WorldWideScience

Sample records for single panoramic image

  1. Multispectral Panoramic Imaging System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — International Electronic Machines Corporation, a leader in the design of precision imaging systems, will develop an innovative multispectral, panoramic imaging...

  2. Panoramic three-dimensional CT imaging

    International Nuclear Information System (INIS)

    Kawamata, Akitoshi; Fujishita, Masami

    1998-01-01

    Panoramic radiography is a unique projection technique for producing a single image of both maxillary and mandibular arches and many other anatomical structures. To obtain a similar panoramic image without panoramic radiography system, a modified three-dimensional (3D) CT imaging technique was designed. A set of CT slice image data extending from the chin to the orbit was used for 3D reconstruction. The CT machine used in this study was the X-Vision (TOSHIBA, Japan). The helical scan technique was used. The slice thickness of reconstructed image was one or 1.5 mm. The occlusal plane or Frankfort horizontal (FH) plane was used as the reference line. The resultant slice image data was stored on a magnetic optical disk and then used to create panoramic 3D-CT images on a Macintosh computer systems (Power Macintosh 8600/250, Apple Computer Inc., USA). To create the panoramic 3D-CT image, the following procedure was designed: Design a curved panoramic 3D-CT imaging layer using the imaging layer and the movement of the x-ray beam in panoramic radiography system as a template; Cut this imaging layer from each slice image, then the trimmed image was transformed to a rectangular layer using the ''still image warping'' special effect in the Elastic Reality special effects system (Elastic Reality Inc., USA); Create panoramic 3D-CT image using the Voxel View (Vital Images Inc., USA) rendering system and volume rendering technique. Although the image quality was primitive, a panoramic view of maxillofacial region was obtained by this technique. (author)

  3. Multispectral Panoramic Imaging System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — International Electronic Machines Corporation, a leader in the design of precision imaging systems, will develop an innovative multispectral, panoramic imaging...

  4. Thermal infrared panoramic imaging sensor

    Science.gov (United States)

    Gutin, Mikhail; Tsui, Eddy K.; Gutin, Olga; Wang, Xu-Ming; Gutin, Alexey

    2006-05-01

    Panoramic cameras offer true real-time, 360-degree coverage of the surrounding area, valuable for a variety of defense and security applications, including force protection, asset protection, asset control, security including port security, perimeter security, video surveillance, border control, airport security, coastguard operations, search and rescue, intrusion detection, and many others. Automatic detection, location, and tracking of targets outside protected area ensures maximum protection and at the same time reduces the workload on personnel, increases reliability and confidence of target detection, and enables both man-in-the-loop and fully automated system operation. Thermal imaging provides the benefits of all-weather, 24-hour day/night operation with no downtime. In addition, thermal signatures of different target types facilitate better classification, beyond the limits set by camera's spatial resolution. The useful range of catadioptric panoramic cameras is affected by their limited resolution. In many existing systems the resolution is optics-limited. Reflectors customarily used in catadioptric imagers introduce aberrations that may become significant at large camera apertures, such as required in low-light and thermal imaging. Advantages of panoramic imagers with high image resolution include increased area coverage with fewer cameras, instantaneous full horizon detection, location and tracking of multiple targets simultaneously, extended range, and others. The Automatic Panoramic Thermal Integrated Sensor (APTIS), being jointly developed by Applied Science Innovative, Inc. (ASI) and the Armament Research, Development and Engineering Center (ARDEC) combines the strengths of improved, high-resolution panoramic optics with thermal imaging in the 8 - 14 micron spectral range, leveraged by intelligent video processing for automated detection, location, and tracking of moving targets. The work in progress supports the Future Combat Systems (FCS) and the

  5. Creating Panoramic Images for Bladder Fluorescence Endoscopy

    Directory of Open Access Journals (Sweden)

    A. Behrens

    2008-01-01

    Full Text Available The medical diagnostic analysis and therapy of urinary bladder cancer based on endoscopes are state of the art in urological medicine. Due to the limited field of view of endoscopes, the physician can examine only a small part of the whole operating field at once. This constraint makes visual control and navigation difficult, especially in hollow organs. A panoramic image, covering a larger field of view, can overcome this difficulty. Directly motivated by a physician we developed an image mosaicing algorithm for endoscopic bladder fluorescence video sequences. In this paper, we present an approach which is capable of stitching single endoscopic video images to a combined panoramic image. Based on SIFT features we estimate a 2-D homography for each image pair, using an affine model and an iterative model-fitting algorithm. We then apply the stitching process and perform a mutual linear interpolation. Our panoramic image results show a correct stitching and lead to a better overview and understanding of the operation field. 

  6. Image distortion in rotational panoramic radiography. V

    International Nuclear Information System (INIS)

    Tronje, G.

    1982-01-01

    A theoretic analysis of the distortion and displacement of the inner structures of three-dimensional objects in panoramic films has been performed. Mathematical calculations were carried out of the distortion of model structures simulating structural details in an object. Although the model structures are affected by the distortion effects inherent in rotational panoramic radiography, the panoramic film still gives a recognizable image of the inner structure of an object. (Auth.)

  7. Image distortion in rotational panoramic radiography. I

    International Nuclear Information System (INIS)

    Tronje, G.; Welander, U.; McDavid, W.D.; Morris, C.R.

    1981-01-01

    The projection system in rotational panoramic radiography is complex in the respect that there are two projections of the object working simultaneously, one in the horizontal and one in the vertical dimension, giving rise to distortion of three-dimensional objects in the image. A mathematical method is presented for transforming data from three-dimensional objects to image data. This method may be used when analysing different distortion effects inherent in panoramic films. (Auth.)

  8. Localization of impacted permanent maxillary canine using single panoramic radiograph

    Directory of Open Access Journals (Sweden)

    Sudhakar S

    2009-01-01

    Full Text Available Background and Objectives : The objective in localization is selection of a suitable technique which has minimal radiation dose, cost and maximum details. Panoramic radiograph, being a screening radiograph, can satisfy the above needs. Taking this into consideration, the present study was done to evaluate the reliability of panoramic radiograph in localization of impacted permanent maxillary canines by applying the criteria suggested by Chaushu et al. and by comparing it with Clark′s rule. Materials and Methods : The study comprised of 114 subjects in the age group of 13-30 years of both the genders with 150 impacted canines visiting Department of Oral Medicine and Radiology during the study period. The study subjects were examined for clinically missing canine, and then confirmed with intra-oral peri-apical radiograph (IOPAR. Panoramic radiographs (for application of Chaushu et al. criteria and IOPAR′s (for application of Clark′s rule of the subjects were made and interpreted for parameters pertaining to the impacted canines. The data obtained was tabulated and subjected to statistical analysis using the statistical package for social sciences (SPSS software. Results : Determination of the bucco-palatal position from panoramic radiographs, by applying Chaushu, et al. criteria, showed that localization in bucco-palatal position was possible for 96 of the 102 impacted canines placed in the middle and coronal zones. The remaining six impacted canines, three each in the middle and coronal zones, could not be localized as they showed overlapping in their range. By excluding them, the overall agreement worked out to be 94.11%. Localization was not possible for 48 impacted canines that lied in the apical zone. Conclusion : A single panoramic radiograph can serve as a reliable indicator for determining the bucco-palatal position of the impacted canines when they lie in the middle and coronal zones. When they lie in the apical zone it is

  9. Panoramic images of conventional radiographs: digital panoramic dynamic images

    International Nuclear Information System (INIS)

    Schultze, M.

    2001-01-01

    The benefits of digital technic s to od ontology are evident. Instant images, the possibility to handle them, the reduction of exposition time to radiations, better quality image, better quality information, Stocking them in a compact disc, occupying very little space, allows an easy transport and duplication, as well as the possibility to transfer and save it in an electronica l support.This kind of communication allows the transmission of digital images and every other type of data, instantaneously and no matter distances or geographical borders. Anyway, we should point out that conventional and digital technic s reveal the same information contents

  10. Image distortion in rotational panoramic radiography. VI

    International Nuclear Information System (INIS)

    Tronje, G.; Welander, U.; McDavid, W.D.; Morris, C.R.

    1982-01-01

    A mathematical model for calculating the form distortion in rotational panoramic radiographic systems with a sliding beam path and an elliptical form of the sharply depicted plane was developed. The distortion of a spherical model object was calculated for two different systems exemplifying properties of commercially available equipment. The spherical object was distorted toward an ovoid shape in the image. No marked deviations were found between this ovoid distortion and the ellipsoid distortion previously calculated for a theoretical system having a constant effective projection radius and a cylindrical form of the sharply depicted plane. Except for extremely displaced objects in the anterior region the form reproduction in sliding rotational panoramic systems seems to be satisfactory for clinical purposes. (Auth.)

  11. Dynamic Image Stitching for Panoramic Video

    Directory of Open Access Journals (Sweden)

    Jen-Yu Shieh

    2014-10-01

    Full Text Available The design of this paper is based on the Dynamic image titching for panoramic video. By utilizing OpenCV visual function data library and SIFT algorithm as the basis for presentation, this article brings forward Gaussian second differenced MoG which is processed basing on DoG Gaussian Difference Map to reduce order in synthesizing dynamic images and simplify the algorithm of the Gaussian pyramid structure. MSIFT matches with overlapping segmentation method to simplify the scope of feature extraction in order to enhance speed. And through this method traditional image synthesis can be improved without having to take lots of time in calculation and being limited by space and angle. This research uses four normal Webcams and two IPCAM coupled with several-wide angle lenses. By using wide-angle lenses to monitor over a wide range of an area and then by using image stitching panoramic effect is achieved. In terms of overall image application and control interface, Microsoft Visual Studio C# is adopted to a construct software interface. On a personal computer with 2.4-GHz CPU and 2-GB RAM and with the cameras fixed to it, the execution speed is three images per second, which reduces calculation time of the traditional algorithm.

  12. Imaging characteristics in rotational panoramic radiography

    International Nuclear Information System (INIS)

    Sanderink, G.C.H.

    1987-01-01

    This study is concerned with imaging quality in rotational panoramic radiography. This imaging technique records an image of a curved layer within the object radiographed. The shape of this layer normally corresponds with the average form of the dental arch. In the centre of the layer a plane can be found which is depicted with a minimum of unsharpness. Unsharpness increases and the horizontal magnification changes as distance increases from that central plane. The image quality of the layer has been analyzed with the use of mathematical models to estimate the performance of the radiographic diagnostic system. Despite the application of these increasingly sophisticated models the question remains: will the results of the calculations based on these models adequately predict the diagnostic effectiveness of this type of imaging system? In this study a comparison is made between the theoretically determined quality of the system and the diagnostic quality using the observer as a measuring instrument. Experiments were carried out to measure the total unsharpness occurring in rotational panoramic radiography. 116 refs.; 114 figs.; 54 tabs

  13. IMAGE ACQUISITION CONSTRAINTS FOR PANORAMIC FRAME CAMERA IMAGING

    Directory of Open Access Journals (Sweden)

    H. Kauhanen

    2012-07-01

    Full Text Available The paper describes an approach to quantify the amount of projective error produced by an offset of projection centres in a panoramic imaging workflow. We have limited this research to such panoramic workflows in which several sub-images using planar image sensor are taken and then stitched together as a large panoramic image mosaic. The aim is to simulate how large the offset can be before it introduces significant error to the dataset. The method uses geometrical analysis to calculate the error in various cases. Constraints for shooting distance, focal length and the depth of the area of interest are taken into account. Considering these constraints, it is possible to safely use even poorly calibrated panoramic camera rig with noticeable offset in projection centre locations. The aim is to create datasets suited for photogrammetric reconstruction. Similar constraints can be used also for finding recommended areas from the image planes for automatic feature matching and thus improve stitching of sub-images into full panoramic mosaics. The results are mainly designed to be used with long focal length cameras where the offset of projection centre of sub-images can seem to be significant but on the other hand the shooting distance is also long. We show that in such situations the error introduced by the offset of the projection centres results only in negligible error when stitching a metric panorama. Even if the main use of the results is with cameras of long focal length, they are feasible for all focal lengths.

  14. Panoramic radiology. Seminars on maxillofacial imaging and interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Farman, Allan G. (ed.) [Louisville Univ., KY (United States). Dept. of Surgical and Hospital Dentistry

    2007-07-01

    Complete up-to-date collection of information on panoramic radiography usage. Up-to-date terminology validated by representatives of individual special disciplines within dentistry. Each chapter with educational objectives and review questions. Panoramic radiology systems are currently being used in more practices than at other any time in the past. The practitioner now has decisions to make regarding detector technology selection for image acquisition and must remain informed about appropriate usage. This book is applicable to all panoramic dental images and equipment. It approaches panoramic radiology usage in the context of general and specialty applications. (orig.)

  15. Registration of vehicle based panoramic image and LiDAR point cloud

    Science.gov (United States)

    Chen, Changjun; Cao, Liang; Xie, Hong; Zhuo, Xiangyu

    2013-10-01

    Higher quality surface information would be got when data from optical images and LiDAR were integrated, owing to the fact that optical images and LiDAR point cloud have unique characteristics that make them preferable in many applications. While most previous works focus on registration of pinhole perspective cameras to 2D or 3D LiDAR data. In this paper, a method for the registration of vehicle based panoramic image and LiDAR point cloud is proposed. Using the translation among panoramic image, single CCD image, laser scanner and Position and Orientation System (POS) along with the GPS/IMU data, precise co-registration between the panoramic image and the LiDAR point cloud in the world system is achieved. Results are presented under a real world data set collected by a new developed Mobile Mapping System (MMS) integrated with a high resolution panoramic camera, two laser scanners and a POS.

  16. Evaluation of horizontal magnification on panoramic images

    Directory of Open Access Journals (Sweden)

    Maryam Raoof

    2013-01-01

    Full Text Available Aims: This study evaluated the horizontal magnification of images taken from adults and pediatrics with PM 2002 CC Planmeca analogue machine. Materials and Methods: A series of 120 panoramic radiographs were obtained of 60 adults and 60 pediatrics. For all patients, negative impressions were used to make positive casts of the teeth. A caliper was used to measure the maximum mesiodistal length of the buccal surface of all teeth except canines on both casts and radiographs. The horizontal magnification factor was calculated for incisor, premolar, and molar regions by dividing the values obtained from the casts by the values obtained from the radiographs. Statistical Analysis: Independent t-test and one-way analysis of variance (ANOVA were used. Results: The results indicated that with regard to adults, maxillary and mandibular incisor regions, unlike the other two sessions, didn′t show significant difference of the mean magnification of horizontal dimension (P = 0.5. In pediatrics, the comparison between mean magnification factors of all subgroups showed significant difference (P < 0.0001. Despite the adults′ radiographs, the results of pediatrics′ radiographs showed significantly higher magnification than the index listed by the manufacturer of the radiographic machine used. Conclusion: The present study results point to the fact that PM 2002 CC Proline panoramic machine makes possible precise measurements on radiographs of adults′ jaws in the horizontal dimension.

  17. Image distortion in rotational panoramic radiography. III

    International Nuclear Information System (INIS)

    Tronje, G.; Welander, U.; McDavid, W.D.; Morris, C.R.

    1981-01-01

    Mathematical calculations have been performed to analyse how accurately the angle between objects, inclined in space, is reproduced on panoramic films. A marked tolerance against angle distortion was found. Angular measurements may be performed on correctly exposed panoramic films, and the values obtained are satisfactorily accurate for most clinical purposes. (Auth.)

  18. Automatic Thermal Infrared Panoramic Imaging Sensor

    National Research Council Canada - National Science Library

    Gutin, Mikhail; Tsui, Eddy K; Gutin, Olga; Wang, Xu-Ming; Gutin, Alexey

    2006-01-01

    Panoramic cameras offer true real-time, 360-degree coverage of the surrounding area, valuable for a variety of defense and security applications, including force protection, asset protection, asset...

  19. Image distortion in rotational panoramic radiography. IV

    International Nuclear Information System (INIS)

    Tronje, G.; Welander, U.; McDavid, W.D.; Morris, C.R.

    1981-01-01

    On films exposed with rotational panoramic radiography, distortion effects are often apparent. The distortion of the outer contour of three-dimensional model objects has been analysed mathematically. The applied mathematical expressions for coordinate transformation between object and film were confirmed experimentally. The distortion of the outer contour is dependent on the basic form of the object; the more rounded the object is, the less marked is the distortion. It is concluded that for practical clinical purposes the correctly exposed panoramic film is reliable when the form of rounded objects is assessed. (Auth.)

  20. Evaluation of knee meniscal injuries using panoramic MR images

    International Nuclear Information System (INIS)

    Moriwaki, Toru

    2004-01-01

    At many institutions, sagittal and coronal slice magnetic resonance imaging (MRI) is routinely used for knee examinations. Recently, MRI diagnosis for knee meniscal injuries has spread remarkably, and the diagnostic value of the procedure is almost established. We made panoramic images by reconstructing 3D data images along the form of the meniscus using curved cuts and multiplanar reconstruction (MPR). We assessed the usefulness of the panoramic images for evaluating meniscal injuries in 34 patients who had arthroscopic surgery after the MRI. MRI data were acquired in the axial plane using a double echo steady state (DESS). The presence of 30 meniscal tears, 5 anterior cruciate ligament tears, 2 posterior cruciate ligament tears, and 1 medial collateral ligament tear were confirmed by the arthroscopic surgery. Sensitivity, specificity and accuracy for medial meniscus was 100, 95 and 97% respectively, and for lateral meniscus was 93, 95 and 97% respectively. The meniscal tears were visible on the panoramic images, which showed the entire meniscus from the anterior to the posterior segment, so that the anatomical locations of the tear were indicated distinctly. Furthermore, the posterior segment was shown in detail on the panoramic images better than on the conventional plane images. (author)

  1. A panoramic imaging system based on fish-eye lens

    Science.gov (United States)

    Wang, Ye; Hao, Chenyang

    2017-10-01

    Panoramic imaging has been closely watched as one of the major technologies of AR and VR. Mainstream panoramic imaging techniques lenses include fish-eye lenses, image splicing, and catadioptric imaging system. Meanwhile, fish-eyes are widely used in the big picture video surveillance. The advantage of fish-eye lenses is that they are easy to operate and cost less, but how to solve the image distortion of fish-eye lenses has always been a very important topic. In this paper, the image calibration algorithm of fish-eye lens is studied by comparing the method of interpolation, bilinear interpolation and double three interpolation, which are used to optimize the images.

  2. Panoramic Image Communication for Mobile Application Using Content-Aware Image Resizing Method

    OpenAIRE

    Kim, Jaejoon

    2017-01-01

    This paper presents an image resizing application for mobile communication to evaluate content-aware image resizing method for panoramic image. In many applications, we can take account into aspect ratio changing, removal or pan and zoom in the image. However, the implemented application in this work is more focus on image downsizing due to mobile application that is limited for image capacity. The generated panoramic image will be distorted if simply scaling by factors and the image will los...

  3. [Comparison of mesiodistal root angulation between panoramic radiography and reconstructed panoramic images from cone beam computed tomography].

    Science.gov (United States)

    Liu, Siqi; Wen, Fujia; Chen, Hua; Liu, Yi

    2014-01-01

    To evaluate the difference of mesiodistal root angulation between panoramic radiograph and panoramic images reconstructed from cone beam computed tomography (CBCT) by different methods. CBCT and panoramic radiograph of twenty patients were collected. The InvivoDental 5.0 was separately applied for maxillary or mandibular panoramic image reconstruction. The reconstruction method was combined by two head positions, the Frankfort plane horizontal position (P1) and the occlusal plane horizontal position (P2), and three central planes of focal trough (root apical plane, tooth center plane and crown marginal plane referring to the central incisor). Variation of tooth morphology in reconstructed panoramic images and panoramic radiograph was firstly observed. And then measurement for maxillary or mandibular anterior tooth intersection angle (contiguous angles among 321 123 were named as UA1-UA5; and those among 321 123 were named as LA1-LA5 ) was taken. The difference of intersection angles between reconstructed panoramic images and panoramic radiograph (ΔUA and ΔLA) were calculated. Wilcoxon Rank Sum Test was finally applied to compare the intersection angles' differences between P1 and P2 with the same central plane of focal trough. Panoramic images reconstructed from CBCT by tooth center plane with P1 for maxilla and P2 for mandible appeared to fulfill the clinically diagnostic demand through the observation. Among the 15 couples of comparison of intersection angles' differences between P1 and P2 by choosing the same central plane of focal trough for maxilla, 7 couples of ΔUA revealed a statistically smaller value in P1 while 1 couple of ΔUA showed an adverse result.In mandible with the same comparison method, 10 couples of comparison did not show statistical difference between P1 and P2, while 4 couples of ΔLA revealed a statistically smaller value in P2 and 1 couple ΔLA showed an opposite result. By choosing the tooth center plane, the panoramic images

  4. Evaluation of rare-earth imaging systems in panoramic radiography

    International Nuclear Information System (INIS)

    Gratt, B.M.; White, S.C.; Packard, F.L.; Petersson, A.R.

    1984-01-01

    Panoramic radiographs were made of ninety-nine consenting adult patients who had image-analysis test devices placed within their oral cavities. Quantitative characteristics and perceived image quality of eight screen-film combinations were investigated. The quantitative characteristics of the images evaluated included contrast, resolution (in three regions), and bead detection (a measure of noise). Perceived image quality assessed similar characteristics. In addition, expert observers rated the resultant patient radiographs for both general and specific diagnostic tasks. Calcium tungstate screen-film systems were found to have the highest contrast but with resolution comparable to rare-earth screen-film systems under clinical test conditions. Calcium tungstate systems required up to twice the radiation exposure of the patient. It was found that some rare-earth screen-film combinations may produce clinically acceptable panoramic radiographs while reducing the patient's radiation exposure

  5. Effective doses in panoramic images from conventional and CBCT equipment

    International Nuclear Information System (INIS)

    Batista, W. O. G.; Navarro, M. V. T.; Maia, A. F.

    2008-01-01

    Dental radiology is being extensively used especially after the consolidation of the dental implant technique. Although dental radiology has always been regarded as a low-dose technique, this scenario has changed with the introduction of volumetric techniques and consequent changes that have resulted from the use of the new technique. To compare dose values related to the use of different technologies used in the acquisition of dental panoramic images, the effective dose associated with this image technique was calculated using two different conversion factors for kerma-area product, P KA , in the effective dose. Twenty-four pieces of equipment were evaluated and distributed into three categories: (1) 19 units of conventional equipment, (2) 3-cone beam computed tomography equipment (CBCT) which has a specific sensor to obtain panoramic images and (3) 2 items of CBCT equipment which only have sensors for volumetric acquisition, and the obtainment of panoramic images is through software reconstruction. The results show values of P KA and effective dose are higher for devices using digital image receptors. It is concluded that optimisation procedures and critical analysis should always be applied when adopting new technologies. (authors)

  6. Dosimetry analysis of panoramic-imaging devices in different-sized phantoms.

    Science.gov (United States)

    Wahid, Muizz A; Choi, Ella; MacDonald, David S; Ford, Nancy L

    2017-03-01

    The aim of this study is to measure the radiographic dose in adult, adolescent, and child head-sized PMMA phantoms for three panoramic-imaging devices: the panoramic mode on two CBCT machines (Carestream 9300 and i-CAT NG) and the Planmeca ProMax 2D. A SEDENTEXCT dose index adult phantom and custom-built adolescent and pediatric PMMA dosimetry phantoms were used. Panoramic radiographs were performed using a Planmeca ProMax 2D and the panoramic mode on a Carestream 9300 CBCT and an i-CAT NG using the protocols used clinically. Point dose measurements were performed at the center, around the periphery and on the surface of each phantom using a thimble ionization chamber. Five repeat measurements were taken at each location. For each machine, single-factor ANOVA was conducted to determine dose differences between protocols in each phantom, as well as determine the differences in absorbed dose when the same protocol was used for different-sized phantoms. For any individual phantom, using protocols with lower kVp, mA, or acquisition times resulted in statistically significant dose savings, as expected. When the same protocol was used for different-sized phantoms, the smaller phantom had a higher radiation dose due to less attenuation of x-rays by the smaller phantom and differences in the positioning of the ion chamber relative to the focal trough. The panoramic-mode on the CBCT machines produce images suitable for clinical use with similar dose levels to the stand-alone panoramic device. Significant dose savings may result by selecting age- and size- appropriate protocols for pediatric patients, but a wider range of protocols for children and adolescents may be beneficial. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  7. Lingual tonsillolith: prevalence and imaging characteristics evaluated on 2244 pairs of panoramic radiographs and CT images.

    Science.gov (United States)

    Takahashi, Akira; Sugawara, Chieko; Kudoh, Keiko; Yamamura, Yoshiko; Ohe, Go; Tamatani, Tetsuya; Miyamoto, Youji

    2018-01-01

    Lingual tonsilloliths are not as well-known to radiologists than palatine tonsilloliths, although they might be common in clinical practice. The aim of this investigation was to clarify the prevalence and imaging characteristics of lingual tonsilloliths using panoramic radiographs and CT images. This study included 2244 patients without pathology at the base of tongue who had undergone panoramic radiography and CT of the maxillofacial region. The size, number and position of lingual tonsilloliths relative to the mandible and tongue were evaluated. Lingual tonsilloliths were observed in 33 (1.5%) and 108 (4.8%) of all patients on panoramic radiographs and CT images, respectively. The prevalence was higher in patients aged ≥40 years than in those aged panoramic radiographs. Lingual tonsilloliths were superimposed over the surrounding soft tissue inferior to the body of the mandible, posteroinferior to the angle of the mandible and posterior to the mandible in 16 (48.5%), 15 (45.5%) and 1 (3.0%) individual, respectively. A significant correlation was observed between the detectability on panoramic radiographs and size (Spearman's r = 0.961, p panoramic radiography and may superimpose the surrounding soft tissue of the mandible. Although lingual tonsilloliths may resemble other pathological calcifications including submandibular sialoliths and lingual osseous cholistoma, they can be differentiated by carefully observing panoramic radiographs. When clinicians detect calcified bodies near the base of tongue, lingual tonsilloliths should be included in the differential diagnoses.

  8. Image panoramic mosaicing with global and local registration

    Science.gov (United States)

    Li, Qi; Ji, Zhen; Zhang, Jihong

    2001-09-01

    This paper presents techniques for constructing full view panoramic mosaics from sequences of images. The goal of this work is to remove too many limitations for pure panning motion. The best reference block is critical for the block- matching method for improving the robustness and performance. It is automatically selected in the high- frequency image, which always contains the plenty visible features. In order to reduce accumulated registration errors, the global registration using the phase-correlation matching method with rotation adjustment is applied to the whole sequence of images, which results in an optimal image mosaic with resolving translational or rotational motion. The local registration using the Levenberg-Marquardt iterative non-linear minimization algorithm is applied to compensate for small amounts of motion parallax introduced by translations of the camera and other unmodeled distortions, when minimize the discrepancy after applying the global registration. The accumulated misregistration errors may cause a visible gap between the two images. A smoothing filter is introduced, derived from Marr's computer vision theory for removing the visible artifact. By combining both global and local registration, together with artifact smoothing, the quality of the image mosaics is significantly improved, thereby enabling the creation of full view panoramic mosaics with hand-held cameras.

  9. Imaging characteristics of a Stafne bone cavity--panoramic radiography, computed tomography and magnetic resonance imaging.

    Science.gov (United States)

    Probst, Florian Andreas; Probst, Monika; Maistreli, Ira-Zacharoula; Otto, Sven; Troeltzsch, Matthias

    2014-09-01

    A rare case of Stafne bone cavity (SBC) with salivary gland herniation confirmed by magnetic resonance imaging (MRI) is described. It was diagnosed in a 72-year-old male patient. Surgical intervention was avoided. The report highlights imaging findings of panoramic radiography, computed tomography, and especially magnetic resonance tomography. It is demonstrated that employment of MRI for further evaluation of suspicion of SBC on panoramic radiographs can be a helpful diagnostic tool.

  10. Panoramic Images Mapping Tools Integrated Within the ESRI ArcGIS Software

    International Nuclear Information System (INIS)

    Guo, Jiao; Zhong, Ruofei; Zeng, Fanyang

    2014-01-01

    There is a general study on panoramic images which are presented along with appearance of the Google street map. Despite 360 degree viewing of street, we can realize more applications over panoramic images. This paper developed a toolkits plugged in ArcGIS, which can view panoramic photographs at street level directly from ArcMap and measure and capture all visible elements as frontages, trees and bridges. We use a series of panoramic images adjoined with absolute coordinate through GPS and IMU. There are two methods in this paper to measure object from these panoramic images: one is to intersect object position through a stereogram; the other one is multichip matching involved more than three images which all cover the object. While someone wants to measure objects from these panoramic images, each two panoramic images which both contain the object can be chosen to display on ArcMap. Then we calculate correlation coefficient of the two chosen panoramic images so as to calculate the coordinate of object. Our study test different patterns of panoramic pairs and compare the results of measurement to the real value of objects so as to offer the best choosing suggestion. The article has mainly elaborated the principles of calculating correlation coefficient and multichip matching

  11. Panoramic Image of Mandibular Condyle According to Head Position

    International Nuclear Information System (INIS)

    Kim, Jeong Hwa; Choi, Soon Chul

    1990-01-01

    Panoramic radiography is convenient in clinic and visualizes those areas which other technique do not give. But the technique has limitation of image distortion which results from the relationship of the ramus to the focal trough and from the direction of the central ray. This study is, using 7 dry skulls, to determine the effect of rotation of patient's head on reducing those distortion and determine the magnification ratio of images of mandibular condyle in rotated patient head position. The obtained results were as follows: 1. Generally, in panoramic radiography the anterolateral portion of the mandibular condyle was best to be visualized. 2. There are no significant difference between the image readability of anteromedial portion and that of antercentral portion of the mandibular condyle. 3. Anterolateral portion of the mandibular condyle was better visualized in rotated head position by 20 degree or horizontal condylar inclination than in conventional position or in rotated head position by 10 degree. 4. The magnification ratio of the anteroposterior diameter in the image of mandibular condyle was least in the rotated head position by horizontal inclination of the mandibular condyle and was largest by 20 degree.

  12. High-resolution panoramic images with megapixel MWIR FPA

    Science.gov (United States)

    Leboucher, Vincent; Aubry, Gilles

    2014-06-01

    In the continuity of its current strategy, HGH maintains a deep effort in developing its most recent product family: the infrared (IR) panoramic 360-degree surveillance sensors. During the last two years, HGH optimized its prototype Middle Wave IR (MWIR) panoramic sensor IR Revolution 360 HD that gave birth to Spynel-S product. Various test campaigns proved its excellent image quality. Cyclope, the software associated with Spynel, benefitted from recent image processing improvements and new functionalities such as target geolocalization, long range sensor slue to cue and facilitated forensics analysis. In the frame of the PANORAMIR project sustained by the DGA (Délégation Générale de l'Armement), HGH designed a new extra large resolution sensor including a MWIR megapixel Focal Plane Array (FPA) detector (1280×1024 pixels). This new sensor is called Spynel-X. It provides outstanding resolution 360-degree images (with more than 100 Mpixels). The mechanical frame of Spynel (-S and -X) was designed with the collaboration of an industrial design agency. Spynel got the "Observeur du Design 2013" label.

  13. Detection and recognition of road markings in panoramic images

    Science.gov (United States)

    Li, Cheng; Creusen, Ivo; Hazelhoff, Lykele; de With, Peter H. N.

    2015-03-01

    Detection of road lane markings is attractive for practical applications such as advanced driver assistance systems and road maintenance. This paper proposes a system to detect and recognize road lane markings in panoramic images. The system can be divided into four stages. First, an inverse perspective mapping is applied to the original panoramic image to generate a top-view road view, in which the potential road markings are segmented based on their intensity difference compared to the surrounding pixels. Second, a feature vector of each potential road marking segment is extracted by calculating the Euclidean distance between the center and the boundary at regular angular steps. Third, the shape of each segment is classified using a Support Vector Machine (SVM). Finally, by modeling the lane markings, previous falsely detected segments can be rejected based on their orientation and position relative to the lane markings. Our experiments show that the system is promising and is capable of recognizing 93%, 95% and 91% of striped line segments, blocks and arrows respectively, as well as 94% of the lane markings.

  14. USING VERTICAL PANORAMIC IMAGES TO RECORD A HISTORIC CEMETERY

    Directory of Open Access Journals (Sweden)

    A. M. G. Tommaselli

    2013-07-01

    Full Text Available In 1919, during colonization of the West Region of São Paulo State, Brazil, the Ogassawara family built a cemetery and a school with donations received from the newspaper Osaka Mainichi Shimbum, in Osaka, Japan. The cemetery was closed by President Getúlio Vargas in 1942, during the Second World War. The architecture of the Japanese cemetery is a unique feature in Latin America. Even considering its historical and cultural relevance, there is a lack of geometric documentation about the location and features of the tombs and other buildings within the cemetery. As an alternative to provide detailed and fast georeferenced information about the area, it is proposed to use near vertical panoramic images taken with a digital camera with fisheye lens as the primary data followed by bundle adjustment and photogrammetric restitution. The aim of this paper is to present a feasibility study on the proposed technique with the assessment of the results with a strip of five panoramic images, taken over some graves in the Japanese cemetery. The results showed that a plant in a scale of 1 : 200 can be produced with photogrammetric restitution at a very low cost, when compared to topographic surveying or laser scanning. The paper will address the main advantages of this technique as well as its drawbacks, with quantitative analysis of the results achieved in this experiment.

  15. Using Vertical Panoramic Images to Record a Historic Cemetery

    Science.gov (United States)

    Tommaselli, A. M. G.; Polidori, L.; Hasegawa, J. K.; Camargo, P. O.; Hirao, H.; Moraes, M. V. A.; Rissate, E. A., Jr.; Henrique, G. R.; Abreu, P. A. G.; Berveglieri, A.; Marcato, J., Jr.

    2013-07-01

    In 1919, during colonization of the West Region of São Paulo State, Brazil, the Ogassawara family built a cemetery and a school with donations received from the newspaper Osaka Mainichi Shimbum, in Osaka, Japan. The cemetery was closed by President Getúlio Vargas in 1942, during the Second World War. The architecture of the Japanese cemetery is a unique feature in Latin America. Even considering its historical and cultural relevance, there is a lack of geometric documentation about the location and features of the tombs and other buildings within the cemetery. As an alternative to provide detailed and fast georeferenced information about the area, it is proposed to use near vertical panoramic images taken with a digital camera with fisheye lens as the primary data followed by bundle adjustment and photogrammetric restitution. The aim of this paper is to present a feasibility study on the proposed technique with the assessment of the results with a strip of five panoramic images, taken over some graves in the Japanese cemetery. The results showed that a plant in a scale of 1 : 200 can be produced with photogrammetric restitution at a very low cost, when compared to topographic surveying or laser scanning. The paper will address the main advantages of this technique as well as its drawbacks, with quantitative analysis of the results achieved in this experiment.

  16. A study on secondary images in panoramic radiograph

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Dai Hee; Kim, Han Pyong [Department of Dental Science, Yonsei University, Seoul (Korea, Republic of)

    1984-11-15

    This study was performed to observe the secondary images and to analyse the relationships between the primary and secondary images in panoramic radiograph. Using the Morita's Panex-EC panoramic x-ray machine and the human dry skull, the author analysed 17 radiographs which were selected from 65 radiographs of the dry skull that attached the radiopaque materials, and the attached regions of the radiopaque materials were the normal anatomical structures which were important and selected as a region for the evaluation of the secondary images effectively. The results were as follows; 1. The cervical vertebrae showed three images. The midline image was the most distorted and less clear, and bilateral images were slightly superimposed over the posterior border of the mandibular ramus. 2. In mandible, the secondary image of the posterior border of the ramus was superimposed on the opposite ramus region, and this image was elongated from the anterior border of the ramus to the lateral side of the posterior border of the ramus. The secondary image of the condyle was observed on the upper area of the coronoid process, the sigmoid notch and the condyle in opposite side. 3. In maxilla, the posterior region of the hard palate showed the secondary image on the lower part of the nasal cavity and the medial wall of the maxillary sinus. 4. The primary images of the occipital condyle and the mastoid process appeared on the same region, and only the secondary image of the occipital condyle was observed symmetrically on the opposite side with similar shape to the primary one. 5. In the cranial base, the anatomical structures of the midsagittal portions like a inferior border of the frontal sinus, sella turcica, inferior border of the sphenoid sinus and inferior border of the posterior part of the occipital bone showed the similar shape between the primary and secondary images symmetrically. 6. The petrous portion of the temporal bone showed the secondary image of the lateral side

  17. Image quality assessment in panoramic dental radiography: a comparative study between conventional and digital systems

    Science.gov (United States)

    Tiau, Yu Jin

    2013-01-01

    This study is designed to compare and evaluate the diagnostic image quality of dental panoramic radiography between conventional and digital systems. Fifty-four panoramic images were collected and divided into three groups consisting of conventional, digital with and without post processing image. Each image was printed out and scored subjectively by two experienced dentists who were blinded to the exposure parameters and system protocols. The evaluation covers of anatomical coverage and structures, density and image contrast. The overall image quality score revealed that digital panoramic with post-processing scored the highest of 3.45±0.19, followed by digital panoramic system without post-processing and conventional panoramic system with corresponding scores of 3.33±0.33 and 2.06±0.40. In conclusion, images produced by digital panoramic system are better in diagnostic image quality than that from conventional panoramic system. Digital post-processing visualization can improve diagnostic quality significantly in terms of radiographic density and contrast. PMID:23483085

  18. Adaptive panoramic tomography with a circular rotational movement for the formation of multifocal image layers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. S.; Cho, H. S.; Park, Y. O.; Je, U. K.; Hong, D. K.; Choi, S. I.; Koo, Y. S. [Yonsei University, Wonju (Korea, Republic of)

    2012-02-15

    Panoramic radiography with which only structures within a certain image layer are in focus and others out of focus on the panoramic image has become a popular imaging technique especially in dentistry. However, the major drawback to the technique is a mismatch between the structures to be focused and the predefined image layer mainly due to the various shapes and sizes of dental arches and/or to malpositioning of the patient. These result in image quality typically inferior to that obtained using intraoral radiographic techniques. In this paper, to overcome these difficulties, we suggest a new panoramic reconstruction algorithm, the so-called adaptive panoramic tomography (APT), capable of reconstructing multifocal image layers with no additional exposure. In order to verify the effectiveness of the proposed algorithm, we performed systematic simulation studies with a circular rotational movement and investigated the image performance.

  19. Adaptive panoramic tomography with a circular rotational movement for the formation of multifocal image layers

    International Nuclear Information System (INIS)

    Kim, D. S.; Cho, H. S.; Park, Y. O.; Je, U. K.; Hong, D. K.; Choi, S. I.; Koo, Y. S.

    2012-01-01

    Panoramic radiography with which only structures within a certain image layer are in focus and others out of focus on the panoramic image has become a popular imaging technique especially in dentistry. However, the major drawback to the technique is a mismatch between the structures to be focused and the predefined image layer mainly due to the various shapes and sizes of dental arches and/or to malpositioning of the patient. These result in image quality typically inferior to that obtained using intraoral radiographic techniques. In this paper, to overcome these difficulties, we suggest a new panoramic reconstruction algorithm, the so-called adaptive panoramic tomography (APT), capable of reconstructing multifocal image layers with no additional exposure. In order to verify the effectiveness of the proposed algorithm, we performed systematic simulation studies with a circular rotational movement and investigated the image performance.

  20. Adaptive panoramic tomography with a circular rotational movement for the formation of multifocal image layers

    Science.gov (United States)

    Kim, D. S.; Cho, H. S.; Park, Y. O.; Je, U. K.; Hong, D. K.; Choi, S. I.; Koo, Y. S.

    2012-02-01

    Panoramic radiography with which only structures within a certain image layer are in focus and others out of focus on the panoramic image has become a popular imaging technique especially in dentistry. However, the major drawback to the technique is a mismatch between the structures to be focused and the predefined image layer mainly due to the various shapes and sizes of dental arches and/or to malpositioning of the patient. These result in image quality typically inferior to that obtained using intraoral radiographic techniques. In this paper, to overcome these difficulties, we suggest a new panoramic reconstruction algorithm, the so-called adaptive panoramic tomography ( APT), capable of reconstructing multifocal image layers with no additional exposure. In order to verify the effectiveness of the proposed algorithm, we performed systematic simulation studies with a circular rotational movement and investigated the image performance.

  1. Obstacles in spatial evaluation of CBCT-reformatted panoramic imaging.

    Science.gov (United States)

    Wikner, Johannes; Friedrich, Reinhard E; Rashad, Ashkan; Schulze, Dirk; Hanken, Henning; Heiland, Max; Gröbe, Alexander; Riecke, Björn

    2016-01-01

    Conventional panoramic radiography (cPR) underlines procedure-related limitations in the display of objects. CBCT is presumed to overcome these constraints. To virtualize a cPR view, reformatted panoramic images (rPIs) can be generated. This study evaluated the rPI with regard to its susceptibility to sterical object deposition in comparison with cPR. A specially developed implant model with dental implants each of 4.0-mm diameter and 11.0-mm length was depositioned by shift, rotation and tilt of 5.00 mm (±0.01 mm) of horizontal shift and 5.0° (±0.167°), respectively, on a highly precise goniometer rotation table, and cPRs and rPIs were generated. Automated evaluation of the cPRs was carried out using a specially developed software. rPIs were processed and analyzed by a semi-automated image analysis. Object deposition lead to distortive effects in the rPI analogue to cPR, but they appear in display only. Objects illustrated in the rPI were dimensionally correct, but sterical relations are elusive. Results are obtained for the horizontal shift, declination and reclination, lateral tilt and rotation. Distortions within the rPI represent the illustration of the hyperbolic-shaped layer out of the three-dimensional data set. With this study, we demonstrated these procedure-related inherent but practically underestimated consequences. Effects of sterical object malpositioning must be compensated by the observer by adequate virtual adjustment of the processed layer. Accurate virtual adjustment leads to vertical dimensions. Sterical relations, e.g. angulation of two objects, are irretraceable unless precisely referenced.

  2. Automatic registration of panoramic image sequence and mobile laser scanning data using semantic features

    Science.gov (United States)

    Li, Jianping; Yang, Bisheng; Chen, Chi; Huang, Ronggang; Dong, Zhen; Xiao, Wen

    2018-02-01

    Inaccurate exterior orientation parameters (EoPs) between sensors obtained by pre-calibration leads to failure of registration between panoramic image sequence and mobile laser scanning data. To address this challenge, this paper proposes an automatic registration method based on semantic features extracted from panoramic images and point clouds. Firstly, accurate rotation parameters between the panoramic camera and the laser scanner are estimated using GPS and IMU aided structure from motion (SfM). The initial EoPs of panoramic images are obtained at the same time. Secondly, vehicles in panoramic images are extracted by the Faster-RCNN as candidate primitives to be matched with potential corresponding primitives in point clouds according to the initial EoPs. Finally, translation between the panoramic camera and the laser scanner is refined by maximizing the overlapping area of corresponding primitive pairs based on the Particle Swarm Optimization (PSO), resulting in a finer registration between panoramic image sequences and point clouds. Two challenging urban scenes were experimented to assess the proposed method, and the final registration errors of these two scenes were both less than three pixels, which demonstrates a high level of automation, robustness and accuracy.

  3. Clinical image quality evaluation for panoramic radiography in Korean dental clinics

    International Nuclear Information System (INIS)

    Choi, Bo Ram; Choi, Da Hye; Huh, Kyung Hoe; Yi, Won Jin; Heo, Min Suk; Choi, Soon Chul; Bae, Kwang Hak; Lee, Sam Sun

    2012-01-01

    The purpose of this study was to investigate the level of clinical image quality of panoramic radiographs and to analyze the parameters that influence the overall image quality. Korean dental clinics were asked to provide three randomly selected panoramic radiographs. An oral and maxillofacial radiology specialist evaluated those images using our self-developed Clinical Image Quality Evaluation Chart. Three evaluators classified the overall image quality of the panoramic radiographs and evaluated the causes of imaging errors. A total of 297 panoramic radiographs were collected from 99 dental hospitals and clinics. The mean of the scores according to the Clinical Image Quality Evaluation Chart was 79.9. In the classification of the overall image quality, 17 images were deemed 'optimal for obtaining diagnostic information,' 153 were 'adequate for diagnosis,' 109 were 'poor but diagnosable,' and nine were 'unrecognizable and too poor for diagnosis'. The results of the analysis of the causes of the errors in all the images are as follows: 139 errors in the positioning, 135 in the processing, 50 from the radiographic unit, and 13 due to anatomic abnormality. Panoramic radiographs taken at local dental clinics generally have a normal or higher-level image quality. Principal factors affecting image quality were positioning of the patient and image density, sharpness, and contrast. Therefore, when images are taken, the patient position should be adjusted with great care. Also, standardizing objective criteria of image density, sharpness, and contrast is required to evaluate image quality effectively.

  4. Clinical image quality evaluation for panoramic radiography in Korean dental clinics.

    Science.gov (United States)

    Choi, Bo-Ram; Choi, Da-Hye; Huh, Kyung-Hoe; Yi, Won-Jin; Heo, Min-Suk; Choi, Soon-Chul; Bae, Kwang-Hak; Lee, Sam-Sun

    2012-09-01

    The purpose of this study was to investigate the level of clinical image quality of panoramic radiographs and to analyze the parameters that influence the overall image quality. Korean dental clinics were asked to provide three randomly selected panoramic radiographs. An oral and maxillofacial radiology specialist evaluated those images using our self-developed Clinical Image Quality Evaluation Chart. Three evaluators classified the overall image quality of the panoramic radiographs and evaluated the causes of imaging errors. A total of 297 panoramic radiographs were collected from 99 dental hospitals and clinics. The mean of the scores according to the Clinical Image Quality Evaluation Chart was 79.9. In the classification of the overall image quality, 17 images were deemed 'optimal for obtaining diagnostic information,' 153 were 'adequate for diagnosis,' 109 were 'poor but diagnosable,' and nine were 'unrecognizable and too poor for diagnosis'. The results of the analysis of the causes of the errors in all the images are as follows: 139 errors in the positioning, 135 in the processing, 50 from the radiographic unit, and 13 due to anatomic abnormality. Panoramic radiographs taken at local dental clinics generally have a normal or higher-level image quality. Principal factors affecting image quality were positioning of the patient and image density, sharpness, and contrast. Therefore, when images are taken, the patient position should be adjusted with great care. Also, standardizing objective criteria of image density, sharpness, and contrast is required to evaluate image quality effectively.

  5. Reconstruction of pseudo three-dimensional dental image from dental panoramic radiograph and tooth surface shape

    International Nuclear Information System (INIS)

    Imura, Masataka; Kuroda, Yoshihiro; Oshiro, Osamu; Kuroda, Tomohiro; Kagiyama, Yoshiyuki; Yagi, Masakazu; Takada, Kenji; Azuma, Hiroko

    2010-01-01

    Three-dimensional volume data set is useful for diagnosis in dental treatments. However, to obtain three-dimensional images of a dental arch in general dental clinics is difficult. In this paper, we propose a method to reconstruct pseudo three-dimensional dental images from a dental panoramic radiograph and a tooth surface shape which can be obtained from three dimensional shape measurement of a dental impression. The proposed method finds an appropriate curved surface on which the dental panoramic radiograph is mapped by comparing a virtual panoramic image made from a tooth surface shape to a real panoramic radiograph. The developed pseudo three-dimensional dental images give clear impression of patient's dental condition. (author)

  6. Comparative assessment of panoramic radiography and CBCT imaging for radiodiagnostics in the posterior maxilla.

    Science.gov (United States)

    Shahbazian, Maryam; Vandewoude, Charlotte; Wyatt, Jan; Jacobs, Reinhilde

    2014-01-01

    The purpose of this study was to assess whether and how the information obtained by means of cone beam computed tomography (CBCT) on maxillary posterior teeth differs from that obtained by panoramic radiography. From 157 subjects (mean age 48 years, range 19-84 years; 89 females) referred to the oral imaging center, a pair of panoramic and CBCT images was selected for further analysis. Both imaging modalities were analyzed to determine the topographic relationship of maxillary teeth to the sinus floor. Pathologic conditions, apical periodontitis, and presence of soft tissue thickening were also examined with both techniques. CBCT showed an intimate relationship of the first and second molar with the maxillary sinus in 54 and 38%, respectively. Thirty-nine apical periodontitis lesions causing reactive changes in the maxillary sinus were detected by CBCT, while just six of them were diagnosed with panoramic imaging. A total of 26 teeth with apical extension to the maxillary sinus were detected with CBCT, from which two could be identified with panoramic radiography. This study emphasizes that anatomical and pathological involvement of the maxillary sinus in relation to posterior teeth is considerably high. It is of clinical importance that the 3D nature of CBCT imaging allowed a better assessment of the relationship between the maxillary sinus and posterior root apices compared to the low detection on panoramic radiographs. CBCT imaging can be a valuable adjunct in radioanatomical and radiodiagnostic observations in the posterior maxilla. It may better visualize maxillary sinus involvement for posterior upper teeth than panoramic radiography.

  7. Computer-Aided Panoramic Images Enriched by Shadow Construction on a Prism and Pyramid Polyhedral Surface

    Directory of Open Access Journals (Sweden)

    Jolanta Dzwierzynska

    2017-10-01

    Full Text Available The aim of this study is to develop an efficient and practical method of a direct mapping of a panoramic projection on an unfolded prism and pyramid polyhedral projection surface with the aid of a computer. Due to the fact that straight lines very often appear in any architectural form we formulate algorithms which utilize data about lines and draw panoramas as plots of functions in Mathcad software. The ability to draw panoramic images of lines enables drawing a wireframe image of an architectural object. The application of the multicenter projection, as well as the idea of shadow construction in the panoramic representation, aims at achieving a panoramic image close to human perception. The algorithms are universal as the application of changeable base elements of panoramic projection—horizon height, station point location, number of polyhedral walls—enables drawing panoramic images from various viewing positions. However, for more efficient and easier drawing, the algorithms should be implemented in some graphical package. The representation presented in the paper and the method of its direct mapping on a flat unfolded projection surface can find application in the presentation of architectural spaces in advertising and art when drawings are displayed on polyhedral surfaces and can be observed from multiple viewing positions.

  8. Relationship Between Carotid Artery Calcification Detected in Dental Panoramic Images and Hypertension and Myocardial Infarction

    International Nuclear Information System (INIS)

    Moshfeghi, Mahkameh; Taheri, Jamileh Beigom; Bahemmat, Nika; Evazzadeh, Mohammad Ebrahim; Hadian, Hoora

    2014-01-01

    Carotid artery calcification may be related to cerebrovascular accident, which may result in death or physical and mental disabilities in survivors. Our purpose is to study the association of carotid artery calcification (CAC) on dental panoramic radiographs and two risk factors of cerebrovascular accident (CVA) including hypertension and myocardial infarction (MI). Panoramic images of 200 patients that were all women above 50 years of age (a population suffering from vascular diseases) were investigated. All panoramic images were provided under similar conditions in terms of the type of panoramic radiograph equipment, type of applied films and the automatic film processor. Then, the patients answered questions about MI history and taking antihypertensive drugs. We also measured the blood pressure of patients in two separate surveys. Data analysis was performed by SPSS statistical program. We used Exact Fisher test and Chi-Square test at a significant level of less than 0.05 to study the effect of these variables on the occurrence of carotid artery calcification. Among 200 studied samples, 22 of the patients (11%) had carotid artery calcification on the dental panoramic radiograph. In total, 52 patients (26%) had hypertension and four people (2%) had a history of MI. Eleven individuals among patients suffering from hypertension (21.2%) and three individuals among patients with a history of MI (75%) demonstrated CAC on dental panoramic images . The relationship between CAC found on dental panoramic radiographs and two CVA risk factors--hypertension and MI-- was significant. Therefore, it seems that detection of CAC on panoramic images of dental patients must be considered by dentists

  9. RELATIVE PANORAMIC CAMERA POSITION ESTIMATION FOR IMAGE-BASED VIRTUAL REALITY NETWORKS IN INDOOR ENVIRONMENTS

    Directory of Open Access Journals (Sweden)

    M. Nakagawa

    2017-09-01

    Full Text Available Image-based virtual reality (VR is a virtual space generated with panoramic images projected onto a primitive model. In imagebased VR, realistic VR scenes can be generated with lower rendering cost, and network data can be described as relationships among VR scenes. The camera network data are generated manually or by an automated procedure using camera position and rotation data. When panoramic images are acquired in indoor environments, network data should be generated without Global Navigation Satellite Systems (GNSS positioning data. Thus, we focused on image-based VR generation using a panoramic camera in indoor environments. We propose a methodology to automate network data generation using panoramic images for an image-based VR space. We verified and evaluated our methodology through five experiments in indoor environments, including a corridor, elevator hall, room, and stairs. We confirmed that our methodology can automatically reconstruct network data using panoramic images for image-based VR in indoor environments without GNSS position data.

  10. Spectral Skyline Separation: Extended Landmark Databases and Panoramic Imaging

    Directory of Open Access Journals (Sweden)

    Dario Differt

    2016-09-01

    in the skyline databases, increasing, due to the increased variety of ground objects, the validity of our findings for novel environments. Third, we collected omnidirectional images, as often used for visual navigation tasks, of skylines using an UV-reflective hyperbolic mirror. We could show that “local” separation techniques can be adapted to the use of panoramic images by splitting the image into segments and finding individual thresholds for each segment. Contrarily, this is not possible for ‘global’ separation techniques.

  11. Pre-surgical treatment planning of maxillary canine impactions using panoramic vs cone beam CT imaging.

    Science.gov (United States)

    Alqerban, A; Hedesiu, M; Baciut, M; Nackaerts, O; Jacobs, R; Fieuws, S; Willems, G

    2013-01-01

    The aim of this prospective study was to compare the impact of using two-dimensional (2D) panoramic radiographs and three-dimensional (3D) cone beam CT for the surgical treatment planning of impacted maxillary canines. This study consisted of 32 subjects (19 females, 13 males) with a mean age of 25 years, referred for surgical intervention of 39 maxillary impacted canines. Initial 2D panoramic radiography was available, and 3D cone beam CT imaging was obtained upon clinical indication. Both 2D and 3D pre-operative radiographic diagnostic sets were subsequently analysed by six observers. Perioperative evaluations were conducted by the treating surgeon. McNemar tests, hierarchical logistic regression and linear mixed models were used to explore the differences in evaluations between imaging modalities. Significantly higher confidence levels were observed for 3D image-based treatment plans than for 2D image-based plans (p panoramic and cone beam CT images.

  12. Clinical image quality evaluation for panoramic radiography in Korean dental clinics

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Bo Ram; Choi, Da Hye; Huh, Kyung Hoe; Yi, Won Jin; Heo, Min Suk; Choi, Soon Chul; Bae, Kwang Hak; Lee, Sam Sun [School of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    2012-09-15

    The purpose of this study was to investigate the level of clinical image quality of panoramic radiographs and to analyze the parameters that influence the overall image quality. Korean dental clinics were asked to provide three randomly selected panoramic radiographs. An oral and maxillofacial radiology specialist evaluated those images using our self-developed Clinical Image Quality Evaluation Chart. Three evaluators classified the overall image quality of the panoramic radiographs and evaluated the causes of imaging errors. A total of 297 panoramic radiographs were collected from 99 dental hospitals and clinics. The mean of the scores according to the Clinical Image Quality Evaluation Chart was 79.9. In the classification of the overall image quality, 17 images were deemed 'optimal for obtaining diagnostic information,' 153 were 'adequate for diagnosis,' 109 were 'poor but diagnosable,' and nine were 'unrecognizable and too poor for diagnosis'. The results of the analysis of the causes of the errors in all the images are as follows: 139 errors in the positioning, 135 in the processing, 50 from the radiographic unit, and 13 due to anatomic abnormality. Panoramic radiographs taken at local dental clinics generally have a normal or higher-level image quality. Principal factors affecting image quality were positioning of the patient and image density, sharpness, and contrast. Therefore, when images are taken, the patient position should be adjusted with great care. Also, standardizing objective criteria of image density, sharpness, and contrast is required to evaluate image quality effectively.

  13. An evaluation of image quality for the assessment of the marginal bone level in panoramic radiography

    International Nuclear Information System (INIS)

    Aakesson, L.; Rohlin, M.

    1993-01-01

    A diagnostic image quality of panoramic radiographs originating from different clinics was examined. Two samples of 98 and 100 radiographs, respectively, were from a department of oral radiology. The radiographs of one of these samples were checked using immediate subjective analysis of the image quality before inclusion in the study whereas the radiographs of the other sample were randomly selected. A third sample consisted of radiographs from 20 randomly selected dental clinics. The subjective overall image quality of the whole panoramic radiograph was classified as adequate, marginal or inadequate. The three observers also assessed the reason for inferior image quality. The overall image quality of the radiographs was better for the checked sample from the department of oral radiology compared to the sample from the 20 dental clinics. The main reason for unacceptable image quality of the radiographs was too low density and/or contrast irrespective of sample. Other faults were incorrect positioning of the patient but in the sample from the 20 clinics improper film handling was also frequent. We conclude that image quality in panoramic radiography can be improved. Improvement of the image quality is a prerequisite if panoramic radiography in the future is to replace the full-mouth examination. 22 refs, 2 figs, 7 tabs

  14. Prevalence and imaging characteristics of palatine tonsilloliths evaluated on 2244 pairs of panoramic radiographs and CT images.

    Science.gov (United States)

    Takahashi, Akira; Sugawara, Chieko; Kudoh, Takaharu; Ohe, Go; Takamaru, Natsumi; Tamatani, Tetsuya; Nagai, Hirokazu; Miyamoto, Youji

    2017-01-01

    Palatine tonsilloliths incidentally detected on diagnostic imaging should be differentiated from pathologic calcifications to enable correct diagnosis and treatment. The aim of this study is to clarify the prevalence and imaging characteristics of palatine tonsilloliths on panoramic radiographs. We retrospectively reviewed 2244 individuals who underwent pairs of consecutive panoramic radiography and computed tomography (CT) of the head and neck region. The imaging characteristics of palatine tonsilloliths on panoramic radiography were compared with the findings from CT, which was considered the gold standard. Tonsilloliths were detected in 300 (13.4 %) and 914 (40.7 %) of the 2244 individuals on panoramic radiographs and CT, respectively. On panoramic radiographs, tonsilloliths were superimposed over the ramus of the mandible at the level coincident with and inferior to the soft palate in 176 (7.8 %) and 90 (4.0 %) individuals, respectively. Tonsilloliths were also superimposed over the surrounding soft tissue inferior to the body of the mandible, postero-inferior to the angle of the mandible, and posterior to the ramus of the mandible in 33 (1.5 %), 26 (1.2 %), and 28 (1.3 %) individuals, respectively. A significant correlation was observed between the detectability on panoramic radiographs and the size (Spearman r = 1.000) and number (Spearman r = 0.991) of tonsilloliths, as revealed by CT images. The present results suggest that tonsilloliths are commonly detected on panoramic radiographs. Furthermore, they can be superimposed on both the mandible and the surrounding soft tissue. Clinicians should include tonsilloliths among the differential diagnoses when calcified bodies are detected on panoramic radiographs.

  15. A study of the mandibular canal in digital panoramic radiographic images of a selected Korean population

    International Nuclear Information System (INIS)

    Kim, Jae Duk; Kim, Jin Soo

    2007-01-01

    To determine the more valuable information to detect the mandibular canal and the mental foramen in panoramic radiographs of a selected Korean population for the implant. This study analysed 288 panoramic radiographic images of patients taken at the Dental hospital of Chosun University retrospectively. Indirect digital panoramic X-ray machine (ProlineXC, PLANMECA, Finland) with processing by using Directview CR950 (Kodak, U.S.A.) and Direct digital panoramic X-ray machine (Promax, PLANMECA, Finland) were used for all exposures. All images were converted into Dicom format. The common position of the mental foramen was in line with the longitudinal axis of the second premolar (68.1%). The mental foramen was lower symmetrical in 81.8% of cases. The mandibular canal was not identified at anterior portion and discontinued with the mental foramen in 27.8% of all cases, in 42.4% identified with lower border line continued with the mental foramen, in 14.6% with both upper and lower border lines, and in 15.3% unilaterally identified with lower border line. Clinicians can estimate the upper border line of the mandibular canal from the confirmation of the mental foramen and the lower border line of the mandibular canal symmetrically on the panoramic radiography taken in adjusted midsaggital plane of patient's head

  16. A study of the mandibular canal in digital panoramic radiographic images of a selected Korean population

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Duk; Kim, Jin Soo [Chosun Univ., Gwangju (Korea, Republic of)

    2007-03-15

    To determine the more valuable information to detect the mandibular canal and the mental foramen in panoramic radiographs of a selected Korean population for the implant. This study analysed 288 panoramic radiographic images of patients taken at the Dental hospital of Chosun University retrospectively. Indirect digital panoramic X-ray machine (ProlineXC, PLANMECA, Finland) with processing by using Directview CR950 (Kodak, U.S.A.) and Direct digital panoramic X-ray machine (Promax, PLANMECA, Finland) were used for all exposures. All images were converted into Dicom format. The common position of the mental foramen was in line with the longitudinal axis of the second premolar (68.1%). The mental foramen was lower symmetrical in 81.8% of cases. The mandibular canal was not identified at anterior portion and discontinued with the mental foramen in 27.8% of all cases, in 42.4% identified with lower border line continued with the mental foramen, in 14.6% with both upper and lower border lines, and in 15.3% unilaterally identified with lower border line. Clinicians can estimate the upper border line of the mandibular canal from the confirmation of the mental foramen and the lower border line of the mandibular canal symmetrically on the panoramic radiography taken in adjusted midsaggital plane of patient's head.

  17. Line-Based Registration of Panoramic Images and LiDAR Point Clouds for Mobile Mapping

    Directory of Open Access Journals (Sweden)

    Tingting Cui

    2016-12-01

    Full Text Available For multi-sensor integrated systems, such as the mobile mapping system (MMS, data fusion at sensor-level, i.e., the 2D-3D registration between an optical camera and LiDAR, is a prerequisite for higher level fusion and further applications. This paper proposes a line-based registration method for panoramic images and a LiDAR point cloud collected by a MMS. We first introduce the system configuration and specification, including the coordinate systems of the MMS, the 3D LiDAR scanners, and the two panoramic camera models. We then establish the line-based transformation model for the panoramic camera. Finally, the proposed registration method is evaluated for two types of camera models by visual inspection and quantitative comparison. The results demonstrate that the line-based registration method can significantly improve the alignment of the panoramic image and the LiDAR datasets under either the ideal spherical or the rigorous panoramic camera model, with the latter being more reliable.

  18. Diagnostic agreement between panoramic radiographs and color doppler images of carotid atheroma

    Directory of Open Access Journals (Sweden)

    Claudia Maria Romano-Sousa

    2009-02-01

    Full Text Available The aim of this study was to investigate the agreement between diagnoses of calcified atheroma seen on panoramic radiographs and color Doppler images. Our interest stems from the fact that panoramic images can show the presence of atheroma regardless of the level of obstruction detected by color Doppler images. Panoramic and color Doppler images of 16 patients obtained from the archives of the Health Department of the city of Valença, RJ, Brazil, were analyzed in this study. Both sides of each patient were observed on the images, with a total of 32 analyzed cervical regions. The level of agreement between diagnoses was analyzed using the Kappa statistics. There was a high level of agreement, with a Kappa value of 0.78. In conclusion, panoramic radiographs can help detecting calcifications in the cervical region of patients susceptible to vascular diseases predisposing to myocardial infarction and cerebrovascular accidents. If properly trained and informed, dentists can refer their patients to a physician for a cardiovascular evaluation in order to receive proper and timely medical treatment.

  19. Registration of Vehicle-Borne Point Clouds and Panoramic Images Based on Sensor Constellations.

    Science.gov (United States)

    Yao, Lianbi; Wu, Hangbin; Li, Yayun; Meng, Bin; Qian, Jinfei; Liu, Chun; Fan, Hongchao

    2017-04-11

    A mobile mapping system (MMS) is usually utilized to collect environmental data on and around urban roads. Laser scanners and panoramic cameras are the main sensors of an MMS. This paper presents a new method for the registration of the point clouds and panoramic images based on sensor constellation. After the sensor constellation was analyzed, a feature point, the intersection of the connecting line between the global positioning system (GPS) antenna and the panoramic camera with a horizontal plane, was utilized to separate the point clouds into blocks. The blocks for the central and sideward laser scanners were extracted with the segmentation feature points. Then, the point clouds located in the blocks were separated from the original point clouds. Each point in the blocks was used to find the accurate corresponding pixel in the relative panoramic images via a collinear function, and the position and orientation relationship amongst different sensors. A search strategy is proposed for the correspondence of laser scanners and lenses of panoramic cameras to reduce calculation complexity and improve efficiency. Four cases of different urban road types were selected to verify the efficiency and accuracy of the proposed method. Results indicate that most of the point clouds (with an average of 99.7%) were successfully registered with the panoramic images with great efficiency. Geometric evaluation results indicate that horizontal accuracy was approximately 0.10-0.20 m, and vertical accuracy was approximately 0.01-0.02 m for all cases. Finally, the main factors that affect registration accuracy, including time synchronization amongst different sensors, system positioning and vehicle speed, are discussed.

  20. Classifying degenerative joint disease by the RDC/TMD and by panoramic imaging: a retrospective analysis.

    Science.gov (United States)

    Winocur, E; Reiter, S; Krichmer, M; Kaffe, I

    2010-03-01

    The purposes of the study were to evaluate the utility of diagnosing degenerative joint disease (DJD) by the clinical finding of coarse crepitus alone, without supporting imaging studies, as defined by the RDC/TMD, and to evaluate the contribution of panoramic radiography as an aid in the diagnosis of DJD. A retrospective analysis of 372 consecutive patients with TMD was conducted. Their panoramic radiographs were evaluated for the extent of their contribution to the final diagnosis. Panoramic radiography was of no diagnostic value in 94.4% of the cases when the group was considered as a whole. When patients diagnosed with DJD were considered separately, panoramic radiography was completely sufficient for reaching the final diagnosis in 20.0% of the cases. In almost 90% of these patients, however, the clinical examination did not support the diagnosis of DJD (no coarse crepitus was found). This raises some doubts about the effectiveness of the clinical examination according to the RDC/TMD and about the utility of panoramic radiography in the definitive diagnosis of DJD, because both techniques have low accuracy (11.1% and 20%, respectively). The present study supports the current recommendations that panoramic radiography should not be ordered routinely to assess DJD, but still it is first choice when any dental problem is suspected. Further additional imaging (computerized tomography, magnetic resonance imaging) should be considered only if there is reason to expect that the findings might affect diagnosis and management. This study adds to recent criticisms of the clinical validity of the RDC/TMD, with regard to DJD.

  1. Study of the inferior alveolar canal and mental foramen on digital panoramic images.

    Science.gov (United States)

    Pria, Carlos M; Masood, Farah; Beckerley, Joy M; Carson, Robert E

    2011-07-01

    To study the radiographic location of the mental foramen and appearance of the inferior alveolar canal and the relationship between image gray values and the clarity of inferior alveolar canal on the digital panoramic images and to evaluate if the histogram equalization of the digital image would improve the visualization of the inferior alveolar canal outline on the digital panoramic images in the mandible. Five hundred digital panoramic images were evaluated by two examiners using a specific inclusion criteria. Only the right side of the mandible was studied. Chi-square analyses were used for comparisons of distributions. Mean and median pixel values were analyzed separately with a one-way analysis of variance. Also, percentages were calculated to report the usefulness of the histogram equalization for visualization of canal. RESULTS show variation in location of mental foramen. Most frequent location of the mental foramen was reported as first and second premolar region. Chi-square analysis showed that the frequency of occurrence of the mental foramen was equally probable for any of the three locations. The study did not find significant usefulness of the gray values obtained from the histogram equalization in predicting the clarity of inferior alveolar canal outlines. Knowing the normal relationship and the anatomical variation of the maxillofacial structures for each patient is important for surgical implant treatment planning to avoid future complications. It is also important to be familiar with the advantages and limitations of diagnostic aids available before making treatment planning decisions based on such findings. Digital imaging, Panoramic, Inferior alveolar canal, Mental foramen. How to cite this article: Pria CM, Masood F, Beckerley JM, Carson RE. Study of the Inferior Alveolar Canal and Mental Foramen on Digital Panoramic Images. J Contemp Dent Pract 2011;12(4):265-271. Source of support: Nil Conflict of interest: None declared.

  2. Correlation of darkening of impacted mandibular third molar root on digital panoramic images with cone beam computed tomography findings.

    Science.gov (United States)

    Tantanapornkul, W; Okochi, K; Bhakdinaronk, A; Ohbayashi, N; Kurabayashi, T

    2009-01-01

    Darkening of the lower third molar root on panoramic images is known to indicate an intimate relationship between the root and mandibular canal. The objective of this study was to investigate the anatomical relationship between the third molar root and its surrounding structures that leads to this panoramic finding. Imaging findings of 253 impacted lower third molars examined by both digital panoramic radiography and cone beam CT were reviewed. Panoramic images were evaluated to detect the presence or absence of darkening of the root where the mandibular canal was superimposed. Cone beam CT images were evaluated for the presence or absence of the following two findings: (1) grooving of the root and (2) thinning or perforation of the cortical plate by the root. The correlation between the panoramic and cone beam CT findings was examined using logistic regression analysis. 80 (32%) third molars showed a panoramic finding of darkening of the root. Between cone beam CT findings, cortical thinning or perforation alone was significantly correlated with this panoramic finding (80%, P panoramic finding of mandibular third molar root darkening was considered to reflect cortical thinning or perforation rather than grooving of the root.

  3. A study of the panoramic radiographic images of the buccolingual dilacerations

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Ho; Jeong, Hwang Seok; Huh, Kyung Hoe; Yi, Won Jin; Heo, Min Suk; Lee, Sam Sun; Choi, Soon Chul [School of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    2010-03-15

    We want to identify the appearance of the buccolingual root dilaceration teeth in the panoramic views and specify the characteristics of these teeth. One thousand-six patients were examined on the basis of both panoramic and CT image criteria. We diagnosed and excluded certain teeth from the samples; both prosthodontic or pathologic lesion appearing teeth and mesiodistally dilacerated ones. We meticulously discerned buccolingually dilacerated teeth in the CT images and total 48 samples were selected. The degree of severity in dilaceration was standardized by 2 types of criteria. The samples were differentiated into 3 groups and again categorized into six types showing from the panoramic views: irregular view on the root apex area, clear blunt on the root tip, stepping on root tip, double lamina dura or double tip, arrow-target shaped root, bull's eye, normal view. The types of teeth selected from total 48 buccolingual root dilaceration samples were mandibular first and second molar, premolars, canines, and lateral incisors. The direction of dilaceration was an even percentage to each buccal and lingual side for most selected teeth, however, that of both canines and lateral incisors were directed in almost a buccal side. In the panoramic views, the root types of the buccolingually dilacerated teeth were irregular view on the root apex area, clear blunt on the root tip, stepping on root tip and normal types were almost always normal view. The more severity in dilareated degree, the more chances of observation in the panoramic views were clear blunt on the root tip and stepping on root tip. As observed in the shape of stepping on root tip or double lamina dura in the panoramic views, there can be much more probability to diagnose as a buccolingually dilacerated root.

  4. Influence of the intergonial distance on image distortion in panoramic radiographs.

    Science.gov (United States)

    Ladeira, D B S; Cruz, A D; Almeida, S M; Bóscolo, F N

    2012-07-01

    The aim of this study was to evaluate the influence of the intergonial distance during the formation of panoramic radiographic images by means of horizontal and vertical measurements. 30 macerated mandibles were categorized into 3 different groups (n = 10) according to their intergonial distances as follows: G1, mean distance 8.2 cm, G2, mean distance 9.0 cm and G3, mean distance 9.6 cm. Three metal spheres 0.198 cm in diameter and placed at an incline using an isosceles triangle were separately placed over the internal and external surfaces of the mandibles before radiographic exposure for the purpose of taking the horizontal and vertical measurements. The occlusal planes of the mandibles were horizontally placed on the chin rest of the panoramic machine Orthopantomograph® OP 100 (Instrumentarium Imaging, Tuusula, Finland) and were then radiographed. In the panoramic radiographs, an expert radiologist measured the distances between the metal spheres in the horizontal and vertical directions using a digital caliper. The data were tabled and statistically analysed by Student's t-test and analysis of variance with Tukey post-test (α = 0.05). In all three groups magnification of the distances between spheres was observed when compared with the real distance in both horizontal and vertical measurements (p 0.05). Differences between horizontal and vertical measurements were observed in different regions in all evaluated groups (p image formation in the panoramic radiograph.

  5. The Yosemite Extreme Panoramic Imaging Project: Monitoring Rockfall in Yosemite Valley with High-Resolution, Three-Dimensional Imagery

    Science.gov (United States)

    Stock, G. M.; Hansen, E.; Downing, G.

    2008-12-01

    Yosemite Valley experiences numerous rockfalls each year, with over 600 rockfall events documented since 1850. However, monitoring rockfall activity has proved challenging without high-resolution "basemap" imagery of the Valley walls. The Yosemite Extreme Panoramic Imaging Project, a partnership between the National Park Service and xRez Studio, has created an unprecedented image of Yosemite Valley's walls by utilizing gigapixel panoramic photography, LiDAR-based digital terrain modeling, and three-dimensional computer rendering. Photographic capture was accomplished by 20 separate teams shooting from key overlapping locations throughout Yosemite Valley. The shots were taken simultaneously in order to ensure uniform lighting, with each team taking over 500 overlapping shots from each vantage point. Each team's shots were then assembled into 20 gigapixel panoramas. In addition, all 20 gigapixel panoramas were projected onto a 1 meter resolution digital terrain model in three-dimensional rendering software, unifying Yosemite Valley's walls into a vertical orthographic view. The resulting image reveals the geologic complexity of Yosemite Valley in high resolution and represents one of the world's largest photographic captures of a single area. Several rockfalls have already occurred since image capture, and repeat photography of these areas clearly delineates rockfall source areas and failure dynamics. Thus, the imagery has already proven to be a valuable tool for monitoring and understanding rockfall in Yosemite Valley. It also sets a new benchmark for the quality of information a photographic image, enabled with powerful new imaging technology, can provide for the earth sciences.

  6. Accuracy of mandibular vertical linear measurement in panoramic and tomography images

    Directory of Open Access Journals (Sweden)

    Ehsan Moudi

    2013-03-01

    Full Text Available Introduction: The measurement precision of jaw is important for surgery or installing implants. Preimplant radiographs are important part of clinical evaluations before implant surgery. For choosing location, we should consider the important anatomical structures like mental foramen, inferior alveolar canal, nasal cavity and maxillary sinus.It is important to know the measurement accuracy of radiographic techniques. The purpose of this study was to compare mandibular vertical linear measurement in panoramic and tomography images. Methods: Three forms of mandible from dry adult human skulls were used in this study (triangle, square and ellipse. For each mandible, surgical stent was made using transparent with gold standard.acryl. A thin tube was placed in the stents in three regions (incisors, premolars and molars to set gutta-percha. Then, the panoramic view and conventional tomography were obtained. Four oral and maxillofacial radiologists measured the vertical dimension in panoramic and conventional tomography. Finally, each mandible was sectioned in the marked sections and was measured by a digital caliper (gold standard and compared with conventional tomography and panoramic view .The obtained data was analyzed using SPSS18 software and student t-test, Pearson correlation coefficient and non parametric Mann-Whitney Test. Results: The mean difference between the panoramic and gold standard linear vertical dimension values in premolar and molar regions was above 1mm and above 2mm in incisor region. The mean difference between conventional tomography and gold standard measurements in all three regions was 1mm. Conclusions: The linear measurement of vertical dimension in conventional tomography was more precise than panoramic. The use of a 2.0 mm safety margin in the evaluation of implant sites was recommended.In incisor area, the other radiography methods like CBCT was suggested.

  7. Predictors of root resorption associated with maxillary canine impaction in panoramic images.

    Science.gov (United States)

    Alqerban, Ali; Jacobs, Reinhilde; Fieuws, Steffen; Willems, Guy

    2016-06-01

    The aim was to identify a prediction model for root resorption (RR) caused by impacted canines based on radiographic variables assessed on 2D panoramic radiographs with the intention to reduce the need for additional cone beam computed tomography (CBCT) imaging. Three hundred and six patients (188 female, 118 male; mean age, 14.7 years; standard deviation, 5.6; range, 8.4-47.2 years) were included in the study. In total, 406 impacted maxillary canines were studied, from 206 patients with unilateral impaction and from 100 patients with bilateral impaction. Initial 2D panoramic radiography was available, and 3D CBCT imaging was obtained upon clinical indication. The generated radiographic variables and specific features investigated were collected on 2D panoramic imaging and were correlated to the presence/absence of RR detected on CBCT. A validation sample consisting of 55 canines from 45 patients with maxillary canine impactions was collected to validate the outcome of the present study. The incidence of RR of the adjacent teeth was 33.8%. A prediction model using panoramic images for the possible presence of RR was established [area under the curve (AUC) = 0.74, 95% confidence interval (CI): 0.69-0.79] and validated by applying leave-one-out cross-validation (AUC = 0.71, 95% CI: 0.66-0.77). For the subgroup of presence of severe RR the discriminative ability increased to 0.80. In this prediction model, patient gender, canine apex, vertical canine crown position, and canine magnification were the strongest predictors for RR. The final prediction model for RR based on available panoramic radiographs could be a helpful tool in justifying the need of additional CBCT examination. Published by Oxford University Press on behalf of the European Orthodontic Society 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  8. Optimization of exposure in panoramic radiography while maintaining image quality using adaptive filtering.

    Science.gov (United States)

    Svenson, Björn; Larsson, Lars; Båth, Magnus

    2016-01-01

    Objective The purpose of the present study was to investigate the potential of using advanced external adaptive image processing for maintaining image quality while reducing exposure in dental panoramic storage phosphor plate (SPP) radiography. Materials and methods Thirty-seven SPP radiographs of a skull phantom were acquired using a Scanora panoramic X-ray machine with various tube load, tube voltage, SPP sensitivity and filtration settings. The radiographs were processed using General Operator Processor (GOP) technology. Fifteen dentists, all within the dental radiology field, compared the structural image quality of each radiograph with a reference image on a 5-point rating scale in a visual grading characteristics (VGC) study. The reference image was acquired with the acquisition parameters commonly used in daily operation (70 kVp, 150 mAs and sensitivity class 200) and processed using the standard process parameters supplied by the modality vendor. Results All GOP-processed images with similar (or higher) dose as the reference image resulted in higher image quality than the reference. All GOP-processed images with similar image quality as the reference image were acquired at a lower dose than the reference. This indicates that the external image processing improved the image quality compared with the standard processing. Regarding acquisition parameters, no strong dependency of the image quality on the radiation quality was seen and the image quality was mainly affected by the dose. Conclusions The present study indicates that advanced external adaptive image processing may be beneficial in panoramic radiography for increasing the image quality of SPP radiographs or for reducing the exposure while maintaining image quality.

  9. Accuracy of linear measurements before and after digitizing periapical and panoramic radiography images.

    Science.gov (United States)

    Langlois, Caroline de Oliveira; Sampaio, Maria Carméli Correia; Silva, Alexandre Emidio Ribeiro; Costa, Nilza Pereira da; Rockenbach, Maria Ivete Bolzan

    2011-01-01

    The aim of this study was to evaluate the accuracy of linear measurements made on conventional and digitized periapical and panoramic radiographic images of dry human hemi-mandibles. Images from the posterior region of 22 dry human hemi-mandibles were obtained by conventional panoramic and periapical radiography technique. Using a digital caliper, 3 vertical measurements were marked directly on the dry hemi-mandibles (reference measurements) as well as on the tracing from the conventional radiographic images of the specimens made onto acetate paper sheet: Distance 1: between the upper limit of the alveolar ridge and the lower limit at the mandible base; Distance 2: between the upper limit of the alveolar ridge and the upper limit of the mandibular canal; Distance 3: between the lower limit of the mandibular canal and the lower limit of the mandible base. Next, the radiographs were digitized and the three measurements were made on the digital images using UTHSCSA Image Tool software. Data were analyzed statistically by one-way ANOVA (α=0.05). There was no statistically significant differences (p>0.05) between periapical and panoramic radiographs or between the measurements recorded using the digital caliper and UTHSCSA software compared with dry mandible specimens for Distances 1 (p=0.783), 2 (p=0.986) and 3 (p=0.129). In conclusion, the radiographic techniques evaluated in this study are reliable for vertical bone measurements on selected areas and the UTHSCA Image Tool software is an appropriate measurement method.

  10. Comparison of linear dimensions and angular measurements on panoramic images taken with two machines

    Directory of Open Access Journals (Sweden)

    Tahmineh Razi

    2009-03-01

    Full Text Available Background and aims. Panoramic radiography is a method widely used because of low absorbed dose in patients (approximately 10 times less than that in the full mouth survey, reasonable cost and time. Disadvantages of this radiography technique are magnification and distortion as a result of unequal magnification, which can influence dimensional and angular measurements used in clinical dentistry to determine root length, dental arch space, relative angulations of teeth, and implant site assessment. The aim of this study was comparison of linear dimensions and angular measurements on panoramic images taken with two machines (Planmeca and Panoura. Materials and methods. Twenty radiographs taken with each apparatus from a human dry skull were scanned. Horizontal, vertical and angular dimensions were measured on the skull, which were compared along with the images using Corel DRAW Software, V13. Results. Independent t-test analysis showed that horizontal magnification assessed on images from Panoura was more than that from Planmeca (P < 0.00025. There were no significant differences between the two groups in vertical dimensions (P = 0.66. Mean magnification of angular measurements assessed on images from Panoura was less than that from Planmeca (P < 0.00025. Independent t-test analysis showed that distortion of Planmeca images were more than that of Panoura. One sample t-test showed that angular measurements were more reliable than linear dimensions. Conclusion. Panoramic radiography technique can be used for evaluation of angles but it is better to use other radiography techniques for vertical and horizontal measurements.

  11. Interpretation of panoramic radiographs.

    Science.gov (United States)

    Perschbacher, Susanne

    2012-03-01

    Panoramic radiography has become a commonly used imaging modality in dental practice and can be a valuable diagnostic tool in the dentist's armamentarium. However, the panoramic image is a complex projection of the jaws with multiple superimpositions and distortions which may be exacerbated by technical errors in image acquisition. Furthermore, the panoramic radiograph depicts numerous anatomic structures outside of the jaws which may create additional interpretation challenges. Successful interpretation of panoramic radiographs begins with an understanding of the normal anatomy of the head and neck and how it is depicted in this image type. This article will describe how osseous structures, soft tissues, air spaces and ghost shadows contribute to the final panoramic image. A systematic and repeated approach to examining panoramic radiographs, which is recommended to ensure that critical findings are not overlooked, is also outlined. Examples of challenging interpretations, including variations of anatomy, artefacts and disease, are presented to illustrate these concepts. © 2012 Australian Dental Association.

  12. MATCHING REAL AND SYNTHETIC PANORAMIC IMAGES USING A VARIANT OF GEOMETRIC HASHING

    Directory of Open Access Journals (Sweden)

    J. Li-Chee-Ming

    2017-05-01

    Full Text Available This work demonstrates an approach to automatically initialize a visual model-based tracker, and recover from lost tracking, without prior camera pose information. These approaches are commonly referred to as tracking-by-detection. Previous tracking-by-detection techniques used either fiducials (i.e. landmarks or markers or the object’s texture. The main contribution of this work is the development of a tracking-by-detection algorithm that is based solely on natural geometric features. A variant of geometric hashing, a model-to-image registration algorithm, is proposed that searches for a matching panoramic image from a database of synthetic panoramic images captured in a 3D virtual environment. The approach identifies corresponding features between the matched panoramic images. The corresponding features are to be used in a photogrammetric space resection to estimate the camera pose. The experiments apply this algorithm to initialize a model-based tracker in an indoor environment using the 3D CAD model of the building.

  13. The comparison of subjective image quality in conventional and digital panoramic radiography

    Directory of Open Access Journals (Sweden)

    Peker Ilkay

    2009-01-01

    Full Text Available Objective: The purpose of this study was to compare the subjective image quality of (1 regular intensifying screens with medium intensifying screens, (2 regular intensifying screens with digital radiography, and (3 medium intensifying screens with digital radiography for panoramic radiographs. Materials and Methods: Forty-five patients participated and a total of 90 radiographs were obtained in the study. The patients were divided into three groups (regular-medium intensifying screen, regular intensifying screen-digital radiography, and medium intensifying screen-digital radiography that consisted of 15 people each. All radiographs were assessed by three oral radiologists independently. The observers evaluated the images using a 3-point scale (1=well visible, 0=partly visible, -1=not or hardly visible for anatomical structures and pathological findings that are commonly found on panoramic radiographs. Subjective image quality of the groups and comparison of the observers were assessed by using non parametric Kruskal Wallis and Mann-Whitney U tests. Results: For all groups and observers, no statistically significant difference (p>0.05 was found for both anatomical structures and pathologies and between anatomical structures and pathologies according to the Mann Whitney U test. In comparison with observers, no statistically significant difference (p>0.05 was found for both anatomical structures and pathologies and between anatomical structures and pathologies for all groups according to the Kruskal Wallis test. Conclusion: The subjective image quality of medium and regular intensifying screens and conventional and digital panoramic radiographs were found statistically equal in this study.

  14. The comparison of subjective image quality in conventional and digital panoramic radiography.

    Science.gov (United States)

    Peker, Ilkay; Toraman, Alkurt M; Usalan, G; Altunkaynak, B

    2009-01-01

    The purpose of this study was to compare the subjective image quality of (1) regular intensifying screens with medium intensifying screens, (2) regular intensifying screens with digital radiography, and (3) medium intensifying screens with digital radiography for panoramic radiographs. Forty-five patients participated and a total of 90 radiographs were obtained in the study. The patients were divided into three groups (regular-medium intensifying screen, regular intensifying screen-digital radiography, and medium intensifying screen-digital radiography) that consisted of 15 people each. All radiographs were assessed by three oral radiologists independently. The observers evaluated the images using a 3-point scale (1=well visible, 0=partly visible, -1=not or hardly visible) for anatomical structures and pathological findings that are commonly found on panoramic radiographs. Subjective image quality of the groups and comparison of the observers were assessed by using non parametric Kruskal Wallis and Mann-Whitney U tests. For all groups and observers, no statistically significant difference (p>0.05) was found for both anatomical structures and pathologies and between anatomical structures and pathologies according to the Mann Whitney U test. In comparison with observers, no statistically significant difference (p>0.05) was found for both anatomical structures and pathologies and between anatomical structures and pathologies for all groups according to the Kruskal Wallis test. The subjective image quality of medium and regular intensifying screens and conventional and digital panoramic radiographs were found statistically equal in this study.

  15. The comparison of subjective image quality in conventional and digital panoramic radiography

    OpenAIRE

    Peker Ilkay; Toraman Alkurt; Usalan G; Altunkaynak B

    2009-01-01

    Objective: The purpose of this study was to compare the subjective image quality of (1) regular intensifying screens with medium intensifying screens, (2) regular intensifying screens with digital radiography, and (3) medium intensifying screens with digital radiography for panoramic radiographs. Materials and Methods: Forty-five patients participated and a total of 90 radiographs were obtained in the study. The patients were divided into three groups (regular-medium intensifying screen, r...

  16. Image and surgery-related costs comparing cone beam CT and panoramic imaging before removal of impacted mandibular third molars

    DEFF Research Database (Denmark)

    Petersen, L. B.; Rose Olsen, Kim; Christensen, J.

    2014-01-01

    Objectives: The aim of this prospective clinical study was to derive the absolute and relative costs of cone beam CT (CBCT) and panoramic imaging before removal of an impacted mandibular third molar. Furthermore, the study aimed to analyse the influence of different cost-setting scenarios...

  17. Panoramic Mosaics from Chang’E-3 PCAM Images at Point A

    Directory of Open Access Journals (Sweden)

    Fanlu Wu

    2016-09-01

    Full Text Available This paper presents a unique approach for panoramic mosaics based on Moon surface images from the Chang’E-3 (CE-3 mission, with consideration of the exposure time and external illumination changes in CE-3 Panoramic Camera (PCAM imaging. The engineering implementation involves algorithms of image feature points extraction by using Speed-Up Robust Features (SURF, and a newly defined measure is used to obtain the corresponding points in feature matching. Then, the transformation matrix is calculated and optimized between adjacent images by the Levenberg–Marquardt algorithm. Finally, an image is reconstructed by using a fade-in-fade-out method based on linear interpolation to achieve a seamless mosaic. The developed algorithm has been tested with CE-3 PCAM images at Point A (one of the rover sites where the rover is separated from the lander. This approach has produced accurate mosaics from CE-3 PCAM images, as is indicated by the value of the Peak Signal to Noise Ratio (PSNR, which is greater than 31 dB between the overlapped region of the images before and after fusion.

  18. Assessment of periapical status : a comparative study using film-based periapical radiographs and digital panoramic images

    OpenAIRE

    Ríos Santos, José Vicente; Ridao Sacie, Cristina; Bullón, Pedro; Fernández Palacín, Ana; Segura-Egea, Juan J.

    2010-01-01

    Aim: To compare the use of film-based periapical radiographs and digital panoramic images displayed on monitor and glossy paper in the assessment of the periapical status of the teeth. Methodology: A total of 86 subjects were examined. All participants underwent a full-mouth radiographic survey (14 periapical radiographs) and a digital panoramic radiography. The periapical status of all appraised teeth was assessed. Results: Periapical radiographs allowed the assessment of the periapical ...

  19. Development of a digital panoramic X-ray imaging system of adaptive image layers for dental applications

    Science.gov (United States)

    Choi, S. I.; Park, Y. O.; Cho, H. S.; Oh, J. E.; Cho, H. M.; Hong, D. K.; Lee, M. S.; Yang, Y. J.; Je, U. K.; Kim, D. S.; Lee, H. K.

    2011-10-01

    As a continuation of our digital radiographic sensor R&D, we have developed a prototyped digital panoramic X-ray imaging system for dental applications. The imaging system consists of a slit-collimated X-ray generator with a 0.4 mm focal spot size and a 3.5 mm Al filtration, a linear-array typed CMOS imager with a 48×48 μm 2 pixel size and a 128 (in the scan direction)×3072 (in the vertical direction) pixel format, a series of microstep motors for the precise motion control of the imaging system, and the designed sequences for the motion control and pixel readout required to make a specific plane of interest (POI) to be focused. With the several test phantoms we designed, we obtained useful digital panoramic X-ray images by moving the X-ray generator and the CMOS imager along a continuously sliding rotational center. In this study, we demonstrated that the prototype system can be applicable to any shaped POI or multi-POIs simultaneously to be focused, provided that adequate sequences for motion control and pixel readout are designed. We expect that the imaging system will be useful for our ongoing applications of dental panoramic radiography and nondestructive testing.

  20. Development of a digital panoramic X-ray imaging system of adaptive image layers for dental applications

    Energy Technology Data Exchange (ETDEWEB)

    Choi, S.I.; Park, Y.O. [Department of Radiological Science, College of Health Science, Yonsei University, Wonju 220-710 (Korea, Republic of); Cho, H.S., E-mail: hscho1@yonsei.ac.kr [Department of Radiological Science, College of Health Science, Yonsei University, Wonju 220-710 (Korea, Republic of); Oh, J.E.; Cho, H.M.; Hong, D.K.; Lee, M.S.; Yang, Y.J.; Je, U.K.; Kim, D.S. [Department of Radiological Science, College of Health Science, Yonsei University, Wonju 220-710 (Korea, Republic of); Lee, H.K. [Department of Mining and Nuclear Engineering, Missouri University of Science and Technology, Rolla, MO 65401 (United States)

    2011-10-01

    As a continuation of our digital radiographic sensor R and D, we have developed a prototyped digital panoramic X-ray imaging system for dental applications. The imaging system consists of a slit-collimated X-ray generator with a 0.4 mm focal spot size and a 3.5 mm Al filtration, a linear-array typed CMOS imager with a 48x48 {mu}m{sup 2} pixel size and a 128 (in the scan direction)x3072 (in the vertical direction) pixel format, a series of microstep motors for the precise motion control of the imaging system, and the designed sequences for the motion control and pixel readout required to make a specific plane of interest (POI) to be focused. With the several test phantoms we designed, we obtained useful digital panoramic X-ray images by moving the X-ray generator and the CMOS imager along a continuously sliding rotational center. In this study, we demonstrated that the prototype system can be applicable to any shaped POI or multi-POIs simultaneously to be focused, provided that adequate sequences for motion control and pixel readout are designed. We expect that the imaging system will be useful for our ongoing applications of dental panoramic radiography and nondestructive testing.

  1. A study on the central plane of image layer in panoramic radiograph

    International Nuclear Information System (INIS)

    Lee, Moon Bai; Park, Chang Seo

    1986-01-01

    The purpose of this investigation was to locate the plane of the image layer on the panoramic machine relative to a specific point on the machine. In the study of the central plane of the image layer of panoramic radiograph, using the Morrita Company PANEX-EC a series of 33 exposures were taken with the 4-5 experimental pins placed in the holes of the plastic model plate, then evaluated by human eye. The author analyzed the central plane of the image layer by Mitutoy-A-221 and calculated horizontal and vertical magnification ratio in central plane of the image layer determined experimentally. The results were as follows: 1. The location of the central plane of the image layer determined experimentally was to lateral compared with manufactural central plane. 2. Horizontal magnification ratio in the central plane of image layer determined experimentally was 9.25%. 3. Vertical magnification ratio in the central plane of the image layer determined experimentally was 9.17%.

  2. Influence of central panoramic curve deviation of the mandibular image reconstruction in the implant CT

    International Nuclear Information System (INIS)

    Park, Rae Jeong; Lee, Sam Sun; Choi, Soon Chul; Park, Tae Won; You, Dong Soo

    1998-01-01

    The purpose of this study was to investigate an influence of the change of central panoramic curves on the image reconstruction in the dental implant CT. The author designed three experimental groups according to the location of central panoramic curve. In group A, central panoramic curve was determined as the curve connecting the center of roots from the first premolar to the first molar. In group B, central panoramic curve was determined as the line connecting the lingual cortical plate at the level of the mesial aspect of the first premolar with the buccal cortical plate at the level of the mesial aspect of the first molar. In group C, central panoramic curve was determined as the line connecting the buccal cortical plate at the level of the mesial aspect of the first molar. Twenty four reformatted CT images was acquired from four mandibles embedded in the resin block and twenty four contact radiographs of dog specimens were acquired. Each image was processed under Adobe Photoshop program analysed by MSPA (mandible/maxilla shape pattern analysis) variables such as MXVD, MXHD, UHD, MHD, and LHD. The obtained results were as follows ; 1. The mean of MXVD variable was 19.9, 20.2, and 20.0 in group A, B, and C, respectively, which were smaller than actual value 20.5. But, there was no significant difference among 3 groups (p>0.05). 2. The mean of MXHD, UHD, MHD, and LHD variables in group A, B, and C was 11.9, 12.2, and 12.3; 9.3, 9.5, and 9.6; 10.0, 10.3,and 10.3; 9.2, 9.3, and 9.4 respectively which were equal to or greater than the actual value 11.8, 9.3, 10.0. But, there was no significant difference among 3 groups (p>0.05). 3. The number of noneffective observations with difference over or under 1 mm with comparison to the actual value was 24 (20%), 58 (48.3%), and 52 (43.3%), respectively, in group A, B, and C. 4. In group A, the number of observations over 1mm and under 1 mm was 9 and 15, respectively, but in group B and C, the number of observations over 1

  3. Influence of central panoramic curve deviation of the mandibular image reconstruction in the implant CT

    Energy Technology Data Exchange (ETDEWEB)

    Park, Rae Jeong; Lee, Sam Sun; Choi, Soon Chul; Park, Tae Won; You, Dong Soo [Dept. of Oral and Maxillofacial Radiology and Dental Research Institute, College of Dentistry, Seoul National University, College of Dentistry, Seoul University, Seoul (Korea, Republic of)

    1998-02-15

    The purpose of this study was to investigate an influence of the change of central panoramic curves on the image reconstruction in the dental implant CT. The author designed three experimental groups according to the location of central panoramic curve. In group A, central panoramic curve was determined as the curve connecting the center of roots from the first premolar to the first molar. In group B, central panoramic curve was determined as the line connecting the lingual cortical plate at the level of the mesial aspect of the first premolar with the buccal cortical plate at the level of the mesial aspect of the first molar. In group C, central panoramic curve was determined as the line connecting the buccal cortical plate at the level of the mesial aspect of the first molar. Twenty four reformatted CT images was acquired from four mandibles embedded in the resin block and twenty four contact radiographs of dog specimens were acquired. Each image was processed under Adobe Photoshop program analysed by MSPA (mandible/maxilla shape pattern analysis) variables such as MXVD, MXHD, UHD, MHD, and LHD. The obtained results were as follows: 1. The mean of MXVD variable was 19.9, 20.2, and 20.0 in group A, B, and C, respectively, which were smaller than actual value 20.5. But, there was no significant difference among 3 groups (p>0.05). 2. The mean of MXHD, UHD, MHD, and LHD variables in group A, B, and C was 11.9, 12.2, and 12.3; 9.3, 9.5, and 9.6; 10.0, 10.3,and 10.3; 9.2, 9.3, and 9.4 respectively which were equal to or greater than the actual value 11.8, 9.3, 10.0. But, there was no significant difference among 3 groups (p>0.05). 3. The number of noneffective observations with difference over or under 1 mm with comparison to the actual value was 24 (20%), 58 (48.3%), and 52 (43.3%), respectively, in group A, B, and C. 4. In group A, the number of observations over 1mm and under 1 mm was 9 and 15, respectively, but in group B and C, the number of observations over 1 mm

  4. Image quality analysis vs dose to the patient in digital panoramic radiography

    International Nuclear Information System (INIS)

    Perez-Diaz, M.; Borges-Garcia, T.; Leon-Santana, J.; Vanderley-Brasileiro, I.; Khoury, H.; Miranda-Cataneda, M.

    2012-01-01

    Digital panoramic radiography is a diagnostic image technique which is increasing its use today allo over the world. Nevertheless, there is a relative lack of knowledge about the best compromise relationship between image quality and dose to the patient for these studies. Twenty one panoramic images of an anthropomorphic phantom and 205 from patients were collected using a Kodak digital equipment. Tube current, beam energy and acquisitions time were changed among studies to look for the best acquisition conditions which permit good image quality al low doses for patients. Air Kerma-Length Product was measures as dose index. Image quality was graded using objective metrics as Signal to Noise Ratio (SNR [dB]) and Contrast to Noise ratio (CNR), as well as visual evaluation with two expert observers. Reduction in dose was able, reducing mAs mainly, without affecting image quality in a sensitive way. An optimized protocol for this equipment was also obtained for standard height and weight patients. (Author)

  5. Limitation of panoramic radiography for imaging diagnosis of lower molar regions aiming at implant placement. Comparison with double-oblique CT images on deciding implant length

    International Nuclear Information System (INIS)

    Nohara, Eiji; Naitoh, Munetaka; Izumi, Masahiro; Suenaga, Yutaka; Ariji, Eiichiro; Katsumata, Akitoshi

    2009-01-01

    For imaging diagnosis targeting dental implant placement, panoramic radiography, computed tomography (CT), multi-slice computed tomography (multi-slice CT), and recently, cone-beam computed tomography (cone-beam CT), are used. However, the use of CT in routine clinical practice is difficult in some cases for various reasons, and the buccolingual alveolar width may be wide in others. Therefore, to evaluate the usefulness of panoramic radiography, we investigated the mandibular canal wall-imaging ability of digital radiography, and the dimensional accuracy of panoramic radiography. In 100 patients for whom mandibular implant placement was planned, 224 molar regions were investigated. The mandibular canal wall-imaging ability of panoramic radiography was investigated, and measurements of the distance between the alveolar crest and upper wall of the mandibular canal were compared with those on double-oblique imaging. Regarding the measurement on double-oblique imaging, one measurement was performed vertically for the slice surface, and the other was bucco-lingually along the direction of the aluminum tube. The mandibular canal wall-imaging rate on panoramic radiography was 62.5%. Furthermore, there were no differences in the measurement on the double-oblique imaging. Differences in measurements between panoramic radiography and double-oblique imaging were 1.0 mm or less in approximately 50% of the measurements. In conclusion, although digital panoramic radiography was performed for implant imaging diagnosis, only about 30% of the mandibular molar regions showed clear imaging of the upper wall of the mandibular canal along with a measurement accuracy of within 1 mm, suggesting that the accuracy of panoramic radiography is insufficient. (author)

  6. Small-scale anomaly detection in panoramic imaging using neural models of low-level vision

    Science.gov (United States)

    Casey, Matthew C.; Hickman, Duncan L.; Pavlou, Athanasios; Sadler, James R. E.

    2011-06-01

    Our understanding of sensory processing in animals has reached the stage where we can exploit neurobiological principles in commercial systems. In human vision, one brain structure that offers insight into how we might detect anomalies in real-time imaging is the superior colliculus (SC). The SC is a small structure that rapidly orients our eyes to a movement, sound or touch that it detects, even when the stimulus may be on a small-scale; think of a camouflaged movement or the rustle of leaves. This automatic orientation allows us to prioritize the use of our eyes to raise awareness of a potential threat, such as a predator approaching stealthily. In this paper we describe the application of a neural network model of the SC to the detection of anomalies in panoramic imaging. The neural approach consists of a mosaic of topographic maps that are each trained using competitive Hebbian learning to rapidly detect image features of a pre-defined shape and scale. What makes this approach interesting is the ability of the competition between neurons to automatically filter noise, yet with the capability of generalizing the desired shape and scale. We will present the results of this technique applied to the real-time detection of obscured targets in visible-band panoramic CCTV images. Using background subtraction to highlight potential movement, the technique is able to correctly identify targets which span as little as 3 pixels wide while filtering small-scale noise.

  7. Dental panoramic image analysis for enhancement biomarker of mandibular condyle for osteoporosis early detection

    Science.gov (United States)

    Suprijanto; Azhari; Juliastuti, E.; Septyvergy, A.; Setyagar, N. P. P.

    2016-03-01

    Osteoporosis is a degenerative disease characterized by low Bone Mineral Density (BMD). Currently, a BMD level is determined by Dual Energy X-ray Absorptiometry (DXA) at the lumbar vertebrae and femur. Previous studies reported that dental panoramic radiography image has potential information for early osteoporosis detection. This work reported alternative scheme, that consists of the determination of the Region of Interest (ROI) the condyle mandibular in the image as biomarker and feature extraction from ROI and classification of bone conditions. The minimum value of intensity in the cavity area is used to compensate an offset on the ROI. For feature extraction, the fraction of intensity values in the ROI that represent high bone density and the ROI total area is perfomed. The classification will be evaluated from the ability of each feature and its combinations for the BMD detection in 2 classes (normal and abnormal), with the artificial neural network method. The evaluation system used 105 panoramic image data from menopause women which consist of 36 training data and 69 test data that were divided into 2 classes. The 2 classes of classification obtained 88.0% accuracy rate and 88.0% sensitivity rate.

  8. Panoramic lens applications revisited

    Science.gov (United States)

    Thibault, Simon

    2008-04-01

    During the last few years, innovative optical design strategies to generate and control image mapping have been successful in producing high-resolution digital imagers and projectors. This new generation of panoramic lenses includes catadioptric panoramic lenses, panoramic annular lenses, visible/IR fisheye lenses, anamorphic wide-angle attachments, and visible/IR panomorph lenses. Given that a wide-angle lens images a large field of view on a limited number of pixels, a systematic pixel-to-angle mapping will help the efficient use of each pixel in the field of view. In this paper, we present several modern applications of these modern types of hemispheric lenses. Recently, surveillance and security applications have been proposed and published in Security and Defence symposium. However, modern hemispheric lens can be used in many other fields. A panoramic imaging sensor contributes most to the perception of the world. Panoramic lenses are now ready to be deployed in many optical solutions. Covered applications include, but are not limited to medical imaging (endoscope, rigiscope, fiberscope...), remote sensing (pipe inspection, crime scene investigation, archeology...), multimedia (hemispheric projector, panoramic image...). Modern panoramic technologies allow simple and efficient digital image processing and the use of standard image analysis features (motion estimation, segmentation, object tracking, pattern recognition) in the complete 360° hemispheric area.

  9. Measurement accuracy and reliability of tooth length on conventional and CBCT reconstructed panoramic radiographs

    Science.gov (United States)

    Flores-Mir, Carlos; Rosenblatt, Mark R; Major, Paul W.; Carey, Jason P.; Heo, Giseon

    2014-01-01

    INTRODUCTION: This in vivo study assessed accuracy and reliability of tooth length measurements obtained from conventional panoramic radiographs and CBCT panoramic reconstructions to that of a digital caliper (gold standard). METHODS: The sample consisted of subjects who had CBCT and conventional panoramic radiographic imaging and who required maxillary premolar extraction for routine orthodontic treatment. A total of 48 teeth extracted from 26 subjects were measured directly with digital calipers. Radiographic images were scanned and digitally measured in Dolphin 3D software. Accuracy of tooth length measurements made by CBCT panoramic reconstructions, conventional panoramic radiographs and digital caliper (gold standard) were compared to each other by repeated measures one-way ANOVA with Bonferroni correction and by single measures intraclass correlation coefficient. RESULTS: Repeated root length measures with digital calipers, panoramic radiographs and CBCT constructed panoramic-like images were all individually highly reliable. Compared to the caliper (gold standard), tooth measurements obtained from conventional panoramic radiographs were on average 6.3 mm (SD = 2.0 mm) longer, while tooth measurements from CBCT panoramic reconstructions were an average of 1.7 mm (SD = 1.2 mm) shorter. CONCLUSIONS: In comparison to actual tooth lengths, conventional panoramic radiographs were relatively inaccurate, overestimating the lengths by 29%, while CBCT panoramic reconstructions underestimated the lengths by 4%. PMID:25715716

  10. The algorithm to generate color point-cloud with the registration between panoramic image and laser point-cloud

    International Nuclear Information System (INIS)

    Zeng, Fanyang; Zhong, Ruofei

    2014-01-01

    Laser point cloud contains only intensity information and it is necessary for visual interpretation to obtain color information from other sensor. Cameras can provide texture, color, and other information of the corresponding object. Points with color information of corresponding pixels in digital images can be used to generate color point-cloud and is conducive to the visualization, classification and modeling of point-cloud. Different types of digital cameras are used in different Mobile Measurement Systems (MMS).the principles and processes for generating color point-cloud in different systems are not the same. The most prominent feature of the panoramic images is the field of 360 degrees view angle in the horizontal direction, to obtain the image information around the camera as much as possible. In this paper, we introduce a method to generate color point-cloud with panoramic image and laser point-cloud, and deduce the equation of the correspondence between points in panoramic images and laser point-clouds. The fusion of panoramic image and laser point-cloud is according to the collinear principle of three points (the center of the omnidirectional multi-camera system, the image point on the sphere, the object point). The experimental results show that the proposed algorithm and formulae in this paper are correct

  11. Relationship between CBCT and panoramic images of the morphology and angulation of the posterior mandibular jaw bone.

    Science.gov (United States)

    Çiftçi, Mehmet Ertuğrul; Aktan, Ali Murat; İşman, Özlem; Yıldırım, Eren

    2016-04-01

    We determined actual bucco-lingual angulation values and morphological variations of residual bone in the mandibular posterior edentulous region using cone-beam computed tomography (CBCT) and panoramic radiography. A second aim was to investigate whether it was possible to predict bone morphology from panoramic radiographs. Data were collected from 77 consecutive patients referred for both CBCT and panoramic radiography in our department. Two-dimensional and three-dimensional images of the probable implant placement region were investigated. The bucco-lingual angulation values and crest type were determined directly from the cross-sectional images of the posterior edentulous region. The edentulous region was divided into three groups: second premolar, first molar, or second molar region. The observations were evaluated by the computer software, SPSS 22.0 (SPSS Inc. Chicago, USA). The crest type was classified into three groups: type U, type C, or type P. Kappa statistics, Kolmogorov-Smirnov tests, ANOVA, and Kruskal-Wallis tests were used in statistical analyses. The significance level was set at p panoramic radiographs. These results demonstrate predicting high-risk areas in the posterior mandible for implant therapy from panoramic radiography.

  12. Do CBCT scans alter surgical treatment plans? Comparison of preoperative surgical diagnosis using panoramic versus cone-beam CT images.

    Science.gov (United States)

    Wolff, Carolina; Mücke, Thomas; Wagenpfeil, Stefan; Kanatas, Anastasios; Bissinger, Oliver; Deppe, Herbert

    2016-10-01

    Cone beam CT and/or panoramic images are often required for a successful diagnosis in oral and maxillofacial surgery. The aim of this study was to evaluate if 3D diagnostic imaging information had a significant impact on the decision process in six different classes of surgical indications. Records of all patients who had undergone both panoramic X-ray and CBCT imaging due to surgical indications between January 2008 and December 2012 were examined retrospectively. In February 2013, all surgically relevant diagnoses of both conventional panoramic radiographs and CBCT scans were retrieved from the patient's charts. It was recorded whether (1) 3D imaging presented additional surgically relevant information and (2) if the final decision of surgical therapy had been based on 2D or 3D imaging. A total of 253 consecutive patients with both panoramic radiographs and CBCT analysis were eligible for the study. 3D imaging provided significantly more surgically relevant information in cases of implant dentistry, maxillary sinus diagnosis and in oral and maxillofacial traumatology. However, surgical strategies had not been influenced to any significant extent by 3D imaging. Within the limitations of this study it may be concluded that CBCT imaging results in significantly more surgically relevant information in implant dentistry, maxillary sinus diagnosis and in cases of oral and maxillofacial trauma. However, 3D imaging information did not alter significantly the surgical plan that was based on 2D panoramic radiography. Further studies are necessary to define indications for CBCT in detail. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  13. Optos Panoramic 200MA ultrawide-field imaging of peripheral RPE adenoma.

    Science.gov (United States)

    Shah, Sumit P; Jain, Atul; Coffee, Robert E; McCannel, Tara A

    2009-01-01

    To illustrate the utility of ultrawide-angle fundus imaging in documenting a suspicous lesion in the far retinal periphery. Observational case report. A 48 year-old female with new onset floaters in the left eye was noted to have an elevated and heavily pigmented lesion in the far retinal periphery. Optos Panoramic200MA ultrawide-field photography and fluorescein angiography allowed for accurate serial documentaton of the lesion which was determined to be a retinal pigment epithelial adenoma. Over a four year period of observation, Optos ultrawide-field photography of the retinal pigment epithelial adenoma demonstrated stability of the lesion size and mild lesion depigmentation with overlying vitreous pigmentation. The Optos ultra-widefield system demonstrates the ability to rapidly and reproducibily obtain images to monitor a peripheral retinal pigment epithelial adenoma for objective and comparitive detection of change.

  14. ONE-STEP AND TWO-STEP CALIBRATION OF A PORTABLE PANORAMIC IMAGE MAPPING SYSTEM

    Directory of Open Access Journals (Sweden)

    P.-C. Wang

    2012-07-01

    Full Text Available A Portable Panoramic Image Mapping System (PPIMS is proposed for rapid acquisition of three-dimensional spatial information. By considering the convenience of use, cost, weight of equipment, precision, and power supply, the designed PPIMS is equipped with 6 circularly arranged cameras to capture panoramic images and a GPS receiver for positioning. The motivation for this design is to develop a hand-held Mobile Mapping System (MMS for some difficult accessing areas by vehicle MMS, such as rugged terrains, forest areas, heavily damaged disaster areas, and crowed places etc. This PPIMS is in fact a GPS assisted close-range photogrammetric system. Compared with the traditional close-range photogrammetry, PPIMS can reduce the need of ground control points significantly. Under the condition of knowing the relative geometric relationships of the equipped sensors, the elements of exterior orientation of each captured image can be solved. However, the procedure of a system calibration should be done accurately to determine the relative geometric relationships of multi-cameras and the GPS antenna center, before the PPIMS can be applied for geo-referenced mapping. In this paper, both of one-step and two-step calibration procedures for PPIMS are performed to determine the lever-arm offsets and boresight angles among cameras and GPS. The performance of the one-step and two-step calibration is evaluated through the analysis of the experimental results. The comparison between these two calibration procedures was also conducted. The two-step calibration method outperforms the one-step calibration method in terms of calibration accuracy and operation convenience. We expect that the proposed two-step calibration procedure can also be applied to other platform-based MMSs.

  15. Panoramic, Macro and Micro Multispectral Imaging: An Affordable System for Mapping Pigments on Artworks

    Directory of Open Access Journals (Sweden)

    Antonino Cosentino

    2015-07-01

    Full Text Available Multispectral imaging systems are used in art examinations to map and identify pigments, binders and areas of retouching. A monochromatic camera is combined with an appropriate wavelength selection system and acquires a variable number of spectral images of a scene. These images are then stacked into a reflectance imaging cube to reconstruct reflectance spectra from each of the images’ pixels. This paper presents an affordable multispectral imaging system composed of a monochromatic CCD camera and a set of only 12 interference filters for mapping pigments on works of art and for the tentative identification of such pigments. This work demonstrates the versatility of this set-up, a versatility enabling it to be applied to different tasks, involving examination and documentation of objects of varying size. Use of this multispectral camera for both panoramic and macro photography is discussed, together with the possibilities facilitated from the coupling of the system to a stereomicroscope and a compound microscope. This system is of particular interest for the cultural heritage sector because of its hardware simplicity and acquisition speed, as well as its lightness and small dimensions.

  16. A study for determination of various positioning errors in digital panoramic radiography for evaluation of diagnostic image quality

    Directory of Open Access Journals (Sweden)

    Apurva Mohite Khator

    2017-01-01

    Full Text Available Faulty radiographs have poor diagnostic quality, and repetition of such poor-quality radiographs leads to increased patient exposure to radiation. Since digital panoramic radiography has replaced manual radiography, the only hindrance in producing good-quality radiographs is the positioning errors. Objectives: Our study aims to determine the various positioning errors and their relative frequency and to identify those errors directly responsible for diagnostically inadequate images. Materials and Methods: Five hundred panoramic radiographs taken serially (from the year 2007 were retrospectively assessed for the positioning errors by three oral and maxillofacial radiology specialists using a performa enlisting the errors. The three specialists had different duration of clinical experience and they evaluated the orthopantograms as diagnostically acceptable or unacceptable. They also observed the relative frequency of all the positioning errors. Statistical Analysis: The kappa value for intraobserver agreement was calculated, which suggested that the agreement among the observers was fair. Results: Of the 500 panoramic radiographs viewed by the three observers, 25 (5% had no errors, while 475 (95% showed one or more positioning errors. The most common error in our study was found to be head turned to one side (33.8% and the least common error was patient movement during exposure (1.8%. Conclusion: Positioning errors are very common in digital panoramic radiography, and they lead to production of poor-quality radiographs. The operator should take this fact into consideration and spend more time in patient positioning, thereby reducing the repetition of radiographs and unwanted patient exposure.

  17. Single-photon imaging

    CERN Document Server

    Seitz, Peter

    2011-01-01

    The acquisition and interpretation of images is a central capability in almost all scientific and technological domains. In particular, the acquisition of electromagnetic radiation, in the form of visible light, UV, infrared, X-ray, etc. is of enormous practical importance. The ultimate sensitivity in electronic imaging is the detection of individual photons. With this book, the first comprehensive review of all aspects of single-photon electronic imaging has been created. Topics include theoretical basics, semiconductor fabrication, single-photon detection principles, imager design and applications of different spectral domains. Today, the solid-state fabrication capabilities for several types of image sensors has advanced to a point, where uncoooled single-photon electronic imaging will soon become a consumer product. This book is giving a specialist´s view from different domains to the forthcoming “single-photon imaging” revolution. The various aspects of single-photon imaging are treated by internati...

  18. Preoperative implant planning considering alveolar bone grafting needs and complication prediction using panoramic versus CBCT images

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, Maria Eugenia; Jacobs, Reinhilde [OIC, OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, University of Leuven, Leuven (Belgium); Noriega, Jorge [Master of Periodontology, Universidad San Martin de Porres, Lima (Peru)

    2014-09-15

    This study was performed to determine the efficacy of observers' prediction for the need of bone grafting and presence of perioperative complications on the basis of cone-beam computed tomography (CBCT) and panoramic radiographic (PAN) planning as compared to the surgical outcome. One hundred and eight partially edentulous patients with a need for implant rehabilitation were referred for preoperative imaging. Imaging consisted of PAN and CBCT images. Four observers carried out implant planning using PAN image datasets, and at least one month later, using CBCT image datasets. Based on their own planning, the observers assessed the need for bone graft augmentation as well as complication prediction. The implant length and diameter, the need for bone graft augmentation, and the occurrence of anatomical complications during planning and implant placement were statistically compared. In the 108 patients, 365 implants were installed. Receiver operating characteristic analyses of both PAN and CBCT preoperative planning showed that CBCT performed better than PAN-based planning with respect to the need for bone graft augmentation and perioperative complications. The sensitivity and the specificity of CBCT for implant complications were 96.5% and 90.5%, respectively, and for bone graft augmentation, they were 95.2% and 96.3%, respectively. Significant differences were found between PAN-based planning and the surgery of posterior implant lengths. Our findings indicated that CBCT-based preoperative implant planning enabled treatment planning with a higher degree of prediction and agreement as compared to the surgical standard. In PAN-based surgery, the prediction of implant length was poor.

  19. Contrast reference values in panoramic radiographic images using an arch-form phantom stand

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jae Myung [Dept. of Oral and Maxillofacial Surgery, Ilsan Paik Hospital, Inje University College of Medicine, Goyang (Korea, Republic of); Lee, Che Na; Kim, Jo Eun; Huh, Kyung Hoe; Yi, Won Jin; Heo, Min Suk; Choi, Soon Chul; Lee, Sam Sun [Dept. of Oral and Maxillofacial Radiology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    2016-09-15

    The purpose of this study was to investigate appropriate contrast reference values (CRVs) by comparing the contrast in phantom and clinical images. Phantom contrast was measured using two methods: (1) counting the number of visible pits of different depths in an aluminum plate, and (2) obtaining the contrast-to-noise ratio (CNR) for 5 tissue-equivalent materials (porcelain, aluminum, polytetrafluoroethylene [PTFE], polyoxymethylene [POM], and polymethylmethacrylate [PMMA]). Four panoramic radiographs of the contrast phantom, embedded in the 4 different regions of the arch-form stand, and 1 real skull phantom image were obtained, post-processed, and compared. The clinical image quality evaluation chart was used to obtain the cut-off values of the phantom CRV corresponding to the criterion of being adequate for diagnosis. The CRVs were obtained using 4 aluminum pits in the incisor and premolar region, 5 aluminum pits in the molar region, and 2 aluminum pits in the temporomandibular joint (TMJ) region. The CRVs obtained based on the CNR measured in the anterior region were: porcelain, 13.95; aluminum, 9.68; PTFE, 6.71; and POM, 1.79. The corresponding values in the premolar region were: porcelain, 14.22; aluminum, 8.82; PTFE, 5.95; and POM, 2.30. In the molar region, the following values were obtained: porcelain, 7.40; aluminum, 3.68; PTFE, 1.27; and POM, - 0.18. The CRVs for the TMJ region were: porcelain, 3.60; aluminum, 2.04; PTFE, 0.48; and POM, - 0.43. CRVs were determined for each part of the jaw using the CNR value and the number of pits observed in phantom images.

  20. Contrast reference values in panoramic radiographic images using an arch-form phantom stand

    International Nuclear Information System (INIS)

    Shin, Jae Myung; Lee, Che Na; Kim, Jo Eun; Huh, Kyung Hoe; Yi, Won Jin; Heo, Min Suk; Choi, Soon Chul; Lee, Sam Sun

    2016-01-01

    The purpose of this study was to investigate appropriate contrast reference values (CRVs) by comparing the contrast in phantom and clinical images. Phantom contrast was measured using two methods: (1) counting the number of visible pits of different depths in an aluminum plate, and (2) obtaining the contrast-to-noise ratio (CNR) for 5 tissue-equivalent materials (porcelain, aluminum, polytetrafluoroethylene [PTFE], polyoxymethylene [POM], and polymethylmethacrylate [PMMA]). Four panoramic radiographs of the contrast phantom, embedded in the 4 different regions of the arch-form stand, and 1 real skull phantom image were obtained, post-processed, and compared. The clinical image quality evaluation chart was used to obtain the cut-off values of the phantom CRV corresponding to the criterion of being adequate for diagnosis. The CRVs were obtained using 4 aluminum pits in the incisor and premolar region, 5 aluminum pits in the molar region, and 2 aluminum pits in the temporomandibular joint (TMJ) region. The CRVs obtained based on the CNR measured in the anterior region were: porcelain, 13.95; aluminum, 9.68; PTFE, 6.71; and POM, 1.79. The corresponding values in the premolar region were: porcelain, 14.22; aluminum, 8.82; PTFE, 5.95; and POM, 2.30. In the molar region, the following values were obtained: porcelain, 7.40; aluminum, 3.68; PTFE, 1.27; and POM, - 0.18. The CRVs for the TMJ region were: porcelain, 3.60; aluminum, 2.04; PTFE, 0.48; and POM, - 0.43. CRVs were determined for each part of the jaw using the CNR value and the number of pits observed in phantom images

  1. Association of calcified carotid atheromas visualized on panoramic images and aortic arch calcifications seen on chest radiographs of postmenopausal women.

    Science.gov (United States)

    Friedlander, Arthur H; El-Saden, Suzie M; Aghazadehsanai, Nona; Chang, Tina I; Harada, Nancy D; Garrett, Neal R

    2014-04-01

    Occult atherosclerotic disease is the leading cause of death among older women. The authors hypothesized that women with calcified carotid artery plaque (CCAP) visualized on panoramic images were more likely to have aortic arch calcifications (AAC) that were visible on chest radiographs (CRs), a risk indicator of experiencing cardiovascular events, than would matched cohorts who did not have atheromas. The authors obtained the CRs of 36 female veterans (≥ 50 years) who had CCAP and atherogenically risk-matched them to those of 36 women without CCAP. A radiologist evaluated the CRs for AAC. Other study variables included age, ethnicity, body mass index and presence or absence of hypertension, diabetes and dyslipidemia. The authors computed descriptive and bivariate statistics. Women 60 years or older who had evidence of CCAP on their panoramic radiographs were significantly (P = .022; 95 percent confidence interval, 1.298-26.223) more likely to have evidence of AAC on their CRs than were similarly aged women who did not have evidence of CCAP. This association was not evident in women younger than 60 years. Among women who were both younger and older than 60 years, there was no evident association between the presence of CCAP and the severity (on a four point scale [0-3]) of AAC calcification. Prevalence of carotid plaque on panoramic images of women 60 years or older is significantly associated with presence of aortic arch calcifications on CRs. Panoramic images of women 60 years or older must be evaluated for CCAP, given their association with AAC. Patients with atheromas should be referred to their physicians for further evaluation given the systemic implications.

  2. Dose measurements for dental cone-beam CT: a comparison with MSCT and panoramic imaging

    International Nuclear Information System (INIS)

    Deman, P; Ford, N L; Atwal, P; Duzenli, C; Thakur, Y

    2014-01-01

    To date there is a lack of published information on appropriate methods to determine patient doses from dental cone-beam computed tomography (CBCT) equipment. The goal of this study is to apply and extend the methods recommended in the American Association of Physicists in Medicine (AAPM) Report 111 for CBCT equipment to characterize dose and effective dose for a range of dental imaging equipment. A protocol derived from the one proposed by Dixon et al (2010 Technical Report 111, American Association of Physicist in Medicine, MD, USA), was applied to dose measurements of multi-slice CT, dental CBCT (small and large fields of view (FOV)) and a dental panoramic system. The computed tomography dose index protocol was also performed on the MSCT to compare both methods. The dose distributions in a cylindrical polymethyl methacrylate phantom were characterized using a thimble ionization chamber and Gafchromic™ film (beam profiles). Gafchromic™ films were used to measure the dose distribution in an anthropomorphic phantom. A method was proposed to extend dose estimates to planes superior and inferior to the central plane. The dose normalized to 100 mAs measured in the center of the phantom for the large FOV dental CBCT (11.4 mGy/100 mAs) is two times lower than that of MSCT (20.7 mGy/100 mAs) for the same FOV, but approximately 15 times higher than for a panoramic system (0.6 mGy/100 mAs). The effective dose per scan (in clinical conditions) found for the dental CBCT are 167.60 ± 3.62, 61.30 ± 3.88 and 92.86 ± 7.76 mSv for the Kodak 9000 (fixed scan length of 3.7 cm), and the iCAT Next Generation for 6 cm and 13 cm scan lengths respectively. The method to extend the dose estimates from the central slice to superior and inferior slices indicates a good agreement between theory and measurement. The Gafchromic™ films provided useful beam profile data and 2D distributions of dose in phantom. (paper)

  3. Object position and image magnification in dental panoramic radiography: a theoretical analysis.

    Science.gov (United States)

    Devlin, H; Yuan, J

    2013-01-01

    The purpose of our study was to investigate how image magnification and distortion in dental panoramic radiography are influenced by object size and position for a small round object such as a ball bearing used for calibration. Two ball bearings (2.5 mm and 6 mm in diameter) were placed at approximately the same position between the teeth of a plastic skull and radiographed 21 times. The skull was replaced each time. Their images were measured by software using edge detection and ellipse-fitting algorithms. Using a standard definition of magnification, equations were derived to enable an object's magnification to be determined from its position and vice versa knowing the diameter and machine parameters. The average magnification of the 2.5 mm ball bearing was 1.292 (0.0445) horizontally and 1.257 (0.0067) vertically with a mean ratio of 1.028 (0.0322); standard deviations are in parentheses. The figures for the 6 mm ball bearing were 1.286 (0.0068), 1.255 (0.0018) and 1.025 (0.0061), respectively. Derived positions of each ball bearing from magnification were more consistent horizontally than vertically. There was less variation in either direction for the 6 mm ball bearing than the 2.5 mm one. Automatic measurement of image size resulted in less variation in vertical magnification values than horizontal. There are only certain positions in the focal trough that achieve zero distortion. Object location can be determined from its diameter, measured magnification and machine parameters. The 6 mm diameter ball bearing is preferable to the 2.5 mm one for more reliable magnification measurement and position determination.

  4. Effect of rare earth filtration on patient exposure, dose reduction, and image quality in oral panoramic radiology

    International Nuclear Information System (INIS)

    Tyndall, D.A.; Washburn, D.B.

    1987-01-01

    Rare earth intensifying screen material (Gd2O2S:Tb) was added to the standard Al filtration of an oral panoramic x-ray unit, resulting in a beam capable of achieving reductions in patient dose without a loss of image quality. The added rare earth filtration technique resulted in patient dose reductions of 21-56%, depending on anatomic sites, when compared to the conventional Al filtration technique. Films generated from both techniques were measured densitometrically and evaluated by a panel of practicing clinicians. Diagnostically significant differences were minimal. The results indicate that use of rare earth filters in oral panoramic radiography is an effective means of reducing exposures of dental patients to ionizing radiation

  5. The information content of panoramic images I: The rotational errors and the similarity of views in rectangular experimental arenas.

    Science.gov (United States)

    Stürzl, Wolfgang; Cheung, Allen; Cheng, Ken; Zeil, Jochen

    2008-01-01

    Animals relocating a target corner in a rectangular space often make rotational errors searching not only at the target corner but also at the diagonally opposite corner. The authors tested whether view-based navigation can explain rotational errors by recording panoramic snapshots at regularly spaced locations in a rectangular box. The authors calculated the global image difference between the image at each location and the image recorded at a target location in 1 of the corners, thus creating a 2-dimensional map of image differences. The authors found the most pronounced minima of image differences at the target corner and the diagonally opposite corner--conditions favoring rotational errors. The authors confirmed these results in virtual reality simulations and showed that the relative salience of different visual cues determines whether image differences are dominated by geometry or by features. The geometry of space is thus implicitly contained in panoramic images and does not require explicit computation by a dedicated module. A testable prediction is that animals making rotational errors in rectangular spaces are guided by remembered views. Copyright (c) 2008 APA, all rights reserved.

  6. Risk factors associated with inferior alveolar nerve injury after extraction of the mandibular third molar--a comparative study of preoperative images by panoramic radiography and computed tomography.

    Science.gov (United States)

    Hasegawa, T; Ri, S; Shigeta, T; Akashi, M; Imai, Y; Kakei, Y; Shibuya, Y; Komori, T

    2013-07-01

    In this study we investigated the relationships among the risk factors for inferior alveolar nerve injury (IANI), and the difference between preoperative imaging findings on panoramic radiographs and computed tomography (CT), by univariate and multivariate analyses. We determined the following to be significant variables by multivariate analysis: panoramic radiographic signs, such as the loss of the white line of the inferior alveolar canal or the diversion of the canal; excessive haemorrhage during extraction; and a close relationship of the roots to the IAN (type 1 cases) on CT examination. CT findings of type 1 were associated with a significantly higher risk (odds ratio 43.77) of IANI. In addition, many panoramic findings were not consistent with CT findings (275 of 440 teeth; 62.5%). These results suggest that CT findings may be able to predict the development of IANI more accurately than panoramic findings. Panoramic radiography alone did not provide sufficiently reliable images required for predicting IANI. Therefore, when the panoramic image is suggestive of a close relationship between the impacted tooth and the IAN, CT should be recommended as a means of conducting further investigations. Copyright © 2013 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  7. Panoramic and skull imaging may aid in the identification of multiple myeloma lesions

    Science.gov (United States)

    Faria, Karina-Morais; Brandão, Thais-Bianca; Silva, Wagner-Gomes; Pereira, Juliana; Neves, Frederico-Sampaio; Alves, Marcelo-Corrêa; Shintaku, Werner-Harumiti; Lopes, Marcio-Ajudarte; Ribeiro, Carolina-Prado; Migliorati, Cesar-Augusto; Santos-Silva, Alan-Roger

    2018-01-01

    Background The purpose of this study was to investigate the presence of punched-out lesions in craniofacial bones using three different radiographic protocols in a large cohort of patients. Material and Methods One hundred fifty-five MM patients were evaluated using panoramic and skull (frontal and lateral) radiographs, which were performed in all patients at the time of MM diagnosis. The diagnostic potential for detecting punched-out lesions was compared among the radiographic techniques. Results MM punched-out lesions were identified in 135 (87%) panoramic radiographs, 141 (91%) frontal and 144 (93%) lateral skull radiographs. Punched out-lesions were synchronously present in skull and jawbones in 129 (83.23 %) cases. The lesions were detected exclusively in skull in 18 (11.61%) cases and exclusively in jawbones in 6 (3.87%) cases. Punched out-lesion mainly affected the skull and the jawbones in a synchronous way (p<0.001) rather than separately. Conclusions All investigated radiographic techniques (panoramic, frontal and lateral skull approaches) demonstrated high detection rates for MM punched-out lesions in craniofacial bones. Panoramic radiography may aid to the radiographic protocols to identify multiple myeloma bone lesions. Key words:Multiple myeloma, osteolytic lesions, panoramic radiography. PMID:29274154

  8. Diagnostic performance of dental students in identifying mandibular condyle fractures by panoramic radiography and the usefulness of reference images

    International Nuclear Information System (INIS)

    Cho, Bong Hae

    2011-01-01

    The purpose of this study was to evaluate the diagnostic performance of dental students in detection of mandibular condyle fractures and the effectiveness of reference panoramic images. Forty-six undergraduates evaluated 25 panoramic radiographs for condylar fractures and the data were analyzed through receiver operating characteristic (ROC) analysis. After a month, they were divided into two homogeneous groups based on the first results and re-evaluated the images with (group A) or without (group B) reference images. Eight reference images included indications showing either typical condylar fractures or anatomic structures which could be confused with fractures. Paired t-test was used for statistical analysis of the difference between the first and the second evaluations for each group, and student's t-test was used between the two groups in the second evaluation. The intra- and inter-observer agreements were evaluated with Kappa statistics. Intra- and inter-observer agreements were substantial (k=0.66) and moderate (k=0.53), respectively. The area under the ROC curve (Az) in the first evaluation was 0.802. In the second evaluation, it was increased to 0.823 for group A and 0.814 for group B. The difference between the first and second evaluations for group A was statistically significant (p<0.05), however there was no statistically significant difference between the two groups in the second evaluation. Providing reference images to less experienced clinicians would be a good way to improve the diagnostic ability in detecting condylar fracture.

  9. The influence of dental implants in periapical and panoramic radiographs and cone beam computed tomography images: a clinical study.

    Science.gov (United States)

    Felix, Rafael Perdomo; Shinkai, Rosemary Sadami Arai; Rockenbach, Maria Ivete Bolzan

    2018-01-01

    The aim of this study was to analyze the influence of dental implants on the radiographic density of the peri-implant region in tomographic and radiographic examinations. A sample of 21 dental implants from 10 patients with Brånemark-protocol prostheses was evaluated based on postoperative control images, including periapical radiography (paralleling technique), panoramic radiography, and cone beam computed tomography (CBCT). The density means of 6 defined areas near dental implants were calculated and compared considering their locations and the different imaging examinations. The CBCT examinations showed significantly different densities among the measured areas (P implants in all the examinations: CBCT (127.88 and 120.71), panoramic (106.51 and 106.09), and periapical (120.32). The sagittal CBCT images were measured in 2 different sections, and in both sections those areas closer to implants showed mean densities that were significantly higher than means from more distant areas (P implant region confirmed the interference of dental implants in radiographic and tomographic images. CBCT images suffered the greatest interference from dental implants.

  10. Diagnostic performance of dental students in identifying mandibular condyle fractures by panoramic radiography and the usefulness of reference images.

    Science.gov (United States)

    Cho, Bong-Hae

    2011-06-01

    The purpose of this study was to evaluate the diagnostic performance of dental students in detection of mandibular condyle fractures and the effectiveness of reference panoramic images. Forty-six undergraduates evaluated 25 panoramic radiographs for condylar fractures and the data were analyzed through receiver operating characteristic (ROC) analysis. After a month, they were divided into two homogeneous groups based on the first results and re-evaluated the images with (group A) or without (group B) reference images. Eight reference images included indications showing either typical condylar fractures or anatomic structures which could be confused with fractures. Paired t-test was used for statistical analysis of the difference between the first and the second evaluations for each group, and student's t-test was used between the two groups in the second evaluation. The intra- and inter-observer agreements were evaluated with Kappa statistics. Intra- and inter-observer agreements were substantial (k=0.66) and moderate (k=0.53), respectively. The area under the ROC curve (Az) in the first evaluation was 0.802. In the second evaluation, it was increased to 0.823 for group A and 0.814 for group B. The difference between the first and second evaluations for group A was statistically significant (p<0.05), however there was no statistically significant difference between the two groups in the second evaluation. Providing reference images to less experienced clinicians would be a good way to improve the diagnostic ability in detecting condylar fracture.

  11. Novel Airborne Video Sensors. Super-Resolution Multi-Camera Panoramic Imaging System for UAVs

    National Research Council Canada - National Science Library

    Negahdaripour, Shahriar

    2004-01-01

    ... by computer simulations, with/without supplementary gyro and GPS. How various system parameters impact the achievable precision of panoramic system in 3-D terrain feature localization and UAV motion estimation is determined for the A=0.5-2 KM...

  12. Impact of malpositioning on panoramic radiography in implant dentistry.

    Science.gov (United States)

    Riecke, Björn; Friedrich, Reinhard E; Schulze, Dirk; Loos, Clemens; Blessmann, Marco; Heiland, Max; Wikner, Johannes

    2015-05-01

    The widely used panoramic radiography as a special kind of tomography underlies intrinsic procedural restrictions such as poor definition, inconsistent magnification, geometric distortion and spatial depositioning of objects situated outside the focal trough. This results in a non-anatomic display of the radiographed anatomic structures. Individual mandibular angle and width of the jaws, adjustment of the focal trough, jaw incongruence as well as patient positioning increase the inconsistency in display of the radiographed objects. This study precisely evaluated the quantitative impact of object malpositioning on the display in panoramic radiography. A special dental implant model was highly accurate three dimensionally malpositioned and panoramic radiographs were taken. Automated image analysis was performed to exclude subjective assessment error. Precise and retraceable object deposition of up to 5 mm or 5° resulted in relevant deposition of objects and significant changes in object size and inter-object distances in the panoramic image. Unidirectional malpositioning lead to multiple errors in display. The extent of malpositioning-related display errors additionally to the known physicotechnical insufficiencies of the panoramic radiography demonstrates its limitations in precisely interpreting spatial relationships. Measurements within the panoramic radiography must not claim reliability. For a single object securely positioned in the focal trough and perpendicular to the central X-ray beam, measurements may be trustworthy on clinical scale. Once sterical relationships to other structures are evaluated, reliability must be questioned.

  13. Panoramic zonography in ear radiography

    International Nuclear Information System (INIS)

    Hallikainen, D.; Sjoeblom, C.J.; Toetterman, S.; Melartin, E.; Paukku, P.; Helsinki Univ. Central Hospital

    1983-01-01

    Thirty ears in 15 patients were examined by plain film radiography and by panoramic zonography with two tracks: A cylindrical concave image layer with 26 mm. radius and a paired sagittal image layer, at 51 mm. distance from midline. The films were interpreted according to the visibility of 23 different anatomic details. On panoramic films the visualization was better in 14 details, equal in 6 and worse in 3 compared to the plain films. The result suggests that panoramic techniques can replace conventional radiography of the ear. (orig.)

  14. Diagnostic performance of dental students in identifying mandibular condyle fractures by panoramic radiography and the usefulness of reference images

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Bong Hae [School of Dentistry, Pusan National University, Pusan (Korea, Republic of)

    2011-06-15

    The purpose of this study was to evaluate the diagnostic performance of dental students in detection of mandibular condyle fractures and the effectiveness of reference panoramic images. Forty-six undergraduates evaluated 25 panoramic radiographs for condylar fractures and the data were analyzed through receiver operating characteristic (ROC) analysis. After a month, they were divided into two homogeneous groups based on the first results and re-evaluated the images with (group A) or without (group B) reference images. Eight reference images included indications showing either typical condylar fractures or anatomic structures which could be confused with fractures. Paired t-test was used for statistical analysis of the difference between the first and the second evaluations for each group, and student's t-test was used between the two groups in the second evaluation. The intra- and inter-observer agreements were evaluated with Kappa statistics. Intra- and inter-observer agreements were substantial (k=0.66) and moderate (k=0.53), respectively. The area under the ROC curve (Az) in the first evaluation was 0.802. In the second evaluation, it was increased to 0.823 for group A and 0.814 for group B. The difference between the first and second evaluations for group A was statistically significant (p<0.05), however there was no statistically significant difference between the two groups in the second evaluation. Providing reference images to less experienced clinicians would be a good way to improve the diagnostic ability in detecting condylar fracture.

  15. Panoramic zonography in radiographing the carpus

    International Nuclear Information System (INIS)

    Toetterman, S.; Paukku, P.; Hallikainen, D.

    1984-01-01

    The panoramic radiography technique enables the visualization of different image layers. In the search for a method for improving the radiological fracture diagnosis of the carpal bones the suitability of this technique for visualization of the carpal bones was tested. For panoramic zonography, Zonarc (Palomex, Finland) and its programme with cylindrical image layer with 85 mm radius was used. The present study showed that panoramic technique is suitable for discerning the carpal bones but not for demonstrating their skeletal details. (orig.)

  16. Panoramic radiological study to identify locally displaced maxillary canines in Bangladeshi population

    Energy Technology Data Exchange (ETDEWEB)

    Alif, Sheikh Mohammad [Northern University, Dhaka (Bangladesh); Haque, Sejuty [Bangladesh Dental College, Dhaka (Bangladesh); Nimmi, Naima; Ashraf, Ali [AIKO Dental Clinic and Implant Centre, Dhaka (Bangladesh); Khan, Saeed Hossain; Khan, Mahfujul Haq [WHO Collaborating Centre and Ibrahim Medical College, Dhaka (Bangladesh)

    2011-12-15

    This study was performed to determine the prevalence of maxillary canine impaction on a basis of a single panoramic radiograph in Bangladeshi population. A random sample of seven hundred panoramic radiographs was collected from the patient record of a dental clinic. All the selected panoramic radiographs were taken from January 2009 to August 2010 by a single panoramic radiograph machine with the same exposure time (19 seconds) for all radiographs. One hundred and twenty panoramic radiographs were excluded to minimize the selection bias. In a dim lit room, an observer assessed the radiographs on a standard radiographic light box. The position of the impacted maxillary canine was recorded in line with the longitudinal axis of a tooth using the edge of a metal ruler. Data were subsequently put on SPSS 11.5 software and chi-square (x{sup 2}) tests were applied to find out the association. Among 580 panoramic radiographs it was found that impacted maxillary canines were present in only 7 (1.2%) radiographs. A statistical significant difference was found between the age of the patients and the vertical position of the impacted canines (p=0.000) and between the age of the patients and the horizontal position of the impacted canines (p=0.003). The prevalence was found to be low compared with the present study from the limitation of panoramic image. Further study needs to include three-dimensional imaging modality.

  17. A retrospective comparative study of cone-beam computed tomography versus rendered panoramic images in identifying the presence, types, and characteristics of dens invaginatus in a Turkish population.

    Science.gov (United States)

    Capar, Ismail Davut; Ertas, Huseyin; Arslan, Hakan; Tarim Ertas, Elif

    2015-04-01

    This study assessed the presence, characteristics, and type of dens invaginatus (DI) by using cone-beam computed tomography (CBCT) and panoramic images rendered from CBCT images. In addition, the findings of the imaging techniques were compared. We evaluated 300 CBCT images to determine the type of DI, the presence of an impacted tooth near the DI, and the presence of apical pathosis. The McNemar test was used to compare the prevalence of DI according to CBCT and panoramic images rendered from CBCT images. The presence of DI was lower on panoramic images rendered from CBCT images (3% of the patients) compared with on CBCT images (10.7% of the patients) (P invaginatus (65.9%), followed by type II (29.5%) and type III (4.6%). All patients with type III DI and 25% of the patients with type II DI had apical pathosis at the time of referral, but periapical lesions were not observed in teeth with type I DI. In total, 13.6% of DI cases had impacted teeth. CBCT can be recommended as an effective diagnostic device for identifying DI because it provides an accurate representation of the external and internal dental anatomy. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  18. CONSTRUCTION OF A 3D MEASURABLE VIRTUAL REALITY ENVIRONMENT BASED ON GROUND PANORAMIC IMAGES AND ORBITAL IMAGERY FOR PLANETARY EXPLORATION APPLICATIONS

    Directory of Open Access Journals (Sweden)

    K. Di

    2012-08-01

    Full Text Available This paper presents a method of constructing a measurable virtual reality environment based on ground (lander/rover panoramic images and orbital imagery. Ground panoramic images acquired by a lander/rover at different azimuth and elevation angles are automatically registered, seamlessly mosaicked and projected onto a cylindrical surface. A specific function is developed for inverse calculation from the panorama back to the original images so that the 3D information associated with the original stereo images can be retrieved or computed. The three-dimensional measurable panorama is integrated into a globe viewer based on NASA World Wind. The techniques developed in this research can be used in visualization of and measuring the orbital and ground images for planetary exploration missions, especially rover missions.

  19. Combination of panoramic and fluorescence endoscopic images to obtain tumor spatial distribution information useful for bladder cancer detection

    Science.gov (United States)

    Olijnyk, S.; Hernández Mier, Y.; Blondel, W. C. P. M.; Daul, C.; Wolf, D.; Bourg-Heckly, G.

    2007-07-01

    Bladder cancer is widely spread. Moreover, carcinoma in situ can be difficult to diagnose as it may be difficult to see, and become invasive in 50 % of case. Non invasive diagnosis methods like photodynamic or autofluorescence endoscopy allow enhancing sensitivity and specificity. Besides, bladder tumors can be multifocal. Multifocality increases the probability of recurrence and infiltration into bladder muscle. Analysis of spatial distribution of tumors could be used to improve diagnosis. We explore the feasibility to combine fluorescence and spatial information on phantoms. We developed a system allowing the acquisition of consecutive images under white light or UV excitation alternatively and automatically along the video sequence. We also developed an automatic image processing algorithm to build a partial panoramic image from a cystoscopic sequence of images. Fluorescence information is extracted from wavelength bandpass filtered images and superimposed over the cartography. Then, spatial distribution measures of fluorescent spots can be computed. This cartography can be positioned on a 3D generic shape of bladder by selecting some reference points. Our first results on phantoms show that it is possible to obtain cartography with fluorescent spots and extract quantitative information of their spatial distribution on a "wide" field of view basis.

  20. Comparison of radiation absorbed dose in target organs in maxillofacial imaging with panoramic, conventional linear tomography, cone beam computed tomography and computed tomography

    Directory of Open Access Journals (Sweden)

    Panjnoush M.

    2009-12-01

    Full Text Available "nBackground and Aim: The objective of this study was to measure and compare the tissue absorbed dose in thyroid gland, salivary glands, eye and skin in maxillofacial imaging with panoramic, conventional linear tomography, cone beam computed tomography (CBCT and computed tomography (CT."nMaterials and Methods: Thermoluminescent dosimeters (TLD were implanted in 14 sites of RANDO phantom to measure average tissue absorbed dose in thyroid gland, parotid glands, submandibular glands, sublingual gland, lenses and buccal skin. The Promax (PLANMECA, Helsinki, Finland unit was selected for Panoramic, conventional linear tomography and cone beam computed tomography examinations and spiral Hispeed/Fxi (General Electric,USA was selected for CT examination. The average tissue absorbed doses were used for the calculation of the equivalent and effective doses in each organ."nResults: The average absorbed dose for Panoramic ranged from 0.038 mGY (Buccal skin to 0.308 mGY (submandibular gland, linear tomography ranged from 0.048 mGY (Lens to 0.510 mGY (submandibular gland,CBCT ranged from 0.322 mGY (thyroid glad to 1.144 mGY (Parotid gland and in CT ranged from 2.495 mGY (sublingual gland to 3.424 mGY (submandibular gland. Total effective dose in CBCT is 5 times greater than Panoramic and 4 times greater than linear tomography, and in CT, 30 and 22 times greater than Panoramic and linear tomography, respectively. Total effective dose in CT is 6 times greater than CBCT."nConclusion: For obtaining 3-dimensional (3D information in maxillofacial region, CBCT delivers the lower dose than CT, and should be preferred over a medical CT imaging. Furthermore, during maxillofacial imaging, salivary glands receive the highest dose of radiation.

  1. COMPARISON BETWEEN ABSORBED DOSES IN TARGET ORGANS IN PANORAMIC RADIOGRAPHY, USING SINGLE EMULSION AND DOUBLE EMULSION FILMS

    Directory of Open Access Journals (Sweden)

    A. R. Talaeipour

    2007-07-01

    Full Text Available "nThe use of panoramic radiography, due to its numerous advantages, is increasing. Radiographic films used in this technique are of double emulsion (DE type which are used with intensifying screens. Single emulsion (SE films can also be used. The purpose of this study was to determine the exposure parameters to achieve an appropriate optical density in these two types of films, and to estimate under such parameters, radiation doses to mandibular bone marrow (MBM, thyroid gland and parotid gland. This study was performed through a tissue equivalent phantom. First, with various tube voltage and tube current, 128 radiographs were taken of phantom with these two types of films. After examining the optical densities, the exposure parameters under which both films have the same density, were determined. Then, phantom again was exposed and MBM, thyroid gland and parotid gland absorbed doses were measured, using TLDs. It was demonstrated that: 1 SE films, in order to provide appropriate optical density, require two times radiation in comparison with double emulsion film; 2 using SE films increases MBM dose, up to 2-2.5 times, thyroid gland dose up to 1.7-2 times and parotid gland dose up to 1.3 times, in comparison with DE films; 3 in DE films, under lower exposure parameters and desirable processing, MBM dose up to 3.5 times, thyroid gland dose up to 1.5 times and parotid gland dose up to 2.5 times will increase. Considering that the risk of radiation induced cancers increases with repeated radiation doses, using SE films is not recommended.

  2. Low-cost panoramic infrared surveillance system

    Science.gov (United States)

    Kecskes, Ian; Engel, Ezra; Wolfe, Christopher M.; Thomson, George

    2017-05-01

    A nighttime surveillance concept consisting of a single surface omnidirectional mirror assembly and an uncooled Vanadium Oxide (VOx) longwave infrared (LWIR) camera has been developed. This configuration provides a continuous field of view spanning 360° in azimuth and more than 110° in elevation. Both the camera and the mirror are readily available, off-the-shelf, inexpensive products. The mirror assembly is marketed for use in the visible spectrum and requires only minor modifications to function in the LWIR spectrum. The compactness and portability of this optical package offers significant advantages over many existing infrared surveillance systems. The developed system was evaluated on its ability to detect moving, human-sized heat sources at ranges between 10 m and 70 m. Raw camera images captured by the system are converted from rectangular coordinates in the camera focal plane to polar coordinates and then unwrapped into the users azimuth and elevation system. Digital background subtraction and color mapping are applied to the images to increase the users ability to extract moving items from background clutter. A second optical system consisting of a commercially available 50 mm f/1.2 ATHERM lens and a second LWIR camera is used to examine the details of objects of interest identified using the panoramic imager. A description of the components of the proof of concept is given, followed by a presentation of raw images taken by the panoramic LWIR imager. A description of the method by which these images are analyzed is given, along with a presentation of these results side-by-side with the output of the 50 mm LWIR imager and a panoramic visible light imager. Finally, a discussion of the concept and its future development are given.

  3. Stereo-panoramic Data

    KAUST Repository

    Cutchin, Steve

    2013-03-07

    Systems and methods for automatically generating three-dimensional panoramic images for use in various virtual reality settings are disclosed. One embodiment of the system includes a stereo camera capture device (SCD), a programmable camera controller (PCC) that rotates, orients, and controls the SCD, a robotic maneuvering platform (RMP), and a path and adaptation controller (PAC). In that embodiment, the PAC determines the movement of the system based on an original desired path and input gathered from the SCD during an image capture process.

  4. A 2D panoramic surgical stent imaging: Complete arch mandibular implant fixed prosthesis along with bar supported maxillary over denture

    Directory of Open Access Journals (Sweden)

    Mukesh Kumar Singhal

    2017-01-01

    Full Text Available Successful rehabilitation of a patient should restore function, esthetic, and speech by prosthesis. Treatment modalities vary from patient to patient. Semi-precision attachments and implants offer several advantages over the traditional approach. The aim and objective of this report was to assess a case of a 55-year-old female patient who had lost all her teeth, except maxillary canines #13 and #23 and with severe bone loss in the mandible. Tooth-supported bar attachment was planned for maxilla, and a total of five dental implants were placed in the mandible using a flapless approach aided by radiographic gutta-percha surgical stents over panoramic two-dimensional imaging. Customized, radiographic stents help for the placement of implant in the view of paralleling and flapless surgery, completely. An immediate loading protocol is adopted as from day of the surgery to 6 weeks along with implant supported full arch fixed dentures after 4 months. The outcome of the treatment was impressive, and the patient gave a positive response with superb esthetics and functions.

  5. Imaging features of medicine-related osteonecrosis of the jaws: comparison between panoramic radiography and computed tomography.

    Science.gov (United States)

    Guo, Yuxing; Wang, Diancan; Wang, Yang; Peng, Xin; Guo, Chuanbin

    2016-08-01

    The current staging system of medicine-related osteonecrosis of the jaws (MRONJ) assigns patients to different stages based on clinical manifestations. The extent of bone disease cannot be fully determined without radiologic evaluation. Missing radiologic information may lead to incorrect classification of MRONJ, resulting in poor outcomes of treatment. The objective of this study was to compare computed tomography (CT) and panoramic radiography (PR) features of MRONJ in different stages to achieve accurate staging on the basis of combined findings from clinical staging and imaging. A retrospective study was carried out to analyze the differences in the radiographic features of various clinical stages in MRONJ, as shown by PR and CT. Both PR and CT could detect the typical syndrome of osseous sclerosis in grade 0 and grade 1. For the patients of grade 2, more features were observed on CT, such as periosteal reaction, cortical perforation, and periosteal bone deposition. CT was also conducive to analyzing the degree of the maxillary lesion and soft tissue involvement as compared with PR. This study showed that CT detects changes that may not be revealed by plain radiography in patients with MRONJ. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. A 2D Panoramic Surgical Stent Imaging: Complete Arch Mandibular Implant Fixed Prosthesis along with Bar Supported Maxillary over Denture

    Science.gov (United States)

    Singhal, Mukesh Kumar; Billing, Rumneet Kaur; Srivastava, Nitin; Khan, Zainab

    2017-01-01

    Successful rehabilitation of a patient should restore function, esthetic, and speech by prosthesis. Treatment modalities vary from patient to patient. Semi-precision attachments and implants offer several advantages over the traditional approach. The aim and objective of this report was to assess a case of a 55-year-old female patient who had lost all her teeth, except maxillary canines #13 and #23 and with severe bone loss in the mandible. Tooth-supported bar attachment was planned for maxilla, and a total of five dental implants were placed in the mandible using a flapless approach aided by radiographic gutta-percha surgical stents over panoramic two-dimensional imaging. Customized, radiographic stents help for the placement of implant in the view of paralleling and flapless surgery, completely. An immediate loading protocol is adopted as from day of the surgery to 6 weeks along with implant supported full arch fixed dentures after 4 months. The outcome of the treatment was impressive, and the patient gave a positive response with superb esthetics and functions. PMID:28839424

  7. The role of focal block (trough/plane) in panoramic radiography: Why do some structures appear blurred out on these images?

    International Nuclear Information System (INIS)

    Ramakrishna Pawar, Ravikiran; Makdissi, J.

    2014-01-01

    Panoramic radiographs are commonly used in dental practice. The challenge with panoramic radiography is overlapping structures, ghost and air shadows. The area of interest can appear blurred especially in the anterior region. The focal block is a virtual space in which the dentition should be perfectly placed when acquiring the radiograph. Anatomical structures that are within this focal block appear focused and in perfect geometric accuracy on the final image. Structures outside this focal block appear blurred, and distorted. Accurate positioning of the patient will help in placing the region of interest within in the focal block and as a result minimising artefacts, ghost and air shadows. We utilise cone beam computed tomography (CBCT) software to explain this principle

  8. Automatic panoramic thermal integrated sensor

    Science.gov (United States)

    Gutin, Mikhail A.; Tsui, Eddy K.; Gutin, Olga N.

    2005-05-01

    Historically, the US Army has recognized the advantages of panoramic imagers with high image resolution: increased area coverage with fewer cameras, instantaneous full horizon detection, location and tracking of multiple targets simultaneously, extended range, and others. The novel ViperViewTM high-resolution panoramic thermal imager is the heart of the Automatic Panoramic Thermal Integrated Sensor (APTIS), being jointly developed by Applied Science Innovative, Inc. (ASI) and the Armament Research, Development and Engineering Center (ARDEC) in support of the Future Combat Systems (FCS) and the Intelligent Munitions Systems (IMS). The APTIS is anticipated to operate as an intelligent node in a wireless network of multifunctional nodes that work together to improve situational awareness (SA) in many defense and offensive operations, as well as serve as a sensor node in tactical Intelligence Surveillance Reconnaissance (ISR). The ViperView is as an aberration-corrected omnidirectional imager with small optics designed to match the resolution of a 640x480 pixels IR camera with improved image quality for longer range target detection, classification, and tracking. The same approach is applicable to panoramic cameras working in the visible spectral range. Other components of the ATPIS sensor suite include ancillary sensors, advanced power management, and wakeup capability. This paper describes the development status of the APTIS system.

  9. Panoramic Dental X-Ray

    Science.gov (United States)

    ... Resources Professions Site Index A-Z Panoramic Dental X-ray Panoramic dental x-ray uses a very small ... limitations of Panoramic X-ray? What is Panoramic X-ray? Panoramic radiography , also called panoramic x-ray , is ...

  10. Positioning errors in digital panoramic radiographs: A study

    Directory of Open Access Journals (Sweden)

    A Cicilia Subbulakshmi

    2016-01-01

    Full Text Available Panoramic radiography is a unique and a very useful extraoral film technique that allows the dentist to view the entire dentition and related structures, from condyle to condyle, on one film. Capturing a wide range of structures on a single film grounds the odds of errors in the digital panoramic radiographs. Improper positioning of the patient complicates it more, reducing the diagnostic usefulness of these radiographs. Wide knowledge about the common positioning errors and the ways to rectify it benefits the dentists in interpretation and diagnosis. Aim: This study is aimed at analyzing the 10 common positional errors (anteriorly positioned, posteriorly positioned, head tilted upwards, head tilted downwards, head twisted to one side, head tipped, overlapping of spine in lower anterior region, tongue not placed close to palate, patient movement, and ghost images in 200 digital panoramic radiographs selected randomly. Materials and Methods: Two hundred digital panoramic radiographic images of the patients above 6 years of age were selected randomly from the stored data in the system, projected on the white screen, and studied. The radiographs were analyzed by two oral medicine and radiology specialists, by recording separately, and then the results were analyzed. Results: The most common error was failure to place the tongue close to the palate, which leads to the presence of radiolucent airspace obscuring the roots of the maxillary teeth.

  11. Image quality analysis vs dose to the patient in digital panoramic radiography; Analisis de calidad de imagen vs dosis aplicada al paciente en radiografia panoramica digital

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Diaz, M.; Borges-Garcia, T.; Leon-Santana, J.; Vanderley-Brasileiro, I.; Khoury, H.; Miranda-Cataneda, M.

    2012-11-01

    Digital panoramic radiography is a diagnostic image technique which is increasing its use today allo over the world. Nevertheless, there is a relative lack of knowledge about the best compromise relationship between image quality and dose to the patient for these studies. Twenty one panoramic images of an anthropomorphic phantom and 205 from patients were collected using a Kodak digital equipment. Tube current, beam energy and acquisitions time were changed among studies to look for the best acquisition conditions which permit good image quality al low doses for patients. Air Kerma-Length Product was measures as dose index. Image quality was graded using objective metrics as Signal to Noise Ratio (SNR [dB]) and Contrast to Noise ratio (CNR), as well as visual evaluation with two expert observers. Reduction in dose was able, reducing mAs mainly, without affecting image quality in a sensitive way. An optimized protocol for this equipment was also obtained for standard height and weight patients. (Author)

  12. The value of panoramic radiography in assessing maxillary sinus inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Bong Hae; Jung, Yun Hoa; Nah, Kyung Soo [Department of Oral and Maxillofacial Radiology, College of Dentistry, Pusan National University, Pusan (Korea, Republic of)

    2008-12-15

    To evaluate the value of panoramic radiography in diagnosing maxillary sinus inflammation. A total of 214 maxillary sinuses from 114 panoramic radiographs were assessed in this study. Two independent experienced oral radiologists evaluated the images in random order for sinus inflammation. Using Cone beam CT images as the gold standard, the sensitivity and specificity of panoramic radiography were calculated, and inter- and intraobserver agreement for panoramic interpretation were obtained. The mean sensitivity and specificity of panoramic radiography were 81.0% and 85.6%, respectively. The weighted kappas for inter- and intraobserver agreement of panoramic radiography were 0.56 and 0.60, respectively. Panoramic radiography is a reasonably accurate method for diagnosing maxillary sinus inflammation and can be used for screening. However, additional examinations should be considered in patients with potentially significant pathology.

  13. The value of panoramic radiography in assessing maxillary sinus inflammation

    International Nuclear Information System (INIS)

    Cho, Bong Hae; Jung, Yun Hoa; Nah, Kyung Soo

    2008-01-01

    To evaluate the value of panoramic radiography in diagnosing maxillary sinus inflammation. A total of 214 maxillary sinuses from 114 panoramic radiographs were assessed in this study. Two independent experienced oral radiologists evaluated the images in random order for sinus inflammation. Using Cone beam CT images as the gold standard, the sensitivity and specificity of panoramic radiography were calculated, and inter- and intraobserver agreement for panoramic interpretation were obtained. The mean sensitivity and specificity of panoramic radiography were 81.0% and 85.6%, respectively. The weighted kappas for inter- and intraobserver agreement of panoramic radiography were 0.56 and 0.60, respectively. Panoramic radiography is a reasonably accurate method for diagnosing maxillary sinus inflammation and can be used for screening. However, additional examinations should be considered in patients with potentially significant pathology.

  14. Dose distribution and mapping with 3D imaging presentation in intraoral and panoramic examinations

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hsiu-Ling [Department of Dental Medicine, Mackay Memorial Hospital, Taipei, Taiwan (China); Huang, Yung-Hui [Department of Medical Imaging and Radiological Science, I-Shou University, Kaohsiung, Taiwan (China); Wu, Tung-Hsin, E-mail: tung@ym.edu.tw [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Taipei 112 Taiwan (China); Wang, Shih-Yuan [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Taipei 112 Taiwan (China); Lee, Jason J.S., E-mail: jslee@ym.edu.tw [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Taipei 112 Taiwan (China)

    2011-10-01

    In current medical imaging applications, high quality images not only provide more diagnostic value for anatomic delineation but also offer functional information for treatment direction. However, this approach would potentially subscribe higher radiation dose in dental radiographies, which has been putatively associated with low-birth-weight during pregnancy, which affects the hypothalamus-pituitary-thyroid axis or thereby directly affects the reproductive organs. The aim of this study was to apply the high resolution 3-D image mapping technique to evaluate radiation doses from the following aspects: (1) verifying operating parameters of dental X-ray units, (2) measuring the leakage radiations and (3) mapping dose with 3-D radiographic imaging to evaluate dose distribution in head and neck regions. From the study results, we found that (1) leakage radiation from X-ray units was about 21.31{+-}15.24 mR/h (<100 mR/h), (2) error of actual tube voltage for 60 kVp setting was from 0.2% to 6.5%, with an average of 2.5% (<7%) and (3) the error of exposure time for a 0.5-1.5 s setting was within 0.7-8.5%, with an average of 7.3% (<10%) error as well. Our 3-D dose mapping demonstrated that dose values were relatively lower in soft tissues and higher in bone surfaces compared with other investigations. Multiple causes could contribute to these variations, including irradiation geometry, image equipment and type of technique applied, etc. From the results, we also observed that larger accumulated doses were presented in certain critical organs, such as salivary gland, thyroid gland and bone marrow. Potential biological affects associated with these findings warrant further investigation.

  15. Dose distribution and mapping with 3D imaging presentation in intraoral and panoramic examinations

    Science.gov (United States)

    Chen, Hsiu-Ling; Huang, Yung-Hui; Wu, Tung-Hsin; Wang, Shih-Yuan; Lee, Jason J. S.

    2011-10-01

    In current medical imaging applications, high quality images not only provide more diagnostic value for anatomic delineation but also offer functional information for treatment direction. However, this approach would potentially subscribe higher radiation dose in dental radiographies, which has been putatively associated with low-birth-weight during pregnancy, which affects the hypothalamus-pituitary-thyroid axis or thereby directly affects the reproductive organs. The aim of this study was to apply the high resolution 3-D image mapping technique to evaluate radiation doses from the following aspects: (1) verifying operating parameters of dental X-ray units, (2) measuring the leakage radiations and (3) mapping dose with 3-D radiographic imaging to evaluate dose distribution in head and neck regions. From the study results, we found that (1) leakage radiation from X-ray units was about 21.31±15.24 mR/h (error of actual tube voltage for 60 kVp setting was from 0.2% to 6.5%, with an average of 2.5% (error of exposure time for a 0.5-1.5 s setting was within 0.7-8.5%, with an average of 7.3% (error as well. Our 3-D dose mapping demonstrated that dose values were relatively lower in soft tissues and higher in bone surfaces compared with other investigations. Multiple causes could contribute to these variations, including irradiation geometry, image equipment and type of technique applied, etc. From the results, we also observed that larger accumulated doses were presented in certain critical organs, such as salivary gland, thyroid gland and bone marrow. Potential biological affects associated with these findings warrant further investigation.

  16. Acceleration of single pixel imaging

    Science.gov (United States)

    Nitta, K.

    2018-01-01

    A method for single pixel imaging (SPI) is introduced. The method is proposed to accelerate optical measurement. The method is also useful for high-definition imaging. The processing procedure of the method is described and some features of the based on the proposed method is described.

  17. Automatic registration of terrestrial point clouds based on panoramic reflectance images and efficient BaySAC

    Science.gov (United States)

    Kang, Zhizhong

    2013-10-01

    This paper presents a new approach to automatic registration of terrestrial laser scanning (TLS) point clouds utilizing a novel robust estimation method by an efficient BaySAC (BAYes SAmpling Consensus). The proposed method directly generates reflectance images from 3D point clouds, and then using SIFT algorithm extracts keypoints to identify corresponding image points. The 3D corresponding points, from which transformation parameters between point clouds are computed, are acquired by mapping the 2D ones onto the point cloud. To remove false accepted correspondences, we implement a conditional sampling method to select the n data points with the highest inlier probabilities as a hypothesis set and update the inlier probabilities of each data point using simplified Bayes' rule for the purpose of improving the computation efficiency. The prior probability is estimated by the verification of the distance invariance between correspondences. The proposed approach is tested on four data sets acquired by three different scanners. The results show that, comparing with the performance of RANSAC, BaySAC leads to less iterations and cheaper computation cost when the hypothesis set is contaminated with more outliers. The registration results also indicate that, the proposed algorithm can achieve high registration accuracy on all experimental datasets.

  18. Panoramic imaging and virtual reality — filling the gaps between the lines

    Science.gov (United States)

    Chapman, David; Deacon, Andrew

    Close range photogrammetry projects rely upon a clear and unambiguous specification of end-user requirements to inform decisions relating to the format, coverage, accuracy and complexity of the final deliverable. Invariably such deliverables will be a partial and incomplete abstraction of the real world where the benefits of higher accuracy and increased complexity must be traded against the cost of the project. As photogrammetric technologies move into the digital era, computerisation offers opportunities for the photogrammetrist to revisit established mapping traditions in order to explore new markets. One such market is that for three-dimensional Virtual Reality (VR) models for clients who have previously had little exposure to the capabilities, and limitations, of photogrammetry and may have radically different views on the cost/benefit trade-offs in producing geometric models. This paper will present some examples of the authors' recent experience of such markets, drawn from a number of research and commercial projects directed towards the modelling of complex man-made objects. This experience seems to indicate that suitably configured digital image archives may form an important deliverable for a wide range of photogrammetric projects and supplement, or even replace, more traditional CAD models.

  19. Can preoperative imaging help to predict postoperative outcome after wisdom tooth removal? A randomized controlled trial using panoramic radiography versus cone-beam CT.

    Science.gov (United States)

    Guerrero, Maria Eugenia; Botetano, Raul; Beltran, Jorge; Horner, Keith; Jacobs, Reinhilde

    2014-01-01

    The primary objective of the study was to compare the postoperative complications following surgical removal of impacted third molars using panoramic radiography (PAN) images- and cone-beam computed tomography (CBCT)-based surgeries for "moderate-risk" cases of impacted third mandibular molars. The secondary objective was to compare the reliability of CBCT with that of PAN in preoperative radiographic determination of the position of the third molar, number of roots, and apical divergence. A randomized controlled multicenter trial was conducted to compare the surgical complications of PAN- and CBCT-based surgeries of impacted third molars. The sample consisted of impacted third molars from 256 patients with a close relation to the inferior alveolar nerve (IAN). Exclusion criteria were "no risk" and "high risk" of damage to the IAN based on the assessment of the panoramic radiograph. Patients were divided into two groups: the CBCT group (n = 126) and the PAN group (n = 130). The incidences of IAN sensory disturbance and other postoperative complications were recorded for each group at 7 days after surgery. Statistical analysis (kappa values) was used to compare the diagnoses of five trained dentomaxillofacial radiologists and to relate radiologic diagnoses to perioperative findings. Logistic regression was used to determine whether the imaging modality influenced occurrence of postoperative complications. Two extractions (1.5%) in the CBCT group and five (3.8%) in the PAN group resulted in IAN sensory disturbance (p = 0.45). Logistic regression models did not show that CBCT modality decreased postoperative complications following surgical removal of impacted third molars. Yet, CBCT revealed the number of roots and apical divergence of the roots more reliably than panoramic radiographs. CBCT was not better than panoramic radiography in predicting postoperative complications for moderate-risk cases of impacted third mandibular molars. Nonetheless, a CBCT

  20. Dose assessment in panoramic dental radiography

    International Nuclear Information System (INIS)

    Novak, L.

    2005-01-01

    In this paper author deals with the problem of dosimetry at panoramic radiography. Panoramic radiography is a rather complex technique, based on the simultaneous movement of an X-ray tube and an image receptor. A panoramic exposure is acquired by rotating the x-ray tube in an arc around the patients jaw. A thin X-ray beam oriented perpendicular to direction of the motion passes through the jaws at a slight upward angulation with respect to the occlusal plane. Due to this geometry of an examination, it is not straightforward, how to express a dose delivered to a patient during the examination. Because of a similarity with CT examinations, a dose descriptor product of kerma and length PKL is used in panoramic radiology also. However, the way of measurement is different. Currently, no dose descriptor in panoramic radiography is measured in the Czech Republic during the quality control measurements. Therefore, it would be appropriate to accept the product of kerma and length as a standard dose descriptor for panoramic radiography. This measurement should be included in QC procedures as well. Methods of dosimetry at panoramic radiography are discussed. (author)

  1. Dose cone-beam CT alter treatment plans? Comparison of preoperative implant planning using panoramic versus cone-beam CT images

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, Maria Eugenia; Jacobs, Reinhilde [Dept. of Oral and Maxillofacial Surgery, University Hospitals, Leuven (Belgium); Norge, Jorge; Castro, Carmen [Master of Periodontology, Universidad San Martin de Porres, Lima (Peru)

    2014-06-15

    The present study was performed to compare the planning of implant placement based on panoramic radiography (PAN) and cone-beam computed tomography (CBCT) images, and to study the impact of the image dataset on the treatment planning. One hundred five partially edentulous patients (77 males, 28 females, mean age: 46 years, range: 26-67 years) seeking oral implant rehabilitation were referred for presurgical imaging. Imaging consisted of PAN and CBCT imaging. Four observers planned implant treatment based on the two-dimensional (2D) image datasets and at least one month later on the three-dimensional (3D) image dataset. Apart from presurgical diagnostic and dimensional measurement tasks, the observers needed to indicate the surgical confidence levels and assess the image quality in relation to the presurgical needs. All observers confirmed that both imaging modalities (PAN and CBCT) gave similar values when planning implant diameter. Also, the results showed no differences between both imaging modalities for the length of implants with an anterior location. However, significant differences were found in the length of implants with a posterior location. For implant dimensions, longer lengths of the implants were planned with PAN, as confirmed by two observers. CBCT provided images with improved scores for subjective image quality and surgical confidence levels. Within the limitations of this study, there was a trend toward PAN-based preoperative planning of implant placement leading towards the use of longer implants within the posterior jaw bone.

  2. Comparison of Virtual Dental Implant Planning Using the Full Cross-Sectional and Transaxial Capabilities of Cone Beam Computed Tomography vs Reformatted Panoramic Imaging and 3D Modeling.

    Science.gov (United States)

    Khan, Moiz; Elathamna, Eiad N; Lin, Wei-Shao; Harris, Bryan T; Farman, Allan G; Scheetz, James P; Morton, Dean; Scarfe, William C

    2015-01-01

    To compare the choice and placement of virtual dental implants in the posterior edentulous bounded regions using the full cross-sectional and transaxial capabilities of cone beam computed tomography (CBCT) vs reformatted panoramic images and three-dimensional (3D) virtual models. Fifty-two cases with posterior bounded edentulous regions (61 dental implant sites) were identified from a retrospective audit of 4,014 radiographic volumes. Two image sets were created from selected CBCT data: (1) a combination of reformatted panoramic imaging and a 3D model (PIref/3D), and (2) the full 3D power in CBCT image volume analyses (XS). One virtual implant was placed by consensus of three prosthodontists in each image set: PIref/3D and XS. The choice of implant length and the perceived need for ridge augmentation were recorded for implant placement in both test situations. All the virtual implant placements from both PIref/3D and XS image sets were inspected retrospectively using virtual 3D models, and the number of exposed threads on both the buccal and lingual/palatal aspects of the virtual dental implant was evaluated. The chi-square and paired t tests were used with the level of significance set at α = .05. Shorter implants were chosen more often using XS than PIref/3D (P = .001). Fewer threads were exposed when placed with XS than with PIref/3D (P = .001). The use of XS reduced the perceived need for ridge augmentation compared with PIref/3D (P = .001). The use of the full 3D power of CBCT (including cross-sectional images in all three orthagonal planes and transaxially) provides supplemental information that significantly changes the choice of virtual implant length and vertical position of the implant, and reduces the frequency of perceived need for ridge augmentation before implant placement.

  3. Panoramic optical-servoing for industrial inspection and repair

    Science.gov (United States)

    Sallinger, Christian; O'Leary, Paul; Retschnig, Alexander; Kammerhofer, Martin

    2004-05-01

    Recently specialized robots were introduced to perform the task of inspection and repair in large cylindrical structures such as ladles, melting furnaces and converters. This paper reports on the image processing system and optical servoing for one such a robot. A panoramic image of the vessels inner surface is produced by performing a coordinated robot motion and image acquisition. The level of projective distortion is minimized by acquiring a high density of images. Normalized phase correlation calculated via the 2D Fourier transform is used to calculate the shift between the single images. The narrow strips from the dense image map are then stitched together to build the panorama. The mapping between the panoramic image and the positioning of the robot is established during the stitching of the images. This enables optical feedback. The robots operator can locate a defect on the surface by selecting the area of the image. Calculation of the forward and inverse kinematics enable the robot to automatically move to the location on the surface requiring repair. Experimental results using a standard 6R industrial robot have shown the full functionality of the system concept. Finally, were test measurements carried out successfully, in a ladle at a temperature of 1100° C.

  4. A clinico-radiographic analysis of sagittal condylar guidance determined by protrusive interocclusal registration and panoramic radiographic images in humans

    Directory of Open Access Journals (Sweden)

    D Krishna Prasad

    2012-01-01

    Full Text Available Purpose: To evaluate the correlation between sagittal condylar guidance obtained by protrusive interocclusal records and panoramic radiograph tracing methods in human dentulous subjects. Materials and Methods: The sagittal condylar guidance was determined in 75 dentulous subjects by protrusive interocclusal records using Aluwax through a face bow transfer (HANAU™ Spring Bow, Whip Mix Corporation, USA to a semi-adjustable articulator (HANAU™ Wide-Vue Articulator, Whip Mix Corporation, USA. In the same subjects, the sagittal outline of the articular eminence and glenoid fossa was traced in panoramic radiographs. The sagittal condylar path inclination was constructed by joining the heights of curvature in the glenoid fossa and the corresponding articular eminence. This was then related to the constructed Frankfurt′s horizontal plane to determine the radiographic angle of sagittal condylar guidance. Results: A strong positive correlation existed between right and left condylar guidance by the protrusive interocclusal method (P 0.000 and similarly by the radiographic method (P 0.013. The mean difference between the condylar guidance obtained using both methods were 1.97° for the right side and 3.18° for the left side. This difference between the values by the two methods was found to be highly significant for the right (P 0.003 and left side (P 0.000, respectively. The sagittal condylar guidance obtained from both methods showed a significant positive correlation on right (P 0.000 and left side (P 0.015, respectively. Conclusion: Panoramic radiographic tracings of the sagittal condylar path guidance may be made relative to the Frankfurt′s horizontal reference plane and the resulting condylar guidance angles used to set the condylar guide settings of semi-adjustable articulators.

  5. Cross-sectional imaging with rotational panoramic X-ray machine for preoperative assessment of dental implant site. Comparisons of imaging properties with conventional film tomography and computed tomography

    International Nuclear Information System (INIS)

    Makihara, Masahiro; Nishikawa, Keiichi; Kuroyanagi, Kinya

    2001-01-01

    To clarify the validity of cross-sectional imaging with rotational panoramic x-ray machine for preoperative assessment of the dental implant site, the imaging properties were compared with those of spiral tomography and multi-planer reconstruction (MPR) manipulation of x-ray computed tomography. Cross-sectional imaging of the maxilla and mandible of an edentulous dry skull was performed by each technique at an image layer thickness of 1 mm. Steel spheres were used to identify cross-sectional planes and measure distance. Six oral radiologists scored the image clarity of structures with 5-grade rating scales and measured the distance between images of 2 steel spheres. Each measured distance was divided by the magnification factor. The actual distance was also measured on the skull. The score and the distance were statistically compared. The Spearman's rank correlation coefficients for the score and the absolute values of the difference in distances measured by different observers were calculated as test units to compare inter-observer agreements statistically. The same observation and measurement were repeated to compare intra-observer agreement. Image clarity of the linear tomography available with a panoramic machine was comparable to spiral tomography and superior to MPR, except for the cortical bone on the lingual side. The inter- and intra-observer agreements were comparable. The accuracy for measurement of distance, the inter- and intra-observer agreements were also comparable to the spiral tomography and superior to those of MPR. Therefore, it is concluded that cross-sectional imaging with a rotational panoramic x-ray machine is useful for preoperative assessment of the dental implant site. (author)

  6. Projection angles of mandibular condyles in panoramic and transcranial radiographs

    International Nuclear Information System (INIS)

    Nah, Kyung Soo

    2006-01-01

    To evaluate the true projection angles of film-side mandibular condyles in panoramic and transcranial radiographs. 52 panoramic and transcranial radiographs of 4 condyles from two human dry mandibles with gradual horizontal and vertical angle changes were taken. The results were compared with the standard panoramic and transcranial radiographs and the identical pairs were selected. Panoramic radiography projected 10 degree to the film-sided condyles both horizontally and vertically. Transcranial radiography projected 15 degree to the film-sided condyles vertically. The medical and lateral poles were not forming the outline of condylar images in both projections when the horizontal angles of condyles were not sufficiently big enough

  7. Elongated phase separation domains in spin-cast polymer blend thin films characterized using a panoramic image.

    Science.gov (United States)

    Zhang, Hong; Okamura, Yosuke

    2018-02-14

    Polymer thin films with micro/nano-structures can be prepared by a solvent evaporation induced phase separation process via spin-casting a polymer blend, where the elongated phase separation domains are always inevitable. The striation defect, as a thickness nonunifomity in spin-cast films, is generally coexistent with the elongated domains. Herein, the morphologies of polymer blend thin films are recorded from the spin-cast center to the edge in a panoramic view. The elongated domains are inclined to appear at the ridge regions of striations with increasing radial distance and align radially, exhibiting a coupling between the phase separation morphology and the striation defect that may exist. We demonstrate that the formation of elongated domains is not attributed to shape deformation, but is accomplished in situ. A possible model to describe the initiation and evolution of the polymer blend phase separation morphology during spin-casting is proposed.

  8. Automatic Synthesis of Panoramic Radiographs from Dental Cone Beam Computed Tomography Data.

    Directory of Open Access Journals (Sweden)

    Ting Luo

    Full Text Available In this paper, we propose an automatic method of synthesizing panoramic radiographs from dental cone beam computed tomography (CBCT data for directly observing the whole dentition without the superimposition of other structures. This method consists of three major steps. First, the dental arch curve is generated from the maximum intensity projection (MIP of 3D CBCT data. Then, based on this curve, the long axial curves of the upper and lower teeth are extracted to create a 3D panoramic curved surface describing the whole dentition. Finally, the panoramic radiograph is synthesized by developing this 3D surface. Both open-bite shaped and closed-bite shaped dental CBCT datasets were applied in this study, and the resulting images were analyzed to evaluate the effectiveness of this method. With the proposed method, a single-slice panoramic radiograph can clearly and completely show the whole dentition without the blur and superimposition of other dental structures. Moreover, thickened panoramic radiographs can also be synthesized with increased slice thickness to show more features, such as the mandibular nerve canal. One feature of the proposed method is that it is automatically performed without human intervention. Another feature of the proposed method is that it requires thinner panoramic radiographs to show the whole dentition than those produced by other existing methods, which contributes to the clarity of the anatomical structures, including the enamel, dentine and pulp. In addition, this method can rapidly process common dental CBCT data. The speed and image quality of this method make it an attractive option for observing the whole dentition in a clinical setting.

  9. Panoramic dental radiography

    International Nuclear Information System (INIS)

    Cushman, R.H.; Kircher, D.R.; Hart, F.W.; Ciavattoni, A.

    1980-01-01

    Apparatus is described for improving the handling rate of patients in panoramic dental radiography when tube head-camera assembly of a low silhouette panoramic dental X-ray machine is rotated for a scan in one direction only. This is effected by fast return of the tube head-camera assembly with its simultaneous elevation, thus facilitating the radiographed patient's exit from the machine and the entrance of another patient. Fast speed is about twice the scanning speed. (author)

  10. Comparison of two cone beam computed tomographic systems versus panoramic imaging for localization of impacted maxillary canines and detection of root resorption.

    Science.gov (United States)

    Alqerban, Ali; Jacobs, Reinhilde; Fieuws, Steffen; Willems, Guy

    2011-02-01

    The diagnostic accuracy for the localization of impacted canines and the detection of canine-induced root resorption of maxillary incisors were compared between conventional radiographic procedures using one two-dimensional (2D) panoramic radiograph with that of two three-dimensional (3D) cone beam computed tomography (CBCT) scans. The clinical records of 60 consecutive patients who had impacted or ectopically erupting maxillary canines were identified from those seeking orthodontic treatment. For each case, two sets of radiographic information were obtained. The study sample was divided into two groups: group A (n = 30) included those for whom a dental pantomograph (DPT) and CBCT obtained with a 3D Accuitomo-XYZ Slice View Tomograph were available and group B (n = 30) who had a DPT and CBCT obtained with a Scanora. The DPT and CBCT images were subsequently analysed by 11 examiners. Statistical analysis included an evaluation of the agreement between observers based on the standard error of the measurement, kappa statistics and coefficient of concordance, as well as an assessment of the differences between 2D and 3D imaging employing Wilcoxon signed rank and McNemar tests. There was a highly significant difference between the 2D and 3D images in the width of the canine crown (P radiography for both canine localization and identification of root resorption of adjacent teeth.

  11. Detection of carotid artery calcification on the panoramic images of post-menopausal females is significantly associated with severe abdominal aortic calcification: a risk indicator of future adverse vascular events.

    Science.gov (United States)

    Friedlander, A H; El Saden, S M; Hazboun, R C; Chang, T I; Wong, W K; Garrett, N R

    2015-01-01

    Outcome studies among post-menopausal females with calcified carotid artery plaque (CCAP) on their panoramic images have not been previously undertaken. We sought to compare the extent of abdominal aortic calcification (AAC) on lateral lumbar spine radiographs (LLSRs), among groups of females with (CCAP+) and without (CCAP-) carotid lesions on their panoramic images. "Severe" levels of AAC have previously been validated as a risk indicator of future adverse cardiovascular events. This cross-sectional case-control study included a "CCAP+ group" consisting of females more than 50 years of age having the carotid lesion diagnosed by their dentists and an atherogenic risk factor (age, body mass index, hypertension, diabetes and dyslipidaemia)-matched "CCAP- group". A physician radiologist, using the Framingham index, evaluated the LLSRs for the magnitude of AAC. Summary statistics for key variables were computed and conditional logistic regression techniques were considered. Members of the CCAP+ group were significantly (p=0.038) more likely to demonstrate "severe" levels of AAC on their LLSRs than members of the CCAP group. This is the first published study demonstrating that CCAP on panoramic images of post-menopausal females is significantly associated with "severe" levels of AACs on LLSRs independent of traditional risk factors. Given that these levels of AAC are a validated risk indicator of future myocardial infarction and stroke, dentists must evaluate the panoramic images of post-menopausal females for the presence of CCAP. Patients with carotid atheromas should be referred to their physicians for further evaluation given the systemic implications.

  12. Single Image Super-Resolution via L0 Image Smoothing

    OpenAIRE

    Liu, Zhang; Huang, Qi; Li, Jian; Wang, Qi

    2014-01-01

    We propose a single image super-resolution method based on a L0 smoothing approach. We consider a low-resolution image as two parts: one is the smooth image generated by the L0 smoothing method and the other is the error image between the low-resolution image and the smoothing image. We get an intermediate high-resolution image via a classical interpolation and then generate a high-resolution smoothing image with sharp edges by the L0 smoothing method. For the error image, a...

  13. Panoramic Stereoscopic Video System for Remote-Controlled Robotic Space Operations, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I project will demonstrate the feasibility of providing panoramic stereoscopic images for remote-controlled robotic space operations using three...

  14. The Accuracy of Panoramic Radiography in Assessing the Mesiodistal Angulations of Teeth

    Directory of Open Access Journals (Sweden)

    M Molayi

    2015-09-01

    Conclusion: Dentists should act cautiously in making clinical decisions for requirements of angle adjustments, according to panoramic radiograph findings, with the knowledge of permanent distortion panaoramic image

  15. Image reconstruction of dynamic infrared single-pixel imaging system

    Science.gov (United States)

    Tong, Qi; Jiang, Yilin; Wang, Haiyan; Guo, Limin

    2018-03-01

    Single-pixel imaging technique has recently received much attention. Most of the current single-pixel imaging is aimed at relatively static targets or the imaging system is fixed, which is limited by the number of measurements received through the single detector. In this paper, we proposed a novel dynamic compressive imaging method to solve the imaging problem, where exists imaging system motion behavior, for the infrared (IR) rosette scanning system. The relationship between adjacent target images and scene is analyzed under different system movement scenarios. These relationships are used to build dynamic compressive imaging models. Simulation results demonstrate that the proposed method can improve the reconstruction quality of IR image and enhance the contrast between the target and the background in the presence of system movement.

  16. Detecting osteoporosis in elderly women with panoramic radiography technique

    Directory of Open Access Journals (Sweden)

    Barunawaty Yunus

    2016-12-01

    Full Text Available Osteoporosis is a systemic disease which characterized by a reduction in bone mass with deterioration microarchitecture of bone and degradation of bone tissue which can raise loss of bone. Osteoporosis is a problem related to the aging process. Osteoporosis process actually begin at the age 40-50 years. At this age, men and women will experience shrinkage process of bone mass. in women, this process faster after menopause and is more common in women than men. The technique can be used to detect osteoporosis by performing panoramic radiographic examination techniques. Panoramic radiography is a technique for generating photo of facial structures, including the maxillary bone, mandibular and other support structures. To detect the presence of osteoporosis in elderly women using Panoramic Radiography Techniques. The subjects of this study is image results of a panoramic radiography with vulnerable women aged 50-70> obtained from the Hospital Radiology section of Unhas, Mental Index measurement is then performed on image results of the panoramic radiographs. Overall regardless of age , the prevalence of osteoporosis reached 10 % per 100 population . ( P > 0.05. In detecting osteoporosis in elderly women, panoramic radiography can be applied. The index used is Mental Index, an index of panoramic radiography has been developed to detect osteoporosis.

  17. Dilemma of gonial angle measurement: Panoramic radiograph or lateral cephalogram

    Energy Technology Data Exchange (ETDEWEB)

    Radhakrishnan, Pillai Devu; Varma, Nilambur Kovilakam Sapna; Ajith, Vallikat Velath [Dept. of Orthodontics, Amrita School of Dentistry, Kochi (India)

    2017-06-15

    The purpose of this study was to evaluate the accuracy of panoramic imaging in measuring the right and left gonial angles by comparing the measured angles with the angles determined using a lateral cephalogram of adult patients with class I malocclusion. The gonial angles of 50 class I malocclusion patients (25 males and 25 females; mean age: 23 years) were measured using both a lateral cephalogram and a panoramic radiograph. In the lateral cephalograms, the gonial angle was measured at the point of intersection of the ramus plane and the mandibular plane. In the panoramic radiographs, the gonial angle was measured by drawing a line tangent to the lower border of the mandible and another line tangent to the distal border of the ascending ramus and the condyle on both sides. The data obtained from both radiographs were statistically compared. No statistically significant difference was observed between the gonial angle measured using the lateral cephalograms and that determined using the panoramic radiographs. Further, there was no statistically significant difference in the measured gonial angle with respect to gender. The results also showed a statistically insignificant difference in the mean of the right and the left gonial angles measured using the panoramic radiographs. As the gonial angle measurements using panoramic radiographs and lateral cephalograms showed no statistically significant difference, panoramic radiography can be considered in orthodontics for measuring the gonial angle without any interference due to superimposed images.

  18. A posteriori registration and subtraction of panoramic compared with intraoral radiography.

    Science.gov (United States)

    Deserno, Thomas M; Rangarajan, Janaki Raman; Hoffmann, Jens; Brägger, Urs; Mericske-Stern, Regina; Enkling, Norbert

    2009-08-01

    To demonstrate the feasibility of panoramic image subtraction for implant assessment. Three titanium implants were inserted into a fresh pig mandible. One intraoral and 2 panoramic images were obtained at baseline and after each of 6 incremental (0.3, 0.6, 1.0, 1.5, 2.0, 2.5 mm) removals of bone. For each incremental removal of bone, the mandible was removed from and replaced in the holding device. Images representing incremental bone removals were registered by computer with the baseline images and subtracted. Assessment of the subtraction images was based on visual inspection and analysis of structured noise. Incremental bone removals were more visible in intraoral than in panoramic subtraction images; however, computer-based registration of panoramic images reduced the structured noise and enhanced the visibility of incremental removals. The feasibility of panoramic image subtraction for implant assessment was demonstrated.

  19. Multiflash X ray with Image Detanglement for Single Image Isolation

    Science.gov (United States)

    2017-08-31

    conceived and developed to capture multiple flash X-rays on a single film or phosphor screen and digitally detangle the resulting image into separate images...capability was conceived and developed to capture multiple flash X-rays on a single film or phosphor screen and digitally detangle the resulting image...digital radiograph (ORAD); and 2) an appropriate averaging of the value of the pixels within the exposed region-of-interest on the ORAD needs to be

  20. Only Image Based for the 3d Metric Survey of Gothic Structures by Using Frame Cameras and Panoramic Cameras

    Science.gov (United States)

    Pérez Ramos, A.; Robleda Prieto, G.

    2016-06-01

    Indoor Gothic apse provides a complex environment for virtualization using imaging techniques due to its light conditions and architecture. Light entering throw large windows in combination with the apse shape makes difficult to find proper conditions to photo capture for reconstruction purposes. Thus, documentation techniques based on images are usually replaced by scanning techniques inside churches. Nevertheless, the need to use Terrestrial Laser Scanning (TLS) for indoor virtualization means a significant increase in the final surveying cost. So, in most cases, scanning techniques are used to generate dense point clouds. However, many Terrestrial Laser Scanner (TLS) internal cameras are not able to provide colour images or cannot reach the image quality that can be obtained using an external camera. Therefore, external quality images are often used to build high resolution textures of these models. This paper aims to solve the problem posted by virtualizing indoor Gothic churches, making that task more affordable using exclusively techniques base on images. It reviews a previous proposed methodology using a DSRL camera with 18-135 lens commonly used for close range photogrammetry and add another one using a HDR 360° camera with four lenses that makes the task easier and faster in comparison with the previous one. Fieldwork and office-work are simplified. The proposed methodology provides photographs in such a good conditions for building point clouds and textured meshes. Furthermore, the same imaging resources can be used to generate more deliverables without extra time consuming in the field, for instance, immersive virtual tours. In order to verify the usefulness of the method, it has been decided to apply it to the apse since it is considered one of the most complex elements of Gothic churches and it could be extended to the whole building.

  1. Automated imaging system for single molecules

    Science.gov (United States)

    Schwartz, David Charles; Runnheim, Rodney; Forrest, Daniel

    2012-09-18

    There is provided a high throughput automated single molecule image collection and processing system that requires minimal initial user input. The unique features embodied in the present disclosure allow automated collection and initial processing of optical images of single molecules and their assemblies. Correct focus may be automatically maintained while images are collected. Uneven illumination in fluorescence microscopy is accounted for, and an overall robust imaging operation is provided yielding individual images prepared for further processing in external systems. Embodiments described herein are useful in studies of any macromolecules such as DNA, RNA, peptides and proteins. The automated image collection and processing system and method of same may be implemented and deployed over a computer network, and may be ergonomically optimized to facilitate user interaction.

  2. Single image super-resolution based on image patch classification

    Science.gov (United States)

    Xia, Ping; Yan, Hua; Li, Jing; Sun, Jiande

    2017-06-01

    This paper proposed a single image super-resolution algorithm based on image patch classification and sparse representation where gradient information is used to classify image patches into three different classes in order to reflect the difference between the different types of image patches. Compared with other classification algorithms, gradient information based algorithm is simpler and more effective. In this paper, each class is learned to get a corresponding sub-dictionary. High-resolution image patch can be reconstructed by the dictionary and sparse representation coefficients of corresponding class of image patches. The result of the experiments demonstrated that the proposed algorithm has a better effect compared with the other algorithms.

  3. Depression of the maxillary sinus anterior wall and its influence on panoramic radiography appearance.

    Science.gov (United States)

    Yoshida, Kazuhito; Fukuda, Motoki; Gotoh, Kenichi; Ariji, Eiichiro

    2017-08-01

    To clarify the depression aspect of the maxillary sinus anterior wall and to investigate its relationship with the panoramic image appearance of a diagonal line from the inferior part of the so-called panoramic innominate line to the medial portion of the orbital floor line. Based on CT data, panoramic images were simulated for two typical cases with and without anterior wall depression. Next, on axial CT images of 1689 subjects (3378 sinuses) stored in our image database, the wall depths were measured and analyzed for their relationships with the panoramic appearances of the diagonal line, classified into invisible, obscure and clear patterns. Based on the simulation study, visualization of the diagonal line was verified to alter depending on the morphology of the anterior wall and the position of the panoramic image layer. In 408 (12.1%) sinuses, the diagonal line (clear and obscure patterns) could be seen on the panoramic image. The incidences of the obscure and clear patterns increased with increasing age groups. The mean wall depths were 2.91, 4.80 and 7.28 mm for the invisible, obscure and clear patterns, respectively. The clear pattern showed the highest value for the wall depth, followed by the obscure pattern. The diagonal line on a panoramic image was verified to be related to depression of the maxillary sinus anterior wall, and its panoramic image appearance can be altered depending on the position of the tomographic image layer.

  4. Automatic 3D City Modeling Using a Digital Map and Panoramic Images from a Mobile Mapping System

    Directory of Open Access Journals (Sweden)

    Hyungki Kim

    2014-01-01

    Full Text Available Three-dimensional city models are becoming a valuable resource because of their close geospatial, geometrical, and visual relationship with the physical world. However, ground-oriented applications in virtual reality, 3D navigation, and civil engineering require a novel modeling approach, because the existing large-scale 3D city modeling methods do not provide rich visual information at ground level. This paper proposes a new framework for generating 3D city models that satisfy both the visual and the physical requirements for ground-oriented virtual reality applications. To ensure its usability, the framework must be cost-effective and allow for automated creation. To achieve these goals, we leverage a mobile mapping system that automatically gathers high-resolution images and supplements sensor information such as the position and direction of the captured images. To resolve problems stemming from sensor noise and occlusions, we develop a fusion technique to incorporate digital map data. This paper describes the major processes of the overall framework and the proposed techniques for each step and presents experimental results from a comparison with an existing 3D city model.

  5. Panoramic zonography in evaluation of recurrent basal cell carcinoma of the face

    International Nuclear Information System (INIS)

    Hallikainen, D.; Toetterman, S.; Asko-Seljavaara, S.; Paukku, P.; Helsinki Univ. Central Hospital

    1984-01-01

    Nine patients with recurrent, facial basal cell carcinoma were followed up both clinically and radiographically using a panoramic technique. A cylindrical image track was used for panoramic radiography. Five patients had bony destruction due to tumour re-occurence, four patients had bony defects caused by surgery. The confirmation of the results by surgery and/or follow-up shows that the spread of basal cell carcinoma into bone can be diagnosed using a panoramic technique. (orig.)

  6. Evaluation of the overlapping of posterior teeth in two techniques of improved interproximal panoramic program and standard panoramic

    Directory of Open Access Journals (Sweden)

    Goodarzi pour D

    2010-06-01

    Full Text Available "nBackground and Aims: Overlapping of the proximal surfaces of posterior teeth in the panoramic radiography is a major concern. Therefore, an option has been developed in the panoramic unit of Planmeca Promax, namely improved interproximal mode. This mode causes lower horizental angle with the teeth contact region during the unit rotation decreasing overlapping of the panoramic images of the posterior teeth especially premolar teeth. The present study was done to compare the overlapping of posterior teeth using two techniques of improved interproximal panoramic program and standard panoramic. "nMaterials and Methods: In this diagnostic study, 32 patients requiring panoramic radiographies at their posterior teeth during their routine diagnosis and treatment process with the mean age of 27.3 years were participated. No patients showed crowding of posterior teeth or missed and restored posterior teeth. The participants' panoramic radiographies were randomly taken by two techniques of improved interproximal panoramic and standard panoramic using Planmeca Promax device. The overlapping of the panoramic images was blindly assessed by an oral radiologist. The overlapping in both techniques was reported by frequency and percentage. The comparisons were done by Chi-square test between two techniques and the odds ratio of overlapping was estimated using regression analysis. "nResults: In standard panoramic techniques, 38.5% (148 contacts of 384 contacts of the proximal surfaces overlapped while the overlapping of the proximal surfaces was observed in 18.8% (72 contacts of 384 overall contacts in improved interproximal technique. Significant differences were noted between two techniques regarding overlapping (P<0.001. Also 66.4% and 39.1% of 4-5 teeth contacts overlapped in standard and improved techniques. The values were reported to be 39.1% and 12.5% in contacts of 5-6 teeth and 10.2% and 4.7% in the contacts of 6-7 teeth in both techniques

  7. Electric field imaging of single atoms

    Science.gov (United States)

    Shibata, Naoya; Seki, Takehito; Sánchez-Santolino, Gabriel; Findlay, Scott D.; Kohno, Yuji; Matsumoto, Takao; Ishikawa, Ryo; Ikuhara, Yuichi

    2017-01-01

    In scanning transmission electron microscopy (STEM), single atoms can be imaged by detecting electrons scattered through high angles using post-specimen, annular-type detectors. Recently, it has been shown that the atomic-scale electric field of both the positive atomic nuclei and the surrounding negative electrons within crystalline materials can be probed by atomic-resolution differential phase contrast STEM. Here we demonstrate the real-space imaging of the (projected) atomic electric field distribution inside single Au atoms, using sub-Å spatial resolution STEM combined with a high-speed segmented detector. We directly visualize that the electric field distribution (blurred by the sub-Å size electron probe) drastically changes within the single Au atom in a shape that relates to the spatial variation of total charge density within the atom. Atomic-resolution electric field mapping with single-atom sensitivity enables us to examine their detailed internal and boundary structures. PMID:28555629

  8. Quality metric for spherical panoramic video

    Science.gov (United States)

    Zakharchenko, Vladyslav; Choi, Kwang Pyo; Park, Jeong Hoon

    2016-09-01

    Virtual reality (VR)/ augmented reality (AR) applications allow users to view artificial content of a surrounding space simulating presence effect with a help of special applications or devices. Synthetic contents production is well known process form computer graphics domain and pipeline has been already fixed in the industry. However emerging multimedia formats for immersive entertainment applications such as free-viewpoint television (FTV) or spherical panoramic video require different approaches in content management and quality assessment. The international standardization on FTV has been promoted by MPEG. This paper is dedicated to discussion of immersive media distribution format and quality estimation process. Accuracy and reliability of the proposed objective quality estimation method had been verified with spherical panoramic images demonstrating good correlation results with subjective quality estimation held by a group of experts.

  9. Accuracy of cone beam computed tomography and panoramic and periapical radiography for detection of apical periodontitis.

    Science.gov (United States)

    Estrela, Carlos; Bueno, Mike Reis; Leles, Cláudio Rodrigues; Azevedo, Bruno; Azevedo, José Ribamar

    2008-03-01

    The aim of this study was to evaluate the accuracy of imaging methods for detection of apical periodontitis (AP). Imaging records from a consecutive sample of 888 imaging exams of patients with endodontic infection (1508 teeth), including cone beam computed tomography (CBCT) and panoramic and periapical radiographs, were selected. Sensitivity, specificity, predictive values, and accuracy of periapical and panoramic radiographs were calculated. Receiver operating characteristic (ROC) analysis was performed to assess the diagnostic accuracy of the panoramic and periapical images. Prevalence of AP was significantly higher with CBCT. Overall sensitivity was 0.55 and 0.28 for periapical and panoramic radiographs, respectively. ROC curves and area under curve (AUC) with periapical radiography showed a high accuracy for the cutoff value of 5 for both periapical (AUC, 0.90) and panoramic (AUC, 0.84) radiographs. AP was correctly identified with conventional methods when showed advanced status. CBCT was proved to be accurate to identify AP.

  10. Dual isotope, single acquisition parathyroid imaging

    International Nuclear Information System (INIS)

    Triantafillou, M.; McDonald, H.J.

    1998-01-01

    Full text: Nuclear Medicine parathyroid imaging using Thallium-201(TI) and Technetium-99m(Tc) is an often used imaging modality for the detection of parathyroid adenomas and hyper parathyroidism. The conventional Tl/Tc subtraction technique requires 2 separate injections and acquisitions which are then normalised and subtracted from each other. This lengthy technique is uncomfortable for patients and can result in false positive scan results due to patient movement between and during the acquisition process. We propose a simplified injection and single acquisition technique, that reduces the chance of movement and thus reduces the chance of false positive scan results. The technique involves the injection of Tc followed by the Tl injection 10 minutes later. After a further 10 min wait, imaging is performed using a dual isotope acquisition, with window (W) 1 set on 140 keV 20%W 5% off peak and W2 peaked for 70 keV 20%W., acquired for 10 minutes. We have imaged 27 patients with this technique, 15 had positive parathyroid imaging. Of the 15, 11 had positive ultrasound correlation. Of the remaining 4, 2 have had positive surgical findings for adenomas, the other 2 are awaiting follow-up. Of the 12 patients with negative parathyroid imaging, 2 have been shown to be false - negative with surgery. In conclusion, the single acquisition technique suggested by us is a valid method of imaging parathyroids that reduces the chance of false positive results due to movement

  11. Comparison of conventional panoramic radiography and panoramic digital subtraction radiography in detection of simulated lesions of mandibular condyle

    Directory of Open Access Journals (Sweden)

    Panjnoush M.

    2008-12-01

    Full Text Available "n  "nBackground and Aim: Digital subtraction Radiography (DSR is a method of accurate assessing condylar head changes. several studies have been carried out in applying DSR in dentistry, however there is a few number of studies in efficacy of DSR method in assesment of condylar head changes, The aim of this study was to compare panoramic radiography and DSR detecting simulated lesions of the mandibular condyl. "nMaterials and Methods: this was a process reaserch study, in which two dry human skulls with no obvious temporomandibular joint pathology were used. Osteophytic lesions were simulated using three sizes of bone chips that were placed on the medial portion of anterior and superolateral aspects of the condyle. Osteolytic lesions were simulated making 1 and 2 mm holes using round burr in the central portion of anterior aspect and Lateral pole of the condyle. Panoramic radiographs were prepared with and without the lesions in place. These paired radiographs were digitized and digital- subtraction images of the original panoramic images were obtained. Eight observers evaluated 155 images of each modality for the presence or absence and the type of simulated lesions of the mandibular condyle. Sensitivity, specificity, reliability and measure of agreement were analyzed using kappa test and crossed tables and qualitative variables were assess by chi-square and fisher's Exact test. "nResults: Specificity of panoramic and DSR methods were 15.4% and 66.7% respectively. Sensitivity of panoramic and DSR methods were 61.1% and 80.6% for osteophytic lesions and 37.5% and 83.3% for Osteolytic lesions. The percentage of correct decisions made in DSR method was significantly more than conventional panoramic method (82.6% vs 41.9% (p<0.0001. "nConclusion: Based on the results of this study digital subtraction technique was significantly more accurate than the panoramic radiographs in detection of simulated lesions of the mandibular condyle.

  12. Multispectral imaging using a single bucket detector.

    Science.gov (United States)

    Bian, Liheng; Suo, Jinli; Situ, Guohai; Li, Ziwei; Fan, Jingtao; Chen, Feng; Dai, Qionghai

    2016-04-22

    Existing multispectral imagers mostly use available array sensors to separately measure 2D data slices in a 3D spatial-spectral data cube. Thus they suffer from low photon efficiency, limited spectrum range and high cost. To address these issues, we propose to conduct multispectral imaging using a single bucket detector, to take full advantage of its high sensitivity, wide spectrum range, low cost, small size and light weight. Technically, utilizing the detector's fast response, a scene's 3D spatial-spectral information is multiplexed into a dense 1D measurement sequence and then demultiplexed computationally under the single pixel imaging scheme. A proof-of-concept setup is built to capture multispectral data of 64 pixels × 64 pixels × 10 wavelength bands ranging from 450 nm to 650 nm, with the acquisition time being 1 minute. The imaging scheme holds great potentials for various low light and airborne applications, and can be easily manufactured as production-volume portable multispectral imagers.

  13. Imaging of tautomerism in a single molecule.

    Science.gov (United States)

    Piwoński, Hubert; Stupperich, Clemens; Hartschuh, Achim; Sepioł, Jerzy; Meixner, Alfred; Waluk, Jacek

    2005-04-20

    Fluorescence imaging is used to visualize directly the transfer of two inner hydrogen atoms in single porphycene molecules. This reaction leads to a chemically equivalent but differently oriented structure and hence results in a rotation of the transition dipole moments. By probing single immobilized molecules with an azimuthally polarized laser beam in the focal spot of a confocal microscope we observe ring-like emission patterns, possible only for a chromophore with two nearly orthogonal transition dipole moments. Numerical simulations of the observed emission patterns yield a value of 72 degrees for the angle between the S0-S1 transition moments in the two tautomeric forms.

  14. Avaliação da simetria da imagem do ramo da mandíbula em radiografias panorâmicas Evaluation of the symmetry of the image of the mandibular ramus in panoramic radiography

    Directory of Open Access Journals (Sweden)

    Antonio Augusto Ferreira CARVALHO

    2000-09-01

    Full Text Available Os métodos radiográficos panorâmicos apresentam ampliação das imagens de estruturas anatômicas da face, com variação de uma região para outra. Atualmente, este tipo de técnica tem sido utilizado para mensurações verticais, horizontais e angulares. A área e o perímetro da imagem bilateral do ramo da mandíbula foram medidos em radiografias panorâmicas obtidas pelo sistema elipsopantomográfico, de crianças dos dois sexos, com idade cronológica entre 8 e 10 anos. Os desenhos, em papel vegetal, da imagem de cada ramo foram capturados através de "scanner" e as medidas foram feitas em microcomputador com aplicativo específico. Duas formas de separar a imagem do ramo da mandíbula, bilateralmente, foram propostas: no gônio e através de uma tangente à parte mais profunda da borda anterior da imagem do ramo que tocava a base. Os resultados obtidos permitiram evidenciar que houve simetria entre os lados, expressa pelas medidas de área e perímetro das imagens do ramo da mandíbula.Panoramic radiographic methods provide images which present distortions of bilateral anatomical structures of the face as well as magnification. Currently, panoramic radiographs have been used to analyze vertical, horizontal and angular measurements. In an attempt to evaluate the presence of symmetry in the bilateral images of the mandibular rami, both their area and perimeter were obtained from panoramic radiographs of 8- to 10-year old children. The contour of the images of both rami was divided at the gonial angle and at the deeper point of the anterior border and it was transferred to translucent tracing paper and then to a computer through a scanner apparatus. The images were measured using a scan software and the values obtained were analyzed. The results showed that there was symmetry in both area and perimeter measurements, in male and female children.

  15. Accuracy of linear vertical measurements in posterior mandible on panoramic view

    Directory of Open Access Journals (Sweden)

    Abdolaziz Haghnegahdar

    2013-01-01

    Full Text Available Background: One of the most frequent concerns encountered in dental implant treatments is inadequate pre-operative planning. Panoramic radiographs are readily accessible and cost efficient. The aim of this study is to assess the accuracy of vertical measurements in mandibular molar and premolar region on panoramic radiography. Materials and Methods : Panoramic radiographs were made of a partially edentulous sheep mandible mounted in acryl. Measurements collected from the computer-generated images were compared to measurements made directly on the cross-sectioned hemi-mandibles using t-test. P < 0.05 was considered significant. Results: The results show that panoramic image is overestimated in predicting the linear measurements in posterior mandible. By applying the magnification factor of 1.29 the difference became insignificant. Conclusion: It seems rational to use panoramic radiography for pre-surgical implant assessment of posterior mandible if a true magnification factor is applied.

  16. Radiation dose reduction in direct digital panoramic radiography

    International Nuclear Information System (INIS)

    Gavala, Sophia; Donta, Catherine; Tsiklakis, Kostas; Boziari, Argyro; Kamenopoulou, Vasiliki; Stamatakis, Harry C.

    2009-01-01

    Objectives: (a) To measure the absorbed radiation doses at 16 anatomical sites of a Rando phantom and (b) to calculate the effective doses including and excluding the salivary gland doses in panoramic radiography using a conventional and a digital panoramic device. Study design: Thermoluminescent dosimeters (TLD-100) were placed at 16 sites in a Rando phantom, using a conventional, Planmeca Promax and a digital, Planmeca PM2002CC Proline 2000 (Planmeca Oy, 00880 Helsinki, Finland) panoramic device for panoramic radiography. During conventional radiography the selected exposure settings were 66 kVp, 6 mA and 16 s, while during digital radiography two combinations were selected 60 kVp, 4 mA, 18 s and 66 kVp, 8 mA, 18 s with and without image processing function. The dosimeters were annealed in a PTW-TLDO Harshaw oven. TLD energy response was studied using RQN beam narrow series at GAEC's Secondary Standard Calibration Laboratory. The reader used was a Harshaw, 4500. Effective dose was estimated according to ICRP 60 report (E ICRP60 ). An additional estimation of the effective dose was accomplished including the doses of the salivary glands (E SAL ). A Wilcoxon signed ranks test was used for statistical analysis. Results: The effective dose, according to ICRP report (E ICRP60 ) in conventional panoramic radiography was 17 μSv and E SAL was 26 μSv. The respective values in digital panoramic radiography were E ICRP60 = 23 μSv and E SAL = 38 μSv; while using the lowest possible radiographic settings E ICRP60 was 8 μSv and E SAL was 12 μSv. Conclusions: The effective dose reduction in digital panoramic radiography can be achieved, if the lowest possible radiographic settings are used.

  17. Radiation dose reduction in direct digital panoramic radiography

    Energy Technology Data Exchange (ETDEWEB)

    Gavala, Sophia; Donta, Catherine [Department of Oral Diagnosis and Oral Radiology, School of Dentistry, University of Athens, 2 Thivon Street Goudi, 115 27 Athens (Greece); Tsiklakis, Kostas [Department of Oral Diagnosis and Oral Radiology, School of Dentistry, University of Athens, 2 Thivon Street Goudi, 115 27 Athens (Greece)], E-mail: ktsiklak@dent.uoa.gr; Boziari, Argyro; Kamenopoulou, Vasiliki [Greek Atomic Energy Commission (Greece); Stamatakis, Harry C. [Department of Oral Diagnosis and Oral Radiology, School of Dentistry, University of Athens, 2 Thivon Street Goudi, 115 27 Athens (Greece)

    2009-07-15

    Objectives: (a) To measure the absorbed radiation doses at 16 anatomical sites of a Rando phantom and (b) to calculate the effective doses including and excluding the salivary gland doses in panoramic radiography using a conventional and a digital panoramic device. Study design: Thermoluminescent dosimeters (TLD-100) were placed at 16 sites in a Rando phantom, using a conventional, Planmeca Promax and a digital, Planmeca PM2002CC Proline 2000 (Planmeca Oy, 00880 Helsinki, Finland) panoramic device for panoramic radiography. During conventional radiography the selected exposure settings were 66 kVp, 6 mA and 16 s, while during digital radiography two combinations were selected 60 kVp, 4 mA, 18 s and 66 kVp, 8 mA, 18 s with and without image processing function. The dosimeters were annealed in a PTW-TLDO Harshaw oven. TLD energy response was studied using RQN beam narrow series at GAEC's Secondary Standard Calibration Laboratory. The reader used was a Harshaw, 4500. Effective dose was estimated according to ICRP{sub 60} report (E{sub ICRP60}). An additional estimation of the effective dose was accomplished including the doses of the salivary glands (E{sub SAL}). A Wilcoxon signed ranks test was used for statistical analysis. Results: The effective dose, according to ICRP report (E{sub ICRP60}) in conventional panoramic radiography was 17 {mu}Sv and E{sub SAL} was 26 {mu}Sv. The respective values in digital panoramic radiography were E{sub ICRP60} = 23 {mu}Sv and E{sub SAL} = 38 {mu}Sv; while using the lowest possible radiographic settings E{sub ICRP60} was 8 {mu}Sv and E{sub SAL} was 12 {mu}Sv. Conclusions: The effective dose reduction in digital panoramic radiography can be achieved, if the lowest possible radiographic settings are used.

  18. Radiation dose reduction in direct digital panoramic radiography.

    Science.gov (United States)

    Gavala, Sophia; Donta, Catherine; Tsiklakis, Kostas; Boziari, Argyro; Kamenopoulou, Vasiliki; Stamatakis, Harry C

    2009-07-01

    (a) To measure the absorbed radiation doses at 16 anatomical sites of a Rando phantom and (b) to calculate the effective doses including and excluding the salivary gland doses in panoramic radiography using a conventional and a digital panoramic device. Thermoluminescent dosimeters (TLD-100) were placed at 16 sites in a Rando phantom, using a conventional, Planmeca Promax and a digital, Planmeca PM2002CC Proline 2000 (Planmeca Oy, 00880 Helsinki, Finland) panoramic device for panoramic radiography. During conventional radiography the selected exposure settings were 66 kVp, 6 mA and 16s, while during digital radiography two combinations were selected 60 kVp, 4 mA, 18 s and 66 kVp, 8 mA, 18s with and without image processing function. The dosimeters were annealed in a PTW-TLDO Harshaw oven. TLD energy response was studied using RQN beam narrow series at GAEC's Secondary Standard Calibration Laboratory. The reader used was a Harshaw, 4500. Effective dose was estimated according to ICRP(60) report (E(ICRP60)). An additional estimation of the effective dose was accomplished including the doses of the salivary glands (E(SAL)). A Wilcoxon signed ranks test was used for statistical analysis. The effective dose, according to ICRP report (E(ICRP60)) in conventional panoramic radiography was 17 microSv and E(SAL) was 26 microSv. The respective values in digital panoramic radiography were E(ICRP60)=23 microSv and E(SAL)=38 microSv; while using the lowest possible radiographic settings E(ICRP60) was 8 microSv and E(SAL) was 12 microSv. The effective dose reduction in digital panoramic radiography can be achieved, if the lowest possible radiographic settings are used.

  19. Single particle raster image analysis of diffusion.

    Science.gov (United States)

    Longfils, M; Schuster, E; Lorén, N; Särkkä, A; Rudemo, M

    2017-04-01

    As a complement to the standard RICS method of analysing Raster Image Correlation Spectroscopy images with estimation of the image correlation function, we introduce the method SPRIA, Single Particle Raster Image Analysis. Here, we start by identifying individual particles and estimate the diffusion coefficient for each particle by a maximum likelihood method. Averaging over the particles gives a diffusion coefficient estimate for the whole image. In examples both with simulated and experimental data, we show that the new method gives accurate estimates. It also gives directly standard error estimates. The method should be possible to extend to study heterogeneous materials and systems of particles with varying diffusion coefficient, as demonstrated in a simple simulation example. A requirement for applying the SPRIA method is that the particle concentration is low enough so that we can identify the individual particles. We also describe a bootstrap method for estimating the standard error of standard RICS. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  20. Reliability of panoramic ultrasound imaging in simultaneously examining muscle size and quality of the hamstring muscles in young, healthy males and females.

    Science.gov (United States)

    Palmer, Ty B; Akehi, Kazuma; Thiele, Ryan M; Smith, Doug B; Thompson, Brennan J

    2015-03-01

    The purpose of this study was to examine the reliability of ultrasound (US) measures of cross-sectional area (CSA), muscle thickness (MT) and echo intensity (EI) of the hamstrings, with comparisons between males and females. In 20 healthy participants (10 males, 10 females), CSA, MT and EI were measured from panoramic US scans of the hamstrings on 2 separate days. The intra-class correlation coefficients and standard errors of measurement as a percentage of the mean for CSA, MT and EI ranged from 0.715 to 0.984 and from 3.145 to 12.541% in the males and from 0.724 to 0.977 and from 4.571 to 17.890% in the females, respectively. The males had greater CSAs and MTs and lower EIs than the females (p = 0.002-0.049), and significant relationships were observed between CSA and MT (r = 0.714-0.938, p ≤ 0.001-0.023). From an overall reliability standpoint, these findings suggest that panoramic US may be a reliable technique for examining muscle size and quality of the hamstrings in both males and females. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  1. A new bite block for panoramic radiographs of anterior edentulous patients: A technical report

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Woong; Huh, Kyung Hoe; Yi, Won Jin; Heo, Min Suk; Lee, Sam Sun; Choi, Soon Chul [Dept. of Oral and Maxillofacial Radiology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul (Korea, Republic of); Symkhampha, Khanthaly [Dept. of Oral and Maxillofacial Radiology, Department of Basic Science, Faculty of Dentistry, University of Health Sciences, Vientiane (Lao People' s Democratic Republic)

    2015-06-15

    Panoramic radiographs taken using conventional chin-support devices have often presented problems with positioning accuracy and reproducibility. The aim of this report was to propose a new bite block for panoramic radiographs of anterior edentulous patients that better addresses these two issues. A new panoramic radiography bite block similar to the bite block for dentulous patients was developed to enable proper positioning stability for edentulous patients. The new bite block was designed and implemented in light of previous studies. The height of the new bite block was 18 mm and to compensate for the horizontal edentulous space, its horizontal width was 7 mm. The panoramic radiographs using the new bite block were compared with those using the conventional chin-support device. Panoramic radiographs taken with the new bite block showed better stability and bilateral symmetry than those taken with the conventional chin-support device. Patients also showed less movement and more stable positioning during panoramic radiography with the new bite block. Conventional errors in panoramic radiographs of edentulous patients could be caused by unreliability of the chin-support device. The newly proposed bite block for panoramic radiographs of edentulous patients showed better reliability. Further study is required to evaluate the image quality and reproducibility of images with the new bite block.

  2. A new bite block for panoramic radiographs of anterior edentulous patients: A technical report.

    Science.gov (United States)

    Park, Jong-Woong; Symkhampha, Khanthaly; Huh, Kyung-Hoe; Yi, Won-Jin; Heo, Min-Suk; Lee, Sam-Sun; Choi, Soon-Chul

    2015-06-01

    Panoramic radiographs taken using conventional chin-support devices have often presented problems with positioning accuracy and reproducibility. The aim of this report was to propose a new bite block for panoramic radiographs of anterior edentulous patients that better addresses these two issues. A new panoramic radiography bite block similar to the bite block for dentulous patients was developed to enable proper positioning stability for edentulous patients. The new bite block was designed and implemented in light of previous studies. The height of the new bite block was 18 mm and to compensate for the horizontal edentulous space, its horizontal width was 7 mm. The panoramic radiographs using the new bite block were compared with those using the conventional chin-support device. Panoramic radiographs taken with the new bite block showed better stability and bilateral symmetry than those taken with the conventional chin-support device. Patients also showed less movement and more stable positioning during panoramic radiography with the new bite block. Conventional errors in panoramic radiographs of edentulous patients could be caused by unreliability of the chin-support device. The newly proposed bite block for panoramic radiographs of edentulous patients showed better reliability. Further study is required to evaluate the image quality and reproducibility of images with the new bite block.

  3. Observer performance based on marginal bone tissue visibility in Scanora panoramic radiography and posterior bitewing radiography.

    Science.gov (United States)

    Ivanauskaite, Deimante; Lindh, Christina; Rohlin, Madeleine

    2008-01-01

    To evaluate image quality for marginal bone tissue assessment on panoramic radiographs taken with the Scanora dental programme and on posterior bitewing radiographs. Panoramic and bitewing radiographs were taken of 96 patients. Six observers rated marginal bone level visibility as excellent, acceptable, or unacceptable. Five observers assessed image quality for detection of vertical bone defects and furcation involvements as acceptable or unacceptable. Observer agreement was calculated as overall agreement and kappa values. Image quality of 36% of the panoramic and 6% of the bitewing sites was rated unacceptable for marginal bone loss assessment in the maxillae while 8% of the panoramic and bitewing sites in the mandible were unacceptable. For detecting vertical bone defects, image quality was unacceptable at one-third of the maxillary sites and 5% of the mandibular sites on the panoramic radiographs. Detection of furcation involvement was acceptable at most sites on both types of radiographs. Kappa values for intra- and inter-observer agreement were higher for panoramic than for bitewing radiographs. The kappa value for marginal bone loss assessment by several observers was moderate (0.45) for panorama and fair (0.28) for bitewing radiography. Corresponding kappa values for detection of vertical bone defects were substantial (0.62) and fair (0.25). Image quality as evaluated by visual grading analysis is adequate for marginal bone tissue assessment in mandibular molar and premolar regions and unacceptable in maxillary molar and premolar regions on panoramic radiographs taken with the Scanora technique compared to bitewing radiography.

  4. Quantitative localization of impacted mesiodens using panoramic and periapical radiographs.

    Science.gov (United States)

    Choi, Hang-Moon; Han, Jin-Woo; Park, In-Woo; Baik, Jee-Seon; Seo, Hyun-Woo; Lee, Joo-Hyun; Park, Ho-Won

    2011-06-01

    The purpose of this study was to evaluate a new technique for localizing impacted mesiodens using its horizontal magnification ratio on panoramic radiographs. Location-magnification equation of a panoramic equipment was obtained from horizontal magnification ratio of a metal ball which was located variable positions from the center of image layer at interval of 2 mm. Panoramic radiographs were obtained from a skull phantom with a metal ball which was a substitute for impacted mesiodens and was embedded 10mm(Group 1), 15mm(Group 2), and 20mm(Group 3) posterior to the central incisor. Each group obtained 7 panoramic radiographs at variable positions and one periapical radiograph. Three methods were used to estimate the actual width of the incisors and the balls which were used to calculate the magnification ratio. The methods included using the actual incisor width and the calculated ball width (Method 1), using the actual incisor width and the ball widths measured on periapical radiograph (Method 2), and using the incisor and the ball widths measured on periapical radiograph (Method 3). The location of the metal ball was calculated by using the location-magnification equation. The smallest difference between the calculated and the actual distance was 0.1±0.7 mm in Group 1/Method 3. The largest difference was -4.2±1.6 mm in Group 3/Method 2. In all groups, method 3 was the most accurate. Quantitative localization of impacted mesiodens is possible by using panoramic radiograph.

  5. Quantitative localization of impacted mesiodens using panoramic and periapical radiographs

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Moon; Han, Jin Woo; Park, In Woo; Baik, Jee Seon; Seo, Hyun Woo; Lee, Joo Hyun; Park, Ho Won [College of Dentistry, Gangneung-Wonju National University, Gangneung (Korea, Republic of)

    2011-06-15

    The purpose of this study was to evaluate a new technique for localizing impacted mesiodens using its horizontal magnification ratio on panoramic radiographs. Location-magnification equation of a panoramic equipment was obtained from horizontal magnification ratio of a metal ball which was located variable positions from the center of image layer at interval of 2 mm. Panoramic radiographs were obtained from a skull phantom with a metal ball which was a substitute for impacted mesiodens and was embedded 10 mm (Group 1), 15 mm (Group 2), and 20 mm (Group 3) posterior to the central incisor. Each group obtained 7 panoramic radiographs at variable positions and one periapical radiograph. Three methods were used to estimate the actual width of the incisors and the balls which were used to calculate the magnification ratio. The methods included using the actual incisor width and the calculated ball width (Method 1), using the actual incisor width and the ball widths measured on periapical radiograph (Method 2), and using the incisor and the ball widths measured on periapical radiograph (Method 3). The location of the metal ball was calculated by using the location-magnification equation. The smallest difference between the calculated and the actual distance was 0.1{+-}0.7 mm in Group 1/Method 3. The largest difference was -4.2{+-}1.6 mm in Group 3/Method 2. In all groups, method 3 was the most accurate. Quantitative localization of impacted mesiodens is possible by using panoramic radiograph.

  6. Radiation Exposure to Critical Organs in Panoramic Dental Examination

    Directory of Open Access Journals (Sweden)

    Fateme Akbari

    2012-12-01

    Full Text Available Nowadays, radiography is a necessary procedure in diagnosis and treatment of patients with dental problems. According to the ALARA (as low as reasonably achievable principle, dentists must take radiographs of sufficient quality at the lowest possible radiation dose to the patients. The assessment of patient dose on panoramic radiography is difficult because of dynamic nature of the imaging process and the narrow width of the x-ray beam. The present work describes an experiment undertaken using thermoluminescence dosimeters (TLD-100 to obtain the absorbed dose in organs and sensitive tissues in head and neck region during panoramic radiography, based on patient measurement. The overall mean entrance surface dose on thyroid, right and left lens of eyes, parotid glands (right and left and occipital region in panoramic were 38, negligible, negligible, 367, 319 and 262 μGy, respectively. The results show that there are differences between patient doses examined by different panoramic systems. There is a tendency for lower organ doses for digital compared with analogue panoramic units

  7. Demonstration of the accessory mental foramen using rotational panoramic radiography compared with cone-beam computed tomography.

    Science.gov (United States)

    Naitoh, Munetaka; Yoshida, Kazuhito; Nakahara, Kino; Gotoh, Kenichi; Ariji, Eiichiro

    2011-12-01

    Rotational panoramic radiography is routinely used in dental practice. It has not been clarified, however, whether an accessory mental foramen can be demonstrated using this technique. The visibility of accessory mental foramina on rotational panoramic radiographs was compared with those on para-panoramic images reconstructed from cone-beam computed tomographic (CBCT) images. A total of 365 patients (130 males and 235 females) were retrospectively analyzed. Para-panoramic images were reconstructed from CBCT images with the accessory mental foramen/foramina using three-dimensional visualization and measurement software, and then the accessory mental foramen on rotational panoramic images was compared with that on para-panoramic images. A total of 37 accessory mental foramina were observed in 28 patients on CBCT images. The rate of being able to visualize the accessory mental foramen or bony canal between the point of bifurcation from the mandibular canal and the accessory mental foramen on rotational panoramic radiographs was 48.6% (18 of 37 accessory mental foramina). Approximately half of the accessory mental foramina-positive CBCT images demonstrated the accessory mental foramen, or bony canal between the point of bifurcation from the mandibular canal and accessory mental foramen on rotational panoramic radiographs. © 2011 John Wiley & Sons A/S.

  8. Localization of impacted maxillary canines using panoramic radiography.

    Science.gov (United States)

    Nagpal, Archna; Pai, Keerthilatha M; Setty, Suhas; Sharma, Gaurav

    2009-03-01

    We aimed to establish a reliable method of localizing an impacted maxillary canine on the sole basis of assessment of a single panoramic radiograph, and to determine the validity and reproducibility of the method. Panoramic radiographs of 50 subjects with a total of 68 impacted canines were analysed. The Canine Incisor Index (CII), Canine Canine Index (CCI), control Canine Incisor Index (c-CII), Zone (apical, middle, coronal) and Sector (I, II, III, IV) were determined on digitized panoramic radiographs. Comparison of the CII and CCI values of labially or palatally impacted canines revealed a statistically significant difference (P 0.05). There was a significant difference between palatal and central canine impactions in relation to CII (P 0.05). Correct prediction of palatal canine impactions by differential magnification on a panoramic radiograph is possible in 77% of cases. Vertical and horizontal restrictions have no value in recognition of labiolingual position of impacted maxillary canines. The panoramic radiograph cannot be used as a sole radiograph for reliable localization of impacted maxillary canines.

  9. Single photon imaging. New instrumentation and techniques

    International Nuclear Information System (INIS)

    Muehllehner, G.; Colsher, J.

    1981-01-01

    The performance of Anger scintillation cameras continues to be enhanced through a series of small improvements which result in significantly better imaging characteristics. The most recent changes in camera design consist of: (1) the introduction of photomultipliers with better photocathode and electron collection efficiencies, (2) the use of thinner (3/8 or 1/4 in) crystals giving slightly better intrinsic resolution for low gamma-ray energies, (3) inclusion of a spatially varying energy window to compensate for variations of light collection efficiency, (4) event-by-event, real-time distortion removal for uniformity correction, and (5) introduction of new methods to improve the count-rate capability. Whereas some of these improvements are due to better understanding of the fundamentals of camera design, others are the result of technological advances in electronic components such as analogue-to-digital converters, microprocessors and high-density digital memories. The development of single photon tomography has developed along two parallel paths. Multipinhole and rotating slant-hole collimator attachments provide some degree of longitudinal tomography, and are currently being applied to cardiac imaging. At the same time rotating camera systems capable of transverse as well as longitudinal imaging are being refined technically and evaluated clinically. Longitudinal tomography is of limited use in quantitative studies and is likely to be an interim solution to three-dimensional imaging. Rotating camera systems, on the other hand, not only provide equal resolution in all three dimensions but are also capable of providing quantitative accuracy. This is the result of progress in attenuation correction and the design of special collimators. Single photon tomography provides a small but noticeable improvement in diagnostic accuracy which is likely to result in widespread use of rotating camera systems in the future

  10. Panoramic dental X-ray machine X-motion drive

    International Nuclear Information System (INIS)

    Cushman, R.H.; Flynn, J.J.

    1980-01-01

    A panoramic dental x-ray machine is described which provides continuous and discontinuous radiographic images of the dental arch area of a patient. The systems for moving the chair and the column which carries the x-ray source and camera are specified. (U.K.)

  11. Fast single image dehazing based on image fusion

    Science.gov (United States)

    Liu, Haibo; Yang, Jie; Wu, Zhengping; Zhang, Qingnian

    2015-01-01

    Images captured in foggy weather conditions often fade the colors and reduce the contrast of the observed objects. An efficient image fusion method is proposed to remove haze from a single input image. First, the initial medium transmission is estimated based on the dark channel prior. Second, the method adopts an assumption that the degradation level affected by haze of each region is the same, which is similar to the Retinex theory, and uses a simple Gaussian filter to get the coarse medium transmission. Then, pixel-level fusion is achieved between the initial medium transmission and coarse medium transmission. The proposed method can recover a high-quality haze-free image based on the physical model, and the complexity of the proposed method is only a linear function of the number of input image pixels. Experimental results demonstrate that the proposed method can allow a very fast implementation and achieve better restoration for visibility and color fidelity compared to some state-of-the-art methods.

  12. A comparative study of cone-beam computed tomography and conventional panoramic radiography in assessing the topographic relationship between the mandibular canal and impacted third molars.

    Science.gov (United States)

    Tantanapornkul, Weeraya; Okouchi, Kiyoshi; Fujiwara, Yoshikuni; Yamashiro, Masashi; Maruoka, Yutaka; Ohbayashi, Naoto; Kurabayashi, Tohru

    2007-02-01

    To evaluate the diagnostic accuracy of cone-beam CT compared with panoramic images in predicting neurovascular bundle exposure during extraction of impacted mandibular third molars. Cone-beam CT and panoramic images of 142 impacted mandibular third molars were prospectively evaluated to assess tooth relationship to the mandibular canal. These interpretations were then correlated with intraoperative findings. The sensitivity and specificity of the 2 modalities in predicting neurovascular bundle exposure at extraction were calculated and compared. The diagnostic criterion for panoramic images was defined using multivariate logistic regression analysis. In predicting the exposure, the sensitivity and specificity were 93% and 77% for cone-beam CT, and 70% and 63% for panoramic images, respectively. Cone-beam CT was significantly superior to panoramic images in both sensitivity and specificity. Cone-beam CT was significantly superior to panoramic images in predicting neurovascular bundle exposure during extraction of impacted mandibular third molar teeth.

  13. Accuracy and head positioning effects on measurements of anterior tooth length using 3-dimensional and conventional dental panoramic radiography.

    Science.gov (United States)

    Kitai, Noriyuki; Murabayashi, Manabu; Sugimoto, Hiroshi; Fujiwara, Atsushi; Tome, Wakako; Katsumata, Akitoshi

    2017-03-01

    The purposes of this study were to examine the accuracy and the head positioning effects on measurements of anterior tooth length using 3-dimensional (3D) and conventional dental panoramic radiography and to investigate whether 3D panoramic radiography is suitable for the evaluation of anterior tooth length. A simulated human head was radiographed at 4, 8, and 12 mm displaced positions, and at 5°, 10°, and 15° tilted positions from the standard head position using 3D and conventional panoramic radiography, and also using cone-beam computed tomography. Anterior tooth lengths were measured on the panoramic and cone-beam computed tomography images. The values for the standard head position in the panoramic radiographs were defined as the standard values. Measurement error was defined as the standard value minus the cone-beam computed tomography value on each panoramic radiograph. The head position ratio of the measurement value to the standard value at each head position was calculated. Measurement errors for the 3D panoramic radiographs were significantly smaller than those for the conventional panoramic radiographs. In the 3D panoramic radiographs, the head position ratios at the 4, 8, and 12 mm displaced positions and at the 5° tilted position were within ±5% of the standard value. Three-dimensional panoramic radiography is suitable for the quantitative evaluation of anterior tooth length with high accuracy. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  14. Common positioning errors in panoramic radiography: A review

    International Nuclear Information System (INIS)

    Randon, Rafael Henrique Nunes; Pereira, Yamba Carla Lara; Nascimento, Glauce Crivelaro do

    2014-01-01

    Professionals performing radiographic examinations are responsible for maintaining optimal image quality for accurate diagnoses. These professionals must competently execute techniques such as film manipulation and processing to minimize patient exposure to radiation. Improper performance by the professional and/or patient may result in a radiographic image of unsatisfactory quality that can also lead to a misdiagnosis and the development of an inadequate treatment plan. Currently, the most commonly performed extraoral examination is panoramic radiography. The invention of panoramic radiography has resulted in improvements in image quality with decreased exposure to radiation and at a low cost. However, this technique requires careful, accurate positioning of the patient's teeth and surrounding maxillofacial bone structure within the focal trough. Therefore, we reviewed the literature for the most common types of positioning errors in panoramic radiography to suggest the correct techniques. We would also discuss how to determine if the most common positioning errors occurred in panoramic radiography, such as in the positioning of the patient's head, tongue, chin, or body.

  15. Common positioning errors in panoramic radiography: A review

    Energy Technology Data Exchange (ETDEWEB)

    Randon, Rafael Henrique Nunes [Stomathology and Oral Diagnostic Program, School of Dentistry of Sao Paulo, University of Sao Paulo, Sao Paulo (Brazil); Pereira, Yamba Carla Lara [Biology Dental Buco Graduate Program, School of Dentistry of Piracicaba, University of Campinas, Piracicaba (Brazil); Nascimento, Glauce Crivelaro do [Psychobiology Graduate Program, School of Philosophy, Science and Literature of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto (Brazil)

    2014-03-15

    Professionals performing radiographic examinations are responsible for maintaining optimal image quality for accurate diagnoses. These professionals must competently execute techniques such as film manipulation and processing to minimize patient exposure to radiation. Improper performance by the professional and/or patient may result in a radiographic image of unsatisfactory quality that can also lead to a misdiagnosis and the development of an inadequate treatment plan. Currently, the most commonly performed extraoral examination is panoramic radiography. The invention of panoramic radiography has resulted in improvements in image quality with decreased exposure to radiation and at a low cost. However, this technique requires careful, accurate positioning of the patient's teeth and surrounding maxillofacial bone structure within the focal trough. Therefore, we reviewed the literature for the most common types of positioning errors in panoramic radiography to suggest the correct techniques. We would also discuss how to determine if the most common positioning errors occurred in panoramic radiography, such as in the positioning of the patient's head, tongue, chin, or body.

  16. Common positioning errors in panoramic radiography: A review

    Science.gov (United States)

    Rondon, Rafael Henrique Nunes; Pereira, Yamba Carla Lara

    2014-01-01

    Professionals performing radiographic examinations are responsible for maintaining optimal image quality for accurate diagnoses. These professionals must competently execute techniques such as film manipulation and processing to minimize patient exposure to radiation. Improper performance by the professional and/or patient may result in a radiographic image of unsatisfactory quality that can also lead to a misdiagnosis and the development of an inadequate treatment plan. Currently, the most commonly performed extraoral examination is panoramic radiography. The invention of panoramic radiography has resulted in improvements in image quality with decreased exposure to radiation and at a low cost. However, this technique requires careful, accurate positioning of the patient's teeth and surrounding maxillofacial bone structure within the focal trough. Therefore, we reviewed the literature for the most common types of positioning errors in panoramic radiography to suggest the correct techniques. We would also discuss how to determine if the most common positioning errors occurred in panoramic radiography, such as in the positioning of the patient's head, tongue, chin, or body. PMID:24701452

  17. Evaluation of the styloid process on digital panoramic radiographs

    International Nuclear Information System (INIS)

    More, Chandramani B; Asrani, Mukesh K

    2010-01-01

    The styloid process is an anatomical structure, whose clinical importance is not well understood. Proper clinical and radiographic evaluation can detect an elongated styloid process and calcification of the stylohyoid ligament. It has been reported that 2 – 28% of the general population show radiographic evidence of mineralization of a portion of the stylohyoid chain. The elongated styloid process may be symptomatic in many cases. Panoramic radiography is the best imaging modality to view the styloid process bilaterally. To assess the styloid process on digital panoramic radiographs. The study was conducted on 500 digital panoramic radiographs available in the archives of our department as soft copies. These radiographs were taken using a digital panoramic system. The radiographic length of the styloid process was measured on both sides using the measurement toolbars on the accompanying analysis software. For statistical analysis we used the unpaired t test, Chi-square test, and one-way ANOVA test, as necessary. The average length of the left styloid was 25.41 ± 6.32 mm and that of the right styloid was 25.53 ± 6.62 mm. The length of both styloids increased with age and males had longer styloids than females. Elongated styloids were present in 19.4% of the panoramic radiographs. Langlais type I elongated styloids and a partial calcification pattern were more common than others. Panoramic radiography is useful for detection of an elongated styloid process and / or ossification of the stylohyoid ligament in patients with or without symptoms, and helps avoid a misdiagnosis of tonsillar pain or pain of dental, pharyngeal, or muscular origin

  18. Evaluation of the styloid process on digital panoramic radiographs

    Directory of Open Access Journals (Sweden)

    More Chandramani

    2010-01-01

    Full Text Available Background: The styloid process is an anatomical structure, whose clinical importance is not well understood. Proper clinical and radiographic evaluation can detect an elongated styloid process and calcification of the stylohyoid ligament. It has been reported that 2 - 28% of the general population show radiographic evidence of mineralization of a portion of the stylohyoid chain. The elongated styloid process may be symptomatic in many cases. Panoramic radiography is the best imaging modality to view the styloid process bilaterally. Aim: To assess the styloid process on digital panoramic radiographs. Materials and Methods: The study was conducted on 500 digital panoramic radiographs available in the archives of our department as soft copies. These radiographs were taken using a digital panoramic system. The radiographic length of the styloid process was measured on both sides using the measurement toolbars on the accompanying analysis software. For statistical analysis we used the unpaired t test, Chi-square test, and one-way ANOVA test, as necessary. Results: The average length of the left styloid was 25.41 ± 6.32 mm and that of the right styloid was 25.53 ± 6.62 mm. The length of both styloids increased with age and males had longer styloids than females. Elongated styloids were present in 19.4% of the panoramic radiographs. Langlais type I elongated styloids and a partial calcification pattern were more common than others. Conclusion: Panoramic radiography is useful for detection of an elongated styloid process and / or ossification of the stylohyoid ligament in patients with or without symptoms, and helps avoid a misdiagnosis of tonsillar pain or pain of dental, pharyngeal, or muscular origin.

  19. Proximal caries detection accuracy using intraoral bitewing radiography, extraoral bitewing radiography and panoramic radiography.

    Science.gov (United States)

    Kamburoglu, K; Kolsuz, E; Murat, S; Yüksel, S; Ozen, T

    2012-09-01

    To compare proximal caries detection using intraoral bitewing, extraoral bitewing and panoramic radiography. 80 extracted human premolar and molar teeth with and without proximal caries were used. Intraoral radiographs were taken with Kodak Insight film (Eastman Kodak Co., Rochester, NY) using the bitewing technique. Extraoral bitewing and panoramic images were obtained using a Planmeca Promax Digital Panoramic X-ray unit (Planmeca Inc., Helsinki, Finland). Images were evaluated by three observers twice. In total, 160 proximal surfaces were assessed. Intra- and interobserver kappa coefficients were calculated. Scores obtained from the three techniques were compared with the histological gold standard using receiver operating characteristic analysis. Az values for each image type, observer and reading were compared using z-tests, with a significance level of α = 0.05. Kappa coefficients ranged from 0.883 to 0.963 for the intraoral bitewing, from 0.715 to 0.893 for the extraoral bitewing, and from 0.659 to 0.884 for the panoramic radiography. Interobserver agreements for the first and second readings for the intraoral bitewing images were between 0.717 and 0.780, the extraoral bitewing readings were between 0.569 and 0.707, and the panoramic images were between 0.477 and 0.740. The Az values for both readings of all three observers were highest for the intraoral bitewing. Az values for the extraoral bitewing images were higher than those of the panoramic images without statistical significance (p > 0.05). Intraoral bitewing radiography was superior to extraoral bitewing and panoramic radiography in diagnosing proximal caries of premolar and molar teeth ex vivo. Similar intra- and interobserver coefficients were calculated for extraoral bitewing and panoramic radiography.

  20. An improved ASIFT algorithm for indoor panorama image matching

    Science.gov (United States)

    Fu, Han; Xie, Donghai; Zhong, Ruofei; Wu, Yu; Wu, Qiong

    2017-07-01

    The generation of 3D models for indoor objects and scenes is an attractive tool for digital city, virtual reality and SLAM purposes. Panoramic images are becoming increasingly more common in such applications due to their advantages to capture the complete environment in one single image with large field of view. The extraction and matching of image feature points are important and difficult steps in three-dimensional reconstruction, and ASIFT is a state-of-the-art algorithm to implement these functions. Compared with the SIFT algorithm, more feature points can be generated and the matching accuracy of ASIFT algorithm is higher, even for the panoramic images with obvious distortions. However, the algorithm is really time-consuming because of complex operations and performs not very well for some indoor scenes under poor light or without rich textures. To solve this problem, this paper proposes an improved ASIFT algorithm for indoor panoramic images: firstly, the panoramic images are projected into multiple normal perspective images. Secondly, the original ASIFT algorithm is simplified from the affine transformation of tilt and rotation with the images to the only tilt affine transformation. Finally, the results are re-projected to the panoramic image space. Experiments in different environments show that this method can not only ensure the precision of feature points extraction and matching, but also greatly reduce the computing time.

  1. Case study: limitations of panoramic radiography in the anterior mandible.

    LENUS (Irish Health Repository)

    Walker, Cameron

    2009-12-01

    Dental Panoramic Tomography (DPT) is a widely used and valuable examination in dentistry. One area prone to artefacts and therefore misinterpretation is the anterior region of the mandible. This case study discusses a periapical radiolucency related to lower anterior teeth that is discovered to be a radiographic artefact. Possible causes of the artefact include a pronounced depression in the mental region of the mandible or superimposition of intervertebral spaces. Additional limitations of the DPT image include superimposition of radio-opaque structures, reduced image detail compared to intra-oral views and uneven magnification. These problems often make the DPT inappropriate for imaging the anterior mandible. Clinical Relevance: Panoramic radiography is often unsuitable for radiographic examination of the anterior mandible.

  2. A study of panoramic focal trough for the six-year-old child

    International Nuclear Information System (INIS)

    Kim, Sang Yeon; Choi, Hang Moon; Han, Jin Woo; Lee, Sul Mi

    2004-01-01

    To make a focal trough (image layer) for an average maxillary dental arch of 6-year-old Korean in panoramic radiography. Phantom for the maxillary dental arch was designed using intercanine width, intermolar width, tooth size, and interdental spacing to record the data of 6-year-old child. The characteristics of pre-corrected panoramic machine (for adult) was evaluated using the phantom, resolution test pattern for margin of the image layer, and metal ball for the center of the image layer. Panoramic image layer of the child was developed by means of decreasing the speed of film-cassette and positioning the phantom backwards, and then the characteristics of post-corrected panoramic machine (for child) were reevaluated. At post-corrected panoramic image layer, beam projection angles at all interdental areas increased for about 2.6 - 3.8 .deg., the position of the image layer was shifted toward the rotation center for about 2.5 mm at the deciduous central incisior area. The width of image layer decreased at all areas. Increased beam projection angle will reduce the disadvantage of tooth overlap, and the same form between the center of the image layer and dental arch will improve image resolution.

  3. Positioning errors and quality assessment in panoramic radiography

    Energy Technology Data Exchange (ETDEWEB)

    Dhillon, Manu; Lakhanpal, Manisha; Krishnamoorthy, Bhuvana [Dept. of Oral Medicine and Radiology, ITS Centre for Dental Studies and Research, Ghaziabad (India); Raju, Srinivasa M [Dept. of Oral Medicine and Radiology, Teerthanker Mahavir Dental College, Moradabad (India); Verma, Sankalp; Mohan, Raviprakash S [Dept. of Oral Medicine and Radiology, Kothiwal Dental College and Research Centre, Moradabad (India); Tomar, Divya [Dept. of Pedodontics and Preventive Dentistry, IDST Dental College and Research Centre, Modinagar (India)

    2012-09-15

    This study was performed to determine the relative frequency of positioning errors, to identify those errors directly responsible for diagnostically inadequate images, and to assess the quality of panoramic radiographs in a sample of records collected from a dental college. This study consisted of 1,782 panoramic radiographs obtained from the Department of Oral and Maxillofacial Radiology. The positioning errors of the radiographs were assessed and categorized into nine groups: the chin tipped high, chin tipped low, a slumped position, the patient positioned forward, the patient positioned backward, failure to position the tongue against the palate, patient movement during exposure, the head tilted, and the head turned to one side. The quality of the radiographs was further judged as being 'excellent', 'diagnostically acceptable', or 'unacceptable'. Out of 1,782 radiographs, 196 (11%) were error free and 1,586 (89%) were present with positioning errors. The most common error observed was the failure to position the tongue against the palate (55.7%) and the least commonly experienced error was patient movement during exposure (1.6%). Only 11% of the radiographs were excellent, 64.1% were diagnostically acceptable, and 24.9% were unacceptable. The positioning errors found on panoramic radiographs were relatively common in our study. The quality of panoramic radiographs could be improved by careful attention to patient positioning.

  4. Comparison of mesiodistal root angulation with posttreatment panoramic radiographs and cone-beam computed tomography.

    Science.gov (United States)

    Bouwens, Daniel G; Cevidanes, Lucia; Ludlow, John B; Phillips, Ceib

    2011-01-01

    Orthodontists assess mesiodistal root angulations before, during, and after orthodontic treatment as an aid in establishing proper root position. Panoramic imaging has been useful for this purpose and is a valuable screening tool in diagnosis and planning treatment of orthodontic patients. Cone-beam computed tomography (CBCT) for imaging of the craniofacial complex creates the opportunity to evaluate 3-dimensional images compared with traditional 2-dimensional images. The purpose of this project was to compare mesiodistal root angulations by using posttreatment panoramic radiographic images and CBCT scans. Mesiodistal root angulations from panoramic images and CBCT scans of 35 orthognathic surgery patients after orthodontic treatment were compared. The panoramic images were measured by using VixWin (Gendex Dental Systems, Des Plaines, Ill), and the CBCT scans by using InvivoDental 3D (version 4.1, Anatomage, San Jose, Calif). The mesiodistal root angulation of each maxillary and mandibular tooth was measured by using the occlusal plane as the reference line. With an intercept-only linear regression for correlated data (with an unstructured covariance structure), the global test of whether the mean vector of all differences for the teeth is zero was performed separately for the 2 arches. The global test for both arches was statistically significant (P <0.001), indicating an overall difference in root angulation between measurements from panoramic and CBCT images. There was no discernible pattern in the average differences between panoramic and CBCT measurements. The assessment of mesiodistal tooth angulation with panoramic radiography should be approached with caution and reinforced by a thorough clinical examination of the dentition. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  5. Experiments in interactive panoramic cinema

    Science.gov (United States)

    Fisher, Scott S.; Anderson, Steve; Ruiz, Susana; Naimark, Michael; Hoberman, Perry; Bolas, Mark; Weinberg, Richard

    2005-03-01

    For most of the past 100 years, cinema has been the premier medium for defining and expressing relations to the visible world. However, cinematic spectacles delivered in darkened theaters are predicated on a denial of both the body and the physical surroundings of the spectators who are watching it. To overcome these deficiencies, filmmakers have historically turned to narrative, seducing audiences with compelling stories and providing realistic characters with whom to identify. This paper describes several research projects in interactive panoramic cinema that attempt to sidestep the narrative preoccupations of conventional cinema and instead are based on notions of space, movement and embodied spectatorship rather than traditional storytelling. Example projects include interactive works developed with the use of a unique 360 degree camera and editing system, and also development of panoramic imagery for a large projection environment with 14 screens on 3 adjacent walls in a 5-4-5 configuration with observations and findings from an experiment projecting panoramic video on 12 of the 14, in a 4-4-4 270 degree configuration.

  6. Maxillary sinus septa: comparison between panoramic radiography and CBCT

    Energy Technology Data Exchange (ETDEWEB)

    Nah, Kyung Soo [Department of Oral and Maxillofacial Radiology, School of Dentistry, Pusan National University, Pusan (Korea, Republic of)

    2010-06-15

    To investigate and compare the prevalence, size, and location of maxillary sinus septa on panoramic and cone beam computed tomography (CBCT) images.Two hundred patients who had taken both panoramic and CBCT images were included. The location of maxillary sinus septa on the panoramic radiographs were recorded and confirmed on the CBCT images. Also the size of septa was measured on the reformatted CBCT images. The prevalence of the patients who had maxillary sinus septa was 51.0% and they showed 179 septa totally. Among them 51.0% of the patients had one septum, 32.4% two septa, 13.7% three, and 2.9% four. The measured heights of the septa were 4.37 {+-} 2.87 mm, 3.51 {+-} 2.47 mm, and 3.04 {+-} 2.37 mm in the medial, middle, and lateral areas, respectively. It was revealed that 1.0% was located at canine region, 18.0% at first premolar, 25.0% at second premolar, 22.7% at first molar, 19.8% at second molar, and 14.0% at third molar region. Among 213 septa depicted by the panoramic radiographs, only 69.0% were confirmed at the CBCT images. Since various heights and courses of the septa can develop in all parts of the maxillary sinus, adequate assessment of the inner aspect of the maxillary sinus is essential to avoid complications during sinus augmentation procedures. CBCT scanning is the preferred radiographic method for detecting the presence of sinus septa.

  7. Single breath-hold MR imaging of liver

    International Nuclear Information System (INIS)

    Choi, Sun Jeong; Kim, Seong Hee; Kim, Sun Hee; Chae, Yoo Soon; Chung, Chun Phil; Kim, Yang Sook

    1993-01-01

    Single breath-hold gradient echo images with Small Tip Angle Gradient Echo (STAGE) were evaluated in the study of liver in 16 patients (4 normal liver, 5 hepatoma, 5 cholangiocarcinoma, 1 hemangioma, 1 cavernous transformation of portal vein). We obtained one slice of gradient echo during single breath-hold at the level of pathology defined on conventional spin echo image. Single breath-hold gradient echo images were compared with spin echo images for image quality and artifacts. Single breath-hold gradient image showed improved resolution of vascular detail and excellent contrast between lesion and adjacent normal liver in hepatoma. Cholangiocarcinoma showed decreased contrast between lesion and biliary trees but improved contrast between lesion and blood vessel. Cavernous transformation of portal vein was noted as tortuous vessel of high signal intensity. Single breath-hold gradient echo scan increased vascular artifact, but decreased respiratory artifact leading to improved image quality. Single breath-hold technique can reduce imaging time and improve image quality and may be used as complementary method to the spin echo scan

  8. Comparison of panoramic radiograph with cone-beam computed tomography in assessment of maxillary sinus floor and nasal floor

    Directory of Open Access Journals (Sweden)

    Vijay Kumar Bokkasam

    2015-01-01

    Full Text Available Introduction: Panoramic radiograph is frequently prescribed by dentists for implant planning and, hence, accurate assessment of anatomical structures in panoramic radiograph is of utmost importance. Aims: The aim of the present study is to know the accuracy of panoramic radiograph in assessment of relationship between maxillary sinus floor and posterior teeth roots, and the distance from alveolar crest to nasal floor by comparing it with that of cone-beam computed tomographic (CBCT image. Materials and Methods: Panoramic and CBCT images of 30 patients were analyzed. The topographic relationship of each root of posterior teeth to the maxillary sinus floor was evaluated and classified into three classes. The distance from the peak point on maxillary alveolar crest to nasal floor was measured in panoramic radiograph as well as in CBCT image. All the measurements were made by built-in measurement tools. Results: Class 1 roots in panoramic radiograph showed high agreement (86% with CBCT image, followed by class 0 (76%. There was a significant difference in the measurements of alveolar bone height (ABH in the nasal floor region with a P value of 0.018. Conclusion: Panoramic radiograph is reliable in assessment of nasal floor and maxillary sinus, provided position of the patient, distortion, and the inherent magnification factor are taken into consideration.

  9. Moving Target Information Extraction Based on Single Satellite Image

    Directory of Open Access Journals (Sweden)

    ZHAO Shihu

    2015-03-01

    Full Text Available The spatial and time variant effects in high resolution satellite push broom imaging are analyzed. A spatial and time variant imaging model is established. A moving target information extraction method is proposed based on a single satellite remote sensing image. The experiment computes two airplanes' flying speed using ZY-3 multispectral image and proves the validity of spatial and time variant model and moving information extracting method.

  10. The study of radiographic technique with low exposure using computed panoramic tomography

    International Nuclear Information System (INIS)

    Saito, Yasuhiro

    1987-01-01

    A new imaging system for the dental field that combines recent advances in both the electronics and computer technologies was developed. This new imaging system is a computed panoramic tomography process based on the newly developed laser-scan system. In this study a quantitative image evaluation was performed comparing anatomical landmark in computed panoramic tomography at a low exposure (LPT) and in conventional panoramic tomography at a routin (CPT), and the following results were obtained: 1. The diagnostic value of the CPT decreased with decreasing exposure, paticularly with regard to the normal anatomical landmarks of such microstructural parts as the periodontal space, lamina dura and the enamel-dentin border. 2. The LPT was highly diagnostic value for all normal anatomical landmark, averaging about twice as valuable diagnostically as CPT. 3. The visually diagnostic value of the periodontal space, lamina dura, enamel-dentin border and the anatomical morphology of the teeth on the LPT beeing slightly dependent on the spatial frequency enhancement rank. 4. The LPT formed images with almost the same range of density as the CPT. 5. Computed panoramic tomographs taken at a low exposure revealed more information of the trabecular bone pattern on the image than conventional panoramic tomographs taken under routine condition in the visual spatial frequency range (0.1 - 5.0 cycle/mm). (author) 67 refs

  11. The limit values for brightness and contrast adjustment in digital panoramic radiography

    Science.gov (United States)

    Zahra, A. T.; Syahraini, S. I.; Kiswanjaya, B.; Ustriyana, P.

    2017-08-01

    There is an overall lack of studies about digital panoramic radiography. The application of image enhancement techniques is still being done based on the operator’s preferences, since there is no objective limitation. The aim is to evaluate the limit values of the brightness and contrast adjustment in digital panoramic radiography. Digital panoramic radiographs were divided into three groups (dark, medium, and light), and the contrast and brightness adjustments were done using Digora for Windows. The static evaluations were done using three criteria: 1 if the image had lower quality, 2 if there was no difference and 3 if the image had better quality. The radiographic changes differed in each group depending on the initial imaging conditions. The brightness adjustment limit values in the dark and medium groups were -10 and +20, respectively, and -20 and +10 in the light group. The contrast adjustment limit values in all of the groups were -10 and +10.

  12. Mesiodistal tooth angulation to segmental occlusal plane in panoramic radiography

    International Nuclear Information System (INIS)

    Kim, Jae Duk; Kim, Jin Soo; You, Choong Hyun

    2005-01-01

    To evaluate the stability of the segmental occlusal plane and anatomical line as the reference line for measuring the mesiodistal tooth angulation in panoramic radiography and to determine the mean angle and the range of the mesiodistal tooth angulation in Korean population with normal occlusions. Twenty nine subjects (15 men, 14 women) with normal occlusion were selected. A total of 29 panoramic radiograms were taken at normal head position and then 10 images of 5 subjects selected were repeatedly taken with repositioning 2 times at each of the head down (V-shaped occlusion) and up (horizontal occulsion) for evaluation of stability of adopted reference lines by using PM2002CC (Planmeca, Finland). The images were traced with adoption of two test reference lines and the long axes of the teeth. The mesial angles formed by each reference line and the long axes of the teeth were measured and analyzed. With anatomical reference line, the mesiodistal tooth angulations of the molars showed the significant difference by over 5 degree between the normal and each changed head position. With segmented occlusal reference line, deviations of mesiodistal tooth angulations by the two changed head positions were less than 1 degree. The means, standard deviations, and maximum and minimum values of mesiodistal tooth angulations to segmental occlusal reference line on panoramic radiography were determined. It would appear that mesiodistal tooth angulations to segmental occlusal plane as reference line in panograms are predictable as standards of normal occlusion and useful for evaluation of tooth arrangement between adjacent teeth.

  13. Mesiodistal tooth angulation to segmental occlusal plane in panoramic radiography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Duk; Kim, Jin Soo; You, Choong Hyun [Chosun University College of Medicine, Kwangju (Korea, Republic of)

    2005-03-15

    To evaluate the stability of the segmental occlusal plane and anatomical line as the reference line for measuring the mesiodistal tooth angulation in panoramic radiography and to determine the mean angle and the range of the mesiodistal tooth angulation in Korean population with normal occlusions. Twenty nine subjects (15 men, 14 women) with normal occlusion were selected. A total of 29 panoramic radiograms were taken at normal head position and then 10 images of 5 subjects selected were repeatedly taken with repositioning 2 times at each of the head down (V-shaped occlusion) and up (horizontal occulsion) for evaluation of stability of adopted reference lines by using PM2002CC (Planmeca, Finland). The images were traced with adoption of two test reference lines and the long axes of the teeth. The mesial angles formed by each reference line and the long axes of the teeth were measured and analyzed. With anatomical reference line, the mesiodistal tooth angulations of the molars showed the significant difference by over 5 degree between the normal and each changed head position. With segmented occlusal reference line, deviations of mesiodistal tooth angulations by the two changed head positions were less than 1 degree. The means, standard deviations, and maximum and minimum values of mesiodistal tooth angulations to segmental occlusal reference line on panoramic radiography were determined. It would appear that mesiodistal tooth angulations to segmental occlusal plane as reference line in panograms are predictable as standards of normal occlusion and useful for evaluation of tooth arrangement between adjacent teeth.

  14. The ability of panoramic radiography in assessing maxillary sinus inflammatory diseases

    Energy Technology Data Exchange (ETDEWEB)

    Nah, Kyung Soo [Department of Dental Radiology, College of Dentistry, Pusan National University, Pusan (Korea, Republic of)

    2008-12-15

    To evaluate the relative diagnostic accuracy of panoramic radiography and Water's projection in maxillary sinus inflammatory diseases by comparing the radiodensities of the images with those of CT. Panoramic radiographs, Waters' projection, and CT images from 55 subjects (110 sinuses) were included in this retrospective study. The radiodensity of each maxillary sinus in panoramic radiography was recorded separately as upper and lower divided horizontally by hard palate. In Waters' projection, the overall sinus radiodensity was recorded. The CT images were considered as gold standard. In panoramic radiography, 83 sinuses had same upper and lower radiodensity and 72 of these were consistent with those of CT, 26 sinuses had different upper and lower radiodensity and 15 of these, upper radiodensity was consistent with CT, the remaining 11, lower radiodensity was consistent with CT. One sinus had upper radiolucency with lower radiopacity and both were consistent with those of CT. Altogether 73 (66.4%) among 110 sinuses in panoramic radiography showed full agreement with CT, 26 (23.6%) showed partial agreement with CT. 9 sinuses had no lower image under the hard palate in panoramic radiography due to the smaller size of sinus. In Waters' projection, the radiodensity of 105 sinuses (95.5%) were consistent with that of CT. The panoramic radiography showed 90.0% of the sinus conditions fully or partially which may appear less accurate than that of Water's view (95.5%) but with more detailed information of the inferior part of sinuses.

  15. Single Image Super Resolution via Sparse Reconstruction

    NARCIS (Netherlands)

    Kruithof, M.C.; Eekeren, A.W.M. van; Dijk, J.; Schutte, K.

    2012-01-01

    High resolution sensors are required for recognition purposes. Low resolution sensors, however, are still widely used. Software can be used to increase the resolution of such sensors. One way of increasing the resolution of the images produced is using multi-frame super resolution algorithms.

  16. Diagnostic accuracy of panoramic radiography, stereo-scanography and cone beam CT for assessment of mandibular third molars before surgery.

    Science.gov (United States)

    Hauge Matzen, Louise; Christensen, Jennifer; Hintze, Hanne; Schou, Søren; Wenzel, Ann

    2013-11-01

    To compare the diagnostic accuracy of panoramic imaging, stereo-scanography and cone beam computed tomography (CBCT) for assessment of mandibular third molars. One hundred and twelve patients (147 third molars) underwent radiographic examination by panoramic imaging, stereo-scanography and CBCT. Tooth angulation, root morphology, number of roots and relation to the mandibular canal were assessed. The same variables were assessed intra- and post-operatively and served as reference for the radiographic assessments. The diagnostic accuracy for each variable was compared between the three modalities and accuracy was further expressed as sensitivity and specificity and tested between the modalities for identifying the relation to the mandibular canal. There were no significant differences between the modalities regarding tooth angulation, root morphology and number of roots. However, CBCT was more accurate than stereo-scanography for determining root bending in the bucco-lingual plane (p = 0.02). Moreover, sensitivity for direct contact to the mandibular canal (panoramic imaging: 0.29, stereo-scanography: 0.57, CBCT: 0.67) was higher for CBCT than for panoramic images (p = 0.05) and specificity for no direct contact to the mandibular canal (panoramic imaging: 0.78, stereo-scanography: 0.53, CBCT: 0.68) was higher for panoramic images and CBCT than for scanograms (p Panoramic imaging, stereo-scanography and CBCT seem equally valuable for examination of tooth angulation, number and morphology of roots of mandibular third molars. However, CBCT was more accurate for assessment of root bending in the bucco-lingual plane and more accurate than panoramic images to identify direct contact to the mandibular canal.

  17. Evaluation of the maxillary sinus in panoramic radiography-a comparative study.

    Science.gov (United States)

    Malina-Altzinger, Johann; Damerau, Georg; Grätz, Klaus W; Stadlinger, P D Bernd

    2015-12-01

    The aim of this study was to evaluate the validity and the inter- and intra-examiner reliability of panoramic-radiograph-driven findings of different maxillary sinus anatomic variations and pathologies, which had initially been prediagnosed by cone beam computed tomography (CBCT). After pairs of two-dimensional (2D) panoramic and three-dimensional (3D) CBCT images of patients having received treatment at the outpatient department had been screened, the predefinition of 54 selected maxillary sinus conditions was initially performed on CBCT images by two blinded consultants individually using a questionnaire that defined ten different clinically relevant findings. Using the identic questionnaire, these consultants performed the evaluation of the panoramic radiographs at a later time point. The results were analyzed for inter-imaging differences in the evaluation of the maxillary sinus between 2D and 3D imaging methods. Additionally, two resident groups (first year and last year of training) performed two diagnostic runs of the panoramic radiographs and results were analyzed for inter- and intra-observer reliability. There is a moderate risk for false diagnosis of findings of the maxillary sinus if only panoramic radiography is used. Based on the ten predefined conditions, solely maxillary bone cysts penetrating into the sinus were frequently detected differently comparing 2D to 3D diagnostics. Additionally, on panoramic radiographs, the inter-observer comparison demonstrated that basal septa were significantly often rated differently and the intra-observer comparison showed a significant lack in reliability in detecting maxillary bone cysts penetrating into the sinus. Panoramic radiography provides the most information on the maxillary sinus, and it may be an adequate imaging method. However, particular findings of the maxillary sinus in panoramic imaging may be based on a rather examiner-dependent assessment. Therefore, a persistent and precise evaluation of

  18. Identifying risk groups for osteoporosis by digital panoramic radiography

    Directory of Open Access Journals (Sweden)

    Satish Alapati

    2015-01-01

    Full Text Available Background: Osteoporosis is a disease characterized by low bone mass and microarchitectural deterioration of bone tissue, leading to bone fragility, and enhanced susceptibility to fractures. Dental radiographs, especially panoramic images, have been used to predict bone mineral density. A number of indices, (mandibular cortical index [MCI], mandibular cortical width [MCW], and panoramic mandibular index [PMI] have been developed to assess and quantify the quality of mandibular bone mass and to observe the signs of resorption. Objectives: The objectives of the study were to assess mental index (MI, MCW index, and PMI with bone density in identifying risk group for osteoporosis and also to investigate influence of age and gender on MI, MCI, and PMI. Materials and Methods: After obtaining consent, details regarding age, gender, systemic health status, and oral parafunctional habits were recorded in each patient. Then a digital panoramic radiograph was taken. The image thus obtained was subjected to calibrations and morphometric analysis using Digora version 2.7. The obtained values of indices were compared with the mean values of indices, to evaluate subjects whether they are prone to osteoporosis or not. The obtained information was subjected to statistical analysis for the significance of the parameters. Results: Data analysis showed that calibration indices were highly significant in the assessment of risk group for osteoporosis than noncalibration index. The subjects at a higher risk for development of osteoporosis were old-aged adults with higher prevalence being reported in women compared to male subjects. Conclusion: In conclusion, our results suggest that higher percentage of subjects with undetected decreased bone mineral density may be identified based on trained general dental practitioners analyses of their panoramic radiographs using simple screening analytical calibration MI and MCI.

  19. Identifying risk groups for osteoporosis by digital panoramic radiography.

    Science.gov (United States)

    Alapati, Satish; Reddy, Reddy Sudhakara; Tatapudi, Ramesh; Kotha, Ramya; Bodu, Naveen Kumar; Chennoju, Saikiran

    2015-09-01

    Osteoporosis is a disease characterized by low bone mass and microarchitectural deterioration of bone tissue, leading to bone fragility, and enhanced susceptibility to fractures. Dental radiographs, especially panoramic images, have been used to predict bone mineral density. A number of indices, (mandibular cortical index [MCI], mandibular cortical width [MCW], and panoramic mandibular index [PMI]) have been developed to assess and quantify the quality of mandibular bone mass and to observe the signs of resorption. The objectives of the study were to assess mental index (MI), MCW index, and PMI with bone density in identifying risk group for osteoporosis and also to investigate influence of age and gender on MI, MCI, and PMI. After obtaining consent, details regarding age, gender, systemic health status, and oral parafunctional habits were recorded in each patient. Then a digital panoramic radiograph was taken. The image thus obtained was subjected to calibrations and morphometric analysis using Digora version 2.7. The obtained values of indices were compared with the mean values of indices, to evaluate subjects whether they are prone to osteoporosis or not. The obtained information was subjected to statistical analysis for the significance of the parameters. Data analysis showed that calibration indices were highly significant in the assessment of risk group for osteoporosis than noncalibration index. The subjects at a higher risk for development of osteoporosis were old-aged adults with higher prevalence being reported in women compared to male subjects. In conclusion, our results suggest that higher percentage of subjects with undetected decreased bone mineral density may be identified based on trained general dental practitioners analyses of their panoramic radiographs using simple screening analytical calibration MI and MCI.

  20. Single-photon imaging in CMOS

    NARCIS (Netherlands)

    Charbon, E.

    2010-01-01

    We report on the architectural design and fabrication of medium and large arrays of single-photon avalanche diodes (SPADs) for a variety of applications in physics, medicine, and the life sciences. Due to dynamic nature of SPADs, designs featuring a large number of SPADs require careful analysis of

  1. Diagnostic Value of Panoramic Radiography, Cone Beam Computed Tomography (CBCT and Clinical Measurement in Determining Bone Dimensions

    Directory of Open Access Journals (Sweden)

    Amirreza Babaloo

    2015-07-01

    Full Text Available Introduction: Calculation of the bone dimensions is of great importance for implant treatment. Several radiographic modalities have been used for this purpose. This study compared the accuracy of mesiodistal measurements of bone using panoramic radiography, cone beam computed tomography (CBCT, and the clinical methods. Methods: In this descriptive cross-sectional study, panoramic and CBCT images were obtained from 100 implant patients. Mesiodistal bone dimensions (distance between tooth CEJ in the mesial of edentulous region and CEJ of the tooth in distal of edentulous region were calculated using a scaled ruler on the orthopantomograms and the system software in the CBCT images. During the implant insertions, a mucoperiosteal flap was raised and clinical dimensions of the bone were measured by a periodontal probe and bone gauge. The differences of bone height and thickness measurements between gold standard and CBCT or panoramic modalities were analyzed using Student’s t- test. Results: The mean bone height was 10.64±1.55, 11.44±1.51, and 10.68±1.6 mm in the clinical, panoramic and CBCT modalities, respectively. Statistically significant difference was noted between the clinical and panoramic techniques (P0.05. During the bone height calculations, 79%, 62% and 78% of the images were ranked in the normal range using CBCT, panoramic and gold standard measurements, respectively. The mean areas under the ROC curve were 0.92 and 0.83 in CBCT and panoramic techniques, respectively. Conclusion: Accuracy of the CBCT images was higher than panoramic technique in measuring the bone dimensions and this technique can be confidently used to calculate the bone dimensions for the implant surgeries.   Keywords: Partially edentulous jaw; panoramic radiography; cone-beam computed tomography; bone dimensions

  2. Comparison of panoramic radiography and CBCT to identify maxillary posterior roots invading the maxillary sinus.

    Science.gov (United States)

    Lopes, Luciana J; Gamba, Thiago O; Bertinato, João V J; Freitas, Deborah Q

    Given the limitations of panoramic radiography for assessing topographic relationship of maxillary teeth with sinus floor, the purpose of this study was to assess signs on panoramic radiography that could predict root protrusion into the sinus. A total of 46 individuals (330 maxillary posterior teeth) who underwent panoramic radiography and CBCT were enrolled. The relationship between the posterior teeth and the maxillary sinus and panoramic radiography signs (projection of the root apices, interruption of the maxillary sinus floor, lamina dura, darkening in the root apices, and superiorly curving sinus floor enveloping the associated tooth root) associated with protrusion of root apices into the sinus were evaluated. There were differences between the imaging modalities about the positioning of the root apices regarding the sinus (p panoramic radiography were predictors for the root protrusion (p panoramic radiography signs (p > 0.05). The root projection into the sinus and the interruption of the sinus floor are indicative signs of root protrusion into the sinus on CBCT.

  3. Comparative analysis of mandibular anatomical variations between panoramic radiography and cone beam computed tomography.

    Science.gov (United States)

    Neves, Frederico Sampaio; Nascimento, Monikelly Carmo Chagas; Oliveira, Matheus Lima; Almeida, Solange Maria; Bóscolo, Frab Norberto

    2014-12-01

    The objective of this study is to compare the ability of panoramic radiography and cone beam computed tomography (CBCT) in detecting anatomical variations of the mandibular canal and mental foramen. One hundred twenty-seven preoperative panoramic and CBCT images were evaluated. Two oral and maxillofacial radiologists investigated the presence of bifid mandibular canals and/or additional mental foramina on the right, left, or both sides of the mandible. Intra- and interobserver reliability was determined using Cohen's kappa coefficient. McNemar's test compared the prevalence of mandibular anatomical variations between panoramic radiography and CBCT. The significance level was set at 0.05. Additional mental foramen and bifid mandibular canal were detected in 1.2 and 7.4 % of the panoramic radiographs and 7.4 and 9.8 % of the CBCT images, respectively. The incidence of anatomical variations on the mandibular canal was not significantly different between both imaging modalities (P > 0.05). Although CBCT provides better viewing of anatomical structures, including location, shape, and relationship with the surrounding area, panoramic radiography is a conventional imaging modality that can be used in the study of the bifid mandibular canals.

  4. Single Image Super Resolution using a Joint GMM Method.

    Science.gov (United States)

    Sandeep, P; Jacob, Tony

    2016-07-07

    Single Image Super Resolution (SR) algorithms based on joint dictionaries and sparse representations of image patches have received significant attention in literature and deliver state of the art results. Recently, Gaussian Mixture Models (GMMs) have emerged as favored prior for natural image patches in various image restoration problems. In this work, we approach the single image SR problem by using a joint GMM learnt from concatenated vectors of high and low resolution patches sampled from a large database of pairs of high resolution and the corresponding low resolution images. Covariance matrices of the learnt Gaussian models capture the inherent correlations between high and low resolution patches which are utilized for inferring high resolution patches from given low resolution patches. The proposed joint GMM method can be interpreted as the GMM analogue of joint dictionary based algorithms for single image SR. We study the performance of the proposed joint GMM method by comparing with various competing algorithms for single image SR. Our experiments on various natural images demonstrate the competitive performance obtained by the proposed method at low computational cost.

  5. The use of a measure with a strong correlation with the visual system to analyze the influence of the acquisition conditions over image quality in panoramic dental images; Implementacion de una medida objetiva de fuerte correlacion con el sistema visual humano para analizar la influencia de las condiciones de adquisicion sobre la calidad de las imagenes panoramicas dentales

    Energy Technology Data Exchange (ETDEWEB)

    Perez Diaz, M.; Miranda Castaneda, I.; Borges Garcia, T.

    2012-07-01

    The High Dynamic Range Visible Difference Predictor (HDR-VDP) was created to overcome the poor correlation between objective and subjective digital image quality criteria. This metric has been successfully tested to analyze the effect of medical images compression over image quality. A study using 13 dental panoramic images of an anthropomorphic phantom was carried out. Images were acquired with a digital Kodak equipment. Tube current and beam energy were changed among studies in order to analyze how the image quality was affected by the acquisition parameters variation. The criterion about image quality of two expert observers was taken into account. Furthermore, HDR-VDP was fitted to the problem under analysis. Correlation between the metric and the subjective criterion was also analyzed. HDR-VDP had a correlation of r 0.683 (p = 0. 013) with respect to the subjective criterion. The metric calculated over 9 x 9 pixel windows in regions of interest was able to detect differences in image quality for a typical range of kVp and mA in this type of study. (Author) 17 refs.

  6. Quantitative reconstruction from a single diffraction-enhanced image

    International Nuclear Information System (INIS)

    Paganin, D.M.; Lewis, R.A.; Kitchen, M.

    2003-01-01

    Full text: We develop an algorithm for using a single diffraction-enhanced image (DEI) to obtain a quantitative reconstruction of the projected thickness of a single-material sample which is embedded within a substrate of approximately constant thickness. This algorithm is used to quantitatively map inclusions in a breast phantom, from a single synchrotron DEI image. In particular, the reconstructed images quantitatively represent the projected thickness in the bulk of the sample, in contrast to DEI images which greatly emphasise sharp edges (high spatial frequencies). In the context of an ultimate aim of improved methods for breast cancer detection, the reconstructions are potentially of greater diagnostic value compared to the DEI data. Lastly, we point out that the methods of analysis presented here are also applicable to the quantitative analysis of differential interference contrast (DIC) images

  7. Single-Molecule Imaging of GPCR Interactions.

    Science.gov (United States)

    Calebiro, Davide; Sungkaworn, Titiwat

    2018-02-01

    G protein-coupled receptors (GPCRs) constitute the largest family of membrane receptors and are of great interest as pharmacological targets. Although the occurrence of GPCR signaling nanodomains has long been hypothesized based on indirect evidence, this and other fundamental aspects of GPCR signaling have been difficult to prove. The advent of single-molecule microscopy methods, which allow direct visualization of individual membrane proteins with unprecedented spatiotemporal resolution, provides unique opportunities to address several of these open questions. Indeed, recent single-molecule studies have revealed that GPCRs and G proteins transiently interact with each other as well as with structural components of the plasma membrane, leading to the formation of dynamic complexes and 'hot spots' for GPCR signaling. Whereas we are only beginning to understand the implications of this unexpected level of complexity, single-molecule approaches are likely to play a crucial role to further dissect the protein-protein interactions that are at the heart of GPCR signaling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Autonomy of image and use of single or multiple sense modalities in original verbal image production.

    Science.gov (United States)

    Khatena, J

    1978-06-01

    The use of a single or of multiple sense modalities in the production of original verbal images as related to autonomy of imagery was explored. 72 college adults were administered Onomatopoeia and Images and the Gordon Test of Visual Imagery Control. A modified scoring procedure for the Gordon scale differentiated imagers who were moderate or low in autonomy. The two groups produced original verbal images using multiple sense modalities more frequently than a single modality.

  9. Magnetic resonance imaging of single rice kernels during cooking

    NARCIS (Netherlands)

    Mohoric, A.; Vergeldt, F.J.; Gerkema, E.; Jager, de P.A.; Duynhoven, van J.P.M.; Dalen, van G.; As, van H.

    2004-01-01

    The RARE imaging method was used to monitor the cooking of single rice kernels in real time and with high spatial resolution in three dimensions. The imaging sequence is optimized for rapid acquisition of signals with short relaxation times using centered out RARE. Short scan time and high spatial

  10. Single-photon imaging in complementary metal oxide semiconductor processes

    NARCIS (Netherlands)

    Charbon, E.

    2014-01-01

    This paper describes the basics of single-photon counting in complementary metal oxide semiconductors, through single-photon avalanche diodes (SPADs), and the making of miniaturized pixels with photon-counting capability based on SPADs. Some applications, which may take advantage of SPAD image

  11. Single-cell magnetic imaging using a quantum diamond microscope.

    Science.gov (United States)

    Glenn, D R; Lee, K; Park, H; Weissleder, R; Yacoby, A; Lukin, M D; Lee, H; Walsworth, R L; Connolly, C B

    2015-08-01

    We apply a quantum diamond microscope for detection and imaging of immunomagnetically labeled cells. This instrument uses nitrogen-vacancy (NV) centers in diamond for correlated magnetic and fluorescence imaging. Our device provides single-cell resolution and a field of view (∼1 mm(2)) two orders of magnitude larger than that of previous NV imaging technologies, enabling practical applications. To illustrate, we quantified cancer biomarkers expressed by rare tumor cells in a large population of healthy cells.

  12. Single cell magnetic imaging using a quantum diamond microscope

    Science.gov (United States)

    Park, H.; Weissleder, R.; Yacoby, A.; Lukin, M. D.; Lee, H.; Walsworth, R. L.; Connolly, C. B.

    2015-01-01

    We apply a quantum diamond microscope to detection and imaging of immunomagnetically labeled cells. This instrument uses nitrogen-vacancy (NV) centers in diamond for correlated magnetic and fluorescence imaging. Our device provides single-cell resolution and two orders of magnitude larger field of view (~1 mm2) than previous NV imaging technologies, enabling practical applications. To illustrate, we quantify cancer biomarkers expressed by rare tumor cells in a large population of healthy cells. PMID:26098019

  13. Parameters in panoramic radiography for differentiation of radiolucent lesions

    Directory of Open Access Journals (Sweden)

    Ricardo Raitz

    2009-10-01

    Full Text Available OBJECTIVE: The aims of this study were to establish parameters in panoramic radiography for interpretation of unilocular radiolucent lesions, and to compare the accuracy of diagnoses given by examiners before and after using these parameters. MATERIAL AND METHODS: In Part I, 12 specialists analyzed 24 images and the diagnostic criteria used by each examiner to make correct diagnoses were used to build a list of basic radiographic parameters for each pathology (ameloblastoma, keratocystic odontogenic tumor, dentigerous cyst, and idiopathic bone cavity. In Part II, this list was used by 6 undergraduate students (Un, 8 recently graduated dentists (D, 3 oral pathologists, 3 stomatologists, 3 oral radiologists, and 3 oral surgeons to diagnose the corresponding pathologies in the other set of 24 panoramic radiographs (T2. The same analysis occurred without using this list (T1. The method of generalized estimating equations (GEE was used in order to estimate the probability of making a correct diagnosis depending on the specialty of the examiner, type of lesion, and moment of the evaluation, T1 or T2 (before or after they had access to the list of parameters, respectively. RESULTS: Higher values were obtained for the probability (GEE of making a correct diagnosis on T2; the group Un presented the highest improvement (14.6 %; no differences between the probabilities were observed either between Un and D, or among the different groups of specialists. CONCLUSIONS: The use of panoramic radiographic parameters did allow improving the diagnostic accuracy for all groups of examiners.

  14. [Chronological age estimation based on dental panoramic radiography].

    Science.gov (United States)

    Tóth, Zsuzsanna Olga; Udvar, Orsolya; Angyal, János

    2014-09-01

    Determination of the dental age is a valuable tool in planning of orthodontic treatment and could be used to estimate the chronological age of unidentified human beings. Among the various age estimation methods one of the most accepted one is the Demirjian method, which has already been modified to selected Hungarian population. In this study we have evaluated the association between the dental age determined by panoramic radiography and the chronological age. 199 panoramic radiographs taken from persons between the ages of 2,8 and 20,3 years were selected to the study. The dental ages of persons were estimated either with the Demirjian or the modified Demirjian method adapted to Hungarian population and the results were compared to the chronological ages in selected age groups. Furthermore the angle of the mandible was registered on both sides with an image analysing software. Statistical analysis of data was performed using SPSS software. Our results show that mean values of mandibular angles exhibited a decreasing trend with age. The two age determination methods resulted in different values. Between 3 and 9 years and the age group between 15 and 17,3 years the adapted Hungarian method proved to be more accurate than the Demirjian method. We have established a mathematical function between the two methods. We could conclude that the panoramic radiography based dental age calculation is a reliable method to estimate the chronological age, but the utility of gonial angle has not been proved.

  15. Parameters in panoramic radiography for differentiation of radiolucent lesions.

    Science.gov (United States)

    Raitz, Ricardo; Assunção Júnior, José Narciso Rosa; Correa, Luciana; Fenyo-Pereira, Marlene

    2009-01-01

    The aims of this study were to establish parameters in panoramic radiography for interpretation of unilocular radiolucent lesions, and to compare the accuracy of diagnoses given by examiners before and after using these parameters. In Part I, 12 specialists analyzed 24 images and the diagnostic criteria used by each examiner to make correct diagnoses were used to build a list of basic radiographic parameters for each pathology (ameloblastoma, keratocystic odontogenic tumor, dentigerous cyst, and idiopathic bone cavity). In Part II, this list was used by 6 undergraduate students (Un), 8 recently graduated dentists (D), 3 oral pathologists, 3 stomatologists, 3 oral radiologists, and 3 oral surgeons to diagnose the corresponding pathologies in the other set of 24 panoramic radiographs (T2). The same analysis occurred without using this list (T1). The method of generalized estimating equations (GEE) was used in order to estimate the probability of making a correct diagnosis depending on the specialty of the examiner, type of lesion, and moment of the evaluation, T1 or T2 (before or after they had access to the list of parameters, respectively). Higher values were obtained for the probability (GEE) of making a correct diagnosis on T2; the group Un presented the highest improvement (14.6 %); no differences between the probabilities were observed either between Un and D, or among the different groups of specialists. The use of panoramic radiographic parameters did allow improving the diagnostic accuracy for all groups of examiners.

  16. Quantitative Imaging of Single, Unstained Viruses with Coherent X Rays

    International Nuclear Information System (INIS)

    Song Changyong; Jiang Huaidong; Mancuso, Adrian; Amirbekian, Bagrat; Miao Jianwei; Peng Li; Sun Ren; Shah, Sanket S.; Zhou, Z. Hong; Ishikawa, Tetsuya

    2008-01-01

    We report the recording and reconstruction of x-ray diffraction patterns from single, unstained viruses, for the first time. By separating the diffraction pattern of the virus particles from that of their surroundings, we performed quantitative and high-contrast imaging of a single virion. The structure of the viral capsid inside a virion was visualized. This work opens the door for quantitative x-ray imaging of a broad range of specimens from protein machineries and viruses to cellular organelles. Moreover, our experiment is directly transferable to the use of x-ray free electron lasers, and represents an experimental milestone towards the x-ray imaging of large protein complexes

  17. A method of object recognition for single pixel imaging

    Science.gov (United States)

    Li, Boxuan; Zhang, Wenwen

    2018-01-01

    Computational ghost imaging(CGI), utilizing a single-pixel detector, has been extensively used in many fields. However, in order to achieve a high-quality reconstructed image, a large number of iterations are needed, which limits the flexibility of using CGI in practical situations, especially in the field of object recognition. In this paper, we purpose a method utilizing the feature matching to identify the number objects. In the given system, approximately 90% of accuracy of recognition rates can be achieved, which provides a new idea for the application of single pixel imaging in the field of object recognition

  18. Single-particle imaging for biosensor applications

    Science.gov (United States)

    Yorulmaz, Mustafa; Isil, Cagatay; Seymour, Elif; Yurdakul, Celalettin; Solmaz, Berkan; Koc, Aykut; Ünlü, M. Selim

    2017-10-01

    Current state-of-the-art technology for in-vitro diagnostics employ laboratory tests such as ELISA that consists of a multi-step test procedure and give results in analog format. Results of these tests are interpreted by the color change in a set of diluted samples in a multi-well plate. However, detection of the minute changes in the color poses challenges and can lead to false interpretations. Instead, a technique that allows individual counting of specific binding events would be useful to overcome such challenges. Digital imaging has been applied recently for diagnostics applications. SPR is one of the techniques allowing quantitative measurements. However, the limit of detection in this technique is on the order of nM. The current required detection limit, which is already achieved with the analog techniques, is around pM. Optical techniques that are simple to implement and can offer better sensitivities have great potential to be used in medical diagnostics. Interference Microscopy is one of the tools that have been investigated over years in optics field. More of the studies have been performed in confocal geometry and each individual nanoparticle was observed separately. Here, we achieve wide-field imaging of individual nanoparticles in a large field-of-view ( 166 μm × 250 μm) on a micro-array based sensor chip in fraction of a second. We tested the sensitivity of our technique on dielectric nanoparticles because they exhibit optical properties similar to viruses and cells. We can detect non-resonant dielectric polystyrene nanoparticles of 100 nm. Moreover, we perform post-processing applications to further enhance visibility.

  19. Single atom imaging with an sCMOS camera

    Science.gov (United States)

    Picken, C. J.; Legaie, R.; Pritchard, J. D.

    2017-10-01

    Single atom imaging requires discrimination of weak photon count events above the background and has typically been performed using electron-multiplying charge-coupled device cameras, photomultiplier tubes, or single photon counting modules. A scientific complementary metal-oxide semiconductor (sCMOS) provides a cost effective and highly scalable alternative to other single atom imaging technologies, offering fast readout and larger sensor dimensions. We demonstrate single atom resolved imaging of two site-addressable optical traps separated by 10 μm using an sCMOS camera, offering a competitive signal-to-noise ratio at intermediate count rates to allow high fidelity readout discrimination (error <10-6) and sub-μm spatial resolution for applications in quantum technologies.

  20. Monitoring Lidocaine Single-Crystal Dissolution by Ultraviolet Imaging

    DEFF Research Database (Denmark)

    Ostergaard, Jesper; Ye, Fengbin; Rantanen, Jukka

    2011-01-01

    ) imaging for conducting single‐crystal dissolution studies was performed. Using lidocaine as a model compound, the aim was to develop a setup capable of monitoring and quantifying the dissolution of lidocaine into a phosphate buffer, pH 7.4, under stagnant conditions. A single crystal of lidocaine...... was placed in the quartz dissolution cell and UV imaging was performed at 254 nm. Spatially and temporally resolved mapping of lidocaine concentration during the dissolution process was achieved from the recorded images. UV imaging facilitated the monitoring of lidocaine concentrations in the dissolution...... media adjacent to the single crystals. The concentration maps revealed the effects of natural convection due to density gradients on the dissolution process of lidocaine. UV imaging has great potential for in vitro drug dissolution testing...

  1. 3D Point Cloud Reconstruction from Single Plenoptic Image

    Directory of Open Access Journals (Sweden)

    F. Murgia

    2016-06-01

    Full Text Available Novel plenoptic cameras sample the light field crossing the main camera lens. The information available in a plenoptic image must be processed, in order to create the depth map of the scene from a single camera shot. In this paper a novel algorithm, for the reconstruction of 3D point cloud of the scene from a single plenoptic image, taken with a consumer plenoptic camera, is proposed. Experimental analysis is conducted on several test images, and results are compared with state of the art methodologies. The results are very promising, as the quality of the 3D point cloud from plenoptic image, is comparable with the quality obtained with current non-plenoptic methodologies, that necessitate more than one image.

  2. Coupled Deep Autoencoder for Single Image Super-Resolution.

    Science.gov (United States)

    Zeng, Kun; Yu, Jun; Wang, Ruxin; Li, Cuihua; Tao, Dacheng

    2017-01-01

    Sparse coding has been widely applied to learning-based single image super-resolution (SR) and has obtained promising performance by jointly learning effective representations for low-resolution (LR) and high-resolution (HR) image patch pairs. However, the resulting HR images often suffer from ringing, jaggy, and blurring artifacts due to the strong yet ad hoc assumptions that the LR image patch representation is equal to, is linear with, lies on a manifold similar to, or has the same support set as the corresponding HR image patch representation. Motivated by the success of deep learning, we develop a data-driven model coupled deep autoencoder (CDA) for single image SR. CDA is based on a new deep architecture and has high representational capability. CDA simultaneously learns the intrinsic representations of LR and HR image patches and a big-data-driven function that precisely maps these LR representations to their corresponding HR representations. Extensive experimentation demonstrates the superior effectiveness and efficiency of CDA for single image SR compared to other state-of-the-art methods on Set5 and Set14 datasets.

  3. Panoramic radiography and its diagnostic application

    International Nuclear Information System (INIS)

    Koseki, Yonoshin

    1971-01-01

    Panoramic radiography is a term that is applied to the radiographic techniques which record is the dental arches and related structures on one or two extraoral films. It consists of two methods, one using the intraoral anode, and the other employing tomography. Because of an increase in practical application, about 10 kinds of panoramic dental X-ray units were commercially available in U.S.A.

  4. Quantitative imaging of single upconversion nanoparticles in biological tissue.

    Directory of Open Access Journals (Sweden)

    Annemarie Nadort

    Full Text Available The unique luminescent properties of new-generation synthetic nanomaterials, upconversion nanoparticles (UCNPs, enabled high-contrast optical biomedical imaging by suppressing the crowded background of biological tissue autofluorescence and evading high tissue absorption. This raised high expectations on the UCNP utilities for intracellular and deep tissue imaging, such as whole animal imaging. At the same time, the critical nonlinear dependence of the UCNP luminescence on the excitation intensity results in dramatic signal reduction at (∼1 cm depth in biological tissue. Here, we report on the experimental and theoretical investigation of this trade-off aiming at the identification of optimal application niches of UCNPs e.g. biological liquids and subsurface tissue layers. As an example of such applications, we report on single UCNP imaging through a layer of hemolyzed blood. To extend this result towards in vivo applications, we quantified the optical properties of single UCNPs and theoretically analyzed the prospects of single-particle detectability in live scattering and absorbing bio-tissue using a human skin model. The model predicts that a single 70-nm UCNP would be detectable at skin depths up to 400 µm, unlike a hardly detectable single fluorescent (fluorescein dye molecule. UCNP-assisted imaging in the ballistic regime thus allows for excellent applications niches, where high sensitivity is the key requirement.

  5. Bone height measurements of implant sites: Comparison of panoramic radiography and spiral computed tomography

    International Nuclear Information System (INIS)

    Cho, Bong Hae

    2002-01-01

    To compare the bone height of implant sites measured using panoramic radiography and spiral CT. The available bone height was determined for 263 maxillary and mandibular implant sites in 59 patients. Distortion was calculated using the metal bar for the panoramic radiographs. Significant differences in mean bone height between the two imaging modalities were found in maxillary and mandibular anterior regions (p<0.05). The mean difference in bone height recorded by the two techniques was smallest in the maxillary and mandibular molar areas (0.8 mm), and greatest in the mandibular anterior region (1.3 mm). With the exception of the mandibular anterior region, ninety percent of all the sites showed measurement differences within 2 mm. A safety margin of 2 to 3 mm is called for when utilizing panoramic radiography, otherwise additional imaging modality such as computed tomography is necessary to obtain accurate measurements.

  6. Comparison of the inclination of unerupted mandibular third molars on panoramic radiography and casts made after surgical incision

    Directory of Open Access Journals (Sweden)

    Javad Yazdani

    2009-09-01

    Full Text Available Background and aims. Panoramic radiographs are used for surgical planning of unerupted third molars. The major problems associated with panoramic radiography include unequal magnification and geometric distortion of the image. The purpose of this study was the clinical evaluation of the effect of radiographic distortion on the position and classification of unerpted mandibular third molars. Materials and methods. Panoramic radiographs of 20 patients with indication for extraction of lower third molars were included in this study. On the day of surgery, a silicon impression was taken from the second and third molar region and poured with type IV gypsum to provide a study cast. The inclination of the lower third molar to the second molar on panoramic radiography was compared with this angulation on the study casts. Results. There was a mean difference of 5.75° ± 1.65 between the position of the lower third molar on panoramic radiographs and on study casts. Student’s t-test indicated a statistically significant difference (P < 0.05. Conclusion. Panoramic radiography tends to exhibit a more mesial position of the third molars; however, panoramic radiography can still be used as the main tool for surgical planning of lower third molars.

  7. Photoacoustic imaging of single circulating melanoma cells in vivo

    Science.gov (United States)

    Wang, Lidai; Yao, Junjie; Zhang, Ruiying; Xu, Song; Li, Guo; Zou, Jun; Wang, Lihong V.

    2015-03-01

    Melanoma, one of the most common types of skin cancer, has a high mortality rate, mainly due to a high propensity for tumor metastasis. The presence of circulating tumor cells (CTCs) is a potential predictor for metastasis. Label-free imaging of single circulating melanoma cells in vivo provides rich information on tumor progress. Here we present photoacoustic microscopy of single melanoma cells in living animals. We used a fast-scanning optical-resolution photoacoustic microscope to image the microvasculature in mouse ears. The imaging system has sub-cellular spatial resolution and works in reflection mode. A fast-scanning mirror allows the system to acquire fast volumetric images over a large field of view. A 500-kHz pulsed laser was used to image blood and CTCs. Single circulating melanoma cells were imaged in both capillaries and trunk vessels in living animals. These high-resolution images may be used in early detection of CTCs with potentially high sensitivity. In addition, this technique enables in vivo study of tumor cell extravasation from a primary tumor, which addresses an urgent pre-clinical need.

  8. Combining Public Domain and Professional Panoramic Imagery for the Accurate and Dense 3d Reconstruction of the Destroyed Bel Temple in Palmyra

    Science.gov (United States)

    Wahbeh, W.; Nebiker, S.; Fangi, G.

    2016-06-01

    This paper exploits the potential of dense multi-image 3d reconstruction of destroyed cultural heritage monuments by either using public domain touristic imagery only or by combining the public domain imagery with professional panoramic imagery. The focus of our work is placed on the reconstruction of the temple of Bel, one of the Syrian heritage monuments, which was destroyed in September 2015 by the so called "Islamic State". The great temple of Bel is considered as one of the most important religious buildings of the 1st century AD in the East with a unique design. The investigations and the reconstruction were carried out using two types of imagery. The first are freely available generic touristic photos collected from the web. The second are panoramic images captured in 2010 for documenting those monuments. In the paper we present a 3d reconstruction workflow for both types of imagery using state-of-the art dense image matching software, addressing the non-trivial challenges of combining uncalibrated public domain imagery with panoramic images with very wide base-lines. We subsequently investigate the aspects of accuracy and completeness obtainable from the public domain touristic images alone and from the combination with spherical panoramas. We furthermore discuss the challenges of co-registering the weakly connected 3d point cloud fragments resulting from the limited coverage of the touristic photos. We then describe an approach using spherical photogrammetry as a virtual topographic survey allowing the co-registration of a detailed and accurate single 3d model of the temple interior and exterior.

  9. High resolution ultrasound and photoacoustic imaging of single cells

    Directory of Open Access Journals (Sweden)

    Eric M. Strohm

    2016-03-01

    Full Text Available High resolution ultrasound and photoacoustic images of stained neutrophils, lymphocytes and monocytes from a blood smear were acquired using a combined acoustic/photoacoustic microscope. Photoacoustic images were created using a pulsed 532 nm laser that was coupled to a single mode fiber to produce output wavelengths from 532 nm to 620 nm via stimulated Raman scattering. The excitation wavelength was selected using optical filters and focused onto the sample using a 20× objective. A 1000 MHz transducer was co-aligned with the laser spot and used for ultrasound and photoacoustic images, enabling micrometer resolution with both modalities. The different cell types could be easily identified due to variations in contrast within the acoustic and photoacoustic images. This technique provides a new way of probing leukocyte structure with potential applications towards detecting cellular abnormalities and diseased cells at the single cell level.

  10. Brightness calibrates particle size in single particle fluorescence imaging.

    Science.gov (United States)

    Liu, Zhihe; Sun, Zezhou; Di, Weihua; Qin, Weiping; Yuan, Zhen; Wu, Changfeng

    2015-04-01

    This Letter provides a novel approach to quantify the particle sizes of highly bright semiconductor polymer dots (Pdots) for single-particle imaging and photobleaching studies. A quadratic dependence of single-particle brightness on particle size was determined by single-particle fluorescence imaging and intensity statistics. In terms of the same imaging conditions, the particle diameter can be quantified by comparing the individual brightness intensity with associated calibration curve. Based on this sizing method, photobleaching trajectories and overall photon counts emitted by single particles were analyzed. It is found that photobleaching rate constants of different sized Pdots are not strongly dependent on particle diameter except the sparsely occurring fluorescence blinking in certain dim particles and the rapid photobleaching component in some bright particles. The overall photon counts increase with increasing particle diameter. However, those larger than 30 nm deviate away from the increasing tendency. These results reveal the significance of selecting appropriate Pdots (≤30  nm) for single-particle imaging and tracking applications.

  11. Hyperspectral single-pixel imaging with dual optical combs

    Science.gov (United States)

    Shibuya, Kyuki; Minamikawa, Takeo; Mizutani, Yasuhiro; Yasui, Takeshi; Iwata, Tetsuo

    2017-02-01

    Dual comb spectroscopy (DCS) is based on the combination of Fourier transform spectroscopy with an optical frequency comb (OFC), and has a spectral resolution below MHz order over a spectral range over several tens THz. Furthermore, non-mechanical time-delay scanning enables the rapid data acquisition. However, in order to expand DCS into spectral imaging, a CCD or a CMOS camera cannot be used because a high-speed, point detector is indispensable to acquire the fast interferogram signal in DCS. Therefore, the first demonstration of DCS imaging was based on the mechanical scanning of the sample position. If DCS imaging can be achieved without the need for mechanical scanning, the application field of the DCS imaging will be largely expanded. One promising method to achieve the scan-less 2D imaging is a single-pixel imaging (SPI), enabling scan-less 2D imaging by use of pattern illumination on the sample and a point detector. Also, the accumulation effect in the random pattern illumination increases a signal-to-noise ratio. In this paper, we present combination of DCS with SPI, namely a scan-less DCS imaging. Spectral imaging of a sample indicated the effectiveness and potential of scan-less DCS imaging.

  12. Quantitative Assessment of Single-Image Super-Resolution in Myocardial Scar Imaging.

    Science.gov (United States)

    Ashikaga, Hiroshi; Estner, Heidi L; Herzka, Daniel A; Mcveigh, Elliot R; Halperin, Henry R

    Single-image super resolution is a process of obtaining a high-resolution image from a set of low-resolution observations by signal processing. While super resolution has been demonstrated to improve image quality in scaled down images in the image domain, its effects on the Fourier-based image acquisition technique, such as MRI, remains unknown.We performed high-resolution ex vivo late gadolinium enhancement (LGE) magnetic resonance imaging (0.4 × 0.4 × 0.4 mm 3 ) in postinfarction swine hearts ( n = 24). The swine hearts were divided into the training set ( n = 14) and the test set ( n = 10), and in all hearts, low-resolution images were simulated from the high-resolution images. In the training set, super-resolution dictionaries with pairs of small matching patches of the high- and low-resolution images were created. In the test set, super resolution recovered high-resolution images from low-resolution images using the dictionaries. The same algorithm was also applied to patient LGE ( n = 4) to assess its effects. Compared with interpolated images, super resolution significantly improved basic image quality indices ( P Super resolution using Fourier-based zero padding achieved the best image quality. However, the magnitude of improvement was small in images with zero padding. Super resolution substantially improved the spatial resolution of the patient LGE images by sharpening the edges of the heart and the scar. In conclusion, single-image super resolution significantly improves image errors. However, the magnitude of improvement was relatively small in images with Fourier-based zero padding. These findings provide evidence to support its potential use in myocardial scar imaging.

  13. Comparative study of radiation dose between digital panoramic X-ray unit and general panoramic X-ray unit

    International Nuclear Information System (INIS)

    Li Qingshan; Duan Tao; Wang Xiaoyun; Zhao Li; Dong Jian; Wei Lei

    2010-01-01

    Objective: To compare the actual dose of patients who receive the same medical practice by either digital panoramic X-ray unit and general panoramic X-ray unit and give evidence for better selection of oral X-ray examination method. Methods: Round sheet lithium fluoride (LiF) thermoluminescent dosimeters (TLD) were used. The experiment was divided into natural background contrast group, general panoramic X-ray children group, general panoramic X-ray adults group, digital panoramic X-ray children group and digital panoramic X-ray adults group. The dosimeter of natural background radiation was placed at the office of the doctor, the dosimeters of general panoramic X-ray children group and general panoramic X-ray adults group were irradiated by different conditions according to the clinical application of panoramic X-ray to children and adults, the dosimeters of digital panoramic X-ray children group and digital panoramic X-ray adults group were irradiated by different conditions according to the clinical application of digital panoramic X-ray to children and adults. The thermoluminescent dosimeter was used to count and calculate the exposure doses in various groups. Results: The dose of children exposed in general panoramic X-ray unit was 1.28 times of that in digital panoramic X-ray unit, there was significant difference (t=6.904, P<0.01). The dose of adults exposed in general panoramic X-ray unit was 1.55 times of that in the digital panoramic X-ray unit, there also was significant difference (t=-11.514. P< 0.01). Conclusion: The digital panoramic X-ray unit can reduce the dose of patients, so the digital panoramic X-ray unit should be used as far as possible. (authors)

  14. Meteor observation from space - The Smart Panoramical Optical Sensor (SPOSH)

    Science.gov (United States)

    Koschny, D.; di Martino, M.; Oberst, J.

    The European Space Agency (ESA) is funding two parallel studies for a ``Smart Panoramic Optical Head''. The main goal is to develop the technology for a space-qualified, very light-sensitive camera with a wide field of view, both from the hardware and the software side. The scientific application is to allow imaging of phenomena on the dark side of planets or moons, e.g. lightning flashes from thunderstorms or electrical discharges in sand storms, meteors, impact flashes, aurorae, etc. This paper will concentrate on the potential of this camera for the study of meteors from an orbit around a planet.

  15. Studies on the Fuji computed radiography depended on the panoramic radiography

    International Nuclear Information System (INIS)

    Nakamura, Satoshi; Shiota, Satoru; Takazawa, Kazuyoshi; Yoshida, Toru; Takagi, Yoshiko; Funamoto, Choichiro

    1986-01-01

    The Fuji Computed Radiography (FCR) developed recently involves the following procedures; photography in the same way as the hitherto radiography, printing auto imaging plate of photostimulable phospher, conversion to electric signals, and recording reproduced images by computerization. Highly valuable images for diagnoses in the medical field have already been obtained by the FCR. Then, we attempted to study FCR images panoramically radiographed for jaw lesions in the field of oral surgery. Method for study: As the samples to be studied, the selected subjects were cases of periodontal diseases, fracture of the jaw, odontogenic cyst and tumor, etc. In the present study the FCR images of panoramic radiography were compared with hitherto panoramic flat radiograms. Result of study: Although the images of the FCR vary depending on the methods of treatment, that is, on how gradient processing and spatial frequency enhancement are, the method of purpose-fitting treatment provided diagnostically significant images for grasping bone lesions. The images obtained from this FCR permitted us to grasp more distinctly condition of alveolar bone resorption in periodontal diseases, running of minute fracture lines in fracture of the jaw, and characteristic images of bone resorption in odontogenic cysts and tumor, etc. Thus the images of the FCR are highly useful in diagnosing bone lesions, but granularity of the images themselves have still been questioned, and additionally the images vary depending on the methods of gradient processing and spatial frequency enhancement. Therefore further repeat studies are probably needed for these questions. (author)

  16. Single-Frame Image Super-resolution through Contourlet Learning

    Directory of Open Access Journals (Sweden)

    Jiji CV

    2006-01-01

    Full Text Available We propose a learning-based, single-image super-resolution reconstruction technique using the contourlet transform, which is capable of capturing the smoothness along contours making use of directional decompositions. The contourlet coefficients at finer scales of the unknown high-resolution image are learned locally from a set of high-resolution training images, the inverse contourlet transform of which recovers the super-resolved image. In effect, we learn the high-resolution representation of an oriented edge primitive from the training data. Our experiments show that the proposed approach outperforms standard interpolation techniques as well as a standard (Cartesian wavelet-based learning both visually and in terms of the PSNR values, especially for images with arbitrarily oriented edges.

  17. Relationship between hypoesthesia of the lower lip after extraction of the mandibular third molar and preoperative imaging findings on panoramic X-ray films and multi-planer reconstructive CT scans

    International Nuclear Information System (INIS)

    Hasegawa, Takumi; Ri, Shinshou; Arima, Hiromi; Takahashi, Hidenori; Shigeta, Takashi; Idou, Shinjirou; Umeda, Masahiro; Komori, Takahide

    2010-01-01

    The mandibular third molars are usually located near the inferior alveolar nerve. Surgical removal of these molars may damage the nerve and cause hypoesthesia of the lower lip. Before surgery, it is important to examine the exact positional relationship between the mandibular third molars and the mandibular canal to prevent such complications. A total of 329 lower third molars from 198 patients were studied on panoramic radiographs and computed tomography (CT). We studied the association of hypoesthesia with the spacial relation between the tooth roots and the mandibular canal. Hypoesthesia occurred in 23 of 329 teeth (7.0%). Almost all cases of hypoesthesia resolved within 6 months. However, hypoesthesia of 3 teeth (0.9%) persisted approximately 7 to 12 months after surgery. In 206 of 329 teeth (62.6%), the assumed location of the mandibular canal differed between panoramic radiography and CT. Furthermore, the prediction rate of the incidence of type 1 hypoesthesia on CT (35.5%) was higher than that on panoramic radiography (15.9%). Risk factors related to hypoesthesia included loss of the white line of the root, curve of the mandibular canal, and close proximity of the tooth to the mandibular canal (Type 1) on panoramic radiography. There were also teeth in contact with the canal (0 mm) in all patients in whom hypoesthesia developed. In particular, patients whose mandibular canals were located between the roots of the mandibular third molar or on the lingual side of the mandibular third molar had a high incidence of hypoesthesia (26.0%). These results suggest that the positional relation between the mandibular third molars and the mandibular canal should be accurately evaluated by CT. Because of its high resolution and ability to examine patients in detail, CT was found to be useful for predicting the risk of inferior alveolar nerve damage before mandibular third molar surgery. (author)

  18. Image analysis driven single-cell analytics for systems microbiology.

    Science.gov (United States)

    Balomenos, Athanasios D; Tsakanikas, Panagiotis; Aspridou, Zafiro; Tampakaki, Anastasia P; Koutsoumanis, Konstantinos P; Manolakos, Elias S

    2017-04-04

    Time-lapse microscopy is an essential tool for capturing and correlating bacterial morphology and gene expression dynamics at single-cell resolution. However state-of-the-art computational methods are limited in terms of the complexity of cell movies that they can analyze and lack of automation. The proposed Bacterial image analysis driven Single Cell Analytics (BaSCA) computational pipeline addresses these limitations thus enabling high throughput systems microbiology. BaSCA can segment and track multiple bacterial colonies and single-cells, as they grow and divide over time (cell segmentation and lineage tree construction) to give rise to dense communities with thousands of interacting cells in the field of view. It combines advanced image processing and machine learning methods to deliver very accurate bacterial cell segmentation and tracking (F-measure over 95%) even when processing images of imperfect quality with several overcrowded colonies in the field of view. In addition, BaSCA extracts on the fly a plethora of single-cell properties, which get organized into a database summarizing the analysis of the cell movie. We present alternative ways to analyze and visually explore the spatiotemporal evolution of single-cell properties in order to understand trends and epigenetic effects across cell generations. The robustness of BaSCA is demonstrated across different imaging modalities and microscopy types. BaSCA can be used to analyze accurately and efficiently cell movies both at a high resolution (single-cell level) and at a large scale (communities with many dense colonies) as needed to shed light on e.g. how bacterial community effects and epigenetic information transfer play a role on important phenomena for human health, such as biofilm formation, persisters' emergence etc. Moreover, it enables studying the role of single-cell stochasticity without losing sight of community effects that may drive it.

  19. Automatic Blastomere Recognition from a Single Embryo Image

    Directory of Open Access Journals (Sweden)

    Yun Tian

    2014-01-01

    Full Text Available The number of blastomeres of human day 3 embryos is one of the most important criteria for evaluating embryo viability. However, due to the transparency and overlap of blastomeres, it is a challenge to recognize blastomeres automatically using a single embryo image. This study proposes an approach based on least square curve fitting (LSCF for automatic blastomere recognition from a single image. First, combining edge detection, deletion of multiple connected points, and dilation and erosion, an effective preprocessing method was designed to obtain part of blastomere edges that were singly connected. Next, an automatic recognition method for blastomeres was proposed using least square circle fitting. This algorithm was tested on 381 embryo microscopic images obtained from the eight-cell period, and the results were compared with those provided by experts. Embryos were recognized with a 0 error rate occupancy of 21.59%, and the ratio of embryos in which the false recognition number was less than or equal to 2 was 83.16%. This experiment demonstrated that our method could efficiently and rapidly recognize the number of blastomeres from a single embryo image without the need to reconstruct the three-dimensional model of the blastomeres first; this method is simple and efficient.

  20. Accuracy of Digital Bitewing Radiography versus Different Views of Digital Panoramic Radiography for Detection of Proximal Caries.

    Science.gov (United States)

    Abdinian, Mehrdad; Razavi, Sayed Mohammad; Faghihian, Reyhaneh; Samety, Amir Abbas; Faghihian, Elham

    2015-04-01

    Dental caries are common and have a high incidence among populations. Radiographs are essential for detecting proximal caries. The best technique should be recognized for accurate detection of caries. The aim of this study was to compare the accuracy of detection of proximal caries using intraoral bitewing, extraoral bitewing, improved interproximal panoramic, improved orthogonality panoramic and conventional panoramic radiographs. In this descriptive cross sectional study, 100 extracted human teeth with and without proximal caries were used. Intra and extraoral radiographs were taken. Images were evaluated and scored by two observers. Scores were compared with the histological gold standard. The diagnostic accuracy of radiographs was assessed by means of receiver operating characteristic (ROC) curve analysis (Ppanoramic and extraoral bitewing radiographs were superior to conventional panoramic radiography for detection of proximal caries ex vivo and should be considered for patients with contraindications for intraoral radiographs.

  1. Accuracy of Digital Bitewing Radiography versus Different Views of Digital Panoramic Radiography for Detection of Proximal Caries

    Science.gov (United States)

    Abdinian, Mehrdad; Razavi, Sayed Mohammad; Samety, Amir Abbas; Faghihian, Elham

    2015-01-01

    Objectives: Dental caries are common and have a high incidence among populations. Radiographs are essential for detecting proximal caries. The best technique should be recognized for accurate detection of caries. The aim of this study was to compare the accuracy of detection of proximal caries using intraoral bitewing, extraoral bitewing, improved interproximal panoramic, improved orthogonality panoramic and conventional panoramic radiographs. Materials and Methods: In this descriptive cross sectional study, 100 extracted human teeth with and without proximal caries were used. Intra and extraoral radiographs were taken. Images were evaluated and scored by two observers. Scores were compared with the histological gold standard. The diagnostic accuracy of radiographs was assessed by means of receiver operating characteristic (ROC) curve analysis (Ppanoramic and extraoral bitewing radiographs were superior to conventional panoramic radiography for detection of proximal caries ex vivo and should be considered for patients with contraindications for intraoral radiographs. PMID:26622284

  2. A comparison of the use of cone-beam computed tomography and panoramic radiography in the assessment of pre-eruptive intracoronal resorption.

    Science.gov (United States)

    Demirtas, Omer; Dane, Asım; Yildirim, Eren

    2016-11-01

    This study aimed to investigate the prevalence of pre-eruptive intracoronal resorption (PIR) using cone beam computed tomography (CBCT) and panoramic radiography and to compare the findings of these imaging techniques. This retrospective study consisted of 733 patients who had at least one unerupted tooth and had undergoneimaging with both three-dimensional (3D) CBCT and two-dimensional (2D) panoramic radiography. In all the images, the number of teeth with intracoronal resorption, affected tooth type and number, and size and location of the PIR defects were recorded. The McNemar test was used to compare the prevalence of PIR in the CBCT and panoramic images. Fewer PIR defects were detected in the panoramic images (3.1% of the patients) than in the CBCT images (9.5% of the patients) (ppanoramic radiography. The mandibular third permanent molar was the most commonly affected tooth.

  3. Visibility Restoration for Single Hazy Image Using Dual Prior Knowledge

    Directory of Open Access Journals (Sweden)

    Mingye Ju

    2017-01-01

    Full Text Available Single image haze removal has been a challenging task due to its super ill-posed nature. In this paper, we propose a novel single image algorithm that improves the detail and color of such degraded images. More concretely, we redefine a more reliable atmospheric scattering model (ASM based on our previous work and the atmospheric point spread function (APSF. Further, by taking the haze density spatial feature into consideration, we design a scene-wise APSF kernel prediction mechanism to eliminate the multiple-scattering effect. With the redefined ASM and designed APSF, combined with the existing prior knowledge, the complex dehazing problem can be subtly converted into one-dimensional searching problem, which allows us to directly obtain the scene transmission and thereby recover visually realistic results via the proposed ASM. Experimental results verify that our algorithm outperforms several state-of-the-art dehazing techniques in terms of robustness, effectiveness, and efficiency.

  4. Strut analysis for osteoporosis detection model using dental panoramic radiography.

    Science.gov (United States)

    Hwang, Jae Joon; Lee, Jeong-Hee; Han, Sang-Sun; Kim, Young Hyun; Jeong, Ho-Gul; Choi, Yoon Jeong; Park, Wonse

    2017-10-01

    The aim of this study was to identify variables that can be used for osteoporosis detection using strut analysis, fractal dimension (FD) and the gray level co-occurrence matrix (GLCM) using multiple regions of interest and to develop an osteoporosis detection model based on panoramic radiography. A total of 454 panoramic radiographs from oral examinations in our dental hospital from 2012 to 2015 were randomly selected, equally distributed among osteoporotic and non-osteoporotic patients (n = 227 in each group). The radiographs were classified by bone mineral density (T-score). After 3 marrow regions and the endosteal margin area were selected, strut features, FD and GLCM were analysed using a customized image processing program. Image upsampling was used to obtain the optimal binarization for calculating strut features and FD. The independent-samples t-test was used to assess statistical differences between the 2 groups. A decision tree and support vector machine were used to create and verify an osteoporosis detection model. The endosteal margin area showed statistically significant differences in FD, GLCM and strut variables between the osteoporotic and non-osteoporotic patients, whereas the medullary portions showed few distinguishing features. The sensitivity, specificity, and accuracy of the strut variables in the endosteal margin area were 97.1%, 95.7 and 96.25 using the decision tree and 97.2%, 97.1 and 96.9% using support vector machine, and these were the best results obtained among the 3 methods. Strut variables with FD and/or GLCM did not increase the diagnostic accuracy. The analysis of strut features in the endosteal margin area showed potential for the development of an osteoporosis detection model based on panoramic radiography.

  5. Automatic Thermal Infrared Panoramic Imaging Sensor

    National Research Council Canada - National Science Library

    Gutin, Mikhail; Tsui, Eddy K; Gutin, Olga; Wang, Xu-Ming; Gutin, Alexey

    2006-01-01

    .... Automatic detection, location, and tracking of targets outside protected area ensures maximum protection and at the same time reduces the workload on personnel, increases reliability and confidence...

  6. Bone height measurements on panoramic radiographs - The effect of shape and position of edentulous mandibles

    NARCIS (Netherlands)

    Batenburg, RHK; Stellingsma, K; Raghoebar, GM; Vissink, A

    1997-01-01

    Objective. The aim of this study was to quantify the effect of mandibular angulation, position, and shape of an edentulous mandible on the distortion of its image in panoramic radiographs. Study design. Five edentulous dry mandibles varying in size from small to wide and equipped with metal bars in

  7. Single Pixel Black Phosphorus Photodetector for Near-Infrared Imaging.

    Science.gov (United States)

    Miao, Jinshui; Song, Bo; Xu, Zhihao; Cai, Le; Zhang, Suoming; Dong, Lixin; Wang, Chuan

    2018-01-01

    Infrared imaging systems have wide range of military or civil applications and 2D nanomaterials have recently emerged as potential sensing materials that may outperform conventional ones such as HgCdTe, InGaAs, and InSb. As an example, 2D black phosphorus (BP) thin film has a thickness-dependent direct bandgap with low shot noise and noncryogenic operation for visible to mid-infrared photodetection. In this paper, the use of a single-pixel photodetector made with few-layer BP thin film for near-infrared imaging applications is demonstrated. The imaging is achieved by combining the photodetector with a digital micromirror device to encode and subsequently reconstruct the image based on compressive sensing algorithm. Stationary images of a near-infrared laser spot (λ = 830 nm) with up to 64 × 64 pixels are captured using this single-pixel BP camera with 2000 times of measurements, which is only half of the total number of pixels. The imaging platform demonstrated in this work circumvents the grand challenges of scalable BP material growth for photodetector array fabrication and shows the efficacy of utilizing the outstanding performance of BP photodetector for future high-speed infrared camera applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A clinical comparison of extraoral panoramic and intraoral radiographic modalities for detecting proximal caries and visualizing open posterior interproximal contacts.

    Science.gov (United States)

    Terry, Glenn L; Noujeim, Marcel; Langlais, Robert P; Moore, William S; Prihoda, Thomas J

    2016-01-01

    The purpose of this study was to compare extraoral panoramic bitewings (BWs) to intraoral photostimulable phosphor (PSP) plate BWs for the detection of proximal surface caries and to establish if there was any difference between extraoral BWs, intraoral BWs and panoramic radiographs in visualizing open posterior interproximal contacts. Extraoral panoramic and intraoral BW images were acquired on each of 20 patients, resulting in 489 total non-restored, readable surfaces that were evaluated by 4 observers. The ANOVA analysis to determine diagnostic variability between and within each subject was utilized. The surfaces included in the study extended from the distal of each canine to the last posterior contact in each arch with non-readable proximal surfaces excluded (i.e.surfaces where over half the enamel layer was overlapped or where those surfaces were not visible in one or both modalities). The statistical analysis indicated that the overall mean area under the receiver operating characteristic curves across all observers for the intraoral BWs and extraoral panoramic BWs were 0.832 and 0.827, respectively, and the difference of 0.005 was not significant at p = 0.7781. The percentage of non-readable proximal surfaces across the three modalities was 4.1% for intraoral BWs, 18.3% for extraoral panoramic BWs and 51.5% for the standard panoramic images. The investigators concluded there was no significant difference in posterior proximal surface caries detection between the modalities. Extraoral panoramic BWs were much better than panoramic radiographs in visualizing open posterior interproximal contacts, 81.7% vs 48.5%, but below the 95.9% value for intraoral BWs.

  9. Drift estimation for single marker switching based imaging schemes.

    Science.gov (United States)

    Geisler, Claudia; Hotz, Thomas; Schönle, Andreas; Hell, Stefan W; Munk, Axel; Egner, Alexander

    2012-03-26

    In recent years, the diffraction barrier in fluorescence imaging has been broken and optical nanoscopes now routinely image with resolutions of down to 20 nm, an improvement of more than 10 fold. Because this allows imaging much smaller features and because all super-resolution approaches trade off speed for spatial resolution, mechanical instabilities of the microscopes become a limiting factor. Here, we propose a fully data-driven statistical registration method for drift detection and drift correction for single marker switching (SMS) imaging schemes, including a guideline for parameter choice and quality checks of the drift analysis. The necessary assumptions about the drift are minimal, allowing a model-free approach, but more specific models can easily be integrated. We determine the resulting performance on standard SMS measurements and show that the drift determination can be routinely brought to the range of precision achievable by fiducial marker-tracking methods.

  10. Single image defogging based on particle swarm optimization

    Science.gov (United States)

    Guo, Fan; Zhou, Cong; Liu, Li-jue; Tang, Jin

    2017-11-01

    Due to the lack of enough information to solve the equation of image degradation model, existing defogging methods generally introduce some parameters and set these values fixed. Inappropriate parameter setting leads to difficulty in obtaining the best defogging results for different input foggy images. Therefore, a single image defogging algorithm based on particle swarm optimization (PSO) is proposed in this letter to adaptively and automatically select optimal parameter values for image defogging algorithms. The proposed method is applied to two representative defogging algorithms by selecting the two main parameters and optimizing them using the PSO algorithm. Comparative study and qualitative evaluation demonstrate that the better quality results are obtained by using the proposed parameter selection method.

  11. Imaging large cohorts of single ion channels and their activity

    Directory of Open Access Journals (Sweden)

    Katia eHiersemenzel

    2013-09-01

    Full Text Available As calcium is the most important signaling molecule in neurons and secretory cells, amongst many other cell types, it follows that an understanding of calcium channels and their regulation of exocytosis is of vital importance. Calcium imaging using calcium dyes such as Fluo3, or FRET-based dyes that have been used widely has provided invaluable information, which combined with modeling has estimated the sub-types of channels responsible for triggering the exocytotic machinery as well as inferences about the relative distances away from vesicle fusion sites these molecules adopt. Importantly, new super-resolution microscopy techniques, combined with novel Ca2+ indicators and imaginative imaging approaches can now define directly the nanoscale locations of very large cohorts of single channel molecules in relation to single vesicles. With combinations of these techniques the activity of individual channels can be visualized and quantified using novel Ca2+ indicators. Fluorescently labeled specific channel toxins can also be used to localize endogenous assembled channel tetramers. Fluorescence lifetime imaging microscopy and other single-photon-resolution spectroscopic approaches offer the possibility to quantify protein-protein interactions between populations of channels and the SNARE protein machinery for the first time. Together with simultaneous electrophysiology, this battery of quantitative imaging techniques has the potential to provide unprecedented detail describing the locations, dynamic behaviours, interactions and conductance activities of many thousands of channel molecules and vesicles in living cells.

  12. Comparison of image quality and radiation dose between split-filter dual-energy images and single-energy images in single-source abdominal CT.

    Science.gov (United States)

    Euler, André; Obmann, Markus M; Szucs-Farkas, Zsolt; Mileto, Achille; Zaehringer, Caroline; Falkowski, Anna L; Winkel, David J; Marin, Daniele; Stieltjes, Bram; Krauss, Bernhard; Schindera, Sebastian T

    2018-02-19

    To compare image quality and radiation dose of abdominal split-filter dual-energy CT (SF-DECT) combined with monoenergetic imaging to single-energy CT (SECT) with automatic tube voltage selection (ATVS). Two-hundred single-source abdominal CT scans were performed as SECT with ATVS (n = 100) and SF-DECT (n = 100). SF-DECT scans were reconstructed and subdivided into composed images (SF-CI) and monoenergetic images at 55 keV (SF-MI). Objective and subjective image quality were compared among single-energy images (SEI), SF-CI and SF-MI. CNR and FOM were separately calculated for the liver (e.g. CNR liv ) and the portal vein (CNR pv ). Radiation dose was compared using size-specific dose estimate (SSDE). Results of the three groups were compared using non-parametric tests. Image noise of SF-CI was 18% lower compared to SEI and 48% lower compared to SF-MI (p 0.628). Subjective sharpness was equal between single-energy and monoenergetic images and diagnostic confidence was equal between single-energy and composed images. FOM liv was highest for SF-CI. FOM pv was equal for SEI and SF-MI (p = 0.78). SSDE was significant lower for SF-DECT compared to SECT (p quality at lower radiation dose compared to single-energy CT with ATVS. • Split-filter dual-energy results in 18% lower noise compared to single-energy with ATVS. • Split-filter dual-energy results in 11% lower SSDE compared to single-energy with ATVS. • Spectral shaping of split-filter dual-energy leads to an increased dose-efficiency.

  13. Shielding effect of thyroid collar for digital panoramic radiography

    Science.gov (United States)

    Han, G-S; Cheng, J-G; Li, G

    2013-01-01

    Objectives: To evaluate the shielding effect of thyroid collar for digital panoramic radiography. Methods: 4 machines [Orthopantomograph® OP200 (Instrumentarium Dental, Tuusula, Finland), Orthophos CD (Sirona Dental Systems GmbH, Bensheim, Germany), Orthophos XG Plus (Sirona Dental Systems GmbH) and ProMax® (Planmeca Oy, Helsinki, Finland)] were used in this study. Average tissue-absorbed doses were measured using thermoluminescent dosemeter chips in an anthropomorphic phantom. Effective organ and total effective doses were derived according to the International Commission of Radiological Protection 2007 recommendations. The shielding effect of one collar in front and two collars both in front and at the back of the neck was measured. Results: The effective organ doses of the thyroid gland obtained from the 4 panoramic machines were 1.12 μSv for OP200, 2.71 μSv for Orthophos CD, 2.18 μSv for Orthophos XG plus and 2.20 μSv for ProMax, when no thyroid collar was used. When 1 collar was used in front of the neck, the effective organ doses of the thyroid gland were 1.01 μSv (9.8% reduction), 2.45 μSv (9.6% reduction), 1.76 μSv (19.3% reduction) and 1.70 μSv (22.7% reduction), respectively. Significant differences in dose reduction were found for Orthophos XG Plus and ProMax. When two collars were used, the effective organ doses of the thyroid gland were also significantly reduced for the two machines Orthophos XG Plus and ProMax. The same trend was observed in the total effective doses for the four machines. Conclusions: Wearing a thyroid collar was helpful when the direct digital panoramic imaging systems were in use, whereas for the indirect digital panoramic imaging systems, the thyroid collar did not have an extra protective effect on the thyroid gland and whole body. PMID:24005060

  14. Fast Fourier single-pixel imaging via binary illumination.

    Science.gov (United States)

    Zhang, Zibang; Wang, Xueying; Zheng, Guoan; Zhong, Jingang

    2017-09-20

    Fourier single-pixel imaging (FSI) employs Fourier basis patterns for encoding spatial information and is capable of reconstructing high-quality two-dimensional and three-dimensional images. Fourier-domain sparsity in natural scenes allows FSI to recover sharp images from undersampled data. The original FSI demonstration, however, requires grayscale Fourier basis patterns for illumination. This requirement imposes a limitation on the imaging speed as digital micro-mirror devices (DMDs) generate grayscale patterns at a low refreshing rate. In this paper, we report a new strategy to increase the speed of FSI by two orders of magnitude. In this strategy, we binarize the Fourier basis patterns based on upsampling and error diffusion dithering. We demonstrate a 20,000 Hz projection rate using a DMD and capture 256-by-256-pixel dynamic scenes at a speed of 10 frames per second. The reported technique substantially accelerates image acquisition speed of FSI. It may find broad imaging applications at wavebands that are not accessible using conventional two-dimensional image sensors.

  15. Acoustic and photoacoustic microscopy imaging of single leukocytes

    Science.gov (United States)

    Strohm, Eric M.; Moore, Michael J.; Kolios, Michael C.

    2016-03-01

    An acoustic/photoacoustic microscope was used to create micrometer resolution images of stained cells from a blood smear. Pulse echo ultrasound images were made using a 1000 MHz transducer with 1 μm resolution. Photoacoustic images were made using a fiber coupled 532 nm laser, where energy losses through stimulated Raman scattering enabled output wavelengths from 532 nm to 620 nm. The laser was focused onto the sample using a 20x objective, and the laser spot co-aligned with the 1000 MHz transducer opposite the laser. The blood smear was stained with Wright-Giemsa, a common metachromatic dye that differentially stains the cellular components for visual identification. A neutrophil, lymphocyte and a monocyte were imaged using acoustic and photoacoustic microscopy at two different wavelengths, 532 nm and 600 nm. Unique features in each imaging modality enabled identification of the different cell types. This imaging method provides a new way of imaging stained leukocytes, with applications towards identifying and differentiating cell types, and detecting disease at the single cell level.

  16. Deep Joint Rain Detection and Removal from a Single Image

    OpenAIRE

    Yang, Wenhan; Tan, Robby T.; Feng, Jiashi; Liu, Jiaying; Guo, Zongming; Yan, Shuicheng

    2016-01-01

    In this paper, we address a rain removal problem from a single image, even in the presence of heavy rain and rain streak accumulation. Our core ideas lie in the new rain image models and a novel deep learning architecture. We first modify an existing model comprising a rain streak layer and a background layer, by adding a binary map that locates rain streak regions. Second, we create a new model consisting of a component representing rain streak accumulation (where individual streaks cannot b...

  17. Wide-field single photon counting imaging with an ultrafast camera and an image intensifier

    Science.gov (United States)

    Zanda, Gianmarco; Sergent, Nicolas; Green, Mark; Levitt, James A.; Petrášek, Zdeněk; Suhling, Klaus

    2012-12-01

    We are reporting a method for wide-field photon counting imaging using a CMOS camera with a 40 kHz frame rate coupled with a three-stage image intensifier mounted on a standard fluorescence microscope. This system combines high frame rates with single photon sensitivity. The output of the phosphor screen, consisting of single-photon events, is collected by a CMOS camera allowing to create a wide-field image with parallel positional and timing information of each photon. Using a pulsed excitation source and a luminescent sample, the arrival time of hundreds of photons can be determined simultaneously in many pixels with microsecond resolution.

  18. Absorbed doses for patients undergoing panoramic radiography, cephalometric radiography and CBCT.

    Science.gov (United States)

    Wrzesień, Małgorzata; Olszewski, Jerzy

    2017-07-17

    Contemporary dental radiology offers a wide spectrum of imaging methods but it also contributes to an increase in the participation of dental radiological diagnosis in the patient's exposure to ionizing radiation. The aim of this study is to determine the absorbed doses of the brain, spinal column, thyroid and eye lens for patients during panoramic radiography, cephalometric radiography and cone beam computed tomography (CBCT). The thermoluminescent dosimetry and anthropomorphic phantom was used for measuring the doses. The 15 panoramic, 4 cephalometric and 4 CBCT exposures were performed by placing high-sensitivity thermoluminescent detectors (TLD) in 18 anatomical points of the phantom. The maximum absorbed dose recorded during performed measurements corresponds to the point representing the brainstem and it is 10 mGy. The dose value recorded by the TLD placed in the thyroid during CBCT imaging in relation to the panoramic radiography differs by a factor of 13.5. Cone beam computed tomography, in comparison with panoramic or cephalometric imaging technique, provides higher radiation doses to the patients. Int J Occup Med Environ Health 2017;30(5):705-713. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  19. Absorbed doses for patients undergoing panoramic radiography, cephalometric radiography and CBCT

    Directory of Open Access Journals (Sweden)

    Małgorzata Wrzesień

    2017-10-01

    Full Text Available Objectives: Contemporary dental radiology offers a wide spectrum of imaging methods but it also contributes to an increase in the participation of dental radiological diagnosis in the patient’s exposure to ionizing radiation. The aim of this study is to determine the absorbed doses of the brain, spinal column, thyroid and eye lens for patients during panoramic radiography, cephalometric radiography and cone beam computed tomography (CBCT. Material and Methods: The thermoluminescent dosimetry and anthropomorphic phantom was used for measuring the doses. The 15 panoramic, 4 cephalometric and 4 CBCT exposures were performed by placing high-sensitivity thermoluminescent detectors (TLD in 18 anatomical points of the phantom. Results: The maximum absorbed dose recorded during performed measurements corresponds to the point representing the brainstem and it is 10 mGy. The dose value recorded by the TLD placed in the thyroid during CBCT imaging in relation to the panoramic radiography differs by a factor of 13.5. Conclusions: Cone beam computed tomography, in comparison with panoramic or cephalometric imaging technique, provides higher radiation doses to the patients. Int J Occup Med Environ Health 2017;30(5:705–713

  20. Automatic Texture and Orthophoto Generation from Registered Panoramic Views

    DEFF Research Database (Denmark)

    Krispel, Ulrich; Evers, Henrik Leander; Tamke, Martin

    2015-01-01

    from range data only. In order to detect these elements, we developed a method that utilizes range data and color information from high-resolution panoramic images of indoor scenes, taken at the scanners position. A proxy geometry is derived from the point clouds; orthographic views of the scene......Recent trends in 3D scanning are aimed at the fusion of range data and color information from images. The combination of these two outputs allows to extract novel semantic information. The workflow presented in this paper allows to detect objects, such as light switches, that are hard to identify...... are automatically identified from the geometry and an image per view is created via projection. We combine methods of computer vision to train a classifier to detect the objects of interest from these orthographic views. Furthermore, these views can be used for automatic texturing of the proxy geometry....

  1. Comparison of panoramic radiography with cone beam CT in predicting the relationship of the mandibular third molar roots to the alveolar canal

    Energy Technology Data Exchange (ETDEWEB)

    Shahidi, Shoaleh; Zamiri, Barbod; Bronoosh, Pegah [School of Dentistry, Shiraz University of Medical Sciences, Shiraz (Iran, Islamic Republic of)

    2013-06-15

    Preoperative radiographic assessment of the mandibular third molars is essential to prevent inferior alveolar nerve damage during extraction. The purpose of this study was to assess the reliability of panoramic signs of association between the roots of teeth and the canal, and to compare the panoramic signs with cone beam computed tomography (CBCT) findings. CBCT images of 132 impacted mandibular third molars were evaluated to determine the association of the root to the canal. The CBCT findings were compared with the corresponding panoramic images. Logistic regression analysis was used to define the diagnostic criteria of the panoramic images. Among the panoramic signs, loss of the cortical line was the most frequent radiographic sign predicting association (sensitivity: 79.31). Contact of the tooth with the canal was observed in all cases in which the loss of cortical line of the canal or darkening of the roots was found on the panoramic radiographs. Darkening of the roots and loss of the cortical line on panoramic radiographs might be highly suggestive of the risk of nerve injury.

  2. Comparison of panoramic radiography with cone beam CT in predicting the relationship of the mandibular third molar roots to the alveolar canal.

    Science.gov (United States)

    Shahidi, Shoaleh; Zamiri, Barbod; Bronoosh, Pegah

    2013-06-01

    Preoperative radiographic assessment of the mandibular third molars is essential to prevent inferior alveolar nerve damage during extraction. The purpose of this study was to assess the reliability of panoramic signs of association between the roots of teeth and the canal, and to compare the panoramic signs with cone beam computed tomography (CBCT) findings. CBCT images of 132 impacted mandibular third molars were evaluated to determine the association of the root to the canal. The CBCT findings were compared with the corresponding panoramic images. Logistic regression analysis was used to define the diagnostic criteria of the panoramic images. AMONG THE PANORAMIC SIGNS, LOSS OF THE CORTICAL LINE WAS THE MOST FREQUENT RADIOGRAPHIC SIGN PREDICTING ASSOCIATION (SENSITIVITY: 79.31). Contact of the tooth with the canal was observed in all cases in which the loss of cortical line of the canal or darkening of the roots was found on the panoramic radiographs. Darkening of the roots and loss of the cortical line on panoramic radiographs might be highly suggestive of the risk of nerve injury.

  3. Comparison of panoramic radiography with cone beam CT in predicting the relationship of the mandibular third molar roots to the alveolar canal

    International Nuclear Information System (INIS)

    Shahidi, Shoaleh; Zamiri, Barbod; Bronoosh, Pegah

    2013-01-01

    Preoperative radiographic assessment of the mandibular third molars is essential to prevent inferior alveolar nerve damage during extraction. The purpose of this study was to assess the reliability of panoramic signs of association between the roots of teeth and the canal, and to compare the panoramic signs with cone beam computed tomography (CBCT) findings. CBCT images of 132 impacted mandibular third molars were evaluated to determine the association of the root to the canal. The CBCT findings were compared with the corresponding panoramic images. Logistic regression analysis was used to define the diagnostic criteria of the panoramic images. Among the panoramic signs, loss of the cortical line was the most frequent radiographic sign predicting association (sensitivity: 79.31). Contact of the tooth with the canal was observed in all cases in which the loss of cortical line of the canal or darkening of the roots was found on the panoramic radiographs. Darkening of the roots and loss of the cortical line on panoramic radiographs might be highly suggestive of the risk of nerve injury.

  4. Enhancing Single Molecule Imaging in Optofluidics and Microfluidics

    Directory of Open Access Journals (Sweden)

    Andreas E. Vasdekis

    2011-08-01

    Full Text Available Microfluidics and optofluidics have revolutionized high-throughput analysis and chemical synthesis over the past decade. Single molecule imaging has witnessed similar growth, due to its capacity to reveal heterogeneities at high spatial and temporal resolutions. However, both resolution types are dependent on the signal to noise ratio (SNR of the image. In this paper, we review how the SNR can be enhanced in optofluidics and microfluidics. Starting with optofluidics, we outline integrated photonic structures that increase the signal emitted by single chromophores and minimize the excitation volume. Turning then to microfluidics, we review the compatible functionalization strategies that reduce noise stemming from non-specific interactions and architectures that minimize bleaching and blinking.

  5. Single-image hard copy display of musculoskeletal digital radiographs

    Science.gov (United States)

    Legendre, Kevin; Steller Artz, Dorothy E.; Freedman, Matthew T.; Mun, Seong K.

    1995-04-01

    Screen film radiography often fails to optimally display all regions of anatomy on muskuloskeletal exams due to the wide latitude of tissue densities present. Various techniques of image enhancement have been applied to such exams using computerized radiography but with limited success in improving visualization of structures whose final optical density lies at the extremes of the interpretable range of the film. An existing algorithm for compressing optical density extremes known as dynamic range compression has been used to increase the radiodensity of the retrocardiac region of the chest or to decrease the radiodensity of the edge of the breast in digital mammography. In the skeletal system, there are regions where a single image may contain both areas of decreased exposure that result in light images and areas of higher exposure that result in dark regions of the image. Faced with this problem, the senior author asked Fuji to formulate a modification of the DRC process that incorporates a combination of the curves used for chest and breast images. The newly designed algorithm can thus simultaneously lower the optical density of dark regions of the image and increase the optical density of the less exposed regions. The results of this modification of the DRC algorithm are presented in this paper.

  6. Surface chemistry and morphology in single particle optical imaging

    Science.gov (United States)

    Ekiz-Kanik, Fulya; Sevenler, Derin Deniz; Ünlü, Neşe Lortlar; Chiari, Marcella; Ünlü, M. Selim

    2017-05-01

    Biological nanoparticles such as viruses and exosomes are important biomarkers for a range of medical conditions, from infectious diseases to cancer. Biological sensors that detect whole viruses and exosomes with high specificity, yet without additional labeling, are promising because they reduce the complexity of sample preparation and may improve measurement quality by retaining information about nanoscale physical structure of the bio-nanoparticle (BNP). Towards this end, a variety of BNP biosensor technologies have been developed, several of which are capable of enumerating the precise number of detected viruses or exosomes and analyzing physical properties of each individual particle. Optical imaging techniques are promising candidates among broad range of label-free nanoparticle detectors. These imaging BNP sensors detect the binding of single nanoparticles on a flat surface functionalized with a specific capture molecule or an array of multiplexed capture probes. The functionalization step confers all molecular specificity for the sensor's target but can introduce an unforeseen problem; a rough and inhomogeneous surface coating can be a source of noise, as these sensors detect small local changes in optical refractive index. In this paper, we review several optical technologies for label-free BNP detectors with a focus on imaging systems. We compare the surface-imaging methods including dark-field, surface plasmon resonance imaging and interference reflectance imaging. We discuss the importance of ensuring consistently uniform and smooth surface coatings of capture molecules for these types of biosensors and finally summarize several methods that have been developed towards addressing this challenge.

  7. Single-photon imaging in complementary metal oxide semiconductor processes

    Science.gov (United States)

    Charbon, E.

    2014-01-01

    This paper describes the basics of single-photon counting in complementary metal oxide semiconductors, through single-photon avalanche diodes (SPADs), and the making of miniaturized pixels with photon-counting capability based on SPADs. Some applications, which may take advantage of SPAD image sensors, are outlined, such as fluorescence-based microscopy, three-dimensional time-of-flight imaging and biomedical imaging, to name just a few. The paper focuses on architectures that are best suited to those applications and the trade-offs they generate. In this context, architectures are described that efficiently collect the output of single pixels when designed in large arrays. Off-chip readout circuit requirements are described for a variety of applications in physics, medicine and the life sciences. Owing to the dynamic nature of SPADs, designs featuring a large number of SPADs require careful analysis of the target application for an optimal use of silicon real estate and of limited readout bandwidth. The paper also describes the main trade-offs involved in architecting such chips and the solutions adopted with focus on scalability and miniaturization. PMID:24567470

  8. Diagnosis of simulated condylar bone defects using panoramic radiography, spiral tomography and cone-beam computed tomography: A comparison study.

    Science.gov (United States)

    Salemi, Fatemeh; Shokri, Abbas; Mortazavi, Hamed; Baharvand, Maryam

    2015-02-01

    Radiographic examination is one of the most important parts of the clinical assessment routine for temporomandibular disorders. The aim of this study was to compare the diagnostic accuracy of cone-beam computed tomography(CBCT) with panoramic radiography and spiral computed tomography for the detection of the simulated mandibular condyle bone lesions. The sample consisted of 10 TMJs from 5 dried human skulls. Simulated erosive and osteophytic lesions were created in 3 different sizes using round diamond bur and bone chips, respectively. Panoramic radiography, spiral tomography and cone-beam computed tomography were used in defect detection. Data were statistically analyzed with the Mann-Whitney test. The reliability and degrees of agreement between two observers were also determined by the mean of Cohen's Kappa analysis. CBCT had a statistically significant superiority than other studied techniques in detection of both erosive and osteophytic lesions with different sizes. There were significant differences between tomography and panoramic in correct detection of both erosive and osteophytic lesions with 1mm and 1.5 mm in size. However, there were no significant differences between Tomography and Panoramic in correct detection of both erosive and osteophytic lesions with 0.5 mm in size. CBCT images provide a greater diagnostic accuracy than spiral tomography and panoramic radiography in the detection of condylar bone erosions and osteophytes. Key words:Bone defect, Condyle, CBCT, Panoramic, radiography.

  9. Diagnostic value of cone beam computed tomography and panoramic radiography in predicting mandibular nerve exposure during third molar surgery.

    Science.gov (United States)

    Hasani, A; Ahmadi Moshtaghin, F; Roohi, P; Rakhshan, V

    2017-02-01

    The aim of this study was to evaluate the diagnostic accuracies of cone beam computed tomography (CBCT) and panoramic techniques in predicting inferior alveolar nerve (IAN) exposure. The sample size was determined based on a pilot study. This prospective clinical series study included 59 third molar extraction sites with any of seven previously suggested panoramic signs of IAN exposure. The diagnosis of nerve exposure was done on panoramic and CBCT images. Molars were extracted and nerve exposure was evaluated clinically. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of CBCT method, and sensitivity and PPV of panoramic method were estimated). The panoramic and CBCT methods correctly classified 67.7% and 93.3%, respectively, of 60 cases. This difference was statistically significant (χ 2 =13.333, P=0.000). The sensitivity, specificity, PPV, and NPV for CBCT were 97.4%, 85.7%, 92.7%, and 94.7%, respectively. The sensitivity and PPV of panoramic radiography were 67.8% and 97.6%, respectively. The signs with the highest sensitivity were interruption of the mandibular canal border and abrupt canal narrowing. None of the Pell and Gregory criteria, molar angulations, or three-dimensional canal-apex relationships was significantly associated with clinically confirmed IAN exposure. Panoramic radiography may miss about one-third of exposure cases, but a positive panoramic diagnosis is most likely to be a real exposure and should be taken seriously. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  10. Optimized multiple linear mappings for single image super-resolution

    Science.gov (United States)

    Zhang, Kaibing; Li, Jie; Xiong, Zenggang; Liu, Xiuping; Gao, Xinbo

    2017-12-01

    Learning piecewise linear regression has been recognized as an effective way for example learning-based single image super-resolution (SR) in literature. In this paper, we employ an expectation-maximization (EM) algorithm to further improve the SR performance of our previous multiple linear mappings (MLM) based SR method. In the training stage, the proposed method starts with a set of linear regressors obtained by the MLM-based method, and then jointly optimizes the clustering results and the low- and high-resolution subdictionary pairs for regression functions by using the metric of the reconstruction errors. In the test stage, we select the optimal regressor for SR reconstruction by accumulating the reconstruction errors of m-nearest neighbors in the training set. Thorough experimental results carried on six publicly available datasets demonstrate that the proposed SR method can yield high-quality images with finer details and sharper edges in terms of both quantitative and perceptual image quality assessments.

  11. Edge-Guided Single Depth Image Super Resolution.

    Science.gov (United States)

    Jun Xie; Feris, Rogerio Schmidt; Ming-Ting Sun

    2016-01-01

    Recently, consumer depth cameras have gained significant popularity due to their affordable cost. However, the limited resolution and the quality of the depth map generated by these cameras are still problematic for several applications. In this paper, a novel framework for the single depth image superresolution is proposed. In our framework, the upscaling of a single depth image is guided by a high-resolution edge map, which is constructed from the edges of the low-resolution depth image through a Markov random field optimization in a patch synthesis based manner. We also explore the self-similarity of patches during the edge construction stage, when limited training data are available. With the guidance of the high-resolution edge map, we propose upsampling the high-resolution depth image through a modified joint bilateral filter. The edge-based guidance not only helps avoiding artifacts introduced by direct texture prediction, but also reduces jagged artifacts and preserves the sharp edges. Experimental results demonstrate the effectiveness of our method both qualitatively and quantitatively compared with the state-of-the-art methods.

  12. A Panoramic Wireless Endoscope System Design for the Application of Minimally Invasive Surgery

    Directory of Open Access Journals (Sweden)

    Chun-Hsiang Peng

    2014-05-01

    Full Text Available Minimally Invasive Surgery (MIS is the current trend in surgery. Compared to traditional surgery, MIS can substantially decrease recovery time and expenses needed by patients after surgeries, reduce pain during surgical procedures, and is highly regarded by physicians and patients. An endoscope is widely used in the diagnosis and treatments of various medical disciplines, such as hysteroscopy, laparoscopy, and colonoscopy, and have been adopted by many branches of medicine. However, the limited image field of MIS is often the most difficult obstacles faced by surgeons and medical students, especially to less experienced physicians and difficult surgical procedures; the limited field of view of endoscopic imaging does not provide a whole picture of the surgery area, making the procedures difficult and full of uncertainty. In light of this problem, we proposed a "Panoramic Wireless Endoscope System design", hoping to provide physicians with a wide field of view of the endoscopic image. We combine images captured from two parallel-mounted endoscope lenses into a single, wide-angle image, giving physicians a wider field of view and easier access to the surgical area. In addition, we developed a wireless transmission system so the image can be transmitted to various display platforms, eliminating the needs for excessive cabling on surgical tools and enable physicians to better operate on the patient. Finally, our system allows surgical assistants a better view of the operation process, and enables other physicians and nurses to remotely observe the process. Our experiment results have shown that we can increase the image to 152% of its original size. We used the PandaBoard ES platform with an ARM9 processor and 1G of onboard RAM, and continuously implementing animal trials to verify the reliability of our system.

  13. Reference dose levels for dental panoramic radiography in Anyang City

    Energy Technology Data Exchange (ETDEWEB)

    Han, Mi Ra; Kang, Byung Cheol; Yoon, Suk Ja [Department of Oral and Maxillofacial Radiology, College of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju (Korea, Republic of); Lee, Jae Seo [Department of Oral and Maxillofacial Radiology, Chonnan National University Hospital, Gwangju (Korea, Republic of); Kim, Young Hee [Department of Oral and Maxillofacial Radiology, Hallym University Sacred Heart Hospital, Chuncheon (Korea, Republic of)

    2009-12-15

    To measure dose-width product (DWP) values used for dental panoramic radiography in Anyang city, Korea. Thirty-six panoramic dental radiographic sets (17 analogue panoramic sets and 19 digital panoramic sets) in 36 dental clinics in Anyang city were included in the study. Each patient's panoramic exposure parameters were simulated and the panoramic radiation doses were measured at the secondary collimator using a Mult-O-Meter (Unfors Instruments, Billdal, Sweden) at each dental clinic during 2006. The third quartile DWP was determined from 310 surface dose measurements on adult. The third quartile DWP for adult panoramic radiograph was 106.7 mGy mm. For analogue and digital panoramic radiograph, 3/4 DWP were 116.8 mGy mm and 72 mGy mm respectively. The overall third quartile DWP of panoramic radiography was 106.7 mGy mm. The measured 3/4 DWPs were higher than the 3/4 DWP of 65 mGy mm recommended by NRPB. Dentists who are operating above the reference dose should lower their panoramic exposure doses below the recommended reference value by changing the exposure parameters and/or their panoramic equipment.

  14. Reference dose levels for dental panoramic radiography in Anyang City

    International Nuclear Information System (INIS)

    Han, Mi Ra; Kang, Byung Cheol; Yoon, Suk Ja; Lee, Jae Seo; Kim, Young Hee

    2009-01-01

    To measure dose-width product (DWP) values used for dental panoramic radiography in Anyang city, Korea. Thirty-six panoramic dental radiographic sets (17 analogue panoramic sets and 19 digital panoramic sets) in 36 dental clinics in Anyang city were included in the study. Each patient's panoramic exposure parameters were simulated and the panoramic radiation doses were measured at the secondary collimator using a Mult-O-Meter (Unfors Instruments, Billdal, Sweden) at each dental clinic during 2006. The third quartile DWP was determined from 310 surface dose measurements on adult. The third quartile DWP for adult panoramic radiograph was 106.7 mGy mm. For analogue and digital panoramic radiograph, 3/4 DWP were 116.8 mGy mm and 72 mGy mm respectively. The overall third quartile DWP of panoramic radiography was 106.7 mGy mm. The measured 3/4 DWPs were higher than the 3/4 DWP of 65 mGy mm recommended by NRPB. Dentists who are operating above the reference dose should lower their panoramic exposure doses below the recommended reference value by changing the exposure parameters and/or their panoramic equipment.

  15. A representative study of pediatric panoramic and cephalometric radiation exposure to organs of the head and neck

    Directory of Open Access Journals (Sweden)

    Peikidis E

    2016-12-01

    Full Text Available The purpose of this study was to measure juvenile patient radiation dose to organs of the head and neck during digital panoramic and cephalometric radiography using anthropomorphic CIRS phantoms at 5 and 10-years-old with nanoDot optically stimulated luminescent dosimeters (OSLDs. OSLDs were placed at 21 head and neck organ sites of the phantom heads. Phantom heads were subjected to panoramic and cephalometric imaging protocols using manufacturers’ predefined exposure settings. Radiation dose fractions to various organ sites were determined using reference values from the ICRP-89 document. Organ equivalent doses and overall effective doses were based on ICRP-103 tissue weighting factors. Overall measured organ doses were higher for the 5-year-old than for the 10-year-old for both the panoramic and the cephalometric imaging protocols. The highest doses seen were in the salivary glands, extrathoracic airway, and the oral mucosa. The organ equivalent dose in microsieverts (µSv also yielded similar results. The effective dose for the 5-year-old was 27.8 µSv for the panoramic and 6.5 µSv for the cephalometric, while the 10-year-old results were 26.3 µSv for the panoramic and 3.8 µSv for the cephalometric. The effective doses estimated for this study for the 5-year-old and 10-year-old during cephalometric procedures are lower than the US natural background reading of 8.5 µSv per day and lower than the US average exposure per day of 17 µSv. The effective doses estimated in this study for the panoramic procedure for both phantoms were above the natural background and above the national average per day. These data support the notion that child-appropriate technique factors and geometry factors should be used for panoramic and cephalometric imaging protocols.

  16. Study of the localization of radiopacities similar to calcified carotid atheroma by means of panoramic radiography.

    Science.gov (United States)

    Kamikawa, Rosangela Saga; Pereira, Marlene Fenyo; Fernandes, Angela; Meurer, Maria Inês

    2006-03-01

    To determine the location in soft tissues of the calcifications, similar to calcified carotid atheromas, that can be observed radiographically in the cervical region in panoramic radiographs. In each anatomic cadaver specimen preserved in formol, consisting of the head and neck, radiopaque spheres (made from gutta-percha) were positioned in anatomic structures of the cervical region that can be sites of calcification. For each anatomic structure marked in this way, panoramic radiography was performed, consisting of 17 radiographs. The images obtained were analyzed by 24 examiners who indicated which radiographs, in their opinion, presented the radiopaque reference projected in the region of bifurcation of the carotid artery. Analysis of 2 proportions from agreement and disagreement was used to determine radiopacities that could be confused in panoramic radiographs with calcified atheromas in the carotid artery. The results showed that 75% (18) of the examiners correctly indicated the reference in the bifurcation of the carotid artery and 79.2% (19) indicated a triticeous cartilage as calcified atheroma of the carotid artery. Calcified atheromas of the carotid artery are not the only features that can produce radiopaque images lateral to the panoramic radiograph; the presence of calcification in the triticeous cartilage also can induce an erroneous diagnosis of calcified carotid atheroma.

  17. Common Positioning Errors in Digital Panoramic Radiographies Taken In Mashhad Dental School

    Directory of Open Access Journals (Sweden)

    Ali Bagherpour

    2018-06-01

    Full Text Available Introduction: The present study was aimed at evaluating common positioning errors on panoramic radiographs taken in the Radiology Department of Mashhad Dental School. Materials and methods: The study sample included 1,990 digital panoramic radiographs taken in the Radiology Department of Mashhad Dental School by a Planmeca Promax (Planmeca Oy, Helsinki, Finland, during a 2-year period (2010–2012. All radiographs, according to dentition and sex, were evaluated for positioning errors. Results: There were 1,927 (96.8% panoramic radiographs with one or more errors. While the number of errors in each image varied between one and five, most images had one error (48.4%. The most common error was that the tongue was not in contact with the hard palate (94.8%. "Open lips" was an error not seen in any patients. Conclusions:positioning errors are common in panoramic radiographies. The most common error observed in this study was a failure to place the tongue on the palate. This error and the other errors reported in this study can be reduced by training the technicians and spending little more time for patient positioning and more effective communication with the patients.

  18. Single-system ureteroceles in infants and children: imaging features

    Energy Technology Data Exchange (ETDEWEB)

    Zerin, J.M.; Baker, D.R. [Dept. of Radiology, Indiana University Medical Center, James Whitcomb Riley Hospital for Children, Indianapolis, IN (United States); Casale, J.A. [Dept. of Urology, Indiana University Medical Center, James Whitcomb Riley Hospital for Children, Indianapolis, IN (United States)

    2000-03-01

    Purpose. The purpose of this manuscript is to describe the clinical and imaging findings in children who have single-system ureteroceles.Materials and methods. We reviewed the urology records and imaging studies in 32 consecutive infants and children who were diagnosed in our department with single-system ureteroceles.Results. There were 35 ureteroceles in the 32 patients - 29 were unilateral (14 right-sided, 15 left-sided) and 3 were bilateral. Twenty-five patients were boys (78 %) and 7 girls. Mean age at presentation was 0.7 years (0-9.2 years). Prenatally detected hydronephrosis or cystic renal dysplasia was the most common presentation (24 patients). Four presented with urinary infection, 2 with abdominal mass, 1 had myelomeningocele, and 1 had hypospadias. Three patients also had multiple non-urologic, congenital anomalies. Thirty-three ureteroceles were intravesical, and 2 were ectopic to the bladder neck. Twenty-four ureteroceles were associated with ipsilateral hydroureteronephrosis and 10 with ipsilateral multicystic dysplastic kidney. One patient had a normal ipsilateral kidney and a contralateral multicystic dysplastic kidney. The ureterocele was identified on at least one imaging study in each patient. Sixteen ureteroceles (47 %) everted at VCUG, mimicking paraureteral diverticula. Other variations included ureterocele prolapse and inadvertent ureterocele catheterization (1 each).Conclusions. Single-system ureterocele is an important, although uncommon cause of hydronephrosis and renal dysplasia in infants and children. Single-system ureterocele is distinguished clinically from the more common duplex-system ureterocele by its frequent occurrence in boys and its association with multicystic dysplastic kidney. Because these ureteroceles are frequently small and have a propensity to evert at VCUG, they can be mistaken for paraureteral diverticula. (orig.)

  19. Preparation of Single Cells for Imaging Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Berman, E S; Fortson, S L; Kulp, K S; Checchi, K D; Wu, L; Felton, J S; Wu, K J

    2007-10-24

    Characterizing chemical changes within single cells is important for determining fundamental mechanisms of biological processes that will lead to new biological insights and improved disease understanding. Imaging biological systems with mass spectrometry (MS) has gained popularity in recent years as a method for creating precise chemical maps of biological samples. In order to obtain high-quality mass spectral images that provide relevant molecular information about individual cells, samples must be prepared so that salts and other cell-culture components are removed from the cell surface and the cell contents are rendered accessible to the desorption beam. We have designed a cellular preparation protocol for imaging MS that preserves the cellular contents for investigation and removes the majority of the interfering species from the extracellular matrix. Using this method, we obtain excellent imaging results and reproducibility in three diverse cell types: MCF7 human breast cancer cells, Madin-Darby canine kidney (MDCK) cells, and NIH/3T3 mouse fibroblasts. This preparation technique allows routine imaging MS analysis of cultured cells, allowing for any number of experiments aimed at furthering scientific understanding of molecular processes within individual cells.

  20. Clinical validity of panoramic radiographs with Digora PCT

    International Nuclear Information System (INIS)

    Matsuda, Yukiko; Araki, Kazuyuki; Hanazawa, Tomomi; Seki, Kenji; Okano, Tomohiro

    2006-01-01

    The quality of panoramic radiographs with a digital imaging system, Digora PCT, was compared with that of a Fuji Computed Radiography (FCR) system. The exposure settings that would produce the appropriate density for observation of the images were determined. The images of the Digora PCT and the FCR system were observed on a 17-inch CRT monitor and printed films respectively. Thirty images of patients were obtained with each system. Six oral radiologists observed the images and evaluated the visibility of pathologic conditions based on outline of mandible, mandibular canal and bone trabecula, shape of the tooth and periodontal hard tissue of the mandible, shape of the tooth and periodontal hard tissue of the maxilla, and outline of the bony structure of the maxillary sinus, using the following three categories: good, fair, and unacceptable. The images of each system were evaluated separately at an interval of 3 months. Mann-Whitney test with p=0.05 was used to analyze differences between the two systems. There were no images of either system rated as ''unacceptable''. The visibility of the shape of the tooth, periodontal hard tissue, and the outline of the bony structure of the maxillary sinus with the Digora PCT was inferior to that with the FCR system. However, it can be concluded that the image quality of the Digora PCT is adequate for dental purposes because there were no unacceptable images. (author)

  1. Reliability of single panoramic radiograph with vertical and horizontal parallax; and intraoral periapical radiograph with Clark′s rule compared to computed tomography/surgical exposure in localization of impacted permanent maxillary canine

    Directory of Open Access Journals (Sweden)

    Vijay Kumar Bokkasam

    2015-01-01

    Full Text Available Aim: The aim of the study was to evaluate an accurate, inexpensive and low-radiation conventional radiograph suitable for localization of impacted maxillary permanent canine. Materials and Methods: The study comprised 38 subjects in the age group of 13-50 years of both the genders with 50 impacted canines. Panoramic radiographs (OPGs (on which Chaushu et al. criteria was applied and intraoral periapical radiographs (IOPARs (on which Clark′s rule was applied of the subjects were made and the accuracy of the above two radiographic techniques were compared with computed tomography (CT axial sections or with surgical exposure, which was considered as the standard guide for localization of impacted maxillary permanent canine. The data obtained was tabulated and subjected to statistical analysis using the statistical package for SAS software. Results: Localization of impacted maxillary permanent canine tooth done with SLOB (Same Lingual Opposite Buccal/Clark′s rule technique could predict the bucco-palatal canine impactions in 98% of cases. OPG using differential magnification index could predict location only in 68% of bucco-palatal canine impactions and in 72% based on vertical position. Conclusion: In 68% of cases the bucco-lingual position of the canine in OPG (by magnification index coincided with the location as per CT/surgical exposure. In 98% of cases localization with SLOB technique coincided with CT/surgical exposure. 72% of cases showed coincidence with vertical position of the canine on OPG with CT/surgical exposure. IOPARs taken with SLOB technique are more accurate than OPGs for localization of impacted permanent maxillary canine teeth.

  2. Volumetric particle image velocimetry with a single plenoptic camera

    Science.gov (United States)

    Fahringer, Timothy W.; Lynch, Kyle P.; Thurow, Brian S.

    2015-11-01

    A novel three-dimensional (3D), three-component (3C) particle image velocimetry (PIV) technique based on volume illumination and light field imaging with a single plenoptic camera is described. A plenoptic camera uses a densely packed microlens array mounted near a high resolution image sensor to sample the spatial and angular distribution of light collected by the camera. The multiplicative algebraic reconstruction technique (MART) computed tomography algorithm is used to reconstruct a volumetric intensity field from individual snapshots and a cross-correlation algorithm is used to estimate the velocity field from a pair of reconstructed particle volumes. This work provides an introduction to the basic concepts of light field imaging with a plenoptic camera and describes the unique implementation of MART in the context of plenoptic image data for 3D/3C PIV measurements. Simulations of a plenoptic camera using geometric optics are used to generate synthetic plenoptic particle images, which are subsequently used to estimate the quality of particle volume reconstructions at various particle number densities. 3D reconstructions using this method produce reconstructed particles that are elongated by a factor of approximately 4 along the optical axis of the camera. A simulated 3D Gaussian vortex is used to test the capability of single camera plenoptic PIV to produce a 3D/3C vector field, where it was found that lateral displacements could be measured to approximately 0.2 voxel accuracy in the lateral direction and 1 voxel in the depth direction over a 300× 200× 200 voxel volume. The feasibility of the technique is demonstrated experimentally using a home-built plenoptic camera based on a 16-megapixel interline CCD camera and a 289× 193 array of microlenses and a pulsed Nd:YAG laser. 3D/3C measurements were performed in the wake of a low Reynolds number circular cylinder and compared with measurements made using a conventional 2D/2C PIV system. Overall, single camera

  3. Imaging the chemical activity of single nanoparticles with optical microscopy.

    Science.gov (United States)

    Wang, Wei

    2018-04-03

    Nanomaterials exhibit structural and functional heterogeneity among individual nanoparticles, thus requiring a capability to study single nanoparticles. While electron microscopes often provide static images of their chemical composition, morphology and structure, imaging the chemical activity of single nanoparticles is highly desirable for exploring the structure-activity relationship via a bottom-up strategy, to understand their microscopic reaction mechanisms and kinetics, and to identify a minority subpopulation with extraordinary activity. Recently, various optical microscopes have been emerging as powerful techniques towards this goal, owing to their non-invasive nature, excellent sensitivity, diversified spectroscopic principles and sufficient spatial and temporal resolution. In this review, we first introduce the motivational concept and the strength of using optical microscopy to study the chemical activity of single nanoparticles. In the second section, five types of commonly used optical microscopy, fluorescence microscopy, dark-field microscopy, surface plasmon resonance microscopy, Raman microscopy and photothermal microscopy are described, with an emphasis on their applicable nanomaterials and mechanisms for application. Recent achievements of these techniques in nanosensing, nanoelectrochemistry and nanocatalysis are surveyed and summarized in the subsequent sections, respectively. We finally conclude with our perspective on the remaining challenges and the future trends in this field.

  4. Is the panoramic mandibular index useful for bone quality evaluation?

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Ah Young; Huh, Kyung Hoe; Yi, Won Jin; Lee, Sam Sun; Choi, Soon Chul; Heo, Min Suk [Dept. of Oral and Maxillofacial Radiology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul (United States)

    2017-06-15

    The aim of this study was to determine whether the panoramic mandibular index (PMI) is useful for assessing bone mineral density. We also analyzed the potential correlations between PMI parameters and patient age. Four observers measured the PMI of both sides of the mental foramen using a picture archiving and communication system and images in the Digital Imaging and Communications in Medicine format. They studied 300 panoramic radiographic images of patients belonging to the following age groups: 40–49 years, 50–59 years, 60–69 years, 70–79 years, and 80–89 years. The observers were allowed to zoom in or out and to adjust the contrast of the images. Further, they were instructed to record the reasons for any measurements that could not be made. Then, we conducted a reliability analysis of the measured PMI and assessed the correlations between different patient age groups and the 3 parameters used for determining the PMI from the available data. Among the 600 data items collected, 23 items were considered unmeasurable by at least 1 observer for the following 4 reasons: postoperative state, lesion, unidentified mental foramen, and alveolar bone loss. The intraobserver reproducibility of the measurable data was 0.611-0.752. The mandibular cortical width (MCW) decreased significantly as patient age increased. PMI had limited usability when the margin of the mental foramen was not clear. In contrast, MCW, a parameter used for determining the PMI, had fewer drawbacks than the PMI with respect to bone mineral density measurements and exhibited a significant correlation with patient age.

  5. Is the panoramic mandibular index useful for bone quality evaluation?

    International Nuclear Information System (INIS)

    Kwon, Ah Young; Huh, Kyung Hoe; Yi, Won Jin; Lee, Sam Sun; Choi, Soon Chul; Heo, Min Suk

    2017-01-01

    The aim of this study was to determine whether the panoramic mandibular index (PMI) is useful for assessing bone mineral density. We also analyzed the potential correlations between PMI parameters and patient age. Four observers measured the PMI of both sides of the mental foramen using a picture archiving and communication system and images in the Digital Imaging and Communications in Medicine format. They studied 300 panoramic radiographic images of patients belonging to the following age groups: 40–49 years, 50–59 years, 60–69 years, 70–79 years, and 80–89 years. The observers were allowed to zoom in or out and to adjust the contrast of the images. Further, they were instructed to record the reasons for any measurements that could not be made. Then, we conducted a reliability analysis of the measured PMI and assessed the correlations between different patient age groups and the 3 parameters used for determining the PMI from the available data. Among the 600 data items collected, 23 items were considered unmeasurable by at least 1 observer for the following 4 reasons: postoperative state, lesion, unidentified mental foramen, and alveolar bone loss. The intraobserver reproducibility of the measurable data was 0.611-0.752. The mandibular cortical width (MCW) decreased significantly as patient age increased. PMI had limited usability when the margin of the mental foramen was not clear. In contrast, MCW, a parameter used for determining the PMI, had fewer drawbacks than the PMI with respect to bone mineral density measurements and exhibited a significant correlation with patient age

  6. Towards simultaneous single emission microscopy and magnetic resonance imaging

    Science.gov (United States)

    Cai, Liang

    In recent years, the combined nuclear imaging and magnetic resonance imaging (MRI) has drawn extensive research effort. They can provide simultaneously acquired anatomical and functional information inside the human/small animal body in vivo. In this dissertation, the development of an ultrahigh resolution MR-compatible SPECT (Single Photon Emission Computed Tomography) system that can be operated inside a pre-existing clinical MR scanner for simultaneous dual-modality imaging of small animals will be discussed. This system is constructed with 40 small pixel CdTe detector modules assembled in a fully stationary ring SPECT geometry. Series of experiments have demonstrated that this system is capable of providing an imaging resolution of CdTe detector module that we recently developed. Each module consists of CdTe detectors having an overall size of 2.2 cm x 1.1 cm, divided into 64 x 32 pixels of 350 mum in size. A novel hybrid pixel-waveform (HPWF) readout system is also designed to alleviate several challenges for using small-pixel CdTe detectors in ultrahigh-resolution SPECT imaging applications. The HPWF system utilizes a modified version of a 2048-channel 2-D CMOS ASIC to readout the anode pixel, and a digitizing circuitry to sample the signal waveform induced on the cathode. The cathode waveform acquired with the HPWF circuitry offers excellent spatial resolution, energy resolution and depth of interaction (DOI) information, even with the presence of excessive charge-sharing/charge-loss between the small anode pixels. The HPWF CdTe detector is designed and constructed with a minimum amount of ferromagnetic materials, to ensure the MR-compatibility. To achieve sub-500?m imaging resolution, two special designed SPECT apertures have been constructed with different pinhole sizes of 300?m and 500?m respectively. It has 40 pinhole inserts that are made of cast platinum (90%)-iridium (10%) alloy, which provides the maximum stopping power and are compatible with MR

  7. Single particle raster image analysis of diffusion for particle mixtures.

    Science.gov (United States)

    Longfils, M; Röding, M; Altskär, A; Schuster, E; Lorén, N; Särkkä, A; Rudemo, M

    2018-03-01

    Recently we complemented the raster image correlation spectroscopy (RICS) method of analysing raster images via estimation of the image correlation function with the method single particle raster image analysis (SPRIA). In SPRIA, individual particles are identified and the diffusion coefficient of each particle is estimated by a maximum likelihood method. In this paper, we extend the SPRIA method to analyse mixtures of particles with a finite set of diffusion coefficients in a homogeneous medium. In examples with simulated and experimental data with two and three different diffusion coefficients, we show that SPRIA gives accurate estimates of the diffusion coefficients and their proportions. A simple technique for finding the number of different diffusion coefficients is also suggested. Further, we study the use of RICS for mixtures with two different diffusion coefficents and investigate, by plotting level curves of the correlation function, how large the quotient between diffusion coefficients needs to be in order to allow discrimination between models with one and two diffusion coefficients. We also describe a minor correction (compared to published papers) of the RICS autocorrelation function. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  8. Bright photoactivatable fluorophores for single-molecule imaging.

    Science.gov (United States)

    Grimm, Jonathan B; English, Brian P; Choi, Heejun; Muthusamy, Anand K; Mehl, Brian P; Dong, Peng; Brown, Timothy A; Lippincott-Schwartz, Jennifer; Liu, Zhe; Lionnet, Timothée; Lavis, Luke D

    2016-12-01

    Small-molecule fluorophores are important tools for advanced imaging experiments. We previously reported a general method to improve small, cell-permeable fluorophores which resulted in the azetidine-containing 'Janelia Fluor' (JF) dyes. Here, we refine and extend the utility of these dyes by synthesizing photoactivatable derivatives that are compatible with live-cell labeling strategies. Once activated, these derived compounds retain the superior brightness and photostability of the JF dyes, enabling improved single-particle tracking and facile localization microscopy experiments.

  9. Learning to Predict Indoor Illumination from a Single Image

    OpenAIRE

    Gardner, Marc-André; Sunkavalli, Kalyan; Yumer, Ersin; Shen, Xiaohui; Gambaretto, Emiliano; Gagné, Christian; Lalonde, Jean-François

    2017-01-01

    We propose an automatic method to infer high dynamic range illumination from a single, limited field-of-view, low dynamic range photograph of an indoor scene. In contrast to previous work that relies on specialized image capture, user input, and/or simple scene models, we train an end-to-end deep neural network that directly regresses a limited field-of-view photo to HDR illumination, without strong assumptions on scene geometry, material properties, or lighting. We show that this can be acco...

  10. Ventilation and perfusion display in a single image

    International Nuclear Information System (INIS)

    Lima, J.J.P. de; Botelho, M.F.R.; Pereira, A.M.S.; Rafael, J.A.S.; Pinto, A.J.; Marques, M.A.T.; Pereira, M.C.; Baganha, M.F.; Godinho, F.

    1991-01-01

    A new method of ventilation and perfusion display onto a single image is presented. From the data on regions of interest of the lungs, three-dimensional histograms are created, containing as parameters X and Y for the position of the pixels, Z for the perfusion and colour for local ventilation. The perfusion value is supplied by sets of curves having Z proportional to the local perfusion count rate. Ventilation modulates colour. Four perspective views of the histogram are simultaneously displayed to allow visualization of the entire organ. Information about the normal ranges for both ventilation and perfusion is also provided in the histograms. (orig.)

  11. Single-molecule imaging towards precise detection of individual photophysics

    International Nuclear Information System (INIS)

    Tani, Toshiro; Oda, Masaru; Mashimo, Kei; Tachibana, Fumi; Horiuchi, Hiromi

    2006-01-01

    We present our recent study of single fluorescent molecules with specific structure, i.e. tetramethylrhodamine derivative linked with a propyl chain onto silica glass surface. For fluorescent reagent in its synthesis, we used a mixture of two kinds of isomers, which provides a sample with single molecules photophysically different each other even if chemically the same. The isomeric structural difference so introduced in the molecules will provide rather small but probably distinctive photophysical difference, for example, in non-radiative relaxation rates, which we try to detect out with our improved single-molecule microscope imaging technique. To make clear the detectability of such weak inter- or intra-molecular interactions microscopically is significant for versatile applications of single-molecule detections in life science. Our present observation at room temperatures shows so far that such decoupled contributions can be discriminated in the histograms of the intensities of the observed fluorescent spots as broader but separated multi-component structures in the distribution under specific experimental configurations. We will discuss some of the prerequisite for such detections; suitable spatio-temporal resolutions with sufficient S/N ratio, algorithms for data analysis, etc. but also precise sample operations are inevitable

  12. Extracting 3D layout from a single image using global image structures.

    Science.gov (United States)

    Lou, Zhongyu; Gevers, Theo; Hu, Ninghang

    2015-10-01

    Extracting the pixel-level 3D layout from a single image is important for different applications, such as object localization, image, and video categorization. Traditionally, the 3D layout is derived by solving a pixel-level classification problem. However, the image-level 3D structure can be very beneficial for extracting pixel-level 3D layout since it implies the way how pixels in the image are organized. In this paper, we propose an approach that first predicts the global image structure, and then we use the global structure for fine-grained pixel-level 3D layout extraction. In particular, image features are extracted based on multiple layout templates. We then learn a discriminative model for classifying the global layout at the image-level. Using latent variables, we implicitly model the sublevel semantics of the image, which enrich the expressiveness of our model. After the image-level structure is obtained, it is used as the prior knowledge to infer pixel-wise 3D layout. Experiments show that the results of our model outperform the state-of-the-art methods by 11.7% for 3D structure classification. Moreover, we show that employing the 3D structure prior information yields accurate 3D scene layout segmentation.

  13. Computational imaging with a single-pixel detector and a consumer video projector

    Science.gov (United States)

    Sych, D.; Aksenov, M.

    2018-02-01

    Single-pixel imaging is a novel rapidly developing imaging technique that employs spatially structured illumination and a single-pixel detector. In this work, we experimentally demonstrate a fully operating modular single-pixel imaging system. Light patterns in our setup are created with help of a computer-controlled digital micromirror device from a consumer video projector. We investigate how different working modes and settings of the projector affect the quality of reconstructed images. We develop several image reconstruction algorithms and compare their performance for real imaging. Also, we discuss the potential use of the single-pixel imaging system for quantum applications.

  14. Autostereoscopic image creation by hyperview matrix controlled single pixel rendering

    Science.gov (United States)

    Grasnick, Armin

    2017-06-01

    technology just with a simple equation. This formula can be utilized to create a specific hyperview matrix for a certain 3D display - independent of the technology used. A hyperview matrix may contain the references to loads of images and act as an instruction for a subsequent rendering process of particular pixels. Naturally, a single pixel will deliver an image with no resolution and does not provide any idea of the rendered scene. However, by implementing the method of pixel recycling, a 3D image can be perceived, even if all source images are different. It will be proven that several millions of perspectives can be rendered with the support of GPU rendering and benefit from the hyperview matrix. In result, a conventional autostereoscopic display, which is designed to represent only a few perspectives can be used to show a hyperview image by using a suitable hyperview matrix. It will be shown that a millions-of-views-hyperview-image can be presented on a conventional autostereoscopic display. For such an hyperview image it is required that all pixels of the displays are allocated by different source images. Controlled by the hyperview matrix, an adapted renderer can render a full hyperview image in real-time.

  15. Comparative dosimetry of dental cone beam computed tomography, panoramic radiography, and multislice computed tomography

    International Nuclear Information System (INIS)

    Sezgin, O.S.; Kayipmaz, S.; Yasar, D.; Yilmaz, A.B.; Ozturk, M.H.

    2012-01-01

    The aim of this study was to compare the effective organ doses from cone beam computed tomography (CBCT), multislice computed tomography (MSCT), and panoramic radiography. The tissue-absorbed doses for the Kodak 9500 CBCT system, NewTom FP CBCT system, Morita Veraviewepocs panoramic X-ray device, and Somatom Sensation 16 MSCT system were calculated using thermoluminescent dosimeter chips placed at selected locations on a radiation analog dosimetry phantom. The tissue weighting factors recommended by the International Commission on Radiological Protection in 2007 were used to obtain effective doses. The effective doses from the CBCT systems were 118.65, 84.45, and 75.43 μSv for the Kodak 9500 large field of view (FOV), NewTom FP, and Kodak 9500 medium FOV, respectively. The effective doses were 11.37 μSv for the panoramic X-ray examination, 583.73 μSv for the MSCT ''Dental'' protocol, and 1983.89 μSv for the MSCT ''NeckThinSlice'' protocol. The doses from CBCT are not sufficiently low to allow its use as a routine imaging technique instead of panoramic radiography. The FOV size should be chosen carefully to prevent excessive exposure of the patient to radiation. The use of MSCT in dentistry is associated with much radiation and should be avoided in cases where CBCT is adequate for 3D evaluation. (author)

  16. Influence of patient head positioning on measured axial tooth inclination in panoramic radiography.

    Science.gov (United States)

    Hardy, Timothy C; Suri, Lokesh; Stark, Paul

    2009-06-01

    Panoramic radiographs are routinely used to assess the mesiodistal axial inclination of teeth (MDAI) in orthodontic treatment. These radiographs are sensitive to minor deviations from standard head position that result in image distortions. The aim of this study is to measure and quantify the changes in MDAI on panoramic radiograph resulting from changes in patient head position. The testing devise was a human skull with guide wires placed on the facial surface of the teeth and alveolar process along the long axis of each tooth. Panoramic radiographs were captured digitally with the orientation of the skull in Frankfurt horizontal plane parallel to the floor and with 1 degrees , 2 degrees , 5 degrees , 7 degrees , and 10 degrees both superior and inferior rotations. The mesiodistal tooth angulations were determined using MIPAC software (DentalEye and LEAD Technologies, Inc. 2005). The more distal the position of the tooth in the arch the greater the change in MDAI with a change in vertical head position. A maximum change of approximately 10 degrees was observed in MDAI of both the maxillary and mandibular molars with a corresponding superior head tilt of 10 degrees. The Mandibular anteriors displayed significant inconsistencies in MDAI with both superior and inferior head tilt. A superior head tilt produced a greater change in mesiodistal angulation than did an inferior head tilt. Accurately taken panoramic radiographs can serve as a convenient tool for evaluating the MDAI before, during and after orthodontic treatment. Additional radiographs are recommended for the mandibular anteriors.

  17. Accuracy of panoramic radiography and linear tomography in mandibular canal localization

    Directory of Open Access Journals (Sweden)

    Bashizadeh Fakhar H.

    2008-10-01

    Full Text Available "nBackground and Aim: Accurate bone measurements are essential to determine the optimal size and length of dental implants. The magnification factor of radiographic images may vary with the imaging technique used. The purpose of this study was to compare the accuracy of linear tomography and panoramic radiography in vertical measurements, as well as the accuracy of linear tomography in mandibular width estimation. "nMaterials and Methods: In this test evaluation study, the vertical distances between the crest and the superior border of the inferior alveolar canal, marked with a metal ball, was measured by linear tomography and panoramic radiography in 23 sites of four dry mandible bones. Also the mandibular width was measured at the same sites. Then, the bones were sectioned through the marked spots and the radiographic measurements were compared with actual values. "nResults: The vertical magnification factor in tomograms and panoramic radiographs was 1.79 (SD=0.17 and 1.69 (SD=0.23, respectively. The horizontal magnification of tomograms was 1.47 (SD=0.17. A significant correlation was found between the linear tomographic and actual values, regarding vertical dimensions (p<0.001, r=0.968 and width (p<0.001, r=0.813. The correlation was significant but lower in panoramic radiographs (p<0.001, r=0.795. Applying the magnification values suggested by the manufacturer, the mean difference of vertical measurements between the tomographic sections was 2.5 mm (SD=3.4 but 3.8 mm (SD=1.65 in panoramic radiographs. The mean of absolute difference in mandibular width between the tomographic sections and reality was 0.3mm (SD=1.13. In the linear tomograms, 4.3% of vertical and 56.5% of the width measurements were in the ±1mm error limit. Only 4.3% of the vertical measurements were within this range in the panthomographs. The linear regression equation between the actual values and those obtained by radiography in vertical dimensions showed that 87.5% of

  18. Single aflatoxin contaminated corn kernel analysis with fluorescence hyperspectral image

    Science.gov (United States)

    Yao, Haibo; Hruska, Zuzana; Kincaid, Russell; Ononye, Ambrose; Brown, Robert L.; Cleveland, Thomas E.

    2010-04-01

    Aflatoxins are toxic secondary metabolites of the fungi Aspergillus flavus and Aspergillus parasiticus, among others. Aflatoxin contaminated corn is toxic to domestic animals when ingested in feed and is a known carcinogen associated with liver and lung cancer in humans. Consequently, aflatoxin levels in food and feed are regulated by the Food and Drug Administration (FDA) in the US, allowing 20 ppb (parts per billion) limits in food and 100 ppb in feed for interstate commerce. Currently, aflatoxin detection and quantification methods are based on analytical tests including thin-layer chromatography (TCL) and high performance liquid chromatography (HPLC). These analytical tests require the destruction of samples, and are costly and time consuming. Thus, the ability to detect aflatoxin in a rapid, nondestructive way is crucial to the grain industry, particularly to corn industry. Hyperspectral imaging technology offers a non-invasive approach toward screening for food safety inspection and quality control based on its spectral signature. The focus of this paper is to classify aflatoxin contaminated single corn kernels using fluorescence hyperspectral imagery. Field inoculated corn kernels were used in the study. Contaminated and control kernels under long wavelength ultraviolet excitation were imaged using a visible near-infrared (VNIR) hyperspectral camera. The imaged kernels were chemically analyzed to provide reference information for image analysis. This paper describes a procedure to process corn kernels located in different images for statistical training and classification. Two classification algorithms, Maximum Likelihood and Binary Encoding, were used to classify each corn kernel into "control" or "contaminated" through pixel classification. The Binary Encoding approach had a slightly better performance with accuracy equals to 87% or 88% when 20 ppb or 100 ppb was used as classification threshold, respectively.

  19. Dosimetric study of the effective doses resulting during dental X-ray and panoramic radiography

    Science.gov (United States)

    Shousha, Hany A.; Abd-El Hafez, A. I.; Ahmad, Fawzia

    2011-01-01

    The panoramic image is one of the most commonly used radiographic examinations in dentistry, owing to its low dose and large area for evaluation, including bone and teeth in the same image. Although digital images are usually reported to deliver a lower radiation dose to the patient, conventional images are still available, especially in countries where digital systems are not widely economically available. Dentists should weigh the benefits of dental radiographs against the consequences of increasing a patient's exposure to radiation, the effects of which accumulate from multiple sources over time. The "as low as reasonably achievable" principle should be followed to minimize the exposure to radiation. The purpose of this investigation is to measure the absorbed radiation doses at 12 anatomical sites of a Rando-phantom and calculate the effective doses result from a full-mouth survey and panoramic radiography. Organ-absorbed doses are measured using thermoluminescent dosimeters (TLD 100) and effective organ doses (μ Sv) are estimated according to the International Commission on Radiological Protection in 2007. The total effective dose results from the panoramic imaging system have so far been below those obtained using the full-mouth survey technique used in intra-oral radiographic examination.

  20. New Antifouling Platform Characterized by Single-Molecule Imaging

    Science.gov (United States)

    2015-01-01

    Antifouling surfaces have been widely studied for their importance in medical devices and industry. Antifouling surfaces mostly achieved by methoxy-poly(ethylene glycol) (mPEG) have shown biomolecular adsorption less than 1 ng/cm2 which was measured by surface analytical tools such as surface plasmon resonance (SPR) spectroscopy, quartz crystal microbalance (QCM), or optical waveguide lightmode (OWL) spectroscopy. Herein, we utilize a single-molecule imaging technique (i.e., an ultimate resolution) to study antifouling properties of functionalized surfaces. We found that about 600 immunoglobulin G (IgG) molecules are adsorbed. This result corresponds to ∼5 pg/cm2 adsorption, which is far below amount for the detection limit of the conventional tools. Furthermore, we developed a new antifouling platform that exhibits improved antifouling performance that shows only 78 IgG molecules adsorbed (∼0.5 pg/cm2). The antifouling platform consists of forming 1 nm TiO2 thin layer, on which peptidomimetic antifouling polymer (PMAP) is robustly anchored. The unprecedented antifouling performance can potentially revolutionize a variety of research fields such as single-molecule imaging, medical devices, biosensors, and others. PMID:24503420

  1. Genetic biosensors for imaging nitric oxide in single cells.

    Science.gov (United States)

    Eroglu, Emrah; Charoensin, Suphachai; Bischof, Helmut; Ramadani, Jeta; Gottschalk, Benjamin; Depaoli, Maria R; Waldeck-Weiermair, Markus; Graier, Wolfgang F; Malli, Roland

    2018-02-01

    Over the last decades a broad collection of sophisticated fluorescent protein-based probes was engineered with the aim to specifically monitor nitric oxide (NO), one of the most important signaling molecules in biology. Here we report and discuss the characteristics and fields of applications of currently available genetically encoded fluorescent sensors for the detection of NO and its metabolites in different cell types. Because of its radical nature and short half-life, real-time imaging of NO on the level of single cells is challenging. Herein we review state-of-the-art genetically encoded fluorescent sensors for NO and its byproducts such as peroxynitrite, nitrite and nitrate. Such probes enable the real-time visualization of NO signals directly or indirectly on the level of single cells and cellular organelles and, hence, extend our understanding of the spatiotemporal dynamics of NO formation, diffusion and degradation. Here, we discuss the significance of NO detection in individual cells and on subcellular level with genetic biosensors. Currently available genetically encoded fluorescent probes for NO and nitrogen species are critically discussed in order to provide insights in the functionality and applicability of these promising tools. As an outlook we provide ideas for novel approaches for the design and application of improved NO probes and fluorescence imaging protocols. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Image quality comparison between single energy and dual energy CT protocols for hepatic imaging

    International Nuclear Information System (INIS)

    Yao, Yuan; Pelc, Norbert J.; Ng, Joshua M.; Megibow, Alec J.

    2016-01-01

    Purpose: Multi-detector computed tomography (MDCT) enables volumetric scans in a single breath hold and is clinically useful for hepatic imaging. For simple tasks, conventional single energy (SE) computed tomography (CT) images acquired at the optimal tube potential are known to have better quality than dual energy (DE) blended images. However, liver imaging is complex and often requires imaging of both structures containing iodinated contrast media, where atomic number differences are the primary contrast mechanism, and other structures, where density differences are the primary contrast mechanism. Hence it is conceivable that the broad spectrum used in a dual energy acquisition may be an advantage. In this work we are interested in comparing these two imaging strategies at equal-dose and more complex settings. Methods: We developed numerical anthropomorphic phantoms to mimic realistic clinical CT scans for medium size and large size patients. MDCT images based on the defined phantoms were simulated using various SE and DE protocols at pre- and post-contrast stages. For SE CT, images from 60 kVp through 140 with 10 kVp steps were considered; for DE CT, both 80/140 and 100/140 kVp scans were simulated and linearly blended at the optimal weights. To make a fair comparison, the mAs of each scan was adjusted to match the reference radiation dose (120 kVp, 200 mAs for medium size patients and 140 kVp, 400 mAs for large size patients). Contrast-to-noise ratio (CNR) of liver against other soft tissues was used to evaluate and compare the SE and DE protocols, and multiple pre- and post-contrasted liver-tissue pairs were used to define a composite CNR. To help validate the simulation results, we conducted a small clinical study. Eighty-five 120 kVp images and 81 blended 80/140 kVp images were collected and compared through both quantitative image quality analysis and an observer study. Results: In the simulation study, we found that the CNR of pre-contrast SE image mostly

  3. Panoramic view of the Mexican Pacific Coastline

    Science.gov (United States)

    1993-01-01

    In this scenic panoramic view, the orbiter tail points toward the Mexican Pacific coastline (18.0N, 103.0W) near the international resort of Acapulco on the nearly cloud free eastern Pacific Ocean. Almost all of southern Mexico can be seen from Puerto Vallarta in the north to the Isthmus of Tehuantepec in the south. The cloud covered Gulf of Mexico at the horizon contrasts sharply with the blue Pacific.

  4. Serial Myocardial Imaging after a Single Dose of Thallium-201

    Directory of Open Access Journals (Sweden)

    Takahiko Kamata

    2014-10-01

    Full Text Available Although thallium-201 exercise scintigraphy has been established for the detection of myocardial ischemia and viability, little is known regarding the myocardial thallium-201 kinetics during angioplasty. Herein, we report a 77-year old man with angina pectoris, in whom serial myocardial imaging after a single dose of thallium-201 was helpful in identifying not only the culprit lesion and myocardial viability, but also the dynamic changes in myocardial perfusion during angioplasty. Thallium-201 images after exercise showed a perfusion defect in the inferior wall, with a trivial redistribution 3 hours after the exercise and a marked improvement 24 hours later. Coronary angiography, performed 27 hours after exercise scintigraphy, showed severe stenosis in the right coronary artery. Guidewire crossing of the lesion interrupted the antegrade flow, which was restored after balloon dilation and stent implantation. Thallium-201 images, 2 hours after angioplasty (i.e., 30 hours after exercise, showed a decreased tracer uptake in the inferior wall, which improved the next day (i.e., 48 hours after exercise. Cardiac biomarkers were negative in the clinical course.

  5. Predicting lower third molar eruption on panoramic radiographs after cephalometric comparison of profile and panoramic radiographs

    DEFF Research Database (Denmark)

    Begtrup, Anders; Grønastøð, Halldis Á; Christensen, Ib Jarle

    2012-01-01

    and to find a simple and reliable method for predicting the eruption of the mandibular third molar by measurements on panoramic radiographs. The material consisted of profile and panoramic radiographs, taken before orthodontic treatment, of 30 males and 23 females (median age 22, range 18-48 years......Previous studies have suggested methods for predicting third molar tooth eruption radiographically. Still, this prediction is associated with uncertainty. The aim of the present study was to elucidate the association between cephalometric measurements on profile and panoramic radiographs...... the length from the ramus to the incisors (olr-id) showed a statistically significant correlation. By combining this length with the mesiodistal width of the lower second molar, the prediction of eruption of the lower third molar was strengthened. A new formula for calculating the probability of eruption...

  6. Accuracy of panoramic, panoramic with palpation and tube shift technique to localize maxillary impacted cuspid

    Directory of Open Access Journals (Sweden)

    GoodarziPour D.

    2009-12-01

    Full Text Available "nBackground and Aim: Impaction of maxillary cuspids is the most common after third molars with 1% to 3% prevalence. Localization of these impacted teeth may affect orthodontic or surgical treatment plan. Therefore, different techniques have been introduced to localize impacted canines. The present study was conducted to compare the accuracy of panoramic, tube shift and panoramic plus palpation in determination of the position of maxillary impacted canine."nMaterials and Methods: 47 patients (20 females, 27 males with the age of more than 12 years (mean age of 25.4 years old whom referred to Dental School, Tehran University of Medical Sciences, with at least one impacted maxillary canine included. An oral and maxillofacial radiologist localized impacted canine first by using panoramic then tube shift technique blindly. After that, an oral and maxillofacial surgeon localized the canine by panoramic and palpation of the area before surgery. Data obtained from radiologist and surgeon were compared with true location of canine after surgery. Statistical analysis was done using sensitivity and specificity."nResults: Among total 47 impacted maxillary canines, 11 cases (23.4% showed buccal impactions and 36 cases (76.6% palatal impactions. Sensitivity (ability of technique to localize palatal impaction of all of the techniques were same (100% but specificity (ability of technique to localize buccal impaction of tube shift (100% was more than two others (0%."nConclusion: The tube shift technique was the most accurate technique to localize maxillary unerupted canines compared to the others. Due to the ability of panoramic and panoramic with palpation in prediction of palatal canine impactions and failure of these techniques to predict buccal impactions, both methods are not suitable in localization of impacted maxillary canines and they must be used as adjunctive techniques.

  7. Panoramic radiographs underestimate extensions of the anterior loop and mandibular incisive canal

    Energy Technology Data Exchange (ETDEWEB)

    De Brito, Ana Caroline Ramos; Nejaim, Yuri; De Freitas, Deborah Queiroz [Dept. of Oral Diagnosis, Division of Oral Radiology, Piracicaba Dental School, University of Campinas, Sao Paulo (Brazil); De Oliveira Santos, Christiano [Dept. of Stomatology, Public Oral Health and Forensic Dentistry, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Sao Paulo (Brazil)

    2016-09-15

    The purpose of this study was to detect the anterior loop of the mental nerve and the mandibular incisive canal in panoramic radiographs (PAN) and cone-beam computed tomography (CBCT) images, as well as to determine the anterior/mesial extension of these structures in panoramic and cross-sectional reconstructions using PAN and CBCT images. Images (both PAN and CBCT) from 90 patients were evaluated by 2 independent observers. Detection of the anterior loop and the incisive canal were compared between PAN and CBCT. The anterior/mesial extension of these structures was compared between PAN and both cross-sectional and panoramic CBCT reconstructions. In CBCT, the anterior loop and the incisive canal were observed in 7.7% and 24.4% of the hemimandibles, respectively. In PAN, the anterior loop and the incisive canal were detected in 15% and 5.5% of cases, respectively. PAN presented more difficulties in the visualization of structures. The anterior/mesial extensions ranged from 0.0 mm to 19.0 mm on CBCT. PAN underestimated the measurements by approximately 2.0 mm. CBCT appears to be a more reliable imaging modality than PAN for preoperative workups of the anterior mandible. Individual variations in the anterior/mesial extensions of the anterior loop of the mental nerve and the mandibular incisive canal mean that is not prudent to rely on a general safe zone for implant placement or bone surgery in the interforaminal region.

  8. AUTOMATIC INTERPRETATION OF HIGH RESOLUTION SAR IMAGES: FIRST RESULTS OF SAR IMAGE SIMULATION FOR SINGLE BUILDINGS

    Directory of Open Access Journals (Sweden)

    J. Tao

    2012-09-01

    Full Text Available Due to the all-weather data acquisition capabilities, high resolution space borne Synthetic Aperture Radar (SAR plays an important role in remote sensing applications like change detection. However, because of the complex geometric mapping of buildings in urban areas, SAR images are often hard to interpret. SAR simulation techniques ease the visual interpretation of SAR images, while fully automatic interpretation is still a challenge. This paper presents a method for supporting the interpretation of high resolution SAR images with simulated radar images using a LiDAR digital surface model (DSM. Line features are extracted from the simulated and real SAR images and used for matching. A single building model is generated from the DSM and used for building recognition in the SAR image. An application for the concept is presented for the city centre of Munich where the comparison of the simulation to the TerraSAR-X data shows a good similarity. Based on the result of simulation and matching, special features (e.g. like double bounce lines, shadow areas etc. can be automatically indicated in SAR image.

  9. Orientational imaging of a single plasmonic nanoparticle using dark-field hyperspectral imaging

    Science.gov (United States)

    Mehta, Nishir; Mahigir, Amirreza; Veronis, Georgios; Gartia, Manas Ranjan

    2017-08-01

    Orientation of plasmonic nanostructures is an important feature in many nanoscale applications such as catalyst, biosensors DNA interactions, protein detections, hotspot of surface enhanced Raman spectroscopy (SERS), and fluorescence resonant energy transfer (FRET) experiments. However, due to diffraction limit, it is challenging to obtain the exact orientation of the nanostructure using standard optical microscope. Hyperspectral Imaging Microscopy is a state-of-the-art visualization technology that combines modern optics with hyperspectral imaging and computer system to provide the identification and quantitative spectral analysis of nano- and microscale structures. In this work, initially we use transmitted dark field imaging technique to locate single nanoparticle on a glass substrate. Then we employ hyperspectral imaging technique at the same spot to investigate orientation of single nanoparticle. No special tagging or staining of nanoparticle has been done, as more likely required in traditional microscopy techniques. Different orientations have been identified by carefully understanding and calibrating shift in spectral response from each different orientations of similar sized nanoparticles. Wavelengths recorded are between 300 nm to 900 nm. The orientations measured by hyperspectral microscopy was validated using finite difference time domain (FDTD) electrodynamics calculations and scanning electron microscopy (SEM) analysis. The combination of high resolution nanometer-scale imaging techniques and the modern numerical modeling capacities thus enables a meaningful advance in our knowledge of manipulating and fabricating shaped nanostructures. This work will advance our understanding of the behavior of small nanoparticle clusters useful for sensing, nanomedicine, and surface sciences.

  10. Imaging through scattering media by Fourier filtering and single-pixel detection

    Science.gov (United States)

    Jauregui-Sánchez, Y.; Clemente, P.; Lancis, J.; Tajahuerce, E.

    2018-02-01

    We present a novel imaging system that combines the principles of Fourier spatial filtering and single-pixel imaging in order to recover images of an object hidden behind a turbid medium by transillumination. We compare the performance of our single-pixel imaging setup with that of a conventional system. We conclude that the introduction of Fourier gating improves the contrast of images in both cases. Furthermore, we show that the combination of single-pixel imaging and Fourier spatial filtering techniques is particularly well adapted to provide images of objects transmitted through scattering media.

  11. Single Image Super-resolution using Deformable Patches

    Science.gov (United States)

    Zhu, Yu; Zhang, Yanning; Yuille, Alan L.

    2014-01-01

    We proposed a deformable patches based method for single image super-resolution. By the concept of deformation, a patch is not regarded as a fixed vector but a flexible deformation flow. Via deformable patches, the dictionary can cover more patterns that do not appear, thus becoming more expressive. We present the energy function with slow, smooth and flexible prior for deformation model. During example-based super-resolution, we develop the deformation similarity based on the minimized energy function for basic patch matching. For robustness, we utilize multiple deformed patches combination for the final reconstruction. Experiments evaluate the deformation effectiveness and super-resolution performance, showing that the deformable patches help improve the representation accuracy and perform better than the state-of-art methods. PMID:25473254

  12. From Panoramic Photos to a Low-Cost Photogrammetric Workflow for Cultural Heritage 3d Documentation

    Science.gov (United States)

    D'Annibale, E.; Tassetti, A. N.; Malinverni, E. S.

    2013-07-01

    The research aims to optimize a workflow of architecture documentation: starting from panoramic photos, tackling available instruments and technologies to propose an integrated, quick and low-cost solution of Virtual Architecture. The broader research background shows how to use spherical panoramic images for the architectural metric survey. The input data (oriented panoramic photos), the level of reliability and Image-based Modeling methods constitute an integrated and flexible 3D reconstruction approach: from the professional survey of cultural heritage to its communication in virtual museum. The proposed work results from the integration and implementation of different techniques (Multi-Image Spherical Photogrammetry, Structure from Motion, Imagebased Modeling) with the aim to achieve high metric accuracy and photorealistic performance. Different documentation chances are possible within the proposed workflow: from the virtual navigation of spherical panoramas to complex solutions of simulation and virtual reconstruction. VR tools make for the integration of different technologies and the development of new solutions for virtual navigation. Image-based Modeling techniques allow 3D model reconstruction with photo realistic and high-resolution texture. High resolution of panoramic photo and algorithms of panorama orientation and photogrammetric restitution vouch high accuracy and high-resolution texture. Automated techniques and their following integration are subject of this research. Data, advisably processed and integrated, provide different levels of analysis and virtual reconstruction joining the photogrammetric accuracy to the photorealistic performance of the shaped surfaces. Lastly, a new solution of virtual navigation is tested. Inside the same environment, it proposes the chance to interact with high resolution oriented spherical panorama and 3D reconstructed model at once.

  13. Selecting the geology filter wavelengths for the ExoMars Panoramic Camera instrument

    OpenAIRE

    Cousins, C. R.; Gunn, M.; Prosser, B. J.; Barnes, D. P.; Crawford, I. A.; Griffiths, A. D.; Davis, L. E.; Coates, A. J.

    2012-01-01

    The Panoramic Camera (PanCam) instrument will provide surface remote sensing data for the ExoMars mission. A combination of wide-angle stereo, multispectral, and high resolution imagery will generate contextual geological information to help inform which scientific targets should be selected for drilling and analysis. One component of the PanCam dataset is narrowband multispectral imaging in the visible to near infrared, which utilises a dedicated set of 12 “geology” filters of predetermined ...

  14. Absorbed doses for patients undergoing panoramic radiography, cephalometric radiography and CBCT.

    OpenAIRE

    Wrzesien, Małgorzata; Olszewski, Jerzy

    2017-01-01

    Objectives: Contemporary dental radiology offers a wide spectrum of imaging methods but it also contributes to an increase in the participation of dental radiological diagnosis in the patient’s exposure to ionizing radiation. The aim of this study is to determine the absorbed doses of the brain, spinal column, thyroid and eye lens for patients during panoramic radiography, cephalometric radiography and cone beam computed tomography (CBCT). Material and Methods: The thermoluminescent dosimetry...

  15. Reliability of panoramic radiography in assessing gonial angle compared to lateral cephalogram in adult patients with Class I malocclusion

    Directory of Open Access Journals (Sweden)

    Girish Katti

    2016-01-01

    Full Text Available Introduction: Gonial angle is an important angle of the craniofacial complex. Lateral cephalogram and orthopantomogram (OPG can be used to determine this angle. Objectives: To investigate whether OPGs can be used as an alternative to lateral cephalogram for measuring the gonial angle. Study Design: A total of 100 radiographs were collected from patients with Angle's Class I malocclusion (50 males and 50 females with age ranging from 15 to 30 years, with a mean age of 18.24 years. Materials and Methods: The radiographs were taken with digital panoramic system (Kodak 8000C under standard exposure factors, as recommended by the manufacturer. Gonial angle was determined by the tangent of the inferior border of the mandible and the most distal aspect of the ascending ramus and condyle on both panoramic and cephalometric radiographs. Statistical Analysis: Mean values were evaluated using z test. The statistical analysis was performed by using the Statistical Package for the Social Sciences (version 11.5. Results: The mean gonial angle was 121.13° and 122.22° on panoramic and cephalometric radiographs, respectively. There was no statistical significant difference between the measured gonial angles on panoramic and cephalometric radiographs (P > 0.005. Conclusion: Panoramic radiography can be used to determine the gonial angle as accurately as lateral cephalogram. In addition, we can determine the right and left gonial angles of a patient in an OPG without interferences due to superimposed images of anatomical structures in lateral cephalogram.

  16. Accuracy of Digital Bitewing Radiography versus Different Views of Digital Panoramic Radiography for Detection of Proximal Caries

    Directory of Open Access Journals (Sweden)

    Mehrdad Abdinian

    2015-10-01

    Full Text Available Objectives: Dental caries are common and have a high incidence among populations. Radiographs are essential for detecting proximal caries. The best technique should be recognized for accurate detection of caries. The aim of this study was to compare the accuracy of detection of proximal caries using intra oral bitewing, extra oral bitewing, improved interproximal panoramic, improved orthogonality panoramic and digital con- ventional panoramic radiographs.Materials and Methods: In this descriptive cross sectional study, 100 extracted human teeth with and without proximal caries were used. Intra and extra oral radiographs were taken. Images were evaluated and scored by two observers. Scores were compared with the histological gold standard. The diagnostic accuracy of radiographs was assessed by means of receiver operating characteristic (ROC curve analysis (P<0.05.Results: Microscopic evaluation of proximal surfaces revealed that 54.8% of the sur- faces were sound and 45.2% were carious (with different depths. The differences in the area under the ROC curve (Az value among the five techniques were not statisti- cally significant.Conclusion: Improved interproximal panoramic and extra oral bitewing radiographs were superior to conventional panoramic radiography for detection of proximal caries ex vivo and should be considered for patients with contraindications for intra oral radi- ographs.

  17. Reliability and validity of mandibular posterior vertical asymmetry index in panoramic radiography compared with cone-beam computed tomography.

    Science.gov (United States)

    Lim, Young-Sub; Chung, Dong-Hwa; Lee, Jin-Woo; Lee, Sang-Min

    2018-04-01

    The purposes of this study were to compare the asymmetry index using panoramic radiography and cone-beam computed tomography for detecting mandibular posterior asymmetry and to evaluate the diagnostic value of the asymmetry index on panoramic radiography. A total of 43 patients were included in this study. Ten mandibular posterior distances were measured using panoramic radiography and cone-beam computed tomography, and 10 asymmetry index values were calculated. The reliability of each asymmetry index was assessed. For evaluating validity of each asymmetry index using panoramic radiography, the paired t test and the Bland-Altman analysis were used. The accuracy of the asymmetry index and the area under the curve of receiver operator characteristic were calculated. The asymmetry index of total ramal height showed good reliability (ICC, >0.888). In condylar height 1, specificity and negative predictive value were low (0.08 and 0.17, respectively), 95% limits of agreement were ±17.9%, and area under the curve was 0.484. In total, ramal height accuracy was 0.86, and areas under the curve were 0.926 to 0.957. For detecting asymmetry of the condyle region, the asymmetry index using panoramic radiography had little diagnostic value, and we recommend using cone-beam computed tomography images. However, the asymmetry index for total ramal height showed good reliability and relatively higher validity, and its diagnostic value was excellent. Copyright © 2018 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  18. Evaluating the Accuracy of Tempromandibular Joint Panoramic Radiography in Condylar Positioning

    Directory of Open Access Journals (Sweden)

    Seyed Hossein Hoseini Zarch

    2017-09-01

    Full Text Available Introduction: Panoramic radiography is a diagnostic tool, which has a widespread application in the assessment of tempromandibular joint (TMJ by the dentists as well as ear, nose, and throat specialists. Regarding this, the present study aimed to compare the accuracy of this method in the evaluation of the condylar position and osseous changes with that of the cone beam computed tomography (CBCT as the gold standard method. Materials & Methods: This study was conducted on 28 patients with both TMJ panoramic imaging and bilateral CBCT imaging of TMJs. The condylar position was determined in closed-mouth and maximum intercuspation positions based on the measurement of superior, posterior, and anterior joint spaces and osseous changes of condyle, including erosions, osteophytes, resorbtion, Ely’s cyst, flattening, and sclerosis. The images were evaluated by two expert maxillofacial radiologists. Finally, the accuracy of TMJ panoramic radiography was compared with that of CBCT in terms of the sensitivity, specificity, as well as positive and negative predictive values. Results: According to the results, there was a significant difference between the two techniques regarding the diagnosis of anterior and posterior condylar positions in horizontal dimension (P=0.012, P=0.007. The sensitivity rates in the anterior and posterior positions were 50% and 51%, and the specificity rates were 55% and 55%, respectively. Regarding the identification of condylar position in vertical dimension, the two methods showed a significant difference only in the narrowing of superior joint space (P=0.004. The sensitivity and specificity in the narrowing of superior joint space in the vertical dimension were 100% and 79%, respectively. Regarding the osseous changes, the TMJ panoramic method had a poorer performance in the diagnosis of erosion (sensitivity: 29%, specificity: 95%, compared to the CBCT. Nevertheless, no significant difference was observed between the two

  19. Single-image-based Modelling Architecture from a Historical Photograph

    Science.gov (United States)

    Dzwierzynska, Jolanta

    2017-10-01

    Historical photographs are proved to be very useful to provide a dimensional and geometrical analysis of buildings as well as to generate 3D reconstruction of the whole structure. The paper addresses the problem of single historical photograph analysis and modelling of an architectural object from it. Especially, it focuses on reconstruction of the original look of New-Town synagogue from the single historic photograph, when camera calibration is completely unknown. Due to the fact that the photograph faithfully followed the geometric rules of perspective, it was possible to develop and apply the method to obtain a correct 3D reconstruction of the building. The modelling process consisted of a series of familiar steps: feature extraction, determination of base elements of perspective, dimensional analyses and 3D reconstruction. Simple formulas were proposed in order to estimate location of characteristic points of the building in 3D Cartesian system of axes on the base of their location in 2D Cartesian system of axes. The reconstruction process proceeded well, although slight corrections were necessary. It was possible to reconstruct the shape of the building in general, and two of its facades in detail. The reconstruction of the other two facades requires some additional information or the additional picture. The success of the presented reconstruction method depends on the geometrical content of the photograph as well as quality of the picture, which ensures the legibility of building edges. The presented method of reconstruction is a combination of the descriptive method of reconstruction and computer aid; therefore, it seems to be universal. It can prove useful for single-image-based modelling architecture.

  20. Compact quantum dots for single-molecule imaging.

    Science.gov (United States)

    Smith, Andrew M; Nie, Shuming

    2012-10-09

    Single-molecule imaging is an important tool for understanding the mechanisms of biomolecular function and for visualizing the spatial and temporal heterogeneity of molecular behaviors that underlie cellular biology (1-4). To image an individual molecule of interest, it is typically conjugated to a fluorescent tag (dye, protein, bead, or quantum dot) and observed with epifluorescence or total internal reflection fluorescence (TIRF) microscopy. While dyes and fluorescent proteins have been the mainstay of fluorescence imaging for decades, their fluorescence is unstable under high photon fluxes necessary to observe individual molecules, yielding only a few seconds of observation before complete loss of signal. Latex beads and dye-labeled beads provide improved signal stability but at the expense of drastically larger hydrodynamic size, which can deleteriously alter the diffusion and behavior of the molecule under study. Quantum dots (QDs) offer a balance between these two problematic regimes. These nanoparticles are composed of semiconductor materials and can be engineered with a hydrodynamically compact size with exceptional resistance to photodegradation (5). Thus in recent years QDs have been instrumental in enabling long-term observation of complex macromolecular behavior on the single molecule level. However these particles have still been found to exhibit impaired diffusion in crowded molecular environments such as the cellular cytoplasm and the neuronal synaptic cleft, where their sizes are still too large (4,6,7). Recently we have engineered the cores and surface coatings of QDs for minimized hydrodynamic size, while balancing offsets to colloidal stability, photostability, brightness, and nonspecific binding that have hindered the utility of compact QDs in the past (8,9). The goal of this article is to demonstrate the synthesis, modification, and characterization of these optimized nanocrystals, composed of an alloyed HgxCd1-xSe core coated with an

  1. Comparison between DICOM-calibrated and uncalibrated consumer grade and 6-MP displays under different lighting conditions in panoramic radiography.

    Science.gov (United States)

    Kallio-Pulkkinen, S; Haapea, M; Liukkonen, E; Huumonen, S; Tervonen, O; Nieminen, M T

    2015-01-01

    To compare observer performance in the detection of anatomical structures and pathology in panoramic radiographs using consumer grade with and without digital imaging and communication in medicine (DICOM)-calibration and 6-megapixel (6-MP) displays under different lighting conditions. 30 panoramic radiographs were randomly evaluated on three displays under bright (510 lx) and dim (16 lx) ambient lighting by two observers with different years of experience. Dentinoenamel junction, dentinal caries and periapical inflammatory lesions, visibility of cortical border of the floor and pathological lesions in maxillary sinus were evaluated. Consensus between the observers was considered as reference. Intraobserver agreement was determined. Proportion of equivalent ratings and weighted kappa were used to assess reliability. The level of significance was set to p panoramic radiography in different lighting conditions. Therefore, a DICOM-calibrated consumer grade display can be used instead of a medical display in dental practice without compromising the diagnostic quality.

  2. Characteristic findings on panoramic radiography and cone-beam CT to predict paresthesia after extraction of impacted third molar.

    Science.gov (United States)

    Harada, Nana; Beloor Vasudeva, Subash; Matsuda, Yukiko; Seki, Kenji; Kapila, Rishabh; Ishikawa, Noboru; Okano, Tomohiro; Sano, Tsukasa

    2015-01-01

    The purpose of this study was to compare findings on the relationship between impacted molar roots and the mandibular canal in panoramic and three-dimensional cone-beam CT (CBCT) images to identify those that indicated risk of postoperative paresthesia. The relationship between impacted molars and the mandibular canal was first classified using panoramic images. Only patients in whom the molar roots were either in contact with or superimposed on the canal were evaluated using CBCT. Of 466 patients examined using both panoramic and CBCT images, 280 underwent surgical extraction of an impacted molar, and 15 of these (5%) reported postoperative paresthesia. The spatial relationship between the impacted third molar root and the mandibular canal was determined by examining para-sagittal sections (lingual, buccal, inter-radicular, inferior, and combinations) obtained from the canal to the molar root and establishing the proximity of the canal to the molar root (in contact with or without loss of the cortical border and separate). The results revealed that darkening of the roots with interruption of the mandibular canal on panoramic radiographs and the inter-radicular position of the canal in CBCT images were characteristic findings indicative of risk of postoperative paresthesia. These results suggest that careful surgical intervention is required in patients with the above characteristics.

  3. Dosimetric evaluation in panoramic and tele-radiography procedures

    International Nuclear Information System (INIS)

    Oliveira, Georgge Gomes

    2004-01-01

    The present work had as an objective to evaluate the skin surface entrance dose in panoramic and tele radiography procedures in three clinics in Recife - Pernambuco - Brazil, and to contribute with data for the determination of reference levels for super cited extra oral procedures, for this purpose, operational conditions in 3 clinics were evaluated in Recife, aiming to evaluate the existence and integrity of the radioprotection equipment, manner and conditions of image processing; and radiographic equipment parameters such as the dimension of the irradiation filed, the total filtration, the exposure time and the potential applied to the X ray tube. For an estimation of the skin entrance dose of the patient, the phantom Randon Alderson and thermoluminescence dosemeters were used. From these values and the conversion factors determined by the Monte Carlo technique, with the phantom MAX it was possible to estimate the dose absorbed in the organ due to the tele radiography procedures. Regarding panoramic radiography the study showed that the more elevated doses occurred in the parotid gland region which is near rotational venters. In the case of tele radiography the highest dose value occurred in the regions corresponding to the temporal lobe of the brain, followed by linfonodes, ears and parotid glands. The doses absorbed in the eyes and the thyroid gland were, 0.037 mGy and 0.002 mGy in Clinic A and 0.062 mGy and 0.003 mGy in Clinic C, respectively. Regarding equipment test, inadequacy was found in the beam collimation in Clinic A and in the reproducibility of the X ray exposure in Clinic C. The total filtration in both clinics was inadequate.(author)

  4. A Comparison of Panoramic, Periapical and Bite Wing Radiographies in Evaluation of Alveolar Bone Loss in Periodiontitis

    Directory of Open Access Journals (Sweden)

    A Haerian Ardakani

    2007-07-01

    Full Text Available Introduction: The height of the alveolar bone, is normally maintained by equilibrium between bone formation and bone resorption, but in periodontal disease more destruction or lack of bone formation will reduce the alveolar bone height. However the radiography is important in diagnosis, treatment plan and detection of quality and quantity of the alveolar bone; although the type of radiography is more important. The purpose of this study is the comparison between panaromic, P.A (Parallel, Bite Wing radiographs in diagnosis of periodontitis. Methods: This study was descriptive cross-Sectional study Periapical (PA, Bitewing (B.W & Panoramic radiographic images in 32 pationent 13 male and 19 female with moderate to advanced periodontitis (mean age 38 year were taken before surgical treatment. Actual hight of defect were measured by a William's probe during surgery, the distance between cemento enamel junction (CEJ and alveolar crest were measured on radiographs using a digital vernie scale as will as. Actual measurements were compared with values taken from panoramic PA, B.W radiographs. For Data analysis Paired t test was used. Results: A total of 314 linear distances from the panoramic PA , B.W, and CEJ/BL were measured. The mean difference between panoramic and actual Measurements (0.115 and 0.28 P=(0.24-0.07, were not satistically significant (P> 0.05. The mean difference between P.A and actual measurements (0.279-0.498 P=(0.0001-0.004 showed a satistically significant difference (P< 0.05. The mean deference between BW and actual Measurements (0.576-0.613 P=(0.24-0.07 were satistically significant (P<0.05. Conclusion: Although, all forms of radiographic images showed agreement in detection of periodontal bone loss, the accuracy of panoramic radiographs was more than PA & BW radiographs'. Specially when the magnification was adjusted in panoramic radiography.

  5. Appearance of the mandibular incisive canal on panoramic radiographs

    NARCIS (Netherlands)

    Jacobs, R.; Mraiwa, N.; van Steenberghe, D.; Sanderink, G.C.H.; Quirynen, M.

    2004-01-01

    Panoramic radiographs are routinely used in the dental office for various diagnostic purposes. This study aimed to evaluate the visibility of neurovascular structures in the mandibular interforaminal region on such radiographs. Panoramic radiographs were obtained with a Cranex Tome (Soredex) from

  6. Panoramic and conventional radiographs in diagnosis of mandibular fractures

    International Nuclear Information System (INIS)

    Miranda, S.L. de; Antonini, R.; Souza, L.C.M. de.

    1988-01-01

    Panoramic radiographs of the mandibles are compared with conventional studies for the diagnosis of mandibular fractures. It is considered that panoramic radiographs are extremely useful in the diagnostic of mandibular fractures but also that conventional X ray must be used to detect the osseous shift in the fracture line. (M.A.C.) [pt

  7. Evaluation of panoramic radiographs taken from 1056 Turkish children

    African Journals Online (AJOL)

    Objective: Panoramic radiographs (PRs) play an important role in the diagnosis and treatment planning of a wide range of dental and maxillofacial diseases and conditions. To examine and to determine the status of oral lesions, dental anomalies and pathologies in panoramic radiographs, which were taken at the ...

  8. A practical one-shot multispectral imaging system using a single image sensor.

    Science.gov (United States)

    Monno, Yusuke; Kikuchi, Sunao; Tanaka, Masayuki; Okutomi, Masatoshi

    2015-10-01

    Single-sensor imaging using the Bayer color filter array (CFA) and demosaicking is well established for current compact and low-cost color digital cameras. An extension from the CFA to a multispectral filter array (MSFA) enables us to acquire a multispectral image in one shot without increased size or cost. However, multispectral demosaicking for the MSFA has been a challenging problem because of very sparse sampling of each spectral band in the MSFA. In this paper, we propose a high-performance multispectral demosaicking algorithm, and at the same time, a novel MSFA pattern that is suitable for our proposed algorithm. Our key idea is the use of the guided filter to interpolate each spectral band. To generate an effective guide image, in our proposed MSFA pattern, we maintain the sampling density of the G -band as high as the Bayer CFA, and we array each spectral band so that an adaptive kernel can be estimated directly from raw MSFA data. Given these two advantages, we effectively generate the guide image from the most densely sampled G -band using the adaptive kernel. In the experiments, we demonstrate that our proposed algorithm with our proposed MSFA pattern outperforms existing algorithms and provides better color fidelity compared with a conventional color imaging system with the Bayer CFA. We also show some real applications using a multispectral camera prototype we built.

  9. Usefulness of panoramic radiography in the diagnosis of osteoporosis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byeong Do [Wankwang Univ. School of Dentistry, Iksan (Korea, Republic of); Lee, Sang Rae [Kyunghee Univ. School of Dentistry, Seoul (Korea, Republic of)

    2001-06-15

    To assess the possibility of using panoramic indices as an indicator of jaw osteoporosis. Mandibular cortical width (MCW), degree of mandibular alveolar bone resorption (ABR) and morphology of mandibular inferior cortex (MIC) on panoramic radiograph were used as panoramic indices. These panoramic indices were compared with bone mineral density (BMD) of lumbar (L1-L4) and femoral neck measured by dual energy X-ray absorptiometry. We also compared MCW and ABR of young men with those of postmenopausal women. There was a significant correlation between ABR and BMD of lumbar and femoral neck. And also significant correlation between MIC and BMD of lumbar and femoral neck. ANOVA test of BMD of lumbar and femoral neck showed significant differences according to morphologic classification of inferior cortex. There was significant difference in MCW and ABR and MIC on panoramic radiograph could be reliable in screening of osteoporosis.

  10. IMRT for Image-Guided Single Vocal Cord Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Osman, Sarah O.S., E-mail: s.osman@erasmusmc.nl [Department of Radiation Oncology, Erasmus Medical Center-Daniel den Hoed Cancer Center, Rotterdam (Netherlands); Astreinidou, Eleftheria; Boer, Hans C.J. de; Keskin-Cambay, Fatma; Breedveld, Sebastiaan; Voet, Peter; Al-Mamgani, Abrahim; Heijmen, Ben J.M.; Levendag, Peter C. [Department of Radiation Oncology, Erasmus Medical Center-Daniel den Hoed Cancer Center, Rotterdam (Netherlands)

    2012-02-01

    Purpose: We have been developing an image-guided single vocal cord irradiation technique to treat patients with stage T1a glottic carcinoma. In the present study, we compared the dose coverage to the affected vocal cord and the dose delivered to the organs at risk using conventional, intensity-modulated radiotherapy (IMRT) coplanar, and IMRT non-coplanar techniques. Methods and Materials: For 10 patients, conventional treatment plans using two laterally opposed wedged 6-MV photon beams were calculated in XiO (Elekta-CMS treatment planning system). An in-house IMRT/beam angle optimization algorithm was used to obtain the coplanar and non-coplanar optimized beam angles. Using these angles, the IMRT plans were generated in Monaco (IMRT treatment planning system, Elekta-CMS) with the implemented Monte Carlo dose calculation algorithm. The organs at risk included the contralateral vocal cord, arytenoids, swallowing muscles, carotid arteries, and spinal cord. The prescription dose was 66 Gy in 33 fractions. Results: For the conventional plans and coplanar and non-coplanar IMRT plans, the population-averaged mean dose {+-} standard deviation to the planning target volume was 67 {+-} 1 Gy. The contralateral vocal cord dose was reduced from 66 {+-} 1 Gy in the conventional plans to 39 {+-} 8 Gy and 36 {+-} 6 Gy in the coplanar and non-coplanar IMRT plans, respectively. IMRT consistently reduced the doses to the other organs at risk. Conclusions: Single vocal cord irradiation with IMRT resulted in good target coverage and provided significant sparing of the critical structures. This has the potential to improve the quality-of-life outcomes after RT and maintain the same local control rates.

  11. IMRT for Image-Guided Single Vocal Cord Irradiation

    International Nuclear Information System (INIS)

    Osman, Sarah O.S.; Astreinidou, Eleftheria; Boer, Hans C.J. de; Keskin-Cambay, Fatma; Breedveld, Sebastiaan; Voet, Peter; Al-Mamgani, Abrahim; Heijmen, Ben J.M.; Levendag, Peter C.

    2012-01-01

    Purpose: We have been developing an image-guided single vocal cord irradiation technique to treat patients with stage T1a glottic carcinoma. In the present study, we compared the dose coverage to the affected vocal cord and the dose delivered to the organs at risk using conventional, intensity-modulated radiotherapy (IMRT) coplanar, and IMRT non-coplanar techniques. Methods and Materials: For 10 patients, conventional treatment plans using two laterally opposed wedged 6-MV photon beams were calculated in XiO (Elekta-CMS treatment planning system). An in-house IMRT/beam angle optimization algorithm was used to obtain the coplanar and non-coplanar optimized beam angles. Using these angles, the IMRT plans were generated in Monaco (IMRT treatment planning system, Elekta-CMS) with the implemented Monte Carlo dose calculation algorithm. The organs at risk included the contralateral vocal cord, arytenoids, swallowing muscles, carotid arteries, and spinal cord. The prescription dose was 66 Gy in 33 fractions. Results: For the conventional plans and coplanar and non-coplanar IMRT plans, the population-averaged mean dose ± standard deviation to the planning target volume was 67 ± 1 Gy. The contralateral vocal cord dose was reduced from 66 ± 1 Gy in the conventional plans to 39 ± 8 Gy and 36 ± 6 Gy in the coplanar and non-coplanar IMRT plans, respectively. IMRT consistently reduced the doses to the other organs at risk. Conclusions: Single vocal cord irradiation with IMRT resulted in good target coverage and provided significant sparing of the critical structures. This has the potential to improve the quality-of-life outcomes after RT and maintain the same local control rates.

  12. Comparison between Two Digital Panoramic Radiography Techniques for Proximal Caries Detection

    Directory of Open Access Journals (Sweden)

    Mina Shafagh Motlagh

    2013-03-01

    Full Text Available Introduction: Although proximal dental caries are very common, clinical examinations cannot detect them all. Panoramic radiography has been widely used in dentistry for both diagnosis and screening. This study aimed to investigate and compare the efficacy of two digital panoramic radiography techniques in the diagnosis of proximal caries. Methods: A total number of 60 patients referred to a dental radiology center, all had complete dental system and bitewing radiographies, were included. The patients were randomly divided into two groups of 30 patients. For the first and second groups, CR and DR images were obtained respectively. Images were obtained from the distal of the third tooth to the distal of the eighth. Bitewing images were compared with CR and DR images regarding the detection of caries. Kappa index and chi-squared statistics were employed to analyze the results. Results: There was a high agreement rate between bitewing images and CR (Kappa=0.775 and DR (Kappa=o.762 images in detecting caries. Also no significant difference was shown between CR and DR techniques in the detection of caries (0.543. However, DR and CR images are not efficient enough to be prescribed as the sole imaging technique to detect proximal caries. Conclusion: DR and CR techniques could be good imaging techniques for the detection of dental caries as a companion to clinical examinations.

  13. The Comparison between Two Different Digital Panoramic Radiography Techniques in the Detection of Proximal Caries

    Directory of Open Access Journals (Sweden)

    Hossein Hoseini Zarch

    2013-03-01

    Full Text Available Introduction: Although proximal dental caries are very common, clinical examinations cannot detect them all. Panoramic radiography has been widely used in dentistry for both diagnosis and screening. This study aimed to investigate and compare the efficacy of two digital panoramic radiography techniques in the diagnosis of proximal caries. Methods: A total number of 60 patients referred to a dental radiology center, all had complete dental system and bitewing radiographies, were included. The patients were randomly divided into two groups of 30 patients. For the first and second groups, CR and DR images were obtained respectively. Images were obtained from the distal of the third tooth to the distal of the eighth. Bitewing images were compared with CR and DR images regarding the detection of caries. Kappa index and chi-squared statistics were employed to analyze the results. Results: There was a high agreement rate between bitewing images and CR (Kappa=0.775 and DR (Kappa=o.762 images in detecting caries. Also no significant difference was shown between CR and DR techniques in the detection of caries (0.543. However, DR and CR images are not efficient enough to be prescribed as the sole imaging technique to detect proximal caries. Conclusion: DR and CR techniques could be good imaging techniques for the detection of dental caries as a companion to clinical examinations

  14. Accuracy of linear measurements using cone beam computed tomography and panoramic radiography in dental implant treatment planning.

    Science.gov (United States)

    Luangchana, Penporn; Pornprasertsuk-Damrongsri, Suchaya; Kiattavorncharoen, Sirichai; Jirajariyavej, Bundhit

    2015-01-01

    The aim of this study was to investigate the accuracy of linear measurements from cone beam computed tomography (CBCT) images and digital panoramic radiographs at various implant sites. Fifty implant sites from six skulls were marked with gutta-percha and subjected to CBCT with five different voxel protocols: 0.125 mm, 0.160 mm, and 0.250 mm with the 3D Accuitomo 170 CBCT machine and 0.200 mm and 0.300 mm with the CS 9500 CBCT machine. Images were also taken with the CS 9000 panoramic machine with three protocols: normal head, chin-up, and chin-down positions. Electronic linear measurement of bone height using the corresponding machine's software was recorded by two observers. Physical measurement using a digital caliper with ± 0.02-mm accuracy was directly recorded at the corresponding regions as the gold standard. All image measurements were compared with the physical measurements. The paired sample correlations for physical measurement, mean difference, standard deviation, absolute error, absolute percentage error, and inter- and intraobserver reliability were calculated. Intraobserver and interobserver reliability was more than 0.99. Paired sample correlation between all image measurements and physical measurements was considered statistically significant at P panoramic radiograph. The absolute error and absolute percentage error in the mandible were less than those in the maxilla, and values obtained with CBCT were less than those from panoramic radiographs. CBCT images using the 3D Accuitomo 170 and CS 9500 machines and digital panoramic radiographs via a picture archiving and communication system are sufficiently accurate for vertical linear measurements in dental implant treatment planning.

  15. A Master-Slave Surveillance System to Acquire Panoramic and Multiscale Videos

    Directory of Open Access Journals (Sweden)

    Yu Liu

    2014-01-01

    Full Text Available This paper describes a master-slave visual surveillance system that uses stationary-dynamic camera assemblies to achieve wide field of view and selective focus of interest. In this system, the fish-eye panoramic camera is capable of monitoring a large area, and the PTZ dome camera has high mobility and zoom ability. In order to achieve the precise interaction, preprocessing spatial calibration between these two cameras is required. This paper introduces a novel calibration approach to automatically calculate a transformation matrix model between two coordinate systems by matching feature points. In addition, a distortion correction method based on Midpoint Circle Algorithm is proposed to handle obvious horizontal distortion in the captured panoramic image. Experimental results using realistic scenes have demonstrated the efficiency and applicability of the system with real-time surveillance.

  16. Prevalence of carotid and pulp calcifications: a correlation using digital panoramic radiographs

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Stephen J. [School of Dentistry, University of Louisville, Department of Periodontics, Endodontics and Dental Hygiene, Louisville, KY (United States); Scheetz, James P.; Khan, Zafrulla [University of Louisville, Department of Diagnostic Sciences, Prosthodontics and Restorative Dentistry, School of Dentistry, Louisville, KY (United States); Farman, Allan G. [School of Dentistry, University of Louisville, Department of Periodontics, Endodontics and Dental Hygiene, Louisville, KY (United States); Horsley, Scott H.; Beckstrom, Brice

    2009-03-15

    To compare the prevalence of pulp calcification with that of carotid calcification using digital panoramic dental radiographs. Digital panoramic radiographs of patients at a dental oncology clinic were included if (1) the carotid artery bifurcation region was visible bilaterally and (2) the patient had non-restored or minimally restored molars and/or canines. An endodontist evaluated the images for pulpal calcifications in the selected teeth. An oral and maxillofacial radiologist independently evaluated the same images for calcifications in the carotid bifurcation region. Odds-ratio and Pearson {chi}{sup 2} were used for data analysis. Presence of pulpal calcification was also evaluated as a screening test for the presence of carotid calcification. A total of 247 panoramic radiographs were evaluated. 32% (n=80) had pulpal calcifications and 25% (n=61) had carotid calcifications with 12% (n=29) having both carotid and pulp calcifications. A significantly higher prevalence of both pulp and carotid calcification was found in subjects older than age 60 years compared to younger age groups. Accuracy of pulpal calcification in screening for carotid calcification was 66.4%. Both pulp and carotid calcifications were more prevalent in older individuals. The presence of pulp calcification was not a strong predictor for the presence of carotid calcification. (orig.)

  17. Bone density relationship of mandible and cervical vertebrae in panoramic radiography

    International Nuclear Information System (INIS)

    Nah, Kyung Soo

    2000-01-01

    Upper cervical vertebrae are commonly imaged together with the jaw bones in panoramic radiography. There have been many studies investigating the possible role of mandible as an indicator of osteoporosis. But the result doesn't show unanimity. This study measured bone densities of mandible and second and third cervical vertebrae to find out any relationship between these two areas. These results may contribute in panorama being used as a screening method in detecting possible osteoporotic patient. Randomly selected 226 digitized panoramic images with cervical vertebrae shadows from 156 dental patients between 5 to 80 years of age were used. And the bone densities of second and third cervical vertebrae, apical areas of first and second mandibular molars and interdental areas were measured. The bone density measurements were restricted to the cancellous bone and the average and standard deviations and paired t-tests were done to each measurements. All the measurements were statistically significantly related. The best relationship was found between the third cervical vertebrae and first and second mandibular apical areas. The average and standard deviations of the measured bone density ratios of these areas were 1.20 ± 0.45 and 1.34 ± 0.48 each. Patients whose panoramic bone density of the third cervical vertebrae are much below those of mandibular first or second molar apical areas may have osteoporosis.

  18. Assessment of maxillary third molars with panoramic radiography and cone-beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yun Hoa; Cho, Bong Hae [Dept.of Oral and Maxillofacial Radiology, School of Dentistry, Pusan National University, Yangsan (Korea, Republic of)

    2015-12-15

    This study investigated maxillary third molars and their relation to the maxillary sinus using panoramic radiography and cone-beam computed tomography (CBCT). A total of 395 maxillary third molars in 234 patients were examined using panoramic radiographs and CBCT images. We examined the eruption level of the maxillary third molars, the available retromolar space, the angulation, the relationship to the second molars, the number of roots, and the relationship between the roots and the sinus. Females had a higher frequency of maxillary third molars with occlusal planes apical to the cervical line of the second molar (Level C) than males. All third molars with insufficient retromolar space were Level C. The most common angulation was vertical, followed by buccoangular. Almost all of the Level C molars were in contact with the roots of the second molar. Erupted teeth most commonly had three roots, and completely impacted teeth most commonly had one root. The superimposition of one third of the root and the sinus floor was most commonly associated with the sinus floor being located on the buccal side of the root. Eruption levels were differently distributed according to gender. A statistically significant association was found between the eruption level and the available retromolar space. When panoramic radiographs showed a superimposition of the roots and the sinus floor, expansion of the sinus to the buccal side of the root was generally observed in CBCT images.

  19. Use of Digital Panoramic Radiographs in the Study of Styloid Process Elongation

    Directory of Open Access Journals (Sweden)

    Carla Cabral dos Santos Accioly Lins

    2015-01-01

    Full Text Available This work aimed to evaluate the occurrence of suggestive images of styloid process elongation in panoramic radiographs, noting their frequency according to sex, age, and location, as well as measure and classify the types and patterns of calcification of elongated styloid processes. 2,500 panoramic radiographs were evaluated in a Radiology Clinic in Recife, PE, Brazil, performed between 2008 and 2010, with the age ranging from 25 to 80 years old. 560 of the radiographs analyzed fulfilled the inclusion criteria. Of this total, 216 (38.57% presented suggestive images of the styloid process elongation, 45 (20.8% belonging to male and 171 (79.2% to female, and 84.7% were bilateral. After all measurements, mean values of 35.5 mm (left side and 37.6 mm (right side were obtained and these differences were statistically significant (p<0.001. The most common type of stretching found was elongated (type I with 73.1%, and the pattern of calcification was partially calcified (62.5%. It was found that the elongation of the styloid process is an anatomical variation, which must be taken into account by dentists, and because panoramic radiography is a technique of easy approach and low cost and routine, it can be used to aid in the diagnosis of elongated styloid process.

  20. Prevalence of carotid and pulp calcifications: a correlation using digital panoramic radiographs

    International Nuclear Information System (INIS)

    Clark, Stephen J.; Scheetz, James P.; Khan, Zafrulla; Farman, Allan G.; Horsley, Scott H.; Beckstrom, Brice

    2009-01-01

    To compare the prevalence of pulp calcification with that of carotid calcification using digital panoramic dental radiographs. Digital panoramic radiographs of patients at a dental oncology clinic were included if (1) the carotid artery bifurcation region was visible bilaterally and (2) the patient had non-restored or minimally restored molars and/or canines. An endodontist evaluated the images for pulpal calcifications in the selected teeth. An oral and maxillofacial radiologist independently evaluated the same images for calcifications in the carotid bifurcation region. Odds-ratio and Pearson χ 2 were used for data analysis. Presence of pulpal calcification was also evaluated as a screening test for the presence of carotid calcification. A total of 247 panoramic radiographs were evaluated. 32% (n=80) had pulpal calcifications and 25% (n=61) had carotid calcifications with 12% (n=29) having both carotid and pulp calcifications. A significantly higher prevalence of both pulp and carotid calcification was found in subjects older than age 60 years compared to younger age groups. Accuracy of pulpal calcification in screening for carotid calcification was 66.4%. Both pulp and carotid calcifications were more prevalent in older individuals. The presence of pulp calcification was not a strong predictor for the presence of carotid calcification. (orig.)

  1. Panoramic study of mandibular basal bone height

    Directory of Open Access Journals (Sweden)

    Raviraj Jayam

    2015-01-01

    Full Text Available Aims and Objectives: To provide information regarding the changes of mandibular basal bone height using panoramic radiography, in relation to age, sex, and the state of dentulousness, which could be utilized in clinical practice, especially in implantology and pre-prosthetic surgery. Materials and Methods: A total of 200 subjects, who were categorized according to age, sex, and state of dentulousness, were subjected to vertical measurements of mandibular basal bone in panoramic radiographs. Two measurements were made, D 1 and D 2 . The distance measured between the lower border of mental foramen to the lower border of the mandible was termed as D 1 . The distance between the lowest point of mandibular canal to the lower border of the mandible was termed as D 2 . These measurements were compared between males/females and dentulous/edentulous, which were further subjected to statistical analysis with Student′s t-test. Results: Males had higher D 1 and D 2 values compared to females and edentulous groups had higher D 1 and D 2 values compared to dentulous subjects. Conclusions: Men have higher values of mandibular basal bone height compared to females and also that there exists some potential for mandibular basal bone to increase in height as the age progresses.

  2. Quality control on dental panoramic radiography units

    OpenAIRE

    Νιώτης, Δημήτριος

    2010-01-01

    Quality control on panoramic radiography units, calculation of effective dose, principles of function of panoramic units, QC protocols, radio-protection issues. Έλεγχος ποιότητας οδοντιατρικών πανοραμικών συστημάτων ακτινογράφησης, υπολογισμός ενεργού δόσης, αρχές λειτουργίας πανοραμικών συστημάτων, πρωτόκολλα ποιοτικού ελέγχου, ζητήματα ακτινοπροστασίας....

  3. Assessment of the visibility and characteristics of the mandibular incisive canal: cone beam computed tomography versus panoramic radiography.

    Science.gov (United States)

    Sahman, Halil; Sekerci, Ahmet Ercan; Sisman, Yildiray; Payveren, Mehtap

    2014-01-01

    The aim of this study was to assess and compare the visibility, diameter, and course of the mandibular incisive canal (MIC) using cone beam computed tomography (CBCT) and panoramic radiography. CBCT images and panoramic radiographs from 243 patients were used in this study. Standard exposure and patient positioning protocols were used for all the patients. Both types of images were assessed by two dentomaxillofacial radiologists. The diameter and the endpoint level of the MIC were measured using the CBCT images. Statistical analysis was performed using t tests in statistical software. Of the 486 hemimandibles examined, the MIC was visible in 249 (51.2%) radiographs and 459 (94.4%) CBCT images. The mean diameters of the MICs were 1.91±0.45 mm on the right side and 1.94±0.41 mm on the left side. The MICs on both the right and left sides of the mandible showed statistically significant differences in diameter in male versus female patients. The visibility of the MIC on the panoramic radiographs according to the increase in the diameter was not statistically significant for both sides. Twenty MICs reached to the midline of the mandible, and the majority of the MICs (n=114) terminated between the canine and the first premolar. The visibility of the MIC in CBCT is much better than that observed in conventional panoramic radiography. Even some large MICs could not be observed in panoramic radiographs. Detection of the MIC using CBCT may be crucial for surgical procedures involving the interforaminal region.

  4. Panoramic measures for oral bone mass in detecting osteoporosis: a systematic review and meta-analysis.

    Science.gov (United States)

    Calciolari, E; Donos, N; Park, J C; Petrie, A; Mardas, N

    2015-03-01

    Different quantitative and qualitative indices calculated on oral panoramic radiographs have been proposed as useful tools to screen for reduced skeletal bone mineral density (BMD). Our aim was to systematically review the literature on linear and qualitative panoramic measures and to assess the accuracy of these indices by performing a meta-analysis of their sensitivity and specificity. The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement was followed. Fifty studies were included in the qualitative appraisal and 19 were considered for meta-analysis. The methodological quality of the retrieved studies, assessed with the QUADAS-2 tool, was on average low. Three indices were reported by most of the studies: mandibular cortical width, panoramic mandibular index, and the Klemetti index. Mandibular cortical width presented with a better accuracy in excluding osteopenia/osteoporosis (specificity), since patients with a cortical width more than 4 mm had a normal BMD in 90% of the cases. Almost all studies used a cutoff of 0.3 for the panoramic mandibular index, resulting in an estimated sensitivity and specificity in detecting reduced BMD, respectively, of 0.723 (SE 0.160; 95% confidence interval [CI], 0.352-0.926) and 0.733 (SE 0.066; 95% CI, 0.587-0.841). The presence of any kind of mandibular cortical erosion gave an estimated sensitivity and specificity in detecting reduced BMD, respectively, of 0.789 (SE 0.031; 95% CI, 0.721-0.843) and 0.562 (SE 0.047; 95% CI, 0.47-0.651) and a sensitivity and specificity in detecting osteoporosis, respectively, of 0.806 (SE 0.105; 95% CI, 0.528-0.9200) and 0.643 (SE 0.109; 95% CI, 0.417-0.820). The mandibular cortical width, panoramic mandibular index, and Klemetti index are overall useful tools that potentially could be used by dentists to screen for low BMD. Their limitations are mainly related to the experience/agreement between different operators and the different image quality and

  5. The relationship between panoramic indices and dental implant failure

    International Nuclear Information System (INIS)

    Cho, Hyun Jung; Yi, Won Jin; Heo, Min Suk; Lee, Jin Koo; Lee, Sam Sun; Choi, Soon Chul; An, Chang Hyeon

    2004-01-01

    Several panoramic indices have been suggested to assess bone quality from the morphology and width of mandibular cortex on panoramic radiography. The purpose of this study was to compare dental implant failure group with control group in panoramic mandibular index (PMI), mandibular cortical index (MCI), and gonion index (GI) and to determine the effect of these panoramic indices on dental implant failure. A case-control study was designed. Test group (n = 42) consisted of the patients who had their implants extracted because of peri-implantitis. Control group (n = 139) consisted of the patients who retained their implants over one year without any pathologic changes and had been followed up periodically. They had dental implants installed in their mandibles without bone augmentation surgery from 1991 to 2001. The following measures were collected for each patients: 1) PMI, MCI, and GI were measured twice at one-week interval on preoperative panoramic views; and 2) age, sex, implant length, implant type, installed location, occluding dentition state, and complication were investigated from the chart record. The PMI showed moderate level of repeatability. The intra-observer agreement of MCI and GI were good. There was statistically significant difference in PMI between two groups. There were significant different patterns of distribution of MCI and GI between two groups. Among the panoramic indices, PMI and MCI showed significant correlation with dental implant failure. Panoramic indices can be used as reference data in estimating bone quality of edentulous patients who are to have implants installed in their mandibles.

  6. Single image super-resolution via an iterative reproducing kernel Hilbert space method.

    Science.gov (United States)

    Deng, Liang-Jian; Guo, Weihong; Huang, Ting-Zhu

    2016-11-01

    Image super-resolution, a process to enhance image resolution, has important applications in satellite imaging, high definition television, medical imaging, etc. Many existing approaches use multiple low-resolution images to recover one high-resolution image. In this paper, we present an iterative scheme to solve single image super-resolution problems. It recovers a high quality high-resolution image from solely one low-resolution image without using a training data set. We solve the problem from image intensity function estimation perspective and assume the image contains smooth and edge components. We model the smooth components of an image using a thin-plate reproducing kernel Hilbert space (RKHS) and the edges using approximated Heaviside functions. The proposed method is applied to image patches, aiming to reduce computation and storage. Visual and quantitative comparisons with some competitive approaches show the effectiveness of the proposed method.

  7. Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images.

    Science.gov (United States)

    Elad, M; Feuer, A

    1997-01-01

    The three main tools in the single image restoration theory are the maximum likelihood (ML) estimator, the maximum a posteriori probability (MAP) estimator, and the set theoretic approach using projection onto convex sets (POCS). This paper utilizes the above known tools to propose a unified methodology toward the more complicated problem of superresolution restoration. In the superresolution restoration problem, an improved resolution image is restored from several geometrically warped, blurred, noisy and downsampled measured images. The superresolution restoration problem is modeled and analyzed from the ML, the MAP, and POCS points of view, yielding a generalization of the known superresolution restoration methods. The proposed restoration approach is general but assumes explicit knowledge of the linear space- and time-variant blur, the (additive Gaussian) noise, the different measured resolutions, and the (smooth) motion characteristics. A hybrid method combining the simplicity of the ML and the incorporation of nonellipsoid constraints is presented, giving improved restoration performance, compared with the ML and the POCS approaches. The hybrid method is shown to converge to the unique optimal solution of a new definition of the optimization problem. Superresolution restoration from motionless measurements is also discussed. Simulations demonstrate the power of the proposed methodology.

  8. A retrospective radiographic evaluation of the anterior loop of the mental nerve: Comparison between panoramic radiography and cone beam computerized tomography

    Science.gov (United States)

    Vujanovic-Eskenazi, Aleksandar; Valero-James, Jesus-Manuel; Sánchez-Garcés, María-Angeles

    2015-01-01

    Objectives: To compare the prevalence and the length of mental loop, measured with panoramic radiography (PR) and cone beam computerized tomography (CBCT). Material and Methods: PG and CBCT images where analyzed by a single calibrated examiner to determine the presence and the position of the mental foramen (MF), its distance to the lower mandible border, the anterior length of the mental loop (ML) and the bone quality in 82 PR and 82 CBCT. Results: ML was identified in 36.6 % of PR and 48.8 % of CBCT. PR showed a magnification of 1.87 when compared to CBCT. The mean of anterior extension of the inferior alveolar nerve and the distance to the inferior border of the mandible was higher for PR (2.8 mm, sd 0.91 mm on the PR , range 1.5 to 4.7 mm and 1.59, sd 0.9 on the CBCT ,range 0.4 to 4.0 mm) Conclusions: There is a magnification in PR images with respect to those of CBCT. The differences between CBCT and PR with regards to the identification and length of the ML are not statistically significant. Identification and accuracy measurements of ML did not depend on the bone quality. Considering that two dimensional imaging provides less accurate and reliable information regarding the anterior loop, a CBCT scan could be recommended when planning implant placement in the anterior region. Key words:Mental loop, mental nerve, mental canal, preoperative implant planning, panoramic tomography, cone beam computerized tomography. PMID:25549693

  9. Comparison of panoramic radiography and cone beam computed tomography for assessing the relationship between the maxillary sinus floor and maxillary molars

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Yun Hoa; Cho, Bong Hae [Department of Oral and Maxillofacial Radiology, College of Dentistry, Pusan National University, Pusan (Korea, Republic of)

    2009-06-15

    This study compared panoramic radiography and cone beam computed tomography (CBCT) for evaluating the relationship between the maxillary sinus floor and the roots of maxillary molars. Paired panoramic radiographs and CBCT images from 97 subjects were analysed. This analysis classified 388 maxillary molars according to their relationship to the maxillary sinus floor on panoramic radiograph and CBCT. Correlations between these two radiographic techniques were examined. Maxillary molar roots that were separate from the sinus floor showed the same classification in 100% of the cases when using these two imaging techniques. The corresponding percentage for such roots that were in contact with the sinus floor was 75%. When roots overlapped the maxillary sinus floor on panoramic radiographs, only 26.4% of maxillary first molars and 60.0% of second molars showed protrusion of roots into the sinus with CBCT. The results of the study suggest that roots projecting into the sinus on panoramic radiographs require a three-dimensional image in order to analyze the proximity of their apex to the sinus floor.

  10. Comparison of panoramic radiography and cone beam computed tomography for assessing the relationship between the maxillary sinus floor and maxillary molars

    International Nuclear Information System (INIS)

    Jun, Yun Hoa; Cho, Bong Hae

    2009-01-01

    This study compared panoramic radiography and cone beam computed tomography (CBCT) for evaluating the relationship between the maxillary sinus floor and the roots of maxillary molars. Paired panoramic radiographs and CBCT images from 97 subjects were analysed. This analysis classified 388 maxillary molars according to their relationship to the maxillary sinus floor on panoramic radiograph and CBCT. Correlations between these two radiographic techniques were examined. Maxillary molar roots that were separate from the sinus floor showed the same classification in 100% of the cases when using these two imaging techniques. The corresponding percentage for such roots that were in contact with the sinus floor was 75%. When roots overlapped the maxillary sinus floor on panoramic radiographs, only 26.4% of maxillary first molars and 60.0% of second molars showed protrusion of roots into the sinus with CBCT. The results of the study suggest that roots projecting into the sinus on panoramic radiographs require a three-dimensional image in order to analyze the proximity of their apex to the sinus floor.

  11. Visibility of the mandibular canal and the mental foramen in panoramic radiography

    International Nuclear Information System (INIS)

    Jeong, Seon Jin; Choi, Eui Hwan; Kim, Jae Duk

    2001-01-01

    To determine the head position that the superior border of the mandibular canal as well as mental foramen can be more clearly visualized in panoramic radiography. Ten dry mandibles were radiography bilaterally using PM 2002 CC panoramic machine. A 20 mm thick aluminium filter was added to the slit collimator to obtain radiographs with acceptable density. The specimens were tilted by 2, 4, 6, 8 and 10 degrees downward with and without radiopaque markers. Radiopaque markers were inserted into the mandibular canals and the mental canals of each side of the specimens to serve as reference image when assessing the radiographs. The obtained results were analyzed statistically. Mandibular canals were significantly more clearly visible in the radiographs with 4 and 6 degree downward position on both sides (P<0.05). Mental foramen were significantly more clearly visible in the was not significant difference between right and left sides. Panoramic radiographs with 4 to 6 degree downward tilting could be valuable in locating the mandibular canal as well as the mental foramen

  12. Tracking and graph-cut based approach for panoramic background construction

    Science.gov (United States)

    Fadaeieslam, Mohammad Javad; Soryani, Mohsen; Fathy, Mahmood

    2013-10-01

    An efficient method is presented for extracting motion behaviors and contours of moving objects in a wide view and for creating panoramic background. In the field of making panorama, the main goal of existing methods is to create a pleasing wide view. For this purpose, such methods do not track moving objects. They attempt to find optimal seams so that the result does not contain cut objects or blurring. Hence, moving objects are removed, repeated, or placed in an arbitrary location in the final panoramic image. We expand panorama applications from artistic views to surveillance usages. To investigate moving object behavior, the proposed method attempts to find correspondences between positions of a moving object in different selected frames by using SIFT features. It also presents a new approach to combine various types of information in order to extract the exact boundary of moving objects in moving cameras. The required information is obtained from the moving object's corresponding areas in other frames. Experiments were arranged to demonstrate the effectiveness and robustness of this method. The results show that this method, which uses fewer frames, is able to create better panoramic background compared with the existing methods.

  13. Computer-aided system for measuring the mandibular cortical width on panoramic radiographs in osteoporosis diagnosis

    Science.gov (United States)

    Arifin, Agus Zainal; Asano, Akira; Taguchi, Akira; Nakamoto, Takashi; Ohtsuka, Masahiko; Tanimoto, Keiji

    2005-04-01

    Osteoporotic fractures are associated with substantial morbidity, increased medical cost and high mortality risk. Several equipments of bone assessment have been developed to identify individuals, especially postmenopausal women, with high risk of osteoporotic fracture; however, a large segment of women with low skeletal bone mineral density (BMD), namely women with high risk of osteoporotic fractures, cannot be identified sufficiently because osteoporosis is asymptomatic. Recent studies have been demonstrating that mandibular inferior cortical width manually measured on panoramic radiographs may be useful for the identification of women with low BMD. Automatic measurement of cortical width may enable us to identify a large number of asymptomatic women with low BMD. The purpose of this study was to develop a computer-aided system for measuring the mandibular cortical width on panoramic radiographs. Initially, oral radiologists determined the region of interest based on the position of mental foramen. Some enhancing image techniques were applied so as to measure the cortical width at the best point. Panoramic radiographs of 100 women who had BMD assessments of the lumbar spine and femoral neck were used to confirm the efficacy of our new system. Cortical width measured with our system was compared with skeletal BMD. There were significant correlation between cortical width measured with our system and skeletal BMD. These correlations were similar with those between cortical width manually measured by the dentist and skeletal BMD. Our results suggest that our new system may be useful for mass screening of osteoporosis.

  14. Visibility of the mandibular canal and the mental foramen in panoramic radiography

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Seon Jin; Choi, Eui Hwan; Kim, Jae Duk [Chosun Univ. School of Dentistry, Gwangju (Korea, Republic of)

    2001-09-15

    To determine the head position that the superior border of the mandibular canal as well as mental foramen can be more clearly visualized in panoramic radiography. Ten dry mandibles were radiography bilaterally using PM 2002 CC panoramic machine. A 20 mm thick aluminium filter was added to the slit collimator to obtain radiographs with acceptable density. The specimens were tilted by 2, 4, 6, 8 and 10 degrees downward with and without radiopaque markers. Radiopaque markers were inserted into the mandibular canals and the mental canals of each side of the specimens to serve as reference image when assessing the radiographs. The obtained results were analyzed statistically. Mandibular canals were significantly more clearly visible in the radiographs with 4 and 6 degree downward position on both sides (P<0.05). Mental foramen were significantly more clearly visible in the was not significant difference between right and left sides. Panoramic radiographs with 4 to 6 degree downward tilting could be valuable in locating the mandibular canal as well as the mental foramen.

  15. Diagnostic accuracy of cone-beam CT in the assessment of mandibular invasion of lower gingival carcinoma: Comparison with conventional panoramic radiography

    Energy Technology Data Exchange (ETDEWEB)

    Momin, Mohammad A. [Oral and Maxillofacial Radiology, Graduate School, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8549 (Japan)], E-mail: momin.orad@tmd.ac.jp; Okochi, Kiyoshi [Oral and Maxillofacial Radiology, Graduate School, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8549 (Japan)], E-mail: kiyoshi.orad@tmd.ac.jp; Watanabe, Hiroshi [Oral and Maxillofacial Radiology, Graduate School, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8549 (Japan)], E-mail: hiro.orad@tmd.ac.jp; Imaizumi, Akiko [Oral and Maxillofacial Radiology, Graduate School, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8549 (Japan)], E-mail: ima.orad@tmd.ac.jp; Omura, Ken [Oral Surgery, Graduate School, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8549 (Japan)], E-mail: omura.osur@tmd.ac.jp; Amagasa, Teruo [Maxillofacial Surgery, Graduate School, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8549 (Japan)], E-mail: t-amagasa.mfs@tmd.ac.jp; Okada, Norihiko [Diagnostic Oral Pathology, Graduate School, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8549 (Japan)], E-mail: nokd.opth@tmd.ac.jp; Ohbayashi, Naoto [Oral and Maxillofacial Radiology, Graduate School, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8549 (Japan)], E-mail: nao.orad@tmd.ac.jp; Kurabayashi, Tohru [Oral and Maxillofacial Radiology, Graduate School, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8549 (Japan)], E-mail: kura.orad@tmd.ac.jp

    2009-10-15

    Purpose: To evaluate the diagnostic accuracy of cone-beam CT in assessing mandibular invasion by lower gingival carcinoma and compare it with that of panoramic radiography. Patients and methods: Fifty patients with squamous cell carcinoma of the lower gingiva who were examined by both panoramic radiography and cone-beam CT before surgery were included in this study. Five radiologists used a 6-point rating scale to independently evaluate cone-beam CT and panoramic images for the presence or absence of alveolar bone and mandibular canal involvement by tumor. Using the histopathogical findings as the gold standard, we calculated and compared the area under the receiver operating characteristic curve (Az value) and the sensitivity and specificity of the two imaging modalities. Results: In evaluations of both alveolar bone and mandibular canal involvement, the mean Az value for cone-beam CT (0.918 and 0.977, respectively) was significantly higher than that for panoramic radiography (0.793 and 0.872, respectively). The mean sensitivity for cone-beam CT (89% and 99%, respectively) was significantly higher than that for panoramic radiography (73% and 56%, respectively). There was no significant difference in the mean specificity. While cone-beam CT could provide high-resolution three-dimensional images, the image quality around the alveolar crest was often hampered by severe dental artifacts and image noise, resulting in difficulties in detecting subtle alveolar invasion. Conclusion: Cone-beam CT was significantly superior to panoramic radiography in evaluating mandibular invasion by lower gingival carcinoma. Its diagnostic value in detecting subtle alveolar invasion, however, may be limited by severe dental artifacts and image noise.

  16. Diagnostic accuracy of cone-beam CT in the assessment of mandibular invasion of lower gingival carcinoma: comparison with conventional panoramic radiography.

    Science.gov (United States)

    Momin, Mohammad A; Okochi, Kiyoshi; Watanabe, Hiroshi; Imaizumi, Akiko; Omura, Ken; Amagasa, Teruo; Okada, Norihiko; Ohbayashi, Naoto; Kurabayashi, Tohru

    2009-10-01

    To evaluate the diagnostic accuracy of cone-beam CT in assessing mandibular invasion by lower gingival carcinoma and compare it with that of panoramic radiography. Fifty patients with squamous cell carcinoma of the lower gingiva who were examined by both panoramic radiography and cone-beam CT before surgery were included in this study. Five radiologists used a 6-point rating scale to independently evaluate cone-beam CT and panoramic images for the presence or absence of alveolar bone and mandibular canal involvement by tumor. Using the histopathogical findings as the gold standard, we calculated and compared the area under the receiver operating characteristic curve (Az value) and the sensitivity and specificity of the two imaging modalities. In evaluations of both alveolar bone and mandibular canal involvement, the mean Az value for cone-beam CT (0.918 and 0.977, respectively) was significantly higher than that for panoramic radiography (0.793 and 0.872, respectively). The mean sensitivity for cone-beam CT (89% and 99%, respectively) was significantly higher than that for panoramic radiography (73% and 56%, respectively). There was no significant difference in the mean specificity. While cone-beam CT could provide high-resolution three-dimensional images, the image quality around the alveolar crest was often hampered by severe dental artifacts and image noise, resulting in difficulties in detecting subtle alveolar invasion. Cone-beam CT was significantly superior to panoramic radiography in evaluating mandibular invasion by lower gingival carcinoma. Its diagnostic value in detecting subtle alveolar invasion, however, may be limited by severe dental artifacts and image noise.

  17. Diagnostic accuracy of cone-beam CT in the assessment of mandibular invasion of lower gingival carcinoma: Comparison with conventional panoramic radiography

    International Nuclear Information System (INIS)

    Momin, Mohammad A.; Okochi, Kiyoshi; Watanabe, Hiroshi; Imaizumi, Akiko; Omura, Ken; Amagasa, Teruo; Okada, Norihiko; Ohbayashi, Naoto; Kurabayashi, Tohru

    2009-01-01

    Purpose: To evaluate the diagnostic accuracy of cone-beam CT in assessing mandibular invasion by lower gingival carcinoma and compare it with that of panoramic radiography. Patients and methods: Fifty patients with squamous cell carcinoma of the lower gingiva who were examined by both panoramic radiography and cone-beam CT before surgery were included in this study. Five radiologists used a 6-point rating scale to independently evaluate cone-beam CT and panoramic images for the presence or absence of alveolar bone and mandibular canal involvement by tumor. Using the histopathogical findings as the gold standard, we calculated and compared the area under the receiver operating characteristic curve (Az value) and the sensitivity and specificity of the two imaging modalities. Results: In evaluations of both alveolar bone and mandibular canal involvement, the mean Az value for cone-beam CT (0.918 and 0.977, respectively) was significantly higher than that for panoramic radiography (0.793 and 0.872, respectively). The mean sensitivity for cone-beam CT (89% and 99%, respectively) was significantly higher than that for panoramic radiography (73% and 56%, respectively). There was no significant difference in the mean specificity. While cone-beam CT could provide high-resolution three-dimensional images, the image quality around the alveolar crest was often hampered by severe dental artifacts and image noise, resulting in difficulties in detecting subtle alveolar invasion. Conclusion: Cone-beam CT was significantly superior to panoramic radiography in evaluating mandibular invasion by lower gingival carcinoma. Its diagnostic value in detecting subtle alveolar invasion, however, may be limited by severe dental artifacts and image noise.

  18. Readout-Segmented Echo-Planar Imaging in Diffusion-Weighted MR Imaging in Breast Cancer: Comparison with Single-Shot Echo-Planar Imaging in Image Quality

    International Nuclear Information System (INIS)

    Kim, Yun Ju; Kim, Sung Hun; Kang, Bong Joo; Park, Chang Suk; Kim, Hyeon Sook; Son, Yo Han; Porter, David Andrew; Song, Byung Joo

    2014-01-01

    The purpose of this study was to compare the image quality of standard single-shot echo-planar imaging (ss-EPI) and that of readout-segmented EPI (rs-EPI) in patients with breast cancer. Seventy-one patients with 74 breast cancers underwent both ss-EPI and rs-EPI. For qualitative comparison of image quality, three readers independently assessed the two sets of diffusion-weighted (DW) images. To evaluate geometric distortion, a comparison was made between lesion lengths derived from contrast enhanced MR (CE-MR) images and those obtained from the corresponding DW images. For assessment of image parameters, signal-to-noise ratio (SNR), lesion contrast, and contrast-to-noise ratio (CNR) were calculated. The rs-EPI was superior to ss-EPI in most criteria regarding the qualitative image quality. Anatomical structure distinction, delineation of the lesion, ghosting artifact, and overall image quality were significantly better in rs-EPI. Regarding the geometric distortion, lesion length on ss-EPI was significantly different from that of CE-MR, whereas there were no significant differences between CE-MR and rs-EPI. The rs-EPI was superior to ss-EPI in SNR and CNR. Readout-segmented EPI is superior to ss-EPI in the aspect of image quality in DW MR imaging of the breast

  19. Imaging by the SSFSE single slice method at different viscosities of bile

    International Nuclear Information System (INIS)

    Kubo, Hiroya; Usui, Motoki; Fukunaga, Kenichi; Yamamoto, Naruto; Ikegami, Toshimi

    2001-01-01

    The single shot fast spin echo single thick slice method (single slice method) is a technique that visualizes the water component alone using a heavy T 2 . However, this method is considered to be markedly affected by changes in the viscosity of the material because a very long TE is used, and changes in the T 2 value, which are related to viscosity, directly affect imaging. In this study, we evaluated the relationship between the effects of TE and the T 2 value of bile in the single slice method and also examined the relationship between the signal intensity of bile on T 1 - and T 2 -weighted images and imaging by MR cholangiography (MRC). It was difficult to image bile with high viscosities at a usual effective TE level of 700-1,500 ms. With regard to the relationship between the signal intensity of bile and MRC imaging, all T 2 values of the bile samples showing relatively high signal intensities on the T 1 -weighted images suggested high viscosities, and MRC imaging of these bile samples was poor. In conclusion, MRC imaging of bile with high viscosities was poor with the single slice method. Imaging by the single slice method alone of bile showing a relatively high signal intensity on T 1 -weighted images should be avoided, and combination with other MRC sequences should be used. (author)

  20. Industrial-scale separation of high-purity single-chirality single-wall carbon nanotubes for biological imaging

    Science.gov (United States)

    Yomogida, Yohei; Tanaka, Takeshi; Zhang, Minfang; Yudasaka, Masako; Wei, Xiaojun; Kataura, Hiromichi

    2016-06-01

    Single-chirality, single-wall carbon nanotubes are desired due to their inherent physical properties and performance characteristics. Here, we demonstrate a chromatographic separation method based on a newly discovered chirality-selective affinity between carbon nanotubes and a gel containing a mixture of the surfactants. In this system, two different selectivities are found: chiral-angle selectivity and diameter selectivity. Since the chirality of nanotubes is determined by the chiral angle and diameter, combining these independent selectivities leads to high-resolution single-chirality separation with milligram-scale throughput and high purity. Furthermore, we present efficient vascular imaging of mice using separated single-chirality (9,4) nanotubes. Due to efficient absorption and emission, blood vessels can be recognized even with the use of ~100-fold lower injected dose than the reported value for pristine nanotubes. Thus, 1 day of separation provides material for up to 15,000 imaging experiments, which is acceptable for industrial use.

  1. Detection of Fusarium in single wheat kernels using spectral Imaging

    NARCIS (Netherlands)

    Polder, G.; Heijden, van der G.W.A.M.; Waalwijk, C.; Young, I.T.

    2005-01-01

    Fusarium head blight (FHB) is a harmful fungal disease that occurs in small grains. Non-destructive detection of this disease is traditionally done using spectroscopy or image processing. In this paper the combination of these two in the form of spectral imaging is evaluated. Transmission spectral

  2. High Resolution Bathymetry Estimation Improvement with Single Image Super-Resolution Algorithm Super-Resolution Forests

    Science.gov (United States)

    2017-01-26

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/5514--17-9692 High Resolution Bathymetry Estimation Improvement with Single Image Super... Single Image Super-Resolution Algorithm “Super-Resolution Forests” Dylan Einsidler,* Kristen Nock, Leslie Smith, David Bonanno, Paul Elmore, Warren Wood...release; distribution is unlimited. *Florida Atlantic University, 777 Glades Rd., Boca Raton, FL 33431 11 Leslie N. Smith (202) 767-9532 Using the single

  3. Vertical Impact Tests of the Panoramic Night Vision Goggle

    National Research Council Canada - National Science Library

    Perry, Chris

    1998-01-01

    ...) subjected to simulated catapult dynamics while wearing the Panoramic Night Vision Goggle (PNVG). A series of vertical impacts were conducted with the PNVG using the AFRL/HEPA Vertical Deceleration Tower...

  4. Diagnostic ability of panoramic radiography for mandibular fractures

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Hyun; Jung, Yun Hoa; Cho Bong Hae; Hwang, Dae Seok [School of Dentistry, Pusan National University, Pusan (Korea, Republic of)

    2010-03-15

    The purpose of this study was to evaluate the diagnostic efficacy of panoramic radiographs for detection of mandibular fractures. The sample was comprised of 65 patients (55 fractured, 10 non-fractured) with 92 fracture sites confirmed by multi-detector computed tomography (CT). Panoramic radiographs were evaluated for mandibular fractures by six examiners; two oral and maxillofacial radiologists (observer A and B), two oral and maxillofacial surgeons (observer C and D), and two general dentists (observer E and F). Sensitivity of panoramic radiography for mandibular fractures was 95.7% in observer A and B, 93.5% in observer C and D and 80.4% in observer E and F. The lowest sensitivity was shown in symphyseal/parasymphyseal areas, followed by subcondylar/condylar regions. Panoramic radiography is adequate for detection of mandibular fractures. However, additional multidetector CT is recommended to ascertain some indecisive fractures of symphysis and condyle, and in complicated fractures.

  5. Diagnostic ability of panoramic radiography for mandibular fractures

    International Nuclear Information System (INIS)

    Lee, Ji Hyun; Jung, Yun Hoa; Cho Bong Hae; Hwang, Dae Seok

    2010-01-01

    The purpose of this study was to evaluate the diagnostic efficacy of panoramic radiographs for detection of mandibular fractures. The sample was comprised of 65 patients (55 fractured, 10 non-fractured) with 92 fracture sites confirmed by multi-detector computed tomography (CT). Panoramic radiographs were evaluated for mandibular fractures by six examiners; two oral and maxillofacial radiologists (observer A and B), two oral and maxillofacial surgeons (observer C and D), and two general dentists (observer E and F). Sensitivity of panoramic radiography for mandibular fractures was 95.7% in observer A and B, 93.5% in observer C and D and 80.4% in observer E and F. The lowest sensitivity was shown in symphyseal/parasymphyseal areas, followed by subcondylar/condylar regions. Panoramic radiography is adequate for detection of mandibular fractures. However, additional multidetector CT is recommended to ascertain some indecisive fractures of symphysis and condyle, and in complicated fractures.

  6. High-yield criteria for panoramic radiography. Final report

    International Nuclear Information System (INIS)

    White, S.C.; Forsythe, A.B.

    1982-06-01

    Panoramic radiographs should be obtained when the examination offers the prospect of providing information that will assist in patient care. The purpose of this study was to determine whether high-yield criteria could be developed for the use of panoramic radiographs in the treatment planning of patients seeking dental care. Clinicians were asked what signs or symptoms caused them to order a panoramic radiograph upon patient admission into the UCLA Dental Clinic. At the time the patient was radiographed, a variety of demographic and clinical measures were recorded. The most important high-yield criterion for the panoramic examination is whether the radiograph is ordered for 'general screening examination' (a negative predictor) and whether the radiograph was ordered for any specific examination (a positive predictor). The use of these (or any other) decision rules required clinical judgment of the costs (social and economic) of a missed positive finding relative to that of an unproductive examination

  7. Panoramic radiographic findings as predictors of mandibular nerve exposure following third molar extraction: digital versus conventional radiographic techniques.

    Science.gov (United States)

    Bundy, Michael James; Cavola, Cameron Frank; Dodson, Thomas B

    2009-03-01

    The aim was to compare digital and conventional panoramic imaging techniques for identifying high-risk radiographic markers associated with mandibular nerve (MN) injury after mandibular third molar (M3) removal. The study used a retrospective cohort model. The predictor variable was the presence or absence of radiographic signs associated with MN exposure during M3 removal. The outcome variable was MN exposure. Intraexaminer variability was estimated using a kappa statistic. Logistic regression modeling was used to measure the association between radiographic signs and MN exposure and determine if imaging technique modified that association. The level of statistical significance was set at P exposure (P technique was a statistically insignificant effect modifying variable (P = .4). The results of this study suggest that imaging technique does not modify the relationship between high-risk panoramic radiographic signs and MN exposure.

  8. Dosimetry in dental radiology. Dentascan spiral CT versus panoramic radiography

    International Nuclear Information System (INIS)

    Villari, N.; Stecco, A.; Zatelli, G.

    1999-01-01

    The study compares the doses absorbed by the dentomaxillary area in spiral CT and panoramic examinations. The dose measurements demonstrate that patients receive smaller doses with panoramic radiography than with spiral CT with Dentascan. After following for some variations from instrumental differences, they are in substantial agreement with literature data. Further investigations are needed considering the radiobiological risk related to the growing spread of Dentascan examinations [it

  9. Leaded apron for use in panoramic dental radiography

    International Nuclear Information System (INIS)

    Whitcher, B.L.; Gratt, B.M.; Sickles, E.A.

    1980-01-01

    The leaded aprons currently available for use during dental radiography do not protect the thyroid gland from radiation. Conventional aprons may produce artifacts when used with panoramic dental x-ray units. This study measures the dose reduction obtained with an experimental leaded apron designed for use with panoramic dental x-ray units. Skin exposures measured at the thyroid and at the sternum were reduced with the use of the apron. Films produced during the study were free from apron artifacts

  10. SINGLE FRAME SUPER RESOLUTION OF NONCOOPERATIVE IRIS IMAGES

    Directory of Open Access Journals (Sweden)

    Anand Deshpande

    2016-11-01

    Full Text Available Image super-resolution, a process to enhance image resolution, has important applications in biometrics, satellite imaging, high definition television, medical imaging, etc. The long range captured iris identification systems often suffer from low resolution and meager focus of the captured iris images. These degrade the iris recognition performance. This paper proposes enhanced iterated back projection (EIBP method to super resolute the long range captured iris polar images. The performance of proposed method is tested and analyzed on CASIA long range iris database by comparing peak signal to noise ratio (PSNR and structural similarity index (SSIM with state-of-the-art super resolution (SR algorithms. It is further analyzed by increasing the up-sampling factor. Performance analysis shows that the proposed method is superior to state-of-the-art algorithms, the peak signal-to-noise ratio improved about 0.1-1.5 dB. The results demonstrate that the proposed method is well suited to super resolve the iris polar images captured at a long distance

  11. A comparison of Scanora radiography with Waters' and panoramic views for the detection of mucosal thickening of maxillary sinus

    International Nuclear Information System (INIS)

    Yoon, Suk Ja; Jung, Hyun Dae; Kang, Byung Chul

    1995-01-01

    The purpose of this study was to compare the diagnostic performance of Waters' and panoramic view; maxillary sinus posteroanterior and lateral scanography of Scanora for mucosal thickening of maxillary sinus as well as to identify the utility of Scanora for the detection of maxillary sinus disease. The assessment was done at 66 maxillary sinuses in 45 patients and the results were as follows: 1. Estimation of presence or absence of mucosal thickening. The sensitivity, specificity, and positive and negative predictive value of maxillary sinus posteroanterior and lateral scanography were 0.865, 0.860, 0.921, and 0.805 respectively and slightly higher than those of Waters' and panoramic views, which were 0.832, 0.835, 0.903, and 0.728 respectively. However, paired t-test showed no significant differences in the diagnostic performance of the two pairs of imaging modalities. 2. Estimation of the types of mucosal thickening. The diagnostic accuracy for type I, II, III was 75.3% on Waters' and panoramic view; 77.9% on maxillary sinus posteroanterior and lateral scanography. It was higher on the latter, but showed no significant differences from that on the former. 3. Reliability of interpretation. In intraobserver and interobserver agreement, both overall rates of agreement and kappa-value were slightly higher on maxillary sinus posteroanterior and lateral scanography than on Waters' and panoramic views. There was no significant differences between the two pairs of imaging modalities. These results suggested that scanogram is a useful diagnostic radiography as well as Waters' and panoramic view for detection of maxillary sinusitis.

  12. Establishment of diagnostic reference levels for dental panoramic radiography in Greece.

    Science.gov (United States)

    Manousaridis, G; Koukorava, C; Hourdakis, C J; Kamenopoulou, V; Yakoumakis, E; Tsiklakis, K

    2015-07-01

    The purpose of the present study was to present the national diagnostic reference levels (DRL) established for panoramic dental examinations in Greece. The establishment of DRL, as a tool for the optimisation of radiological procedures, is a requirement of national regulations. Measurements performed by the Greek Atomic Energy Commission on 90 panoramic systems have been used for the derivation of DRL values. DRL values have been proposed for exposure settings of different patient types (child, small adult and standard adult), both for film and digital imaging. The DRLs for different patient types are grouped in three categories: children, small adults (corresponding to female) and average adults (corresponding to male). Proposed DRLs for these groups are 2.2, 3.3 and 4.1 mGy, respectively. In order to investigate the correlation of DRLs with the available imaging modalities (CR, DR and film), this parameter was taken into account. DR imaging DRL is the lowest at 3.5 mGy, CR imaging the highest at 4.2 mGy and film imaging at 3.7 mGy. In order to facilitate comparison with other studies, kerma-width product values were calculated from Ki, air and field size. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Establishment of diagnostic reference levels for dental panoramic radiography in Greece

    International Nuclear Information System (INIS)

    Manousaridis, G.; Koukorava, C.; Hourdakis, C.J.; Kamenopoulou, V.; Yakoumakis, E.; Tsiklakis, K.

    2015-01-01

    The purpose of the present study was to present the national diagnostic reference levels (DRL) established for panoramic dental examinations in Greece. The establishment of DRL, as a tool for the optimisation of radiological procedures, is a requirement of national regulations. Measurements performed by the Greek Atomic Energy Commission on 90 panoramic systems have been used for the derivation of DRL values. DRL values have been proposed for exposure settings of different patient types (child, small adult and standard adult), both for film and digital imaging. The DRLs for different patient types are grouped in three categories: children, small adults (corresponding to female) and average adults (corresponding to male). Proposed DRLs for these groups are 2.2, 3.3 and 4.1 mGy, respectively. In order to investigate the correlation of DRLs with the available imaging modalities (CR, DR and film), this parameter was taken into account. DR imaging DRL is the lowest at 3.5 mGy, CR imaging the highest at 4.2 mGy and film imaging at 3.7 mGy. In order to facilitate comparison with other studies, kerma-width product values were calculated from K i , air and field size. (authors)

  14. Three-Dimensional Localization of Single Molecules for Super-Resolution Imaging and Single-Particle Tracking.

    Science.gov (United States)

    von Diezmann, Alex; Shechtman, Yoav; Moerner, W E

    2017-06-14

    Single-molecule super-resolution fluorescence microscopy and single-particle tracking are two imaging modalities that illuminate the properties of cells and materials on spatial scales down to tens of nanometers or with dynamical information about nanoscale particle motion in the millisecond range, respectively. These methods generally use wide-field microscopes and two-dimensional camera detectors to localize molecules to much higher precision than the diffraction limit. Given the limited total photons available from each single-molecule label, both modalities require careful mathematical analysis and image processing. Much more information can be obtained about the system under study by extending to three-dimensional (3D) single-molecule localization: without this capability, visualization of structures or motions extending in the axial direction can easily be missed or confused, compromising scientific understanding. A variety of methods for obtaining both 3D super-resolution images and 3D tracking information have been devised, each with their own strengths and weaknesses. These include imaging of multiple focal planes, point-spread-function engineering, and interferometric detection. These methods may be compared based on their ability to provide accurate and precise position information on single-molecule emitters with limited photons. To successfully apply and further develop these methods, it is essential to consider many practical concerns, including the effects of optical aberrations, field dependence in the imaging system, fluorophore labeling density, and registration between different color channels. Selected examples of 3D super-resolution imaging and tracking are described for illustration from a variety of biological contexts and with a variety of methods, demonstrating the power of 3D localization for understanding complex systems.

  15. Demonstration of Single-Barium-Ion Sensitivity for Neutrinoless Double-Beta Decay Using Single-Molecule Fluorescence Imaging

    Science.gov (United States)

    McDonald, A. D.; Jones, B. J. P.; Nygren, D. R.; Adams, C.; Álvarez, V.; Azevedo, C. D. R.; Benlloch-Rodríguez, J. M.; Borges, F. I. G. M.; Botas, A.; Cárcel, S.; Carrión, J. V.; Cebrián, S.; Conde, C. A. N.; Díaz, J.; Diesburg, M.; Escada, J.; Esteve, R.; Felkai, R.; Fernandes, L. M. P.; Ferrario, P.; Ferreira, A. L.; Freitas, E. D. C.; Goldschmidt, A.; Gómez-Cadenas, J. J.; González-Díaz, D.; Gutiérrez, R. M.; Guenette, R.; Hafidi, K.; Hauptman, J.; Henriques, C. A. O.; Hernandez, A. I.; Hernando Morata, J. A.; Herrero, V.; Johnston, S.; Labarga, L.; Laing, A.; Lebrun, P.; Liubarsky, I.; López-March, N.; Losada, M.; Martín-Albo, J.; Martínez-Lema, G.; Martínez, A.; Monrabal, F.; Monteiro, C. M. B.; Mora, F. J.; Moutinho, L. M.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Para, A.; Pérez, J.; Querol, M.; Repond, J.; Renner, J.; Riordan, S.; Ripoll, L.; Rodríguez, J.; Rogers, L.; Santos, F. P.; dos Santos, J. M. F.; Simón, A.; Sofka, C.; Sorel, M.; Stiegler, T.; Toledo, J. F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Webb, R.; White, J. T.; Yahlali, N.; NEXT Collaboration

    2018-03-01

    A new method to tag the barium daughter in the double-beta decay of Xe 136 is reported. Using the technique of single molecule fluorescent imaging (SMFI), individual barium dication (Ba++ ) resolution at a transparent scanning surface is demonstrated. A single-step photobleach confirms the single ion interpretation. Individual ions are localized with superresolution (˜2 nm ), and detected with a statistical significance of 12.9 σ over backgrounds. This lays the foundation for a new and potentially background-free neutrinoless double-beta decay technology, based on SMFI coupled to high pressure xenon gas time projection chambers.

  16. Demonstration of Single-Barium-Ion Sensitivity for Neutrinoless Double-Beta Decay Using Single-Molecule Fluorescence Imaging

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, A. D.; Jones, B. J. P.; Nygren, D. R.; Adams, C.; Álvarez, V.; Azevedo, C. D. R.; Benlloch-Rodríguez, J. M.; Borges, F. I. G. M.; Botas, A.; Cárcel, S.; Carrión, J. V.; Cebrián, S.; Conde, C. A. N.; Díaz, J.; Diesburg, M.; Escada, J.; Esteve, R.; Felkai, R.; Fernandes, L. M. P.; Ferrario, P.; Ferreira, A. L.; Freitas, E. D. C.; Goldschmidt, A.; Gómez-Cadenas, J. J.; González-Díaz, D.; Gutiérrez, R. M.; Guenette, R.; Hafidi, K.; Hauptman, J.; Henriques, C. A. O.; Hernandez, A. I.; Hernando Morata, J. A.; Herrero, V.; Johnston, S.; Labarga, L.; Laing, A.; Lebrun, P.; Liubarsky, I.; López-March, N.; Losada, M.; Martín-Albo, J.; Martínez-Lema, G.; Martínez, A.; Monrabal, F.; Monteiro, C. M. B.; Mora, F. J.; Moutinho, L. M.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Para, A.; Pérez, J.; Querol, M.; Repond, J.; Renner, J.; Riordan, S.; Ripoll, L.; Rodríguez, J.; Rogers, L.; Santos, F. P.; dos Santos, J. M. F.; Simón, A.; Sofka, C.; Sorel, M.; Stiegler, T.; Toledo, J. F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Webb, R.; White, J. T.; Yahlali, N.

    2018-03-01

    A new method to tag the barium daughter in the double beta decay of $^{136}$Xe is reported. Using the technique of single molecule fluorescent imaging (SMFI), individual barium dication (Ba$^{++}$) resolution at a transparent scanning surface has been demonstrated. A single-step photo-bleach confirms the single ion interpretation. Individual ions are localized with super-resolution ($\\sim$2~nm), and detected with a statistical significance of 12.9~$\\sigma$ over backgrounds. This lays the foundation for a new and potentially background-free neutrinoless double beta decay technology, based on SMFI coupled to high pressure xenon gas time projection chambers.

  17. Accuracy of digital panoramic regarding interproximal caries detection

    Directory of Open Access Journals (Sweden)

    Goodarzi Pour D

    2011-02-01

    Full Text Available "nBackground and Aims: Conventional radiological equipments in our country are going to be converted to digital system using computed radiology (CR technology. If we know the accuracy of digital panoramic radiography for detection of small defects in tooth, it will be useful in cases with difficulty for taking the intraoral radiographs. The aim of this study was to evaluate sensitivity and specificity of digital panoramic radiography for detection of proximal caries compared with the bitewing radiography."nMaterials and Methods: One-hundred patients who had been ordered for taking both bitewing and panoramic radiography were included in this study. Panoramic and then bitewing radiographs were observed by a maxillofacial radiologist and interproximal caries were recorded. Sensitivity and specificity of digital panoramic radiography (CI=95% was calculated compared with the bitewing radiography as a gold standard."nResults: This study showed that the values for sensitivity and specificity were 62.7% (CI 95%=57.7%-67.5% and 91.0% (CI 95%=89.2%-92.5%, respectively."nConclusion: Sensitivity of digital panoramic is less than bitewing radiography even with processing before printing. Therefore, bitewing radiography is superior for detection of inter proximal caries.

  18. External root resorption of the second molar associated with third molar impaction: comparison of panoramic radiography and cone beam computed tomography.

    Science.gov (United States)

    Oenning, Anne Caroline Costa; Neves, Frederico Sampaio; Alencar, Phillipe Nogueira Barbosa; Prado, Rodrigo Freire; Groppo, Francisco Carlos; Haiter-Neto, Francisco

    2014-08-01

    The aim of the present study was to compare panoramic radiography and cone beam computed tomography (CBCT) for the assessment of external root resorption (ERR) of second molars associated with impacted third molars. In addition, the prevalence of ERR in second molars and the inclinations of the third molars more associated with ERR were investigated in both imaging methods. The sample consisted of 66 individuals with maxillary and mandibular impacted third molars (n = 188) seen on panoramic radiographs and CBCT images. The presence of ERR on the adjacent second molar was investigated, and the position of the third molar was determined using Winter's classification (vertical, horizontal, mesioangular, distoangular, and transverse). Statistical analysis was performed using the χ(2) test, Fisher exact test, and 2-proportion Z test (the significance level was set at 5%). A significantly greater number of cases of ERR (P panoramic radiographs (n = 10, 5.31%). The agreement between the panoramic radiographs and CBCT scans for diagnosing ERR was 4.3%. Mandibular third molars in mesioangular and horizontal inclinations were more likely to cause resorption of the adjacent teeth. CBCT should be indicated for the diagnosis of ERR in second molars when direct contact between the mandibular second and third molars has been observed on panoramic radiographs, especially in mesioangular or horizontal impactions. Furthermore, considering the propensity of these teeth to cause ERR in second molars, third molar prophylactic extraction could be suggested. Copyright © 2014 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  19. Using Google Streetview Panoramic Imagery for Geoscience Education

    Science.gov (United States)

    De Paor, D. G.; Dordevic, M. M.

    2014-12-01

    Google Streetview is a feature of Google Maps and Google Earth that allows viewers to switch from map or satellite view to 360° panoramic imagery recorded close to the ground. Most panoramas are recorded by Google engineers using special cameras mounted on the roofs of cars. Bicycles, snowmobiles, and boats have also been used and sometimes the camera has been mounted on a backpack for off-road use by hikers and skiers or attached to scuba-diving gear for "Underwater Streetview (sic)." Streetview panoramas are linked together so that the viewer can change viewpoint by clicking forward and reverse buttons. They therefore create a 4-D touring effect. As part of the GEODE project ("Google Earth for Onsite and Distance Education"), we are experimenting with the use of Streetview imagery for geoscience education. Our web-based test application allows instructors to select locations for students to study. Students are presented with a set of questions or tasks that they must address by studying the panoramic imagery. Questions include identification of rock types, structures such as faults, and general geological setting. The student view is locked into Streetview mode until they submit their answers, whereupon the map and satellite views become available, allowing students to zoom out and verify their location on Earth. Student learning is scaffolded by automatic computerized feedback. There are lots of existing Streetview panoramas with rich geological content. Additionally, instructors and members of the general public can create panoramas, including 360° Photo Spheres, by stitching images taken with their mobiles devices and submitting them to Google for evaluation and hosting. A multi-thousand-dollar, multi-directional camera and mount can be purchased from DIY-streetview.com. This allows power users to generate their own high-resolution panoramas. A cheaper, 360° video camera is soon to be released according to geonaute.com. Thus there are opportunities for

  20. Two-color monochromatic x-ray imaging with a single short-pulse laser

    Science.gov (United States)

    Sawada, H.; Daykin, T.; McLean, H. S.; Chen, H.; Patel, P. K.; Ping, Y.; Pérez, F.

    2017-06-01

    Simultaneous monochromatic crystal imaging at 4.5 and 8.0 keV with x-rays produced by a single short-pulse laser is presented. A layered target consisting of thin foils of titanium and copper glued together is irradiated by the 50 TW Leopard short-pulse laser housed at the Nevada Terawatt Facility. Laser-accelerated MeV fast electrons transmitting through the target induce Kα fluorescence from both foils. Two energy-selective curved crystals in the imaging diagnostic form separate monochromatic images on a single imaging detector. The experiment demonstrates simultaneous two-color monochromatic imaging of the foils on a single detector as well as Kα x-ray production at two different photon energies with a single laser beam. Application of the diagnostic technique to x-ray radiography of a high density plasma is also presented.

  1. Single-photon compressive imaging with some performance benefits over raster scanning

    International Nuclear Information System (INIS)

    Yu, Wen-Kai; Liu, Xue-Feng; Yao, Xu-Ri; Wang, Chao; Zhai, Guang-Jie; Zhao, Qing

    2014-01-01

    A single-photon imaging system based on compressed sensing has been developed to image objects under ultra-low illumination. With this system, we have successfully realized imaging at the single-photon level with a single-pixel avalanche photodiode without point-by-point raster scanning. From analysis of the signal-to-noise ratio in the measurement we find that our system has much higher sensitivity than conventional ones based on point-by-point raster scanning, while the measurement time is also reduced. - Highlights: • We design a single photon imaging system with compressed sensing. • A single point avalanche photodiode is used without raster scanning. • The Poisson shot noise in the measurement is analyzed. • The sensitivity of our system is proved to be higher than that of raster scanning

  2. Multicolour single molecule imaging in cells with near infra-red dyes.

    Directory of Open Access Journals (Sweden)

    Christopher J Tynan

    Full Text Available The autofluorescence background of biological samples impedes the detection of single molecules when imaging. The most common method of reducing the background is to use evanescent field excitation, which is incompatible with imaging beyond the surface of biological samples. An alternative would be to use probes that can be excited in the near infra-red region of the spectrum, where autofluorescence is low. Such probes could also increase the number of labels that can be imaged in multicolour single molecule microscopes. Despite being widely used in ensemble imaging, there is a currently a shortage of information available for selecting appropriate commercial near infra-red dyes for single molecule work. It is therefore important to characterise available near infra-red dyes relevant to multicolour single molecule imaging.A range of commercially available near infra-red dyes compatible with multi-colour imaging was screened to find the brightest and most photostable candidates. Image series of immobilised samples of the brightest dyes (Alexa 700, IRDye 700DX, Alexa 790 and IRDye 800CW were analysed to obtain the mean intensity of single dye molecules, their photobleaching rates and long period blinking kinetics. Using the optimum dye pair, we have demonstrated for the first time widefield, multi-colour, near infra-red single molecule imaging using a supercontinuum light source in MCF-7 cells.We have demonstrated that near infra-red dyes can be used to avoid autofluorescence background in samples where restricting the illumination volume of visible light fails or is inappropriate. We have also shown that supercontinuum sources are suited to single molecule multicolour imaging throughout the 470-1000 nm range. Our measurements of near infra-red dye properties will enable others to select optimal dyes for single molecule imaging.

  3. Multicolour Single Molecule Imaging in Cells with Near Infra-Red Dyes

    Science.gov (United States)

    Tynan, Christopher J.; Clarke, David T.; Coles, Benjamin C.; Rolfe, Daniel J.; Martin-Fernandez, Marisa L.; Webb, Stephen E. D.

    2012-01-01

    Background The autofluorescence background of biological samples impedes the detection of single molecules when imaging. The most common method of reducing the background is to use evanescent field excitation, which is incompatible with imaging beyond the surface of biological samples. An alternative would be to use probes that can be excited in the near infra-red region of the spectrum, where autofluorescence is low. Such probes could also increase the number of labels that can be imaged in multicolour single molecule microscopes. Despite being widely used in ensemble imaging, there is a currently a shortage of information available for selecting appropriate commercial near infra-red dyes for single molecule work. It is therefore important to characterise available near infra-red dyes relevant to multicolour single molecule imaging. Methodology/Principal Findings A range of commercially available near infra-red dyes compatible with multi-colour imaging was screened to find the brightest and most photostable candidates. Image series of immobilised samples of the brightest dyes (Alexa 700, IRDye 700DX, Alexa 790 and IRDye 800CW) were analysed to obtain the mean intensity of single dye molecules, their photobleaching rates and long period blinking kinetics. Using the optimum dye pair, we have demonstrated for the first time widefield, multi-colour, near infra-red single molecule imaging using a supercontinuum light source in MCF-7 cells. Conclusions/Significance We have demonstrated that near infra-red dyes can be used to avoid autofluorescence background in samples where restricting the illumination volume of visible light fails or is inappropriate. We have also shown that supercontinuum sources are suited to single molecule multicolour imaging throughout the 470–1000 nm range. Our measurements of near infra-red dye properties will enable others to select optimal dyes for single molecule imaging. PMID:22558412

  4. Pairwise Operator Learning for Patch Based Single-image Super-resolution.

    Science.gov (United States)

    Tang, Yi; Shao, Ling

    2016-12-14

    Motivated by the fact that image patches could be inherently represented by matrices, single-image super-resolution is treated as a problem of learning regression operators in a matrix space in this paper. The regression operators that map low-resolution image patches to high-resolution image patches are generally defined by left and right multiplication operators. The pairwise operators are respectively used to extract the raw and column information of low-resolution image patches for recovering high-resolution estimations. The patch based regression algorithm possesses three favorable properties. Firstly, the proposed super-resolution algorithm is efficient during both training and testing, because image patches are treated as matrices. Secondly, the data storage requirement of the optimal pairwise operator is far less than most popular single-image super-resolution algorithms because only two small sized matrices need to be stored. Lastly, the super-resolution performance is competitive with most popular single-image super-resolution algorithms because both raw and column information of image patches is considered. Experimental results show the efficiency and effectiveness of the proposed patch-based single-image superresolution algorithm.

  5. Single-pixel non-imaging object recognition by means of Fourier spectrum acquisition

    Science.gov (United States)

    Chen, Huichao; Shi, Jianhong; Liu, Xialin; Niu, Zhouzhou; Zeng, Guihua

    2018-04-01

    Single-pixel imaging has emerged over recent years as a novel imaging technique, which has significant application prospects. In this paper, we propose and experimentally demonstrate a scheme that can achieve single-pixel non-imaging object recognition by acquiring the Fourier spectrum. In an experiment, a four-step phase-shifting sinusoid illumination light is used to irradiate the object image, the value of the light intensity is measured with a single-pixel detection unit, and the Fourier coefficients of the object image are obtained by a differential measurement. The Fourier coefficients are first cast into binary numbers to obtain the hash value. We propose a new method of perceptual hashing algorithm, which is combined with a discrete Fourier transform to calculate the hash value. The hash distance is obtained by calculating the difference of the hash value between the object image and the contrast images. By setting an appropriate threshold, the object image can be quickly and accurately recognized. The proposed scheme realizes single-pixel non-imaging perceptual hashing object recognition by using fewer measurements. Our result might open a new path for realizing object recognition with non-imaging.

  6. Collective noise model for focal plane modulated single-pixel imaging

    Science.gov (United States)

    Sun, Ming-Jie; Xu, Zi-Hao; Wu, Ling-An

    2018-01-01

    Single-pixel imaging, also known as computational ghost imaging, provides an alternative method to perform imaging in various applications which are difficult for conventional cameras with pixelated detectors, such as multi-wavelength imaging, three-dimensional imaging, and imaging through turbulence. In recent years, many improvements have successfully increased the signal-to-noise ratio of single-pixel imaging systems, showing promise for the engineering feasibility of this technique. However, many of these improvements are based on empirical findings. In this work we perform an investigation of the noise from each system component that affects the quality of the reconstructed image in a single-pixel imaging system based on focal plane modulation. A collective noise model is built to describe the resultant influence of these different noise sources, and numerical simulations are performed to quantify the effect. Experiments have been conducted to verify the model, and the results agree well with the simulations. This work provides a simple yet accurate method for evaluating the performance of a single-pixel imaging system, without having to carry out actual experimental tests.

  7. Single photon imaging and timing array sensor apparatus and method

    Science.gov (United States)

    Smith, R. Clayton

    2003-06-24

    An apparatus and method are disclosed for generating a three-dimension image of an object or target. The apparatus is comprised of a photon source for emitting a photon at a target. The emitted photons are received by a photon receiver for receiving the photon when reflected from the target. The photon receiver determines a reflection time of the photon and further determines an arrival position of the photon on the photon receiver. An analyzer is communicatively coupled to the photon receiver, wherein the analyzer generates a three-dimensional image of the object based upon the reflection time and the arrival position.

  8. TU-A-12A-02: Novel Lung Ventilation Imaging with Single Energy CT After Single Inhalation of Xenon: Comparison with SPECT Ventilation Images

    Energy Technology Data Exchange (ETDEWEB)

    Negahdar, M [Stanford University School of Medicine, Stanford, CA (United States); Yamamoto, T [UC Davis School of Medicine, Sacramento, CA (United States); Shultz, D; Gable, L; Shan, X; Mittra, E; Loo, B; Maxim, P [Stanford University, Stanford, CA (United States); Diehn, M [Stanford University, Palo Alto, CA (United States)

    2014-06-15

    Purpose: We propose a novel lung functional imaging method to determine the spatial distribution of xenon (Xe) gas in a single inhalation as a measure of regional ventilation. We compare Xe-CT ventilation to single-photon emission CT (SPECT) ventilation, which is the current clinical reference. Regional lung ventilation information may be useful for the diagnosis and monitoring of pulmonary diseases such as COPD, radiotherapy planning, and assessing the progression of toxicity after radiation therapy. Methods: In an IRB-approved clinical study, Xe-CT and SPECT ventilation scans were acquired for three patients including one patient with severe emphysema and two lung cancer patients treated with radiotherapy. For Xe- CT, we acquired two breath-hold single energy CT images of the entire lung with inspiration of 100% O2 and a mixture of 70% Xe and 30% O2, respectively. A video biofeedback system was used to achieve reproducible breath-holds. We used deformable image registration to align the breathhold images with each other to accurately subtract them, producing a map of the distribution of Xe as a surrogate of lung ventilation. We divided each lung into twelve parts and correlated the Hounsfield unit (HU) enhancement at each part with the SPECT ventilation count of the corresponding part of the lung. Results: The mean of the Pearson linear correlation coefficient values between the Xe-CT and ventilation SPECT count for all three patients were 0.62 (p<0.01). The Xe-CT image had a higher resolution than SPECT, and did not show central airway deposition artifacts that were present in the SPECT image. Conclusion: We developed a rapid, safe, clinically practical, and potentially widely accessible method for regional lung functional imaging. We demonstrated strong correlations between the Xe-CT ventilation image and SPECT ventilation image as the clinical reference. This ongoing study will investigate more patients to confirm this finding.

  9. Digital panoramic radiograph rejection index at a Dental Radiology Service in Paraná, Brazil

    International Nuclear Information System (INIS)

    Mickus, J.; Barros, F.S.; Sato, G.Y.; Rosa, P.C.

    2017-01-01

    Panoramic radiography is the most frequent extraoral examination in dentistry. This technique allows the visualization of adjacent maxillomandibular and anatomical structures. Although digital imaging systems are already the great majority of dental radiology services, there is still a shortage of works evaluating the quality of this type of image. The objective of this study was to identify the rejection index of digital panoramic radiographs of a dental radiology service of a university in Brazil, pointing out the main reasons. A survey was performed on the image files and, randomly selected, 2306 images, 10% of the examinations performed in the period between 2013 to 2015. The results indicated a total rejection rate of 5.1% over the three years, totaling 117 radiographs. The main reasons for rejection were: the patient's head tilted backwards in 2013 and the lack of tongue contact with the palate, for the years 2014 and 2015. The main reasons for repetition of exams are related to the positioning in the execution of the technique radiological factors, which may be related to the lack of professional training. Patient collaboration during the examination and professional-to-patient communication failures may result in poor diagnostic quality exams

  10. Effects of dose reduction on the detectability of standardized radiolucent lesions in digital panoramic radiography.

    Science.gov (United States)

    Dula, K; Sanderink, G; van der Stelt, P F; Mini, R; Buser, D

    1998-08-01

    Dose reduction in digital panoramic radiography was studied. Intentional underexposure was performed with the Orthophos DS while six different human mandibles were radiographed. Exposure settings were 69 kV/15 mA (standard), 64 kV/16 mA, and 60 kV/16 mA. Standardized spherical defects, each either 1 or 1.25 mm in diameter, were simulated in 288 of 432 images, and seven observers decided whether defects were present or not. Areas under the receiver operating characteristics curves were calculated. They showed no significant differences in the detectability of the 1-mm defect at 69, 64, or 60 kV. For the 1.25-mm defect, no difference was found between the 69 and 60 kV images, but a statistically significant different detectability was found for 64 kV images in comparison with both 69 and 60 kV images. A dose reduction of up to 43% was ascertained with a Pedo-RT-Humanoid phantom when panoramic radiography was performed at 60 kV/16 mA. The conclusion is that with the Orthophos DS, it seems possible to reduce the dose rate of x-rays without loss of diagnostic quality in the case of radiolucent changes.

  11. Segmentation of teeth in CT volumetric dataset by panoramic projection and variational level set

    International Nuclear Information System (INIS)

    Hosntalab, Mohammad; Aghaeizadeh Zoroofi, Reza; Abbaspour Tehrani-Fard, Ali; Shirani, Gholamreza

    2008-01-01

    Quantification of teeth is of clinical importance for various computer assisted procedures such as dental implant, orthodontic planning, face, jaw and cosmetic surgeries. In this regard, segmentation is a major step. In this paper, we propose a method for segmentation of teeth in volumetric computed tomography (CT) data using panoramic re-sampling of the dataset in the coronal view and variational level set. The proposed method consists of five steps as follows: first, we extract a mask in a CT images using Otsu thresholding. Second, the teeth are segmented from other bony tissues by utilizing anatomical knowledge of teeth in the jaws. Third, the proposed method is followed by estimating the arc of the upper and lower jaws and panoramic re-sampling of the dataset. Separation of upper and lower jaws and initial segmentation of teeth are performed by employing the horizontal and vertical projections of the panoramic dataset, respectively. Based the above mentioned procedures an initial mask for each tooth is obtained. Finally, we utilize the initial mask of teeth and apply a Variational level set to refine initial teeth boundaries to final contours. The proposed algorithm was evaluated in the presence of 30 multi-slice CT datasets including 3,600 images. Experimental results reveal the effectiveness of the proposed method. In the proposed algorithm, the variational level set technique was utilized to trace the contour of the teeth. In view of the fact that, this technique is based on the characteristic of the overall region of the teeth image, it is possible to extract a very smooth and accurate tooth contour using this technique. In the presence of the available datasets, the proposed technique was successful in teeth segmentation compared to previous techniques. (orig.)

  12. Segmentation of teeth in CT volumetric dataset by panoramic projection and variational level set

    Energy Technology Data Exchange (ETDEWEB)

    Hosntalab, Mohammad [Islamic Azad University, Faculty of Engineering, Science and Research Branch, Tehran (Iran); Aghaeizadeh Zoroofi, Reza [University of Tehran, Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, College of Engineering, Tehran (Iran); Abbaspour Tehrani-Fard, Ali [Islamic Azad University, Faculty of Engineering, Science and Research Branch, Tehran (Iran); Sharif University of Technology, Department of Electrical Engineering, Tehran (Iran); Shirani, Gholamreza [Faculty of Dentistry Medical Science of Tehran University, Oral and Maxillofacial Surgery Department, Tehran (Iran)

    2008-09-15

    Quantification of teeth is of clinical importance for various computer assisted procedures such as dental implant, orthodontic planning, face, jaw and cosmetic surgeries. In this regard, segmentation is a major step. In this paper, we propose a method for segmentation of teeth in volumetric computed tomography (CT) data using panoramic re-sampling of the dataset in the coronal view and variational level set. The proposed method consists of five steps as follows: first, we extract a mask in a CT images using Otsu thresholding. Second, the teeth are segmented from other bony tissues by utilizing anatomical knowledge of teeth in the jaws. Third, the proposed method is followed by estimating the arc of the upper and lower jaws and panoramic re-sampling of the dataset. Separation of upper and lower jaws and initial segmentation of teeth are performed by employing the horizontal and vertical projections of the panoramic dataset, respectively. Based the above mentioned procedures an initial mask for each tooth is obtained. Finally, we utilize the initial mask of teeth and apply a Variational level set to refine initial teeth boundaries to final contours. The proposed algorithm was evaluated in the presence of 30 multi-slice CT datasets including 3,600 images. Experimental results reveal the effectiveness of the proposed method. In the proposed algorithm, the variational level set technique was utilized to trace the contour of the teeth. In view of the fact that, this technique is based on the characteristic of the overall region of the teeth image, it is possible to extract a very smooth and accurate tooth contour using this technique. In the presence of the available datasets, the proposed technique was successful in teeth segmentation compared to previous techniques. (orig.)

  13. A natural-color mapping for single-band night-time image based on FPGA

    Science.gov (United States)

    Wang, Yilun; Qian, Yunsheng

    2018-01-01

    A natural-color mapping for single-band night-time image method based on FPGA can transmit the color of the reference image to single-band night-time image, which is consistent with human visual habits and can help observers identify the target. This paper introduces the processing of the natural-color mapping algorithm based on FPGA. Firstly, the image can be transformed based on histogram equalization, and the intensity features and standard deviation features of reference image are stored in SRAM. Then, the real-time digital images' intensity features and standard deviation features are calculated by FPGA. At last, FPGA completes the color mapping through matching pixels between images using the features in luminance channel.

  14. Sequential evaluation for bone union of transferred fibula flaps in reconstructed mandibles: panoramic X-ray versus computed tomography.

    Science.gov (United States)

    Akashi, M; Hashikawa, K; Kakei, Y; Sakakibara, A; Hasegawa, T; Minamikawa, T; Komori, T

    2015-08-01

    The purpose of this study was to sequentially evaluate bone union of fibular grafts in mandibular reconstruction. Patients who underwent routine follow-up computed tomography (CT) and panoramic X-ray imaging during a period of ≥2 years were enrolled. On panoramic X-ray images, bone union was scored as 0 (absent callus formation) or 1 (complete callus formation). On CT images, a scale of 0 to 2 was used (0, absent callus formation; 1, complete callus formation only on the labial side; 2, complete callus formation on both the labial and lingual side). A total of 56 bone junctions were evaluated in 20 patients. Five of 56 junctions (9%) in four of 20 patients (20%) showed radiological non-union (panoramic X-ray score=0, CT score=0 or 1) at 2 years after surgery. All bone junctions with radiological non-union were located at the mandibular angle. No categorical values, including diabetes mellitus and radiation therapy, were significantly associated with radiological non-union. In conclusion, assessing at least two sides (i.e. labial and lingual sides) on CT images is adequate to evaluate bone union in transferred fibula flaps. Careful fixation at the mandibular angle may improve the rate of bone union. Copyright © 2015 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  15. Operational Data Augmentation in Classifying Single Aerial Images of Animals

    NARCIS (Netherlands)

    Okafor, Emmanuel; Smit, Rik; Schomaker, Lambertus; Wiering, Marco

    2017-01-01

    In deep learning, data augmentation is important to increase the amount of training images to obtain higher classification accuracies. Most data-augmentation methods adopt the use of the following techniques: cropping, mirroring, color casting, scaling and rotation for creating additional training

  16. Variational Histogram Equalization for Single Color Image Defogging

    Directory of Open Access Journals (Sweden)

    Li Zhou

    2016-01-01

    Full Text Available Foggy images taken in the bad weather inevitably suffer from contrast loss and color distortion. Existing defogging methods merely resort to digging out an accurate scene transmission in ignorance of their unpleasing distortion and high complexity. Different from previous works, we propose a simple but powerful method based on histogram equalization and the physical degradation model. By revising two constraints in a variational histogram equalization framework, the intensity component of a fog-free image can be estimated in HSI color space, since the airlight is inferred through a color attenuation prior in advance. To cut down the time consumption, a general variation filter is proposed to obtain a numerical solution from the revised framework. After getting the estimated intensity component, it is easy to infer the saturation component from the physical degradation model in saturation channel. Accordingly, the fog-free image can be restored with the estimated intensity and saturation components. In the end, the proposed method is tested on several foggy images and assessed by two no-reference indexes. Experimental results reveal that our method is relatively superior to three groups of relevant and state-of-the-art defogging methods.

  17. Compressive 3D ultrasound imaging using a single sensor

    NARCIS (Netherlands)

    P. Kruizinga (Pieter); Pim van der Meulen, (); Fedjajevs, A. (Andrejs); F. Mastik (Frits); T. Springeling (Tirza); Nico de Jong, (); J.G. Bosch (Hans); Leus, G. (Geert)

    2017-01-01

    textabstractThree-dimensional ultrasound is a powerful imaging technique, but it requires thousands of sensors and complex hardware. Very recently, the discovery of compressive sensing has shown that the signal structure can be exploited to reduce the burden posed by traditional sensing

  18. Compressive 3D ultrasound imaging using a single sensor

    NARCIS (Netherlands)

    Kruizinga, P.; van der Meulen, P.F.; Fedjajevs, A.; Mastik, F; Springeling, Geert; de Jong, N.; Bosch, J.G.; Leus, G.J.T.

    2017-01-01

    Three-dimensional ultrasound is a powerful imaging technique, but it requires thousands of sensors and complex hardware. Very recently, the discovery of compressive sensing has shown that the signal structure can be exploited to reduce the burden posed by traditional sensing requirements. In this

  19. Imaging and manipulation of single viruses by atomic force microscopy

    NARCIS (Netherlands)

    Baclayon, M.; Wuite, G.J.L.; Roos, W.H.

    2010-01-01

    The recent developments in virus research and the application of functional viral particles in nanotechnology and medicine rely on sophisticated imaging and manipulation techniques at nanometre resolution in liquid, air and vacuum. Atomic force microscopy (AFM) is a tool that combines these

  20. Single Image Super-Resolution by Non-Linear Sparse Representation and Support Vector Regression

    Directory of Open Access Journals (Sweden)

    Yungang Zhang

    2017-02-01

    Full Text Available Sparse representations are widely used tools in image super-resolution (SR tasks. In the sparsity-based SR methods, linear sparse representations are often used for image description. However, the non-linear data distributions in images might not be well represented by linear sparse models. Moreover, many sparsity-based SR methods require the image patch self-similarity assumption; however, the assumption may not always hold. In this paper, we propose a novel method for single image super-resolution (SISR. Unlike most prior sparsity-based SR methods, the proposed method uses non-linear sparse representation to enhance the description of the non-linear information in images, and the proposed framework does not need to assume the self-similarity of image patches. Based on the minimum reconstruction errors, support vector regression (SVR is applied for predicting the SR image. The proposed method was evaluated on various benchmark images, and promising results were obtained.

  1. Skin entrance dose with and without lead apron in digital panoramic radiography for selected sensitive body regions.

    Science.gov (United States)

    Schulze, Ralf Kurt Willy; Cremers, Catrin; Karle, Heiko; de Las Heras Gala, Hugo

    2017-05-01

    The aim of this study was to compare the dose at skin level at five significant anatomical regions for panoramic radiography devices with and without lead apron by means of a highly sensitive dosimeter. A female RANDO-phantom was exposed in five different digital panoramic radiography systems, and the dose at skin level was assessed tenfold for each measurement region by means of a highly sensitive solid-state-dosimeter. The five measurement regions selected were the thyroid, both female breasts, the gonads, and a central region in the back of the phantom. For each panoramic machine, the measurements were performed in two modes: with and without a commercial lead apron specifically designed for panoramic radiography. Reproducibility of the measurements was expressed by absolute differences and the coefficient of variation. Values between shielded and unshielded doses were pooled for each region and compared by means of the paired Wilcoxon tests (p ≤ 0.05). Reproducibility as represented by the mean CV was 22 ± 52 % (median 2.3 %) with larger variations for small dose values. Doses at skin level ranged between 0.00 μGy at the gonads and 85.39 μGy at the unshielded thyroid (mean ± SD 15 ± 24 μGy). Except for the gonads, the dose in all the other regions was significantly lower (p panoramic radiography should focus on these differences in the light of the linear non-threshold (LNT) theory which is generally adopted in medical imaging.

  2. Accuracy of vertical height measurements on direct digital panoramic radiographs using posterior mandibular implants and metal balls as reference objects

    Science.gov (United States)

    Vazquez, L; Nizamaldin, Y; Combescure, C; Nedir, R; Bischof, M; Dohan Ehrenfest, DM; Carrel, J-P; Belser, UC

    2013-01-01

    Objectives: Conventional panoramic radiography, a widely used radiographic examination tool in implant treatment planning, allows evaluation of the available bone height before inserting posterior mandibular implants. Image distortion and vertical magnification due to projection geometry is well described for rotational panoramic radiographs. To assess the accuracy of vertical height measurements on direct digital panoramic radiographs, implants and metal balls positioned in the posterior mandible were used as radio-opaque reference objects. The reproducibility of the measuring method was assessed by the inter- and intraobserver agreements. Methods: Direct digital panoramic radiographs, performed using a Kodak 8000C (Eastman Kodak Company, Rochester, NY), of 17 partially edentulous patients (10 females, 7 males, mean age 65 years) were selected from an X-ray database gathered during routine clinical evaluation of implant sites. Proprietary software and a mouse-driven calliper were used to measure the radiological length of 25 implants and 18 metal reference balls, positioned in mandibular posterior segments. The distortion ratio (DR) was calculated by dividing the radiological implant length by the implant's real length and the radiological ball height by the ball's real height. Results: Mean vertical DR was 0.99 for implants and 0.97 for balls, and was unrelated to mandibular sites, side, age, gender or observer. Inter- and intraobserver agreements were acceptable for both reference objects. Conclusions: Vertical measurements had acceptable accuracy and reproducibility when a software-based calibrated measurement tool was used, confirming that digital panoramic radiography can be reliably utilized to determine the pre-operative implant length in premolar and molar mandibular segments. PMID:23360688

  3. Rank distributions: A panoramic macroscopic outlook

    Science.gov (United States)

    Eliazar, Iddo I.; Cohen, Morrel H.

    2014-01-01

    This paper presents a panoramic macroscopic outlook of rank distributions. We establish a general framework for the analysis of rank distributions, which classifies them into five macroscopic "socioeconomic" states: monarchy, oligarchy-feudalism, criticality, socialism-capitalism, and communism. Oligarchy-feudalism is shown to be characterized by discrete macroscopic rank distributions, and socialism-capitalism is shown to be characterized by continuous macroscopic size distributions. Criticality is a transition state between oligarchy-feudalism and socialism-capitalism, which can manifest allometric scaling with multifractal spectra. Monarchy and communism are extreme forms of oligarchy-feudalism and socialism-capitalism, respectively, in which the intrinsic randomness vanishes. The general framework is applied to three different models of rank distributions—top-down, bottom-up, and global—and unveils each model's macroscopic universality and versatility. The global model yields a macroscopic classification of the generalized Zipf law, an omnipresent form of rank distributions observed across the sciences. An amalgamation of the three models establishes a universal rank-distribution explanation for the macroscopic emergence of a prevalent class of continuous size distributions, ones governed by unimodal densities with both Pareto and inverse-Pareto power-law tails.

  4. Single-image phase retrieval using an edge illumination X-ray phase-contrast imaging setup

    International Nuclear Information System (INIS)

    Diemoz, Paul C.; Vittoria, Fabio A.; Hagen, Charlotte K.; Endrizzi, Marco; Coan, Paola; Brun, Emmanuel; Wagner, Ulrich H.; Rau, Christoph; Robinson, Ian K.; Bravin, Alberto; Olivo, Alessandro

    2015-01-01

    A method enabling the retrieval of thickness or projected electron density of a sample from a single input image is derived theoretically and successfully demonstrated on experimental data. A method is proposed which enables the retrieval of the thickness or of the projected electron density of a sample from a single input image acquired with an edge illumination phase-contrast imaging setup. The method assumes the case of a quasi-homogeneous sample, i.e. a sample with a constant ratio between the real and imaginary parts of its complex refractive index. Compared with current methods based on combining two edge illumination images acquired in different configurations of the setup, this new approach presents advantages in terms of simplicity of acquisition procedure and shorter data collection time, which are very important especially for applications such as computed tomography and dynamical imaging. Furthermore, the fact that phase information is directly extracted, instead of its derivative, can enable a simpler image interpretation and be beneficial for subsequent processing such as segmentation. The method is first theoretically derived and its conditions of applicability defined. Quantitative accuracy in the case of homogeneous objects as well as enhanced image quality for the imaging of complex biological samples are demonstrated through experiments at two synchrotron radiation facilities. The large range of applicability, the robustness against noise and the need for only one input image suggest a high potential for investigations in various research subjects

  5. Single-image phase retrieval using an edge illumination X-ray phase-contrast imaging setup

    Energy Technology Data Exchange (ETDEWEB)

    Diemoz, Paul C., E-mail: p.diemoz@ucl.ac.uk; Vittoria, Fabio A. [University College London, London WC1 E6BT (United Kingdom); Research Complex at Harwell, Oxford Harwell Campus, Didcot OX11 0FA (United Kingdom); Hagen, Charlotte K.; Endrizzi, Marco [University College London, London WC1 E6BT (United Kingdom); Coan, Paola [Ludwig-Maximilians-University, Munich 81377 (Germany); Ludwig-Maximilians-University, Garching 85748 (Germany); Brun, Emmanuel [Ludwig-Maximilians-University, Garching 85748 (Germany); European Synchrotron Radiation Facility, Grenoble 38043 (France); Wagner, Ulrich H.; Rau, Christoph [Diamond Light Source, Harwell Oxford Campus, Didcot OX11 0DE (United Kingdom); Robinson, Ian K. [Research Complex at Harwell, Oxford Harwell Campus, Didcot OX11 0FA (United Kingdom); London Centre for Nanotechnology, London WC1 H0AH (United Kingdom); Bravin, Alberto [European Synchrotron Radiation Facility, Grenoble 38043 (France); Olivo, Alessandro [University College London, London WC1 E6BT (United Kingdom); Research Complex at Harwell, Oxford Harwell Campus, Didcot OX11 0FA (United Kingdom)

    2015-06-25

    A method enabling the retrieval of thickness or projected electron density of a sample from a single input image is derived theoretically and successfully demonstrated on experimental data. A method is proposed which enables the retrieval of the thickness or of the projected electron density of a sample from a single input image acquired with an edge illumination phase-contrast imaging setup. The method assumes the case of a quasi-homogeneous sample, i.e. a sample with a constant ratio between the real and imaginary parts of its complex refractive index. Compared with current methods based on combining two edge illumination images acquired in different configurations of the setup, this new approach presents advantages in terms of simplicity of acquisition procedure and shorter data collection time, which are very important especially for applications such as computed tomography and dynamical imaging. Furthermore, the fact that phase information is directly extracted, instead of its derivative, can enable a simpler image interpretation and be beneficial for subsequent processing such as segmentation. The method is first theoretically derived and its conditions of applicability defined. Quantitative accuracy in the case of homogeneous objects as well as enhanced image quality for the imaging of complex biological samples are demonstrated through experiments at two synchrotron radiation facilities. The large range of applicability, the robustness against noise and the need for only one input image suggest a high potential for investigations in various research subjects.

  6. Room temperature mid-IR single photon spectral imaging

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2012-01-01

    Spectral imaging and detection of mid-infrared (mid-IR) wavelengths are emerging as an enabling technology of great technical and scientific interest; primarily because important chemical compounds display unique and strong mid-IR spectral fingerprints revealing valuable chemical information. Whi...... 20 % for polarized incoherent light at 3 \\mum. The proposed method is relevant for existing and new mid-IR applications like gas analysis and medical diagnostics....

  7. Combined optical and single photon emission imaging: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Boschi, Federico; Calderan, Laura; Sbarbati, Andrea [Department of Morphological-Biomedical Sciences, Section of Anatomy and Histology, University of Verona, Verona (Italy); Spinelli, Antonello E [Medical Physics Department, San Raffaele Scientific Institute, Milan (Italy); D' Ambrosio, Daniela; Marengo, Mario [Medical Physics Department, S. Orsola Malpighi Hospital, Bologna (Italy)], E-mail: federico.boschi@univr.it

    2009-12-07

    In vivo optical imaging instruments are generally devoted to the acquisition of light coming from fluorescence or bioluminescence processes. Recently, an instrument was conceived with radioisotopic detection capabilities (Kodak in Vivo Multispectral System F) based on the conversion of x-rays from the phosphorus screen. The goal of this work is to demonstrate that an optical imager (IVIS 200, Xenogen Corp., Alameda, USA), designed for in vivo acquisitions of small animals in bioluminescent and fluorescent modalities, can even be employed to detect signals due to radioactive tracers. Our system is based on scintillator crystals for the conversion of high-energy rays and a collimator. No hardware modifications are required. Crystals alone permit the acquisition of photons coming from an in vivo 20 g nude mouse injected with a solution of methyl diphosphonate technetium 99 metastable (Tc99m-MDP). With scintillator crystals and collimators, a set of measurements aimed to fully characterize the system resolution was carried out. More precisely, system point spread function and modulation transfer function were measured at different source depths. Results show that system resolution is always better than 1.3 mm when the source depth is less than 10 mm. The resolution of the images obtained with radioactive tracers is comparable with the resolution achievable with dedicated techniques. Moreover, it is possible to detect both optical and nuclear tracers or bi-modal tracers with only one instrument. (letter to the editor)

  8. Demonstration of acoustic source localization in air using single pixel compressive imaging

    Science.gov (United States)

    Rogers, Jeffrey S.; Rohde, Charles A.; Guild, Matthew D.; Naify, Christina J.; Martin, Theodore P.; Orris, Gregory J.

    2017-12-01

    Acoustic source localization often relies on large sensor arrays that can be electronically complex and have large data storage requirements to process element level data. Recently, the concept of a single-pixel-imager has garnered interest in the electromagnetics literature due to its ability to form high quality images with a single receiver paired with shaped aperture screens that allow for the collection of spatially orthogonal measurements. Here, we present a method for creating an acoustic analog to the single-pixel-imager found in electromagnetics for the purpose of source localization. Additionally, diffraction is considered to account for screen openings comparable to the acoustic wavelength. A diffraction model is presented and incorporated into the single pixel framework. In this paper, we explore the possibility of applying single pixel localization to acoustic measurements. The method is experimentally validated with laboratory measurements made in an air waveguide.

  9. Darkening of third molar roots on panoramic radiographs: is it really predominantly thinning of the lingual cortex?

    Science.gov (United States)

    Szalma, J; Vajta, L; Lempel, E; Jeges, S; Olasz, L

    2013-04-01

    This study investigated the exact intra-alveolar aetiology of a panoramic high-risk sign, darkening of the third molar roots. 83 mandibular third molar surgical removals demonstrating dark bands on the third molar roots in preoperative radiographs were included in this prospective study. Exposure of the inferior alveolar nerve (IAN), the root morphology of the third molar (e.g. groove or hook) and the integrity of the mandibular canal or lingual cortical wall were observed. Differences between single (increased radiolucency alone) and multiple darkening cases (increased radiolucency with accompanying 'high risk' signs) and between IAN exposure and groove formation were analysed. In 38 cases (45.8%), the IAN was visible during the operation. Groove was present in 37.4% of cases. 26.5% of the cases showed lingual cortical thinning, while specious root conformation explained the formation of darkening on the radiographic images of an additional 9.6% of the cases. IAN exposure (Pformation (Pformation of the root than lingual cortical thinning. Copyright © 2012 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  10. Single-shot polarimetry imaging of multicore fiber.

    Science.gov (United States)

    Sivankutty, Siddharth; Andresen, Esben Ravn; Bouwmans, Géraud; Brown, Thomas G; Alonso, Miguel A; Rigneault, Hervé

    2016-05-01

    We report an experimental test of single-shot polarimetry applied to the problem of real-time monitoring of the output polarization states in each core within a multicore fiber bundle. The technique uses a stress-engineered optical element, together with an analyzer, and provides a point spread function whose shape unambiguously reveals the polarization state of a point source. We implement this technique to monitor, simultaneously and in real time, the output polarization states of up to 180 single-mode fiber cores in both conventional and polarization-maintaining fiber bundles. We demonstrate also that the technique can be used to fully characterize the polarization properties of each individual fiber core, including eigen-polarization states, phase delay, and diattenuation.

  11. Panoramic radiography in evaluating the relationship of mandibular canal and impacted third molars in comparison with cone-beam computed tomography.

    Science.gov (United States)

    Ishak, M H; Zhun, O C; Shaari, R; Rahman, S A; Hasan, M N; Alam, M K

    2014-10-01

    This study evaluated the validity of panoramic radiography and cone beam computed tomography (CBCT) in the assessment of mandibular canal and impacted third molar. In this descriptive-analytical study, 58 mandibular third molars from 42 patients who showed a close relationship between impacted third molar and canal on panoramic radiographs were selected. They were then classified into seven radiographic markers in panoramic radiographs (superimposition, darkening of the root, interruption of the white lines, root narrowing, canal diversion, canal narrowing, and also closed distance in OPG panoramic images are superimposition, interruption of white line and root darkening. In CBCT, superimposition marker always presented higher frequency of contact with canal compared to non-contact group. There are 31% of teeth presented with interruption of white lines and there are 29.3% of teeth presented with superimposition. About 55.6% and 35.3% of the impacted mandibular third molars which indicated interruption of white lines and superimposition also indicated contact in the CBCT respectively. Presence or absence of radiological sign in panoramic radiography was not properly predict a close relationship with third molar and it is suggested that in case of tooth-canal overlapping, the patient should be referred for CBCT assessment.

  12. DE-BLURRING SINGLE PHOTON EMISSION COMPUTED TOMOGRAPHY IMAGES USING WAVELET DECOMPOSITION

    Directory of Open Access Journals (Sweden)

    Neethu M. Sasi

    2016-02-01

    Full Text Available Single photon emission computed tomography imaging is a popular nuclear medicine imaging technique which generates images by detecting radiations emitted by radioactive isotopes injected in the human body. Scattering of these emitted radiations introduces blur in this type of images. This paper proposes an image processing technique to enhance cardiac single photon emission computed tomography images by reducing the blur in the image. The algorithm works in two main stages. In the first stage a maximum likelihood estimate of the point spread function and the true image is obtained. In the second stage Lucy Richardson algorithm is applied on the selected wavelet coefficients of the true image estimate. The significant contribution of this paper is that processing of images is done in the wavelet domain. Pre-filtering is also done as a sub stage to avoid unwanted ringing effects. Real cardiac images are used for the quantitative and qualitative evaluations of the algorithm. Blur metric, peak signal to noise ratio and Tenengrad criterion are used as quantitative measures. Comparison against other existing de-blurring algorithms is also done. The simulation results indicate that the proposed method effectively reduces blur present in the image.

  13. Spherical Projection Based Straight Line Segment Extraction for Single Station Terrestrial Laser Point Cloud

    Directory of Open Access Journals (Sweden)

    ZHANG Fan

    2015-06-01

    Full Text Available Due to the discrete distribution computing errors and lack of adaptability are ubiquitous in the current straight line extraction for TLS data methods. A 3D straight line segment extraction method is proposed based on spherical projection for single station terrestrial laser point clouds. Firstly, horizontal and vertical angles of each laser point are calculated by means of spherical coordinates, intensity panoramic image according to the two angles is generated. Secondly, edges which include straight line features are detected from intensity panoramic image by using of edge detection algorithm. Thirdly, great circles are detected from edges of panoramic image using spherical Hough transform. According to the axiom that a straight line segment in 3D space is a spherical great circle after spherical projection, detecting great circles from spherical projected data sets is essentially detecting straight line segments from 3D data sets without spherical projection. Finally, a robust 3D straight line fitting method is employed to fitting the straight lines and calculating parameters of the straight line segments. Experiments using different data sets and comparison with other methods show the accuracy and applicability of the proposed method.

  14. Single Channel Quantum Color Image Encryption Algorithm Based on HSI Model and Quantum Fourier Transform

    Science.gov (United States)

    Gong, Li-Hua; He, Xiang-Tao; Tan, Ru-Chao; Zhou, Zhi-Hong

    2018-01-01

    In order to obtain high-quality color images, it is important to keep the hue component unchanged while emphasize the intensity or saturation component. As a public color model, Hue-Saturation Intensity (HSI) model is commonly used in image processing. A new single channel quantum color image encryption algorithm based on HSI model and quantum Fourier transform (QFT) is investigated, where the color components of the original color image are converted to HSI and the logistic map is employed to diffuse the relationship of pixels in color components. Subsequently, quantum Fourier transform is exploited to fulfill the encryption. The cipher-text is a combination of a gray image and a phase matrix. Simulations and theoretical analyses demonstrate that the proposed single channel quantum color image encryption scheme based on the HSI model and quantum Fourier transform is secure and effective.

  15. Stenosis of calcified carotid artery detected on Panoramic Radiography

    Energy Technology Data Exchange (ETDEWEB)

    Cho, So Yang; Oh, Won Mann; Yoon, Suk Ja; Yoon, Woong; Lee, Jae Seo; Kang, Byung Cheol [School of Dentistry, Chonnam National University, Seoul (Korea, Republic of); Palomo, Juan M. [Department of Orthodontics, School of Dental Medicine, Case Western Reserve University, Cleveland (United States)

    2009-09-15

    This study aimed to investigate the luminal stenosis of the internal carotid artery with calcification detected on panoramic radiographs. This study used fifty carotid arteries of 36 dental patients whose panoramic radiograph and computed tomography angiography (CTA) revealed the presence of carotid artery calcification. A neuroradiologist interpreted CTA to determine the degree of stenosis of the internal carotid arteries. The degree of stenosis was stratified in four stages; normal (no stenosis), mild stenosis (1-49%), moderate stenosis (50-69%) and severe stenosis (70-99%). Among the fifty carotid arteries with calcification detected on both panoramic radiography and CTA, 20 carotid arteries (40%) were normal, 29 carotid arteries (18%) had mild stenosis, 1 carotid artery (2%) had moderate stenosis, and there was none with severe stenosis. Sixty percent of the carotid arteries with calcification detected on both panoramic radiography and CTA had internal luminal stenosis, and two percent had moderate stenosis. When carotid atheroma is detected on panoramic radiograph, it is possible that the dental patient has luminal stenosis of the internal carotid artery.

  16. Stenosis of calcified carotid artery detected on Panoramic Radiography

    International Nuclear Information System (INIS)

    Cho, So Yang; Oh, Won Mann; Yoon, Suk Ja; Yoon, Woong; Lee, Jae Seo; Kang, Byung Cheol; Palomo, Juan M.

    2009-01-01

    This study aimed to investigate the luminal stenosis of the internal carotid artery with calcification detected on panoramic radiographs. This study used fifty carotid arteries of 36 dental patients whose panoramic radiograph and computed tomography angiography (CTA) revealed the presence of carotid artery calcification. A neuroradiologist interpreted CTA to determine the degree of stenosis of the internal carotid arteries. The degree of stenosis was stratified in four stages; normal (no stenosis), mild stenosis (1-49%), moderate stenosis (50-69%) and severe stenosis (70-99%). Among the fifty carotid arteries with calcification detected on both panoramic radiography and CTA, 20 carotid arteries (40%) were normal, 29 carotid arteries (18%) had mild stenosis, 1 carotid artery (2%) had moderate stenosis, and there was none with severe stenosis. Sixty percent of the carotid arteries with calcification detected on both panoramic radiography and CTA had internal luminal stenosis, and two percent had moderate stenosis. When carotid atheroma is detected on panoramic radiograph, it is possible that the dental patient has luminal stenosis of the internal carotid artery.

  17. Effective dose for patient in multimode panoramic radiography

    International Nuclear Information System (INIS)

    Yasaki, Shiro; Daibo, Motoji

    1999-01-01

    In recent years, multimode panoramic radiography has had various functions, such as the auto exposure function, auto focus function (auto function), TMJ radiography and tomogram radiography functions. The purpose of this study was to estimate the effective dose for patients in each mode of the new multimode panoramic radiography (J. MORITA MFG. CORP. Dental Panorama X-ray Apparatus: Veraview Scope X 600). The absorbed doses in important organs involved in the causation of stochastic effects were measured by a thermoluminescent dosimeter using RANDO phantom. The effective doses were calculated using modified tissue weighting factors recommended by the International Commission on Radiological Protection (ICRP) in 1999. The mean field size over skin in typical panoramic and tomographic examinations was about 3% and 0.4% of the total body surface area of 15000 cm 2 . Assuming that the incidence of skin cancer is proportional to the area of skin exposed to ionizing radiation, the tissue weighting factor of skin can be estimated to be about 0.0003 and 0.00004. The estimate in effective dose was lower (5.3 μSv) in the panoramic auto function mode (an average exposure condition of 69 kV 7 mA) than that (6.5-13.8 μSv) in the linear tomogram modes. Since the linear tomogram mode requires a scout view, such as standard panoramic radiography, the dose in the linear tomogram mode becomes higher than other modes. A percentage of gonad doses in effective doses was negligible. (author)

  18. Feasibility of detecting Aflatoxin B1 in single maize kernels using hyperspectral imaging

    Science.gov (United States)

    The feasibility of detecting Aflatoxin B1 (AFB1) in single maize kernel inoculated with Aspergillus flavus conidia in the field, as well as its spatial distribution in the kernels, was assessed using near-infrared hyperspectral imaging (HSI) technique. Firstly, an image mask was applied to a pixel-b...

  19. Radiological assessment of periapical status using the periapical index: comparison of periapical radiography and digital panoramic radiography.

    Science.gov (United States)

    Ridao-Sacie, C; Segura-Egea, J J; Fernández-Palacín, A; Bullón-Fernández, P; Ríos-Santos, J V

    2007-06-01

    To compare the use of periapical radiographs and digital panoramic images displayed on monitor and glossy paper in the assessment of the periapical status of the teeth using the periapical index (PAI). A total of 86 subjects were examined. All participants underwent a full-mouth radiographic survey (14 periapical radiographs) and a panoramic radiography. The periapical status, using the PAI score, of all appraised teeth was assessed. Periapical radiographs allowed the assessment of the periapical status of 87% of teeth using the PAI. On the contrary, digital radiography had a significantly reduced potential to allow assessment of the periapical status (Pperiapical pathosis was five fold higher when assessed with digital panoramic images displayed on glossy paper compared with periapical radiographs (Pperiapical radiographs except maxillary second and third molars, which were better viewed in orthopantomograms. Orthopantomograms on screen were scorable more often than when on printed images. Apical periodontitis was scored more often on paper than on screen, and more often on screen than in periapical radiographs.

  20. Measurement methods and accuracy analysis of Chang'E-5 Panoramic Camera installation parameters

    Science.gov (United States)

    Yan, Wei; Ren, Xin; Liu, Jianjun; Tan, Xu; Wang, Wenrui; Chen, Wangli; Zhang, Xiaoxia; Li, Chunlai

    2016-04-01

    Chang'E-5 (CE-5) is a lunar probe for the third phase of China Lunar Exploration Project (CLEP), whose main scientific objectives are to implement lunar surface sampling and to return the samples back to the Earth. To achieve these goals, investigation of lunar surface topography and geological structure within sampling area seems to be extremely important. The Panoramic Camera (PCAM) is one of the payloads mounted on CE-5 lander. It consists of two optical systems which installed on a camera rotating platform. Optical images of sampling area can be obtained by PCAM in the form of a two-dimensional image and a stereo images pair can be formed by left and right PCAM images. Then lunar terrain can be reconstructed based on photogrammetry. Installation parameters of PCAM with respect to CE-5 lander are critical for the calculation of exterior orientation elements (EO) of PCAM images, which is used for lunar terrain reconstruction. In this paper, types of PCAM installation parameters and coordinate systems involved are defined. Measurement methods combining camera images and optical coordinate observations are studied for this work. Then research contents such as observation program and specific solution methods of installation parameters are introduced. Parametric solution accuracy is analyzed according to observations obtained by PCAM scientifically validated experiment, which is used to test the authenticity of PCAM detection process, ground data processing methods, product quality and so on. Analysis results show that the accuracy of the installation parameters affects the positional accuracy of corresponding image points of PCAM stereo images within 1 pixel. So the measurement methods and parameter accuracy studied in this paper meet the needs of engineering and scientific applications. Keywords: Chang'E-5 Mission; Panoramic Camera; Installation Parameters; Total Station; Coordinate Conversion

  1. Modeling decision-making in single- and multi-modal medical images

    Science.gov (United States)

    Canosa, R. L.; Baum, K. G.

    2009-02-01

    This research introduces a mode-specific model of visual saliency that can be used to highlight likely lesion locations and potential errors (false positives and false negatives) in single-mode PET and MRI images and multi-modal fused PET/MRI images. Fused-modality digital images are a relatively recent technological improvement in medical imaging; therefore, a novel component of this research is to characterize the perceptual response to these fused images. Three different fusion techniques were compared to single-mode displays in terms of observer error rates using synthetic human brain images generated from an anthropomorphic phantom. An eye-tracking experiment was performed with naÃve (non-radiologist) observers who viewed the single- and multi-modal images. The eye-tracking data allowed the errors to be classified into four categories: false positives, search errors (false negatives never fixated), recognition errors (false negatives fixated less than 350 milliseconds), and decision errors (false negatives fixated greater than 350 milliseconds). A saliency model consisting of a set of differentially weighted low-level feature maps is derived from the known error and ground truth locations extracted from a subset of the test images for each modality. The saliency model shows that lesion and error locations attract visual attention according to low-level image features such as color, luminance, and texture.

  2. Screening for diabetic retinopathy in rural area using single-field, digital fundus images.

    Science.gov (United States)

    Ruamviboonsuk, Paisan; Wongcumchang, Nattapon; Surawongsin, Pattamaporn; Panyawatananukul, Ekchai; Tiensuwan, Montip

    2005-02-01

    To evaluate the practicability of using single-field, 2.3 million-pixel, digital fundus images for screening of diabetic retinopathy in rural areas. All diabetic patients who regularly attended the diabetic clinic at Kabcheang Community Hospital, located at 15 kilometers from the Thailand-Cambodia border, were appointed to the hospital for a 3-day diabetic retinopathy screening programme. The fundi of all patients were captured in single-field, 45 degrees, 2.3 million-pixel images using nonmydriatic digital fundus camera and then sent to a reading center in Bangkok. The fundi were also examined through dilated pupils by a retinal specialist at this hospital. The grading of diabetic retinopathy from two methods was compared for an exact agreement. The average duration of single digital fundus image capture was 2 minutes. The average file size of each image was 750 kilobytes. The average duration of single image transmission to a reading center in Bangkok via satellite was 3 minutes; via a conventional telephone line was 8 minutes. Of all 150 patients, 130 were assessed for an agreement between dilated fundus examination and digital fundus images in diagnosis of diabetic retinopathy. The exact agreement was 0.87, the weighted kappa statistics was 0.74. The sensitivity of digital fundus images in detecting diabetic retinopathy was 80%, the specificity was 96%. For diabetic macular edema the exact agreement was 0.97, the weighted kappa was 0.43, the sensitivity was 43%, and the specificity was 100%. The image capture of the nonmydriatic digital fundus camera is suitable for screening of diabetic retinopathy and single-field digital fundus images are potentially acceptable tools for the screening. The real-time image transmission via telephone lines to remote reading center, however, may not be practical for routine diabetic retinopathy screening in rural areas.

  3. Imaging Single ZnO Vertical Nanowire Laser Cavities using UV-Laser Scanning Confocal Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gargas, D.J.; Toimil-Molares, M.E.; Yang, P.

    2008-11-17

    We report the fabrication and optical characterization of individual ZnO vertical nanowire laser cavities. Dilute nanowire arrays with interwire spacing>10 ?m were produced by a modified chemical vapor transport (CVT) method yielding an ideal platform for single nanowire imaging and spectroscopy. Lasing characteristics of a single vertical nanowire are presented, as well as high-resolution photoluminescence imaging by UV-laser scanning confocal microscopy. In addition, three-dimensional (3D) mapping of the photoluminescence emission performed in both planar and vertical dimensions demonstrates height-selective imaging useful for vertical nanowires and heteronanostructures emerging in the field of optoelectronics and nanophotonics.

  4. Assessment of panoramic radiography as a national oral examination tool: review of the literature

    OpenAIRE

    Choi, Jin-Woo

    2011-01-01

    Purpose The purpose of this review is to evaluate the possibility of panoramic radiography as a national oral examination tool. Materials and Methods This report was carried out by review of the literatures. Results Panoramic radiography has sufficient diagnostic accuracy in dental caries, periodontal diseases, and other lesions. Also, the effective dose of panoramic radiography is lower than traditional full-mouth periapical radiography. Conclusion Panoramic radiography will improve the effi...

  5. UCD-SPI: Un-Collimated Detector Single-Photon Imaging System for Small Animal and Plant Imaging

    Science.gov (United States)

    Walker, Katherine Leigh

    Medical imaging systems using single gamma-ray emitting radioisotopes implement collimators in order to form images. However, a tradeoff in sensitivity is inherent in the use of collimators, and modern preclinical single-photon emission computed tomography (SPECT) systems detect a very small fraction of emitted gamma-rays (imaging, while still producing images of sufficient spatial resolution for certain applications in "thin" objects such as mice, small plants, and well plates used for in vitro experiments. This flexible geometry un-collimated detector single-photon imaging (UCD-SPI) system consists of two large (5 cm x 10 cm), thin (3 mm and 5 mm), closely spaced, pixelated scintillation detectors of either NaI(Tl), CsI(Na), or BGO. The detectors are read out by two adjacent Hamamatsu H8500 multichannel photomultiplier tubes. The detector heads enable the interchange of scintillation detectors of different materials and thicknesses to optimize performance for a wide range of gamma-ray energies and imaging subjects. The detectors are horizontally oriented for animal imaging, and for plant imaging the system is rotated on its side to orient the detectors vertically. While this un-collimated detector system is unable to approach the sub-mm spatial resolution obtained by the most advanced preclinical pinhole SPECT systems, the high sensitivity could enable significant and new use in molecular imaging applications which do not require good spatial resolution- for example, screening applications for drug development (small animals), for material transport and sequestration studies for phytoremediation (plants), or for counting radiolabeled cells in vitro (well plates).

  6. Cryo-imaging of fluorescently labeled single cells in a mouse

    Science.gov (United States)

    Steyer, Grant J.; Roy, Debashish; Salvado, Olivier; Stone, Meredith E.; Wilson, David L.

    2009-02-01

    We developed a cryo-imaging system to provide single-cell detection of fluorescently labeled cells in mouse, with particular applicability to stem cells and metastatic cancer. The Case cryoimaging system consists of a fluorescence microscope, robotic imaging positioner, customized cryostat, PC-based control system, and visualization/analysis software. The system alternates between sectioning (10-40 μm) and imaging, collecting color brightfield and fluorescent blockface image volumes >60GB. In mouse experiments, we imaged quantum-dot labeled stem cells, GFP-labeled cancer and stem cells, and cell-size fluorescent microspheres. To remove subsurface fluorescence, we used a simplified model of light-tissue interaction whereby the next image was scaled, blurred, and subtracted from the current image. We estimated scaling and blurring parameters by minimizing entropy of subtracted images. Tissue specific attenuation parameters were found [uT : heart (267 +/- 47.6 μm), liver (218 +/- 27.1 μm), brain (161 +/- 27.4 μm)] to be within the range of estimates in the literature. "Next image" processing removed subsurface fluorescence equally well across multiple tissues (brain, kidney, liver, adipose tissue, etc.), and analysis of 200 microsphere images in the brain gave 97+/-2% reduction of subsurface fluorescence. Fluorescent signals were determined to arise from single cells based upon geometric and integrated intensity measurements. Next image processing greatly improved axial resolution, enabled high quality 3D volume renderings, and improved enumeration of single cells with connected component analysis by up to 24%. Analysis of image volumes identified metastatic cancer sites, found homing of stem cells to injury sites, and showed microsphere distribution correlated with blood flow patterns. We developed and evaluated cryo-imaging to provide single-cell detection of fluorescently labeled cells in mouse. Our cryo-imaging system provides extreme (>60GB), micron

  7. Impact on perceived root resorption based on the amount of incisal inclination as determined from conventional panoramic radiography.

    Science.gov (United States)

    Tieu, Long Dao; Normando, David; Toogood, Roger; Flores-Mir, Carlos

    2015-10-01

    Our objective was to measure the impact on perceived root resorption based on the amount of anteroposterior incisal inclination as determined in vitro from conventional panoramic radiography. A rapid prototyping model was created to mimic different maxillary and mandibular incisal anteroposterior inclinations. Two titanium beads were placed on the incisors at the apical and incisal edges. Panoramic radiographs were obtained, with the incisors changing relative inclination by 10° increments. The length was measured from the midpoint of the bead on the incisal edge to the midpoint of the bead on the apical edge. By using a length of wire of known size, this value was compared in all images to correct for image magnification. Changes to mandibular incisor anteroposterior inclinations, as either a theoretical proclination or retroclination, resulted in an increase of "apparent" root resorption on a panoramic radiograph. When the maxillary incisors were significantly and severely retroclined, they appeared larger than expected. When the maxillary incisors were mildly retroclined, the length was roughly similar to the theoretical model. When the maxillary incisors were mildly proclined, they appeared shorter than expected. The foreshortening or forelengthening of incisor root lengths because of incisor inclination vs root resorption cannot be reliably evaluated from panoramic images. The proposed theoretical model helps to understand the direction of the changes produced by the magnification factor. More severe scenarios where either the maxillary or the mandibular teeth are outside the focal trough have not been fully evaluated. The clinical impact of these changes is likely to be questionable. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  8. Early diagnosis of atherosclerosis with panoramic radiographs: a review

    Directory of Open Access Journals (Sweden)

    Daiane Landim Borba

    Full Text Available Abstract Carotid artery disease has been linked with cerebral vascular accident, also known as stroke, cerebral hemorrhage, or cerebral ischemia. It is caused by narrowing or obstruction of arteries in the neck (the carotid arteries that are responsible for transporting blood from the aorta to the brain. Panoramic radiographs are used in dentistry to show both dental arches as a supplement to the clinical dental examination. The objective of this study is to highlight the importance of panoramic radiographs for diagnosis of arterial disease, by means of a bibliographic review. The PubMed database was searched using the keywords “atherosclerosis” and “panoramic”, with the filters “last 5 years” and “humans”. Twenty articles were identified, six of which were chosen for this study because they were open access. The review concluded that panoramic radiographs enable early diagnosis of carotid artery calcification, resulting in earlier interventions, and offer an accessible cost.

  9. Theoretical and experimental study of single particle tracking in extreme conditions: single photon imaging

    International Nuclear Information System (INIS)

    Cajgfinger, T.

    2012-10-01

    This manuscript presents my thesis on the high frame rate (500 frames / second) single-photon detector electron-bombarded CMOS (ebCMOS). The first section compares three ultra-sensitive detectors and their methods for improving photon sensitivity: the CMOS low noise (sCMOS), the electron-multiplying CCD (emCCD) with signal multiplication by pixel and the ebCMOS with amplification by applied electric field. The method developed to detect single photon impacts with intra-pixel resolution on the ebCMOS sensor is presented. The second section compares the localization accuracy of these detectors in extreme conditions of very low photon flux (<10 photons/frame). First the theoretical limit is calculated using the Cramer-Rao lower bound for significant parameter sets. An experimental comparison of the detectors is then described. The setup provides one or more point sources controlled in position, signal and background noise. The results allow a comparison of the experimental effectiveness, purity and localization accuracy. The last section describes two experiments with the ebCMOS camera. The first aims at tracking hundreds of quantum dots simultaneously at the Nanoptec center. The second focuses on the swimming of bacteria at the surface at the Joliot Curie Institute. The point sources tracking algorithm using single photons and the Kalman filter implementation developed for these experiments is also described. (author)

  10. Thallium-201 myocardial imaging with single photon emission CT in Kawasaki disease

    International Nuclear Information System (INIS)

    Matsumoto, Syuhei

    1992-01-01

    Seventy-five patients with Kawasaki disease underwent single photon emission computed tomography (SPECT) and planar imaging with thallium-201 after dipyridamole in order to evaluate the usefulness of detecting the complication of coronary artery disease (CAD). The results of SPECT with a three reconstruction imaging study (short axis, vertical long axis, horizontal long axis) and of planar imaging study with thallium-201 were compared with coronary angiography. The overall sensitivity of detecting CAD was 86.7% with SPECT and 66.7% with planar imaging. The sensitivity in identifying individual vessels was 76.0% with SPECT and 44.0% with planar imaging. SPECT was especially superior to planar imaging in detecting localized stenosis. (53.8% vs 15.4%) The specificity of SPECT did not differ from the planar imaging study. Dipyridamole thallium-201 SPECT is a useful non-invasive method to detect CAD due to Kawasaki disease. (author)

  11. Scan-less hyperspectral dual-comb single-pixel-imaging in both amplitude and phase

    Science.gov (United States)

    Shibuya, Kyuki; Minamikawa, Takeo; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Minoshima, Kaoru; Yasui, Takeshi; Iwata, Tetsuo

    2017-09-01

    We have developed a hyperspectral imaging scheme that involves a combination of dual-comb spectroscopy and Hadamard-transform-based single-pixel imaging. The scheme enables us to obtain 12,000 hyperspectral images of amplitude and phase at a spatial resolution of 46 um without mechanical scanning. The spectral resolution is 20 MHz, as determined by the linewidth of a single comb mode, and the spectral interval is 100 MHz over a spectral range of 1.2 THz centred at 191.5 THz. As an initial demonstration of our scheme, we obtained spectroscopic images of a standard test chart through an etalon plate. The thickness of an absorptive chromium-coated layer on a float-glass substrate was determined to be 70 nm from the hyperspectral phase images in the near-infrared wavelength region.

  12. In vivo flow mapping in complex vessel networks by single image correlation.

    Science.gov (United States)

    Sironi, Laura; Bouzin, Margaux; Inverso, Donato; D'Alfonso, Laura; Pozzi, Paolo; Cotelli, Franco; Guidotti, Luca G; Iannacone, Matteo; Collini, Maddalena; Chirico, Giuseppe

    2014-12-05

    We describe a novel method (FLICS, FLow Image Correlation Spectroscopy) to extract flow speeds in complex vessel networks from a single raster-scanned optical xy-image, acquired in vivo by confocal or two-photon excitation microscopy. Fluorescent flowing objects produce diagonal lines in the raster-scanned image superimposed to static morphological details. The flow velocity is obtained by computing the Cross Correlation Function (CCF) of the intensity fluctuations detected in pairs of columns of the image. The analytical expression of the CCF has been derived by applying scanning fluorescence correlation concepts to drifting optically resolved objects and the theoretical framework has been validated in systems of increasing complexity. The power of the technique is revealed by its application to the intricate murine hepatic microcirculatory system where blood flow speed has been mapped simultaneously in several capillaries from a single xy-image and followed in time at high spatial and temporal resolution.

  13. A Single-Photon Avalanche Diode Array for Fluorescence Lifetime Imaging Microscopy

    Science.gov (United States)

    Schwartz, David Eric; Charbon, Edoardo; Shepard, Kenneth L.

    2013-01-01

    We describe the design, characterization, and demonstration of a fully integrated single-photon avalanche diode (SPAD) imager for use in time-resolved fluorescence imaging. The imager consists of a 64-by-64 array of active SPAD pixels and an on-chip time-to-digital converter (TDC) based on a delay-locked loop (DLL) and calibrated interpolators. The imager can perform both standard time-correlated single-photon counting (TCSPC) and an alternative gated-window detection useful for avoiding pulse pile-up when measuring bright signal levels. To illustrate the use of the imager, we present measurements of the decay lifetimes of fluorescent dyes of several types with a timing resolution of 350 ps. PMID:23976789

  14. Single-shot X-ray phase-contrast imaging using two-dimensional gratings

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Genta; Itoh, Hidenosuke; Nagai, Kentaro; Nakamura, Takashi; Yamaguchi, Kimiaki; Kondoh, Takeshi; Handa, Soichiro; Ouchi, Chidane; Teshima, Takayuki; Setomoto, Yutaka; Den, Toru [Frontier Research Center, Corporate R and D Headquarters, Canon Inc., 3-30-2 Shimomaruko, Ohta-ku, Tokyo 146-8501 (Japan); Optics Technology Development Center, Corporate R and D Headquarters, Canon Inc., 23-10, Kiyohara-Kogyodanchi, Utsunomiya Tochigi 321-3231 (Japan); Nanotechnology R and D Center, Corporate R and D Headquarters, Canon Inc., 3-30-2 Shimomaruko, Ohta-ku, Tokyo 146-8501 (Japan)

    2012-07-31

    We developed a two-dimensional gratings-based X-ray interferometer that requires only a single exposure for clinical radiography. The interferometer consisted of a checkerboard phase grating for {pi} phase modulation and a latticed amplitude grating. Using a synchrotron radiation source, the phase grating modulates the X-rays and generates a self-image, transformed to a moire fringe by the amplitude grating. To allow use of a conventional X-ray tube, the latticed source grating was installed downstream from the X-ray tube. Differential phase-contrast and scattering images in two orthogonal directions were obtained by Fourier analysis of the single moire fringe image and an absorption image. Results show that characteristic features of soft tissue in two orthogonal directions were clearly shown in the differential phase-contrast images.

  15. Radiation protection and quality assurance in dental radiology: II. Panoramic radiology

    International Nuclear Information System (INIS)

    Jodar-Porlan, S.; Alcaraz, M.; Martinez-Beneyto, Y.; Saura-Iniesta, A.M.; Velasco-Hidalgo, E.

    2001-01-01

    This paper studies 278 official reports on quality assurance in dental radiology in the context of the first revision of these dental clinics, as a result of the entry into force of the regulations establishing the duties for these types of facilities. In the results section we present a quantitative analysis of the facilities equipped with an panoramic radiology apparatus, making a special reference to the brands they have available, as well as their physical features (kV, mA, filtration) and the deviations detected in their operation. Some of their features in the process of obtaining radiological images at those facilities (film control, development time, liquid renewal) are determined, and the average dose of ionising radiation used in order to obtain the same tooth radiological image is presented. This paper shows, in a quantitative way, the characteristic features of panoramic radiology in our medium. The study is intended to be continued during the next years, which would allow the assessment of the prospective improvement in dental radiological performances as a result of the newly established regulations. (author)

  16. Panorametry: suggestion of a method for mandibular measurements on panoramic radiographs

    Directory of Open Access Journals (Sweden)

    Puricelli Edela

    2009-10-01

    Full Text Available Abstract Background Orthopantomography (panoramic radiography has been used for the study of measurements involving particularly the prediction of the eruption of impacted lower third molars and analyses of measurements of the ramus and head of mandible. The discrepancies involved with the projection of this radiographic image has stimulated the search for further ways to use it, particularly in orthodontic treatments and oral and maxillofacial surgeries. The author proposes a graphimetric method for the mandible, based on panoramic radiography. The results are expressed in linear and angular measurements, aiming at bilateral comparisons as well as the determination of the proportion of skeletal and dental structures, individually and among themselves as a whole. The method has been named Panorametry, and allows measurement of the mandible (Mandibular Panorametry or the posterior mandibular teeth (Dental Panorametry. When combining mandible and maxilla, it should be referred to as Total Panorametry. It may also be used, in the future, with Cone Beam computed tomography (CT images, and in this case it may be mentioned as CT Panorametry.

  17. Evaluation of deep neural networks for single image super-resolution in a maritime context

    Science.gov (United States)

    Nieuwenhuizen, Robert P. J.; Kruithof, Maarten; Schutte, Klamer

    2017-10-01

    High resolution imagery is of crucial importance for the performance on visual recognition tasks. Super-resolution (SR) reconstruction algorithms aim to enhance the image resolution beyond the capability of the image sensor being used. Traditional SR algorithms approach this inverse problem using physical models for the image formation combined with a regularization function to prevent instabilities in the solution. Recently deep neural networks have been put forward as an alternative approach to the SR reconstruction problem. They learn a mapping from low resolution images to their high resolution counterparts from pairs of training images, which allows them to capture more specific information about the space of possible solutions than traditional regularization functions. These networks have achieved state-of-the-art performance on single image SR for sets of generic test images. Here we investigate whether the same performance can be realized when these neural networks for single image SR are applied specifically in the maritime domain. In particular we investigate their ability to reconstruct undersampled images of ships at sea, and demonstrate that the performance is similar to what is achieved on generic test images. In addition we quantify the gain in performance that is achieved when the networks are trained specifically on images of ships, which allows the networks to capture more prior knowledge about the space of possible solutions. Finally we show that the performance deteriorates when the resolution of test images is limited by image blur, for example due to diffraction, rather than undersampling. This highlights the importance of using representative training data that account for the part of the image formation process that limits the resolution in the sensor data.

  18. High-performance imaging of stem cells using single-photon emissions

    Science.gov (United States)

    Wagenaar, Douglas J.; Moats, Rex A.; Hartsough, Neal E.; Meier, Dirk; Hugg, James W.; Yang, Tang; Gazit, Dan; Pelled, Gadi; Patt, Bradley E.

    2011-10-01

    Radiolabeled cells have been imaged for decades in the field of autoradiography. Recent advances in detector and microelectronics technologies have enabled the new field of "digital autoradiography" which remains limited to ex vivo specimens of thin tissue slices. The 3D field-of-view (FOV) of single cell imaging can be extended to millimeters if the low energy (10-30 keV) photon emissions of radionuclides are used for single-photon nuclear imaging. This new microscope uses a coded aperture foil made of highly attenuating elements such as gold or platinum to form the image as a kind of "lens". The detectors used for single-photon emission microscopy are typically silicon detectors with a pixel pitch less than 60 μm. The goal of this work is to image radiolabeled mesenchymal stem cells in vivo in an animal model of tendon repair processes. Single-photon nuclear imaging is an attractive modality for translational medicine since the labeled cells can be imaged simultaneously with the reparative processes by using the dual-isotope imaging technique. The details our microscope's two-layer gold aperture and the operation of the energy-dispersive, pixellated silicon detector are presented along with the first demonstration of energy discrimination with a 57Co source. Cell labeling techniques have been augmented by genetic engineering with the sodium-iodide symporter, a type of reporter gene imaging method that enables in vivo uptake of free 99mTc or an iodine isotope at a time point days or weeks after the insertion of the genetically modified stem cells into the animal model. This microscopy work in animal research may expand to the imaging of reporter-enabled stem cells simultaneously with the expected biological repair process in human clinical trials of stem cell therapies.

  19. Correlation of panoramic radiography and cone beam CT findings in the assessment of the relationship between impacted mandibular third molars and the mandibular canal.

    Science.gov (United States)

    Neves, F S; Souza, T C; Almeida, S M; Haiter-Neto, F; Freitas, D Q; Bóscolo, F N

    2012-10-01

    The aim of this study was to assess the reliability of four panoramic radiographic findings, both individually and in association, in predicting the absence of corticalization between the mandibular canal and the third molar on cone beam CT (CBCT) images. The sample consisted of 72 individuals (142 mandibular third molars) who underwent pre-operative radiographic evaluation before extraction of impacted mandibular third molars. On panoramic radiographs, the most common signs of corticalization (darkening of roots, diversion of mandibular canal, narrowing of mandibular canal and interruption of white line) and the presence or absence of corticalization between the mandibular third molar and the mandibular canal on CBCT images were evaluated. Darkening of roots and interruption of white line associated with the absence of corticalization between the mandibular third molar and the mandibular canal on CBCT images were statistically significant, both as isolated findings (p = 0.0001 and p = 0.0006, respectively) and in association (p = 0.002). No statistically significant association was observed for the other panoramic radiographic findings, either individually or in association (p > 0.05). Darkening of roots and interruption of white line observed on panoramic radiographs, both as isolated findings and in association, were effective in determining the risk relationship between the tooth roots and the mandibular canal, requiring three-dimensional evaluation of the case.

  20. Calibration for 3D imaging with a single-pixel camera

    Science.gov (United States)

    Gribben, Jeremy; Boate, Alan R.; Boukerche, Azzedine

    2017-02-01

    Traditional methods for calibrating structured light 3D imaging systems often suffer from various sources of error. By enabling our projector to both project images as well as capture them using the same optical path, we turn our DMD based projector into a dual-purpose projector and single-pixel camera (SPC). A coarse-to-fine SPC scanning technique based on coded apertures was developed to detect calibration target points with sub-pixel accuracy. Our new calibration approach shows improved depth measurement accuracy when used in structured light 3D imaging by reducing cumulative errors caused by multiple imaging paths.

  1. Single-molecule imaging can be achieved in live obligate anaerobic bacteria

    Science.gov (United States)

    Karunatilaka, Krishanthi S.; Coupland, Ben R.; Cameron, Elizabeth A.; Martens, Eric C.; Koropatkin, Nicole K.; Biteen, Julie S.

    2013-02-01

    Single-molecule fluorescence (SMF) permits imaging with nanometer-scale resolution. This technique is particularly useful for cellular imaging as it provides a non-invasive, minimally perturbative means to examine macromolecular localization and dynamics, even in live cells. Here, we demonstrate that nanometer-scale SMF imaging can be extended to a new category of experiments: intracellular imaging of live, obligate anaerobic cells on the benchtop. We investigate the starch-utilization system (Sus) proteins in the gut symbiont Bacteroides thetaiotaomicron and discuss three different labels that we implemented to detect these proteins: fluorescent proteins, the tetracysteine-based FlAsH tag, and the enzymatic HaloTag.