (ASCOS. The instrument deployed was an aerosol time-of-flight mass spectrometer (ATOFMS that provides information on the chemical composition of individual particles and their mixing state in real time. Aerosols were sampled in the marine boundary layer at stations in the open ocean, in the marginal ice zone, and in the pack ice region. The largest fraction of particles detected for subsequent analysis in the size range of the ATOFMS between approximately 200 and 3000 nm in diameter showed mass-spectrometric patterns, indicating an internal mixing state and a biomass burning and/or biofuel source. The majority of these particles were connected to an air mass layer of elevated particle concentration mixed into the surface mixed layer from the upper part of the marine boundary layer. The second largest fraction was represented by sea salt particles. The chemical analysis of the over-ice sea salt aerosol revealed tracer compounds that reflect chemical aging of the particles during their long-range advection from the marginal ice zone, or open waters south thereof prior to detection at the ship. From our findings we conclude that long-range transport of particles is one source of aerosols in the high Arctic. To assess the importance of long-range particle sources for aerosol–cloud interactions over the inner Arctic in comparison to local and regional biogenic primary aerosol sources, the chemical composition of the detected particles was analyzed for indicators of marine biological origin. Only a minor fraction showed chemical signatures of potentially ocean-derived primary particles of that kind. However, a chemical bias in the ATOFMS's detection capabilities observed during ASCOS might suggest the presence of a particle type of

  10. Measurement of ambient aerosols in northern Mexico City by single particle mass spectrometry

    Directory of Open Access Journals (Sweden)

    R. C. Moffet

    2008-08-01

    Full Text Available Continuous ambient measurements with aerosol time-of-flight mass spectrometry (ATOFMS were made in an industrial/residential section in the northern part of Mexico City as part of the Mexico City Metropolitan Area-2006 campaign (MCMA-2006. Results are presented for the period of 15–27 March 2006. The submicron size mode contained both fresh and aged biomass burning, aged organic carbon (OC mixed with nitrate and sulfate, elemental carbon (EC, nitrogen-organic carbon, industrial metal, and inorganic NaK inorganic particles. Overall, biomass burning and aged OC particle types comprised 40% and 31%, respectively, of the submicron mode. In contrast, the supermicron mode was dominated by inorganic NaK particle types (42% which represented a mixture of dry lake bed dust and industrial NaK emissions mixed with soot. Additionally, aluminosilicate dust, transition metals, OC, and biomass burning contributed to the supermicron particles. Early morning periods (2–6 a.m. showed high fractions of inorganic particles from industrial sources in the northeast, composed of internal mixtures of Pb, Zn, EC and Cl, representing up to 73% of the particles in the 0.2–3μm size range. A unique nitrogen-containing organic carbon (NOC particle type, peaking in the early morning hours, was hypothesized to be amines from local industrial emissions based on the time series profile and back trajectory analysis. A strong dependence on wind speed and direction was observed in the single particle types that were present during different times of the day. The early morning (3:30–10 a.m. showed the greatest contributions from industrial emissions. During mid to late mornings (7–11 a.m., weak northerly winds were observed along with the most highly aged particles. Stronger winds from the south picked up in the late morning (after 11 a.m., resulting in a decrease in the concentrations of the major aged particle types and an increase in the number fraction of fresh

  11. Building the Nanoplasmonics Toolbox Through Shape Modeling and Single Particle Optical Studies

    Science.gov (United States)

    Ringe, Emilie

    Interest in nanotechnology is driven by unprecedented properties tailorability, achievable by controlling particle structure and composition. Unlike bulk components, minute changes in size and shape affect the optical and electronic properties of nanoparticles. Characterization of such structure-function relationships and better understanding of structure control mechanisms is crucial to the development of applications such as plasmonic sensors and devices. The objective of the current research is thus twofold: to theoretically predict and understand how shape is controlled by synthesis conditions, and to experimentally unravel, through single particle studies, how shape, composition, size, and surrounding environment affect plasmonic properties in noble metal particles. Quantitative, predictive rules and fundamental knowledge obtained from this research contributes to the "nanoplasmonics toolbox", a library designed to provide scientists and engineers the tools to create and optimize novel nanotechnology applications. In this dissertation, single particle approaches are developed and used to unravel the effects of size, shape, substrate, aggregation state and surrounding environment on the optical response of metallic nanoparticles. Ag and Au nanocubes on different substrates are first presented, followed by the discussion of the concept of plasmon length, a universal parameter to describe plasmon energy for a variety of particle shapes and plasmon modes. Plasmonic sensing (both refractive index sensing and surface-enhanced Raman spectroscopy) and polarization effects are then studied at the single particle level. In the last two Chapters, analytical shape models based on the Wulff construction provide unique modeling tools for alloy and kinetically grown nanoparticles. The former reveals a size-dependence of the shape of small alloy particles (such as those used in catalysis) because of surface segregation, while the latter uniquely models the shape of many

  12. Single particle analysis with a 360/sup 0/ light scattering photometer

    Energy Technology Data Exchange (ETDEWEB)

    Bartholdi, M.F.

    1979-06-01

    Light scattering by single spherical homogeneous particles in the diameter range 1 to 20 ..mu..m and relative refractive index 1.20 is measured. Particle size of narrowly dispersed populations is determined and a multi-modal dispersion of five components is completely analyzed. A 360/sup 0/ light scattering photometer for analysis of single particles has been designed and developed. A fluid stream containing single particles intersects a focused laser beam at the primary focal point of an ellipsoidal reflector ring. The light scattered at angles theta = 2.5/sup 0/ to 177.5/sup 0/ at phi = 0/sup 0/ and 180/sup 0/ is reflected onto a circular array of photodiodes. The ellipsoidal reflector is situated in a chamber filled with fluid matching that of the stream to minimize refracting and reflecting interfaces. The detector array consists of 60 photodiodes each subtending 3/sup 0/ in scattering angle on 6/sup 0/ centers around 360/sup 0/. 32 measurements on individual particles can be acquired at rates of 500 particles per second. The intensity and angular distribution of light scattered by spherical particles are indicative of size and relative refractive index. Calculations, using Lorenz--Mie theory, of differential scattering patterns integrated over angle corresponding to the detector geometry determined the instrument response to particle size. From this the expected resolution and experimental procedures are determined.Ultimately, the photometer will be utilized for identification and discrimination of biological cells based on the sensitivity of light scattering to size, shape, refractive index differences, internal granularity, and other internal morphology. This study has demonstrated the utility of the photometer and indicates potential for application to light scattering studies of biological cells.

  13. Single Particle Laser Mass Spectrometry Applied to Differential Ice Nucleation Experiments at the AIDA Chamber

    International Nuclear Information System (INIS)

    Gallavardin, S. J.; Froyd, Karl D.; Lohmann, U.; Moehler, Ottmar; Murphy, Daniel M.; Cziczo, Dan

    2008-01-01

    Experiments conducted at the Aerosol Interactions and Dynamics in the Atmosphere (AIDA) chamber located in Karlsruhe, Germany permit investigation of particle properties that affect the nucleation of ice at temperature and water vapor conditions relevant to cloud microphysics and climate issues. Ice clouds were generated by heterogeneous nucleation of Arizona test dust (ATD), illite, and hematite and homogeneous nucleation of sulfuric acid. Ice crystals formed in the chamber were inertially separated from unactivated, or 'interstitial' aerosol particles with a pumped counterflow virtual impactor (PCVI), then evaporated. The ice residue (i.e., the aerosol which initiated ice nucleation plus any material which was scavenged from the gas- and/or particle-phase), was chemically characterized at the single particle level using a laser ionization mass spectrometer. In this manner the species that first nucleated ice could be identified out of a mixed aerosol population in the chamber. Bare mineral dust particles were more effective ice nuclei (IN) than similar particles with a coating. Metallic particles from contamination in the chamber initiated ice nucleation before other species but there were few enough that they did not compromise the experiments. Nitrate, sulfate, and organics were often detected on particles and ice residue, evidently from scavenging of trace gas-phase species in the chamber. Hematite was a more effective ice nucleus than illite. Ice residue was frequently larger than unactivated test aerosol due to the formation of aggregates due to scavenging, condensation of contaminant gases, and the predominance of larger aerosol in nucleation

  14. Numerical Study on Infrared Optical Property of Diffuse Coal Particles in Mine Fully Mechanized Working Combined with CFD Method

    Directory of Open Access Journals (Sweden)

    Wen-Zheng Wang

    2015-01-01

    Full Text Available Coal dust seriously threatens the safety and occupational health of coal mines. Numerical simulation research on the infrared radiation characteristics of diffused coal dust is carried out in fully mechanized working faces based on the optical monitoring problem of dust particles in mine atmospheric environments. The CFD method is applied to obtain the law of dust transport and distribution. Combined with Mie scattering model, the infrared radiation change characteristics and spectral selection of diffused coal dust particles are simulated and analyzed along the working face. The comparison results show the following: the attenuation and scattering characteristics of mine dust particles system are first enhanced, and then they weaken as the distance from dust source increases. The infrared attenuation of mine dust at the center of the vertical cross-section is generally greater than that at the roof and floor in the same location. The dispersion of mine dust directly determines the attenuation contribution of respirable dust to total dust. Moreover, the infrared absorption effect of functional groups in coal causes the infrared attenuation effect of coal dust to have obvious optical selectivity along the roadway, the existing optical “window.”

  15. Brownian diffusion of a particle at an air/liquid interface: the elastic (not viscous) response of the surface.

    Science.gov (United States)

    Toro-Mendoza, Jhoan; Rodriguez-Lopez, Gieberth; Paredes-Altuve, Oscar

    2017-03-29

    Here, the effect of the elastic response of the surface on the translational diffusion coefficient of a partly submerged-in-water spherical Brownian particle is considered. The elastic nature of the surface, mediated by the surface tension, generates an additional dissipative mechanism. Therefore, the collisions at the surface contribute to the diffusion as the source of the driving force and the dissipation results from the combined action of both elastic reaction of the surface and viscous dissipation. However, it can be estimated that the surface elastic mechanism is several orders of magnitude greater than the viscous one. This simple yet physically plausible approach leads us to assume that the diffusion on the surface is proportional to a power of the number of collisions and, consequently, the dissipative mechanisms are proportional to an inverse power of it. The lowering in dimensionality from 3 (bulk) to 2 (surface) also contributes to the decrease of diffusion. This model allows the reproduction of the reported experimental values of the surface/bulk dissipative force ratio. Additionally, we also compared the traditional viscous approach with other theoretical hydrodynamic treatments of the problem, which drastically failed to explain the experiments.

  16. Preliminary Understanding of Surface Plasmon-Enhanced Circular Dichroism Spectroscopy by Single Particle Imaging

    Science.gov (United States)

    Zhan, Kangshu

    Monitoring chiral optical signals of biomolecules as their conformation changes is an important means to study their structures, properties, and functions. Most measurements, however, are ensemble measurements because chiral optical signals from a single biomolecule is often too weak to be detected. In this dissertation, I present my early attempts to study conformational changes of adsorbed proteins by taking advantage of the enhanced electromagnetic (EM) field around a well-designed plasmonic nanofeature. In particular, I discuss the detection of protein adsorption and denaturation on metallic nanoparticles using single particle scattering and CD spectroscopic imaging. Particles of two distinctively different sizes were compared and two different sample protein molecules were studied. A combination of experimental and computational tools was used to simulate and interpret the collected scattering and CD results. The first chapter provides a brief overview of the state-of-art research in CD spectroscopic studies at the single particle level. Three different means to make particles capable of chiral detection are discussed. Various applications beyond single particle imaging are presented to showcase the potential of the described research project, beyond our immediate goals. The second chapter describes my initial characterization of large, metallic, anisotropic nanorods and the establishment of experimental procedures used later for spectrum reconstruction, data visualization and analysis. The physical shape and structure of the particles were imaged by scanning electron microscopy (SEM), the chemical composition by energy dispersive X-ray Spectroscopy (EDS), and the optical properties by darkfield microscopy. An experimental protocol was developed to connect information collected from separate techniques for the same particle, with the aims of discovering any possible structural-property correlation. The reproducibility of the single particle imaging method was

  17. Unconditionally stable and robust adjacent-cell diffusive preconditioning of weighted-difference particle transport methods is impossible

    CERN Document Server

    Azmy, Y Y

    2002-01-01

    We construct a particle transport problem for which there exists no preconditioner with a cell-centered diffusion coupling stencil that is unconditionally stable and robust. In particular we consider an asymptotic limit of the periodic horizontal interface (PHI) configuration wherein the cell height in both layers approaches zero like sigma sup 2 while the total cross section vanishes like sigma in one layer and diverges like sigma sup - sup 1 as sigma->0 in the other layer. In such cases we show that the conditions for stability and robustness of the flat eigenmodes of the iteration residual imply instability of the modes flat in the y-dimension and rapidly varying in the x-dimension. Two assumptions are made in the proof. (i) Only cell-centered adjacent-cell preconditioners (AP) are considered; nevertheless numerical experiments with face-centered preconditioners of the diffusion synthetic acceleration (DSA) type on problem configurations with sharp material discontinuities suffer similar deterioration in s...

  18. Intra-particle oxygen diffusion limitation in solid-state fermentation

    NARCIS (Netherlands)

    Oostra, J.; Comte, le E.P.; Heuvel, van den J.C.; Tramper, J.; Rinzema, A.

    2001-01-01

    Oxygen limitation in solid-state fermentation (SSF) has been the topic of modeling studies, but thus far, there has been no experimental elucidation on oxygen-transfer limitation at the particle level. Therefore, intra-particle oxygen transfer was experimentally studied in cultures of Rhizopus

  19. Investigating flow behaviors of colloidal materials at the single-particle scale

    Science.gov (United States)

    Lin, Yen-Chih

    My thesis work focuses on the nonlinear mechanical behaviors of colloidal suspensions at the particle-level. This work covers both quiescent and strongly sheared suspensions. For quiescent suspensions, we image their 3D structures with confocal microscopy, and implement Stress Assessment from Local Structural Anisotropy (SALSA) to visualize the stress fields in them. Unlike traditional numerical methods, SALSA takes a statistical approach converting the probability of hard-sphere Brownian collisions to stresses. This direct stress measurement allows us to quantify the particle-level stresses surrounding vacancies, dislocations, and grain boundaries in crystalline materials. To drive the suspensions away from equilibrium, we develop a confocal-rheoscope, which is able to shear and image colloidal materials simultaneously. Using this device, we investigate the nonlinear flow behavior governed by Brownian motion, shear induced diffusion, and advection, and more importantly, disentangle them. We also study particle assembly and its corresponding rheological properties under confinement. Finally, we study even more strongly sheared suspensions, in which particle dynamics are too fast to be imaged by a confocal microscope. Here, we use flow reversal rheometry to reveal the underlying mechanism of suspension shear thickening where the viscosity increases with shear rate. We show that the thickening behavior of a suspension arises from the particle contact forces rather than hydrodynamic interactions. Such findings then lead us to design a biaxial shear protocol that can tune the suspension viscosity on demand. This viscosity tuning capability is a foundational step toward using dense suspensions in 3D printing, energy storage, and robotics.

  20. Single charging events on colloidal particles in a nonpolar liquid with surfactant

    Science.gov (United States)

    Schreuer, Caspar; Vandewiele, Stijn; Brans, Toon; Strubbe, Filip; Neyts, Kristiaan; Beunis, Filip

    2018-01-01

    Electrical charging of colloidal particles in nonpolar liquids due to surfactant additives is investigated intensively, motivated by its importance in a variety of applications. Most methods rely on average electrophoretic mobility measurements of many particles, which provide only indirect information on the charging mechanism. In the present work, we present a method that allows us to obtain direct information on the charging mechanism, by measuring the charge fluctuations on individual particles with a precision higher than the elementary charge using optical trapping electrophoresis. We demonstrate the capabilities of the method by studying the influence of added surfactant OLOA 11000 on the charging of single colloidal PMMA particles in dodecane. The particle charge and the frequency of charging events are investigated both below and above the critical micelle concentration (CMC) and with or without applying a DC offset voltage. It is found that at least two separate charging mechanisms are present below the critical micelle concentration. One mechanism is a process where the particle is stripped from negatively charged ionic molecules. An increase in the charging frequency with increased surfactant concentration suggests a second mechanism that involves single surfactant molecules. Above the CMC, neutral inverse micelles can also be involved in the charging process.

  1. Bidirectional reflectance spectroscopy 7. The single particle phase function hockey stick relation

    Science.gov (United States)

    Hapke, Bruce

    2012-11-01

    The measured volume-average single particle angular scattering functions of a large number of types of particle of interest for planetary regoliths in the visible-near-IR wavelength region can be represented to a reasonable approximation by two-parameter, double Henyey-Greenstein functions. When the two parameters of this function are plotted against one another they are found to be inversely correlated and lie within a restricted zone shaped like a hockey stick within the parameter space. The centroid of the zone is a curve that can be represented by a simple empirical equation. The wide variety of types of particles used to construct the plot implies that this equation may represent most of the particles found in regoliths. This means that when modeling the bidirectional reflectance of a regolith it may be possible to reduce the number of parameters necessary to specify the reflectance, and also to characterize the entire single particle phase function from observations at phase angles less than 90°. Even if the hockey stick relation has a finite width, rather than being a line, it restricts the parameter space that must be searched when fitting data. The curve should also be useful for forward modeling particle phase functions.

  2. Effect of plasma density on diffusion rates due to wave particle interactions with chorus and plasmaspheric hiss: extreme event analysis

    Directory of Open Access Journals (Sweden)

    A. Sicard-Piet

    2014-08-01

    Full Text Available Wave particle interactions play an important role in controlling the dynamics of the radiation belts. The purpose of this study is to estimate how variations in the plasma density can affect diffusion rates resulting from interactions between chorus waves and plasmaspheric hiss with energetic particles and the resulting evolution of the energetic electron population. We perform a statistical analysis of the electron density derived from the plasma wave experiment on the CRRES satellite for two magnetic local time sectors corresponding to near midnight and near noon. We present the cumulative probability distribution of the electron plasma density for three levels of magnetic activity as measured by Kp. The largest densities are seen near L* = 2.5 while the smallest occur near L* = 6. The broadest distribution, corresponding to the greatest variability, occurs near L* = 4. We calculate diffusion coefficients for plasmaspheric hiss and whistler mode chorus for extreme values of the electron density and estimate the effects on the radiation belts using the Salammbô model. At L* = 4 and L* = 6, in the low density case, using the density from the 5th percentile of the cumulative distribution function, electron energy diffusion by chorus waves is strongest at 2 MeV and increases the flux by up to 3 orders of magnitude over a period of 24 h. In contrast, in the high density case, using the density from the 95th percentile, there is little acceleration at energies above 800 keV at L* = 6, and virtually no acceleration at L* = 4. In this case the strongest energy diffusion occurs at lower energies around 400 keV where the flux at L* = 6 increases 3 orders of magnitude.

  3. DECAY MODES OF HIGH-LYING SINGLE-PARTICLE STATES IN PB-209

    NARCIS (Netherlands)

    BEAUMEL, D; FORTIER, S; GALES, S; GUILLOT, J; LANGEVINJOLIOT, H; LAURENT, H; MAISON, JM; VERNOTTE, J; BORDEWIJK, JA; BRANDENBURG, S; KRASZNAHORKAY, A; CRAWLEY, GM; MASSOLO, CP; RENTERIA, M

    The neutron decay of high-lying single-particle states in Pb-209 excited by means of the (alpha, He-3) reaction has been investigated at 122 MeV incident energy using a multidetector array. The high-spin values of these states, inferred from previous inclusive experiments, are confirmed by the

  4. A new single-particle basis for nuclear many-body calculations

    Science.gov (United States)

    Puddu, G.

    2017-10-01

    Predominantly, harmonic oscillator single-particle wave functions are the preferred choice for a basis in ab initio nuclear many-body calculations. These wave-functions, although very convenient in order to evaluate the matrix elements of the interaction in the laboratory frame, have too fast a fall-off at large distances. In the past, as an alternative to the harmonic oscillator, other single-particle wave functions have been proposed. In this work, we propose a new single-particle basis, directly linked to nucleon-nucleon interaction. This new basis is orthonormal and complete, has the proper asymptotic behavior at large distances and does not contain the continuum which would pose severe convergence problems in nuclear many body calculations. We consider the newly proposed NNLO-opt nucleon-nucleon interaction, without any renormalization. We show that, unlike other bases, this single-particle representation has a computational cost similar to the harmonic oscillator basis with the same space truncation and it gives lower energies for 6He and 6Li.

  5. Summary report of the group on single-particle nonlinear dynamics

    International Nuclear Information System (INIS)

    Axinescu, S.; Bartolini, R.; Bazzani, A.

    1996-10-01

    This report summarizes the research on single-particle nonlinear beam dynamics. It discusses the following topics: analytical and semi-analytical tools; early prediction of the dynamic aperture; how the results are commonly presented; Is the mechanism of the dynamic aperture understand; ripple effects; and beam-beam effects

  6. Single-particle electron microscopy in the study of membrane protein structure.

    Science.gov (United States)

    De Zorzi, Rita; Mi, Wei; Liao, Maofu; Walz, Thomas

    2016-02-01

    Single-particle electron microscopy (EM) provides the great advantage that protein structure can be studied without the need to grow crystals. However, due to technical limitations, this approach played only a minor role in the study of membrane protein structure. This situation has recently changed dramatically with the introduction of direct electron detection device cameras, which allow images of unprecedented quality to be recorded, also making software algorithms, such as three-dimensional classification and structure refinement, much more powerful. The enhanced potential of single-particle EM was impressively demonstrated by delivering the first long-sought atomic model of a member of the biomedically important transient receptor potential channel family. Structures of several more membrane proteins followed in short order. This review recounts the history of single-particle EM in the study of membrane proteins, describes the technical advances that now allow this approach to generate atomic models of membrane proteins and provides a brief overview of some of the membrane protein structures that have been studied by single-particle EM to date. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Lagrangian single-particle turbulent statistics through the Hilbert-Huang transform

    NARCIS (Netherlands)

    Huang, Y.; Biferale, L.; Calzavarini, E.; Sun, Chao; Toschi, F.

    2013-01-01

    The Hilbert-Huang transform is applied to analyze single-particle Lagrangian velocity data from numerical simulations of hydrodynamic turbulence. The velocity trajectory is described in terms of a set of intrinsic mode functions C i (t) and of their instantaneous frequency ω i (t) . On the basis of

  8. Insensitivity of single particle time domain measurements to laser velocimeter 'Doppler ambiguity.'

    Science.gov (United States)

    Johnson, D. A.

    1973-01-01

    It is shown that single particle time domain measurements in high speed gas flows obtained by a laser velocimeter technique developed for use in wind tunnels are not affected by the so-called 'Doppler ambiguity.' A comparison of hot-wire anemometer and laser velocimeter measurements taken under similar flow conditions is used for the demonstration.

  9. Single particle electron microscopy in combination with mass spectrometry to investigate novel complexes of membrane proteins

    NARCIS (Netherlands)

    Arteni, Ana A.; Nowaczyk, Marc; Lax, Julia; Rögner, Matthias; Boekema, Egbert J.; Kouril, R.; Rogner, M.

    2005-01-01

    Large data sets of molecular projections of the membrane proteins Photosystem I and Photosystem II from cyanobacteria were analyzed by single particle electron microscopy (EM). Analysis resulted in the averaging of 2D projections from the purified complexes but also in the simultaneous detection and

  10. Single-shot LIBS spectral quality for waste particles in open air

    NARCIS (Netherlands)

    Xia, H.; Bakker, M.C.M.

    2015-01-01

    This work investigates the ability of LIBS to produce quality spectra from small particles of concrete demolition waste using single-shot spectra collected in open air. The 2–8?mm materials are rounded river gravel, green glass shards, and plastic flakes. Considered are focal length, air, moisture,

  11. Deformed single-particle levels in the boson-fermion model

    International Nuclear Information System (INIS)

    Leviatan, A.; Shao, B.

    1989-01-01

    Deformed single-particle levels are derived from a boson-fermion Hamiltonian in which the odd fermion occupies several j orbits. The geometric-oriented approach applied to 169 Tm clarified the role of algebraic interactions and provides an intuitive interpretation and guidance to numerical calculations in deformed nuclei

  12. Deformed single-particle levels in the boson-fermion model

    Energy Technology Data Exchange (ETDEWEB)

    Leviatan, A.; Shao, B. (Center for Theoretical Physics, Sloane Laboratory, Yale University, New Haven, Connecticut 06511 (US) Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (US))

    1989-11-13

    Deformed single-particle levels are derived from a boson-fermion Hamiltonian in which the odd fermion occupies several {ital j} orbits. The geometric-oriented approach applied to {sup 169}Tm clarified the role of algebraic interactions and provides an intuitive interpretation and guidance to numerical calculations in deformed nuclei.

  13. The online chemical analysis of single particles using aerosol beams and time of flight mass spectroscopy

    NARCIS (Netherlands)

    Kievit, O.; Weiss, M.; Verheijen, P.J.T.; Marijnissen, J.C.M.; Scarlett, B.

    This paper describes an on-line instrument, capable of measuring the size and chemical composition of single aerosol particles. Possible applications include monitoring aerosol reactors and studying atmospheric chemistry. The main conclusion is that a working prototype has been built and tested. It

  14. Quantification of dermal exposure to nanoparticles from solid nanocomposites by using single particle ICP-MS

    DEFF Research Database (Denmark)

    Mackevica, Aiga; Olsson, Mikael Emil; Hansen, Steffen Foss

    2016-01-01

    was tested by surface wiping followed by analysis using single particle ICP-MS. The nanoparticles were extracted from the wipes by ultrasonication in deionized water, and this technique was tested to be around 60-100% effective for extracting the particles adsorbed to the wipes. The method was optimized......Engineered nanoparticles are used in various applications due to their unique properties, which has led to their widespread use in consumer products. Silver, titanium and copper-based nanoparticles are few of the most commonly used nanomaterials in consumer products, mainly due to their biocidal...... by spiking the wipes with known amounts of nanoparticles and treating them the same way as the experimental samples. Our preliminary results show that single particle ICP-MS has the potential for quantitatively measuring potential dermal exposure to nanoparticles, and when used in combination with other...

  15. Fluorescent detection of single tracks of alpha particles using lithium fluoride crystals

    Energy Technology Data Exchange (ETDEWEB)

    Bilski, P., E-mail: pawel.bilski@ifj.edu.pl; Marczewska, B.

    2017-02-01

    Lithium fluoride single crystals were successfully used for fluorescent imaging of single tracks of alpha particles. This was realized with a standard wide-field fluorescent microscope equipped with a 100× objective. Alpha particles create F{sub 2} and F{sub 3}{sup +} color centers in LiF crystals. The subsequent illumination with the blue light (wavelength around 445 nm), excites these centers and produces fluorescence with a broad band peaked at 670 nm. The observed tracks of alpha particles have diameter of about 500 nm. Focusing of the microscope at different depths in a LiF crystal, enables imaging changes of shape and position of tracks, allowing for visualization of their paths. These encouraging results are the first step towards practical application of LiF as fluorescent nuclear track detectors.

  16. Detection of single macromolecules using a cryogenic particle detector coupled to a biopolymer mass spectrometer

    Science.gov (United States)

    Twerenbold, Damian; Vuilleumier, Jean-Luc; Gerber, Daniel; Tadsen, Almut; van den Brandt, Ben; Gillevet, Patrick M.

    1996-06-01

    Macromolecules with masses up to 50 kDa have been detected with a cryogenic particle detector in a MALDI time-of-flight biopolymer mass spectrometer. The cryogenic particle detector was a Sn/Sn-ox/Sn tunnel junction operated at a temperature of 0.4 K. A calibration with 6 keV single photons inferred that the delayed detector pulses corresponded to the absorption of the kinetic energy of a single macromolecule. Time-of-flight spectra of lysozyme proteins are presented. The mass resolution is 100 Da at 14 300 Da. The energy sensitive detection mechanism suggests that cryogenic particle detectors have a high and mass independent detection efficiency for macromolecules.

  17. Wastewater diffusive dilution and sedimentation of the fine contaminated particles for nonuniform flow in open channels

    Directory of Open Access Journals (Sweden)

    Lyapin Anton

    2018-01-01

    Full Text Available The influence of non-uniformity on mass transfer processes in open channels have been investigated under the action of urbanization factors. The study is related to the urgent problem of environmental degradation of water objects in urbanized areas. It is known that the water quality in the water objects depends on the manner in which the contaminants spread how they mix with the river water and diluted by it. The main results of the study consist of recommendations to incorporate non-uniformity factor to the calculation of diffusion dilution of wastewater and prediction of river processes. So the effect of the flow non-uniformity on the diffusion model of pollutants dilution and diffusion coefficient have been investigated. Formulas for the concentration profiles calculating and the average concentration of fine particulate matter in nonuniform gradually varied flow were presented. The deposition length of suspended contaminants were received, based on the hydraulic resistance laws of nonuniform gradually varied flow.

  18. Single-pixel interior filling function approach for detecting and correcting errors in particle tracking.

    Science.gov (United States)

    Burov, Stanislav; Figliozzi, Patrick; Lin, Binhua; Rice, Stuart A; Scherer, Norbert F; Dinner, Aaron R

    2017-01-10

    We present a general method for detecting and correcting biases in the outputs of particle-tracking experiments. Our approach is based on the histogram of estimated positions within pixels, which we term the single-pixel interior filling function (SPIFF). We use the deviation of the SPIFF from a uniform distribution to test the veracity of tracking analyses from different algorithms. Unbiased SPIFFs correspond to uniform pixel filling, whereas biased ones exhibit pixel locking, in which the estimated particle positions concentrate toward the centers of pixels. Although pixel locking is a well-known phenomenon, we go beyond existing methods to show how the SPIFF can be used to correct errors. The key is that the SPIFF aggregates statistical information from many single-particle images and localizations that are gathered over time or across an ensemble, and this information augments the single-particle data. We explicitly consider two cases that give rise to significant errors in estimated particle locations: undersampling the point spread function due to small emitter size and intensity overlap of proximal objects. In these situations, we show how errors in positions can be corrected essentially completely with little added computational cost. Additional situations and applications to experimental data are explored in SI Appendix In the presence of experimental-like shot noise, the precision of the SPIFF-based correction achieves (and can even exceed) the unbiased Cramér-Rao lower bound. We expect the SPIFF approach to be useful in a wide range of localization applications, including single-molecule imaging and particle tracking, in fields ranging from biology to materials science to astronomy.

  19. A clustering approach to multireference alignment of single-particle projections in electron microscopy.

    Science.gov (United States)

    Sorzano, C O S; Bilbao-Castro, J R; Shkolnisky, Y; Alcorlo, M; Melero, R; Caffarena-Fernández, G; Li, M; Xu, G; Marabini, R; Carazo, J M

    2010-08-01

    Two-dimensional analysis of projections of single-particles acquired by an electron microscope is a useful tool to help identifying the different kinds of projections present in a dataset and their different projection directions. Such analysis is also useful to distinguish between different kinds of particles or different particle conformations. In this paper we introduce a new algorithm for performing two-dimensional multireference alignment and classification that is based on a Hierarchical clustering approach using correntropy (instead of the more traditional correlation) and a modified criterion for the definition of the clusters specially suited for cases in which the Signal-to-Noise Ratio of the differences between classes is low. We show that our algorithm offers an improved sensitivity over current methods in use for distinguishing between different projection orientations and different particle conformations. This algorithm is publicly available through the software package Xmipp. Copyright 2010 Elsevier Inc. All rights reserved.

  20. Single-particle structure determination by correlations of snapshot X-ray diffraction patterns

    Science.gov (United States)

    Starodub, D.; Aquila, A.; Bajt, S.; Barthelmess, M.; Barty, A.; Bostedt, C.; Bozek, J. D.; Coppola, N.; Doak, R. B.; Epp, S. W.; Erk, B.; Foucar, L.; Gumprecht, L.; Hampton, C. Y.; Hartmann, A.; Hartmann, R.; Holl, P.; Kassemeyer, S.; Kimmel, N.; Laksmono, H.; Liang, M.; Loh, N. D.; Lomb, L.; Martin, A. V.; Nass, K.; Reich, C.; Rolles, D.; Rudek, B.; Rudenko, A.; Schulz, J.; Shoeman, R. L.; Sierra, R. G.; Soltau, H.; Steinbrener, J.; Stellato, F.; Stern, S.; Weidenspointner, G.; Frank, M.; Ullrich, J.; Strüder, L.; Schlichting, I.; Chapman, H. N.; Spence, J. C. H.; Bogan, M. J.

    2012-12-01

    Diffractive imaging with free-electron lasers allows structure determination from ensembles of weakly scattering identical nanoparticles. The ultra-short, ultra-bright X-ray pulses provide snapshots of the randomly oriented particles frozen in time, and terminate before the onset of structural damage. As signal strength diminishes for small particles, the synthesis of a three-dimensional diffraction volume requires simultaneous involvement of all data. Here we report the first application of a three-dimensional spatial frequency correlation analysis to carry out this synthesis from noisy single-particle femtosecond X-ray diffraction patterns of nearly identical samples in random and unknown orientations, collected at the Linac Coherent Light Source. Our demonstration uses unsupported test particles created via aerosol self-assembly, and composed of two polystyrene spheres of equal diameter. The correlation analysis avoids the need for orientation determination entirely. This method may be applied to the structural determination of biological macromolecules in solution.

  1. Photonic-crystal membranes for optical detection of single nano-particles, designed for biosensor application.

    Science.gov (United States)

    Grepstad, Jon Olav; Kaspar, Peter; Solgaard, Olav; Johansen, Ib-Rune; Sudbø, Aasmund S

    2012-03-26

    A sensor designed to detect bio-molecules is presented. The sensor exploits a planar 2D photonic crystal (PC) membrane with sub-micron thickness and through holes, to induce high optical fields that allow detection of nano-particles smaller than the diffraction limit of an optical microscope. We report on our design and fabrication of a PC membrane with a nano-particle trapped inside. We have also designed and built an imaging system where an optical microscope and a CCD camera are used to take images of the PC membrane. Results show how the trapped nano-particle appears as a bright spot in the image. In a first experimental realization of the imaging system, single particles with a radius of 75 nm can be detected.

  2. Source apportionment of single aerosol particles in the atmosphere of Shanghai city

    International Nuclear Information System (INIS)

    Qiu Zhijun; Lu Rongrong; Guo Panlin; Wang Jiqing; Qiu Huiyuan; Li Xiaolin; Zhu Jieqing

    2001-01-01

    A nuclear microprobe with high spatial resolution and high analytical sensitivity was applied to analyze atmospheric aerosol at five monitoring sites in Shanghai city. Meantime, a new pattern recognition technique, which used the micro-PIXE spectrum of a single aerosol particle as its fingerprint, was developed to identify the origin of the particle. The results showed that the major contributors to the atmosphere pollution were soil dust (31.6%), building dust (30.8%), and the next were vehicle exhaust (13.7%), metallurgic industry excrements (5.6%), oil combustion (5%) and coal combustion (2.3%). Besides these, about 10% of the particles could not be identified. Based on the cluster analysis of these particles, they could be divided into soil dust, building dust and metallurgic industry excrements. Moreover, some new pollution sources from tyres and chemical plants were also revealed

  3. Experimental investigation of particle size distribution influence on diffusion controlled coarsening

    International Nuclear Information System (INIS)

    Fang, Zhigang; Patterson, B.R.

    1993-01-01

    The influence of initial particle size distribution on coarsening during liquid phase sintering has been experimentally investigated using W-14Ni-6Fe alloy as a model system. It was found that initially wider size distribution particles coarsened more rapidly than those of an initially narrow distribution. The well known linear relationship between the cube of the average particle radius bar r -3 , and time was observed for most of the coarsening process, although the early stage coarsening rate constant changed with time, as expected with concomitant early changes in the tungsten particle size distribution. The instantaneous transient rate constant was shown to be related to the geometric standard deviation, 1nσ, of the instantaneous size distributions, with higher rate constants corresponding to larger 1nσ values. The form of the particle size distributions changed rapidly during early coarsening and reached a quasi-stable state, different from the theoretical asymptotic distribution, after some time. A linear relationship was found between the experimentally observed instantaneous rate constant and that computed from an earlier model incorporating the effect of particle size distribution. The above results compare favorably with those from prior theoretical modeling and computer simulation studies of the effect of particle size distribution on coarsening, based on the DeHoff communicating neighbor model

  4. Theoretical and experimental study of single particle tracking in extreme conditions: single photon imaging

    International Nuclear Information System (INIS)

    Cajgfinger, T.

    2012-10-01

    This manuscript presents my thesis on the high frame rate (500 frames / second) single-photon detector electron-bombarded CMOS (ebCMOS). The first section compares three ultra-sensitive detectors and their methods for improving photon sensitivity: the CMOS low noise (sCMOS), the electron-multiplying CCD (emCCD) with signal multiplication by pixel and the ebCMOS with amplification by applied electric field. The method developed to detect single photon impacts with intra-pixel resolution on the ebCMOS sensor is presented. The second section compares the localization accuracy of these detectors in extreme conditions of very low photon flux (<10 photons/frame). First the theoretical limit is calculated using the Cramer-Rao lower bound for significant parameter sets. An experimental comparison of the detectors is then described. The setup provides one or more point sources controlled in position, signal and background noise. The results allow a comparison of the experimental effectiveness, purity and localization accuracy. The last section describes two experiments with the ebCMOS camera. The first aims at tracking hundreds of quantum dots simultaneously at the Nanoptec center. The second focuses on the swimming of bacteria at the surface at the Joliot Curie Institute. The point sources tracking algorithm using single photons and the Kalman filter implementation developed for these experiments is also described. (author)

  5. Creation of giant two-dimensional crystal of zinc oxide nanodisk by method of single-particle layer of organo-modified inorganic fine particles.

    Science.gov (United States)

    Meng, Qi; Honda, Nanami; Uchida, Saki; Hashimoto, Kazuaki; Shibata, Hirobumi; Fujimori, Atsuhiro

    2015-09-01

    In this study, the formation and structure of a single-particle layer of organo-zinc oxide are investigated using surface-pressure-area (π-A) isotherms, out-of-plane X-ray diffraction (XRD) analysis, and atomic force microscopy (AFM). Further, techniques for achieving the solubilization of inorganic fine particles in general solvents have been proposed, and a single-particle layer has been formed using such an inorganic solution as a "spreading solution" for an interfacial film. Surface modification of ZnO is performed using a long-chain carboxylic acid. Accordingly, a regular arrangement of ZnO can be easily achieved in order to overcome the relatively weak van der Walls interactions between inorganic materials. A condensed Langmuir monolayer of these particles is also formed. A multiparticle layered structure is constructed by the Langmuir-Blodgett (LB) technique. Out-of-plane XRD measurement results for a single-particle layer of organo-ZnO clearly show a sharp peak at 42 Å. This peak is attributed to the distance between ZnO layers. The AFM image of this single-particle layer of organo-ZnO shows a particle assembly with a uniform height of 60 nm. These aggregated particles form large two-dimensional crystals. In other words, a regular periodic structure along the c-axis and a condensed single-particle layer had been fabricated using Langmuir and LB techniques. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Synthesis of Cyclic Polymers and Characterization of Their Diffusive Motion in the Melt State at the Single Molecule Level

    KAUST Repository

    Habuchi, Satoshi

    2016-09-26

    We demonstrate a method for the synthesis of cyclic polymers and a protocol for characterizing their diffusive motion in a melt state at the single molecule level. An electrostatic self-assembly and covalent fixation (ESA-CF) process is used for the synthesis of the cyclic poly(tetrahydrofuran) (poly(THF)). The diffusive motion of individual cyclic polymer chains in a melt state is visualized using single molecule fluorescence imaging by incorporating a fluorophore unit in the cyclic chains. The diffusive motion of the chains is quantitatively characterized by means of a combination of mean-squared displacement (MSD) analysis and a cumulative distribution function (CDF) analysis. The cyclic polymer exhibits multiple-mode diffusion which is distinct from its linear counterpart. The results demonstrate that the diffusional heterogeneity of polymers that is often hidden behind ensemble averaging can be revealed by the efficient synthesis of the cyclic polymers using the ESA-CF process and the quantitative analysis of the diffusive motion at the single molecule level using the MSD and CDF analyses.

  7. Simultaneous diamagnetic and magnetic particle trapping in ferrofluid microflows via a single permanent magnet

    Science.gov (United States)

    Zhou, Yilong; Kumar, Dhileep Thanjavur; Lu, Xinyu; Kale, Akshay; DuBose, John; Song, Yongxin; Wang, Junsheng; Li, Dongqing; Xuan, Xiangchun

    2015-01-01

    Trapping and preconcentrating particles and cells for enhanced detection and analysis are often essential in many chemical and biological applications. Existing methods for diamagnetic particle trapping require the placement of one or multiple pairs of magnets nearby the particle flowing channel. The strong attractive or repulsive force between the magnets makes it difficult to align and place them close enough to the channel, which not only complicates the device fabrication but also restricts the particle trapping performance. This work demonstrates for the first time the use of a single permanent magnet to simultaneously trap diamagnetic and magnetic particles in ferrofluid flows through a T-shaped microchannel. The two types of particles are preconcentrated to distinct locations of the T-junction due to the induced negative and positive magnetophoretic motions, respectively. Moreover, they can be sequentially released from their respective trapping spots by simply increasing the ferrofluid flow rate. In addition, a three-dimensional numerical model is developed, which predicts with a reasonable agreement the trajectories of diamagnetic and magnetic particles as well as the buildup of ferrofluid nanoparticles. PMID:26221197

  8. Exploring Electronic Structure and Order in Polymers via Single-Particle Microresonator Spectroscopy.

    Science.gov (United States)

    Horak, Erik H; Rea, Morgan T; Heylman, Kevin D; Gelbwaser-Klimovsky, David; Saikin, Semion K; Thompson, Blaise J; Kohler, Daniel D; Knapper, Kassandra A; Wei, Wei; Pan, Feng; Gopalan, Padma; Wright, John C; Aspuru-Guzik, Alán; Goldsmith, Randall H

    2018-02-08

    PSS, a transparent electrically conductive polymer, finds widespread use in electronic devices. While empirical efforts have increased conductivity, a detailed understanding of the coupled electronic and morphological landscapes in PEDOT:PSS has lagged due to substantial structural heterogeneity on multiple length-scales. We use an optical microresonator-based absorption spectrometer to perform single-particle measurements, providing a bottom-up examination of electronic structure and morphology ranging from single PEDOT:PSS polymers to nascent films. Using single-particle spectroscopy with complementary theoretical calculations and ultrafast spectroscopy, we demonstrate that PEDOT:PSS displays bulk-like optical response even in single polymers. We find highly ordered PEDOT assemblies with long-range ordering mediated by the insulating PSS matrix and reveal a preferential surface orientation of PEDOT nanocrystallites absent in bulk films with implications for interfacial electronic communication. Our single-particle perspective provides a unique window into the microscopic structure and electronic properties of PEDOT:PSS.

  9. The studies of particle diffusion on a heterogeneous one-dimensional lattice

    Czech Academy of Sciences Publication Activity Database

    Tarasenko, Alexander; Jastrabík, Lubomír

    2015-01-01

    Roč. 641, Nov (2015), s. 266-268 ISSN 0039-6028 R&D Projects: GA MŠk LO1409 Institutional support: RVO:68378271 Keywords : heterogeneous one-dimensional lattice * diffusion * kinetic Monte Carlo simulations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.931, year: 2015

  10. Normal and anomalous diffusion of non-interacting particles in linear nanopores

    NARCIS (Netherlands)

    Zschiegner, S.; Russ, S.; Valiullin, R.; Coppens, M.O.; Dammers, A.J.; Bunde, A.; Kärger, J.

    2008-01-01

    The diffusion of gas molecules in pores is determined by the collisions between the molecules as well as by the collisions of the molecules with the pore walls. In many applications the so-called Knudsen regime is of particular interest. In this regime the collisions of the molecules with the pore

  11. The noise-limited-resolution for stimulated emission depletion microscopy of diffusing particles

    NARCIS (Netherlands)

    Lee, Christopher James; Boller, Klaus J.

    2012-01-01

    With recent developments in microscopy, such as stimulated emission depletion (STED) microscopy, far-field imaging at resolutions better than the diffraction limit is now a commercially available technique. Here, we show that, in the special case of a diffusive regime, the noise-limited resolution

  12. Banded structures in electron pitch angle diffusion coefficients from resonant wave-particle interactions

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, A. K., E-mail: aktrip2001@yahoo.co.in; Singhal, R. P., E-mail: rpsiitbhu@yahoo.com [Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh (India); Khazanov, G. V., E-mail: George.V.Khazanov@nasa.gov [NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States); Avanov, L. A., E-mail: levon.a.avanov@nasa.gov [NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States); Department of Astronomy, University of Maryland, College Park, Maryland 20742 (United States)

    2016-04-15

    Electron pitch angle (D{sub αα}) and momentum (D{sub pp}) diffusion coefficients have been calculated due to resonant interactions with electrostatic electron cyclotron harmonic (ECH) and whistler mode chorus waves. Calculations have been performed at two spatial locations L = 4.6 and 6.8 for electron energies ≤10 keV. Landau (n = 0) resonance and cyclotron harmonic resonances n = ±1, ±2, … ±5 have been included in the calculations. It is found that diffusion coefficient versus pitch angle (α) profiles show large dips and oscillations or banded structures. The structures are more pronounced for ECH and lower band chorus (LBC) and particularly at location 4.6. Calculations of diffusion coefficients have also been performed for individual resonances. It is noticed that the main contribution of ECH waves in pitch angle diffusion coefficient is due to resonances n = +1 and n = +2. A major contribution to momentum diffusion coefficients appears from n = +2. However, the banded structures in D{sub αα} and D{sub pp} coefficients appear only in the profile of diffusion coefficients for n = +2. The contribution of other resonances to diffusion coefficients is found to be, in general, quite small or even negligible. For LBC and upper band chorus waves, the banded structures appear only in Landau resonance. The D{sub pp} diffusion coefficient for ECH waves is one to two orders smaller than D{sub αα} coefficients. For chorus waves, D{sub pp} coefficients are about an order of magnitude smaller than D{sub αα} coefficients for the case n ≠ 0. In case of Landau resonance, the values of D{sub pp} coefficient are generally larger than the values of D{sub αα} coefficients particularly at lower energies. As an aid to the interpretation of results, we have also determined the resonant frequencies. For ECH waves, resonant frequencies have been estimated for wave normal angle 89° and harmonic resonances n = +1, +2, and +3

  13. Three-Dimensional Localization of Single Molecules for Super-Resolution Imaging and Single-Particle Tracking.

    Science.gov (United States)

    von Diezmann, Alex; Shechtman, Yoav; Moerner, W E

    2017-06-14

    Single-molecule super-resolution fluorescence microscopy and single-particle tracking are two imaging modalities that illuminate the properties of cells and materials on spatial scales down to tens of nanometers or with dynamical information about nanoscale particle motion in the millisecond range, respectively. These methods generally use wide-field microscopes and two-dimensional camera detectors to localize molecules to much higher precision than the diffraction limit. Given the limited total photons available from each single-molecule label, both modalities require careful mathematical analysis and image processing. Much more information can be obtained about the system under study by extending to three-dimensional (3D) single-molecule localization: without this capability, visualization of structures or motions extending in the axial direction can easily be missed or confused, compromising scientific understanding. A variety of methods for obtaining both 3D super-resolution images and 3D tracking information have been devised, each with their own strengths and weaknesses. These include imaging of multiple focal planes, point-spread-function engineering, and interferometric detection. These methods may be compared based on their ability to provide accurate and precise position information on single-molecule emitters with limited photons. To successfully apply and further develop these methods, it is essential to consider many practical concerns, including the effects of optical aberrations, field dependence in the imaging system, fluorophore labeling density, and registration between different color channels. Selected examples of 3D super-resolution imaging and tracking are described for illustration from a variety of biological contexts and with a variety of methods, demonstrating the power of 3D localization for understanding complex systems.

  14. Single particle and molecular assembly analysis of polyribosomes by single- and double-tilt cryo electron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Myasnikov, Alexander G. [IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Department of Integrative Structural Biology, Centre National de la Recherche Scientifique (CNRS) UMR 7104/ Institut National de la Santé de la Recherche Médicale INSERM U964/ Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch (France); Afonina, Zhanna A. [Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region (Russian Federation); Klaholz, Bruno P., E-mail: klaholz@igbmc.fr [IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Department of Integrative Structural Biology, Centre National de la Recherche Scientifique (CNRS) UMR 7104/ Institut National de la Santé de la Recherche Médicale INSERM U964/ Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch (France)

    2013-03-15

    Cryo electron tomography (cryo-ET) can provide cellular and molecular structural information on various biological samples. However, the detailed interpretation of tomograms reconstructed from single-tilt data tends to suffer from low signal-to-noise ratio and artefacts caused by some systematically missing angular views. While these can be overcome by sub-tomogram averaging, they remain limiting for the analysis of unique structures. Double-tilt ET can improve the tomogram quality by acquiring a second tilt series after an in-plane rotation, but its usage is not widespread yet because it is considered technically demanding and it is rarely used under cryo conditions. Here we show that double-tilt cryo-ET improves the quality of 3D reconstructions so significantly that even single particle analysis can be envisaged despite of the intrinsically low image contrast obtained from frozen-hydrated specimens. This is illustrated by the analysis of eukaryotic polyribosomes in which individual ribosomes were reconstructed using single-tilt, partial and full double-tilt geometries. The improved tomograms favour the faster convergence of iterative sub-tomogram averaging and allow a better 3D classification using multivariate statistical analysis. Our study of single particles and molecular assemblies within polysomes illustrates that the dual-axis approach is particularly useful for cryo applications of ET, both for unique objects and for structures that can be classified and averaged. - Highlights: ► Double-tilt cryo-ET improves 3D reconstructions thus making single particle analysis possible. ► Dual-axis cryo-ET data favour a faster convergence of iterative sub-tomogram averaging. ► Individual ribosomes were reconstructed from single-tilt, partial/ full double-tilt geometries. ► Double-tilt cryo-ET facilitates analysis of larger molecular assemblies such as in cell sections. ► Dual-axis cryo-ET is applicable to unique objects and to structures that can be

  15. Hydrogen-related complexes in Li-diffused ZnO single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Corolewski, Caleb D. [Materials Science and Engineering Program, Washington State University, Pullman, Washington 99164-2814 (United States); Parmar, Narendra S.; Lynn, Kelvin G. [Center for Materials Research, Washington State University, Pullman, Washington 99164-2814 (United States); McCluskey, Matthew D., E-mail: mattmcc@wsu.edu [Materials Science and Engineering Program, Washington State University, Pullman, Washington 99164-2814 (United States); Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164-2814 (United States)

    2016-07-21

    Zinc oxide (ZnO) is a wide band gap semiconductor and a potential candidate for next generation white solid state lighting applications. In this work, hydrogen-related complexes in lithium diffused ZnO single crystals were studied. In addition to the well-known Li-OH complex, several other hydrogen defects were observed. When a mixture of Li{sub 2}O and ZnO is used as the dopant source, zinc vacancies are suppressed and the bulk Li concentration is very high (>10{sup 19 }cm{sup −3}). In that case, the predominant hydrogen complex has a vibrational frequency of 3677 cm{sup −1}, attributed to surface O-H species. When Li{sub 2}CO{sub 3} is used, a structured blue luminescence band and O-H mode at 3327 cm{sup −1} are observed at 10 K. These observations, along with positron annihilation measurements, suggest a zinc vacancy–hydrogen complex, with an acceptor level ∼0.3 eV above the valence-band maximum. This relatively shallow acceptor could be beneficial for p-type ZnO.

  16. Characteristics of tyre dust in polluted air: Studies by single particle mass spectrometry (ATOFMS)

    Science.gov (United States)

    Dall'Osto, Manuel; Beddows, David C. S.; Gietl, Johanna K.; Olatunbosun, Oluremi A.; Yang, Xiaoguang; Harrison, Roy M.

    2014-09-01

    There is a paucity of quantitative knowledge on the contributions of non-exhaust (abrasion and re-suspension) sources to traffic emissions. Abrasive emissions can be broadly categorised as tyre wear, brake wear and road dust/road surface wear. Current research often considers road dust and tyre dust as externally mixed particles, the former mainly composed of mineral matter and the latter solely composed of mainly organic matter and some trace elements. The aim of this work was to characterise tyre wear from both laboratory and field studies by using Aerosol Time-Of-Flight Mass Spectrometry (ATOFMS). Real-time single particle chemical composition was obtained from a set of rubber tyres rotating on a metal surface. Bimodal particle number size distributions peaking at 35 nm and 85 nm were obtained from SMPS/APS measurements over the range 6-20,000 nm. ATOFMS mass spectra of tyre wear in the particle size range 200-3000 nm diameter show peaks due to exo-sulphur compounds, nitrate, Zn and ions of high molecular weight (m/z > 100) attributed to organic polymers. Two large ATOFMS datasets collected from a number of outdoor studies were examined. The former was constituted of 48 road dust samples collected on the roads of London. The latter consisted of ATOFMS ambient air field studies from Europe, overall composed of more than 2,000,000 single particle mass spectra. The majority (95%) of tyre wear particles present in the road dust samples and atmospheric samples are internally mixed with metals (Li, Na, Ca, Fe, Ti), as well as phosphate. It is concluded that the interaction of tyres with the road surface creates particles internally mixed from two sources: tyre rubber and road surface materials. Measurements of the tyre rubber component alone may underestimate the contribution of tyre wear to concentrations of airborne particulate matter. The results presented are especially relevant for urban aerosol source apportionment and PM2.5 exposure assessment.

  17. Statistical and direct decay of high-lying single-particle excitations

    International Nuclear Information System (INIS)

    Gales, S.

    1993-01-01

    Transfer reactions induced by hadronic probes at intermediate energies have revealed a rich spectrum of high-lying excitations embedded in the nuclear continuum. The investigation of their decay properties is believed to be a severe test of their microscopic structure as predicted by microscopic nuclear models. In addition the degree of damping of these simple modes in the nuclear continuum can be obtained by means of the measured particle (n,p) decay branching ratios. The neutron and proton decay studies of high-lying single-particle states in heavy nuclei are presented. (author). 13 refs., 9 figs

  18. Raman mapping of mannitol/lysozyme particles produced via spray drying and single droplet drying

    DEFF Research Database (Denmark)

    Pekka Pajander, Jari; Matero, Sanni Elina; Sloth, Jakob

    2015-01-01

    -ray powder diffractometry (XRPD) and Raman microscopy. Partial Least Squares Discriminant Analysis was used for analyzing the Raman microscopy data. RESULTS: XRPD results indicated that a mixture of β-mannitol and α-mannitol was produced in the spray-drying process which was supported by the Raman analysis......, whereas Raman analysis indicated that a mixture of α-mannitol and δ-mannitol was detected in the single particles from DKA. In addition Raman mapping indicated that the presence of lysozyme seemed to favor the appearance of α-mannitol in the particles from DKA evidenced by close proximity of lysozyme...

  19. Measurement of single moving particle temperatures with an FT-IR spectrometer

    DEFF Research Database (Denmark)

    Clausen, Sønnik; Sørensen, L.H.

    1996-01-01

    A conventional scanning FT-IR spectrometer is used to measure the blackbody radiation through a rapidly moving pinhole in an experiment simulating a dying hot particle. The effects and errors from source movements are analyzed and verified through experiments. The importance of the scanning...... by a factor of 2-10 compared with results from a typical two-color pyrometer. A novel method is presented for measuring emission spectra from single moving particles passing the field of view of the spectrometer in a random manner....

  20. Hybrid approach combining dissipative particle dynamics and finite-difference diffusion model: simulation of reactive polymer coupling and interfacial polymerization.

    Science.gov (United States)

    Berezkin, Anatoly V; Kudryavtsev, Yaroslav V

    2013-10-21

    A novel hybrid approach combining dissipative particle dynamics (DPD) and finite difference (FD) solution of partial differential equations is proposed to simulate complex reaction-diffusion phenomena in heterogeneous systems. DPD is used for the detailed molecular modeling of mass transfer, chemical reactions, and phase separation near the liquid∕liquid interface, while FD approach is applied to describe the large-scale diffusion of reactants outside the reaction zone. A smooth, self-consistent procedure of matching the solute concentration is performed in the buffer region between the DPD and FD domains. The new model is tested on a simple model system admitting an analytical solution for the diffusion controlled regime and then applied to simulate practically important heterogeneous processes of (i) reactive coupling between immiscible end-functionalized polymers and (ii) interfacial polymerization of two monomers dissolved in immiscible solvents. The results obtained due to extending the space and time scales accessible to modeling provide new insights into the kinetics and mechanism of those processes and demonstrate high robustness and accuracy of the novel technique.

  1. Electrodynamic balance-mass spectrometry of single particles as a new platform for atmospheric chemistry research

    Science.gov (United States)

    Birdsall, Adam W.; Krieger, Ulrich K.; Keutsch, Frank N.

    2018-01-01

    New analytical techniques are needed to improve our understanding of the intertwined physical and chemical processes that affect the composition of aerosol particles in the Earth's atmosphere, such as gas-particle partitioning and homogenous or heterogeneous chemistry, and their ultimate relation to air quality and climate. We describe a new laboratory setup that couples an electrodynamic balance (EDB) to a mass spectrometer (MS). The EDB stores a single laboratory-generated particle in an electric field under atmospheric conditions for an arbitrarily long length of time. The particle is then transferred via gas flow to an ionization region that vaporizes and ionizes the analyte molecules before MS measurement. We demonstrate the feasibility of the technique by tracking evaporation of polyethylene glycol molecules and finding agreement with a kinetic model. Fitting data to the kinetic model also allows determination of vapor pressures to within a factor of 2. This EDB-MS system can be used to study fundamental chemical and physical processes involving particles that are difficult to isolate and study with other techniques. The results of such measurements can be used to improve our understanding of atmospheric particles.

  2. Single particle electron microscopy reconstruction of the exosome complex using the random conical tilt method.

    Science.gov (United States)

    Liu, Xueqi; Wang, Hong-Wei

    2011-03-28

    Single particle electron microscopy (EM) reconstruction has recently become a popular tool to get the three-dimensional (3D) structure of large macromolecular complexes. Compared to X-ray crystallography, it has some unique advantages. First, single particle EM reconstruction does not need to crystallize the protein sample, which is the bottleneck in X-ray crystallography, especially for large macromolecular complexes. Secondly, it does not need large amounts of protein samples. Compared with milligrams of proteins necessary for crystallization, single particle EM reconstruction only needs several micro-liters of protein solution at nano-molar concentrations, using the negative staining EM method. However, despite a few macromolecular assemblies with high symmetry, single particle EM is limited at relatively low resolution (lower than 1 nm resolution) for many specimens especially those without symmetry. This technique is also limited by the size of the molecules under study, i.e. 100 kDa for negatively stained specimens and 300 kDa for frozen-hydrated specimens in general. For a new sample of unknown structure, we generally use a heavy metal solution to embed the molecules by negative staining. The specimen is then examined in a transmission electron microscope to take two-dimensional (2D) micrographs of the molecules. Ideally, the protein molecules have a homogeneous 3D structure but exhibit different orientations in the micrographs. These micrographs are digitized and processed in computers as "single particles". Using two-dimensional alignment and classification techniques, homogenous molecules in the same views are clustered into classes. Their averages enhance the signal of the molecule's 2D shapes. After we assign the particles with the proper relative orientation (Euler angles), we will be able to reconstruct the 2D particle images into a 3D virtual volume. In single particle 3D reconstruction, an essential step is to correctly assign the proper orientation

  3. The evening diffuse radio aurora, field-aligned currents and particle precipitation

    International Nuclear Information System (INIS)

    Unwin, R.S.

    1980-01-01

    The relationship of the afternoon/evening diffuse radio aurora, proton and electron precipitation and field-aligned currents is studied with data from the auroral radar at Slope Point, New Zealand, and the ISIS 2 satellite. It is shown that there is a very close association between the radio aurora and (primarily downward) field-aligned currents, which confirms and extends previous work, but that there is no clear relation with either proton or electron precipitation. (author)

  4. Diffusion dynamics of the Keap1–Cullin3 interaction in single live cells

    Energy Technology Data Exchange (ETDEWEB)

    Baird, Liam [Jacqui Wood Cancer Centre, Division of Cancer Research, Medical Research Institute, University of Dundee, Dundee, Scotland (United Kingdom); Dinkova-Kostova, Albena T., E-mail: a.dinkovakostova@dundee.ac.uk [Jacqui Wood Cancer Centre, Division of Cancer Research, Medical Research Institute, University of Dundee, Dundee, Scotland (United Kingdom); Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD (United States)

    2013-03-29

    Highlights: ► We developed a quantitative FRAP-based system to study the Keap1–Cul3 interaction. ► We show that Keap1–EGFP and mCherry–Cul3 interact in single live cells. ► We used inducers which target distinct cysteine sensors of Keap1 and differ 4000-fold in potency. ► Inducers cause Nrf2 stabilization, nuclear translocation, and target gene expression. ► Inducers of four different types do not dissociate the Keap1–EGFP:mCherry–Cul3 complex. -- Abstract: Transcription factor NF-E2 p45-related factor 2 (Nrf2) regulates the expression of a network of genes encoding drug-detoxification, anti-inflammatory, and metabolic enzymes, as well as proteins involved in the regulation of cellular redox homeostasis. Under basal conditions, Kelch-like ECH associated protein 1 (Keap1) targets Nrf2 for ubiquitination and proteasomal degradation via association with Cullin3 (Cul3)-based Rbx1 E3 ubiquitin ligase. Various small molecules (inducers) activate Nrf2 leading to upregulation of cytoprotective gene expression. Inducers chemically modify specific cysteine residues of Keap1 which ultimately loses its ability to target Nrf2 for degradation. Dissociation of the Keap1–Cul3 complex by inducers is one possible mechanism, but evidence in single live cells is lacking. To investigate the diffusion dynamics of the Keap1–Cul3 interaction and the effect of inducers, we developed a quantitative fluorescence recovery after photobleaching (FRAP)-based system using Keap1–EGFP and mCherry–Cul3 fusion proteins. We show that Keap1–EGFP and mCherry–Cul3 interact in single live cells. Exposure for 1 h to small-molecule inducers of 4 different types, the oleanane triterpenoid CDDO, the isothiocyanate sulforaphane, the sulfoxythiocarbamate STCA, and the oxidant hydrogen peroxide which target distinct cysteine sensors within Keap1 with potencies which differ by nearly 4000-fold, does not dissociate the Keap1–Cul3 complex. As inducers cause conformational changes

  5. Critical phenomena and universal dynamics in one-dimensional driven diffusive systems with two species of particles

    International Nuclear Information System (INIS)

    Schuetz, Gunter M

    2003-01-01

    Recent work on stochastic interacting particle systems with two particle species (or single-species systems with kinematic constraints) has demonstrated the existence of spontaneous symmetry breaking, long-range order and phase coexistence in nonequilibrium steady states, even if translational invariance is not broken by defects or open boundaries. If both particle species are conserved, the temporal behaviour is largely unexplored, but first results of current work on the transition from the microscopic to the macroscopic scale yield exact coupled nonlinear hydrodynamic equations and indicate the emergence of novel types of shock waves which are collective excitations stabilized by the flow of microscopic fluctuations. We review the basic stationary and dynamic properties of these systems, highlighting the role of conservation laws and kinetic constraints for the hydrodynamic behaviour, the microscopic origin of domain wall (shock) stability and the coarsening dynamics of domains during phase separation. (topical review)

  6. Adsorption, Desorption, Surface Diffusion, Lattice Defect Formation, and Kink Incorporation Processes of Particles on Growth Interfaces of Colloidal Crystals with Attractive Interactions

    Directory of Open Access Journals (Sweden)

    Yoshihisa Suzuki

    2016-07-01

    Full Text Available Good model systems are required in order to understand crystal growth processes because, in many cases, precise incorporation processes of atoms or molecules cannot be visualized easily at the atomic or molecular level. Using a transmission-type optical microscope, we have successfully observed in situ adsorption, desorption, surface diffusion, lattice defect formation, and kink incorporation of particles on growth interfaces of colloidal crystals of polystyrene particles in aqueous sodium polyacrylate solutions. Precise surface transportation and kink incorporation processes of the particles into the colloidal crystals with attractive interactions were observed in situ at the particle level. In particular, contrary to the conventional expectations, the diffusion of particles along steps around a two-dimensional island of the growth interface was not the main route for kink incorporation. This is probably due to the number of bonds between adsorbed particles and particles in a crystal; the number exceeds the limit at which a particle easily exchanges its position to the adjacent one along the step. We also found novel desorption processes of particles from steps to terraces, attributing them to the assistance of attractive forces from additionally adsorbing particles to the particles on the steps.

  7. Sampling and single particle analysis for the chemical characterisation of fine atmospheric particulates: A review.

    Science.gov (United States)

    Elmes, Michele; Gasparon, Massimo

    2017-11-01

    To better understand the potential environmental and human health impacts of fine airborne particulate matter (APM), detailed physical and chemical characterisation is required. The only means to accurately distinguish between the multiple compositions in APM is by single particle analysis. A variety of methods and instruments are available, which range from filter-based sample collection for off-line laboratory analysis to on-line instruments that detect the airborne particles and generate size distribution and chemical data in real time. There are many reasons for sampling particulates in the ambient atmosphere and as a consequence, different measurement strategies and sampling devices are used depending on the scientific objectives and subsequent analytical techniques. This review is designed as a guide to some of the techniques available for the sampling and subsequent chemical analysis of individual inorganic particles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Chaos and nonlinear dynamics of single-particle orbits in a magnetotaillike magnetic field

    Science.gov (United States)

    Chen, J.; Palmadesso, P. J.

    1986-01-01

    The properties of charged-particle motion in Hamiltonian dynamics are studied in a magnetotaillike magnetic field configuration. It is shown by numerical integration of the equation of motion that the system is generally nonintegrable and that the particle motion can be classified into three distinct types of orbits: bounded integrable orbits, unbounded stochastic orbits, and unbounded transient orbits. It is also shown that different regions of the phase space exhibit qualitatively different responses to external influences. The concept of 'differential memory' in single-particle distributions is proposed. Physical implications for the dynamical properties of the magnetotail plasmas and the possible generation of non-Maxwellian features in the distribution functions are discussed.

  9. Blowing Snow and Aerosol Composition: Bulk and Single Particle Measurements in Antarctica

    Science.gov (United States)

    DeCarlo, P. F.; Giordano, M.

    2017-12-01

    Recent evidence suggests that aerosol concentration and composition in the cryosphere is influenced by blowing snow, though the mechanisms remain unclear. Changes in aerosol composition due to blowing snow may significantly alter local and regional aerosol production, processing, transport, and lifetimes in the cryosphere. This presentation will focus on both bulk composition changes and single particle results from deploying an aerosol mass spectrometer (AMS) to the Antarctic sea ice during the 2ODIAC campaign, with a focus on blowing snow events. With this first on-line analysis, blowing snow clearly enhances the submicron sea salt (Na and Cl) concentrations in Antarctic aerosols. These bulk composition changes are shown to be independent from air mass origins. Single particle results from the AMS show a variety of chemical species in addition to sulfates in the submicron aerosol mass. K-means cluster analysis also shows distinct changes in the overall aerosol mass spectra during to blowing snow events.

  10. Single-particle model of a strongly driven, dense, nanoscale quantum ensemble

    Science.gov (United States)

    DiLoreto, C. S.; Rangan, C.

    2018-01-01

    We study the effects of interatomic interactions on the quantum dynamics of a dense, nanoscale, atomic ensemble driven by a strong electromagnetic field. We use a self-consistent, mean-field technique based on the pseudospectral time-domain method and a full, three-directional basis to solve the coupled Maxwell-Liouville equations. We find that interatomic interactions generate a decoherence in the state of an ensemble on a much faster time scale than the excited-state lifetime of individual atoms. We present a single-particle model of the driven, dense ensemble by incorporating interactions into a dephasing rate. This single-particle model reproduces the essential physics of the full simulation and is an efficient way of rapidly estimating the collective dynamics of a dense ensemble.

  11. Detection of charged particles with a methylammonium lead tribromide perovskite single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qiang [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Wei, Haotong; Wei, Wei [Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 (United States); Chuirazzi, William; DeSantis, Dylan [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Huang, Jinsong, E-mail: jhuang2@unl.edu [Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 (United States); Cao, Lei, E-mail: cao.152@osu.edu [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210 (United States)

    2017-03-11

    Methylammonium lead tribromide (MAPbBr{sub 3}) perovskite crystals have attracted significant attention due to their attractive performance in various optoelectronic applications such as solar cells, light-emitting devices, photodetectors, and recently in X-ray detectors. In this study, we demonstrate a possible use of perovskite-based devices for detection of charged particles (which can be applied in basic scientific research, health physics, and environmental analysis) and investigate the mechanism of fundamental charge transport inside perovskite crystals. It was found that inexpensive MAPbBr{sub 3} single crystals could be used for measuring the energy spectrum of charged particles through direct collection of the produced charge. After fitting the plot of the centroid peak position versus voltage with the Hecht equation for single-polarity charge transport, the obtained hole mobility-lifetime product was in the range of (0.4–1.6)×10{sup −3} cm{sup 2}/V.

  12. Inequivalence of single-particle and population lifetimes in a cuprate superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shuolong [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Sobota, J. A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Leuenberger, D. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); He, Y. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Hashimoto, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Lu, D. H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Eisaki, H. [National Institute of Advanced Industrial Science and Technology, Ibaraki (Japan); Kirchmann, P. S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Shen, Z. -X. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States)

    2015-06-15

    We study optimally doped Bi-2212 (Tc=96 K) using femtosecond time- and angle-resolved photoelectron spectroscopy. Energy-resolved population lifetimes are extracted and compared with single-particle lifetimes measured by equilibrium photoemission. The population lifetimes deviate from the single-particle lifetimes in the low excitation limit by 1–2 orders of magnitude. Fundamental considerations of electron scattering unveil that these two lifetimes are in general distinct, yet for systems with only electron-phonon scattering they should converge in the low-temperature, low-fluence limit. As a result, the qualitative disparity in our data, even in this limit, suggests that scattering channels beyond electron-phonon interactions play a significant role in the electron dynamics of cuprate superconductors.

  13. The advent of structural biologyin situby single particle cryo-electron tomography.

    Science.gov (United States)

    Galaz-Montoya, Jesús G; Ludtke, Steven J

    2017-01-01

    Single particle tomography (SPT), also known as subtomogram averaging, is a powerful technique uniquely poised to address questions in structural biology that are not amenable to more traditional approaches like X-ray crystallography, nuclear magnetic resonance, and conventional cryoEM single particle analysis. Owing to its potential for in situ structural biology at subnanometer resolution, SPT has been gaining enormous momentum in the last five years and is becoming a prominent, widely used technique. This method can be applied to unambiguously determine the structures of macromolecular complexes that exhibit compositional and conformational heterogeneity, both in vitro and in situ . Here we review the development of SPT, highlighting its applications and identifying areas of ongoing development.

  14. Innovative molecular-based fluorescent nanoparticles for multicolor single particle tracking in cells

    International Nuclear Information System (INIS)

    Daniel, Jonathan; Blanchard-Desce, Mireille; Godin, Antoine G; Palayret, Matthieu; Lounis, Brahim; Cognet, Laurent

    2016-01-01

    Based on an original molecular-based design, we present bright and photostable fluorescent organic nanoparticles (FONs) showing excellent colloidal stability in various aqueous environments. Complementary near-infrared emitting and green emitting FONs were prepared using a simple, fast and robust protocol. Both types of FONs could be simultaneously imaged at the single-particle level in solution as well as in biological environments using a monochromatic excitation and a dual-color fluorescence microscope. No evidence of acute cytotoxicity was found upon incubation of live cells with mixed solutions of FONs, and both types of nanoparticles were found internalized in the cells where their motion could be simultaneously tracked at video-rate up to minutes. These fluorescent organic nanoparticles open a novel non-toxic alternative to existing nanoparticles for imaging biological structures, compatible with live-cell experiments and specially fitted for multicolor single particle tracking. (paper)

  15. Radiative capture of nucleons at astrophysical energies with single-particle states

    International Nuclear Information System (INIS)

    Huang, J.T.; Bertulani, C.A.; Guimaraes, V.

    2010-01-01

    Radiative capture of nucleons at energies of astrophysical interest is one of the most important processes for nucleosynthesis. The nucleon capture can occur either by a compound nucleus reaction or by a direct process. The compound reaction cross sections are usually very small, especially for light nuclei. The direct capture proceeds either via the formation of a single-particle resonance or a non-resonant capture process. In this work we calculate radiative capture cross sections and astrophysical S-factors for nuclei in the mass region A<20 using single-particle states. We carefully discuss the parameter fitting procedure adopted in the simplified two-body treatment of the capture process. Then we produce a detailed list of cases for which the model works well. Useful quantities, such as spectroscopic factors and asymptotic normalization coefficients, are obtained and compared to published data.

  16. Characterisation of Black Carbon (BC) mixing state and flux in Beijing using single particle measurements.

    Science.gov (United States)

    Joshi, Rutambhara; Liu, Dantong; Allan, James; Coe, Hugh; Flynn, Michael; Broda, Kurtis; Olfert, Jason; Irwin, Martin; Sun, Yele; Fu, Pingqing; Wang, Junfeng; Ge, Xinlei; Langford, Ben; Nemitz, Eiko; Mullinger, Neil

    2017-04-01

    BC is generated by the incomplete combustion of carbonaceous fuels and it is an important component of fine PM2.5. In the atmosphere BC particles have a complex structure and its mixing state has crucial impact on optical properties. Quantifying the sources and emissions of black carbon in urban environments is important and presently uncertain, particularly in megacities undergoing rapid growth and change in emissions. During the winter of 2016 (10th Nov-10th Dec) the BC was characterised as part of a large joint UK-China field experiment in Beijing. This paper focuses on understanding the mixing state of BC as well as identification and quantification of BC sources. We used a combination of a Centrifugal Particle Mass Analyser (CPMA) and a Single Particle Soot Photometer (SP2) to uniquely quantify the morphology independent mass of single refractory BC particles and their coating content. The CPMA allows us to select pre-charged aerosol particles according to their mass to charge ratio and the SP2 provides information on the mass of refractory BC through a laser-induced incandescence method. Furthermore, another SP2 was used to measure the BC flux at 100m height using the Eddy Covariance method. We have successfully gathered 4 weeks of continuous measurements which include several severe pollution events in Beijing. Here we present preliminary results, characterising the distribution of coating mass on BC particles in Beijing and linking this to the main sources of BC in the city. We will provide initial estimates of the BC flux over a several kilometre footprint. Such analysis will provide important information for the further investigation of source distribution, emission, lifetime and optical properties of BC under complex environments in Beijing.

  17. Single-Particle Tracking of Human Immunodeficiency Virus Type 1 Productive Entry into Human Primary Macrophages.

    Science.gov (United States)

    Li, Qin; Li, Wei; Yin, Wen; Guo, Jia; Zhang, Zhi-Ping; Zeng, Dejun; Zhang, Xiaowei; Wu, Yuntao; Zhang, Xian-En; Cui, Zongqiang

    2017-04-25

    Macrophages are one of the major targets of human immunodeficiency virus (HIV-1), but the viral entry pathway remains poorly understood in these cells. Noninvasive virus labeling and single-virus tracking are effective tools for studying virus entry. Here, we constructed a quantum dot (QD)-encapsulated infectious HIV-1 particle to track viral entry at a single-particle level in live human primary macrophages. QDs were encapsulated in HIV-1 virions by incorporating viral accessory protein Vpr-conjugated QDs during virus assembly. With the HIV-1 particles encapsulating QDs, we monitored the early phase of viral infection in real time and observed that, during infection, HIV-1 was endocytosed in a clathrin-mediated manner; the particles were translocated into Rab5A-positive endosomes, and the core was released into the cytoplasm by viral envelope-mediated endosomal fusion. Drug inhibition assays verified that endosome fusion contributes to HIV-1 productive infection in primary macrophages. Additionally, we observed that a dynamic actin cytoskeleton is critical for HIV-1 entry and intracellular migration in primary macrophages. HIV-1 dynamics and infection could be blocked by multiple different actin inhibitors. Our study revealed a productive entry pathway in macrophages that requires both endosomal function and actin dynamics, which may assist in the development of inhibitors to block the HIV entry in macrophages.

  18. Modified iterated extended Kalman particle filter for single satellite passive tracking

    OpenAIRE

    WU, Panlong; KONG, Jianshou; BO, Yuming

    2013-01-01

    Single satellite-to-satellite passive tracking techniques have great significance in space surveillance systems. A new passive modified iterated extended Kalman particle filter (MIEKPF) using bearings-only measurements in the Earth-Centered Inertial Coordinate System is proposed. The modified iterated extended Kalman filter (MIEKF), with a new maximum likelihood iteration termination criterion, is used to generate the proposal distribution of the MIEKPF. Moreover, a new measurement u...

  19. Single particle 3D reconstruction for 2D crystal images of membrane proteins.

    Science.gov (United States)

    Scherer, Sebastian; Arheit, Marcel; Kowal, Julia; Zeng, Xiangyan; Stahlberg, Henning

    2014-03-01

    In cases where ultra-flat cryo-preparations of well-ordered two-dimensional (2D) crystals are available, electron crystallography is a powerful method for the determination of the high-resolution structures of membrane and soluble proteins. However, crystal unbending and Fourier-filtering methods in electron crystallography three-dimensional (3D) image processing are generally limited in their performance for 2D crystals that are badly ordered or non-flat. Here we present a single particle image processing approach, which is implemented as an extension of the 2D crystallographic pipeline realized in the 2dx software package, for the determination of high-resolution 3D structures of membrane proteins. The algorithm presented, addresses the low single-to-noise ratio (SNR) of 2D crystal images by exploiting neighborhood correlation between adjacent proteins in the 2D crystal. Compared with conventional single particle processing for randomly oriented particles, the computational costs are greatly reduced due to the crystal-induced limited search space, which allows a much finer search space compared to classical single particle processing. To reduce the considerable computational costs, our software features a hybrid parallelization scheme for multi-CPU clusters and computer with high-end graphic processing units (GPUs). We successfully apply the new refinement method to the structure of the potassium channel MloK1. The calculated 3D reconstruction shows more structural details and contains less noise than the map obtained by conventional Fourier-filtering based processing of the same 2D crystal images. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Quantum private comparison with d-level single-particle states

    International Nuclear Information System (INIS)

    Yu, Chao-Hua; Guo, Gong-De; Lin, Song

    2013-01-01

    In this paper, a quantum private comparison protocol with d-level single-particle states is proposed. In the protocol, a semi-honest third party is introduced to help two participants compare the size relationship of their secrets without revealing them to any other people. It is shown that the protocol is secure in theory. Moreover, the security of the protocol in real circumstance is also discussed. (paper)