Single-particle thermal diffusion of charged colloids: Double-layer theory in a temperature gradient
Dhont, J.K.G.; Briels, Willem J.
2008-01-01
The double-layer contribution to the single-particle thermal diffusion coefficient of charged, spherical colloids with arbitrary double-layer thickness is calculated and compared to experiments. The calculation is based on an extension of the Debye-Hückel theory for the double-layer structure that
International Nuclear Information System (INIS)
Ho, Koon-Sing; Lui, Kwok-On; Lee, Kin-Ho; Chan, Wing-Tat
2013-01-01
The intensity of individual gold nanoparticles with nominal diameters of 80, 100, 150, and 200 nm was measured using single-particle inductively coupled plasma-mass spectrometry (ICP-MS). Since the particles are not perfectly monodisperse, a distribution of ICP-MS intensity was obtained for each nominal diameter. The distribution of particle mass was determined from the transmission electron microscopy (TEM) image of the particles. The distribution of ICP-MS intensity and the distribution of particle mass for each nominal diameter were correlated to give a calibration curve. The calibration curves are linear, but the slope decreases as the nominal diameter increases. The reduced slope is probably due to a smaller degree of vaporization of the large particles. In addition to the degree of particle vaporization, the rate of analyte diffusion in the ICP is an important factor that determines the measured ICP-MS intensity. Simulated ICP-MS intensity versus particle size was calculated using a simple computer program that accounts for the vaporization rate of the gold nanoparticles and the diffusion rate and degree of ionization of the gold atoms. The curvature of the simulated calibration curves changes with sampling depth because the effects of particle vaporization and analyte diffusion on the ICP-MS intensity are dependent on the residence time of the particle in the ICP. Calibration curves of four hypothetical particles representing the four combinations of high and low boiling points (2000 and 4000 K) and high and low analyte diffusion rates (atomic masses of 10 and 200 Da) were calculated to further illustrate the relative effects of particle vaporization and analyte diffusion. The simulated calibration curves show that the sensitivity of single-particle ICP-MS is smaller than that of the ICP-MS measurement of continuous flow of standard solutions by a factor of 2 or more. Calibration using continuous flow of standard solution is semi-quantitative at best. An
Relative and single particle diffusion estimates determined from smoke plume photographs
International Nuclear Information System (INIS)
Nappo, C.J. Jr.
1978-01-01
The formula given by Gifford (1959) for obtaining space-varying values of particle dispersion parameters from photographs of smoke puffs and plumes has been applied to high-altitude U-2 photographs of a long smoke plume generated at the Idaho National Engineering Laboratory near Idaho Falls. The turbulence time scale derived from the photographs was found to be in good agreement with estimates obtained within the framework of single- and two-particle diffusion theory applied to wind speed and direction data from a tower near the smoke source
Probing the type of anomalous diffusion with single-particle tracking.
Ernst, Dominique; Köhler, Jürgen; Weiss, Matthias
2014-05-07
Many reactions in complex fluids, e.g. signaling cascades in the cytoplasm of living cells, are governed by a diffusion-driven encounter of reactants. Yet, diffusion in complex fluids often exhibits an anomalous characteristic ('subdiffusion'). Since different types of subdiffusion have distinct effects on timing and equilibria of chemical reactions, a thorough determination of the reactants' type of random walk is key to a quantitative understanding of reactions in complex fluids. Here we introduce a straightforward and simple approach for determining the type of subdiffusion from single-particle tracking data. Unlike previous approaches, our method also is sensitive to transient subdiffusion phenomena, e.g. obstructed diffusion below the percolation threshold. We validate our strategy with data from experiment and simulation.
Directory of Open Access Journals (Sweden)
Eldad Kepten
Full Text Available Single particle tracking is an essential tool in the study of complex systems and biophysics and it is commonly analyzed by the time-averaged mean square displacement (MSD of the diffusive trajectories. However, past work has shown that MSDs are susceptible to significant errors and biases, preventing the comparison and assessment of experimental studies. Here, we attempt to extract practical guidelines for the estimation of anomalous time averaged MSDs through the simulation of multiple scenarios with fractional Brownian motion as a representative of a large class of fractional ergodic processes. We extract the precision and accuracy of the fitted MSD for various anomalous exponents and measurement errors with respect to measurement length and maximum time lags. Based on the calculated precision maps, we present guidelines to improve accuracy in single particle studies. Importantly, we find that in some experimental conditions, the time averaged MSD should not be used as an estimator.
The effect of shear flow on the rotational diffusivity of a single axisymmetric particle
Leahy, Brian; Koch, Donald; Cohen, Itai
2014-11-01
Colloidal suspensions of nonspherical particles abound in the world around us, from red blood cells in arteries to kaolinite discs in clay. Understanding the orientation dynamics of these particles is important for suspension rheology and particle self-assembly. However, even for the simplest case of dilute suspensions in simple shear flow, the orientation dynamics of Brownian nonspherical particles are poorly understood at large shear rates. Here, we analytically calculate the time-dependent orientation distributions of particles confined to the flow-gradient plane when the rotary diffusion is small but nonzero. For both startup and oscillatory shear flows, we find a coordinate change that maps the convection-diffusion equation to a simple diffusion equation with an enhanced diffusion constant, simplifying the orientation dynamics. For oscillatory shear, this enhanced diffusion drastically alters the quasi-steady orientation distributions. Our theory of the unsteady orientation dynamics provides an understanding of a nonspherical particle suspension's rheology for a large class of unsteady flows. For particles with aspect ratio 10 under oscillatory shear, the rotary diffusion and intrinsic viscosity vary with amplitude by a factor of ~ 40 and ~ 2 , respectively.
Hendriks, Frank|info:eu-repo/dai/nl/412642697; Meirer, Florian; Kubarev, Alexey V.; Ristanovic, Zoran|info:eu-repo/dai/nl/328233005; Roeffaers, Maarten B J; Vogt, Eelco T. C.|info:eu-repo/dai/nl/073717398; Bruijnincx, Pieter C. A.|info:eu-repo/dai/nl/33799529X; Weckhuysen, Bert M.|info:eu-repo/dai/nl/285484397
2017-01-01
We used single-molecule fluorescence microscopy to study self-diffusion of a feedstock-like probe molecule with nanometer accuracy in the macropores of a micrometer-sized, real-life fluid catalytic cracking (FCC) particle. Movies of single fluorescent molecules allowed their movement through the
Daumas, Frédéric; Destainville, Nicolas; Millot, Claire; Lopez, André; Dean, David; Salomé, Laurence
2003-01-01
Single particle tracking is a powerful tool for probing the organization and dynamics of the plasma membrane constituents. We used this technique to study the μ-opioid receptor belonging to the large family of the G-protein-coupled receptors involved with other partners in a signal transduction pathway. The specific labeling of the receptor coupled to a T7-tag at its N-terminus, stably expressed in fibroblastic cells, was achieved by colloidal gold coupled to a monoclonal anti T7-tag antibody. The lateral movements of the particles were followed by nanovideomicroscopy at 40 ms time resolution during 2 min with a spatial precision of 15 nm. The receptors were found to have either a slow or directed diffusion mode (10%) or a walking confined diffusion mode (90%) composed of a long-term random diffusion and a short-term confined diffusion, and corresponding to a diffusion confined within a domain that itself diffuses. The results indicate that the confinement is due to an effective harmonic potential generated by long-range attraction between the membrane proteins. A simple model for interacting membrane proteins diffusion is proposed that explains the variations with the domain size of the short-term and long-term diffusion coefficients. PMID:12524289
Tagged particle in single-file diffusion with arbitrary initial conditions
Cividini, J.; Kundu, A.
2017-08-01
We compute the full probability distribution of the positions of a tagged particle exactly for the given arbitrary initial positions of the particles, and for general single-particle propagators. We consider the thermodynamic limit of our exact expressions in quenched and annealed settings. For a particular class of single-particle propagators, the exact formula is expressed in a simple integral form in the quenched case whereas in the annealed case, it is expressed as a simple combination of Bessel functions. In particular, we focus on the step and the power-law initial configurations. In the former case, a drift is induced even when the one-particle propagators are symmetric. On the other hand, in the later case the scaling of the cumulants of the position of the tracer differs from the uniform case. We provide numerical verifications of our results.
Slator, Paddy J.; Cairo, Christopher W.; Burroughs, Nigel J.
2015-01-01
We develop a Bayesian analysis framework to detect heterogeneity in the diffusive behaviour of single particle trajectories on cells, implementing model selection to classify trajectories as either consistent with Brownian motion or with a two-state (diffusion coefficient) switching model. The incorporation of localisation accuracy is essential, as otherwise false detection of switching within a trajectory was observed and diffusion coefficient estimates were inflated. Since our analysis is on a single trajectory basis, we are able to examine heterogeneity between trajectories in a quantitative manner. Applying our method to the lymphocyte function-associated antigen 1 (LFA-1) receptor tagged with latex beads (4 s trajectories at 1000 frames s−1), both intra- and inter-trajectory heterogeneity were detected; 12–26% of trajectories display clear switching between diffusive states dependent on condition, whilst the inter-trajectory variability is highly structured with the diffusion coefficients being related by D 1 = 0.68D 0 − 1.5 × 104 nm2 s−1, suggestive that on these time scales we are detecting switching due to a single process. Further, the inter-trajectory variability of the diffusion coefficient estimates (1.6 × 102 − 2.6 × 105 nm2 s−1) is very much larger than the measurement uncertainty within trajectories, suggesting that LFA-1 aggregation and cytoskeletal interactions are significantly affecting mobility, whilst the timescales of these processes are distinctly different giving rise to inter- and intra-trajectory variability. There is also an ‘immobile’ state (defined as D models within membranes incorporating aggregation, binding to the cytoskeleton, or traversing membrane microdomains. PMID:26473352
DEFF Research Database (Denmark)
Vestergaard, Christian Lyngby
2012-01-01
. The standard method for estimating diusion coecients from single-particle trajectories is based on leastsquares tting to the experimentally measured mean square displacements. This method is highly inecient, since it ignores the high correlations inherent in these. We derive the exact maximum likelihood...... of diusion coecients of hOgg1 repair proteins diusing on stretched uctuating DNA from data previously analyzed using a suboptimal method. Our analysis shows that the proteins have dierent eective diusion coecients and that their diusion coecients are correlated with their residence time on DNA. These results...
Connecting diffusion and entropy of bulk water at the single particle ...
Indian Academy of Sciences (India)
The relation between the dynamic (e.g., diffusion) and thermodynamic (e.g., entropy) properties of water and water-like liquids has been an active area of research for a long time. Although several studies have investigated the diffusivity and entropy for different systems, these studies have probed either the configurational ...
Schoch, Rafael L.; Barel, Itay; Brown, Frank L. H.; Haran, Gilad
2018-03-01
Supported lipid bilayers (SLBs) have been studied extensively as simple but powerful models for cellular membranes. Yet, potential differences in the dynamics of the two leaflets of a SLB remain poorly understood. Here, using single particle tracking, we obtain a detailed picture of bilayer dynamics. We observe two clearly separate diffusing populations, fast and slow, that we associate with motion in the distal and proximal leaflets of the SLB, respectively, based on fluorescence quenching experiments. We estimate diffusion coefficients using standard techniques as well as a new method based on the blur of images due to motion. Fitting the observed diffusion coefficients to a two-leaflet membrane hydrodynamic model allows for the simultaneous determination of the intermonolayer friction coefficient and the substrate-membrane friction coefficient, without any prior assumptions on the strengths of the relevant interactions. Remarkably, our calculations suggest that the viscosity of the interfacial water confined between the membrane and the substrate is elevated by ˜104 as compared to bulk water. Using hidden Markov model analysis, we then obtain insight into the transbilayer movement of lipids. We find that lipid flip-flop dynamics are very fast, with half times in the range of seconds. Importantly, we find little evidence for membrane defect mediated lipid flip-flop for SLBs at temperatures well above the solid-to-liquid transition, though defects seem to be involved when the SLBs are cooled down. Our work thus shows that the combination of single particle tracking and advanced hydrodynamic modeling provides a powerful means to obtain insight into membrane dynamics.
Connecting diffusion and entropy of bulk water at the single particle ...
Indian Academy of Sciences (India)
DEBASIS SAHA
Sex. The excess entropy denotes the difference between the actual entropy of the system and the system's entropy if it behaves as ... as viscosity or self-diffusion coefficient as well as the ..... modynamic determination of fragility in liquids and a.
Particle diffusion in a spheromak
International Nuclear Information System (INIS)
Meyerhofer, D.D.; Levinton, F.M.; Yamada, M.
1988-01-01
The local carbon particle diffusion coefficient was measured in the Proto S-1/C spheromak using a test particle injection scheme. When the plasma was not in a force-free Taylor state, and when there were pressure gradients in the plasma, the particle diffusion was five times that predicted by Bohm and was consistent with collisional drift wave diffusion. The diffusion appears to be driven by correlations of the fluctuating electric field and density. During the decay phase of the discharge when the plasma was in the Taylor state, the diffusion coefficient of the carbon was classical. 23 refs., 4 figs
Turbulent diffusion of small particles
International Nuclear Information System (INIS)
Margolin, L.G.
1977-11-01
The diffusion of small, spherical, rigid particles suspended in an incompressible turbulent fluid, but not interacting with each other, was studied. As a stochastic process, the turbulent fluid velocity field is assumed to be homogeneous, isotropic and stationary. Assuming the Stokes regime, a particle of equation of motion is used which includes only the effects of Stokes drag and a virtual mass force and an exact solution is found for the particle velocity correlation function, for all times and initial conditions, in terms of a fluid velocity correlation function measured along the motion of the particle. This shows that for times larger than a certain time scale, the particle velocity correlation becomes stationary. The effect of small shears in the fluid velocity was considered, under the additional restrictions of a certain high frequency regime for the turbulence. The shears convected past the particle much faster than the growth of the boundary layer. New force terms due to the presence of such shears are calculated and incorporated into the equation of motion. A perturbation solution to this equation is constructed, and the resultant particle velocity correlation function and diffusion coefficient are calculated. To lowest order, the particle diffusivity is found to be unaltered by the presence of small mean flow shears. The last model treated is one in which particles traverse a turbulent fluid with a large mean velocity. Among other restrictions, linearized form drag is assumed. The diffusion coefficient for such particles was calculated, and found to be much smaller than the passive scalar diffusion coefficient. This agrees within 5 percent with the experimental results of Snyder and Lumley
International Nuclear Information System (INIS)
Siemens, P.J.; Jensen, A.S.
1985-01-01
It is shown that the opening of the 3-quasiparticle continuum at 3Δ sets the energy scale for the enhancement of the effective mass near the Fermi surface of nuclei. The authors argue that the spreading width of single-particle states due to coupling with low-lying collective modes is qualitatively different from the two-body collision mechanism, and contributes little to the single-particle lifetime in the sense of the optical model. (orig.)
Sharma, Dharmendar Kumar; Hirata, Shuzo; Bujak, Lukasz; Biju, Vasudevanpillai; Kameyama, Tatsuya; Kishi, Marino; Torimoto, Tsukasa; Vacha, Martin
2016-07-14
Ternary I-III-VI semiconductor nanocrystals have been explored as non-toxic alternatives to II-VI semiconductors for optoelectronic and sensing applications, but large photoluminescence spectral width and moderate brightness restrict their practical use. Here, using single-particle photoluminescence spectroscopy on nanocrystals of (AgIn)xZn2(1-x)S2 we show that the photoluminescence band is inhomogeneously broadened and that size distribution is the dominant factor in the broadening. The residual homogeneous linewidth of individual nanocrystals reaches up to 75% of the ensemble spectral width. Single nanocrystals undergo spectral diffusion which also contributes to the inhomogeneous band. Excitation with two lasers with energies above and below the bandgap reveals coexistence of two emitting donor states within one particle. Spectral diffusion in such particles is due to temporal activation and deactivation of one such state. Filling of a trap state with a lower-energy laser enables optical modulation of photoluminescence intermittency (blinking) and leads to an almost two-fold increase in brightness.
Diffusion of Finite-Size Particles in Confined Geometries
Bruna, Maria
2013-05-10
The diffusion of finite-size hard-core interacting particles in two- or three-dimensional confined domains is considered in the limit that the confinement dimensions become comparable to the particle\\'s dimensions. The result is a nonlinear diffusion equation for the one-particle probability density function, with an overall collective diffusion that depends on both the excluded-volume and the narrow confinement. By including both these effects, the equation is able to interpolate between severe confinement (for example, single-file diffusion) and unconfined diffusion. Numerical solutions of both the effective nonlinear diffusion equation and the stochastic particle system are presented and compared. As an application, the case of diffusion under a ratchet potential is considered, and the change in transport properties due to excluded-volume and confinement effects is examined. © 2013 Society for Mathematical Biology.
Optimizing experimental parameters for tracking of diffusing particles
DEFF Research Database (Denmark)
Vestergaard, Christian L.
2016-01-01
We describe how a single-particle tracking experiment should be designed in order for its recorded trajectories to contain the most information about a tracked particle's diffusion coefficient. The precision of estimators for the diffusion coefficient is affected by motion blur, limited photon st...
Diffusion of torqued active particles
Sandoval, Mario; Lauga, Eric
2012-11-01
Motivated by swimming microorganisms whose trajectories are affected by the presence of an external torque, we calculate the diffusivity of an active particle subject to an external torque and in a fluctuating environment. The analytical results are compared with Brownian dynamics simulations showing excellent agreement between theory and numerical experiments. This work was funded in part by the Consejo Nacional de Ciencia y Tecnologia of Mexico (Conacyt postdoctoral fellowship to M. S.) and the US National Science Foundation (Grant CBET-0746285 to E.L.).
Diffusion and particle mobility in 1D system
International Nuclear Information System (INIS)
Borman, V.D.; Johansson, B.; Skorodumova, N.V.; Tronin, I.V.; Tronin, V.N.; Troyan, V.I.
2006-01-01
The transport properties of one-dimensional (1D) systems have been studied theoretically. Contradictory experimental results on molecular transport in quasi-1D systems, such as zeolite structures, when both diffusion transport acceleration and the existence of the diffusion mode with lower particle mobility (single-file diffusion ( 2 >∼t 1/2 )) have been reported, are consolidated in a consistent model. Transition from the single-file diffusion mode to an Einstein-like diffusion 2 >∼t with diffusion coefficient increasing with the density has been predicted to occur at large observation times
Diffusion of Finite-Size Particles in Confined Geometries
Bruna, Maria; Chapman, S. Jonathan
2013-01-01
The diffusion of finite-size hard-core interacting particles in two- or three-dimensional confined domains is considered in the limit that the confinement dimensions become comparable to the particle's dimensions. The result is a nonlinear diffusion equation for the one-particle probability density function, with an overall collective diffusion that depends on both the excluded-volume and the narrow confinement. By including both these effects, the equation is able to interpolate between severe confinement (for example, single-file diffusion) and unconfined diffusion. Numerical solutions of both the effective nonlinear diffusion equation and the stochastic particle system are presented and compared. As an application, the case of diffusion under a ratchet potential is considered, and the change in transport properties due to excluded-volume and confinement effects is examined. © 2013 Society for Mathematical Biology.
Single particle detecting telescope system
International Nuclear Information System (INIS)
Yamamoto, I.; Tomiyama, T.; Iga, Y.; Komatsubara, T.; Kanada, M.; Yamashita, Y.; Wada, T.; Furukawa, S.
1981-01-01
We constructed the single particle detecting telescope system for detecting a fractionally charged particle. The telescope consists of position detecting counters, wall-less multi-cell chambers, single detecting circuits and microcomputer system as data I/0 processor. Especially, a frequency of double particle is compared the case of the single particle detecting with the case of an ordinary measurement
Single-particle dispersion in compressible turbulence
Zhang, Qingqing; Xiao, Zuoli
2018-04-01
Single-particle dispersion statistics in compressible box turbulence are studied using direct numerical simulation. Focus is placed on the detailed discussion of effects of the particle Stokes number and turbulent Mach number, as well as the forcing type. When solenoidal forcing is adopted, it is found that the single-particle dispersion undergoes a transition from the ballistic regime at short times to the diffusive regime at long times, in agreement with Taylor's particle dispersion argument. The strongest dispersion of heavy particles is announced when the Stokes number is of order 1, which is similar to the scenario in incompressible turbulence. The dispersion tends to be suppressed as the Mach number increases. When hybrid solenoidal and compressive forcing at a ratio of 1/2 is employed, the flow field shows apparent anisotropic property, characterized by the appearance of large shock wave structures. Accordingly, the single-particle dispersion shows extremely different behavior from the solenoidal forcing case.
Energy Technology Data Exchange (ETDEWEB)
Bodmer, A.R. [Illinois Univ., Chicago, IL (United States). Dept. of Physics]|[Argonne National Lab., IL (United States); Usmani, Q.N.; Sami, M. [Jamia Millia Islamia, New Delhi (India). Dept. of Physics
1993-09-01
We consider the binding energies of {Lambda} hypernuclei (HN), in particular the single-particle (s.p.) energy data, which have been obtained for a wide range of HN with mass numbers A {le} 89 and for orbital angular momenta {ell}{sub {Lambda}} {le} 4. We briefly review some of the relevant properties of A hypernuclei. These are nuclei {sub {Lambda}}{sup A}Z with baryon number A in which a single {Lambda} hyperon (baryon number = 1) is bound to an ordinary nucleus {sup A}Z consisting of A - 1 nucleons = Z protons + N neutrons. The {Lambda} hyperon is neutral, has spin 1/2, strangeness S = {minus}1, isospin I = O and a mass M{sub {Lambda}} = 1116 MeV/c{sup 2}. Although the {Lambda} interacts with a nucleon, its interaction is only about half as strong as that between two nucleons, and thus very roughly V{sub {Lambda}N} {approx} 0.5 V{sub NN}. As a result, the two-body {Lambda}N system is unbound, and the lightest bound HN is the three-body hypertriton {sub {Lambda}}{sup 3}H in which the {Lambda} is bound to a deuteron with the {Lambda}-d separation energy being only {approx} 0.1 MeV corresponding to an exponential tail of radius {approx} 15 fm! In strong interactions the strangeness S is of course conserved, and the {Lambda} is distinct from the nucleons. In a HN strangeness changes only in the weak decays of the {Lambda} which can decay either via ``free`` pionic decay {Lambda} {yields} N + {pi} or via induced decay {Lambda} + N {yields} N + N which is only possible in the presence of nucleons. Because of the small energy release the pionic decay is strongly suppressed in all but the lightest HN and the induced decay dominates. However, the weak decay lifetime {approx} 10{sup {minus}10}s is in fact close to the lifetime of a free {Lambda}. Since this is much longer than the strong interaction time {approx} 10{sup {minus}22}s we can ignore the weak interactions when considering the binding of HN, just as for ordinary nuclei.
International Nuclear Information System (INIS)
Bodmer, A.R.; Usmani, Q.N.; Sami, M.
1993-01-01
We consider the binding energies of Λ hypernuclei (HN), in particular the single-particle (s.p.) energy data, which have been obtained for a wide range of HN with mass numbers A ≤ 89 and for orbital angular momenta ell Λ ≤ 4. We briefly review some of the relevant properties of A hypernuclei. These are nuclei Λ A Z with baryon number A in which a single Λ hyperon (baryon number = 1) is bound to an ordinary nucleus A Z consisting of A - 1 nucleons = Z protons + N neutrons. The Λ hyperon is neutral, has spin 1/2, strangeness S = -1, isospin I = O and a mass M Λ = 1116 MeV/c 2 . Although the Λ interacts with a nucleon, its interaction is only about half as strong as that between two nucleons, and thus very roughly V ΛN ∼ 0.5 V NN . As a result, the two-body ΛN system is unbound, and the lightest bound HN is the three-body hypertriton Λ 3 H in which the Λ is bound to a deuteron with the Λ-d separation energy being only ∼ 0.1 MeV corresponding to an exponential tail of radius ∼ 15 fm exclamation point In strong interactions the strangeness S is of course conserved, and the Λ is distinct from the nucleons. In a HN strangeness changes only in the weak decays of the Λ which can decay either via ''free'' pionic decay Λ → N + π or via induced decay Λ + N → N + N which is only possible in the presence of nucleons. Because of the small energy release the pionic decay is strongly suppressed in all but the lightest HN and the induced decay dominates. However, the weak decay lifetime ∼ 10 -10 s is in fact close to the lifetime of a free Λ. Since this is much longer than the strong interaction time ∼ 10 -22 s we can ignore the weak interactions when considering the binding of HN, just as for ordinary nuclei
Diffusion of oriented particles in porous media
Energy Technology Data Exchange (ETDEWEB)
Haber, René [Institut für Physik, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Centre for Nonlinear Studies, Institute of Cybernetics at Tallinn University of Technology, Akadeemia tee 21, 12618 Tallinn (Estonia); Prehl, Janett [Institut für Physik, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Herrmann, Heiko [Centre for Nonlinear Studies, Institute of Cybernetics at Tallinn University of Technology, Akadeemia tee 21, 12618 Tallinn (Estonia); Hoffmann, Karl Heinz, E-mail: hoffmann@physik.tu-chemnitz.de [Institut für Physik, Technische Universität Chemnitz, D-09107 Chemnitz (Germany)
2013-11-29
Diffusion of particles in porous media often shows subdiffusive behavior. Here, we analyze the dynamics of particles exhibiting an orientation. The features we focus on are geometrical restrictions and the dynamical consequences of the interactions between the local surrounding structure and the particle orientation. This interaction can lead to particles getting temporarily stuck in parts of the structure. Modeling this interaction by a particular random walk dynamics on fractal structures we find that the random walk dimension is not affected while the diffusion constant shows a variety of interesting and surprising features.
Diffusion of oriented particles in porous media
International Nuclear Information System (INIS)
Haber, René; Prehl, Janett; Herrmann, Heiko; Hoffmann, Karl Heinz
2013-01-01
Diffusion of particles in porous media often shows subdiffusive behavior. Here, we analyze the dynamics of particles exhibiting an orientation. The features we focus on are geometrical restrictions and the dynamical consequences of the interactions between the local surrounding structure and the particle orientation. This interaction can lead to particles getting temporarily stuck in parts of the structure. Modeling this interaction by a particular random walk dynamics on fractal structures we find that the random walk dimension is not affected while the diffusion constant shows a variety of interesting and surprising features.
Single particle distributions, ch.2
International Nuclear Information System (INIS)
Blokzijl, R.
1977-01-01
A survey of inclusive single particle distributions is given for various particles. A comparison of particle cross-sections measured in K - p experiments at different center of mass energies shows that some of these cross-sections remain almost constant over a wide range of incoming K - momenta
Particle Simulation of Fractional Diffusion Equations
Allouch, Samer
2017-07-12
This work explores different particle-based approaches to the simulation of one-dimensional fractional subdiffusion equations in unbounded domains. We rely on smooth particle approximations, and consider four methods for estimating the fractional diffusion term. The first method is based on direct differentiation of the particle representation, it follows the Riesz definition of the fractional derivative and results in a non-conservative scheme. The other three methods follow the particle strength exchange (PSE) methodology and are by construction conservative, in the sense that the total particle strength is time invariant. The first PSE algorithm is based on using direct differentiation to estimate the fractional diffusion flux, and exploiting the resulting estimates in an integral representation of the divergence operator. Meanwhile, the second one relies on the regularized Riesz representation of the fractional diffusion term to derive a suitable interaction formula acting directly on the particle representation of the diffusing field. A third PSE construction is considered that exploits the Green\\'s function of the fractional diffusion equation. The performance of all four approaches is assessed for the case of a one-dimensional diffusion equation with constant diffusivity. This enables us to take advantage of known analytical solutions, and consequently conduct a detailed analysis of the performance of the methods. This includes a quantitative study of the various sources of error, namely filtering, quadrature, domain truncation, and time integration, as well as a space and time self-convergence analysis. These analyses are conducted for different values of the order of the fractional derivatives, and computational experiences are used to gain insight that can be used for generalization of the present constructions.
Particle Simulation of Fractional Diffusion Equations
Allouch, Samer; Lucchesi, Marco; Maî tre, O. P. Le; Mustapha, K. A.; Knio, Omar
2017-01-01
This work explores different particle-based approaches to the simulation of one-dimensional fractional subdiffusion equations in unbounded domains. We rely on smooth particle approximations, and consider four methods for estimating the fractional diffusion term. The first method is based on direct differentiation of the particle representation, it follows the Riesz definition of the fractional derivative and results in a non-conservative scheme. The other three methods follow the particle strength exchange (PSE) methodology and are by construction conservative, in the sense that the total particle strength is time invariant. The first PSE algorithm is based on using direct differentiation to estimate the fractional diffusion flux, and exploiting the resulting estimates in an integral representation of the divergence operator. Meanwhile, the second one relies on the regularized Riesz representation of the fractional diffusion term to derive a suitable interaction formula acting directly on the particle representation of the diffusing field. A third PSE construction is considered that exploits the Green's function of the fractional diffusion equation. The performance of all four approaches is assessed for the case of a one-dimensional diffusion equation with constant diffusivity. This enables us to take advantage of known analytical solutions, and consequently conduct a detailed analysis of the performance of the methods. This includes a quantitative study of the various sources of error, namely filtering, quadrature, domain truncation, and time integration, as well as a space and time self-convergence analysis. These analyses are conducted for different values of the order of the fractional derivatives, and computational experiences are used to gain insight that can be used for generalization of the present constructions.
Diffusivity measurements of volatile organics in levitated viscous aerosol particles
Bastelberger, Sandra; Krieger, Ulrich K.; Luo, Beiping; Peter, Thomas
2017-07-01
Field measurements indicating that atmospheric secondary organic aerosol (SOA) particles can be present in a highly viscous, glassy state have spurred numerous studies addressing low diffusivities of water in glassy aerosols. The focus of these studies is on kinetic limitations of hygroscopic growth and the plasticizing effect of water. In contrast, much less is known about diffusion limitations of organic molecules and oxidants in viscous matrices. These may affect atmospheric chemistry and gas-particle partitioning of complex mixtures with constituents of different volatility. In this study, we quantify the diffusivity of a volatile organic in a viscous matrix. Evaporation of single particles generated from an aqueous solution of sucrose and small amounts of volatile tetraethylene glycol (PEG-4) is investigated in an electrodynamic balance at controlled relative humidity (RH) and temperature. The evaporative loss of PEG-4 as determined by Mie resonance spectroscopy is used in conjunction with a radially resolved diffusion model to retrieve translational diffusion coefficients of PEG-4. Comparison of the experimentally derived diffusivities with viscosity estimates for the ternary system reveals a breakdown of the Stokes-Einstein relationship, which has often been invoked to infer diffusivity from viscosity. The evaporation of PEG-4 shows pronounced RH and temperature dependencies and is severely depressed for RH ≲ 30 %, corresponding to diffusivities pollutant molecules such as polycyclic aromatic hydrocarbons (PAHs).
Narrow Escape of Interacting Diffusing Particles
Agranov, Tal; Meerson, Baruch
2018-03-01
The narrow escape problem deals with the calculation of the mean escape time (MET) of a Brownian particle from a bounded domain through a small hole on the domain's boundary. Here we develop a formalism which allows us to evaluate the nonescape probability of a gas of diffusing particles that may interact with each other. In some cases the nonescape probability allows us to evaluate the MET of the first particle. The formalism is based on the fluctuating hydrodynamics and the recently developed macroscopic fluctuation theory. We also uncover an unexpected connection between the narrow escape of interacting particles and thermal runaway in chemical reactors.
Delivery of single accelerated particles
International Nuclear Information System (INIS)
McNulty, P.J.; Pease, V.P.; Bond, V.P.; Schimmerling, W.; Vosburgh, K.G.; Crebbin, K.; Everette, W.; Howard, J.
1978-01-01
It is desirable for certain experiments involving accelerators to have the capability of delivering just a single beam particle to the target area. The essential features of such a one-at-a-time facility are discussed. Two such facilities are described which were implemented at high-energy heavy ion accelerators without having to make major structural changes in the existing beam lines or substantially interfering with other accelerator uses. Two accelerator facilities are described which had the capability of delivering a single beam particle to the target area. This feature is necessary in certain experiments investigating visual phenomena induced by charged particles, other single particle interactions in biology, and other experiments in which the low intensities of cosmic rays need to be simulated. Both facilities were implemented without having to make structural changes in the existing beam lines or substantially interfering with other accelerator uses. (Auth.)
Diffusivity measurements of volatile organics in levitated viscous aerosol particles
Directory of Open Access Journals (Sweden)
S. Bastelberger
2017-07-01
Full Text Available Field measurements indicating that atmospheric secondary organic aerosol (SOA particles can be present in a highly viscous, glassy state have spurred numerous studies addressing low diffusivities of water in glassy aerosols. The focus of these studies is on kinetic limitations of hygroscopic growth and the plasticizing effect of water. In contrast, much less is known about diffusion limitations of organic molecules and oxidants in viscous matrices. These may affect atmospheric chemistry and gas–particle partitioning of complex mixtures with constituents of different volatility. In this study, we quantify the diffusivity of a volatile organic in a viscous matrix. Evaporation of single particles generated from an aqueous solution of sucrose and small amounts of volatile tetraethylene glycol (PEG-4 is investigated in an electrodynamic balance at controlled relative humidity (RH and temperature. The evaporative loss of PEG-4 as determined by Mie resonance spectroscopy is used in conjunction with a radially resolved diffusion model to retrieve translational diffusion coefficients of PEG-4. Comparison of the experimentally derived diffusivities with viscosity estimates for the ternary system reveals a breakdown of the Stokes–Einstein relationship, which has often been invoked to infer diffusivity from viscosity. The evaporation of PEG-4 shows pronounced RH and temperature dependencies and is severely depressed for RH ≲ 30 %, corresponding to diffusivities < 10−14 cm2 s−1 at temperatures < 15 °C. The temperature dependence is strong, suggesting a diffusion activation energy of about 300 kJ mol−1. We conclude that atmospheric volatile organic compounds can be subject to severe diffusion limitations in viscous organic aerosol particles. This may enable an important long-range transport mechanism for organic material, including pollutant molecules such as polycyclic aromatic hydrocarbons (PAHs.
Single particle tracking and single molecule energy transfer
Bräuchle, Christoph; Michaelis, Jens
2009-01-01
Closing a gap in the literature, this handbook gathers all the information on single particle tracking and single molecule energy transfer. It covers all aspects of this hot and modern topic, from detecting virus entry to membrane diffusion, and from protein folding using spFRET to coupled dye systems, as well recent achievements in the field. Throughout, the first-class editors and top international authors present content of the highest quality, making this a must-have for physical chemists, spectroscopists, molecular physicists and biochemists.
Diffusion of single oxidation pond
Directory of Open Access Journals (Sweden)
Song Ruo-Yuan
2016-01-01
Full Text Available The hydraulic characteristic of an oxidation pond was studied by the tracer experiment, and an empirical formula of Peclet number was obtained, which can be well applied to the model of plug flow reactor with longitudinal diffusion.
Single Crystal Diffuse Neutron Scattering
Directory of Open Access Journals (Sweden)
Richard Welberry
2018-01-01
Full Text Available Diffuse neutron scattering has become a valuable tool for investigating local structure in materials ranging from organic molecular crystals containing only light atoms to piezo-ceramics that frequently contain heavy elements. Although neutron sources will never be able to compete with X-rays in terms of the available flux the special properties of neutrons, viz. the ability to explore inelastic scattering events, the fact that scattering lengths do not vary systematically with atomic number and their ability to scatter from magnetic moments, provides strong motivation for developing neutron diffuse scattering methods. In this paper, we compare three different instruments that have been used by us to collect neutron diffuse scattering data. Two of these are on a spallation source and one on a reactor source.
Diffusive separation of particles by diffusion in swirled turbulent flows
International Nuclear Information System (INIS)
Arbuzov, V.N.; Shiliaev, M.I.
1984-01-01
An analysis of the dynamics of turbulent flow and diffusive separation of solid particles in a centrifugal air separator (consisting of two flat disks rotating at the same angular velocity) is presented. A closed set of balances for all the components of the tensor of turbulent stresses, extended to the entire flow region, is employed in the numerical analysis of transition and turbulent air flows between the rotating disks. The analytical relationships obtained for the case of the mixed flow for the various components of the average velocity, energy of fluctuations, and turbulence level in the circumferential direction agreed well with the theoretical and experimental distributions of Bakke, et al. (1973). It is shown that at high Reynolds numbers the flow is isotropic, the dependence of the circumferential component of the average velocity obeys a power law, and the generation of the radial component is controlled by the local centrifugal field. The sharpness of particle separation was calculated by the eddy diffusion equation and was found to depend on the geometry and the operating conditions. 8 references
Diffusion of nonequilibrium quasi-particles in a cuprate superconductor
International Nuclear Information System (INIS)
Gedik, N.; Orenstein, J.; Liang, Ruixing; Bonn, D.A.; Hardy, W.N.
2003-01-01
We report a transport study of nonequilibrium quasi-particles in a high-transition-temperature cuprate superconductor using the transient grating technique. Low-intensity laser excitation (at a photon energy of 1.5 electron volts) was used to introduce a spatially periodic density of quasi-particles into a high-quality untwinned single crystal of YBa2Cu3O6.5. Probing the evolution of the initial density through space and time yielded the quasi-particle diffusion coefficient and the inelastic and elastic scattering rates. The technique reported here is potentially applicable to precision measurements of quasi-particle dynamics not only in cuprate superconductors but in other electronic systems as well
Single Particle Entropy in Heated Nuclei
International Nuclear Information System (INIS)
Guttormsen, M.; Chankova, R.; Hjorth-Jensen, M.; Rekstad, J.; Siem, S.; Sunde, A. C.; Syed, N. U. H.; Agvaanluvsan, U.; Schiller, A.; Voinov, A.
2006-01-01
The thermal motion of single particles represents the largest contribution to level density (or entropy) in atomic nuclei. The concept of single particle entropy is presented and shown to be an approximate extensive (additive) quantity for mid-shell nuclei. A few applications of single particle entropy are demonstrated
Nanoscale Rheology and Anisotropic Diffusion Using Single Gold Nanorod Probes
Molaei, Mehdi; Atefi, Ehsan; Crocker, John C.
2018-03-01
The complex rotational and translational Brownian motion of anisotropic particles depends on their shape and the viscoelasticity of their surroundings. Because of their strong optical scattering and chemical versatility, gold nanorods would seem to provide the ultimate probes of rheology at the nanoscale, but the suitably accurate orientational tracking required to compute rheology has not been demonstrated. Here we image single gold nanorods with a laser-illuminated dark-field microscope and use optical polarization to determine their three-dimensional orientation to better than one degree. We convert the rotational diffusion of single nanorods in viscoelastic polyethylene glycol solutions to rheology and obtain excellent agreement with bulk measurements. Extensions of earlier models of anisotropic translational diffusion to three dimensions and viscoelastic fluids give excellent agreement with the observed motion of single nanorods. We find that nanorod tracking provides a uniquely capable approach to microrheology and provides a powerful tool for probing nanoscale dynamics and structure in a range of soft materials.
Saha equation, single and two particle states
International Nuclear Information System (INIS)
Kraeft, W.D.; Girardeau, M.D.; Strege, B.
1990-01-01
Single and two particle porperties in dense plasma are discussed in connection with their role in the mass action law for a partially ionized plasma. The two particle bound states are nearly density independent, while the continuum is essentially shifted. The single particle states are damped, and their energy has a negative shift and a parabolic behaviour for small momenta. (orig.)
Diffusion properties of active particles with directional reversal
International Nuclear Information System (INIS)
Großmann, R; Bär, M; Peruani, F
2016-01-01
The diffusion properties of self-propelled particles which move at constant speed and, in addition, reverse their direction of motion repeatedly are investigated. The internal dynamics of particles triggering these reversal processes is modeled by a stochastic clock. The velocity correlation function as well as the mean squared displacement is investigated and, furthermore, a general expression for the diffusion coefficient for self-propelled particles with directional reversal is derived. Our analysis reveals the existence of an optimal, finite rotational noise amplitude which maximizes the diffusion coefficient. We comment on the relevance of these results with regard to biological systems and suggest further experiments in this context. (paper)
ENERGETIC PARTICLE TRANSPORT ACROSS THE MEAN MAGNETIC FIELD: BEFORE DIFFUSION
International Nuclear Information System (INIS)
Laitinen, T.; Dalla, S.
2017-01-01
Current particle transport models describe the propagation of charged particles across the mean field direction in turbulent plasmas as diffusion. However, recent studies suggest that at short timescales, such as soon after solar energetic particle (SEP) injection, particles remain on turbulently meandering field lines, which results in nondiffusive initial propagation across the mean magnetic field. In this work, we use a new technique to investigate how the particles are displaced from their original field lines, and we quantify the parameters of the transition from field-aligned particle propagation along meandering field lines to particle diffusion across the mean magnetic field. We show that the initial decoupling of the particles from the field lines is slow, and particles remain within a Larmor radius from their initial meandering field lines for tens to hundreds of Larmor periods, for 0.1–10 MeV protons in turbulence conditions typical of the solar wind at 1 au. Subsequently, particles decouple from their initial field lines and after hundreds to thousands of Larmor periods reach time-asymptotic diffusive behavior consistent with particle diffusion across the mean field caused by the meandering of the field lines. We show that the typical duration of the prediffusive phase, hours to tens of hours for 10 MeV protons in 1 au solar wind turbulence conditions, is significant for SEP propagation to 1 au and must be taken into account when modeling SEP propagation in the interplanetary space.
ENERGETIC PARTICLE TRANSPORT ACROSS THE MEAN MAGNETIC FIELD: BEFORE DIFFUSION
Energy Technology Data Exchange (ETDEWEB)
Laitinen, T.; Dalla, S., E-mail: tlmlaitinen@uclan.ac.uk [Jeremiah Horrocks Institute, University of Central Lancashire, Preston (United Kingdom)
2017-01-10
Current particle transport models describe the propagation of charged particles across the mean field direction in turbulent plasmas as diffusion. However, recent studies suggest that at short timescales, such as soon after solar energetic particle (SEP) injection, particles remain on turbulently meandering field lines, which results in nondiffusive initial propagation across the mean magnetic field. In this work, we use a new technique to investigate how the particles are displaced from their original field lines, and we quantify the parameters of the transition from field-aligned particle propagation along meandering field lines to particle diffusion across the mean magnetic field. We show that the initial decoupling of the particles from the field lines is slow, and particles remain within a Larmor radius from their initial meandering field lines for tens to hundreds of Larmor periods, for 0.1–10 MeV protons in turbulence conditions typical of the solar wind at 1 au. Subsequently, particles decouple from their initial field lines and after hundreds to thousands of Larmor periods reach time-asymptotic diffusive behavior consistent with particle diffusion across the mean field caused by the meandering of the field lines. We show that the typical duration of the prediffusive phase, hours to tens of hours for 10 MeV protons in 1 au solar wind turbulence conditions, is significant for SEP propagation to 1 au and must be taken into account when modeling SEP propagation in the interplanetary space.
IUTAM symposium on hydrodynamic diffusion of suspended particles
Energy Technology Data Exchange (ETDEWEB)
Davis, R.H. [ed.
1995-12-31
Hydrodynamic diffusion refers to the fluctuating motion of nonBrownian particles (or droplets or bubbles) which occurs in a dispersion due to multiparticle interactions. For example, in a concentrated sheared suspension, particles do not move along streamlines but instead exhibit fluctuating motions as they tumble around each other. This leads to a net migration of particles down gradients in particle concentration and in shear rate, due to the higher frequency of encounters of a test particle with other particles on the side of the test particle which has higher concentration or shear rate. As another example, suspended particles subject to sedimentation, centrifugation, or fluidization, do not generally move relative to the fluid with a constant velocity, but instead experience diffusion-like fluctuations in velocity due to interactions with neighboring particles and the resulting variation in the microstructure or configuration of the suspended particles. In flowing granular materials, the particles interact through direct collisions or contacts (rather than through the surrounding fluid); these collisions also cause the particles to undergo fluctuating motions characteristic of diffusion processes. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.
Charged Particle Diffusion in Isotropic Random Magnetic Fields
Energy Technology Data Exchange (ETDEWEB)
Subedi, P.; Matthaeus, W. H.; Chuychai, P.; Parashar, T. N.; Chhiber, R. [Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716 (United States); Sonsrettee, W. [Faculty of Engineering and Technology, Panyapiwat Institute of Management, Nonthaburi 11120 (Thailand); Blasi, P. [INAF/Osservatorio Astrofisico di Arcetri, Largo E. Fermi, 5—I-50125 Firenze (Italy); Ruffolo, D. [Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Montgomery, D. [Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Dmitruk, P. [Departamento de Física Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Ciudad Universitaria, 1428 Buenos Aires (Argentina); Wan, M. [Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055 (China)
2017-03-10
The investigation of the diffusive transport of charged particles in a turbulent magnetic field remains a subject of considerable interest. Research has most frequently concentrated on determining the diffusion coefficient in the presence of a mean magnetic field. Here we consider the diffusion of charged particles in fully three-dimensional isotropic turbulent magnetic fields with no mean field, which may be pertinent to many astrophysical situations. We identify different ranges of particle energy depending upon the ratio of Larmor radius to the characteristic outer length scale of turbulence. Two different theoretical models are proposed to calculate the diffusion coefficient, each applicable to a distinct range of particle energies. The theoretical results are compared to those from computer simulations, showing good agreement.
Noninvasive particle sizing using camera-based diffuse reflectance spectroscopy
DEFF Research Database (Denmark)
Abildgaard, Otto Højager Attermann; Frisvad, Jeppe Revall; Falster, Viggo
2016-01-01
Diffuse reflectance measurements are useful for noninvasive inspection of optical properties such as reduced scattering and absorption coefficients. Spectroscopic analysis of these optical properties can be used for particle sizing. Systems based on optical fiber probes are commonly employed...
Unbiased diffusion of Brownian particles on disordered correlated potentials
International Nuclear Information System (INIS)
Salgado-Garcia, Raúl; Maldonado, Cesar
2015-01-01
In this work we study the diffusion of non-interacting overdamped particles, moving on unbiased disordered correlated potentials, subjected to Gaussian white noise. We obtain an exact expression for the diffusion coefficient which allows us to prove that the unbiased diffusion of overdamped particles on a random polymer does not depend on the correlations of the disordered potentials. This universal behavior of the unbiased diffusivity is a direct consequence of the validity of the Einstein relation and the decay of correlations of the random polymer. We test the independence on correlations of the diffusion coefficient for correlated polymers produced by two different stochastic processes, a one-step Markov chain and the expansion-modification system. Within the accuracy of our simulations, we found that the numerically obtained diffusion coefficient for these systems agree with the analytically calculated ones, confirming our predictions. (paper)
Distribution of lead in single atmospheric particles
Directory of Open Access Journals (Sweden)
D. M. Murphy
2007-06-01
Full Text Available Three independent single particle mass spectrometers measured Pb in individual aerosol particles. These data provide unprecedented sensitivity and statistical significance for the measurement of Pb in single particles. This paper explores the reasons for the frequency of Pb in fine particles now that most gasoline is unleaded. Trace amounts of Pb were found in 5 to 25% of 250 to 3000 nm diameter particles sampled by both aircraft and surface instruments in the eastern and western United States. Over 5% of particles at a mountain site in Switzerland contained Pb. Particles smaller than 100 nm with high Pb content were also observed by an instrument that was only operated in urban areas. Lead was found on all types of particles, including Pb present on biomass burning particles from remote fires. Less common particles with high Pb contents contributed a majority of the total amount of Pb. Single particles with high Pb content often also contained alkali metals, Zn, Cu, Sn, As, and Sb. The association of Pb with Zn and other metals is also found in IMPROVE network filter data from surface sites. Sources of airborne Pb in the United States are reviewed for consistency with these data. The frequent appearance of trace Pb is consistent with widespread emissions of fine Pb particles from combustion sources followed by coagulation with larger particles during long-range transport. Industrial sources that directly emit Pb-rich particles also contribute to the observations. Clean regions of the western United States show some transport of Pb from Asia but most Pb over the United States comes from North American sources. Resuspension of Pb from soil contaminated by the years of leaded gasoline was not directly apparent.
Distribution of lead in single atmospheric particles
Murphy, D. M.; Hudson, P. K.; Cziczo, D. J.; Gallavardin, S.; Froyd, K. D.; Johnston, M. V.; Middlebrook, A. M.; Reinard, M. S.; Thomson, D. S.; Thornberry, T.; Wexler, A. S.
2007-06-01
Three independent single particle mass spectrometers measured Pb in individual aerosol particles. These data provide unprecedented sensitivity and statistical significance for the measurement of Pb in single particles. This paper explores the reasons for the frequency of Pb in fine particles now that most gasoline is unleaded. Trace amounts of Pb were found in 5 to 25% of 250 to 3000 nm diameter particles sampled by both aircraft and surface instruments in the eastern and western United States. Over 5% of particles at a mountain site in Switzerland contained Pb. Particles smaller than 100 nm with high Pb content were also observed by an instrument that was only operated in urban areas. Lead was found on all types of particles, including Pb present on biomass burning particles from remote fires. Less common particles with high Pb contents contributed a majority of the total amount of Pb. Single particles with high Pb content often also contained alkali metals, Zn, Cu, Sn, As, and Sb. The association of Pb with Zn and other metals is also found in IMPROVE network filter data from surface sites. Sources of airborne Pb in the United States are reviewed for consistency with these data. The frequent appearance of trace Pb is consistent with widespread emissions of fine Pb particles from combustion sources followed by coagulation with larger particles during long-range transport. Industrial sources that directly emit Pb-rich particles also contribute to the observations. Clean regions of the western United States show some transport of Pb from Asia but most Pb over the United States comes from North American sources. Resuspension of Pb from soil contaminated by the years of leaded gasoline was not directly apparent.
Single particle composition measurements of artificial Calcium Carbonate aerosols
Zorn, S. R.; Mentel, T. F.; Schwinger, T.; Croteau, P. L.; Jayne, J.; Worsnop, D. R.; Trimborn, A.
2012-12-01
Mineral dust, with an estimated total source from natural and anthropogenic emissions of up to 2800 Tg/yr, is one of the two largest contributors to total aerosol mass, with only Sea salt having a similar source strength (up to 2600 Tg/yr). The composition of dust particles varies strongly depending on the production process and, most importantly, the source location. Therefore, the composition of single dust particles can be used both to trace source regions of air masses as well as to identify chemical aging processes. Here we present results of laboratory studies on generating artificial calcium carbonate (CaCO3) particles, a model compound for carbonaceous mineral dust particles. Particles were generated by atomizing an aqueous hydrogen carbonate solution. Water was removed using a silica diffusion dryer., then the particles were processed in an oven at temperatures up to 900°C, converting the hydrogen carbonate to its anhydrous form. The resulting aerosol was analyzed using an on-line single particle laser ablation aerosol particle time-of-flight mass spectrometer (LAAPTOF). The results confirm the conversion to calcium carbonate, and validate that the produced particles indeed can be used as a model compound for carbonaceous dust aerosols.
Single particle dynamics in circular accelerators
International Nuclear Information System (INIS)
Ruth, R.D.
1986-10-01
The purpose of this paper is to introduce the reader to the theory associated with the transverse dynamics of single particle, in circular accelerators. The discussion begins with a review of Hamiltonian dynamics and canonical transformations. The case of a single particle in a circular accelerator is considered with a discussion of non-linear terms and chromaticity. The canonical perturbation theory is presented and nonlinear resonances are considered. Finally, the concept of renormalization and residue criterion are examined. (FI)
Diffusion of particles adsorbed on reconstructive surface
Czech Academy of Sciences Publication Activity Database
Tarasenko A., Nataliya; Tarasenko, Alexander; Jastrabík, Lubomír
2005-01-01
Roč. 11, č. 1 (2005), s. 485-489 ISSN 0929-5607 R&D Projects: GA MŠk LN00A015 Institutional research plan: CEZ:AV0Z10100522 Keywords : lattice gas * surface reconstruction * surface diffusion * phase transitions Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.323, year: 2005
Multidimensional and memory effects on diffusion of a particle
International Nuclear Information System (INIS)
Bao, Jing-Dong
2001-01-01
The diffusion of an overdamped Brownian particle in the two-dimensional (2D) channel bounded periodically by a parabola is studied, where the particle is subject to an additive white or colored noise. The diffusion rate constant D * of the particle is evaluated by the quasi-2D approximation and the effective potential approach, and the theoretical result is compared with the Langevin simulation. The properties of the diffusion rate constant are stressed for weak and strong noise cases. It is shown that, in an entropy channel, the value of D * in units of Q decreases with increasing intensity of the colored noise. In the presence of energetic barriers, a nonmonotonic behavior of the reduced diffusion rate constant D * Q -1 as a function of the noise intensity is shown
Diffusion of particles on a fluctuating surface
Czech Academy of Sciences Publication Activity Database
Tarasenko, Alexander; Jastrabík, Lubomír
2011-01-01
Roč. 29, č. 5 (2011), s. 487-494 ISSN 0263-6174 R&D Projects: GA AV ČR KAN301370701; GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : kinetic Monte Carlo simulations * diffusion on a fluctuating surface Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.606, year: 2011
Diffusion of particles over dynamically disordered lattice
Czech Academy of Sciences Publication Activity Database
Tarasenko, Alexander; Jastrabík, Lubomír
2011-01-01
Roč. 13, č. 6 (2011), s. 2300-2306 ISSN 1463-9076 R&D Projects: GA AV ČR KAN301370701; GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : diffusion * Monte Carlo simulations * dynamic disordered lattice Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.573, year: 2011
Fundamental study of single biomass particle combustion
Energy Technology Data Exchange (ETDEWEB)
Momeni, M.
2013-06-01
This thesis is a comprehensive study of single biomass particle combustion. The effect of particle shape and size and operating conditions on biomass conversion characteristics were investigated experimentally and theoretically. The experimental samples were divided in two groups: particles with regular shapes (spheres and cylinders) and particles with irregular shapes (almost flake-like). A CAMSIZER analyser (Retsch Technology GMBH) was used to determine the size and shape of the particles via Dynamical Digital Image Processing. The experiments were performed in a single particle reactor under well-defined conditions, and the complete combustion processes were recorded as video sequences by a CCD camera installed in the set-up. One of the project objectives is to simulate conditions reasonably close to the conditions in a power plant boiler, i.e., reasonably high temperatures (up to 1600 deg. C) and varying oxygen concentrations in the 5 to 20% range. A one-dimensional mathematical model was used to simulate all the intraparticle conversion processes (drying, recondensation, devolatilisation, char gasification/oxidation and heat/mass/momentum transfer) within single particles of different shapes and size under various conditions. The model also predicts the flame layer domain of a single particle. The model was validated by experimental results under different conditions; good agreement between the model predictions and the experimental data was observed. Both the experimental and modelling results showed that cylindrical particles lose mass faster than spherical particles of a similar volume (mass) and that the burnout time is reduced by increasing the particle aspect ratio (surface area to volume ratio). Very similar conversion times were observed for cylindrical particles with nearly identical surface area to volume ratios. Similar conversion times were also observed for two size classes of pulverised particles (with irregular shapes) made from the same type of
Single-particle Schroedinger fluid. I. Formulation
International Nuclear Information System (INIS)
Kan, K.K.; Griffin, J.J.
1976-01-01
The problem of a single quantal particle moving in a time-dependent external potential well is formulated specifically to emphasize and develop the fluid dynamical aspects of the matter flow. This idealized problem, the single-particle Schroedinger fluid, is shown to exhibit already a remarkably rich variety of fluid dynamical features, including compressible flow and line vortices. It provides also a sufficient framework to encompass simultaneously various simplified fluidic models for nuclei which have earlier been postulated on an ad hoc basis, and to illuminate their underlying restrictions. Explicit solutions of the single-particle Schroedinger fluid problem are studied in the adiabatic limit for their mathematical and physical implications (especially regarding the collective kinetic energy). The basic generalizations for extension of the treatment to the many-body Schroedinger fluid are set forth
Fundamental Study of Single Biomass Particle Combustion
DEFF Research Database (Denmark)
Momenikouchaksaraei, Maryam
This thesis is a comprehensive study of single biomass particle combustion. The effect of particle shape and size and operating conditions on biomass conversion characteristics were investigated experimentally and theoretically. The experimental samples were divided in two groups: particles...... well-defined conditions, and the complete combustion processes were recorded as video sequences by a CCD camera installed in the set-up. One of the project objectives is to simulate conditions reasonably close to the conditions in a power plant boiler, i.e., reasonably high temperatures (up to 1600°C...
Unipolar and bipolar diffusion charging of ultrafine particles
International Nuclear Information System (INIS)
Adachi, Motoaki; Okuyama, Kikuo; Kousaka, Yasuo.
1985-01-01
Unipolar and bipolar diffusion charging of monodisperse ultrafine particles of 4 - 100 nm in diameter has been studied experimentally and theoretically. The particles were charged by unipolar and bipolar ions generated by α-ray irradiation and the charge distribution of particles was directly observed in the electric field after the growth of them by condensation of di-butyl phthalate vapor. In both cases of unipolar and bipolar charging, the experimental results have been found in good agreement with the solution of basic equations where Fuchs' formula is used as the combination probability of an ion with a particle. (author)
Dual color single particle tracking via nanobodies
International Nuclear Information System (INIS)
Albrecht, David; Winterflood, Christian M; Ewers, Helge
2015-01-01
Single particle tracking is a powerful tool to investigate the function of biological molecules by following their motion in space. However, the simultaneous tracking of two different species of molecules is still difficult to realize without compromising the length or density of trajectories, the localization accuracy or the simplicity of the assay. Here, we demonstrate a simple dual color single particle tracking assay using small, bright, high-affinity labeling via nanobodies of accessible targets with widely available instrumentation. We furthermore apply a ratiometric step-size analysis method to visualize differences in apparent membrane viscosity. (paper)
Single-particle Glauber matrix elements
International Nuclear Information System (INIS)
Oset, E.; Strottman, D.
1983-01-01
The single-particle matrix elements of the Glauber profile function are tabulated for harmonic oscillator single-particle wave functions. The tables are presented in such a manner as to be applicable if the hadron--nucleon elementary scattering amplitude is specified by either a partial wave expansion or a Gaussian in momentum transfer squared. The table is complete through the 1 g/sub 9/2/ orbital and contains entries for the 3s/sub 1/2/ orbital for use if realistic wave functions are expanded in terms of harmonic oscillator functions
Chakrabarty, Ayan; Wang, Feng; Joshi, Bhuwan; Wei, Qi-Huo
2011-03-01
Recent studies shows that the boomerang shaped molecules can form various kinds of liquid crystalline phases. One debated topic related to boomerang molecules is the existence of biaxial nematic liquid crystalline phase. Developing and optical microscopic studies of colloidal systems of boomerang particles would allow us to gain better understanding of orientation ordering and dynamics at ``single molecule'' level. Here we report the fabrication and experimental studies of the Brownian motion of individual boomerang colloidal particles confined between two glass plates. We used dark-field optical microscopy to directly visualize the Brownian motion of the single colloidal particles in a quasi two dimensional geometry. An EMCCD was used to capture the motion in real time. An indigenously developed imaging processing algorithm based on MatLab program was used to precisely track the position and orientation of the particles with sub-pixel accuracy. The experimental finding of the Brownian diffusion of a single boomerang colloidal particle will be discussed.
Transverse single-file diffusion and enhanced longitudinal diffusion near a subcritical bifurcation
Dessup, Tommy; Coste, Christophe; Saint Jean, Michel
2018-05-01
A quasi-one-dimensional system of repelling particles undergoes a configurational phase transition when the transverse confining potential decreases. Below a threshold, it becomes energetically favorable for the system to adopt one of two staggered raw patterns, symmetric with respect to the system axis. This transition is a subcritical pitchfork bifurcation for short range interactions. As a consequence, the homogeneous zigzag pattern is unstable in a finite zigzag amplitude range [hC 1,hC 2] . We exhibit strong qualitative effects of the subcriticality on the thermal motions of the particles. When the zigzag amplitude is close enough to the limits hC 1 and hC 2, a transverse vibrational soft mode occurs which induces a strongly subdiffusive behavior of the transverse fluctuations, similar to single-file diffusion. On the contrary, the longitudinal fluctuations are enhanced, with a diffusion coefficient which is more than doubled. Conversely, a simple measurement of the thermal fluctuations allows a precise determination of the bifurcation thresholds.
Airway surface irregularities promote particle diffusion in the human lung
International Nuclear Information System (INIS)
Martonen, T.; North Carolina Univ., Chapel Hill, NC; Zhang, Z.; Yang, Y.; Bottei, G.
1995-01-01
Current NCRP and ICRP particle deposition models employed in risk assessment analyses treat the airways of the human lung as smooth-walled tubes. However, the upper airways of the tracheobronchial (TB) tree are line with cartilaginous rings. Recent supercomputer simulations of in vivo conditions (cited herein), where cartilaginous ring morphologies were based upon fibre-optic bronchoscope examinations, have clearly demonstrated their profound effects upon fluid dynamics. A physiologically based analytical model of fluid dynamics is presented, focusing upon applications to particle diffusion within the TB tree. The new model is the first to describe particle motion while simultaneously simulating effects of wall irregularities, entrance conditions and tube curvatures. This study may explain the enhanced deposition by particle diffusion detected in replica case experiments and have salient implications for the clinically observed preferential distributions of bronchogenic carcinomas associated with inhaled radionuclides. (author)
Computing diffusivities from particle models out of equilibrium
Embacher, Peter; Dirr, Nicolas; Zimmer, Johannes; Reina, Celia
2018-04-01
A new method is proposed to numerically extract the diffusivity of a (typically nonlinear) diffusion equation from underlying stochastic particle systems. The proposed strategy requires the system to be in local equilibrium and have Gaussian fluctuations but it is otherwise allowed to undergo arbitrary out-of-equilibrium evolutions. This could be potentially relevant for particle data obtained from experimental applications. The key idea underlying the method is that finite, yet large, particle systems formally obey stochastic partial differential equations of gradient flow type satisfying a fluctuation-dissipation relation. The strategy is here applied to three classic particle models, namely independent random walkers, a zero-range process and a symmetric simple exclusion process in one space dimension, to allow the comparison with analytic solutions.
Projection operator treatment of single particle resonances
International Nuclear Information System (INIS)
Lev, A.; Beres, W.P.
1976-01-01
A projection operator method is used to obtain the energy and width of a single particle resonance. The resonance energy is found without scanning. An example of the first g/sub 9/2/ neutron resonance in 40 Ca is given and compared with the traditional phase shift method. The results of both approaches are quite similar. 4 figures
Diffusion of massive particles around an Abelian-Higgs string
Saha, Abhisek; Sanyal, Soma
2018-03-01
We study the diffusion of massive particles in the space time of an Abelian Higgs string. The particles in the early universe plasma execute Brownian motion. This motion of the particles is modeled as a two dimensional random walk in the plane of the Abelian Higgs string. The particles move randomly in the space time of the string according to their geodesic equations. We observe that for certain values of their energy and angular momentum, an overdensity of particles is observed close to the string. We find that the string parameters determine the distribution of the particles. We make an estimate of the density fluctuation generated around the string as a function of the deficit angle. Though the thickness of the string is small, the length is large and the overdensity close to the string may have cosmological consequences in the early universe.
One-dimensional energetic particle quasilinear diffusion for realistic TAE instabilities
Duarte, Vinicius; Ghantous, Katy; Berk, Herbert; Gorelenkov, Nikolai
2014-10-01
Owing to the proximity of the characteristic phase (Alfvén) velocity and typical energetic particle (EP) superthermal velocities, toroidicity-induced Alfvén eigenmodes (TAEs) can be resonantly destabilized endangering the plasma performance. Thus, it is of ultimate importance to understand the deleterious effects on the confinement resulting from fast ion driven instabilities expected in fusion-grade plasmas. We propose to study the interaction of EPs and TAEs using a line broadened quasilinear model, which captures the interaction in both regimes of isolated and overlapping modes. The resonance particles diffuse in the phase space where the problem essentially reduces to one dimension with constant kinetic energy and the diffusion mainly along the canonical toroidal angular momentum. Mode structure and wave particle resonances are computed by the NOVA code and are used in a quasilinear diffusion code that is being written to study the evolution of the distribution function, under the assumption that they can be considered virtually unalterable during the diffusion. A new scheme for the resonant particle diffusion is being proposed that builds on the 1-D nature of the diffusion from a single mode, which leads to a momentum conserving difference scheme even when there is mode overlap.
Single atom self-diffusion on nickel surfaces
International Nuclear Information System (INIS)
Tung, R.T.; Graham, W.R.
1980-01-01
Results of a field ion microscope study of single atom self-diffusion on Ni(311), (331), (110), (111) and (100) planes are presented, including detailed information on the self-diffusion parameters on (311), (331), and (110) surfaces, and activation energies for diffusion on the (111), and (100) surfaces. Evidence is presented for the existence of two types of adsorption site and surface site geometry for single nickel atoms on the (111) surface. The presence of adsorbed hydrogen on the (110), (311), and (331) surfaces is shown to lower the onset temperature for self-diffusion on these planes. (orig.)
Damping of unbound single-particle modes
International Nuclear Information System (INIS)
Fortier, S.; Beaumel, D.; Gales, S.; Guillot, J.; Langevin-Joliot, H.; Laurent, H.; Maison, J.M.
1995-07-01
The (α, 3 He-n) reaction has been investigated at 120 MeV incident energy on 64 Ni, 90 Zr and 120 Sn target nuclei. Neutrons in coincidence with 3 He particles emitted at 0 deg were detected, in order to get information about the decay of single-particle states embedded in the (α, 3 He) continuum. Neutron angular correlations, multiplicity values and branching ratios to low-lying states of the final nuclei have been compared with the predictions of the statistical decay model. Direct branching ratios in 91 Zr deduced from this analysis are compared with the predictions of two nuclear structure models. (author)
Asymptotic neutron scattering laws for anomalously diffusing quantum particles
Energy Technology Data Exchange (ETDEWEB)
Kneller, Gerald R. [Centre de Biophysique Moléculaire, CNRS, Rue Charles Sadron, 45071 Orléans (France); Université d’Orléans, Chateau de la Source-Ave. du Parc Floral, 45067 Orléans (France); Synchrotron-SOLEIL, L’Orme de Merisiers, 91192 Gif-sur-Yvette (France)
2016-07-28
The paper deals with a model-free approach to the analysis of quasielastic neutron scattering intensities from anomalously diffusing quantum particles. All quantities are inferred from the asymptotic form of their time-dependent mean square displacements which grow ∝t{sup α}, with 0 ≤ α < 2. Confined diffusion (α = 0) is here explicitly included. We discuss in particular the intermediate scattering function for long times and the Fourier spectrum of the velocity autocorrelation function for small frequencies. Quantum effects enter in both cases through the general symmetry properties of quantum time correlation functions. It is shown that the fractional diffusion constant can be expressed by a Green-Kubo type relation involving the real part of the velocity autocorrelation function. The theory is exact in the diffusive regime and at moderate momentum transfers.
Lizana, L; Ambjörnsson, T
2009-11-01
We solve a nonequilibrium statistical-mechanics problem exactly, namely, the single-file dynamics of N hard-core interacting particles (the particles cannot pass each other) of size Delta diffusing in a one-dimensional system of finite length L with reflecting boundaries at the ends. We obtain an exact expression for the conditional probability density function rhoT(yT,t|yT,0) that a tagged particle T (T=1,...,N) is at position yT at time t given that it at time t=0 was at position yT,0. Using a Bethe ansatz we obtain the N -particle probability density function and, by integrating out the coordinates (and averaging over initial positions) of all particles but particle T , we arrive at an exact expression for rhoT(yT,t|yT,0) in terms of Jacobi polynomials or hypergeometric functions. Going beyond previous studies, we consider the asymptotic limit of large N , maintaining L finite, using a nonstandard asymptotic technique. We derive an exact expression for rhoT(yT,t|yT,0) for a tagged particle located roughly in the middle of the system, from which we find that there are three time regimes of interest for finite-sized systems: (A) for times much smaller than the collision time tparticle concentration and D is the diffusion constant for each particle, the tagged particle undergoes a normal diffusion; (B) for times much larger than the collision time t >taucoll but times smaller than the equilibrium time ttaue , rhoT(yT,t|yT,0) approaches a polynomial-type equilibrium probability density function. Notably, only regimes (A) and (B) are found in the previously considered infinite systems.
Giant transversal particle diffusion in a longitudinal magnetic ratchet.
Tierno, Pietro; Reimann, Peter; Johansen, Tom H; Sagués, Francesc
2010-12-03
We study the transversal motion of paramagnetic particles on a uniaxial garnet film, exhibiting a longitudinal ratchet effect in the presence of an oscillating magnetic field. Without the field, the thermal diffusion coefficient obtained by video microscopy is D(0) ≈ 3 × 10(-4) μm2/s. With the field, the transversal diffusion exhibits a giant enhancement by almost four decades and a pronounced maximum as a function of the driving frequency. We explain the experimental findings with a theoretical interpretation in terms of random disorder effects within the magnetic film.
Chromium and molybdenum diffusion in tungsten single crystals
International Nuclear Information System (INIS)
Klotsman, S.M.; Koloskov, V.M.; Osetrov, S.V.; Polikarpova, I.P.; Tatarinova, G.N.; Timofeev, A.N.
1989-01-01
Consideration is given to results of measuring temperature dependences of diffusion coefficients of homovalent impurities of chromium and molybdenum in tungsten single crystals. It is concluded that the difference of activation energies of selfdiffusion and impurity diffusion in the system 'tungsten-homovalent impurity' is conditioned by interaction of screened potentials of impurity and vacancy with Lazarus-Le Claire model
International Nuclear Information System (INIS)
Effenberger, F.; Fichtner, H.; Scherer, K.; Barra, S.; Kleimann, J.; Strauss, R. D.
2012-01-01
The spatial diffusion of cosmic rays in turbulent magnetic fields can, in the most general case, be fully anisotropic, i.e., one has to distinguish three diffusion axes in a local, field-aligned frame. We reexamine the transformation for the diffusion tensor from this local to a global frame, in which the Parker transport equation for energetic particles is usually formulated and solved. Particularly, we generalize the transformation formulae to allow for an explicit choice of two principal local perpendicular diffusion axes. This generalization includes the 'traditional' diffusion tensor in the special case of isotropic perpendicular diffusion. For the local frame, we describe the motivation for the choice of the Frenet-Serret trihedron, which is related to the intrinsic magnetic field geometry. We directly compare the old and the new tensor elements for two heliospheric magnetic field configurations, namely the hybrid Fisk and Parker fields. Subsequently, we examine the significance of the different formulations for the diffusion tensor in a standard three-dimensional model for the modulation of galactic protons. For this, we utilize a numerical code to evaluate a system of stochastic differential equations equivalent to the Parker transport equation and present the resulting modulated spectra. The computed differential fluxes based on the new tensor formulation deviate from those obtained with the 'traditional' one (only valid for isotropic perpendicular diffusion) by up to 60% for energies below a few hundred MeV depending on heliocentric distance.
Shear-limited test particle diffusion in 2-dimensional plasmas
International Nuclear Information System (INIS)
Anderegg, Francois; Driscoll, C. Fred; Dubin, Daniel H.E.
2002-01-01
Measurements of test-particle diffusion in pure ion plasmas show 2D enhancements over the 3D rates, limited by shear in the plasma rotation ω E (r). The diffusion is due to 'long-range' ion-ion collisions in the quiescent, steady-state Mg + plasma. For short plasma length L p and low shear S≡r∂ω E /∂r, thermal ions bounce axially many times before shear separates them in θ, so the ions move in (r,θ) as bounce averaged 'rods' of charge (i.e. 2D point vortices). Experimentally, we vary the number of bounces over the range 0.2≤N b ≤10,000. For long plasmas with N b ≤1, we observe diffusion in quantitative agreement with the 3D theory of long-range ExB drift collisions. For shorter plasmas or lower shear, with N b >1, we measure diffusion rates enhanced by up to 100x. For exceedingly small she0ar, i.e. N b ≥1000, we observe diffusion rates consistent with the Taylor-McNamara estimates for a shear-free thermal plasma. Overall, the data shows fair agreement with Dubin's new theory of 2D diffusion in shear, which predicts an enhancement of D 2D /D 3D ≅N b up to the Taylor-McNamara limit
Nonlinear theory of diffusive acceleration of particles by shock waves
Energy Technology Data Exchange (ETDEWEB)
Malkov, M.A. [University of California at San Diego, La Jolla, CA (United States)]. E-mail: mmalkov@ucsd.edu; Drury, L. O' C. [Dublin Institute for Advanced Studies, 5 Merrion Square, Dublin 2 (Ireland)
2001-04-01
Among the various acceleration mechanisms which have been suggested as responsible for the nonthermal particle spectra and associated radiation observed in many astrophysical and space physics environments, diffusive shock acceleration appears to be the most successful. We review the current theoretical understanding of this process, from the basic ideas of how a shock energizes a few reactionless particles to the advanced nonlinear approaches treating the shock and accelerated particles as a symbiotic self-organizing system. By means of direct solution of the nonlinear problem we set the limit to the test-particle approximation and demonstrate the fundamental role of nonlinearity in shocks of astrophysical size and lifetime. We study the bifurcation of this system, proceeding from the hydrodynamic to kinetic description under a realistic condition of Bohm diffusivity. We emphasize the importance of collective plasma phenomena for the global flow structure and acceleration efficiency by considering the injection process, an initial stage of acceleration and, the related aspects of the physics of collisionless shocks. We calculate the injection rate for different shock parameters and different species. This, together with differential acceleration resulting from nonlinear large-scale modification, determines the chemical composition of accelerated particles. The review concentrates on theoretical and analytical aspects but our strategic goal is to link the fundamental theoretical ideas with the rapidly growing wealth of observational data. (author)
FLAMMABLE GAS DIFFUSION THROUGH SINGLE SHELL TANK (SST) DOMES
Energy Technology Data Exchange (ETDEWEB)
MEACHAM, J.E.
2003-11-10
This report quantified potential hydrogen diffusion through Hanford Site Single-Shell tank (SST) domes if the SSTs were hypothetically sealed airtight. Results showed that diffusion would keep headspace flammable gas concentrations below the lower flammability limit in the 241-AX and 241-SX SST. The purpose of this document is to quantify the amount of hydrogen that could diffuse through the domes of the SSTs if they were hypothetically sealed airtight. Diffusion is assumed to be the only mechanism available to reduce flammable gas concentrations. The scope of this report is limited to the 149 SSTs.
Single-Particle Tracking of Human Lipoproteins.
de Messieres, Michel; Ng, Abby; Duarte, Cornelio J; Remaley, Alan T; Lee, Jennifer C
2016-01-05
Lipoproteins, such as high-density lipoprotein (HDL), low-density lipoprotein (LDL), and very-low density lipoprotein (VLDL), play a critical role in heart disease. Lipoproteins vary in size and shape as well as in their apolipoprotein content. Here, we developed a new experimental framework to study freely diffusing lipoproteins from human blood, allowing analysis of even the smallest HDL with a radius of 5 nm. In an easily constructed confinement chamber, individual HDL, LDL, and VLDL particles labeled with three distinct fluorophores were simultaneously tracked by wide-field fluorescence microscopy and their sizes were determined by their motion. This technique enables studies of individual lipoproteins in solution and allows characterization of the heterogeneous properties of lipoproteins which affect their biological function but are difficult to discern in bulk studies.
Diffusion of charged particles in a stochastic magnetic field
International Nuclear Information System (INIS)
Balescu, R.; Misguich, J.H.; Nakach, R.
1992-07-01
The diffusive motion of charged particles in a stochastic magnetic field is investigated systematically in a model in which the statistics of both the collisions and the magnetic field are described by coloured noises characterized, respectively, by a finite correlation time and finite correlation lengths. An analytic solution is obtained for the basic nonlinear differential equation of the model..It describes asymptotically a pure diffusion process, in which the mean square displacement in the perpendicular direction, Γ(t), grows proportionally to time (after a sufficiently long time). The corresponding diffusion coefficient scales like the fourth power of the magnetic fluctuation intensity. The values obtained are in very good agreement with experimental data in reverse-field pinch experiments. The present result contradicts earlier results predicting subdiffusive behaviour: Γ(t) ∼ t 1/2 or Γ(t) ∼ t 1/4 . The relation of these results to ours is discussed in detail
Time-dependent diffusive acceleration of test particles at shocks
Energy Technology Data Exchange (ETDEWEB)
Drury, L.O' C. (Dublin Inst. for Advanced Studies (Ireland))
1991-07-15
The acceleration of test particles at a steady plane non-relativistic shock is considered. Analytic expressions are found for the mean and the variance of the acceleration time distribution in the case where the diffusion coefficient has an arbitrary dependence on position and momentum. These expressions are used as the basis for an approximation scheme which is shown, by comparison with numerical solutions, to give an excellent representation of the time-dependent spectrum. (author).
Time-dependent diffusive acceleration of test particles at shocks
International Nuclear Information System (INIS)
Drury, L.O'C.
1991-01-01
The acceleration of test particles at a steady plane non-relativistic shock is considered. Analytic expressions are found for the mean and the variance of the acceleration time distribution in the case where the diffusion coefficient has an arbitrary dependence on position and momentum. These expressions are used as the basis for an approximation scheme which is shown, by comparison with numerical solutions, to give an excellent representation of the time-dependent spectrum. (author)
Eddy diffusivity of quasi-neutrally-buoyant inertial particles
Martins Afonso, Marco; Muratore-Ginanneschi, Paolo; Gama, Sílvio M. A.; Mazzino, Andrea
2018-04-01
We investigate the large-scale transport properties of quasi-neutrally-buoyant inertial particles carried by incompressible zero-mean periodic or steady ergodic flows. We show how to compute large-scale indicators such as the inertial-particle terminal velocity and eddy diffusivity from first principles in a perturbative expansion around the limit of added-mass factor close to unity. Physically, this limit corresponds to the case where the mass density of the particles is constant and close in value to the mass density of the fluid, which is also constant. Our approach differs from the usual over-damped expansion inasmuch as we do not assume a separation of time scales between thermalization and small-scale convection effects. For a general flow in the class of incompressible zero-mean periodic velocity fields, we derive closed-form cell equations for the auxiliary quantities determining the terminal velocity and effective diffusivity. In the special case of parallel flows these equations admit explicit analytic solution. We use parallel flows to show that our approach sheds light onto the behavior of terminal velocity and effective diffusivity for Stokes numbers of the order of unity.
Damping of unbound single-particle modes
International Nuclear Information System (INIS)
Fortier, S.; Beaumel, D.; Gales, S.; Guillot, J.; Langevin-Joliot, H.; Laurent, H.; Maison, J.M.; Bordewijk, J.; Brandenburg, S.; Krasznahorkay, A.; Crawley, G.M.; Massolo, C.P.; Renteria, M.; Khendriche, A.
1995-01-01
The (α, 3 He-n) reaction has been investigated at 120 MeV incident energy on 64 Ni, 90 Zr, and 120 Sn target nuclei. Neutrons in coincidence with 3 He particles emitted at 0 degree were detected using the multidetector array EDEN, in order to get information about the decay of single-particle states embedded in the (α, 3 He) continuum. Neutron angular correlations, multiplicity values, and branching ratios to low-lying states of the final nuclei have been compared with the predictions of the statistical decay model. Evidence for a significant nonstatistical decay branch has been observed in the three nuclei below about 15 MeV excitation energy. Direct branching ratios in 91 Zr deduced from this analysis are compared with the predictions of two nuclear structure models. At higher excitation energy, the decay characteristics of the (α, 3 He) continuum are shown to be mainly statistical
Experimental study of sediment particle diffusion on a granular bed.
Antico, Federica; Sanches, Pedro; Fent, Ilaria; Ferreira, Rui M. L.
2016-04-01
Particle diffusion in a cohesionless granular bed, hydraulically fully rough, subjected to a steady-uniform turbulent open-channel flow is investigated. Experiments were carried out under conditions of weak bedload transport in a 12.5 m long and 40.5 cm wide glass-sided flume recirculating water and sediment through independent circuits at the Laboratory of Hydraulics and Environment of Instituto Superior Técnico, Lisbon. The flume bed was divided in two reaches: a fixed reach comprising 1.5 m of large boulders, followed by 3.0 m of smooth bottom (PVC) and 2.5 m of one layer glued 5.0 mm diameter spherical glass beads; a mobile reach 4.0 m long and 2.5 cm deep filled with 5.0 mm diameter glass packed beads. Particle velocities were obtained introducing 5.0 mm diameter white-coated beads in the flow. Particle motion was registered from above using a high-speed camera AVT Bonito CL-400 with resolution set to 2320 x 1000 px2and frame rate of 170 fps. The field of view recorded was 77.0 cm long and 38.0 cm wide, covering almost all the width of the flume. Image processing allowed detecting and locating the centre of mass of the particles with sub-pixel accuracy. Particle trajectories were reconstructed by tracking the beads in the images; particle velocities were obtained as bead displacement over time interval between two consecutive frames (1/170 s). The computation of lagrangian statistics of particle velocities for a Shields parameter θ=0.014, Froude number Fr=0.756, boundary Reynolds number Re*=182.9 and run duration of 20 min (during which 1218 particle trajectories were collected) provided information about particle diffusion within the local and intermediate range of temporal and space scales. Mean particle velocities, second, third and fourth order moments were obtained for both longitudinal and transverse velocity components. A relatively large ballistic range, approximately two particle diameters, was observed, mainly due to the simple bed topography of
Single-Particle States in $^{133}$Sn
Huck, A
2002-01-01
% IS338 \\\\ \\\\ It is suggested to investigate the $\\beta^- $-decay of $^{133}$In and $^{134}$In in order to determine the single-particle states in $^{133}$Sn, which are so far unknown and needed for the shell-model description of the region close to $^{132}$Sn. Large hyper-pure Ge-detectors will be used for the $\\gamma$-ray spectroscopy. In the experiments with $^{134}$In, delayed neutrons in coincidence with $\\gamma$-rays from excited states in $^{133}$Sn provide the opportunity for a very selective detection of the states in question.
Different approach to the modeling of nonfree particle diffusion
Buhl, Niels
2018-03-01
A new approach to the modeling of nonfree particle diffusion is presented. The approach uses a general setup based on geometric graphs (networks of curves), which means that particle diffusion in anything from arrays of barriers and pore networks to general geometric domains can be considered and that the (free random walk) central limit theorem can be generalized to cover also the nonfree case. The latter gives rise to a continuum-limit description of the diffusive motion where the effect of partially absorbing barriers is accounted for in a natural and non-Markovian way that, in contrast to the traditional approach, quantifies the absorptivity of a barrier in terms of a dimensionless parameter in the range 0 to 1. The generalized theorem gives two general analytic expressions for the continuum-limit propagator: an infinite sum of Gaussians and an infinite sum of plane waves. These expressions entail the known method-of-images and Laplace eigenfunction expansions as special cases and show how the presence of partially absorbing barriers can lead to phenomena such as line splitting and band gap formation in the plane wave wave-number spectrum.
Economic dispatch optimization algorithm based on particle diffusion
International Nuclear Information System (INIS)
Han, Li; Romero, Carlos E.; Yao, Zheng
2015-01-01
Highlights: • A dispatch model that considers fuel, emissions control and wind power cost is built. • An optimization algorithm named diffusion particle optimization (DPO) is proposed. • DPO was used to analyze the impact of wind power risk and emissions on dispatch. - Abstract: Due to the widespread installation of emissions control equipment in fossil fuel-fired power plants, the cost of emissions control needs to be considered, together with the plant fuel cost, in providing economic power dispatch of those units to the grid. On the other hand, while using wind power decreases the overall power generation cost for the power grid, it poses a risk to a traditional grid, because of its inherent stochastic characteristics. Therefore, an economic dispatch optimization model needs to consider all of the fuel cost, emissions control cost and wind power cost for each of the generating unit conforming the fleet that meets the required grid power demand. In this study, an optimization algorithm referred as diffusion particle optimization (DPO) is proposed to solve such complex optimization problem. In this algorithm, Brownian motion theory is used to guide the movement of particles so that the particles can search for an optimal solution over the entire definition region. Several benchmark functions and power grid system data were used to test the performance of DPO, and compared to traditional algorithms used for economic dispatch optimization, such as, particle swarm optimization and artificial bee colony algorithm. It was found that DPO has less probability to be trapped in local optimums. According to results of different power systems DPO was able to find economic dispatch solutions with lower costs. DPO was also used to analyze the impact of wind power risk and fossil unit emissions coefficients on power dispatch. The result are encouraging for the use of DPO as a dynamic tool for economic dispatch of the power grid.
Damping of unbound single-particle modes
Energy Technology Data Exchange (ETDEWEB)
Fortier, S.; Beaumel, D.; Gales, S.; Guillot, J.; Langevin-Joliot, H.; Laurent, H.; Maison, J.M.; Bordewijk, J.; Brandenburg, S.; Krasznahorkay, A.; Crawley, G.M.; Massolo, C.P.; Renteria, M.; Khendriche, A. [Institut de Physique Nucleaire, IN2P3-CNRS, 91406 Orsay Cedex (France)]|[Kernfysisch Versneller Instituut, 9747 AA Groningen (Netherlands)]|[Nuclear Research Institute, Debrecen P.O. Box 51, H-4001 (Hungary)]|[NSCL, Michigan State University, East Lansing, Michigan 48824 (United States)]|[Dep. Fisica, Fac. Cs. Exactas, UNLP, CC Nio 67, 1900 La Plata (Argentina)]|[Institut de Sciences Exactes,Universite de Tizi-Ouzou, 15000 Tizi-Ouzou (Algeria)
1995-11-01
The ({alpha},{sup 3}He-{ital n}) reaction has been investigated at 120 MeV incident energy on {sup 64}Ni, {sup 90}Zr, and {sup 120}Sn target nuclei. Neutrons in coincidence with {sup 3}He particles emitted at 0{degree} were detected using the multidetector array EDEN, in order to get information about the decay of single-particle states embedded in the ({alpha},{sup 3}He) continuum. Neutron angular correlations, multiplicity values, and branching ratios to low-lying states of the final nuclei have been compared with the predictions of the statistical decay model. Evidence for a significant nonstatistical decay branch has been observed in the three nuclei below about 15 MeV excitation energy. Direct branching ratios in {sup 91}Zr deduced from this analysis are compared with the predictions of two nuclear structure models. At higher excitation energy, the decay characteristics of the ({alpha},{sup 3}He) continuum are shown to be mainly statistical.
Single-particle stochastic heat engine
Rana, Shubhashis; Pal, P. S.; Saha, Arnab; Jayannavar, A. M.
2014-10-01
We have performed an extensive analysis of a single-particle stochastic heat engine constructed by manipulating a Brownian particle in a time-dependent harmonic potential. The cycle consists of two isothermal steps at different temperatures and two adiabatic steps similar to that of a Carnot engine. The engine shows qualitative differences in inertial and overdamped regimes. All the thermodynamic quantities, including efficiency, exhibit strong fluctuations in a time periodic steady state. The fluctuations of stochastic efficiency dominate over the mean values even in the quasistatic regime. Interestingly, our system acts as an engine provided the temperature difference between the two reservoirs is greater than a finite critical value which in turn depends on the cycle time and other system parameters. This is supported by our analytical results carried out in the quasistatic regime. Our system works more reliably as an engine for large cycle times. By studying various model systems, we observe that the operational characteristics are model dependent. Our results clearly rule out any universal relation between efficiency at maximum power and temperature of the baths. We have also verified fluctuation relations for heat engines in time periodic steady state.
Single particle level scheme for alpha decay
International Nuclear Information System (INIS)
Mirea, M.
1998-01-01
The fine structure phenomenon in alpha decay was evidenced by Rosenblum. In this process the kinetic energy of the emitted particle has several determined values related to the structure of the parent and the daughter nucleus. The probability to find the daughter in a low lying state was considered strongly dependent on the spectroscopic factor defined as the square of overlap between the wave function of the parent in the ground state and the wave functions of the specific excited states of the daughter. This treatment provides a qualitative agreement with the experimental results if the variations of the penetrability between different excited states are neglected. Based on single particle structure during fission, a new formalism explained quantitatively the fine structure of the cluster decay. It was suggested that this formalism can be applied also to alpha decay. For this purpose, the first step is to construct the level scheme of this type of decay. Such a scheme, obtained with the super-asymmetric two-center potential, is plotted for the alpha decay of 223 Ra. It is interesting to note that, diabatically, the level with spin 3/2 emerging from 1i 11/2 (ground state of the parent) reaches an excited state of the daughter in agreement with the experiment. (author)
Diffusion of Ti in α-Zr single crystals
International Nuclear Information System (INIS)
Hood, G.M.; Zou, H.; Schultz, R.J.; Jackman, J.A.
1994-11-01
Ti diffusion coefficients (D) have been measured in nominally pure αZr single crystals (773-1124 K) in directions both parallel (D pa ) and perpendicular (D pe , few data) to the c-axis: tracer techniques and secondary ion mass spectrometry were used to determine the diffusion profiles. The results show a temperature dependence which suggests two regions of diffusion behaviour. Above 1035 K, region I, diffusion conforms to the expectations of intrinsic behaviour with normal Arrhenius law constants: D pa = 1.7 x 10 -3 exp(-2.93 ± 0.08 eV/kΤ) m 2 /s. Below 1035 K, region II, D's are enhanced with respect to an extrapolation of region I behaviour. The region II data are associated with extrinsic effects. (author). 13 refs., 1 tab., 3 figs
Self-diffusion in single crystalline silicon nanowires
Südkamp, T.; Hamdana, G.; Descoins, M.; Mangelinck, D.; Wasisto, H. S.; Peiner, E.; Bracht, H.
2018-04-01
Self-diffusion experiments in single crystalline isotopically controlled silicon nanowires with diameters of 70 and 400 nm at 850 and 1000 °C are reported. The isotope structures were first epitaxially grown on top of silicon substrate wafers. Nanowires were subsequently fabricated using a nanosphere lithography process in combination with inductively coupled plasma dry reactive ion etching. Three-dimensional profiling of the nanosized structure before and after diffusion annealing was performed by means of atom probe tomography (APT). Self-diffusion profiles obtained from APT analyses are accurately described by Fick's law for self-diffusion. Data obtained for silicon self-diffusion in nanowires are equal to the results reported for bulk silicon crystals, i.e., finite size effects and high surface-to-volume ratios do not significantly affect silicon self-diffusion. This shows that the properties of native point defects determined from self-diffusion in bulk crystals also hold for nanosized silicon structures with diameters down to 70 nm.
Microscopic calculations of λ single particle energies
International Nuclear Information System (INIS)
Usmani, Q. N.
1998-01-01
Λ binding energy data for total baryon number A ≤ 208 and for Λ angular momenta ell Λ ≤ 3 are analyzed in terms of phenomenological (but generally consistent with meson-exchange) ΛN and ΛNN potentials. The Fermi-Hypernetted-Chain technique is used to calculate the expectation values for the Λ binding to nuclear matter. Accurate effective ΛN and ΛNN potentials are obtained which are folded with the core nucleus nucleon densities to calculate the Λ single particle potential U Λ (r). We use a dispersive ΛNN potential but also include an explicit ρ dependence to allow for reduced repulsion in the surface, and the best fits have a large ρ dependence giving consistency with the variational Monte Carlo calculations for Λ 5 He. The exchange fraction of the ΛN space-exchange potential is found to be 0.2-0.3 corresponding to m Λ * ≅ (0.74-0.82)m Λ . Charge symmetry breaking is found to be significant for heavy hypernuclei with a large neutron excess, with a strength consistent with that obtained from the A = 4 hypernuclei
Methods for forming particles from single source precursors
Fox, Robert V [Idaho Falls, ID; Rodriguez, Rene G [Pocatello, ID; Pak, Joshua [Pocatello, ID
2011-08-23
Single source precursors are subjected to carbon dioxide to form particles of material. The carbon dioxide may be in a supercritical state. Single source precursors also may be subjected to supercritical fluids other than supercritical carbon dioxide to form particles of material. The methods may be used to form nanoparticles. In some embodiments, the methods are used to form chalcopyrite materials. Devices such as, for example, semiconductor devices may be fabricated that include such particles. Methods of forming semiconductor devices include subjecting single source precursors to carbon dioxide to form particles of semiconductor material, and establishing electrical contact between the particles and an electrode.
The Diffusion Process in Small Particles and Brownian Motion
Khoshnevisan, M.
Albert Einstein in 1926 published his book entitled ''INVESTIGATIONS ON THE THEORY OF THE BROWNIAN MOVEMENT''. He investigated the process of diffusion in an undissociated dilute solution. The diffusion process is subject to Brownian motion. Furthermore, he elucidated the fact that the heat content of a substance will change the position of the single molecules in an irregular fashion. In this paper, I have shown that in order for the displacement of the single molecules to be proportional to the square root of the time, and for v/2 - v 1 Δ =dv/dx , (where v1 and v2 are the concentrations in two cross sections that are separated by a very small distance), ∫ - ∞ ∞ Φ (Δ) dΔ = I and I/τ ∫ - ∞ ∞Δ2/2 Φ (Δ) dΔ = D conditions to hold, then equation (7a) D =√{ 2 D }√{ τ} must be changed to Δ =√{ 2 D }√{ τ} . I have concluded that D =√{ 2 D }√{ τ} is an unintended error, and it has not been amended for almost 90 years in INVESTIGATIONS ON THE THEORY OF THE BROWNIAN MOVEMENT, 1926 publication.
Stochastic transport of particles across single barriers
International Nuclear Information System (INIS)
Kreuter, Christian; Siems, Ullrich; Henseler, Peter; Nielaba, Peter; Leiderer, Paul; Erbe, Artur
2012-01-01
Transport phenomena of interacting particles are of high interest for many applications in biology and mesoscopic systems. Here we present measurements on colloidal particles, which are confined in narrow channels on a substrate and interact with a barrier, which impedes the motion along the channel. The substrate of the particle is tilted in order for the particles to be driven towards the barrier and, if the energy gained by the tilt is large enough, surpass the barrier by thermal activation. We therefore study the influence of this barrier as well as the influence of particle interaction on the particle transport through such systems. All experiments are supported with Brownian dynamics simulations in order to complement the experiments with tests of a large range of parameter space which cannot be accessed in experiments.
Model for diffusion of a narrow beam of charged particles
International Nuclear Information System (INIS)
Eisenhauer, C.
1980-01-01
A simple analytic expression is presented to describe the three-dimensioned spatial distribution of flux or energy deposition by a narrow beam of charged particles. In this expression distances are expressed in terms of a scaling parameter that is proportional to the mean square scattering angle in a single collision. Finite ranges are expressed in terms of the continuous-slowing-down range. Track-length distributions for one-velocity particles and energy deposition for electrons are discussed. Comparisons with rigorous Monte Carlo calculations show that departures from the analytic expression can be expressed as a slowly varying function of order unity. This function can be used as a basis for interpolation over a wide range of source energies and materials
Non-linear diffusion of charged particles due to stochastic electromagnetic fields
International Nuclear Information System (INIS)
Martins, A.M.; Balescu, R.; Mendonca, J.T.
1989-01-01
It is well known that the energy confinement times observed in tokamak cannot be explained by the classical or neo-classical transport theory. The alternative explanations are based on the existence of various kinds of micro-instabilities, or on the stochastic destruction of the magnetic surfaces, due to the interaction of magnetic islands of different helicities. In the absence of a well established theory of anomalous transport it is perhaps important to study in some detail the diffusion coefficient of single charged particles in the presence of electromagnetic fluctuation, because it can provide the physical grounds for more complete and self-consistent calculations. In the present work we derive a general expression for the transverse diffusion coefficient of electrons and ions in a constant magnetic field and in the presence of space and time dependent electromagnetic fluctuation. We neglect macroscopic drifts due to inhomogeneity and field curvatures, but retain finite Larmor radius effects. (author) 3 refs
Automated data collection in single particle electron microscopy
Tan, Yong Zi; Cheng, Anchi; Potter, Clinton S.; Carragher, Bridget
2016-01-01
Automated data collection is an integral part of modern workflows in single particle electron microscopy (EM) research. This review surveys the software packages available for automated single particle EM data collection. The degree of automation at each stage of data collection is evaluated, and the capabilities of the software packages are described. Finally, future trends in automation are discussed. PMID:26671944
Single particle irradiation effect of digital signal processor
International Nuclear Information System (INIS)
Fan Si'an; Chen Kenan
2010-01-01
The single particle irradiation effect of high energy neutron on digital signal processor TMS320P25 in dynamic working condition has been studied. The influence of the single particle on the device has been explored through the acquired waveform and working current of TMS320P25. Analysis results, test data and test methods have also been presented. (authors)
Single-particle behaviour in plasmas
International Nuclear Information System (INIS)
McNamara, B.
1978-01-01
This paper discusses essentially the motion of charged particles in electromagnetic fields. Difficult methods of averaging are explained and applied to calculation of constants of motion. The breakdown of these constants and its consequences on fusion is analyzed
Single Particle Linear and Nonlinear Dynamics
Energy Technology Data Exchange (ETDEWEB)
Cai, Y
2004-06-25
I will give a comprehensive review of existing particle tracking tools to assess long-term particle stability for small and large accelerators in the presence of realistic magnetic imperfections and machine misalignments. The emphasis will be on the tracking and analysis tools based upon the differential algebra, Lie operator, and ''polymorphism''. Using these tools, a uniform linear and non-linear analysis will be outlined as an application of the normal form.
Single Particle Linear and Nonlinear Dynamics
International Nuclear Information System (INIS)
Cai, Y
2004-01-01
I will give a comprehensive review of existing particle tracking tools to assess long-term particle stability for small and large accelerators in the presence of realistic magnetic imperfections and machine misalignments. The emphasis will be on the tracking and analysis tools based upon the differential algebra, Lie operator, and ''polymorphism''. Using these tools, a uniform linear and non-linear analysis will be outlined as an application of the normal form
New apparatus of single particle trap system for aerosol visualization
Higashi, Hidenori; Fujioka, Tomomi; Endo, Tetsuo; Kitayama, Chiho; Seto, Takafumi; Otani, Yoshio
2014-08-01
Control of transport and deposition of charged aerosol particles is important in various manufacturing processes. Aerosol visualization is an effective method to directly observe light scattering signal from laser-irradiated single aerosol particle trapped in a visualization cell. New single particle trap system triggered by light scattering pulse signal was developed in this study. The performance of the device was evaluated experimentally. Experimental setup consisted of an aerosol generator, a differential mobility analyzer (DMA), an optical particle counter (OPC) and the single particle trap system. Polystylene latex standard (PSL) particles (0.5, 1.0 and 2.0 μm) were generated and classified according to the charge by the DMA. Singly charged 0.5 and 1.0 μm particles and doubly charged 2.0 μm particles were used as test particles. The single particle trap system was composed of a light scattering signal detector and a visualization cell. When the particle passed through the detector, trigger signal with a given delay time sent to the solenoid valves upstream and downstream of the visualization cell for trapping the particle in the visualization cell. The motion of particle in the visualization cell was monitored by CCD camera and the gravitational settling velocity and the electrostatic migration velocity were measured from the video image. The aerodynamic diameter obtained from the settling velocity was in good agreement with Stokes diameter calculated from the electrostatic migration velocity for individual particles. It was also found that the aerodynamic diameter obtained from the settling velocity was a one-to-one function of the scattered light intensity of individual particles. The applicability of this system will be discussed.
Diffusive real-time dynamics of a particle with Berry curvature
Misaki, Kou; Miyashita, Seiji; Nagaosa, Naoto
2018-02-01
We study theoretically the influence of Berry phase on the real-time dynamics of the single particle focusing on the diffusive dynamics, i.e., the time dependence of the distribution function. Our model can be applied to the real-time dynamics of intraband relaxation and diffusion of optically excited excitons, trions, or particle-hole pair. We found that the dynamics at the early stage is deeply influenced by the Berry curvature in real space (B ), momentum space (Ω ), and also the crossed space between these two (C ). For example, it is found that Ω induces the rotation of the wave packet and causes the time dependence of the mean square displacement of the particle to be linear in time t at the initial stage; it is qualitatively different from the t3 dependence in the absence of the Berry curvature. It is also found that Ω and C modify the characteristic time scale of the thermal equilibration of momentum distribution. Moreover, the dynamics under various combinations of B ,Ω , and C shows singular behaviors such as the critical slowing down or speeding up of the momentum equilibration and the reversals of the direction of rotations. The relevance of our model for time-resolved experiments in transition metal dichalcogenides is also discussed.
Diagram of collisional regimes for particle diffusion in a stochastic magnetic field
International Nuclear Information System (INIS)
Misguich, J.H.; Balescu, R.
1995-01-01
This document deals with static stochastic fields, where magnetic lines experience exponential separation and magnetic diffusion. It more particularly focuses on the diffusivity of collisional particles in such a fields and presents a general graph which describes most regimes of collisional and weakly collisional diffusion for guiding centers in a time-independent magnetic field. (TEC). 9 refs., 1 fig., 2 tabs
International Nuclear Information System (INIS)
Schuetz, G.; Sandow, S.
1993-05-01
We consider systems of particles hopping stochastically on d-dimensional lattices with space-dependent probabilities. We map the master equation in a Fock space where the dynamics are given by a quantum Hamiltonian (continuous time) or a transfer matrix resp. (discrete time). We show that under certain conditions the time-dependent two-point density correlation function in N-particle steady state can be computed from the probability distribution of a single particle moving in the same environment. Focussing on exclusion models where the lattice site can be occupied by at most one particle we discuss as an example for such a stochastic process a generalized Heisenberg antiferromagnet where the strength of the spin-spin coupling in space-dependent. In discrete time one obtains for one dimensional systems the diagonal-to-diagonal transfer matrix of the two dimensional six vertex model with space dependent vertex weights. For a random distribution of the vertex weights one obtains a version of the random barrier model describing diffusion of particles in disordered media. We derive exact expressions for the average two-point density correlation function in the presence of weak, correlated disorder. (authors)
DAMPING OF UNBOUND SINGLE-PARTICLE MODES
FORTIER, S; BEAUMEL, D; GALES, S; GUILLOT, J; LANGEVINJOLIOT, H; LAURENT, H; MAISON, JM; BORDEWIJK, J; BRANDENBURG, S; KRASZNAHORKAY, A; CRAWLEY, GM; MASSOLO, CP; RENTERIA, M; KHENDRICHE, A
1995-01-01
The (alpha, He-3-n) reaction has been investigated at 120 MeV incident energy on Ni-64, Zr-90, and Sn-120 target nuclei. Neutrons in coincidence with He-3 particles emitted at 0 degrees were detected using the multidetector array EDEN, in order to get information about the decay of the
Bacher, Christian P; Reichenzeller, Michaela; Athale, Chaitanya; Herrmann, Harald; Eils, Roland
2004-11-23
The dynamics of nuclear organization, nuclear bodies and RNPs in particular has been the focus of many studies. To understand their function, knowledge of their spatial nuclear position and temporal translocation is essential. Typically, such studies generate a wealth of data that require novel methods in image analysis and computational tools to quantitatively track particle movement on the background of moving cells and shape changing nuclei. We developed a novel 4-D image processing platform (TIKAL) for the work with laser scanning and wide field microscopes. TIKAL provides a registration software for correcting global movements and local deformations of cells as well as 2-D and 3-D tracking software. With this new tool, we studied the dynamics of two different types of nuclear particles, namely nuclear bodies made from GFP-NLS-vimentin and microinjected 0.1 mum - wide polystyrene beads, by live cell time-lapse microscopy combined with single particle tracking and mobility analysis. We now provide a tool for the automatic 3-D analysis of particle movement in parallel with the acquisition of chromatin density data. Kinetic analysis revealed 4 modes of movement: confined obstructed, normal diffusion and directed motion. Particle tracking on the background of stained chromatin revealed that particle movement is directly related to local reorganization of chromatin. Further a direct comparison of particle movement in the nucleoplasm and the cytoplasm exhibited an entirely different kinetic behaviour of vimentin particles in both compartments. The kinetics of nuclear particles were slightly affected by depletion of ATP and significantly disturbed by disruption of actin and microtubule networks. Moreover, the hydration state of the nucleus had a strong impact on the mobility of nuclear bodies since both normal diffusion and directed motion were entirely abolished when cells were challenged with 0.6 M sorbitol. This effect correlated with the compaction of chromatin
Single-particle density matrix of liquid 4He
International Nuclear Information System (INIS)
Vakarchuk, I.A.
2008-01-01
The density single-particle matrix in the coordinate notation was calculated based on the expression for the interacting Bose-particle N system density matrix. Under the low temperatures the mentioned matrix in the first approximation enables to reproduce the Bogoliubov theory results. In the classical terms the mentioned theory enables to reproduce the results of the theory of the classical fluids in the approximation of the chaotic phases. On the basis of the density single-particle matrix one managed to obtain the function of the pulse distribution of the particles, the Bose-liquid average kinetic energy, and to study the Bose-Einstein condensation phenomenon [ru
Experiments and modeling of single plastic particle conversion in suspension
DEFF Research Database (Denmark)
Nakhaei, Mohammadhadi; Wu, Hao; Grévain, Damien
2018-01-01
Conversion of single high density polyethylene (PE) particles has been studied by experiments and modeling. The experiments were carried out in a single particle combustor for five different shapes and masses of particles at temperature conditions of 900 and 1100°C. Each experiment was recorded...... against the experiments as well as literature data. Furthermore, a simplified isothermal model appropriate for CFD applications was developed, in order to model the combustion of plastic particles in cement calciners. By comparing predictions with the isothermal and the non–isothermal models under typical...
Microphysical Properties of Single Secondary Organic Aerosol (SOA) Particles
Rovelli, Grazia; Song, Young-Chul; Pereira, Kelly; Hamilton, Jacqueline; Topping, David; Reid, Jonathan
2017-04-01
Secondary Organic Aerosols (SOA) deriving from the oxidation of volatile organic compounds (VOCs) can account for a substantial fraction of the overall atmospheric aerosol mass.[1] Therefore, the investigation of SOA microphysical properties is crucial to better comprehend their role in the atmospheric processes they are involved in. This works describes a single particle approach to accurately characterise the hygroscopic response, the optical properties and the gas-particle partitioning kinetics of water and semivolatile components for laboratory generated SOA. SOA was generated from the oxidation of different VOCs precursors (e.g. α-pinene, toluene) in a photo-chemical flow reactor, which consists of a temperature and relative humidity controlled 300 L polyvinyl fluoride bag. Known VOC, NOx and ozone concentrations are introduced in the chamber and UV irradiation is performed by means of a Hg pen-ray. SOA samples were collected with an electrical low pressure impactor, wrapped in aluminium foil and kept refrigerated at -20°C. SOA samples were extracted in a 1:1 water/methanol mixture. Single charged SOA particles were generated from the obtained solution using a microdispenser and confined within an electrodynamic balance (EDB), where they sit in a T (250-320 K) and RH (0-95%) controlled nitrogen flow. Suspended droplets are irradiated with a 532 nm laser and the evolving angularly resolved scattered light is used to keep track of changes in droplet size. One of the key features of this experimental approach is that very little SOA solution is required because of the small volumes needed to load the dispensers (evaporation kinetics experiments (CK-EDB) of suspended probe and sample droplets.[2] The variation of the refractive index of SOA droplets following to water or SVOCs evaporative loss was measured as a function of water activity by fitting the collected light scattering patterns with a generated Mie-Theory library of phase functions.[3] Long trapping
Single-particle potential from resummed ladder diagrams
International Nuclear Information System (INIS)
Kaiser, N.
2013-01-01
A recent work on the resummation of fermionic in-medium ladder diagrams to all orders is extended by calculating the complex single-particle potential U(p, k f ) + i W(p, k f ) p > k f . The on-shell single-particle potential is constructed by means of a complex-valued in-medium loop that includes corrections from a test particle of momentum vector p added to the filled Fermi sea. The single-particle potential U(k f , k f ) at the Fermi surface as obtained from the resummation of the combined particle and hole ladder diagrams is shown to satisfy the Hugenholtz-Van-Hove theorem. The perturbative contributions at various orders a n in the scattering length are deduced and checked against the known analytical results at order a 1 and a 2 . The limit a → ∞ is studied as a special case and a strong momentum dependence of the real (and imaginary) single-particle potential is found. This feature indicates an instability against a phase transition to a state with an empty shell inside the Fermi sphere such that the density gets reduced by about 5%. The imaginary single-particle potential vanishes linearly at the Fermi surface. For comparison, the same analysis is performed for the resummed particle-particle ladder diagrams alone. In this truncation an instability for hole excitations near the Fermi surface is found at strong coupling. For the set of particle-hole ring diagrams the single-particle potential is calculated as well. Furthermore, the resummation of in-medium ladder diagrams to all orders is studied for a two-dimensional Fermi gas with a short-range two-body contact interaction. (orig.)
Radial diffusion of toroidally trapped particles induced by lower hybrid and fast waves
International Nuclear Information System (INIS)
Krlin, L.
1992-10-01
The interaction of RF field with toroidally trapped particles (bananas) can cause their intrinsic stochastically diffusion both in the configuration and velocity space. In RF heating and/or current drive regimes, RF field can interact with plasma particles and with thermonuclear alpha particles. The aim of this contribution is to give some analytical estimates of induced radial diffusion of alphas and of ions. (author)
The measurement of single particle temperature in plasma sprays
International Nuclear Information System (INIS)
Fincke, J.R.; Swank, W.D.; Bolsaitis, P.P.; Elliott, J.F.
1990-01-01
A measurement technique for simultaneously obtaining the size, velocity, temperature, and relative number density of particles entrained in high temperature flow fields is described. In determining the particle temperature from a two-color pyrometery technique, assumptions about the relative spectral emissivity of the particle are required. For situations in which the particle surface undergoes chemical reactions the assumption of grey body behavior is shown to introduce large Temperature measurement uncertainties. Results from isolated, laser heated, single particle measurements and in-flight data from the plasma spraying of WC-Co are presented. 10 refs., 5 figs
Lattice diffusion of a single molecule in solution
Ruggeri, Francesca; Krishnan, Madhavi
2017-12-01
The ability to trap a single molecule in an electrostatic potential well in solution has opened up new possibilities for the use of molecular electrical charge to study macromolecular conformation and dynamics at the level of the single entity. Here we study the diffusion of a single macromolecule in a two-dimensional lattice of electrostatic traps in solution. We report the ability to measure both the size and effective electrical charge of a macromolecule by observing single-molecule transport trajectories, typically a few seconds in length, using fluorescence microscopy. While, as shown previously, the time spent by the molecule in a trap is a strong function of its effective charge, we demonstrate here that the average travel time between traps in the landscape yields its hydrodynamic radius. Tailoring the pitch of the lattice thus yields two different experimentally measurable time scales that together uniquely determine both the size and charge of the molecule. Since no information is required on the location of the molecule between consecutive departure and arrival events at lattice sites, the technique is ideally suited to measurements on weakly emitting entities such as single molecules.
Residual sweeping errors in turbulent particle pair diffusion in a Lagrangian diffusion model.
Malik, Nadeem A
2017-01-01
Thomson, D. J. & Devenish, B. J. [J. Fluid Mech. 526, 277 (2005)] and others have suggested that sweeping effects make Lagrangian properties in Kinematic Simulations (KS), Fung et al [Fung J. C. H., Hunt J. C. R., Malik N. A. & Perkins R. J. J. Fluid Mech. 236, 281 (1992)], unreliable. However, such a conclusion can only be drawn under the assumption of locality. The major aim here is to quantify the sweeping errors in KS without assuming locality. Through a novel analysis based upon analysing pairs of particle trajectories in a frame of reference moving with the large energy containing scales of motion it is shown that the normalized integrated error [Formula: see text] in the turbulent pair diffusivity (K) due to the sweeping effect decreases with increasing pair separation (σl), such that [Formula: see text] as σl/η → ∞; and [Formula: see text] as σl/η → 0. η is the Kolmogorov turbulence microscale. There is an intermediate range of separations 1 < σl/η < ∞ in which the error [Formula: see text] remains negligible. Simulations using KS shows that in the swept frame of reference, this intermediate range is large covering almost the entire inertial subrange simulated, 1 < σl/η < 105, implying that the deviation from locality observed in KS cannot be atributed to sweeping errors. This is important for pair diffusion theory and modeling. PACS numbers: 47.27.E?, 47.27.Gs, 47.27.jv, 47.27.Ak, 47.27.tb, 47.27.eb, 47.11.-j.
Single particle measurements and two particle interferometry results from CERN experiment NA44
International Nuclear Information System (INIS)
Simon-Gillo, J.
1994-01-01
CERN experiment NA44 is optimized for the study of identified single and multiple particle distributions to p T = 0 near mid-rapidity. We measure π +- , K +- , p, bar p, d and bar d, in p + A and A + A collisions at 450 and 20OGeV/u, respectively. Two-particle intensity interferometry results from π + π + , K + K + , and K - K - measurements and single particle distributions are presented
Single-particle dynamics - RF acceleration
International Nuclear Information System (INIS)
Montague, B.W.
1977-01-01
In this paper the rf acceleration of both synchronous and non-synchronous particles is discussed and a simple linearized equation of small amplitude synchrotron oscillations is derived. Phase stability, the hamiltonian for synchrotron oscillations, oscillation amplitudes and adiabatic damping are then briefly discussed. The final sections of the paper contain a description of the basic principles of rf beam stacking in the longitudinal phase space of intersecting Storage Rings and a description of phase displacement acceleration which inspite of certain disadvantages, remains an attractive technique for proton storage rings. (B.D.)
Pfrang, C.; Shiraiwa, M.; Pöschl, U.
2011-07-01
Recent experimental evidence underlines the importance of reduced diffusivity in amorphous semi-solid or glassy atmospheric aerosols. This paper investigates the impact of diffusivity on the ageing of multi-component reactive organic particles approximating atmospheric cooking aerosols. We apply and extend the recently developed KM-SUB model in a study of a 12-component mixture containing oleic and palmitoleic acids. We demonstrate that changes in the diffusivity may explain the evolution of chemical loss rates in ageing semi-solid particles, and we resolve surface and bulk processes under transient reaction conditions considering diffusivities altered by oligomerisation. This new model treatment allows prediction of the ageing of mixed organic multi-component aerosols over atmospherically relevant timescales and conditions. We illustrate the impact of changing diffusivity on the chemical half-life of reactive components in semi-solid particles, and we demonstrate how solidification and crust formation at the particle surface can affect the chemical transformation of organic aerosols.
Single-particle motion in rapidly rotating nuclei
International Nuclear Information System (INIS)
Bengtsson, R.; Frisk, H.
1985-01-01
The motion of particles belonging to a single-j shell is described in terms of classical orbitals. The effects of rapid rotation and pairing correlations are discussed and the results are compared with the quantum mechanical orbitals. (orig.)
Rapid calculation of maximum particle lifetime for diffusion in complex geometries
Carr, Elliot J.; Simpson, Matthew J.
2018-03-01
Diffusion of molecules within biological cells and tissues is strongly influenced by crowding. A key quantity to characterize diffusion is the particle lifetime, which is the time taken for a diffusing particle to exit by hitting an absorbing boundary. Calculating the particle lifetime provides valuable information, for example, by allowing us to compare the timescale of diffusion and the timescale of the reaction, thereby helping us to develop appropriate mathematical models. Previous methods to quantify particle lifetimes focus on the mean particle lifetime. Here, we take a different approach and present a simple method for calculating the maximum particle lifetime. This is the time after which only a small specified proportion of particles in an ensemble remain in the system. Our approach produces accurate estimates of the maximum particle lifetime, whereas the mean particle lifetime always underestimates this value compared with data from stochastic simulations. Furthermore, we find that differences between the mean and maximum particle lifetimes become increasingly important when considering diffusion hindered by obstacles.
Influence of Torrefaction on Single Particle Combustion of Wood
DEFF Research Database (Denmark)
Lu, Zhimin; Jian, Jie; Jensen, Peter Arendt
2016-01-01
This study focuses on the influence of torrefaction on the char reactivity, char yield, and combustion time of 3-5 mm spherical wood particles in a single particle combustion reactor (SPC) operating at a nominal temperature of 1231 °C. The devolatilization times were reduced and the char burnout...
Modeling of calcination of single kaolinitic clay particle
DEFF Research Database (Denmark)
Gebremariam, Abraham Teklay; Yin, Chungen; Rosendahl, Lasse
The present work aims at modeling of the calcination (dehydroxylation) process of clay particles, specifically kaolinite, and its thermal transformation. For such purpose, 1D single particle calcination model was developed based on the concept of shrinking core model to assess the dehydroxylation...
Enhanced separation of diffusing particles by chaotic advection
International Nuclear Information System (INIS)
Aref, H.; Jones, S.W.
1989-01-01
Combining the reversibility of advection by a Stokes flow with the irreversibility of diffusion leads to a separation strategy for diffusing substances. This basic idea goes back to Taylor and Heller. It is shown here that the sensitivity of the method can be greatly enhanced by making the advection chaotic. The separation is particularly efficient when the thinnest structures resulting from advection are made comparable in size to a diffusion length. Simple heuristic estimates based on an understanding of chaotic motion and diffusion lead to a certain scaling that is seen in numerical experiments on this separation method
Interaction dynamics of two diffusing particles: contact times and influence of nearby surfaces.
Tränkle, B; Ruh, D; Rohrbach, A
2016-03-14
Interactions of diffusing particles are governed by hydrodynamics on different length and timescales. The local hydrodynamics can be influenced substantially by simple interfaces. Here, we investigate the interaction dynamics of two micron-sized spheres close to plane interfaces to mimic more complex biological systems or microfluidic environments. Using scanned line optical tweezers and fast 3D interferometric particle tracking, we are able to track the motion of each bead with precisions of a few nanometers and at a rate of 10 kilohertz. From the recorded trajectories, all spatial and temporal information is accessible. This way, we measure diffusion coefficients for two coupling particles at varying distances h to one or two glass interfaces. We analyze their coupling strength and length by cross-correlation analysis relative to h and find a significant decrease in the coupling length when a second particle diffuses nearby. By analysing the times the particles are in close contact, we find that the influence of nearby surfaces and interaction potentials reduce the diffusivity strongly, although we found that the diffusivity hardly affects the contact times and the binding probability between the particles. All experimental results are compared to a theoretical model, which is based on the number of possible diffusion paths following the Catalan numbers and a diffusion probability, which is biased by the spheres' surface potential. The theoretical and experimental results agree very well and therefore enable a better understanding of hydrodynamically coupled interaction processes.
Tomograms and the quest for single particle nonlocality
International Nuclear Information System (INIS)
Anisimov, M A; Caponigro, M; Mancini, S; Man'ko, V I
2007-01-01
By using a tomographic approach to quantum states, we rise the problem of nonlocality within a single particle (single degree of freedom). We propose a possible way to look for such effects on a qubit. Although a conclusive answer is far from being reached, we provide some reflections on the foundational ground
Thermal diffusion boron doping of single-crystal natural diamond
Energy Technology Data Exchange (ETDEWEB)
Seo, Jung-Hun; Mikael, Solomon; Mi, Hongyi; Venkataramanan, Giri; Ma, Zhenqiang, E-mail: mazq@engr.wisc.edu [Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Wu, Henry; Morgan, Dane [Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Blanchard, James P. [Department of Nuclear Engineering and Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Zhou, Weidong [Department of Electrical Engineering, NanoFAB Center, University of Texas at Arlington, Arlington, Texas 76019 (United States); Gong, Shaoqin [Department of Biomedical Engineering and Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)
2016-05-28
With the best overall electronic and thermal properties, single crystal diamond (SCD) is the extreme wide bandgap material that is expected to revolutionize power electronics and radio-frequency electronics in the future. However, turning SCD into useful semiconductors requires overcoming doping challenges, as conventional substitutional doping techniques, such as thermal diffusion and ion implantation, are not easily applicable to SCD. Here we report a simple and easily accessible doping strategy demonstrating that electrically activated, substitutional doping in SCD without inducing graphitization transition or lattice damage can be readily realized with thermal diffusion at relatively low temperatures by using heavily doped Si nanomembranes as a unique dopant carrying medium. Atomistic simulations elucidate a vacancy exchange boron doping mechanism that occurs at the bonded interface between Si and diamond. We further demonstrate selectively doped high voltage diodes and half-wave rectifier circuits using such doped SCD. Our new doping strategy has established a reachable path toward using SCDs for future high voltage power conversion systems and for other novel diamond based electronic devices. The novel doping mechanism may find its critical use in other wide bandgap semiconductors.
Thermal diffusion boron doping of single-crystal natural diamond
International Nuclear Information System (INIS)
Seo, Jung-Hun; Mikael, Solomon; Mi, Hongyi; Venkataramanan, Giri; Ma, Zhenqiang; Wu, Henry; Morgan, Dane; Blanchard, James P.; Zhou, Weidong; Gong, Shaoqin
2016-01-01
With the best overall electronic and thermal properties, single crystal diamond (SCD) is the extreme wide bandgap material that is expected to revolutionize power electronics and radio-frequency electronics in the future. However, turning SCD into useful semiconductors requires overcoming doping challenges, as conventional substitutional doping techniques, such as thermal diffusion and ion implantation, are not easily applicable to SCD. Here we report a simple and easily accessible doping strategy demonstrating that electrically activated, substitutional doping in SCD without inducing graphitization transition or lattice damage can be readily realized with thermal diffusion at relatively low temperatures by using heavily doped Si nanomembranes as a unique dopant carrying medium. Atomistic simulations elucidate a vacancy exchange boron doping mechanism that occurs at the bonded interface between Si and diamond. We further demonstrate selectively doped high voltage diodes and half-wave rectifier circuits using such doped SCD. Our new doping strategy has established a reachable path toward using SCDs for future high voltage power conversion systems and for other novel diamond based electronic devices. The novel doping mechanism may find its critical use in other wide bandgap semiconductors.
Trapped-ion anomalous diffusion coefficient on the basis of single mode saturation
International Nuclear Information System (INIS)
Koshi, Yuji; Hatayama, Akiyoshi; Ogasawara, Masatada.
1982-03-01
Expressions of the anomalous diffusion coefficient due to the dissipative trapped ion instability (DTII) are derived for the case with and without the effect of magnetic shear. Derivation is made by taking into account of the single mode saturation of the DTII previously obtained numerically. In the absence of the shear effect, the diffusion coefficient is proportional to #betta#sub(i)a 2 (#betta#sub(i) is the effective collision frequency of the trapped ions and a is the minor radius of a torus) and is much larger than the neoclassical ion heat conductivity. In the presence of the shear effect, the diffusion coefficient is much smaller than the Kadomtsev and Pogutse's value and is the same order of magnitude as the neoclassical ion heat conductivity. Dependences of the diffusion coefficient on the temperature and on the total particle number density are rather complicated due to the additional spectral cut-off, which is introduced to regularize the short wavelength modes in the numerical analysis. (author)
International Nuclear Information System (INIS)
Lieu, R.; Quenby, J.J.
1990-01-01
Computational and analytical methods have been used in a study of particle acceleration by MHD shocks. Numerical simulations of single-particle trajectories indicate that magnetic moment is conserved quite accurately for an encounter with a near-perpendicular shock, and for all pitch angles except the very small ones. Acceleration is most effective for particles which are reflected by the shock at small pitch angles. If future encounters with the shock are possible, large acceleration will be repeated only for relativistic plasma flow velocities. Results for the pure MHD shock are then considered within the context of a diffusion model (hence a diffusive MHD shock). The microscopic approach is employed whereby one follows the history of a test particle and explicitly takes into account the possibility of reflection by the shock. Exact analytical solutions are currently available to order V/c, where V is the plasma flow speed, and are found to be in complete agreement with diffusion theory. More specifically, the presence of electromagnetic effects leads to a shortening of acceleration time scale but does not change the steady state spectrum of energetic particles. 7 refs
Dissipative particle dynamics of diffusion-NMR requires high Schmidt-numbers
Energy Technology Data Exchange (ETDEWEB)
Azhar, Mueed; Greiner, Andreas [Laboratory for Simulation, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg (Germany); Korvink, Jan G., E-mail: jan.korvink@kit.edu, E-mail: david.kauzlaric@imtek.uni-freiburg.de [Laboratory for Simulation, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg (Germany); Department of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen (Germany); Kauzlarić, David, E-mail: jan.korvink@kit.edu, E-mail: david.kauzlaric@imtek.uni-freiburg.de [Laboratory for Simulation, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg (Germany); Freiburg Institute for Advanced Studies, University of Freiburg, Albertstr. 19, 79104 Freiburg (Germany)
2016-06-28
We present an efficient mesoscale model to simulate the diffusion measurement with nuclear magnetic resonance (NMR). On the level of mesoscopic thermal motion of fluid particles, we couple the Bloch equations with dissipative particle dynamics (DPD). Thereby we establish a physically consistent scaling relation between the diffusion constant measured for DPD-particles and the diffusion constant of a real fluid. The latter is based on a splitting into a centre-of-mass contribution represented by DPD, and an internal contribution which is not resolved in the DPD-level of description. As a consequence, simulating the centre-of-mass contribution with DPD requires high Schmidt numbers. After a verification for fundamental pulse sequences, we apply the NMR-DPD method to NMR diffusion measurements of anisotropic fluids, and of fluids restricted by walls of microfluidic channels. For the latter, the free diffusion and the localisation regime are considered.
Single-particle tracking: applications to membrane dynamics.
Saxton, M J; Jacobson, K
1997-01-01
Measurements of trajectories of individual proteins or lipids in the plasma membrane of cells show a variety of types of motion. Brownian motion is observed, but many of the particles undergo non-Brownian motion, including directed motion, confined motion, and anomalous diffusion. The variety of motion leads to significant effects on the kinetics of reactions among membrane-bound species and requires a revision of existing views of membrane structure and dynamics.
Diffusion-limited reactions of hard-core particles in one dimension
Bares, P.-A.; Mobilia, M.
1999-02-01
We investigate three different methods to tackle the problem of diffusion-limited reactions (annihilation) of hard-core classical particles in one dimension. We first extend an approach devised by Lushnikov [Sov. Phys. JETP 64, 811 (1986)] and calculate for a single species the asymptotic long-time and/or large-distance behavior of the two-point correlation function. Based on a work by Grynberg and Stinchcombe [Phys. Rev. E 50, 957 (1994); Phys. Rev. Lett. 74, 1242 (1995); 76, 851 (1996)], which was developed to treat stochastic adsorption-desorption models, we provide in a second step the exact two-point (one- and two-time) correlation functions of Lushnikov's model. We then propose a formulation of the problem in terms of path integrals for pseudo- fermions. This formalism can be used to advantage in the multispecies case, especially when applying perturbative renormalization group techniques.
Investigation of the diffusion of a massive particle in a one-dimensional ideal gas
International Nuclear Information System (INIS)
Khazin, M.L.
1987-01-01
Numerical methods have been used to investigate the dependence of the diffusion coefficient of a massive particle in a one-dimensional ideal gas on its mass. It is shown that the lower limit for the diffusion coefficient obtained by Sinai and Soloveichick and Szasz and Toth is a greatest lower bound. In addition, application of Pearson's x 2 test showed that the limit distribution of a massive particle is not Gaussian with a high significance level
AlHarbi, Nawaf N. S.; Treagust, David F.; Chandrasegaran, A. L.; Won, Mihye
2015-01-01
This study investigated the understanding of diffusion, osmosis and particle theory of matter concepts among 192 pre-service science teachers in Saudi Arabia using a 17-item two-tier multiple-choice diagnostic test. The data analysis showed that the pre-service teachers' understanding of osmosis and diffusion concepts was mildly correlated with…
Computation of short-time diffusion using the particle simulation method
International Nuclear Information System (INIS)
Janicke, L.
1983-01-01
The method of particle simulation allows a correct description of turbulent diffusion even in areas near the source and the computation of overall average values (anticipated values). The model is suitable for dealing with complex situation. It is derived from the K-model which describes the dispersion of noxious matter using the diffusion formula. (DG) [de
New instrument for tribocharge measurement due to single particle impacts
International Nuclear Information System (INIS)
Watanabe, Hideo; Ghadiri, Mojtaba; Matsuyama, Tatsushi; Ding Yulong; Pitt, Kendal G.
2007-01-01
During particulate solid processing, particle-particle and particle-wall collisions can generate electrostatic charges. This may lead to a variety of problems ranging from fire and explosion hazards to segregation, caking, and blocking. A fundamental understanding of the particle charging in such situations is therefore essential. For this purpose we have developed a new device that can measure charge transfer due to impact between a single particle and a metal plate. The device consists of an impact test system and two sets of Faraday cage and preamplifier for charge measurement. With current amplifiers, high-resolution measurements of particle charges of approximately 1 and 10 fC have been achieved before and after the impact, respectively. The device allows charge measurements of single particles with a size as small as ∼100 μm impacting on the target at different incident angles with a velocity up to about 80 m/s. Further analyses of the charge transfer as a function of particle initial charge define an equilibrium charge, i.e., an initial charge level prior to impact for which no net charge transfer would occur as a result of impact
Theory of the Thermal Diffusion of Microgel Particles in Highly Compressed Suspensions
Sokoloff, Jeffrey; Maloney, Craig; Ciamarra, Massimo; Bi, Dapeng
One amazing property of microgel colloids is the ability of the particles to thermally diffuse, even when they are compressed to a volume well below their swollen state volume, despite the fact that they are surrounded by and pressed against other particles. A glass transition is expected to occur when the colloid is sufficiently compressed for diffusion to cease. It is proposed that the diffusion is due to the ability of the highly compressed particles to change shape with little cost in free energy. It will be shown that most of the free energy required to compress microgel particles is due to osmotic pressure resulting from either counterions or monomers inside of the gel, which depends on the particle's volume. There is still, however, a cost in free energy due to polymer elasticity when particles undergo the distortions necessary for them to move around each other as they diffuse through the compressed colloid, even if it occurs at constant volume. Using a scaling theory based on simple models for the linking of polymers belonging to the microgel particles, we examine the conditions under which the cost in free energy needed for a particle to diffuse is smaller than or comparable to thermal energy, which is a necessary condition for particle diffusion. Based on our scaling theory, we predict that thermally activated diffusion should be possible when the mean number of links along the axis along which a distortion occurs is much larger than N 1 / 5, where Nis the mean number of monomers in a polymer chain connecting two links in the gel.
Spectral diffusion of quasi localized excitons in single silicon nanocrystals
Energy Technology Data Exchange (ETDEWEB)
Martin, Joerg; Cichos, Frank [Centre for nanostructured Materials and Analytics, Institute of Physics, Chemnitz University of Technology, Reichenhainer Street 70, 09107 Chemnitz (Germany); Borczyskowski, Christian von, E-mail: Borczyskowski@physik.tu-chemnitz.de [Centre for nanostructured Materials and Analytics, Institute of Physics, Chemnitz University of Technology, Reichenhainer Street 70, 09107 Chemnitz (Germany)
2012-08-15
Evolution in time of photoluminescence spectra of SiO{sub x} capped single silicon nanocrystals has been investigated by means of confocal optical spectroscopy at room temperature. Large spectral jumps between subsequent spectra of up to 40 meV have been detected leading to noticeable line broadening and variation in the electron-phonon coupling. Further, a correlation between emission energy and emission intensity has been found and discussed in terms of an intrinsic Stark effect. Anti-correlated variations of the electron-phonon coupling to Si and SiO{sub 2} phonons as a function of photoluminescence energy indicate that the nearly localized excition is to some extent coupled to phonons in the shell covering the silicon nanocrystal. However, coupling is reduced upon increasing Stark effect, while at the same time coupling to phonons of the Si core increases. - Highlights: Black-Right-Pointing-Pointer Single silicon nanocrystals are detected via confocal microscopy. Black-Right-Pointing-Pointer Photoluminescence energies fluctuate strongly in time. Black-Right-Pointing-Pointer Spectral fluctuation is described in the form of spectral diffusion. Black-Right-Pointing-Pointer Dynamic processes are strongly controlled by electron-phonon coupling.
International Nuclear Information System (INIS)
Li, Jun; Paul, Manosh C.; Younger, Paul L.; Watson, Ian; Hossain, Mamdud; Welch, Stephen
2015-01-01
Highlights: • High temperature rapid biomass combustion is studied based on single particle model. • Particle size changes in devolatilization and char oxidation models are addressed. • Time scales of various thermal sub-processes are compared and discussed. • Potential solutions are suggested to achieve better biomass co-firing performances. - Abstract: Biomass co-firing is becoming a promising solution to reduce CO 2 emissions, due to its renewability and carbon neutrality. Biomass normally has high moisture and volatile contents, complicating its combustion behavior, which is significantly different from that of coal. A computational fluid dynamics (CFD) combustion model of a single biomass particle is employed to study high-temperature rapid biomass combustion. The two-competing-rate model and kinetics/diffusion model are used to model biomass devolatilization reaction and char burnout process, respectively, in which the apparent kinetics used for those two models were from high temperatures and high heating rates tests. The particle size changes during the devolatilization and char burnout are also considered. The mass loss properties and temperature profile during the biomass devolatilization and combustion processes are predicted; and the timescales of particle heating up, drying, devolatilization, and char burnout are compared and discussed. Finally, the results shed light on the effects of particle size on the combustion behavior of biomass particle
Optimization of magnetic switches for single particle and cell transport
Energy Technology Data Exchange (ETDEWEB)
Abedini-Nassab, Roozbeh; Yellen, Benjamin B., E-mail: yellen@duke.edu [Department of Mechanical Engineering and Materials Science, Duke University, Box 90300 Hudson Hall, Durham, North Carolina 27708 (United States); Joint Institute, University of Michigan—Shanghai Jiao Tong University, Shanghai Jiao Tong University, Shanghai 200240 (China); Murdoch, David M. [Department of Medicine, Duke University, Durham, North Carolina 27708 (United States); Kim, CheolGi [Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873 (Korea, Republic of)
2014-06-28
The ability to manipulate an ensemble of single particles and cells is a key aim of lab-on-a-chip research; however, the control mechanisms must be optimized for minimal power consumption to enable future large-scale implementation. Recently, we demonstrated a matter transport platform, which uses overlaid patterns of magnetic films and metallic current lines to control magnetic particles and magnetic-nanoparticle-labeled cells; however, we have made no prior attempts to optimize the device geometry and power consumption. Here, we provide an optimization analysis of particle-switching devices based on stochastic variation in the particle's size and magnetic content. These results are immediately applicable to the design of robust, multiplexed platforms capable of transporting, sorting, and storing single cells in large arrays with low power and high efficiency.
Parker, L. N.; Zank, G. P.
2013-12-01
Successful forecasting of energetic particle events in space weather models require algorithms for correctly predicting the spectrum of ions accelerated from a background population of charged particles. We present preliminary results from a model that diffusively accelerates particles at multiple shocks. Our basic approach is related to box models (Protheroe and Stanev, 1998; Moraal and Axford, 1983; Ball and Kirk, 1992; Drury et al., 1999) in which a distribution of particles is diffusively accelerated inside the box while simultaneously experiencing decompression through adiabatic expansion and losses from the convection and diffusion of particles outside the box (Melrose and Pope, 1993; Zank et al., 2000). We adiabatically decompress the accelerated particle distribution between each shock by either the method explored in Melrose and Pope (1993) and Pope and Melrose (1994) or by the approach set forth in Zank et al. (2000) where we solve the transport equation by a method analogous to operator splitting. The second method incorporates the additional loss terms of convection and diffusion and allows for the use of a variable time between shocks. We use a maximum injection energy (Emax) appropriate for quasi-parallel and quasi-perpendicular shocks (Zank et al., 2000, 2006; Dosch and Shalchi, 2010) and provide a preliminary application of the diffusive acceleration of particles by multiple shocks with frequencies appropriate for solar maximum (i.e., a non-Markovian process).
Evolution of single-particle structure of silicon isotopes
Bespalova, O. V.; Fedorov, N. A.; Klimochkina, A. A.; Markova, M. L.; Spasskaya, T. I.; Tretyakova, T. Yu.
2018-01-01
New data on proton and neutron single-particle energies E_{nlj} of Si isotopes with neutron number N from 12 to 28 as well as occupation probabilities N_{nlj} of single-particle states of stable isotopes 28, 30Si near the Fermi energy were obtained by the joint evaluation of the stripping and pick-up reaction data and excited state decay schemes of neighboring nuclei. The evaluated data indicate the following features of single-particle structure evolution: persistence of Z = 14 subshell closure with N increase, the new magicity of the number N = 16, and the conservation of the magic properties of the number N = 20 in Si isotopic chain. The features were described by the dispersive optical model. The calculation also predicts the weakening of N = 28 shell closure and demonstrates evolution of a bubble-like structure of the proton density distributions in neutron-rich Si isotopes.
Evolution of single-particle structure of silicon isotopes
Energy Technology Data Exchange (ETDEWEB)
Bespalova, O.V.; Klimochkina, A.A.; Spasskaya, T.I.; Tretyakova, T.Yu. [Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); Fedorov, N.A.; Markova, M.L. [Lomonosov Moscow State University, Faculty of Physics, Moscow (Russian Federation)
2018-01-15
New data on proton and neutron single-particle energies E{sub nlj} of Si isotopes with neutron number N from 12 to 28 as well as occupation probabilities N{sub nlj} of single-particle states of stable isotopes {sup 28,30}Si near the Fermi energy were obtained by the joint evaluation of the stripping and pick-up reaction data and excited state decay schemes of neighboring nuclei. The evaluated data indicate the following features of single-particle structure evolution: persistence of Z = 14 subshell closure with N increase, the new magicity of the number N = 16, and the conservation of the magic properties of the number N = 20 in Si isotopic chain. The features were described by the dispersive optical model. The calculation also predicts the weakening of N = 28 shell closure and demonstrates evolution of a bubble-like structure of the proton density distributions in neutron-rich Si isotopes. (orig.)
Fractal behavior of single-particle trajectories and isosets in isotropic and anisotropic fluids
International Nuclear Information System (INIS)
Kalia, R.K.; Vashishta, P.; de Leeuw, S.W.
1985-08-01
Molecular dynamics simulations for a variety of systems in 2 spatial dimensions reveal fractual behavior associated with trajectories and isosets of single particle motion. The fractual dimensions of trajectories and isosets are 2 and 0.5, respectively, irrespective of the nature of the interparticle interaction or thermodynamic state of the system. Recently, we have investigated the fractual behavior of diffusing Ag ions in the superionic phase of Ag 2 S. MD calculations have shown that the Ag ions diffuse anisotropically along certain directions in the lattice of S particles. Fractual dimensions D and anti D for Ag ions are again 2 and 0.5, respectively. These results confirm the universal nature of fractual dimensions of trails and isosets
Irradiation of single cells with individual high-LET particles
International Nuclear Information System (INIS)
Nelson, J.M.; Braby, L.A.
1993-01-01
The dose-limiting normal tissue of concern when irradiating head and neck lesions is often the vascular endothelium within the treatment field. Consequently, the response of capillary endothelial cells exposed to moderate doses of high LET particles is essential for establishing exposure limits for neutron-capture therapy. In an effort to characterize the high-LET radiation biology of cultured endothelial cells, the authors are attempting to measure cellular response to single particles. The single-particle irradiation apparatus, described below, allows them to expose individual cells to known numbers of high-LET particles and follow these cells for extended periods, in order to assess the impact of individual particles on cell growth kinetics. Preliminary cell irradiation experiments have revealed complications related to the smooth and efficient operation of the equipment; these are being resolved. Therefore, the following paragraphs deal primarily with the manner by which high LET particles deposit energy, the requirements for single-cell irradiation, construction and assembly of such apparatus, and testing of experimental procedures, rather than with the radiation biology of endothelial cells
Single-particle states vs. collective modes: friends or enemies ?
Otsuka, T.; Tsunoda, Y.; Togashi, T.; Shimizu, N.; Abe, T.
2018-05-01
The quantum self-organization is introduced as one of the major underlying mechanisms of the quantum many-body systems. In the case of atomic nuclei as an example, two types of the motion of nucleons, single-particle states and collective modes, dominate the structure of the nucleus. The collective mode arises as the balance between the effect of the mode-driving force (e.g., quadrupole force for the ellipsoidal deformation) and the resistance power against it. The single-particle energies are one of the sources to produce such resistance power: a coherent collective motion is more hindered by larger spacings between relevant single particle states. Thus, the single-particle state and the collective mode are "enemies" against each other. However, the nuclear forces are rich enough so as to enhance relevant collective mode by reducing the resistance power by changing single-particle energies for each eigenstate through monopole interactions. This will be verified with the concrete example taken from Zr isotopes. Thus, the quantum self-organization occurs: single-particle energies can be self-organized by (i) two quantum liquids, e.g., protons and neutrons, (ii) monopole interaction (to control resistance). In other words, atomic nuclei are not necessarily like simple rigid vases containing almost free nucleons, in contrast to the naïve Fermi liquid picture. Type II shell evolution is considered to be a simple visible case involving excitations across a (sub)magic gap. The quantum self-organization becomes more important in heavier nuclei where the number of active orbits and the number of active nucleons are larger.
Particle deposition due to turbulent diffusion in the upper respiratory system
Hamill, P.
1979-01-01
Aerosol deposition in the upper respiratory system (trachea to segmental bronchi) is considered and the importance of turbulent diffusion as a deposition mechanism is evaluated. It is demonstrated that for large particles (diameter greater than about 5 microns), turbulent diffusion is the dominant deposition mechanism in the trachea. Conditions under which turbulent diffusion may be important in successive generations of the pulmonary system are determined. The probability of particle deposition is compared with probabilities of deposition, as determined by the equations generally used in regional deposition models. The analysis is theoretical; no new experimental data is presented.
Effect of Turbulence Internal Structure on Diffusion of Heavy Inertial Particles
Directory of Open Access Journals (Sweden)
I. V. Derevich
2015-01-01
Full Text Available Based on the spectral expansion of Euler correlation of the carrier medium the a closed system of functional equations for the Lagrange spectra of heavy inertial particles and the velocity fluctuations of the carrier medium on the particle trajectory have been obtained. To split the fourth moments the approximation of quasinormality and velocity fluctuations of particles is performed by a random Gaussian process. The approximate self-consistent method is proposed for solving the resulting system of functional equations. The influence of the particle inertia, the velocity of the averaged slip and microstructure of velocity fluctuations of the medium on the parameters of the chaotic motion of an impurity has been studied. It is shown that the difference in integral time scales of Eulerian and Lagrangian correlations is associated with the spatial microstructure of velocity fluctuations of the medium. It is established that in the absence of mass forces, the coefficient of the stationary diffusion of inertial particles is always greater than the diffusion coefficient of inertialess impurity. The dependence of the turbulent diffusion coefficient of particles impurity on the structural parameter of turbulence has been illustrated. The spectrum of Euler correlations of medium velocity fluctuations is modeled by Karman distributions. The influence of the particle inertia, the velocity of the averaged slip and microstructure of velocity fluctuations of the medium on the parameters of the chaotic motion of an impurity has been studied. It is shown that the difference in integral time scales of Eulerian and Lagrangian correlations is associated with the spatial microstructure of velocity fluctuations of the medium. It is established that in the absence of mass forces, the coefficient of the stationary diffusion of inertial particles is always larger than the diffusion coefficient of inertialess impurity. The dependence of the turbulent diffusion
Single particle analysis with a 3600 light scattering photometer
International Nuclear Information System (INIS)
Bartholdi, M.F.
1979-06-01
Light scattering by single spherical homogeneous particles in the diameter range 1 to 20 μm and relative refractive index 1.20 is measured. Particle size of narrowly dispersed populations is determined and a multi-modal dispersion of five components is completely analyzed. A 360 0 light scattering photometer for analysis of single particles has been designed and developed. A fluid stream containing single particles intersects a focused laser beam at the primary focal point of an ellipsoidal reflector ring. The light scattered at angles theta = 2.5 0 to 177.5 0 at phi = 0 0 and 180 0 is reflected onto a circular array of photodiodes. The ellipsoidal reflector is situated in a chamber filled with fluid matching that of the stream to minimize refracting and reflecting interfaces. The detector array consists of 60 photodiodes each subtending 3 0 in scattering angle on 6 0 centers around 360 0 . 32 measurements on individual particles can be acquired at rates of 500 particles per second. The intensity and angular distribution of light scattered by spherical particles are indicative of size and relative refractive index. Calculations, using Lorenz--Mie theory, of differential scattering patterns integrated over angle corresponding to the detector geometry determined the instrument response to particle size. From this the expected resolution and experimental procedures are determined.Ultimately, the photometer will be utilized for identification and discrimination of biological cells based on the sensitivity of light scattering to size, shape, refractive index differences, internal granularity, and other internal morphology. This study has demonstrated the utility of the photometer and indicates potential for application to light scattering studies of biological cells
Emissions from Ethanol-Gasoline Blends: A Single Particle Perspective
Directory of Open Access Journals (Sweden)
Peter H. McMurry
2011-06-01
Full Text Available Due to its agricultural origin and function as a fuel oxygenate, ethanol is being promoted as an alternative biomass-based fuel for use in spark ignition engines, with mandates for its use at state and regional levels. While it has been established that the addition of ethanol to a fuel reduces the particulate mass concentration in the exhaust, little attention has been paid to changes in the physicochemical properties of the emitted particles. In this work, a dynamometer-mounted GM Quad-4 spark ignition engine run without aftertreatment at 1,500 RPM and 100% load was used with four different fuel blends, containing 0, 20, 40 and 85 percent ethanol in gasoline. This allowed the effects of the fuel composition to be isolated from other effects. Instrumentation employed included two Aerosol Time-of-Flight Mass Spectrometers covering different size ranges for analysis of single particle composition, an Aethalometer for black carbon, a Scanning Mobility Particle Sizer for particle size distributions, a Photoelectric Aerosol Sensor for particle-bound polycyclic aromatic hydrocarbon (PAH species and gravimetric filter measurements for particulate mass concentrations. It was found that, under the conditions investigated here, additional ethanol content in the fuel changes the particle size distribution, especially in the accumulation mode, and decreases the black carbon and total particulate mass concentrations. The molecular weight distribution of the PAHs was found to decrease with added ethanol. However, PAHs produced from higher ethanol-content fuels are associated with NO2− (m/z—46 in the single-particle mass spectra, indicating the presence of nitro-PAHs. Compounds associated with the gasoline (e.g., sulfur-containing species are diminished due to dilution as ethanol is added to the fuel relative to those associated with the lubricating oil (e.g., calcium, zinc, phosphate in the single particle spectra. These changes have potential
Single-particle characterization of the High Arctic summertime aerosol
Sierau, B.; Chang, R. Y.-W.; Leck, C.; Paatero, J.; Lohmann, U.
2014-01-01
Single-particle mass spectrometric measurements were carried out in the High Arctic north of 80° during summer 2008. The campaign took place onboard the icebreaker Oden and was part of the Arctic Summer Cloud Ocean Study (ASCOS). The instrument deployed was an Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) that provides information on the chemical composition of individual particles and their mixing state in real-time. Aerosols were sampled in the marine boundary layer at stations in the open ocean, in the marginal ice zone, and in the pack ice region. The largest fraction of particles detected for subsequent analysis in the size range of the ATOFMS between approximately 200 nm to 3000 nm in diameter showed mass spectrometric patterns indicating an internal mixing state and a biomass burning and/or biofuel source. The majority of these particles were connected to an air mass layer of elevated particle concentration mixed into the surface mixed layer from the upper part of the marine boundary layer. The second largest fraction was represented by sea salt particles. The chemical analysis of the over-ice sea salt aerosol revealed tracer compounds that reflect chemical aging of the particles during their long-range advection from the marginal ice zone, or open waters south thereof prior to detection at the ship. From our findings we conclude that long-range transport of particles is one source of aerosols in the High Arctic. To assess the importance of long-range particle sources for aerosol-cloud interactions over the inner Arctic in comparison to local and regional biogenic primary aerosol sources, the chemical composition of the detected particles was analyzed for indicators of marine biological origin. Only a~minor fraction showed chemical signatures of potentially ocean-derived primary particles of that kind. However, a chemical bias in the ATOFMS's detection capabilities observed during ASCOS might suggest a presence of a particle type of unknown composition
Flexible single molecule simulation of reaction-diffusion processes
International Nuclear Information System (INIS)
Hellander, Stefan; Loetstedt, Per
2011-01-01
An algorithm is developed for simulation of the motion and reactions of single molecules at a microscopic level. The molecules diffuse in a solvent and react with each other or a polymer and molecules can dissociate. Such simulations are of interest e.g. in molecular biology. The algorithm is similar to the Green's function reaction dynamics (GFRD) algorithm by van Zon and ten Wolde where longer time steps can be taken by computing the probability density functions (PDFs) and then sample from the distribution functions. Our computation of the PDFs is much less complicated than GFRD and more flexible. The solution of the partial differential equation for the PDF is split into two steps to simplify the calculations. The sampling is without splitting error in two of the coordinate directions for a pair of molecules and a molecule-polymer interaction and is approximate in the third direction. The PDF is obtained either from an analytical solution or a numerical discretization. The errors due to the operator splitting, the partitioning of the system, and the numerical approximations are analyzed. The method is applied to three different systems involving up to four reactions. Comparisons with other mesoscopic and macroscopic models show excellent agreement.
Particle diffusion from resonance islands in Aladdin at SRC
International Nuclear Information System (INIS)
Liu, J.; Crosbie, E.; Teng, L.; Bridges, J.; Ciarlette, D.; Kustom, R.; Voss, D.; Mills, F.; Borland, M.; Symon, K.
1993-01-01
The dynamics of the beam in the resonance islands was studied on the electron storage ring Aladdin at the Synchrotron Radiation Center (SRC). The authors especially studied the horizontal third- and fourth-integral resonances driven by sextupole fields in the first and second order. A fast kicker was fired to kick the beam into one of the outboard stable islands. The beam took on a quasi-Gaussian distribution and slowly diffused out of the island. The diffusion rate and its dependence on the strengths of the driving sextupoles and the chromaticity sextupoles were measured by tracing the resonance peak of the betatron oscillation on the spectrum analyzer. Beam positions were also recorded through the data acquisition device which was locked by a pulse-delay circuitry. Interesting results are shown and compared with numerical calculations
Particle diffusion from resonance islands in Aladdin at SRC
International Nuclear Information System (INIS)
Liu, J.; Crosbie, E.; Teng, L.; Bridges, J.; Ciarlette, D.; Kustom, R.; Voss, D.; Mills, F.; Borland, M.; Symon, K.
1993-01-01
The dynamics of the beam in the resonance islands was studied on the electron storage ring Aladdin at the Synchrotron Radiation Center (SRC). The authors especially studied the horizontal third- and fourth-integral resonances driven by sextupole fields in the first and second order. A fast kicker was fired to kick the beam into one of the outboard stable islands. The beam took on a quasi-Gaussian distribution and slowly diffused out of the island. The diffusion rate and its dependence on the strengths of the driving sextupoles and the chromaticity sextupoles were measured by tracing the resonance peak of the betatron oscillation on the spectrum analyzer. Beam positions were also recorded through the data acquisition device which was clocked by a pulse-delay circuitry. Interesting results are shown and compared with numerical calculations
Burnout of pulverized biomass particles in large scale boiler - Single particle model approach
Energy Technology Data Exchange (ETDEWEB)
Saastamoinen, Jaakko; Aho, Martti; Moilanen, Antero [VTT Technical Research Centre of Finland, Box 1603, 40101 Jyvaeskylae (Finland); Soerensen, Lasse Holst [ReaTech/ReAddit, Frederiksborgsveij 399, Niels Bohr, DK-4000 Roskilde (Denmark); Clausen, Soennik [Risoe National Laboratory, DK-4000 Roskilde (Denmark); Berg, Mogens [ENERGI E2 A/S, A.C. Meyers Vaenge 9, DK-2450 Copenhagen SV (Denmark)
2010-05-15
Burning of coal and biomass particles are studied and compared by measurements in an entrained flow reactor and by modelling. The results are applied to study the burning of pulverized biomass in a large scale utility boiler originally planned for coal. A simplified single particle approach, where the particle combustion model is coupled with one-dimensional equation of motion of the particle, is applied for the calculation of the burnout in the boiler. The particle size of biomass can be much larger than that of coal to reach complete burnout due to lower density and greater reactivity. The burner location and the trajectories of the particles might be optimised to maximise the residence time and burnout. (author)
Single Molecule Raman Detection of Enkephalin on Silver Colloidal Particles
DEFF Research Database (Denmark)
Kneipp, Katrin; Kneipp, Holger; Abdali, Salim
2004-01-01
the Raman signal the enkephalin molecules have been attached to silver colloidal cluster structures. The experiments demonstrate that the SERS signal of the strongly enhanced ring breathing vibration of phenylalanine at 1000 cm-1 can be used as “intrinsic marker” for detecting a single enkephalin molecule...... and for monitoring its diffusion on the surface of the silver colloidal cluster without using a specific label molecule....
Single-particle spectral density of the Hubbard model
Mehlig, B.; Eskes, H.; Hayn, R.; Meinders, M.B.J.
1995-01-01
We calculate the single-particle spectral function for the Hubbard model within the framework of a projection technique equivalent to the two-pole approximation. We show that the two-pole approximation can be well understood as an average characterization of the upper and the lower Hubbard bands,
SINGLE-PARTICLE SPECTRAL DENSITY OF THE HUBBARD-MODEL
MEHLIG, B; ESKES, H; HAYN, R; MEINDERS, MBJ
1995-01-01
We calculate the single-particle spectral function for the Hubbard model within the framework of a projection technique equivalent to the two-pole approximation. We show that the two-pole approximation can be well understood as an average characterization of the upper and the lower Hubbard bands,
Single-particle behaviour in circulating fluidized beds
DEFF Research Database (Denmark)
Erik Weinell, Claus; Dam-Johansen, Kim; Johnsson, Jan Erik
1997-01-01
This paper describes an experimental investigation of single-particle behaviour in a cold pilot-scale model of a circulating fluidized bed combustor (CFBC). In the system, sand is recirculated by means of air. Pressure measurements along the riser are used to determine the suspension density...
Statistical Methods for Single-Particle Electron Cryomicroscopy
DEFF Research Database (Denmark)
Jensen, Katrine Hommelhoff
Electron cryomicroscopy (cryo-EM) is a form of transmission electron microscopy, aimed at reconstructing the 3D structure of a macromolecular complex from a large set of 2D projection images, as they exhibit a very low signal-to-noise ratio (SNR). In the single-particle reconstruction (SPR) probl...
Decay properties of high-lying single-particles modes
Beaumel, D; Fortier, S; Gales, S; Guillot, J; LangevinJoliot, H; Laurent, H; Maison, JM; Vernotte, J; Bordewijck, J; Brandenburg, S; Krasznahorkay, A; Crawley, GM; Massolo, CP; Renteria, M; Khendriche, A
1996-01-01
The neutron decay of high-lying single-particle states in Ni-64, Zr-90, Sn-120 and (208)pb excited by means of the (alpha,He-3) reaction has been investigated at 120 MeV incident energy using the multidetector EDEN. The characteristics of this reaction are studied using inclusive spectra and angular
Single particle behaviour in circulating fluidized bed combustors
DEFF Research Database (Denmark)
Erik Weinell, Claus
1994-01-01
An investigation of single particle behaviour in a circulating fluidized bed combustor is described, relating to sulphur capture reactions by limestone under alternate oxidizing and reducing conditions present in a circulating fluidized bed combustor, and to the devolatilization and burn out...
Ergodicity of a single particle confined in a nanopore
DEFF Research Database (Denmark)
Bernardi, S.; Hansen, Jesper Schmidt; Frascolli, F.
2012-01-01
-ergodic component of the phase space for energy levels typical of experiments, is surprisingly small, i.e. we conclude that the ergodic hypothesis is a reasonable approximation even for a single particle trapped in a nanopore. Due to the numerical scope of this work, our focus will be the onset of ergodic behavior...
Single-particle properties from Kohn-Sham Green's functions
International Nuclear Information System (INIS)
Bhattacharyya, Anirban; Furnstahl, R.J.
2005-01-01
An effective action approach to Kohn-Sham density functional theory is used to illustrate how the exact Green's function can be calculated in terms of the Kohn-Sham Green's function. An example based on Skyrme energy functionals shows that single-particle Kohn-Sham spectra can be improved by adding sources used to construct the energy functional
A multi-parametric particle-pairing algorithm for particle tracking in single and multiphase flows
International Nuclear Information System (INIS)
Cardwell, Nicholas D; Vlachos, Pavlos P; Thole, Karen A
2011-01-01
Multiphase flows (MPFs) offer a rich area of fundamental study with many practical applications. Examples of such flows range from the ingestion of foreign particulates in gas turbines to transport of particles within the human body. Experimental investigation of MPFs, however, is challenging, and requires techniques that simultaneously resolve both the carrier and discrete phases present in the flowfield. This paper presents a new multi-parametric particle-pairing algorithm for particle tracking velocimetry (MP3-PTV) in MPFs. MP3-PTV improves upon previous particle tracking algorithms by employing a novel variable pair-matching algorithm which utilizes displacement preconditioning in combination with estimated particle size and intensity to more effectively and accurately match particle pairs between successive images. To improve the method's efficiency, a new particle identification and segmentation routine was also developed. Validation of the new method was initially performed on two artificial data sets: a traditional single-phase flow published by the Visualization Society of Japan (VSJ) and an in-house generated MPF data set having a bi-modal distribution of particles diameters. Metrics of the measurement yield, reliability and overall tracking efficiency were used for method comparison. On the VSJ data set, the newly presented segmentation routine delivered a twofold improvement in identifying particles when compared to other published methods. For the simulated MPF data set, measurement efficiency of the carrier phases improved from 9% to 41% for MP3-PTV as compared to a traditional hybrid PTV. When employed on experimental data of a gas–solid flow, the MP3-PTV effectively identified the two particle populations and reported a vector efficiency and velocity measurement error comparable to measurements for the single-phase flow images. Simultaneous measurement of the dispersed particle and the carrier flowfield velocities allowed for the calculation of
International Nuclear Information System (INIS)
Sato, Haruo
2001-01-01
A program (TDROCK1. FOR) for simulation and analysis of through-diffusion experiments for a single layer of diffusion media was developed. This program was made by Pro-Fortran language, which was suitable for scientific and technical calculations, and relatively easy explicit difference method was adopted for an analysis. In the analysis, solute concentration in the tracer cell as a function of time that we could not treat to date can be input and the decrease in the solute concentration as a function of time by diffusion from the tracer cell to the measurement cell, the solute concentration distribution in the porewater of diffusion media and the solute concentration in the measurement cell as a function of time can be calculated. In addition, solution volume in both cells and diameter and thickness of the diffusion media are also variable as an input condition. This simulation program could well explain measured result by simulating solute concentration in the measurement cell as a function of time for case which apparent and effective diffusion coefficients were already known. Based on this, the availability and applicability of this program to actual analysis and simulation were confirmed. This report describes the theoretical treatment for the through-diffusion experiments for a single layer of diffusion media, analytical model, an example of source program and the manual. (author)
Study on the fragmentation of granite due to the impact of single particle and double particles
Directory of Open Access Journals (Sweden)
Yuchun Kuang
2016-09-01
Full Text Available Particle Impact Drilling (PID is a novel method to improve the rate of penetration (ROP. In order to further improve the performance of PID, an investigation into the effect of single and double particles: (1 diameter; (2 initial velocity; (3 distance; and (4 angle of incidence was undertaken to investigate their effects on broken volume and penetration depth into hard brittle rock. For this purpose, the laboratory experiment of single particle impact rock was employed. Meanwhile, based on the LS-DYNA, a new finite element (FE simulation of the PID, including single and double particles impact rock, has been presented. The 3-dimensional (3D, aix-symmetric, dynamic-explicit, Lagrangian model has been considered in this simulation. And the Elastic and Holmquist Johnson Cook (HJC material behaviors have been used for particles and rocks, respectively. The FE simulation results of single particle impacting rock are good agreement with experimental data. Furthermore, in this article the optimal impact parameters, including diameter, initial velocity, distance and the angle of incidence, are obtained in PID.
International Nuclear Information System (INIS)
Gavryushenko, D.A.; Sisojev, V.M.; Cherevko, K.V.; Vlasenko, T.S.
2017-01-01
The work is devoted to the up to date problem that is the description of the radioactive particle diffusion processes. One of the aims of the present study is to estimate the effects caused by the irradiation of the liquid systems on the ongoing transport processes. That can allow predicting the behavior of the liquid systems in the presence of the radioactive sources. The main objective of the present work is studying the radioactive particles diffusion phenomena with the possible facilitated diffusion processes being considered. The phenomena are studied based on the fundamental relations of the nonequilibrium statistical thermodynamics. The diffusive flows are evaluated with the special attention given to the accounting of the entropy effects due to the appearance of the new radioactive particles in the system. The developed approach is used to estimate the diffusive flow of the radioactive particles for the case of the plane-parallel pore with the semi-transparent walls. The choice of a model can be justified as it might be used to describe the production of the radioactive contaminated water when the radionuclide face the diffusion process after being washed from the radioactive wastes and the rests of the nuclear fuel. Within the suggested model it is shown that the diffusion coefficient depends on the structural properties of the liquid systems that might be changed under the influence of the irradiation. The obtained equations for calculating the diffusive flows show the definite stabilizing effect in respect to the concentration difference in between the boundaries of the plane-parallel pore. It leads to the decreased changes of the diffusive flow when the concentrations of the radioactive particles at the boundaries are changed in comparison with those observed for the constant diffusion coefficient. The observed behavior for the ideal solution model is explained by the entropy effects. The qualitative analysis of the possible influence of the changes in
Reconstructing an icosahedral virus from single-particle diffraction experiments
Saldin, D. K.; Poon, H.-C.; Schwander, P.; Uddin, M.; Schmidt, M.
2011-08-01
The first experimental data from single-particle scattering experiments from free electron lasers (FELs) are now becoming available. The first such experiments are being performed on relatively large objects such as viruses, which produce relatively low-resolution, low-noise diffraction patterns in so-called ``diffract-and-destroy'' experiments. We describe a very simple test on the angular correlations of measured diffraction data to determine if the scattering is from an icosahedral particle. If this is confirmed, the efficient algorithm proposed can then combine diffraction data from multiple shots of particles in random unknown orientations to generate a full 3D image of the icosahedral particle. We demonstrate this with a simulation for the satellite tobacco necrosis virus (STNV), the atomic coordinates of whose asymmetric unit is given in Protein Data Bank entry 2BUK.
A transient single particle model under FCI conditions
Institute of Scientific and Technical Information of China (English)
LI Xiao-Yan; SHANG Zhi; XU Ji-Jun
2005-01-01
The paper is focused on the coupling effect between film boiling heat transfer and evaporation drag around a hot-particle in cold liquid. Based on the continuity, momentum and energy equations of the vapor film, a transient two-dimensional single particle model has been established. This paper contains a detailed description of HPMC (High-temperature Particle Moving in Coolant) model for studying some aspects of the premixing stage of fuel-coolant interactions (FCIs). The transient process of high-temperature particles moving in coolant can be simulated. Comparisons between the experiment results and the calculations using HPMC model demonstrate that HPMC model achieves a good agreement in predicting the time-varying characteristic of high-temperature spheres moving in coolant.
Single molecule diffusion and the solution of the spherically symmetric residence time equation.
Agmon, Noam
2011-06-16
The residence time of a single dye molecule diffusing within a laser spot is propotional to the total number of photons emitted by it. With this application in mind, we solve the spherically symmetric "residence time equation" (RTE) to obtain the solution for the Laplace transform of the mean residence time (MRT) within a d-dimensional ball, as a function of the initial location of the particle and the observation time. The solutions for initial conditions of potential experimental interest, starting in the center, on the surface or uniformly within the ball, are explicitly presented. Special cases for dimensions 1, 2, and 3 are obtained, which can be Laplace inverted analytically for d = 1 and 3. In addition, the analytic short- and long-time asymptotic behaviors of the MRT are derived and compared with the exact solutions for d = 1, 2, and 3. As a demonstration of the simplification afforded by the RTE, the Appendix obtains the residence time distribution by solving the Feynman-Kac equation, from which the MRT is obtained by differentiation. Single-molecule diffusion experiments could be devised to test the results for the MRT presented in this work. © 2011 American Chemical Society
Bacon, Neil Julian
2001-12-01
I describe experiments to investigate the properties of microscopic ice particles. The goal of the work was to measure parameters that are important in cloud processes and radiative transfer, using a novel technique that avoids the use of substrates. The experiments were conducted in two separate electrodynamic balance chambers. Single, charged ice particles were formed from frost particles or from droplets frozen either homogeneously or heteroge neously with a bionucleant. The particles were trapped at temperatures between -38°C and -4°C and grown or sublimated according to the temperature gradient in the cham ber. I describe observations of breakup of sublimating frost particles, measurements of light scattering by hexagonal crystals, and observations of the morphology of ice particles grown from frozen water droplets and frost particles. The breaking strength of frost particles was an order of magnitude less than that of bulk ice. Light scattering features not previously observed were analyzed and related to crystal dimension. Initial results from a computer model failed to reproduce these features. The widths of scattering peaks suggest that surface roughness may play a role in determining the angular distribution of scattered light. Ice particle mass evolution was found to be consistent with diffusion- limited growth. Crystals grown slowly from frozen droplets adopted isometric habits, while faster growth resulted in thin side-planes, although there was not an exact correspondence between growth conditions and particle morphology. From the morphological transition, I infer lower limits for the critical supersaturation for layer nucleation on the prism face of 2.4% at -15°C, 4.4% at -20°C, and 3.1% at -25°C. Analytic expressions for the size dependence of facet stability are developed, indicating a strong dependence of stability on both crystal size and surface kinetics, and compared with data. I discuss the role of complex particle morphologies in
Two-Way Communication with a Single Quantum Particle
Del Santo, Flavio; Dakić, Borivoje
2018-02-01
In this Letter we show that communication when restricted to a single information carrier (i.e., single particle) and finite speed of propagation is fundamentally limited for classical systems. On the other hand, quantum systems can surpass this limitation. We show that communication bounded to the exchange of a single quantum particle (in superposition of different spatial locations) can result in "two-way signaling," which is impossible in classical physics. We quantify the discrepancy between classical and quantum scenarios by the probability of winning a game played by distant players. We generalize our result to an arbitrary number of parties and we show that the probability of success is asymptotically decreasing to zero as the number of parties grows, for all classical strategies. In contrast, quantum strategy allows players to win the game with certainty.
Particle pitch angle diffusion due to nonadiabatic effects in the plasma sheet
International Nuclear Information System (INIS)
Gray, P.C.; Lee, L.C.
1982-01-01
In order to understand certain aspects of the plasma sheet dynamics, a numerical study of the nonadiabatic behavior of particles in a model field geometry is performed. The particle's magnetic moment as a function of time is calculated for various initial parameters, corresponding to various particle energies and degrees of field curvature. It is shown that the magnetic moment changes as the particle passes through the plasma sheet and that the magnitude of the change is related to the curvature of the field at the middle of the plasma sheet. The relation of the magnitude of the change in magnetic moment to the particle's pitch and phase angles as it passes through the sheet is numerically resolved. The nature of the change may be considered as a mechanism for pitch angle diffusion, and the diffusion coefficient is calculated. This scattering mechanism is significant for plasma sheet ions (1--10 keV) as well as energetic electrons (>100 keV)
Calculation of ternary interdiffusion coefficients using a single diffusion couple
Czech Academy of Sciences Publication Activity Database
Čermák, Jiří; Rothová, Věra
2016-01-01
Roč. 54, č. 5 (2016), s. 305-314 ISSN 0023-432X R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : diffusion * interdiffusion * ternary alloys * ternary diffusion coefficients Subject RIV: BJ - Thermodynamics Impact factor: 0.366, year: 2016
Kang, Sunni; Hwang, HeeJin; Park, YooMyung; Kim, HyeKyoung; Ro, Chul-Un
2008-12-15
A novel single particle analytical technique, low-Z particle electron probe X-ray microanalysis, was applied to characterize seasonal subway samples collected at a subway station in Seoul, Korea. For all 8 samples collected twice in each season, 4 major types of subway particles, based on their chemical compositions, are significantly encountered: Fe-containing; soil-derived; carbonaceous; and secondary nitrate and/or sulfate particles. Fe-containing particles are generated indoors from wear processes at rail-wheel-brake interfaces while the others may be introduced mostly from the outdoor urban atmosphere. Fe-containing particles are the most frequently encountered with relative abundances in the range of 61-79%. In this study, it is shown that Fe-containing subway particles almost always exist either as partially or fully oxidized forms in underground subway microenvironments. Their relative abundances of Fe-containing particles increase as particle sizes decrease. Relative abundances of Fe-containing particles are higher in morning samples than in afternoon samples because of heavier train traffic in the morning. In the summertime samples, Fe-containing particles are the most abundantly encountered, whereas soil-derived and nitrate/sulfate particles are the least encountered, indicating the air-exchange between indoor and outdoor environments is limited in the summer, owing to the air-conditioning in the subway system. In our work, it was observed that the relative abundances of the particles of outdoor origin vary somewhat among seasonal samples to a lesser degree, reflecting that indoor emission sources predominate.
New diffusion imaging method with a single acquisition sequence
International Nuclear Information System (INIS)
Melki, Ph.S.; Bittoun, J.; Lefevre, J.E.
1987-01-01
The apparent diffusion coefficient (ADC) is related to the molecular diffusion coefficient and to physiologic information: microcirculation in the capillary network, incoherent slow flow, and restricted diffusion. The authors present a new MR imaging sequence that yields computed ADC images in only one acquisition of 9-minutes with a 1.5-T imager (GE Signa). Compared to the previous method, this sequence is at least two times faster and thus can be used as a routine examination to supplement T1-, T2-, and density-weighted images. The method was assessed by measurement of the molecular diffusion in liquids, and the first clinical images obtained in neurologic diseases demonstrate its efficiency for clinical investigation. The possibility of separately imaging diffusion and perfusion is supported by an algorithm
Dust particle diffusion in ion beam transport region
Energy Technology Data Exchange (ETDEWEB)
Miyamoto, N.; Okajima, Y.; Romero, C. F.; Kuwata, Y.; Kasuya, T.; Wada, M., E-mail: mwada@mail.doshisha.ac.jp [Graduate school of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321 (Japan)
2016-02-15
Dust particles of μm size produced by a monoplasmatron ion source are observed by a laser light scattering. The scattered light signal from an incident laser at 532 nm wavelength indicates when and where a particle passes through the ion beam transport region. As the result, dusts with the size more than 10 μm are found to be distributed in the center of the ion beam, while dusts with the size less than 10 μm size are distributed along the edge of the ion beam. Floating potential and electron temperature at beam transport region are measured by an electrostatic probe. This observation can be explained by a charge up model of the dust in the plasma boundary region.
Limiting diffusion current at rotating disk electrode with dense particle layer.
Weroński, P; Nosek, M; Batys, P
2013-09-28
Exploiting the concept of diffusion permeability of multilayer gel membrane and porous multilayer we have derived a simple analytical equation for the limiting diffusion current at rotating disk electrode (RDE) covered by a thin layer with variable tortuosity and porosity, under the assumption of negligible convection in the porous film. The variation of limiting diffusion current with the porosity and tortuosity of the film can be described in terms of the equivalent thickness of stagnant solution layer, i.e., the average ratio of squared tortuosity to porosity. In case of monolayer of monodisperse spherical particles, the equivalent layer thickness is an algebraic function of the surface coverage. Thus, by means of cyclic voltammetry of RDE with a deposited particle monolayer we can determine the monolayer surface coverage. The effect of particle layer adsorbed on the surface of RDE increases non-linearly with surface coverage. We have tested our theoretical results experimentally by means of cyclic voltammetry measurements of limiting diffusion current at the glassy carbon RDE covered with a monolayer of 3 μm silica particles. The theoretical and experimental results are in a good agreement at the surface coverage higher than 0.7. This result suggests that convection in a monolayer of 3 μm monodisperse spherical particles is negligibly small, in the context of the coverage determination, in the range of very dense particle layers.
Measurement of the local particle diffusion coefficient in a magnetized plasma
International Nuclear Information System (INIS)
Meyerhofer, D.D.; Levinton, F.M.
1987-02-01
Local impurity particle diffusion coefficients have been measured in a low temperature plasma by the injection of test particles at the center of the plasma. The injection is accomplished by a high voltage discharge between two small graphite electrodes on a probe. The probe can be located anywhere in the plasma. The diffusion is observed spectroscopically. An analysis of the spatial and temporal evolution of the CII radiation from the carbon discharge can determine the parallel and perpendicular diffusion of the impurity ions. Results with the diagnostic have been obtained in the Proto S-1/C spheromak. The measured value of the diffusion coefficient in the afterglow plasma is in good agreement with classical predictions
Strange particles: production by Cosmotron beams as observed in diffusion cloud chambers
International Nuclear Information System (INIS)
Fowler, W.B.
1989-01-01
Proton beams, from the 1GeV Cosmotron accelerator at Brookhaven, were used in the 1950s to produce strange particles. One big leap forward technologically was the development of the diffusion cloud chamber which made detecting particle tracks more accurate and sensitive. A large co-operative team worked on its development. By the mid 1950s enough tracks had been observed to show the associated production of strange particles. It was the same Brookhaven workers who developed the eighty-inch hydrogen bubble chamber which took the first photograph of the long predicted omega minus particle at the end of the decade. (UK)
Lattice location of diffused Zn atoms in GaAs and InP single crystals
International Nuclear Information System (INIS)
Chan, L.Y.; Yu, K.M.; Ben-Tzur, M.; Haller, E.E.; Jaklevic, J.M.; Walukiewicz, W.; Hanson, C.M.
1991-01-01
We have investigated the saturation phenomenon of the free carrier concentration in p-type GaAs and InP single crystals doped by zinc diffusion. The free hole saturation occurs at 10 20 cm -3 for GaAs, but the maximum concentration for InP appears at mid 10 18 cm -3 . The difference in the saturation hole concentrations for these materials is investigated by studying the incorporation and the lattice location of the impurity zinc, an acceptor when located on a group III atom site. Zinc is diffused into the III-V wafers in a sealed quartz ampoule. Particle-induced x-ray emission with ion-channeling techniques are employed to determine the exact lattice location of the zinc atoms. We have found that over 90% of all zinc atoms occupy Ga sites in the diffused GaAs samples, while for the InP case, the zinc substitutionality is dependent on the cooling rate of the sample after high-temperature diffusion. For the slowly cooled sample, a large fraction (∼90%) of the zinc atoms form random precipitates of Zn 3 P 2 and elemental Zn. However, when rapidly cooled only 60% of the zinc forms such precipitates while the rest occupies specific sites in the InP. We analyze our results in terms of the amphoteric native defect model. We show that the difference in the electrical activity of the Zn atoms in GaAs and InP is a consequence of the different location of the Fermi level stabilization energy in these two materials
Particle Sampling and Real Time Size Distribution Measurement in H2/O2/TEOS Diffusion Flame
International Nuclear Information System (INIS)
Ahn, K.H.; Jung, C.H.; Choi, M.; Lee, J.S.
2001-01-01
Growth characteristics of silica particles have been studied experimentally using in situ particle sampling technique from H 2 /O 2 /Tetraethylorthosilicate (TEOS) diffusion flame with carefully devised sampling probe. The particle morphology and the size comparisons are made between the particles sampled by the local thermophoretic method from the inside of the flame and by the electrostatic collector sampling method after the dilution sampling probe. The Transmission Electron Microscope (TEM) image processed data of these two sampling techniques are compared with Scanning Mobility Particle Sizer (SMPS) measurement. TEM image analysis of two sampling methods showed a good agreement with SMPS measurement. The effects of flame conditions and TEOS flow rates on silica particle size distributions are also investigated using the new particle dilution sampling probe. It is found that the particle size distribution characteristics and morphology are mostly governed by the coagulation process and sintering process in the flame. As the flame temperature increases, the effect of coalescence or sintering becomes an important particle growth mechanism which reduces the coagulation process. However, if the flame temperature is not high enough to sinter the aggregated particles then the coagulation process is a dominant particle growth mechanism. In a certain flame condition a secondary particle formation is observed which results in a bimodal particle size distribution
A Mathematical Model of the Single Aluminium Diboride Particle Ignition
Directory of Open Access Journals (Sweden)
D. A. Yagodnikov
2014-01-01
Full Text Available The paper presents a developed mathematical model of ignition of the single aluminum diboride particle as an aluminum-boron alloy in the oxidizing environment of a complicated chemical composition containing oxygen, water vapor, and carbon dioxide. The mathematical model is based on the theory of parallel chemical reactions proceeding on the appropriate parts of the particle surface occupied by each element in proportion to their molar share in the alloy. The paper considers a possibility to establish a thermodynamic balance between components over a particle surface in the gas phase. The composition of components is chosen as a result of thermodynamic calculation, namely В g , B2O3 g , BO, B2O2, BO2, Alg , AlO, Al2O, N2. The mathematical model is formed by a system of the differential equations of enthalpy balance, mass of aluminum diboride particle, and of formed oxides, which become isolated by initial and boundary conditions for temperature and size of particles, concentration of an oxidizer, and temperature of gas. The software package “AlB2“ is developed. It is a complete independent module written in Fortran algorithmic language, which together with a package of the subroutines “SPARKS” is used to calculate parameters of burning aluminum diboride particle by the Runge-Kutt method.For stoichiometry of chemical reactions of interaction between aluminum diboride and oxygen, a dynamics of changing temperature of a particle and thickness of an oxide film on its surface is calculated. It was admitted as initial conditions that the aluminum diboride particle radius was 100μ and the reference temperature of environment was 500 K, 1000 K, 2300 K, and 3000 K. Depending on this temperature the aluminum diboride particle temperature was calculated. Changing thickness of the oxide film on the particle surface at various initial gas temperatures characterizes its increase at the initial heating period of ~ 0,01 s and a gradual slowdown of the
RESIDENCE TIMES OF PARTICLES IN DIFFUSIVE PROTOPLANETARY DISK ENVIRONMENTS. I. VERTICAL MOTIONS
International Nuclear Information System (INIS)
Ciesla, F. J.
2010-01-01
The chemical and physical evolution of primitive materials in protoplanetary disks are determined by the types of environments they are exposed to and their residence times within each environment. Here, a method for calculating representative paths of materials in diffusive protoplanetary disks is developed and applied to understanding how the vertical trajectories that particles take impact their overall evolution. The methods are general enough to be applied to disks with uniform diffusivity, the so-called constant-α cases, and disks with a spatially varying diffusivity, such as expected in 'layered-disks'. The average long-term dynamical evolution of small particles and gaseous molecules is independent of the specific form of the diffusivity in that they spend comparable fractions of their lifetimes at different heights in the disk. However, the paths that individual particles and molecules take depend strongly on the form of the diffusivity leading to a different range of behavior of particles in terms of deviations from the mean. As temperatures, gas densities, chemical abundances, and photon fluxes will vary with height in protoplanetary disks, the different paths taken by primitive materials will lead to differences in their chemical and physical evolution. Examples of differences in gas phase chemistry and photochemistry are explored here. The methods outlined here provide a powerful tool that can be integrated with chemical models to understand the formation and evolution of primitive materials in protoplanetary disks on timescales of 10 5 -10 6 years.
Directory of Open Access Journals (Sweden)
C. Pfrang
2011-07-01
Full Text Available Recent experimental evidence underlines the importance of reduced diffusivity in amorphous semi-solid or glassy atmospheric aerosols. This paper investigates the impact of diffusivity on the ageing of multi-component reactive organic particles approximating atmospheric cooking aerosols. We apply and extend the recently developed KM-SUB model in a study of a 12-component mixture containing oleic and palmitoleic acids. We demonstrate that changes in the diffusivity may explain the evolution of chemical loss rates in ageing semi-solid particles, and we resolve surface and bulk processes under transient reaction conditions considering diffusivities altered by oligomerisation. This new model treatment allows prediction of the ageing of mixed organic multi-component aerosols over atmospherically relevant timescales and conditions. We illustrate the impact of changing diffusivity on the chemical half-life of reactive components in semi-solid particles, and we demonstrate how solidification and crust formation at the particle surface can affect the chemical transformation of organic aerosols.
Effect of field-aligned-beam in parallel diffusion of energetic particles in the Earth's foreshock
Matsukiyo, S.; Nakanishi, K.; Otsuka, F.; Kis, A.; Lemperger, I.; Hada, T.
2016-12-01
Diffusive shock acceleration (DSA) is one of the plausible acceleration mechanisms of cosmic rays. In the standard DSA model the partial density of the accelerated particles, diffused into upstream, exponentially decreases as the distance to the shock increases. Kis et al. (GRL, 31, L20801, 2004) examined the density gradients of energetic ions upstream of the bow shock with high accuracy by using Cluster data. They estimated the diffusion coefficients of energetic ions for the event in February 18, 2003 and showed that the obtained diffusion coefficients are significantly smaller than those estimated in the past statistical study. This implies that particle acceleration at the bow shock can be more efficient than considered before. Here, we focus on the effect of the field-aligned-beam (FAB) which is often observed in the foreshock, and examine how the FAB affects the efficiency of diffusion of the energetic ions by performing test particle simulations. The upstream turbulence is given by the superposition of parallel Alfven waves with power-law energy spectrum with random phase approximation. In the spectrum we further add a peak corresponding to the waves resonantly generated by the FAB. The dependence of the diffusion coefficient on the presence of the FAB as well as total energy of the turbulence, power-law index of the turbulence, and intensity of FAB oriented waves are discussed.
O'Brien, T. P., III; Claudepierre, S. G.
2017-12-01
During geomagnetic storms, the Earth's outer radiation belt experiences enhanced radial transport. This transport occurs via phase-dependent radial displacements of particles, either by impulsive events or drift resonant waves. Because transport is phase dependent, it produces drift phase bunching, which can be observed with in situ particle detectors. We provide bounds on the radial diffusion coefficients derived from this drift phase structure as seen by NASA's Van Allen Probes. We compare these bounds to published radial diffusion coefficient models, particularly those derived independently from electromagnetic field observations.
Convective and diffusive effects on particle transport in asymmetric periodic capillaries.
Directory of Open Access Journals (Sweden)
Nazmul Islam
Full Text Available We present here results of a theoretical investigation of particle transport in longitudinally asymmetric but axially symmetric capillaries, allowing for the influence of both diffusion and convection. In this study we have focused attention primarily on characterizing the influence of tube geometry and applied hydraulic pressure on the magnitude, direction and rate of transport of particles in axi-symmetric, saw-tooth shaped tubes. Three initial value problems are considered. The first involves the evolution of a fixed number of particles initially confined to a central wave-section. The second involves the evolution of the same initial state but including an ongoing production of particles in the central wave-section. The third involves the evolution of particles a fully laden tube. Based on a physical model of convective-diffusive transport, assuming an underlying oscillatory fluid velocity field that is unaffected by the presence of the particles, we find that transport rates and even net transport directions depend critically on the design specifics, such as tube geometry, flow rate, initial particle configuration and whether or not particles are continuously introduced. The second transient scenario is qualitatively independent of the details of how particles are generated. In the third scenario there is no net transport. As the study is fundamental in nature, our findings could engender greater understanding of practical systems.
The diffusion mechanism of alkali metal ions in the particles of cerium(IV)antimonate
International Nuclear Information System (INIS)
El-Naggar, I.M.; Zakaria, E.S.; Abd El-Wahab, M.A.; Belacy, N.; Aly, H.F.
1996-01-01
The kinetic behaviour of Li + , Na + , K + and Cs + ions exchange on cerium(IV)antimonate were investigated under conditions of particle diffusion and the limited batch technique. Values for the diffusion coefficients, activation energy and entropy of activation were calculated and their significance were discussed. The values of the effective diffusion coefficient increased in the order Cs + K + Na + Li + , which parallels the ionic radii and the ionic mobility. The activation energy (E a ) was found to decrease with decreases in the entropy change of the system. The data obtained for this exchanger were compared with those for organic resins and other inorganic ion exchangers
Real-time analysis of insoluble particles in glacial ice using single-particle mass spectrometry
Osman, Matthew; Zawadowicz, Maria A.; Das, Sarah B.; Cziczo, Daniel J.
2017-11-01
Insoluble aerosol particles trapped in glacial ice provide insight into past climates, but analysis requires information on climatically relevant particle properties, such as size, abundance, and internal mixing. We present a new analytical method using a time-of-flight single-particle mass spectrometer (SPMS) to determine the composition and size of insoluble particles in glacial ice over an aerodynamic size range of ˜ 0.2-3.0 µm diameter. Using samples from two Greenland ice cores, we developed a procedure to nebulize insoluble particles suspended in melted ice, evaporate condensed liquid from those particles, and transport them to the SPMS for analysis. We further determined size-dependent extraction and instrument transmission efficiencies to investigate the feasibility of determining particle-class-specific mass concentrations. We find SPMS can be used to provide constraints on the aerodynamic size, composition, and relative abundance of most insoluble particulate classes in ice core samples. We describe the importance of post-aqueous processing to particles, a process which occurs due to nebulization of aerosols from an aqueous suspension of originally soluble and insoluble aerosol components. This study represents an initial attempt to use SPMS as an emerging technique for the study of insoluble particulates in ice cores.
Multi-Color Single Particle Tracking with Quantum Dots
DEFF Research Database (Denmark)
Christensen, Eva Arnspang; Brewer, J. R.; Lagerholm, B. C.
2012-01-01
. multiplex single molecule sensitivity applications such as single particle tracking (SPT). In order to fully optimize single molecule multiplex application with QDs, we have in this work performed a comprehensive quantitative investigation of the fluorescence intensities, fluorescence intensity fluctuations......Quantum dots (QDs) have long promised to revolutionize fluorescence detection to include even applications requiring simultaneous multi-species detection at single molecule sensitivity. Despite the early promise, the unique optical properties of QDs have not yet been fully exploited in e. g...... further show that there is only a small size advantage in using blue-shifted QDs in biological applications because of the additional size of the water-stabilizing surface coat. Extending previous work, we finally also show that parallel four color multicolor (MC)-SPT with QDs is possible at an image...
Collective and single-particle states at high excitation energy
International Nuclear Information System (INIS)
Van den Berg, A.M.; Van der Molen, H.K.T.; Harakeh, M.N.; Akimune, H.; Daito, I.; Fujimura, H.; Fujiwara, M.; Ihara, F.; Inomata, T.
2000-01-01
Complete text of publication follows. Damping of high-lying single-particle states was investigated by the study of proton decay from high-lying states in 91 Nb, populated by the 90 Zr(α,t) reaction with E α = 180 MeV. In addition to decay to the ground state of 90 Zr, semi-direct decay was observed to the low-lying (2 + and 3 - ) phonon states, confirming the conclusion from other experiments that these phonon states play an important role in the damping process of the single-particle states. Furthermore, the population and decay of Isobaric Analogue States of 91 Zr, which are located at an excitation energy of about 10 - 12 MeV in 91 Nb, has been studied in the same reaction. (author)
Matysik, Artur; Kraut, Rachel S
2014-05-01
Single molecule tracking (SMT) analysis of fluorescently tagged lipid and protein probes is an attractive alternative to ensemble averaged methods such as fluorescence correlation spectroscopy (FCS) or fluorescence recovery after photobleaching (FRAP) for measuring diffusion in artificial and plasma membranes. The meaningful estimation of diffusion coefficients and their errors is however not straightforward, and is heavily dependent on sample type, acquisition method, and equipment used. Many approaches require advanced computing and programming skills for their implementation. Here we present TrackArt software, an accessible graphic interface for simulation and complex analysis of multiple particle paths. Imported trajectories can be filtered to eliminate spurious or corrupted tracks, and are then analyzed using several previously described methodologies, to yield single or multiple diffusion coefficients, their population fractions, and estimated errors. We use TrackArt to analyze the single-molecule diffusion behavior of a sphingolipid analog SM-Atto647N, in mica supported DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) bilayers. Fitting with a two-component diffusion model confirms the existence of two separate populations of diffusing particles in these bilayers on mica. As a demonstration of the TrackArt workflow, we characterize and discuss the effective activation energies required to increase the diffusion rates of these populations, obtained from Arrhenius plots of temperature-dependent diffusion. Finally, TrackArt provides a simulation module, allowing the user to generate models with multiple particle trajectories, diffusing with different characteristics. Maps of domains, acting as impermeable or permeable obstacles for particles diffusing with given rate constants and diffusion coefficients, can be simulated or imported from an image. Importantly, this allows one to use simulated data with a known diffusion behavior as a comparison for results
Laboratory Measurements of Single-Particle Polarimetric Spectrum
Gritsevich, M.; Penttila, A.; Maconi, G.; Kassamakov, I.; Helander, P.; Puranen, T.; Salmi, A.; Hæggström, E.; Muinonen, K.
2017-12-01
Measuring scattering properties of different targets is important for material characterization, remote sensing applications, and for verifying theoretical results. Furthermore, there are usually simplifications made when we model targets and compute the scattering properties, e.g., ideal shape or constant optical parameters throughout the target material. Experimental studies help in understanding the link between the observed properties and computed results. Experimentally derived Mueller matrices of studied particles can be used as input for larger-scale scattering simulations, e.g., radiative transfer computations. This method allows to bypass the problem of using an idealized model for single-particle optical properties. While existing approaches offer ensemble- and orientation-averaged particle properties, our aim is to measure individual particles with controlled or known orientation. With the newly developed scatterometer, we aim to offer novel possibility to measure single, small (down to μm-scale) targets and their polarimetric spectra. This work presents an experimental setup that measures light scattered by a fixed small particle with dimensions ranging between micrometer and millimeter sizes. The goal of our setup is nondestructive characterization of such particles by measuring light of multiple wavelengths scattered in 360° in a horizontal plane by an ultrasonically levitating sample, whilst simultaneously controlling its 3D position and orientation. We describe the principles and design of our instrument and its calibration. We also present example measurements of real samples. This study was conducted under the support from the European Research Council, in the frame of the Advanced Grant project No. 320773 `Scattering and Absorption of Electromagnetic Waves in Particulate Media' (SAEMPL).
International Nuclear Information System (INIS)
Giavazzi, Fabio; Cerbino, Roberto; Haro-Pérez, Catalina
2016-01-01
We probe the roto-translational Brownian motion of optically anisotropic particles suspended in water with a simple and straightforward optical microscopy experiment that does not require positional or rotational particle tracking. We acquire a movie of the suspension placed between two polarizing elements and we extract the translational diffusion coefficient D T and the rotational diffusion coefficient D R from the analysis of the temporal correlation properties of the spatial Fourier modes of the intensity fluctuations in the movie. Our method is successfully tested with a dilute suspension of birefringent spherical colloidal particles obtained by polymerizing an emulsion of droplets of liquid crystal in a nematic phase, whose roto-translational dynamics is found to be well described by theory. The simplicity of our approach makes our method a viable alternative to particle tracking and depolarized dynamic light scattering. (paper)
Spin resonance strength calculation through single particle tracking for RHIC
Energy Technology Data Exchange (ETDEWEB)
Luo, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Dutheil, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ranjbar, V. [Brookhaven National Lab. (BNL), Upton, NY (United States)
2015-05-03
The strengths of spin resonances for the polarized-proton operation in the Relativistic Heavy Ion Collider are currently calculated with the code DEPOL, which numerically integrates through the ring based on an analytical approximate formula. In this article, we test a new way to calculate the spin resonance strengths by performing Fourier transformation to the actual transverse magnetic fields seen by a single particle traveling through the ring. Comparison of calculated spin resonance strengths is made between this method and DEPOL.
Fragmentation of single-particle states in deformed nuclei
International Nuclear Information System (INIS)
Malov, L.A.; Soloviev, V.G.
1975-01-01
Fragmentation of single-particle states on levels of deformed nuclei is studied on the example of 239 U and 169 Er nuclei in the framework of the model taking into consideration the interaction of quasiparticles with phonons. The dependence of fragmentation on the Fermi surface is considered from the viewpoint of single-particle levels. It is shown that in the distribution of single-particle strength functions a second maximum appears together with the large asymmetry maximum at high-energy excitation, and the distribution has a long ''tail''. A semimicroscopic approach is proposed for calculating the neutron strength functions. The following values of the strength functions are obtained: for sub(239)U-Ssub(0)sup(cal)=1.2x10sup(-4), Ssub(1)sup(cal)=2.7x10sub(-4) and for sub(169)Er-Ssub(0)sup(cal)=1.10sup(-4), Ssub(1)sup(cal)=1.2x10sup(-4)
Applicability of the Taylor-Green-Kubo formula in particle diffusion theory
International Nuclear Information System (INIS)
Shalchi, A.
2011-01-01
Diffusion coefficients of particles can be defined as time integrals over velocity correlation functions, or as mean square displacements divided by time. In the present paper it is demonstrated that these two definitions are not equivalent. An exact relation between mean square displacements and velocity correlations is derived. As an example of the applicability of these results so-called drift coefficients of energetic particles are discussed. It is explained why different previous approaches in drift theory provided contradicting results.
Czech Academy of Sciences Publication Activity Database
Pacáková, Barbara; Mantlíková, Alice; Nižňanský, D.; Kubíčková, Simona; Vejpravová, Jana
2016-01-01
Roč. 28, č. 20 (2016), 1-11, č. článku 206004. ISSN 0953-8984 R&D Projects: GA ČR(CZ) GA15-01953S Institutional support: RVO:68378271 Keywords : magnetic nanoparticles * single-particle anisotropy * dipolar energy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.649, year: 2016
The effect of transitional particles driven by single wave
International Nuclear Information System (INIS)
Qiu Yunqing; Xia Mengfen
1987-05-01
The unperturbed separatrix crossing driven by a single wave in a tokamak plasma is discussed. The separatrix crossing is followed by a mixing process, and a small-scale structure occurs in the distribution function in h-ψ plane. The separatrix crossing is a convective process in h-ψ plane, and there is a definite crossing channel. The convective flux and the net flux in h-direction are calculated. The separatrix crossing is accompanied by a radial flux, which is composed of a directional flux and a diffusion flux. (author). 7 refs, 6 figs
Simulating Biomass Fast Pyrolysis at the Single Particle Scale
Energy Technology Data Exchange (ETDEWEB)
Ciesielski, Peter [National Renewable Energy Laboratory (NREL); Wiggins, Gavin [ORNL; Daw, C Stuart [ORNL; Jakes, Joseph E. [U.S. Forest Service, Forest Products Laboratory, Madison, Wisconsin, USA
2017-07-01
Simulating fast pyrolysis at the scale of single particles allows for the investigation of the impacts of feedstock-specific parameters such as particle size, shape, and species of origin. For this reason particle-scale modeling has emerged as an important tool for understanding how variations in feedstock properties affect the outcomes of pyrolysis processes. The origins of feedstock properties are largely dictated by the composition and hierarchical structure of biomass, from the microstructural porosity to the external morphology of milled particles. These properties may be accounted for in simulations of fast pyrolysis by several different computational approaches depending on the level of structural and chemical complexity included in the model. The predictive utility of particle-scale simulations of fast pyrolysis can still be enhanced substantially by advancements in several areas. Most notably, considerable progress would be facilitated by the development of pyrolysis kinetic schemes that are decoupled from transport phenomena, predict product evolution from whole-biomass with increased chemical speciation, and are still tractable with present-day computational resources.
Determination of the particle size distribution of aerosols by means of a diffusion battery
International Nuclear Information System (INIS)
Maigne, J.P.
1978-09-01
The different methods allowing to determine the particle size distribution of aerosols by means of diffusion batteries are described. To that purpose, a new method for the processing of experimental data (percentages of particles trapped by the battery vs flow rate) was developed on the basis of calculation principles which are described and assessed. This method was first tested by numerical simulation from a priori particle size distributions and then verified experimentally using a fine uranine aerosol whose particle size distribution as determined by our method was compared with the distribution previously obtained by electron microscopy. The method can be applied to the determination of particle size distribution spectra of fine aerosols produced by 'radiolysis' of atmospheric gaseous impurities. Two other applications concern the detection threshold of the condensation nuclei counter and the 'critical' radii of 'radiolysis' particles [fr
Chaotic diffusion across a magnetic island due to a single electrostatic drift wave
International Nuclear Information System (INIS)
Misguich, J.H.
1990-05-01
It is shown that the guiding center motion around a single chain of magnetic islands in a Tokamak can become chaotic in the presence of a single electrostatic drift wave. This process leads to radial diffusion across the islands without magnetic braiding. The chaotic diffusion appears to be selective in velocity space. Realistic values of the physical parameters are considered to deduce that this process can be effective in usual conditions: with the observed islands, and electrostatic field values corresponding to measured density fluctuations, this diffusion concerns ions with velocities higher than thermal, and almost all of the electron population. The consequences for radial diffusion are discussed
Diffusive growth of a single droplet with three different boundary conditions
Tavassoli, Z.; Rodgers, G. J.
2000-02-01
We study a single, motionless three-dimensional droplet growing by adsorption of diffusing monomers on a 2D substrate. The diffusing monomers are adsorbed at the aggregate perimeter of the droplet with different boundary conditions. Models with both an adsorption boundary condition and a radiation boundary condition, as well as a phenomenological model, are considered and solved in a quasistatic approximation. The latter two models allow particle detachment. In the short time limit, the droplet radius grows as a power of the time with exponents of 1/4, 1/2 and 3/4 for the models with adsorption, radiation and phenomenological boundary conditions, respectively. In the long time limit a universal growth rate as $[t/\\ln(t)]^{1/3}$ is observed for the radius of the droplet for all models independent of the boundary conditions. This asymptotic behaviour was obtained by Krapivsky \\cite{krapquasi} where a similarity variable approach was used to treat the growth of a droplet with an adsorption boundary condition based on a quasistatic approximation. Another boundary condition with a constant flux of monomers at the aggregate perimeter is also examined. The results exhibit a power law growth rate with an exponent of 1/3 for all times.
The single scattering properties of the aerosol particles as aggregated spheres
International Nuclear Information System (INIS)
Wu, Y.; Gu, X.; Cheng, T.; Xie, D.; Yu, T.; Chen, H.; Guo, J.
2012-01-01
The light scattering and absorption properties of anthropogenic aerosol particles such as soot aggregates are complicated in the temporal and spatial distribution, which introduce uncertainty of radiative forcing on global climate change. In order to study the single scattering properties of anthorpogenic aerosol particles, the structures of these aerosols such as soot paticles and soot-containing mixtures with the sulfate or organic matter, are simulated using the parallel diffusion limited aggregation algorithm (DLA) based on the transmission electron microscope images (TEM). Then, the single scattering properties of randomly oriented aerosols, such as scattering matrix, single scattering albedo (SSA), and asymmetry parameter (AP), are computed using the superposition T-matrix method. The comparisons of the single scattering properties of these specific types of clusters with different morphological and chemical factors such as fractal parameters, aspect ratio, monomer radius, mixture mode and refractive index, indicate that these different impact factors can respectively generate the significant influences on the single scattering properties of these aerosols. The results show that aspect ratio of circumscribed shape has relatively small effect on single scattering properties, for both differences of SSA and AP are less than 0.1. However, mixture modes of soot clusters with larger sulfate particles have remarkably important effects on the scattering and absorption properties of aggregated spheres, and SSA of those soot-containing mixtures are increased in proportion to the ratio of larger weakly absorbing attachments. Therefore, these complex aerosols come from man made pollution cannot be neglected in the aerosol retrievals. The study of the single scattering properties on these kinds of aggregated spheres is important and helpful in remote sensing observations and atmospheric radiation balance computations.
Self-diffusion of particles interacting through a square-well or square-shoulder potential
Wilbertz, H.; Michels, J.; Beijeren, H. van; Leegwater, J.A.
1988-01-01
The diffusion coefficient and velocity autocorrelation function for a fluid of particles interacting through a square-well or square-shoulder potential are calculated from a kinetic theory similar to the Davis-Rice-Sengers theory and the results are compared to those of computer simulations. At low
Exact solution of a model for diffusion particles and longitudinal dispersion in packed beds
International Nuclear Information System (INIS)
Rasmuson, A.; Neretnieks, I.
1979-08-01
An analytical solution of a model for diffusion in particles and longitudinal despersion in porous media is derived. The solution is obtained by the method of Laplace transform. The result is expressed as an infinite integral of five deminsionless quanitities. The extension for a decaying species is given. (authors)
Diffusion model of solid particles in a gaseous atmosphere. Pt. 1
International Nuclear Information System (INIS)
Fernandez Ruiz, J.L.
1987-01-01
Starting from Voinov and Garipov's lagrangian statements on the problem of dynamic evolution of bubbles in liquids, this work is trying to determine some diffusion equations of solid particles in little dense matter like gases or liquids, aiming at applying it to the tracing of matter in atmospheric diffusion and the tracing of corpuscles in liquids. All the resulting equations lead to a solution given as a tensor θ ij related to the velocity states v i defined as v i = , and to the potential from which derive. One has had in mind the factor of mutual correlation between the diffusing particles. This increases the scope of application of these equations to Chemistry and to Biomedical Sciences. (author)
International Nuclear Information System (INIS)
Reuss, J.D.; Misguich, J.H.
1996-02-01
An important point for turbulent transport consists in determining the scaling law for the diffusion coefficient D due to electrostatic turbulence. It is well-known that for weak amplitudes or large frequencies, the reduced diffusion coefficient has a quasi-linear like (or gyro-Bohm like) scaling, while for large amplitudes or small frequencies it has been traditionally believed that the scaling is Bohm-like. The aim of this work consists to test this prediction for a given realistic model. This problem is studied by direct simulation of particle trajectories. Guiding centre diffusion in a spectrum of electrostatic turbulence is computed for test particles in a model spectrum, by means of a new parallelized code RADIGUET 2. The results indicate a continuous transition for large amplitudes toward a value which is compatible with the Isichenko percolation prediction. (author)
Diffusivities of Ag, Cs, Sr, and Kr in TRISO fuel particles and graphite
Energy Technology Data Exchange (ETDEWEB)
Collin, Blaise Paul [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2016-09-01
Tri-structural isotropic (TRISO) coated particles have been developed and studied since the late 1950s when the concept of coated particles was invented by Roy Huddle of the United Kingdom Atomic Energy Authority. Several decades of work by half a dozen countries on fission product transport in TRISO fuel through numerous irradiation and heating experiments have led to several recommendations of transport data and to the adoption of various sets of diffusion coefficients. In 1997, the International Atomic Energy Agency (IAEA) gathered all these historical results and issued a technical document (TECDOC-978 [IAEA]) that summarizes these sets of recommended diffusion coefficients. Table 1 shows the reference literature articles for the diffusivities that have historically been recommended by the American and German TRISO fuel development programs and that are summarized in the IAEA report (see section 7 for full references of these articles).
Diffusion of fish from a single release point
DEFF Research Database (Denmark)
Sparrevohn, Claus Reedtz; Nielsen, Anders; Støttrup, Josianne
2002-01-01
In a field experiment, 3529 turbot (Psetta maxima) were released in order to estimate and describe the movements of hatchery-reared fish by applying diffusion theory. After liberation, the development of the population density was estimated during the following 9 days, and from that, the rate of ...
Quantification of Ionic Diffusion in Lead Halide Perovskite Single Crystals
Peng, Wei
2018-05-25
Lead halide perovskites are mixed electronic/ionic semiconductors that have recently revolutionized the photovoltaics field. The physical characterization of the ionic conductivity has been rather elusive due to the highly intermixing of ionic and electronic current. In this work the synthesis of low defect density monocrystalline MAPbBr3 (MA=Methyl ammonium) solar cells free of hole transport layer (HTL) suppresses the effect of electronic current. Impedance spectroscopy reveals the characteristic signature of ionic diffusion (the Warburg element and transmission line equivalent circuit) and ion accumulation at the MAPbBr3/Au interface. Diffusion coefficients are calculated based on a good correlation between thickness of MAPbBr3 and characteristic diffusion transition frequency. In addition, reactive external interfaces are studied by comparison of polycrystalline MAPbBr3 devices prepared either with or without a HTL. The low frequency response in IS measurements is correlated with the chemical reactivity of moving ions with the external interfaces and diffusion into the HTL.
Charged-particle spectroscopy in organic semiconducting single crystals
Energy Technology Data Exchange (ETDEWEB)
Ciavatti, A.; Basiricò, L.; Fraboni, B. [Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna (Italy); Sellin, P. J. [Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Fraleoni-Morgera, A. [ELETTRA-Sincrotrone Trieste, Strada Statale 14, Km 163.5, Basovizza, Trieste (Italy); Department of Engineering and Architecture, University of Trieste, V. Valerio 10, 34100 Trieste (Italy); CNR-Nano S3 Institute, Via Campi 213/A, 41125 Modena (Italy)
2016-04-11
The use of organic materials as radiation detectors has grown, due to the easy processability in liquid phase at room temperature and the possibility to cover large areas by means of low cost deposition techniques. Direct charged-particle detectors based on solution-grown Organic Semiconducting Single Crystals (OSSCs) are shown to be capable to detect charged particles in pulse mode, with very good peak discrimination. The direct charged-particle detection in OSSCs has been assessed both in the planar and in the vertical axes, and a digital pulse processing algorithm has been used to perform pulse height spectroscopy and to study the charge collection efficiency as a function of the applied bias voltage. Taking advantage of the charge spectroscopy and the good peak discrimination of pulse height spectra, an Hecht-like behavior of OSSCs radiation detectors is demonstrated. It has been possible to estimate the mobility-lifetime value in organic materials, a fundamental parameter for the characterization of radiation detectors, whose results are equal to μτ{sub coplanar} = (5 .5 ± 0.6 ) × 10{sup −6} cm{sup 2}/V and μτ{sub sandwich} = (1 .9 ± 0.2 ) × 10{sup −6} cm{sup 2}/V, values comparable to those of polycrystalline inorganic detectors. Moreover, alpha particles Time-of-Flight experiments have been carried out to estimate the drift mobility value. The results reported here indicate how charged-particle detectors based on OSSCs possess a great potential as low-cost, large area, solid-state direct detectors operating at room temperature. More interestingly, the good detection efficiency and peak discrimination observed for charged-particle detection in organic materials (hydrogen-rich molecules) are encouraging for their further exploitation in the detection of thermal and high-energy neutrons.
Electrocatalytic oxidation of alcohols on single gold particles in highly ordered SiO2 cavities
International Nuclear Information System (INIS)
Li, Na; Zhou, Qun; Tian, Shu; Zhao, Hong; Li, Xiaowei; Adkins, Jason; Gu, Zhuomin; Zhao, Lili; Zheng, Junwei
2013-01-01
In the present work, we report a new and simple approach for preparing a highly ordered Au (1 1 1) nanoparticle (NP) array in SiO 2 cavities on indium-doped tin oxide (ITO) electrodes. We fabricated a SiO 2 cavity array on the surface of an ITO electrode using highly ordered self-assembly of polystyrene spheres as a template. Gold NPs were electrodeposited at the bottom of the SiO 2 cavities, and single gold NPs dominated with (1 1 1) facets were generated in each cavity by annealing the electrode at a high temperature. Such (1 1 1) facets were the predominate trait of the single gold particle which exhibited considerable electrocatalytic activity toward oxidation of methanol, ethanol, and glycerol. This has been attributed to the formation of incipient hydrous oxides at unusually low potential on the specific (1 1 1) facet of the gold particles. Moreover, each cavity of the SiO 2 possibly behaves as an independent electrochemical cell in which the methanol molecules are trapped; this produces an environment advantageous to catalyzing electrooxidation. The oxidation of methanol on the electrodes is a mixed control mechanism (both by diffusion and electrode kinetics). This strategy both provided an approach to study electrochemical reactions on a single particle in a microenvironment and may supply a way to construct alcohols sensors
Photoresponsive Release from Azobenzene-Modified Single Cubic Crystal NaCl/Silica Particles
Directory of Open Access Journals (Sweden)
Xingmao Jiang
2011-01-01
Full Text Available Azobenzene ligands were uniformly anchored to the pore surfaces of nanoporous silica particles with single crystal NaCl using 4-(3-triethoxysilylpropylureidoazobenzene (TSUA. The functionalization delayed the release of NaCl significantly. The modified particles demonstrated a photocontrolled release by trans/cis isomerization of azobenzene moieties. The addition of amphiphilic solvents, propylene glycol (PG, propylene glycol propyl ether (PGPE, and dipropylene glycol propyl ether (DPGPE delayed the release in water, although the wetting behavior was improved and the delay is the most for the block molecules with the longest carbon chain. The speedup by UV irradiation suggests a strong dependence of diffusion on the switchable pore size. TGA, XRD, FTIR, and NMR techniques were used to characterize the structures.
Directory of Open Access Journals (Sweden)
D. M. Lienhard
2015-12-01
secondary organic aerosol (SOA material produced by oxidation of α-pinene and in a number of organic/inorganic model mixtures (3-methylbutane-1,2,3-tricarboxylic acid (3-MBTCA, levoglucosan, levoglucosan/NH4HSO4, raffinose are presented. These indicate that water diffusion coefficients are determined by several properties of the aerosol substance and cannot be inferred from the glass transition temperature or bouncing properties. Our results suggest that water diffusion in SOA particles is faster than often assumed and imposes no significant kinetic limitation on water uptake and release at temperatures above 220 K. The fast diffusion of water suggests that heterogeneous ice nucleation on a glassy core is very unlikely in these systems. At temperatures below 220 K, model simulations of SOA particles suggest that heterogeneous ice nucleation may occur in the immersion mode on glassy cores which remain embedded in a liquid shell when experiencing fast updraft velocities. The particles absorb significant quantities of water during these updrafts which plasticize their outer layers such that these layers equilibrate readily with the gas phase humidity before the homogeneous ice nucleation threshold is reached. Glass formation is thus unlikely to restrict homogeneous ice nucleation. Only under most extreme conditions near the very high tropical tropopause may the homogeneous ice nucleation rate coefficient be reduced as a consequence of slow condensed-phase water diffusion. Since the differences between the behavior limited or non limited by diffusion are small even at the very high tropical tropopause, condensed-phase water diffusivity is unlikely to have significant consequences on the direct climatic effects of SOA particles under tropospheric conditions.
International Nuclear Information System (INIS)
Torreno-Pina, Juan A; Manzo, Carlo; Garcia-Parajo, Maria F
2016-01-01
The plasma membrane of eukaryotic cells is responsible for a myriad of functions that regulate cell physiology and plays a crucial role in a multitude of processes that include adhesion, migration, signaling recognition and cell–cell communication. This is accomplished by specific interactions between different membrane components such as lipids and proteins on the lipid bilayer but also through interactions with the underlying cortical actin cytoskeleton on the intracellular side and the glycocalyx matrix in close proximity to the extracellular side. Advanced biophysical techniques, including single particle tracking (SPT) have revealed that the lateral diffusion of molecular components on the plasma membrane represents a landmark manifestation of such interactions. Indeed, by studying changes in the diffusivity of individual membrane molecules, including sub-diffusion, confined diffusion and/or transient arrest of molecules in membrane compartments, it has been possible to gain insight on the nature of molecular interactions and to infer on its functional role for cell response. In this review, we will revise some exciting results where SPT has been crucial to reveal homo- and hetero-interactions on the cell membrane. (paper)
Advection diffusion model for particles deposition in Rayleigh-Benard turbulent flows
International Nuclear Information System (INIS)
Oresta, P.; Lippolis, A.; Verzicco, R.; Soldati, A.
2005-01-01
In this paper, Direct Numerical Simulation (DNS) and Lagrangian Particle Tracking are used to precisely investigate the turbulent thermally driven flow and particles dispersion in a closed, slender cylindrical domain. The numerical simulations are carried out for Rayleigh (Ra) and Prandtl numbers (Pr) equal to Ra = 2X10 8 and Pr = 0.7, considering three sets of particles with Stokes numbers, based on Kolmogorov scale, equal to St k 1.3, St k 0.65 and St k = 0.13. This data are used to calculate a priori the drift velocity and the turbulent diffusion coefficient for the Advection Diffusion model. These quantities are function of the Stokes, Froude, Rayleigh and Prandtl numbers only. One dimensional, time dependent, Advection- Diffusion Equation (ADE) is presented to predict particles deposition in Rayleigh-Benard flow in the cylindrical domain. This archetype configuration models flow and aerosol dynamics, produced in case of accident in the passive containment cooling system (PCCS) of a nuclear reactor. ADE results show a good agreement with DNS data for all the sets of particles investigated. (author)
Serag, Maged F.
2014-10-06
Single-molecule localization and tracking has been used to translate spatiotemporal information of individual molecules to map their diffusion behaviours. However, accurate analysis of diffusion behaviours and including other parameters, such as the conformation and size of molecules, remain as limitations to the method. Here, we report a method that addresses the limitations of existing single-molecular localization methods. The method is based on temporal tracking of the cumulative area occupied by molecules. These temporal fluctuations are tied to molecular size, rates of diffusion and conformational changes. By analysing fluorescent nanospheres and double-stranded DNA molecules of different lengths and topological forms, we demonstrate that our cumulative-area method surpasses the conventional single-molecule localization method in terms of the accuracy of determined diffusion coefficients. Furthermore, the cumulative-area method provides conformational relaxation times of structurally flexible chains along with diffusion coefficients, which together are relevant to work in a wide spectrum of scientific fields.
Serag, Maged F.; Abadi, Maram; Habuchi, Satoshi
2014-01-01
Single-molecule localization and tracking has been used to translate spatiotemporal information of individual molecules to map their diffusion behaviours. However, accurate analysis of diffusion behaviours and including other parameters, such as the conformation and size of molecules, remain as limitations to the method. Here, we report a method that addresses the limitations of existing single-molecular localization methods. The method is based on temporal tracking of the cumulative area occupied by molecules. These temporal fluctuations are tied to molecular size, rates of diffusion and conformational changes. By analysing fluorescent nanospheres and double-stranded DNA molecules of different lengths and topological forms, we demonstrate that our cumulative-area method surpasses the conventional single-molecule localization method in terms of the accuracy of determined diffusion coefficients. Furthermore, the cumulative-area method provides conformational relaxation times of structurally flexible chains along with diffusion coefficients, which together are relevant to work in a wide spectrum of scientific fields.
Robust model-based analysis of single-particle tracking experiments with Spot-On
Grimm, Jonathan B; Lavis, Luke D
2018-01-01
Single-particle tracking (SPT) has become an important method to bridge biochemistry and cell biology since it allows direct observation of protein binding and diffusion dynamics in live cells. However, accurately inferring information from SPT studies is challenging due to biases in both data analysis and experimental design. To address analysis bias, we introduce ‘Spot-On’, an intuitive web-interface. Spot-On implements a kinetic modeling framework that accounts for known biases, including molecules moving out-of-focus, and robustly infers diffusion constants and subpopulations from pooled single-molecule trajectories. To minimize inherent experimental biases, we implement and validate stroboscopic photo-activation SPT (spaSPT), which minimizes motion-blur bias and tracking errors. We validate Spot-On using experimentally realistic simulations and show that Spot-On outperforms other methods. We then apply Spot-On to spaSPT data from live mammalian cells spanning a wide range of nuclear dynamics and demonstrate that Spot-On consistently and robustly infers subpopulation fractions and diffusion constants. PMID:29300163
Access of energetic particles to storm time ring current through enhanced radial diffusion
International Nuclear Information System (INIS)
Lyons, L.R.; Schulz, M.
1989-01-01
Magnetic storms are distinguishable from other periods of geomagnetic activity by the injection of trapped electrons and ions to the 2 approx-lt L approx-lt 4 region. It has been proposed previously that this injection results from an inward displacement of the preexisting trapped-particle population by enhanced storm time electric fields. However, high-energy (approx-gt 40 keV) ring-current particles have drift periods that are typically shorter than the time of the main-phase development, and so the direct radial transport of these particles is restricted. The authors propose here that the transport of approx-gt 40 keV particles into the storm time ring current can result from enhanced stochastic radial transport driven by fluctuating electric fields during a storm's main phase. They estimate the effects of such electric fields by applying radial-diffusion theory, assuming a preexisting trapped-particle population as the initial conditions, and they demonstrate the feasibility of explaining observed flux increases of approx-gt 40-keV particles at L approx-lt 4 by enhanced radial diffusion. It is necessary that new particles be injected near the outer boundary of the trapping region so as to maintain the fluxes there as an outer boundary condition, and they estimate that the approx-gt 40-keV portion of the storm time ring current at L ∼ 3 consists of about 50% preexisting and about 50% new particles. They thus find that formation of the storm time ring current may be explainable via a combination of direct radial transport at energies approx-lt 40 keV and diffusive radial transport at higher energies
Directory of Open Access Journals (Sweden)
M. A. Zawadowicz
2017-06-01
Full Text Available Measurements of primary biological aerosol particles (PBAP, especially at altitudes relevant to cloud formation, are scarce. Single-particle mass spectrometry (SPMS has been used to probe aerosol chemical composition from ground and aircraft for over 20 years. Here we develop a method for identifying bioaerosols (PBAP and particles containing fragments of PBAP as part of an internal mixture using SPMS. We show that identification of bioaerosol using SPMS is complicated because phosphorus-bearing mineral dust and phosphorus-rich combustion by-products such as fly ash produce mass spectra with peaks similar to those typically used as markers for bioaerosol. We have developed a methodology to differentiate and identify bioaerosol using machine learning statistical techniques applied to mass spectra of known particle types. This improved method provides far fewer false positives compared to approaches reported in the literature. The new method was then applied to two sets of ambient data collected at Storm Peak Laboratory and a forested site in Central Valley, California to show that 0.04–2 % of particles in the 200–3000 nm aerodynamic diameter range were identified as bioaerosol. In addition, 36–56 % of particles identified as biological also contained spectral features consistent with mineral dust, suggesting internal dust–biological mixtures.
Two-particle versus three-particle interactions in single ionization of helium by ion impact
International Nuclear Information System (INIS)
Schulz, M; Moshammer, R; Fischer, D; Ullrich, J
2004-01-01
We have performed kinematically complete experiments on single ionization of He by 100 MeV amu -1 C 6+ and 3.6 MeV amu -1 Au 24,53+ impact. By analysing doubly differential cross sections (DDCS) as a function of the momenta of all two-particle sub-systems we studied the importance of two-particle interactions. Furthermore, presenting the squared momenta of all three collision fragments simultaneously in a Dalitz plot, we evaluated the role of three-particle interactions. Finally, both for the DDCS and the Dalitz plots the corresponding correlation function was analysed. While the absolute cross sections confirm that ionization predominantly leads to a momentum exchange between the electron and the recoil-ion, the correlation function reveals strong correlations between the particles of any two-particle sub-system. Three-particle correlations, which are not accounted for by perturbative calculations, are quite significant as well, at least for certain kinematic conditions
Authenticated multi-user quantum key distribution with single particles
Lin, Song; Wang, Hui; Guo, Gong-De; Ye, Guo-Hua; Du, Hong-Zhen; Liu, Xiao-Fen
2016-03-01
Quantum key distribution (QKD) has been growing rapidly in recent years and becomes one of the hottest issues in quantum information science. During the implementation of QKD on a network, identity authentication has been one main problem. In this paper, an efficient authenticated multi-user quantum key distribution (MQKD) protocol with single particles is proposed. In this protocol, any two users on a quantum network can perform mutual authentication and share a secure session key with the assistance of a semi-honest center. Meanwhile, the particles, which are used as quantum information carriers, are not required to be stored, therefore the proposed protocol is feasible with current technology. Finally, security analysis shows that this protocol is secure in theory.
Temperature dependence of single-particle properties in nuclear matter
International Nuclear Information System (INIS)
Zuo, W.; Lu, G.C.; Li, Z.H.; Lombardo, U.; Schulze, H.-J.
2006-01-01
The single-nucleon potential in hot nuclear matter is investigated in the framework of the Brueckner theory by adopting the realistic Argonne V 18 or Nijmegen 93 two-body nucleon-nucleon interaction supplemented by a microscopic three-body force. The rearrangement contribution to the single-particle potential induced by the ground state correlations is calculated in terms of the hole-line expansion of the mass operator and provides a significant repulsive contribution in the low-momentum region around and below the Fermi surface. Increasing temperature leads to a reduction of the effect, while increasing density makes it become stronger. The three-body force suppresses somewhat the ground state correlations due to its strong short-range repulsion, increasing with density. Inclusion of the three-body force contribution results in a quite different temperature dependence of the single-particle potential at high enough densities as compared to that adopting the pure two-body force. The effects of three-body force and ground state correlations on the nucleon effective mass are also discussed
To the evaluation of single-particle strengths of states
International Nuclear Information System (INIS)
Ochirbat, G.
1976-01-01
Method of Green's function has been applied to calculating the distribution of single-particle states over actual nuclear levels. Chain of equations for these functions has been obtained in a model of interacting phonons and quasiparticles. It has been noticed that cutting the chain of equations by means of neglecting the higher order Green function corresponds to neglecting the higher order components of the wave function in variational methods. The one- and two-phonon approximations are discussed and the convenience of the Green function method for this case is demonstrated
Single-particle and collective excitations in Ni-63
Albers, M.; Zhu, S.; Janssens, R. V. F.; Gellanki, Jnaneswari; Ragnarsson, Ingemar; Alcorta, M.; Baugher, T.; Bertone, P. F.; Carpenter, M. P.; Chiara, C. J.; Chowdhury, P.; Deacon, A. N.; Gade, A.; DiGiovine, B.; Hoffman, C. R.
2013-01-01
A study of excited states in Ni-63 up to an excitation energy of 28 MeV and a probable spin of 57/2 was carried out with the Mg-26(Ca-48,2 alpha 3n gamma)Ni-63 reaction at beam energies between 275 and 320 MeV. Three collective bands, built upon states of single-particle character, were identified. For two of the three bands, the transition quadrupole moments were extracted, herewith quantifying the deformation at high spin. The results have been compared with shell-model and cranked Nilsson-...
Decay properties of high-lying single-particles modes
Beaumel, D.; Fortier, S.; Galès, S.; Guillot, J.; Langevin-Joliot, H.; Laurent, H.; Maison, J. M.; Vernotte, J.; Bordewijck, J.; Brandenburg, S.; Krasznahorkay, A.; Crawley, G. M.; Massolo, C. P.; Renteria, M.; Khendriche, A.
1996-02-01
The neutron decay of high-lying single-particle states in 64Ni, 90Zr, 120Sn and 208Pb excited by means of the (α, 3He) reaction has been investigated at 120 MeV incident energy using the multidetector EDEN. The characteristics of this reaction are studied using inclusive spectra and angular correlation analysis. The structure located between 11 and 15 MeV in 91Zr, and between 8 and 12 MeV excitation energy in 209Pb display large departures from a pure statistical decay. The corresponding non-statistical branching ratios are compared with the results of two theoretical calculations.
Nuclear charge and magnetization densities of single particle states
International Nuclear Information System (INIS)
Frois, B.
1985-01-01
High energy electron scattering data have recently determined the spatial distributions of nucleons in the center of nuclei with amazing accuracy. For the first time we have access to the structure of the nuclear interior throughout the periodic table. The spatial resolution achieved by high momentum transfer measurements is now sufficient to define clearly the present limits of nuclear theory. The experimental situation is briefly reviewed and the results interpreted in the framework of self-consistent field theory. The shapes of single particle distributions in the nuclear interior are found to be in surprisingly good agreement with the predictions of mean field theory. The effects of correlations are discussed. (orig.)
Real stabilization method for nuclear single-particle resonances
International Nuclear Information System (INIS)
Zhang Li; Zhou Shangui; Meng Jie; Zhao Enguang
2008-01-01
We develop the real stabilization method within the framework of the relativistic mean-field (RMF) model. With the self-consistent nuclear potentials from the RMF model, the real stabilization method is used to study single-particle resonant states in spherical nuclei. As examples, the energies, widths, and wave functions of low-lying neutron resonant states in 120 Sn are obtained. These results are compared with those from the scattering phase-shift method and the analytic continuation in the coupling constant approach and satisfactory agreements are found
Nuclear charge and magnetization densities of single particle states
International Nuclear Information System (INIS)
Frois, B.
1985-05-01
High energy electron scattering data have recently determined the spatial distributions of nucleons in the center of nuclei with amazing accuracy. For the first time we have access to the structure of the nuclear interior throughout the periodic table. The spatial resolution achieved by high momentum transfer measurements is now sufficient to define clearly the present limits of nuclear theory. The experimental situation is briefly reviewed and the results interpreted in the framework of self-consistent field theory. The shapes of single particle distributions in the nuclear interior are found to be in surprisingly good agreement with the predictions of mean field theory. The effects of correlations are discussed
Single-Particle Spin-Orbit Splittings in Nuclei
Kazuhiko, ANDO; Hiroharu, BANDO; Department of Physics, Kyoto University; Division of Mathematical Physics, Fukui University
1981-01-01
Single-particle spin-orbit splittings (Δ^) in ^O and ^Ca nuclei are evaluated within the framework of the effective interaction theory by employing the Reid soft-core potential and meson-exchange three-body forces (TBF). Among the two-body force contributions, the Pauli-rearrangement effect on Δ^ is studied with special care. The TBF contribution to Δ^ is found to be significant. The G-matrix, the second-order pauli-rearrangement and the TBF contribute to Δ^ by the amount of ～1/2, ～1/5 and ～1...
Perpendicular diffusion of a dilute beam of charged particles in the PK-4 dusty plasma
Liu, Bin; Goree, John
2015-09-01
We study the random walk of a dilute beam of projectile dust particles that drift through a target dusty plasma. This random walk is a diffusion that occurs mainly due to Coulomb collisions with target particles that have a different size. In the direction parallel to the drift, projectiles exhibit mobility-limited motion with a constant average velocity. We use a 3D molecular dynamics (MD) simulation of the dust particle motion to determine the diffusion and mobility coefficients for the dilute beam. The dust particles are assumed to interact with a shielded Coulomb repulsion. They also experience gas drag. The beam particles are driven by a prescribed net force that is not applied to the target particles; in the experiments this net force is due to an imbalance of the electric and ion drag forces. This simulation is motivated by microgravity experiments, with the expectation that the scattering of projectiles studied here will be observed in upcoming PK-4 experiments on the International Space Station. Supported by NASA and DOE.
Towards single particle imaging of human chromosomes at SACLA
International Nuclear Information System (INIS)
Robinson, Ian; Schwenke, Joerg; Yusuf, Mohammed; Estandarte, Ana; Zhang, Fucai; Chen, Bo; Clark, Jesse; Song, Changyong; Nam, Daewoong; Joti, Yasumasa; Tono, Kensuke; Yabashi, Makina; Ratnasari, Gina; Kaneyoshi, Kohei; Takata, Hideaki; Fukui, Kiichi
2015-01-01
Single particle imaging (SPI) is one of the front-page opportunities which were used to motivate the construction of the first x-ray free electron lasers (XFELs). SPI’s big advantage is that it avoids radiation damage to biological samples because the diffraction takes place in femtosecond single shots before any atomic motion can take place in the sample, hence before the onset of radiation damage. This is the ‘diffract before destruction’ theme, destruction being assured from the high x-ray doses used. This article reports our collaboration’s first attempt at SPI using the SACLA XFEL facility in June 2015. The report is limited to experience with the instrumentation and examples of data because we have not yet had time to invert them to images. (paper)
2016-08-30
scope that views the trapped particle walking through the ringdown beam step by step. (b) An image that shows the traces of the particle (MWCNT... walking through the RD beam . 5 a b c Fig.3 The OT-CRDS single particle scope views oscillations of a trapped particle. (a) Image of a trapped...and walking single carbon- nanotube particles of ?50 µm in size and viewing those properties via changes of ringdown time. This single- aerosol
Study of diffusion processes in pumpkin particles during candied fruits production
Directory of Open Access Journals (Sweden)
V. Atamanyuk
2017-12-01
Full Text Available The production of candied fruits is a priority development area of the food industry. The basic process in candied fruits production is diffusion of sugar syrup into vegetable raw material. Kinetics of the diffusion processes depends on sucrose concentration, medium temperature, particles size and internal structure of the fruits.The experiments to determine the factors influencing the diffusion processes were carried out using the installation designed by the authors; the experimental dependences of sucrose concentration change in pumpkin candied fruits on time have been determined at temperatures of 20, 40, 60 and 80°C. Cell sizes and diameter of pores between the cells in raw and blanched pumpkin have been determined. This makes it possible to determine the internal porosity of the pumpkin particle, the value of which determines the coefficient of mass transfer.On the basis of the experiments we derived the dependence, allowing to determine the mass transfer coefficients for sucrose molecules in blanched pumpkin fruits within the temperatures corresponding to the quality of the finished product. The experimental studies and the chosen mathematical model allow us to calculate the change in sucrose concentration in the pumpkin fruits in time at different temperatures and to determine the time required for the candied fruits to reach the equilibrium concentration. Also, the coefficients not depending on temperature, but depending only on the shape of the particles being saturated with sugar syrup, have been determined using the kinetic model of diffusion processes. The obtained theoretical dependences are in good agreement with the experimental data and substantiate the expediency of the chosen temperature and concentration ranges. The designed installation, the obtained experimental and theoretical dependences, and the calculated coefficients allow to create an intensive sucrose diffusion process in pumpkin particles during pumpkin candied
Relaxation and particle diffusion in the Proto S-1/C spheromak
International Nuclear Information System (INIS)
Meyerhofer, D.D.
1987-01-01
The relationship between relaxation and particle diffusion in the Proto S-1C spheromak has been studied. The plasma was formed in a magnetic configuration which was not the minimum-energy Taylor state, and went through a period of relaxation before its magnetic configuration was that of the Taylor state. Early in the relaxation phase, the internal and external magnetic fluctuations were correlated and it was found that, at the time of peak amplitude, they had a radial structure of a tearing mode. After the reconnection of these modes, the plasma continued to evolve towards the Taylor state with only small magnetic fluctuations at the center of plasma. The local particle diffusion coefficient was measured in these Proto S-1C discharges, the technique used was to inject a delta-function source of impurities into the plasma and observe the motion of the impurities relative to the flux surface. It was found that, during the decay phase of the spheromak discharge, when the plasma was in a Taylor state, the carbon diffusion coefficient was explained classically. While the plasma was relaxing towards the Taylor state, the diffusion coefficient was 2 ∼ 4a times larger than classical. At this time, the plasma was not yet force-free. This nonclassical diffusion appears to have been caused by v/sub ExB/ velocities due to correlations between the fluctuating electric field and density. Because the v/sub ExB/ velocity acts on all of the plasma species similarly, the anomalous hydrogen-particle diffusion coefficient should have been as large as that of carbon
Sandulyak, A. A.; Sandulyak, A. V.; Ershova, V.; Pamme, N.; Ngmasom, B.; Iles, A.
2017-11-01
Data of a magnetic susceptibility of ferro-and the ferrimagnetic particles of many technogenic, natural, special media are especially demanded for the solution of various tasks connected with purposeful magnetic impact on these particles. One of productive approaches to definition of a magnetic susceptibility χ of these particles consists in receiving experimental data of a susceptibility of disperse samples 〈 χ 〉 with a disperse phase of these particles. The paper expounds and analyses the results of experiments on defining (by Faraday method in a magnetic field with intensity H = 90-730 kA/m) the magnetic susceptibility 〈 χ 〉 of disperse samples (conglomerates) with a given volume ratio γ of magnetite particles (γ = 0.0065-0.25). The corresponding families of concentration and field dependences are provided alongside with discussing the applicability of linear and exponential functions to describe these dependences. We consider the possibility of defining single particles susceptibility χ (with simultaneous obtaining field dependence of this susceptibility) by the commonly used relation χ = 〈 χ 〉 /γ both at relatively small (preferable for accuracy reasons) values γ - to γ = 0.02…0.025, as well as at increased values γ - up to γ = 0.25. The data χ are provided depending on H and correlating with known data at H matter magnetic susceptibility χm (for the case when the particles are traditionally likened to balls with the characteristic for them demagnetising factor equalling 1/3) complies with the anticipated inverse function χm ∼ 1/H in the studied area H (where magnetization M expressed as M = χH reaches saturation M = Const).
Multi-color single particle tracking with quantum dots.
Directory of Open Access Journals (Sweden)
Eva C Arnspang
Full Text Available Quantum dots (QDs have long promised to revolutionize fluorescence detection to include even applications requiring simultaneous multi-species detection at single molecule sensitivity. Despite the early promise, the unique optical properties of QDs have not yet been fully exploited in e. g. multiplex single molecule sensitivity applications such as single particle tracking (SPT. In order to fully optimize single molecule multiplex application with QDs, we have in this work performed a comprehensive quantitative investigation of the fluorescence intensities, fluorescence intensity fluctuations, and hydrodynamic radii of eight types of commercially available water soluble QDs. In this study, we show that the fluorescence intensity of CdSe core QDs increases as the emission of the QDs shifts towards the red but that hybrid CdSe/CdTe core QDs are less bright than the furthest red-shifted CdSe QDs. We further show that there is only a small size advantage in using blue-shifted QDs in biological applications because of the additional size of the water-stabilizing surface coat. Extending previous work, we finally also show that parallel four color multicolor (MC-SPT with QDs is possible at an image acquisition rate of at least 25 Hz. We demonstrate the technique by measuring the lateral dynamics of a lipid, biotin-cap-DPPE, in the cellular plasma membrane of live cells using four different colors of QDs; QD565, QD605, QD655, and QD705 as labels.
Direct observation of short-circuit diffusion during the formation of a single cupric oxide nanowire
International Nuclear Information System (INIS)
Cheng, C-L; Ma, Y-R; Chou, M H; Huang, C Y; Yeh, V; Wu, S Y
2007-01-01
Short-circuit diffusion was observed in a single CuO nanowire synthesized using a thermal oxidation method. The confocal Raman spectra of a single CuO nanowire permit direct observation of the nature of an individual CuO nanowire. The parameter order obtained from the inverse Raman B g 2 peak linewidth results in the length dependence of the linewidth and a short-circuit diffusion length of 3.3 μm. The observed structural information is also consistent with the energy dispersive x-ray spectroscopic mapping. The results confirm that the growth of CuO nanowires occurs through the short-circuit diffusion mechanism
Single particle level density in a finite depth potential well
International Nuclear Information System (INIS)
Shlomo, S.; Kolomietz, V.M.; Dejbakhsh, H.
1997-01-01
We consider the single particle level density g(ε) of a realistic finite depth potential well, concentrating on the continuum (ε>0) region. We carry out quantum-mechanical calculations of the partial level density g l (ε), associated with a well-defined orbital angular momentum l≤40, using the phase-shift derivative method and the Greens-function method and compare the results with those obtained using the Thomas-Fermi approximation. We also numerically calculate g(ε) as a l sum of g l (ε) up to a certain value of scr(l) max ≤40 and determine the corresponding smooth level densities using the Strutinsky smoothing procedure. We demonstrate, in accordance with Levinson close-quote s theorem, that the partial contribution g l (ε) to the single particle level density from continuum states has positive and negative values. However, g(ε) is nonnegative. We also point out that this is not the case for an energy-dependent potential well. copyright 1997 The American Physical Society
Single Particle Soot Photometer intercomparison at the AIDA chamber
Directory of Open Access Journals (Sweden)
M. Laborde
2012-12-01
Full Text Available Soot particles, consisting of black carbon (BC, organic carbon (OC, inorganic salts, and trace elements, are emitted into the atmosphere during incomplete combustion. Accurate measurements of atmospheric BC are important as BC particles cause adverse health effects and impact the climate.
Unfortunately, the accurate measurement of the properties and mass concentrations of BC particles remains difficult. The Single Particle Soot Photometer (SP2 can contribute to improving this situation by measuring the mass of refractory BC in individual particles as well as its mixing state.
Here, the results of the first detailed SP2 intercomparison, involving 6 SP2s from 6 different research groups, are presented, including the most evolved data products that can presently be calculated from SP2 measurements.
It was shown that a detection efficiency of almost 100% down to 1 fg BC per particle can readily be achieved, and that this limit can be pushed down to ∼0.2 fg BC with optimal SP2 setup. Number and mass size distributions of BC cores agreed within ±5% and ±10%, respectively, in between the SP2s, with larger deviations in the range below 1 fg BC.
The accuracy of the SP2's mass concentration measurement depends on the calibration material chosen. The SP2 has previously been shown to be equally sensitive to fullerene soot and ambient BC from sources where fossil fuel was dominant and less sensitive to fullerene soot than to Aquadag. Fullerene soot was therefore chosen as the standard calibration material by the SP2 user community; however, many data sets rely solely on Aquadag calibration measurements. The difference in SP2 sensitivity was found to be almost equal (fullerene soot to Aquadag response ratio of ∼0.75 at 8.9 fg BC for all SP2s. This allows the calculation of a fullerene soot equivalent calibration curve from a measured Aquadag calibration, when no fullerene soot calibration is available. It could be
Energetic particle diffusion coefficients upstream of quasi-parallel interplanetary shocks
Tan, L. C.; Mason, G. M.; Gloeckler, G.; Ipavich, F. M.
1989-01-01
The properties of about 30 to 130-keV/e protons and alpha particles upstream of six quasi-parallel interplanetary shocks that passed by the ISEE 3 spacecraft during 1978-1979 were analyzed, and the values for the upstream energegic particle diffusion coefficient, kappa, in these six events were deduced for a number of energies and upstream positions. These observations were compared with predictions of Lee's (1983) theory of shock acceleration. It was found that the observations verified the prediction of the A/Q dependence (where A and Q are the particle atomic mass and ionization state, respectively) of kappa for alpha and proton particles upstream of the quasi-parallel shocks.
Directory of Open Access Journals (Sweden)
Athale Chaitanya
2004-11-01
Full Text Available Abstract Background The dynamics of nuclear organization, nuclear bodies and RNPs in particular has been the focus of many studies. To understand their function, knowledge of their spatial nuclear position and temporal translocation is essential. Typically, such studies generate a wealth of data that require novel methods in image analysis and computational tools to quantitatively track particle movement on the background of moving cells and shape changing nuclei. Results We developed a novel 4-D image processing platform (TIKAL for the work with laser scanning and wide field microscopes. TIKAL provides a registration software for correcting global movements and local deformations of cells as well as 2-D and 3-D tracking software. With this new tool, we studied the dynamics of two different types of nuclear particles, namely nuclear bodies made from GFP-NLS-vimentin and microinjected 0.1 μm – wide polystyrene beads, by live cell time-lapse microscopy combined with single particle tracking and mobility analysis. We now provide a tool for the automatic 3-D analysis of particle movement in parallel with the acquisition of chromatin density data. Conclusions Kinetic analysis revealed 4 modes of movement: confined obstructed, normal diffusion and directed motion. Particle tracking on the background of stained chromatin revealed that particle movement is directly related to local reorganization of chromatin. Further a direct comparison of particle movement in the nucleoplasm and the cytoplasm exhibited an entirely different kinetic behaviour of vimentin particles in both compartments. The kinetics of nuclear particles were slightly affected by depletion of ATP and significantly disturbed by disruption of actin and microtubule networks. Moreover, the hydration state of the nucleus had a strong impact on the mobility of nuclear bodies since both normal diffusion and directed motion were entirely abolished when cells were challenged with 0.6 M
Bacher, Christian P; Reichenzeller, Michaela; Athale, Chaitanya; Herrmann, Harald; Eils, Roland
2004-01-01
Background The dynamics of nuclear organization, nuclear bodies and RNPs in particular has been the focus of many studies. To understand their function, knowledge of their spatial nuclear position and temporal translocation is essential. Typically, such studies generate a wealth of data that require novel methods in image analysis and computational tools to quantitatively track particle movement on the background of moving cells and shape changing nuclei. Results We developed a novel 4-D image processing platform (TIKAL) for the work with laser scanning and wide field microscopes. TIKAL provides a registration software for correcting global movements and local deformations of cells as well as 2-D and 3-D tracking software. With this new tool, we studied the dynamics of two different types of nuclear particles, namely nuclear bodies made from GFP-NLS-vimentin and microinjected 0.1 μm – wide polystyrene beads, by live cell time-lapse microscopy combined with single particle tracking and mobility analysis. We now provide a tool for the automatic 3-D analysis of particle movement in parallel with the acquisition of chromatin density data. Conclusions Kinetic analysis revealed 4 modes of movement: confined obstructed, normal diffusion and directed motion. Particle tracking on the background of stained chromatin revealed that particle movement is directly related to local reorganization of chromatin. Further a direct comparison of particle movement in the nucleoplasm and the cytoplasm exhibited an entirely different kinetic behaviour of vimentin particles in both compartments. The kinetics of nuclear particles were slightly affected by depletion of ATP and significantly disturbed by disruption of actin and microtubule networks. Moreover, the hydration state of the nucleus had a strong impact on the mobility of nuclear bodies since both normal diffusion and directed motion were entirely abolished when cells were challenged with 0.6 M sorbitol. This effect correlated
Choudhary, Mangilal; Mukherjee, S; Bandyopadhyay, P
2016-05-01
A versatile linear dusty (complex) plasma device is designed to study the transport and dynamical behavior of dust particles in a large volume. Diffused inductively coupled plasma is generated in the background of argon gas. A novel technique is used to introduce the dust particles in the main plasma by striking a secondary direct current glow discharge. These dust particles are found to get trapped in an electrostatic potential well, which is formed due to the combination of the ambipolar electric field caused by diffusive plasma and the field produced by the charged glass wall of the vacuum chamber. According to the requirements, the volume of the dust cloud can be controlled very precisely by tuning the plasma and discharge parameters. The present device can be used to address the underlying physics behind the transport of dust particles, self-excited dust acoustic waves, and instabilities. The detailed design of this device, plasma production and characterization, trapping and transport of the dust particle, and some of the preliminary experimental results are presented.
Three-dimensional single-particle tracking in live cells: news from the third dimension
International Nuclear Information System (INIS)
Dupont, A; Wehnekamp, F; Katayama, Y; Lamb, D C; Gorelashvili, M; Schüller, V; Arcizet, D; Heinrich, D
2013-01-01
Single-particle tracking (SPT) is of growing importance in the biophysical community. It is used to investigate processes such as drug and gene delivery, viral uptake, intracellular trafficking or membrane-bound protein mobility. Traditionally, SPT is performed in two dimensions (2D) because of its technical simplicity. However, life occurs in three dimensions (3D) and many methods have been recently developed to track particles in 3D. Now, is the third dimension worth the effort? Here we investigate the differences between the 2D and 3D analyses of intracellular transport with the 3D development of a time-resolved mean square displacement (MSD) analysis introduced previously. The 3D trajectories, and the 2D projections, of fluorescent nanoparticles were obtained with an orbital tracking microscope in two different cell types: in Dictyostelium discoideum ameba and in adherent, more flattened HuH-7 human cells. As expected from the different 3D organization of both cells’ cytoskeletons, a third of the active transport was lost upon projection in the ameba whereas the identification of the active phases was barely affected in the HuH-7 cells. In both cell types, we found intracellular diffusion to be anisotropic and the diffusion coefficient values derived from the 2D analysis were therefore biased. (paper)
Cytotoxicity of ferrite particles by MTT and agar diffusion methods for hyperthermic application
International Nuclear Information System (INIS)
Kim, Dong-Hyun; Lee, Se-Ho; Kim, Kyoung-Nam; Kim, Kwang-Mahn; Shim, In-Bo; Lee, Yong-Keun
2005-01-01
We investigated the cytotoxicity of the prepared various ferrites (Fe-, Li-, Ni/Zn/Cu-, Ba-, Sr-, Co-, Co/Ni-ferrites) using MTT assay as well as agar diffusion method. Their cytotoxicity was compared with that of alginate-encapsulated ferrites. In the MTT assay, Fe 3 O 4 and SrFe 12 O 19 ferrite showed the highest cell viability of 90%. Alginate-encapsulated Ba-ferrite was ranked mildly cytotoxic, whereas their ferrite particles were ranked cytotoxic
Fagioli, Simone; Radici, Emanuela
2018-01-01
We investigate the existence of weak type solutions for a class of aggregation-diffusion PDEs with nonlinear mobility obtained as large particle limit of a suitable nonlocal version of the follow-the-leader scheme, which is interpreted as the discrete Lagrangian approximation of the target continuity equation. We restrict the analysis to nonnegative initial data in $L^{\\infty} \\cap BV$ away from vacuum and supported in a closed interval with zero-velocity boundary conditions. The main novelti...
International Nuclear Information System (INIS)
Kubaschewski, O.
1983-01-01
The diffusion rate values of titanium, its compounds and alloys are summarized and tabulated. The individual chemical diffusion coefficients and self-diffusion coefficients of certain isotopes are given. Experimental methods are listed which were used for the determination of diffusion coefficients. Some values have been taken over from other studies. Also given are graphs showing the temperature dependences of diffusion and changes in the diffusion coefficient with concentration changes
Energy Technology Data Exchange (ETDEWEB)
Strauss, R. D.; Engelbrecht, N. E.; Dunzlaff, P. [Center for Space Research, North-West University, Potchefstroom, 2522 (South Africa); Roux, J. A. le [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL 3585 (United States); Ruffolo, D., E-mail: dutoit.strauss@nwu.ac.za [Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand)
2016-07-01
We investigate the transport of charged particles across magnetic discontinuities, focusing specifically on stream interfaces associated with co-rotating interaction regions in the solar wind. We argue that the magnetic field fluctuations perpendicular to the magnetic discontinuity, and usually also perpendicular to the mean magnetic field, are strongly damped in the vicinity of such a magnetic structure, leading to anisotropic perpendicular diffusion. Assuming that perpendicular diffusion arises from drifts in a turbulent magnetic field, we adopt a simplified approach to derive the relevant perpendicular diffusion coefficient. This approach, which we believe gives the correct principal dependences as expected from more elaborate calculations, allows us to investigate transport in different turbulent geometries, such as longitudinal compressional turbulence that may be present near the heliopause. Although highly dependent on the (possibly anisotropic) perpendicular length scales and turbulence levels, we generally find perpendicular diffusion to be strongly damped at magnetic discontinuities, which may in turn provide an explanation for the large particle gradients associated with these structures.
Long-time self-diffusion of charged spherical colloidal particles in parallel planar layers.
Contreras-Aburto, Claudio; Báez, César A; Méndez-Alcaraz, José M; Castañeda-Priego, Ramón
2014-06-28
The long-time self-diffusion coefficient, D(L), of charged spherical colloidal particles in parallel planar layers is studied by means of Brownian dynamics computer simulations and mode-coupling theory. All particles (regardless which layer they are located on) interact with each other via the screened Coulomb potential and there is no particle transfer between layers. As a result of the geometrical constraint on particle positions, the simulation results show that D(L) is strongly controlled by the separation between layers. On the basis of the so-called contraction of the description formalism [C. Contreras-Aburto, J. M. Méndez-Alcaraz, and R. Castañeda-Priego, J. Chem. Phys. 132, 174111 (2010)], the effective potential between particles in a layer (the so-called observed layer) is obtained from integrating out the degrees of freedom of particles in the remaining layers. We have shown in a previous work that the effective potential performs well in describing the static structure of the observed layer (loc. cit.). In this work, we find that the D(L) values determined from the simulations of the observed layer, where the particles interact via the effective potential, do not agree with the exact values of D(L). Our findings confirm that even when an effective potential can perform well in describing the static properties, there is no guarantee that it will correctly describe the dynamic properties of colloidal systems.
Delay-induced wave instabilities in single-species reaction-diffusion systems
Otto, Andereas; Wang, Jian; Radons, Günter
2017-11-01
The Turing (wave) instability is only possible in reaction-diffusion systems with more than one (two) components. Motivated by the fact that a time delay increases the dimension of a system, we investigate the presence of diffusion-driven instabilities in single-species reaction-diffusion systems with delay. The stability of arbitrary one-component systems with a single discrete delay, with distributed delay, or with a variable delay is systematically analyzed. We show that a wave instability can appear from an equilibrium of single-species reaction-diffusion systems with fluctuating or distributed delay, which is not possible in similar systems with constant discrete delay or without delay. More precisely, we show by basic analytic arguments and by numerical simulations that fast asymmetric delay fluctuations or asymmetrically distributed delays can lead to wave instabilities in these systems. Examples, for the resulting traveling waves are shown for a Fisher-KPP equation with distributed delay in the reaction term. In addition, we have studied diffusion-induced instabilities from homogeneous periodic orbits in the same systems with variable delay, where the homogeneous periodic orbits are attracting resonant periodic solutions of the system without diffusion, i.e., periodic orbits of the Hutchinson equation with time-varying delay. If diffusion is introduced, standing waves can emerge whose temporal period is equal to the period of the variable delay.
International Nuclear Information System (INIS)
Lim, S C; Teo, L P
2009-01-01
Single-file diffusion behaves as normal diffusion at small time and as subdiffusion at large time. These properties can be described in terms of fractional Brownian motion with variable Hurst exponent or multifractional Brownian motion. We introduce a new stochastic process called Riemann–Liouville step fractional Brownian motion which can be regarded as a special case of multifractional Brownian motion with a step function type of Hurst exponent tailored for single-file diffusion. Such a step fractional Brownian motion can be obtained as a solution of the fractional Langevin equation with zero damping. Various kinds of fractional Langevin equations and their generalizations are then considered in order to decide whether their solutions provide the correct description of the long and short time behaviors of single-file diffusion. The cases where the dissipative memory kernel is a Dirac delta function, a power-law function and a combination of these functions are studied in detail. In addition to the case where the short time behavior of single-file diffusion behaves as normal diffusion, we also consider the possibility of a process that begins as ballistic motion
Decay properties of high-lying single-particles modes
Energy Technology Data Exchange (ETDEWEB)
Beaumel, D. [Institut de Physique Nucleaire, 91 - Orsay (France); Fortier, S. [Institut de Physique Nucleaire, 91 - Orsay (France); Gales, S. [Institut de Physique Nucleaire, 91 - Orsay (France); Guillot, J. [Institut de Physique Nucleaire, 91 - Orsay (France); Langevin-Joliot, H. [Institut de Physique Nucleaire, 91 - Orsay (France); Laurent, H. [Institut de Physique Nucleaire, 91 -Orsay (France); Maison, J.M. [Institut de Physique Nucleaire, 91 - Orsay (France); Vernotte, J. [Institut de Physique Nucleaire, 91 - Orsay (France); Bordewijck, J. [Kernfysisch Versneller Instituut, 9747 Groningen (Netherlands); Brandenburg, S. [Kernfysisch Versneller Instituut, 9747 Groningen (Netherlands); Krasznahorkay, A. [Kernfysisch Versneller Instituut, 9747 Groningen (Netherlands); Crawley, G.M. [NSCL, Michigan State University, East Lansing, MI 48824 (United States); Massolo, C.P. [Universitad Nacional de La Plata, 1900 La Plata (Argentina); Renteria, M. [Universitad Nacional de La Plata, 1900 La Plata (Argentina); Khendriche, A. [University of Tizi-Ouzou, Tizi-Ouzou (Algeria)
1996-03-18
The neutron decay of high-lying single-particle states in {sup 64}Ni, {sup 90}Zr, {sup 120}Sn and {sup 208}Pb excited by means of the ({alpha},{sup 3}He) reaction has been investigated at 120 MeV incident energy using the multidetector EDEN. The characteristics of this reaction are studied using inclusive spectra and angular correlation analysis. The structure located between 11 and 15 MeV in {sup 91}Zr, and between 8 and 12 MeV excitation energy in {sup 209}Pb display large departures from a pure statistical decay. The corresponding non-statistical branching ratios are compared with the results of two theoretical calculations. (orig.).
Classification using diffraction patterns for single-particle analysis
Energy Technology Data Exchange (ETDEWEB)
Hu, Hongli; Zhang, Kaiming [Department of Biophysics, the Health Science Centre, Peking University, Beijing 100191 (China); Meng, Xing, E-mail: xmeng101@gmail.com [Wadsworth Centre, New York State Department of Health, Albany, New York 12201 (United States)
2016-05-15
An alternative method has been assessed; diffraction patterns derived from the single particle data set were used to perform the first round of classification in creating the initial averages for proteins data with symmetrical morphology. The test protein set was a collection of Caenorhabditis elegans small heat shock protein 17 obtained by Cryo EM, which has a tetrahedral (12-fold) symmetry. It is demonstrated that the initial classification on diffraction patterns is workable as well as the real-space classification that is based on the phase contrast. The test results show that the information from diffraction patterns has the enough details to make the initial model faithful. The potential advantage using the alternative method is twofold, the ability to handle the sets with poor signal/noise or/and that break the symmetry properties. - Highlights: • New classification method. • Create the accurate initial model. • Better in handling noisy data.
Classification using diffraction patterns for single-particle analysis
International Nuclear Information System (INIS)
Hu, Hongli; Zhang, Kaiming; Meng, Xing
2016-01-01
An alternative method has been assessed; diffraction patterns derived from the single particle data set were used to perform the first round of classification in creating the initial averages for proteins data with symmetrical morphology. The test protein set was a collection of Caenorhabditis elegans small heat shock protein 17 obtained by Cryo EM, which has a tetrahedral (12-fold) symmetry. It is demonstrated that the initial classification on diffraction patterns is workable as well as the real-space classification that is based on the phase contrast. The test results show that the information from diffraction patterns has the enough details to make the initial model faithful. The potential advantage using the alternative method is twofold, the ability to handle the sets with poor signal/noise or/and that break the symmetry properties. - Highlights: • New classification method. • Create the accurate initial model. • Better in handling noisy data.
Hierarchical Ag mesostructures for single particle SERS substrate
Energy Technology Data Exchange (ETDEWEB)
Xu, Minwei, E-mail: xuminwei@xjtu.edu.cn; Zhang, Yin
2017-01-30
Highlights: • Hierarchical Ag mesostructures with the size of 250, 360 and 500 nm are synthesized via a seed-mediated approach. • The Ag mesostructures present the tailorable size and highly roughened surfaces. • The average enhancement factors for individual Ag mesostructures were estimated to be as high as 10{sup 6}. - Abstract: Hierarchical Ag mesostructures with highly rough surface morphology have been synthesized at room temperature through a simple seed-mediated approach. Electron microscopy characterizations indicate that the obtained Ag mesostructures exhibit a textured surface morphology with the flower-like architecture. Moreover, the particle size can be tailored easily in the range of 250–500 nm. For the growth process of the hierarchical Ag mesostructures, it is believed that the self-assembly mechanism is more reasonable rather than the epitaxial overgrowth of Ag seed. The oriented attachment of nanoparticles is revealed during the formation of Ag mesostructures. Single particle surface enhanced Raman spectra (sp-SERS) of crystal violet adsorbed on the hierarchical Ag mesostructures were measured. Results reveal that the hierarchical Ag mesostructures can be highly sensitive sp-SERS substrates with good reproducibility. The average enhancement factors for individual Ag mesostructures are estimated to be about 10{sup 6}.
Stacey, W. M.; Groebner, R. J.
2009-11-01
Momentum balance requires that the radial particle flux satisfy a pinch-diffusion relationship. The pinch can be evaluated in terms of measurable quantities (rotation velocities, Er, etc.) by the use of momentum and particle balance [1,2], the radial particle flux can be determined by momentum balance, and then the diffusion coefficient can be evaluated from the pinch diffusion relation using the measured density gradient. Applications to several DIII-D H-mode plasmas are presented. 6pt [1] W.M. Stacey, Contr. Plasma Phys. 48, 94 (2008). [2] W.M. Stacey and R.J. Groebner, Phys. Plasmas 15, 012503 (2008).
Actinide transport in Topopah Spring Tuff: Pore size, particle size, and diffusion
International Nuclear Information System (INIS)
Buchholtz ten Brink, M.; Phinney, D.L.; Smith, D.K.
1991-04-01
Diffusive transport rates for aqueous species in a porous medium are a function of sorption, molecular diffusion, and sample tortuosity. With heterogeneous natural samples, an understanding of the effect of multiple transport paths and sorption mechanisms is particularly important since a small amount of radioisotope traveling via a faster-than-anticipated transport path may invalidate the predictions of transport codes which assume average behavior. Static-diffusion experiments using aqueous 238 U tracer in tuff indicated that U transport was faster in regions of greater porosity and that apparent diffusion coefficients depended on the scale (m or μm) over which concentration gradients were measured in Topopah Spring Tuff. If a significant fraction of actinides in high-level waste are released to the environment in forms that do not sorb to the matrix, they may be similarly transported along fast paths in porous regions of the tuff. To test this, aqueous diffusion rates in tuff were measured for 238 U and 239 Pu leached from doped glass. Measured transport rates and patterns were consistent in both systems with a dual-porosity transported moeld. In addition, filtration or channelling of actinides associated with colloidal particles may significantly affect the radionuclide transport rate in Topopah Spring tuff. 9 refs., 7 figs
Application of diffusion theory to the transport of neutral particles in fusion plasmas
International Nuclear Information System (INIS)
Hasan, M.Z.
1985-01-01
It is shown that the widely held view that diffusion theory can not provide good accuracy for the transport of neutral particles in fusion plasmas is misplaced. In fact, it is shown that multigroup diffusion theory gives quite good accuracy as compared to the transport theory. The reasons for this are elaborated and some of the physical and theoretical reasons which make the multigroup diffusion theory provide good accuracy are explained. Energy dependence must be taken into consideration to obtain a realistic neutral atom distribution in fusion plasmas. There are two reasons for this; presence of either is enough to necessitate an energy dependent treatment. First, the plasma temperature varies spatially, and second, the ratio of charge-exchange to total plasma-neutral interaction cross section (c) is not close to one. A computer code to solve the one-dimensional multigroup diffusion theory in general geometry (slab, cylindrical and spherical) has been written for use on Cray computers, and its results are compared with those from the one-dimensional transport code ANISN to support the above finding. A fast, compact and versatile two-dimensional finite element multigroup diffusion theory code, FINAT, in X-Y and R-Z cylindrical/toroidal geometries has been written for use on CRAY computers. This code has been compared with the two dimensional transport code DOT-4.3. The accuracy is very good, and FENAT runs much faster compared even to DOT-4.3 which is a finite difference code
Liot, O; Socol, M; Garcia, L; Thiéry, J; Figarol, A; Mingotaud, A F; Joseph, P
2018-06-13
This paper presents experimental results about transport of dilute suspensions of nano-objects in silicon-glass micrometric and sub-micrometric channels. Two kinds of objects are used: solid, rigid latex beads and spherical capsule-shaped, soft polymersomes. They are tracked using fluorescence microscopy. Three aspects are studied: confinement (ratio between particle diameter and channel depth), Brownian diffusion and particle nature. The aim of this work is to understand how these different aspects affect the transport of suspensions in narrow channels and to understand the different mechanisms at play. Concerning the solid beads we observe the appearance of two regimes, one where the experimental mean velocity is close to the expected one and another where this velocity is lower. This is directly related to a competition between confinement, Brownian diffusion and advection. These two regimes are shown to be linked to the inhomogeneity of particles distribution in the channel depth, which we experimentally deduce from velocity distributions. This inhomogeneity appears during the entrance process into the sub-micrometric channels, as for hydrodynamic separation or deterministic lateral displacement. Concerning the nature of the particles we observed a shift of transition towards the second regime likely due to the relationships between shear stress and polymersomes mechanical properties which could reduce the inhomogeneity imposed by the geometry of our device.
Liot, O.; Socol, M.; Garcia, L.; Thiéry, J.; Figarol, A.; Mingotaud, A. F.; Joseph, P.
2018-06-01
This paper presents experimental results about transport of dilute suspensions of nano-objects in silicon-glass micrometric and sub-micrometric channels. Two kinds of objects are used: solid, rigid latex beads and spherical capsule-shaped, soft polymersomes. They are tracked using fluorescence microscopy. Three aspects are studied: confinement (ratio between particle diameter and channel depth), Brownian diffusion and particle nature. The aim of this work is to understand how these different aspects affect the transport of suspensions in narrow channels and to understand the different mechanisms at play. Concerning the solid beads we observe the appearance of two regimes, one where the experimental mean velocity is close to the expected one and another where this velocity is lower. This is directly related to a competition between confinement, Brownian diffusion and advection. These two regimes are shown to be linked to the inhomogeneity of particles distribution in the channel depth, which we experimentally deduce from velocity distributions. This inhomogeneity appears during the entrance process into the sub-micrometric channels, as for hydrodynamic separation or deterministic lateral displacement. Concerning the nature of the particles we observed a shift of transition towards the second regime likely due to the relationships between shear stress and polymersomes mechanical properties which could reduce the inhomogeneity imposed by the geometry of our device.
International Nuclear Information System (INIS)
Lim, Cheolwoong; Yan Bo; Yin Leilei; Zhu Likun
2012-01-01
Highlights: ► The microstructure of LIB electrodes was obtained by X-ray micro/nano-CT. ► We studied diffusion-induced stresses based on realistic 3D microstructures. ► Stresses depend on geometric characteristics of electrode particle. ► Stresses in a real particle are much higher than those in a spherical particle. - Abstract: Lithium ion batteries experience diffusion-induced stresses during charge and discharge processes which can cause electrode failure in the form of fracture. Previous diffusion-induced stress models and simulations are mainly based on simple active material particle structures, such as spheres and ellipsoids. However, the simple structure model cannot reveal the stress development in a real complex lithium ion battery electrode. In this paper, we studied the diffusion-induced stresses numerically based on a realistic morphology of reconstructed particles during the lithium ion intercalation process. The morphology of negative and positive active materials of a lithium ion battery was determined using X-ray micro/nano computed tomography technology. Diffusion-induced stresses were simulated at different C rates under galvonostatic conditions and compared with spherical particles. The simulation results show that the intercalation stresses of particles depend on their geometric characteristics. The highest von Mises stress and Tresca stress in a real particle are several times higher than the stresses in a spherical particle with the same volume.
International Nuclear Information System (INIS)
Marinak, M.
1990-02-01
The problem of deducing χ e from measurements of the propagation of a monopole heatpulse is considered. An extended diffusive model, which takes into account perturbed sources and sinks is extended to the case of a monopole heat input. χ e is expressed as a function of two observables, the heat pulse velocity and the radial damping rate. Two simple expressions valid for two different ranges of the radius of the poloidal waist of the beam power profile are given. The expressions are valid in the heat pulse measurement region, extending radially 0.05a beyond the beam power waist to near 0.6a. The inferred χ e is a local value, not an average value of the radial χ e profile. 7 refs., 6 figs., 1 tab
Energy Technology Data Exchange (ETDEWEB)
Wang, Jing [Iowa State Univ., Ames, IA (United States)
2013-01-11
We analyze the spatiotemporal behavior of species concentrations in a diffusion-mediated conversion reaction which occurs at catalytic sites within linear pores of nanometer diameter. A strict single-file (no passing) constraint occurs in the diffusion within such narrow pores. Both transient and steady-state behavior is precisely characterized by kinetic Monte Carlo simulations of a spatially discrete lattice–gas model for this reaction–diffusion process considering various distributions of catalytic sites. Exact hierarchical master equations can also be developed for this model. Their analysis, after application of mean-field type truncation approximations, produces discrete reaction–diffusion type equations (mf-RDE). For slowly varying concentrations, we further develop coarse-grained continuum hydrodynamic reaction–diffusion equations (h-RDE) incorporating a precise treatment of single-file diffusion (SFD) in this multispecies system. Noting the shortcomings of mf-RDE and h-RDE, we then develop a generalized hydrodynamic (GH) formulation of appropriate gh-RDE which incorporates an unconventional description of chemical diffusion in mixed-component quasi-single-file systems based on a refined picture of tracer diffusion for finite-length pores. The gh-RDE elucidate the non-exponential decay of the steady-state reactant concentration into the pore and the non-mean-field scaling of the reactant penetration depth. Then an extended model of a catalytic conversion reaction within a functionalized nanoporous material is developed to assess the effect of varying the reaction product – pore interior interaction from attractive to repulsive. The analysis is performed utilizing the generalized hydrodynamic formulation of the reaction-diffusion equations which can reliably capture the complex interplay between reaction and restricted transport for both irreversible and reversible reactions.
Energetic particle parallel diffusion in a cascading wave turbulence in the foreshock region
Directory of Open Access Journals (Sweden)
F. Otsuka
2007-09-01
Full Text Available We study parallel (field-aligned diffusion of energetic particles in the upstream of the bow shock with test particle simulations. We assume parallel shock geometry of the bow shock, and that MHD wave turbulence convected by the solar wind toward the shock is purely transverse in one-dimensional system with a constant background magnetic field. We use three turbulence models: a homogeneous turbulence, a regular cascade from a large scale to smaller scales, and an inverse cascade from a small scale to larger scales. For the homogeneous model the particle motions along the average field are Brownian motions due to random and isotropic scattering across 90 degree pitch angle. On the other hand, for the two cascade models particle motion is non-Brownian due to coherent and anisotropic pitch angle scattering for finite time scale. The mean free path λ_{||} calculated by the ensemble average of these particle motions exhibits dependence on the distance from the shock. It also depends on the parameters such as the thermal velocity of the particles, solar wind flow velocity, and a wave turbulence model. For the inverse cascade model, the dependence of λ_{||} at the shock on the thermal energy is consistent with the hybrid simulation done by Giacalone (2004, but the spatial dependence of λ_{||} is inconsistent with it.
Soot particle size measurements in ethylene diffusion flames at elevated pressures
Steinmetz, Scott
2016-05-07
Soot particle size is investigated in laminar nitrogen-diluted ethylene coflow diffusion flames at 4, 8, 12 and 16 atm. Line of sight attenuation and scattering are used to measure two-dimensional soot volume fraction and particle size fields for the first time at elevated pressures. Soot volume fraction dependence on pressure is consistent with the observations of similar studies, scaling approximately with the square of pressure. Scattering intensity is analyzed through Rayleigh and Rayleigh-Debye-Gans polydisperse fractal aggregate theories to provide two estimates of particle size. An increase in overall particle sizes with pressure is found, consistent with similar one-dimensional studies. Particle diameters in the annulus of the flame increase faster with pressure than those on centerline. Contrary to previous studies, the dependence of particle size on pressure was found to taper off between 8 and 12 atm, with little observed growth beyond 12 atm. The measurements provide additional data for one of the International Sooting Flame (ISF) workshop\\'s target pressurized flames.
International Nuclear Information System (INIS)
Rosa, A; Neumann, F R; Gasser, S M; Stasiak, A
2006-01-01
Inspired by experiments that use single-particle tracking to measure the regions of confinement of selected chromosomal regions within cell nuclei, we have developed an analytical approach that takes into account various possible positions and shapes of the confinement regions. We show, in particular, that confinement of a particle into a subregion that is entirely enclosed within a spherical volume can lead to a higher limit of the mean radial square displacement value than the one associated with a particle that can explore the entire spherical volume. Finally, we apply the theory to analyse the motion of extrachromosomal chromatin rings within nuclei of living yeast
Single-particle motion in large-amplitude quadrupole shape transition
International Nuclear Information System (INIS)
Yamada, Kazuya
1991-01-01
The microscopic structure of the single-particle motion for the spherical-deformed transitional nuclei is analysed by using the self-consistent collective-coordinate method (SCC method). The single-particle motion in the moving-frame of reference called the collective vibrating coordinate frame is introduced by the generalized Bogoliubov transformation depending on the collective coordinate. The numerical calculations of the single-particle (quasi-particle) energy level diagrams and their occupation probabilities for the static deformation are carried out for the Sm isotopes. A clear change of the single-particle distribution structure appears in the course of deformation. (author)
Report of the working group on single-particle nonlinear dynamics
International Nuclear Information System (INIS)
Bazzani, A.; Bongini, L.; Corbett, J.; Dome, G.; Fedorova, A.; Freguglia, P.; Ng, K.; Ohmi, K.; Owen, H.; Papaphilippou, Y.; Robin, D.; Safranek, J.; Scandale, W.; Terebilo, A.; Turchetti, G.; Todesco, E.; Warnock, R.; Zeitlin, M.
1999-01-01
The Working Group on single-particle nonlinear dynamics has developed a set of tools to study nonlinear dynamics in a particle accelerator. The design of rings with large dynamic apertures is still far from automatic. The Working Group has concluded that nonlinear single-particle dynamics limits the performance of accelerators. (AIP) copyright 1999 American Institute of Physics
Single-shot spiral imaging enabled by an expanded encoding model: Demonstration in diffusion MRI.
Wilm, Bertram J; Barmet, Christoph; Gross, Simon; Kasper, Lars; Vannesjo, S Johanna; Haeberlin, Max; Dietrich, Benjamin E; Brunner, David O; Schmid, Thomas; Pruessmann, Klaas P
2017-01-01
The purpose of this work was to improve the quality of single-shot spiral MRI and demonstrate its application for diffusion-weighted imaging. Image formation is based on an expanded encoding model that accounts for dynamic magnetic fields up to third order in space, nonuniform static B 0 , and coil sensitivity encoding. The encoding model is determined by B 0 mapping, sensitivity mapping, and concurrent field monitoring. Reconstruction is performed by iterative inversion of the expanded signal equations. Diffusion-tensor imaging with single-shot spiral readouts is performed in a phantom and in vivo, using a clinical 3T instrument. Image quality is assessed in terms of artefact levels, image congruence, and the influence of the different encoding factors. Using the full encoding model, diffusion-weighted single-shot spiral imaging of high quality is accomplished both in vitro and in vivo. Accounting for actual field dynamics, including higher orders, is found to be critical to suppress blurring, aliasing, and distortion. Enhanced image congruence permitted data fusion and diffusion tensor analysis without coregistration. Use of an expanded signal model largely overcomes the traditional vulnerability of spiral imaging with long readouts. It renders single-shot spirals competitive with echo-planar readouts and thus deploys shorter echo times and superior readout efficiency for diffusion imaging and further prospective applications. Magn Reson Med 77:83-91, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Directory of Open Access Journals (Sweden)
Xiaoyun Yang
Full Text Available Pseudorabies virus (PRV initially replicates in the porcine upper respiratory tract. It easily invades the mucosae and submucosae for subsequent spread throughout the body via blood vessels and nervous system. In this context, PRV developed ingenious processes to overcome different barriers such as epithelial cells and the basement membrane. Another important but often overlooked barrier is the substantial mucus layer which coats the mucosae. However, little is known about how PRV particles interact with porcine respiratory mucus. We therefore measured the barrier properties of porcine tracheal respiratory mucus, and investigated the mobility of nanoparticles including PRV in this mucus. We developed an in vitro model utilizing single particle tracking microscopy. Firstly, the mucus pore size was evaluated with polyethylene glycol coupled (PEGylated nanoparticles and atomic force microscope. Secondly, the mobility of PRV in porcine tracheal respiratory mucus was examined and compared with that of negative, positive and PEGylated nanoparticles. The pore size of porcine tracheal respiratory mucus ranged from 80 to 1500 nm, with an average diameter of 455±240 nm. PRV (zeta potential: -31.8±1.5 mV experienced a severe obstruction in porcine tracheal respiratory mucus, diffusing 59-fold more slowly than in water. Similarly, the highly negatively (-49.8±0.6 mV and positively (36.7±1.1 mV charged nanoparticles were significantly trapped. In contrast, the nearly neutral, hydrophilic PEGylated nanoparticles (-9.6±0.8 mV diffused rapidly, with the majority of particles moving 50-fold faster than PRV. The mobility of the particles measured was found to be related but not correlated to their surface charge. Furthermore, PEGylated PRV (-13.8±0.9 mV was observed to diffuse 13-fold faster than native PRV. These findings clearly show that the mobility of PRV was significantly hindered in porcine tracheal respiratory mucus, and that the obstruction of PRV
Single particle dynamics of many-body systems described by Vlasov-Fokker-Planck equations
International Nuclear Information System (INIS)
Frank, T.D.
2003-01-01
Using Langevin equations we describe the random walk of single particles that belong to particle systems satisfying Vlasov-Fokker-Planck equations. In doing so, we show that Haissinski distributions of bunched particles in electron storage rings can be derived from a particle dynamics model
International Nuclear Information System (INIS)
Mascalchi, Patrice; Lamort, Anne Sophie; Salomé, Laurence; Dumas, Fabrice
2012-01-01
Highlights: ► We studied the diffusion of single CD4 receptors on living lymphocytes. ► This study reveals that CD4 receptors have either a random or confined diffusion. ► The dynamics of unconfined CD4 receptors was accelerated by a temperature raise. ► The dynamics of confined CD4 receptors was unchanged by a temperature raise. ► Our results suggest the existence of two different environments for CD4 receptors. -- Abstract: We investigated the lateral diffusion of the HIV receptor CD4 at the surface of T lymphocytes at 20 °C and 37 °C by Single Particle Tracking using Quantum Dots. We found that the receptors presented two major distinct behaviors that were not equally affected by temperature changes. About half of the receptors showed a random diffusion with a diffusion coefficient increasing upon raising the temperature. The other half of the receptors was permanently or transiently confined with unchanged dynamics on raising the temperature. These observations suggest that two distinct subpopulations of CD4 receptors with different environments are present at the surface of living T lymphocytes.
A photo-tunable membrane based on inter-particle crosslinking for decreasing diffusion rates
Li, Song
2015-01-01
Functional polymeric membranes are widely used to adjust and control the diffusion of molecules. Herein, photosensitive poly(hydroxycinnamic acid) (PHCA) microspheres, which were fabricated by an emulsification solvent-evaporation method, were embedded into an ethyl cellulose matrix to fabricate composite membranes with a photo-tunable property. The photoreaction of PHCA is based on the [2 + 2] cycloaddition of cinnamic moieties upon irradiation with 365 nm light. Intra-particle crosslinking in PHCA microspheres was confirmed in the solution phase, while inter-particle crosslinking between adjacent PHCA microspheres dominated the solid membrane phase. The inter-particle crosslinking turned down the permeability of the composite membranes by 74%. To prove the applicability of the designed system, the composite membrane was coated on a model drug reservoir tablet. Upon irradiating the tablet with UV light, the original permeability decreased by 57%, and consequently the diffusion rate of the cargo (Rhodamine B) from the tablet slowed down. Most importantly, the tablet showed sustained release for over 10 days. This controllability can be further tuned by adjusting the membrane thickness. Composite membranes showed excellent processing reproducibility together with consistent mechanical properties. These results demonstrate that the incorporation of photosensitive PHCA microspheres in polymeric membranes provides a promising photo-tunable material for different applications including coating and separation. This journal is © The Royal Society of Chemistry 2015.
Analytical-numerical method for treatment of turbulent diffusion of particles in the air
International Nuclear Information System (INIS)
Arsov, L.J.
1976-01-01
This work deals with the problem of air pollution around a stationary punctual source. For description of air pollution from a punctual source a mathematical model is suggested, and for calculation of effluents concentration an analytical-numerical algorithm is given. In addition to the analitical treatment the mathematical model is far more flexible and complete. Eddy diffusivity is represented by an arbitrary function, and an arbitrary wind velocity profile ahs been proposed. The apsorption of the ground is introduced through a variable apsorption coefficient, and the sedimentation through the mean velocity of deposition. To determine the movement of particles a parabolic equation of diffusion is used. The method has been tested through calculation of effluents concentration for different values of physical parameters
Particle-level simulations of flocculation in a fiber suspension flowing through a diffuser
Directory of Open Access Journals (Sweden)
Andrić Jelena S.
2017-01-01
Full Text Available We investigate flocculation in dilute suspensions of rigid, straight fibers in a decelerating flow field of a diffuser. We carry out numerical studies using a particle-level simulation technique that takes into account the fiber inertia and the non-creeping fiber-flow interactions. The fluid flow is governed by the Reynolds-averaged Navier-Stokes equations with the standard k-omega eddy-viscosity turbulence model. A one-way coupling between the fibers and the flow is considered with a stochastic model for the fiber dispersion due to turbulence. The fibers interact through short-range attractive forces that cause them to aggregate into flocs when fiber-fiber collisions occur. We show that ballistic deflection of fibers greatly increases the flocculation in the diffuser. The inlet fiber kinematics and the fiber inertia are the main parameters that affect fiber flocculation in the prediffuser region.
Diffusion of test particles in stochastic magnetic fields for small Kubo numbers
International Nuclear Information System (INIS)
Neuer, Marcus; Spatschek, Karl H.
2006-01-01
Motion of charged particles in a collisional plasma with stochastic magnetic field lines is investigated on the basis of the so-called A-Langevin equation. Compared to the previously used V-Langevin model, here finite Larmor radius effects are taken into account. The A-Langevin equation is solved under the assumption that the Lagrangian correlation function for the magnetic field fluctuations is related to the Eulerian correlation function (in Gaussian form) via the Corrsin approximation. The latter is justified for small Kubo numbers. The velocity correlation function, being averaged with respect to the stochastic variables including collisions, leads to an implicit differential equation for the mean square displacement. From the latter, different transport regimes, including the well-known Rechester-Rosenbluth diffusion coefficient, are derived. Finite Larmor radius contributions show a decrease of the diffusion coefficient compared to the guiding center limit. The case of small (or vanishing) mean fields is also discussed
Xu, Jiao; Li, Mei; Shi, Guoliang; Wang, Haiting; Ma, Xian; Wu, Jianhui; Shi, Xurong; Feng, Yinchang
2017-11-15
In this study, single particle mass spectra signatures of both coal burning boiler and biomass burning boiler emitted particles were studied. Particle samples were suspended in clean Resuspension Chamber, and analyzed by ELPI and SPAMS simultaneously. The size distribution of BBB (biomass burning boiler sample) and CBB (coal burning boiler sample) are different, as BBB peaks at smaller size, and CBB peaks at larger size. Mass spectra signatures of two samples were studied by analyzing the average mass spectrum of each particle cluster extracted by ART-2a in different size ranges. In conclusion, BBB sample mostly consists of OC and EC containing particles, and a small fraction of K-rich particles in the size range of 0.2-0.5μm. In 0.5-1.0μm, BBB sample consists of EC, OC, K-rich and Al_Silicate containing particles; CBB sample consists of EC, ECOC containing particles, while Al_Silicate (including Al_Ca_Ti_Silicate, Al_Ti_Silicate, Al_Silicate) containing particles got higher fractions as size increase. The similarity of single particle mass spectrum signatures between two samples were studied by analyzing the dot product, results indicated that part of the single particle mass spectra of two samples in the same size range are similar, which bring challenge to the future source apportionment activity by using single particle aerosol mass spectrometer. Results of this study will provide physicochemical information of important sources which contribute to particle pollution, and will support source apportionment activities. Copyright © 2017. Published by Elsevier B.V.
Single-molecule study on polymer diffusion in a melt state: Effect of chain topology
Habuchi, Satoshi; Fujiwara, Susumu; Yamamoto, Takuya; Vá cha, Martin; Tezuka, Yasuyuki
2013-01-01
We report a new methodology for studying diffusion of individual polymer chains in a melt state, with special emphasis on the effect of chain topology. A perylene diimide fluorophore was incorporated into the linear and cyclic poly(THF)s, and real-time diffusion behavior of individual chains in a melt of linear poly(THF) was measured by means of a single-molecule fluorescence imaging technique. The combination of mean squared displacement (MSD) and cumulative distribution function (CDF) analysis demonstrated the broad distribution of diffusion coefficient of both the linear and cyclic polymer chains in the melt state. This indicates the presence of spatiotemporal heterogeneity of the polymer diffusion which occurs at much larger time and length scales than those expected from the current polymer physics theory. We further demonstrated that the cyclic chains showed marginally slower diffusion in comparison with the linear counterparts, to suggest the effective suppression of the translocation through the threading-entanglement with the linear matrix chains. This coincides with the higher activation energy for the diffusion of the cyclic chains than of the linear chains. These results suggest that the single-molecule imaging technique provides a powerful tool to analyze complicated polymer dynamics and contributes to the molecular level understanding of the chain interaction. © 2013 American Chemical Society.
Single-molecule study on polymer diffusion in a melt state: Effect of chain topology
Habuchi, Satoshi
2013-08-06
We report a new methodology for studying diffusion of individual polymer chains in a melt state, with special emphasis on the effect of chain topology. A perylene diimide fluorophore was incorporated into the linear and cyclic poly(THF)s, and real-time diffusion behavior of individual chains in a melt of linear poly(THF) was measured by means of a single-molecule fluorescence imaging technique. The combination of mean squared displacement (MSD) and cumulative distribution function (CDF) analysis demonstrated the broad distribution of diffusion coefficient of both the linear and cyclic polymer chains in the melt state. This indicates the presence of spatiotemporal heterogeneity of the polymer diffusion which occurs at much larger time and length scales than those expected from the current polymer physics theory. We further demonstrated that the cyclic chains showed marginally slower diffusion in comparison with the linear counterparts, to suggest the effective suppression of the translocation through the threading-entanglement with the linear matrix chains. This coincides with the higher activation energy for the diffusion of the cyclic chains than of the linear chains. These results suggest that the single-molecule imaging technique provides a powerful tool to analyze complicated polymer dynamics and contributes to the molecular level understanding of the chain interaction. © 2013 American Chemical Society.
Ackerman, David M; Wang, Jing; Wendel, Joseph H; Liu, Da-Jiang; Pruski, Marek; Evans, James W
2011-03-21
We analyze the spatiotemporal behavior of species concentrations in a diffusion-mediated conversion reaction which occurs at catalytic sites within linear pores of nanometer diameter. Diffusion within the pores is subject to a strict single-file (no passing) constraint. Both transient and steady-state behavior is precisely characterized by kinetic Monte Carlo simulations of a spatially discrete lattice-gas model for this reaction-diffusion process considering various distributions of catalytic sites. Exact hierarchical master equations can also be developed for this model. Their analysis, after application of mean-field type truncation approximations, produces discrete reaction-diffusion type equations (mf-RDE). For slowly varying concentrations, we further develop coarse-grained continuum hydrodynamic reaction-diffusion equations (h-RDE) incorporating a precise treatment of single-file diffusion in this multispecies system. The h-RDE successfully describe nontrivial aspects of transient behavior, in contrast to the mf-RDE, and also correctly capture unreactive steady-state behavior in the pore interior. However, steady-state reactivity, which is localized near the pore ends when those regions are catalytic, is controlled by fluctuations not incorporated into the hydrodynamic treatment. The mf-RDE partly capture these fluctuation effects, but cannot describe scaling behavior of the reactivity.
Understanding of increased diffuse scattering in regular arrays of fluctuating resonant particles
DEFF Research Database (Denmark)
Andryieuski, Andrei; Petrov, Mihail; Lavrinenko, Andrei
2015-01-01
In this presentation we will discuss the analytical and numerical approaches to modeling electromagnetic properties of geometrically regular subwavelength 2D arrays of random resonant plasmonic particles. Amorphous metamaterials and metasurfaces attract interest of the scientific community due...... with regular periodic arrangements of resonant nanoparticles of random polarizability/size/material at normal plane-wave incidence. We show that randomness of the polarizability is related to increase in diffused scattering and we relate this phenomenon to a modification of the dipoles’ interaction constant...
Determination of the particle size distribution of an aerosol using a diffusion battery
International Nuclear Information System (INIS)
Maigne, Jean-Pierre
1974-02-01
The principal methods for the treatment of concentration measurements both upstream and downstream of a diffusion battery are reviewed and discussed, the purpose of the measurements being the determination of the aerosol particle size distribution. It is then demonstrated that the resolution of the equations arising from the problem leads to the imposing of physical constraints on the distribution sought, these constraints being more and more restrictive with increasing experimental inaccuracies. An algorithm is proposed which provides an approximate solution to the system of equations, certain predetermined criteria, and the constraints imposed on the distribution being taken into account. (author)
Measurements of the electron particle diffusion coefficient with the JET multichannel reflectometer
International Nuclear Information System (INIS)
Sips, A.C.C.; Haas, J.C.M. de; Costley, A.E.; Prentice, R.
1989-01-01
Experimental determinations of the cross-field particle diffusion coefficient (D p ) are important in studies of transport in tokamak plasmas. D p has been determined from measurements of density perturbations following a sawtooth collapse, oscillating gas puff, and injected high velocity pellets. In each case the density changes have been measured using multichord interferometry and D p is obtained with an accuracy of typically 20%. In this paper, we present our most recent measurements of D p . The experimental data are compared with the prediction of a comprehensive numerical transport model which includes both outward going and inward going density pulses. (author) 8 refs., 6 figs
Cytotoxicity of ferrite particles by MTT and agar diffusion methods for hyperthermic application
Energy Technology Data Exchange (ETDEWEB)
Kim, Dong-Hyun [Brain Korea 21 Project for Medical Science, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Lee, Se-Ho [Brain Korea 21 Project for Medical Science, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Kim, Kyoung-Nam [Brain Korea 21 Project for Medical Science, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Kim, Kwang-Mahn [Brain Korea 21 Project for Medical Science, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Shim, In-Bo [Department of Electronic Physics, Kookmin University, Seoul 136-702 (Korea, Republic of); Lee, Yong-Keun [Brain Korea 21 Project for Medical Science, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of) and Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of)]. E-mail: leeyk@yumc.yonsei.ac.kr
2005-05-15
We investigated the cytotoxicity of the prepared various ferrites (Fe-, Li-, Ni/Zn/Cu-, Ba-, Sr-, Co-, Co/Ni-ferrites) using MTT assay as well as agar diffusion method. Their cytotoxicity was compared with that of alginate-encapsulated ferrites. In the MTT assay, Fe{sub 3}O{sub 4} and SrFe{sub 12}O{sub 19} ferrite showed the highest cell viability of 90%. Alginate-encapsulated Ba-ferrite was ranked mildly cytotoxic, whereas their ferrite particles were ranked cytotoxic.
Model of alpha particle diffusion in the outer limiter shadow of TFTR
International Nuclear Information System (INIS)
Wang, S.; Academia Sinica, Hefei, Anhui; Zweben, S.J.
1996-05-01
A new code, Monte Carlo Collisional Stochastic Orbit Retracing (MCCSOR), has been developed to model the alpha particle loss signal as measured by the outer midplane scintillator detector in TFTR. The shadowing effects due to the outer limiters and the detector itself have been included, along with a pitch angle scattering and stochastic ripple diffusion. Shadowing by the outer limiters has a strong effect on both the magnitude and pitch angle distribution of the calculated loss. There is at least qualitative agreement between the calculated results and the experimental data
Enriched reproducing kernel particle method for fractional advection-diffusion equation
Ying, Yuping; Lian, Yanping; Tang, Shaoqiang; Liu, Wing Kam
2018-06-01
The reproducing kernel particle method (RKPM) has been efficiently applied to problems with large deformations, high gradients and high modal density. In this paper, it is extended to solve a nonlocal problem modeled by a fractional advection-diffusion equation (FADE), which exhibits a boundary layer with low regularity. We formulate this method on a moving least-square approach. Via the enrichment of fractional-order power functions to the traditional integer-order basis for RKPM, leading terms of the solution to the FADE can be exactly reproduced, which guarantees a good approximation to the boundary layer. Numerical tests are performed to verify the proposed approach.
Zhao, Jiong; Deng, Qingming; Avdoshenko, Stanislav M.; Fu, Lei; Eckert, Jürgen; Rümmeli, Mark H.
2014-01-01
Single-atom catalysts are of great interest because of their high efficiency. In the case of chemically deposited sp2 carbon, the implementation of a single transition metal atom for growth can provide crucial insight into the formation mechanisms of graphene and carbon nanotubes. This knowledge is particularly important if we are to overcome fabrication difficulties in these materials and fully take advantage of their distinct band structures and physical properties. In this work, we present atomically resolved transmission EM in situ investigations of single Fe atoms at graphene edges. Our in situ observations show individual iron atoms diffusing along an edge either removing or adding carbon atoms (viz., catalytic action). The experimental observations of the catalytic behavior of a single Fe atom are in excellent agreement with supporting theoretical studies. In addition, the kinetics of Fe atoms at graphene edges are shown to exhibit anomalous diffusion, which again, is in agreement with our theoretical investigations. PMID:25331874
Potassium self-diffusion in a K-rich single-crystal alkali feldspar
Hergemöller, Fabian; Deicher, Manfred; Wolf, Herbert; Brenner, Florian; Hutter, Herbert; Abart, Rainer; Stolwijk, Nicolaas A.
The paper reports potassium diffusion measurements performed on gem-quality single-crystal alkali feldspar in the temperature range from 1169 to 1021 K. Natural sanidine from Volkesfeld, Germany was implanted with {}^{43}K at the ISOLDE/CERN radioactive ion-beam facility normal to the (001) crystallographic plane. Diffusion coefficients are well described by the Arrhenius equation with an activation energy of 2.4 eV and a pre-exponential factor of 5×10^{-6}m^{2}/s, which is more than three orders of magnitude lower than the {}^{22}Na diffusivity in the same feldspar and the same crystallographic direction. State-of-the-art considerations including ionic conductivity data on the same crystal and Monte Carlo simulations of diffusion in random binary alloy structures point to a correlated motion of K and Na through the interstitialcy mechanism.
Mathematical modelling of the combustion of a single wood particle
Energy Technology Data Exchange (ETDEWEB)
Porteiro, J.; Miguez, J.L.; Granada, E.; Moran, J.C. [Departamento de Ingenieria Mecanica, Maquinas y Motores Termicos y Fluidos. Universidad de Vigo, Lagoas Marcosende 9 36200 Vigo (Spain)
2006-01-15
A mathematical model describing the thermal degradation of densified biomass particles is presented here. The model uses a novel discretisation scheme and combines intra-particle combustion processes with extra-particle transport processes, thereby including thermal and diffusional control mechanisms. The influence of structural changes on the physical-thermal properties of wood in its different stages is studied together with shrinkage of the particle during its degradation. The model is used to compare the predicted data with data on the mass loss dynamics and internal temperature of several particles from previous works and relevant literature, with good agreement. (author)
Thermal diffuse scattering in time-of-flight neutron diffraction studied on SBN single crystals
International Nuclear Information System (INIS)
Prokert, F.; Savenko, B.N.; Balagurov, A.M.
1994-01-01
At time-of-flight (TOF) diffractometer D N-2, installed at the pulsed reactor IBR-2 in Dubna, Sr x Ba 1-x Nb 2 O 6 mixed single crystals (SBN-x) of different compositions (0.50 < x< 0.75) were investigated between 15 and 773 K. The diffraction patterns were found to be strongly influenced by the thermal diffuse scattering (TDS). The appearance of the TDS from the long wavelength acoustic models of vibration in single crystals is characterized by the ratio of the velocity of sound to the velocity of neutron. Due to the nature of the TOF Laue diffraction technique used on D N-2, the TDS around Bragg peaks has rather a complex profile. An understanding of the TDS close to Bragg peaks is essential in allowing the extraction of the diffuse scattering occurring at the diffuse ferroelectric phase transition in SBN crystals. 11 refs.; 9 figs.; 1 tab. (author)
Kuiper, S.; van Rijn, C.J.M.; Nijdam, W.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt
2000-01-01
A simple single-particle model was developed for cross-flow microfiltration with microsieves. The model describes the cross-flow conditions required to release a trapped spherical particle from a circular pore. All equations are derived in a fully analytical way without any fitting parameters. For
International Nuclear Information System (INIS)
Yanch, Jacquelyn C.
2004-01-01
The development of a charged particle microbeam for single particle, subcellular irradiations at the Massachusetts Institute of Technology Laboratory for Accelerator Beam Applications (MIT LABA) was initiated under this NEER aeard. The Microbeam apparatus makes use of a pre-existing electrostatic accelerator with a horizontal beam tube
International Nuclear Information System (INIS)
Cvikl, B.; Dahlborg, U.; Calvo-Dahlborg, M.
1999-01-01
Based upon the model of particles diffusion within the sphere of partially absorbing boundaries, the possibilities of the detection, by the incoherent cold neutron scattering method, of particle precipitation on the boundary walls, has been investigated. The calculated scattering law as a function of the boundary absorption properties exhibits distinct characteristic which might, under favorable conditions, make such an experimental attempt feasible.(author)
Lupus-related single nucleotide polymorphisms and risk of diffuse large B-cell lymphoma
Bernatsky, Sasha; Velásquez García, Héctor A; Spinelli, John; Gaffney, Patrick; Smedby, Karin E; Ramsey-Goldman, Rosalind; Wang, Sophia S.; Adami, Hans-Olov; Albanes, Demetrius; Angelucci, Emanuele; Ansell, Stephen M.; Asmann, Yan W.; Becker, Nikolaus; Benavente, Yolanda; Berndt, Sonja I.; Bertrand, Kimberly A.; Birmann, Brenda M.; Boeing, Heiner; Boffetta, Paolo; Bracci, Paige M.; Brennan, Paul; Brooks-Wilson, Angela R.; Cerhan, James R.; Chanock, Stephen J.; Clavel, Jacqueline; Conde, Lucia; Cotenbader, Karen H; Cox, David G; Cozen, Wendy; Crouch, Simon; De Roos, Anneclaire J.; De Sanjose, Silvia; Di Lollo, Simonetta; Diver, W. Ryan; Dogan, Ahmet; Foretova, Lenka; Ghesquières, Hervé; Giles, Graham G.; Glimelius, Bengt; Habermann, Thomas M.; Haioun, Corinne; Hartge, Patricia; Hjalgrim, Henrik; Holford, Theodore R.; Holly, Elizabeth A.; Jackson, Rebecca D.; Kaaks, Rudolph; Kane, Eleanor; Kelly, Rachel S.; Klein, Robert J.; Kraft, Peter; Kricker, Anne; Lan, Qing; Lawrence, Charles; Liebow, Mark; Lightfoot, Tracy; Link, Brian K.; Maynadie, Marc; McKay, James; Melbye, Mads; Molina, Thierry Jo; Monnereau, Alain; Morton, Lindsay M.; Nieters, Alexandra; North, Kari E.; Novak, Anne J.; Offit, Kenneth; Purdue, Mark P.; Rais, Marco; Riby, Jacques; Roman, Eve; Rothman, Nathaniel; Salles, Gilles; Severi, Gianluca; Severson, Richard K.; Skibola, Christine F.; Slager, Susan L.; Smith, Alex; Smith, Martyn T.; Southey, Melissa C.; Staines, Anthony; Teras, Lauren R.; Thompson, Carrie A.; Tilly, Hervé; Tinker, Lesley F.; Tjonneland, Anne; Turner, Jenny; Vajdic, Claire M.; Vermeulen, Roel C H; Vijai, Joseph; Vineis, Paolo; Virtamo, Jarmo; Wang, Zhaoming; Weinstein, Stephanie; Witzig, Thomas E.; Zelenetz, Andrew; Zeleniuch-Jacquotte, Anne; Zhang, Yawei; Zheng, Tongzhang; Zucca, Mariagrazia; Clarke, Ann E
2017-01-01
Objective: Determinants of the increased risk of diffuse large B-cell lymphoma (DLBCL) in SLE are unclear. Using data from a recent lymphoma genome-wide association study (GWAS), we assessed whether certain lupus-related single nucleotide polymorphisms (SNPs) were also associated with DLBCL.
American Society for Testing and Materials. Philadelphia
2007-01-01
1.1 This practice covers the determination of the particle concentration, by number, and the size distribution of airborne particles in dust-controlled areas and clean rooms, for particles in the size range of approximately 0.01 to 5.0 m. Particle concentrations not exceeding 3.5 106 particles/m3 (100 000/ft 3) are covered for all particles equal to and larger than the minimum size measured. 1.2 This practice uses an airborne single particle counting device (SPC) whose operation is based on measuring the signal produced by an individual particle passing through the sensing zone. The signal must be directly or indirectly related to particle size. Note 1The SPC type is not specified here. The SPC can be a conventional optical particle counter (OPC), an aerodynamic particle sizer, a condensation nucleus counter (CNC) operating in conjunction with a diffusion battery or differential mobility analyzer, or any other device capable of counting and sizing single particles in the size range of concern and of sampling...
Xu, Lingling; Chen, Jinsheng
2016-04-01
Single particle aerosol mass spectrometer (SPAMS) was used to characterize size distribution, chemical composition, and mixing state of particles in an atmospheric pollution event during 20 Oct. - 5 Nov., 2015 in Xiamen, Southeast China. A total of 533,012 particle mass spectra were obtained and clustered into six groups, comprising of industry metal (4.5%), dust particles (2.6%), carbonaceous species (70.7%), K-Rich particles (20.7%), seasalt (0.6%) and other particles (0.9%). Carbonaceous species were further divided into EC (70.6%), OC (28.5%), and mixed ECOC (0.9%). There were 61.7%, 58.3%, 4.0%, and 14.6% of particles internally mixed with sulfate, nitrate, ammonium and C2H3O, respectively, indicating that these particles had undergone significant aging processing. Sulfate was preferentially mixed with carbonaceous particles, while nitrate tended to mix with metal-containing and dust particles. Compared to clear days, the fractions of EC-, metal- and dust particles remarkably increased, while the fraction of OC-containing particles decreased in pollution days. The mixing state of particles, excepted for OC-containing particles with secondary species was much stronger in pollution days than that in clear days, which revealed the significant influence of secondary particles in atmospheric pollution. The different activity of OC-containing particles might be related to their much smaller aerodynamic diameter. These results could improve our understanding of aerosol characteristics and could be helpful to further investigate the atmospheric process of particles.
Adachi, K.; Gong, Z.; Bateman, A. P.; Martin, S. T.; Cirino, G. G.; Artaxo, P.; Sedlacek, A. J., III; Buseck, P. R.
2014-12-01
Single-particle analysis using transmission electron microscopy (TEM) shows composition and morphology of individual aerosol particles collected during the GoAmazon2014 campaign. These TEM results indicate aerosol types and mixing states, both of which are important for evaluating particle optical properties and cloud condensation nuclei activity. The samples were collected at the T3 site, which is located in the Amazon forest with influences from the urban pollution plume from Manaus. Samples were also collected from the T0 site, which is in the middle of the jungle with minimal to no influences of anthropogenic sources. The aerosol particles mainly originated from 1) anthropogenic pollution (e.g., nanosphere soot, sulfate), 2) biogenic emissions (e.g., primary biogenic particles, organic aerosols), and 3) long-range transport (e.g., sea salts). We found that the biogenic organic aerosol particles contain homogeneously distributed potassium. Particle viscosity is important for evaluating gas-particle interactions and atmospheric chemistry for the particles. Viscosity can be estimated from the rebounding behavior at controlled relative humidities, i.e., highly viscous particles display less rebound on a plate than low-viscosity particles. We collected 1) aerosol particles from a plate (non-rebounded), 2) those that had rebounded from the plate and were then captured onto an adjacent sampling plate, and 3) particles from ambient air using a separate impactor sampler. Preliminary results show that more than 90% of non-rebounded particles consisted of nanosphere soot with or without coatings. The coatings mostly consisted of organic matter. Although rebounded particles also contain nanosphere soot (number fraction 64-69%), they were mostly internally mixed with sulfate, organic matter, or their mixtures. TEM tilted images suggested that the rebounded particles were less deformed on the substrate, whereas the non-rebounded particles were more deformed, which could
Bai, Zhan-Wu; Zhang, Wei
2018-01-01
The diffusion behaviors of Brownian particles in a tilted periodic potential under the influence of an internal white noise and an external Ornstein-Uhlenbeck noise are investigated through numerical simulation. In contrast to the case when the bias force is smaller or absent, the diffusion coefficient exhibits a nonmonotonic dependence on the correlation time of the external noise when bias force is large. A mechanism different from locked-to-running transition theory is presented for the diffusion enhancement by a bias force in intermediate to large damping. In the underdamped regime and the presence of external noise, the diffusion coefficient is a monotonically decreasing function of low temperature rather than a nonmonotonic function when external noise is absent. The diffusive process undergoes four regimes when bias force approaches but is less than its critical value and noises intensities are small. These behaviors can be attributed to the locked-to-running transition of particles.
DEFF Research Database (Denmark)
Momeni, M.; Yin, Chungen; Kær, Søren Knudsen
2013-01-01
An experimental study is performed to investigate the ignition, devolatilization, and burnout of single biomass particles of various shapes and sizes under process conditions that are similar to those in an industrial combustor. A chargecoupled device (CCD) camera is used to record the whole...... combustion process. For the particles with similar volume (mass), cylindrical particles are found to lose mass faster than spherical particles and the burnout time is shortened by increasing the particle aspect ratio (surface area). The conversion times of cylindrical particles with almost the same surface...... area/volume ratio are very close to each other. The ignition, devolatilization, and burnout times of cylindrical particles are also affected by the oxidizer temperature and oxygen concentration, in which the oxygen concentration is found to have a more pronounced effect on the conversion times at lower...
Raman Spectroscopy of Optically Trapped Single Biological Micro-Particles
Redding, Brandon; Schwab, Mark J.; Pan, Yong-le
2015-01-01
The combination of optical trapping with Raman spectroscopy provides a powerful method for the study, characterization, and identification of biological micro-particles. In essence, optical trapping helps to overcome the limitation imposed by the relative inefficiency of the Raman scattering process. This allows Raman spectroscopy to be applied to individual biological particles in air and in liquid, providing the potential for particle identification with high specificity, longitudinal studies of changes in particle composition, and characterization of the heterogeneity of individual particles in a population. In this review, we introduce the techniques used to integrate Raman spectroscopy with optical trapping in order to study individual biological particles in liquid and air. We then provide an overview of some of the most promising applications of this technique, highlighting the unique types of measurements enabled by the combination of Raman spectroscopy with optical trapping. Finally, we present a brief discussion of future research directions in the field. PMID:26247952
Trapping of diffusing particles by striped cylindrical surfaces. Boundary homogenization approach
Dagdug, Leonardo; Berezhkovskii, Alexander M.; Skvortsov, Alexei T.
2015-01-01
We study trapping of diffusing particles by a cylindrical surface formed by rolling a flat surface, containing alternating absorbing and reflecting stripes, into a tube. For an arbitrary stripe orientation with respect to the tube axis, this problem is intractable analytically because it requires dealing with non-uniform boundary conditions. To bypass this difficulty, we use a boundary homogenization approach which replaces non-uniform boundary conditions on the tube wall by an effective uniform partially absorbing boundary condition with properly chosen effective trapping rate. We demonstrate that the exact solution for the effective trapping rate, known for a flat, striped surface, works very well when this surface is rolled into a cylindrical tube. This is shown for both internal and external problems, where the particles diffuse inside and outside the striped tube, at three orientations of the stripe direction with respect to the tube axis: (a) perpendicular to the axis, (b) parallel to the axis, and (c) at the angle of π/4 to the axis. PMID:26093574
Dynamics of a single particle in a horizontally shaken box
Drossel, Barbara; Prellberg, Thomas
1997-01-01
We study the dynamics of a particle in a horizontally and periodically shaken box as a function of the box parameters and the coefficient of restitution. For certain parameter values, the particle becomes regularly chattered at one of the walls, thereby loosing all its kinetic energy relative to that wall. The number of container oscillations between two chattering events depends in a fractal manner on the parameters of the system. In contrast to a vertically vibrated particle, for which chat...
Huveneers, François
2018-04-01
We investigate the long-time behavior of a passive particle evolving in a one-dimensional diffusive random environment, with diffusion constant D . We consider two cases: (a) The particle is pulled forward by a small external constant force and (b) there is no systematic bias. Theoretical arguments and numerical simulations provide evidence that the particle is eventually trapped by the environment. This is diagnosed in two ways: The asymptotic speed of the particle scales quadratically with the external force as it goes to zero, and the fluctuations scale diffusively in the unbiased environment, up to possible logarithmic corrections in both cases. Moreover, in the large D limit (homogenized regime), we find an important transient region giving rise to other, finite-size scalings, and we describe the crossover to the true asymptotic behavior.
Ishimoto, Hiroshi; Adachi, Satoru; Yamaguchi, Satoru; Tanikawa, Tomonori; Aoki, Teruo; Masuda, Kazuhiko
2018-04-01
Sizes and shapes of snow particles were determined from X-ray computed microtomography (micro-CT) images, and their single-scattering properties were calculated at visible and near-infrared wavelengths using a Geometrical Optics Method (GOM). We analyzed seven snow samples including fresh and aged artificial snow and natural snow obtained from field samples. Individual snow particles were numerically extracted, and the shape of each snow particle was defined by applying a rendering method. The size distribution and specific surface area distribution were estimated from the geometrical properties of the snow particles, and an effective particle radius was derived for each snow sample. The GOM calculations at wavelengths of 0.532 and 1.242 μm revealed that the realistic snow particles had similar scattering phase functions as those of previously modeled irregular shaped particles. Furthermore, distinct dendritic particles had a characteristic scattering phase function and asymmetry factor. The single-scattering properties of particles of effective radius reff were compared with the size-averaged single-scattering properties. We found that the particles of reff could be used as representative particles for calculating the average single-scattering properties of the snow. Furthermore, the single-scattering properties of the micro-CT particles were compared to those of particle shape models using our current snow retrieval algorithm. For the single-scattering phase function, the results of the micro-CT particles were consistent with those of a conceptual two-shape model. However, the particle size dependence differed for the single-scattering albedo and asymmetry factor.
Kordilla, Jannes; Pan, Wenxiao; Tartakovsky, Alexandre
2014-12-14
We propose a novel smoothed particle hydrodynamics (SPH) discretization of the fully coupled Landau-Lifshitz-Navier-Stokes (LLNS) and stochastic advection-diffusion equations. The accuracy of the SPH solution of the LLNS equations is demonstrated by comparing the scaling of velocity variance and the self-diffusion coefficient with kinetic temperature and particle mass obtained from the SPH simulations and analytical solutions. The spatial covariance of pressure and velocity fluctuations is found to be in a good agreement with theoretical models. To validate the accuracy of the SPH method for coupled LLNS and advection-diffusion equations, we simulate the interface between two miscible fluids. We study formation of the so-called "giant fluctuations" of the front between light and heavy fluids with and without gravity, where the light fluid lies on the top of the heavy fluid. We find that the power spectra of the simulated concentration field are in good agreement with the experiments and analytical solutions. In the absence of gravity, the power spectra decay as the power -4 of the wavenumber-except for small wavenumbers that diverge from this power law behavior due to the effect of finite domain size. Gravity suppresses the fluctuations, resulting in much weaker dependence of the power spectra on the wavenumber. Finally, the model is used to study the effect of thermal fluctuation on the Rayleigh-Taylor instability, an unstable dynamics of the front between a heavy fluid overlaying a light fluid. The front dynamics is shown to agree well with the analytical solutions.
International Nuclear Information System (INIS)
Papp, J.
1975-05-01
The yields of positive and negative particles resulting from the collision of 1.05 GeV/nucleon and 2.1 GeV/nucleon protons, deuterons, alpha particles, and 1.05 GeV/nucleon carbon nuclei with various targets have been measured. Single particle inclusive cross sections for production of π + , π - , p, d, 3 H, 3 He, and 4 He at 2.5 0 (lab) were obtained. How the results bear on the concepts of limiting fragmentation and scaling, the structure of the alpha particle and deuteron, and the possibility of ''coherent'' production of pions by heavy ions are discussed. (U.S.)
DEFF Research Database (Denmark)
Bai, M.; Miskowiec, A.; Hansen, F. Y.
2012-01-01
High-energy-resolution quasielastic neutron scattering has been used to elucidate the diffusion of water molecules in proximity to single bilayer lipid membranes supported on a silicon substrate. By varying sample temperature, level of hydration, and deuteration, we identify three different types...... of diffusive water motion: bulk-like, confined, and bound. The motion of bulk-like and confined water molecules is fast compared to those bound to the lipid head groups (7-10 H2O molecules per lipid), which move on the same nanosecond time scale as H atoms within the lipid molecules. Copyright (C) EPLA, 2012...
Diffusion of dust particles from a point-source above ground level
International Nuclear Information System (INIS)
Hassan, M.H.A.; Eltayeb, I.A.
1998-10-01
A pollutant of small particles is emitted by a point source at a height h above ground level in an atmosphere in which a uni-directional wind speed, U, is prevailing. The pollutant is subjected to diffusion in all directions in the presence of advection and settling due to gravity. The equation governing the concentration of the pollutant is studied with the wind speed and the different components of diffusion tensor are proportional to the distance above ground level and the source has a uniform strength. Adopting a Cartesian system of coordinates in which the x-axis lies along the direction of the wind velocity, the z-axis is vertically upwards and the y-axis completes the right-hand triad, the solution for the concentration c(x,y,z) is obtained in closed form. The relative importance of the components of diffusion along the three axes is discussed. It is found that for any plane y=constant (=A), c(x,y,z) is concentrated along a curve of ''extensive pollution''. In the plane A=0, the concentration decreases along the line of extensive pollution as we move away from the source. However, for planes A≅0, the line of extensive pollution possesses a point of accumulation, which lies at a nonzero value of x. As we move away from the plane A=0, the point of accumulation moves laterally away from the plane x=0 and towards the plane z=0. The presence of the point of accumulation is entirely due to the presence of lateral diffusion. (author)
Trapping, percolation, and anomalous diffusion of particles in a two-dimensional random field
International Nuclear Information System (INIS)
Avellaneda, M.; Apelian, C.; Elliott, F. Jr.
1993-01-01
The authors analyze the advection of particles in a velocity field with Hamiltonian H(x,y) = bar V 1 y-bar V 2 x + W 1 (y) - W 2 (x), where W i , i=1,2, are random functions with stationary, independent increments. In the absence of molecular diffusion, the particle dynamics are sensitive to the streamline topology, which depends on the mean-to-fluctuations ratio p=max(|bar V 1 |/bar U;|bar V 2 |/bar U), with bar U = [|W' 1 | 2 ] 1/2 = rms fluctuations. The model is exactly solvable for p≥1 and well suited for Monte Carlo simulations for all p. Statistics are considered of streamlines for p=0, deriving power laws for the escape probability and the length of escaping trajectories for a box of size L much-gt 1. Also obtained is a characterization of the statistical topography of the Hamiltonian. The large-scale transport is studied of advected particles with p > 0. For 0 -v/2 [x(t) - (x(t))] and t -v/2 [y(t) - (y(t))]. The large-scale motions are Fickian (v=1) or superdiffusive (v=3/2) with a non-Gaussian coarse-grained probability, according to the direction of the mean velocity relative to the underlying lattice. These results are obtained analytically for p≥1 and extended to the regime 0 1 , bar V 2 ) for which stagnation regions in the flow exist. The results are compared with existing predictions on the topology of streamlines based on percolation theory and with mean-field calculations of effective diffusivities. 29 refs., 15 figs., 7 tabs
Lu, Senlin; Tan, Zhengying; Liu, Pinwei; Zhao, Hui; Liu, Dingyu; Yu, Shang; Cheng, Ping; Win, Myat Sandar; Hu, Jiwen; Tian, Linwei; Wu, Minghong; Yonemochi, Shinich; Wang, Qingyue
2017-11-01
Coal combustion particles (CCPs) are linked to the high incidence of lung cancer in Xuanwei and in Fuyuan, China, but studies on the chemical composition of the CCPs are still limited. Single particle aerosol mass spectrometry (SPAMS) was recently developed to measure the chemical composition and size of single particles in real-time. In this study, SPAMS was used to measure individual combustion particles emitted from Xuanwei and Fuyuan coal samples and the results were compared with those by ICP-MS and transmission electron microscopy (TEM). The total of 38,372 particles mass-analyzed by SPAMS can be divided into 9 groups based on their chemical composition and their number percentages: carbonaceous, Na-rich, K-rich, Al-rich, Fe-rich, Si-rich, Ca-rich, heavy metal-bearing, and PAH-bearing particles. The carbonaceous and PAH-bearing particles are enriched in the size range below 0.56 μm, Fe-bearing particles range from 0.56 to 1.0 μm in size, and heavy metals such as Ti, V, Cr, Cu, Zn, and Pb have diameters below 1 μm. The TEM results show that the particles from Xuanwei and Fuyuan coal combustion can be classified into soot aggregates, Fe-rich particles, heavy metal containing particles, and mineral particles. Non-volatile particles detected by SPAMS could also be observed with TEM. The number percentages by SPAMS also correlate with the mass concentrations measured by ICP-MS. Our results could provide valuable insight for understanding high lung cancer incidence in the area. Copyright © 2017 Elsevier Ltd. All rights reserved.
Aptowicz, K. B.; Pan, Y.; Martin, S.; Fernandez, E.; Chang, R.; Pinnick, R. G.
2013-12-01
We report upon an experimental approach that provides insight into how particle size and shape affect the scattering phase function of atmospheric aerosol particles. Central to our approach is the design of an apparatus that measures the forward and backward scattering hemispheres (scattering patterns) of individual atmospheric aerosol particles in the coarse mode range. The size and shape of each particle is discerned from the corresponding scattering pattern. In particular, autocorrelation analysis is used to differentiate between spherical and non-spherical particles, the calculated asphericity factor is used to characterize the morphology of non-spherical particles, and the integrated irradiance is used for particle sizing. We found the fraction of spherical particles decays exponentially with particle size, decreasing from 11% for particles on the order of 1 micrometer to less than 1% for particles over 5 micrometer. The average phase functions of subpopulations of particles, grouped by size and morphology, are determined by averaging their corresponding scattering patterns. The phase functions of spherical and non-spherical atmospheric particles are shown to diverge with increasing size. In addition, the phase function of non-spherical particles is found to vary little as a function of the asphericity factor.
Sun, Wei; Gu, Yan; Wang, Gufeng; Fang, Ning
2012-01-17
The single particle orientation and rotational tracking (SPORT) technique was introduced recently to follow the rotational motion of plasmonic gold nanorod under a differential interference contrast (DIC) microscope. In biological studies, however, cellular activities usually involve a multiplicity of molecules; thus, tracking the motion of a single molecule/object is insufficient. Fluorescence-based techniques have long been used to follow the spatial and temporal distributions of biomolecules of interest thanks to the availability of multiplexing fluorescent probes. To know the type and number of molecules and the timing of their involvement in a biological process under investigation by SPORT, we constructed a dual-modality DIC/fluorescence microscope to simultaneously image fluorescently tagged biomolecules and plasmonic nanoprobes in living cells. With the dual-modality SPORT technique, the microtubule-based intracellular transport can be unambiguously identified while the dynamic orientation of nanometer-sized cargos can be monitored at video rate. Furthermore, the active transport on the microtubule can be easily separated from the diffusion before the nanocargo docks on the microtubule or after it undocks from the microtubule. The potential of dual-modality SPORT is demonstrated for shedding new light on unresolved questions in intracellular transport.
Ten Cate, A.; Nieuwstad, C.H.; Derksen, J.J.; Van den Akker, H.E.A.
2002-01-01
A comparison is made between experiments and simulations on a single sphere settling in silicon oil in a box. Cross-correlation particle imaging velocimetry measurements were carried out at particle Reynolds numbers ranging from 1.5 to 31.9. The particle Stokes number varied from 0.2 to 4 and at
Uncertainty in counting ice nucleating particles with continuous flow diffusion chambers
Garimella, Sarvesh; Rothenberg, Daniel A.; Wolf, Martin J.; David, Robert O.; Kanji, Zamin A.; Wang, Chien; Rösch, Michael; Cziczo, Daniel J.
2017-09-01
This study investigates the measurement of ice nucleating particle (INP) concentrations and sizing of crystals using continuous flow diffusion chambers (CFDCs). CFDCs have been deployed for decades to measure the formation of INPs under controlled humidity and temperature conditions in laboratory studies and by ambient aerosol populations. These measurements have, in turn, been used to construct parameterizations for use in models by relating the formation of ice crystals to state variables such as temperature and humidity as well as aerosol particle properties such as composition and number. We show here that assumptions of ideal instrument behavior are not supported by measurements made with a commercially available CFDC, the SPectrometer for Ice Nucleation (SPIN), and the instrument on which it is based, the Zurich Ice Nucleation Chamber (ZINC). Non-ideal instrument behavior, which is likely inherent to varying degrees in all CFDCs, is caused by exposure of particles to different humidities and/or temperatures than predicated from instrument theory of operation. This can result in a systematic, and variable, underestimation of reported INP concentrations. We find here variable correction factors from 1.5 to 9.5, consistent with previous literature values. We use a machine learning approach to show that non-ideality is most likely due to small-scale flow features where the aerosols are combined with sheath flows. Machine learning is also used to minimize the uncertainty in measured INP concentrations. We suggest that detailed measurement, on an instrument-by-instrument basis, be performed to characterize this uncertainty.
International Nuclear Information System (INIS)
Drury, L.O'C.
1983-01-01
The central idea of diffusive shock acceleration is presented from microscopic and macroscopic viewpoints; applied to reactionless test particles in a steady plane shock the mechanism is shown to produce a power law spectrum in momentum with a slope which, to lowest order in the ratio of plasma to particle speed, depends only on the compression in the shock. The associated time scale is found (also by a macroscopic and a microscopic method) and the problems of spherical shocks, as exemplified by a point explosion and a stellar-wind terminator, are treated by singular perturbation theory. The effect of including the particle reaction is then studied. It is shown that if the scattering is due to resonant waves these can rapidly grow with unknown consequences. The possible steady modified shock structures are classified and generalised Rankine-Hugoniot conditions found. Modifications of the spectrum are discussed on the basis of an exact, if rather artificial, solution, a high-energy asymptotic expansion and a perturbation expansion due to Blandford. It is pointed out that no steady solution can exist for very strong shocks; the possible time dependence is briefly discussed. (author)
Introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas
Energy Technology Data Exchange (ETDEWEB)
Drury, L.O. (Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany, F.R.))
1983-08-01
The central idea of diffusive shock acceleration is presented from microscopic and macroscopic viewpoints; applied to reactionless test particles in a steady plane shock the mechanism is shown to produce a power law spectrum in momentum with a slope which, to lowest order in the ratio of plasma to particle speed, depends only on the compression in the shock. The associated time scale is found (also by a macroscopic and a microscopic method) and the problems of spherical shocks, as exemplified by a point explosion and a stellar-wind terminator, are treated by singular perturbation theory. The effect of including the particle reaction is then studied. It is shown that if the scattering is due to resonant waves these can rapidly grow with unknown consequences. The possible steady modified shock structures are classified and generalized Rankine-Hugoniot conditions found. Modifications of the spectrum are discussed on the basis of an exact, if rather artificial, solution, a high-energy asymptotic expansion and a perturbation expansion due to Blandford. It is pointed out that no steady solution can exist for very strong shocks; the possible time dependence is briefly discussed.
Introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas
Energy Technology Data Exchange (ETDEWEB)
Drury, L.Oc.
1983-08-01
The central idea of diffusive shock acceleration is presented from microscopic and macroscopic viewpoints applied to reactionless test particles in a steady plane shock. The mechanism is shown to produce a power law spectrum in momentum with a slope which, to lowest order in the ratio of plasma to particle speed, depends only on the compression in the shock. The associated time scale is found (also by a macroscopic and a microscopic method) and the problems of spherical shocks, as exemplified by a point explosion and a stellar-wind terminator, are treated by singular perturbation theory. The effect of including the particle reaction is then studied. It is shown that if the scattering is due to resonant waves these can rapidly grow with unknown consequences. The possible steady modified shock structures are classified and generalized Rankine-Hugoniot conditions found. Modifications of the spectrum are discussed on the basis of an exact, if rather artificial, solution, a high-energy asymptotic expansion and a perturbation expansion due to Blandford. It is pointed out that no steady solution can exist for very strong shocks. The possible time dependence is briefly discussed. 75 references.
Factors Influencing the Ignition and Burnout of a Single Biomass Particle
DEFF Research Database (Denmark)
Momenikouchaksaraei, Maryam; Kær, Søren Knudsen; Yin, Chungen
2011-01-01
Ignition and burnout of a single biomass particle were studied numerically. A one-dimensional particle combustion model was developed which is capable to simulate all the intraparticle conversion processes (drying, recondensation, devolatilization, char gasification/oxidation and heat/mass/moment......Ignition and burnout of a single biomass particle were studied numerically. A one-dimensional particle combustion model was developed which is capable to simulate all the intraparticle conversion processes (drying, recondensation, devolatilization, char gasification/oxidation and heat...... concentration were not very significant. The influences of these factors on particle burnout were much more remarkable than ignition behaviour....
Single-particle basis and translational invariance in microscopic nuclear calculations
International Nuclear Information System (INIS)
Ehfros, V.D.
1977-01-01
The approach to the few-body problem is considered which allows to use the simple single-particle basis without violation of the translation invariance. A method is proposed to solve the nuclear reaction problems in the single-particle basis. The method satisfies the Pauli principle and the translation invariance. Calculation of the matrix elements of operators is treated
Burnout of pulverized biomass particles in large scale boiler – Single particle model approach
DEFF Research Database (Denmark)
Saastamoinen, Jaakko; Aho, Martti; Moilanen, Antero
2010-01-01
the particle combustion model is coupled with one-dimensional equation of motion of the particle, is applied for the calculation of the burnout in the boiler. The particle size of biomass can be much larger than that of coal to reach complete burnout due to lower density and greater reactivity. The burner...... location and the trajectories of the particles might be optimised to maximise the residence time and burnout....
Energy Technology Data Exchange (ETDEWEB)
D' Ettorre Piazzoli, B; Mannocchi, G [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Melone, S [Istituto di Fisica dell' Universita, Ancona, Italy; Picchi, P; Visentin, R [Comitato Nazionale per l' Energia Nucleare, Frascati (Italy). Laboratori Nazionali di Frascati
1976-06-01
Expressions for the counting rate of rectangular telescopes in the case of single as well as multiple particles are given. The aperture for single particles is obtained in the form of a double integral and analytical solutions are given for some cases. The intensity for different multiplicities of parallel particles is related to the geometry of the detectors and to the features of the radiation. This allows an absolute comparison between the data recorded by different devices.
Single-Particle Quantum Dynamics in a Magnetic Lattice
Energy Technology Data Exchange (ETDEWEB)
Venturini, Marco
2001-02-01
We study the quantum dynamics of a spinless charged-particle propagating through a magnetic lattice in a transport line or storage ring. Starting from the Klein-Gordon equation and by applying the paraxial approximation, we derive a Schroedinger-like equation for the betatron motion. A suitable unitary transformation reduces the problem to that of a simple harmonic oscillator. As a result we are able to find an explicit expression for the particle wavefunction.
Schmidt, Susan; Schneider, Johannes; Klimach, Thomas; Mertes, Stephan; Schenk, Ludwig Paul; Kupiszewski, Piotr; Curtius, Joachim; Borrmann, Stephan
2017-01-01
In situ single particle analysis of ice particle residuals (IPRs) and out-of-cloud aerosol particles was conducted by means of laser ablation mass spectrometry during the intensive INUIT-JFJ/CLACE campaign at the high alpine research station Jungfraujoch (3580 m a.s.l.) in January-February 2013. During the 4-week campaign more than 70 000 out-of-cloud aerosol particles and 595 IPRs were analyzed covering a particle size diameter range from 100 nm to 3 µm. The IPRs were sampled during 273 h while the station was covered by mixed-phase clouds at ambient temperatures between -27 and -6 °C. The identification of particle types is based on laboratory studies of different types of biological, mineral and anthropogenic aerosol particles. The outcome of these laboratory studies was characteristic marker peaks for each investigated particle type. These marker peaks were applied to the field data. In the sampled IPRs we identified a larger number fraction of primary aerosol particles, like soil dust (13 ± 5 %) and minerals (11 ± 5 %), in comparison to out-of-cloud aerosol particles (2.4 ± 0.4 and 0.4 ± 0.1 %, respectively). Additionally, anthropogenic aerosol particles, such as particles from industrial emissions and lead-containing particles, were found to be more abundant in the IPRs than in the out-of-cloud aerosol. In the out-of-cloud aerosol we identified a large fraction of aged particles (31 ± 5 %), including organic material and secondary inorganics, whereas this particle type was much less abundant (2.7 ± 1.3 %) in the IPRs. In a selected subset of the data where a direct comparison between out-of-cloud aerosol particles and IPRs in air masses with similar origin was possible, a pronounced enhancement of biological particles was found in the IPRs.
Diffusive phenomena and pseudoelasticity in Cu-Al-Be single crystals
Energy Technology Data Exchange (ETDEWEB)
Sade, M., E-mail: sade@cab.cnea.gov.ar [Centro Atómico Bariloche (CNEA), Av. E. Bustillo km. 9500, 8400 S.C. de Bariloche (Argentina); CONICET (Argentina); Instituto Balseiro, Universidad Nacional de Cuyo, Av. E. Bustillo km. 9500, 8400 S.C. de Bariloche (Argentina); Pelegrina, J.L., E-mail: jlp201@cab.cnea.gov.ar [Centro Atómico Bariloche (CNEA), Av. E. Bustillo km. 9500, 8400 S.C. de Bariloche (Argentina); CONICET (Argentina); Instituto Balseiro, Universidad Nacional de Cuyo, Av. E. Bustillo km. 9500, 8400 S.C. de Bariloche (Argentina); Yawny, A., E-mail: yawny@cab.cnea.gov.ar [Centro Atómico Bariloche (CNEA), Av. E. Bustillo km. 9500, 8400 S.C. de Bariloche (Argentina); CONICET (Argentina); Instituto Balseiro, Universidad Nacional de Cuyo, Av. E. Bustillo km. 9500, 8400 S.C. de Bariloche (Argentina); Lovey, F.C., E-mail: lovey@cab.cnea.gov.ar [Centro Atómico Bariloche (CNEA), Av. E. Bustillo km. 9500, 8400 S.C. de Bariloche (Argentina); Instituto Balseiro, Universidad Nacional de Cuyo, Av. E. Bustillo km. 9500, 8400 S.C. de Bariloche (Argentina)
2015-02-15
Highlights: • Diffusive phenomena occurring under load were analyzed in Cu-Al-Be single crystals. • Stabilization of stress induced martensite was detected in a range of temperatures. • Ageing the austenite under load shifts the austenite/martensite stability field. • A free energy model is proposed considering interchanges between Cu and Be atoms. • Different kinetics for the recovery of the austenite are rationalized. - Abstract: Cu-Al-Be single crystals show pseudoelasticity and the shape memory effect in a well-defined composition range. The β{sub 3}-18R martensitic transition is the origin of these phenomena. The transformation temperatures and the critical stresses to induce the martensitic transition are affected by diffusive phenomena taking place both in the parent phase and in martensite. Pseudoelastic cycles were used to obtain quantitative data concerning the effect of diffusive phenomena like stabilization of martensite, ordering of the parent phase under load and recovery of this phase on the critical stresses to transform. Information was then obtained on changes in the relative phase stability. A model is presented to explain those changes taking place in the parent phase aged under load and in the martensitic 18R structure. Experimental data on the kinetics of diffusive phenomena is also presented and analyzed.
Enhanced nitrogen removal in single-chamber microbial fuel cells with increased gas diffusion areas
Yan, Hengjing
2012-11-23
Single-chamber microbial fuel cells (MFCs) with nitrifiers pre-enriched at the air cathodes have previously been demonstrated as a passive strategy for integrating nitrogen removal into current-generating bioelectrochemical systems. To further define system design parameters for this strategy, we investigated in this study the effects of oxygen diffusion area and COD/N ratio in continuous-flow reactors. Doubling the gas diffusion area by adding an additional air cathode or a diffusion cloth significantly increased the ammonia and COD removal rates (by up to 115% and 39%), ammonia removal efficiency (by up to 134%), the cell voltage and cathode potentials, and the power densities (by a factor of approximately 2). When the COD/N ratio was lowered from 13 to 3, we found up to 244% higher ammonia removal rate but at least 19% lower ammonia removal efficiency. An increase of COD removal rate by up to 27% was also found when the COD/N ratio was lowered from 11 to 3. The Coulombic efficiency was not affected by the additional air cathode, but decreased by an average of 11% with the addition of a diffusion cloth. Ammonia removal by assimilation was also estimated to understand the ammonia removal mechanism in these systems. These results showed that the doubling of gas diffusion area enhanced N and COD removal rates without compromising electrochemical performance. © 2012 Wiley Periodicals, Inc.
Directory of Open Access Journals (Sweden)
Yidong Wang
2015-01-01
Full Text Available Crushing of rock particles is a phenomenon commonly encountered in geotechnical engineering practice. It is however difficult to study the crushing of rock particles using classical theory because the physical structure of the particles is complex and irregular. This paper aims at evaluating fractal and morphological characteristics of single rock particle. A large number of particle crushing tests are conducted on single rock particle. The force-displacement curves and the particle size distributions (PSD of crushed particles are analysed based on particle crushing tests. Particle shape plays an important role in both the micro- and macroscale responses of a granular assembly. The PSD of an assortment of rocks are analysed by fractal methods, and the fractal dimension is obtained. A theoretical formula for particle crushing strength is derived, utilising the fractal model, and a simple method is proposed for predicting the probability of particle survival based on the Weibull statistics. Based on a few physical assumptions, simple equations are derived for determining particle crushing energy. The results of applying these equations are tested against the actual experimental data and prove to be very consistent. Fractal theory is therefore applicable for analysis of particle crushing.
Particle-size segregation and diffusive remixing in shallow granular avalanches
Gray, J. M. N. T.; Chugunov, V. A.
2006-12-01
Segregation and mixing of dissimilar grains is a problem in many industrial and pharmaceutical processes, as well as in hazardous geophysical flows, where the size-distribution can have a major impact on the local rheology and the overall run-out. In this paper, a simple binary mixture theory is used to formulate a model for particle-size segregation and diffusive remixing of large and small particles in shallow gravity-driven free-surface flows. This builds on a recent theory for the process of kinetic sieving, which is the dominant mechanism for segregation in granular avalanches provided the density-ratio and the size-ratio of the particles are not too large. The resulting nonlinear parabolic segregation remixing equation reduces to a quasi-linear hyperbolic equation in the no-remixing limit. It assumes that the bulk velocity is incompressible and that the bulk pressure is lithostatic, making it compatible with most theories used to compute the motion of shallow granular free-surface flows. In steady-state, the segregation remixing equation reduces to a logistic type equation and the ‘S’-shaped solutions are in very good agreement with existing particle dynamics simulations for both size and density segregation. Laterally uniform time-dependent solutions are constructed by mapping the segregation remixing equation to Burgers equation and using the Cole Hopf transformation to linearize the problem. It is then shown how solutions for arbitrary initial conditions can be constructed using standard methods. Three examples are investigated in which the initial concentration is (i) homogeneous, (ii) reverse graded with the coarse grains above the fines, and, (iii) normally graded with the fines above the coarse grains. Time-dependent two-dimensional solutions are also constructed for plug-flow in a semi-infinite chute.
Kalyagina, N.; Loschenov, V.; Wolf, D.; Daul, C.; Blondel, W.; Savelieva, T.
2011-11-01
We have investigated the influence of scatterer size changes on the laser light diffusion, induced by collimated monochromatic laser irradiation, in tissue-like optical phantoms using diffuse-reflectance imaging. For that purpose, three-layer optical phantoms were prepared, in which nano- and microsphere size varied in order to simulate the scattering properties of healthy and cancerous urinary bladder walls. The informative areas of the surface diffuse-reflected light distributions were about 15×18 pixels for the smallest scattering particles of 0.05 μm, about 21×25 pixels for the medium-size particles of 0.53 μm, and about 25×30 pixels for the largest particles of 5.09 μm. The computation of the laser spot areas provided useful information for the analysis of the light distribution with high measurement accuracy of up to 92%. The minimal stability of 78% accuracy was observed for superficial scattering signals on the phantoms with the largest particles. The experimental results showed a good agreement with the results obtained by the Monte Carlo simulations. The presented method shows a good potential to be useful for a tissue-state diagnosis of the urinary bladder.
Diffusion of test particles in stochastic magnetic fields in the percolative regime
International Nuclear Information System (INIS)
Neuer, Marcus; Spatschek, Karl H.
2006-01-01
For stochastic magnetic flux functions with percolative contours the test particle transport is investigated. The calculations make use of the stochastic Liouville approach. They start from the so-called A-Langevin equations, including stochastic magnetic field components and binary collisions. Using the decorrelation trajectory method, a relation between the Lagrangian velocity correlation function and the Eulerian magnetic field correlation is derived and introduced into the Green-Kubo formalism. Finite Larmor radius effects are included. Interesting results are presented in the percolation regime corresponding to high Kubo numbers. Previous results are found to be limiting cases for small Kubo numbers. For different percolative scenarios the diffusion is analyzed and strong influences of the percolative structures on the transport scaling are found. The finite Larmor radius effects are discussed in detail. Numerical simulations of the A-Langevin equation confirm the semianalytical predictions
International Nuclear Information System (INIS)
El-Naggar, I.M.; El-Absy, M.A.; Aly, S.I.; Atomic Energy Establishment, Cairo
1992-01-01
The kinetics of exchange Li + , Na + , K + and Cs + ions of tin(IV) antimonate with H + form was studied under particle-diffusion-control conditions at different temperatures. The value of activation energy, diffusion coefficient and entropy of activation increase with the ionic mobilities and radii, and decrease with the hydration energy of the alkali metal ions. On the basis of the kinetic parameters, the exchange of alkali metal ions occurs in the unhydrated form. (author). 29 refs.; 4 figs.; 2 tabs
Gu, Yan
While conventional Single Particle Tracking (SPT) techniques acquire 2D or 3D trajectories of particle probes, we have developed Single Particle Orientation and Rotational Tracking (SPORT) techniques to extract orientation and rotational information. Combined with DIC microscopy, the SPORT technique has been applied in biophysical studies, including membrane diffusion and intracellular transport. The rotational dynamics of nanoparticle vectors on live cell membranes was recorded and its influence on the fate of these nanoparticle vectors was elucidated. The rotational motions of gold nanorods with various surface modifiers were tracked continuously at a temporal resolution of 5 ms under a DIC microscope. We found that the rotational behaviors of gold nanorod vectors are strongly related to their surface charge, specific surface functional groups, and the availability of receptors on cell membranes. The study of rotational Brownian motion of nanoparticles on cell membranes will lead to a better understanding of the mechanisms of drug delivery and provide guidance in designing surface modification strategies for drug delivery vectors under various circumstances. To characterize the rotation mode of surface functionalized gold nanorods on cell membranes, the SPORT technique is combined with the correlation analysis of the bright and dark DIC intensities. The unique capabilities of visualizing and understanding rotational motions of functionalized nanoparticles on live cell membranes allow us to correlate rotational and translational dynamics in unprecedented detail and provide new insights for complex membrane processes, including electrostatic interactions, ligand-receptor binding, and lateral (confined and hopping) diffusion of membrane receptors. Surface-functionalized nanoparticles interact with the membrane in fundamentally different ways and exhibit distinct rotational modes. The early events of particle-membrane approach and attachment are directly visualized
Energy Technology Data Exchange (ETDEWEB)
Gu, Yan [Iowa State Univ., Ames, IA (United States)
2013-01-01
While conventional Single Particle Tracking (SPT) techniques acquire 2D or 3D trajectories of particle probes, we have developed Single Particle Orientation and Rotational Tracking (SPORT) techniques to extract orientation and rotational information. Combined with DIC microscopy, the SPORT technique has been applied in biophysical studies, including membrane diffusion and intracellular transport. The rotational dynamics of nanoparticle vectors on live cell membranes was recorded and its influence on the fate of these nanoparticle vectors was elucidated. The rotational motions of gold nanorods with various surface modifiers were tracked continuously at a temporal resolution of 5 ms under a DIC microscope. We found that the rotational behaviors of gold nanorod vectors are strongly related to their surface charge, specific surface functional groups, and the availability of receptors on cell membranes. The study of rotational Brownian motion of nanoparticles on cell membranes will lead to a better understanding of the mechanisms of drug delivery and provide guidance in designing surface modification strategies for drug delivery vectors under various circumstances. To characterize the rotation mode of surface functionalized gold nanorods on cell membranes, the SPORT technique is combined with the correlation analysis of the bright and dark DIC intensities. The unique capabilities of visualizing and understanding rotational motions of functionalized nanoparticles on live cell membranes allow us to correlate rotational and translational dynamics in unprecedented detail and provide new insights for complex membrane processes, including electrostatic interactions, ligand-receptor binding, and lateral (confined and hopping) diffusion of membrane receptors. Surface-functionalized nanoparticles interact with the membrane in fundamentally different ways and exhibit distinct rotational modes. The early events of particle-membrane approach and attachment are directly visualized
International Nuclear Information System (INIS)
Nakabayashi, Daizo; Sawai, Kenji; Saito, Shigeki; Takahashi, Kunio
2012-01-01
Recently, micromanipulation techniques have been in high demand. A technique to deposit a metal microparticle onto a metal substrate by using a single metal probe has been proposed as one of the techniques. A solder particle with a diameter of 20–30 µm, initially adhering to the probe tip, is detached and deposited onto a substrate. The success rate of the particle deposition was 44% in the previous research, and is insufficient for industrial applications. In this paper, a technique of particle deposition by applying a single rectangular pulse is proposed, and the mechanism of the deposition is described. In the mechanism, an electric discharge between the probe and the particle when the particle reaches the substrate plays an important role in the particle deposition. Moreover, the mechanism of the proposed technique is verified by experiments of particle deposition, which are observed using a high-speed camera, a scanning electron microscope (SEM) and an oscilloscope. The success rate of the particle deposition has increased to 93% by the proposed technique. Furthermore, the damage to the particle by the electric discharge is evaluated using an RC circuit model, and the applicability of the proposed technique is discussed. (paper)
Diffusion welding. [heat treatment of nickel alloys following single step vacuum welding process
Holko, K. H. (Inventor)
1974-01-01
Dispersion-strengthened nickel alloys are sanded on one side and chemically polished. This is followed by a single-step welding process wherein the polished surfaces are forced into intimate contact at 1,400 F for one hour in a vacuum. Diffusion, recrystallization, and grain growth across the original weld interface are obtained during postheating at 2,150 F for two hours in hydrogen.
GHOLAMI, SAEID; BABOLIAN, ESMAIL; JAVIDI, MOHAMMAD
2016-01-01
This paper presents a new numerical approach to solve single and multiterm time fractional diffusion equations. In this work, the space dimension is discretized to the Gauss$-$Lobatto points. We use the normalized Grunwald approximation for the time dimension and a pseudospectral successive integration matrix for the space dimension. This approach shows that with fewer numbers of points, we can approximate the solution with more accuracy. Some examples with numerical results in tables and fig...
Single-Particle Soot Photometer (SP2) Instrument Handbook
Energy Technology Data Exchange (ETDEWEB)
Sedlacek, Arthur [Brookhaven National Lab. (BNL), Upton, NY (United States)
2017-02-01
The SP2 is an instrument that measures, in situ, the time-dependent scattering and incandescence signals produced by individual BC-containing particles as they travel through a continuous-wave laser beam. Any particle traversing the laser beam will scatter light, and the BC component of a BC-containing particle will absorb some of the laser energy until its temperature is raised to the point at which it incandesces (hereafter we adopt the standard terminology of the SP2 community and denote any substance determined by the SP2 to be BC as refractory black carbon (rBC)). The amplitude of the rBC incandescence signal is related to the amount of refractory material contained in the illuminated particle. By binning the individual incandescence signals per unit sample volume, the mass concentration [ng/m3] of rBC can be derived. By binning the individual signals by volume equivalent diameter the size distribution (dN/dlogDVED) per unit time can be derived. The rBC mass loading per unit time and the rBC size distribution unit time are the core data products produced by the SP2. Additionally, the scattering channel can be used to provide information on the rBC particle population-based mixing states within ambient aerosols. However, this data product is produced on a requested-basis since additional detailed analysis and QC/QA must be conducted.
International Nuclear Information System (INIS)
Brown, P.; Chang, B.
1998-01-01
The linear Boltzmann transport equation (BTE) is an integro-differential equation arising in deterministic models of neutral and charged particle transport. In slab (one-dimensional Cartesian) geometry and certain higher-dimensional cases, Diffusion Synthetic Acceleration (DSA) is known to be an effective algorithm for the iterative solution of the discretized BTE. Fourier and asymptotic analyses have been applied to various idealizations (e.g., problems on infinite domains with constant coefficients) to obtain sharp bounds on the convergence rate of DSA in such cases. While DSA has been shown to be a highly effective acceleration (or preconditioning) technique in one-dimensional problems, it has been observed to be less effective in higher dimensions. This is due in part to the expense of solving the related diffusion linear system. We investigate here the effectiveness of a parallel semicoarsening multigrid (SMG) solution approach to DSA preconditioning in several three dimensional problems. In particular, we consider the algorithmic and implementation scalability of a parallel SMG-DSA preconditioner on several types of test problems
Ambiguity in measuring matrix diffusion with single-well injection/recovery tracer tests
Lessoff, S.C.; Konikow, Leonard F.
1997-01-01
Single-well injection/recovery tracer tests are considered for use in characterizing and quantifying matrix diffusion in dual-porosity aquifers. Numerical modeling indicates that neither regional drift in homogeneous aquifers, nor heterogeneity in aquifers having no regional drift, nor hydrodynamic dispersion significantly affects these tests. However, when drift is coupled simultaneously with heterogeneity, they can have significant confounding effects on tracer return. This synergistic effect of drift and heterogeneity may help explain irreversible flow and inconsistent results sometimes encountered in previous single-well injection/recovery tracer tests. Numerical results indicate that in a hypothetical single-well injection/recovery tracer test designed to demonstrate and measure dual-porosity characteristics in a fractured dolomite, the simultaneous effects of drift and heterogeneity sometimes yields responses similar to those anticipated in a homogeneous dual-porosity formation. In these cases, tracer recovery could provide a false indication of the occurrence of matrix diffusion. Shortening the shut-in period between injection and recovery periods may make the test less sensitive to drift. Using multiple tracers having different diffusion characteristics, multiple tests having different pumping schedules, and testing the formation at more than one location would decrease the ambiguity in the interpretation of test data.
Fractional single-phase-lagging heat conduction model for describing anomalous diffusion
Directory of Open Access Journals (Sweden)
T.N. Mishra
2016-03-01
Full Text Available The fractional single-phase-lagging (FSPL heat conduction model is obtained by combining scalar time fractional conservation equation to the single-phase-lagging (SPL heat conduction model. Based on the FSPL heat conduction model, anomalous diffusion within a finite thin film is investigated. The effect of different parameters on solution has been observed and studied the asymptotic behavior of the FSPL model. The analytical solution is obtained using Laplace transform method. The whole analysis is presented in dimensionless form. Numerical examples of particular interest have been studied and discussed in details.
International Nuclear Information System (INIS)
El-Naggar, I.M.; Belacy, N.; Zakaria, E.S.; Mohamed, D.A.; Aly, H.F.
1999-01-01
The Kinetic behaviour of Na +, Cs +, Co 2+ and Sr 2+ in new exchanger of silicon titanate have been investigated under conditions of particle diffusion and the limited batch technique. The physical thermodynamic parameters such as activation energies and entropies of activation have been evaluated. The values of diffusion coefficient of Cs + , Na + , Sr 2+ and Co 2+ were determined as a function of particle size and reaction temperatures and these values inside the exchanger take the order Co 2+ > Sr 2+ > Cs +> Na +
Fragmentation of single-particle states and neutron strength functions
International Nuclear Information System (INIS)
Soloviev, V.G.
1975-01-01
Fragmentation of one-particle states in odd deformed nuclei is studied in the framework of a model based on the interaction between quasiparticles and phonons. A principally new semi-microscopic method for calculation of force functions using the data on fragmentation of one-particle states is suggested. Calculated s- and p-wave neutron force functions in 239 U and 169 Er are in good agreement with experiment. The correct description of the s-wave neutron force function in the vicinity of is obtained in particular for Sn isotopes/ of its minimum is obtained in particular for Sn isotopes
International Nuclear Information System (INIS)
Ferreira, J.L.; Ferreira, J.G.; Sandonato, G.M.; Damasio, W.C.; Montes, A.; Ludwig, G.O.
1989-08-01
The anomalous particle diffusion in regions near to magnetic confinement walls due to ion acoustic turbulence in superficially confined quiescent plasma is studied comparing the measured diffusion coefficient with the Bohm diffusion coefficient. The plasma diagnostics are carried out using Langmuir probe, electron and ion energy analyzers, emission probes for measuring plasma potential and, mass spectrometer, the purchase of data acquisition system composed by storage unit and signal register interfaced with IBM PC computer is proposed for simultaneous measurements with several diagnostics in the quiescent plasma machine of LAP-INPE operating in pulsed regime. (M.C.K.)
Localization and force analysis at the single virus particle level using atomic force microscopy
International Nuclear Information System (INIS)
Liu, Chih-Hao; Horng, Jim-Tong; Chang, Jeng-Shian; Hsieh, Chung-Fan; Tseng, You-Chen; Lin, Shiming
2012-01-01
Highlights: ► Localization of single virus particle. ► Force measurements. ► Force mapping. -- Abstract: Atomic force microscopy (AFM) is a vital instrument in nanobiotechnology. In this study, we developed a method that enables AFM to simultaneously measure specific unbinding force and map the viral glycoprotein at the single virus particle level. The average diameter of virus particles from AFM images and the specificity between the viral surface antigen and antibody probe were integrated to design a three-stage method that sets the measuring area to a single virus particle before obtaining the force measurements, where the influenza virus was used as the object of measurements. Based on the purposed method and performed analysis, several findings can be derived from the results. The mean unbinding force of a single virus particle can be quantified, and no significant difference exists in this value among virus particles. Furthermore, the repeatability of the proposed method is demonstrated. The force mapping images reveal that the distributions of surface viral antigens recognized by antibody probe were dispersed on the whole surface of individual virus particles under the proposed method and experimental criteria; meanwhile, the binding probabilities are similar among particles. This approach can be easily applied to most AFM systems without specific components or configurations. These results help understand the force-based analysis at the single virus particle level, and therefore, can reinforce the capability of AFM to investigate a specific type of viral surface protein and its distributions.
Effect of losses on acceleration of energetic particles by diffusive scattering through shock waves
International Nuclear Information System (INIS)
Voelk, H.J.; Morfill, G.E.; Forman, M.A.
1981-01-01
The effect of local losses on the acceleration of energetic particles by shocks is discussed considering both energy losses of individual particles and damping processes for the scattering hydromagnetic waves. The calculations are all time asymptotic and steady state. For locally plane and infinitely extended shocks, the requirement for acceleration is that the loss time exceed the acceleration time. The resulting modifications of the spatial structure and of the momentum dependence of the cosmic-ray distribution are described. For acceleration to be a local effect within the Galaxy, the local scattering mean free path must be small compared to the effective overall galactic mean free path as deduced from the cosmic-ray escape time. The required strengths of the scattering wave fields are such that neutral molecular clouds do not allow acceleration; in a partially ionized, warm interstellar medium, quite large shock strengths are needed. Such strong shock discontinuities are surrounded by an ionization layer within which Alfven wave damping is presumably negligible. Given the spatial extent of the layer for strong shocks propagating into neutral interstellar clouds, the possibility of localized diffusive acceleration is investigated. The estimated strength and extent of the scattering region is not large enough to confine acceleration within the layer. Rather, it will extend across the whole cloud, whose integrated losses then determine the efficiency
International Nuclear Information System (INIS)
Babaeva, Natalia Yu; Kushner, Mark J
2014-01-01
Self-organization of filaments in dielectric-barrier discharges (DBDs) probably has many origins. However, the dominant cause is proposed to be the accumulation of charge on the surfaces of the bounding dielectrics that reinforces successive discharge pulses to occur at the same locations. A secondary cause is the electrostatic repulsion of individual plasma filaments. Self-organization typically develops over many discharge pulses. In this paper, we discuss the results of a computational investigation of plasma filaments in overvoltage DBDs that, under select conditions, display self-organized patterns (SOPs) of plasma density during a single discharge pulse. (Overvoltage refers to the rapid application of a voltage in excess of the quasi-dc breakdown voltage.) The origin of the SOPs is a synergistic relationship between the speed of the surface-ionization waves that propagate along each dielectric and the rate at which avalanche occurs across the gap. For our test conditions, SOPs were not observed at lower voltages and gradually formed at higher voltages. The same conditions that result in SOPs, i.e. the application of an overvoltage, also produce more diffuse discharges. A transition from a single narrow filament to a more diffuse structure was observed as overvoltage was approached. The sensitivity of SOPs to the orientation and permittivity of the bounding dielectrics is discussed. (paper)
Thermodynamics of phase-separating nanoalloys: Single particles and particle assemblies
Fèvre, Mathieu; Le Bouar, Yann; Finel, Alphonse
2018-05-01
The aim of this paper is to investigate the consequences of finite-size effects on the thermodynamics of nanoparticle assemblies and isolated particles. We consider a binary phase-separating alloy with a negligible atomic size mismatch, and equilibrium states are computed using off-lattice Monte Carlo simulations in several thermodynamic ensembles. First, a semi-grand-canonical ensemble is used to describe infinite assemblies of particles with the same size. When decreasing the particle size, we obtain a significant decrease of the solid/liquid transition temperatures as well as a growing asymmetry of the solid-state miscibility gap related to surface segregation effects. Second, a canonical ensemble is used to analyze the thermodynamic equilibrium of finite monodisperse particle assemblies. Using a general thermodynamic formulation, we show that a particle assembly may split into two subassemblies of identical particles. Moreover, if the overall average canonical concentration belongs to a discrete spectrum, the subassembly concentrations are equal to the semi-grand-canonical equilibrium ones. We also show that the equilibrium of a particle assembly with a prescribed size distribution combines a size effect and the fact that a given particle size assembly can adopt two configurations. Finally, we have considered the thermodynamics of an isolated particle to analyze whether a phase separation can be defined within a particle. When studying rather large nanoparticles, we found that the region in which a two-phase domain can be identified inside a particle is well below the bulk phase diagram, but the concentration of the homogeneous core remains very close to the bulk solubility limit.
Arkhincheev, V E
2017-03-01
The new asymptotic behavior of the survival probability of particles in a medium with absorbing traps in an electric field has been established in two ways-by using the scaling approach and by the direct solution of the diffusion equation in the field. It has shown that at long times, this drift mechanism leads to a new temporal behavior of the survival probability of particles in a medium with absorbing traps.
Directory of Open Access Journals (Sweden)
David Gómez-Varela
2010-01-01
Full Text Available Voltage-gated ion channels are main players involved in fast synaptic events. However, only slow intracellular mechanisms have so far been described for controlling their localization as real-time visualization of endogenous voltage-gated channels at high temporal and spatial resolution has not been achieved yet. Using a specific extracellular antibody and quantum dots we reveal and characterize lateral mobility as a faster mechanism to dynamically control the number of endogenous ether-a-go-go (Eag1 ion channels inside synapses. We visualize Eag1 entering and leaving synapses by lateral diffusion in the plasma membrane of rat hippocampal neurons. Mathematical analysis of their trajectories revealed how the motion of Eag1 gets restricted when the channels diffuse into the synapse, suggesting molecular interactions between Eag1 and synaptic components. In contrast, Eag1 channels switch to Brownian movement when they exit synapses and diffuse into extrasynaptic membranes. Furthermore, we demonstrate that the mobility of Eag1 channels is specifically regulated inside synapses by actin filaments, microtubules and electrical activity. In summary, using single-particle-tracking techniques with quantum dots nanocrystals, our study shows for the first time the lateral diffusion of an endogenous voltage-gated ion channel in neurons. The location-dependent constraints imposed by cytoskeletal elements together with the regulatory role of electrical activity strongly suggest a pivotal role for the mobility of voltage-gated ion channels in synaptic activity.
Uncertainty in counting ice nucleating particles with continuous flow diffusion chambers
Directory of Open Access Journals (Sweden)
S. Garimella
2017-09-01
Full Text Available This study investigates the measurement of ice nucleating particle (INP concentrations and sizing of crystals using continuous flow diffusion chambers (CFDCs. CFDCs have been deployed for decades to measure the formation of INPs under controlled humidity and temperature conditions in laboratory studies and by ambient aerosol populations. These measurements have, in turn, been used to construct parameterizations for use in models by relating the formation of ice crystals to state variables such as temperature and humidity as well as aerosol particle properties such as composition and number. We show here that assumptions of ideal instrument behavior are not supported by measurements made with a commercially available CFDC, the SPectrometer for Ice Nucleation (SPIN, and the instrument on which it is based, the Zurich Ice Nucleation Chamber (ZINC. Non-ideal instrument behavior, which is likely inherent to varying degrees in all CFDCs, is caused by exposure of particles to different humidities and/or temperatures than predicated from instrument theory of operation. This can result in a systematic, and variable, underestimation of reported INP concentrations. We find here variable correction factors from 1.5 to 9.5, consistent with previous literature values. We use a machine learning approach to show that non-ideality is most likely due to small-scale flow features where the aerosols are combined with sheath flows. Machine learning is also used to minimize the uncertainty in measured INP concentrations. We suggest that detailed measurement, on an instrument-by-instrument basis, be performed to characterize this uncertainty.
Trouble with diffusion: Reassessing hillslope erosion laws with a particle-based model
Tucker, Gregory E.; Bradley, D. Nathan
2010-03-01
Many geomorphic systems involve a broad distribution of grain motion length scales, ranging from a few particle diameters to the length of an entire hillslope or stream. Studies of analogous physical systems have revealed that such broad motion distributions can have a significant impact on macroscale dynamics and can violate the assumptions behind standard, local gradient flux laws. Here, a simple particle-based model of sediment transport on a hillslope is used to study the relationship between grain motion statistics and macroscopic landform evolution. Surface grains are dislodged by random disturbance events with probabilities and distances that depend on local microtopography. Despite its simplicity, the particle model reproduces a surprisingly broad range of slope forms, including asymmetric degrading scarps and cinder cone profiles. At low slope angles the dynamics are diffusion like, with a short-range, thin-tailed hop length distribution, a parabolic, convex upward equilibrium slope form, and a linear relationship between transport rate and gradient. As slope angle steepens, the characteristic grain motion length scale begins to approach the length of the slope, leading to planar equilibrium forms that show a strongly nonlinear correlation between transport rate and gradient. These high-probability, long-distance motions violate the locality assumption embedded in many common gradient-based geomorphic transport laws. The example of a degrading scarp illustrates the potential for grain motion dynamics to vary in space and time as topography evolves. This characteristic renders models based on independent, stationary statistics inapplicable. An accompanying analytical framework based on treating grain motion as a survival process is briefly outlined.
Diffusion equation and non-holonomy
International Nuclear Information System (INIS)
Gomes, Luiz Carlos; Lobo, R.; Simao, F.R.A.
1980-01-01
The diffusion equation for particles in a Riemannian space subject to a single constraint is discussed. The implications of the holonomy and non-holonomy of this single constraint is also discussed. (L.C.) [pt
International Nuclear Information System (INIS)
Kraiem, M.; Richter, S.; Erdmann, N.; Kühn, H.; Hedberg, M.; Aregbe, Y.
2012-01-01
Highlights: ► A method to quantify the U mass in single micron particles by ID-TIMS was developed. ► Well-characterized monodisperse U-oxide particles produced by an aerosol generator were used. ► A linear correlation between the mass of U and the volume of particle(s) was found. ► The method developed is suitable for determining the amount of U in a particulate reference material. - Abstract: Uranium and plutonium particulate test materials are becoming increasingly important as the reliability of measurement results has to be demonstrated to regulatory bodies responsible for maintaining effective nuclear safeguards. In order to address this issue, the Institute for Reference Materials and Measurements (IRMM) in collaboration with the Institute for Transuranium Elements (ITU) has initiated a study to investigate the feasibility of preparing and characterizing a uranium particle reference material for nuclear safeguards, which is finally certified for isotopic abundances and for the uranium mass per particle. Such control particles are specifically required to evaluate responses of instruments based on mass spectrometric detection (e.g. SIMS, TIMS, LA-ICPMS) and to help ensuring the reliability and comparability of measurement results worldwide. In this paper, a methodology is described which allows quantifying the uranium mass in single micron particles by isotope dilution thermal ionization mass spectrometry (ID-TIMS). This methodology is characterized by substantial improvements recently achieved at IRMM in terms of sensitivity and measurement accuracy in the field of uranium particle analysis by TIMS. The use of monodisperse uranium oxide particles prepared using an aerosol generation technique developed at ITU, which is capable of producing particles of well-characterized size and isotopic composition was exploited. The evidence of a straightforward correlation between the particle volume and the mass of uranium was demonstrated in this study
Pairing fluctuation effects on the single-particle spectra for the superconducting state
International Nuclear Information System (INIS)
Pieri, P.; Pisani, L.; Strinati, G.C.
2004-01-01
Single-particle spectra are calculated in the superconducting state for a fermionic system with an attractive interaction, as functions of temperature and coupling strength from weak to strong. The fermionic system is described by a single-particle self-energy that includes pairing-fluctuation effects in the superconducting state. The theory reduces to the ordinary BCS approximation in weak coupling and to the Bogoliubov approximation for the composite bosons in strong coupling. Several features of the single-particle spectral function are shown to compare favorably with experimental data for cuprate superconductors
Semiempirical formulas for single-particle energies of neutrons and protons
International Nuclear Information System (INIS)
Lodhi, M.A.K.; Waak, B.T.
1978-01-01
The stepwise multiple linear regression technique has been used to analyze the single-particle energies of neutrons and protons in nuclei along the line of beta stability. Their regular and systematic trends lead to semiempirical model-independent formulas for single-particle energies of neutrons and protons in the bound nuclei as functions of nuclear parameters A and Z for given states specified by nl/sub j/. These formulas are almost as convenient as the harmonic oscillator energy formulas to use. The single-particle energies computed from these formulas have been compared with the experimental data and are found in reasonable agreement
Ault, A. P.; Guasco, T.; Ryder, O. S.; Baltrusaitis, J.; Cuadra-Rodriguez, L. A.; Collins, D. B.; Ruppel, M. J.; Bertram, T. H.; Prather, K. A.; Grassian, V. H.
2013-12-01
Sea spray aerosol (SSA) particles were generated under real-world conditions using natural seawater and a unique ocean-atmosphere facility equipped with actual breaking waves or a marine aerosol reference tank (MART) that replicates those conditions. The SSA particles were exposed to nitric acid in situ in a flow tube and the well-known chloride displacement and nitrate formation reaction was observed. However, as discussed here, little is known about how this anion displacement reaction affects the distribution of cations and other chemical constituents within and phase state of individual SSA particles. Single particle analysis of individual SSA particles shows that cations (Na+, K+, Mg2+ and Ca2+) within individual particles undergo a spatial redistribution after heterogeneous reaction with nitric acid, along with a more concentrated layer of organic matter at the surface of the particle. These data suggest that specific ion and aerosol pH effects play an important role in aerosol particle structure in ways that have not been previously recognized. The ordering of organic coatings can impact trace gas uptake, and subsequently impact trace gas budgets of O3 and NOx.
Probing Exciton Diffusion and Dissociation in Single-Walled Carbon Nanotube-C60 Heterojunctions
Energy Technology Data Exchange (ETDEWEB)
Dowgiallo, Anne-Marie; Mistry, Kevin S.; Johnson, Justin C.; Reid, Obadiah G.; Blackburn, Jeffrey L.
2016-05-19
The efficiency of thin-film organic photovoltaic (OPV) devices relies heavily upon the transport of excitons to type-II heterojunction interfaces, where there is sufficient driving force for exciton dissociation and ultimately the formation of charge carriers. Semiconducting single-walled carbon nanotubes (SWCNTs) are strong near-infrared absorbers that form type-II heterojunctions with fullerenes such as C60. Although the efficiencies of SWCNT-fullerene OPV devices have climbed over the past few years, questions remain regarding the fundamental factors that currently limit their performance. In this study, we determine the exciton diffusion length in the C60 layer of SWCNT-C60 bilayer active layers using femtosecond transient absorption measurements. We demonstrate that hole transfer from photoexcited C60 molecules to SWCNTs can be tracked by the growth of narrow spectroscopic signatures of holes in the SWCNT 'reporter layer'. In bilayers with thick C60 layers, the SWCNT charge-related signatures display a slow rise over hundreds of picoseconds, reflecting exciton diffusion through the C60 layer to the interface. A model based on exciton diffusion with a Beer-Lambert excitation profile, as well as Monte Carlo simulations, gives the best fit to the data as a function of C60 layer thickness using an exciton diffusion length of approximately 5 nm.
Comprehensive study of ignition and combustion of single wooden particles
DEFF Research Database (Denmark)
Momenikouchaksaraei, Maryam; Yin, Chungen; Kær, Søren Knudsen
2013-01-01
How quickly large biomass particles can ignite and burn out when transported into a pulverized-fuel (pf) furnace and suddenly exposed to a hot gas flow containing oxygen is very important in biomass co-firing design and optimization. In this paper, the ignition and burnout of the largest possible...... for all the test conditions. As the particle is further heated up and the volume-weighted average temperature reaches the onset of rapid decomposition of hemicellulose and cellulose, a secondary homogeneous ignition occurs. The model-predicted ignition delays and burnout times show a good agreement...... with the experimental results. Homogeneous ignition delays are found to scale with specific surface areas while heterogeneous ignition delays show less dependency on the areas. The ignition and burnout are also affected by the process conditions, in which the oxygen concentration is found to have a more pronounced...
A new analytical formulation of retention effects on particle diffusion processes
Directory of Open Access Journals (Sweden)
Luiz Bevilacqua
2011-12-01
Full Text Available The ultimate purpose of this paper is to present a new analytical formulation to simulate diffusion with retention in a reactive medium under stable thermodynamic conditions. The analysis of diffusion with retention in a continuum medium is developed after the solution of an equivalent problem using a discrete approach. The new law may be interpreted as the reduction of all diffusion processes with retention to a unifying phenomenon that can adequately simulate the retention effect namely a circulatory motion. It is remarkable that the governing equation requires a fourth order differential term as suggested by the discrete approach. The relative fraction of diffusion particles β is introduced as a control parameter in the diffusion-retention law as suggested by the discrete approach. This control parameter is essential to avoid retention isolated from the diffusion process. Two matrices referring to material properties are introduced and related to the real phenomenon through the circulation hypothesis. The governing equation may be highly non-linear even if the material properties are constant, but the retention effect is a function of the concentration level, that is, β is a function of the concentration.O objetivo último desse trabalho é apresentar uma nova formulação analítica para simular difusão com retenção em um meio reativo sob condições termodinamicamente estáveis. A análise da difusão com retenção em um meio contínuo é desenvolvida a partir da solução de um problema equivalente usando uma abordagem discreta. A nova lei pode ser interpretada como a redução de todos os processos de difusão com retenção a um fenômeno unificador que pode simular adequadamente a retenção. O propósito principal desse trabalho é apresentar uma nova formulação analítica para simular difusão com retenção em meio reativo termodinamicamente estável. A análise da difusão com retenção em um meio contínuo é desenvolvido
High frequency single mode traveling wave structure for particle acceleration
Energy Technology Data Exchange (ETDEWEB)
Ivanyan, M.I.; Danielyan, V.A.; Grigoryan, B.A.; Grigoryan, A.H. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Tsakanian, A.V. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Technische Universität Darmstadt, Institut TEMF, 64289 Darmstadt (Germany); Tsakanov, V.M., E-mail: tsakanov@asls.candle.am [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Vardanyan, A.S.; Zakaryan, S.V. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia)
2016-09-01
The development of the new high frequency slow traveling wave structures is one of the promising directions in accomplishment of charged particles high acceleration gradient. The disc and dielectric loaded structures are the most known structures with slowly propagating modes. In this paper a large aperture high frequency metallic two-layer accelerating structure is studied. The electrodynamical properties of the slowly propagating TM{sub 01} mode in a metallic tube with internally coated low conductive thin layer are examined.
destiny: diffusion maps for large-scale single-cell data in R.
Angerer, Philipp; Haghverdi, Laleh; Büttner, Maren; Theis, Fabian J; Marr, Carsten; Buettner, Florian
2016-04-15
: Diffusion maps are a spectral method for non-linear dimension reduction and have recently been adapted for the visualization of single-cell expression data. Here we present destiny, an efficient R implementation of the diffusion map algorithm. Our package includes a single-cell specific noise model allowing for missing and censored values. In contrast to previous implementations, we further present an efficient nearest-neighbour approximation that allows for the processing of hundreds of thousands of cells and a functionality for projecting new data on existing diffusion maps. We exemplarily apply destiny to a recent time-resolved mass cytometry dataset of cellular reprogramming. destiny is an open-source R/Bioconductor package "bioconductor.org/packages/destiny" also available at www.helmholtz-muenchen.de/icb/destiny A detailed vignette describing functions and workflows is provided with the package. carsten.marr@helmholtz-muenchen.de or f.buettner@helmholtz-muenchen.de Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
A study on the particle penetration in RMS Right Single Quotation Marks particle transport system
International Nuclear Information System (INIS)
Son, S. M.; Oh, S. H.; Choi, C. R.
2014-01-01
In nuclear facilities, a radiation monitoring system (RMS) monitors the exhaust gas containing the radioactive material. Samples of exhaust gas are collected in the downstream region of air cleaning units (ACUs) in order to examine radioactive materials. It is possible to predict an amount of radioactive material by analyzing the corrected samples. Representation of the collected samples should be assured in order to accurately sense and measure of radioactive materials. The radius of curvature is mainly 5 times of tube diameter. Sometimes, a booster fan is additionally added to enhance particle penetration rate... In this study, particle penetrations are calculated to evaluate particle penetration rate with various design parameters (tube lengths, tube declined angles, radius of curvatures, etc). The particle penetration rates have been calculated for several elements in the particle transport system. In general, the horizontal length of tube and the number of bending tube have a big impact on the penetration rate in the particle transport system. If the sampling location is far from the radiation monitoring system, additional installation of booster fans could be considered in case of large diameter tubes, but is not recommended in case of small diameter tube. In order to enhance particle penetration rate, the following works are recommended by priority. 1) to reduce the interval between sampling location and radiation monitoring system 2) to reduce the number of the bending tube
Zhu, Yanan; Ouyang, Qi; Mao, Youdong
2017-07-21
Single-particle cryo-electron microscopy (cryo-EM) has become a mainstream tool for the structural determination of biological macromolecular complexes. However, high-resolution cryo-EM reconstruction often requires hundreds of thousands of single-particle images. Particle extraction from experimental micrographs thus can be laborious and presents a major practical bottleneck in cryo-EM structural determination. Existing computational methods for particle picking often use low-resolution templates for particle matching, making them susceptible to reference-dependent bias. It is critical to develop a highly efficient template-free method for the automatic recognition of particle images from cryo-EM micrographs. We developed a deep learning-based algorithmic framework, DeepEM, for single-particle recognition from noisy cryo-EM micrographs, enabling automated particle picking, selection and verification in an integrated fashion. The kernel of DeepEM is built upon a convolutional neural network (CNN) composed of eight layers, which can be recursively trained to be highly "knowledgeable". Our approach exhibits an improved performance and accuracy when tested on the standard KLH dataset. Application of DeepEM to several challenging experimental cryo-EM datasets demonstrated its ability to avoid the selection of un-wanted particles and non-particles even when true particles contain fewer features. The DeepEM methodology, derived from a deep CNN, allows automated particle extraction from raw cryo-EM micrographs in the absence of a template. It demonstrates an improved performance, objectivity and accuracy. Application of this novel method is expected to free the labor involved in single-particle verification, significantly improving the efficiency of cryo-EM data processing.
Peters, S M E; Verheijen, M A; Prins, M W J; Zijlstra, P
2016-01-15
Single metal nanoparticles are attractive biomolecular sensors. Binding of analyte to a functional particle results in a plasmon shift that can be conveniently monitored in a far-field optical microscope. Heterogeneities in spectral properties of individual particles in an ensemble affect the reliability of a single-particle plasmon sensor, especially when plasmon shifts are monitored in real-time using a fixed irradiation wavelength. We compare the spectral heterogeneity of different plasmon sensor geometries (gold nanospheres, nanorods, and bipyramids) and correlate this to their size and aspect-ratio dispersion. We show that gold bipyramids exhibit a strongly reduced heterogeneity in aspect ratio and plasmon wavelength compared to commonly used gold nanorods. We show that this translates into a significantly improved homogeneity of the response to molecular binding without compromising single-molecule sensitivity.
Single particle train ordering in microchannel based on inertial and vortex effects
Fan, Liang-Liang; Yan, Qing; Zhe, Jiang; Zhao, Liang
2018-06-01
A new microfluidic device for microparticle focusing and ordering in a single particle train is reported. The particle focusing and ordering are based on inertial and vortex effects in a microchannel with a series of suddenly contracted and widely expanded structures on one side. In the suddenly contracted regions, particles located near the contracted structures are subjected to a strong wall-effect lift force and momentum-change-induced inertial force due to the highly curved trajectory, migrating to the straight wall. A horizontal vortex is generated downstream of the contracted structure, which prevents the particle from getting close to the wall. In the widely expanded regions, the streamline is curved and no vortex is generated. The shear-gradient lift force and the momentum-change-induced inertial force are dominant for particle lateral migration, driving particles towards the wall of the expanded structures. Eventually, particles are focused and ordered in a single particle train by the combination effects of the inertial forces and the vortex. In comparison with other single-stream particle focusing methods, this device requires no sheath flow, is easy for fabrication and operation, and can work over a wide range of Reynolds numbers from 19.1–142.9. The highly ordered particle chain could be potentially utilized in a variety of lab-chip applications, including micro-flow cytometer, imaging and droplet-based cell entrapment.
Maity, Srimanta; Das, Amita; Kumar, Sandeep; Tiwari, Sanat Kumar
2018-04-01
The collective response of the plasma medium is well known and has been explored extensively in the context of dusty plasma medium. On the other hand, the individual particle response associated with the collisional character giving rise to the dissipative phenomena has not been explored adequately. In this paper, two-dimensional molecular dynamics simulation of dust particles interacting via Yukawa potential has been considered. It has been shown that disturbances induced in a dust crystal elicit both collective and single particle responses. Generation of a few particles moving at speeds considerably higher than acoustic and/or shock speed (excited by the external disturbance) is observed. This is an indication of a single particle response. Furthermore, as these individual energetic particles propagate, the dust crystal is observed to crack along their path. Initially when the energy is high, these particles generate secondary energetic particles by the collisional scattering process. However, ultimately as these particles slow down they excite a collective response in the dust medium at secondary locations in a region which is undisturbed by the primary external disturbance. The condition when the cracking of the crystal stops and collective excitations get initiated has been identified quantitatively. The trailing collective primary disturbances would thus often encounter a disturbed medium with secondary and tertiary collective perturbations, thereby suffering significant modification in its propagation. It is thus clear that there is an interesting interplay (other than mere dissipation) between the single particle and collective response which governs the dynamics of any disturbance introduced in the medium.
Chen, Yang; Wenger, John C; Yang, Fumo; Cao, Junji; Huang, Rujin; Shi, Guangming; Zhang, Shumin; Tian, Mi; Wang, Huanbo
2017-09-01
A Single Particle Aerosol Mass Spectrometer (SPAMS) was deployed in the urban area of Chongqing to characterize the particles present during a severe particulate pollution event that occurred in winter 2014-2015. The measurements were made at a time when residents engaged in traditional outdoor meat smoking activities to preserve meat before the Chinese Spring Festival. The measurement period was predominantly characterized by stagnant weather conditions, highly elevated levels of PM 2.5 , and low visibility. Eleven major single particle types were identified, with over 92.5% of the particles attributed to biomass burning emissions. Most of the particle types showed appreciable signs of aging in the stagnant air conditions. To simulate the meat smoking activities, a series of controlled smoldering experiments was conducted using freshly cut pine and cypress branches, both with and without wood logs. SPAMS data obtained from these experiments revealed a number of biomass burning particle types, including an elemental and organic carbon (ECOC) type that proved to be the most suitable marker for meat smoking activities. The traditional activity of making preserved meat in southwestern China is shown here to be a major source of particulate pollution. Improved measures to reduce emissions from the smoking of meat should be introduced to improve air quality in regions where smoking meat activity prevails. Copyright © 2017 Elsevier Ltd. All rights reserved.
Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals
Shi, Dong
2015-01-29
The fundamental properties and ultimate performance limits of organolead trihalide MAPbX3(MA = CH3NH3 +; X = Br- or I- ) perovskites remain obscured by extensive disorder in polycrystalline MAPbX3 films. We report an antisolvent vapor-assisted crystallization approach that enables us to create sizable crack-free MAPbX3 single crystals with volumes exceeding 100 cubic millimeters. These large single crystals enabled a detailed characterization of their optical and charge transport characteristics.We observed exceptionally low trap-state densities on the order of 109 to 1010 per cubic centimeter in MAPbX3 single crystals (comparable to the best photovoltaic-quality silicon) and charge carrier diffusion lengths exceeding 10 micrometers. These results were validated with density functional theory calculations.
Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals
Shi, Dong; Adinolfi, Valerio; Comin, Riccardo; Yuan, Mingjian; Alarousu, Erkki; Buin, Andrei K.; Chen, Yin; Hoogland, Sjoerd H.; Rothenberger, Alexander; Katsiev, Khabiboulakh; Losovyj, Yaroslav B.; Zhang, Xin; Dowben, Peter A.; Mohammed, Omar F.; Sargent, E. H.; Bakr, Osman
2015-01-01
The fundamental properties and ultimate performance limits of organolead trihalide MAPbX3(MA = CH3NH3 +; X = Br- or I- ) perovskites remain obscured by extensive disorder in polycrystalline MAPbX3 films. We report an antisolvent vapor-assisted crystallization approach that enables us to create sizable crack-free MAPbX3 single crystals with volumes exceeding 100 cubic millimeters. These large single crystals enabled a detailed characterization of their optical and charge transport characteristics.We observed exceptionally low trap-state densities on the order of 109 to 1010 per cubic centimeter in MAPbX3 single crystals (comparable to the best photovoltaic-quality silicon) and charge carrier diffusion lengths exceeding 10 micrometers. These results were validated with density functional theory calculations.
Diffusion of charged particles in strong large-scale random and regular magnetic fields
International Nuclear Information System (INIS)
Mel'nikov, Yu.P.
2000-01-01
The nonlinear collision integral for the Green's function averaged over a random magnetic field is transformed using an iteration procedure taking account of the strong random scattering of particles on the correlation length of the random magnetic field. Under this transformation the regular magnetic field is assumed to be uniform at distances of the order of the correlation length. The single-particle Green's functions of the scattered particles in the presence of a regular magnetic field are investigated. The transport coefficients are calculated taking account of the broadening of the cyclotron and Cherenkov resonances as a result of strong random scattering. The mean-free path lengths parallel and perpendicular to the regular magnetic field are found for a power-law spectrum of the random field. The analytical results obtained are compared with the experimental data on the transport ranges of solar and galactic cosmic rays in the interplanetary magnetic field. As a result, the conditions for the propagation of cosmic rays in the interplanetary space and a more accurate idea of the structure of the interplanetary magnetic field are determined
Zimmer, L.; Pereira, F.M.; van Oijen, J.A.; de Goey, L.P.H.
2017-01-01
A numerical model is developed aiming at investigating soot formation in ethylene counterflow diffusion flames. The mass and energy coupling between soot solid particles and gas-phase species is investigated in detail. A semi-empirical two-equation model is chosen for predicting soot mass fraction
Chemisorption and Diffusion of H on a Graphene Sheet and Single-Wall Carbon Nanotubes
Srivastava, Deepak; Dzegilenko, Fedor; Menon, Madhu
2000-01-01
Recent experiments on hydrogen storage in single wall nanotubes and nanotube bundles have reported large fractional weight of stored molecular hydrogen which are not in agreement with theoretical estimates based of simulation of hydrogen storage by physisorption mechanisms. Hydrogen storage in catalytically doped nanotube bundles indicate that atomic H might undergo chemisorption changing the basic nature of the storage mechanism under investigation by many groups. Using a generalized tight-binding molecular dynamics (GTBMD) method for reactive C-H dynamics, we investigate chemisorption and diffusion of atomic H on graphene sheet and C nanotubes. Effective potential energy surfaces (EPS) for chemisorption and diffusion are calculated for graphene sheet and nanotubes of different curvatures. Analysis of the activation barriers and quantum rate constants, computed via wave-packet dynamics method, will be discussed in this presentation.
International Nuclear Information System (INIS)
Chatelier, Michel.
1976-01-01
A simple mechanical model is used to investigate the various physical mechanisms originating the echoes. The model is applied to nuclear spins and echoes from particles trapped in a magnetostatic well. The theory of echoes from trapped ions in a magnetic machine is developed. The effects that may be observed when two magnetic perturbations are applied to the plasma are described. Diffusion effects in the velocity space are then taken into account when the diffusion is due either to Coulomb collisions or to a microturbulence at the ion cyclotron frequency. The experimental results obtained with the DECA II B machine are described. Emphasis is put upon the effects observed when magnetic perturbations are applied to the plasma and echoes observation independently of the diffusion study, as it is the first time that trapped particle echoes are observed in a hot plasma [fr
Worringen, A.; Kandler, K.; Benker, N.; Dirsch, T.; Mertes, S.; Schenk, L.; Kästner, U.; Frank, F.; Nillius, B.; Bundke, U.; Rose, D.; Curtius, J.; Kupiszewski, P.; Weingartner, E.; Vochezer, P.; Schneider, J.; Schmidt, S.; Weinbruch, S.; Ebert, M.
2015-04-01
In the present work, three different techniques to separate ice-nucleating particles (INPs) as well as ice particle residuals (IPRs) from non-ice-active particles are compared. The Ice Selective Inlet (ISI) and the Ice Counterflow Virtual Impactor (Ice-CVI) sample ice particles from mixed-phase clouds and allow after evaporation in the instrument for the analysis of the residuals. The Fast Ice Nucleus Chamber (FINCH) coupled with the Ice Nuclei Pumped Counterflow Virtual Impactor (IN-PCVI) provides ice-activating conditions to aerosol particles and extracts the activated particles for analysis. The instruments were run during a joint field campaign which took place in January and February 2013 at the High Alpine Research Station Jungfraujoch (Switzerland). INPs and IPRs were analyzed offline by scanning electron microscopy and energy-dispersive X-ray microanalysis to determine their size, chemical composition and mixing state. Online analysis of the size and chemical composition of INP activated in FINCH was performed by laser ablation mass spectrometry. With all three INP/IPR separation techniques high abundances (median 20-70%) of instrumental contamination artifacts were observed (ISI: Si-O spheres, probably calibration aerosol; Ice-CVI: Al-O particles; FINCH + IN-PCVI: steel particles). After removal of the instrumental contamination particles, silicates, Ca-rich particles, carbonaceous material and metal oxides were the major INP/IPR particle types obtained by all three techniques. In addition, considerable amounts (median abundance mostly a few percent) of soluble material (e.g., sea salt, sulfates) were observed. As these soluble particles are often not expected to act as INP/IPR, we consider them as potential measurement artifacts. Minor types of INP/IPR include soot and Pb-bearing particles. The Pb-bearing particles are mainly present as an internal mixture with other particle types. Most samples showed a maximum of the INP/IPR size distribution at 200
Directory of Open Access Journals (Sweden)
Anna Sophie Berghoff
Full Text Available BACKGROUND: MRI-based diffusion-weighted imaging (DWI visualizes the local differences in water diffusion in vivo. The prognostic value of DWI signal intensities on the source images and apparent diffusion coefficient (ADC maps respectively has not yet been studied in brain metastases (BM. METHODS: We included into this retrospective analysis all patients operated for single BM at our institution between 2002 and 2010, in whom presurgical DWI and BM tissue samples were available. We recorded relevant clinical data, assessed DWI signal intensity and apparent diffusion coefficient (ADC values and performed histopathological analysis of BM tissues. Statistical analyses including uni- and multivariate survival analyses were performed. RESULTS: 65 patients (34 female, 31 male with a median overall survival time (OS of 15 months (range 0-99 months were available for this study. 19 (29.2% patients presented with hyper-, 3 (4.6% with iso-, and 43 (66.2% with hypointense DWI. ADCmean values could be determined in 32 (49.2% patients, ranged from 456.4 to 1691.8*10⁻⁶ mm²/s (median 969.5 and showed a highly significant correlation with DWI signal intensity. DWI hyperintensity correlated significantly with high amount of interstitial reticulin deposition. In univariate analysis, patients with hyperintense DWI (5 months and low ADCmean values (7 months had significantly worse OS than patients with iso/hypointense DWI (16 months and high ADCmean values (30 months, respectively. In multivariate survival analysis, high ADCmean values retained independent statistical significance. CONCLUSIONS: Preoperative DWI findings strongly and independently correlate with OS in patients operated for single BM and are related to interstitial fibrosis. Inclusion of DWI parameters into established risk stratification scores for BM patients should be considered.
Single-particle colloid tracking in four dimensions.
Anthony, Stephen M; Hong, Liang; Kim, Minsu; Granick, Steve
2006-11-21
Coating a close-packed fluorescent colloid monolayer with a nanometer-thick metal film followed by sonication in liquid produces modulated optical nanoprobes. The metal coating modulates the fluorescence as these structures rotate in suspension, enabling the use of these particles as probes to monitor both rotational and center-of-mass (translational) dynamics in complex environments. Here, we demonstrate methods to simultaneously measure two translational and two rotational degrees of freedom, with excellent agreement to theory. The capability to determine two angles of rotation opens several new avenues of future research.
Single Particle energy levels in ODD-A Nuclei
International Nuclear Information System (INIS)
Lasijo, R.S.
1997-01-01
Singe particle energies for atomic nuclei with odd-A number of nucleons, i.e. nuclei possessing odd number of protons or odd number of neutrons, were calculated based on Nilsson's theory, and then the diagrams were made. the energy diagram is in the from of plot of energies as function of deformations, entities identifying the deviations from the spherical shape. The energy calculations were done using FORTRAN 77 language of PC (Personal Computer) version with Microsoft Fortran Power Station compiler, which was then combined with WORD version 6.0 and EXCEL version 5.0 of WINDOWS WORKGROUP to make the plot
Studies of the neutron single-particle structure of exotic nuclei at the HRIBF
International Nuclear Information System (INIS)
Thomas, J.S.; Bardayan, D.W.; Blackmon, J.C.; Cizewski, J.A.; Greife, U.; Gross, C.J.; Johnson, M.S.; Jones, K.L.; Kozub, R.L.; Liang, J.F.; Livesay, R.J.; Ma, Z.; Moazen, B.H.; Nesaraja, C.D.; Shapira, D.; Smith, M.S.
2004-01-01
The study of neutron single-particle strengths in neutron-rich nuclei is of interest for nuclear structure and nuclear astrophysics. The distribution of single-particle strengths constrains the effective Hamiltonian and pairing interactions and determines neutron interaction rates that are crucial for understanding the synthesis of heavy nuclei in supernovae via the rapid neutron capture process. Particularly important are the neutron single-particle levels in nuclei near closed neutron shells. Radioactive ion beams from the Holifield Radioactive Ion Beam Facility have been used to study (d,p) reactions in inverse kinematics in order to probe neutron single-particle states in exotic nuclei. The results of a measurement with a 82 Ge beam will be presented
Kandler, Konrad; Worringen, Annette; Benker, Nathalie; Dirsch, Thomas; Mertes, Stephan; Schenk, Ludwig; Kästner, Udo; Frank, Fabian; Nillius, Björn; Bundke, Ulrich; Rose, Diana; Curtius, Joachim; Kupiszewski, Piotr; Weingartner, Ernest; Vochezer, Paul; Schneider, Johannes; Schmidt, Susan; Weinbruch, Stephan; Ebert, Martin
2015-04-01
During January/February 2013, at the High Alpine Research Station Jungfraujoch a measurement campaign was carried out, which was centered on atmospheric ice-nucleating particles (INP) and ice particle residuals (IPR). Three different techniques for separation of INP and IPR from the non-ice-active particles are compared. The Ice Selective Inlet (ISI) and the Ice Counterflow Virtual Impactor (Ice-CVI) sample ice particles from mixed phase clouds and allow for the analysis of the residuals. The combination of the Fast Ice Nucleus Chamber (FINCH) and the Ice Nuclei Pumped Counterflow Virtual Impactor (IN-PCVI) provides ice-activating conditions to aerosol particles and extracts the activated INP for analysis. Collected particles were analyzed by scanning electron microscopy and energy-dispersive X-ray microanalysis to determine size, chemical composition and mixing state. All INP/IPR-separating techniques had considerable abundances (median 20 - 70 %) of instrumental contamination artifacts (ISI: Si-O spheres, probably calibration aerosol; Ice-CVI: Al-O particles; FINCH+IN-PCVI: steel particles). Also, potential sampling artifacts (e.g., pure soluble material) occurred with a median abundance of separated by all three techniques. Soot was a minor contributor. Lead was detected in less than 10 % of the particles, of which the majority were internal mixtures with other particle types. Sea-salt and sulfates were identified by all three methods as INP/IPR. Most samples showed a maximum of the INP/IPR size distribution at 400 nm geometric diameter. In a few cases, a second super-micron maximum was identified. Soot/carbonaceous material and metal oxides were present mainly in the submicron range. ISI and FINCH yielded silicates and Ca-rich particles mainly with diameters above 1 µm, while the Ice-CVI also separated many submicron IPR. As strictly parallel sampling could not be performed, a part of the discrepancies between the different techniques may result from
2010-01-01
Background The difficulty of directly measuring cellular dose is a significant obstacle to application of target tissue dosimetry for nanoparticle and microparticle toxicity assessment, particularly for in vitro systems. As a consequence, the target tissue paradigm for dosimetry and hazard assessment of nanoparticles has largely been ignored in favor of using metrics of exposure (e.g. μg particle/mL culture medium, particle surface area/mL, particle number/mL). We have developed a computational model of solution particokinetics (sedimentation, diffusion) and dosimetry for non-interacting spherical particles and their agglomerates in monolayer cell culture systems. Particle transport to cells is calculated by simultaneous solution of Stokes Law (sedimentation) and the Stokes-Einstein equation (diffusion). Results The In vitro Sedimentation, Diffusion and Dosimetry model (ISDD) was tested against measured transport rates or cellular doses for multiple sizes of polystyrene spheres (20-1100 nm), 35 nm amorphous silica, and large agglomerates of 30 nm iron oxide particles. Overall, without adjusting any parameters, model predicted cellular doses were in close agreement with the experimental data, differing from as little as 5% to as much as three-fold, but in most cases approximately two-fold, within the limits of the accuracy of the measurement systems. Applying the model, we generalize the effects of particle size, particle density, agglomeration state and agglomerate characteristics on target cell dosimetry in vitro. Conclusions Our results confirm our hypothesis that for liquid-based in vitro systems, the dose-rates and target cell doses for all particles are not equal; they can vary significantly, in direct contrast to the assumption of dose-equivalency implicit in the use of mass-based media concentrations as metrics of exposure for dose-response assessment. The difference between equivalent nominal media concentration exposures on a μg/mL basis and target cell
Directory of Open Access Journals (Sweden)
Chrisler William B
2010-11-01
Full Text Available Abstract Background The difficulty of directly measuring cellular dose is a significant obstacle to application of target tissue dosimetry for nanoparticle and microparticle toxicity assessment, particularly for in vitro systems. As a consequence, the target tissue paradigm for dosimetry and hazard assessment of nanoparticles has largely been ignored in favor of using metrics of exposure (e.g. μg particle/mL culture medium, particle surface area/mL, particle number/mL. We have developed a computational model of solution particokinetics (sedimentation, diffusion and dosimetry for non-interacting spherical particles and their agglomerates in monolayer cell culture systems. Particle transport to cells is calculated by simultaneous solution of Stokes Law (sedimentation and the Stokes-Einstein equation (diffusion. Results The In vitro Sedimentation, Diffusion and Dosimetry model (ISDD was tested against measured transport rates or cellular doses for multiple sizes of polystyrene spheres (20-1100 nm, 35 nm amorphous silica, and large agglomerates of 30 nm iron oxide particles. Overall, without adjusting any parameters, model predicted cellular doses were in close agreement with the experimental data, differing from as little as 5% to as much as three-fold, but in most cases approximately two-fold, within the limits of the accuracy of the measurement systems. Applying the model, we generalize the effects of particle size, particle density, agglomeration state and agglomerate characteristics on target cell dosimetry in vitro. Conclusions Our results confirm our hypothesis that for liquid-based in vitro systems, the dose-rates and target cell doses for all particles are not equal; they can vary significantly, in direct contrast to the assumption of dose-equivalency implicit in the use of mass-based media concentrations as metrics of exposure for dose-response assessment. The difference between equivalent nominal media concentration exposures on a
Generating high-quality single droplets for optical particle characterization with an easy setup
Xu, Jie; Ge, Baozhen; Meng, Rui
2018-06-01
The high-performance and micro-sized single droplet is significant for optical particle characterization. We develop a single-droplet generator (SDG) based on a piezoelectric inkjet technique with advantages of low cost and easy setup. By optimizing the pulse parameters, we achieve various size single droplets. Further investigations reveal that SDG generates single droplets of high quality, demonstrating good sphericity, monodispersity and a stable length of several millimeters.
Directory of Open Access Journals (Sweden)
M. Gysel
2012-12-01
Full Text Available The single particle soot photometer (SP2 uses laser-induced incandescence (LII for the measurement of atmospheric black carbon (BC particles. The BC mass concentration is obtained by combining quantitative detection of BC mass in single particles with a counting efficiency of 100% above its lower detection limit. It is commonly accepted that a particle must contain at least several tenths of a femtogram BC in order to be detected by the SP2.
Here we show the result that most BC particles from a PALAS spark discharge soot generator remain undetected by the SP2, even if their BC mass, as independently determined with an aerosol particle mass analyser (APM, is clearly above the typical lower detection limit of the SP2. Comparison of counting efficiency and effective density data of PALAS soot with flame generated soot (combustion aerosol standard burner, CAST, fullerene soot and carbon black particles (Cabot Regal 400R reveals that particle morphology can affect the SP2's lower detection limit. PALAS soot particles are fractal-like agglomerates of very small primary particles with a low fractal dimension, resulting in a very low effective density. Such loosely packed particles behave like "the sum of individual primary particles" in the SP2's laser. Accordingly, most PALAS soot particles remain undetected as the SP2's laser intensity is insufficient to heat the primary particles to their vaporisation temperature because of their small size (D_{pp} ≈ 5–10 nm. Previous knowledge from pulsed laser-induced incandescence indicated that particle morphology might have an effect on the SP2's lower detection limit, however, an increase of the lower detection limit by a factor of ∼5–10, as reported here for PALAS soot, was not expected.
In conclusion, the SP2's lower detection limit at a certain laser power depends primarily on the total BC mass per particle for compact particles with sufficiently high effective
Novotny, M.A.; Watanabe, Hiroshi; Ito, Nobuyasu
2010-01-01
The efficiency of dynamic Monte Carlo algorithms for off-lattice systems composed of particles is studied for the case of a single impurity particle. The theoretical efficiencies of the rejection-free method and of the Monte Carlo with Absorbing
Novotny, M.A.
2010-02-01
The efficiency of dynamic Monte Carlo algorithms for off-lattice systems composed of particles is studied for the case of a single impurity particle. The theoretical efficiencies of the rejection-free method and of the Monte Carlo with Absorbing Markov Chains method are given. Simulation results are presented to confirm the theoretical efficiencies. © 2010.
The influence of transport phenomena on the fluidized bed combustion of a single carbon particle
Prins, W.; van Swaaij, Willibrordus Petrus Maria
1990-01-01
The burning rate and temperature of the carbon particles are known to affect the efficiency of a fluidized bed combustor, and also the emission levels of undesired noxious components. The main results of an extensive study on the fluidized bed combustion behaviour of a single carbon particle [1] are
Monte Carlo Modelling of Single-Crystal Diffuse Scattering from Intermetallics
Directory of Open Access Journals (Sweden)
Darren J. Goossens
2016-02-01
Full Text Available Single-crystal diffuse scattering (SCDS reveals detailed structural insights into materials. In particular, it is sensitive to two-body correlations, whereas traditional Bragg peak-based methods are sensitive to single-body correlations. This means that diffuse scattering is sensitive to ordering that persists for just a few unit cells: nanoscale order, sometimes referred to as “local structure”, which is often crucial for understanding a material and its function. Metals and alloys were early candidates for SCDS studies because of the availability of large single crystals. While great progress has been made in areas like ab initio modelling and molecular dynamics, a place remains for Monte Carlo modelling of model crystals because of its ability to model very large systems; important when correlations are relatively long (though still finite in range. This paper briefly outlines, and gives examples of, some Monte Carlo methods appropriate for the modelling of SCDS from metallic compounds, and considers data collection as well as analysis. Even if the interest in the material is driven primarily by magnetism or transport behaviour, an understanding of the local structure can underpin such studies and give an indication of nanoscale inhomogeneity.
Single particle studies of black liquor gasification under pressurized conditions
Energy Technology Data Exchange (ETDEWEB)
Whitty, K; Backman, R; Hupa, M; Backman, P; Ek, P; Hulden, S T; Kullberg, M; Sorvari, V
1997-10-01
The purpose of this project is to provide experimental data relevant to pressurized black liquor gasification concepts. Specifically, the following two goals will be achieved: Data on swelling, char yields and component release during pressurized pyrolysis of small samples of black liquor will be obtained. The reactivity and physical behavior of single black liquor droplets during simultaneous pyrolysis and gasification will be investigated. The structure and composition of black liquor char during formation and conversion will be studied. (orig.)
Diffusion of chlorine in single-crystal (Sr,Y)Cl2.03
International Nuclear Information System (INIS)
Goff, J.P.; Hayes, W.; Ward, R.C.C; Hull, S.; Hutchings, M.T.
1992-01-01
Quasielastic energy broadening of the incoherent neutron scattering from single-crystal (Sr,Y)Cl 2.03 has been studied at elevated temperatures using the time-of-flight spectrometer IRIS at the Rutherford-Appleton Laboratory. Incoherent spectra measured at temperatures of 923 and 973 K have been fitted by a Chudley-Elliott model, in which individual anions occupy sites for a mean residence time τ before hopping to adjacent regular lattice sites. These results obtained from an anion-excess system are compared with a previous investigation of chlorine diffusion in pure SrCl 2 . (orig.)
Single-particle and collective states in transfer reactions
International Nuclear Information System (INIS)
Lhenry, I.; Suomijaervi, T.; Giai, N. van
1993-01-01
The possibility to excite collective states in transfer reactions induced by heavy ions is studied. Collective states are described within the Random Phase Approximation (RPA) and the collectivity is defined according to the number of configurations contributing to a given state. The particle transfer is described within the Distorted Wave Born Approximation (DWBA). Calculations are performed for two different stripping reactions: 207 Pb( 20 Ne, 19 Ne) 208 Pb and 59 Co( 20 Ne, 19 F) 60 Ni at 48 MeV/nucleon for which experimental data are available. The calculation shows that a sizeable fraction of collective strength can be excited in these reactions. The comparison with experiment shows that this parameter-free calculation qualitatively explains the data. (author) 19 refs.; 10 figs
Aspects of a collective single-particle model
International Nuclear Information System (INIS)
Mutz, U.
1985-01-01
The successful application of time-reversal breaking wave functions in the framework of collective models based on a mean-field approach is for fermionic accesses known for a long while. In this thesis this concept is confirmed also for bosons. Especially in the study of some simple models the physical content of which is determined by the IBA model analytical model-solutions are found which are in a surprisingly well agreement with the exact IBA solutions and the experimental spectra. These solutions which describe the ground-state band are thereby dependent on geometrical shape parameters and of a simpler structure than those of the IBA model. Thereby the cranking model serves as an essential support. In order to obtain a better understanding of the cranking model it is tried to go beyond the mean-field approach. Thereby also the neighbourhood of the stationary point is studied. The approach consecuted here is based on the necessity of a variation after the projection. This is forced by the application of as simple wave functions as possible in the solution of the nuclear many-body problem by means of a symmetry breaking mean-field. Exactly performable is the projection however only in the case of the particle-number symmetry. The particle-number projection was applied to the study of the high spin excitations of 168 Hf. The two-quasiparticle band of this nucleus exhibits a rotational band with the moment of inertia of a rigid body. The speculation of a phase transition of the nuclear system from superfluid to normally fluid resulting from this is not confirmed in the theoretical study. The energy gap remains also in the two-quasiparticle band up to high angular momenta nearly undiminishedly. Especially it is shown that the energy-level scheme of a nucleus contains no information about phase transitions. (orig./HSI) [de
Single Molecule Experiments Challenge the Strict Wave-Particle Dualism of Light
Directory of Open Access Journals (Sweden)
Karl Otto Greulich
2010-01-01
Full Text Available Single molecule techniques improve our understanding of the photon and light. If the single photon double slit experiment is performed at the “single photon limit” of a multi-atom light source, faint light pulses with more than one photon hamper the interpretation. Single molecules, quantum dots or defect centres in crystals should be used as light source. “Single photon detectors” do not meet their promise―only “photon number resolving single photon detectors” do so. Particularly, the accumulation time argument, the only safe basis for the postulate of a strictly particle like photon, has so far not yet been verified.
Single molecule experiments challenge the strict wave-particle dualism of light.
Greulich, Karl Otto
2010-01-21
Single molecule techniques improve our understanding of the photon and light. If the single photon double slit experiment is performed at the "single photon limit" of a multi-atom light source, faint light pulses with more than one photon hamper the interpretation. Single molecules, quantum dots or defect centres in crystals should be used as light source. "Single photon detectors" do not meet their promise-only "photon number resolving single photon detectors" do so. Particularly, the accumulation time argument, the only safe basis for the postulate of a strictly particle like photon, has so far not yet been verified.
Directory of Open Access Journals (Sweden)
F. Gaie-Levrel
2012-01-01
Full Text Available A single particle instrument was developed for real-time analysis of organic aerosol. This instrument, named Single Particle Laser Ablation Mass Spectrometry (SPLAM, samples particles using an aerodynamic lens system for which the theoretical performances were calculated. At the outlet of this system, particle detection and sizing are realized by using two continuous diode lasers operating at λ = 403 nm. Polystyrene Latex (PSL, sodium chloride (NaCl and dioctylphtalate (DOP particles were used to characterize and calibrate optical detection of SPLAM. The optical detection limit (DL and detection efficiency (DE were determined using size-selected DOP particles. The DE ranges from 0.1 to 90% for 100 and 350 nm DOP particles respectively and the SPLAM instrument is able to detect and size-resolve particles as small as 110–120 nm. During optical detection, particle scattered light from the two diode lasers, is detected by two photomultipliers and the detected signals are used to trigger UV excimer laser (λ = 248 nm used for one-step laser desorption ionization (LDI of individual aerosol particles. The formed ions are analyzed by a 1 m linear time-of-flight mass spectrometer in order to access to the chemical composition of individual particles. The TOF-MS detection limit for gaseous aromatic compounds was determined to be 0.85 × 10^{−15} kg (∼4 × 10^{3} molecules. DOP particles were also used to test the overall operation of the instrument. The analysis of a secondary organic aerosol, formed in a smog chamber by the ozonolysis of indene, is presented as a first application of the instrument. Single particle mass spectra were obtained with an effective hit rate of 8%. Some of these mass spectra were found to be very different from one particle to another possibly reflecting chemical differences within the investigated indene SOA particles. Our study shows that an exhaustive statistical analysis, over hundreds of particles
Katsoulakis, Markos A.; Vlachos, Dionisios G.
2003-11-01
We derive a hierarchy of successively coarse-grained stochastic processes and associated coarse-grained Monte Carlo (CGMC) algorithms directly from the microscopic processes as approximations in larger length scales for the case of diffusion of interacting particles on a lattice. This hierarchy of models spans length scales between microscopic and mesoscopic, satisfies a detailed balance, and gives self-consistent fluctuation mechanisms whose noise is asymptotically identical to the microscopic MC. Rigorous, detailed asymptotics justify and clarify these connections. Gradient continuous time microscopic MC and CGMC simulations are compared under far from equilibrium conditions to illustrate the validity of our theory and delineate the errors obtained by rigorous asymptotics. Information theory estimates are employed for the first time to provide rigorous error estimates between the solutions of microscopic MC and CGMC, describing the loss of information during the coarse-graining process. Simulations under periodic boundary conditions are used to verify the information theory error estimates. It is shown that coarse-graining in space leads also to coarse-graining in time by q2, where q is the level of coarse-graining, and overcomes in part the hydrodynamic slowdown. Operation counting and CGMC simulations demonstrate significant CPU savings in continuous time MC simulations that vary from q3 for short potentials to q4 for long potentials. Finally, connections of the new coarse-grained stochastic processes to stochastic mesoscopic and Cahn-Hilliard-Cook models are made.
Diffusion and sorption in particles and two-dimensional dispersion in a porous media
International Nuclear Information System (INIS)
Rasmuson, A.
1980-01-01
A solution of the two-dimensional differential equation of dispersion from a disk source, coupled with a differential equation of diffusion and sorption in particles, is developed. The solution is obtained by the successive use of the Laplace and the Hankel transforms and is given in the form of an infinite double-integral. If the lateral dispersion is negligible, the solution is shown to simplify to a solution presented earlier. Dimensionless quantities are introduced. A steady-state condition is obtained after long time. This is investigated in some detail. An expression is derived for the highest concentration which may be expected at a point in space. An important relation is obtained when longitudinal dispersion is neglected. The solution for any value of the lateral dispersion coefficient and radial distance from the source is then obtained by simple multiplication of a solution for no lateral dispersion with the steady-state value. A method for integrating the infinite double integral is given. Some typical examples are shown. (Auth.)
Cantilever-based micro-particle filter with simultaneous single particle detection
DEFF Research Database (Denmark)
Noeth, Nadine-Nicole; Keller, Stephan Sylvest; Boisen, Anja
2011-01-01
Currently, separation of whole blood samples on lab-on-a-chip systems is achieved via filters followed by analysis of the filtered matter such as counting of blood cells. Here, a micro-chip based on cantilever technology is developed, which enables simultaneous filtration and counting of micro-particles...... from a liquid. A hole-array is integrated into a micro-cantilever, which is inserted into a microfluidic channel perpendicular to the flow. A metal pad at the apex of the cantilever enables an optical read-out of the deflection of the cantilever. When a micro-particle is too large to pass a hole...
International Nuclear Information System (INIS)
Lagerholm, B Christoffer; Eggeling, Christian; Andrade, Débora M; Clausen, Mathias P
2017-01-01
Fluorescence correlation spectroscopy (FCS) in combination with the super-resolution imaging method STED (STED-FCS), and single-particle tracking (SPT) are able to directly probe the lateral dynamics of lipids and proteins in the plasma membrane of live cells at spatial scales much below the diffraction limit of conventional microscopy. However, a major disparity in interpretation of data from SPT and STED-FCS remains, namely the proposed existence of a very fast (unhindered) lateral diffusion coefficient, ⩾5 µ m 2 s −1 , in the plasma membrane of live cells at very short length scales, ≈⩽ 100 nm, and time scales, ≈1–10 ms. This fast diffusion coefficient has been advocated in several high-speed SPT studies, for lipids and membrane proteins alike, but the equivalent has not been detected in STED-FCS measurements. Resolving this ambiguity is important because the assessment of membrane dynamics currently relies heavily on SPT for the determination of heterogeneous diffusion. A possible systematic error in this approach would thus have vast implications in this field. To address this, we have re-visited the analysis procedure for SPT data with an emphasis on the measurement errors and the effect that these errors have on the measurement outputs. We subsequently demonstrate that STED-FCS and SPT data, following careful consideration of the experimental errors of the SPT data, converge to a common interpretation which for the case of a diffusing phospholipid analogue in the plasma membrane of live mouse embryo fibroblasts results in an unhindered, intra-compartment, diffusion coefficient of ≈0.7–1.0 µ m 2 s −1 , and a compartment size of about 100–150 nm. (topical review)
Measuring the complex field scattered by single submicron particles
Energy Technology Data Exchange (ETDEWEB)
Potenza, Marco A. C., E-mail: marco.potenza@unimi.it; Sanvito, Tiziano [Department of Physics, University of Milan, via Celoria, 16 – I-20133 Milan (Italy); CIMAINA, University of Milan, via Celoria, 16 – I-20133 Milan (Italy); EOS s.r.l., viale Ortles 22/4, I-20139 Milan (Italy); Pullia, Alberto [Department of Physics, University of Milan, via Celoria, 16 – I-20133 Milan (Italy)
2015-11-15
We describe a method for simultaneous measurements of the real and imaginary parts of the field scattered by single nanoparticles illuminated by a laser beam, exploiting a self-reference interferometric scheme relying on the fundamentals of the Optical Theorem. Results obtained with calibrated spheres of different materials are compared to the expected values obtained through a simplified analytical model without any free parameters, and the method is applied to a highly polydisperse water suspension of Poly(D,L-lactide-co-glycolide) nanoparticles. Advantages with respect to existing methods and possible applications are discussed.
The 'single-particle' spectrum of states: correlated or uncorrelated?
International Nuclear Information System (INIS)
Garrett, J.D.
1985-01-01
Even though static neutron pair correlations appear to be quenched for stably-deformed rare earth nuclei at .4 MeV, correlations remain for the lowest (π,α)=(+,0), and to a lesser extent for the lowest (+,1/2), configuration. Neutron pair fluctuations (pair vibrations) probably are a significant portion of these correlations. Since correlations are configuration dependent, but are relatively independent of isotope, an empirical spectrum of single-neutron states can be constructed from values of the neutron Fermi level, extracted from experiment. (orig.)
Particle-bubble aggregate stability on static bubble generated by single nozzle on flotation process
Warjito, Harinaldi, Setyantono, Manus; Siregar, Sahala D.
2016-06-01
There are three sub-processes on flotation. These processes are intervening liquid film into critical thickness, rupture of liquid film forming three phase contact line, and expansion three phase contact line forming aggregate stability. Aggregate stability factor contribute to determine flotation efficiency. Aggregate stability has some important factors such as reagent and particle geometry. This research focussed on to understand effect of particle geometry to aggregate stability. Experimental setup consists of 9 x 9 x26 cm flotation column made of glass, bubble generator, particle feeding system, and high speed video camera. Bubble generator made from single nozzle with 0.3 mm diameter attached to programmable syringe pump. Particle feeding system made of pipette. Particle used in this research is taken from open pit Grasberg in Timika, Papua. Particle has sub-angular geometry and its size varies from 38 to 300 µm. Bubble-particle interaction are recorded using high speed video camera. Recordings from high speed video camera analyzed using image processing software. Experiment result shows that aggregate particle-bubble and induction time depends on particle size. Small particle (38-106 µm) has long induction time and able to rupture liquid film and also forming three phase contact line. Big particle (150-300 µm) has short induction time, so it unable to attach with bubble easily. This phenomenon is caused by apparent gravity work on particle-bubble interaction. Apparent gravity worked during particle sliding on bubble surface experience increase and reached its maximum magnitude at bubble equator. After particle passed bubble equator, apparent gravity force experience decrease. In conclusion particle size from 38-300 µm can form stable aggregate if particle attached with bubble in certain condition.
Healy, R. M.; Sciare, J.; Poulain, L.; Crippa, M.; Wiedensohler, A.; Prévôt, A. S. H.; Baltensperger, U.; Sarda-Estève, R.; McGuire, M. L.; Jeong, C.-H.; McGillicuddy, E.; O'Connor, I. P.; Sodeau, J. R.; Evans, G. J.; Wenger, J. C.
2013-04-01
Single particle mixing state information can be a powerful tool for assessing the relative impact of local and regional sources of ambient particulate matter in urban environments. However, quantitative mixing state data are challenging to obtain using single particle mass spectrometers. In this study, the quantitative chemical composition of carbonaceous single particles has been estimated using an aerosol time-of-flight mass spectrometer (ATOFMS) as part of the MEGAPOLI 2010 winter campaign in Paris, France. Relative peak areas of marker ions for elemental carbon (EC), organic aerosol (OA), ammonium, nitrate, sulphate and potassium were compared with concurrent measurements from an Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), a thermal/optical OCEC analyser and a particle into liquid sampler coupled with ion chromatography (PILS-IC). ATOFMS-derived mass concentrations reproduced the variability of these species well (R2 = 0.67-0.78), and ten discrete mixing states for carbonaceous particles were identified and quantified. Potassium content was used to identify particles associated with biomass combustion. The chemical mixing state of HR-ToF-AMS organic aerosol factors, resolved using positive matrix factorization, was also investigated through comparison with the ATOFMS dataset. The results indicate that hydrocarbon-like OA (HOA) detected in Paris is associated with two EC-rich mixing states which differ in their relative sulphate content, while fresh biomass burning OA (BBOA) is associated with two mixing states which differ significantly in their OA/EC ratios. Aged biomass burning OA (OOA2-BBOA) was found to be significantly internally mixed with nitrate, while secondary, oxidized OA (OOA) was associated with five particle mixing states, each exhibiting different relative secondary inorganic ion content. Externally mixed secondary organic aerosol was not observed. These findings demonstrate the heterogeneity of primary and
Carter, Erik P; Seymour, Elif Ç; Scherr, Steven M; Daaboul, George G; Freedman, David S; Selim Ünlü, M; Connor, John H
2017-01-01
This chapter describes an approach for the label-free imaging and quantification of intact Ebola virus (EBOV) and EBOV viruslike particles (VLPs) using a light microscopy technique. In this technique, individual virus particles are captured onto a silicon chip that has been printed with spots of virus-specific capture antibodies. These captured virions are then detected using an optical approach called interference reflectance imaging. This approach allows for the detection of each virus particle that is captured on an antibody spot and can resolve the filamentous structure of EBOV VLPs without the need for electron microscopy. Capture of VLPs and virions can be done from a variety of sample types ranging from tissue culture medium to blood. The technique also allows automated quantitative analysis of the number of virions captured. This can be used to identify the virus concentration in an unknown sample. In addition, this technique offers the opportunity to easily image virions captured from native solutions without the need for additional labeling approaches while offering a means of assessing the range of particle sizes and morphologies in a quantitative manner.
Multispot single-molecule FRET: High-throughput analysis of freely diffusing molecules.
Directory of Open Access Journals (Sweden)
Antonino Ingargiola
Full Text Available We describe an 8-spot confocal setup for high-throughput smFRET assays and illustrate its performance with two characteristic experiments. First, measurements on a series of freely diffusing doubly-labeled dsDNA samples allow us to demonstrate that data acquired in multiple spots in parallel can be properly corrected and result in measured sample characteristics consistent with those obtained with a standard single-spot setup. We then take advantage of the higher throughput provided by parallel acquisition to address an outstanding question about the kinetics of the initial steps of bacterial RNA transcription. Our real-time kinetic analysis of promoter escape by bacterial RNA polymerase confirms results obtained by a more indirect route, shedding additional light on the initial steps of transcription. Finally, we discuss the advantages of our multispot setup, while pointing potential limitations of the current single laser excitation design, as well as analysis challenges and their solutions.
Deflection of high energy channeled charged particles by elastically bent silicon single crystals
International Nuclear Information System (INIS)
Gibson, W.M.; Kim, I.J.; Pisharodoy, M.; Salman, S.M.; Sun, C.R.; Wang, G.H.; Wijayawardana, R.; Forster, J.S.; Mitchell, I.V.; Baker, S.I.; Carrigan, R.A. Jr.; Toohig, T.E.; Avdeichikov, V.V.; Ellison, J.A.; Siffert, P.
1984-01-01
An experiment has been carried out to observe the deflection of charged particles by planar channeling in bent single crystals of silicon for protons with energy up to 180 GeV. Anomolous loss of particles from the center point of a three point bending apparatus was observed at high incident particle energy. This effect has been exploited to fashion a 'dechanneling spectrometer' to study dechanneling effects due to centripital displacement of channeled particle trajectories in a bent crystal. The bending losses generally conform to the predictions of calculations based on a classical model. (orig.)
Magnetization Reversal Process of Single Crystal α-Fe Containing a Nonmagnetic Particle
International Nuclear Information System (INIS)
Li Yi; Xu Ben; Li Qiu-Lin; Liu Wei; Hu Shen-Yang; Li Yu-Lan
2015-01-01
The magnetization reversal process and hysteresis loops in a single crystal α-iron with nonmagnetic particles are simulated in this work based on the Landau—Lifshitz—Gilbert equation. The evolutions of the magnetic domain morphology are studied, and our analyses show that the magnetization reversal process is affected by the interaction between the moving domain wall and the existing nonmagnetic particles. This interaction strongly depends on the size of the particles, and it is found that particles with a particular size contribute the most to magnetic hardening. (paper)
Fluctuations of the single-particle density in nuclear dynamics
International Nuclear Information System (INIS)
Burgio, G.F.; Chomaz, P.; Randrup, J.
1991-01-01
In recent years semiclassical methods have been developed to study heavy-ion collisions in the framework of the Boltzmann-Uehling-Uhlenbeck theory, in which the collisionless mean field evolution has been augmented by a Pauli-blocked Nordheim collision term. Since these models describe the average dynamic trajectory, they cannot be applied to describe fluctuations of one-body observables, correlations in the emission of light particles and catastrophic processes like multifragmentation. The authors have developed a new method in order to include the stochastic part of the collision integral into BUU-type simulations of the nuclear dynamics. They apply this method to a two-dimensional gas of fermions on a torus, for which the time evolution of the mean trajectory and the associated correlation function are calculated; the variance of the phase-space occupancy follows closely the predictions of the corresponding Fokker-Planck equation and relaxes towards the appropriate quantum-statistical limit. The breaking of the translational and spherical symmetry in the model permits the study of unstable situations in phase-space. The introduction of the nonlinear one-body field allows them to explore dynamical instabilities and bifurcations. Therefore the model can be appropriate for studying nuclear multifragmentation
Single-particle energies and density of states in density functional theory
van Aggelen, H.; Chan, G. K.-L.
2015-07-01
Time-dependent density functional theory (TD-DFT) is commonly used as the foundation to obtain neutral excited states and transition weights in DFT, but does not allow direct access to density of states and single-particle energies, i.e. ionisation energies and electron affinities. Here we show that by extending TD-DFT to a superfluid formulation, which involves operators that break particle-number symmetry, we can obtain the density of states and single-particle energies from the poles of an appropriate superfluid response function. The standard Kohn- Sham eigenvalues emerge as the adiabatic limit of the superfluid response under the assumption that the exchange- correlation functional has no dependence on the superfluid density. The Kohn- Sham eigenvalues can thus be interpreted as approximations to the ionisation energies and electron affinities. Beyond this approximation, the formalism provides an incentive for creating a new class of density functionals specifically targeted at accurate single-particle eigenvalues and bandgaps.
Zhu, Jicheng; Liu, Yanhua; Shen, Su; Wu, Jianhong
2017-11-01
Engineered particle-doped light diffuser is realized by a simple, low-cost soft lithographic method. A flexible photopolymerizable mold is employed as an intermediate transferring template directly from the developed photoresist texture to fabricate engineered particle-doped light diffuser. The well-designed surface microstructure can directionally scatter the incident light, while the doped ultra-violet curable resin with low concentration of the 2 μm-diameter organosilicone particles can homogenize the scattering light without decreasing transmittance. Experimental results show that the measured transmittance can be as high as 96.9% with little backscattering effect over the whole visible regime. Meanwhile, the haze raises from 30% to 75% with increased dopant concentration from 1 wt% to 7 wt% and thickness of the residual layer from 10 μm to 40 μm remained in the imprinting process. The proposed engineered particle-doped light diffuser can manage scattering angle, luminance uniformity and haze, thus it has the capability of homogenizing light and eliminating striations to create more visually pleasing structured lighting in commercial and residential environments. We anticipate that the approach appears to be a strong candidate for future development because of its scalable nature, environmentally-friendly process and relatively low cost.
Localization and force analysis at the single virus particle level using atomic force microscopy
Energy Technology Data Exchange (ETDEWEB)
Liu, Chih-Hao [Institute of Applied Mechanics, Nation Taiwan University, Roosevelt Road, Taipei 10617, Taiwan (China); Horng, Jim-Tong [Department of Biochemistry, Chang Gung University, 259 Wen-Hwa First Road, Kweishan, Taoyuan 333, Taiwan (China); Chang, Jeng-Shian [Institute of Applied Mechanics, Nation Taiwan University, Roosevelt Road, Taipei 10617, Taiwan (China); Hsieh, Chung-Fan [Graduate Institute of Biomedical Sciences, Chang Gung University, Kweishan, Taoyuan 333, Taiwan (China); Tseng, You-Chen [Institute of Applied Mechanics, Nation Taiwan University, Roosevelt Road, Taipei 10617, Taiwan (China); Lin, Shiming, E-mail: til@ntu.edu.tw [Institute of Applied Mechanics, Nation Taiwan University, Roosevelt Road, Taipei 10617, Taiwan (China); Center for Optoelectronic Biomedicine, College of Medicine, Nation Taiwan University, 1-1 Jen-Ai Road, Taipei 10051, Taiwan (China)
2012-01-06
Highlights: Black-Right-Pointing-Pointer Localization of single virus particle. Black-Right-Pointing-Pointer Force measurements. Black-Right-Pointing-Pointer Force mapping. -- Abstract: Atomic force microscopy (AFM) is a vital instrument in nanobiotechnology. In this study, we developed a method that enables AFM to simultaneously measure specific unbinding force and map the viral glycoprotein at the single virus particle level. The average diameter of virus particles from AFM images and the specificity between the viral surface antigen and antibody probe were integrated to design a three-stage method that sets the measuring area to a single virus particle before obtaining the force measurements, where the influenza virus was used as the object of measurements. Based on the purposed method and performed analysis, several findings can be derived from the results. The mean unbinding force of a single virus particle can be quantified, and no significant difference exists in this value among virus particles. Furthermore, the repeatability of the proposed method is demonstrated. The force mapping images reveal that the distributions of surface viral antigens recognized by antibody probe were dispersed on the whole surface of individual virus particles under the proposed method and experimental criteria; meanwhile, the binding probabilities are similar among particles. This approach can be easily applied to most AFM systems without specific components or configurations. These results help understand the force-based analysis at the single virus particle level, and therefore, can reinforce the capability of AFM to investigate a specific type of viral surface protein and its distributions.
Multi-distance diffuse optical spectroscopy with a single optode via hypotrochoidal scanning.
Applegate, Matthew B; Roblyer, Darren
2018-02-15
Frequency-domain diffuse optical spectroscopy (FD-DOS) is an established technique capable of determining optical properties and chromophore concentrations in biological tissue. Most FD-DOS systems use either manually positioned, handheld probes or complex arrays of source and detector fibers to acquire data from many tissue locations, allowing for the generation of 2D or 3D maps of tissue. Here, we present a new method to rapidly acquire a wide range of source-detector (SD) separations by mechanically scanning a single SD pair. The source and detector fibers are mounted on a scan head that traces a hypotrochoidal pattern over the sample that, when coupled with a high-speed FD-DOS system, enables the rapid collection of dozens of SD separations for depth-resolved imaging. We demonstrate that this system has an average error of 4±2.6% in absorption and 2±1.8% in scattering across all SD separations. Additionally, by linearly translating the device, the size and location of an absorbing inhomogeneity can be determined through the generation of B-scan images in a manner conceptually analogous to ultrasound imaging. This work demonstrates the potential of single optode diffuse optical scanning for depth resolved visualization of heterogeneous biological tissues at near real-time rates.
Fiber density estimation from single q-shell diffusion imaging by tensor divergence.
Reisert, Marco; Mader, Irina; Umarova, Roza; Maier, Simon; Tebartz van Elst, Ludger; Kiselev, Valerij G
2013-08-15
Diffusion-weighted magnetic resonance imaging provides information about the nerve fiber bundle geometry of the human brain. While the inference of the underlying fiber bundle orientation only requires single q-shell measurements, the absolute determination of their volume fractions is much more challenging with respect to measurement techniques and analysis. Unfortunately, the usually employed multi-compartment models cannot be applied to single q-shell measurements, because the compartment's diffusivities cannot be resolved. This work proposes an equation for fiber orientation densities that can infer the absolute fraction up to a global factor. This equation, which is inspired by the classical mass preservation law in fluid dynamics, expresses the fiber conservation associated with the assumption that fibers do not terminate in white matter. Simulations on synthetic phantoms show that the approach is able to derive the densities correctly for various configurations. Experiments with a pseudo ground truth phantom show that even for complex, brain-like geometries the method is able to infer the densities correctly. In-vivo results with 81 healthy volunteers are plausible and consistent. A group analysis with respect to age and gender show significant differences, such that the proposed maps can be used as a quantitative measure for group and longitudinal analysis. Copyright © 2013 Elsevier Inc. All rights reserved.
Ruet, Alexis; Durand, Marie Christine; Denys, Pierre; Lofaso, Frederic; Genet, François; Schnitzler, Alexis
2015-06-01
To characterize electromyographic abnormalities according to symptoms (asymptomatic, fatigue, pseudobotulism) reported 1 month after botulinum toxin injection. Retrospective, single-center study comparing single-fiber electromyography (SFEMG) in the extensor digitorum communis (EDC) or orbicularis oculi (OO) muscles. Hospital. Four groups of adults treated for spasticity or neurologic bladder hyperactivity (N=55): control group (asymptomatic patients: n=17), fatigue group (unusual fatigue with no weakness: n=15), pseudobotulism group (muscle weakness and/or visual disturbance: n=20), and botulism group (from intensive care unit of the same hospital: n=3). Not applicable. Mean jitter, percentage of pathologic fibers, and percentage of blocked fibers were compared between groups. SFEMG was abnormal for 17.6% of control patients and 75% of patients in the pseudobotulism group. There were no differences between the control and fatigue groups. Mean jitter, percentage of pathologic fibers, and percentage of blocked fibers of the EDC muscle were significantly higher in the pseudobotulism group than in the fatigue and control groups. There were no differences between groups for the OO muscle. The SFEMG results in the botulism group were qualitatively similar to those of the pseudobotulism group. SFEMG of the EDC muscle confirmed diffusion of the toxin into muscles distant from the injection site in the pseudobotulism group. SFEMG in the OO muscle is not useful for the diagnosis of diffusion. No major signs of diffusion of botulinum toxin type A were found away from the injection site in patients with fatigue but no motor weakness. Such fatigue may be related to other mechanisms. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Gillet, V.; Giraud, B.; Rho, M.
1976-01-01
The energy levels and transition properties of the even-even N=28, 50 isotones and Z=28, 50, 82 isotopes are calculated in the framework of the Tamm-Dancoff and Random Phase Approximation, with an effective central interaction in an extended space consisting of two quasi-particle configurations for the open shell and particle-hole configurations for the closed core. Using the results of the Inverse Gap Equation Method, practically all the necessary input data (single quasi-particle energies, force strength) are extracted from the odd-mass nuclei. The ratios of the force components are kept at fixed values for all studied nuclei and no effective charge is used. An overall excellent agreement is obtained for the energies of the vibrational states. On the other hand, while the transition properties of the 3 - states are always well reproduced, those of the 2 + and 4 + states are often too small by about one order of magnitude [fr
International Nuclear Information System (INIS)
Anderson, D.V.; Cohen, R.H.; Ferguson, J.R.; Johnston, B.M.; Sharp, C.B.; Willmann, P.A.
1981-01-01
The single particle orbit code, TIBRO, has been modified extensively to improve the interpolation methods used and to allow use of vector potential fields in the simulation of charged particle orbits on a 3D domain. A 3D cubic B-spline algorithm is used to generate spline coefficients used in the interpolation. Smooth and accurate field representations are obtained. When vector potential fields are used, the 3D cubic spline interpolation formula analytically generates the magnetic field used to push the particles. This field has del.BETA = 0 to computer roundoff. When magnetic induction is used the interpolation allows del.BETA does not equal 0, which can lead to significant nonphysical results. Presently the code assumes quadrupole symmetry, but this is not an essential feature of the code and could be easily removed for other applications. Many details pertaining to this code are given on microfiche accompanying this report
Optimal noise reduction in 3D reconstructions of single particles using a volume-normalized filter
Sindelar, Charles V.; Grigorieff, Nikolaus
2012-01-01
The high noise level found in single-particle electron cryo-microscopy (cryo-EM) image data presents a special challenge for three-dimensional (3D) reconstruction of the imaged molecules. The spectral signal-to-noise ratio (SSNR) and related Fourier shell correlation (FSC) functions are commonly used to assess and mitigate the noise-generated error in the reconstruction. Calculation of the SSNR and FSC usually includes the noise in the solvent region surrounding the particle and therefore does not accurately reflect the signal in the particle density itself. Here we show that the SSNR in a reconstructed 3D particle map is linearly proportional to the fractional volume occupied by the particle. Using this relationship, we devise a novel filter (the “single-particle Wiener filter”) to minimize the error in a reconstructed particle map, if the particle volume is known. Moreover, we show how to approximate this filter even when the volume of the particle is not known, by optimizing the signal within a representative interior region of the particle. We show that the new filter improves on previously proposed error-reduction schemes, including the conventional Wiener filter as well as figure-of-merit weighting, and quantify the relationship between all of these methods by theoretical analysis as well as numeric evaluation of both simulated and experimentally collected data. The single-particle Wiener filter is applicable across a broad range of existing 3D reconstruction techniques, but is particularly well suited to the Fourier inversion method, leading to an efficient and accurate implementation. PMID:22613568
Directory of Open Access Journals (Sweden)
R. M. Healy
2013-09-01
Full Text Available Single-particle mixing state information can be a powerful tool for assessing the relative impact of local and regional sources of ambient particulate matter in urban environments. However, quantitative mixing state data are challenging to obtain using single-particle mass spectrometers. In this study, the quantitative chemical composition of carbonaceous single particles has been determined using an aerosol time-of-flight mass spectrometer (ATOFMS as part of the MEGAPOLI 2010 winter campaign in Paris, France. Relative peak areas of marker ions for elemental carbon (EC, organic aerosol (OA, ammonium, nitrate, sulfate and potassium were compared with concurrent measurements from an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS, a thermal–optical OCEC analyser and a particle into liquid sampler coupled with ion chromatography (PILS-IC. ATOFMS-derived estimated mass concentrations reproduced the variability of these species well (R2 = 0.67–0.78, and 10 discrete mixing states for carbonaceous particles were identified and quantified. The chemical mixing state of HR-ToF-AMS organic aerosol factors, resolved using positive matrix factorisation, was also investigated through comparison with the ATOFMS dataset. The results indicate that hydrocarbon-like OA (HOA detected in Paris is associated with two EC-rich mixing states which differ in their relative sulfate content, while fresh biomass burning OA (BBOA is associated with two mixing states which differ significantly in their OA / EC ratios. Aged biomass burning OA (OOA2-BBOA was found to be significantly internally mixed with nitrate, while secondary, oxidised OA (OOA was associated with five particle mixing states, each exhibiting different relative secondary inorganic ion content. Externally mixed secondary organic aerosol was not observed. These findings demonstrate the range of primary and secondary organic aerosol mixing states in Paris. Examination of the
Healy, R. M.; Sciare, J.; Poulain, L.; Crippa, M.; Wiedensohler, A.; Prévôt, A. S. H.; Baltensperger, U.; Sarda-Estève, R.; McGuire, M. L.; Jeong, C.-H.; McGillicuddy, E.; O'Connor, I. P.; Sodeau, J. R.; Evans, G. J.; Wenger, J. C.
2013-09-01
Single-particle mixing state information can be a powerful tool for assessing the relative impact of local and regional sources of ambient particulate matter in urban environments. However, quantitative mixing state data are challenging to obtain using single-particle mass spectrometers. In this study, the quantitative chemical composition of carbonaceous single particles has been determined using an aerosol time-of-flight mass spectrometer (ATOFMS) as part of the MEGAPOLI 2010 winter campaign in Paris, France. Relative peak areas of marker ions for elemental carbon (EC), organic aerosol (OA), ammonium, nitrate, sulfate and potassium were compared with concurrent measurements from an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), a thermal-optical OCEC analyser and a particle into liquid sampler coupled with ion chromatography (PILS-IC). ATOFMS-derived estimated mass concentrations reproduced the variability of these species well (R2 = 0.67-0.78), and 10 discrete mixing states for carbonaceous particles were identified and quantified. The chemical mixing state of HR-ToF-AMS organic aerosol factors, resolved using positive matrix factorisation, was also investigated through comparison with the ATOFMS dataset. The results indicate that hydrocarbon-like OA (HOA) detected in Paris is associated with two EC-rich mixing states which differ in their relative sulfate content, while fresh biomass burning OA (BBOA) is associated with two mixing states which differ significantly in their OA / EC ratios. Aged biomass burning OA (OOA2-BBOA) was found to be significantly internally mixed with nitrate, while secondary, oxidised OA (OOA) was associated with five particle mixing states, each exhibiting different relative secondary inorganic ion content. Externally mixed secondary organic aerosol was not observed. These findings demonstrate the range of primary and secondary organic aerosol mixing states in Paris. Examination of the temporal
Birdsall, A.; Krieger, U. K.; Keutsch, F. N.
2017-12-01
Dynamic changes to atmospheric aerosol particle composition (e.g., originating from evaporation/condensation, oxidative aging, or aqueous-phase chemical reactions) impact particle properties with importance for understanding particle effects on climate and human health. These changes can take place over the entire lifetime of an atmospheric particle, which can extend over multiple days. Previous laboratory studies of such processes have included analyzing single particles suspended in a levitation device, such as an electrodynamic balance (EDB), an optical levitator, or an acoustic trap, using optical detection techniques. However, studying chemically complex systems can require an analytical method, such as mass spectrometry, that provides more molecular specificity. Existing work coupling particle levitation with mass spectrometry is more limited and largely has consisted of acoustic levitation of millimeter-sized droplets.In this work an EDB has been coupled with a custom-built ionization source and commercial time-of-flight mass spectrometer (MS) as a platform for laboratory atmospheric chemistry research. Single charged particles (radius 10 μm) have been injected into an EDB, levitated for an arbitrarily long period of time, and then transferred to a vaporization-corona discharge ionization region for MS analysis. By analyzing a series of particles of identical composition, residing in the controlled environment of the EDB for varying times, we can trace the chemical evolution of a particle over hours or days, appropriate timescales for understanding transformations of atmospheric particles.To prove the concept of our EDB-MS system, we have studied the evaporation of particles consisting of polyethylene glycol (PEG) molecules of mixed chain lengths, used as a benchmark system. Our system can quantify the composition of single particles (see Figure for sample spectrum of a single PEG-200 particle: PEG parent ions labeled with m/z, known PEG fragment ions
Digital atom interferometer with single particle control on a discretized space-time geometry.
Steffen, Andreas; Alberti, Andrea; Alt, Wolfgang; Belmechri, Noomen; Hild, Sebastian; Karski, Michał; Widera, Artur; Meschede, Dieter
2012-06-19
Engineering quantum particle systems, such as quantum simulators and quantum cellular automata, relies on full coherent control of quantum paths at the single particle level. Here we present an atom interferometer operating with single trapped atoms, where single particle wave packets are controlled through spin-dependent potentials. The interferometer is constructed from a sequence of discrete operations based on a set of elementary building blocks, which permit composing arbitrary interferometer geometries in a digital manner. We use this modularity to devise a space-time analogue of the well-known spin echo technique, yielding insight into decoherence mechanisms. We also demonstrate mesoscopic delocalization of single atoms with a separation-to-localization ratio exceeding 500; this result suggests their utilization beyond quantum logic applications as nano-resolution quantum probes in precision measurements, being able to measure potential gradients with precision 5 x 10(-4) in units of gravitational acceleration g.
International Nuclear Information System (INIS)
Esaka, Fumitaka; Esaka, Konomi T.; Magara, Masaaki; Sakurai, Satoshi; Usuda, Shigekazu; Watanabe, Kazuo
2006-01-01
The technique of single particle transfer was applied to quantitative analysis with total-reflection X-ray fluorescence (TXRF) spectrometry. The technique was evaluated by performing quantitative analysis of individual Cu particles with diameters between 3.9 and 13.2 μm. The direct quantitative analysis of the Cu particle transferred onto a Si carrier gave a discrepancy between measured and calculated Cu amounts due to the absorption effects of incident and fluorescent X-rays within the particle. By the correction for the absorption effects, the Cu amounts in individual particles could be determined with the deviation within 10.5%. When the Cu particles were dissolved with HNO 3 solution prior to the TXRF analysis, the deviation was improved to be within 3.8%. In this case, no correction for the absorption effects was needed for quantification
Single particle detection: Phase control in submicron Hall sensors
International Nuclear Information System (INIS)
Di Michele, Lorenzo; Shelly, Connor; Gallop, John; Kazakova, Olga
2010-01-01
We present a phase-sensitive ac-dc Hall magnetometry method which allows a clear and reliable separation of real and parasitic magnetic signals of a very small magnitude. High-sensitivity semiconductor-based Hall crosses are generally accepted as a preferential solution for non-invasive detection of superparamagnetic nanobeads used in molecular biology, nanomedicine, and nanochemistry. However, detection of such small beads is often hindered by inductive pick-up and other spurious signals. The present work demonstrates an unambiguous experimental route for detection of small magnetic moments and provides a simple theoretical background for it. The reliability of the method has been tested for a variety of InSb Hall sensors in the range 600 nm-5 μm. Complete characterization of empty devices, involving Hall coefficients and noise measurements, has been performed and detection of a single FePt bead with diameter of 140 nm and magnetic moment of μ≅10 8 μ B has been achieved with a 600 nm-wide sensor.
A database of microwave and sub-millimetre ice particle single scattering properties
Ekelund, Robin; Eriksson, Patrick
2016-04-01
Ice crystal particles are today a large contributing factor as to why cold-type clouds such as cirrus remain a large uncertainty in global climate models and measurements. The reason for this is the complex and varied morphology in which ice particles appear, as compared to liquid droplets with an in general spheroidal shape, thus making the description of electromagnetic properties of ice particles more complicated. Single scattering properties of frozen hydrometers have traditionally been approximated by representing the particles as spheres using Mie theory. While such practices may work well in radio applications, where the size parameter of the particles is generally low, comparisons with measurements and simulations show that this assumption is insufficient when observing tropospheric cloud ice in the microwave or sub-millimetre regions. In order to assist the radiative transfer and remote sensing communities, a database of single scattering properties of semi-realistic particles is being produced. The data is being produced using DDA (Discrete Dipole Approximation) code which can treat arbitrarily shaped particles, and Tmatrix code for simpler shapes when found sufficiently accurate. The aim has been to mainly cover frequencies used by the upcoming ICI (Ice Cloud Imager) mission with launch in 2022. Examples of particles to be included are columns, plates, bullet rosettes, sector snowflakes and aggregates. The idea is to treat particles with good average optical properties with respect to the multitude of particles and aggregate types appearing in nature. The database will initially only cover macroscopically isotropic orientation, but will eventually also include horizontally aligned particles. Databases of DDA particles do already exist with varying accessibility. The goal of this database is to complement existing data. Regarding the distribution of the data, the plan is that the database shall be available in conjunction with the ARTS (Atmospheric
On-Chip Magnetic Platform for Single-Particle Manipulation with Integrated Electrical Feedback.
Monticelli, Marco; Torti, Andrea; Cantoni, Matteo; Petti, Daniela; Albisetti, Edoardo; Manzin, Alessandra; Guerriero, Erica; Sordan, Roman; Gervasoni, Giacomo; Carminati, Marco; Ferrari, Giorgio; Sampietro, Marco; Bertacco, Riccardo
2016-02-17
Methods for the manipulation of single magnetic particles have become very interesting, in particular for in vitro biological studies. Most of these studies require an external microscope to provide the operator with feedback for controlling the particle motion, thus preventing the use of magnetic particles in high-throughput experiments. In this paper, a simple and compact system with integrated electrical feedback is presented, implementing in the very same device both the manipulation and detection of the transit of single particles. The proposed platform is based on zig-zag shaped magnetic nanostructures, where transverse magnetic domain walls are pinned at the corners and attract magnetic particles in suspension. By applying suitable external magnetic fields, the domain walls move to the nearest corner, thus causing the step by step displacement of the particles along the nanostructure. The very same structure is also employed for detecting the bead transit. Indeed, the presence of the magnetic particle in suspension over the domain wall affects the depinning field required for its displacement. This characteristic field can be monitored through anisotropic magnetoresistance measurements, thus implementing an integrated electrical feedback of the bead transit. In particular, the individual manipulation and detection of single 1-μm sized beads is demonstrated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Single step preparation of NdFeB alloy by magnesiothermic reduction-diffusion process
International Nuclear Information System (INIS)
Singha, Vinay Kant; Surendranathana, A.O.; John Berchmans, L.
2014-01-01
Magnesiothermic reduction is a new approach to produce the NdFeB alloy on a commercial scale. Similar studies were conducted for the preparation of LaNi 5 and SmCo 5 using magnesium as the reductant. In the present investigation NdFeB Hard magnetic bulk materials were synthesized by metallothermic 'Reduction – Diffusion (R-D) Process' using Magnesium as a reductant. For this process oxide precursors of Nd, Fe and B were blended with flux (LiCl/CaCl 2 ) and Mg chips were sandwiched in alternate layers. Thermal analysis (TGA/DTA) was carried out to find the dissociation and decomposition temperature of the reactants. The phase analysis, structure, and elemental composition were assessed by X-ray diffraction (XRD) and electron dispersive spectrometry (EDS). The infrared (IR) spectra were recorded by Fourier transform infrared spectrometer (FTIR). The morphological features and particle size was assessed by scanning electron microscope (SEM). The magnetic behaviour of the alloy was assessed using electron paramagnetic resonance (EPR) and vibratory sample magnetometer (VSM). From these studies it has been concluded that the NdFeB magnetic particles can be prepared using magnesium as the reductant. The process is faster and consumes very less amount of energy for the completion as compared to conventional calciothermic reduction process. Traces of MgO were detected in the alloy which increases the perpendicular anisotropy, thus increasing the coercivity of the material
Double-slit experiment with single wave-driven particles and its relation to quantum mechanics.
Andersen, Anders; Madsen, Jacob; Reichelt, Christian; Rosenlund Ahl, Sonja; Lautrup, Benny; Ellegaard, Clive; Levinsen, Mogens T; Bohr, Tomas
2015-07-01
In a thought-provoking paper, Couder and Fort [Phys. Rev. Lett. 97, 154101 (2006)] describe a version of the famous double-slit experiment performed with droplets bouncing on a vertically vibrated fluid surface. In the experiment, an interference pattern in the single-particle statistics is found even though it is possible to determine unambiguously which slit the walking droplet passes. Here we argue, however, that the single-particle statistics in such an experiment will be fundamentally different from the single-particle statistics of quantum mechanics. Quantum mechanical interference takes place between different classical paths with precise amplitude and phase relations. In the double-slit experiment with walking droplets, these relations are lost since one of the paths is singled out by the droplet. To support our conclusions, we have carried out our own double-slit experiment, and our results, in particular the long and variable slit passage times of the droplets, cast strong doubt on the feasibility of the interference claimed by Couder and Fort. To understand theoretically the limitations of wave-driven particle systems as analogs to quantum mechanics, we introduce a Schrödinger equation with a source term originating from a localized particle that generates a wave while being simultaneously guided by it. We show that the ensuing particle-wave dynamics can capture some characteristics of quantum mechanics such as orbital quantization. However, the particle-wave dynamics can not reproduce quantum mechanics in general, and we show that the single-particle statistics for our model in a double-slit experiment with an additional splitter plate differs qualitatively from that of quantum mechanics.
Double-slit experiment with single wave-driven particles and its relation to quantum mechanics
Andersen, Anders; Madsen, Jacob; Reichelt, Christian; Rosenlund Ahl, Sonja; Lautrup, Benny; Ellegaard, Clive; Levinsen, Mogens T.; Bohr, Tomas
2015-07-01
In a thought-provoking paper, Couder and Fort [Phys. Rev. Lett. 97, 154101 (2006), 10.1103/PhysRevLett.97.154101] describe a version of the famous double-slit experiment performed with droplets bouncing on a vertically vibrated fluid surface. In the experiment, an interference pattern in the single-particle statistics is found even though it is possible to determine unambiguously which slit the walking droplet passes. Here we argue, however, that the single-particle statistics in such an experiment will be fundamentally different from the single-particle statistics of quantum mechanics. Quantum mechanical interference takes place between different classical paths with precise amplitude and phase relations. In the double-slit experiment with walking droplets, these relations are lost since one of the paths is singled out by the droplet. To support our conclusions, we have carried out our own double-slit experiment, and our results, in particular the long and variable slit passage times of the droplets, cast strong doubt on the feasibility of the interference claimed by Couder and Fort. To understand theoretically the limitations of wave-driven particle systems as analogs to quantum mechanics, we introduce a Schrödinger equation with a source term originating from a localized particle that generates a wave while being simultaneously guided by it. We show that the ensuing particle-wave dynamics can capture some characteristics of quantum mechanics such as orbital quantization. However, the particle-wave dynamics can not reproduce quantum mechanics in general, and we show that the single-particle statistics for our model in a double-slit experiment with an additional splitter plate differs qualitatively from that of quantum mechanics.
Lange, Jeffrey J; Culbertson, Christopher T; Higgins, Daniel A
2008-12-15
Single molecule microscopic and spectroscopic methods are employed to probe the mobility and physical entrapment of dye molecules in dry and solvent-loaded poly(dimethylsiloxane) (PDMS) films. PDMS films of approximately 220 nm thickness are prepared by spin casting dilute solutions of Sylgard 184 onto glass coverslips, followed by low temperature curing. A perylene diimide dye (BPPDI) is used to probe diffusion and molecule-matrix interactions. Two classes of dye-loaded samples are investigated: (i) those incorporating dye dispersed throughout the films ("in film" samples) and (ii) those in which the dye is restricted primarily to the PDMS surface ("on film" samples). Experiments are performed under dry nitrogen and at various levels of isopropyl alcohol (IPA) loading from the vapor phase. A PDMS-coated quartz-crystal microbalance is employed to monitor solvent loading and drying of the PDMS and to ensure equilibrium conditions are achieved. Single molecules are shown to be predominantly immobile under dry conditions and mostly mobile under IPA-saturated conditions. Quantitative methods for counting the fluorescent spots produced by immobile single molecules in optical images of the samples demonstrate that the population of mobile molecules increases nonlinearly with IPA loading. Even under IPA saturated conditions, the population of fixed molecules is found to be greater than zero and is greatest for "in film" samples. Fluorescence correlation spectroscopy is used to measure the apparent diffusion coefficient for the mobile molecules, yielding a mean value of D = 1.4(+/-0.4) x 10(-8) cm(2)/s that is virtually independent of IPA loading and sample class. It is concluded that a nonzero population of dye molecules is physically entrapped within the PDMS matrix under all conditions. The increase in the population of mobile molecules under high IPA conditions is attributed to the filling of film micropores with solvent, rather than by incorporation of molecularly
Morphology of single inhalable particle inside public transit biodiesel fueled bus.
Shandilya, Kaushik K; Kumar, Ashok
2010-01-01
In an urban-transit bus, fueled by biodiesel in Toledo, Ohio, single inhalable particle samples in October 2008 were collected and detected by scanning electron microscopy and energy dispersive X-ray spectrometry (SEM/EDS). Particle size analysis found bimodal distribution at 0.2 and 0.5 microm. The particle morphology was characterized by 14 different shape clusters: square, pentagon, hexagon, heptagon, octagon, nonagon, decagon, agglomerate, sphere, triangle, oblong, strip, line or stick, and unknown, by quantitative order. The square particles were common in the samples. Round and triangle particles are more, and pentagon, hexagon, heptagon, octagon, nonagon, decagon, strip, line or sticks are less. Agglomerate particles were found in abundance. The surface of most particles was coarse with a fractal edge that can provide a suitable chemical reaction bed in the polluted atmospheric environment. The three sorts of surface patterns of squares were smooth, semi-smooth, and coarse. The three sorts of square surface patterns represented the morphological characteristics of single inhalable particles in the air inside the bus in Toledo. The size and shape distribution results were compared to those obtained for a bus using ultra low sulfur diesel.
International Nuclear Information System (INIS)
Hwang, Hee Jin; Ro, Chul-Un
2006-01-01
In order to clearly elucidate whether Asian Dust particles experience chemical modification during long-range transport, it is necessary to characterize soil particles where Asian Dust particles originate. If chemical compositions of source soil particles are well characterized, then chemical compositions of Asian Dust particles collected outside source regions can be compared with those of source soil particles in order to find out the occurrence of chemical modification. Asian Dust particles are chemically and morphologically heterogeneous, and thus the average composition and the average aerodynamic diameter (obtainable by bulk analysis) are not much relevant if the chemical modifications of the particles must be followed. The major elemental composition and abundance of the particle types that are potential subjects of chemical modification can only be obtained using single-particle analysis. A single particle analytical technique, named low-Z particle electron probe X-ray microanalysis (low-Z particle EPMA), was applied to characterize two certified reference materials (CRMs) for Asian Dust particles, which were collected from a loess plateau area and a desert of China. The CRMs were defined by bulk analyses to provide certified concentrations for 13 chemical elements. Using the low-Z particle EPMA technique, the concentrations of major chemical species such as aluminosilicates, SiO 2 , CaCO 3 , and carbonaceous species were obtained. Elemental concentrations obtained by the low-Z particle EPMA are close to the certified values, with considering that the single particle and bulk analyses employ very different approaches. There are still some discrepancies between those concentration values, resulting from analyses of particles with different sizes, different sample amounts analyzed, and uncertainties involved in the single particle analysis
International Nuclear Information System (INIS)
Rosen, H.; Novakov, T.
1983-01-01
It is unclear why the backscattered radiation from nonabsorbing particles should not make a significant contribution to the optical attenuation measurement. This is especially true where the absorbing component represents only a very small fraction of the aerosol mass. In this Letter we present a simple theoretical model which accounts for all these observations and points out the critical role of the filter substrate as an almost perfect diffuse reflector in the technique
Galipeau, Kendra; Socki, Michael; Socia, Adam; Harmon, Paul A
2018-01-01
Poorly water soluble drug candidates have been common in developmental pipelines over the last several decades. This has fueled considerable research around understanding how bile salt and model micelles can improve drug particle dissolution rates and human drug exposure levels. However, in the pharmaceutical context only a single mechanism of how micelles load solute has been assumed, that being the direct loading mechanism put forth by Cussler and coworkers (Am Inst Chem Eng J. 1976;22(6):1006-1012) 40 years ago. In this model, micelles load at the particle surface and will be loaded to their equilibrium loading values. More recently, Kumar and Gandhi and coworkers (Langmuir. 2003;19:4014-4026) developed a comprehensive theory of micelle solubilization which also features an indirect loading mechanism which they argue should operate in ionic surfactant systems. In this mechanism, micelles cannot directly load at the solute particle surface and thus may not reach equilibrium loading values within the particle diffusion layer. In this work, we endeavor to understand if the indirect micelle loading mechanism represents a plausible description in the pharmaceutical context. The overall data in SLS and FaSSIF systems obtained here, as well as several other previously published datasets, can be described by the indirect micelle loading mechanism. Implications for pharmaceutical development of poorly soluble compounds are discussed. Copyright © 2018. Published by Elsevier Inc.
The single-breath diffusing capacity of CO and NO in healthy children of European descent.
Thomas, Astrid; Hanel, Birgitte; Marott, Jacob L; Buchvald, Frederik; Mortensen, Jann; Nielsen, Kim G
2014-01-01
The diffusing capacity (DL) of the lung can be divided into two components: the diffusing capacity of the alveolar membrane (Dm) and the pulmonary capillary volume (Vc). DL is traditionally measured using a single-breath method, involving inhalation of carbon monoxide, and a breath hold of 8-10 seconds (DL,CO). This method does not easily allow calculation of Dm and Vc. An alternative single-breath method (DL,CO,NO), involving simultaneous inhalation of carbon monoxide and nitric oxide, and traditionally a shorter breath hold, allows calculation of Dm and Vc and the DL,NO/DL,CO ratio in a single respiratory maneuver. The clinical utility of Dm, Vc, and DL,NO/DL,CO in the pediatric age range is currently unknown but also restricted by lack of reference values. The aim of this study was to establish reference ranges for the outcomes of DL,CO,NO with a 5 second breath hold, including the calculated outcomes Dm, Vc, and the DL,NO/DL,CO ratio, as well as to establish reference values for the outcomes of the traditional DL,CO method, with a 10 second breath hold in children. DL,CO,NO and DL,CO were measured in healthy children, of European descent, aged 5-17 years using a Jaeger Masterscreen PFT. The data were analyzed using the Generalized Additive Models for Location Scale and Shape (GAMLSS) statistical method. A total of 326 children were eligible for diffusing capacity measurements, resulting in 312 measurements of DL,CO,NO and 297 of DL,CO, respectively. Reference equations were established for the outcomes of DL,CO,NO and DL,CO, including the calculated values: Vc, Dm, and the DL,NO/DL,CO ratio. These reference values are based on the largest sample of children to date and may provide a basis for future studies of their clinical utility in differentiating between alterations in the pulmonary circulation and changes in the alveolar membrane in pediatric patients.
The single-breath diffusing capacity of CO and NO in healthy children of European descent.
Directory of Open Access Journals (Sweden)
Astrid Thomas
Full Text Available The diffusing capacity (DL of the lung can be divided into two components: the diffusing capacity of the alveolar membrane (Dm and the pulmonary capillary volume (Vc. DL is traditionally measured using a single-breath method, involving inhalation of carbon monoxide, and a breath hold of 8-10 seconds (DL,CO. This method does not easily allow calculation of Dm and Vc. An alternative single-breath method (DL,CO,NO, involving simultaneous inhalation of carbon monoxide and nitric oxide, and traditionally a shorter breath hold, allows calculation of Dm and Vc and the DL,NO/DL,CO ratio in a single respiratory maneuver. The clinical utility of Dm, Vc, and DL,NO/DL,CO in the pediatric age range is currently unknown but also restricted by lack of reference values.The aim of this study was to establish reference ranges for the outcomes of DL,CO,NO with a 5 second breath hold, including the calculated outcomes Dm, Vc, and the DL,NO/DL,CO ratio, as well as to establish reference values for the outcomes of the traditional DL,CO method, with a 10 second breath hold in children.DL,CO,NO and DL,CO were measured in healthy children, of European descent, aged 5-17 years using a Jaeger Masterscreen PFT. The data were analyzed using the Generalized Additive Models for Location Scale and Shape (GAMLSS statistical method.A total of 326 children were eligible for diffusing capacity measurements, resulting in 312 measurements of DL,CO,NO and 297 of DL,CO, respectively. Reference equations were established for the outcomes of DL,CO,NO and DL,CO, including the calculated values: Vc, Dm, and the DL,NO/DL,CO ratio.These reference values are based on the largest sample of children to date and may provide a basis for future studies of their clinical utility in differentiating between alterations in the pulmonary circulation and changes in the alveolar membrane in pediatric patients.
Habuchi, Satoshi
2015-04-21
Diffusion dynamics of topological isomers of polymer molecules was investigated at the single-molecule level in a melt state by employing the fluorophore-incorporated 4-armed star and the corresponding doubly-cyclized, 8-shaped poly(THF) chains. While the single-molecule fluorescence imaging experiment revealed that the diffusion of the 4-armed star polymer was described by a single Gaussian distribution, the diffusion of the 8-shaped polymer exhibited a double Gaussian distribution behaviour. We reasoned that the two 8-shaped polymeric isomers have distinct diffusion modes in the melt state, although ensemble-averaged experimental methods cannot detect differences in overall conformational state of the isomers. The single-molecule experiments suggested that one of the 8-shaped polymeric isomer, having the horizontally oriented form, causes an efficient threading with the linear matrix chains which leads to the slower diffusion compared with the corresponding 4-armed star polymer, while the other 8-shaped polymeric isomer, having the vertically oriented form, displayed faster diffusion by the suppression of effective threading with the linear matrix chains due to its contracted chain conformation.
Directory of Open Access Journals (Sweden)
Yongchao Zhang
2018-04-01
Full Text Available Understanding of turbulent flow in the reactor coolant pump (RCP is a premise of the optimal design of the RCP. Flow structures in the RCP, in view of the specially devised spherical casing, are more complicated than those associated with conventional pumps. Hitherto, knowledge of the flow characteristics of the RCP has been far from sufficient. Research into the nonintrusive measurement of the internal flow of the RCP has rarely been reported. In the present study, flow measurement using particle image velocimetry is implemented to reveal flow features of the RCP model. Velocity and vorticity distributions in the diffuser and spherical casing are obtained. The results illuminate the complexity of the flows in the RCP. Near the lower end of the discharge nozzle, three-dimensional swirling flows and flow separation are evident. In the diffuser, the imparity of the velocity profile with respect to different axial cross sections is verified, and the velocity increases gradually from the shroud to the hub. In the casing, velocity distribution is nonuniform over the circumferential direction. Vortices shed consistently from the diffuser blade trailing edge. The experimental results lend sound support for the optimal design of the RCP and provide validation of relevant numerical algorithms. Keywords: Diffuser, Flow Structures, Particle Image Velocimetry, Reactor Coolant Pump, Spherical Casing, Velocity Distribution
Nonlinear optical susceptibilities in the diffusion modified AlxGa1-xN/GaN single quantum well
Das, T.; Panda, S.; Panda, B. K.
2018-05-01
Under thermal treatment of the post growth AlGaN/GaN single quantum well, the diffusion of Al and Ga atoms across the interface is expected to form the diffusion modified quantum well with diffusion length as a quantitative parameter for diffusion. The modification of confining potential and position-dependent effective mass in the quantum well due to diffusion is calculated taking the Fick's law. The built-in electric field which arises from spontaneous and piezoelectric polarizations in the wurtzite structure is included in the effective mass equation. The electronic states are calculated from the effective mass equation using the finite difference method for several diffusion lengths. Since the effective well width decreases with increasing diffusion length, the energy levels increase with it. The intersubband energy spacing in the conduction band decreases with diffusion length due to built-in electric field and reduction of effective well width. The linear susceptibility for first-order and the nonlinear second-order and third-order susceptibilities are calculated using the compact density matrix approach taking only two levels. The calculated susceptibilities are red shifted with increase in diffusion lengths due to decrease in intersubband energy spacing.
Oulebsir, Fouad; Vermorel, Romain; Galliero, Guillaume
2018-01-16
With the advent of graphene material, membranes based on single-layer nanoporous solids appear as promising devices for fluid separation, be it liquid or gaseous mixtures. The design of such architectured porous materials would greatly benefit from accurate models that can predict their transport and separation properties. More specifically, there is no universal understanding of how parameters such as temperature, fluid loading conditions, or the ratio of the pore size to the fluid molecular diameter influence the permeation process. In this study, we address the problem of pure supercritical fluids diffusing through simplified models of single-layer porous materials. Basically, we investigate a toy model that consists of a single-layer lattice of Lennard-Jones interaction sites with a slit gap of controllable width. We performed extensive equilibrium and biased molecular dynamics simulations to document the physical mechanisms involved at the molecular scale. We propose a general constitutive equation for the diffusional transport coefficient derived from classical statistical mechanics and kinetic theory, which can be further simplified in the ideal gas limit. This transport coefficient relates the molecular flux to the fluid density jump across the single-layer membrane. It is found to be proportional to the accessible surface porosity of the single-layer porous solid and to a thermodynamic factor accounting for the inhomogeneity of the fluid close to the pore entrance. Both quantities directly depend on the potential of mean force that results from molecular interactions between solid and fluid atoms. Comparisons with the simulations data show that the kinetic model captures how narrowing the pore size below the fluid molecular diameter lowers dramatically the value of the transport coefficient. Furthermore, we demonstrate that our general constitutive equation allows for a consistent interpretation of the intricate effects of temperature and fluid loading
Plasmon excitation in single wall carbon nanotubes by penetrating charged particles
International Nuclear Information System (INIS)
Segui, Silvina; Gervasoni, Juana L; Arista, Néstor R; Mowbray, Duncan J; Mišković, Zoran L
2012-01-01
In this work we study the excitation of plasmons due to the incidence of a charged particle passing through a single wall carbon nanotube. We use a quantized hydrodynamic, in which the σ and π electrons characteristic of these carbonaceous structures are depicted as two interacting 2-dimensional fluids, to calculate the average number of plasmons excited. We analyze the contribution of the different plasmon modes in a variety of configurations, and study the energy lost by the incident particle.
NA49 Results on Single Particle and Correlation Measurements in Central PB+PB Collisions
Wang, Fuqiang; Bachler, J.; Bailey, S.J.; Barna, D.; Barnby, L.S.; Bartke, J.; Barton, R.A.; Bialkowska, H.; Billmeier, A.; Blyth, C.O.; Bock, R.; Boimska, B.; Bormann, C.; Brady, F.P.; Brockmann, R.; Brun, R.; Buncic, P.; Caines, H.L.; Carr, L.D.; Cebra, D.A.; Cooper, G.E.; Cramer, J.G.; Cristinziani, M.; Csato, P.; Dunn, J.; Eckardt, V.; Eckhardt, F.; Ferguson, M.I.; Fischer, H.G.; Flierl, D.; Fodor, Z.; Foka, P.; Freund, P.; Friese, V.; Fuchs, M.; Gabler, F.; Gal, J.; Ganz, R.; Gazdzicki, M.; Gladysz, E.; Grebieszkow, J.; Gunther, J.; Harris, J.W.; Hegyi, S.; Henkel, T.; Hill, L.A.; Hummler, H.; Igo, G.; Irmscher, D.; Jacobs, P.; Jones, P.G.; Kadija, K.; Kolesnikov, V.I.; Kowalski, M.; Lasiuk, B.; Levai, P.; Malakhov, A.I.; Margetis, S.; Markert, C.; Melkumov, G.L.; Mock, A.; Molnar, J.; Nelson, John M.; Oldenburg, M.; Odyniec, G.; Palla, G.; Panagiotou, A.D.; Petridis, A.; Piper, A.; Porter, R.J.; Poskanzer, Arthur M.; Prindle, D.J.; Puhlhofer, F.; Rauch, W.; Reid, J.G.; Renfordt, R.; Retyk, W.; Ritter, H.G.; Rohrich, D.; Roland, C.; Roland, G.; Rudolph, H.; Rybicki, A.; Sandoval, A.; Sann, H.; Semenov, A.Yu.; Schafer, E.; Schmischke, D.; Schmitz, N.; Schonfelder, S.; Seyboth, P.; Seyerlein, J.; Sikler, F.; Skrzypczak, E.; Snellings, R.; Squier, G.T.A.; Stock, R.; Strobele, H.; Struck, C.; Szentpetery, I.; Sziklai, J.; Toy, M.; Trainor, T.A.; Trentalange, S.; Ullrich, T.; Vassiliou, M.; Veres, G.; Vesztergombi, G.; Voloshin, S.; Vranic, D.; Weerasundara, D.D.; Wenig, S.; Whitten, C.; Wienold, T.; Wood, L.; Xu, N.; Yates, T.A.; Zimanyi, J.; Zhu, X.Z.; Zybert, R.; Wang, Fuqiang
2000-01-01
Single-particle spectra and two-particle correlation functions measured by the NA49 collaboration in central Pb+Pb collisions at 158 GeV/nucleon are presented. These measurements are used to study the kinetic and chemical freeze-out conditions in heavy ion collisions. We conclude that large baryon stopping, high baryon density and strong transverse radial flow are achieved in central Pb+Pb collisions at the SPS.
A new seniority scheme for non-degenerate single particle orbits
International Nuclear Information System (INIS)
Otsuka, T.; Arima, A.
1978-01-01
A new method is proposed in the treatment of the seniority scheme. The method enables one to evaluate analytically the contribution from J = 0 Cooper pairs in non-degenerate single-particle orbits to many-body matrix elements. It includes the SU(2) quasi-spin and the BCS approximation as two extreme limits. The effect of particle number conservation is properly taken into account. (Auth.)
A versatile optical microscope for time-dependent single-molecule and single-particle spectroscopy
Li, Hao; Yang, Haw
2018-03-01
This work reports the design and implementation of a multi-function optical microscope for time-dependent spectroscopy on single molecules and single nanoparticles. It integrates the now-routine single-object measurements into one standalone platform so that no reconfiguration is needed when switching between different types of sample or spectroscopy modes. The illumination modes include evanescent field through total internal reflection, dark-field illumination, and epi-excitation onto a diffraction-limited spot suitable for confocal detection. The detection modes include spectrally resolved line imaging, wide-field imaging with dual-color capability, and two-color single-element photon-counting detection. The switch between different spectroscopy and data acquisition modes is fully automated and executed through computer programming. The capability of this microscope is demonstrated through selected proof-of-principle experiments.
A versatile optical microscope for time-dependent single-molecule and single-particle spectroscopy.
Li, Hao; Yang, Haw
2018-03-28
This work reports the design and implementation of a multi-function optical microscope for time-dependent spectroscopy on single molecules and single nanoparticles. It integrates the now-routine single-object measurements into one standalone platform so that no reconfiguration is needed when switching between different types of sample or spectroscopy modes. The illumination modes include evanescent field through total internal reflection, dark-field illumination, and epi-excitation onto a diffraction-limited spot suitable for confocal detection. The detection modes include spectrally resolved line imaging, wide-field imaging with dual-color capability, and two-color single-element photon-counting detection. The switch between different spectroscopy and data acquisition modes is fully automated and executed through computer programming. The capability of this microscope is demonstrated through selected proof-of-principle experiments.
Double-slit experiment with single wave-driven particles and its relation to quantum mechanics
DEFF Research Database (Denmark)
Andersen, Anders Peter; Madsen, Jacob; Reichelt, Christian Günther
2015-01-01
even though it is possible to determine unambiguously which slit the walking droplet passes. Here we argue, however, that the single-particle statistics in such an experiment will be fundamentally different from the single-particle statistics of quantum mechanics. Quantum mechanical interference takes...... place between different classical paths with precise amplitude and phase relations. In the double-slit experiment with walking droplets, these relations are lost since one of the paths is singled out by the droplet. To support our conclusions, we have carried out our own double-slit experiment, and our...... results, in particular the long and variable slit passage times of the droplets, cast strong doubt on the feasibility of the interference claimed by Couder and Fort. To understand theoretically the limitations of wave-driven particle systems as analogs to quantum mechanics, we introduce a Schro...
Centroids of effective interactions from measured single-particle energies: An application
International Nuclear Information System (INIS)
Cole, B.J.
1990-01-01
Centroids of the effective nucleon-nucleon interaction for the mass region A=28--64 are extracted directly from experimental single-particle spectra, by comparing single-particle energies relative to different cores. Uncertainties in the centroids are estimated at approximately 100 keV, except in cases of exceptional fragmentation of the single-particle strength. The use of a large number of inert cores allows the dependence of the interaction on mass or model space to be investigated. The method permits accurate empirical modifications to be made to realistic interactions calculated from bare nucleon-nucleon potentials, which are known to possess defective centroids in many cases. In addition, the centroids can be used as input to the more sophisticated fitting procedures that are employed to produce matrix elements of the effective interaction
A nonlocal and periodic reaction-diffusion-advection model of a single phytoplankton species.
Peng, Rui; Zhao, Xiao-Qiang
2016-02-01
In this article, we are concerned with a nonlocal reaction-diffusion-advection model which describes the evolution of a single phytoplankton species in a eutrophic vertical water column where the species relies solely on light for its metabolism. The new feature of our modeling equation lies in that the incident light intensity and the death rate are assumed to be time periodic with a common period. We first establish a threshold type result on the global dynamics of this model in terms of the basic reproduction number R0. Then we derive various characterizations of R0 with respect to the vertical turbulent diffusion rate, the sinking or buoyant rate and the water column depth, respectively, which in turn give rather precise conditions to determine whether the phytoplankton persist or become extinct. Our theoretical results not only extend the existing ones for the time-independent case, but also reveal new interesting effects of the modeling parameters and the time-periodic heterogeneous environment on persistence and extinction of the phytoplankton species, and thereby suggest important implications for phytoplankton growth control.
Czech Academy of Sciences Publication Activity Database
Hovorka, Š.; Randová, A.; Borbášová, T.; Sysel, P.; Vychodilová, Hana; Červenková Šťastná, Lucie; Brožová, Libuše; Žitka, Jan; Storch, Jan; Kačírková, Marie; Drašar, P.; Izák, Pavel
2016-01-01
Roč. 158, JAN 28 (2016), s. 322-332 ISSN 1383-5866 R&D Projects: GA ČR(CZ) GAP106/12/0569 Institutional support: RVO:67985858 ; RVO:61389013 Keywords : diffusion coefficient measurement * permeability * nafion * cellophane * chirality of polymer membrane Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.359, year: 2016
SYN3D: a single-channel, spatial flux synthesis code for diffusion theory calculations
Energy Technology Data Exchange (ETDEWEB)
Adams, C. H.
1976-07-01
This report is a user's manual for SYN3D, a computer code which uses single-channel, spatial flux synthesis to calculate approximate solutions to two- and three-dimensional, finite-difference, multigroup neutron diffusion theory equations. SYN3D is designed to run in conjunction with any one of several one- and two-dimensional, finite-difference codes (required to generate the synthesis expansion functions) currently being used in the fast reactor community. The report describes the theory and equations, the use of the code, and the implementation on the IBM 370/195 and CDC 7600 of the version of SYN3D available through the Argonne Code Center.
Surface diffusion coefficient of Au atoms on single layer graphene grown on Cu
Energy Technology Data Exchange (ETDEWEB)
Ruffino, F., E-mail: francesco.ruffino@ct.infn.it; Cacciato, G.; Grimaldi, M. G. [Dipartimento di Fisica ed Astronomia-Universitá di Catania, via S. Sofia 64, 95123 Catania, Italy and MATIS IMM-CNR, via S. Sofia 64, 95123 Catania (Italy)
2014-02-28
A 5 nm thick Au film was deposited on single layer graphene sheets grown on Cu. By thermal processes, the dewetting phenomenon of the Au film on the graphene was induced so to form Au nanoparticles. The mean radius, surface-to-surface distance, and surface density evolution of the nanoparticles on the graphene sheets as a function of the annealing temperature were quantified by scanning electron microscopy analyses. These quantitative data were analyzed within the classical mean-field nucleation theory so to obtain the temperature-dependent Au atoms surface diffusion coefficient on graphene: D{sub S}(T)=[(8.2±0.6)×10{sup −8}]exp[−(0.31±0.02(eV)/(at) )/kT] cm{sup 2}/s.
Diffusion-cooled high-power single-mode waveguide CO2 laser for transmyocardial revascularization
Berishvili, I. I.; Bockeria, L. A.; Egorov, E. N.; Golubev, Vladimir S.; Galushkin, Michail G.; Kheliminsky, A. A.; Panchenko, Vladislav Y.; Roshin, A. P.; Sigaev, I. Y.; Vachromeeva, M. N.; Vasiltsov, Victor V.; Yoshina, V. I.; Zabelin, Alexandre M.; Zelenov, Evgenii V.
1999-01-01
The paper presents the results on investigations and development of multichannel waveguide CO2 laser with diffusion cooling of active medium excited by discharge of audio-frequency alternating current. The description of high-power single-mode CO2 laser with average beam power up to 1 kW is presented. The result of measurement of the laser basic parameters are offered, as well as the outcomes of performances of the laser head with long active zone, operating in waveguide mode. As an example of application of these laser, various capabilities a description of the developed medical system 'Genom' used in the transmyocardial laser revascularization (TMLR) procedure and clinical results of the possibilities of the TMLR in the surgical treatment are presented.
SYN3D: a single-channel, spatial flux synthesis code for diffusion theory calculations
International Nuclear Information System (INIS)
Adams, C.H.
1976-07-01
This report is a user's manual for SYN3D, a computer code which uses single-channel, spatial flux synthesis to calculate approximate solutions to two- and three-dimensional, finite-difference, multigroup neutron diffusion theory equations. SYN3D is designed to run in conjunction with any one of several one- and two-dimensional, finite-difference codes (required to generate the synthesis expansion functions) currently being used in the fast reactor community. The report describes the theory and equations, the use of the code, and the implementation on the IBM 370/195 and CDC 7600 of the version of SYN3D available through the Argonne Code Center
Single twistor description of massless, massive, AdS, and other interacting particles
International Nuclear Information System (INIS)
Bars, Itzhak; Picon, Moises
2006-01-01
The Penrose transform between twistors and the phase space of massless particles is generalized from the massless case to an assortment of other particle dynamical systems, including special examples of massless or massive particles, relativistic or nonrelativistic, interacting or noninteracting, in flat space or curved spaces. Our unified construction involves always the same twistor Z A with only four complex degrees of freedom and subject to the same helicity constraint. Only the twistor to phase space transform differs from one case to another. Hence, a unification of diverse particle dynamical systems is displayed by the fact that they all share the same twistor description. Our single twistor approach seems to be rather different and a strikingly economical construction of twistors compared to other past approaches that introduced multiple twistors to represent some similar but far more limited set of particle phase space systems
Biological effects of single HZE-particles of the cosmic radiation: Free Flyer Biostack
International Nuclear Information System (INIS)
1989-01-01
The Free Flyer Biostack is designed as a passive, longer term experiment for investigations into the dosimetry of cosmic HZE particles (high-charge energetic particles), the effects of single HZE particles on isolated biological samples, and the synergistic effects of conditions in space, as e.g. zero gravity and presence of a permanent, weakly ionizing component of the cosmic radiation. For the experiments summarized in this project report, the AgCl detector type developed in Frankfurt has been used, consisting of monocrystalline AgCl films, about 130-150 μm thick, and doped with 5000 ppm of Cd. (DG) With 9 figs [de
Evolution of Single-Particle Energies for N=9 Nuclei at Large N/Z
Directory of Open Access Journals (Sweden)
Wuosmaa A. H.
2014-03-01
Full Text Available We have studied the nucleus 14B using the 13B(d,p14B and 15C(d,3He14B reactions. The two reactions provide complementary information about the negative-parity 1s1/2 and 0d5/2 neutron single-particle states in 14B. The data from the (d,p reaction give neutron-spectroscopic strengths for these levels, and the (d,3He results confirm the existence of a broad 2- excited state suggested in the literature. Together these results provide estimates of the sd-shell neutron effective single-particle energies in 14B.
Quantum chaos in nuclear single-particle motion and damping of giant resonances
International Nuclear Information System (INIS)
Pal, Santanu; Mukhopadhyay, Tapan
1995-01-01
The spectral statistics of single particle motion in deformed cavities with axial symmetry are presented. The single particle motion in the cavities considered are non-integrable and the systematics of the fluctuation measures of the spectra reveal a transition from regular to chaotic regime in the corresponding classical systems. Quantitative estimate of the degree of chaos enables us to introduce a correction factor to the one-body wall formula for the damping widths of isoscalar giant resonances. The damping widths calculated with this correction factor give much better agreement with experimental values than earlier calculations of one-body damping widths. (author). 21 refs., 5 figs
ReaDDy--a software for particle-based reaction-diffusion dynamics in crowded cellular environments.
Directory of Open Access Journals (Sweden)
Johannes Schöneberg
Full Text Available We introduce the software package ReaDDy for simulation of detailed spatiotemporal mechanisms of dynamical processes in the cell, based on reaction-diffusion dynamics with particle resolution. In contrast to other particle-based reaction kinetics programs, ReaDDy supports particle interaction potentials. This permits effects such as space exclusion, molecular crowding and aggregation to be modeled. The biomolecules simulated can be represented as a sphere, or as a more complex geometry such as a domain structure or polymer chain. ReaDDy bridges the gap between small-scale but highly detailed molecular dynamics or Brownian dynamics simulations and large-scale but little-detailed reaction kinetics simulations. ReaDDy has a modular design that enables the exchange of the computing core by efficient platform-specific implementations or dynamical models that are different from Brownian dynamics.
Design and synthesis of magnetic nanoparticles with gold shells for single particle optical tracking
Lim, Jitkang
The design, synthesis, and characterization of iron oxide core, gold shell nanoparticles are studied in this thesis. Firstly, nanoparticles with 18 +/- 1.7 nm diameter iron oxide cores with ˜5 nm thick gold shells were synthesized via a new seed-mediated electroless deposition method. The nanoparticles were superparamagnetic at room temperature and could be reversibly collected by a permanent magnet. These nanoparticles displayed a sharp localized surface plasmon resonance peak at 605 nm, as predicted by scattering theory, and their large scattering cross-section allowed them to be individually resolved in darkfield optical microscopy while undergoing Brownian motion in aqueous suspension. Later, commercially available 38 +/- 3.8 nm diameter spherical iron oxide nanoparticles (from Ocean Nanotech, Inc) were employed to make core-shell particles. These particles were decorated with cationic poly(diallyldimethylammonium chloride) (PDDA) which further promotes the attachment of small gold clusters. After gold seeding, the average hydrodynamic diameter of the core-shell particles is 172 +/- 65.9 nm. The magnetophoretic motion of these particles was guided by a piece of magnetized mu-metal. Individual particle trajectories were observed by darkfield optical microscopy. The typical magnetophoretic velocity achieved was within the range of 1--10 mum/sec. Random walk analysis performed on these particles while undergoing Brownian motion confirmed that individual particles were indeed being imaged. The particle size variation within the observed sample obtained through random walk analysis was within the size distribution obtained by dynamic light scattering. When the current to the solenoid used to magnetize the mu-metal was turned off, all the collected core-shell particles were readily redispersed by diffusion back into the surrounding environment. A Peclet number analysis was performed to probe the convective motion of nanospheres and nanorods under the influence of
Building the Nanoplasmonics Toolbox Through Shape Modeling and Single Particle Optical Studies
Ringe, Emilie
Interest in nanotechnology is driven by unprecedented properties tailorability, achievable by controlling particle structure and composition. Unlike bulk components, minute changes in size and shape affect the optical and electronic properties of nanoparticles. Characterization of such structure-function relationships and better understanding of structure control mechanisms is crucial to the development of applications such as plasmonic sensors and devices. The objective of the current research is thus twofold: to theoretically predict and understand how shape is controlled by synthesis conditions, and to experimentally unravel, through single particle studies, how shape, composition, size, and surrounding environment affect plasmonic properties in noble metal particles. Quantitative, predictive rules and fundamental knowledge obtained from this research contributes to the "nanoplasmonics toolbox", a library designed to provide scientists and engineers the tools to create and optimize novel nanotechnology applications. In this dissertation, single particle approaches are developed and used to unravel the effects of size, shape, substrate, aggregation state and surrounding environment on the optical response of metallic nanoparticles. Ag and Au nanocubes on different substrates are first presented, followed by the discussion of the concept of plasmon length, a universal parameter to describe plasmon energy for a variety of particle shapes and plasmon modes. Plasmonic sensing (both refractive index sensing and surface-enhanced Raman spectroscopy) and polarization effects are then studied at the single particle level. In the last two Chapters, analytical shape models based on the Wulff construction provide unique modeling tools for alloy and kinetically grown nanoparticles. The former reveals a size-dependence of the shape of small alloy particles (such as those used in catalysis) because of surface segregation, while the latter uniquely models the shape of many
Single-particle characterization of the high-Arctic summertime aerosol
Directory of Open Access Journals (Sweden)
B. Sierau
2014-07-01
Full Text Available Single-particle mass-spectrometric measurements were carried out in the high Arctic north of 80° during summer 2008. The campaign took place onboard the icebreaker Oden and was part of the Arctic Summer Cloud Ocean Study (ASCOS. The instrument deployed was an aerosol time-of-flight mass spectrometer (ATOFMS that provides information on the chemical composition of individual particles and their mixing state in real time. Aerosols were sampled in the marine boundary layer at stations in the open ocean, in the marginal ice zone, and in the pack ice region. The largest fraction of particles detected for subsequent analysis in the size range of the ATOFMS between approximately 200 and 3000 nm in diameter showed mass-spectrometric patterns, indicating an internal mixing state and a biomass burning and/or biofuel source. The majority of these particles were connected to an air mass layer of elevated particle concentration mixed into the surface mixed layer from the upper part of the marine boundary layer. The second largest fraction was represented by sea salt particles. The chemical analysis of the over-ice sea salt aerosol revealed tracer compounds that reflect chemical aging of the particles during their long-range advection from the marginal ice zone, or open waters south thereof prior to detection at the ship. From our findings we conclude that long-range transport of particles is one source of aerosols in the high Arctic. To assess the importance of long-range particle sources for aerosol–cloud interactions over the inner Arctic in comparison to local and regional biogenic primary aerosol sources, the chemical composition of the detected particles was analyzed for indicators of marine biological origin. Only a minor fraction showed chemical signatures of potentially ocean-derived primary particles of that kind. However, a chemical bias in the ATOFMS's detection capabilities observed during ASCOS might suggest the presence of a particle type of
Measurement of ambient aerosols in northern Mexico City by single particle mass spectrometry
Directory of Open Access Journals (Sweden)
R. C. Moffet
2008-08-01
Full Text Available Continuous ambient measurements with aerosol time-of-flight mass spectrometry (ATOFMS were made in an industrial/residential section in the northern part of Mexico City as part of the Mexico City Metropolitan Area-2006 campaign (MCMA-2006. Results are presented for the period of 15–27 March 2006. The submicron size mode contained both fresh and aged biomass burning, aged organic carbon (OC mixed with nitrate and sulfate, elemental carbon (EC, nitrogen-organic carbon, industrial metal, and inorganic NaK inorganic particles. Overall, biomass burning and aged OC particle types comprised 40% and 31%, respectively, of the submicron mode. In contrast, the supermicron mode was dominated by inorganic NaK particle types (42% which represented a mixture of dry lake bed dust and industrial NaK emissions mixed with soot. Additionally, aluminosilicate dust, transition metals, OC, and biomass burning contributed to the supermicron particles. Early morning periods (2–6 a.m. showed high fractions of inorganic particles from industrial sources in the northeast, composed of internal mixtures of Pb, Zn, EC and Cl, representing up to 73% of the particles in the 0.2–3μm size range. A unique nitrogen-containing organic carbon (NOC particle type, peaking in the early morning hours, was hypothesized to be amines from local industrial emissions based on the time series profile and back trajectory analysis. A strong dependence on wind speed and direction was observed in the single particle types that were present during different times of the day. The early morning (3:30–10 a.m. showed the greatest contributions from industrial emissions. During mid to late mornings (7–11 a.m., weak northerly winds were observed along with the most highly aged particles. Stronger winds from the south picked up in the late morning (after 11 a.m., resulting in a decrease in the concentrations of the major aged particle types and an increase in the number fraction of fresh
Single-particle characterization of the high-Arctic summertime aerosol
Sierau, B.; Chang, R. Y.-W.; Leck, C.; Paatero, J.; Lohmann, U.
2014-07-01
Single-particle mass-spectrometric measurements were carried out in the high Arctic north of 80° during summer 2008. The campaign took place onboard the icebreaker Oden and was part of the Arctic Summer Cloud Ocean Study (ASCOS). The instrument deployed was an aerosol time-of-flight mass spectrometer (ATOFMS) that provides information on the chemical composition of individual particles and their mixing state in real time. Aerosols were sampled in the marine boundary layer at stations in the open ocean, in the marginal ice zone, and in the pack ice region. The largest fraction of particles detected for subsequent analysis in the size range of the ATOFMS between approximately 200 and 3000 nm in diameter showed mass-spectrometric patterns, indicating an internal mixing state and a biomass burning and/or biofuel source. The majority of these particles were connected to an air mass layer of elevated particle concentration mixed into the surface mixed layer from the upper part of the marine boundary layer. The second largest fraction was represented by sea salt particles. The chemical analysis of the over-ice sea salt aerosol revealed tracer compounds that reflect chemical aging of the particles during their long-range advection from the marginal ice zone, or open waters south thereof prior to detection at the ship. From our findings we conclude that long-range transport of particles is one source of aerosols in the high Arctic. To assess the importance of long-range particle sources for aerosol-cloud interactions over the inner Arctic in comparison to local and regional biogenic primary aerosol sources, the chemical composition of the detected particles was analyzed for indicators of marine biological origin. Only a minor fraction showed chemical signatures of potentially ocean-derived primary particles of that kind. However, a chemical bias in the ATOFMS's detection capabilities observed during ASCOS might suggest the presence of a particle type of unknown composition
Li, Jun; Calo, Victor M.
2013-01-01
models although its deviation in the liquid phase is greater. Since the single-particle model reduces the particle number and avoids the time-consuming Ewald summation used to evaluate Coulomb interactions, the proposed model improves the computational
International Nuclear Information System (INIS)
Moksin, M.M.; Grozescu, V.I.; Yunus, W.M.M.; Azmi, B.Z.; Talib, Z.A.; Wahab, Z.A.
1996-01-01
A relatively simple analytical expression was derived that provided a description of the radius and thermal properties of a single particle from the change in grey body radiation emission subsequent to pulse laser heating of the particle
International Nuclear Information System (INIS)
Gallavardin, S. J.; Froyd, Karl D.; Lohmann, U.; Moehler, Ottmar; Murphy, Daniel M.; Cziczo, Dan
2008-01-01
Experiments conducted at the Aerosol Interactions and Dynamics in the Atmosphere (AIDA) chamber located in Karlsruhe, Germany permit investigation of particle properties that affect the nucleation of ice at temperature and water vapor conditions relevant to cloud microphysics and climate issues. Ice clouds were generated by heterogeneous nucleation of Arizona test dust (ATD), illite, and hematite and homogeneous nucleation of sulfuric acid. Ice crystals formed in the chamber were inertially separated from unactivated, or 'interstitial' aerosol particles with a pumped counterflow virtual impactor (PCVI), then evaporated. The ice residue (i.e., the aerosol which initiated ice nucleation plus any material which was scavenged from the gas- and/or particle-phase), was chemically characterized at the single particle level using a laser ionization mass spectrometer. In this manner the species that first nucleated ice could be identified out of a mixed aerosol population in the chamber. Bare mineral dust particles were more effective ice nuclei (IN) than similar particles with a coating. Metallic particles from contamination in the chamber initiated ice nucleation before other species but there were few enough that they did not compromise the experiments. Nitrate, sulfate, and organics were often detected on particles and ice residue, evidently from scavenging of trace gas-phase species in the chamber. Hematite was a more effective ice nucleus than illite. Ice residue was frequently larger than unactivated test aerosol due to the formation of aggregates due to scavenging, condensation of contaminant gases, and the predominance of larger aerosol in nucleation
Liu, Bin; Goree, J.
2014-06-01
The diffusion of projectiles drifting through a target of strongly coupled dusty plasma is investigated in a simulation. A projectile's drift is driven by a constant force F. We characterize the random walk of the projectiles in the direction perpendicular to their drift. The perpendicular diffusion coefficient Dp⊥ is obtained from the simulation data. The force dependence of Dp⊥ is found to be a power law in a high force regime, but a constant at low forces. A mean kinetic energy Wp for perpendicular motion is also obtained. The diffusion coefficient is found to increase with Wp with a linear trend at higher energies, but an exponential trend at lower energies.
Zhan, Kangshu
Monitoring chiral optical signals of biomolecules as their conformation changes is an important means to study their structures, properties, and functions. Most measurements, however, are ensemble measurements because chiral optical signals from a single biomolecule is often too weak to be detected. In this dissertation, I present my early attempts to study conformational changes of adsorbed proteins by taking advantage of the enhanced electromagnetic (EM) field around a well-designed plasmonic nanofeature. In particular, I discuss the detection of protein adsorption and denaturation on metallic nanoparticles using single particle scattering and CD spectroscopic imaging. Particles of two distinctively different sizes were compared and two different sample protein molecules were studied. A combination of experimental and computational tools was used to simulate and interpret the collected scattering and CD results. The first chapter provides a brief overview of the state-of-art research in CD spectroscopic studies at the single particle level. Three different means to make particles capable of chiral detection are discussed. Various applications beyond single particle imaging are presented to showcase the potential of the described research project, beyond our immediate goals. The second chapter describes my initial characterization of large, metallic, anisotropic nanorods and the establishment of experimental procedures used later for spectrum reconstruction, data visualization and analysis. The physical shape and structure of the particles were imaged by scanning electron microscopy (SEM), the chemical composition by energy dispersive X-ray Spectroscopy (EDS), and the optical properties by darkfield microscopy. An experimental protocol was developed to connect information collected from separate techniques for the same particle, with the aims of discovering any possible structural-property correlation. The reproducibility of the single particle imaging method was
International Nuclear Information System (INIS)
Zimbardo, Gaetano
2005-01-01
Plasma transport in the presence of turbulence depends on a variety of parameters such as the fluctuation level, δB/B 0 , the ratio between the particle Larmor radius and the turbulence correlation length, and the turbulence anisotropy. In this paper, we present the results of numerical simulations of plasma and magnetic field line transport in the case of anisotropic magnetic turbulence, for parameter values close to those of the solar wind. We assume a uniform background magnetic field B 0 = B 0 e z and a Fourier representation for magnetic fluctuations, which includes wavectors oblique with respect to B 0 . The energy density spectrum is a power law, and in k space it is described by the correlation lengths l x , l y , l z , which quantify the anisotropy of turbulence. For magnetic field lines, transport perpendicular to the background field depends on the Kubo number R (δB/B 0 ) (l z /l x ). For small Kubo numbers, R 0 , or the ratio l z /l x , we find first a quasilinear regime and then a percolative regime, both corresponding to Gaussian diffusion. For particles, we find that transport parallel and perpendicular to the background magnetic field depends heavily on the turbulence anisotropy and on the particle Larmor radius. For turbulence levels typical of the solar wind, δB/B 0 ≅ 0.5-1, when the ratio between the particle Larmor radius and the turbulence correlation lengths is small, anomalous regimes are found in the case l z /l x ≤ 1, with a Levy random walk (superdiffusion) along the magnetic field and subdiffusion in the perpendicular directions. Conversely, for l z /l x > 1 normal Gaussian diffusion is found. A possible expression for generalized double diffusion is discussed
A photo-tunable membrane based on inter-particle crosslinking for decreasing diffusion rates
Li, Song; Moosa, Basem; Chen, Ye; Li, Wengang; Khashab, Niveen M.
2015-01-01
%. To prove the applicability of the designed system, the composite membrane was coated on a model drug reservoir tablet. Upon irradiating the tablet with UV light, the original permeability decreased by 57%, and consequently the diffusion rate of the cargo
International Nuclear Information System (INIS)
Ferreira, J.L.; Damasio, W.C.; Ferreira, J.C.; Sandonato, G.M.; Alves, M.V.; Montes, A.; Ludwig, G.O.
1990-01-01
This work reports the activities of the experimental study group on plasma confinement. It discusses the study of diffusion coefficient, data acquisition systems and the use of electrostatic probes. (A.C.A.S.)
Controlled and tunable polymer particles' production using a single microfluidic device
Amoyav, Benzion; Benny, Ofra
2018-04-01
Microfluidics technology offers a new platform to control liquids under flow in small volumes. The advantage of using small-scale reactions for droplet generation along with the capacity to control the preparation parameters, making microfluidic chips an attractive technology for optimizing encapsulation formulations. However, one of the drawback in this methodology is the ability to obtain a wide range of droplet sizes, from sub-micron to microns using a single chip design. In fact, typically, droplet chips are used for micron-dimension particles, while nanoparticles' synthesis requires complex chips design (i.e., microreactors and staggered herringbone micromixer). Here, we introduce the development of a highly tunable and controlled encapsulation technique, using two polymer compositions, for generating particles ranging from microns to nano-size using the same simple single microfluidic chip design. Poly(lactic-co-glycolic acid) (PLGA 50:50) or PLGA/polyethylene glycol polymeric particles were prepared with focused-flow chip, yielding monodisperse particle batches. We show that by varying flow rate, solvent, surfactant and polymer composition, we were able to optimize particles' size and decrease polydispersity index, using simple chip designs with no further related adjustments or costs. Utilizing this platform, which offers tight tuning of particle properties, could offer an important tool for formulation development and can potentially pave the way towards a better precision nanomedicine.
Single charging events on colloidal particles in a nonpolar liquid with surfactant
Schreuer, Caspar; Vandewiele, Stijn; Brans, Toon; Strubbe, Filip; Neyts, Kristiaan; Beunis, Filip
2018-01-01
Electrical charging of colloidal particles in nonpolar liquids due to surfactant additives is investigated intensively, motivated by its importance in a variety of applications. Most methods rely on average electrophoretic mobility measurements of many particles, which provide only indirect information on the charging mechanism. In the present work, we present a method that allows us to obtain direct information on the charging mechanism, by measuring the charge fluctuations on individual particles with a precision higher than the elementary charge using optical trapping electrophoresis. We demonstrate the capabilities of the method by studying the influence of added surfactant OLOA 11000 on the charging of single colloidal PMMA particles in dodecane. The particle charge and the frequency of charging events are investigated both below and above the critical micelle concentration (CMC) and with or without applying a DC offset voltage. It is found that at least two separate charging mechanisms are present below the critical micelle concentration. One mechanism is a process where the particle is stripped from negatively charged ionic molecules. An increase in the charging frequency with increased surfactant concentration suggests a second mechanism that involves single surfactant molecules. Above the CMC, neutral inverse micelles can also be involved in the charging process.
International Nuclear Information System (INIS)
Cajgfinger, T.
2012-10-01
This manuscript presents my thesis on the high frame rate (500 frames / second) single-photon detector electron-bombarded CMOS (ebCMOS). The first section compares three ultra-sensitive detectors and their methods for improving photon sensitivity: the CMOS low noise (sCMOS), the electron-multiplying CCD (emCCD) with signal multiplication by pixel and the ebCMOS with amplification by applied electric field. The method developed to detect single photon impacts with intra-pixel resolution on the ebCMOS sensor is presented. The second section compares the localization accuracy of these detectors in extreme conditions of very low photon flux (<10 photons/frame). First the theoretical limit is calculated using the Cramer-Rao lower bound for significant parameter sets. An experimental comparison of the detectors is then described. The setup provides one or more point sources controlled in position, signal and background noise. The results allow a comparison of the experimental effectiveness, purity and localization accuracy. The last section describes two experiments with the ebCMOS camera. The first aims at tracking hundreds of quantum dots simultaneously at the Nanoptec center. The second focuses on the swimming of bacteria at the surface at the Joliot Curie Institute. The point sources tracking algorithm using single photons and the Kalman filter implementation developed for these experiments is also described. (author)
Single-shot LIBS spectral quality for waste particles in open air
Xia, H.; Bakker, M.C.M.
2015-01-01
This work investigates the ability of LIBS to produce quality spectra from small particles of concrete demolition waste using single-shot spectra collected in open air. The 2–8?mm materials are rounded river gravel, green glass shards, and plastic flakes. Considered are focal length, air, moisture,
A different approach to obtain Mayer’s extension to stationary single particle Wigner distribution
International Nuclear Information System (INIS)
Bose, Anirban; Janaki, M. S.
2012-01-01
It is shown that the stationary collisionless single-particle Wigner equation in one dimension containing quantum corrections at the lowest order is satisfied by a distribution function that is similar in form to the Maxwellian distribution with an effective mass and a generalized potential. The distribution is used to study quantum corrections to electron hole solutions.
Single Particle Potential of a Σ Hyperon in Nuclear Matter. II Rearrangement Effects
International Nuclear Information System (INIS)
Dabrowski, J.
2000-01-01
The rearrangement contribution to the real part of the single particle potential of a Σ hyperon in nuclear matter, U Σ , is investigated. The isospin and spin dependent parts of U Σ are considered. Results obtained for four models of the Nijmegen baryon-baryon interaction are presented and discussed. (author)
Basic Evidence and Properties of Single-Particle States in Nuclei
Energy Technology Data Exchange (ETDEWEB)
Cindro, N. [Institute ' ' Rudjer Boskovic' ' , Zagreb, Yugoslavia (Croatia)
1970-07-15
1. Introduction: the shell-model orbitals; 2. Information about single-particle orbitals: a critical evaluation; 3. Experimental evidence: 3.1. The lead region; 3.2. The calcium region; 3.3. Nuclei far from closed shells; 4. Conclusion. (author)
DECAY MODES OF HIGH-LYING SINGLE-PARTICLE STATES IN PB-209
BEAUMEL, D; FORTIER, S; GALES, S; GUILLOT, J; LANGEVINJOLIOT, H; LAURENT, H; MAISON, JM; VERNOTTE, J; BORDEWIJK, JA; BRANDENBURG, S; KRASZNAHORKAY, A; CRAWLEY, GM; MASSOLO, CP; RENTERIA, M
The neutron decay of high-lying single-particle states in Pb-209 excited by means of the (alpha, He-3) reaction has been investigated at 122 MeV incident energy using a multidetector array. The high-spin values of these states, inferred from previous inclusive experiments, are confirmed by the
Single-particle electron microscopy in the study of membrane protein structure.
De Zorzi, Rita; Mi, Wei; Liao, Maofu; Walz, Thomas
2016-02-01
Single-particle electron microscopy (EM) provides the great advantage that protein structure can be studied without the need to grow crystals. However, due to technical limitations, this approach played only a minor role in the study of membrane protein structure. This situation has recently changed dramatically with the introduction of direct electron detection device cameras, which allow images of unprecedented quality to be recorded, also making software algorithms, such as three-dimensional classification and structure refinement, much more powerful. The enhanced potential of single-particle EM was impressively demonstrated by delivering the first long-sought atomic model of a member of the biomedically important transient receptor potential channel family. Structures of several more membrane proteins followed in short order. This review recounts the history of single-particle EM in the study of membrane proteins, describes the technical advances that now allow this approach to generate atomic models of membrane proteins and provides a brief overview of some of the membrane protein structures that have been studied by single-particle EM to date. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Effects of intraparticle heat and mass transfer during devolatilization of a single coal particle
Bliek, A.; Poelje, W.M.; van Swaaij, Willibrordus Petrus Maria; van Beckum, F.P.H.
1985-01-01
The objective of the present work is to elucidate the influence of intraparticle mass and heat transfer phenomena on the overall rate and product yields during devolatilization of a single coal particle in an inert atmosphere. To this end a mathematical model has been formulated which covers
Summary report of the group on single-particle nonlinear dynamics
International Nuclear Information System (INIS)
Axinescu, S.; Bartolini, R.; Bazzani, A.
1996-10-01
This report summarizes the research on single-particle nonlinear beam dynamics. It discusses the following topics: analytical and semi-analytical tools; early prediction of the dynamic aperture; how the results are commonly presented; Is the mechanism of the dynamic aperture understand; ripple effects; and beam-beam effects
Directory of Open Access Journals (Sweden)
Demongeot Jacques
2004-06-01
Full Text Available Abstract Background The transport of intra-cellular particles by microtubules is a major biological function. Under appropriate in vitro conditions, microtubule preparations behave as a 'complex' system and show 'emergent' phenomena. In particular, they form dissipative structures that self-organise over macroscopic distances by a combination of reaction and diffusion. Results Here, we show that self-organisation also gives rise to a collective transport of colloidal particles along a specific direction. Particles, such as polystyrene beads, chromosomes, nuclei, and vesicles are carried at speeds of several microns per minute. The process also results in the macroscopic self-organisation of these particles. After self-organisation is completed, they show the same pattern of organisation as the microtubules. Numerical simulations of a population of growing and shrinking microtubules, incorporating experimentally realistic reaction dynamics, predict self-organisation. They forecast that during self-organisation, macroscopic parallel arrays of oriented microtubules form which cross the reaction space in successive waves. Such travelling waves are capable of transporting colloidal particles. The fact that in the simulations, the aligned arrays move along the same direction and at the same speed as the particles move, suggest that this process forms the underlying mechanism for the observed transport properties. Conclusions This process constitutes a novel physical chemical mechanism by which chemical energy is converted into collective transport of colloidal particles along a given direction. Self-organisation of this type provides a new mechanism by which intra cellular particles such as chromosomes and vesicles can be displaced and simultaneously organised by microtubules. It is plausible that processes of this type occur in vivo.
Glade, Nicolas; Demongeot, Jacques; Tabony, James
2004-01-01
Background The transport of intra-cellular particles by microtubules is a major biological function. Under appropriate in vitro conditions, microtubule preparations behave as a 'complex' system and show 'emergent' phenomena. In particular, they form dissipative structures that self-organise over macroscopic distances by a combination of reaction and diffusion. Results Here, we show that self-organisation also gives rise to a collective transport of colloidal particles along a specific direction. Particles, such as polystyrene beads, chromosomes, nuclei, and vesicles are carried at speeds of several microns per minute. The process also results in the macroscopic self-organisation of these particles. After self-organisation is completed, they show the same pattern of organisation as the microtubules. Numerical simulations of a population of growing and shrinking microtubules, incorporating experimentally realistic reaction dynamics, predict self-organisation. They forecast that during self-organisation, macroscopic parallel arrays of oriented microtubules form which cross the reaction space in successive waves. Such travelling waves are capable of transporting colloidal particles. The fact that in the simulations, the aligned arrays move along the same direction and at the same speed as the particles move, suggest that this process forms the underlying mechanism for the observed transport properties. Conclusions This process constitutes a novel physical chemical mechanism by which chemical energy is converted into collective transport of colloidal particles along a given direction. Self-organisation of this type provides a new mechanism by which intra cellular particles such as chromosomes and vesicles can be displaced and simultaneously organised by microtubules. It is plausible that processes of this type occur in vivo. PMID:15176973
Fluorescent detection of single tracks of alpha particles using lithium fluoride crystals
International Nuclear Information System (INIS)
Bilski, P.; Marczewska, B.
2017-01-01
Lithium fluoride single crystals were successfully used for fluorescent imaging of single tracks of alpha particles. This was realized with a standard wide-field fluorescent microscope equipped with a 100× objective. Alpha particles create F_2 and F_3"+ color centers in LiF crystals. The subsequent illumination with the blue light (wavelength around 445 nm), excites these centers and produces fluorescence with a broad band peaked at 670 nm. The observed tracks of alpha particles have diameter of about 500 nm. Focusing of the microscope at different depths in a LiF crystal, enables imaging changes of shape and position of tracks, allowing for visualization of their paths. These encouraging results are the first step towards practical application of LiF as fluorescent nuclear track detectors.
The single- and double-particle properties and the current reversal of coupled Brownian motors
International Nuclear Information System (INIS)
Li, Chen-Pu; Chen, Hong-Bin; Zheng, Zhi-Gang; Fan, Hong; Shen, Wen-Mei
2017-01-01
In this paper, we investigate the directed transport of coupled Brownian motors composed of two identical particles which is individually subject to a time-symmetric rocking force in spatially-symmetric periodic potentials. We find that both the coupling free length and the coupling strength can induce the reversed motion of the coupled Brownian motors, the essence of which is the coupled Brownian motors can exhibit completely different single- or double-particle properties under certain conditions. Namely, the current reversal is the result of the mutual conversion between the single- and double-particle properties of the coupled Brownian motors. Moreover, the directed current of coupled Brownian motors can be optimized and manipulated by adjusting the strength, the period, the phase difference of the rocking forces, and the noise intensity. (paper)
Experimental study of single-particle inclusive hadron scattering and associated multiplicities
International Nuclear Information System (INIS)
Brenner, A.E.; Carey, D.C.; Elias, J.E.; Garbincius, P.H.; Mikenberg, G.; Polychronakos, V.A.; Aitkenhead, W.; Barton, D.S.; Brandenburg, G.W.; Busza, W.; Dobrowolski, T.; Friedman, J.I.; Kendall, H.W.; Lyons, T.; Nelson, B.; Rosenson, L.; Toy, W.; Verdier, R.; Votta, L.; Chiaradia, M.T.; DeMarzo, C.; Favuzzi, C.; Germinario, G.; Guerriero, L.; LaVopa, P.; Maggi, G.; Posa, F.; Selvaggi, G.; Spinelli, P.; Waldner, F.; Meunier, R.; Cutts, D.; Dulude, R.S.; Lanou, R.E. Jr.; Massimo, J.T.
1982-01-01
An experiment using the Fermilab single arm spectrometer (SAS) facility and an associated nonmagnetic vertex detector studied the reactions a+p→c+X where a and c were π +- , K +- , p, or p-bar. Extensive measurements were made at 100 and 175 GeV/c beam momenta with the outgoing hadrons detected in the SAS covering a kinematic range 0.12< x<1.0 and p/sub T/<1.25 GeV/c. Additional data covering a more restricted range in x were also gathered at 70 GeV/c incident momentum. In this high-statistics experiment, the identification of both the incoming and outgoing charged hadrons were made with a total of eight Cerenkov counters. New and extensive single-particle inclusive data for charged-particle production in low-p/sub T/ hadronic fragmentation are presented. The average associated charged-particle multiplicity and pseudorapidity distributions are also given
International Nuclear Information System (INIS)
Brune, D.; Lorenzen, J.; Witalis, E.
1972-05-01
Depth distribution studies of carbon in steel and iron were carried out in the concentration range 0.05-1 %, using proton activation analysis. Surface content studies were performed in the concentration range 0.01-1 % using deuteron activation analysis. The following reactions were utilized: 12 C(p,γ) 13 N and 12 C(d,n) 13 N Evaluations of depth distribution were based on resonances in the excitation function. The carbon content was determined with the aid of the positron emitter, 13 N, using either single-peak or coincidence measurements. The heat dissipation in the irradiated region of the samples was calculated, and the temperature rise was measured using thermocouples. The temperature distribution within the hot zone subjected to irradiation by charged particles, together with the temperature distribution around this zone, was studied in order to estimate any effect this might have on the carbon diffusion. A device for automatic sample exchange which is remotely controlled is described
International Nuclear Information System (INIS)
Villamaina, D; Puglisi, A; Vulpiani, A
2008-01-01
We study a gas of hard rods on a ring, driven by an external thermostat, with either elastic or inelastic collisions, which exhibits sub-diffusive behavior, 2 > ∼ t 1/2 . We show the validity of the usual fluctuation–dissipation (FD) relation, i.e. the proportionality between the response function and the correlation function, when the gas is elastic or diluted. In contrast, in strongly inelastic or dense cases, when the tracer velocity is no longer independent of the other degrees of freedom, the Einstein formula fails and must be replaced by a more general FD relation. (letter)
Role of bumpy fields on single particle orbit in near quasihelically symmetric stellarators
International Nuclear Information System (INIS)
Seol, JaeChun; Hegna, C.C.
2004-01-01
The role of symmetry breaking on single particle orbits in near helically symmetric stellarators is investigated. In particular, the effect of a symmetry-breaking bumpy term is included in the analysis of trapped particle orbits. It is found that all trapped particle drift orbits are determined by surfaces on which vertical bar B vertical bar min is constant. Trapped particle orbits reside on these surfaces regardless of pitch angle and are determined solely by the initial position and the shape of the vertical bar B vertical bar min contour. Since vertical bar B vertical bar min contours do not depend on the direction of the banana center motion, superbanana orbits do not appear
Analysis of a Single Hot Particle by a Combination of Non-Destructive Analytical Methods
Energy Technology Data Exchange (ETDEWEB)
Hrnecek, E.; Aldave de las Heras, L.; Bielewski, M.; Carlos, R. [EC JRC Institute for Transuranium Elements, Karlsruhe (Germany); Betti, M. [IAEA Environment Laboratories (Monaco)
2013-07-15
Radioactive substances are often released to the environment in the form of particles. The determination of their chemical composition is a key factor in the overall understanding of their environmental behaviour. The aim of this investigation was to identify the source of one single radioactive particle collected from the Irish Sea and to understand its fate in the environment and in human body fluids. As the particle was supposed to be analysed for its dissolution behaviour in humans after ingestion, it was necessary to gain as much information as possible beforehand on the chemical and isotopic composition by means of non-destructive analysis such as SEM, SIMS, {mu}-XRF and {mu}-XANES. In this paper, an overview of the different non-destructive methods applied for the analysis of this particle and the results obtained is given. Additionally, the dissolution behaviour in human digestive solutions is discussed. (author)