WorldWideScience

Sample records for single oxygen atom

  1. Single Photon Double Ionization of Atomic Oxygen

    Science.gov (United States)

    Wickramarathna, Madhushani; Gorczyca, Thomas; Ballance, Connor; Stolte, Wayne

    2017-04-01

    Single photon double ionization cross sections are calculated using an R-matrix with pseudostates (RMPS) method which was recently applied by Gorczyca et al. for the double photoionization of helium. With the convergence of these theoretical calculations for the simple case of helium, we extend this methodology to consider the more complex case of oxygen double photoionization. We compare our calculated results with recent measurements at the Advanced Light Source, as well as earlier experimental measurements. Our RMPS results agree well, qualitatively, with the experimental measurements, but there exist outstanding discrepancies to be addressed. This project is supported by NASA APRA award NNX17AD41G.

  2. High performance platinum single atom electrocatalyst for oxygen reduction reaction

    Science.gov (United States)

    Liu, Jing; Jiao, Menggai; Lu, Lanlu; Barkholtz, Heather M.; Li, Yuping; Wang, Ying; Jiang, Luhua; Wu, Zhijian; Liu, Di-Jia; Zhuang, Lin; Ma, Chao; Zeng, Jie; Zhang, Bingsen; Su, Dangsheng; Song, Ping; Xing, Wei; Xu, Weilin; Wang, Ying; Jiang, Zheng; Sun, Gongquan

    2017-07-01

    For the large-scale sustainable implementation of polymer electrolyte membrane fuel cells in vehicles, high-performance electrocatalysts with low platinum consumption are desirable for use as cathode material during the oxygen reduction reaction in fuel cells. Here we report a carbon black-supported cost-effective, efficient and durable platinum single-atom electrocatalyst with carbon monoxide/methanol tolerance for the cathodic oxygen reduction reaction. The acidic single-cell with such a catalyst as cathode delivers high performance, with power density up to 680 mW cm-2 at 80 °C with a low platinum loading of 0.09 mgPt cm-2, corresponding to a platinum utilization of 0.13 gPt kW-1 in the fuel cell. Good fuel cell durability is also observed. Theoretical calculations reveal that the main effective sites on such platinum single-atom electrocatalysts are single-pyridinic-nitrogen-atom-anchored single-platinum-atom centres, which are tolerant to carbon monoxide/methanol, but highly active for the oxygen reduction reaction.

  3. Atomic hydrogen and oxygen adsorptions in single-walled zigzag silicon nanotubes

    International Nuclear Information System (INIS)

    Chen, Haoliang; Ray, Asok K.

    2013-01-01

    Ab initio calculations have been performed to study the electronic and geometric structure properties of zigzag silicon nanotubes. Full geometry and spin optimizations have been performed without any symmetry constraints with an all electron 3-21G* basis set and the B3LYP hybrid functional. The largest zigzag SiNT studied here, (12, 0), has a binding energy per atom of 3.584 eV. Atomic hydrogen and oxygen adsorptions on (9, 0) and (10, 0) nanotubes have also been studied by optimizing the distances of the adatoms from both inside and outside the tube. The adatom is initially placed in four adsorption sites-parallel bridge (PB), zigzag bridge (ZB), hollow, and on-top site. The on-top site is the most preferred site for hydrogen atom adsorbed on (9, 0), with an adsorption energy of 3.0 eV and an optimized distance of 1.49 Å from the adatom to the nearest silicon atom. For oxygen adsorption on (9, 0), the most preferred site is the ZB site, with an adsorption energy of 5.987 eV and an optimized distance of 1.72 Å. For atomic hydrogen adsorption on (10, 0), the most preferred site is also the on-top site with an adsorption energy of 3.174 eV and an optimized distance of 1.49 Å. For adsorption of atomic oxygen on (10, 0), the most preferred site is PB site, with an adsorption energy of 6.306 eV and an optimized distance of 1.71 Å. The HOMO–LUMO gaps of (9, 0) after adsorptions of hydrogen and oxygen atoms decrease while the HOMO–LUMO gaps of (10, 0) increase after adsorption of hydrogen and oxygen

  4. Unveiling the high-activity origin of single-atom iron catalysts for oxygen reduction reaction.

    Science.gov (United States)

    Yang, Liu; Cheng, Daojian; Xu, Haoxiang; Zeng, Xiaofei; Wan, Xin; Shui, Jianglan; Xiang, Zhonghua; Cao, Dapeng

    2018-06-26

    It is still a grand challenge to develop a highly efficient nonprecious-metal electrocatalyst to replace the Pt-based catalysts for oxygen reduction reaction (ORR). Here, we propose a surfactant-assisted method to synthesize single-atom iron catalysts (SA-Fe/NG). The half-wave potential of SA-Fe/NG is only 30 mV less than 20% Pt/C in acidic medium, while it is 30 mV superior to 20% Pt/C in alkaline medium. Moreover, SA-Fe/NG shows extremely high stability with only 12 mV and 15 mV negative shifts after 5,000 cycles in acidic and alkaline media, respectively. Impressively, the SA-Fe/NG-based acidic proton exchange membrane fuel cell (PEMFC) exhibits a high power density of 823 mW cm -2 Combining experimental results and density-functional theory (DFT) calculations, we further reveal that the origin of high-ORR activity of SA-Fe/NG is from the Fe-pyrrolic-N species, because such molecular incorporation is the key, leading to the active site increase in an order of magnitude which successfully clarifies the bottleneck puzzle of why a small amount of iron in the SA-Fe catalysts can exhibit extremely superior ORR activity.

  5. Single Cobalt Atoms with Precise N-Coordination as Superior Oxygen Reduction Reaction Catalysts.

    Science.gov (United States)

    Yin, Peiqun; Yao, Tao; Wu, Yuen; Zheng, Lirong; Lin, Yue; Liu, Wei; Ju, Huanxin; Zhu, Junfa; Hong, Xun; Deng, Zhaoxiang; Zhou, Gang; Wei, Shiqiang; Li, Yadong

    2016-08-26

    A new strategy for achieving stable Co single atoms (SAs) on nitrogen-doped porous carbon with high metal loading over 4 wt % is reported. The strategy is based on a pyrolysis process of predesigned bimetallic Zn/Co metal-organic frameworks, during which Co can be reduced by carbonization of the organic linker and Zn is selectively evaporated away at high temperatures above 800 °C. The spherical aberration correction electron microscopy and extended X-ray absorption fine structure measurements both confirm the atomic dispersion of Co atoms stabilized by as-generated N-doped porous carbon. Surprisingly, the obtained Co-Nx single sites exhibit superior ORR performance with a half-wave potential (0.881 V) that is more positive than commercial Pt/C (0.811 V) and most reported non-precious metal catalysts. Durability tests revealed that the Co single atoms exhibit outstanding chemical stability during electrocatalysis and thermal stability that resists sintering at 900 °C. Our findings open up a new routine for general and practical synthesis of a variety of materials bearing single atoms, which could facilitate new discoveries at the atomic scale in condensed materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Single Molecule Atomic Force Microscopy Studies of Photosensitized Singlet Oxygen Behavior on a DNA Origami Template

    DEFF Research Database (Denmark)

    Helmig, Sarah Wendelboe; Rotaru, Alexandru; Arian, Dumitru

    2010-01-01

    DNA origami, the folding of a long single-stranded DNA sequence (scaffold strand) by hundreds of short synthetic oligonucleotides (staple strands) into parallel aligned helices, is a highly efficient method to form advanced self-assembled DNA-architectures. Since molecules and various materials can...... be conjugated to each of the short staple strands, the origami method offers a unique possibility of arranging molecules and materials in well-defined positions on a structured surface. Here we combine the action of light with AFM and DNA nanostructures to study the production of singlet oxygen from a single...... photosensitizer molecule conjugated to a selected DNA origami staple strand on an origami structure. We demonstrate a distance-dependent oxidation of organic moieties incorporated in specific positions on DNA origami by singlet oxygen produced from a single photosensitizer located at the center of each origami....

  7. Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hanguang; Hwang, Sooyeon; Wang, Maoyu; Feng, Zhenxing; Karakalos, Stavros; Luo, Langli; Qiao, Zhi; Xie, Xiaohong; Wang, Chongmin; Su, Dong; Shao, Yuyan; Wu, Gang (BNL); (Oregon State U.); (SC); (PNNL); (Buffalo)

    2017-09-26

    It remains a grand challenge to replace platinum group metal (PGM) catalysts with earth-abundant materials for the oxygen reduction reaction (ORR) in acidic media, which is crucial for large-scale deployment of proton exchange membrane fuel cells (PEMFCs). Here, we report a high-performance atomic Fe catalyst derived from chemically Fe-doped zeolitic imidazolate frameworks (ZIFs) by directly bonding Fe ions to imidazolate ligands within 3D frameworks. Although the ZIF was identified as a promising precursor, the new synthetic chemistry enables the creation of well-dispersed atomic Fe sites embedded into porous carbon without the formation of aggregates. The size of catalyst particles is tunable through synthesizing Fe-doped ZIF nanocrystal precursors in a wide range from 20 to 1000 nm followed by one-step thermal activation. Similar to Pt nanoparticles, the unique size control without altering chemical properties afforded by this approach is able to increase the number of PGM-free active sites. The best ORR activity is measured with the catalyst at a size of 50 nm. Further size reduction to 20 nm leads to significant particle agglomeration, thus decreasing the activity. Using the homogeneous atomic Fe model catalysts, we elucidated the active site formation process through correlating measured ORR activity with the change of chemical bonds in precursors during thermal activation up to 1100 °C. The critical temperature to form active sites is 800 °C, which is associated with a new Fe species with a reduced oxidation number (from Fe3+ to Fe2+) likely bonded with pyridinic N (FeN4) embedded into the carbon planes. Further increasing the temperature leads to continuously enhanced activity, linked to the rise of graphitic N and Fe–N species. The new atomic Fe catalyst has achieved respectable ORR activity in challenging acidic media (0.5 M H2SO4), showing a half-wave potential of 0.85 V vs RHE and leaving only a 30 mV gap with Pt/C (60 μgPt/cm2). Enhanced stability

  8. Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hanguang [Department; Hwang, Sooyeon [Center; Wang, Maoyu [School; Feng, Zhenxing [School; Karakalos, Stavros [Department; Luo, Langli [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Qiao, Zhi [Department; Xie, Xiaohong [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Wang, Chongmin [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Su, Dong [Center; Shao, Yuyan [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Wu, Gang [Department

    2017-09-26

    To significantly reduce the cost of proton exchange membrane (PEM) fuel cells, current Pt must be replaced by platinum-metal-group (PGM)-free catalysts for the oxygen reduction reaction (ORR) in acid. We report here a new class of high-performance atomic iron dispersed carbon catalysts through controlled chemical doping of iron ions into zinc-zeolitic imidazolate framework (ZIF), a type of metal-organic framework (MOF). The novel synthetic chemistry enables accurate size control of Fe-doped ZIF catalyst particles with a wide range from 20 to 1000 nm without changing chemical properties, which provides a great opportunity to increase the density of active sites that is determined by the particle size. We elucidated the active site formation mechanism by correlating the chemical and structural changes with thermal activation process for the conversion from Fe-N4 complex containing hydrocarbon networks in ZIF to highly active FeNx sites embedded into carbon. A temperature of 800oC was identified as the critical point to start forming pyridinic nitrogen doping at the edge of the graphitized carbon planes. Further increasing heating temperature to 1100oC leads to increase of graphitic nitrogen, generating possible synergistic effect with FeNx sites to promote ORR activity. The best performing catalyst, which has well-defined particle size around 50 nm and abundance of atomic FeNx sites embedded into carbon structures, achieve a new performance milestone for the ORR in acid including a half-wave potential of 0.85 V vs RHE and only 20 mV loss after 10,000 cycles in O2 saturated H2SO4 electrolyte. The new class PGM-free catalyst with approaching activity to Pt holds great promise for future PEM fuel cells.

  9. Fe Isolated Single Atoms on S, N Codoped Carbon by Copolymer Pyrolysis Strategy for Highly Efficient Oxygen Reduction Reaction.

    Science.gov (United States)

    Li, Qiheng; Chen, Wenxing; Xiao, Hai; Gong, Yue; Li, Zhi; Zheng, Lirong; Zheng, Xusheng; Yan, Wensheng; Cheong, Weng-Chon; Shen, Rongan; Fu, Ninghua; Gu, Lin; Zhuang, Zhongbin; Chen, Chen; Wang, Dingsheng; Peng, Qing; Li, Jun; Li, Yadong

    2018-06-01

    Heteroatom-doped Fe-NC catalyst has emerged as one of the most promising candidates to replace noble metal-based catalysts for highly efficient oxygen reduction reaction (ORR). However, delicate controls over their structure parameters to optimize the catalytic efficiency and molecular-level understandings of the catalytic mechanism are still challenging. Herein, a novel pyrrole-thiophene copolymer pyrolysis strategy to synthesize Fe-isolated single atoms on sulfur and nitrogen-codoped carbon (Fe-ISA/SNC) with controllable S, N doping is rationally designed. The catalytic efficiency of Fe-ISA/SNC shows a volcano-type curve with the increase of sulfur doping. The optimized Fe-ISA/SNC exhibits a half-wave potential of 0.896 V (vs reversible hydrogen electrode (RHE)), which is more positive than those of Fe-isolated single atoms on nitrogen codoped carbon (Fe-ISA/NC, 0.839 V), commercial Pt/C (0.841 V), and most reported nonprecious metal catalysts. Fe-ISA/SNC is methanol tolerable and shows negligible activity decay in alkaline condition during 15 000 voltage cycles. X-ray absorption fine structure analysis and density functional theory calculations reveal that the incorporated sulfur engineers the charges on N atoms surrounding the Fe reactive center. The enriched charge facilitates the rate-limiting reductive release of OH* and therefore improved the overall ORR efficiency. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A Single Atom Antenna

    International Nuclear Information System (INIS)

    Trinter, Florian; Williams, Joshua B; Weller, Miriam; Waitz, Markus; Pitzer, Martin; Voigtsberger, Jörg; Schober, Carl; Kastirke, Gregor; Müller, Christian; Goihl, Christoph; Burzynski, Phillip; Wiegandt, Florian; Wallauer, Robert; Kalinin, Anton; Schmidt, Lothar Ph H; Schöffler, Markus S; Jahnke, Till; Dörner, Reinhard; Chiang, Ying-Chih; Gokhberg, Kirill

    2015-01-01

    Here we demonstrate the smallest possible implementation of an antenna-receiver complex which consists of a single (helium) atom acting as the antenna and a second (neon) atom acting as a receiver. (paper)

  11. Single atom oscillations

    International Nuclear Information System (INIS)

    Wiorkowski, P.; Walther, H.

    1990-01-01

    Modern methods of laser spectroscopy allow the study of single atoms or ions in an unperturbed environment. This has opened up interesting new experiments, among them the detailed study of radiation-atom coupling. In this paper, the following two experiments dealing with this problem are reviewed: the single-atom maser and the study of the resonance fluorescence of a single stored ion. The simplest and most fundamental system for studying radiation-matter coupling is a single two-level atom interacting with a single mode of an electromagnetic field in a cavity. This problem received a great deal of attention shortly after the maser was invented

  12. Single atom spintronics

    International Nuclear Information System (INIS)

    Sullivan, M. R.; Armstrong, J. N.; Hua, S. Z.; Chopra, H. D.

    2005-01-01

    Full text: Single atom spintronics (SASS) represents the ultimate physical limit in device miniaturization. SASS is characterized by ballistic electron transport, and is a fertile ground for exploring new phenomena. In addition to the 'stationary' (field independent) scattering centers that have a small and fixed contribution to total transmission probability of electron waves, domain walls constitute an additional and enhanced source of scattering in these magnetic quantum point contacts (QPCs), the latter being both field and spin-dependent. Through the measurement of complete hysteresis loops as a function of quantized conductance, we present definitive evidence of enhanced backscattering of electron waves by atomically sharp domain walls in QPCs formed between microfabricated thin films [1]. Since domain walls move in a magnetic field, the magnitude of spin-dependent scattering changes as the QPC is cycled along its hysteresis loop. For example, as shown in the inset in Fig. 1, from zero towards saturation in a given field direction, the resistance varies as the wall is being swept away, whereas the resistance is constant upon returning from saturation towards zero, since in this segment of the hysteresis loop no domain wall is present across the contact. The observed spin-valve like behavior is realized by control over wall width and shape anisotropy. This behavior also unmistakably sets itself apart from any mechanical artifacts; additionally, measurements made on single atom contacts provide an artifact-free environment [2]. Intuitively, it is simpler to organize the observed BMR data according to all possible transitions between different conductance plateaus, as shown by the dotted line in Fig. 1; the solid circles show experimental data for Co, which follows the predicted scheme. Requisite elements for the observation of the effect will be discussed in detail along with a review of state of research in this field. Practically, the challenge lies in making

  13. Formation and properties of metal-oxygen atomic chains

    DEFF Research Database (Denmark)

    Thijssen, W.H.A.; Strange, Mikkel; de Brugh, J.M.J.A.

    2008-01-01

    of longer atomic chains. The mechanical and electrical properties of these diatomic chains have been investigated by determining local vibration modes of the chain and by measuring the dependence of the average chain-conductance on the length of the chain. Additionally, we have performed calculations......Suspended chains consisting of single noble metal and oxygen atoms have been formed. We provide evidence that oxygen can react with and be incorporated into metallic one-dimensional atomic chains. Oxygen incorporation reinforces the linear bonds in the chain, which facilitates the creation...

  14. Hot oxygen atoms: Their generation and chemistry

    International Nuclear Information System (INIS)

    Ferrieri, R.A.; Chu, Yung Y.; Wolf, A.P.

    1987-01-01

    Oxygen atoms with energies between 1 and 10 eV have been produced through ion beam sputtering from metal oxide targets. Argon ion beams were used on Ta 2 O 5 and V 2 O 5 . Results show that some control may be exerted over the atom's kinetic energy by changing the target. Reactions of the hot O( 3 P) with cis- and trans-butenes were investigated

  15. Activation of surface lattice oxygen in single-atom Pt/CeO 2 for low-temperature CO oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Nie, Lei; Mei, Donghai; Xiong, Haifeng; Peng, Bo; Ren, Zhibo; Pereira Hernandez, Xavier I.; DelaRiva, Andrew; Wang, Meng; Engelhard, Mark H.; Kovarik, Libor; Datye, Abhaya K.; Wang, Yong

    2017-12-14

    While single-atom catalysts can provide high catalytic activity and selectivity, application in industrial catalysts demands long term performance and the ability to regenerate the catalysts. We have investigated the factors that lead to improved catalytic activity of a Pt/CeO2 catalyst for low temperature CO oxidation. Single-atom Pt/CeO2 becomes active for CO oxidation under lean condition only at elevated temperatures, because CO is strongly bound to ionic Pt sites. Reducing the catalyst, even under mild conditions, leads to onset of CO oxidation activity even at room temperature. This high activity state involves the transformation of mononuclear Pt species to sub-nanometer sized Pt particles. Under oxidizing conditions, the Pt can be restored to its stable, single-atom state. The key to facile regeneration is the ability to create mobile Pt species and suitable trapping sites on the support, making this a prototypical catalyst system for industrial application of single-atom catalysis.

  16. MISSE PEACE Polymers Atomic Oxygen Erosion Results

    Science.gov (United States)

    deGroh, Kim, K.; Banks, Bruce A.; McCarthy, Catherine E.; Rucker, Rochelle N.; Roberts, Lily M.; Berger, Lauren A.

    2006-01-01

    Forty-one different polymer samples, collectively called the Polymer Erosion and Contamination Experiment (PEACE) Polymers, have been exposed to the low Earth orbit (LEO) environment on the exterior of the International Space Station (ISS) for nearly 4 years as part of Materials International Space Station Experiment 2 (MISSE 2). The objective of the PEACE Polymers experiment was to determine the atomic oxygen erosion yield of a wide variety of polymeric materials after long term exposure to the space environment. The polymers range from those commonly used for spacecraft applications, such as Teflon (DuPont) FEP, to more recently developed polymers, such as high temperature polyimide PMR (polymerization of monomer reactants). Additional polymers were included to explore erosion yield dependence upon chemical composition. The MISSE PEACE Polymers experiment was flown in MISSE Passive Experiment Carrier 2 (PEC 2), tray 1, on the exterior of the ISS Quest Airlock and was exposed to atomic oxygen along with solar and charged particle radiation. MISSE 2 was successfully retrieved during a space walk on July 30, 2005, during Discovery s STS-114 Return to Flight mission. Details on the specific polymers flown, flight sample fabrication, pre-flight and post-flight characterization techniques, and atomic oxygen fluence calculations are discussed along with a summary of the atomic oxygen erosion yield results. The MISSE 2 PEACE Polymers experiment is unique because it has the widest variety of polymers flown in LEO for a long duration and provides extremely valuable erosion yield data for spacecraft design purposes.

  17. Examining the rudimentary steps of the oxygen reduction reaction on single-atomic Pt using Ti-based non-oxide supports

    DEFF Research Database (Denmark)

    Tak, Young Joo; Yang, Sungeun; Lee, Hyunjoo

    2018-01-01

    C(100)-supported single Pt atoms. The O2 and OOH* dissociation processes on Pt/TiN(100) are determined to be non-activated (i.e. "barrier-less" dissociation) while an activation energy barrier of 0.19 and 0.51eV is found for these dissociation processes on Pt/TiC(100), respectively. Moreover, the series...

  18. The Interaction between Graphene and Oxygen Atom

    Directory of Open Access Journals (Sweden)

    Hao Yifan

    2016-01-01

    Full Text Available Based on the density function theory (DFT method, the interaction between the graphene and oxygen atom is simulated by the B3LYP functional with the 6-31G basis set. Due to the symmetry of graphene (C54H18, D6h, a representative patch is put forward to represent the whole graphene to simplify the description. The representative patch on the surface is considered to gain the potential energy surface (PES. By the calculation of the PES, four possible stable isomers of the C54H18-O radical can be obtained. Meanwhile, the structures and energies of the four possible stable isomers, are further investigated thermodynamically, kinetically, and chemically. According to the transition states, the possible reaction mechanism between the graphene and oxygen atom is given.

  19. Absolute photoionization cross sections of atomic oxygen

    Science.gov (United States)

    Samson, J. A. R.; Pareek, P. N.

    1985-01-01

    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

  20. Measuring oxidation processes: Atomic oxygen flux monitor

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Of the existing 95 high-energy accelerators in the world, the Stanford Linear Collider (SLC) at the Stanford Linear Accelerator Center (SLAC) is the only one of the linear-collider type, where electrons and positrons are smashed together at energies of 50 GeV using linear beams instead of beam rings for achieving interactions. Use of a collider eliminates energy losses in the form of x-rays due to the curved trajectory of the rings, a phenomena known as bremsstrauhlung. Because these losses are eliminated, higher interaction energies are reached. Consequently the SLC produced the first Z particle in quantities large enough to allow measurement of its physical properties with some accuracy. SLAC intends to probe still deeper into the structure of matter by next polarizing the electrons in the beam. The surface of the source for these polarized particles, typically gallium arsenide, must be kept clean of contaminants. One method for accomplishing this task requires the oxidation of the surface, from which the oxidized contaminants are later boiled off. The technique requires careful measurement of the oxidation process. SLAC researchers have developed a technique for measuring the atomic oxygen flux in this process. The method uses a silver film on a quartz-crystal, deposition-rate monitor. Measuring the initial oxidation rate of the silver, which is proportional to the atomic oxygen flux, determines a lower limit on that flux in the range of 10 13 to 10 17 atoms per square centimeter per second. Furthermore, the deposition is reversible by exposing the sensor to atomic hydrogen. This technique has wider applications to processes in solid-state and surface physics as well as surface chemistry. In semiconductor manufacturing where a precise thickness of oxide must be deposited, this technique could be used to monitor the critical flux of atomic oxygen in the process

  1. Working group written presentation: Atomic oxygen

    International Nuclear Information System (INIS)

    Leger, L.J.; Visentine, J.T.

    1989-01-01

    Earlier Shuttle flight experiments have shown NASA and SDIO spacecraft designed for operation in low-Earth orbit (LEO) must take into consideration the highly oxidative characteristics of the ambient flight environment. Materials most adversely affected by atomic oxygen interactions include organic films, advanced (carbon-based) composites, thermal control coatings, organic-based paints, optical coatings, and thermal control blankets commonly used in spacecraft applications. Earlier results of NASA flight experiments have shown prolonged exposure of sensitive spacecraft materials to the LEO environment will result in degraded systems performance or, more importantly, lead to requirements for excessive on-orbit maintenance, with both conditions contributing significantly to increased mission costs and reduced mission objectives. Flight data obtained from previous Space Shuttle missions and results of the Solar Max recovery mission are limited in terms of atomic oxygen exposure and accuracy of fluence estimates. The results of laboratory studies to investigate the long-term (15 to 30 yrs) effects of AO exposure on spacecraft surfaces are only recently available, and qualitative correlations of laboratory results with flight results have been obtained for only a limited number of materials. The working group recommended the most promising ground-based laboratories now under development be made operational as soon as possible to study the full-life effects of atomic oxygen exposure on spacecraft systems

  2. Non-penetrating states of atomic oxygen

    International Nuclear Information System (INIS)

    Chang, E.S.; Barowy, W.M.; Sakai, H.

    1988-01-01

    Atomic Rydberg transitions have been observed in the 1-5 μm emission spectrum of an oxygen discharge. Proper analysis of these lines requires reinterpretation of previous 3d-nf measurements by explicit inclusion of the theoretical F-level fine structure in the experimental line profiles. The revised triplet-quintet differences in the nF levels are now seen to vary smoothly with n, analogous to the polarization energy in an Edlen plot. The new levels, 5g, 6g, 7g, and 7h also form a straight line according to the polarization formula, thereby confirming the ionization limit to a higher accuracy. (orig.)

  3. Electric field imaging of single atoms

    Science.gov (United States)

    Shibata, Naoya; Seki, Takehito; Sánchez-Santolino, Gabriel; Findlay, Scott D.; Kohno, Yuji; Matsumoto, Takao; Ishikawa, Ryo; Ikuhara, Yuichi

    2017-01-01

    In scanning transmission electron microscopy (STEM), single atoms can be imaged by detecting electrons scattered through high angles using post-specimen, annular-type detectors. Recently, it has been shown that the atomic-scale electric field of both the positive atomic nuclei and the surrounding negative electrons within crystalline materials can be probed by atomic-resolution differential phase contrast STEM. Here we demonstrate the real-space imaging of the (projected) atomic electric field distribution inside single Au atoms, using sub-Å spatial resolution STEM combined with a high-speed segmented detector. We directly visualize that the electric field distribution (blurred by the sub-Å size electron probe) drastically changes within the single Au atom in a shape that relates to the spatial variation of total charge density within the atom. Atomic-resolution electric field mapping with single-atom sensitivity enables us to examine their detailed internal and boundary structures. PMID:28555629

  4. Density functional theory study the effects of oxygen-containing functional groups on oxygen molecules and oxygen atoms adsorbed on carbonaceous materials.

    Science.gov (United States)

    Qi, Xuejun; Song, Wenwu; Shi, Jianwei

    2017-01-01

    Density functional theory was used to study the effects of different types of oxygen-containing functional groups on the adsorption of oxygen molecules and single active oxygen atoms on carbonaceous materials. During gasification or combustion reactions of carbonaceous materials, oxygen-containing functional groups such as hydroxyl(-OH), carbonyl(-CO), quinone(-O), and carboxyl(-COOH) are often present on the edge of graphite and can affect graphite's chemical properties. When oxygen-containing functional groups appear on a graphite surface, the oxygen molecules are strongly adsorbed onto the surface to form a four-member ring structure. At the same time, the O-O bond is greatly weakened and easily broken. The adsorption energy value indicates that the adsorption of oxygen molecules changes from physisorption to chemisorption for oxygen-containing functional groups on the edge of a graphite surface. In addition, our results indicate that the adsorption energy depends on the type of oxygen-containing functional group. When a single active oxygen atom is adsorbed on the bridge site of graphite, it gives rise to a stable epoxy structure. Epoxy can cause deformation of the graphite lattice due to the transition of graphite from sp2 to sp3 after the addition of an oxygen atom. For quinone group on the edge of graphite, oxygen atoms react with carbon atoms to form the precursor of CO2. Similarly, the single active oxygen atoms of carbonyl groups can interact with edge carbon atoms to form the precursor of CO2. The results show that oxygen-containing functional groups on graphite surfaces enhance the activity of graphite, which promotes adsorption on the graphite surface.

  5. Oxidation of ruthenium thin films using atomic oxygen

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, A.P.; Bogan, J.; Brady, A.; Hughes, G.

    2015-12-31

    In this study, the use of atomic oxygen to oxidise ruthenium thin films is assessed. Atomic layer deposited (ALD) ruthenium thin films (~ 3 nm) were exposed to varying amounts of atomic oxygen and the results were compared to the impact of exposures to molecular oxygen. X-ray photoelectron spectroscopy studies reveal substantial oxidation of metallic ruthenium films to RuO{sub 2} at exposures as low as ~ 10{sup 2} L at 575 K when atomic oxygen was used. Higher exposures of molecular oxygen resulted in no metal oxidation highlighting the benefits of using atomic oxygen to form RuO{sub 2}. Additionally, the partial oxidation of these ruthenium films occurred at temperatures as low as 293 K (room temperature) in an atomic oxygen environment. - Highlights: • X-ray photoelectron spectroscopy study of the oxidation of Ru thin films • Oxidation of Ru thin films using atomic oxygen • Comparison between atomic oxygen and molecular oxygen treatments on Ru thin films • Fully oxidised RuO{sub 2} thin films formed with low exposures to atomic oxygen.

  6. Single-atom lasing induced atomic self-trapping

    International Nuclear Information System (INIS)

    Salzburger, T.; Ritsch, H.

    2004-01-01

    We study atomic center of mass motion and field dynamics of a single-atom laser consisting of a single incoherently pumped free atom moving in an optical high-Q resonator. For sufficient pumping, the system starts lasing whenever the atom is close to a field antinode. If the field mode eigenfrequency is larger than the atomic transition frequency, the generated laser light attracts the atom to the field antinode and cools its motion. Using quantum Monte Carlo wave function simulations, we investigate this coupled atom-field dynamics including photon recoil and cavity decay. In the regime of strong coupling, the generated field shows strong nonclassical features like photon antibunching, and the atom is spatially confined and cooled to sub-Doppler temperatures. (author)

  7. Boron nitride nanosheets as oxygen-atom corrosion protective coatings

    International Nuclear Information System (INIS)

    Yi, Min; Shen, Zhigang; Zhao, Xiaohu; Liang, Shuaishuai; Liu, Lei

    2014-01-01

    The research of two-dimensional nanomaterials for anticorrosion applications is just recently burgeoning. Herein, we demonstrate the boron nitride nanosheets (BNNSs) coatings for protecting polymer from oxygen-atom corrosion. High-quality BNNSs, which are produced by an effective fluid dynamics method with multiple exfoliation mechanisms, can be assembled into coatings with controlled thickness by vacuum filtration. After exposed in atom oxygen, the naked polymer is severely corroded with remarkable mass loss, while the BNNSs-coated polymer remains intact. Barrier and bonding effects of the BNNSs are responsible for the coating's protective performance. These preliminary yet reproducible results pave a way for resisting oxygen-atom corrosion

  8. Single atom counting with accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Woelfli, W [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1984-02-01

    Direct detection of radioisotopes with conventional mass spectrometers is possible when the potential background atoms, in particular stable isotopes of the same mass (isobars) or molecules of similar mass are present in sufficiently low concentrations. Most of the long lived radioisotopes of interest for dating purposes however, occur in such small concentrations that their peak in the mass spectrum is obscured by the stable isobar and molecule distributions. The key idea of the new AMS technique which allows us to measure directly such small concentrations is the acceleration of the sample atoms to MeV energies and to use various filter processes and particle identification techniques developed for nuclear physics research to eliminate the isobaric and molecular interferences. The detection methods used for each radioisotope depend on the dominant background atoms and these in turn depend on the specific accelerator used. The problems encountered in transforming an existing particle accelerator into a high precision dating tool are considerable and have been solved only recently for one type of accelerator, notably the tandem Van de Graaff. For this reason the description of the AMS method and some of its applications is restricted to this type of accelerator only.

  9. Mechanism of single atom switch on silicon

    DEFF Research Database (Denmark)

    Quaade, Ulrich; Stokbro, Kurt; Thirstrup, C.

    1998-01-01

    We demonstrate single atom switch on silicon which operates by displacement of a hydrogen atom on the silicon (100) surface at room temperature. We find two principal effects by which the switch is controlled: a pronounced maximum of the switching probability as function of sample bias...

  10. Feedback Cooling of a Single Neutral Atom

    NARCIS (Netherlands)

    Koch, Markus; Sames, Christian; Kubanek, Alexander; Apel, Matthias; Balbach, Maximilian; Ourjoumtsev, Alexei; Pinkse, Pepijn Willemszoon Harry; Rempe, Gerhard

    2010-01-01

    We demonstrate feedback cooling of the motion of a single rubidium atom trapped in a high-finesse optical resonator to a temperature of about 160  μK. Time-dependent transmission and intensity-correlation measurements prove the reduction of the atomic position uncertainty. The feedback increases the

  11. Single-Atom Catalysts of Precious Metals for Electrochemical Reactions.

    Science.gov (United States)

    Kim, Jiwhan; Kim, Hee-Eun; Lee, Hyunjoo

    2018-01-10

    Single-atom catalysts (SACs), in which metal atoms are dispersed on the support without forming nanoparticles, have been used for various heterogeneous reactions and most recently for electrochemical reactions. In this Minireview, recent examples of single-atom electrocatalysts used for the oxygen reduction reaction (ORR), hydrogen oxidation reaction (HOR), hydrogen evolution reaction (HER), formic acid oxidation reaction (FAOR), and methanol oxidation reaction (MOR) are introduced. Many density functional theory (DFT) simulations have predicted that SACs may be effective for CO 2 reduction to methane or methanol production while suppressing H 2 evolution, and those cases are introduced here as well. Single atoms, mainly Pt single atoms, have been deposited on TiN or TiC nanoparticles, defective graphene nanosheets, N-doped covalent triazine frameworks, graphitic carbon nitride, S-doped zeolite-templated carbon, and Sb-doped SnO 2 surfaces. Scanning transmission electron microscopy, extended X-ray absorption fine structure measurement, and in situ infrared spectroscopy have been used to detect the single-atom structure and confirm the absence of nanoparticles. SACs have shown high mass activity, minimizing the use of precious metal, and unique selectivity distinct from nanoparticle catalysts owing to the absence of ensemble sites. Additional features that SACs should possess for effective electrochemical applications were also suggested. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Atom interaction propensities of oxygenated chemical functions in crystal packings

    Directory of Open Access Journals (Sweden)

    Christian Jelsch

    2017-03-01

    Full Text Available The crystal contacts of several families of hydrocarbon compounds substituted with one or several types of oxygenated chemical groups were analyzed statistically using the Hirshfeld surface methodology. The propensity of contacts to occur between two chemical types is described with the contact enrichment descriptor. The systematic large enrichment ratios of some interactions like the O—H...O hydrogen bonds suggests that these contacts are a driving force in the crystal packing formation. The same statement holds for the weaker C—H...O hydrogen bonds in ethers, esters and ketones, in the absence of polar H atoms. The over-represented contacts in crystals of oxygenated hydrocarbons are generally of two types: electrostatic attractions (hydrogen bonds and hydrophobic interactions. While Cl...O interactions are generally avoided, in a minority of chloro-oxygenated hydrocarbons, significant halogen bonding does occur. General tendencies can often be derived for many contact types, but outlier compounds are instructive as they display peculiar or rare features. The methodology also allows the detection of outliers which can be structures with errors. For instance, a significant number of hydroxylated molecules displaying over-represented non-favorable oxygen–oxygen contacts turned out to have wrongly oriented hydroxyl groups. Beyond crystal packings with a single molecule in the asymmetric unit, the behavior of water in monohydrate compounds and of crystals with Z′ = 2 (dimers are also investigated. It was found in several cases that, in the presence of several oxygenated chemical groups, cross-interactions between different chemical groups (e.g. water/alcohols; alcohols/phenols are often favored in the crystal packings. While some trends in accordance with common chemical principles are retrieved, some unexpected results can however appear. For example, in crystals of alcohol–phenol compounds, the strong O—H...O hydrogen bonds between

  13. Reactivity of amino acid anions with nitrogen and oxygen atoms.

    Science.gov (United States)

    Wang, Zhe-Chen; Li, Ya-Ke; He, Sheng-Gui; Bierbaum, Veronica M

    2018-02-14

    For many decades, astronomers have searched for biological molecules, including amino acids, in the interstellar medium; this endeavor is important for investigating the hypothesis of the origin of life from space. The space environment is complex and atomic species, such as nitrogen and oxygen atoms, are widely distributed. In this work, the reactions of eight typical deprotonated amino acids (glycine, alanine, cysteine, proline, aspartic acid, histidine, tyrosine, and tryptophan) with ground state nitrogen and oxygen atoms are studied by experiment and theory. These amino acid anions do not react with nitrogen atoms. However, the reactions of these ions with oxygen atoms show an intriguing variety of ionic products and the reaction rate constants are of the order of 10 -10 cm 3 s -1 . Density functional calculations provide detailed mechanisms of the reactions, and demonstrate that spin conversion is essential for some processes. Our study provides important data and insights for understanding the kinetic and dynamic behavior of amino acids in space environments.

  14. Reaction mechanism of oxygen atoms with unsaturated hydrocarbons by the crossed molecular beams method

    Energy Technology Data Exchange (ETDEWEB)

    Buss, R.J.; Baseman, R.J.; Guozhong, H.; Lee, Y.T.

    1982-04-01

    From a series of studies of the reaction of oxygen atoms with unsaturated hydrocarbons using the crossed molecular beam method, the dominant reaction mechanisms were found to be the simple substitution reactions with oxygen atoms replacing H, Cl, Br atom or alkyl groups. Complication due to secondary reaction was avoided by carrying out experiments under single collisions and observing primary products directly. Primary products were identified by measuring the angular and velocity distributions of products at all the mass numbers which could be detected by the mass spectrometer, and from comparison of these distributions, applying the requirement of energy and momentum conservation.

  15. Reaction Mechanism of Oxygen Atoms with Unsaturated Hydrocarbons by the Crossed-Molecular-Beams Method

    Science.gov (United States)

    Buss, R. J.; Baseman, R. J.; Guozhong, H.; Lee, Y. T.

    1982-04-01

    From a series of studies of the reaction of oxygen atoms with unsaturated hydrocarbons using the crossed molecular beam method, the dominant reaction mechanisms were found to be the simple substitution reactions with oxygen atoms replacing H, Cl, Br atom or alkyl groups. Complication due to secondary reaction was avoided by carrying out experiments under single collisions and observing primary products directly. Primary products were identified by measuring the angular and velocity distributions of products at all the mass numbers which could be detected by the mass spectrometer, and from comparison of these distributions, applying the requirement of energy and momentum conservation.

  16. Tailoring of materials by atomic oxygen from ECR plasma source

    International Nuclear Information System (INIS)

    Naddaf, Munzer; Bhoraskar, S.V.

    2002-01-01

    Full text: An intense source of oxygen finds important applications in many areas of science, technology and industry. It has been successfully used for surface activation and cleaning in the electronic, chemical and automotive industries. Atomic oxygen and interaction with materials have also a significant importance in space science and technology. This paper describes the detailed studies related to the surface modification and processing of different materials, which include metals and polymers by atomic oxygen produced in microwave assisted electron cyclotron resonance plasma. The energy distribution of ions was measured as a function of plasma parameters and density measurements were supplemented by catalytic probe using nickel and oxidation of silver surface

  17. Detection of atomic oxygen in flames by absorption spectroscopy

    International Nuclear Information System (INIS)

    Cheskis, S.; Kovalenko, S.A.

    1994-01-01

    The absolute concentration of atomic oxygen in an atmospheric pressure hydrogen/air flame has been measured using Intracavity Laser Spectroscopy (ICLS) based on a dye laser pumped by an argon-ion laser. Absorptions at the highly forbidden transitions at 630.030 nm and 636.380 nm were observed at an equivalent optical length of up to 10 km. The relatively low intensity of the dye laser avoids photochemical interferences that are inherent to some other methods for detecting atomic oxygen. The detection sensitivity is about 6x10 14 atom/cm 3 and can be improved with better flame and laser stabilization. (orig.)

  18. Isolated Pt Atoms Stabilized by Amorphous Tungstenic Acid for Metal-Support Synergistic Oxygen Activation.

    Science.gov (United States)

    Zhang, Qian; Qin, Xixi; Duanmu, Fanpeng; Ji, Huiming; Shen, Zhurui; Han, Xiaopeng; Hu, Wenbin

    2018-06-05

    Oxygen activation plays a crucial role in many important chemical reactions such as organics oxidation and oxygen reduction. For developing highly active materials for oxygen activation, herein, we report an atomically dispersed Pt on WO3 nanoplates stabilized by in-situ formed amorphous H2WO4 out-layer and the mechanism for activating molecular oxygen. Experimental and theoretical studies demonstrate that the isolated Pt atoms coordinated with oxygen atoms from [WO6] and water of H2WO4, consequently leading to optimized surface electronic configuration and strong metal support interaction (SMSI). In exemplified reactions of butanone oxidation sensing and oxygen reduction, the atomic Pt/WO3 hybrid exhibits superior activity than those of Pt nanoclusters/WO3 and bare WO3 as well as enhanced long-term durability. This work will provide insight on the origin of activity and stability for atomically dispersed materials, thus promoting the development of highly efficient and durable single atom-based catalysts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Resonances in Electron Impact on Atomic Oxygen

    International Nuclear Information System (INIS)

    Yang, Wang; Ya-Jun, Zhou; Li-Guang, Jiao; Ratnavelu, Kuru

    2008-01-01

    The momentum-space coupled-channels-optical (CCO) method is used to study the resonances in electron-oxygen collision in the energy region of 9–12eV. Present results have shown agreement with the available experimental and theoretical results, and new positions of resonances are found by the comparison of total cross sections. (fundamental areas of phenomenology (including applications))

  20. Single photon transport by a moving atom

    International Nuclear Information System (INIS)

    Afanasiev, A E; Melentiev, P N; Kuzin, A A; Yu Kalatskiy, A; Balykin, V I

    2017-01-01

    The results of investigation of photon transport through the subwavelength hole in the opaque screen by using single neutral atom are represented. The basis of the proposed and implemented method is the absorption of a photon by a neutral atom immediately before the subwavelength aperture, traveling of the atoms through the hole and emission of a photon on the other side of the screen. Realized method is the alternative approach to existing for photon transport through a subwavelength aperture: 1) self-sustained transmittance of a photon through the aperture according to the Bethe’s model; 2) extra ordinary transmission because of surface-plasmon excitation. (paper)

  1. Locations of oxygen, nitrogen and carbon atoms in vanadium determined by neutron diffraction

    International Nuclear Information System (INIS)

    Hiraga, K.; Onozuka, T.; Hirabayashi, M.

    1977-01-01

    The occupation sites of oxygen, nitrogen, and carbon atoms dissolved interstitially in vanadium have been determined by means of neutron diffraction with use of single crystals of VOsub(0.032), VNsub(0.013) and VCsub(0.006). It is revealed that the interstitial atoms occupy, randomly, the octahedral sites in the b.c.c. host lattice of the three crystals. Neutron diffraction is advantageous for the present purpose, since the coherent scattering amplitudes of the solute atoms are much larger than that of the vanadium atom. (Auth.)

  2. Production of pulsed atomic oxygen beams via laser vaporization methods

    International Nuclear Information System (INIS)

    Brinza, D.E.; Coulter, D.R.; Liang, R.H.; Gupta, A.

    1987-01-01

    Energetic pulsed atomic oxygen beams were generated by laser-driven evaporation of cryogenically frozen ozone/oxygen films and thin films of indium-tin oxide (ITO). Mass and energy characterization of beams from the ozone/oxygen films were carried out by mass spectrometry. The peak flux, found to occur at 10 eV, is estimated from this data to be 3 x 10(20) m(-2) s(-1). Analysis of the time-of-flight data indicates a number of processes contribute to the formation of the atomic oxygen beam. The absence of metastable states such as the 2p(3) 3s(1) (5S) level of atomic oxygen blown off from ITO films is supported by the failure to observe emission at 777.3 nm from the 2p(3) 3p(1) (5P/sub J/) levels. Reactive scattering experiments with polymer film targets for atomic oxygen bombardment are planned using a universal crossed molecular beam apparatus

  3. Energetic Metastable Oxygen and Nitrogen Atoms in the Terrestrial Atmosphere

    Science.gov (United States)

    Kharchenko, Vasili; Dalgarno, A.

    2005-01-01

    This report summarizes our research performed under NASA Grant NAG5-11857. The three-year grant have been supported by the Geospace Sciences SR&T program. We have investigated the energetic metastable oxygen and nitrogen atoms in the terrestrial stratosphere, mesosphere and thermosphere. Hot atoms in the atmosphere are produced by solar radiation, the solar wind and various ionic reactions. Nascent hot atoms arise in ground and excited electronic states, and their translational energies are larger by two - three orders of magnitude than the thermal energies of the ambient gas. The relaxation kinetics of hot atoms determines the rate of atmospheric heating, the intensities of aeronomic reactions, and the rate of atom escape from the planet. Modeling of the non-Maxwellian energy distributions of metastable oxygen and nitrogen atoms have been focused on the determination of their impact on the energetics and chemistry of the terrestrial atmosphere between 25 and 250 km . At this altitudes, we have calculated the energy distribution functions of metastable O and N atoms and computed non-equilibrium rates of important aeronomic reactions, such as destruction of the water molecules by O(1D) atoms and production of highly excited nitric oxide molecules. In the upper atmosphere, the metastable O(lD) and N(2D) play important role in formation of the upward atomic fluxes. We have computed the upward fluxes of the metastable and ground state oxygen atoms in the upper atmosphere above 250 km. The accurate distributions of the metastable atoms have been evaluated for the day and night-time conditions.

  4. Vibration spectra of single atomic nanocontacts

    International Nuclear Information System (INIS)

    Bourahla, B; Khater, A; Rafil, O; Tigrine, R

    2006-01-01

    This paper introduces a simple model for an atomic nanocontact, where its mechanical properties are analysed by calculating numerically the local spectral properties at the contact atom and the nearby atoms. The standard methodology for calculating phonon spectral densities is extended to enable the calculation of localized contact modes and local density of states (DOS). The model system considered for the nanocontact consists of two sets of triple parallel semi-infinite atomic chains joined by a single atom in between. The matching method is used, in the harmonic approximation, to calculate the local Green's functions for the irreducible set of sites that constitute the inhomogeneous nanocontact domain. The Green's functions yield the vibration spectra and the DOS for the atomic sites. These are numerically calculated for different cases of elastic hardening and softening of the nanocontact domain. The purpose is to investigate how the local dynamics respond to local changes in the elastic environment. The analysis of the spectra and of the DOS identifies characteristic features and demonstrates the central role of a core subset of these sites for the dynamics of the nanocontact. The system models a situation which may be appropriate for contact atomic force microscopy

  5. Proceedings of the NASA workshop on atomic oxygen effects

    International Nuclear Information System (INIS)

    Brinza, D.E.

    1987-06-01

    A workshop was held to address the scientific issues concerning the effects of atomic oxygen on materials in the low Earth orbital (LEO) environment. The program included 18 invited speakers plus contributed posters covering topics such as LEO spaceflight experiments, interaction mechanisms, and atomic oxygen source development. Discussion sessions were also held to organize a test program to evaluate atomic oxygen exposure facilities. The key issues raised in the workshop were: (1) the need to develop a reliable predictive model of the effects of long-term exposure of materials to the LEO environment; (2) the ability of ground-based exposure facilities to provide useful data for development of durable materials; and (3) accurate determination of the composition of the LEO environment. These proceedings include the invited papers, the abstracts for the contributed posters, and an account of the test program discussion sessions

  6. Cleaning of Fire Damaged Watercolor and Textiles Using Atomic Oxygen

    Science.gov (United States)

    Rutledge, Sharon K.; Banks, Bruce A.; Chichernea, Virgil A.; Haytas, Christy A.

    2000-01-01

    A noncontact technique is described that uses atomic oxygen generated under low pressure in the presence of nitrogen to remove soot from the surface of a test watercolor panel and strips of cotton, wool and silk. The process, which involves surface oxidation, permits control of the amount of surface material removed. The effectiveness of soot removal from test panels of six basic watercolors (alizarin crimson, burnt sienna, lemon yellow, yellow ochre, cerulean blue and ultramarine blue) and strips of colored cotton, wool and silk was measured using reflectance spectroscopy. The atomic oxygen removed soot effectively from the treated areas and enabled partial recovery of charred watercolors. However, overexposure can result in removal of sizing, bleaching, and weakening of the structure. With the proper precautions, atomic oxygen treatment appears to have great potential to salvage heavily smoke damaged artworks which were previously considered unrestorable.

  7. Multi-functional magnesium alloys containing interstitial oxygen atoms.

    Science.gov (United States)

    Kang, H; Choi, H J; Kang, S W; Shin, S E; Choi, G S; Bae, D H

    2016-03-15

    A new class of magnesium alloys has been developed by dissolving large amounts of oxygen atoms into a magnesium lattice (Mg-O alloys). The oxygen atoms are supplied by decomposing titanium dioxide nanoparticles in a magnesium melt at 720 °C; the titanium is then completely separated out from the magnesium melt after solidification. The dissolved oxygen atoms are located at the octahedral sites of magnesium, which expand the magnesium lattice. These alloys possess ionic and metallic bonding characteristics, providing outstanding mechanical and functional properties. A Mg-O-Al casting alloy made in this fashion shows superior mechanical performance, chemical resistance to corrosion, and thermal conductivity. Furthermore, a similar Mg-O-Zn wrought alloy shows high elongation to failure (>50%) at room temperature, because the alloy plastically deforms with only multiple slips in the sub-micrometer grains (alloys are expected to open a new paradigm in commercial alloy design.

  8. Nano-soldering to single atomic layer

    Science.gov (United States)

    Girit, Caglar O [Berkeley, CA; Zettl, Alexander K [Kensington, CA

    2011-10-11

    A simple technique to solder submicron sized, ohmic contacts to nanostructures has been disclosed. The technique has several advantages over standard electron beam lithography methods, which are complex, costly, and can contaminate samples. To demonstrate the soldering technique graphene, a single atomic layer of carbon, has been contacted, and low- and high-field electronic transport properties have been measured.

  9. Atomic Oxygen Erosion Yield Dependence Upon Texture Development in Polymers

    Science.gov (United States)

    Banks, Bruce A.; Loftus, Ryan J.; Miller, Sharon K.

    2016-01-01

    The atomic oxygen erosion yield (volume of a polymer that is lost due to oxidation per incident atom) of polymers is typically assumed to be reasonably constant with increasing fluence. However polymers containing ash or inorganic pigments, tend to have erosion yields that decrease with fluence due to an increasing presence of protective particles on the polymer surface. This paper investigates two additional possible causes for erosion yields of polymers that are dependent upon atomic oxygen. These are the development of surface texture which can cause the erosion yield to change with fluence due to changes in the aspect ratio of the surface texture that develops and polymer specific atomic oxygen interaction parameters. The surface texture development under directed hyperthermal attack produces higher aspect ratio surface texture than isotropic thermal energy atomic oxygen attack. The fluence dependence of erosion yields is documented for low Kapton H (DuPont, Wilmington, DE) effective fluences for a variety of polymers under directed hyperthermal and isotropic thermal energy attack.

  10. Single-Atom Catalyst of Platinum Supported on Titanium Nitride for Selective Electrochemical Reactions.

    Science.gov (United States)

    Yang, Sungeun; Kim, Jiwhan; Tak, Young Joo; Soon, Aloysius; Lee, Hyunjoo

    2016-02-05

    As a catalyst, single-atom platinum may provide an ideal structure for platinum minimization. Herein, a single-atom catalyst of platinum supported on titanium nitride nanoparticles were successfully prepared with the aid of chlorine ligands. Unlike platinum nanoparticles, the single-atom active sites predominantly produced hydrogen peroxide in the electrochemical oxygen reduction with the highest mass activity reported so far. The electrocatalytic oxidation of small organic molecules, such as formic acid and methanol, also exhibited unique selectivity on the single-atom platinum catalyst. A lack of platinum ensemble sites changed the reaction pathway for the oxygen-reduction reaction toward a two-electron pathway and formic acid oxidation toward direct dehydrogenation, and also induced no activity for the methanol oxidation. This work demonstrates that single-atom platinum can be an efficient electrocatalyst with high mass activity and unique selectivity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Vibration dynamics of single atomic nanocontacts

    International Nuclear Information System (INIS)

    Khater, A; Bourahla, B; Tigrine, R

    2007-01-01

    The motivation for this work is to introduce a model for an atomic nanocontact, whereby its mechanical properties can be analysed via the local spectra. The model system consists of two sets of triple parallel semi-infinite atomic chains joined by a single atom in between. We calculate the vibration spectra and the local densities of vibration states, in the harmonic approximation, for the irreducible set of sites that constitute the nanocontact domain. The nanocontact observables are numerically calculated for different cases of elastic hardening and softening, to investigate how the local dynamics can respond to changes in the microscopic environment on the domain. We have also calculated the phonon scattering and coherent conductance at the nanocontact, derived in a Landauer-Buettiker matrix approach. The analysis of the spectra, of the densities of vibration states, and of the phonon conductance, identifies characteristic features and demonstrates the central role of a core subset of sites in the nanocontact domain

  12. Engineering Single-Atom Cobalt Catalysts toward Improved Electrocatalysis.

    Science.gov (United States)

    Wan, Gang; Yu, Pengfei; Chen, Hangrong; Wen, Jianguo; Sun, Cheng-Jun; Zhou, Hua; Zhang, Nian; Li, Qianru; Zhao, Wanpeng; Xie, Bing; Li, Tao; Shi, Jianlin

    2018-04-01

    The development of cost-effective catalysts to replace noble metal is attracting increasing interests in many fields of catalysis and energy, and intensive efforts are focused on the integration of transition-metal sites in carbon as noble-metal-free candidates. Recently, the discovery of single-atom dispersed catalyst (SAC) provides a new frontier in heterogeneous catalysis. However, the electrocatalytic application of SAC is still subject to several theoretical and experimental limitations. Further advances depend on a better design of SAC through optimizing its interaction with adsorbates during catalysis. Here, distinctive from previous studies, favorable 3d electronic occupation and enhanced metal-adsorbates interactions in single-atom centers via the construction of nonplanar coordination is achieved, which is confirmed by advanced X-ray spectroscopic and electrochemical studies. The as-designed atomically dispersed cobalt sites within nonplanar coordination show significantly improved catalytic activity and selectivity toward the oxygen reduction reaction, approaching the benchmark Pt-based catalysts. More importantly, the illustration of the active sites in SAC indicates metal-natured catalytic sites and a media-dependent catalytic pathway. Achieving structural and electronic engineering on SAC that promotes its catalytic performances provides a paradigm to bridge the gap between single-atom catalysts design and electrocatalytic applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Atomic oxygen-MoS sub 2 chemical interactions

    Energy Technology Data Exchange (ETDEWEB)

    Cross, J.B.; Martin, J.A. (Los Alamos National Lab., NM (USA)); Pope, L.E. (Sandia National Labs., Albuquerque, NM (USA)); Koontz, S.L. (National Aeronautics and Space Administration, Johnson Space Center, Houston, TX (USA))

    1990-10-01

    The present study shows that an O-atom translation energy of 1.5 eV, SO{sub 2} is generated and outgases from an anhydrous MoS{sub 2} surface with an initial reactivity nearly 50% that of kapton. The reaction of atomic oxygen with MoS{sub 2} has little or no translational energy barrier, i.e. thermally generated atomic oxygen reacts as readily as that having 1.5 eV of translational energy. For MoS{sub 2} films sputter-deposited at 50-70deg C, friction measurements showed a high initial friction coefficient (up to 0.25) for MoS{sub 2} surfaces exposed to atomic oxygen, which dropped to the normal low values after several cycles of operation in air and ultrahigh vacuum. For MoS{sub 2} films deposited at 200deg C, the friction coefficient was not affected by the O-atom exposure. (orig.).

  14. Anelastic relaxation peaks in single crystals of zirconium-oxygen alloys

    International Nuclear Information System (INIS)

    Ritchie, I.G.; Sprungmann, K.W.; Atrens, A.; Rosinger, H.E.; CEA Centre d'Etudes Nucleaires de Grenoble, 38

    1977-01-01

    Relaxations of the compliances S 11 -S 12 and S 44 have been observed in single crystals of zirconium-oxygen alloys tested in flexure and in torsion respectively. The relaxations are attributed to the stress-induced reorientation of substitutional impurity atoms (s) paired with interstitial oxygen atoms (i). The results demonstrate that the jump of the interstitial parallel to the basal plane dominates in the reorientation of the s-i pair

  15. Photoionization cross section of atomic and molecular oxygen

    International Nuclear Information System (INIS)

    Pareek, P.N.

    1983-01-01

    Photoionization cross sections of atomic oxygen and dissociative photoionization cross sections of molecular oxygen were measured from their respective thresholds to 120 angstrom by use of a photoionization mass spectrometer in conjunction with a spark light source. The photoionization cross sections O 2 + parent ion and O + fragment ion from neutral O 2 were obtained by a technique that eliminated the serious problem of identifying the true abundances of O + ions. These ions are generally formed with considerable kinetic energy and, because most mass spectrometers discriminate against energetic ions, true O + abundances are difficult to obtain. In the present work the relative cross sections for producing O + ions are obtained and normalized against the total cross sections in a spectral region where dissociative ionization is not possible. The fragmentation cross sections for O + were then obtained by subtraction of O 2 + cross sections from the known total photoionization cross sections. The results are compared with the previously published measurements. The absolute photoionization cross section of atomic oxygen sigma 8 /sub +/ was measured at 304 A. The actual number density of oxygen atoms within the ionization region was obtained by measuring the fraction of 0 2 molecules dissociated. This sigma/sub +/ at 304 angstrom was used to convert the relative photoinization cross sections, measured as a function of wavelength using a calibrated photodiode, to absolute cross sections. The results are compared with previous measurements and calculated cross sections. angstrom Rydberg series converging to the OII 4 P state was observed

  16. Behaviour of oxygen atoms near the surface of nanostructured Nb2O5

    International Nuclear Information System (INIS)

    Cvelbar, U; Mozetic, M

    2007-01-01

    Recombination of neutral oxygen atoms on oxidized niobium foil was studied. Three sets of samples have been prepared: a set of niobium foils with a film of polycrystalline niobium oxide with a thickness of 40 nm, another one with a film thickness of about 2 μm and a set of foils covered with dense bundles of single-crystal Nb 2 O 3 nanowires. All the samples were prepared by oxidation of a pure niobium foil. The samples with a thin oxide film were prepared by exposure of as-received foils to a flux of O-atoms, the samples with a thick polycrystalline niobium oxide were prepared by baking the foils in air at a temperature of 800 deg. C, while the samples covered with nanowires were prepared by oxidation in a highly reactive oxygen plasma. The samples were exposed to neutral oxygen atoms from a remote oxygen plasma source. Depending on discharge parameters, the O-atom density in the postglow chamber, as measured with a catalytic probe, was between 5 x 10 20 and 8 x 10 21 m -3 . The O-atom density in the chamber without the samples was found rather independent of the probe position. The presence of the samples caused a decrease in the O-atom density. Depending on the distance from the samples, the O-atom density was decreased up to 5 times. The O-atom density also depended on the surface morphology of the samples. The strongest decrease in the O-atom density was observed with the samples covered with dense bundles of nanowires. The results clearly showed that niobium oxide nanowires exhibit excellent catalytic behaviour for neutral radicals and can be used as catalysts of exhaust radicals found in many applications

  17. Doping monolayer graphene with single atom substitutions

    KAUST Repository

    Wang, Hongtao

    2012-01-11

    Functionalized graphene has been extensively studied with the aim of tailoring properties for gas sensors, superconductors, supercapacitors, nanoelectronics, and spintronics. A bottleneck is the capability to control the carrier type and density by doping. We demonstrate that a two-step process is an efficient way to dope graphene: create vacancies by high-energy atom/ion bombardment and fill these vacancies with desired dopants. Different elements (Pt, Co, and In) have been successfully doped in the single-atom form. The high binding energy of the metal-vacancy complex ensures its stability and is consistent with in situ observation by an aberration-corrected and monochromated transmission electron microscope. © 2011 American Chemical Society.

  18. Periodically Driven Array of Single Rydberg Atoms

    Science.gov (United States)

    Basak, Sagarika; Chougale, Yashwant; Nath, Rejish

    2018-03-01

    An array of single Rydberg atoms driven by a temporally modulated atom-field detuning is studied. The periodic modulation effectively modifies the Rabi coupling, leading to unprecedented dynamics in the presence of Rydberg-Rydberg interactions, in particular, blockade enhancement, antiblockades, and state-dependent population trapping. Interestingly, the Schrieffer-Wolf transformation reveals a fundamental process in Rydberg gases, correlated Rabi coupling, which stems from the extended nature of the Rydberg-Rydberg interactions. Also, the correlated coupling provides an alternative depiction for the Rydberg blockade, exhibiting a nontrivial behavior in the presence of periodic modulation. The dynamical localization of a many-body configuration in a driven Rydberg lattice is discussed.

  19. β-diketones containing oxygen atom in fluorinated radical

    International Nuclear Information System (INIS)

    Shivanyuk, A.F.; Kudryavtseva, L.S.; Lozinskij, M.O.; Neplyuev, V.M.; Fialkov, Yu.A.; Bratolyubova, A.G.

    1981-01-01

    The synthesis of a number of new aliphatic fluorinated β- diketones containing oxygen atom in fluorinated radical of linear or cyclic structure is described. The reaction of combination with aryldiazonium salts resulting in the formation of corresponding arylhydrazones of fluorinated triketones is studied. It is shown that as a result of arylhydrazone condensation with hydroxylamine, hydrazine and its substituted derivatives the fluorine-containing derivatives of isoxazol and pyrazol are formed [ru

  20. beta. -diketones containing oxygen atom in fluorinated radical

    Energy Technology Data Exchange (ETDEWEB)

    Shivanyuk, A.F.; Kudryavtseva, L.S.; Lozinskij, M.O.; Neplyuev, V.M.; Fialkov, Yu.A.; Bratolyubova, A.G. (AN Ukrainskoj SSR, Kiev. Inst. Organicheskoj Khimii)

    1981-10-01

    The synthesis of a number of new aliphatic fluorinated ..beta..-diketones containing oxygen atom in fluorinated radical of linear or cyclic structure is described. The reaction of combination with aryldiazonium salts resulting in the formation of corresponding arylhydrazones of fluorinated triketones is studied. It is shown that as a result of arylhydrazone condensation with hydroxylamine, hydrazine and its substituted derivatives the fluorine-containing derivatives of isoxazol and pyrazol are formed.

  1. A Comprehensive X-Ray Absorption Model for Atomic Oxygen

    Science.gov (United States)

    Gorczyca, T. W.; Bautista, M. A.; Hasoglu, M. F.; Garcia, J.; Gatuzz, E.; Kaastra, J. S.; Kallman, T. R.; Manson, S. T.; Mendoza, C.; Raassen, A. J. J.; hide

    2013-01-01

    An analytical formula is developed to accurately represent the photoabsorption cross section of atomic Oxygen for all energies of interest in X-ray spectral modeling. In the vicinity of the K edge, a Rydberg series expression is used to fit R-matrix results, including important orbital relaxation effects, that accurately predict the absorption oscillator strengths below threshold and merge consistently and continuously to the above-threshold cross section. Further, minor adjustments are made to the threshold energies in order to reliably align the atomic Rydberg resonances after consideration of both experimental and observed line positions. At energies far below or above the K-edge region, the formulation is based on both outer- and inner-shell direct photoionization, including significant shake-up and shake-off processes that result in photoionization-excitation and double-photoionization contributions to the total cross section. The ultimate purpose for developing a definitive model for oxygen absorption is to resolve standing discrepancies between the astronomically observed and laboratory-measured line positions, and between the inferred atomic and molecular oxygen abundances in the interstellar medium from XSTAR and SPEX spectral models.

  2. Single-atom contacts with a scanning tunnelling microscope

    International Nuclear Information System (INIS)

    Kroeger, J; Neel, N; Sperl, A; Wang, Y F; Berndt, R

    2009-01-01

    The tip of a cryogenic scanning tunnelling microscope is used to controllably contact single atoms adsorbed on metal surfaces. The transition between tunnelling and contact is gradual for silver, while contact to adsorbed gold atoms is abrupt. The single-atom junctions are stable and enable spectroscopic measurements of, e.g., the Abrikosov-Suhl resonance of single Kondo impurities.

  3. Atomic structure of diamond {111} surfaces etched in oxygen water vapor

    International Nuclear Information System (INIS)

    Theije, F.K. de; Reedijk, M.F.; Arsic, J.; Enckevort, W.J.P. van; Vlieg, E.

    2001-01-01

    The atomic structure of the {111} diamond face after oxygen-water-vapor etching is determined using x-ray scattering. We find that a single dangling bond diamond {111} surface model, terminated by a full monolayer of -OH fits our data best. To explain the measurements it is necessary to add an ordered water layer on top of the -OH terminated surface. The vertical contraction of the surface cell and the distance between the oxygen atoms are generally in agreement with model calculations and results on similar systems. The OH termination is likely to be present during etching as well. This model experimentally confirms the atomic-scale mechanism we proposed previously for this etching system

  4. Isolating and moving single atoms using silicon nanocrystals

    Science.gov (United States)

    Carroll, Malcolm S.

    2010-09-07

    A method is disclosed for isolating single atoms of an atomic species of interest by locating the atoms within silicon nanocrystals. This can be done by implanting, on the average, a single atom of the atomic species of interest into each nanocrystal, and then measuring an electrical charge distribution on the nanocrystals with scanning capacitance microscopy (SCM) or electrostatic force microscopy (EFM) to identify and select those nanocrystals having exactly one atom of the atomic species of interest therein. The nanocrystals with the single atom of the atomic species of interest therein can be sorted and moved using an atomic force microscope (AFM) tip. The method is useful for forming nanoscale electronic and optical devices including quantum computers and single-photon light sources.

  5. The surface reactivity of acrylonitrile with oxygen atoms on an analogue of interstellar dust grains

    Science.gov (United States)

    Kimber, Helen J.; Toscano, Jutta; Price, Stephen D.

    2018-06-01

    Experiments designed to reveal the low-temperature reactivity on the surfaces of interstellar dust grains are used to probe the heterogeneous reaction between oxygen atoms and acrylonitrile (C2H3CN, H2C=CH-CN). The reaction is studied at a series of fixed surface temperatures between 14 and 100 K. After dosing the reactants on to the surface, temperature-programmed desorption, coupled with time-of-flight mass spectrometry, reveals the formation of a product with the molecular formula C3H3NO. This product results from the addition of a single oxygen atom to the acrylonitrile reactant. The oxygen atom attack appears to occur exclusively at the C=C double bond, rather than involving the cyano(-CN) group. The absence of reactivity at the cyano site hints that full saturation of organic molecules on dust grains may not always occur in the interstellar medium. Modelling the experimental data provides a reaction probability of 0.007 ± 0.003 for a Langmuir-Hinshelwood style (diffusive) reaction mechanism. Desorption energies for acrylonitrile, oxygen atoms, and molecular oxygen, from the multilayer mixed ice their deposition forms, are also extracted from the kinetic model and are 22.7 ± 1.0 kJ mol-1 (2730 ± 120 K), 14.2 ± 1.0 kJ mol-1 (1710 ± 120 K), and 8.5 ± 0.8 kJ mol-1 (1020 ± 100 K), respectively. The kinetic parameters we extract from our experiments indicate that the reaction between atomic oxygen and acrylonitrile could occur on interstellar dust grains on an astrophysical time-scale.

  6. A single-atom quantum memory.

    Science.gov (United States)

    Specht, Holger P; Nölleke, Christian; Reiserer, Andreas; Uphoff, Manuel; Figueroa, Eden; Ritter, Stephan; Rempe, Gerhard

    2011-05-12

    The faithful storage of a quantum bit (qubit) of light is essential for long-distance quantum communication, quantum networking and distributed quantum computing. The required optical quantum memory must be able to receive and recreate the photonic qubit; additionally, it must store an unknown quantum state of light better than any classical device. So far, these two requirements have been met only by ensembles of material particles that store the information in collective excitations. Recent developments, however, have paved the way for an approach in which the information exchange occurs between single quanta of light and matter. This single-particle approach allows the material qubit to be addressed, which has fundamental advantages for realistic implementations. First, it enables a heralding mechanism that signals the successful storage of a photon by means of state detection; this can be used to combat inevitable losses and finite efficiencies. Second, it allows for individual qubit manipulations, opening up avenues for in situ processing of the stored quantum information. Here we demonstrate the most fundamental implementation of such a quantum memory, by mapping arbitrary polarization states of light into and out of a single atom trapped inside an optical cavity. The memory performance is tested with weak coherent pulses and analysed using full quantum process tomography. The average fidelity is measured to be 93%, and low decoherence rates result in qubit coherence times exceeding 180  microseconds. This makes our system a versatile quantum node with excellent prospects for applications in optical quantum gates and quantum repeaters.

  7. Optical emissions from oxygen atom reactions with adsorbates

    Science.gov (United States)

    Oakes, David B.; Fraser, Mark E.; Gauthier-Beals, Mitzi; Holtzclaw, Karl W.; Malonson, Mark; Gelb, Alan H.

    1992-12-01

    Although most optical materials are inert to the ambient low earth orbit environment, high velocity oxygen atoms will react with adsorbates to produce optical emissions from the ultraviolet into the infrared. The adsorbates arise from chemical releases or outgassing from the spacecraft itself. We have been investigating kinetic and spectral aspects of these phenomenon by direct observation of the 0.2 to 13 micrometers chemiluminescence from the interaction of a fast atomic oxygen beam with a continuously dosed surface. The dosing gases include fuels, combustion products and outgassed species such as unsymmetrical dimethylhydrazine (UDMH), NO, H2O and CO. The surface studied include gold and magnesium fluoride. In order to relate the results to actual spacecraft conditions these phenomena have been explored as a function of O atom velocity, dosant flux and substrate temperature. UDMH dosed surfaces exhibit spectra typical (wavelength and intensity) of carbonaceous surfaces. The primary emitters are CO, CO2, and OH. H2O dosed surfaces are dominated by OH and /or H2O emission while CO dosed surfaces are dominated by CO and CO2 emissions. The nitric oxide dosed surface produces a glow from 0.4 to 5.4 micrometers due to NO2* continuum emission. The emission was observed to increase by a factor of two upon cooling the surface from 20 degree(s)C to -35 degree(s)C.

  8. An atomic oxygen device based on PIG oxygen negative ion source

    International Nuclear Information System (INIS)

    Yu Jinxiang; Cai Minghui; Han Jianwei

    2008-01-01

    It is an important research subject for the spaceflight countries to conduct equivalent simulation of 5 eV atomic oxygen effects for the spaceflight material in low earth orbit. This paper introduces an apparatus used for producing atomic oxygen, which consists of a PIG ion source with permanent magnet, two electrodes extraction system, an electron deflector, an einzel lens, an ion decelerating electrode and a sample bracket. At present it has been used on the small debris accelerator in the Center for Space Science and Applied Research, Chinese Academy of Sciences, and the producing experiments of O - are carried out. 200-300μA of O - ions are extracted at the extraction voltage of 2-3 kV. The experiments for decelerating of O - ions and erosion of kapton foil are carried out also. Because of the target room used for both the atomic oxygen device and the small debris accelerator, the facility can be used for small debris impinging and atomic erosion for spaceflight materials simultaneously. (authors)

  9. Entangled photons from single atoms and molecules

    Science.gov (United States)

    Nordén, Bengt

    2018-05-01

    The first two-photon entanglement experiment performed 50 years ago by Kocher and Commins (KC) provided isolated pairs of entangled photons from an atomic three-state fluorescence cascade. In view of questioning of Bell's theorem, data from these experiments are re-analyzed and shown sufficiently precise to confirm quantum mechanical and dismiss semi-classical theory without need for Bell's inequalities. Polarization photon correlation anisotropy (A) is useful: A is near unity as predicted quantum mechanically and well above the semi-classic range, 0 ⩽ A ⩽ 1 / 2 . Although yet to be found, one may envisage a three-state molecule emitting entangled photon pairs, in analogy with the KC atomic system. Antibunching in fluorescence from single molecules in matrix and entangled photons from quantum dots promise it be possible. Molecules can have advantages to parametric down-conversion as the latter photon distribution is Poissonian and unsuitable for producing isolated pairs of entangled photons. Analytical molecular applications of entangled light are also envisaged.

  10. Atomic oxygen ions as ionospheric biomarkers on exoplanets

    Science.gov (United States)

    Mendillo, Michael; Withers, Paul; Dalba, Paul A.

    2018-04-01

    The ionized form of atomic oxygen (O+) is the dominant ion species at the altitude of maximum electron density in only one of the many ionospheres in our Solar System — Earth's. This ionospheric composition would not be present if oxygenic photosynthesis was not an ongoing mechanism that continuously impacts the terrestrial atmosphere. We propose that dominance of ionospheric composition by O+ ions at the altitude of maximum electron density can be used to identify a planet in orbit around a solar-type star where global-scale biological activity is present. There is no absolute numerical value required for this suggestion of an atmospheric plasma biomarker — only the dominating presence of O+ ions at the altitude of peak electron density.

  11. K-shell auger decay of atomic oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Stolte, W.C.; Lu, Y.; Samson, J.A.R. [Univ. of Nebraska, Lincoln, NE (United States)] [and others

    1997-04-01

    The aim of the present research is to understand the interaction between the ejected photoelectron and Auger electron produced by the Auger decay of a 1s hole in atomic oxygen, and to understand the influence this interaction has on the shape of the ionization cross sections. To accomplish this the authors have measured the relative ion yields (ion/photon) in the vicinity of the oxygen K-shell (525 - 533 eV) for O{sup +} and O{sup 2+}. The measurements were performed at the ALS on beamline, 6.3.2. The atomic oxygen was produced by passing molecular oxygen through a microwave-driven discharge. A Rydberg analysis of the two series leading to the [1s]2s{sup 2}2p{sup 4}({sup 4}P) and [1s]2s{sup 2}2p{sup 4}({sup 2}P) limits were obtained. This analysis shows some differences to the recently published results by Menzel et al. The energy position of the main 1s{sup 1}2s{sup 2}2p{sup 5}({sup 3}P) resonance differs by approximately 1 eV from the authors value, all members of the ({sup 2}P)np series differ by 0.3 eV, but the members of the ({sup 4}P)np series agree. The molecular resonance at 530.5 eV and those between 539 eV and 543 eV, measured with the microwave discharge off show identical results in both experiments.

  12. The atomic coilgun and single-photon cooling

    Energy Technology Data Exchange (ETDEWEB)

    Libson, Adam, E-mail: alibson@physics.utexas.edu; Bannerman, Stephen Travis; Clark, Robert J.; Mazur, Thomas R.; Raizen, Mark G. [University of Texas at Austin, Center for Nonlinear Dynamics and Department of Physics (United States)

    2012-12-15

    As the simplest atom, hydrogen has a unique role as a testing ground of fundamental physics. Precision measurements of the hydrogen atomic structure provide stringent tests of current theory, while tritium is an excellent candidate for studies of {beta}-decay and possible measurement of the neutrino rest mass. Furthermore, precision measurement of antihydrogen would allow for tests of fundamental symmetries. Methods demonstrated in our lab provide an avenue by which hydrogen isotopes can be trapped and cooled to near the recoil limit. The atomic coilgun, which we have demonstrated with metastable neon and molecular oxygen, provides a general method of stopping a supersonic beam of any paramagnetic species. This tool provides a method by which hydrogen and its isotopes can be magnetically trapped at around 100 mK using a room temperature apparatus. Another tool developed in our laboratory, single-photon cooling, allows further cooling of a trapped sample to near the recoil limit. This cooling method has already been demonstrated on a trapped sample of rubidium. We report on the progress of implementing these methods to trap and cool hydrogen isotopes, and on the prospects for using cold trapped hydrogen for precision measurements.

  13. Characterization of atomic oxygen from an ECR plasma source

    International Nuclear Information System (INIS)

    Naddaf, M; Bhoraskar, V N; Mandale, A B; Sainkar, S R; Bhoraskar, S V

    2002-01-01

    A low-power microwave-assisted electron cyclotron resonance (ECR) plasma system is shown to be a powerful and effective source of atomic oxygen (AO) useful in material processing. A 2.45 GHz microwave source with maximum power of 600 W was launched into the cavity to generate the ECR plasma. A catalytic nickel probe was used to determine the density of AO. The density of AO is studied as a function of pressure and axial position of the probe in the plasma chamber. It was found to vary from ∼1x10 20 to ∼10x10 20 atom m -3 as the plasma pressure was varied from 0.8 to 10 mTorr. The effect of AO in oxidation of silver is investigated by gravimetric analysis. The stoichiometric properties of the oxide are studied using the x-ray photoelectron spectroscopy as well as energy dispersive x-ray analysis. The degradation of the silver surface due to sputtering effect was viewed by scanning electron spectroscopy. The sputtering yield of oxygen ions in the plasma is calculated using the TRIM code. The effects of plasma pressure and the distance from the ECR zone on the AO density were also investigated. The density of AO measured by oxidation of silver is in good agreement with results obtained from the catalytic nickel probe

  14. Characterization of atomic oxygen from an ECR plasma source

    Science.gov (United States)

    Naddaf, M.; Bhoraskar, V. N.; Mandale, A. B.; Sainkar, S. R.; Bhoraskar, S. V.

    2002-11-01

    A low-power microwave-assisted electron cyclotron resonance (ECR) plasma system is shown to be a powerful and effective source of atomic oxygen (AO) useful in material processing. A 2.45 GHz microwave source with maximum power of 600 W was launched into the cavity to generate the ECR plasma. A catalytic nickel probe was used to determine the density of AO. The density of AO is studied as a function of pressure and axial position of the probe in the plasma chamber. It was found to vary from ~1×1020 to ~10×1020 atom m-3 as the plasma pressure was varied from 0.8 to 10 mTorr. The effect of AO in oxidation of silver is investigated by gravimetric analysis. The stoichiometric properties of the oxide are studied using the x-ray photoelectron spectroscopy as well as energy dispersive x-ray analysis. The degradation of the silver surface due to sputtering effect was viewed by scanning electron spectroscopy. The sputtering yield of oxygen ions in the plasma is calculated using the TRIM code. The effects of plasma pressure and the distance from the ECR zone on the AO density were also investigated. The density of AO measured by oxidation of silver is in good agreement with results obtained from the catalytic nickel probe.

  15. Characterization of atomic oxygen from an ECR plasma source

    Energy Technology Data Exchange (ETDEWEB)

    Naddaf, M [Center for Advanced Studies in Material Science and Solid State Physics, University of Pune, Pune 411 007 (India); Bhoraskar, V N [Center for Advanced Studies in Material Science and Solid State Physics, University of Pune, Pune 411 007 (India); Mandale, A B [National Chemical Laboratory, Pashan, Pune 411008 (India); Sainkar, S R [National Chemical Laboratory, Pashan, Pune 411008 (India); Bhoraskar, S V [Center for Advanced Studies in Material Science and Solid State Physics, University of Pune, Pune 411 007 (India)

    2002-11-01

    A low-power microwave-assisted electron cyclotron resonance (ECR) plasma system is shown to be a powerful and effective source of atomic oxygen (AO) useful in material processing. A 2.45 GHz microwave source with maximum power of 600 W was launched into the cavity to generate the ECR plasma. A catalytic nickel probe was used to determine the density of AO. The density of AO is studied as a function of pressure and axial position of the probe in the plasma chamber. It was found to vary from {approx}1x10{sup 20} to {approx}10x10{sup 20} atom m{sup -3} as the plasma pressure was varied from 0.8 to 10 mTorr. The effect of AO in oxidation of silver is investigated by gravimetric analysis. The stoichiometric properties of the oxide are studied using the x-ray photoelectron spectroscopy as well as energy dispersive x-ray analysis. The degradation of the silver surface due to sputtering effect was viewed by scanning electron spectroscopy. The sputtering yield of oxygen ions in the plasma is calculated using the TRIM code. The effects of plasma pressure and the distance from the ECR zone on the AO density were also investigated. The density of AO measured by oxidation of silver is in good agreement with results obtained from the catalytic nickel probe.

  16. MISSE 6 Stressed Polymers Experiment Atomic Oxygen Erosion Data

    Science.gov (United States)

    deGroh, Kim K.; Banks, Bruce A.; Mitchell, Gianna G.; Yi, Grace T.; Guo, Aobo; Ashmeade, Claire C.; Roberts, Lily M.; McCarthy, Catherine E.; Sechkar, Edward A.

    2013-01-01

    Polymers and other oxidizable materials used on the exterior of spacecraft in the low Earth orbit (LEO) space environment can be eroded away by reaction with atomic oxygen (AO). For spacecraft design, it is important to know the LEO AO erosion yield, Ey (volume loss per incident oxygen atom), of materials susceptible to AO erosion. The Stressed Polymers Experiment was developed and flown as part of the Materials International Space Station Experiment 6 (MISSE 6) to compare the AO erosion yields of stressed and non-stressed polymers to determine if erosion is dependent upon stress while in LEO. The experiment contained 36 thin film polymer samples that were exposed to ram AO for 1.45 years. This paper provides an overview of the Stressed Polymers Experiment with details on the polymers flown, the characterization techniques used, the AO fluence, and the erosion yield results. The MISSE 6 data are compared to data for similar samples flown on previous MISSE missions to determine fluence or solar radiation effects on erosion yield.

  17. Directional emission of single photons from small atomic samples

    DEFF Research Database (Denmark)

    Miroshnychenko, Yevhen; V. Poulsen, Uffe; Mølmer, Klaus

    2013-01-01

    We provide a formalism to describe deterministic emission of single photons with tailored spatial and temporal profiles from a regular array of multi-level atoms. We assume that a single collective excitation is initially shared by all the atoms in a metastable atomic state, and that this state i...... is coupled by a classical laser field to an optically excited state which rapidly decays to the ground atomic state. Our model accounts for the different field polarization components via re-absorption and emission of light by the Zeeman manifold of optically excited states.......We provide a formalism to describe deterministic emission of single photons with tailored spatial and temporal profiles from a regular array of multi-level atoms. We assume that a single collective excitation is initially shared by all the atoms in a metastable atomic state, and that this state...

  18. Perhydropolysilazane derived silica coating protecting Kapton from atomic oxygen attack

    Energy Technology Data Exchange (ETDEWEB)

    Hu Longfei [China Academy of Aerospace Aerodynamics, Beijing 100074 (China); Li Meishuan, E-mail: mshli@imr.ac.cn [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Xu Caihong; Luo Yongming [Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080 (China)

    2011-11-30

    By using surface sol-gel method with perhydropolysilazane (PHPS) as a precursor, a silica coating was prepared on a Kapton substrate as an atomic oxygen (AO) protective coating. The AO exposure tests were conducted in a ground-based simulator. It is found that the erosion yield of Kapton decreases by about three orders of magnitude after the superficial application of the coating. After AO exposure, the surface of the coating is smooth and uniform, no surface shrinkage induced cracks or undercutting erosion are observed. This is because that during AO exposure the PHPS is oxidized directly to form SiO{sub 2} without through intermediate reaction processes, the surface shrinkage and cracking tendency are prohibited. Meanwhile, this PHPS derived silica coating also presents self-healing effect due to the oxidation of free Si. Compared with other kinds of silica or organic polymer coatings, this PHPS derived silica coating exhibits a superior AO erosion resistance.

  19. Perhydropolysilazane derived silica coating protecting Kapton from atomic oxygen attack

    International Nuclear Information System (INIS)

    Hu Longfei; Li Meishuan; Xu Caihong; Luo Yongming

    2011-01-01

    By using surface sol–gel method with perhydropolysilazane (PHPS) as a precursor, a silica coating was prepared on a Kapton substrate as an atomic oxygen (AO) protective coating. The AO exposure tests were conducted in a ground-based simulator. It is found that the erosion yield of Kapton decreases by about three orders of magnitude after the superficial application of the coating. After AO exposure, the surface of the coating is smooth and uniform, no surface shrinkage induced cracks or undercutting erosion are observed. This is because that during AO exposure the PHPS is oxidized directly to form SiO 2 without through intermediate reaction processes, the surface shrinkage and cracking tendency are prohibited. Meanwhile, this PHPS derived silica coating also presents self-healing effect due to the oxidation of free Si. Compared with other kinds of silica or organic polymer coatings, this PHPS derived silica coating exhibits a superior AO erosion resistance.

  20. Atomic Oxygen Energy in Low Frequency Hyperthermal Plasma Ashers

    Science.gov (United States)

    Banks, Bruce A.; Miller, Sharon K R.; Kneubel, Christian A.

    2014-01-01

    Experimental and analytical analysis of the atomic oxygen erosion of pyrolytic graphite as well as Monte Carlo computational modeling of the erosion of Kapton H (DuPont, Wilmington, DE) polyimide was performed to determine the hyperthermal energy of low frequency (30 to 35 kHz) plasma ashers operating on air. It was concluded that hyperthermal energies in the range of 0.3 to 0.9 eV are produced in the low frequency air plasmas which results in texturing similar to that in low Earth orbit (LEO). Monte Carlo computational modeling also indicated that such low energy directed ions are fully capable of producing the experimentally observed textured surfaces in low frequency plasmas.

  1. Quantum delayed-choice experiment with a single neutral atom.

    Science.gov (United States)

    Li, Gang; Zhang, Pengfei; Zhang, Tiancai

    2017-10-01

    We present a proposal to implement a quantum delayed-choice (QDC) experiment with a single neutral atom, such as a rubidium or cesium atom. In our proposal, a Ramsey interferometer is adopted to observe the wave-like or particle-like behaviors of a single atom depending on the existence or absence of the second π/2-rotation. A quantum-controlled π/2-rotation on target atom is realized through a Rydberg-Rydberg interaction by another ancilla atom. It shows that a heavy neutral atom can also have a morphing behavior between the particle and the wave. The realization of the QDC experiment with such heavy neutral atoms not only is significant to understand the Bohr's complementarity principle in matter-wave and matter-particle domains but also has great potential on the quantum information process with neutral atoms.

  2. Thermal relaxation of molecular oxygen in collisions with nitrogen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Andrienko, Daniil A., E-mail: daniila@umich.edu; Boyd, Iain D. [Department of Aerospace Engineering, University of Michigan, 1320 Beal Ave., Ann Arbor, Michigan 48108 (United States)

    2016-07-07

    Investigation of O{sub 2}–N collisions is performed by means of the quasi-classical trajectory method on the two lowest ab initio potential energy surfaces at temperatures relevant to hypersonic flows. A complete set of bound–bound and bound–free transition rates is obtained for each precollisional rovibrational state. Special attention is paid to the vibrational and rotational relaxations of oxygen as a result of chemically non-reactive interaction with nitrogen atoms. The vibrational relaxation of oxygen partially occurs via the formation of an intermediate NO{sub 2} complex. The efficient energy randomization results in rapid vibrational relaxation at low temperatures, compared to other molecular systems with a purely repulsive potential. The vibrational relaxation time, computed by means of master equation studies, is nearly an order of magnitude lower than the relaxation time in N{sub 2}–O collisions. The rotational nonequilibrium starts to play a significant effect at translational temperatures above 8000 K. The present work provides convenient relations for the vibrational and rotational relaxation times as well as for the quasi-steady dissociation rate coefficient and thus fills a gap in data due to a lack of experimental measurements for this system.

  3. Effects of atomic oxygen on titanium dioxide thin film

    Science.gov (United States)

    Shimosako, Naoki; Hara, Yukihiro; Shimazaki, Kazunori; Miyazaki, Eiji; Sakama, Hiroshi

    2018-05-01

    In low earth orbit (LEO), atomic oxygen (AO) has shown to cause degradation of organic materials used in spacecrafts. Similar to other metal oxides such as SiO2, Al2O3 and ITO, TiO2 has potential to protect organic materials. In this study, the anatese-type TiO2 thin films were fabricated by a sol-gel method and irradiated with AO. The properties of TiO2 were compared using mass change, scanning electron microscope (SEM), atomic force microscope (AFM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), transmittance spectra and photocatalytic activity before and after AO irradiation. The results indicate that TiO2 film was hardly eroded and resistant against AO degradation. AO was shown to affects only the surface of a TiO2 film and not the bulk. Upon AO irradiation, the TiO2 films were slightly oxidized. However, these changes were very small. Photocatalytic activity of TiO2 was still maintained in spite of slight decrease upon AO irradiation, which demonstrated that TiO2 thin films are promising for elimination of contaminations outgassed from a spacecraft's materials.

  4. Reactions of atomic oxygen with the chlorate ion and the perchlorate ion

    Science.gov (United States)

    Anan'ev, Vladimir; Miklin, Mikhail; Kriger, Ludmila

    2014-06-01

    The reactions of the chlorate ion with atomic oxygen formed under photolysis of the nitrate ion introduced to potassium chlorate crystal by co-crystallization were studied by optical and infrared absorption spectroscopy. The perchlorate ion was found to form in solids as product of addition reaction of singlet atomic oxygen, formed under dissociation of the peroxynitrite ion - the product of isomerization of the excited nitrate ion. Triplet atomic oxygen does not react with the chlorate ion. The atomic oxygen formed under photolysis of the nitrate ion introduced to potassium perchlorate crystal by co-crystallization does not react with the perchlorate ion.

  5. Single-atom-resolved fluorescence imaging of an atomic Mott insulator

    DEFF Research Database (Denmark)

    Sherson, Jacob; Weitenberg, Christof; Andres, Manuel

    2010-01-01

    in situ images of a quantum fluid in which each underlying quantum particle is detected. Here we report fluorescence imaging of strongly interacting bosonic Mott insulators in an optical lattice with single-atom and single-site resolution. From our images, we fully reconstruct the atom distribution...

  6. Single-cell measurement of red blood cell oxygen affinity.

    Science.gov (United States)

    Di Caprio, Giuseppe; Stokes, Chris; Higgins, John M; Schonbrun, Ethan

    2015-08-11

    Oxygen is transported throughout the body by hemoglobin (Hb) in red blood cells (RBCs). Although the oxygen affinity of blood is well-understood and routinely assessed in patients by pulse oximetry, variability at the single-cell level has not been previously measured. In contrast, single-cell measurements of RBC volume and Hb concentration are taken millions of times per day by clinical hematology analyzers, and they are important factors in determining the health of the hematologic system. To better understand the variability and determinants of oxygen affinity on a cellular level, we have developed a system that quantifies the oxygen saturation, cell volume, and Hb concentration for individual RBCs in high throughput. We find that the variability in single-cell saturation peaks at an oxygen partial pressure of 2.9%, which corresponds to the maximum slope of the oxygen-Hb dissociation curve. In addition, single-cell oxygen affinity is positively correlated with Hb concentration but independent of osmolarity, which suggests variation in the Hb to 2,3-diphosphoglycerate (2-3 DPG) ratio on a cellular level. By quantifying the functional behavior of a cellular population, our system adds a dimension to blood cell analysis and other measurements of single-cell variability.

  7. Single Atoms Preparation Using Light-Assisted Collisions

    Directory of Open Access Journals (Sweden)

    Yin Hsien Fung

    2016-01-01

    Full Text Available The detailed control achieved over single optically trapped neutral atoms makes them candidates for applications in quantum metrology and quantum information processing. The last few decades have seen different methods developed to optimize the preparation efficiency of single atoms in optical traps. Here we review the near-deterministic preparation of single atoms based on light-assisted collisions and describe how this method can be implemented in different trap regimes. The simplicity and versatility of the method makes it feasible to be employed in future quantum technologies such as a quantum logic device.

  8. Pressure broadening of atomic oxygen two-photon absorption laser induced fluorescence

    NARCIS (Netherlands)

    Marinov, D.; Drag, C.; Blondel, C.; Guaitella, O.; Golda, J.; Klarenaar, B.L.M.; Engeln, R.A.H.; Schulz-von der Gathen, V.; Booth, J.-P.

    2016-01-01

    Atomic oxygen, considered to be a determining reactant in plasma applications at ambient pressure, is routinely detected by two-photon absorption laser induced fluorescence (TALIF). Here, pressure broadening of the (2p 4 3 P 2  →  3p 3 P J=0,1,2) two-photon transition in oxygen atoms was

  9. Single-cell measurement of red blood cell oxygen affinity

    OpenAIRE

    Caprio, Di; Stokes, Chris; Higgins, John M.; Schonbrun, Ethan

    2015-01-01

    Oxygen is transported throughout the body by hemoglobin in red blood cells. While the oxygen affinity of blood is well understood and is routinely assessed in patients by pulse oximetry, variability at the single-cell level has not been previously measured. In contrast, single-cell measurements of red blood cell volume and hemoglobin concentration are taken millions of times per day by clinical hematology analyzers and are important factors in determining the health of the hematologic system....

  10. Irradiation induced defects containing oxygen atoms in germanium crystal as studied by deep level transient spectroscopy

    International Nuclear Information System (INIS)

    Fukuoka, Noboru; Kambe, Yoshiyuki; Saito, Haruo; Matsuda, Koji.

    1984-05-01

    Deep level transient spectroscopy was applied to the electron trapping levels which are associated with the irradiation induced lattice defects in germanium crystals. The germanium crystals used in the study were doped with oxygen, antimony or arsenic and the defects were formed by electron irradiation of 1.5MeV or 10MeV. The nature of so called ''thermal defect'' formed by heat treatment at about 670K was also studied. The trapping levels at Esub(c)-0.13eV, Esub(c)-0.25eV and Esub(c)-0.29eV were found to be associated with defects containing oxygen atoms. From the experimental results the Esub(c)-0.25eV level was attributed to the germanium A-center (interstitial oxygen atom-vacancy pair). Another defect associated with the 715cm -1 infrared absorption band was found to have a trapping level at the same position at Esub(c)-0.25eV. The Esub(c)-0.23eV and Esub(c)-0.1eV levels were revealed to be associated with thermal donors formed by heat treatment at about 670K. Additional two peaks (levels) were observed in the DLTS spectrum. The annealing behavior of the levels suggests that the thermal donors originate from not a single type but several types of defects. (author)

  11. Carbon-hydrogen defects with a neighboring oxygen atom in n-type Si

    Science.gov (United States)

    Gwozdz, K.; Stübner, R.; Kolkovsky, Vl.; Weber, J.

    2017-07-01

    We report on the electrical activation of neutral carbon-oxygen complexes in Si by wet-chemical etching at room temperature. Two deep levels, E65 and E75, are observed by deep level transient spectroscopy in n-type Czochralski Si. The activation enthalpies of E65 and E75 are obtained as EC-0.11 eV (E65) and EC-0.13 eV (E75). The electric field dependence of their emission rates relates both levels to single acceptor states. From the analysis of the depth profiles, we conclude that the levels belong to two different defects, which contain only one hydrogen atom. A configuration is proposed, where the CH1BC defect, with hydrogen in the bond-centered position between neighboring C and Si atoms, is disturbed by interstitial oxygen in the second nearest neighbor position to substitutional carbon. The significant reduction of the CH1BC concentration in samples with high oxygen concentrations limits the use of this defect for the determination of low concentrations of substitutional carbon in Si samples.

  12. UV Observations of Atomic Oxygen in the Cusp Region

    Science.gov (United States)

    Fritz, B.; Lessard, M.; Dymond, K.; Kenward, D. R.; Lynch, K. A.; Clemmons, J. H.; Hecht, J. H.; Hysell, D. L.; Crowley, G.

    2017-12-01

    The Rocket Experiment for Neutral Upwelling (RENU) 2 launched into the dayside cusp on 13 December, 2015. The sounding rocket payload carried a comprehensive suite of particle, field, and remote sensing instruments to characterize the thermosphere in a region where pockets of enhanced neutral density have been detected [Lühr et al, 2004]. An ultraviolet photomultiplier tube (UV PMT) was oriented to look along the magnetic field line and remotely detect neutral atomic oxygen (OI) above the payload. The UV PMT measured a clear enhancement as the payload descended through a poleward moving auroral form, an indicator of structure in both altitude and latitude. Context for the UV PMT measurement is provided by the Special Sensor Ultraviolet Imager (SSULI) instrument on the Defense Meteorological Space Program (DMSP) satellite, which also measured OI as it passed through the cusp. UV tomography of SSULI observations produces a two-dimensional cross-section of volumetric emission rates in the high-latitude thermosphere prior to the RENU 2 flight. The volume emission rate may then be inverted to produce a profile of neutral density in the thermosphere. A similar technique is used to interpret the UV PMT measurement and determine structure in the thermosphere as RENU 2 descended through the cusp.

  13. Single-spin addressing in an atomic Mott insulator

    DEFF Research Database (Denmark)

    Weitenberg, Christof; Endres, Manuel; Sherson, Jacob

    2011-01-01

    directly monitored the tunnelling quantum dynamics of single atoms in the lattice prepared along a single line, and observed that our addressing scheme leaves the atoms in the motional ground state. The results should enable studies of entropy transport and the quantum dynamics of spin impurities...... and quantum spin dynamics. Here we demonstrate how such control can be implemented at the most fundamental level of a single spin at a specific site of an optical lattice. Using a tightly focused laser beam together with a microwave field, we were able to flip the spin of individual atoms in a Mott insulator...... with sub-diffraction-limited resolution, well below the lattice spacing. The Mott insulator provided us with a large two-dimensional array of perfectly arranged atoms, in which we created arbitrary spin patterns by sequentially addressing selected lattice sites after freezing out the atom distribution. We...

  14. An Atmospheric Atomic Oxygen Source for Cleaning Smoke Damaged Art Objects

    Science.gov (United States)

    Banks, Bruce A.; Rutledge, Sharon K.; Norris, Mary Jo

    1998-01-01

    Soot and other carbonaceous combustion products deposited on the surfaces of porous ceramic, stone, ivory and paper can be difficult to remove and can have potentially unsatisfactory results using wet chemical and/or abrasive cleaning techniques. An atomic oxygen source which operates in air at atmospheric pressure, using a mixture of oxygen and helium, has been developed to produce an atomic oxygen beam which is highly effective in oxidizing soot deposited on surfaces by burning candles made of paraffin, oil or rendered animal fat. Atomic oxygen source operating conditions and the results of cleaning soot from paper, gesso, ivory, limestone and water color-painted limestone are presented,

  15. From trace chemistry to single atom chemistry

    International Nuclear Information System (INIS)

    Adloff, J.P.

    1993-01-01

    Hot atom chemistry in the vast majority of experimental works deals with the trace amount of radioactive matters. Accordingly, the concept of trace chemistry is at the heart of hot atom chemistry. Some aspects of the chemistry at trace scale and at subtrace scale are presented together with the related problems of speciation and the complication which may arise due to the formation of radio colloids. The examples of 127 I(n,γ) 128 I and 132 Te (β - ) 132 I are shown, and the method based on radioactivity was used. The procedure of separating the elements in pitchblende is shown as the example of the chemistry of traces. 13 27 Al+ 2 4 He→ 0 1 n+ 15 30 P and 15 30 P→ 14 30 Si+e + +V are shown, and how to recognize the presence of radioactive colloids is explained. The formation of radiocolloids is by the sorption of a trace radioelement on pre-existing colloidal impurity or the self-condensation of monomeric species. The temporal parameters of the nature of reactions at trace concentration are listed. The examples of Class A and Class B reactions are shown. The kinetics of reactions at trace level, radon concentration, anthropogenic Pu and natural Pu in environment, the behavior of Pu atoms and so on are described. (K.I.)

  16. Nanosheet Supported Single-Metal Atom Bifunctional Catalyst for Overall Water Splitting.

    Science.gov (United States)

    Ling, Chongyi; Shi, Li; Ouyang, Yixin; Zeng, Xiao Cheng; Wang, Jinlan

    2017-08-09

    Nanosheet supported single-atom catalysts (SACs) can make full use of metal atoms and yet entail high selectivity and activity, and bifunctional catalysts can enable higher performance while lowering the cost than two separate unifunctional catalysts. Supported single-atom bifunctional catalysts are therefore of great economic interest and scientific importance. Here, on the basis of first-principles computations, we report a design of the first single-atom bifunctional eletrocatalyst, namely, isolated nickel atom supported on β 12 boron monolayer (Ni 1 /β 12 -BM), to achieve overall water splitting. This nanosheet supported SAC exhibits remarkable electrocatalytic performance with the computed overpotential for oxygen/hydrogen evolution reaction being just 0.40/0.06 V. The ab initio molecular dynamics simulation shows that the SAC can survive up to 800 K elevated temperature, while enacting a high energy barrier of 1.68 eV to prevent isolated Ni atoms from clustering. A viable experimental route for the synthesis of Ni 1 /β 12 -BM SAC is demonstrated from computer simulation. The desired nanosheet supported single-atom bifunctional catalysts not only show great potential for achieving overall water splitting but also offer cost-effective opportunities for advancing clean energy technology.

  17. Single Cell Oxygen Mapping (SCOM) by Scanning Electrochemical Microscopy Uncovers Heterogeneous Intracellular Oxygen Consumption

    OpenAIRE

    Santos, Carla Santana; Kowaltowski, Alicia J.; Bertotti, Mauro

    2017-01-01

    We developed a highly sensitive oxygen consumption scanning microscopy system using platinized platinum disc microelectrodes. The system is capable of reliably detecting single-cell respiration, responding to classical regulators of mitochondrial oxygen consumption activity as expected. Comparisons with commercial multi-cell oxygen detection systems show that the system has comparable errors (if not smaller), with the advantage of being able to monitor inter and intra-cell heterogeneity in ox...

  18. Development of a Supersonic Atomic Oxygen Nozzle Beam Source for Crossed Beam Scattering Experiments

    Science.gov (United States)

    Sibener, S. J.; Buss, R. J.; Lee, Y. T.

    1978-05-01

    A high pressure, supersonic, radio frequency discharge nozzle beam source was developed for the production of intense beams of ground state oxygen atoms. An efficient impedance matching scheme was devised for coupling the radio frequency power to the plasma as a function of both gas pressure and composition. Techniques for localizing the discharge directly behind the orifice of a water-cooled quartz nozzle were also developed. The above combine to yield an atomic oxygen beam source which produces high molecular dissociation in oxygen seeded rare gas mixtures at total pressures up to 200 torr: 80 to 90% dissociation for oxygen/argon mixtures and 60 to 70% for oxygen/helium mixtures. Atomic oxygen intensities are found to be greater than 10{sup 17} atom sr{sup -1} sec{sup -1}. A brief discussion of the reaction dynamics of 0 + IC1 ..-->.. I0 + C1 is also presented.

  19. Electromigration of single metal atoms observed by scanning tunneling microscopy

    NARCIS (Netherlands)

    Braun, K.-F.; Soe, W.H.; Flipse, C.F.J.

    2007-01-01

    The authors show in this letter that single metal atoms on a Ni(111) surface can be pushed by electromigration forces from a scanning tunneling microscope tip. This repulsive interaction is obsd. over a length scale of 6 nm. While for voltages above -300 mV the atoms are pulled by the microscope

  20. Single atom and-molecules chemisorption on solid surfaces

    International Nuclear Information System (INIS)

    Anda, E.V.; Ure, J.E.; Majlis, N.

    1981-01-01

    A simplified model for the microscopic interpretation of single atom and- molecules chemisorption on metallic surfaces is presented. An appropriated hamiltonian for this problem is resolved, through the Green's function formalism. (L.C.) [pt

  1. Influence of Atomic Oxygen Exposure on Friction Behavior of 321 Stainless Steel

    Science.gov (United States)

    Liu, Y.; Yang, J.; Ye, Z.; Dong, S.; Zhang, L.; Zhang, Z.

    Atomic oxygen (AO) exposure testing has been conducted on a 321 stainless steel rolled 1 mm thick sheet to simulate the effect of AO environment on steel in low Earth orbit (LEO). An atomic oxygen exposure facility was employed to carry out AO experiments with the fluence up to ~1021 atom/cm2. The AO exposed specimens were evaluated in air at room temperature using a nanoindenter and a tribological system. The exposed surfaces were analyzed usign XPS technique.

  2. Investigation on single carbon atom transporting through the single-walled carbon nanotube by MD simulation

    International Nuclear Information System (INIS)

    Ding Yinfeng; Zhang Zhibin; Ke Xuezhi; Zhu Zhiyuan; Zhu Dezhang; Wang Zhenxia; Xu Hongjie

    2005-01-01

    The single carbon atom transporting through the single-walled carbon nanotube has been studied by molecular-dynamics (MD) simulation. We got different trajectories of the carbon atom by changing the input parameters. The simulation results indicate that the single carbon atom with low energy can transport through the carbon nanotube under some input conditions and result in different trajectories being straight line or 'rosette' or circular. (authors)

  3. Single photon counting fluorescence lifetime detection of pericellular oxygen concentrations.

    Science.gov (United States)

    Hosny, Neveen A; Lee, David A; Knight, Martin M

    2012-01-01

    Fluorescence lifetime imaging microscopy offers a non-invasive method for quantifying local oxygen concentrations. However, existing methods are either invasive, require custom-made systems, or show limited spatial resolution. Therefore, these methods are unsuitable for investigation of pericellular oxygen concentrations. This study describes an adaptation of commercially available equipment which has been optimized for quantitative extracellular oxygen detection with high lifetime accuracy and spatial resolution while avoiding systematic photon pile-up. The oxygen sensitive fluorescent dye, tris(2,2'-bipyridyl)ruthenium(II) chloride hexahydrate [Ru(bipy)(3)](2+), was excited using a two-photon excitation laser. Lifetime was measured using a Becker & Hickl time-correlated single photon counting, which will be referred to as a TCSPC card. [Ru(bipy)(3)](2+) characterization studies quantified the influences of temperature, pH, cellular culture media and oxygen on the fluorescence lifetime measurements. This provided a precisely calibrated and accurate system for quantification of pericellular oxygen concentration based on measured lifetimes. Using this technique, quantification of oxygen concentrations around isolated viable chondrocytes, seeded in three-dimensional agarose gel, revealed a subpopulation of cells that exhibited significant spatial oxygen gradients such that oxygen concentration reduced with increasing proximity to the cell. This technique provides a powerful tool for quantifying spatial oxygen gradients within three-dimensional cellular models.

  4. Single and multiple ionization of sulfur atoms by electron impact

    International Nuclear Information System (INIS)

    Ziegler, D.L.

    1982-01-01

    Laboratory measurements of the cross sections for single, double, triple, and quadruple ionization of sulfur atoms by electron impact are presented for collision energies from threshold to 500 eV. The cross sections for single ionization of sulfur are measured relative to those of several elements whose absolute cross sections for single ionization are known. Cross sections for each multiple ionization process are then measured relative to those for single ionization. The configuration and operation of the apparatus for these measurements are described. The possible effects of excited sulfur reactants are examined, and the reported cross sections are felt to be characteristic of ground state sulfur atoms

  5. Ultrafast atomic layer-by-layer oxygen vacancy-exchange diffusion in double-perovskite LnBaCo2O5.5+δ thin films.

    Science.gov (United States)

    Bao, Shanyong; Ma, Chunrui; Chen, Garry; Xu, Xing; Enriquez, Erik; Chen, Chonglin; Zhang, Yamei; Bettis, Jerry L; Whangbo, Myung-Hwan; Dong, Chuang; Zhang, Qingyu

    2014-04-22

    Surface exchange and oxygen vacancy diffusion dynamics were studied in double-perovskites LnBaCo2O5.5+δ (LnBCO) single-crystalline thin films (Ln = Er, Pr; -0.5 atoms in the LnBCO thin films is taking the layer by layer oxygen-vacancy-exchange mechanism. The first principles density functional theory calculations indicate that hydrogen atoms are present in LnBCO as bound to oxygen forming O-H bonds. This unprecedented oscillation phenomenon provides the first direct experimental evidence of the layer by layer oxygen vacancy exchange diffusion mechanism.

  6. Single atoms on demand for cavity QED experiments

    International Nuclear Information System (INIS)

    Dotsenko, I.

    2007-01-01

    Cavity quantum electrodynamics (cavity QED) describes electromagnetic fields in a confined space and the radiative properties of atoms in such fields. The simplest example of such system is a single atom interacting with one mode of a high-finesse resonator. Besides observation and exploration of fundamental quantum mechanical effects, this system bears a high potential for applications quantum information science such as, e.g., quantum logic gates, quantum communication and quantum teleportation. In this thesis I present an experiment on the deterministic coupling of a single neutral atom to the mode of a high-finesse optical resonator. In Chapter 1 I describe our basic techniques for trapping and observing single cesium atoms. As a source of single atoms we use a high-gradient magneto-optical trap, which captures the atoms from background gas in a vacuum chamber and cools them down to millikelvin temperatures. The atoms are then transferred without loss into a standing-wave dipole trap, which provides a conservative potential required for experiments on atomic coherence such as quantum information processing and metrology on trapped atoms. Moreover, shifting the standing-wave pattern allows us to deterministically transport the atoms (Chapter 2). In combination with nondestructive fluorescence imaging of individual trapped atoms, this enables us to control their position with submicrometer precision over several millimeters along the dipole trap. The cavity QED system can distinctly display quantum behaviour in the so-called strong coupling regime, i.e., when the coherent atom-cavity coupling rate dominates dissipation in the system. This sets the main requirements on the resonator's properties: small mode volume and high finesse. Chapter 3 is devoted to the manufacturing, assembling, and testing of an ultra-high finesse optical Fabry-Perot resonator, stabilized to the atomic transition. In Chapter 4 I present the transportation of single atoms into the cavity

  7. Single atoms on demand for cavity QED experiments

    Energy Technology Data Exchange (ETDEWEB)

    Dotsenko, I.

    2007-09-06

    Cavity quantum electrodynamics (cavity QED) describes electromagnetic fields in a confined space and the radiative properties of atoms in such fields. The simplest example of such system is a single atom interacting with one mode of a high-finesse resonator. Besides observation and exploration of fundamental quantum mechanical effects, this system bears a high potential for applications quantum information science such as, e.g., quantum logic gates, quantum communication and quantum teleportation. In this thesis I present an experiment on the deterministic coupling of a single neutral atom to the mode of a high-finesse optical resonator. In Chapter 1 I describe our basic techniques for trapping and observing single cesium atoms. As a source of single atoms we use a high-gradient magneto-optical trap, which captures the atoms from background gas in a vacuum chamber and cools them down to millikelvin temperatures. The atoms are then transferred without loss into a standing-wave dipole trap, which provides a conservative potential required for experiments on atomic coherence such as quantum information processing and metrology on trapped atoms. Moreover, shifting the standing-wave pattern allows us to deterministically transport the atoms (Chapter 2). In combination with nondestructive fluorescence imaging of individual trapped atoms, this enables us to control their position with submicrometer precision over several millimeters along the dipole trap. The cavity QED system can distinctly display quantum behaviour in the so-called strong coupling regime, i.e., when the coherent atom-cavity coupling rate dominates dissipation in the system. This sets the main requirements on the resonator's properties: small mode volume and high finesse. Chapter 3 is devoted to the manufacturing, assembling, and testing of an ultra-high finesse optical Fabry-Perot resonator, stabilized to the atomic transition. In Chapter 4 I present the transportation of single atoms into the

  8. Single-cell atomic quantum memory for light

    International Nuclear Information System (INIS)

    Opatrny, Tomas

    2006-01-01

    Recent experiments demonstrating atomic quantum memory for light [B. Julsgaard et al., Nature 432, 482 (2004)] involve two macroscopic samples of atoms, each with opposite spin polarization. It is shown here that a single atomic cell is enough for the memory function if the atoms are optically pumped with suitable linearly polarized light, and quadratic Zeeman shift and/or ac Stark shift are used to manipulate rotations of the quadratures. This should enhance the performance of our quantum memory devices since less resources are needed and losses of light in crossing different media boundaries are avoided

  9. Manipulating localized molecular orbitals by single-atom contacts.

    Science.gov (United States)

    Wang, Weihua; Shi, Xingqiang; Lin, Chensheng; Zhang, Rui Qin; Minot, Christian; Van Hove, Michel A; Hong, Yuning; Tang, Ben Zhong; Lin, Nian

    2010-09-17

    We have fabricated atom-molecule contacts by attachment of single Cu atoms to terpyridine side groups of bis-terpyridine tetra-phenyl ethylene molecules on a Cu(111) surface. By means of scanning tunneling microscopy, spectroscopy, and density functional calculations, we have found that, due to the localization characteristics of molecular orbitals, the Cu-atom contact modifies the state localized at the terpyridine side group which is in contact with the Cu atom but does not affect the states localized at other parts of the molecule. These results illustrate the contact effects at individual orbitals and offer possibilities to manipulate orbital alignments within molecules.

  10. Analysis of a single-atom dipole trap

    International Nuclear Information System (INIS)

    Weber, Markus; Volz, Juergen; Saucke, Karen; Kurtsiefer, Christian; Weinfurter, Harald

    2006-01-01

    We describe a simple experimental technique which allows us to store a single 87 Rb atom in an optical dipole trap. Due to light-induced two-body collisions during the loading stage of the trap the maximum number of captured atoms is locked to one. This collisional blockade effect is confirmed by the observation of photon antibunching in the detected fluorescence light. The spectral properties of single photons emitted by the atom were studied with a narrow-band scanning cavity. We find that the atomic fluorescence spectrum is dominated by the spectral width of the exciting laser light field. In addition we observe a spectral broadening of the atomic fluorescence light due to the Doppler effect. This allows us to determine the mean kinetic energy of the trapped atom corresponding to a temperature of 105 μK. This simple single-atom trap is the key element for the generation of atom-photon entanglement required for future applications in quantum communication and a first loophole-free test of Bell's inequality

  11. Detection of single atoms by resonance ionization spectroscopy

    International Nuclear Information System (INIS)

    Hurst, G.S.

    1986-01-01

    Rutherford's idea for counting individual atoms can, in principle, be implemented for nearly any type of atom, whether stable or radioactive, by using methods of resonance ionization. With the RIS technique, a laser is tuned to a wavelength which will promote a valence electron in a Z-selected atom to an excited level. Additional resonance or nonresonance photoabsorption steps are used to achieve nearly 100% ionization efficiencies. Hence, the RIS process can be saturated for the Z-selected atoms; and since detectors are available for counting either single electrons or positive ions, one-atom detection is possible. Some examples are given of one-atom detection, including that of the noble gases, in order to show complementarity with AMS methods. For instance, the detection of 81 Kr using RIS has interesting applications for solar neutrino research, ice-cap dating, and groundwater dating. 39 refs., 7 figs., 2 tabs

  12. Oxygen recoil implant from SiO2 layers into single-crystalline silicon

    International Nuclear Information System (INIS)

    Wang, G.; Chen, Y.; Li, D.; Oak, S.; Srivastav, G.; Banerjee, S.; Tasch, A.; Merrill, P.; Bleiler, R.

    2001-01-01

    It is important to understand the distribution of recoil-implanted atoms and the impact on device performance when ion implantation is performed at a high dose through surface materials into single crystalline silicon. For example, in ultralarge scale integration impurity ions are often implanted through a thin layer of screen oxide and some of the oxygen atoms are inevitably recoil implanted into single-crystalline silicon. Theoretical and experimental studies have been performed to investigate this phenomenon. We have modified the Monte Carlo ion implant simulator, UT-Marlowe (B. Obradovic, G. Wang, Y. Chen, D. Li, C. Snell, and A. F. Tasch, UT-MARLOWE Manual, 1999), which is based on the binary collision approximation, to follow the full cascade and to dynamically modify the stoichiometry of the Si layer as oxygen atoms are knocked into it. CPU reduction techniques are used to relieve the demand on computational power when such a full cascade simulation is involved. Secondary ion mass spectrometry (SIMS) profiles of oxygen have been carefully obtained for high dose As and BF 2 implants at different energies through oxide layers of various thicknesses, and the simulated oxygen profiles are found to agree very well with the SIMS data. [copyright] 2001 American Institute of Physics

  13. Auger transitions in singly and multiply ionized atoms

    International Nuclear Information System (INIS)

    Mehlhorn, W.

    1978-01-01

    Some recent progress in Auger and autoionizing electron spectrometry of free metal atoms and of multiply ionized atoms is reviewed. The differences which arise between the spectra of atoms in the gaseous and the solid state are due to solid state effects. This will be shown for Cd as an example. The super Coster-Kronig transitions 3p-3d 2 (hole notation) and Coster-Kronig transitions 3p-3d 4s have been measured and compared with free-atom calculations for free Zn atoms. The experimental width GAMMA(3p)=(2.1+-0.2)eV found for the free atom agrees with the value obtained for solid Zn but is considerably smaller than the theoretical value for the free atom. Autoionizing spectra of Na following an L-shell excitation or ionization by different particles are compared and discussed. The nonisotropic angular distribution of electrons from the transition 2p 5 3s 2 2 Psub(3/2)→2p 6 +e - is compared with theoretical calculations. Two examples for Auger spectrometry of multiply ionized atoms are given: (1) excitation of neon target atoms by light and heavy ions, and (2) excitation of projectile ions Be + and B + in single gas collisions with CH 4 . A strong alignment of the excited atoms has also been found here

  14. Vibrational Relaxation of Ground-State Oxygen Molecules With Atomic Oxygen and Carbon Dioxide

    Science.gov (United States)

    Saran, D. V.; Pejakovic, D. A.; Copeland, R. A.

    2008-12-01

    Vertical water vapor profiles are key to understanding the composition and energy budget in the mesosphere and lower thermosphere (MLT). The SABER instrument onboard NASA's TIMED satellite measures such profiles by detecting H2O(ν2) emission in the 6.8 μm region. Collisional deactivation of vibrationally excited O2, O2(X3Σ-g, υ = 1) + H2O ↔ O2(X3Σ-g, υ = 0) + H2O(ν2), is an important source of H2O(ν2). A recent study has identified two other processes involving excited O2 that control H2O(ν2) population in the MLT: (1) the vibrational-translational (V-T) relaxation of O2(X3Σ-g, υ = 1) level by atomic oxygen and (2) the V-V exchange between CO2 and excited O2 molecules [1]. Over the past few years SRI researchers have measured the atomic oxygen removal process mentioned above at room temperature [2] and 240 K [3]. These measurements have been incorporated into the models for H2O(ν2) emission [1]. Here we report laboratory studies of the collisional removal of O2(X3Σ-g, υ = 1) by O(3P) at room temperature and below, reaching temperatures relevant to mesopause and polar summer MLT (~150 K). Instead of directly detecting the O2(X3Σ-g, υ = 1) population, a technically simpler approach is used in which the υ = 1 level of the O2(a1Δg) state is monitored. A two-laser method is employed, in which the pulsed output of the first laser near 285 nm photodissociates ozone to produce atomic oxygen and O2(a1Δg, υ = 1), and the pulsed output of the second laser detects O2(a1Δg, υ = 1) via resonance-enhanced multiphoton ionization. With ground-state O2 present, owing to the rapid equilibration of the O2(X3Σ-g, υ = 1) and O2(a1Δg, υ = 1) populations via the processes O2(a1Δg, υ = 1) + O2(X3Σ-g, υ = 0) ↔ O2(a1Δg, υ = 0) + O2(X3Σ-g, υ = 1), the information on the O2(X3Σ-g, υ = 1) kinetics is extracted from the O2(a1Δg, υ = 1) temporal evolution. In addition, measurements of the removal of O2(X3Σ-g, υ = 1) by CO2 at room temperature will also

  15. Spatially and Temporally Resolved Atomic Oxygen Measurements in Short Pulse Discharges by Two Photon Laser Induced Fluorescence

    Science.gov (United States)

    Lempert, Walter; Uddi, Mruthunjaya; Mintusov, Eugene; Jiang, Naibo; Adamovich, Igor

    2007-10-01

    Two Photon Laser Induced Fluorescence (TALIF) is used to measure time-dependent absolute oxygen atom concentrations in O2/He, O2/N2, and CH4/air plasmas produced with a 20 nanosecond duration, 20 kV pulsed discharge at 10 Hz repetition rate. Xenon calibrated spectra show that a single discharge pulse creates initial oxygen dissociation fraction of ˜0.0005 for air like mixtures at 40-60 torr total pressure. Peak O atom concentration is a factor of approximately two lower in fuel lean (φ=0.5) methane/air mixtures. In helium buffer, the initially formed atomic oxygen decays monotonically, with decay time consistent with formation of ozone. In all nitrogen containing mixtures, atomic oxygen concentrations are found to initially increase, for time scales on the order of 10-100 microseconds, due presumably to additional O2 dissociation caused by collisions with electronically excited nitrogen. Further evidence of the role of metastable N2 is demonstrated from time-dependent N2 2^nd Positive and NO Gamma band emission spectroscopy. Comparisons with modeling predictions show qualitative, but not quantitative, agreement with the experimental data.

  16. Single-atom gating and magnetic interactions in quantum corrals

    Energy Technology Data Exchange (ETDEWEB)

    Ngo, Anh T.; Kim, Eugene H.; Ulloa, Sergio E.

    2017-04-01

    Single-atom gating, achieved by manipulation of adatoms on a surface, has been shown in experiments to allow precise control over superposition of electronic states in quantum corrals. Using a Green's function approach, we demonstrate theoretically that such atom gating can also be used to control the coupling between magnetic degrees of freedom in these systems. Atomic gating enables control not only on the direct interaction between magnetic adatoms, but also over superpositions of many-body states which can then control long distance interactions. We illustrate this effect by considering the competition between direct exchange between magnetic impurities and the Kondo screening mediated by the host electrons, and how this is affected by gating. These results suggest that both magnetic and nonmagnetic single-atom gating may be used to investigate magnetic impurity systems with tailored interactions, and may allow the control of entanglement of different spin states.

  17. C-C Coupling on Single-Atom-Based Heterogeneous Catalyst.

    Science.gov (United States)

    Zhang, Xiaoyan; Sun, Zaicheng; Wang, Bin; Tang, Yu; Nguyen, Luan; Li, Yuting; Tao, Franklin Feng

    2018-01-24

    Compared to homogeneous catalysis, heterogeneous catalysis allows for ready separation of products from the catalyst and thus reuse of the catalyst. C-C coupling is typically performed on a molecular catalyst which is mixed with reactants in liquid phase during catalysis. This homogeneous mixing at a molecular level in the same phase makes separation of the molecular catalyst extremely challenging and costly. Here we demonstrated that a TiO 2 -based nanoparticle catalyst anchoring singly dispersed Pd atoms (Pd 1 /TiO 2 ) is selective and highly active for more than 10 Sonogashira C-C coupling reactions (R≡CH + R'X → R≡R'; X = Br, I; R' = aryl or vinyl). The coupling between iodobenzene and phenylacetylene on Pd 1 /TiO 2 exhibits a turnover rate of 51.0 diphenylacetylene molecules per anchored Pd atom per minute at 60 °C, with a low apparent activation barrier of 28.9 kJ/mol and no cost of catalyst separation. DFT calculations suggest that the single Pd atom bonded to surface lattice oxygen atoms of TiO 2 acts as a site to dissociatively chemisorb iodobenzene to generate an intermediate phenyl, which then couples with phenylacetylenyl bound to a surface oxygen atom. This coupling of phenyl adsorbed on Pd 1 and phenylacetylenyl bound to O ad of TiO 2 forms the product molecule, diphenylacetylene.

  18. Inactivation of Bacillus atrophaeus and of Aspergillus niger using beams of argon ions, of oxygen molecules and of oxygen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Raballand, V; Benedikt, J; Keudell, A von [Research Group Reactive Plasmas, Ruhr-Universitaet Bochum, 44780 Bochum (Germany); Wunderlich, J [Fraunhofer Institut for Process Engineering and Packaging, Giggenhauser Strasse 35, 85354 Freising (Germany)], E-mail: Achim.vonKeudell@rub.de

    2008-06-07

    The inactivation of spores of Bacillus atrophaeus and of Aspergillus niger using beams of argon ions, of oxygen molecules and of oxygen atoms is studied. Thereby, the conditions occurring in oxygen containing low pressure plasmas are mimicked and fundamental inactivation mechanisms can be revealed. It is shown that the impact of O atoms has no effect on the viability of the spores and that no etching of the spore coat occurs up to an O atom fluence of 3.5 x 10{sup 19} cm{sup -2}. The impact of argon ions with an energy of 200 eV does not cause significant erosion for fluences up to 1.15 x 10{sup 18} cm{sup -2}. However, the combined impact of argon ions and oxygen molecules or atoms causes significant etching of the spores and significant inactivation. This is explained by the process of chemical sputtering, where an ion-induced defect at the surface of the spore reacts with either the incident bi-radical O{sub 2} or with an incident O atom. This leads to the formation of CO, CO{sub 2} and H{sub 2}O and thus to erosion.

  19. Chemical reaction between single hydrogen atom and graphene

    International Nuclear Information System (INIS)

    Ito, Atsushi; Nakamura, Hiroaki; Takayama, Arimichi

    2007-04-01

    We study chemical reaction between a single hydrogen atom and a graphene, which is the elemental reaction between hydrogen and graphitic carbon materials. In the present work, classical molecular dynamics simulation is used with modified Brenner's empirical bond order potential. The three reactions, that is, absorption reaction, reflection reaction and penetration reaction, are observed in our simulation. Reaction rates depend on the incident energy of the hydrogen atom and the graphene temperature. The dependence can be explained by the following mechanisms: (1) The hydrogen atom receives repulsive force by π-electrons in addition to nuclear repulsion. (2) Absorbing the hydrogen atom, the graphene transforms its structure to the 'overhand' configuration such as sp 3 state. (3) The hexagonal hole of the graphene is expanded during the penetration of the hydrogen atom. (author)

  20. Spin valve effect in single-atom contacts

    International Nuclear Information System (INIS)

    Ziegler, M; Neel, N; Berndt, R; Lazo, C; Ferriani, P; Heinze, S; Kroeger, J

    2011-01-01

    Magnetic single-atom contacts have been controllably fabricated with a scanning tunnelling microscope. A voltage-dependent spin valve effect with conductance variations of ∼40% is reproducibly observed from contacts comprising a Cr-covered tip and Co and Cr atoms on ferromagnetic nanoscale islands on W(110) with opposite magnetization. The spin-dependent conductances are interpreted from first-principles calculations in terms of the orbital character of the relevant electronic states of the junction.

  1. Application of GRID to Foreign Atom Localization in Single Crystals.

    Science.gov (United States)

    Karmann, A; Wesch, W; Weber, B; Börner, H G; Jentschel, M

    2000-01-01

    The application of GRID (Gamma Ray Induced Doppler broadening) spectroscopy to the localization of foreign atoms in single crystals is demonstrated on erbium in YAP. By the investigation of the Doppler broadened secondary γ line for two crystalline directions, the Er was determined to be localized on the Y site. Conditions for the nuclear parameters of the impurity atoms used for the application of GRID spectroscopy are discussed.

  2. Manipulation of single neutral atoms in optical lattices

    International Nuclear Information System (INIS)

    Zhang Chuanwei; Das Sarma, S.; Rolston, S. L.

    2006-01-01

    We analyze a scheme to manipulate quantum states of neutral atoms at individual sites of optical lattices using focused laser beams. Spatial distributions of focused laser intensities induce position-dependent energy shifts of hyperfine states, which, combined with microwave radiation, allow selective manipulation of quantum states of individual target atoms. We show that various errors in the manipulation process are suppressed below 10 -4 with properly chosen microwave pulse sequences and laser parameters. A similar idea is also applied to measure quantum states of single atoms in optical lattices

  3. Atomic Oxygen Treatment and Its Effect on a Variety of Artist's Media

    Science.gov (United States)

    Miller, Sharon K. R.; Banks, Bruce A.; Waters, Deborah L.

    2005-01-01

    Atomic oxygen treatment has been investigated as an unconventional option for art restoration where conventional methods have not been effective. Exposure of surfaces to atomic oxygen was first performed to investigate the durability of materials in the low Earth orbit environment of space. The use of the ground based environmental simulation chambers, developed for atomic oxygen exposure testing, has been investigated in collaboration with conservators at a variety of institutions, as a method to clean the surfaces of works of art. The atomic oxygen treatment technique has been evaluated as a method to remove soot and char from the surface of oil paint (both varnished and unvarnished), watercolors, acrylic paint, and fabric as well as the removal of graffiti and other marks from surfaces which are too porous to lend themselves to conventional solvent removal techniques. This paper will discuss the treatment of these surfaces giving an example of each and a discussion of the treatment results.

  4. Characterization of a 5-eV neutral atomic oxygen beam facility

    Science.gov (United States)

    Vaughn, J. A.; Linton, R. C.; Carruth, M. R., Jr.; Whitaker, A. F.; Cuthbertson, J. W.; Langer, W. D.; Motley, R. W.

    1991-01-01

    An experimental effort to characterize an existing 5-eV neutral atomic oxygen beam facility being developed at Princeton Plasma Physics Laboratory is described. This characterization effort includes atomic oxygen flux and flux distribution measurements using a catalytic probe, energy determination using a commercially designed quadrupole mass spectrometer (QMS), and the exposure of oxygen-sensitive materials in this beam facility. Also, comparisons were drawn between the reaction efficiencies of materials exposed in plasma ashers, and the reaction efficiencies previously estimated from space flight experiments. The results of this study show that the beam facility is capable of producing a directional beam of neutral atomic oxygen atoms with the needed flux and energy to simulate low Earth orbit (LEO) conditions for real time accelerated testing. The flux distribution in this facility is uniform to +/- 6 percent of the peak flux over a beam diameter of 6 cm.

  5. New Active Optical Technique Developed for Measuring Low-Earth-Orbit Atomic Oxygen Erosion of Polymers

    Science.gov (United States)

    Banks, Bruce A.; deGroh, Kim K.; Demko, Rikako

    2003-01-01

    Polymers such as polyimide Kapton (DuPont) and Teflon FEP (DuPont, fluorinated ethylene propylene) are commonly used spacecraft materials because of desirable properties such as flexibility, low density, and in the case of FEP, a low solar absorptance and high thermal emittance. Polymers on the exterior of spacecraft in the low-Earth-orbit (LEO) environment are exposed to energetic atomic oxygen. Atomic oxygen reaction with polymers causes erosion, which is a threat to spacecraft performance and durability. It is, therefore, important to understand the atomic oxygen erosion yield E (the volume loss per incident oxygen atom) of polymers being considered in spacecraft design. The most common technique for determining E is a passive technique based on mass-loss measurements of samples exposed to LEO atomic oxygen during a space flight experiment. There are certain disadvantages to this technique. First, because it is passive, data are not obtained until after the flight is completed. Also, obtaining the preflight and postflight mass measurements is complicated by the fact that many polymers absorb water and, therefore, the mass change due to water absorption can affect the E data. This is particularly true for experiments that receive low atomic oxygen exposures or for samples that have a very low E. An active atomic oxygen erosion technique based on optical measurements has been developed that has certain advantages over the mass-loss technique. This in situ technique can simultaneously provide the erosion yield data on orbit and the atomic oxygen exposure fluence, which is needed for erosion yield determination. In the optical technique, either sunlight or artificial light can be used to measure the erosion of semitransparent or opaque polymers as a result of atomic oxygen attack. The technique is simple and adaptable to a rather wide range of polymers, providing that they have a sufficiently high optical absorption coefficient. If one covers a photodiode with a

  6. Ballistic Anisotropic Magnetoresistance of Single-Atom Contacts.

    Science.gov (United States)

    Schöneberg, J; Otte, F; Néel, N; Weismann, A; Mokrousov, Y; Kröger, J; Berndt, R; Heinze, S

    2016-02-10

    Anisotropic magnetoresistance, that is, the sensitivity of the electrical resistance of magnetic materials on the magnetization direction, is expected to be strongly enhanced in ballistic transport through nanoscale junctions. However, unambiguous experimental evidence of this effect is difficult to achieve. We utilize single-atom junctions to measure this ballistic anisotropic magnetoresistance (AMR). Single Co and Ir atoms are deposited on domains and domain walls of ferromagnetic Fe layers on W(110) to control their magnetization directions. They are contacted with nonmagnetic tips in a low-temperature scanning tunneling microscope to measure the junction conductances. Large changes of the magnetoresistance occur from the tunneling to the ballistic regime due to the competition of localized and delocalized d-orbitals, which are differently affected by spin-orbit coupling. This work shows that engineering the AMR at the single atom level is feasible.

  7. Atomic oxygen fine-structure splittings with tunable far-infrared spectroscopy

    Science.gov (United States)

    Zink, Lyndon R.; Evenson, Kenneth M.; Matsushima, Fusakazu; Nelis, Thomas; Robinson, Ruth L.

    1991-01-01

    Fine-structure splittings of atomic oxygen (O-16) in the ground state have been accurately measured using a tunable far-infrared spectrometer. The 3P0-3pl splitting is 2,060,069.09 (10) MHz, and the 3Pl-3P2 splitting is 4,744,777.49 (16) MHz. These frequencies are important for measuring atomic oxygen concentration in earth's atmosphere and the interstellar medium.

  8. Single atom self-diffusion on nickel surfaces

    International Nuclear Information System (INIS)

    Tung, R.T.; Graham, W.R.

    1980-01-01

    Results of a field ion microscope study of single atom self-diffusion on Ni(311), (331), (110), (111) and (100) planes are presented, including detailed information on the self-diffusion parameters on (311), (331), and (110) surfaces, and activation energies for diffusion on the (111), and (100) surfaces. Evidence is presented for the existence of two types of adsorption site and surface site geometry for single nickel atoms on the (111) surface. The presence of adsorbed hydrogen on the (110), (311), and (331) surfaces is shown to lower the onset temperature for self-diffusion on these planes. (orig.)

  9. A Sensitive Technique Using Atomic Force Microscopy to Measure the Low Earth Orbit Atomic Oxygen Erosion of Polymers

    Science.gov (United States)

    deGroh, Kim K.; Banks, Bruce A.; Clark, Gregory W.; Hammerstrom, Anne M.; Youngstrom, Erica E.; Kaminski, Carolyn; Fine, Elizabeth S.; Marx, Laura M.

    2001-01-01

    Polymers such as polyimide Kapton and Teflon FEP (fluorinated ethylene propylene) are commonly used spacecraft materials due to their desirable properties such as flexibility, low density, and in the case of FEP low solar absorptance and high thermal emittance. Polymers on the exterior of spacecraft in the low Earth orbit (LEO) environment are exposed to energetic atomic oxygen. Atomic oxygen erosion of polymers occurs in LEO and is a threat to spacecraft durability. It is therefore important to understand the atomic oxygen erosion yield (E, the volume loss per incident oxygen atom) of polymers being considered in spacecraft design. Because long-term space exposure data is rare and very costly, short-term exposures such as on the shuttle are often relied upon for atomic oxygen erosion determination. The most common technique for determining E is through mass loss measurements. For limited duration exposure experiments, such as shuttle experiments, the atomic oxygen fluence is often so small that mass loss measurements can not produce acceptable uncertainties. Therefore, a recession measurement technique has been developed using selective protection of polymer samples, combined with postflight atomic force microscopy (AFM) analysis, to obtain accurate erosion yields of polymers exposed to low atomic oxygen fluences. This paper discusses the procedures used for this recession depth technique along with relevant characterization issues. In particular, a polymer is salt-sprayed prior to flight, then the salt is washed off postflight and AFM is used to determine the erosion depth from the protected plateau. A small sample was salt-sprayed for AFM erosion depth analysis and flown as part of the Limited Duration Candidate Exposure (LDCE-4,-5) shuttle flight experiment on STS-51. This sample was used to study issues such as use of contact versus non-contact mode imaging for determining recession depth measurements. Error analyses were conducted and the percent probable

  10. Single-Atom Gating of Quantum State Superpositions

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Christopher

    2010-04-28

    The ultimate miniaturization of electronic devices will likely require local and coherent control of single electronic wavefunctions. Wavefunctions exist within both physical real space and an abstract state space with a simple geometric interpretation: this state space - or Hilbert space - is spanned by mutually orthogonal state vectors corresponding to the quantized degrees of freedom of the real-space system. Measurement of superpositions is akin to accessing the direction of a vector in Hilbert space, determining an angle of rotation equivalent to quantum phase. Here we show that an individual atom inside a designed quantum corral1 can control this angle, producing arbitrary coherent superpositions of spatial quantum states. Using scanning tunnelling microscopy and nanostructures assembled atom-by-atom we demonstrate how single spins and quantum mirages can be harnessed to image the superposition of two electronic states. We also present a straightforward method to determine the atom path enacting phase rotations between any desired state vectors. A single atom thus becomes a real-space handle for an abstract Hilbert space, providing a simple technique for coherent quantum state manipulation at the spatial limit of condensed matter.

  11. Creation and recovery of a W(111) single atom gas field ion source

    International Nuclear Information System (INIS)

    Pitters, Jason L.; Urban, Radovan; Wolkow, Robert A.

    2012-01-01

    Tungsten single atom tips have been prepared from a single crystal W(111) oriented wire using the chemical assisted field evaporation and etching method. Etching to a single atom tip occurs through a symmetric structure and leads to a predictable last atom unlike etching with polycrystalline tips. The single atom tip formation procedure is shown in an atom by atom removal process. Rebuilds of single atom tips occur on the same crystalline axis as the original tip such that ion emission emanates along a fixed direction for all tip rebuilds. This preparation method could be utilized and developed to prepare single atom tips for ion source development.

  12. Unimolecular Logic Gate with Classical Input by Single Gold Atoms.

    Science.gov (United States)

    Skidin, Dmitry; Faizy, Omid; Krüger, Justus; Eisenhut, Frank; Jancarik, Andrej; Nguyen, Khanh-Hung; Cuniberti, Gianaurelio; Gourdon, Andre; Moresco, Francesca; Joachim, Christian

    2018-02-27

    By a combination of solution and on-surface chemistry, we synthesized an asymmetric starphene molecule with two long anthracenyl input branches and a short naphthyl output branch on the Au(111) surface. Starting from this molecule, we could demonstrate the working principle of a single molecule NAND logic gate by selectively contacting single gold atoms by atomic manipulation to the longer branches of the molecule. The logical input "1" ("0") is defined by the interaction (noninteraction) of a gold atom with one of the input branches. The output is measured by scanning tunneling spectroscopy following the shift in energy of the electronic tunneling resonances at the end of the short branch of the molecule.

  13. Atomic-Scale Control of Electron Transport through Single Molecules

    DEFF Research Database (Denmark)

    Wang, Y. F.; Kroger, J.; Berndt, R.

    2010-01-01

    Tin-phthalocyanine molecules adsorbed on Ag(111) were contacted with the tip of a cryogenic scanning tunneling microscope. Orders-of-magnitude variations of the single-molecule junction conductance were achieved by controllably dehydrogenating the molecule and by modifying the atomic structure...

  14. Coherent excitation of a single atom to a Rydberg state

    DEFF Research Database (Denmark)

    Miroshnychenko, Yevhen; Gaëtan, Alpha; Evellin, Charles

    2010-01-01

    We present the coherent excitation of a single Rubidium atom to the Rydberg state 58d3/2 using a two-photon transition. The experimental setup is described in detail, as are experimental techniques and procedures. The coherence of the excitation is revealed by observing Rabi oscillations between...

  15. Single atom identification by energy dispersive x-ray spectroscopy

    International Nuclear Information System (INIS)

    Lovejoy, T. C.; Dellby, N.; Krivanek, O. L.; Ramasse, Q. M.; Falke, M.; Kaeppel, A.; Terborg, R.; Zan, R.

    2012-01-01

    Using aberration-corrected scanning transmission electron microscope and energy dispersive x-ray spectroscopy, single, isolated impurity atoms of silicon and platinum in monolayer and multilayer graphene are identified. Simultaneously acquired electron energy loss spectra confirm the elemental identification. Contamination difficulties are overcome by employing near-UHV sample conditions. Signal intensities agree within a factor of two with standardless estimates.

  16. Passivation of CdZnTe surfaces by oxidation in low energy atomic oxygen

    International Nuclear Information System (INIS)

    Chen, H.; Chattopadhyay, K.; Chen, K.; Burger, A.; George, M.A.; Gregory, J.C.; Nag, P.K.; Weimer, J.J.; James, R.B.

    1999-01-01

    A method of surface passivation of Cd 1-x Zn x Te (CZT) x-ray and gamma ray detectors has been established by using microwave-assisted atomic oxygen bombardment. Detector performance is significantly enhanced due to the reduction of surface leakage current. CZT samples were exposed to an atomic oxygen environment at the University of Alabama in Huntsville close-quote s Thermal Atomic Oxygen Facility. This system generates neutral atomic oxygen species with kinetic energies of 0.1 - 0.2 eV. The surface chemical composition and its morphology modification due to atomic oxygen exposure were studied by x-ray photoelectron spectroscopy and atomic force microscopy and the results were correlated with current-voltage measurements and with room temperature spectral responses to 133 Ba and 241 Am radiation. A reduction of leakage current by about a factor of 2 is reported, together with significant improvement in the gamma-ray line resolution. copyright 1999 American Vacuum Society

  17. Oxygen-induced restructuring with release of gold atoms from Au(111)

    International Nuclear Information System (INIS)

    Min, B.K.; Deng, X.; Schalek, R.; Pinnaduwage, D.; Friend, C.M.

    2005-01-01

    Adsorption of oxygen atoms, achieved via electron-induced dissociation of nitrogen dioxide, induces restructuring of the 'herringbone' to a striped, soliton-wall structure accompanied by release of gold from the 'elbows' in the herringbone structure. The number density of 'elbows' (dislocations corresponding to a change in direction of the reconstruction) decreases as a function of increasing atomic oxygen coverage while the long range order observed in low energy electron diffraction (LEED) changes from (√(3)x22)-rec. to (1x22) in the limit of saturation coverage. Small islands and serrated step edges were formed due to the release of gold atoms from elbow sites of Au(111). The overall structural change of the Au(111) surface may result from the reduction of anisotropy related to the tensile stress relief of the Au(111) surface by oxygen atoms

  18. Fluorescence measurement of atomic oxygen concentration in a dielectric barrier discharge

    Science.gov (United States)

    Dvořák, P.; Mrkvičková, M.; Obrusník, A.; Kratzer, J.; Dědina, J.; Procházka, V.

    2017-06-01

    Concentration of atomic oxygen was measured in a volume dielectric barrier discharge (DBD) ignited in mixtures of Ar + O2(+ H2) at atmospheric pressure. Two-photon absorption laser induced fluorescence (TALIF) of atomic oxygen was used and this method was calibrated by TALIF of Xe in a mixture of argon and a trace of xenon. The calibration was performed at atmospheric pressure and it was shown that quenching by three-body collisions has negligible effect on the life time of excited Xe atoms. The concentration of atomic oxygen in the DBD was around 1021 m-3 and it was stable during the whole discharge period. The concentration did not depend much on the electric power delivered to the discharge provided that the power was sufficiently high so that the visible discharge filled the whole reactor volume. Both the addition of hydrogen or replacing of argon by helium led to a significant decrease of atomic oxygen concentration. The TALIF measurements of O concentration levels in the DBD plasma performed in this work are made use of e.g. in the field analytical chemistry. The results contribute to understanding the processes of analyte hydride preconcentration and subsequent atomization in the field of trace element analysis where DBD plasma atomizers are employed.

  19. Influence of oxygen impurity atoms on defect clusters and radiation hardening in neutron-irradiated vanadium

    International Nuclear Information System (INIS)

    Bajaj, R.; Wechsler, M.S.

    1975-01-01

    Single crystal TEM samples and polycrystalline tensile samples of vanadium containing 60-640 wt ppm oxygen were irradiated at about 100 0 C to about 1.3 x 10 19 neutrons/cm 2 (E greater than 1 MeV) and post-irradiation annealed up to 800 0 C. The defect cluster density increased and the average size decreased with increasing oxygen concentration. Higher oxygen concentrations caused the radiation hardening and radiation-anneal hardening to increase. The observations are consistent with the nucleation of defect clusters by small oxygen or oxygen-point defect complexes and the trapping of oxygen at defect clusters upon post-irradiation annealing

  20. Construction of a single atom trap for quantum information protocols

    Science.gov (United States)

    Shea, Margaret E.; Baker, Paul M.; Gauthier, Daniel J.; Duke Physics Department Team

    2016-05-01

    The field of quantum information science addresses outstanding problems such as achieving fundamentally secure communication and solving computationally hard problems. Great progress has been made in the field, particularly using photons coupled to ions and super conducting qubits. Neutral atoms are also interesting for these applications and though the technology for control of neutrals lags behind that of trapped ions, they offer some key advantages: primarily coupling to optical frequencies closer to the telecom band than trapped ions or superconducting qubits. Here we report progress on constructing a single atom trap for 87 Rb. This system is a promising platform for studying the technical problems facing neutral atom quantum computing. For example, most protocols destroy the trap when reading out the neutral atom's state; we will investigate an alternative non-destructive state detection scheme. We detail the experimental systems involved and the challenges addressed in trapping a single atom. All of our hardware components are off the shelf and relatively inexpensive. Unlike many other systems, we place a high numerical aperture lens inside our vacuum system to increase photon collection efficiency. We gratefully acknowledge the financial support of the ARO through Grant # W911NF1520047.

  1. Atmospheric Pressure Method and Apparatus for Removal of Organic Matter with Atomic and Ionic Oxygen

    Science.gov (United States)

    Banks, Bruce A. (Inventor); Rutledge, Sharon K. (Inventor)

    1997-01-01

    A gas stream containing ionic and atomic oxygen in inert gas is used to remove organic matter from a substrate. The gas stream is formed by flowing a mixture of gaseous oxygen in an inert gas such as helium at atmospheric pressure past a high voltage, current limited, direct current arc which contacts the gas mixture and forms the ionic and atomic oxygen. The arc is curved at the cathode end and the ionic oxygen formed by the arc nearer to the anode end of the arc is accelerated in a direction towards the cathode by virtue of its charge. The relatively high mass to charge ratio of the ionic oxygen enables at least some of it to escape the arc before contacting the cathode and it is directed onto the substrate. This is useful for cleaning delicate substrates such as fine and historically important paintings and delicate equipment and the like.

  2. Magnetism of a relaxed single atom vacancy in graphene

    Science.gov (United States)

    Wu, Yunyi; Hu, Yonghong; Xue, Li; Sun, Tieyu; Wang, Yu

    2018-04-01

    It has been suggested in literature that defects in graphene (e.g. absorbed atoms and vacancies) may induce magnetizations due to unpaired electrons. The nature of magnetism, i.e. ferromagnetic or anti-ferromagnetic, is dependent on a number of structural factors including locations of magnetic moments and lattice symmetry. In the present work we investigated the influence of a relaxed single atom vacancy in garphnene on magnetization which were obtained under different pinning boundary conditions, aiming to achieve a better understanding of the magnetic behaviors of graphene. Through first principles calculations, we found that major spin polarizations occur on atoms that deviate slightly from their original lattice positions, and pinning boundaries could also affect the relaxed positions of atoms and determine which atom(s) would become the main source(s) of total spin polarizations and magnetic moments. When the pinning boundary condition is free, a special non-magnetic and semi-conductive structure may be obtained, suggesting that magnetization should more readily occur under pinning boundary conditions.

  3. O-, N-Atoms-Coordinated Mn Cofactors within a Graphene Framework as Bioinspired Oxygen Reduction Reaction Electrocatalysts.

    Science.gov (United States)

    Yang, Yang; Mao, Kaitian; Gao, Shiqi; Huang, Hao; Xia, Guoliang; Lin, Zhiyu; Jiang, Peng; Wang, Changlai; Wang, Hui; Chen, Qianwang

    2018-05-28

    Manganese (Mn) is generally regarded as not being sufficiently active for the oxygen reduction reaction (ORR) compared to other transition metals such as Fe and Co. However, in biology, manganese-containing enzymes can catalyze oxygen-evolving reactions efficiently with a relative low onset potential. Here, atomically dispersed O and N atoms coordinated Mn active sites are incorporated within graphene frameworks to emulate both the structure and function of Mn cofactors in heme-copper oxidases superfamily. Unlike previous single-metal catalysts with general M-N-C structures, here, it is proved that a coordinated O atom can also play a significant role in tuning the intrinsic catalytic activities of transition metals. The biomimetic electrocatalyst exhibits superior performance for the ORR and zinc-air batteries under alkaline conditions, which is even better than that of commercial Pt/C. The excellent performance can be ascribed to the abundant atomically dispersed Mn cofactors in the graphene frameworks, confirmed by various characterization methods. Theoretical calculations reveal that the intrinsic catalytic activity of metal Mn can be significantly improved via changing local geometry of nearest coordinated O and N atoms. Especially, graphene frameworks containing the Mn-N 3 O 1 cofactor demonstrate the fastest ORR kinetics due to the tuning of the d electronic states to a reasonable state. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Quantitative measurements of ground state atomic oxygen in atmospheric pressure surface micro-discharge array

    Science.gov (United States)

    Li, D.; Kong, M. G.; Britun, N.; Snyders, R.; Leys, C.; Nikiforov, A.

    2017-06-01

    The generation of atomic oxygen in an array of surface micro-discharge, working in atmospheric pressure He/O2 or Ar/O2 mixtures, is investigated. The absolute atomic oxygen density and its temporal and spatial dynamics are studied by means of two-photon absorption laser-induced fluorescence. A high density of atomic oxygen is detected in the He/O2 mixture with up to 10% O2 content in the feed gas, whereas the atomic oxygen concentration in the Ar/O2 mixture stays below the detection limit of 1013 cm-3. The measured O density near the electrode under the optimal conditions in He/1.75% O2 gas is 4.26  ×  1015 cm-3. The existence of the ground state O (2p 4 3 P) species has been proven in the discharge at a distance up to 12 mm away from the electrodes. Dissociative reactions of the singlet O2 with O3 and deep vacuum ultraviolet radiation, including the radiation of excimer \\text{He}2\\ast , are proposed to be responsible for O (2p 4 3 P) production in the far afterglow. A capability of the surface micro-discharge array delivering atomic oxygen to long distances over a large area is considered very interesting for various biomedical applications.

  5. Behaviour of atomic oxygen in a pulsed dielectric barrier discharge measured by laser-induced fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Ryo [High Temperature Plasma Center, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 227-8568 (Japan); Yamashita, Youta [Department of Electrical Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 (Japan); Takezawa, Kei [Department of Electrical Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 (Japan); Oda, Tetsuji [Department of Electrical Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 (Japan)

    2005-08-21

    Atomic oxygen is measured in a pulsed dielectric barrier discharge (DBD) using two-photon absorption laser-induced fluorescence (TALIF). The ground-level atomic oxygen is excited to the 3p {sup 3}P state by two-photon absorption at 226 nm. Negative (-40 kV) or positive (+30 kV) pulsed DBD occurs in an O{sub 2}-N{sub 2} mixture at atmospheric pressure. The pulse width of the DBD current is approximately 50 ns. The TALIF experiment shows that the decay rate of atomic oxygen increases linearly with O{sub 2} concentration. This result proves that atomic oxygen decays mainly by the third-body reaction, O + O{sub 2} + M {yields} O{sub 3} + M. The rate coefficient of the third-body reaction is estimated to be 2.2 x 10{sup -34} cm{sup 6} s{sup -1} in the negative DBD and 0.89 x 10{sup -34} cm{sup 6} s{sup -1} in the positive DBD. It is shown that the decay rate of atomic oxygen increases linearly with humidity. This can explain the well-known fact that ozone production in DBD is suppressed by increasing humidity.

  6. Behaviour of atomic oxygen in a pulsed dielectric barrier discharge measured by laser-induced fluorescence

    International Nuclear Information System (INIS)

    Ono, Ryo; Yamashita, Youta; Takezawa, Kei; Oda, Tetsuji

    2005-01-01

    Atomic oxygen is measured in a pulsed dielectric barrier discharge (DBD) using two-photon absorption laser-induced fluorescence (TALIF). The ground-level atomic oxygen is excited to the 3p 3 P state by two-photon absorption at 226 nm. Negative (-40 kV) or positive (+30 kV) pulsed DBD occurs in an O 2 -N 2 mixture at atmospheric pressure. The pulse width of the DBD current is approximately 50 ns. The TALIF experiment shows that the decay rate of atomic oxygen increases linearly with O 2 concentration. This result proves that atomic oxygen decays mainly by the third-body reaction, O + O 2 + M → O 3 + M. The rate coefficient of the third-body reaction is estimated to be 2.2 x 10 -34 cm 6 s -1 in the negative DBD and 0.89 x 10 -34 cm 6 s -1 in the positive DBD. It is shown that the decay rate of atomic oxygen increases linearly with humidity. This can explain the well-known fact that ozone production in DBD is suppressed by increasing humidity

  7. Materials selection for long life in LEO: a critical evaluation of atomic oxygen testing with thermal atom systems

    International Nuclear Information System (INIS)

    Koontz, S.L.; Kuminecz, J.; Leger, L.; Nordine, P.

    1988-01-01

    The use of thermal atom test methods as a materials selection and screening technique for low-Earth orbit (LEO) spacecraft is critically evaluated. The chemistry and physics of thermal atom environments are compared with the LEO environment. The relative reactivities of a number of materials determined to be in thermal atom environments are compared to those observed in LEO and in high quality LEO simulations. Reaction efficiencies measured in a new type of thermal atom apparatus are one-hundredth to one-thousandth those observed in LEO, and many materials showing nearly identical reactivities in LEO show relative reactivities differing by as much as a factor of 8 in thermal atom systems. A simple phenomenological kinetic model for the reaction of oxygen atoms with organic materials can be used to explain the differences in reactivity in different environments. Certain specific thermal test environments can be used as reliable materials screening tools. Using thermal atom methods to predict material lifetime in LEO requires direct calibration of the method against LEO data or high quality simulation data for each material

  8. Study of the Dissociative Processes in O_2 Discharges. Development of an Atomic Oxygen Beam Source

    International Nuclear Information System (INIS)

    Pagnon, Daniel

    1992-01-01

    The first part of this work is devoted to the study of dissociative processes in an oxygen glow discharge at low pressure (0,1-5 Torr, 1-80 mA). The kinetics of oxygen atoms has been determined supported by the measurements of atomic concentrations by VUV absorption spectroscopy and actinometry. The reaction coefficients for dissociative excitation and direct excitation of oxygen atoms have been calculated using the cross sections of the literature and a previously calculated EEDF. It has been demonstrated that dissociative excitation is negligible in respect with direct excitation for dissociation rates smaller than 2,5 %. An upper limit of 20 % for dissociative rates is observed. This limit has been explained by the increase of the atomic recombination at the discharge wall with increasing wall temperature. Using all these results, we have designed and optimized a source of oxygen atoms which has then been adapted on a MBE device. The spatial distribution of the atomic density has been measured in molecular jet by laser induced fluorescence (LIF) and Resonant Multi-Photon Ionization (RMPI). A stimulated emission has been evidenced and the coefficient for this process evaluated. A model for the effusion of atoms has been developed from which the flow of atoms on the sample can be predicted. This source has already been used in industrial MBE devices for in-situ oxidation of copper films, superconductors, and substrates for VLSI high speed applications. The methodology of this work and the diagnostics developed can be applied to other kinds of discharges, of other molecular gases, to design sources of atoms for the treatment of large area samples. (author) [fr

  9. Single-atom reversible recording at room temperature

    DEFF Research Database (Denmark)

    Quaade, Ulrich; Stokbro, Kurt; Lin, Rong

    2001-01-01

    investigate two important aspects of using this single-atom switch as a memory device. First, the switching is electron stimulated, and through detailed modelling the switching probability per electron is accurately deduced. Second, we have investigated the possibilities for desorbing single hydrogen atoms...... to construct ordered arrays of switches to manufacture a memory device. Two desorption mechanisms have been considered: the well known electron-induced desorption at negative sample bias and a novel mechanism probably involving elastic deformation of the tip. For both mechanisms mechanical stability of the STM...... is of crucial importance. With our equipment it was possible to create a row of four switches in a controlled way.(Some figures in this article are in colour only in the electronic version)....

  10. Quantum Logic with Cavity Photons From Single Atoms.

    Science.gov (United States)

    Holleczek, Annemarie; Barter, Oliver; Rubenok, Allison; Dilley, Jerome; Nisbet-Jones, Peter B R; Langfahl-Klabes, Gunnar; Marshall, Graham D; Sparrow, Chris; O'Brien, Jeremy L; Poulios, Konstantinos; Kuhn, Axel; Matthews, Jonathan C F

    2016-07-08

    We demonstrate quantum logic using narrow linewidth photons that are produced with an a priori nonprobabilistic scheme from a single ^{87}Rb atom strongly coupled to a high-finesse cavity. We use a controlled-not gate integrated into a photonic chip to entangle these photons, and we observe nonclassical correlations between photon detection events separated by periods exceeding the travel time across the chip by 3 orders of magnitude. This enables quantum technology that will use the properties of both narrow-band single photon sources and integrated quantum photonics.

  11. Ground-Laboratory to In-Space Atomic Oxygen Correlation for the PEACE Polymers

    Science.gov (United States)

    Stambler, Arielle H.; Inoshita, Karen E.; Roberts, Lily M.; Barbagallo, Claire E.; de Groh, Kim K.; Banks, Bruce A.

    2009-01-01

    The Materials International Space Station Experiment 2 (MISSE 2) Polymer Erosion and Contamination Experiment (PEACE) polymers were exposed to the environment of low Earth orbit (LEO) for 3.95 years from 2001 to 2005. There were forty-one different PEACE polymers, which were flown on the exterior of the International Space Station (ISS) in order to determine their atomic oxygen erosion yields. In LEO, atomic oxygen is an environmental durability threat, particularly for long duration mission exposures. Although space flight experiments, such as the MISSE 2 PEACE experiment, are ideal for determining LEO environmental durability of spacecraft materials, ground-laboratory testing is often relied upon for durability evaluation and prediction. Unfortunately, significant differences exist between LEO atomic oxygen exposure and atomic oxygen exposure in ground-laboratory facilities. These differences include variations in species, energies, thermal exposures and radiation exposures, all of which may result in different reactions and erosion rates. In an effort to improve the accuracy of ground-based durability testing, ground-laboratory to in-space atomic oxygen correlation experiments have been conducted. In these tests, the atomic oxygen erosion yields of the PEACE polymers were determined relative to Kapton H using a radio-frequency (RF) plasma asher (operated on air). The asher erosion yields were compared to the MISSE 2 PEACE erosion yields to determine the correlation between erosion rates in the two environments. This paper provides a summary of the MISSE 2 PEACE experiment; it reviews the specific polymers tested as well as the techniques used to determine erosion yield in the asher, and it provides a correlation between the space and ground-laboratory erosion yield values. Using the PEACE polymers' asher to in-space erosion yield ratios will allow more accurate in-space materials performance predictions to be made based on plasma asher durability evaluation.

  12. Use of O2 airglow for calibrating direct atomic oxygen measurements from sounding rockets

    Directory of Open Access Journals (Sweden)

    G. Witt

    2009-12-01

    Full Text Available Accurate knowledge about the distribution of atomic oxygen is crucial for many studies of the mesosphere and lower thermosphere. Direct measurements of atomic oxygen by the resonance fluorescence technique at 130 nm have been made from many sounding rocket payloads in the past. This measurement technique yields atomic oxygen profiles with good sensitivity and altitude resolution. However, accuracy is a problem as calibration and aerodynamics make the quantitative analysis challenging. Most often, accuracies better than a factor 2 are not to be expected from direct atomic oxygen measurements. As an example, we present results from the NLTE (Non Local Thermodynamic Equilibrium sounding rocket campaign at Esrange, Sweden, in 1998, with simultaneous O2 airglow and O resonance fluorescence measurements. O number densities are found to be consistent with the nightglow analysis, but only within the uncertainty limits of the resonance fluorescence technique. Based on these results, we here describe how better atomic oxygen number densities can be obtained by calibrating direct techniques with complementary airglow photometer measurements and detailed aerodynamic analysis. Night-time direct O measurements can be complemented by photometric detection of the O2 (b1∑g+−X3∑g- Atmospheric Band at 762 nm, while during daytime the O2 (a1Δg−X3∑g- Infrared Atmospheric Band at 1.27 μm can be used. The combination of a photometer and a rather simple resonance fluorescence probe can provide atomic oxygen profiles with both good accuracy and good height resolution.

  13. Use of Atomic Oxygen for Increased Water Contact Angles of Various Polymers for Biomedical Applications

    Science.gov (United States)

    deGroh, Kim; Berger, Lauren; Roberts, Lily

    2009-01-01

    The purpose of this study was to determine the effect of atomic oxygen (AO) exposure on the hydrophilicity of nine different polymers for biomedical applications. Atomic oxygen treatment can alter the chemistry and morphology of polymer surfaces, which may increase the adhesion and spreading of cells on Petri dishes and enhance implant growth. Therefore, nine different polymers were exposed to atomic oxygen and water-contact angle, or hydrophilicity, was measured after exposure. To determine whether hydrophilicity remains static after initial atomic oxygen exposure, or changes with higher fluence exposures, the contact angles between the polymer and water droplet placed on the polymer s surface were measured versus AO fluence. The polymers were exposed to atomic oxygen in a 100-W, 13.56-MHz radio frequency (RF) plasma asher, and the treatment was found to significantly alter the hydrophilicity of non-fluorinated polymers. Pristine samples were compared with samples that had been exposed to AO at various fluence levels. Minimum and maximum fluences for the ashing trials were set based on the effective AO erosion of a Kapton witness coupon in the asher. The time intervals for ashing were determined by finding the logarithmic values of the minimum and maximum fluences. The difference of these two values was divided by the desired number of intervals (ideally 10). The initial desired fluence was then multiplied by this result (2.37), as was each subsequent desired fluence. The flux in the asher was determined to be approximately 3.0 x 10(exp 15) atoms/sq cm/sec, and each polymer was exposed to a maximum fluence of 5.16 x 10(exp 20) atoms/sq cm.

  14. Laser diagnostics of atomic hydrogen and oxygen production in rf and microwave plasma discharges

    International Nuclear Information System (INIS)

    Preppernau, B.L.

    1993-01-01

    The research for this thesis involved the application of two-photon allowed laser-induced fluorescence (TALIF) to the study of atomic hydrogen and oxygen production in industrial scale radio-frequency and microwave plasma discharge apparatus. Absolute atomic hydrogen concentration profiles were measured in a Gaseous Electronics Conference Reference Cell installed at Wright-Patterson AFB, Ohio operating with a simple H 2 discharge. Two-dimensional atomic hydrogen concentration profiles were also measured in an ASTEX HPMM microwave plasma diamond deposition reactor during actual diamond growth. In addition absolute atomic oxygen concentrations were measured in the ASTEX system. Particular attention as paid to refining the concentration calibration technique and in determining a correction to account for the collisional quenching of excited state fluorescence in high pressure gases

  15. Silicon solar cell performance deposited by diamond like carbon thin film ;Atomic oxygen effects;

    Science.gov (United States)

    Aghaei, Abbas Ail; Eshaghi, Akbar; Karami, Esmaeil

    2017-09-01

    In this research, a diamond-like carbon thin film was deposited on p-type polycrystalline silicon solar cell via plasma-enhanced chemical vapor deposition method by using methane and hydrogen gases. The effect of atomic oxygen on the functioning of silicon coated DLC thin film and silicon was investigated. Raman spectroscopy, field emission scanning electron microscopy, atomic force microscopy and attenuated total reflection-Fourier transform infrared spectroscopy were used to characterize the structure and morphology of the DLC thin film. Photocurrent-voltage characteristics of the silicon solar cell were carried out using a solar simulator. The results showed that atomic oxygen exposure induced the including oxidation, structural changes, cross-linking reactions and bond breaking of the DLC film; thus reducing the optical properties. The photocurrent-voltage characteristics showed that although the properties of the fabricated thin film were decreased after being exposed to destructive rays, when compared with solar cell without any coating, it could protect it in atomic oxygen condition enhancing solar cell efficiency up to 12%. Thus, it can be said that diamond-like carbon thin layer protect the solar cell against atomic oxygen exposure.

  16. Hot oxygen atoms: Their generation and chemistry. [Production by sputtering; reaction with butenes

    Energy Technology Data Exchange (ETDEWEB)

    Ferrieri, R.A.; Chu, Yung Y.; Wolf, A.P.

    1987-01-01

    Oxygen atoms with energies between 1 and 10 eV have been produced through ion beam sputtering from metal oxide targets. Argon ion beams were used on Ta/sub 2/O/sub 5/ and V/sub 2/O/sub 5/. Results show that some control may be exerted over the atom's kinetic energy by changing the target. Reactions of the hot O(/sup 3/P) with cis- and trans-butenes were investigated. (DLC)

  17. Generation of atomic iodine via fluorine for chemical oxygen-iodine laser

    Czech Academy of Sciences Publication Activity Database

    Jirásek, Vít; Špalek, Otomar; Čenský, Miroslav; Picková, Irena; Kodymová, Jarmila; Jakubec, Ivo

    2007-01-01

    Roč. 334, - (2007), s. 167-174 ISSN 0301-0104 R&D Projects: GA ČR GA202/05/0359 Grant - others:USAF European Office for Research and Development(XE) FA 8655-05-M-4027 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z40320502 Keywords : atomic iodine * atomic fluorine * chemical oxygen-iodine laser Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.805, year: 2007

  18. Mechanism and kinetics of Fe, Cr, Mo and Mn atom interaction with molecular oxygen

    International Nuclear Information System (INIS)

    Akhmadov, U.S.; Zaslonko, I.S.; Smirnov, V.N.

    1988-01-01

    Rate constants of atomic interaction of some transition metals (Fe, Cr, Mo, Mn) with molecular oxygen are measured in shock waves using the resonance atomic-absorption method. A new method for determination of the parameter γ in the modified Lambert-Beer law D=ε(lN)γ is suggested and applied. Bond strength in CrO and MoO molecules is estimated

  19. Chemical oxygen-iodine laser with atomic iodine generated via fluorine atoms

    Czech Academy of Sciences Publication Activity Database

    Jirásek, Vít; Čenský, Miroslav; Špalek, Otomar; Kodymová, Jarmila; Picková, Irena; Jakubec, Ivo

    2008-01-01

    Roč. 345, č. 1 (2008), 14-22 ISSN 0301-0104 R&D Projects: GA ČR GA202/05/0359 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z40320502 Keywords : atomic iodine * atomic fluorine * chemical oxygen–iodine laser * COIL Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.961, year: 2008

  20. Energy transfers between N_2(A"3Σ) nitrogen metastable molecules and oxygen atoms and molecules

    International Nuclear Information System (INIS)

    De Souza, Antonio Rogerio

    1985-01-01

    This research thesis aims at determining reaction coefficients for energy transfers between nitrogen in its metastable status and oxygen atoms and molecules, the variation of these coefficients with respect to temperature (mainly in the 200-400 K range), products formed and more particularly branching rates of O("1S) oxygen and of NO_2. Reaction coefficients are experimentally determined by using the technique of post-discharge in flow. The experimental set-up is described and the study of the best operating conditions is reported. In the next part, the author reports the study of the energy transfer between nitrogen in its metastable status N_2(A) and oxygen molecules. Reaction coefficients are determined for the first three vibrational levels. The author then reports the study of the transfer of N_2(A) molecules on oxygen atoms in their fundamental status. Reactions coefficients and their variations are determined for the three first vibrational levels. The author describes the dissociation method and the method of detection of atomic oxygen. A kinetic model is proposed for the analysis of formed products during a post-discharge in flow, and the branching rate for the formation of O("1S) oxygen between 190 and 365 K is determined. The author finally discusses publications on the role of these reactions in the interpretation of some atmospheric phenomena

  1. Atomically precise graphene nanoribbon heterojunctions from a single molecular precursor

    Science.gov (United States)

    Nguyen, Giang D.; Tsai, Hsin-Zon; Omrani, Arash A.; Marangoni, Tomas; Wu, Meng; Rizzo, Daniel J.; Rodgers, Griffin F.; Cloke, Ryan R.; Durr, Rebecca A.; Sakai, Yuki; Liou, Franklin; Aikawa, Andrew S.; Chelikowsky, James R.; Louie, Steven G.; Fischer, Felix R.; Crommie, Michael F.

    2017-11-01

    The rational bottom-up synthesis of atomically defined graphene nanoribbon (GNR) heterojunctions represents an enabling technology for the design of nanoscale electronic devices. Synthetic strategies used thus far have relied on the random copolymerization of two electronically distinct molecular precursors to yield GNR heterojunctions. Here we report the fabrication and electronic characterization of atomically precise GNR heterojunctions prepared through late-stage functionalization of chevron GNRs obtained from a single precursor. Post-growth excitation of fully cyclized GNRs induces cleavage of sacrificial carbonyl groups, resulting in atomically well-defined heterojunctions within a single GNR. The GNR heterojunction structure was characterized using bond-resolved scanning tunnelling microscopy, which enables chemical bond imaging at T = 4.5 K. Scanning tunnelling spectroscopy reveals that band alignment across the heterojunction interface yields a type II heterojunction, in agreement with first-principles calculations. GNR heterojunction band realignment proceeds over a distance less than 1 nm, leading to extremely large effective fields.

  2. Probing quantum coherence in single-atom electron spin resonance

    Science.gov (United States)

    Willke, Philip; Paul, William; Natterer, Fabian D.; Yang, Kai; Bae, Yujeong; Choi, Taeyoung; Fernández-Rossier, Joaquin; Heinrich, Andreas J.; Lutz, Christoper P.

    2018-01-01

    Spin resonance of individual spin centers allows applications ranging from quantum information technology to atomic-scale magnetometry. To protect the quantum properties of a spin, control over its local environment, including energy relaxation and decoherence processes, is crucial. However, in most existing architectures, the environment remains fixed by the crystal structure and electrical contacts. Recently, spin-polarized scanning tunneling microscopy (STM), in combination with electron spin resonance (ESR), allowed the study of single adatoms and inter-atomic coupling with an unprecedented combination of spatial and energy resolution. We elucidate and control the interplay of an Fe single spin with its atomic-scale environment by precisely tuning the phase coherence time T2 using the STM tip as a variable electrode. We find that the decoherence rate is the sum of two main contributions. The first scales linearly with tunnel current and shows that, on average, every tunneling electron causes one dephasing event. The second, effective even without current, arises from thermally activated spin-flip processes of tip spins. Understanding these interactions allows us to maximize T2 and improve the energy resolution. It also allows us to maximize the amplitude of the ESR signal, which supports measurements even at elevated temperatures as high as 4 K. Thus, ESR-STM allows control of quantum coherence in individual, electrically accessible spins. PMID:29464211

  3. Localizing gravitational wave sources with single-baseline atom interferometers

    Science.gov (United States)

    Graham, Peter W.; Jung, Sunghoon

    2018-02-01

    Localizing sources on the sky is crucial for realizing the full potential of gravitational waves for astronomy, astrophysics, and cosmology. We show that the midfrequency band, roughly 0.03 to 10 Hz, has significant potential for angular localization. The angular location is measured through the changing Doppler shift as the detector orbits the Sun. This band maximizes the effect since these are the highest frequencies in which sources live for several months. Atom interferometer detectors can observe in the midfrequency band, and even with just a single baseline they can exploit this effect for sensitive angular localization. The single-baseline orbits around the Earth and the Sun, causing it to reorient and change position significantly during the lifetime of the source, and making it similar to having multiple baselines/detectors. For example, atomic detectors could predict the location of upcoming black hole or neutron star merger events with sufficient accuracy to allow optical and other electromagnetic telescopes to observe these events simultaneously. Thus, midband atomic detectors are complementary to other gravitational wave detectors and will help complete the observation of a broad range of the gravitational spectrum.

  4. Analytical study of ozone generation in a single discharge in oxygen

    International Nuclear Information System (INIS)

    Hernandez A, A.O.

    1995-01-01

    The present thesis work, in the case of the equations description the generation ozone process, an atomic oxygen it was described, in the first part, the analysis of perturbative method used in [1] to solve this kind of equations, so on the solutions in the stationary and temporal cases were rensed by means of a constant flux velocity. The second part present the solutions to the sat dy state equations for constant mean flux velocity (Poiseuille form) at low pressures. Finally, the resulting equations were compared with other authors reports. [1] C. Gutierrez-Tapia, E. Camps and O. Olea-Cardoso, Perturbative method for ozone synthesis from oxygen in a single discharge. IEEE Trans. on Plasma Sci. 22(5) 979-985, 1994. (Author)

  5. Formation of molecules in interstellar clouds from singly and multiply ionized atoms

    International Nuclear Information System (INIS)

    Langer, W.D.; and NASA, Institute for Space Studies, Goddard Space Flight Center, New York)

    1978-01-01

    Soft X-ray and cosmic rays produce multiply ionized atoms which may initiate molecule production in interstellar clouds. This molecule production can occur via ion-molecule reactions with H 2 , either directly from the multiply ionized atom (e.g.,C ++ + H 2 →CH + + H + ), or indirectly from the singly ionized atoms (e.g., N + + H 2 →NH + + H) that are formed from the recombination or charge transfer of the highly ionized atom (e.g., N ++ + e→N + + hv). We investigate the contribution of these reactions to the abundances of carbon-, nitrogen-, and oxygen-bearing molecules in isobaric models of diffuse clouds. In the presence of the average flux estimated for the diffuse soft X-ray background, multiply ionized atoms contribute only minimally (a few percent) to carbon-bearing molecules such as CH. In the neighborhood of diffuse structures or discrete sources, however, where the X-ray flux is enhanced, multiple ionization is considerably more important for molecule production

  6. Preparation of a single atom in an optical microtrap

    International Nuclear Information System (INIS)

    Carpentier, Alicia V; Fung, Yin H; Sompet, Pimonpan; Hilliard, Andrew J; Andersen, Mikkel F; Walker, Thad G

    2013-01-01

    We investigate the use of light assisted collisions for the deterministic preparation of individual atoms in a microtrap. Blue detuned light is used in order to ensure that only one of the collision partners is lost from the trap. We obtain a 91% loading efficiency of single 85 Rb atoms. This can be achieved within a total preparation time of 542 ms. A numerical model of the process quantitatively agrees with the experiment giving an in-depth understanding of the dynamics of the process and allowing us to identify the factors that still limit the loading efficiency. The fast loading time in combination with the high efficiency may be sufficient for loading quantum registers at the size required for competitive quantum computing. (letter)

  7. Adsorption of atomic oxygen (N2O) on a clean Ge(001) surface

    NARCIS (Netherlands)

    Zandvliet, Henricus J.W.; Keim, Enrico G.; van Silfhout, Arend

    1990-01-01

    We present the results of a study concerning the interaction of atomic oxygen (as released by decomposition of N2O ) with the clean Ge(001)2×1 surface at 300 K. Ellipsometry in the photon energy range of 1.5–4 eV, surface conductance measurements and Auger electron spectroscopy(AES) have been used

  8. Atomic Oxygen Treatment as a Method of Recovering Smoke Damaged Paintings

    Science.gov (United States)

    Rutledge, Sharon K.; Banks, Bruce A.; Forkapa, Mark; Stueber, Thomas; Sechkar, Edward; Malinowski, Kevin

    1998-01-01

    Smoke damage, as a result of a fire, can be difficult to remove from some types of painting media without causing swelling, leaching or pigment movement or removal. A non-contact technique has been developed which can remove soot from the surface of a painting by use of a gently flowing gas containing atomic oxygen. The atomic oxygen chemically reacts with the soot on the surface creating gasses such as carbon monoxide and carbon dioxide which can be removed through the use of an exhaust system. The reaction is limited to the surface so that the process can be timed to stop when the paint layer is reached. Atomic oxygen is a primary component of the low Earth orbital environment, but can be generated on Earth through various methods. This paper will discuss the results of atomic oxygen treatment of soot exposed acrylic gesso, ink on paper, and a varnished oil painting. Reflectance measurements were used to characterize the surfaces before and after treatment.

  9. Rate of reaction of dimethylmercury with oxygen atoms in the gas phase

    DEFF Research Database (Denmark)

    Egsgaard, Helge

    1986-01-01

    The rate constant for the reaction of atomic oxygen (O(3P)) with dimethylmercury has been measured at room temperature at a pressure of about 1 Torr using a fast flow system with electron paramagnetic resonance and mass spectrometric detection. Some reaction products were identified. The rate...

  10. Crossed-molecular-beams reactive scattering of oxygen atoms

    International Nuclear Information System (INIS)

    Baseman, R.J.

    1982-11-01

    The reactions of O( 3 P) with six prototypical unsaturated hydrocarbons, and the reaction of O( 1 D) with HD, have been studied in high-resolution crossed-molecular-beams scattering experiments with mass-spectrometric detection. The observed laboratory-product angular and velocity distributions unambiguously identify parent-daughter ion pairs, distinguish different neutral sources of the same ion, and have been used to identify the primary products of the reactions. The derived center-of-mass product angular and translational energy distributions have been used to elucidate the detailed reaction dynamics. These results demonstrate that O( 3 P)-unsaturated hydrocarbon chemistry is dominated by single bond cleavages, leading to radical products exclusively

  11. Crossed-molecular-beams reactive scattering of oxygen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Baseman, R.J.

    1982-11-01

    The reactions of O(/sup 3/P) with six prototypical unsaturated hydrocarbons, and the reaction of O(/sup 1/D) with HD, have been studied in high-resolution crossed-molecular-beams scattering experiments with mass-spectrometric detection. The observed laboratory-product angular and velocity distributions unambiguously identify parent-daughter ion pairs, distinguish different neutral sources of the same ion, and have been used to identify the primary products of the reactions. The derived center-of-mass product angular and translational energy distributions have been used to elucidate the detailed reaction dynamics. These results demonstrate that O(/sup 3/P)-unsaturated hydrocarbon chemistry is dominated by single bond cleavages, leading to radical products exclusively.

  12. Energy variable monoenergetic positron beam study of oxygen atoms in Czochralski grown Si

    International Nuclear Information System (INIS)

    Tanigawa, S.; Wei, L.; Tabuki, Y.; Nagai, R.; Takeda, E.

    1992-01-01

    A monoenergetic positron beam has been used to investigate the state of interstitial oxygen in Czochralski-grown Si with the coverage of SiO 2 (100 nm) and poly-Si (200 nm)/SiO 2 (100 nm), respectively. It was found that (i) the growth of SiO 2 gives rise to a strong Doppler broadening of positron annihilation radiations in the bulk of Si, (ii) such a broadening can be recovered to the original level by annealing at 450degC, by the removal of overlayers using chemical etching and long-term aging at room temperature, (iii) the film stress over the CZ-grown Si is responsible for the rearrangement of oxygen atoms in S and (iv) only tensile stress gives rise to the clustering of oxygen atoms. The observed broadening was assigned to arise from the positron trapping by oxygen interstitial clusters. It was concluded that film stress is responsible for the rearrangement of oxygen atoms in CZ-grown Si. (author)

  13. Atomic oxygen production scaling in a nanosecond-pulsed externally grounded dielectric barrier plasma jet

    Science.gov (United States)

    Sands, Brian; Schmidt, Jacob; Ganguly, Biswa; Scofield, James

    2014-10-01

    Atomic oxygen production is studied in a capillary dielectric barrier plasma jet that is externally grounded and driven with a 20-ns risetime positive unipolar pulsed voltage at pulse repetition rates up to 25 kHz. The power coupled to the discharge can be easily increased by increasing the pulse repetition rate. At a critical turnover frequency, determined by the net energy density coupled to the discharge, the plasma chemistry abruptly changes. This is indicated by increased plasma conductance and a transition in reactive oxygen species production from an ozone-dominated production regime below the turnover frequency to atomic-oxygen-dominated production at higher pulse rates. Here, we characterize atomic oxygen production scaling using spatially- and temporally-resolved two-photon absorption laser-induced-fluorescence (TALIF). Quantitative results are obtained via calibration with xenon using a similar laser excitation and collection system. These results are compared with quantitative ozone and discharge power measurements using a helium gas flow with oxygen admixtures up to 3%.

  14. Atomic oxygen dynamics in an air dielectric barrier discharge: a combined diagnostic and modeling approach

    Science.gov (United States)

    Baldus, Sabrina; Schröder, Daniel; Bibinov, Nikita; Schulz-von der Gathen, Volker; Awakowicz, Peter

    2015-06-01

    Cold atmospheric pressure plasmas are a promising alternative therapy for treatment of chronic wounds, as they have already shown in clinical trials. In this study an air dielectric barrier discharge (DBD) developed for therapeutic use in dermatology is characterized with respect to the plasma produced reactive oxygen species, namely atomic oxygen and ozone, which are known to be of great importance to wound healing. To understand the plasma chemistry of the applied DBD, xenon-calibrated two-photon laser-induced fluorescence spectroscopy and optical absorption spectroscopy are applied. The measured spatial distributions are shown and compared to each other. A model of the afterglow chemistry based on optical emission spectroscopy is developed to cross-check the measurement results and obtain insight into the dynamics of the considered reactive oxygen species. The atomic oxygen density is found to be located mostly between the electrodes with a maximum density of {{n}\\text{O}}=6× {{10}16} cm-3 . Time resolved measurements reveal a constant atomic oxygen density between two high voltage pulses. The ozone is measured up to 3 mm outside the active plasma volume, reaching a maximum value of {{n}{{\\text{O}3}}}=3× {{10}16} cm-3 between the electrodes.

  15. Molecular Ions in Ion Upflows and their Effects on Hot Atomic Oxygen Production

    Science.gov (United States)

    Foss, V.; Yau, A. W.; Shizgal, B.

    2017-12-01

    We present new direct ion composition observations of molecular ions in auroral ion upflows from the CASSIOPE Enhanced Polar Outflow Probe (e-POP). These observed molecular ions are N2+, NO+, and possibly O2+, and are found to occur at all e-POP altitudes starting at about 400 km, during auroral substorms and the different phases of magnetic storms, sometimes with upflow velocities exceeding a few hundred meters per second and abundances of 5-10%. The dissociative recombination of both O2+ and NO+ was previously proposed as an important source of hot oxygen atoms in the topside thermosphere [Hickey et al., 1995]. We investigate the possible effect of the observed molecular ions on the production of hot oxygen atoms in the storm and substorm-time auroral thermosphere. We present numerical solutions of the Boltzmann equation for the steady-state oxygen energy distribution function, taking into account both the production of the hot atoms and their subsequent collisional relaxation. Our result suggests the formation of a hot oxygen population with a characteristic temperature on the order of 0.3 eV and constituting 1-5% of the oxygen density near the exobase. We discuss the implication of this result in the context of magnetosphere-ionosphere-thermosphere coupling.

  16. Surface coverage of Pt atoms on PtCo nanoparticles and catalytic kinetics for oxygen reduction

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Rongzhong, E-mail: rongzhong.jiang@us.army.mi [Sensors and Electron Devices Directorate, U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783-1197 (United States); Rong, Charles; Chu, Deryn [Sensors and Electron Devices Directorate, U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783-1197 (United States)

    2011-02-01

    The surface coverage of Pt atoms on PtCo nanoparticles and its effect on catalytic kinetics for oxygen reduction were investigated. The PtCo nanoparticles with different surface coverage of Pt atoms were synthesized with various methods, including normal chemical method, microemulsion synthesis, and ultrasound-assisted microemulsion. A model of Pt atoms filling into a spherical nanoparticle was proposed to explain the relationship of surface metal atoms and nanoparticle size. The catalytic activity of the PtCo nano-particles is highly dependent on the synthetic methods, even if they have the same chemical composition. The PtCo nano-particles synthesized with ultrasound-assisted microemulsion showed the highest activity, which is attributed to an increase of active surface coverage of Pt atoms on the metal nanoparticles. The rate of oxygen reduction at 0.5 V (vs. SCE) catalyzed by the PtCo synthesized with ultrasound-assisted micro-emulsion was about four times higher than that of the PtCo synthesized with normal chemical method. As demonstrated with rotating-ring disk electrode measurement, the PtCo nano-particles can catalyze oxygen 4-electron reduction to water without intermediate H{sub 2}O{sub 2} detected.

  17. Site-selective substitutional doping with atomic precision on stepped Al (111) surface by single-atom manipulation.

    Science.gov (United States)

    Chen, Chang; Zhang, Jinhu; Dong, Guofeng; Shao, Hezhu; Ning, Bo-Yuan; Zhao, Li; Ning, Xi-Jing; Zhuang, Jun

    2014-01-01

    In fabrication of nano- and quantum devices, it is sometimes critical to position individual dopants at certain sites precisely to obtain the specific or enhanced functionalities. With first-principles simulations, we propose a method for substitutional doping of individual atom at a certain position on a stepped metal surface by single-atom manipulation. A selected atom at the step of Al (111) surface could be extracted vertically with an Al trimer-apex tip, and then the dopant atom will be positioned to this site. The details of the entire process including potential energy curves are given, which suggests the reliability of the proposed single-atom doping method.

  18. Rate constant for the reaction of atomic oxygen with phosphine at 298 K

    Science.gov (United States)

    Stief, L. J.; Payne, W. A.; Nava, D. F.

    1987-01-01

    The rate constant for the reaction of atomic oxygen with phosphine has been measured at 298 K using flash photolysis combined with time-resolved detection of O(3P) via resonance fluorescence. Atomic oxygen was produced by flash photolysis of N2O or NO highly diluted in argon. The results were shown to be independent of (PH3), (O), total pressure and the source of O(3P). The mean value of all the experiments is k1 = (3.6 + or -0.8) x 10 to the -11th cu cm/s (1 sigma). Two previous measurements of k1 differed by more than an order of magnitude, and the results support the higher value obtained in a discharge flow-mass spectrometry study. A comparison with rate data for other atomic and free radical reactions with phosphine is presented, and the role of these reactions in the aeronomy or photochemistry of Jupiter and Saturn is briefly considered.

  19. Single atom anisotropic magnetoresistance on a topological insulator surface

    KAUST Repository

    Narayan, Awadhesh

    2015-03-12

    © 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft. We demonstrate single atom anisotropic magnetoresistance on the surface of a topological insulator, arising from the interplay between the helical spin-momentum-locked surface electronic structure and the hybridization of the magnetic adatom states. Our first-principles quantum transport calculations based on density functional theory for Mn on Bi2Se3 elucidate the underlying mechanism. We complement our findings with a two dimensional model valid for both single adatoms and magnetic clusters, which leads to a proposed device setup for experimental realization. Our results provide an explanation for the conflicting scattering experiments on magnetic adatoms on topological insulator surfaces, and reveal the real space spin texture around the magnetic impurity.

  20. Single molecule DNA detection with an atomic vapor notch filter

    Energy Technology Data Exchange (ETDEWEB)

    Uhland, Denis; Rendler, Torsten; Widmann, Matthias; Lee, Sang-Yun [University of Stuttgart and Stuttgart Research Center of Photonic Engineering (SCoPE) and IQST, 3rd Physics Institute, Stuttgart (Germany); Wrachtrup, Joerg; Gerhardt, Ilja [University of Stuttgart and Stuttgart Research Center of Photonic Engineering (SCoPE) and IQST, 3rd Physics Institute, Stuttgart (Germany); Max Planck Institute for Solid State Research, Stuttgart (Germany)

    2015-12-01

    The detection of single molecules has facilitated many advances in life- and material-science. Commonly the fluorescence of dye molecules is detected, which are attached to a non-fluorescent structure under study. For fluorescence microscopy one desires to maximize the detection efficiency together with an efficient suppression of undesired laser leakage. Here we present the use of the narrow-band filtering properties of hot atomic sodium vapor to selectively filter the excitation light from the red-shifted fluorescence of dye labeled single-stranded DNA molecules. A statistical analysis proves an enhancement in detection efficiency of more than 15% in a confocal and in a wide-field configuration. (orig.)

  1. Creation of oxygen-enriched layers at the surface of GaAs single crystal

    International Nuclear Information System (INIS)

    Kulik, M.; Maczka, D.; Kobzev, A.P.

    1999-01-01

    The optical properties and the element depth profiles at the (100) plane high resistant and noncomposite GaAs single crystals implanted with In ions were investigated. The results have been compared with those obtained for virgin samples. The optic properties for all of the samples (implanted and not implanted, annealed and not annealed) have been measured using the ellipsometric method. The element depth profiles for the same samples have been obtained by the RBS and NRA techniques. It has been shown that the post-implantation annealing at a temperature more than 600 deg C leads to a ten time increase in contents of oxygen atoms in the implanted layer with respect to the not annealed sample. The thickness of the transparence layer at the surface of GaAs single crystal increases also after implantation with In ions and subsequent annealing

  2. Atomic and molecular oxygen adsorbed on (111) transition metal surfaces: Cu and Ni

    Energy Technology Data Exchange (ETDEWEB)

    López-Moreno, S., E-mail: sinlopez@uacam.mx [Centro de Investigación en Corrosión, Universidad Autónoma de Campeche, Av. Héroe de Nacozari 480, Campeche, Campeche 24029 (Mexico); Romero, A. H. [Physics Department, West Virginia University, Morgantown, West Virginia 26506-6315 (United States)

    2015-04-21

    Density functional theory is used to investigate the reaction of oxygen with clean copper and nickel [111]-surfaces. We study several alternative adsorption sites for atomic and molecular oxygen on both surfaces. The minimal energy geometries and adsorption energies are in good agreement with previous theoretical studies and experimental data. From all considered adsorption sites, we found a new O{sub 2} molecular precursor with two possible dissociation paths on the Cu(111) surface. Cross barrier energies for the molecular oxygen dissociation have been calculated by using the climbing image nudge elastic band method, and direct comparison with experimental results is performed. Finally, the structural changes and adsorption energies of oxygen adsorbed on surface when there is a vacancy nearby the adsorption site are also considered.

  3. Atomic and molecular oxygen adsorbed on (111) transition metal surfaces: Cu and Ni

    Science.gov (United States)

    López-Moreno, S.; Romero, A. H.

    2015-04-01

    Density functional theory is used to investigate the reaction of oxygen with clean copper and nickel [111]-surfaces. We study several alternative adsorption sites for atomic and molecular oxygen on both surfaces. The minimal energy geometries and adsorption energies are in good agreement with previous theoretical studies and experimental data. From all considered adsorption sites, we found a new O2 molecular precursor with two possible dissociation paths on the Cu(111) surface. Cross barrier energies for the molecular oxygen dissociation have been calculated by using the climbing image nudge elastic band method, and direct comparison with experimental results is performed. Finally, the structural changes and adsorption energies of oxygen adsorbed on surface when there is a vacancy nearby the adsorption site are also considered.

  4. Atomic and molecular oxygen adsorbed on (111) transition metal surfaces: Cu and Ni

    International Nuclear Information System (INIS)

    López-Moreno, S.; Romero, A. H.

    2015-01-01

    Density functional theory is used to investigate the reaction of oxygen with clean copper and nickel [111]-surfaces. We study several alternative adsorption sites for atomic and molecular oxygen on both surfaces. The minimal energy geometries and adsorption energies are in good agreement with previous theoretical studies and experimental data. From all considered adsorption sites, we found a new O 2 molecular precursor with two possible dissociation paths on the Cu(111) surface. Cross barrier energies for the molecular oxygen dissociation have been calculated by using the climbing image nudge elastic band method, and direct comparison with experimental results is performed. Finally, the structural changes and adsorption energies of oxygen adsorbed on surface when there is a vacancy nearby the adsorption site are also considered

  5. Stability investigation of a high number density Pt1/Fe2O3 single-atom catalyst under different gas environments by HAADF-STEM

    Science.gov (United States)

    Duan, Sibin; Wang, Rongming; Liu, Jingyue

    2018-05-01

    Catalysis by supported single metal atoms has demonstrated tremendous potential for practical applications due to their unique catalytic properties. Unless they are strongly anchored to the support surfaces, supported single atoms, however, are thermodynamically unstable, which poses a major obstacle for broad applications of single-atom catalysts (SACs). In order to develop strategies to improve the stability of SACs, we need to understand the intrinsic nature of the sintering processes of supported single metal atoms, especially under various gas environments that are relevant to important catalytic reactions. We report on the synthesis of high number density Pt1/Fe2O3 SACs using a facial strong adsorption method and the study of the mobility of these supported Pt single atoms at 250 °C under various gas environments that are relevant to CO oxidation, water–gas shift, and hydrogenation reactions. Under the oxidative gas environment, Fe2O3 supported Pt single atoms are stable even at high temperatures. The presence of either CO or H2 molecules in the gas environment, however, facilitates the movement of the Pt atoms. The strong interaction between CO and Pt weakens the binding between the Pt atoms and the support, facilitating the movement of the Pt single atoms. The dissociation of H2 molecules on the Pt atoms and their subsequent interaction with the oxygen species of the support surfaces dislodge the surface oxygen anchored Pt atoms, resulting in the formation of Pt clusters. The addition of H2O molecules to the CO or H2 significantly accelerates the sintering of the Fe2O3 supported Pt single atoms. An anchoring-site determined sintering mechanism is further proposed, which is related to the metal–support interaction.

  6. Investigating single molecule adhesion by atomic force spectroscopy.

    Science.gov (United States)

    Stetter, Frank W S; Kienle, Sandra; Krysiak, Stefanie; Hugel, Thorsten

    2015-02-27

    Atomic force spectroscopy is an ideal tool to study molecules at surfaces and interfaces. An experimental protocol to couple a large variety of single molecules covalently onto an AFM tip is presented. At the same time the AFM tip is passivated to prevent unspecific interactions between the tip and the substrate, which is a prerequisite to study single molecules attached to the AFM tip. Analyses to determine the adhesion force, the adhesion length, and the free energy of these molecules on solid surfaces and bio-interfaces are shortly presented and external references for further reading are provided. Example molecules are the poly(amino acid) polytyrosine, the graft polymer PI-g-PS and the phospholipid POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine). These molecules are desorbed from different surfaces like CH3-SAMs, hydrogen terminated diamond and supported lipid bilayers under various solvent conditions. Finally, the advantages of force spectroscopic single molecule experiments are discussed including means to decide if truly a single molecule has been studied in the experiment.

  7. The spectrum of singly ionized oxygen, O II

    International Nuclear Information System (INIS)

    Wenaker, I.

    1990-01-01

    The spectrum of singly ionized oxygen, O II, emitted by a spark-generated, electrodeless discharge light source, has been investigated in the wavelength range 2100-11700 A. About 740 lines, 359 of which have not been reported earlier, were measured. As a result the energies of about 50 new levels have been determined, and the O II term system now presented includes 254 levels. The quartet system is firmly connected to the doublet system by 56 identified intersystem lines. The ionization limits have been determined by applying the polarization formula to the 4f, 5f, 5g and 6g levels. The experimentally determined value for the lowest limit, 2s 2 2p 2 3 P 0 , is 283270.9±0.5 cm -1 above the 2s 2 2p 3 4 S 3/2 ground state. (orig.)

  8. Potential of Transition Metal Atoms Embedded in Buckled Monolayer g-C3N4 as Single-Atom Catalysts

    KAUST Repository

    Li, Shu-Long

    2017-10-27

    We use first-principles calculations to systematically explore the potential of transition metal atoms (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt, and Au) embedded in buckled monolayer g-C3N4 as single-atom catalysts. We show that clustering of Sc and Ti on g-C3N4 is thermodynamically impeded and that V, Cr, Mn, and Cu are much less susceptible to clustering than the other TM atoms under investigation. Strong bonding of the transition metal atoms in the cavities of g-C3N4 and high diffusion barriers together are responsible for single-atom fixation. Analysis of the CO oxidation process indicates that embedding of Cr and Mn in g-C3N4 gives rise to promising single-atom catalysts at low temperature.

  9. Potential of Transition Metal Atoms Embedded in Buckled Monolayer g-C3N4 as Single-Atom Catalysts

    KAUST Repository

    Li, Shu-Long; Kan, Xiang; Yin, Hui; Gan, Li-Yong; Schwingenschlö gl, Udo; Zhao, Yong

    2017-01-01

    We use first-principles calculations to systematically explore the potential of transition metal atoms (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt, and Au) embedded in buckled monolayer g-C3N4 as single-atom catalysts. We show that clustering of Sc and Ti on g-C3N4 is thermodynamically impeded and that V, Cr, Mn, and Cu are much less susceptible to clustering than the other TM atoms under investigation. Strong bonding of the transition metal atoms in the cavities of g-C3N4 and high diffusion barriers together are responsible for single-atom fixation. Analysis of the CO oxidation process indicates that embedding of Cr and Mn in g-C3N4 gives rise to promising single-atom catalysts at low temperature.

  10. Oxidation of Ni(Pt)Si by molecular vs. atomic oxygen

    International Nuclear Information System (INIS)

    Manandhar, Sudha; Copp, Brian; Kelber, J.A.

    2008-01-01

    X-ray photoelectron spectroscopy (XPS) has been used to characterize the oxidation of a clean Ni(Pt)Si surface under two distinct conditions: exposure to a mixed flux of atomic and molecular oxygen (O + O 2 ; P O+O 2 = 5 x 10 -6 Torr) and pure molecular oxygen (O 2 ; P O 2 = 10 -5 Torr) at ambient temperatures. Formation of the clean, stoichiometric (nickel monosilicide) phase under vacuum conditions results in the formation of a surface layer enriched in PtSi. Oxidation of this surface in the presence of atomic oxygen initially results in formation of a silicon oxide overlayer. At higher exposures, kinetically limited oxidation of Pt results in Pt silicate formation. No passivation of oxygen uptake of the sample is observed for total O + O 2 exposure 4 L, at which point the average oxide/silicate overlayer thickness is 23 (3) A (uncertainty in the last digit in parentheses). In contrast, exposure of the clean Ni(Pt)Si surface to molecular oxygen only (maximum exposure: 5 x 10 5 L) results in slow growth of a silicon oxide overlayer, without silicate formation, and eventual passivation at a total average oxide thickness of 8(1) A, compared to a oxide average thickness of 17(2) A (no silicate formation) for the as-received sample (i.e., exposed to ambient.) The aggressive silicon oxidation by atomic oxygen, results in Ni-rich silicide formation in the substrate and the kinetically limited oxidation of the Pt

  11. Ab initio atomic thermodynamics investigation on oxygen defects in the anatase TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Zhijun [College of Science, University of Shanghai for Science and Technology, Shanghai 200093 (China); Liu, Tingyu, E-mail: liutyyxj@163.com [College of Science, University of Shanghai for Science and Technology, Shanghai 200093 (China); Yang, Chenxing; Gan, Haixiu [College of Science, University of Shanghai for Science and Technology, Shanghai 200093 (China); Chen, Jianyu [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Zhang, Feiwu [Nanochemistry Research Institute, Curtin University, GPO Box U1987, Perth, WA 6845 (Australia)

    2013-01-05

    Highlights: Black-Right-Pointing-Pointer Three typical oxygen defects under the different annealing conditions have been studied. Black-Right-Pointing-Pointer The oxygen vacancy is easier to form at the surface than in the bulk. Black-Right-Pointing-Pointer The adsorption of O{sub 2} whose orientation is parallel to the surface should be more favorable. Black-Right-Pointing-Pointer The reduction reaction may firstly undertake at the surface during the annealing treatment. Black-Right-Pointing-Pointer The interstitial oxygen has important contribution to lead to the reduction of the band gap. - Abstract: In the framework of the ab initio atomic thermodynamics, the preliminary analysis of the oxygen defects in anatase TiO{sub 2} has been done by investigating the influence of the annealing treatment under representative conditions on three typical oxygen defects, that is, oxygen vacancy, oxygen adsorption and oxygen interstitial. Our results in this study agree well with the related experimental results. The molecular species of the adsorbed O{sub 2} is subject to the ratio of the number of the O{sub 2} to that of the vacancy, as well as to the initial orientation of O{sub 2} relative to the surface (101). Whatever the annealing condition is, the oxygen vacancy is easier to form at the surface than in the bulk indicating that the reduction reaction may firstly undertake at the surface during the annealing treatment, which is consistent with the phase transformation experiments. The molecular ion, peroxide species, caused by the interstitial oxygen has important contribution to the top of the valence band and lead to the reduction of the band gap.

  12. Oxidation of MoS2 by thermal and hyperthermal atomic oxygen

    International Nuclear Information System (INIS)

    Cross, J.B.; Martin, J.A.; Pope, L.E.; Koontz, S.L.

    1989-01-01

    The present study shows that, at 1.5 eV O-atom translational energy, SO 2 is generated and outgases from an anhydrous MoS 2 surface with a reactivity nearly that of kapton. The reaction of atomic oxygen with MoS 2 has little or no translational energy barrier; i.e., thermally generated atomic oxygen reacts as readily as that having 1.5 eV of translational energy. It is also shown that water present in the flowing afterglow apparatus used to study thermal O-atom reactivity formed sulfates on the MoS 2 surface and that the sulfate is most likely in the form of sulfuric acid. These results imply that water dumps or outgasing in low earth orbit have the potential of forming sulfuric acid covered surfaces on MoS 2 lubricants. Friction measurements show a high initial friction coefficient (0.2) for O-atom exposed MoS 2 surfaces which drops to the normal low value (0.05) after several cycles of operation

  13. The Kinetics of Oxygen Atom Recombination in the Presence of Carbon Dioxide

    Science.gov (United States)

    Jamieson, C. S.; Garcia, R. M.; Pejakovic, D.; Kalogerakis, K.

    2009-12-01

    Understanding processes involving atomic oxygen is crucial for the study and modeling of composition, energy transfer, airglow, and transport dynamics in planetary atmospheres. Significant gaps and uncertainties exist in the understanding of these processes and often the relevant input from laboratory measurements is missing or outdated. We are conducting laboratory experiments to measure the rate coefficient for O + O + CO2 recombination and investigating the O2 excited states produced following the recombination. These measurements will provide key input for a quantitative understanding and reliable modeling of the atmospheres of the CO2 planets and their airglow. An excimer laser providing pulsed output at either 193 nm or 248 nm is employed to produce O atoms by dissociating carbon dioxide, nitrous oxide, or ozone. In an ambient-pressure background of CO2, O atoms recombine in a time scale of a few milliseconds. Detection of laser-induced fluorescence at 845 nm following two-photon excitation near 226 nm monitors the decay of the oxygen atom population. From the temporal evolution of the signal the recombination rate coefficient is extracted. Fluorescence spectroscopy is used to detect the products of O-atom recombination and subsequent relaxation in CO2. This work is supported by the US National Science Foundation’s (NSF) Planetary Astronomy Program. Rosanne Garcia’s participation was funded by the NSF Research Experiences for Undergraduates (REU) Program.

  14. Single-passage read-out of atomic quantum memory

    DEFF Research Database (Denmark)

    Fiurasek, J; Sherson, J; Opatrny, T

    2005-01-01

    Retrieving quantum information, collective atomic spin systems, quantum memory Udgivelsesdato: 17 Feb.......Retrieving quantum information, collective atomic spin systems, quantum memory Udgivelsesdato: 17 Feb....

  15. Generation of atomic iodine via fluorine for chemical oxygen-iodine laser

    International Nuclear Information System (INIS)

    Jirasek, Vit; Spalek, Otomar; Censky, Miroslav; Pickova, Irena; Kodymova, Jarmila; Jakubec, Ivo

    2007-01-01

    A method of the chemical generation of atomic iodine for a chemical oxygen-iodine laser (COIL) using atomic fluorine as a reaction intermediate was studied experimentally. This method is based on the reaction between F 2 and NO providing F atoms, and the reaction of F with HI resulting in iodine atoms generation. Atomic iodine was produced with efficiency exceeding 40% relative to initial F 2 flow rate. This efficiency was nearly independent on pressure and total gas flow rate. The F atoms were stable in the reactor up to 2 ms. An optimum ratio of the reactants flow rates was F 2 :NO:HI = 1:1:1. A rate constant of the reaction of F 2 with HI was determined. The numerical modelling showed that remaining HI and IF were probably consumed in their mutual reaction. The reaction system was found suitable for employing in a generator of atomic iodine with its subsequent injection into a supersonic nozzle of a COIL

  16. Surface recombination of oxygen atoms in O2 plasma at increased pressure: II. Vibrational temperature and surface production of ozone

    Science.gov (United States)

    Lopaev, D. V.; Malykhin, E. M.; Zyryanov, S. M.

    2011-01-01

    Ozone production in an oxygen glow discharge in a quartz tube was studied in the pressure range of 10-50 Torr. The O3 density distribution along the tube diameter was measured by UV absorption spectroscopy, and ozone vibrational temperature TV was found comparing the calculated ab initio absorption spectra with the experimental ones. It has been shown that the O3 production mainly occurs on a tube surface whereas ozone is lost in the tube centre where in contrast the electron and oxygen atom densities are maximal. Two models were used to analyse the obtained results. The first one is a kinetic 1D model for the processes occurring near the tube walls with the participation of the main particles: O(3P), O2, O2(1Δg) and O3 molecules in different vibrational states. The agreement of O3 and O(3P) density profiles and TV calculated in the model with observed ones was reached by varying the single model parameter—ozone production probability (\\gamma_{O_{3}}) on the quartz tube surface on the assumption that O3 production occurs mainly in the surface recombination of physisorbed O(3P) and O2. The phenomenological model of the surface processes with the participation of oxygen atoms and molecules including singlet oxygen molecules was also considered to analyse \\gamma_{O_{3}} data obtained in the kinetic model. A good agreement between the experimental data and the data of both models—the kinetic 1D model and the phenomenological surface model—was obtained in the full range of the studied conditions that allowed consideration of the ozone surface production mechanism in more detail. The important role of singlet oxygen in ozone surface production was shown. The O3 surface production rate directly depends on the density of physisorbed oxygen atoms and molecules and can be high with increasing pressure and energy inputted into plasma while simultaneously keeping the surface temperature low enough. Using the special discharge cell design, such an approach opens up the

  17. Surface recombination of oxygen atoms in O2 plasma at increased pressure: II. Vibrational temperature and surface production of ozone

    International Nuclear Information System (INIS)

    Lopaev, D V; Malykhin, E M; Zyryanov, S M

    2011-01-01

    Ozone production in an oxygen glow discharge in a quartz tube was studied in the pressure range of 10-50 Torr. The O 3 density distribution along the tube diameter was measured by UV absorption spectroscopy, and ozone vibrational temperature T V was found comparing the calculated ab initio absorption spectra with the experimental ones. It has been shown that the O 3 production mainly occurs on a tube surface whereas ozone is lost in the tube centre where in contrast the electron and oxygen atom densities are maximal. Two models were used to analyse the obtained results. The first one is a kinetic 1D model for the processes occurring near the tube walls with the participation of the main particles: O( 3 P), O 2 , O 2 ( 1 Δ g ) and O 3 molecules in different vibrational states. The agreement of O 3 and O( 3 P) density profiles and T V calculated in the model with observed ones was reached by varying the single model parameter-ozone production probability (γ O 3 ) on the quartz tube surface on the assumption that O 3 production occurs mainly in the surface recombination of physisorbed O( 3 P) and O 2 . The phenomenological model of the surface processes with the participation of oxygen atoms and molecules including singlet oxygen molecules was also considered to analyse γ O 3 data obtained in the kinetic model. A good agreement between the experimental data and the data of both models-the kinetic 1D model and the phenomenological surface model-was obtained in the full range of the studied conditions that allowed consideration of the ozone surface production mechanism in more detail. The important role of singlet oxygen in ozone surface production was shown. The O 3 surface production rate directly depends on the density of physisorbed oxygen atoms and molecules and can be high with increasing pressure and energy inputted into plasma while simultaneously keeping the surface temperature low enough. Using the special discharge cell design, such an approach opens up

  18. Optical Microcavity: Sensing down to Single Molecules and Atoms

    Directory of Open Access Journals (Sweden)

    Shu-Yu Su

    2011-02-01

    Full Text Available This review article discusses fundamentals of dielectric, low-loss, optical micro-resonator sensing, including figures of merit and a variety of microcavity designs, and future perspectives in microcavity-based optical sensing. Resonance frequency and quality (Q factor are altered as a means of detecting a small system perturbation, resulting in realization of optical sensing of a small amount of sample materials, down to even single molecules. Sensitivity, Q factor, minimum detectable index change, noises (in sensor system components and microcavity system including environments, microcavity size, and mode volume are essential parameters to be considered for optical sensing applications. Whispering gallery mode, photonic crystal, and slot-type microcavities typically provide compact, high-quality optical resonance modes for optical sensing applications. Surface Bloch modes induced on photonic crystals are shown to be a promising candidate thanks to large field overlap with a sample and ultra-high-Q resonances. Quantum optics effects based on microcavity quantum electrodynamics (QED would provide novel single-photo-level detection of even single atoms and molecules via detection of doublet vacuum Rabi splitting peaks in strong coupling.

  19. Effects of atomic oxygen irradiation on the surface properties of phenolphthalein poly(ether sulfone)

    International Nuclear Information System (INIS)

    Pei Xianqiang; Li Yan; Wang Qihua; Sun Xiaojun

    2009-01-01

    To study the effects of low earth orbit environment on the surface properties of polymers, phenolphthalein poly(ether sulfone) (PES-C) blocks were irradiated by atomic oxygen in a ground-based simulation system. The surface properties of the pristine and irradiated blocks were studied by attenuated total-reflection FTIR (FTIR-ATR), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM). It was found that atomic oxygen irradiation induced the destruction of PES-C molecular chains, including the scission and oxidation of PES-C molecular chains, as evidenced by FTIR and XPS results. The scission of PES-C molecular chains decreased the relative concentration of C in the surface, while the oxidation increased the relative concentration of O in the surface. The changes in surface chemical structure and composition also changed the surface morphology of the block, which shifted from smooth structure before irradiation to 'carpet-like' structure after irradiation

  20. Simplified atom trap using a single microwave modulated diode laser

    International Nuclear Information System (INIS)

    Newbury, N.R.; Myatt, C.J.; Wieman, C.E.

    1993-01-01

    We have demonstrated microwave modulation of a diode laser which is operated with optical feedback from a diffraction grating. By directly modulating the diode laser current at frequencies up to 6.8 GHz, we observed 2-30% of the laser power in a single sideband for 20mW of microwave power. Using such a diode laser modulated at 6.6GHz, we have trapped 87 Rb in a vapor cell. With 10mW of microwave power, the number of trapped atoms was only 15% smaller than the number obtained using two lasers in the conventional manner. A microwave modulated diode laser should also be useful for driving stimulated Raman transitions between the hyperfine levels of Rb or Cs

  1. Probing Single Pt Atoms in Complex Intermetallic Al13Fe4.

    Science.gov (United States)

    Yamada, Tsunetomo; Kojima, Takayuki; Abe, Eiji; Kameoka, Satoshi; Murakami, Yumi; Gille, Peter; Tsai, An Pang

    2018-03-21

    The atomic structure of a 0.2 atom % Pt-doped complex metallic alloy, monoclinic Al 13 Fe 4 , was investigated using a single crystal prepared by the Czochralski method. High-angle annular dark-field scanning transmission electron microscopy showed that the Pt atoms were dispersed as single atoms and substituted at Fe sites in Al 13 Fe 4 . Single-crystal X-ray structural analysis revealed that the Pt atoms preferentially substitute at Fe(1). Unlike those that have been reported, Pt single atoms in the surface layers showed lower activity and selectivity than those of Al 2 Pt and bulk Pt for propyne hydrogenation, indicating that the active state of a given single-atom Pt site is strongly dominated by the bonding to surrounding Al atoms.

  2. The mystery of gold's chemical activity: local bonding, morphology and reactivity of atomic oxygen.

    Science.gov (United States)

    Baker, Thomas A; Liu, Xiaoying; Friend, Cynthia M

    2011-01-07

    Recently, gold has been intensely studied as a catalyst for key synthetic reactions. Gold is an attractive catalyst because, surprisingly, it is highly active and very selective for partial oxidation processes suggesting promise for energy-efficient "green" chemistry. The underlying origin of the high activity of Au is a controversial subject since metallic gold is commonly thought to be inert. Herein, we establish that one origin of the high activity for gold catalysis is the extremely reactive nature of atomic oxygen bound in 3-fold coordination sites on metallic gold. This is the predominant form of O at low concentrations on the surface, which is a strong indication that it is most relevant to catalytic conditions. Atomic oxygen bound to metallic Au in 3-fold sites has high activity for CO oxidation, oxidation of olefins, and oxidative transformations of alcohols and amines. Among the factors identified as important in Au-O interaction are the morphology of the surface, the local binding site of oxygen, and the degree of order of the oxygen overlayer. In this Perspective, we present an overview of both theory and experiments that identify the reactive forms of O and their associated charge density distributions and bond strengths. We also analyze and model the release of Au atoms induced by O binding to the surface. This rough surface also has the potential for O(2) dissociation, which is a critical step if Au is to be activated catalytically. We further show the strong parallels between product distributions and reactivity for O-covered Au at low pressure (ultrahigh vacuum) and for nanoporous Au catalysts operating at atmospheric pressure as evidence that atomic O is the active species under working catalytic conditions when metallic Au is present. We briefly discuss the possible contributions of oxidants that may contain intact O-O bonds and of the Au-metal oxide support interface in Au catalysis. Finally, the challenges and future directions for fully

  3. Simulation of the Atomic and Electronic Structure of Oxygen Vacancies and Polyvacancies in ZrO2

    Science.gov (United States)

    Perevalov, T. V.

    2018-03-01

    Cubic, tetragonal, and monoclinic phases of zirconium oxide with oxygen vacancies and polyvacancies are studied by quantum chemical modeling of the atomic and electronic structure. It is demonstrated that an oxygen vacancy in ZrO2 may act as both an electron trap and a hole one. An electron added to the ZrO2 structure with an oxygen vacancy is distributed between two neighboring Zr atoms and is a bonding orbital by nature. It is advantageous for each subsequent O vacancy to form close to the already existing ones; notably, one Zr atom has no more than two removed O atoms related to it. Defect levels from oxygen polyvacancies are distributed in the bandgap with preferential localization in the vicinity of the oxygen monovacancy level.

  4. The Effect of Ash and Inorganic Pigment Fill on the Atomic Oxygen Erosion of Polymers and Paints (ISMSE-12)

    Science.gov (United States)

    Banks, Bruce A.; Simmons, Julie C.; de Groh, Kim K.; Miller, Sharon K.

    2012-01-01

    Low atomic oxygen fluence (below 1x10(exp 20) atoms/sq cm) exposure of polymers and paints that have a small ash content and/or inorganic pigment fill does not cause a significant difference in erosion yield compared to unfilled (neat) polymers or paints. However, if the ash and/or inorganic pigment content is increased, the surface population of the inorganic content will begin to occupy a significant fraction of the surface area as the atomic oxygen exposure increases because the ash is not volatile and remains as a loosely attached surface layer. This results in a reduction of the flux of atomic oxygen reacting with the polymer and a reduction in the rate of erosion of the polymer remaining. This paper presents the results of ground laboratory and low Earth orbital (LEO) investigations to evaluate the fluence dependence of atomic oxygen erosion yields of polymers and paints having inorganic fill content.

  5. Gravitational Wave Detection with Single-Laser Atom Interferometers

    Science.gov (United States)

    Yu, Nan; Tinto, Massimo

    2011-01-01

    A new design for a broadband detector of gravitational radiation relies on two atom interferometers separated by a distance L. In this scheme, only one arm and one laser are used for operating the two atom interferometers. The innovation here involves the fact that the atoms in the atom interferometers are not only considered as perfect test masses, but also as highly stable clocks. Atomic coherence is intrinsically stable, and can be many orders of magnitude more stable than a laser.

  6. Atomic Oxygen Erosion Yield Prediction for Spacecraft Polymers in Low Earth Orbit

    Science.gov (United States)

    Banks, Bruce A.; Backus, Jane A.; Manno, Michael V.; Waters, Deborah L.; Cameron, Kevin C.; deGroh, Kim K.

    2009-01-01

    The ability to predict the atomic oxygen erosion yield of polymers based on their chemistry and physical properties has been only partially successful because of a lack of reliable low Earth orbit (LEO) erosion yield data. Unfortunately, many of the early experiments did not utilize dehydrated mass loss measurements for erosion yield determination, and the resulting mass loss due to atomic oxygen exposure may have been compromised because samples were often not in consistent states of dehydration during the pre-flight and post-flight mass measurements. This is a particular problem for short duration mission exposures or low erosion yield materials. However, as a result of the retrieval of the Polymer Erosion and Contamination Experiment (PEACE) flown as part of the Materials International Space Station Experiment 2 (MISSE 2), the erosion yields of 38 polymers and pyrolytic graphite were accurately measured. The experiment was exposed to the LEO environment for 3.95 years from August 16, 2001 to July 30, 2005 and was successfully retrieved during a space walk on July 30, 2005 during Discovery s STS-114 Return to Flight mission. The 40 different materials tested (including Kapton H fluence witness samples) were selected specifically to represent a variety of polymers used in space as well as a wide variety of polymer chemical structures. The MISSE 2 PEACE Polymers experiment used carefully dehydrated mass measurements, as well as accurate density measurements to obtain accurate erosion yield data for high-fluence (8.43 1021 atoms/sq cm). The resulting data was used to develop an erosion yield predictive tool with a correlation coefficient of 0.895 and uncertainty of +/-6.3 10(exp -25)cu cm/atom. The predictive tool utilizes the chemical structures and physical properties of polymers to predict in-space atomic oxygen erosion yields. A predictive tool concept (September 2009 version) is presented which represents an improvement over an earlier (December 2008) version.

  7. Atomic Oxygen Erosion Yield Predictive Tool for Spacecraft Polymers in Low Earth Orbit

    Science.gov (United States)

    Bank, Bruce A.; de Groh, Kim K.; Backus, Jane A.

    2008-01-01

    A predictive tool was developed to estimate the low Earth orbit (LEO) atomic oxygen erosion yield of polymers based on the results of the Polymer Erosion and Contamination Experiment (PEACE) Polymers experiment flown as part of the Materials International Space Station Experiment 2 (MISSE 2). The MISSE 2 PEACE experiment accurately measured the erosion yield of a wide variety of polymers and pyrolytic graphite. The 40 different materials tested were selected specifically to represent a variety of polymers used in space as well as a wide variety of polymer chemical structures. The resulting erosion yield data was used to develop a predictive tool which utilizes chemical structure and physical properties of polymers that can be measured in ground laboratory testing to predict the in-space atomic oxygen erosion yield of a polymer. The properties include chemical structure, bonding information, density and ash content. The resulting predictive tool has a correlation coefficient of 0.914 when compared with actual MISSE 2 space data for 38 polymers and pyrolytic graphite. The intent of the predictive tool is to be able to make estimates of atomic oxygen erosion yields for new polymers without requiring expensive and time consumptive in-space testing.

  8. Influence of driving frequency on oxygen atom density in O2 radio frequency capacitively coupled plasma

    International Nuclear Information System (INIS)

    Kitajima, Takeshi; Noro, Kouichi; Nakano, Toshiki; Makabe, Toshiaki

    2004-01-01

    The influence of the driving frequency on the absolute oxygen atom density in an O 2 radio frequency (RF) capacitively coupled plasma (CCP) was investigated using vacuum ultraviolet absorption spectroscopy with pulse modulation of the main plasma. A low-power operation of a compact inductively coupled plasma light source was enabled to avoid the significant measurement errors caused by self-absorption in the light source. The pulse modulation of the main plasma enabled accurate absorption measurement for high plasma density conditions by eliminating background signals due to light emission from the main plasma. As for the effects of the driving frequency, the effect of VHF (100 MHz) drive on oxygen atom production was small because of the modest increase in plasma density of electronegative O 2 in contrast to the significant increase in electron density previously observed for electropositive Ar. The recombination coefficient of oxygen atoms on the electrode surface was obtained from a decay rate in the afterglow by comparison with a diffusion model, and it showed agreement with previously reported values for several electrode materials

  9. Atomic resolution chemical bond analysis of oxygen in La2CuO4

    Science.gov (United States)

    Haruta, M.; Nagai, T.; Lugg, N. R.; Neish, M. J.; Nagao, M.; Kurashima, K.; Allen, L. J.; Mizoguchi, T.; Kimoto, K.

    2013-08-01

    The distorted CuO6 octahedron in La2CuO4 was studied using aberration-corrected scanning transmission electron microscopy at atomic resolution. The near-edge structure in the oxygen K-edge electron energy-loss spectrum was recorded as a function of the position of the electron probe. After background subtraction, the measured spectrum image was processed using a recently developed inversion process to remove the mixing of signals on the atomic columns due to elastic and thermal scattering. The spectra were then compared with first-principles band structure calculations based on the local-density approximation plus on-site Coulomb repulsion (LDA + U) approach. In this article, we describe in detail not only anisotropic chemical bonding of the oxygen 2p state with the Cu 3d state but also with the Cu 4p and La 5d/4f states. Furthermore, it was found that buckling of the CuO2 plane was also detectable at the atomic resolution oxygen K-edge. Lastly, it was found that the effects of core-hole in the O K-edge were strongly dependent on the nature of the local chemical bonding, in particular, whether it is ionic or covalent.

  10. Surface modification of polystyrene with atomic oxygen radical anions-dissolved solution

    International Nuclear Information System (INIS)

    Wang Lian; Yan Lifeng; Zhao Peitao; Torimoto, Yoshifumi; Sadakata, Masayoshi; Li Quanxin

    2008-01-01

    A novel approach to surface modification of polystyrene (PS) polymer with atomic oxygen radical anions-dissolved solution (named as O - water) has been investigated. The O - water, generated by bubbling of the O - (atomic oxygen radical anion) flux into the deionized water, was characterized by UV-absorption spectroscopy and electron paramagnetic resonance (EPR) spectroscopy. The O - water treatments caused an obvious increase of the surface hydrophilicity, surface energy, surface roughness and also caused an alteration of the surface chemical composition for PS surfaces, which were indicated by the variety of contact angle and material characterization by atomic force microscope (AFM) imaging, field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), and attenuated total-reflection Fourier transform infrared (ATR-FTIR) measurements. Particularly, it was found that some hydrophilic groups such as hydroxyl (OH) and carbonyl (C=O) groups were introduced onto the polystyrene surfaces via the O - water treatment, leading to the increases of surface hydrophilicity and surface energy. The active oxygen species would react with the aromatic ring molecules on the PS surfaces and decompose the aromatic compounds to produce hydrophilic hydroxyl and carbonyl compounds. In addition, the O - water is also considered as a 'clean solution' without adding any toxic chemicals and it is easy to be handled at room temperature. Present method may suit to the surface modification of polymers and other heat-sensitive materials potentially

  11. Single atom spectroscopy: Decreased scattering delocalization at high energy losses, effects of atomic movement and X-ray fluorescence yield.

    Science.gov (United States)

    Tizei, Luiz H G; Iizumi, Yoko; Okazaki, Toshiya; Nakanishi, Ryo; Kitaura, Ryo; Shinohara, Hisanori; Suenaga, Kazu

    2016-01-01

    Single atom localization and identification is crucial in understanding effects which depend on the specific local environment of atoms. In advanced nanometer scale materials, the characteristics of individual atoms may play an important role. Here, we describe spectroscopic experiments (electron energy loss spectroscopy, EELS, and Energy Dispersed X-ray spectroscopy, EDX) using a low voltage transmission electron microscope designed towards single atom analysis. For EELS, we discuss the advantages of using lower primary electron energy (30 keV and 60 keV) and higher energy losses (above 800 eV). The effect of atomic movement is considered. Finally, we discuss the possibility of using atomically resolved EELS and EDX data to measure the fluorescence yield for X-ray emission. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Single atom spectroscopy: Decreased scattering delocalization at high energy losses, effects of atomic movement and X-ray fluorescence yield

    International Nuclear Information System (INIS)

    Tizei, Luiz H.G.; Iizumi, Yoko; Okazaki, Toshiya; Nakanishi, Ryo; Kitaura, Ryo; Shinohara, Hisanori; Suenaga, Kazu

    2016-01-01

    Single atom localization and identification is crucial in understanding effects which depend on the specific local environment of atoms. In advanced nanometer scale materials, the characteristics of individual atoms may play an important role. Here, we describe spectroscopic experiments (electron energy loss spectroscopy, EELS, and Energy Dispersed X-ray spectroscopy, EDX) using a low voltage transmission electron microscope designed towards single atom analysis. For EELS, we discuss the advantages of using lower primary electron energy (30 keV and 60 keV) and higher energy losses (above 800 eV). The effect of atomic movement is considered. Finally, we discuss the possibility of using atomically resolved EELS and EDX data to measure the fluorescence yield for X-ray emission.

  13. Characterization of atomic oxygen in a Hollow Cathode Radio-Frequency Plasma and study its efficiency

    International Nuclear Information System (INIS)

    Naddaf, M.; Saloum, S.

    2011-01-01

    The atomic oxygen (AO) generated in the remote oxygen plasma of the HCD-L300 source, has been fully diagnosed by various conventional techniques. The density of AO was found to vary from (1-10)x10 1 9 m - 3 depending on the operating conditions and parameters. The interaction of the oxygen plasma with silver and gold thin films is investigated by gravimetric analysis, scanning electron microscopy (SEM) and energy dispersive x-ray (EDX) spectroscopy. The effect of AO on surface wetting and energy of polymeric materials is also investigated by using contact angle measurements and analysis technique. From applied point of view, production of super hydrophobic Teflon surface and the significant enhancement in the surface free energy of polyimide and polyamide are considered the most important obtained results in the present work. (author)

  14. Formation of oxides and segregation of mobile atoms during SIMS profiling of Si with oxygen ions

    Energy Technology Data Exchange (ETDEWEB)

    Petravic, M; Williams, J S; Svensson, B G; Conway, M [Australian National Univ., Canberra, ACT (Australia). Research School of Physical Sciences

    1994-12-31

    An oxygen beam is commonly used in secondary ion mass spectroscopy (SIMS) analysis to enhance the ionization probability for positive secondary ions. It has been observed, however, that this technique produces in some cases a great degradation of depth resolution. The most pronounced effects have been found for impurities in silicon under oxygen bombardment at angles of incidence smaller than {approx} 30 deg from the surface normal. A new approach is described which involved broadening of SIMS profiles for some mobile atoms, such as Cu, Ni and Au, implanted into silicon. The anomalously large broadening is explained in terms of segregation at a SiO{sub 2}/Si interface formed during bombardment with oxygen at impact angles less than 30 deg. 2 refs., 1 tab., 4 figs.

  15. Formation of oxides and segregation of mobile atoms during SIMS profiling of Si with oxygen ions

    Energy Technology Data Exchange (ETDEWEB)

    Petravic, M.; Williams, J.S.; Svensson, B.G.; Conway, M. [Australian National Univ., Canberra, ACT (Australia). Research School of Physical Sciences

    1993-12-31

    An oxygen beam is commonly used in secondary ion mass spectroscopy (SIMS) analysis to enhance the ionization probability for positive secondary ions. It has been observed, however, that this technique produces in some cases a great degradation of depth resolution. The most pronounced effects have been found for impurities in silicon under oxygen bombardment at angles of incidence smaller than {approx} 30 deg from the surface normal. A new approach is described which involved broadening of SIMS profiles for some mobile atoms, such as Cu, Ni and Au, implanted into silicon. The anomalously large broadening is explained in terms of segregation at a SiO{sub 2}/Si interface formed during bombardment with oxygen at impact angles less than 30 deg. 2 refs., 1 tab., 4 figs.

  16. Study of atomic excitations in sputtering with targets partially covered with oxygen

    International Nuclear Information System (INIS)

    Weng, J.; Veje, E.

    1984-01-01

    We have bombarded pure, elemental targets of Be, B, Mg, Al, Si, Ti, and Au with 80 keV Ar + ions and studied excitation of sputtered atoms or ions under UHV conditions as well as with oxygen present at the target surface. The measurements on Mg, Al, Si, and Ti have been done at projectile incidence angles from 0 0 to 85 0 . Excitation probabilities for gold were found to be only very little influenced by oxygen, but for Be, B, Mg, Al, Si, and Ti, the excitation probabilities were in many, but not all, cases found to depend strongly on the oxygen pressure as well as on the beam current density. This indicates that the excitation mechanism is strongly dependent on the initial electronic conditions of the solid. (orig.)

  17. Determination of the neutral oxygen atom density in a plasma reactor loaded with metal samples

    Science.gov (United States)

    Mozetic, Miran; Cvelbar, Uros

    2009-08-01

    The density of neutral oxygen atoms was determined during processing of metal samples in a plasma reactor. The reactor was a Pyrex tube with an inner diameter of 11 cm and a length of 30 cm. Plasma was created by an inductively coupled radiofrequency generator operating at a frequency of 27.12 MHz and output power up to 500 W. The O density was measured at the edge of the glass tube with a copper fiber optics catalytic probe. The O atom density in the empty tube depended on pressure and was between 4 and 7 × 1021 m-3. The maximum O density was at a pressure of about 150 Pa, while the dissociation fraction of O2 molecules was maximal at the lowest pressure and decreased with increasing pressure. At about 300 Pa it dropped below 10%. The measurements were repeated in the chamber loaded with different metallic samples. In these cases, the density of oxygen atoms was lower than that in the empty chamber. The results were explained by a drain of O atoms caused by heterogeneous recombination on the samples.

  18. Optical measurements of atomic oxygen concentration, temperature and nitric oxide production rate in flames

    Science.gov (United States)

    Myhr, Franklin Henry

    An optical method for measuring nitric oxide (NO) production rates in flames was developed and characterized in a series of steady, one-dimensional, atmospheric-pressure laminar flames of 0.700 Hsb2/0.199 Nsb2/0.101 COsb2 or 0.700 CHsb4/0.300 Nsb2 (by moles) with dry air, with equivalence ratios from 0.79 to 1.27. Oxygen atom concentration, (O), was measured by two-photon laser-induced fluorescence (LIF), temperature was measured by ultraviolet Rayleigh scattering, and nitrogen concentration was calculated from supplied reactant flows; together this information was used to calculate the NO production rate through the thermal (Zel'dovich) mechanism. Measurements by two other techniques were compared with results from the above method. In the first comparison, gas sampling was used to measure axial NO concentration profiles, the slopes of which were multiplied by velocity to obtain total NO production rates. In the second comparison, LIF measurements of hydroxyl radical (OH) were used with equilibrium water concentrations and a partial equilibrium assumption to find (O). Nitric oxide production rates from all three methods agreed reasonably well. Photolytic interference was observed during (O) LIF measurements in all of the flames; this is the major difficulty in applying the optical technique. Photolysis of molecular oxygen in lean flames has been well documented before, but the degree of interference observed in the rich flames suggests that some other molecule is also dissociating; the candidates are OH, CO, COsb2 and Hsb2O. An extrapolative technique for removing the effects of photolysis from (O) LIF measurements worked well in all flames where NO production was significant. Using the optical method to measure NO production rates in turbulent flames will involve a tradeoff among spatial resolution, systematic photolysis error, and random shot noise. With the conventional laser system used in this work, a single pulse with a resolution of 700 mum measured NO

  19. Single molecule atomic force microscopy and force spectroscopy of chitosan.

    Science.gov (United States)

    Kocun, Marta; Grandbois, Michel; Cuccia, Louis A

    2011-02-01

    Atomic force microscopy (AFM) and AFM-based force spectroscopy was used to study the desorption of individual chitosan polymer chains from substrates with varying chemical composition. AFM images of chitosan adsorbed onto a flat mica substrate show elongated single strands or aggregated bundles. The aggregated state of the polymer is consistent with the high level of flexibility and mobility expected for a highly positively charged polymer strand. Conversely, the visualization of elongated strands indicated the presence of stabilizing interactions with the substrate. Surfaces with varying chemical composition (glass, self-assembled monolayer of mercaptoundecanoic acid/decanethiol and polytetrafluoroethylene (PTFE)) were probed with chitosan modified AFM tips and the corresponding desorption energies, calculated from plateau-like features, were attributed to the desorption of individual polymer strands. Desorption energies of 2.0±0.3×10(-20)J, 1.8±0.3×10(-20)J and 3.5±0.3×10(-20)J were obtained for glass, SAM of mercaptoundecanoic/dodecanethiol and PTFE, respectively. These single molecule level results can be used as a basis for investigating chitosan and chitosan-based materials for biomaterial applications. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Water Adsorption and Dissociation on Ceria-Supported Single-Atom Catalysts: A First-Principles DFT+U Investigation.

    Science.gov (United States)

    Han, Zhong-Kang; Gao, Yi

    2016-02-01

    Single-atom catalysts have attracted wide attention owing to their extremely high atom efficiency and activities. In this paper, we applied density functional theory with the inclusion of the on-site Coulomb interaction (DFT+U) to investigate water adsorption and dissociation on clean CeO 2 (111) surfaces and single transition metal atoms (STMAs) adsorbed on the CeO 2 (111) surface. It is found that the most stable water configuration is molecular adsorption on the clean CeO 2 (111) surface and dissociative adsorption on STMA/CeO 2 (111) surfaces, respectively. In addition, our results indicate that the more the electrons that transfer from STMA to the ceria substrate, the stronger the binding energies between the STMA and ceria surfaces. A linear relationship is identified between the water dissociation barriers and the d band centers of STMA, known as the generalized Brønsted-Evans-Polanyi principle. By combining the oxygen spillovers, single-atom dispersion stabilities, and water dissociation barriers, Zn, Cr, and V are identified as potential candidates for the future design of ceria-supported single-atom catalysts for reactions in which the dissociation of water plays an important role, such as the water-gas shift reaction. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. High energy-intensity atomic oxygen beam source for low earth orbit materials degradation studies

    International Nuclear Information System (INIS)

    Cross, J.B.; Blais, N.C.

    1988-01-01

    A high intensity (10 19 O-atoms/s-sr) high energy (5 eV) source of oxygen atoms has been developed that produces a total fluence of 10 22 O-atoms/cm 2 in less than 100 hours of continuous operation at a distance of 15 cm from the source. The source employs a CW CO 2 laser sustained discharge to form a high temperature (15,000 K) plasma in the throat of a 0.3-mm diameter nozzle using 3--8 atmospheres of rare gas/O 2 mixtures. Visible and infrared photon flux levels of 1 watt/cm 2 have been measured 15 cm downstream of the source while vacuum UV (VUV) fluxes are comparable to that measured in low earth orbit. The reactions of atomic oxygen with kapton, Teflon, silver, and various coatings have been studied. The oxidation of kapton (reaction efficiency = 3 /times/ 10/sup /minus/24/ cm /+-/ 50%) has an activation energy of 0.8 Kcal/mole over the temperature range of 25/degree/C to 100/degree/C at a beam energy of 1.5 eV and produces low molecular weight gas phase reaction products (H 2 O, NO, CO 2 ). Teflon reacts with ∼0.1--0.2 efficiency to that of kapton at 25/degree/C and both surfaces show a rug-like texture after exposure to the O-atom beam. Angular scattering distribution measurements of O-atoms show a near cosine distribution from reactive surfaces indicating complete accommodation of the translational energy with the surface while a nonreactive surface (nickel oxide) shows specular-like scattering with 50% accommodation of the translational energy with the surface. A technique for simple on orbit chemical experiments using resistance measurements of coated silver strips is described. 9 figs

  2. Direct in situ observations of single Fe atom catalytic processes and anomalous diffusion at graphene edges

    Science.gov (United States)

    Zhao, Jiong; Deng, Qingming; Avdoshenko, Stanislav M.; Fu, Lei; Eckert, Jürgen; Rümmeli, Mark H.

    2014-01-01

    Single-atom catalysts are of great interest because of their high efficiency. In the case of chemically deposited sp2 carbon, the implementation of a single transition metal atom for growth can provide crucial insight into the formation mechanisms of graphene and carbon nanotubes. This knowledge is particularly important if we are to overcome fabrication difficulties in these materials and fully take advantage of their distinct band structures and physical properties. In this work, we present atomically resolved transmission EM in situ investigations of single Fe atoms at graphene edges. Our in situ observations show individual iron atoms diffusing along an edge either removing or adding carbon atoms (viz., catalytic action). The experimental observations of the catalytic behavior of a single Fe atom are in excellent agreement with supporting theoretical studies. In addition, the kinetics of Fe atoms at graphene edges are shown to exhibit anomalous diffusion, which again, is in agreement with our theoretical investigations. PMID:25331874

  3. Chemical reaction of atomic oxygen with evaporated films of copper, part 4

    Science.gov (United States)

    Fromhold, A. T.; Williams, J. R.

    1990-01-01

    Evaporated copper films were exposed to an atomic oxygen flux of 1.4 x 10(exp 17) atoms/sq cm per sec at temperatures in the range 285 to 375 F (140 to 191 C) for time intervals between 2 and 50 minutes. Rutherford backscattering spectroscopy (RBS) was used to determine the thickness of the oxide layers formed and the ratio of the number of copper to oxygen atoms in the layers. Oxide film thicknesses ranged from 50 to 3000 A (0.005 to 0.3 microns, or equivalently, 5 x 10(exp -9) to 3 x 10(exp -7); it was determined that the primary oxide phase was Cu2O. The growth law was found to be parabolic (L(t) varies as t(exp 1/2)), in which the oxide thickness L(t) increases as the square root of the exposure time t. The analysis of the data is consistent with either of the two parabolic growth laws. (The thin-film parabolic growth law is based on the assumption that the process is diffusion controlled, with the space charge within the growing oxide layer being negligible. The thick-film parabolic growth law is also based on a diffusion controlled process, but space-charge neutrality prevails locally within very thick oxides.) In the absence of a voltage measurement across the growing oxide, a distinction between the two mechanisms cannot be made, nor can growth by the diffusion of neutral atomic oxygen be entirely ruled out. The activation energy for the reaction is on the order of 1.1 eV (1.76 x 10(exp -19) joule, or equivalently, 25.3 kcal/mole).

  4. Automatic measuring device for atomic oxygen concentrations (1962); Dispositif de mesure automatique de concentrations d'oxygene atomique (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Weill, J; Deiss, M; Mercier, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-07-01

    Within the framework of the activities of the Autonomous Reactor Electronics Section we have developed a device, which renders automatic one type of measurement carried out in the Physical Chemistry Department at the Saclay Research Centre. We define here: - the physico-chemical principle of the apparatus which is adapted to the measurement of atomic oxygen concentrations; - the physical principle of the automatic measurement; - the properties, performance, constitution, use and maintenance of the automatic measurement device. It is concluded that the principle of the automatic device, whose tests have confirmed the estimation of the theoretical performance, could usefully be adapted to other types of measurement. (authors) [French] Dans le cadre des activites de la Section Autonome d'Electronique des Reacteurs, il a ete realise et mis au point un dispositif permettant de rendre automatique un type de mesures effectuees au Departement de Physico-Chimie du C.E.N. SACLAY. On definit ici: - le principe physico-chimique de l'appareillage, adapte a la mesure de concentrations de l'oxygene atomique; - le principe physique de la mesure automatique; - les qualites, performances, constitution, utilisation, et maintenance du dispositif de mesure automatique. Il est porte en conclusion, que le principe du dispositif automatique realise, dont les essais ont sensiblement confirme l'evaluation des performances theoriques, pourrait etre utilement adapte a d'autres types de mesures courantes. (auteurs)

  5. Adsorption of atomic oxygen on PdAg/Pd(111) surface alloys and coadsorption of CO

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, Arnold P. [Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm (Germany); Reaction Kinetics Research Group, University of Szeged, Chemical Research Center of the Hungarian Academy of Sciences, H-6720 Szeged (Hungary); Bansmann, Joachim; Diemant, Thomas; Behm, R. Juergen [Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm (Germany)

    2011-07-01

    The interaction of dissociated oxygen with structurally well-defined PdAg/Pd(111) surface alloys and the coadsorption of CO was studied by high resolution electron energy loss spectroscopy (HREELS) and temperature-programmed desorption (TPD). After oxygen saturation of the non-modified Pd(111) surface at RT, we observed the formation of a prominent peak in the HREEL spectra at 60 meV corresponding to the perpendicular vibration of oxygen atoms adsorbed in threefold hollow sites. Deposition of small Ag amounts does not change the signal intensity of this peak; it decreases only above 20% Ag. Beyond this Ag content, the peak intensity steeply declines and disappears at around 55-60% Ag. CO coadsorption on the oxygen pre-covered surfaces at 120 K leads to the formation of additional features in HREELS. For a surface alloy with 29% Ag, three loss features due to CO adsorption in on-top, bridge, and threefold-hollow sites can be discriminated already after the lowest CO exposure. Annealing of the co-adsorbed layer to 200 K triggers a decrease of the oxygen concentration due to CO{sub 2} formation. These findings are corroborated by TPD spectra of the CO desorption and CO{sub 2} production.

  6. Behavior and role of superficial oxygen in Cu for the growth of large single-crystalline graphene

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Dong [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka 816-8580 (Japan); Solís-Fernández, Pablo [Global Innovation Center (GIC), Kyushu University, Fukuoka, 816-8580 (Japan); Yunus, Rozan Mohamad [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka 816-8580 (Japan); Hibino, Hiroki [School of Science and Technology, Kwansei Gakuin University, Hyogo, 669-1337 (Japan); Ago, Hiroki, E-mail: ago.hiroki.974@m.kyushu-u.ac.jp [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka 816-8580 (Japan); Global Innovation Center (GIC), Kyushu University, Fukuoka, 816-8580 (Japan)

    2017-06-30

    Highlights: • Growth mechanism of large graphene grains on oxidized Cu was revealed by investigating the behavior of oxygen in the Cu. • Only the heating up step was found to be crucial for obtaining large graphene grains. • The copper oxide layer was found to promote some oxygen atoms to dissolve into the Cu foil. • The dissolved oxygen contributes to the reduction of a nucleation density of graphene. - Abstract: Decreasing the nucleation density of graphene grown on copper (Cu) foil by chemical vapor deposition (CVD) is essential for the synthesis of large-area single-crystalline graphene. Here, the behavior of the copper oxide layer and its impact on the graphene growth have been investigated. We found that a small amount of oxygen dissolves into the Cu when the oxide layer decomposes during the heating up in a non-reducing Ar environment. The remaining oxygen in the Cu foil can play an important role in decreasing the graphene nucleation density. The dissolved oxygen can withstand at high temperatures even in reducing H{sub 2} environments without completely losing its effectiveness for maintaining a low graphene nucleation density. However, heating up in a H{sub 2} environment significantly reduces the copper oxide layer during the very first moments of the process at low temperatures, preventing the oxygen to dissolve into the Cu and significantly increasing the nucleation density. These findings will help to improve the graphene growth on Cu catalyst by increasing the grain size while decreasing the grain density.

  7. Optical detection of singlet oxygen from single cells

    DEFF Research Database (Denmark)

    Snyder, John; Skovsen, Esben; Lambert, John D. C.

    2006-01-01

    The lowest excited electronic state of molecular oxygen, singlet molecular oxygen, O2(a 1g), is a reactive species involved in many chemical and biological processes. To better understand the roles played by singlet oxygen in biological systems, particularly at the sub-cellular level, optical tools...... including across the cell membrane into the extracellular environment. On one hand, these results demonstrate that the behavior of singlet oxygen in an intact cell can be significantly different from that inferred from model bulk studies. More generally, these results provide a new perspective...

  8. Atomic Oxygen Abundance in Molecular Clouds: Absorption Toward Sagittarius B2

    Science.gov (United States)

    Lis, D. C.; Keene, Jocelyn; Phillips, T. G.; Schilke, P.; Werner, M. W.; Zmuidzinas, J.

    2001-01-01

    We have obtained high-resolution (approximately 35 km/s) spectra toward the molecular cloud Sgr B2 at 63 micrometers, the wavelength of the ground-state fine-structure line of atomic oxygen (O(I)), using the ISO-LWS instrument. Four separate velocity components are seen in the deconvolved spectrum, in absorption against the dust continuum emission of Sgr B2. Three of these components, corresponding to foreground clouds, are used to study the O(I) content of the cool molecular gas along the line of sight. In principle, the atomic oxygen that produces a particular velocity component could exist in any, or all, of three physically distinct regions: inside a dense molecular cloud, in the UV illuminated surface layer (PDR) of a cloud, and in an atomic (H(I)) gas halo. For each of the three foreground clouds, we estimate, and subtract from the observed O(I) column density, the oxygen content of the H(I) halo gas, by scaling from a published high-resolution 21 cm spectrum. We find that the remaining O(I) column density is correlated with the observed (13)CO column density. From the slope of this correlation, an average [O(I)]/[(13)CO] ratio of 270 +/- 120 (3-sigma) is derived, which corresponds to [O(I)]/[(13)CO] = 9 for a CO to (13)CO abundance ratio of 30. Assuming a (13)CO abundance of 1x10(exp -6) with respect to H nuclei, we derive an atomic oxygen abundance of 2.7x10(exp -4) in the dense gas phase, corresponding to a 15% oxygen depletion compared to the diffuse ISM in our Galactic neighborhood. The presence of multiple, spectrally resolved velocity components in the Sgr B2 absorption spectrum allows, for the first time, a direct determination of the PDR contribution to the O(I) column density. The PDR regions should contain O(I) but not (13)CO, and would thus be expected to produce an offset in the O(I)-(13)CO correlation. Our data do not show such an offset, suggesting that within our beam O(I) is spatially coexistent with the molecular gas, as traced by (13)CO

  9. Submicron Positioning of Single Atoms in a Microcavity

    International Nuclear Information System (INIS)

    Nussmann, Stefan; Hijlkema, Markus; Weber, Bernhard; Rohde, Felix; Rempe, Gerhard; Kuhn, Axel

    2005-01-01

    The coupling of individual atoms to a high-finesse optical cavity is precisely controlled and adjusted using a standing-wave dipole-force trap, a challenge for strong atom-cavity coupling. Ultracold Rubidium atoms are first loaded into potential minima of the dipole trap in the center of the cavity. Then we use the trap as a conveyor belt that we set into motion perpendicular to the cavity axis. This allows us to repetitively move atoms out of and back into the cavity mode with a repositioning precision of 135 nm. This makes it possible to either selectively address one atom of a string of atoms by the cavity, or to simultaneously couple two precisely separated atoms to a higher mode of the cavity

  10. On I(5577 Å and I (7620 Å auroral emissions and atomic oxygen densities

    Directory of Open Access Journals (Sweden)

    R. L. Gattinger

    1996-07-01

    Full Text Available A model of auroral electron deposition processes has been developed using Monte Carlo techniques to simulate electron transport and energy loss. The computed differential electron flux and pitch angle were compared with in situ auroral observations to provide a check on the accuracy of the model. As part of the energy loss process, a tally was kept of electronic excitation and ionization of the important atomic and molecular states. The optical emission rates from these excited states were computed and compared with auroral observations of η(3914 Å, η(5577 Å, η(7620 Å and η(N2VK. In particular, the roles played by energy transfer from N2(A3Σ+u and by other processes in the excitation of O(1S and O2(b1Σ+g were investigated in detail. It is concluded that the N2(A3Σ+u mechanism is dominant for the production of OI(5577 Å in the peak emission region of normal aurora, although the production efficiency is much smaller than the measured laboratory value; above 150 km electron impact on atomic oxygen is dominant. Atomic oxygen densities in the range of 0.75±0.25 MSIS-86 [O] were derived from the optical comparisons for auroral latitudes in mid-winter for various levels of solar and magnetic activity.

  11. Versatile single-chip event sequencer for atomic physics experiments

    Science.gov (United States)

    Eyler, Edward

    2010-03-01

    A very inexpensive dsPIC microcontroller with internal 32-bit counters is used to produce a flexible timing signal generator with up to 16 TTL-compatible digital outputs, with a time resolution and accuracy of 50 ns. This time resolution is easily sufficient for event sequencing in typical experiments involving cold atoms or laser spectroscopy. This single-chip device is capable of triggered operation and can also function as a sweeping delay generator. With one additional chip it can also concurrently produce accurately timed analog ramps, and another one-chip addition allows real-time control from an external computer. Compared to an FPGA-based digital pattern generator, this design is slower but simpler and more flexible, and it can be reprogrammed using ordinary `C' code without special knowledge. I will also describe the use of the same microcontroller with additional hardware to implement a digital lock-in amplifier and PID controller for laser locking, including a simple graphics-based control unit. This work is supported in part by the NSF.

  12. A first-principles study of structure, orbital interactions and atomic oxygen and OH adsorption on Mo-, Sc- and Y-doped nickel bimetallic clusters

    International Nuclear Information System (INIS)

    Das, Nishith Kumar; Shoji, Tetsuo

    2013-01-01

    Highlights: •Mo-doped nickel clusters are energetically more stable than the Sc and Y-doped clusters (n ⩾ 10). •Mo atom exhibits center at the cluster rather than edge, while Sc and Y atom sit at the edge. •The metallic s, d orbitals are mainly dominated on the stability of nanoclusters. •The oxygen and OH adsorption energy of Mo-doped cluster are higher than those of other nanoclusters. •2p Orbitals are strongly bonds with Mo 4d, and a weakly interacts with Ni 3d, 4s and Mo 5s orbitals. -- Abstract: Density functional theory (DFT) has been used to study the stability, orbitals interactions and oxygen and hydroxyl chemisorption properties of Ni n M (1 ⩽ n ⩽ 12) clusters. A single atom doped-nickel clusters increase the stability, and icosahedral Ni 12 Mo cluster is the most stable structure. Molybdenum atom prefers to exhibit center at the cluster (n ⩾ 10) rather than edge, while Sc and Y atom remain at the edge. The Ni–Mo bond lengths are smaller than the Ni–Sc and Ni–Y. The pDOS results show that the d–d orbitals interactions are mainly dominating on the stability of clusters, while p orbitals have a small effect on the stability. The Mo-doped nanoclusters have the highest oxygen and OH chemisorption energy, and the most favorable adsorption site is on the top Mo site. The larger cluster distortion is found for the Sc- and Y-doped structures compared to other clusters. The oxygen 2p orbitals are strongly hybridizing with the Mo 4d orbitals (n < 9) and a little interaction between oxygen 2p and Ni 3d, 4s and Mo 5s orbitals. The Mo-doped clusters are significantly increased the chemisorption energies that might improve the passive film adherence of nanoalloys

  13. Computer simulations of an oxygen inductively coupled plasma used for plasma-assisted atomic layer deposition

    International Nuclear Information System (INIS)

    Tinck, S; Bogaerts, A

    2011-01-01

    In this paper, an O 2 inductively coupled plasma used for plasma enhanced atomic layer deposition of Al 2 O 3 thin films is investigated by means of modeling. This work intends to provide more information about basic plasma properties such as species densities and species fluxes to the substrate as a function of power and pressure, which might be hard to measure experimentally. For this purpose, a hybrid model developed by Kushner et al is applied to calculate the plasma characteristics in the reactor volume for different chamber pressures ranging from 1 to 10 mTorr and different coil powers ranging from 50 to 500 W. Density profiles of the various oxygen containing plasma species are reported as well as fluxes to the substrate under various operating conditions. Furthermore, different orientations of the substrate, which can be placed vertically or horizontally in the reactor, are taken into account. In addition, special attention is paid to the recombination process of atomic oxygen on the different reactor walls under the stated operating conditions. From this work it can be concluded that the plasma properties change significantly in different locations of the reactor. The plasma density near the cylindrical coil is high, while it is almost negligible in the neighborhood of the substrate. Ion and excited species fluxes to the substrate are found to be very low and negligible. Finally, the orientation of the substrate has a minor effect on the flux of O 2 , while it has a significant effect on the flux of O. In the horizontal configuration, the flux of atomic oxygen can be up to one order of magnitude lower than in the vertical configuration.

  14. Electrochemical Water Oxidation and Stereoselective Oxygen Atom Transfer Mediated by a Copper Complex.

    Science.gov (United States)

    Kafentzi, Maria-Chrysanthi; Papadakis, Raffaello; Gennarini, Federica; Kochem, Amélie; Iranzo, Olga; Le Mest, Yves; Le Poul, Nicolas; Tron, Thierry; Faure, Bruno; Simaan, A Jalila; Réglier, Marius

    2018-04-06

    Water oxidation by copper-based complexes to form dioxygen has attracted attention in recent years, with the aim of developing efficient and cheap catalysts for chemical energy storage. In addition, high-valent metal-oxo species produced by the oxidation of metal complexes in the presence of water can be used to achieve substrate oxygenation with the use of H 2 O as an oxygen source. To date, this strategy has not been reported for copper complexes. Herein, a copper(II) complex, [(RPY2)Cu(OTf) 2 ] (RPY2=N-substituted bis[2-pyridyl(ethylamine)] ligands; R=indane; OTf=triflate), is used. This complex, which contains an oxidizable substrate moiety (indane), is used as a tool to monitor an intramolecular oxygen atom transfer reaction. Electrochemical properties were investigated and, upon electrolysis at 1.30 V versus a normal hydrogen electrode (NHE), both dioxygen production and oxygenation of the indane moiety were observed. The ligand was oxidized in a highly diastereoselective manner, which indicated that the observed reactivity was mediated by metal-centered reactive species. The pH dependence of the reactivity was monitored and correlated with speciation deduced from different techniques, ranging from potentiometric titrations to spectroscopic studies and DFT calculations. Water oxidation for dioxygen production occurs at neutral pH and is probably mediated by the oxidation of a mononuclear copper(II) precursor. It is achieved with a rather low overpotential (280 mV at pH 7), although with limited efficiency. On the other hand, oxygenation is maximum at pH 8-8.5 and is probably mediated by the electrochemical oxidation of an antiferromagnetically coupled dinuclear bis(μ-hydroxo) copper(II) precursor. This constitutes the first example of copper-centered oxidative water activation for a selective oxygenation reaction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Femtosecond, two-photon laser-induced-fluorescence imaging of atomic oxygen in an atmospheric-pressure plasma jet

    Science.gov (United States)

    Schmidt, Jacob B.; Sands, Brian L.; Kulatilaka, Waruna D.; Roy, Sukesh; Scofield, James; Gord, James R.

    2015-06-01

    Femtosecond, two-photon-absorption laser-induced-fluorescence (fs-TALIF) spectroscopy is employed to measure space- and time-resolved atomic-oxygen distributions in a nanosecond, repetitively pulsed, externally grounded, atmospheric-pressure plasma jet flowing helium with a variable oxygen admixture. The high-peak-intensity, low-average-energy femtosecond pulses result in increased TALIF signal with reduced photolytic inferences. This allows 2D imaging of absolute atomic-oxygen number densities ranging from 5.8   ×   1015 to 2.0   ×   1012cm-3 using a cooled CCD with an external intensifier. Xenon is used for signal and imaging-system calibrations to quantify the atomic-oxygen fluorescence signal. Initial results highlight a transition in discharge morphology from annular to filamentary, corresponding with a change in plasma chemistry from ozone to atomic oxygen production, as the concentration of oxygen in the feed gas is changed at a fixed voltage-pulse-repetition rate. In this configuration, significant concentrations of reactive oxygen species may be remotely generated by sustaining an active discharge beyond the confines of the dielectric capillary, which may benefit applications that require large concentrations of reactive oxygen species such as material processing or biomedical devices.

  16. Atomic scale study of the chemistry of oxygen, hydrogen and water at SiC surfaces

    International Nuclear Information System (INIS)

    Amy, Fabrice

    2007-01-01

    Understanding the achievable degree of homogeneity and the effect of surface structure on semiconductor surface chemistry is both academically challenging and of great practical interest to enable fabrication of future generations of devices. In that respect, silicon terminated SiC surfaces such as the cubic 3C-SiC(1 0 0) 3 x 2 and the hexagonal 6H-SiC(0 0 0 1) 3 x 3 are of special interest since they give a unique opportunity to investigate the role of surface morphology on oxygen or hydrogen incorporation into the surface. In contrast to silicon, the subsurface structure plays a major role in the reactivity, leading to unexpected consequences such as the initial oxidation starting several atomic planes below the top surface or the surface metallization by atomic hydrogen. (review article)

  17. Atomic oxygen adsorption and its effect on the oxidation behaviour of ZrB2-ZrC-SiC in air

    International Nuclear Information System (INIS)

    Gao Dong; Zhang Yue; Xu Chunlai; Song Yang; Shi Xiaobin

    2011-01-01

    Research highlights: → Atomic oxygen was adsorbed on the surface of ZrB 2 -ZrC-SiC ceramics. → Atomic oxygen was preferred reacted with borides according to XPS spectra. → The atomic oxygen adsorption is detrimental to the oxidation resistance. → The porosity should be the major reason which provides diffusion path for the atomic oxygen. → The structure evolution of the ceramics during oxidation is analyzed. - Abstract: Atomic oxygen is adsorbed on the surface of the hot-pressed ZrB 2 -ZrC-SiC ceramic composites, and then the ceramic composites are oxidized in air up to 1500 deg. C with the purpose of clarifying the effect of atomic oxygen adsorption on the oxidation behaviour of the ceramic composites. The XPS spectra are employed to identify the adsorption mechanism of atomic oxygen on the surface of the ceramic composites, and the formation of O-B, O-Zr, and O-Si bonds indicates that atomic oxygen is chemically adsorbed on the surface of the ceramic. In addition, atomic oxygen is preferred to be adsorbed on the surface of borides according to the Zr 3d core level spectrum. On the other hand, the atomic oxygen adsorption is detrimental to the oxidation resistance according to experimental results, and the porosity of the ceramic should be the major reason which provides diffusion path for the atomic oxygen. Furthermore, the structure evolution of the ceramic composites during oxidation process is analyzed.

  18. Use of an Atmospheric Atomic Oxygen Beam for Restoration of Defaced Paintings

    Science.gov (United States)

    Banks, Bruce A.; Rutledge, Sharon K.; Karla, Margaret; Norris, Mary Jo; Real, William A.; Haytas, Christy A.

    1999-01-01

    An atmospheric atomic oxygen beam has been found to be effective in removing organic materials through oxidation that are typical of graffiti or other contaminant defacements which may occur to the surfaces of paintings. The technique, developed by the National Aeronautics and Space Administration, is portable and was successfully used at the Carnegie Museum of Art to remove a lipstick smudge from the surface of porous paint on the Andy Warhol painting "Bathtub." This process was also evaluated for suitability to remove felt tip and ball point ink graffiti from paper, gesso on canvas and cotton canvas.

  19. Atomic Oxygen Treatment as a Method of Recovering Smoke Damaged Paintings. Revised

    Science.gov (United States)

    Rutledge, Sharon K.; Banks, Bruce A.; Forkapa, Mark; Stueber, Thomas; Sechkar, Edward; Malinowski, Kevin

    1999-01-01

    A noncontact technique is described that uses atomic oxygen, generated under low pressure in the presence of nitrogen, to remove soot and charred varnish from the surface of a painting. The process, which involves surface oxidation, permits control of the amount of surface material removed. The effectiveness of the process was evaluated by reflectance measurements from selected areas made during the removal of soot from acrylic gesso, ink on paper, and varnished oil paint substrates. For the latter substrate, treatment also involved the removal of damaged varnish and paint binder from the surface.

  20. Efficiencies for production of atomic nitrogen and oxygen by relativistic proton impact in air

    Science.gov (United States)

    Porter, H. S.; Jackman, C. H.; Green, A. E. S.

    1976-01-01

    Relativistic electron and proton impact cross sections are obtained and represented by analytic forms which span the energy range from threshold to 1 GeV. For ionization processes, the Massey-Mohr continuum generalized oscillator strength surface is parameterized. Parameters are determined by simultaneous fitting to (1) empirical data, (2) the Bethe sum rule, and (3) doubly differential cross sections for ionization. Branching ratios for dissociation and predissociation from important states of N2 and O2 are determined. The efficiency for the production of atomic nitrogen and oxygen by protons with kinetic energy less than 1 GeV is determined using these branching ratio and cross section assignments.

  1. Barrier mechanism of multilayers graphene coated copper against atomic oxygen irradiation

    Science.gov (United States)

    Zhang, Haijing; Ren, Siming; Pu, Jibin; Xue, Qunji

    2018-06-01

    Graphene has been demonstrated as a protective coating for Cu under ambient condition because of its high impermeability and light-weight oxidation barrier. However, it lacks the research of graphene as a protective coating in space environment. Here, we experimentally and theoretically study the oxidation behavior of graphene-coated Cu in vacuum atomic oxygen (AO) condition. After AO irradiation, the experimental results show multilayer graphene has better anti-oxidation than monolayer graphene. Meanwhile, the calculation results show the oxidation appeared on the graphene's grain boundaries or the film's vacancy defects for the monolayer graphene coated Cu foil. Moreover, the calculation results show the oxidation process proceeds slowly in multilayers because of the matched defects overlaps each other to form a steric hindrance to suppress the O atom diffusion in the vertical direction, and the mismatched defects generates potential energy barriers for interlayer to suppress the O atom diffusion in the horizontal direction. Hence, multilayer graphene films could serve as protection coatings to prevent diffusion of O atom.

  2. Accelerated Oxygen Atom Transfer and C-H Bond Oxygenation by Remote Redox Changes in Fe3 Mn-Iodosobenzene Adducts.

    Science.gov (United States)

    de Ruiter, Graham; Carsch, Kurtis M; Gul, Sheraz; Chatterjee, Ruchira; Thompson, Niklas B; Takase, Michael K; Yano, Junko; Agapie, Theodor

    2017-04-18

    We report the synthesis, characterization, and reactivity of [LFe 3 (PhPz) 3 OMn( s PhIO)][OTf] x (3: x=2; 4: x=3), where 4 is one of very few examples of iodosobenzene-metal adducts characterized by X-ray crystallography. Access to these rare heterometallic clusters enabled differentiation of the metal centers involved in oxygen atom transfer (Mn) or redox modulation (Fe). Specifically, 57 Fe Mössbauer and X-ray absorption spectroscopy provided unique insights into how changes in oxidation state (Fe III 2 Fe II Mn II vs. Fe III 3 Mn II ) influence oxygen atom transfer in tetranuclear Fe 3 Mn clusters. In particular, a one-electron redox change at a distal metal site leads to a change in oxygen atom transfer reactivity by ca. two orders of magnitude. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Force, current and field effects in single atom manipulation

    NARCIS (Netherlands)

    Braun, K.-F.; Hla, S.; Pertaya, N.; Soe, W.H.; Flipse, C.F.J.; Rieder, K.

    2003-01-01

    We present a detailed investigation of the manipulation of Ag and Au atoms with a STM tip on the Ag(111) surface at 5K. The interpretation of the feed-back loop signal gives a precise picture of the movement of the atom during manipulation. The threshold tunnelling resistance and tip-height to move

  4. Determination of interstitial oxygen atom position in U2N3+xOy by near edge structure study

    Science.gov (United States)

    Jiang, A. K.; Zhao, Y. W.; Long, Z.; Hu, Y.; Wang, X. F.; Yang, R. L.; Bao, H. L.; Zeng, R. G.; Liu, K. Z.

    2018-06-01

    The determination of interstitial oxygen atom site in U2N3+xOy film could facilitate the understanding of the oxidation mechanism of α-U2N3 and the effect of U2N3+xOy on anti-oxidation. By comparing the similarities and variances between N K edge and O K edge electron energy loss spectra (EELS) for oxidized α-U2N3 and UO2, the present work looks at the local structure of nitrogen and oxygen atoms in U2N3+xOy film, identifying the most possible position of interstitial O atom.

  5. Single-atom detection on a chip: from realization to application

    Energy Technology Data Exchange (ETDEWEB)

    Stibor, A; Bender, H; Kuehnhold, S; Fortagh, J; Zimmermann, C; Guenther, A, E-mail: aguenth@pit.physik.uni-tuebingen.d [CQ Center for Collective Quantum Phenomena and their Applications, Eberhard-Karls-Universitaet Tuebingen, Auf der Morgenstelle 14, D-72076 Tuebingen (Germany)

    2010-06-15

    In this paper, we describe the preparation and detection of ultracold atoms on a microchip with single-atom sensitivity. The detection scheme is based on multi-photon ionization of atoms and the subsequent guiding of the generated ions by ion optics to a channel electron multiplier. We resolve single atoms with a detection efficiency above 60%. The detector is suitable for real-time observations of static and dynamic processes in ultracold quantum gases. Although the ionization is destructive, sampling a small subset of the atomic distribution is sufficient for the determination of the desired information. We take full high-resolution spectra of ultracold atoms by ionizing only 5% of the atoms. Using an additional microwave near 6.8 GHz, the detection scheme becomes energy, position and state selective. This can be used for in situ determination of the energy distribution and temperature of atom clouds inside the trap and applied for future correlation measurements.

  6. Observation of Entanglement of a Single Photon with a Trapped Atom

    International Nuclear Information System (INIS)

    Volz, Juergen; Weber, Markus; Schlenk, Daniel; Rosenfeld, Wenjamin; Vrana, Johannes; Saucke, Karen; Kurtsiefer, Christian; Weinfurter, Harald

    2006-01-01

    We report the observation of entanglement between a single trapped atom and a single photon at a wavelength suitable for low-loss communication over large distances, thereby achieving a crucial step towards long range quantum networks. To verify the entanglement, we introduce a single atom state analysis. This technique is used for full state tomography of the atom-photon qubit pair. The detection efficiency and the entanglement fidelity are high enough to allow in a next step the generation of entangled atoms at large distances, ready for a final loophole-free Bell experiment

  7. Time profile of harmonics generated by a single atom in a strong electromagnetic field

    International Nuclear Information System (INIS)

    Antoine, P.; Piraux, B.; Maquet, A.

    1995-01-01

    We show that the time profile of the harmonics emitted by a single atom exposed to a strong electromagnetic field may be obtained through a wavelet or a Gabor analysis of the acceleration of the atomic dipole. This analysis is extremely sensitive to the details of the dynamics and sheds some light on the competition between the atomic excitation or ionization processes and photon emission. For illustration we study the interaction of atomic hydrogen with an intense laser pulse

  8. Manipulation and analysis of a single dopant atom in GaAs

    NARCIS (Netherlands)

    Wijnheijmer, A.P.

    2011-01-01

    This thesis focuses on the manipulation and analysis of single dopant atoms in GaAs by scanning tunneling microscopy (STM) and spectroscopy (STS) at low temperatures. The observation of ionization rings is one of the key results, showing that we can control the charge state of a single dopant atom

  9. MISSE 2 PEACE Polymers Experiment Atomic Oxygen Erosion Yield Error Analysis

    Science.gov (United States)

    McCarthy, Catherine E.; Banks, Bruce A.; deGroh, Kim, K.

    2010-01-01

    Atomic oxygen erosion of polymers in low Earth orbit (LEO) poses a serious threat to spacecraft performance and durability. To address this, 40 different polymer samples and a sample of pyrolytic graphite, collectively called the PEACE (Polymer Erosion and Contamination Experiment) Polymers, were exposed to the LEO space environment on the exterior of the International Space Station (ISS) for nearly 4 years as part of the Materials International Space Station Experiment 1 & 2 (MISSE 1 & 2). The purpose of the PEACE Polymers experiment was to obtain accurate mass loss measurements in space to combine with ground measurements in order to accurately calculate the atomic oxygen erosion yields of a wide variety of polymeric materials exposed to the LEO space environment for a long period of time. Error calculations were performed in order to determine the accuracy of the mass measurements and therefore of the erosion yield values. The standard deviation, or error, of each factor was incorporated into the fractional uncertainty of the erosion yield for each of three different situations, depending on the post-flight weighing procedure. The resulting error calculations showed the erosion yield values to be very accurate, with an average error of 3.30 percent.

  10. Toward a New Capability for Upper Atmospheric Research using Atomic Oxygen Lidar

    Science.gov (United States)

    Clemmons, J. H.; Steinvurzel, P.; Mu, X.; Beck, S. M.; Lotshaw, W. T.; Rose, T. S.; Hecht, J. H.; Westberg, K. R.; Larsen, M. F.; Chu, X.; Fritts, D. C.

    2017-12-01

    Progress on development of a lidar system for probing the upper atmosphere based on atomic oxygen resonance is presented and discussed. The promise of a fully-developed atomic oxygen lidar system, which must be based in space to measure the upper atmosphere, for yielding comprehensive new insights is discussed in terms of its potential to deliver global, height-resolved measurements of winds, temperature, and density at a high cadence. An overview of the system is given, and its measurement principles are described, including its use of 1) a two-photon transition to keep the optical depth low; 2) laser tuning to provide the Doppler information needed to measure winds; and 3) laser tuning to provide a Boltzmann temperature measurement. The current development status is presented with a focus on what has been done to demonstrate capability in the laboratory and its evolution to a funded sounding rocket investigation designed to make measurements of three-dimensional turbulence in the upper mesosphere and lower thermosphere.

  11. Leveling coatings for reducing the atomic oxygen defect density in protected graphite fiber epoxy composites

    Science.gov (United States)

    Jaworske, D. A.; Degroh, Kim K.; Podojil, G.; McCollum, T.; Anzic, J.

    1992-11-01

    Pinholes or other defect sites in a protective oxide coating provide pathways for atomic oxygen in low Earth orbit to reach underlying material. One concept of enhancing the lifetime of materials in low Earth orbit is to apply a leveling coating to the material prior to applying any reflective and protective coatings. Using a surface tension leveling coating concept, a low viscosity epoxy was applied to the surface of several composite coupons. A protective layer of 1000 A of SiO2 was deposited on top of the leveling coating, and the coupons were exposed to an atomic oxygen environment in a plasma asher. Pinhole populations per unit area were estimated by counting the number of undercut sites observed by scanning electron microscopy. Defect density values of 180,000 defects/sq cm were reduced to about 1000 defects/sq cm as a result of the applied leveling coating. These improvements occur at a mass penalty of about 2.5 mg/sq cm.

  12. Lateral and vertical manipulations of single atoms on the Ag(1 1 1) surface with the copper single-atom and trimer-apex tips

    International Nuclear Information System (INIS)

    Xie Yiqun; Yang Tianxing; Ye Xiang; Huang Lei

    2011-01-01

    We study the lateral and vertical manipulations of single Ag and Cu atoms on the Ag(1 1 1) surface with the Cu single-atom and trimer-apex tips using molecular statics simulations. The reliability of the lateral manipulation with the Cu single-atom tip is investigated, and compared with that for the Ag tips. We find that overall the manipulation reliability (MR) increases with the decreasing tip height, and in a wide tip-height range the MR is better than those for both the Ag single-atom and trimer-apex tips. This is due to the stronger attractive force of the Cu tip and its better stability against the interactions with the Ag surface. With the Cu trimer-apex tip, the single Ag and Cu adatoms can be picked up from the flat Ag(1 1 1) surface, and moreover a reversible vertical manipulation of single Ag atoms on the stepped Ag(1 1 1) surface is possible, suggesting a method to modify two-dimensional Ag nanostructures on the Ag(1 1 1) surface with the Cu trimer-apex tip.

  13. Atomic imaging of an InSe single-crystal surface with atomic force microscope

    OpenAIRE

    Uosaki, Kohei; Koinuma, Michio

    1993-01-01

    The atomic force microscope was employed to observed in air the surface atomic structure of InSe, one of III-VI compound semiconductors with layered structures. Atomic arrangements were observed in both n-type and p-type materials. The observed structures are in good agreement with those expected from bulk crystal structures. The atomic images became less clear by repeating the imaging process. Wide area imaging after the imaging of small area clearly showed that a mound was created at the sp...

  14. On I(5577 Å and I (7620 Å auroral emissions and atomic oxygen densities

    Directory of Open Access Journals (Sweden)

    R. L. Gattinger

    Full Text Available A model of auroral electron deposition processes has been developed using Monte Carlo techniques to simulate electron transport and energy loss. The computed differential electron flux and pitch angle were compared with in situ auroral observations to provide a check on the accuracy of the model. As part of the energy loss process, a tally was kept of electronic excitation and ionization of the important atomic and molecular states. The optical emission rates from these excited states were computed and compared with auroral observations of η(3914 Å, η(5577 Å, η(7620 Å and η(N2VK. In particular, the roles played by energy transfer from N2(A3Σ+u and by other processes in the excitation of O(1S and O2(b1Σ+g were investigated in detail. It is concluded that the N2(A3Σ+u mechanism is dominant for the production of OI(5577 Å in the peak emission region of normal aurora, although the production efficiency is much smaller than the measured laboratory value; above 150 km electron impact on atomic oxygen is dominant. Atomic oxygen densities in the range of 0.75±0.25 MSIS-86 [O] were derived from the optical comparisons for auroral latitudes in mid-winter for various levels of solar and magnetic activity.

  15. Stability of V2O5 Supported on Titania in the Presence of Water, Bulk Oxygen Vacancies, and Adsorbed Oxygen Atoms

    DEFF Research Database (Denmark)

    Kristoffersen, Henrik Høgh; Neilson, Hunter L.; Buratto, Steven K.

    2017-01-01

    ). In the case of oxidative dehydrogenation of alkanes and methanol, the reaction produces water, oxygen vacancies, and hydrogen atoms bound to the surface. For this article we use density functional theory to examine how the presence of these species on the surface affects a V2O5 cluster, which we assume......A catalyst consisting of vanadium oxide submonolayers supported on rutile titanium dioxide is used for a variety of reactions. One important question is the difference between the activity of monomeric clusters (having one vanadium atom) and polymeric clusters (having more than one vanadium atom...

  16. Excitation and charge transfer in low-energy hydrogen atom collisions with neutral oxygen

    Science.gov (United States)

    Barklem, P. S.

    2018-02-01

    Excitation and charge transfer in low-energy O+H collisions is studied; it is a problem of importance for modelling stellar spectra and obtaining accurate oxygen abundances in late-type stars including the Sun. The collisions have been studied theoretically using a previously presented method based on an asymptotic two-electron linear combination of atomic orbitals (LCAO) model of ionic-covalent interactions in the neutral atom-hydrogen-atom system, together with the multichannel Landau-Zener model. The method has been extended to include configurations involving excited states of hydrogen using an estimate for the two-electron transition coupling, but this extension was found to not lead to any remarkably high rates. Rate coefficients are calculated for temperatures in the range 1000-20 000 K, and charge transfer and (de)excitation processes involving the first excited S-states, 4s.5So and 4s.3So, are found to have the highest rates. Data are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/vizbin/qcat?J/A+A/610/A57. The data are also available at http://https://github.com/barklem/public-data

  17. New Equations for Calculating Principal and Fine-Structure Atomic Spectra for Single and Multi-Electron Atoms

    Energy Technology Data Exchange (ETDEWEB)

    Surdoval, Wayne A. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Berry, David A. [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Shultz, Travis R. [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2018-03-09

    A set of equations are presented for calculating atomic principal spectral lines and fine-structure energy splits for single and multi-electron atoms. Calculated results are presented and compared to the National Institute of Science and Technology database demonstrating very good accuracy. The equations do not require fitted parameters. The only experimental parameter required is the Ionization energy for the electron of interest. The equations have comparable accuracy and broader applicability than the single electron Dirac equation. Three Appendices discuss the origin of the new equations and present calculated results. New insights into the special relativistic nature of the Dirac equation and its relationship to the new equations are presented.

  18. Oxygen reduction and evolution at single-metal active sites

    DEFF Research Database (Denmark)

    Calle-Vallejo, F.; Martínez, J.I.; García Lastra, Juan Maria

    2013-01-01

    A worldwide spread of clean technologies such as low-temperature fuel cells and electrolyzers depends strictly on their technical reliability and economic affordability. Currently, both conditions are hardly fulfilled mainly due to the same reason: the oxygen electrode, which has large overpotent...

  19. In situ single-atom array synthesis using dynamic holographic optical tweezers

    Science.gov (United States)

    Kim, Hyosub; Lee, Woojun; Lee, Han-gyeol; Jo, Hanlae; Song, Yunheung; Ahn, Jaewook

    2016-01-01

    Establishing a reliable method to form scalable neutral-atom platforms is an essential cornerstone for quantum computation, quantum simulation and quantum many-body physics. Here we demonstrate a real-time transport of single atoms using holographic microtraps controlled by a liquid-crystal spatial light modulator. For this, an analytical design approach to flicker-free microtrap movement is devised and cold rubidium atoms are simultaneously rearranged with 2N motional degrees of freedom, representing unprecedented space controllability. We also accomplish an in situ feedback control for single-atom rearrangements with the high success rate of 99% for up to 10 μm translation. We hope this proof-of-principle demonstration of high-fidelity atom-array preparations will be useful for deterministic loading of N single atoms, especially on arbitrary lattice locations, and also for real-time qubit shuttling in high-dimensional quantum computing architectures. PMID:27796372

  20. High-pressure oxygenation of thin-wall YBCO single-domain samples

    International Nuclear Information System (INIS)

    Chaud, X; Savchuk, Y; Sergienko, N; Prikhna, T; Diko, P

    2008-01-01

    The oxygen annealing of ReBCO bulk material, necessary to achieve superconducting properties, usually induces micro- and macro-cracks. This leads to a crack-assisted oxygenation process that allows oxygenating large bulk samples faster than single crystals. But excellent superconducting properties are cancelled by the poor mechanical ones. More progressive oxygenation strategy has been shown to reduce drastically the oxygenation cracks. The problem then arises to keep a reasonable annealing time. The concept of bulk Y123 single-domain samples with thin-wall geometry has been introduced to bypass the inherent limitation due to a slow oxygen diffusion rate. But it is not enough. The use of a high oxygen pressure (16 MPa) enables to speed up further the process. It introduces a displacement in the equilibrium phase diagram towards higher temperatures, i.e., higher diffusion rates, to achieve a given oxygen content in the material. Remarkable results were obtained by applying such a high pressure oxygen annealing process on thin-wall single-domain samples. The trapped field of 16 mm diameter Y123 thin-wall single-domain samples was doubled (0.6T vs 0.3T at 77K) using an annealing time twice shorter (about 3 days). The initial development was made on thin bars. The advantage of thin-wall geometry is that such an annealing can be applied directly to a much larger sample

  1. Two-photon absorption laser-induced fluorescence of atomic oxygen in the afterglow of pulsed positive corona discharge

    Science.gov (United States)

    Ono, Ryo; Takezawa, Kei; Oda, Tetsuji

    2009-08-01

    Atomic oxygen is measured in the afterglow of pulsed positive corona discharge using time-resolved two-photon absorption laser-induced fluorescence. The discharge occurs in a 14 mm point-to-plane gap in dry air. After the discharge pulse, the atomic oxygen density decreases at a rate of 5×104 s-1. Simultaneously, ozone density increases at almost the same rate, where the ozone density is measured using laser absorption method. This agreement between the increasing rate of atomic oxygen and decreasing rate of ozone proves that ozone is mainly produced by the well-known three-body reaction, O+O2+M→O3+M. No other process for ozone production such as O2(v)+O2→O3+O is observed. The spatial distribution of atomic oxygen density is in agreement with that of the secondary streamer luminous intensity. This agreement indicates that atomic oxygen is mainly produced in the secondary streamer channels, not in the primary streamer channels.

  2. Atomic oxygen effects on boron nitride and silicon nitride: A comparison of ground based and space flight data

    Science.gov (United States)

    Cross, J. B.; Lan, E. H.; Smith, C. A.; Whatley, W. J.

    1990-01-01

    The effects of atomic oxygen on boron nitride (BN) and silicon nitride (Si3N4) were evaluated in a low Earth orbit (LEO) flight experiment and in a ground based simulation facility. In both the inflight and ground based experiments, these materials were coated on thin (approx. 250A) silver films, and the electrical resistance of the silver was measured in situ to detect any penetration of atomic oxygen through the BN and Si3N4 materials. In the presence of atomic oxygen, silver oxidizes to form silver oxide, which has a much higher electrical resistance than pure silver. Permeation of atomic oxygen through BN, as indicated by an increase in the electrical resistance of the silver underneath, was observed in both the inflight and ground based experiments. In contrast, no permeation of atomic oxygen through Si3N4 was observed in either the inflight or ground based experiments. The ground based results show good qualitative correlation with the LEO flight results, indicating that ground based facilities such as the one at Los Alamos National Lab can reproduce space flight data from LEO.

  3. Manganese-Oxygen Intermediates in O-O Bond Activation and Hydrogen-Atom Transfer Reactions.

    Science.gov (United States)

    Rice, Derek B; Massie, Allyssa A; Jackson, Timothy A

    2017-11-21

    Biological systems capitalize on the redox versatility of manganese to perform reactions involving dioxygen and its derivatives superoxide, hydrogen peroxide, and water. The reactions of manganese enzymes influence both human health and the global energy cycle. Important examples include the detoxification of reactive oxygen species by manganese superoxide dismutase, biosynthesis by manganese ribonucleotide reductase and manganese lipoxygenase, and water splitting by the oxygen-evolving complex of photosystem II. Although these enzymes perform very different reactions and employ structurally distinct active sites, manganese intermediates with peroxo, hydroxo, and oxo ligation are commonly proposed in catalytic mechanisms. These intermediates are also postulated in mechanisms of synthetic manganese oxidation catalysts, which are of interest due to the earth abundance of manganese. In this Account, we describe our recent efforts toward understanding O-O bond activation pathways of Mn III -peroxo adducts and hydrogen-atom transfer reactivity of Mn IV -oxo and Mn III -hydroxo complexes. In biological and synthetic catalysts, peroxomanganese intermediates are commonly proposed to decay by either Mn-O or O-O cleavage pathways, although it is often unclear how the local coordination environment influences the decay mechanism. To address this matter, we generated a variety of Mn III -peroxo adducts with varied ligand environments. Using parallel-mode EPR and Mn K-edge X-ray absorption techniques, the decay pathway of one Mn III -peroxo complex bearing a bulky macrocylic ligand was investigated. Unlike many Mn III -peroxo model complexes that decay to oxo-bridged-Mn III Mn IV dimers, decay of this Mn III -peroxo adduct yielded mononuclear Mn III -hydroxo and Mn IV -oxo products, potentially resulting from O-O bond activation of the Mn III -peroxo unit. These results highlight the role of ligand sterics in promoting the formation of mononuclear products and mark an important

  4. Parametric feedback cooling of a single atom inside on optical cavity

    International Nuclear Information System (INIS)

    Tatjana Wilk

    2014-01-01

    An optical cavity can be used as a kind of intensifier to study radiation features of an atom, which are hard to detect in free space, like squeezing. Such experiments make use of strong coupling between atom and cavity mode, which experimentally requires the atom to be well localized in the cavity mode. This can be achieved using feedback on the atomic motion: from intensity variations of a probe beam transmitted through the cavity information about the atomic motion is gained, which is used to synchronously modulate the trapping potential holding the atom, leading to cooling and better localization. Here, we report on efficient parametric feedback cooling of a single atom held in an intra-cavity standing wave dipole trap. In contrast to previous feedback strategies, this scheme cools the fast axial oscillation of the atom as well as the slower radial motion. (author)

  5. Joint Remote State Preparation of a Single-Atom Qubit State via a GHZ Entangled State

    Science.gov (United States)

    Xiao, Xiao-Qi; Yao, Fengwei; Lin, Xiaochen; Gong, Lihua

    2018-04-01

    We proposed a physical protocol for the joint remote preparation of a single-atom qubit state via a three-atom entangled GHZ-type state previously shared by the two senders and one receiver. Only rotation operations of single-atom, which can be achieved though the resonant interaction between the two-level atom and the classical field, are required in the scheme. It shows that the splitting way of the classical information of the secret qubit not only determines the success of reconstruction of the secret qubit, but also influences the operations of the senders.

  6. Influence of average ion energy and atomic oxygen flux per Si atom on the formation of silicon oxide permeation barrier coatings on PET

    Science.gov (United States)

    Mitschker, F.; Wißing, J.; Hoppe, Ch; de los Arcos, T.; Grundmeier, G.; Awakowicz, P.

    2018-04-01

    The respective effect of average incorporated ion energy and impinging atomic oxygen flux on the deposition of silicon oxide (SiO x ) barrier coatings for polymers is studied in a microwave driven low pressure discharge with additional variable RF bias. Under consideration of plasma parameters, bias voltage, film density, chemical composition and particle fluxes, both are determined relative to the effective flux of Si atoms contributing to film growth. Subsequently, a correlation with barrier performance and chemical structure is achieved by measuring the oxygen transmission rate (OTR) and by performing x-ray photoelectron spectroscopy. It is observed that an increase in incorporated energy to 160 eV per deposited Si atom result in an enhanced cross-linking of the SiO x network and, therefore, an improved barrier performance by almost two orders of magnitude. Furthermore, independently increasing the number of oxygen atoms to 10 500 per deposited Si atom also lead to a comparable barrier improvement by an enhanced cross-linking.

  7. Imaging and manipulation of single viruses by atomic force microscopy

    NARCIS (Netherlands)

    Baclayon, M.; Wuite, G. J. L.; Roos, W. H.

    2010-01-01

    The recent developments in virus research and the application of functional viral particles in nanotechnology and medicine rely on sophisticated imaging and manipulation techniques at nanometre resolution in liquid, air and vacuum. Atomic force microscopy (AFM) is a tool that combines these

  8. Study of the metastable singlet of molecular nitrogen and of oxygen atoms in discharges and post-discharges

    International Nuclear Information System (INIS)

    Magne, Lionel

    1991-01-01

    Whereas discharges in nitrogen, in oxygen and in their mixtures are used in many different industrial processes (surface treatment, nitridation, oxidation, and so on), in order to get a better knowledge on nitrogen electronic states, this research thesis reports the study of the metastable singlet state of molecular nitrogen, and of oxygen atoms in their fundamental state. The molecular metastable has been observed by far-UV optical emission spectroscopy, in the positive column of a continuous discharge and in time post-discharge. As far as continuous discharge is concerned, the author measured the vibrational distribution of this state. A kinetic model has been developed, and calculated vibrational distributions are in good agreement with measurements. The density of oxygen atoms in fundamental state in time post-discharge has been measured by far-UV absorption optical spectroscopy. The probability of atom re-association of glass walls is deduced from the obtained results [fr

  9. From Single Atoms to Nanoparticles: Autocatalysis and Metal Aggregation in Atomic Layer Deposition of Pt on TiO2 Nanopowder.

    Science.gov (United States)

    Grillo, Fabio; Van Bui, Hao; La Zara, Damiano; Aarnink, Antonius A I; Kovalgin, Alexey Y; Kooyman, Patricia; Kreutzer, Michiel T; van Ommen, Jan Rudolf

    2018-05-10

    A fundamental understanding of the interplay between ligand-removal kinetics and metal aggregation during the formation of platinum nanoparticles (NPs) in atomic layer deposition of Pt on TiO 2 nanopowder using trimethyl(methylcyclo-pentadienyl)platinum(IV) as the precursor and O 2 as the coreactant is presented. The growth follows a pathway from single atoms to NPs as a function of the oxygen exposure (P O2 × time). The growth kinetics is modeled by accounting for the autocatalytic combustion of the precursor ligands via a variant of the Finke-Watzky two-step model. Even at relatively high oxygen exposures ( 120 mbar s. The deposition of more Pt leads to the formation of NPs that can be as large as 6 nm. Crucially, high P O2 (≥5 mbar) hinders metal aggregation, thus leading to narrow particle size distributions. The results show that ALD of Pt NPs is reproducible across small and large surface areas if the precursor ligands are removed at high P O2 . © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The Dependence of Atomic Oxygen Undercutting of Protected Polyimide Kapton(tm) H upon Defect Size

    Science.gov (United States)

    Snyder, Aaron; deGroh, Kim K.

    2001-01-01

    Understanding the behavior of polymeric materials when exposed to the low-Earth-orbit (LEO) environment is important in predicting performance characteristics such as in-space durability. Atomic oxygen (AO) present in LEO is known to be the principal agent in causing undercutting erosion of SiO(x) protected polyimide Kapton(R) H film, which serves as a mechanically stable blanket material in solar arrays. The rate of undercutting is dependent on the rate of arrival, directionality and energy of the AO with respect to the film surface. The erosion rate also depends on the distribution of the size of defects existing in the protective coating. This paper presents results of experimental ground testing using low energy, isotropic AO flux together with numerical modeling to determine the dependence of undercutting erosion upon defect size.

  11. Atomic Oxygen Treatment Technique for Removal of Smoke Damage from Paintings

    Science.gov (United States)

    Rutledge, S. K.; Banks, B. A.

    1997-01-01

    Soot deposits that can accumulate on surfaces of a painting during a fire can be difficult to clean from some types of paintings without damaging the underlying paint layers. A non-contact technique has been developed which can remove the soot by allowing a gas containing atomic oxygen to flow over the surface and chemically react with the soot to form carbon monoxide and carbon dioxide. The reaction is limited to the surface, so the underlying paint is not touched. The process can be controlled so that the cleaning can be stopped once the paint surface is reached. This paper describes the smoke exposure and cleaning of untreated canvas, acrylic gesso, and sections of an oil painting using this technique. The samples were characterized by optical microscopy and reflectance spectroscopy.

  12. Chemical reactivity of hydrogen, nitrogen, and oxygen atoms at temperatures below 100 k

    Science.gov (United States)

    Mcgee, H. A., Jr.

    1973-01-01

    The synthesis of unusual compounds by techniques employing cryogenic cooling to retard their very extreme reactivity was investigated. Examples of such species that were studied are diimide (N2H2), cyclobutadiene (C4H4), cyclopropanone (C3H4O), oxirene (C2H2O), and many others. Special purpose cryogenically cooled inlet arrangements were designed such that the analyses incurred no warm-up of the cold, and frequently explosively unstable, compounds. Controlled energy electron impact techniques were used to measure critical potentials and to develop the molecular energetics and thermodynamics of these molecules and to gain some insight into their kinetic characteristics as well. Three and four carbon strained ring molecules were studied. Several reactions of oxygen and hydrogen atoms with simple molecules of H, N, C, and O in hard quench configurations were studied. And the quench stabilization of BH3 was explored as a model system in cryochemistry.

  13. Strategies for real-time position control of a single atom in cavity QED

    International Nuclear Information System (INIS)

    Lynn, T W; Birnbaum, K; Kimble, H J

    2005-01-01

    Recent realizations of single-atom trapping and tracking in cavity QED open the door for feedback schemes which actively stabilize the motion of a single atom in real time. We present feedback algorithms for cooling the radial component of motion for a single atom trapped by strong coupling to single-photon fields in an optical cavity. Performance of various algorithms is studied through simulations of single-atom trajectories, with full dynamical and measurement noise included. Closed loop feedback algorithms compare favourably to open loop 'switching' analogues, demonstrating the importance of applying actual position information in real time. The high optical information rate in current experiments enables real-time tracking that approaches the standard quantum limit for broadband position measurements, suggesting that realistic active feedback schemes may reach a regime where measurement backaction appreciably alters the motional dynamics

  14. Ground-Laboratory to In-Space Atomic Oxygen Correlation for the Polymer Erosion and Contamination Experiment (PEACE) Polymers

    Science.gov (United States)

    Stambler, Arielle H.; Inoshita, Karen E.; Roberts, Lily M.; Barbagallo, Claire E.; deGroh, Kim K.; Banks, Bruce A.

    2011-01-01

    The Materials International Space Station Experiment 2 (MISSE 2) Polymer Erosion and Contamination Experiment (PEACE) polymers were exposed to the environment of low Earth orbit (LEO) for 3.95 years from 2001 to 2005. There were 41 different PEACE polymers, which were flown on the exterior of the International Space Station (ISS) in order to determine their atomic oxygen erosion yields. In LEO, atomic oxygen is an environmental durability threat, particularly for long duration mission exposures. Although spaceflight experiments, such as the MISSE 2 PEACE experiment, are ideal for determining LEO environmental durability of spacecraft materials, ground-laboratory testing is often relied upon for durability evaluation and prediction. Unfortunately, significant differences exist between LEO atomic oxygen exposure and atomic oxygen exposure in ground-laboratory facilities. These differences include variations in species, energies, thermal exposures and radiation exposures, all of which may result in different reactions and erosion rates. In an effort to improve the accuracy of ground-based durability testing, ground-laboratory to in-space atomic oxygen correlation experiments have been conducted. In these tests, the atomic oxygen erosion yields of the PEACE polymers were determined relative to Kapton H using a radio-frequency (RF) plasma asher (operated on air). The asher erosion yields were compared to the MISSE 2 PEACE erosion yields to determine the correlation between erosion rates in the two environments. This paper provides a summary of the MISSE 2 PEACE experiment; it reviews the specific polymers tested as well as the techniques used to determine erosion yield in the asher, and it provides a correlation between the space and ground laboratory erosion yield values. Using the PEACE polymers asher to in-space erosion yield ratios will allow more accurate in-space materials performance predictions to be made based on plasma asher durability evaluation.

  15. Dependence of atomic oxygen resistance and the tribological properties on microstructures of WS2 films

    International Nuclear Information System (INIS)

    Xu, Shusheng; Gao, Xiaoming; Hu, Ming; Sun, Jiayi; Jiang, Dong; Wang, Desheng; Zhou, Feng; Weng, Lijun; Liu, Weimin

    2014-01-01

    Graphical abstract: - Highlights: • Pure WS 2 and WS 2 -Al composite films with different structures were prepared. • The compactness of WS 2 film was significantly improved due to incorporation of Al. • Different mechanisms of atomic oxygen resistance of both the films were discussed. • Films before and after AO irradiation kept the unchanged tribological properties. • The composite films showed much better wear resistance than pure WS 2 film. - Abstract: To study the anti-oxidation mechanism of WS 2 films, the pure WS 2 , and Al doped WS 2 composite films were prepared via radio frequency sputtering and the atomic oxygen (AO) irradiation tests were conducted using a ground AO simulation facility. The tribological properties of both films before and after AO irradiation were evaluated using vacuum ball-on-disk tribo-tester. The incorporation of a small fraction of Al dopant resulted in microstructure change from loose columnar platelet with significant porosity for pure WS 2 film to very dense structure. In pure WS 2 film, WS 2 exists as crystalline phase with edge-plane preferential orientation, but nanocrystalline and amorphous phase coexists for the WS 2 -Al composite film. Even if large amount of AO transported into the interior through the longitudinal pores, the pure film showed good AO irradiation resistance owing to the basal plane of WS 2 crystal exhibiting much higher anti-oxidation capacity than the edge-plane. The composite film also had excellent AO irradiation resistance due to the formation of effective thinner WO 3 cladding layer in the sub-surface layer. Tribological results revealed that the composite films showed a significantly improved wear resistance, in comparison to the pure WS 2 film. Besides, due to the effective AO resistance, the tribological properties of WS 2 films remained almost unchanged before and after AO irradiation

  16. Analysis of deterministic swapping of photonic and atomic states through single-photon Raman interaction

    Science.gov (United States)

    Rosenblum, Serge; Borne, Adrien; Dayan, Barak

    2017-03-01

    The long-standing goal of deterministic quantum interactions between single photons and single atoms was recently realized in various experiments. Among these, an appealing demonstration relied on single-photon Raman interaction (SPRINT) in a three-level atom coupled to a single-mode waveguide. In essence, the interference-based process of SPRINT deterministically swaps the qubits encoded in a single photon and a single atom, without the need for additional control pulses. It can also be harnessed to construct passive entangling quantum gates, and can therefore form the basis for scalable quantum networks in which communication between the nodes is carried out only by single-photon pulses. Here we present an analytical and numerical study of SPRINT, characterizing its limitations and defining parameters for its optimal operation. Specifically, we study the effect of losses, imperfect polarization, and the presence of multiple excited states. In all cases we discuss strategies for restoring the operation of SPRINT.

  17. Lessons from single-cell transcriptome analysis of oxygen-sensing cells.

    Science.gov (United States)

    Zhou, Ting; Matsunami, Hiroaki

    2018-05-01

    The advent of single-cell RNA-sequencing (RNA-Seq) technology has enabled transcriptome profiling of individual cells. Comprehensive gene expression analysis at the single-cell level has proven to be effective in characterizing the most fundamental aspects of cellular function and identity. This unbiased approach is revolutionary for small and/or heterogeneous tissues like oxygen-sensing cells in identifying key molecules. Here, we review the major methods of current single-cell RNA-Seq technology. We discuss how this technology has advanced the understanding of oxygen-sensing glomus cells in the carotid body and helped uncover novel oxygen-sensing cells and mechanisms in the mice olfactory system. We conclude by providing our perspective on future single-cell RNA-Seq research directed at oxygen-sensing cells.

  18. Quartz-crystal microbalance study for characterizing atomic oxygen in plasma ash tools

    International Nuclear Information System (INIS)

    Srivastava, A.K.; Sakthivel, P.

    2001-01-01

    This article discusses the measurement of atomic oxygen (AO) concentrations in an oxygen discharge using a quartz-crystal microbalance (QCM). This is a device that has been previously used for monitoring thin-film deposition, among several other applications. The sensor consists of a silver-coated quartz crystal that oscillates at its specific resonant frequency (typically, at about 6 MHz), which is dependent on the mass of the crystal. When exposed to AO, the silver oxidizes rapidly, resulting in a change in its mass, and a consequent change in this frequency. The frequency change is measured with a counter, and when plotted versus time, it may be fit to a standard diffusion-limited oxide-growth model. This model is then used to determine the specific AO flux to the crystal, and by inference, to the wafer. Initial results of QCM measurements in the FusionGemini Plasma Asher (GPL TM -standard downstream microwave asher) and FusionGemini Enhanced Strip (GES TM -fluorine compatible enhanced strip asher) are presented in this article. The results indicate AO densities of the order of 10 12 cm -3 on the wafer. There is a marked increase in AO concentration with addition of nitrogen into the plasma, and a decrease in AO concentration with increasing pressure at constant flow. Effects of increasing the total plasma volume in the enhanced strip tool on AO production are discussed

  19. Oxygen atom transfer reactions from Mimoun complexes to sulfides and sulfoxides. A bonding evolution theory analysis.

    Science.gov (United States)

    González-Navarrete, Patricio; Sensato, Fabricio R; Andrés, Juan; Longo, Elson

    2014-08-07

    In this research, a comprehensive theoretical investigation has been conducted on oxygen atom transfer (OAT) reactions from Mimoun complexes to sulfides and sulfoxides. The joint use of the electron localization function (ELF) and Thom's catastrophe theory (CT) provides a powerful tool to analyze the evolution of chemical events along a reaction pathway. The progress of the reaction has been monitored by structural stability domains from ELF topology while the changes between them are controlled by turning points derived from CT which reveal that the reaction mechanism can be separated in several steps: first, a rupture of the peroxo O1-O2 bond, then a rearrangement of lone pairs of the sulfur atom occurs and subsequently the formation of S-O1 bond. The OAT process involving the oxidation of sulfides and sulfoxides is found to be an asynchronous process where O1-O2 bond breaking and S-O1 bond formation processes do not occur simultaneously. Nucleophilic/electrophilic characters of both dimethyl sulfide and dimethyl sulfoxide, respectively, are sufficiently described by our results, which hold the key to unprecedented insight into the mapping of electrons that compose the bonds while the bonds change.

  20. Realization of Arbitrary Positive-Operator-Value Measurement of Single Atomic Qubit via Cavity QED

    International Nuclear Information System (INIS)

    Yang, Han; Wei, Wu; Chun-Wang, Wu; Hong-Yi, Dai; Cheng-Zu, Li

    2008-01-01

    Positive-operator-value measurement (POVM) is the most general class of quantum measurement. We propose a scheme to deterministically implement arbitrary POVMs of single atomic qubit via cavity QED catalysed by only one ancilla atomic qubit. By appropriately entangling two atomic qubits and sequentially measuring the ancilla qubit, any POVM can be implemented step by step. As an application of our scheme, the realization of a specific POVM for optimal unambiguous discrimination (OUD) between two nonorthogonal states is given

  1. Realization of arbitrary positive-operator-value measurement of single atomic qubit via cavity QED

    International Nuclear Information System (INIS)

    Han Yang; Wu Wei; Wu Chunwang; Dai Hongyi; Li Chengzu

    2008-01-01

    Positive-operator-value measurement (POVM) is the most general class of quantum measurement. We propose a scheme to deterministically implement arbitrary POVMs of single atomic qubit via cavity QED catalysed by only one ancilla atomic qubit. By appropriately entangling two atomic qubits and sequentially measuring the ancilla qubit, any POVM can be implemented step by step. As an application of our scheme, the realization of a specific POVM for optimal unambiguous discrimination (OUD) between two nonorthogonal states is given. (authors)

  2. Realization of Arbitrary Positive-Operator-Value Measurement of Single Atomic Qubit via Cavity QED

    Science.gov (United States)

    Han, Yang; Wu, Wei; Wu, Chun-Wang; Dai, Hong-Yi; Li, Cheng-Zu

    2008-12-01

    Positive-operator-value measurement (POVM) is the most general class of quantum measurement. We propose a scheme to deterministically implement arbitrary POVMs of single atomic qubit via cavity QED catalysed by only one ancilla atomic qubit. By appropriately entangling two atomic qubits and sequentially measuring the ancilla qubit, any POVM can be implemented step by step. As an application of our scheme, the realization of a specific POVM for optimal unambiguous discrimination (OUD) between two nonorthogonal states is given.

  3. Multiple ionization and coupling effects in L-subshell ionization of heavy atoms by oxygen ions

    International Nuclear Information System (INIS)

    Pajek, M.; Banas, D.; Semaniak, J.; Braziewicz, J.; Majewska, U.; Chojnacki, S.; Czyzewski, T.; Fijal, I.; Jaskola, M.; Glombik, A.; Kretschmer, W.; Trautmann, D.; Lapicki, G.; Mukoyama, T.

    2003-01-01

    The multiple-ionization and coupling effects in L-shell ionization of atoms by heavy-ion impact have been studied by measuring the L x-ray production cross sections in solid targets of Au, Bi, Th, and U bombarded by oxygen ions in the energy range 6.4-70 MeV. The measured L x-ray spectra were analyzed using the recently proposed method accounting for the multiple-ionization effects, such as x-ray line shifting and broadening, which enables one to obtain the ionization probabilities for outer shells. The L-subshell ionization cross sections have been obtained from measured x-ray production cross sections for resolved Lα 1,2 , Lγ 1 , and Lγ 2,3 transitions using the L-shell fluorescence and Coster-Kronig yields being substantially modified by the multiple ionization in the M and N shells. In particular, the effect of closing of strong L 1 -L 3 M 4,5 Coster-Kronig transitions in multiple-ionized atoms was evidenced and discussed. The experimental ionization cross sections for the L 1 , L 2 , and L 3 subshells have been compared with the predictions of the semiclassical approximation (SCA) and the ECPSSR theory that includes the corrections for the binding-polarization effect within the perturbed stationary states approximation, the projecticle energy loss, and Coulomb deflection effects as well as the relativistic description of inner-shell electrons. These approaches were further modified to include the L-subshell couplings within the ''coupled-subshell model'' (CSM). Both approaches, when modified for the coupling effects, are in better agreement with the data. Particularly, the predictions of the SCA-CSM calculations reproduce the experimental L-subshell ionization cross section reasonably well. Remaining discrepancies are discussed qualitatively, in terms of further modifications of the L-shell decay rates caused by a change of electronic wave functions in multiple-ionized atoms

  4. Growth and Properties of Oxygen and Ion Doped BISMUTH(2) STRONTIUM(2) Calcium COPPER(2) Oxygen (8+DELTA) Single Crystals

    Science.gov (United States)

    Mitzi, David Brian

    1990-01-01

    A directional solidification method for growing large single crystals in the Bi_2Sr _2CaCu_2O _{8+delta} system is reported. Ion substitutions, with replacement of La for Sr and Y for Ca, as well as oxygen doping in these crystals has been explored. Ion doping results in little change of the superconducting transition for substitution levels below 20-25% (as a result of simultaneous oxygen intercalation), while beyond this level, the Meissner signal broadens and the low temperature Meissner signal decreases. Microprobe analysis and x-ray diffraction performed on these more highly substituted single crystals, provides evidence for inhomogeneity and phase segregation into regions of distinct composition. Annealing unsubstituted crystals in increasing partial pressures of oxygen reversibly depresses the superconducting transition temperature from 90K (as made) to 77K (oxygen pressure annealed) while the Hall concentrations increase from n = 3.1(3) times 10 ^{21} cm^{ -3} (0.34 holes/Cu site) to 4.6(3) times 10^{21} cm^{-3} (0.50 holes/Cu site). Further suppression of T_{c} to 72K is possible by annealing in oxygen pressures up to 100atm. No degradation of the Meissner transition or other indications of inhomogeneity or phase segregation with doping are noted, suggesting that oxygen doped Bi_2Sr _2CaCu_2O _{8+delta} is a suitable system for pursuing doping studies. The decrease in T _{c} with concentration for 0.34 <=q n <=q 0.50 indicates that a high carrier concentration regime exists where T_{c} decreases with n and suggests that this decrease does not arise from material inhomogeneity or other materials problems. The physical properties of these Bi _2Sr_2CaCu _2O_{8+delta} crystals, in this high carrier concentration regime, will be discussed.

  5. Atomic scale mass delivery driven by bend kink in single walled carbon nanotube

    International Nuclear Information System (INIS)

    Kan Biao; Ding Jianning; Ling Zhiyong; Yuan Ningyi; Cheng Guanggui

    2010-01-01

    The possibility of atomic scale mass delivery by bend kink in single walled carbon nanotube was investigated with the aid of molecular dynamics simulation. By keeping the bending angle while moving the tube end, the encapsulated atomic scale mass such as atom, molecule and atom group were successfully delivered through the nanotube. The van der Waals interaction between the encapsulated mass and the tube wall provided the driving force for the delivery. There were no dramatic changes in the van der Waals interaction, and a smooth and steady delivery was achieved when constant loading rate was applied. The influence of temperature on the atom group delivery was also analyzed. It is found raising temperature is harmful to the smooth movement of the atom group. However, the delivery rate can be promoted under higher temperature when the atom group is situated before the kink during the delivery.

  6. Robustness of tungsten single atom tips to thermal treatment and air exposure

    Energy Technology Data Exchange (ETDEWEB)

    Vesa, Cristian; Urban, Radovan [Department of Physics, University of Alberta, Edmonton, Alberta, Canada T6G 2G7 (Canada); National Institute for Nanotechnology, National Research Council of Canada, Edmonton, Alberta, Canada T6G 2M9 (Canada); Pitters, Jason L., E-mail: jason.pitters@nrc-cnrc.gc.ca [National Institute for Nanotechnology, National Research Council of Canada, Edmonton, Alberta, Canada T6G 2M9 (Canada); Wolkow, Robert A. [Department of Physics, University of Alberta, Edmonton, Alberta, Canada T6G 2G7 (Canada); National Institute for Nanotechnology, National Research Council of Canada, Edmonton, Alberta, Canada T6G 2M9 (Canada)

    2014-05-01

    Highlights: • W(1 1 1) single atom tips (SATs) were exposed to air. • SATs could be regenerated by field assisted chemical etching after exposure. • Warming procedures to minimize tip contamination were developed. • Degassing temperatures for air exposed tips were established. • Tip faceting occurred when SATs and unetched tips were annealed above 1200 °C. - Abstract: Experiments aimed at assessing the robustness of nitrogen-etched, single-atom tips (SATs) prepared using W(1 1 1) single crystal wire were performed. Our experiments showed that single-atoms tips sustain minimal damage when exposed to atmospheric conditions and can be readily and quickly nitrogen-etched to single-atom tips thereafter. The SATs can be annealed at temperatures up to 1100 °C with minimal shape changes. Moreover, annealing temperatures in excess of 1200 °C resulted in an apex faceting which may prove important in further single-atom tip creation. Procedures for warming of the SATs from operating temperatures of 80 K were also evaluated to determine conditions that limit tip contamination. These results show that SATS could be fabricated in a dedicated vacuum system and subsequently transferred to other instruments where they would undergo a brief conditioning procedure to recover the single-atom apex configuration prior to being subjected to operating conditions.

  7. Trapping a single atom with a fraction of a photon using a photonic crystal nanocavity

    NARCIS (Netherlands)

    van Oosten, D.; Kuipers, L.

    2011-01-01

    We consider the interaction between a single rubidium atom and a photonic crystal nanocavity. Because of the ultrasmall mode volume of the nanocavity, an extremely strong coupling regime can be achieved in which the atom can shift the cavity resonance by many cavity linewidths. We show that this

  8. Single Pt Atoms Confined into a Metal-Organic Framework for Efficient Photocatalysis.

    Science.gov (United States)

    Fang, Xinzuo; Shang, Qichao; Wang, Yu; Jiao, Long; Yao, Tao; Li, Yafei; Zhang, Qun; Luo, Yi; Jiang, Hai-Long

    2018-02-01

    It is highly desirable yet remains challenging to improve the dispersion and usage of noble metal cocatalysts, beneficial to charge transfer in photocatalysis. Herein, for the first time, single Pt atoms are successfully confined into a metal-organic framework (MOF), in which electrons transfer from the MOF photosensitizer to the Pt acceptor for hydrogen production by water splitting under visible-light irradiation. Remarkably, the single Pt atoms exhibit a superb activity, giving a turnover frequency of 35 h -1 , ≈30 times that of Pt nanoparticles stabilized by the same MOF. Ultrafast transient absorption spectroscopy further unveils that the single Pt atoms confined into the MOF provide highly efficient electron transfer channels and density functional theory calculations indicate that the introduction of single Pt atoms into the MOF improves the hydrogen binding energy, thus greatly boosting the photocatalytic H 2 production activity. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Shuttling single metal atom into and out of a metal nanoparticle.

    Science.gov (United States)

    Wang, Shuxin; Abroshan, Hadi; Liu, Chong; Luo, Tian-Yi; Zhu, Manzhou; Kim, Hyung J; Rosi, Nathaniel L; Jin, Rongchao

    2017-10-10

    It has long been a challenge to dope metal nanoparticles with a specific number of heterometal atoms at specific positions. This becomes even more challenging if the heterometal belongs to the same group as the host metal because of the high tendency of forming a distribution of alloy nanoparticles with different numbers of dopants due to the similarities of metals in outmost electron configuration. Herein we report a new strategy for shuttling a single Ag or Cu atom into a centrally hollow, rod-shaped Au 24 nanoparticle, forming AgAu 24 and CuAu 24 nanoparticles in a highly controllable manner. Through a combined approach of experiment and theory, we explain the shuttling pathways of single dopants into and out of the nanoparticles. This study shows that the single dopant is shuttled into the hollow Au 24 nanoparticle either through the apex or side entry, while shuttling a metal atom out of the Au 25 to form the Au 24 nanoparticle occurs mainly through the side entry.Doping a metal nanocluster with heteroatoms dramatically changes its properties, but it remains difficult to dope with single-atom control. Here, the authors devise a strategy to dope single atoms of Ag or Cu into hollow Au nanoclusters, creating precise alloy nanoparticles atom-by-atom.

  10. Effect of oxygen atoms dissociated by non-equilibrium plasma on flame of methane oxygen and argon pre-mixture gas

    Science.gov (United States)

    Akashi, Haruaki; Yoshinaga, Tomokazu; Sasaki, Koichi

    2014-10-01

    For more efficient way of combustion, plasma-assisted combustion has been investigated by many researchers. But it is very difficult to clarify the effect of plasma even on the flame of methane. Because there are many complex chemical reactions in combustion system. Sasaki et al. has reported that the flame length of methane and air premixed burner shortened by irradiating microwave power. They also measured emission from Second Positive Band System of nitrogen during the irradiation. The emission indicates existence of high energy electrons which are accelerated by the microwave. The high energy electrons also dissociate oxygen molecules easily and oxygen atom would have some effects on the flame. But the dissociation ratio of oxygen molecules by the non-equilibrium plasma is significantly low, compared to that in the combustion reaction. To clarify the effect of dissociated oxygen atoms on the flame, dependence of dissociation ratio of oxygen on the flame has been examined using CHEMKIN. It is found that in the case of low dissociation ratio of 10-6, the ignition of the flame becomes slightly earlier. It is also found that in the case of high dissociation ratio of 10-3, the ignition time becomes significantly earlier by almost half. This work was supported by KAKENHI (22340170).

  11. Single atom anisotropic magnetoresistance on a topological insulator surface

    KAUST Repository

    Narayan, Awadhesh; Rungger, Ivan; Sanvito, Stefano

    2015-01-01

    dimensional model valid for both single adatoms and magnetic clusters, which leads to a proposed device setup for experimental realization. Our results provide an explanation for the conflicting scattering experiments on magnetic adatoms on topological

  12. Photoionisation detection of single 87Rb-atoms using channel electron multipliers

    International Nuclear Information System (INIS)

    Henkel, Florian Alexander

    2011-01-01

    Fast and efficient detection of single atoms is a universal requirement concerning modern experiments in atom physics, quantum optics, and precision spectroscopy. In particular for future quantum information and quantum communication technologies, the efficient readout of qubit states encoded in single atoms or ions is an elementary prerequisite. The rapid development in the field of quantum optics and atom optics in the recent years has enabled to prepare individual atoms as quantum memories or arrays of single atoms as qubit registers. With such systems, the implementation of quantum computation or quantum communication protocols seems feasible. This thesis describes a novel detection scheme which enables fast and efficient state analysis of single neutral atoms. The detection scheme is based on photoionisation and consists of two parts: the hyperfine-state selective photoionisation of single atoms and the registration of the generated photoion-electron pairs via two channel electron multipliers (CEMs). In this work, both parts were investigated in two separate experiments. For the first step, a photoionisation probability of p ion =0.991 within an ionisation time of t ion =386 ns is achieved for a single 87 Rb-atom in an optical dipole trap. For the second part, a compact detection system for the ionisation fragments was developed consisting of two opposing CEM detectors. Measurements show that single neutral atoms can be detected via their ionisation fragments with a detection efficiency of η atom =0.991 within a detection time of t det =415.5 ns. In a future combined setup, this will allow the state-selective readout of optically trapped, single neutral 87 Rb-atoms via photoionisation detection with an estimated detection efficiency η=0.982 and a detection time of t tot = 802 ns. Although initially developed for single 87 Rb-atoms, the concept of photoionisation detection is in principle generally applicable to any atomic or molecular species. As efficient

  13. Photoionisation detection of single {sup 87}Rb-atoms using channel electron multipliers

    Energy Technology Data Exchange (ETDEWEB)

    Henkel, Florian Alexander

    2011-09-02

    Fast and efficient detection of single atoms is a universal requirement concerning modern experiments in atom physics, quantum optics, and precision spectroscopy. In particular for future quantum information and quantum communication technologies, the efficient readout of qubit states encoded in single atoms or ions is an elementary prerequisite. The rapid development in the field of quantum optics and atom optics in the recent years has enabled to prepare individual atoms as quantum memories or arrays of single atoms as qubit registers. With such systems, the implementation of quantum computation or quantum communication protocols seems feasible. This thesis describes a novel detection scheme which enables fast and efficient state analysis of single neutral atoms. The detection scheme is based on photoionisation and consists of two parts: the hyperfine-state selective photoionisation of single atoms and the registration of the generated photoion-electron pairs via two channel electron multipliers (CEMs). In this work, both parts were investigated in two separate experiments. For the first step, a photoionisation probability of p{sub ion}=0.991 within an ionisation time of t{sub ion}=386 ns is achieved for a single {sup 87}Rb-atom in an optical dipole trap. For the second part, a compact detection system for the ionisation fragments was developed consisting of two opposing CEM detectors. Measurements show that single neutral atoms can be detected via their ionisation fragments with a detection efficiency of {eta}{sub atom}=0.991 within a detection time of t{sub det}=415.5 ns. In a future combined setup, this will allow the state-selective readout of optically trapped, single neutral {sup 87}Rb-atoms via photoionisation detection with an estimated detection efficiency {eta}=0.982 and a detection time of t{sub tot} = 802 ns. Although initially developed for single {sup 87}Rb-atoms, the concept of photoionisation detection is in principle generally applicable to any

  14. Atomic and nuclear parameters of single electron capture decaying nuclides

    International Nuclear Information System (INIS)

    Grau, A.

    1981-01-01

    Atomic and nuclear parameters of the following nuclides which decay by electron capture have been calculated: 37 A r, 41 C a, 49 V , 53 M n, 55 F e,59 N i, 68Ge,82 S r, 97 T c, 118 T e, 131 C s, 137 L a, 140 N d, 157 T b, 165 E r, 193 p t, 194 H g, and 205 P h The evaluation rules are included in the first part of the paper. The values and the associated uncertainties of the following parameters have been tabulated: decay energy, electron capture probabilities, fluorescence yield, electron emission and X-ray emission. (Author) 27 refs

  15. Fast Excitation and Photon Emission of a Single-Atom-Cavity System

    International Nuclear Information System (INIS)

    Bochmann, J.; Muecke, M.; Langfahl-Klabes, G.; Erbel, C.; Weber, B.; Specht, H. P.; Moehring, D. L.; Rempe, G.

    2008-01-01

    We report on the fast excitation of a single atom coupled to an optical cavity using laser pulses that are much shorter than all other relevant processes. The cavity frequency constitutes a control parameter that allows the creation of single photons in a superposition of two tunable frequencies. Each photon emitted from the cavity thus exhibits a pronounced amplitude modulation determined by the oscillatory energy exchange between the atom and the cavity. Our technique constitutes a versatile tool for future quantum networking experiments

  16. Teleportation of a two-atom entangled state using a single EPR pair in cavity QED

    Institute of Scientific and Technical Information of China (English)

    Ji Xin; Li Ke; Zhang Shou

    2006-01-01

    We propose a scheme for teleporting a two-atom entangled state in cavity quantum electrodynamics(QED).In the scheme,we choose a single Einstein-Podolsky-Rosen (EPR) pair as the quantum channel which is shared by the sender and the receiver.By using the atom-cavity-field interaction and introducing an additional atom,we can teleport the two-atom entangled state successfully with a probability of 1.0.Moreover,we show that the scheme is insensitive to cavity decay and thermal field.

  17. Single-Atom Pt as Co-Catalyst for Enhanced Photocatalytic H2 Evolution.

    Science.gov (United States)

    Li, Xiaogang; Bi, Wentuan; Zhang, Lei; Tao, Shi; Chu, Wangsheng; Zhang, Qun; Luo, Yi; Wu, Changzheng; Xie, Yi

    2016-03-23

    Isolated single-atom platinum (Pt) embedded in the sub-nanoporosity of 2D g-C3 N4 as a new form of co-catalyst is reported. The highly stable single-atom co-catalyst maximizes the atom efficiency and alters the surface trap states of g-C3 N4 , leading to significantly enhanced photocatalytic H2 evolution activity, 8.6 times higher than that of Pt nanoparticles and up to 50 times that for bare g-C3 N4 . © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Interactions between C and Cu atoms in single-layer graphene: direct observation and modelling.

    Science.gov (United States)

    Kano, Emi; Hashimoto, Ayako; Kaneko, Tomoaki; Tajima, Nobuo; Ohno, Takahisa; Takeguchi, Masaki

    2016-01-07

    Metal doping into the graphene lattice has been studied recently to develop novel nanoelectronic devices and to gain an understanding of the catalytic activities of metals in nanocarbon structures. Here we report the direct observation of interactions between Cu atoms and single-layer graphene by transmission electron microscopy. We document stable configurations of Cu atoms in the graphene sheet and unique transformations of graphene promoted by Cu atoms. First-principles calculations based on density functional theory reveal a reduction of energy barrier that caused rotation of C-C bonds near Cu atoms. We discuss two driving forces, electron irradiation and in situ heating, and conclude that the observed transformations were mainly promoted by electron irradiation. Our results suggest that individual Cu atoms can promote reconstruction of single-layer graphene.

  19. Three-dimensional rearrangement of single atoms using actively controlled optical microtraps.

    Science.gov (United States)

    Lee, Woojun; Kim, Hyosub; Ahn, Jaewook

    2016-05-02

    We propose and demonstrate three-dimensional rearrangements of single atoms. In experiments performed with single 87Rb atoms in optical microtraps actively controlled by a spatial light modulator, we demonstrate various dynamic rearrangements of up to N = 9 atoms including rotation, 2D vacancy filling, guiding, compactification, and 3D shuffling. With the capability of a phase-only Fourier mask to generate arbitrary shapes of the holographic microtraps, it was possible to place single atoms at arbitrary geometries of a few μm size and even continuously reconfigure them by conveying each atom. For this purpose, we loaded a series of computer-generated phase masks in the full frame rate of 60 Hz of the spatial light modulator, so the animation of phase mask transformed the holographic microtraps in real time, driving each atom along the assigned trajectory. Possible applications of this method of transformation of single atoms include preparation of scalable quantum platforms for quantum computation, quantum simulation, and quantum many-body physics.

  20. Spin magnetic moments from single atoms to small Cr clusters

    Energy Technology Data Exchange (ETDEWEB)

    Boeglin, C.; Decker, R.; Bulou, H.; Scheurer, F.; Chado, I. [IPCMS-GSI - UMR 7504, 67037 Strasbourg Cedex (France); Ohresser, P. [LURE, 91405 Orsay (France); Dhesi, S.S. [ESRF, BP 220, 38043 Grenoble Cedex (France); Present permanent address: Diamond Light Source, Chilton, Didcot OX11 0QX (United Kingdom); Gaudry, E. [LMCP, 4, place Jussieu, 75252 Paris (France); Lazarovits, B. [CCMS, T.U. Vienna, Gumpendorfstr. 1a, 1060 Wien (Austria)

    2005-07-01

    Morphology studies at the first stages of the growth of Cr/Au(111) are reported and compared to the magnetic properties of the nanostructures. We analyze by Scanning Tunneling Microscopy and Low Energy Electron Diffraction the Cr clusters growth between 200 K and 300 K. In the early stages of the growth the morphology of the clusters shows monoatomic high islands located at the kinks of the herringbone reconstructed Au(111) surface. By X-ray Magnetic Circular Dichroism performed on the Cr L{sub 2,3} edges it is shown that the temperature dependent morphology strongly influences the magnetic properties of the Cr clusters. We show that in the sub-monolayer regime Cr clusters are antiferromagnetic and paramagnetic when the size reaches the atomic limit. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Electronic excitation of Ti atoms sputtered by energetic Ar+ and He+ from clean and monolayer oxygen covered surfaces

    International Nuclear Information System (INIS)

    Pellin, M.J.; Gruen, D.M.; Young, C.E.; Wiggins, M.D.; Argonne National Lab., IL

    1983-01-01

    Electronic excitation of Ti atoms ejected during energetic ion bombardment (Ar + , He + ) of well characterized clean and oxygen covered polycrystalline Ti metal surfaces has been determined. For states with 0 to 2 eV and 3 to 5.5 eV of electronic energy, static mode laser fluorescence spectroscopy (LFS) and static mode spontaneous fluorescence spectroscopy (SFS) were used respectively. These experiments which were carried out in a UHV ( -10 Torr) system equipped with an Auger spectrometer provide measurements of the correlation between oxygen coverage (0 to 3 monolayers) and the excited state distribution of sputtered Ti atoms. The experimentally determined electronic partition function of Ti atoms does not show an exponential dependence on energy (E) above the ground state but rather an E -2 or E -3 power law dependence. (orig.)

  2. Highly Durable Platinum Single-Atom Alloy Catalyst for Electrochemical Reactions

    DEFF Research Database (Denmark)

    Kim, Jiwhan; Roh, Chi-Woo; Sahoo, Suman Kalyan

    2018-01-01

    Single atomic Pt catalyst can offer efficient utilization of the expensive platinum and provide unique selectivity because it lacks ensemble sites. However, designing such a catalyst with high Pt loading and good durability is very challenging. Here, single atomic Pt catalyst supported on antimony...... functional theory calculations show that replacing Sb sites with Pt atoms in the bulk phase or at the surface of SbSn or ATO is energetically favorable. The Pt1/ATO shows superior activity and durability for formic acid oxidation reaction, compared to a commercial Pt/C catalyst. The single atomic Pt...... structure is retained even after a harsh durability test, which is performed by repeating cyclic voltammetry in the range of 0.05–1.4 V for 1800 cycles. A full cell is fabricated for direct formic acid fuel cell using the Pt1/ATO as an anode catalyst, and an order of magnitude higher cell power is obtained...

  3. Atomic structures and mechanical properties of single-crystal GaN nanotubes

    International Nuclear Information System (INIS)

    Xu, B.; Lu, A.J.; Pan, B.C.; Yu, Q.X.

    2005-01-01

    An approach is proposed to theoretically construct a realistic single-crystal GaN nanotube at atomic scale. The generated atomic structures of the single-crystal GaN nanotubes match the structural aspects from experiment very well. Our energetic calculations show that a single-crystal GaN nanotube with [100]-oriented lateral facets is more stable than that with [110]-oriented lateral facets, when they have around the same wall thickness. For a specified orientation of the lateral facets on the single-crystal GaN nanotubes, the energetic stabilities of the tubes obey a P rule, in which P is the ratio of the number of four-coordinated atoms to the number of three-coordinated atoms. Furthermore, the Young's modulus of the considered GaN nanotubes decrease with increasing the ratio of the number of bulk atoms to the number of surface atoms in each type of tube. Our calculations and analysis demonstrate that the surface effect of a single-crystal nanotube enhances its Young's modulus significantly

  4. Simultaneous Laser-induced Fluorescence of Nitric Oxide and Atomic Oxygen in the Hypersonic Materials Environment Test System Arcjet Facility

    Science.gov (United States)

    Johansen, Craig; Lincoln, Daniel; Bathel, Brett; Inman, Jennifer; Danehy, Paul

    2014-01-01

    Simultaneous nitric oxide (NO) and atomic oxygen (O) laser induced fluorescence (LIF) experiments were performed in the Hypersonic Materials Environmental Test System (HYMETS) facility at the NASA Langley Research Center. The data serves as an experimental database for validation for chemical and thermal nonequilibrium models used in hypersonic flows. Measurements were taken over a wide range of stagnation enthalpies (6.7 - 18.5 MJ/kg) using an Earth atmosphere simulant with a composition of 75% N2, 20% O2, and 5% Ar (by volume). These are the first simultaneous measurements of NO and O LIF to be reported in literature for the HYMETS facility. The maximum O LIF mean signal intensity was observed at a stagnation enthalpy of approximately 12 MJ/kg while the maximum NO LIF mean signal intensity was observed at a stagnation enthalpy of 6.7 MJ/kg. Experimental results were compared to simple fluorescence model that assumes equilibrium conditions in the plenum and frozen chemistry in the isentropic nozzle expansion (Mach 5). The equilibrium calculations were performed using CANTERA v2.1.1 with 16 species. The fluorescence model captured the correlation in mean O and NO LIF signal intensities over the entire range of stagnation enthalpies tested. Very weak correlations between single-shot O and NO LIF intensities were observed in the experiments at all of the stagnation enthalpy conditions.

  5. Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J S; Geisler, P; Bruening, C; Kern, J; Prangsma, J C; Wu, X; Feichtner, Thorsten; Ziegler, J; Weinmann, P; Kamp, M; Forchel, A; Hecht, B [Wilhelm-Conrad-Roentgen-Center for Complex Material Systems, University of Wuerzburg (Germany); Biagioni, P [CNISM, Dipartimento di Fisica, Politecnico di Milano (Italy)

    2011-07-01

    Deep subwavelength integration of high-definition plasmonic nano-structures is of key importance for the development of future optical nanocircuitry. So far the experimental realization of proposed extended plasmonic networks remains challenging, mainly due to the multi-crystallinity of commonly used thermally evaporated gold layers. Resulting structural imperfections in individual circuit elements drastically reduce the yield of functional integrated nanocircuits. Here we demonstrate the use of very large but thin chemically grown single-crystalline gold flakes. After immobilization on any arbitrary surface, they serve as an ideal basis for focused-ion beam milling. We present high-definition ultra-smooth gold nanostructures with reproducible nanosized features over micrometer lengthscales. By comparing multi- and single-crystalline optical antennas we prove that the latter have superior optical properties which are in good agreement with numerical simulations.

  6. Detection of ultra-low oxygen concentration based on the fluorescence blinking dynamics of single molecules

    Science.gov (United States)

    Wu, Ruixiang; Chen, Ruiyun; Zhou, Haitao; Qin, Yaqiang; Zhang, Guofeng; Qin, Chengbing; Gao, Yan; Gao, Yajun; Xiao, Liantuan; Jia, Suotang

    2018-01-01

    We present a sensitive method for detection of ultra-low oxygen concentrations based on the fluorescence blinking dynamics of single molecules. The relationship between the oxygen concentration and the fraction of time spent in the off-state, stemming from the population and depopulation of triplet states and radical cationic states, can be fitted with a two-site quenching model in the Stern-Volmer plot. The oxygen sensitivity is up to 43.42 kPa-1 in the oxygen partial pressure region as low as 0.01-0.25 kPa, which is seven times higher than that of the fluorescence intensity indicator. This method avoids the limitation of the sharp and non-ignorable fluctuations that occur during the measurement of fluorescence intensity, providing potential applications in the field of low oxygen-concentration monitoring in life science and industry.

  7. Carbon fiber CVD coating by carbon nanostructured for space materials protection against atomic oxygen

    Science.gov (United States)

    Pastore, Roberto; Bueno Morles, Ramon; Micheli, Davide

    2016-07-01

    In recent years, the emphasis in space research has been shifting from space exploration to commercialization of space. In order to utilize space for commercial purposes it is necessary to understand the low earth orbit (LEO) space environment where most of the activities will be carried out. The studies on the LEO environment are mainly focused towards understanding the effect of atomic oxygen (AO) on spacecraft materials. In the first few shuttle flights, materials looked frosty because they were actually being eroded and textured: AO reacts with organic materials on spacecraft exteriors, gradually damaging them. When a spacecraft travel in LEO (where crewed vehicles and the International Space Station fly), the AO formed from the residual atmosphere can react with the spacecraft surfaces, causing damage to the vehicle. Polymers are widely used in space vehicles and systems as structural materials, thermal blankets, thermal control coatings, conformal coatings, adhesives, lubricants, etc. Exposure of polymers and composites to the space environment may result in different detrimental effects via modification of their chemical, electrical, thermal, optical and mechanical properties as well as surface erosion. The major degradation effects in polymers are due to their exposure to atomic oxygen, vacuum ultraviolet and synergistic effects, which result in different damaging effects by modification of the polymer's chemical properties. In hydrocarbon containing polymers the main AO effect is the surface erosion via chemical reactions and the release of volatile reaction products associated with the mass loss. The application of a thin protective coating to the base materials is one of the most commonly used methods of preventing AO degradation. The purpose is to provide a barrier between base material and AO environment or, in some cases, to alter AO reactions to inhibit its diffusion. The effectiveness of a coating depends on its continuity, porosity, degree of

  8. Effects of Atomic Oxygen and Grease on Outgassing and Adhesion of Silicone Elastomers for Space Applications

    Science.gov (United States)

    de Groh, Henry C.; Puleo, Bernadette J.; Steinetz, Bruce M.

    An investigation of silicone elastomers for seals used in docking and habitat systems for future space exploration vehicles is being conducted at NASA. For certain missions, NASA is considering androgynous docking systems where two vehicles each having a seal would be required to: dock for a period of time, seal effectively, and then separate with minimum push-off forces for undocking. Silicone materials are generally chosen for their wide operating temperatures and low leakage rates. However silicone materials are often sticky and usually exhibit considerable adhesion when mated against metals and silicone surfaces. This paper investigates the adhesion unit pressure for a space rated silicone material (S0383-70) for either seal-on-seal (SoS) or seal-on-aluminum (SoAl) operation modes in the following conditions: as-received, after ground-based atomic-oxygen (AO) pre-treatment, after application of a thin coating of a space-qualified grease (Braycote 601EF), and after a combination of AO pre-treatment and grease coating. In order of descending adhesion reduction, the AO treatment reduced seal adhesion the most, followed by the AO plus grease pre-treatment, followed by the grease treatment. The effects of various treatments on silicone (S0383-70 and ELA-SA-401) outgassing properties were also investigated. The leading adhesion AO pre-treatment reduction led to a slight decrease in outgassing for the S0383-70 material and virtually no change in ELA-SA-401 outgassing.

  9. Multimode electromagnetically induced transparency on a single atomic line

    International Nuclear Information System (INIS)

    Campbell, Geoff; Ordog, Anna; Lvovsky, A I

    2009-01-01

    We experimentally investigate electromagnetically induced transparency (EIT) created on an inhomogeneously broadened 5S 1/2 -5P 1/2 transition in rubidium vapor using a control field of a complex temporal shape. A comb-shaped transparency spectrum enhances the delay-bandwidth product and the light storage capacity for a matched probe pulse by a factor of about 50 compared to a single EIT line (Yavuz 2007 Phys. Rev. A 75 031801). If the temporal mode of the control field is slowly changed while the probe is propagating through the EIT medium, the probe will adiabatically follow, providing a means to perform frequency conversion and optical routing.

  10. Digital atom interferometer with single particle control on a discretized space-time geometry.

    Science.gov (United States)

    Steffen, Andreas; Alberti, Andrea; Alt, Wolfgang; Belmechri, Noomen; Hild, Sebastian; Karski, Michał; Widera, Artur; Meschede, Dieter

    2012-06-19

    Engineering quantum particle systems, such as quantum simulators and quantum cellular automata, relies on full coherent control of quantum paths at the single particle level. Here we present an atom interferometer operating with single trapped atoms, where single particle wave packets are controlled through spin-dependent potentials. The interferometer is constructed from a sequence of discrete operations based on a set of elementary building blocks, which permit composing arbitrary interferometer geometries in a digital manner. We use this modularity to devise a space-time analogue of the well-known spin echo technique, yielding insight into decoherence mechanisms. We also demonstrate mesoscopic delocalization of single atoms with a separation-to-localization ratio exceeding 500; this result suggests their utilization beyond quantum logic applications as nano-resolution quantum probes in precision measurements, being able to measure potential gradients with precision 5 x 10(-4) in units of gravitational acceleration g.

  11. Spin fluctuation effects on the conductance through a single Pd atom contact

    International Nuclear Information System (INIS)

    Romero, M A; Goldberg, E C; Gomez-Carrillo, S C; Bolcatto, P G

    2009-01-01

    A controversy about the conductance through single atoms still exists. There are many experiments where values lower than the quantum unity G 0 = 2e 2 /h have been found associated to Kondo regimes with high Kondo temperatures. Specifically in the Pd single atom contact, conductance values close to G 0 /2 at room temperature have been reported. In this work we propose a theoretical analysis of a break junction of Pd where the charge fluctuation in the single atom contact is limited to the most probable one: d 10 ↔d 9 . The projected density of states and the characteristics of the electron transport are calculated by using a realistic description of the interacting system. A Kondo regime is found where the conductance values and their dependence on temperature are in good agreement with the experimental trends observed in the conduction of single molecule transistors based on transition metal coordination complexes.

  12. Concept for room temperature single-spin tunneling force microscopy with atomic spatial resolution

    Science.gov (United States)

    Payne, Adam

    A study of a force detected single-spin magnetic resonance measurement concept with atomic spatial resolution is presented. The method is based upon electrostatic force detection of spin-selection rule controlled single electron tunneling between two electrically isolated paramagnetic states. Single-spin magnetic resonance detection is possible by measuring the force detected tunneling charge noise on and off spin resonance. Simulation results of this charge noise, based upon physical models of the tunneling and spin physics, are directly compared to measured atomic force microscopy (AFM) system noise. The results show that the approach could provide single-spin measurement of electrically isolated defect states with atomic spatial resolution at room temperature.

  13. Atomic-resolution single-spin magnetic resonance detection concept based on tunneling force microscopy

    Science.gov (United States)

    Payne, A.; Ambal, K.; Boehme, C.; Williams, C. C.

    2015-05-01

    A study of a force detected single-spin magnetic resonance measurement concept with atomic spatial resolution is presented. The method is based upon electrostatic force detection of spin-selection rule controlled single-electron tunneling between two electrically isolated paramagnetic states. Single-spin magnetic resonance detection is possible by measuring the force detected tunneling charge noise on and off spin resonance. Simulation results of this charge noise, based upon physical models of the tunneling and spin physics, are directly compared to measured atomic force microscopy system noise. The results show that the approach could provide single-spin measurement of electrically isolated qubit states with atomic spatial resolution at room temperature.

  14. Theoretical study on the photocatalytic properties of graphene oxide with single Au atom adsorption

    Science.gov (United States)

    Ju, Lin; Dai, Ying; Wei, Wei; Li, Mengmeng; Jin, Cui; Huang, Baibiao

    2018-03-01

    The photocatalytic properties of graphene oxide (GO) with single Au atom adsorption are studied via the first-principles calculations based on the density functional theory. The present study addresses the origin of enhancement in photocatalytic efficiency of GO derived from single Au atom depositing. Compared with the clean one, the work function of the single Au atom adsorbed GO is lowered due to the charge transfer from Au to GO, indicating enhanced surface activity. The Au atom plays as an electron trapping center and a mediating role in charge transfer from photon excited GO to target species. The photogenerated electron-hole pairs can be separated effectively. For the GO configuration with atomic Au dispersion, there are some states introduced in the band gap, which are predominantly composed of Au 6s states. Through the in-gap state, the photo-generated electron transfer from the valence band of clean GO to the conductive band more easily. In addition, the reduction of the gap in the system is also presented in the current work, which indicates that the single Au atom adsorption improves light absorption for the GO based photocatalyst. These theoretical results are valuable for the future applications of GO materials as photocatalyst for water splitting.

  15. Determination of diffusion coefficients of oxygen atoms in ZrO2 using first-principles calculations

    International Nuclear Information System (INIS)

    Segi, Takashi; Okuda, Takanari

    2014-01-01

    Density functional theory and nudged elastic band calculations were performed in order to determine the diffusion coefficient for oxygen from monoclinic ZrO 2 . The calculated values for monoclinic ZrO 2 at 1000 K and 1500 K were 5.88 × 10 -16 cm 2 s -1 and 2.91 × 10 -11 cm 2 s -1 , respectively, and agreed with previously determined experimental values. In addition, the results of the nudged elastic band calculations suggest that interstitial oxygen sites exist between stable oxygen sites, and if oxygen atoms occupy these sites, stable structures with values for the lattice angle β of greater than 80.53° may be obtained. (author)

  16. Probabilistic Cloning of two Single-Atom States via Thermal Cavity

    Science.gov (United States)

    Rui, Pin-Shu; Liu, Dao-Jun

    2016-12-01

    We propose a cavity QED scheme for implementing the 1 → 2 probabilistic quantum cloning (PQC) of two single-atom states. In our scheme, after the to-be-cloned atom and the assistant atom passing through the first cavity, a measurement is carried out on the assistant atom. Based on the measurement outcome we can judge whether the PQC should be continued. If the cloning fails, the other operations are omitted. This makes our scheme economical. If the PQC is continued (with the optimal probability) according to the measurement outcome, two more cavities and some unitary operations are used for achieving the PQC in a deterministic way. Our scheme is insensitive to the decays of the cavities and the atoms.

  17. Precision in single atom localization via Raman-driven coherence: Role of detuning and phase shift

    Energy Technology Data Exchange (ETDEWEB)

    Rahmatullah,; Qamar, Sajid, E-mail: sajid_qamar@comsats.edu.pk

    2013-10-01

    Role of detuning and phase shift associated with the standing-wave driving fields is revisited for precision position measurement of single atom during its motion through two standing-wave fields. A four-level atomic system in diamond configuration is considered where the intermediate levels are coupled to upper and lower level via standing-wave driving fields and atomic decay channels, respectively. The former is responsible for the generation of quantum mechanical coherence via two-photon Raman transition while the latter leads to spontaneous emission of a photon. Due to standing-wave driving fields the atom–field interaction becomes position-dependent and measurement of the frequency of spontaneously emitted photon gives the position information of the atom. The unique position of the atom with much higher spatial resolution, i.e., of the order of λ/100 is observed using detuning and phase shift associated with the standing-wave driving fields.

  18. Launch Vehicle Performance for Bipropellant Propulsion Using Atomic Propellants With Oxygen

    Science.gov (United States)

    Palaszewski, Bryan

    2000-01-01

    Atomic propellants for bipropellant launch vehicles using atomic boron, carbon, and hydrogen were analyzed. The gross liftoff weights (GLOW) and dry masses of the vehicles were estimated, and the 'best' design points for atomic propellants were identified. Engine performance was estimated for a wide range of oxidizer to fuel (O/F) ratios, atom loadings in the solid hydrogen particles, and amounts of helium carrier fluid. Rocket vehicle GLOW was minimized by operating at an O/F ratio of 1.0 to 3.0 for the atomic boron and carbon cases. For the atomic hydrogen cases, a minimum GLOW occurred when using the fuel as a monopropellant (O/F = 0.0). The atomic vehicle dry masses are also presented, and these data exhibit minimum values at the same or similar O/F ratios as those for the vehicle GLOW. A technology assessment of atomic propellants has shown that atomic boron and carbon rocket analyses are considered to be much more near term options than the atomic hydrogen rockets. The technology for storing atomic boron and carbon has shown significant progress, while atomic hydrogen is not able to be stored at the high densities needed for effective propulsion. The GLOW and dry mass data can be used to estimate the cost of future vehicles and their atomic propellant production facilities. The lower the propellant's mass, the lower the overall investment for the specially manufactured atomic propellants.

  19. Continuous imaging of a single neutral atom in a variant magneto-optical trap

    International Nuclear Information System (INIS)

    Xia Tian; Zhou Shuyu; Chen Peng; Li Lin; Hong Tao; Wang Yuzhu

    2010-01-01

    We demonstrate continuous imaging of a single 87 Rb atom confined in a steep magneto-optical trap with an electron-multiplying charge-coupled device (EMCCD) camera and realize a one-dimensional micro-optical trap array with a Dammann grating. We adopt several methods to reduce the noise in the fluorescence signal we obtain with the EMCCD. Step jumping characteristics of the fluorescence demonstrate capturing and losing of individual atoms. (authors)

  20. Single-atom trapping and transport in DMD-controlled optical tweezers

    Science.gov (United States)

    Stuart, Dustin; Kuhn, Axel

    2018-02-01

    We demonstrate the trapping and manipulation of single neutral atoms in reconfigurable arrays of optical tweezers. Our approach offers unparalleled speed by using a Texas instruments digital micro-mirror device as a holographic amplitude modulator with a frame rate of 20 000 per second. We show the trapping of static arrays of up to 20 atoms, as well as transport of individually selected atoms over a distance of 25 μm with laser cooling and 4 μm without. We discuss the limitations of the technique and the scope for technical improvements.

  1. Conductance of single atoms and molecules studied with a scanning tunnelling microscope

    International Nuclear Information System (INIS)

    Neel, N; Kroeger, J; Limot, L; Berndt, R

    2007-01-01

    The conductance of single atoms and molecules is investigated with a low-temperature scanning tunnelling microscope. In a controlled and reproducible way, clean Ag(111) surfaces, individual silver atoms on Ag(111) as well as individual C 60 molecules adsorbed on Cu(100) are contacted with the tip of the microscope. Upon contact the conductance changes discontinuously in the case of the tip-surface junction while the tip-atom and tip-molecule junctions exhibit a continuous transition from the tunnelling to the contact regime

  2. Single photon transport by a moving atom through sub-wavelength hole

    International Nuclear Information System (INIS)

    Afanasiev, A.E.; Melentiev, P.N.; Kuzin, A.A.; Kalatskiy, A.Yu.; Balykin, V.I.

    2017-01-01

    The results of investigation of photon transport through the subwavelength hole in the opaque screen by using single neutral atom are represented. The basis of the proposed and implemented method is the absorption of a photon by a neutral atom immediately before the subwavelength aperture, traveling of the atoms through the hole and emission of a photon on the other side of the screen. Realized method is the alternative approach to existing for photon transport through a subwavelength aperture: 1) self-sustained transmittance of a photon through the aperture according to the Bethe’s model; 2) extra ordinary transmission because of surface-plasmon excitation.

  3. Cooperative single-photon subradiant states in a three-dimensional atomic array

    Energy Technology Data Exchange (ETDEWEB)

    Jen, H.H., E-mail: sappyjen@gmail.com

    2016-11-15

    We propose a complete superradiant and subradiant states that can be manipulated and prepared in a three-dimensional atomic array. These subradiant states can be realized by absorbing a single photon and imprinting the spatially-dependent phases on the atomic system. We find that the collective decay rates and associated cooperative Lamb shifts are highly dependent on the phases we manage to imprint, and the subradiant state of long lifetime can be found for various lattice spacings and atom numbers. We also investigate both optically thin and thick atomic arrays, which can serve for systematic studies of super- and sub-radiance. Our proposal offers an alternative scheme for quantum memory of light in a three-dimensional array of two-level atoms, which is applicable and potentially advantageous in quantum information processing. - Highlights: • Cooperative single-photon subradiant states in a three-dimensional atomic array. • Subradiant state manipulation via spatially-increasing phase imprinting. • Quantum storage of light in the subradiant state in two-level atoms.

  4. Limits on visibility of single heavy atoms in the scanning transmission electron microscope: an experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Wall, J.S.

    1979-01-01

    Theoretical calculations of the visibility of single heavy atoms on thin carbon substrates have predicted higher signal to noise ratios then experimentally observed. Six experimental measurements were performed to determine where the theory is inadequate, five to determine the absolute value of heavy atom scattering cross sections in practical units, and one to determine substrate noise in some practical units. The practical unit of measure was chosen to be the scattering power of one carbon atom as determined by an internal standard, Tobacco Mosaic Virus. Measurements were performed on the following targets on thin carbon substrates: single isolated uranium atoms; silicotungstate clusters; colloidal platinum particles; fd bacteriophage embedded in negative strain; and fd bacteriophage reacted with a known quantity of heavy atom reagent. These measurements suggest that the scattering power of one heavy atom is approximately 9 +- 4 carbon atom equivalents, instead of 15 to 24 predicted by theory. The same techniques were used to measure intensity fluctuations from area to area of a clean substrate. Substrate noise was found to be less than expected for squares of width less than 10A, but up to 2.5 times greater than expected for larger squares. These signal and noise measurements have been combined to give an empirical formula for calculating signal to noise ratios from specimen and microscope parameters.

  5. Anti-Adhesion Elastomer Seal Coatings for Ultraviolet and Atomic Oxygen Protection

    Science.gov (United States)

    De Groh, Henry C., III; Puleo, Bernadette J.; Waters, Deborah L.; Miller, Sharon K.

    2015-01-01

    Radiation blocking sunscreen coatings have been developed for the protection of elastomer seals used in low-Earth-orbit (LEO). The coatings protect the seals from ultraviolet (UV) radiation and atomic oxygen (AO) damage. The coatings were developed for use on NASA docking seals. Docking seal damage from the UV and AO present in LEO can constrain mission time-line, flight mode options, and increases risk. A low level of adhesion is also required for docking seals so undocking push-off forces can be low. The coatings presented also mitigate this unwanted adhesion. Greases with low collected volatile condensable materials (CVCM) and low total mass loss (TML) were mixed with slippery and/or UV blocking powders to create the protective coatings. Coatings were applied at rates up to 2 milligrams per square centimeter. Coated seals were exposed to AO and UV in the NUV (near-UV) and UV-C wavelength ranges (300 to 400 nanometers and 254 nanometers, respectively). Ground based ashers were used to simulate the AO of space. The Sun's UV energy was mimicked assuming a nose forward flight mode, resulting in an exposure rate of 2.5 megajoules per square meter per day. Exposures between 0 and 147 megajoules per square meter (UV-C) and 245 megajoules per square meter (NUV) were accomplished. The protective coatings were durable, providing protection from UV after a simulated docking and undocking cycle. The level of protection begins to decline at coverage rates less than 0.9 milligrams per square centimeter. The leakage of seals coated with Braycote plus 20 percent Z-cote ZnO sunscreen increased by a factor of 40 after moderate AO exposure; indicating that this coating might not be suitable due to AO intolerance. Seals coated with DC-7-16.4 percent Z-cote ZnO sunscreen were not significantly affected by combined doses of 2 x 10 (sup 21) atoms per square AO with 73 megajoules per square meter UV-C. Unprotected seals were significantly damaged at UV-C exposures of 0.3 megajoules per

  6. Experimental study of single-electron loss by Ar+ ions in rare-gas atoms

    Science.gov (United States)

    Reyes, P. G.; Castillo, F.; Martínez, H.

    2001-04-01

    Absolute differential and total cross sections for single-electron loss were measured for Ar+ ions on rare-gas atoms in the laboratory energy range of 1.5 to 5.0 keV. The electron loss cross sections for all the targets studied are found to be in the order of magnitude between 10-19 and 10-22 cm2, and show a monotonically increasing behaviour as a function of the incident energy. The behaviour of the total single-electron loss cross sections with the atomic target number, Zt, shows different dependences as the collision energy increases. In all cases the present results display experimental evidence of saturation in the single-electron loss cross section as the atomic number of the target increases.

  7. Atoms

    International Nuclear Information System (INIS)

    Fuchs, Alain; Villani, Cedric; Guthleben, Denis; Leduc, Michele; Brenner, Anastasios; Pouthas, Joel; Perrin, Jean

    2014-01-01

    Completed by recent contributions on various topics (atoms and the Brownian motion, the career of Jean Perrin, the evolution of atomic physics since Jean Perrin, relationship between scientific atomism and philosophical atomism), this book is a reprint of a book published at the beginning of the twentieth century in which the author addressed the relationship between atomic theory and chemistry (molecules, atoms, the Avogadro hypothesis, molecule structures, solutes, upper limits of molecular quantities), molecular agitation (molecule velocity, molecule rotation or vibration, molecular free range), the Brownian motion and emulsions (history and general features, statistical equilibrium of emulsions), the laws of the Brownian motion (Einstein's theory, experimental control), fluctuations (the theory of Smoluchowski), light and quanta (black body, extension of quantum theory), the electricity atom, the atom genesis and destruction (transmutations, atom counting)

  8. Metal-Insulator-Metal Single Electron Transistors with Tunnel Barriers Prepared by Atomic Layer Deposition

    Directory of Open Access Journals (Sweden)

    Golnaz Karbasian

    2017-03-01

    Full Text Available Single electron transistors are nanoscale electron devices that require thin, high-quality tunnel barriers to operate and have potential applications in sensing, metrology and beyond-CMOS computing schemes. Given that atomic layer deposition is used to form CMOS gate stacks with low trap densities and excellent thickness control, it is well-suited as a technique to form a variety of tunnel barriers. This work is a review of our recent research on atomic layer deposition and post-fabrication treatments to fabricate metallic single electron transistors with a variety of metals and dielectrics.

  9. Single-dose relative biological effectiveness and toxicity studies under conditions of hypothermia and hyperbaric oxygen

    International Nuclear Information System (INIS)

    Hering, E.R.; Blekkenhorst, G.; Harrison, G.G.; Morrell, D.; Korrubel, J.; Gregory, A.; Phillips, J.; Manca, V.; Sealy, R.; Cape Town Univ.

    1986-01-01

    An approach to using hyperbaric oxygen with radiation in a clinical situation has been described in the preceding paper in this issue. To ascertain whether there might be a change in the relative biological effectiveness of radiation on normal mammalian tissue treated under conditions of hypothermia and hyperbaric oxygen, the acute reaction to radiation of pig skin was studied. A single dose enhancement ratio at the erythema reaction level of 1.4+-0.08 was obtained when compared with irradiation at normal body temperature in air. The authors studied also a series of antioxidant enzymes in rat liver and lung after exposure to hypothermia and hyperbaric oxygen. Enzyme changes were such as to combat oxygen toxicity which might develop as a result of the pre-treatment. (author)

  10. Reactive oxygen species formation during tetanic contractions in single isolated Xenopus myofibers

    OpenAIRE

    Zuo, Li; Nogueira, Leonardo; Hogan, Michael C.

    2011-01-01

    Contracting skeletal muscle produces reactive oxygen species (ROS) that have been shown to affect muscle function and adaptation. However, real-time measurement of ROS in contracting myofibers has proven to be difficult. We used amphibian (Xenopus laevis) muscle to test the hypothesis that ROS are formed during contractile activity in isolated single skeletal muscle fibers and that this contraction-induced ROS formation affects fatigue development. Single myofibers were loaded with 5 μM dihyd...

  11. Low Po2 conditions induce reactive oxygen species formation during contractions in single skeletal muscle fibers

    OpenAIRE

    Zuo, Li; Shiah, Amy; Roberts, William J.; Chien, Michael T.; Wagner, Peter D.; Hogan, Michael C.

    2013-01-01

    Contractions in whole skeletal muscle during hypoxia are known to generate reactive oxygen species (ROS); however, identification of real-time ROS formation within isolated single skeletal muscle fibers has been challenging. Consequently, there is no convincing evidence showing increased ROS production in intact contracting fibers under low Po2 conditions. Therefore, we hypothesized that intracellular ROS generation in single contracting skeletal myofibers increases during low Po2 compared wi...

  12. Quantum optics. All-optical routing of single photons by a one-atom switch controlled by a single photon.

    Science.gov (United States)

    Shomroni, Itay; Rosenblum, Serge; Lovsky, Yulia; Bechler, Orel; Guendelman, Gabriel; Dayan, Barak

    2014-08-22

    The prospect of quantum networks, in which quantum information is carried by single photons in photonic circuits, has long been the driving force behind the effort to achieve all-optical routing of single photons. We realized a single-photon-activated switch capable of routing a photon from any of its two inputs to any of its two outputs. Our device is based on a single atom coupled to a fiber-coupled, chip-based microresonator. A single reflected control photon toggles the switch from high reflection (R ~ 65%) to high transmission (T ~ 90%), with an average of ~1.5 control photons per switching event (~3, including linear losses). No additional control fields are required. The control and target photons are both in-fiber and practically identical, making this scheme compatible with scalable architectures for quantum information processing. Copyright © 2014, American Association for the Advancement of Science.

  13. Microencapsulated 3-dimensional sensor for the measurement of oxygen in single isolated pancreatic islets.

    Directory of Open Access Journals (Sweden)

    Wanyu Chen

    Full Text Available Oxygen consumption reflects multiple processes in pancreatic islets including mechanisms contributing to insulin secretion, oxidative stress and viability, providing an important readout in studies of islet function, islet viability and drug testing. Due to the scarcity, heterogeneity, and intrinsic kinetic properties of individual islets, it would be of great benefit to detect oxygen consumption by single islets. We present a novel method we have developed to image oxygen in single islets.Using a microfluidics system, individual islets and a fluorescent oxygen-sensitive dye were encased within a thin alginate polymer layer. Insulin secretion by the encapsulated islets was normal. Fluorescent signal from the encased dye, detected using a standard inverted fluorescence microscope and digital camera, was stable and proportional to the amount of oxygen in the media. When integrated into a perifusion system, the sensing system detected changes in response to metabolic substrates, mitochondrial poisons, and induced-oscillations. Glucose responses averaged 30.1±7.1% of the response to a metabolic inhibitor (cyanide, increases were observed in all cases (n = 6, and the system was able to resolve changes in oxygen consumption that had a period greater than 0.5 minutes. The sensing system operated similarly from 2-48 hours following encapsulation, and viability and function of the islets were not significantly affected by the encapsulation process.An oxygen-dependent dye situated around and within a pancreatic islet encapsulated by a thin layer of alginate was sensitive to changes in oxygen consumption, and was not harmful to the function or viability of islets over the course of two days. The microcapsule-based sensing method is particularly suited to assessing the effects of compounds (dose responses and time courses and chronic changes occurring over the course of days. The approach should be applicable to other cell types and dyes sensitive to other

  14. Microencapsulated 3-Dimensional Sensor for the Measurement of Oxygen in Single Isolated Pancreatic Islets

    Science.gov (United States)

    Khalil, Gamal; Sweet, Ian R.; Shen, Amy Q.

    2012-01-01

    Background Oxygen consumption reflects multiple processes in pancreatic islets including mechanisms contributing to insulin secretion, oxidative stress and viability, providing an important readout in studies of islet function, islet viability and drug testing. Due to the scarcity, heterogeneity, and intrinsic kinetic properties of individual islets, it would be of great benefit to detect oxygen consumption by single islets. We present a novel method we have developed to image oxygen in single islets. Methodology/Principal Findings Using a microfluidics system, individual islets and a fluorescent oxygen-sensitive dye were encased within a thin alginate polymer layer. Insulin secretion by the encapsulated islets was normal. Fluorescent signal from the encased dye, detected using a standard inverted fluorescence microscope and digital camera, was stable and proportional to the amount of oxygen in the media. When integrated into a perifusion system, the sensing system detected changes in response to metabolic substrates, mitochondrial poisons, and induced-oscillations. Glucose responses averaged 30.1±7.1% of the response to a metabolic inhibitor (cyanide), increases were observed in all cases (n = 6), and the system was able to resolve changes in oxygen consumption that had a period greater than 0.5 minutes. The sensing system operated similarly from 2–48 hours following encapsulation, and viability and function of the islets were not significantly affected by the encapsulation process. Conclusions/Significance An oxygen-dependent dye situated around and within a pancreatic islet encapsulated by a thin layer of alginate was sensitive to changes in oxygen consumption, and was not harmful to the function or viability of islets over the course of two days. The microcapsule-based sensing method is particularly suited to assessing the effects of compounds (dose responses and time courses) and chronic changes occurring over the course of days. The approach should be

  15. Evidence of oxygen vacancy and possible intermediate gap state in layered α-MoO{sub 3} single-crystal nanobelts

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.Z., E-mail: tcccz@shu.edu.cn; Li, Y.; Tang, X.D.

    2016-01-15

    Multilayered meso-structured MoO{sub 3} nanobelts have been synthesized by thermally oxidizing a molybdenum chip in a reduced oxygen atmosphere, with a view to disclosing the existence of oxygen vacancy and understanding the mechanism behind the influence of oxygen vacancy on the electronic structure of molybdenum oxides. Based on the measurements from X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscope (SEM) and transmission electron microscope (TEM), it is found that the as-grown sample is single-crystal α-MoO{sub 3} with a (001) preferred orientation, which shows an irregular belt-like morphology being composed of some ~20 nm single-crystal thin layers. The present sample includes a lot of oxygen vacancies in the lattice, as evidenced by the considerably reduced coordination number of the central Mo atoms from X-ray absorption spectra (XAS) as well as the red shift of the main Raman peaks. The existence of the oxygen vacancies are further tested by the photoluminescence (PL) results as the main emission peak shows an obvious red shift with the corresponding optical band gap reduced to 2.3 eV. Very importantly, an extra emission positioned at 738 nm (1.68 eV) is believed to originate from the recombination of the electrons from the intermediate band (IB) to the valence band (VB), and the formation of the IB in the gap is also caused by oxygen-ion vacancies.

  16. Mechanism of pulse discharge production of iodine atoms from CF3I molecules for a chemical oxygen-iodine laser

    International Nuclear Information System (INIS)

    Kochetov, I V; Napartovich, A P; Vagin, N P; Yuryshev, N N

    2009-01-01

    The pulsed chemical oxygen-iodine laser (COIL) development is aimed at many new applications. Pulsed electric discharge is most effective in turning COIL operation into the pulse mode by instant production of iodine atoms. A numerical model is developed for simulations of the pulsed COIL initiated by an electric discharge. The model comprises a system of kinetic equations for neutral and charged species, electric circuit equation, gas thermal balance equation and the photon balance equation. Reaction rate coefficients for processes involving electrons are found by solving the electron Boltzmann equation, which is re-calculated in a course of computations when plasma parameters changed. The processes accounted for in the Boltzmann equation include excitation and ionization of atoms and molecules, dissociation of molecules, electron attachment processes, electron-ion recombination, electron-electron collisions, second-kind collisions and stepwise excitation of molecules. The last processes are particularly important because of a high singlet oxygen concentration in gas flow from the singlet oxygen chemical generator. Results of numerical simulations are compared with experimental laser pulse waveforms. It is concluded that there is satisfactory agreement between theory and the experiment. The prevailing mechanism of iodine atom formation from the CF 3 I donor in a very complex kinetic system of the COIL medium under pulse discharge conditions, based on their detailed numerical modelling and by comparing these results both with experimental results of other authors and their own experiments, is established. The dominant iodine atom production mechanism for conditions under study is the electron-impact dissociation of CF 3 I molecules. It was proved that in the conditions of the experiment the secondary chemical reactions with O atoms play an insignificant role.

  17. Oxygen-driving and atomized mucosolvan inhalation combined with holistic nursing in the treatment of children severe bronchial pneumonia.

    Science.gov (United States)

    Yang, Fang

    2015-07-01

    This paper aimed to discuss the method, effect and safety of oxygen-driving and atomized Mucosolvan inhalation combined with holistic nursing in the treatment of children severe bronchial pneumonia. Totally 90 children with severe bronchial pneumonia who were treated in our hospital from March 2013 to November 2013 were selected as the research objects. Based on randomized controlled principle, those children were divided into control group, test group I and test group II according to the time to enter the hospital, 30 in each group. Patients in control group was given conventional therapy; test group I was given holistic nursing combined with conventional therapy; test group II was given oxygen-driving and atomized Mucosolvan inhalation combined with holistic nursing on the basis of conventional therapy. After test, the difference of main symptoms in control group, test group I and II was of no statistical significance (P>0.05). Test group II was found with the best curative effect, secondary was test group I and control group was the last. It can be concluded that, oxygen-driving and atomized Mucosolvan inhalation combined with holistic nursing has certain effect in the treatment of children severe bronchial pneumonia and is better than holistic nursing only.

  18. Oxygen-atom transfer chemistry and thermolytic properties of a di-tert-butylphosphate-ligated Mn4O4 cubane.

    Science.gov (United States)

    Van Allsburg, Kurt M; Anzenberg, Eitan; Drisdell, Walter S; Yano, Junko; Tilley, T Don

    2015-03-16

    [Mn4O4{O2P(OtBu)2}6] (1), an Mn4O4 cubane complex combining the structural inspiration of the photosystem II oxygen-evolving complex with thermolytic precursor ligands, was synthesized and fully characterized. Core oxygen atoms within complex 1 are transferred upon reaction with an oxygen-atom acceptor (PEt3), to give the butterfly complex [Mn4O2{O2P(OtBu)2}6(OPEt3)2]. The cubane structure is restored by reaction of the latter complex with the O-atom donor PhIO. Complex 1 was investigated as a precursor to inorganic Mn metaphosphate/pyrophosphate materials, which were studied by X-ray absorption spectroscopy to determine the fate of the Mn4O4 unit. Under the conditions employed, thermolyses of 1 result in reduction of the manganese to Mn(II) species. Finally, the related butterfly complex [Mn4O2{O2P(pin)}6(bpy)2] (pin = pinacolate) is described. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Ab initio R1 mechanism of photostimulated oxygen isotope exchange reaction on a defect TiO{sub 2} surface: The case of terminal oxygen atom exchange

    Energy Technology Data Exchange (ETDEWEB)

    Kevorkyants, Ruslan, E-mail: ruslan.kevorkyants@gmail.com; Sboev, Mikhail N.; Chizhov, Yuri V.

    2017-05-01

    Highlights: • DFT R1 mechanism of photostimulated oxygen isotope exchange between {sup 16}O{sup 18}O and terminal oxygen atom of a defect surface of nanocrystalline TiO{sub 2} is proposed. • The mechanism involves four adsorption intermediates and five transition states. • Activation energy of the reaction is 0.24 eV. • G-tensors of O{sub 3}{sup −} intermediates match EPR data on O{sub 2} adsorbed on UV-irradiated TiO{sub 2} surface. - Abstract: Based on density functional theory we propose R1 mechanism of photostimulated oxygen isotope exchange (POIEx) reaction between {sup 16}O{sup 18}O and terminal oxygen atom of a defect TiO{sub 2} surface, which is modeled by amorphous Ti{sub 8}O{sub 16} nanocluster in excited S{sup 1} electronic state. The proposed mechanism involves four adsorption intermediates and five transition states. The computed activation energy of the POIEx equals 0.24 eV. The computed g-tensors of the predicted ozonide O{sub 3}{sup −} chemisorption species match well EPR data on O{sub 2} adsorption on UV-irradiated nanocrystalline TiO{sub 2}. This match serves a mean of justification of the proposed R1 mechanism of the POIEx reaction. In addition, it is found that the proposed R1 POIEx reaction’s mechanism differs from R1 mechanism of thermo-assisted OIEx reaction on a surface of supported vanadium oxide catalyst VO{sub x}/TiO{sub 2} reported earlier.

  20. Dynamics of an atomic wave packet in a standing-wave cavity field: A cavity-assisted single-atom detection

    International Nuclear Information System (INIS)

    Chough, Young-Tak; Nha, Hyunchul; Kim, Sang Wook; An, Kyungwon; Youn, Sun-Hyun

    2002-01-01

    We investigate the single-atom detection system using an optical standing-wave cavity, from the viewpoint of the quantized center-of-mass motion of the atomic wave packet. We show that since the atom-field coupling strength depends upon the overlap integral of the atomic wave packet and the field mode function, the effect of the wave-packet spreading via the momentum exchange process brings about a significant effect in the detection efficiency. We find that, as a result, the detection efficiency is not sensitive to the individual atomic trajectory for reasonably slow atoms. We also address an interesting phenomenon of the atomic wave-packet splitting occurring when an atom passes through a node of the cavity field

  1. Revisiting the inelastic electron tunneling spectroscopy of single hydrogen atom adsorbed on the Cu(100) surface

    International Nuclear Information System (INIS)

    Jiang, Zhuoling; Wang, Hao; Sanvito, Stefano; Hou, Shimin

    2015-01-01

    Inelastic electron tunneling spectroscopy (IETS) of a single hydrogen atom on the Cu(100) surface in a scanning tunneling microscopy (STM) configuration has been investigated by employing the non-equilibrium Green’s function formalism combined with density functional theory. The electron-vibration interaction is treated at the level of lowest order expansion. Our calculations show that the single peak observed in the previous STM-IETS experiments is dominated by the perpendicular mode of the adsorbed H atom, while the parallel one only makes a negligible contribution even when the STM tip is laterally displaced from the top position of the H atom. This propensity of the IETS is deeply rooted in the symmetry of the vibrational modes and the characteristics of the conduction channel of the Cu-H-Cu tunneling junction, which is mainly composed of the 4s and 4p z atomic orbitals of the Cu apex atom and the 1s orbital of the adsorbed H atom. These findings are helpful for deepening our understanding of the propensity rules for IETS and promoting IETS as a more popular spectroscopic tool for molecular devices

  2. Continuous parametric feedback cooling of a single atom in an optical cavity

    Science.gov (United States)

    Sames, C.; Hamsen, C.; Chibani, H.; Altin, P. A.; Wilk, T.; Rempe, G.

    2018-05-01

    We demonstrate a feedback algorithm to cool a single neutral atom trapped inside a standing-wave optical cavity. The algorithm is based on parametric modulation of the confining potential at twice the natural oscillation frequency of the atom, in combination with fast and repetitive atomic position measurements. The latter serve to continuously adjust the modulation phase to a value for which parametric excitation of the atomic motion is avoided. Cooling is limited by the measurement backaction which decoheres the atomic motion after only a few oscillations. Nonetheless, applying this feedback scheme to an ˜5 -kHz oscillation mode increases the average storage time of a single atom in the cavity by a factor of 60 to more than 2 s. In contrast to previous feedback schemes, our algorithm is also capable of cooling a much faster ˜500 -kHz oscillation mode within just microseconds. This demonstrates that parametric cooling is a powerful technique that can be applied in all experiments where optical access is limited.

  3. Role of N2 molecules in pulse discharge production of I atoms for a pulsed chemical oxygen-iodine laser

    International Nuclear Information System (INIS)

    Kochetov, I V; Napartovich, A P; Vagin, N P; Yuryshev, N N

    2011-01-01

    A pulsed electric discharge is the most effective means to turn chemical oxygen-iodine laser (COIL) operation into the pulse mode by fast production of iodine atoms. Experimental studies and numerical simulations are performed on a pulsed COIL initiated by an electric discharge in a mixture CF 3 I : N 2 : O 2 ( 3 X) : O 2 (a 1 Δ g ) flowing out of a chemical singlet oxygen generator. A transverse pulsed discharge is realized at various iodide pressures. The model comprises a system of kinetic equations for neutral and charged species, the electric circuit equation, the gas thermal balance equation and the photon balance equation. Reaction rate coefficients for processes involving electrons are repeatedly re-calculated by the electron Boltzmann equation solver when the plasma parameters are changed. The processes accounted for in the Boltzmann equation include direct and stepwise excitation and ionization of atoms and molecules, dissociation of molecules, electron attachment processes, electron-ion recombination, electron-electron collisions and second-kind collisions. The last processes are particularly important because of a high singlet oxygen concentration in gas flow from the singlet oxygen chemical generator. A conclusion is drawn about satisfactory agreement between the theory and the experiment.

  4. An assessment of memristor intrinsic fluctuations: a measurement of single atomic motion

    Science.gov (United States)

    Borghetti, Julien; Yang, J. Joshua; Medeiros-Ribeiro, Gilberto; Williams, R. Stanley

    2010-03-01

    Memristors provides electrically tunable resistance for upcoming non-volatile memory and future neuromorphic computing. One of the key benefits of such a device is its scalability, which can be demonstrated from an architectural perspective as well as from a fundamental physics limit. 4D addressing schemes utilizing cross bar structures that can be stacked several layers high above the chip embodies unlimited addressing space. On the other limit, the basic operating principles of memristive devices allow one to reach storage of information in a single atom. In this report of nanoscale (sub 50nm) devices, we detect single atom fluctuations, which would then represent the ultimate limit for noise sources thus delineating the boundary conditions for circuit design. We show that electrically induced individual atom migrations do not affect the overall device atomic configuration until a critical bias where a single local fluctuation triggers a general atomic reconfiguration. This instability illustrates the robustness of the device non-volatility upon small electrical stress.

  5. Collective excitations in circular atomic configurations and single-photon traps

    International Nuclear Information System (INIS)

    Hammer, Hanno

    2004-01-01

    Correlated excitations in a plane circular configuration of identical atoms with parallel dipole moments are investigated. The collective energy eigenstates, which are formally identical to Frenkel excitons, can be computed together with their level shifts and decay rates by decomposing the atomic state space into carrier spaces for the irreducible representations of the symmetry group Z N of the circle. It is shown that the index p of these representations can be used as a quantum number analogously to the orbital angular momentum quantum number l in hydrogenlike systems. Just as the hydrogen s states are the only electronic wave functions which can occupy the central region of the Coulomb potential, the quasiparticle corresponding to a collective excitation of the atoms in the circle can occupy the central atom only for vanishing Z N quantum number p. If a central atom is present, the p=0 state splits into two and shows level crossing at certain radii; in the regions between these radii, damped quantum beats between two 'extreme' p=0 configurations occur. The physical mechanisms behind super- and subradiance at a given radius are discussed. It is shown that, beyond a certain critical number of atoms in the circle, the lifetime of the maximally subradiant state increases exponentially with the number of atoms in the configuration, making the system a natural candidate for a single-photon trap

  6. Understanding strong-field coherent control: Measuring single-atom versus collective dynamics

    International Nuclear Information System (INIS)

    Trallero-Herrero, Carlos; Weinacht, Thomas; Spanner, Michael

    2006-01-01

    We compare the results of two strong field coherent control experiments: one which optimizes multi-photon population transfer in atomic sodium (from the 3s to the 4s state, measured by spontaneous emission from the 3p-3s transition) with one that optimizes stimulated emission on the 3p-3s transition in an ensemble of sodium atoms. Both experiments make use of intense, shaped ultrafast laser pulses discovered by a Genetic Algorithm inside a learning control loop. Optimization leads to improvements in the spontaneous and stimulated emission yields of about 4 and 10 4 , respectively, over an unshaped pulse. We interpret these results by modeling both the single atom dynamics as well as the stimulated emission buildup through numerical integration of Schroedinger's and Maxwell's equations. Our interpretation leads to the conclusion that modest yields for controlling single quantum systems can lead to dramatic effects whenever an ensemble of such systems acts collectively following controlled impulsive excitation

  7. Ramsey spectroscopy by direct use of resonant light on isotope atoms for single-photon detuning

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hoon; Choi, Mi Hyun; Moon, Ye Lin; Kim, Seung Jin; Kim, Jung Bog [Korea National University of Education, Cheongwon (Korea, Republic of)

    2014-03-15

    We demonstrate Ramsey spectroscopy with cold {sup 87}Rb atoms via a two-photon Raman process. One laser beam has a cross-over resonant frequency on the {sup 85}Rb transition and the other beam has a 6.8 GHz shifted frequency. These two laser beams fulfill the two-photon Raman resonance condition, which involves a single-photon detuning of -2.6 GHz. By implementing these two lasers on cold {sup 87}Rb atoms, we demonstrate Ramsey spectroscopy with an interrogation time of the intermediate state by using π/2 Raman pulses. In our laser system, we can change the single-photon detuning to 1.2, 4.2 or -5.6 GHz by changing the {sup 85}Rb transition line used as a locking signal and an injected sideband. The laser system that directly uses resonant light on isotope atoms will be described in this paper.

  8. Semi-classical description of Rydberg atoms in strong, single-cycle electromagnetic pulses

    International Nuclear Information System (INIS)

    Jensen, R.V.; Sanders, M.M.

    1993-01-01

    Recent experimental measurements of the excitation and ionization of Rydberg atoms by single-cycle, electromagnetic pulses have revealed a variety of novel features. Because many quantum states are strongly coupled by the broadband radiation in the short pulse, the traditional methods of quantum mechanics are inadequate to account for the experimental results. We have therefore developed a semi-classical description of the interaction of both hydrogenic and non-hydrogenic atoms with single-cycle pulses of intense, electromagnetic radiation which is based on the strong correspondence theory of Percival and Richards. This theory, which was originally introduced for the description of strong atomic collisions, accounts for some of the surprising features of the experimental measurements and provides new predictions for future experimental studies

  9. Resonance fluorescence and quantum jumps in single atoms: Testing the randomness of quantum mechanics

    International Nuclear Information System (INIS)

    Erber, T.; Hammerling, P.; Hockney, G.; Porrati, M.; Putterman, S.; La Jolla Institute, La Jolla, California 92037; Department of Physics, University of California, Los Angeles, California 90024)

    1989-01-01

    When a single trapped 198 Hg + ion is illuminated by two lasers, each tuned to an approximate transition, the resulting fluorescence switches on and off in a series of pulses resembling a bistable telegraph. This intermittent fluorescence can also be obtained by optical pumping with a single laser. Quantum jumps between successive atomic levels may be traced directly with multiple-resonance fluorescence. Atomic transition rates and photon antibunching distributions can be inferred from the pulse statistics and compared with quantum theory. Stochastic tests also indicate that the quantum telegraphs are good random number generators. During periods when the fluorescence is switched off, the radiationless atomic currents that generate the telegraph signals can be adjusted by varying the laser illumination: if this coherent evolution of the wave functions is sustained over sufficiently long time intervals, novel interactive precision measurements, near the limits of the time-energy uncertainty relations, are possible. Copyright 1989 Academic Press, Inc

  10. Characteristics of single-atom trapping in a magneto-optical trap with a high magnetic-field gradient

    International Nuclear Information System (INIS)

    Yoon, Seokchan; Choi, Youngwoon; Park, Sangbum; Ji, Wangxi; Lee, Jai-Hyung; An, Kyungwon

    2007-01-01

    A quantitative study on characteristics of a magneto-optical trap with a single or a few atoms is presented. A very small number of 85 Rb atoms were trapped in a micron-size magneto-optical trap with a high magnetic-field gradient. In order to find the optimum condition for a single-atom trap, we have investigated how the number of atoms and the size of atomic cloud change as various experimental parameters, such as a magnetic-field gradient and the trapping laser intensity and detuning. The averaged number of atoms was measured very accurately with a calibration procedure based on the single-atom saturation curve of resonance fluorescence. In addition, the number of atoms in a trap could be controlled by suppressing stochastic loading events by means of a real-time active feedback on the magnetic-field gradient

  11. Shot noise as a probe of spin-polarized transport through single atoms

    DEFF Research Database (Denmark)

    Burtzlaff, Andreas; Weismann, Alexander; Brandbyge, Mads

    2015-01-01

    Single atoms on Au(111) surfaces have been contacted with the Au tip of a low temperature scanning tunneling microscope. The shot noise of the current through these contacts has been measured up to frequencies of 120 kHz and Fano factors have been determined to characterize the transport channels...

  12. Single atom doping for quantum device development in diamond and silicon

    NARCIS (Netherlands)

    Weis, C.D.; Schuh, A.; Batra, A.; Persaud, A.; Rangelow, I.W.; Bokor, J.; Lo, C.C.; Cabrini, S.; Sideras-Haddad, E.; Fuchs, G.D.; Hanson, R.; Awschalom, D.D.; Schenkel, T.

    2008-01-01

    The ability to inject dopant atoms with high spatial resolution, flexibility in dopant species, and high single ion detection fidelity opens opportunities for the study of dopant fluctuation effects and the development of devices in which function is based on the manipulation of quantum states in

  13. Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles.

    Science.gov (United States)

    Liu, Lichen; Corma, Avelino

    2018-05-23

    Metal species with different size (single atoms, nanoclusters, and nanoparticles) show different catalytic behavior for various heterogeneous catalytic reactions. It has been shown in the literature that many factors including the particle size, shape, chemical composition, metal-support interaction, and metal-reactant/solvent interaction can have significant influences on the catalytic properties of metal catalysts. The recent developments of well-controlled synthesis methodologies and advanced characterization tools allow one to correlate the relationships at the molecular level. In this Review, the electronic and geometric structures of single atoms, nanoclusters, and nanoparticles will be discussed. Furthermore, we will summarize the catalytic applications of single atoms, nanoclusters, and nanoparticles for different types of reactions, including CO oxidation, selective oxidation, selective hydrogenation, organic reactions, electrocatalytic, and photocatalytic reactions. We will compare the results obtained from different systems and try to give a picture on how different types of metal species work in different reactions and give perspectives on the future directions toward better understanding of the catalytic behavior of different metal entities (single atoms, nanoclusters, and nanoparticles) in a unifying manner.

  14. Atomic-scale structure of single-layer MoS2 nanoclusters

    DEFF Research Database (Denmark)

    Helveg, S.; Lauritsen, J. V.; Lægsgaard, E.

    2000-01-01

    We have studied using scanning tunneling microscopy (STM) the atomic-scale realm of molybdenum disulfide (MoS2) nanoclusters, which are of interest as a model system in hydrodesulfurization catalysis. The STM gives the first real space images of the shape and edge structure of single-layer MoS2...

  15. Ternary logic implemented on a single dopant atom field effect silicon transistor

    NARCIS (Netherlands)

    Klein, M.; Mol, J.A.; Verduijn, J.; Lansbergen, G.P.; Rogge, S.; Levine, R.D.; Remacle, F.

    2010-01-01

    We provide an experimental proof of principle for a ternary multiplier realized in terms of the charge state of a single dopant atom embedded in a fin field effect transistor (Fin-FET). Robust reading of the logic output is made possible by using two channels to measure the current flowing through

  16. Functionalised metal-organic frameworks : A novel approach to stabilising single metal atoms

    NARCIS (Netherlands)

    Szilagyi, P.A.; Rogers, D. M.; Zaiser, I.; Callini, E; Turner, Stuart; Borgschulte, A; Züttel, A.; Geerlings, J.J.C.; Hirscher, M; Dam, B.

    2017-01-01

    We have investigated the potential of metal-organic frameworks for immobilising single atoms of transition metals using a model system of Pd supported on NH2-MIL-101(Cr). Our transmission electron microscopy and in situ Raman spectroscopy results give evidence for the first time that

  17. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy

    Science.gov (United States)

    Neuman, Keir C.; Nagy, Attila

    2012-01-01

    Single-molecule force spectroscopy has emerged as a powerful tool to investigate the forces and motions associated with biological molecules and enzymatic activity. The most common force spectroscopy techniques are optical tweezers, magnetic tweezers and atomic force microscopy. These techniques are described and illustrated with examples highlighting current capabilities and limitations. PMID:18511917

  18. Oxygen atom transfer from a trans-dioxoruthenium(VI) complex to nitric oxide.

    Science.gov (United States)

    Man, Wai-Lun; Lam, William W Y; Ng, Siu-Mui; Tsang, Wenny Y K; Lau, Tai-Chu

    2012-01-02

    In aqueous acidic solutions trans-[Ru(VI)(L)(O)(2)](2+) (L=1,12-dimethyl-3,4:9,10-dibenzo-1,12-diaza-5,8-dioxacyclopentadecane) is rapidly reduced by excess NO to give trans-[Ru(L)(NO)(OH)](2+). When ≤1 mol equiv NO is used, the intermediate Ru(IV) species, trans-[Ru(IV)(L)(O)(OH(2))](2+), can be detected. The reaction of [Ru(VI)(L)(O)(2)](2+) with NO is first order with respect to [Ru(VI)] and [NO], k(2)=(4.13±0.21)×10(1) M(-1) s(-1) at 298.0 K. ΔH(≠) and ΔS(≠) are (12.0±0.3) kcal mol(-1) and -(11±1) cal mol(-1) K(-1), respectively. In CH(3)CN, ΔH(≠) and ΔS(≠) have the same values as in H(2)O; this suggests that the mechanism is the same in both solvents. In CH(3)CN, the reaction of [Ru(VI)(L)(O)(2)](2+) with NO produces a blue-green species with λ(max) at approximately 650 nm, which is characteristic of N(2)O(3). N(2)O(3) is formed by coupling of NO(2) with excess NO; it is relatively stable in CH(3)CN, but undergoes rapid hydrolysis in H(2)O. A mechanism that involves oxygen atom transfer from [Ru(VI)(L)(O)(2)](2+) to NO to produce NO(2) is proposed. The kinetics of the reaction of [Ru(IV)(L)(O)(OH(2))](2+) with NO has also been investigated. In this case, the data are consistent with initial one-electron O(-) transfer from Ru(IV) to NO to produce the nitrito species [Ru(III)(L)(ONO)(OH(2))](2+) (k(2)>10(6) M(-1) s(-1)), followed by a reaction with another molecule of NO to give [Ru(L)(NO)(OH)](2+) and NO(2)(-) (k(2)=54.7 M(-1) s(-1)). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Statistical analysis of thermospheric gravity waves from Fabry-Perot Interferometer measurements of atomic oxygen

    Directory of Open Access Journals (Sweden)

    E. A. K. Ford

    2008-02-01

    Full Text Available Data from the Fabry-Perot Interferometers at KEOPS (Sweden, Sodankylä (Finland, and Svalbard (Norway, have been analysed for gravity wave activity on all the clear nights from 2000 to 2006. A total of 249 nights were available from KEOPS, 133 from Sodankylä and 185 from the Svalbard FPI. A Lomb-Scargle analysis was performed on each of these nights to identify the periods of any wave activity during the night. Comparisons between many nights of data allow the general characteristics of the waves that are present in the high latitude upper thermosphere to be determined. Comparisons were made between the different parameters: the atomic oxygen intensities, the thermospheric winds and temperatures, and for each parameter the distribution of frequencies of the waves was determined. No dependence on the number of waves on geomagnetic activity levels, or position in the solar cycle, was found. All the FPIs have had different detectors at various times, producing different time resolutions of the data, so comparisons between the different years, and between data from different sites, showed how the time resolution determines which waves are observed. In addition to the cutoff due to the Nyquist frequency, poor resolution observations significantly reduce the number of short-period waves (<1 h period that may be detected with confidence. The length of the dataset, which is usually determined by the length of the night, was the main factor influencing the number of long period waves (>5 h detected. Comparisons between the number of gravity waves detected at KEOPS and Sodankylä over all the seasons showed a similar proportion of waves to the number of nights used for both sites, as expected since the two sites are at similar latitudes and therefore locations with respect to the auroral oval, confirming this as a likely source region. Svalbard showed fewer waves with short periods than KEOPS data for a season when both had the same time resolution data

  20. Accurate Cross Sections for Excitation of Resonance Transitions in Atomic Oxygen

    Science.gov (United States)

    Tayal, S. S.

    2004-01-01

    Electron collision excitation cross sections for the resonance 2p(sup)4 (sup 3)P-2p(sup 3)3s (sup 3)S(sup 0), 2p(sup 4) (sup 3)P-2p(sup 3)3d (sup 3)D(sup 0), 2p4 (sup 3)P-2p(sup 3)3s (sup 3)D(sup 0), 2p(sup 4) (sup 3)P-2p(sup 3)3s (sup 3)P(sup 0) and 2p(sup 4) (sup 3)P-2s2p(sup 5) (sup 3)P(sup 0) transitions have been calculated by using the R matrix with a pseudostates approach for incident electron energies from near threshold to 100 eV. The excitation of these transition sgives rise to strong atomic oxygen emission features at 1304, 1027, 989, 878, and 792 Angstrom in the spectra of several planetary atmospheres. We included 22 spectroscopic bound and autoionizing states and 30 pseudostates in the close-coupling expansion. The target wave functions are chosen to properly account for the important correlation and relaxation effects. The effect of coupling to the continuum is included through the use of pseudostates. The contribution of the ionization continuum is significant for resonance transitions. Measured absolute direct excitation cross sections of 0 I are reported by experimental groups from the Jet Propulsion Laboratory and Johns Hopkins University. Good agreement is noted for the 2p(sup)4 (sup 3)P-2p(sup 3)3s (sup 3)S(sup 0) transition (lambda 1304 Ang) with measured cross sections from both groups that agree well with each other. There is disagreement between experiments for other transitions. Our results support the measured cross sections from the Johns Hopkins University for the 2p(sup 4) (sup 3)P-2p(sup 3)3d (sup 3)D(sup 0) and 2p4 (sup 3)P-2p(sup 3)3s (sup 3)D(sup 0) transitions, while for the 2p4 (sup 3)P-2p(sup 3)3s (sup 3)D(sup 0) transition the agreement is switched to the measured cross sections from the Jet Propulsion Laboratory.

  1. Catalytic activity of Pd-doped Cu nanoparticles for hydrogenation as a single-atom-alloy catalyst.

    Science.gov (United States)

    Cao, Xinrui; Fu, Qiang; Luo, Yi

    2014-05-14

    The single atom alloy of extended surfaces is known to provide remarkably enhanced catalytic performance toward heterogeneous hydrogenation. Here we demonstrate from first principles calculations that this approach can be extended to nanostructures, such as bimetallic nanoparticles. The catalytic properties of the single-Pd-doped Cu55 nanoparticles have been systemically examined for H2 dissociation as well as H atom adsorption and diffusion, following the concept of single atom alloy. It is found that doping a single Pd atom at the edge site of the Cu55 shell can considerably reduce the activation energy of H2 dissociation, while the single Pd atom doped at the top site or in the inner layers is much less effective. The H atom adsorption on Cu55 is slightly stronger than that on the Cu(111) surface; however, a larger nanoparticle that contains 147 atoms could effectively recover the weak binding of the H atoms. We have also investigated the H atom diffusion on the 55-atom nanoparticle and found that spillover of the produced H atoms could be a feasible process due to the low diffusion barriers. Our results have demonstrated that facile H2 dissociation and weak H atom adsorption could be combined at the nanoscale. Moreover, the effects of doping one more Pd atom on the H2 dissociation and H atom adsorption have also been investigated. We have found that both the doping Pd atoms in the most stable configuration could independently exhibit their catalytic activity, behaving as two single-atom-alloy catalysts.

  2. Influence of uranium dioxide nonstoichiometric oxygen on the work function of Mo(110) single crystal

    International Nuclear Information System (INIS)

    Bekmukhabetov, E.S.; Dzhajmurzin, A.A.; Imanbekov, Zh.Zh.

    1985-01-01

    The influence of the uranium dioxide nonstoichiometric oxygen on the work function of a Mo(110) single crystal has been studied. When the surface diffusion of oxygen on the tested surface takes place, the work function is shown to decrease and, subsequently, to increase until it becomes stable. The dependence of the work function on the temperature of the specimen in the range of 1600-1900 K with a minimum at 1730 K has been found. The minimum is attributed to the dipole layer formation

  3. Numerical simulation of physicochemical interactions between oxygen atom and phosphatidylcholine due to direct irradiation of atmospheric pressure nonequilibrium plasma to biological membrane with quantum mechanical molecular dynamics

    Science.gov (United States)

    Uchida, Satoshi; Yoshida, Taketo; Tochikubo, Fumiyoshi

    2017-10-01

    Plasma medicine is one of the most attractive applications using atmospheric pressure nonequilibrium plasma. With respect to direct contact of the discharge plasma with a biological membrane, reactive oxygen species play an important role in induction of medical effects. However, complicated interactions between the plasma radicals and membrane have not been understood well. In the present work, we simulated elemental processes at the first stage of physicochemical interactions between oxygen atom and phosphatidylcholine using the quantum mechanical molecular dynamics code in a general software AMBER. The change in the above processes was classified according to the incident energy of oxygen atom. At an energy of 1 eV, the abstraction of a hydrogen atom and recombination to phosphatidylcholine were simultaneously occurred in chemical attachment of incident oxygen atom. The exothermal energy of the reaction was about 80% of estimated one based on the bond energies of ethane. An oxygen atom over 10 eV separated phosphatidylcholine partially. The behaviour became increasingly similar to physical sputtering. The reaction probability of oxygen atom was remarkably high in comparison with that of hydrogen peroxide. These results suggest that we can uniformly estimate various physicochemical dynamics of reactive oxygen species against membrane lipids.

  4. Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements.

    Science.gov (United States)

    Back, Seoin; Lim, Juhyung; Kim, Na-Young; Kim, Yong-Hyun; Jung, Yousung

    2017-02-01

    A single-atom catalyst (SAC) has an electronic structure that is very different from its bulk counterparts, and has shown an unexpectedly high specific activity with a significant reduction in noble metal usage for CO oxidation, fuel cell and hydrogen evolution applications, although physical origins of such performance enhancements are still poorly understood. Herein, by means of density functional theory (DFT) calculations, we for the first time investigate the great potential of single atom catalysts for CO 2 electroreduction applications. In particular, we study a single transition metal atom anchored on defective graphene with single or double vacancies, denoted M@sv-Gr or M@dv-Gr, where M = Ag, Au, Co, Cu, Fe, Ir, Ni, Os, Pd, Pt, Rh or Ru, as a CO 2 reduction catalyst. Many SACs are indeed shown to be highly selective for the CO 2 reduction reaction over a competitive H 2 evolution reaction due to favorable adsorption of carboxyl (*COOH) or formate (*OCHO) over hydrogen (*H) on the catalysts. On the basis of free energy profiles, we identified several promising candidate materials for different products; Ni@dv-Gr (limiting potential U L = -0.41 V) and Pt@dv-Gr (-0.27 V) for CH 3 OH production, and Os@dv-Gr (-0.52 V) and Ru@dv-Gr (-0.52 V) for CH 4 production. In particular, the Pt@dv-Gr catalyst shows remarkable reduction in the limiting potential for CH 3 OH production compared to any existing catalysts, synthesized or predicted. To understand the origin of the activity enhancement of SACs, we find that the lack of an atomic ensemble for adsorbate binding and the unique electronic structure of the single atom catalysts as well as orbital interaction play an important role, contributing to binding energies of SACs that deviate considerably from the conventional scaling relation of bulk transition metals.

  5. Support effects on adsorption and catalytic activation of O2 in single atom iron catalysts with graphene-based substrates.

    Science.gov (United States)

    Gao, Zheng-Yang; Yang, Wei-Jie; Ding, Xun-Lei; Lv, Gang; Yan, Wei-Ping

    2018-03-07

    The adsorption and catalytic activation of O 2 on single atom iron catalysts with graphene-based substrates were investigated systematically by density functional theory calculation. It is found that the support effects of graphene-based substrates have a significant influence on the stability of the single atom catalysts, the adsorption configuration, the electron transfer mechanism, the adsorption energy and the energy barrier. The differences in the stable adsorption configuration of O 2 on single atom iron catalysts with different graphene-based substrates can be well understood by the symmetrical matching principle based on frontier molecular orbital analysis. There are two different mechanisms of electron transfer, in which the Fe atom acts as the electron donor in single vacancy graphene-based substrates while the Fe atom mainly acts as the bridge for electron transfer in double vacancy graphene-based substrates. The Fermi softness and work function are good descriptors of the adsorption energy and they can well reveal the relationship between electronic structure and adsorption energy. This single atom iron catalyst with single vacancy graphene modified by three nitrogen atoms is a promising non-noble metal single atom catalyst in the adsorption and catalytic oxidation of O 2 . Furthermore, the findings can lay the foundation for the further study of graphene-based support effects and provide a guideline for the development and design of new non-noble-metal single atom catalysts.

  6. High Fidelity Preparation of a Single Atom in Its 2D Center of Mass Ground State

    Science.gov (United States)

    Sompet, Pimonpan; Fung, Yin Hsien; Schwartz, Eyal; Hunter, Matthew D. J.; Phrompao, Jindaratsamee; Andersen, Mikkel F.

    2017-04-01

    Complete control over quantum states of individual atoms is important for the study of the microscopic world. Here, we present a push button method for high fidelity preparation of a single 85Rb atom in the vibrational ground state of tightly focused optical tweezers. The method combines near-deterministic preparation of a single atom with magnetically-insensitive Raman sideband cooling. We achieve 2D cooling in the radial plane with a ground state population of 0.85, which provides a fidelity of 0.7 for the entire procedure (loading and cooling). The Raman beams couple two sublevels (| F = 3 , m = 0 〉 and | F = 2 , m = 0 〉) that are indifferent to magnetic noise to first order. This leads to long atomic coherence times, and allows us to implement the cooling in an environment where magnetic field fluctuations prohibit previously demonstrated variations. Additionally, we implement the trapping and manipulation of two atoms confined in separate dynamically reconfigurable optical tweezers, to study few-body dynamics.

  7. Scattering of atomic and molecular ions from single crystal surfaces of Cu, Ag and Fe

    International Nuclear Information System (INIS)

    Zoest, J.M. van.

    1986-01-01

    This thesis deals with analysis of crystal surfaces of Cu, Ag and Fe with Low Energy Ion scattering Spectroscopy (LEIS). Different atomic and molecular ions with fixed energies below 7 keV are scattered by a metal single crystal (with adsorbates). The energy and direction of the scattered particles are analysed for different selected charge states. In that way information can be obtained concerning the composition and atomic and electronic structure of the single crystal surface. Energy spectra contain information on the composition of the surface, while structural atomic information is obtained by direction measurements (photograms). In Ch.1 a description is given of the experimental equipment, in Ch.2 a characterization of the LEIS method. Ch.3 deals with the neutralization of keV-ions in surface scattering. Two different ways of data interpretation are presented. First a model is treated in which the observed directional dependence of neutralization action of the first atom layer of the surface is presented by a laterally varying thickness of the neutralizing layer. Secondly it is shown that the data can be reproduced by a more realistic, physical model based on atomic transition matrix elements. In Ch.4 the low energy hydrogen scattering is described. The study of the dissociation of H 2 + at an Ag surface r0230ted in a model based on electronic dissociation, initialized by electron capture into a repulsive (molecular) state. In Ch.5 finally the method is applied to the investigation of the surface structure of oxidized Fe. (Auth.)

  8. Visualising reacting single atoms under controlled conditions: Advances in atomic resolution in situ Environmental (Scanning) Transmission Electron Microscopy (E(S)TEM)

    Science.gov (United States)

    Boyes, Edward D.; Gai, Pratibha L.

    2014-02-01

    Advances in atomic resolution Environmental (Scanning) Transmission Electron Microscopy (E(S)TEM) for probing gas-solid catalyst reactions in situ at the atomic level under controlled reaction conditions of gas environment and temperature are described. The recent development of the ESTEM extends the capability of the ETEM by providing the direct visualisation of single atoms and the atomic structure of selected solid state heterogeneous catalysts in their working states in real-time. Atomic resolution E(S)TEM provides a deeper understanding of the dynamic atomic processes at the surface of solids and their mechanisms of operation. The benefits of atomic resolution-E(S)TEM to science and technology include new knowledge leading to improved technological processes with substantial economic benefits, improved healthcare, reductions in energy needs and the management of environmental waste generation. xml:lang="fr"

  9. Conduction channels at finite bias in single-atom gold contacts

    DEFF Research Database (Denmark)

    Brandbyge, Mads; Kobayashi, Nobuhiko; Tsukada, Masaru

    1999-01-01

    We consider the effect of a finite voltage bias on the conductance of single-atom gold contacts. We employ a nonorthogonal spn-tight-binding Hamiltonian combined with a local charge neutrality assumption. The conductance and charge distributions for finite bias are calculated using the nonequilib......We consider the effect of a finite voltage bias on the conductance of single-atom gold contacts. We employ a nonorthogonal spn-tight-binding Hamiltonian combined with a local charge neutrality assumption. The conductance and charge distributions for finite bias are calculated using...... of the eigenchannels projected onto tight-binding orbitals. We find a single almost fully transmitting channel with mainly s character for low bias while for high bias this channel becomes less transmitting and additional channels involving only d orbitals start to conduct....

  10. Interaction of molecular oxygen with single wall nanotubes: Role of surfactant contamination

    International Nuclear Information System (INIS)

    Larciprete, R.; Goldoni, A.; Lizzit, S.

    2003-01-01

    The interaction of molecular oxygen with single wall nanotubes in the form of a commercial bucky paper was investigated by high resolution photoemission spectroscopy. Sodium contamination was found in the sample, which was completely removed only after prolonged heating at 1250 K. The C 1s core level spectrum measured on the sample annealed to 1020 K dramatically changed upon exposure to molecular oxygen. On the contrary, when exposing the Na-free SWNTs to several KL of O 2 , the sample remained oxygen free and no modification in the C 1s core level was observed. Therefore the observed sensitivity of the sample to O 2 was due to a Na mediated oxidation, determining a charge transfer from the C tubes to the Na-O complex

  11. Adsorption Energies of Carbon, Nitrogen, and Oxygen Atoms on the Low-temperature Amorphous Water Ice: A Systematic Estimation from Quantum Chemistry Calculations

    Science.gov (United States)

    Shimonishi, Takashi; Nakatani, Naoki; Furuya, Kenji; Hama, Tetsuya

    2018-03-01

    We propose a new simple computational model to estimate the adsorption energies of atoms and molecules to low-temperature amorphous water ice, and we present the adsorption energies of carbon (3 P), nitrogen (4 S), and oxygen (3 P) atoms based on quantum chemistry calculations. The adsorption energies were estimated to be 14,100 ± 420 K for carbon, 400 ± 30 K for nitrogen, and 1440 ± 160 K for oxygen. The adsorption energy of oxygen is consistent with experimentally reported values. We found that the binding of a nitrogen atom is purely physisorption, while that of a carbon atom is chemisorption, in which a chemical bond to an O atom of a water molecule is formed. That of an oxygen atom has a dual character, with both physisorption and chemisorption. The chemisorption of atomic carbon also implies the possibility of further chemical reactions to produce molecules bearing a C–O bond, though this may hinder the formation of methane on water ice via sequential hydrogenation of carbon atoms. These properties would have a large impact on the chemical evolution of carbon species in interstellar environments. We also investigated the effects of newly calculated adsorption energies on the chemical compositions of cold dense molecular clouds with the aid of gas-ice astrochemical simulations. We found that abundances of major nitrogen-bearing molecules, such as N2 and NH3, are significantly altered by applying the calculated adsorption energy, because nitrogen atoms can thermally diffuse on surfaces, even at 10 K.

  12. Absolute single electron loss in collisions of Ar+ with various atoms

    Science.gov (United States)

    Reyes, P. G.; Martínez, H.; Castillo, F.

    2001-07-01

    Absolute differential and total cross sections for single electron loss were measured for Ar+ ions on various atoms in the energy range of 1.5 to 5.0 keV. The laboratory angular scan for the distributions ranged from -2.5 to 2.5 degrees. The measured differential cross sections have been integrated over the experimental angular range providing absolute total cross sections. The behavior of the total electron loss cross sections with the target atomic number, Zt, shows different dependences as the collision energy increases. In all cases it displays a saturation as Zt increases.

  13. Atom

    International Nuclear Information System (INIS)

    Auffray, J.P.

    1997-01-01

    The atom through centuries, has been imagined, described, explored, then accelerated, combined...But what happens truly inside the atom? And what are mechanisms who allow its stability? Physicist and historian of sciences, Jean-Paul Auffray explains that these questions are to the heart of the modern physics and it brings them a new lighting. (N.C.)

  14. Quantification of modulated blood oxygenation levels in single cerebral veins by investigating their MR signal decay

    Energy Technology Data Exchange (ETDEWEB)

    Sedlacik, Jan [St. Jude Children' s Research Hospital, Memphis, TN (United States). Div. of Translational Imaging Research; University Clinics Jena (Germany). Medical Physics Group; Rauscher, Alexander [University Clinics Jena (Germany). Medical Physics Group; British Columbia Univ., Vancouver (Canada). MRI Research Centre; Reichenbach, Juergen R. [University Clinics Jena (Germany). Medical Physics Group

    2009-07-01

    The transverse magnetization of a single vein and its surrounding tissue is subject to spin dephasing caused by the local magnetic field inhomogeneity which is induced by the very same vessel. This phenomenon can be approximated and simulated by applying the model of an infinitely long and homogeneously magnetized cylinder embedded in a homogeneous tissue background. It is then possible to estimate the oxygenation level of the venous blood by fitting the simulated magnetization-time-course to the measured signal decay. In this work we demonstrate the ability of this approach to quantify the blood oxygenation level (Y) of small cerebral veins in vivo, not only under normal physiologic conditions (Y{sub native}=0.5-0.55) but also during induced changes of physiologic conditions which affect the cerebral venous blood oxygenation level. Changes of blood's oxygenation level induced by carbogen (5% CO{sub 2}, 95% O{sub 2}) and caffeine were observed and quantified, resulting in values of Y{sub carbogen}=0.7 and Y{sub caffeine}=0.42, respectively. The proposed technique may ultimately help to better understand local changes in cerebral physiology during neuronal activation by quantifying blood oxygenation in veins draining active brain areas. It may also be beneficial in clinical applications where it may improve diagnosis of cerebral pathologies as well as monitoring of responses to therapy. (orig.)

  15. The Materials Chemistry of Atomic Oxygen with Applications to Anisotropic Etching of Submicron Structures in Microelectronics and the Surface Chemistry Engineering of Porous Solids

    Science.gov (United States)

    Koontz, Steve L.; Leger, Lubert J.; Wu, Corina; Cross, Jon B.; Jurgensen, Charles W.

    1994-01-01

    Neutral atomic oxygen is the most abundant component of the ionospheric plasma in the low Earth orbit environment (LEO; 200 to 700 kilometers altitude) and can produce significant degradation of some spacecraft materials. In order to produce a more complete understanding of the materials chemistry of atomic oxygen, the chemistry and physics of O-atom interactions with materials were determined in three radically different environments: (1) The Space Shuttle cargo bay in low Earth orbit (the EOIM-3 space flight experiment), (2) a high-velocity neutral atom beam system (HVAB) at Los Alamos National Laboratory (LANL), and (3) a microwave-plasma flowing-discharge system at JSC. The Space Shuttle and the high velocity atom beam systems produce atom-surface collision energies ranging from 0.1 to 7 eV (hyperthermal atoms) under high-vacuum conditions, while the flowing discharge system produces a 0.065 eV surface collision energy at a total pressure of 2 Torr. Data obtained in the three different O-atom environments referred to above show that the rate of O-atom reaction with polymeric materials is strongly dependent on atom kinetic energy, obeying a reactive scattering law which suggests that atom kinetic energy is directly available for overcoming activation barriers in the reaction. General relationships between polymer reactivity with O atoms and polymer composition and molecular structure have been determined. In addition, vacuum ultraviolet photochemical effects have been shown to dominate the reaction of O atoms with fluorocarbon polymers. Finally, studies of the materials chemistry of O atoms have produced results which may be of interest to technologists outside the aerospace industry. Atomic oxygen 'spin-off' or 'dual use' technologies in the areas of anisotropic etching in microelectronic materials and device processing, as well as surface chemistry engineering of porous solid materials are described.

  16. Atomic force microscopy and spectroscopy to probe single membrane proteins in lipid bilayers.

    Science.gov (United States)

    Sapra, K Tanuj

    2013-01-01

    The atomic force microscope (AFM) has opened vast avenues hitherto inaccessible to the biological scientist. The high temporal (millisecond) and spatial (nanometer) resolutions of the AFM are suited for studying many biological processes in their native conditions. The AFM cantilever stylus is aptly termed as a "lab on a tip" owing to its versatility as an imaging tool as well as a handle to manipulate single bonds and proteins. Recent examples assert that the AFM can be used to study the mechanical properties and monitor processes of single proteins and single cells, thus affording insight into important mechanistic details. This chapter specifically focuses on practical and analytical protocols of single-molecule AFM methodologies related to high-resolution imaging and single-molecule force spectroscopy of membrane proteins. Both these techniques are operator oriented, and require specialized working knowledge of the instrument, theoretical, and practical skills.

  17. Probing living bacterial adhesion by single cell force spectroscopy using atomic force microscopy

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Ogaki, Ryosuke; Regina, Viduthalai R.

    be considered. We have therefore developed a simple and versatile method to make single-cell bacterial probes for measuring single cell adhesion with atomic force microscopy (AFM).[1] A single-cell probe was readily made by picking up a bacterial cell from a glass surface using a tipless AFM cantilever coated...... random immobilization is obtained by submerging the cantilever in a bacterial suspension. The reported method provides a general platform for investigating single cell interactions of bacteria with different surfaces and other cells by AFM force spectroscopy, thus improving our understanding....... The strain-dependent susceptibility to bacterial colonization on conventional PLL-g-PEG illustrates how bacterial diversity challenges development of “universal” antifouling coatings, and AFM single-cell force spectroscopy was proven to be a powerful tool to provide insights into the molecular mechanisms...

  18. Propensity rules for orientation in singly-charged ion-atom collisions

    International Nuclear Information System (INIS)

    Nielsen, S.E.; Dubois, A.; Hansen, J.P.

    1990-01-01

    Orientation effects for electron capture and excitation in singly-charged ion-atom collisions are analysed using the atomic basis impact parameter method with full inclusion of electron translational factors. We find that the orientation preferences previously predicted for excitation in terms of propensity rules may still be observed when capture is present in ion-atom collisions. Furthermore, in spite of intricate behaviour of the direct capture couplings during the collision, we draw some parallel conclusions for the orientation of the capture states. We illustrate these perturbative predictions by close-coupling calculations for H + -Na(3s) collisions where clear propensity for orientation of the H(2p) capture state is demonstrated in impact parameter and velocity dependences. Finally we predict pronounced orientation effects for H(2s) and H(2p) capture in collisions of H + with initially oriented Na(3p) states. (author)

  19. Single-collision studies of hot atom energy transfer and chemical reaction

    International Nuclear Information System (INIS)

    Valentini, J.J.

    1991-01-01

    This report discusses research in the collision dynamics of translationally hot atoms, with funding with DOE for the project ''Single-Collision Studies of Hot Atom Energy Transfer and Chemical Reaction,'' Grant Number DE-FG03-85ER13453. The work reported here was done during the period September 9, 1988 through October 31, 1991. During this period this DOE-funded work has been focused on several different efforts: (1) experimental studies of the state-to-state dynamics of the H + RH → H 2 R reactions where RH is CH 4 , C 2 H 6 , or C 3 H 8 , (2) theoretical (quasiclassical trajectory) studies of hot hydrogen atom collision dynamics, (3) the development of photochemical sources of translationally hot molecular free radicals and characterization of the high resolution CARS spectroscopy of molecular free radicals, (4) the implementation of stimulated Raman excitation (SRE) techniques for the preparation of vibrationally state-selected molecular reactants

  20. Force-field parameters of the Psi and Phi around glycosidic bonds to oxygen and sulfur atoms.

    Science.gov (United States)

    Saito, Minoru; Okazaki, Isao

    2009-12-01

    The Psi and Phi torsion angles around glycosidic bonds in a glycoside chain are the most important determinants of the conformation of a glycoside chain. We determined force-field parameters for Psi and Phi torsion angles around a glycosidic bond bridged by a sulfur atom, as well as a bond bridged by an oxygen atom as a preparation for the next study, i.e., molecular dynamics free energy calculations for protein-sugar and protein-inhibitor complexes. First, we extracted the Psi or Phi torsion energy component from a quantum mechanics (QM) total energy by subtracting all the molecular mechanics (MM) force-field components except for the Psi or Phi torsion angle. The Psi and Phi energy components extracted (hereafter called "the remaining energy components") were calculated for simple sugar models and plotted as functions of the Psi and Phi angles. The remaining energy component curves of Psi and Phi were well represented by the torsion force-field functions consisting of four and three cosine functions, respectively. To confirm the reliability of the force-field parameters and to confirm its compatibility with other force-fields, we calculated adiabatic potential curves as functions of Psi and Phi for the model glycosides by adopting the Psi and Phi force-field parameters obtained and by energetically optimizing other degrees of freedom. The MM potential energy curves obtained for Psi and Phi well represented the QM adiabatic curves and also these curves' differences with regard to the glycosidic oxygen and sulfur atoms. Our Psi and Phi force-fields of glycosidic oxygen gave MM potential energy curves that more closely represented the respective QM curves than did those of the recently developed GLYCAM force-field. (c) 2009 Wiley Periodicals, Inc.

  1. First-principles studies on vacancy-modified interstitial diffusion mechanism of oxygen in nickel, associated with large-scale atomic simulation techniques

    International Nuclear Information System (INIS)

    Fang, H. Z.; Shang, S. L.; Wang, Y.; Liu, Z. K.; Alfonso, D.; Alman, D. E.; Shin, Y. K.; Zou, C. Y.; Duin, A. C. T. van; Lei, Y. K.; Wang, G. F.

    2014-01-01

    This paper is concerned with the prediction of oxygen diffusivities in fcc nickel from first-principles calculations and large-scale atomic simulations. Considering only the interstitial octahedral to tetrahedral to octahedral minimum energy pathway for oxygen diffusion in fcc lattice, greatly underestimates the migration barrier and overestimates the diffusivities by several orders of magnitude. The results indicate that vacancies in the Ni-lattice significantly impact the migration barrier of oxygen in nickel. Incorporation of the effect of vacancies results in predicted diffusivities consistent with available experimental data. First-principles calculations show that at high temperatures the vacancy concentration is comparable to the oxygen solubility, and there is a strong binding energy and a redistribution of charge density between the oxygen atom and vacancy. Consequently, there is a strong attraction between the oxygen and vacancy in the Ni lattice, which impacts diffusion

  2. Comparison of NO titration and fiber optics catalytic probes for determination of neutral oxygen atom concentration in plasmas and postglows

    International Nuclear Information System (INIS)

    Mozetic, Miran; Ricard, Andre; Babic, Dusan; Poberaj, Igor; Levaton, Jacque; Monna, Virginie; Cvelbar, Uros

    2003-01-01

    A comparative study of two different absolute methods NO titration and fiber optics catalytic probe (FOCP) for determination of neutral oxygen atom density is presented. Both methods were simultaneously applied for measurements of O density in a postglow of an Ar/O 2 plasma created by a surfatron microwave generator with the frequency of 2.45 GHz an adjustable output power between 30 and 160 W. It was found that the two methods gave similar results. The advantages of FOCP were found to be as follows: it is a nondestructive method, it enables real time measuring of the O density, it does not require any toxic gas, and it is much faster than NO titration. The advantage of NO titration was found to be the ability to measure O density in a large range of dissociation of oxygen molecules

  3. Optically pumped semiconductor lasers: Conception and characterization of a single mode source for Cesium atoms manipulation

    International Nuclear Information System (INIS)

    Cocquelin, B.

    2009-02-01

    Lasers currently used in atomic clocks or inertial sensors are suffering from a lack of power, narrow linewidth or compactness for future spatial missions. Optically pumped semiconductor lasers, which combine the approach of classical solid state lasers and the engineering of semiconductor laser, are considered here as a candidate to a metrological laser source dedicated to the manipulation of Cesium atoms in these instruments. These lasers have demonstrated high power laser emission in a circular single transverse mode, as well as single longitudinal mode emission, favoured by the semiconductor structure and the external cavity design. We study the definition and the characterization of a proper semiconductor structure for the cooling and the detection of Cesium atoms at 852 nm. A compact and robust prototype tunable on the Cesium D2 hyperfine structure is built. The laser frequency is locked to an atomic transition thanks to a saturated absorption setup. The emission spectral properties are investigated, with a particular attention to the laser frequency noise and the laser linewidth. Finally, we describe and model the thermal properties of the semiconductor structure, which enables the simulation of the laser power characteristic. The experimental parameters are optimised to obtain the maximum output power with our structure. Thanks to our analysis, we propose several ways to overcome these limitations, by reducing the structure heating. (authors)

  4. Conductance of single-atom platinum contacts: Voltage dependence of the conductance histogram

    DEFF Research Database (Denmark)

    Nielsen, S.K.; Noat, Y.; Brandbyge, Mads

    2003-01-01

    The conductance of a single-atom contact is sensitive to the coupling of this contact atom to the atoms in the leads. Notably for the transition metals this gives rise to a considerable spread in the observed conductance values. The mean conductance value and spread can be obtained from the first...... peak in conductance histograms recorded from a large set of contact-breaking cycles. In contrast to the monovalent metals, this mean value for Pt depends strongly on the applied voltage bias and other experimental conditions and values ranging from about 1 G(0) to 2.5 G(0) (G(0)=2e(2)/h) have been...... reported. We find that at low bias the first peak in the conductance histogram is centered around 1.5 G(0). However, as the bias increases past 300 mV the peak shifts to 1.8 G(0). Here we show that this bias dependence is due to a geometric effect where monatomic chains are replaced by single-atom contacts...

  5. Design of high-activity single-atom catalysts via n-p codoping

    Science.gov (United States)

    Wang, Xiaonan; Zhou, Haiyan; Zhang, Xiaoyang; Jia, Jianfeng; Wu, Haishun

    2018-03-01

    The large-scale synthesis of stable single-atom catalysts (SACs) in experiments remains a significant challenge due to high surface free energy of metal atom. Here, we propose a concise n-p codoping approach, and find it can not only disperse the relatively inexpensive metal, copper (Cu), onto boron (B)-doped graphene, but also result in high-activity SACs. We use CO oxidation on B/Cu codoped graphene as a prototype example, and demonstrate that: (1) a stable SAC can be formed by stronger electrostatic attraction between the metal atom (n-type Cu) and support (p-type B-doped graphene). (2) the energy barrier of the prototype CO oxidation on B/Cu codoped graphene is 0.536 eV by the Eley-Rideal mechanism. Further analysis shows that the spin selection rule can provide well theoretical insight into high activity of our suggested SAC. The concept of n-p codoping may lead to new strategy in large-scale synthesis of stable single-atom catalysts.

  6. Interference of Single Photons Emitted by Entangled Atoms in Free Space

    Science.gov (United States)

    Araneda, G.; Higginbottom, D. B.; Slodička, L.; Colombe, Y.; Blatt, R.

    2018-05-01

    The generation and manipulation of entanglement between isolated particles has precipitated rapid progress in quantum information processing. Entanglement is also known to play an essential role in the optical properties of atomic ensembles, but fundamental effects in the controlled emission and absorption from small, well-defined numbers of entangled emitters in free space have remained unobserved. Here we present the control of the emission rate of a single photon from a pair of distant, entangled atoms into a free-space optical mode. Changing the length of the optical path connecting the atoms modulates the single-photon emission rate in the selected mode with a visibility V =0.27 ±0.03 determined by the degree of entanglement shared between the atoms, corresponding directly to the concurrence Cρ=0.31 ±0.10 of the prepared state. This scheme, together with population measurements, provides a fully optical determination of the amount of entanglement. Furthermore, large sensitivity of the interference phase evolution points to applications of the presented scheme in high-precision gradient sensing.

  7. Measurement of the indium segregation in InGaN based LEDs with single atom sensitivity

    International Nuclear Information System (INIS)

    Jinschek, Joerg; Kisielowski, Christian; Van Dyck, Dirk; Geuens, Philippe

    2003-01-01

    In light emitting diodes (LED) consisting of GaN/InGaN/GaN quantum wells (QWs), the exact indium distribution inside the wells of the active region affects the performance of devices. Indium segregation can take place forming small InGaN clusters of locally varying composition. In the past, we used a local strain analysis from single HRTEM lattice images to determine the In composition inside the InGaN QWs with a resolution of 0.5 nm x 0.3 nm. Truly atomic resolution can be pursued by exploitation of intensity dependencies on the atomic number (Z) of the electron exit-wave (EW). In microscopes with sufficient sensitivity, local variations of amplitude and phase are found to be discrete with sample thickness, which allows for counting the number of atoms in each individual column of ∼0.08 nm diameter. In QW s of ∼17 percent of average indium concentration it is possible to discriminate between pure Ga columns and columns containing 1, 2, 3, or more In atoms because phase changes are discrete and element specific. The preparation of samples with atomically flat surfaces is a limiting factor for the application of the procedure

  8. Towards a precise measurement of atomic parity violation in a single Ra+ ion

    International Nuclear Information System (INIS)

    Nuñez Portela, M.; Berg, J. E. van den; Bekker, H.; Böll, O.; Dijck, E. A.; Giri, G. S.; Hoekstra, S.; Jungmann, K.; Mohanty, A.; Onderwater, C. J. G.; Santra, B.; Schlesser, S.; Timmermans, R. G. E.; Versolato, O. O.; Wansbeek, L. W.; Willmann, L.; Wilschut, H. W.

    2013-01-01

    A single trapped Ra  +  (Z = 88) ion provides a very promising route towards a most precise measurement of Atomic Parity Violation (APV), since APV effects grow faster than Z 3 . This experiment promises the best determination of the electroweak coupling constant at the lowest accessible energies. Such a measurement provides a sensitive test of the Standard Model in particle physics. At the present stage of the experiment, we focus on trapping and laser cooling stable Ba  +  ions as a precursor for radioactive Ra  +  . Online laser spectroscopy of the isotopes 209 − 214 Ra  +  in a linear Paul trap has provided information on transition wavelengths, fine and hyperfine structures and excited state lifetimes as test of atomic structure calculations. Additionaly, a single trapped Ra  +  ion could function as a very stable clock.

  9. Supramolecular Rotor and Translator at Work: On-Surface Movement of Single Atoms.

    Science.gov (United States)

    Ohmann, Robin; Meyer, Jörg; Nickel, Anja; Echeverria, Jorge; Grisolia, Maricarmen; Joachim, Christian; Moresco, Francesca; Cuniberti, Gianaurelio

    2015-08-25

    A supramolecular nanostructure composed of four 4-acetylbiphenyl molecules and self-assembled on Au (111) was loaded with single Au adatoms and studied by scanning tunneling microscopy at low temperature. By applying voltage pulses to the supramolecular structure, the loaded Au atoms can be rotated and translated in a controlled manner. The manipulation of the gold adatoms is driven neither by mechanical interaction nor by direct electronic excitation. At the electronic resonance and driven by the tunneling current intensity, the supramolecular nanostructure performs a small amount of work of about 8 × 10(-21) J, while transporting the single Au atom from one adsorption site to the next. Using the measured average excitation time necessary to induce the movement, we determine the mechanical motive power of the device, yielding about 3 × 10(-21) W.

  10. Towards a precise measurement of atomic parity violation in a single Ra{sup +} ion

    Energy Technology Data Exchange (ETDEWEB)

    Nunez Portela, M., E-mail: nunez@kvi.nl; Berg, J. E. van den; Bekker, H.; Boell, O.; Dijck, E. A.; Giri, G. S.; Hoekstra, S.; Jungmann, K.; Mohanty, A.; Onderwater, C. J. G.; Santra, B.; Schlesser, S.; Timmermans, R. G. E.; Versolato, O. O.; Wansbeek, L. W.; Willmann, L.; Wilschut, H. W. [Kernfysisch Versneller Instituut (KVI) (Netherlands)

    2013-03-15

    A single trapped Ra{sup + } (Z = 88) ion provides a very promising route towards a most precise measurement of Atomic Parity Violation (APV), since APV effects grow faster than Z{sup 3}. This experiment promises the best determination of the electroweak coupling constant at the lowest accessible energies. Such a measurement provides a sensitive test of the Standard Model in particle physics. At the present stage of the experiment, we focus on trapping and laser cooling stable Ba{sup + } ions as a precursor for radioactive Ra{sup + }. Online laser spectroscopy of the isotopes {sup 209 - 214}Ra{sup + } in a linear Paul trap has provided information on transition wavelengths, fine and hyperfine structures and excited state lifetimes as test of atomic structure calculations. Additionaly, a single trapped Ra{sup + } ion could function as a very stable clock.

  11. Analysis of imperfections in the coherent optical excitation of single atoms to Rydberg states

    Science.gov (United States)

    de Léséleuc, Sylvain; Barredo, Daniel; Lienhard, Vincent; Browaeys, Antoine; Lahaye, Thierry

    2018-05-01

    We study experimentally various physical limitations and technical imperfections that lead to damping and finite contrast of optically driven Rabi oscillations between ground and Rydberg states of a single atom. Finite contrast is due to preparation and detection errors, and we show how to model and measure them accurately. Part of these errors originates from the finite lifetime of Rydberg states, and we observe its n3 scaling with the principal quantum number n . To explain the damping of Rabi oscillations, we use simple numerical models taking into account independently measured experimental imperfections and show that the observed damping actually results from the accumulation of several small effects, each at the level of a few percent. We discuss prospects for improving the coherence of ground-Rydberg Rabi oscillations in view of applications in quantum simulation and quantum information processing with arrays of single Rydberg atoms.

  12. Reorganization energy upon charging a single molecule on an insulator measured by atomic force microscopy

    Science.gov (United States)

    Fatayer, Shadi; Schuler, Bruno; Steurer, Wolfram; Scivetti, Ivan; Repp, Jascha; Gross, Leo; Persson, Mats; Meyer, Gerhard

    2018-05-01

    Intermolecular single-electron transfer on electrically insulating films is a key process in molecular electronics1-4 and an important example of a redox reaction5,6. Electron-transfer rates in molecular systems depend on a few fundamental parameters, such as interadsorbate distance, temperature and, in particular, the Marcus reorganization energy7. This crucial parameter is the energy gain that results from the distortion of the equilibrium nuclear geometry in the molecule and its environment on charging8,9. The substrate, especially ionic films10, can have an important influence on the reorganization energy11,12. Reorganization energies are measured in electrochemistry13 as well as with optical14,15 and photoemission spectroscopies16,17, but not at the single-molecule limit and nor on insulating surfaces. Atomic force microscopy (AFM), with single-charge sensitivity18-22, atomic-scale spatial resolution20 and operable on insulating films, overcomes these challenges. Here, we investigate redox reactions of single naphthalocyanine (NPc) molecules on multilayered NaCl films. Employing the atomic force microscope as an ultralow current meter allows us to measure the differential conductance related to transitions between two charge states in both directions. Thereby, the reorganization energy of NPc on NaCl is determined as (0.8 ± 0.2) eV, and density functional theory (DFT) calculations provide the atomistic picture of the nuclear relaxations on charging. Our approach presents a route to perform tunnelling spectroscopy of single adsorbates on insulating substrates and provides insight into single-electron intermolecular transport.

  13. Quantum Interference between Autonomous Single-Photon Sources from Doppler-Broadened Atomic Ensemble

    OpenAIRE

    Jeong, Teak; Lee, Yoon-Seok; Park, Jiho; Kim, Heonoh; Moon, Han Seb

    2017-01-01

    To realize a quantum network based on quantum entanglement swapping, bright and completely autonomous sources are essentially required. Here, we experimentally demonstrate Hong-Ou-Mandel (HOM) quantum interference between two independent bright photon pairs generated via the spontaneous four-wave mixing in Doppler-broadened ladder-type 87Rb atoms. Bright autonomous heralded single photons are operated in a continuous-wave (CW) mode with no synchronization or supplemental filters. The four-fol...

  14. A Space Experiment to Measure the Atomic Oxygen Erosion of Polymers and Demonstrate a Technique to Identify Sources of Silicone Contamination

    Science.gov (United States)

    Banks, Bruce A.; deGroh, Kim K.; Baney-Barton, Elyse; Sechkar, Edward A.; Hunt, Patricia K.; Willoughby, Alan; Bemer, Meagan; Hope, Stephanie; Koo, Julie; Kaminski, Carolyn; hide

    1999-01-01

    A low Earth orbital space experiment entitled, "Polymers Erosion And Contamination Experiment", (PEACE) has been designed as a Get-Away Special (GAS Can) experiment to be accommodated as a Shuttle in-bay environmental exposure experiment. The first objective is to measure the atomic oxygen erosion yields of approximately 40 different polymeric materials by mass loss and erosion measurements using atomic force microscopy. The second objective is to evaluate the capability of identifying sources of silicone contamination through the use of a pin-hole contamination camera which utilizes environmental atomic oxygen to produce a contaminant source image on an optical substrate.

  15. Three-dimensional atomic-image reconstruction from a single-energy Si(100) photoelectron hologram

    International Nuclear Information System (INIS)

    Matsushita, T.; Agui, A.; Yoshigoe, A.

    2004-01-01

    Full text: J. J. Barton proposed a basic algorithm for three-dimensional atomic-image reconstruction from photoelectron hologram, which is based on the Fourier transform(FT). In the use of a single-energy hologram, the twin-image appears in principle. The twin image disappears in the use of multi-energy hologram, which requires longer measuring time and variable-energy light source. But the reconstruction in the use of a simple FT is difficult because the scattered electron wave is not s-symmetric wave. Many theoretical and experimental approaches based on the FT have been researched. We propose a new algorithm so-called 'scattering pattern matrix', which is not based on the FT. The algorithm utilizes the 'scattering pattern', and iterative gradient method. Real space image can be reconstructed from a single-energy hologram without initial model. In addition, the twin image disappears. We reconstructed the three-dimensional atomic image of Si bulk structure from an experimental single-energy hologram of Si(100) 2s emission, which is shown The experiment was performed with using a Al-K α light source. The experimental setup is shown in. Then we calculated a vertical slice image of the reconstructed Si bulk structure, which is shown. The atomic images appear around the expected positions

  16. Simple Atomic Quantum Memory Suitable for Semiconductor Quantum Dot Single Photons

    Science.gov (United States)

    Wolters, Janik; Buser, Gianni; Horsley, Andrew; Béguin, Lucas; Jöckel, Andreas; Jahn, Jan-Philipp; Warburton, Richard J.; Treutlein, Philipp

    2017-08-01

    Quantum memories matched to single photon sources will form an important cornerstone of future quantum network technology. We demonstrate such a memory in warm Rb vapor with on-demand storage and retrieval, based on electromagnetically induced transparency. With an acceptance bandwidth of δ f =0.66 GHz , the memory is suitable for single photons emitted by semiconductor quantum dots. In this regime, vapor cell memories offer an excellent compromise between storage efficiency, storage time, noise level, and experimental complexity, and atomic collisions have negligible influence on the optical coherences. Operation of the memory is demonstrated using attenuated laser pulses on the single photon level. For a 50 ns storage time, we measure ηe2 e 50 ns=3.4 (3 )% end-to-end efficiency of the fiber-coupled memory, with a total intrinsic efficiency ηint=17 (3 )%. Straightforward technological improvements can boost the end-to-end-efficiency to ηe 2 e≈35 %; beyond that, increasing the optical depth and exploiting the Zeeman substructure of the atoms will allow such a memory to approach near unity efficiency. In the present memory, the unconditional read-out noise level of 9 ×10-3 photons is dominated by atomic fluorescence, and for input pulses containing on average μ1=0.27 (4 ) photons, the signal to noise level would be unity.

  17. Nanomechanical DNA origami 'single-molecule beacons' directly imaged by atomic force microscopy

    Science.gov (United States)

    Kuzuya, Akinori; Sakai, Yusuke; Yamazaki, Takahiro; Xu, Yan; Komiyama, Makoto

    2011-01-01

    DNA origami involves the folding of long single-stranded DNA into designed structures with the aid of short staple strands; such structures may enable the development of useful nanomechanical DNA devices. Here we develop versatile sensing systems for a variety of chemical and biological targets at molecular resolution. We have designed functional nanomechanical DNA origami devices that can be used as 'single-molecule beacons', and function as pinching devices. Using 'DNA origami pliers' and 'DNA origami forceps', which consist of two levers ~170 nm long connected at a fulcrum, various single-molecule inorganic and organic targets ranging from metal ions to proteins can be visually detected using atomic force microscopy by a shape transition of the origami devices. Any detection mechanism suitable for the target of interest, pinching, zipping or unzipping, can be chosen and used orthogonally with differently shaped origami devices in the same mixture using a single platform. PMID:21863016

  18. BODIPY-pyrene and perylene dyads as heavy atom-free singlet oxygen sensitizers

    KAUST Repository

    Filatov, Mikhail A.

    2018-02-23

    Dyads combining BODIPY as an electron acceptor and pyrene or perylene as electron donor subunits were prepared and studied their photophysical properties studied by steady-state and transient spectroscopy. Depending on the structure of the subunits and polarity of the media, the dyads show either bright fluorescence or photo-induced electron transfer (PeT) in solution. Charge-transfer (CT) states formed as a result of PeT and were found to yield triplet excited states of the BODIPY. In the presence of molecular oxygen, the dyads sensitize singlet oxygen (1O2) with quantum yields of up to 0.75.

  19. BODIPY-pyrene and perylene dyads as heavy atom-free singlet oxygen sensitizers

    KAUST Repository

    Filatov, Mikhail A.; Karuthedath, Safakath; Polestshuk, Pavel M.; Callaghan, Susan; Flanagan, Keith J.; Wiesner, Thomas; Laquai, Fré dé ric; Senge, Mathias O.

    2018-01-01

    Dyads combining BODIPY as an electron acceptor and pyrene or perylene as electron donor subunits were prepared and studied their photophysical properties studied by steady-state and transient spectroscopy. Depending on the structure of the subunits and polarity of the media, the dyads show either bright fluorescence or photo-induced electron transfer (PeT) in solution. Charge-transfer (CT) states formed as a result of PeT and were found to yield triplet excited states of the BODIPY. In the presence of molecular oxygen, the dyads sensitize singlet oxygen (1O2) with quantum yields of up to 0.75.

  20. Pt Single Atoms Embedded in the Surface of Ni Nanocrystals as Highly Active Catalysts for Selective Hydrogenation of Nitro Compounds.

    Science.gov (United States)

    Peng, Yuhan; Geng, Zhigang; Zhao, Songtao; Wang, Liangbing; Li, Hongliang; Wang, Xu; Zheng, Xusheng; Zhu, Junfa; Li, Zhenyu; Si, Rui; Zeng, Jie

    2018-06-13

    Single-atom catalysts exhibit high selectivity in hydrogenation due to their isolated active sites, which ensure uniform adsorption configurations of substrate molecules. Compared with the achievement in catalytic selectivity, there is still a long way to go in exploiting the catalytic activity of single-atom catalysts. Herein, we developed highly active and selective catalysts in selective hydrogenation by embedding Pt single atoms in the surface of Ni nanocrystals (denoted as Pt 1 /Ni nanocrystals). During the hydrogenation of 3-nitrostyrene, the TOF numbers based on surface Pt atoms of Pt 1 /Ni nanocrystals reached ∼1800 h -1 under 3 atm of H 2 at 40 °C, much higher than that of Pt single atoms supported on active carbon, TiO 2 , SiO 2 , and ZSM-5. Mechanistic studies reveal that the remarkable activity of Pt 1 /Ni nanocrystals derived from sufficient hydrogen supply because of spontaneous dissociation of H 2 on both Pt and Ni atoms as well as facile diffusion of H atoms on Pt 1 /Ni nanocrystals. Moreover, the ensemble composed of the Pt single atom and nearby Ni atoms in Pt 1 /Ni nanocrystals leads to the adsorption configuration of 3-nitrostyrene favorable for the activation of nitro groups, accounting for the high selectivity for 3-vinylaniline.

  1. Characterization of photoactivated singlet oxygen damage in single-molecule optical trap experiments.

    Science.gov (United States)

    Landry, Markita P; McCall, Patrick M; Qi, Zhi; Chemla, Yann R

    2009-10-21

    Optical traps or "tweezers" use high-power, near-infrared laser beams to manipulate and apply forces to biological systems, ranging from individual molecules to cells. Although previous studies have established that optical tweezers induce photodamage in live cells, the effects of trap irradiation have yet to be examined in vitro, at the single-molecule level. In this study, we investigate trap-induced damage in a simple system consisting of DNA molecules tethered between optically trapped polystyrene microspheres. We show that exposure to the trapping light affects the lifetime of the tethers, the efficiency with which they can be formed, and their structure. Moreover, we establish that these irreversible effects are caused by oxidative damage from singlet oxygen. This reactive state of molecular oxygen is generated locally by the optical traps in the presence of a sensitizer, which we identify as the trapped polystyrene microspheres. Trap-induced oxidative damage can be reduced greatly by working under anaerobic conditions, using additives that quench singlet oxygen, or trapping microspheres lacking the sensitizers necessary for singlet state photoexcitation. Our findings are relevant to a broad range of trap-based single-molecule experiments-the most common biological application of optical tweezers-and may guide the development of more robust experimental protocols.

  2. Optimizing the calculation of DM,CO and VC via the single breath single oxygen tension DLCO/NO method.

    Science.gov (United States)

    Coffman, Kirsten E; Taylor, Bryan J; Carlson, Alex R; Wentz, Robert J; Johnson, Bruce D

    2016-01-15

    Alveolar-capillary membrane conductance (D(M,CO)) and pulmonary-capillary blood volume (V(C)) are calculated via lung diffusing capacity for carbon monoxide (DL(CO)) and nitric oxide (DL(NO)) using the single breath, single oxygen tension (single-FiO2) method. However, two calculation parameters, the reaction rate of carbon monoxide with blood (θ(CO)) and the D(M,NO)/D(M,CO) ratio (α-ratio), are controversial. This study systematically determined optimal θ(CO) and α-ratio values to be used in the single-FiO2 method that yielded the most similar D(M,CO) and V(C) values compared to the 'gold-standard' multiple-FiO2 method. Eleven healthy subjects performed single breath DL(CO)/DL(NO) maneuvers at rest and during exercise. D(M,CO) and V(C) were calculated via the single-FiO2 and multiple-FiO2 methods by implementing seven θ(CO) equations and a range of previously reported α-ratios. The RP θ(CO) equation (Reeves, R.B., Park, H.K., 1992. Respiration Physiology 88 1-21) and an α-ratio of 4.0-4.4 yielded DM,CO and VC values that were most similar between methods. The RP θ(CO) equation and an experimental α-ratio should be used in future studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Electron and Oxygen Atom Transfer Chemistry of Co(II) in a Proton Responsive, Redox Active Ligand Environment.

    Science.gov (United States)

    Cook, Brian J; Pink, Maren; Pal, Kuntal; Caulton, Kenneth G

    2018-05-21

    The bis-pyrazolato pyridine complex LCo(PEt 3 ) 2 serves as a masked form of three-coordinate Co II and shows diverse reactivity in its reaction with several potential outer sphere oxidants and oxygen atom transfer reagents. N-Methylmorpholine N-oxide (NMO) oxidizes coordinated PEt 3 from LCo(PEt 3 ) 2 , but the final cobalt product is still divalent cobalt, in LCo(NMO) 2 . The thermodynamics of a variety of oxygen atom transfer reagents, including NMO, are calculated by density functional theory, to rank their oxidizing power. Oxidation of LCo(PEt 3 ) 2 with AgOTf in the presence of LiCl as a trapping nucleophile forms the unusual aggregate [LCo(PEt 3 ) 2 Cl(LiOTf) 2 ] 2 held together by Li + binding to very nucleophilic chloride on Co(III) and triflate binding to those Li + . In contrast, Cp 2 Fe + effects oxidation to trivalent cobalt, to form (HL)Co(PEt 3 ) 2 Cl + ; proton and the chloride originate from solvent in a rare example of CH 2 Cl 2 dehydrochlorination. An unexpected noncomplementary redox reaction is reported involving attack by 2e reductant PEt 3 nucleophile on carbon of the 1e oxidant radical Cp 2 Fe + , forming a P-C bond and H + ; this reaction competes in the reaction of LCo(PEt 3 ) 2 with Cp 2 Fe + .

  4. Modelling of the heat transfer during oxygen atoms recombination on metallic surfaces in a plasma reactor

    NARCIS (Netherlands)

    Cavadias, S; Cauquot, P; Amouroux, J

    1997-01-01

    Space shuttle overheating during the re-entry phase, due to catalytic oxygen recombination on the thermal protection system, is a problem of practical and theoretical interest. The energy transfer is characterised by the product of the accommodation and the recombination coefficients. Previous

  5. Single electron detachment of carbon group and oxygen group elements incident on helium

    International Nuclear Information System (INIS)

    Huang Yongyi; Li Guangwu; Gao Yinghui; Yang Enbo; Gao Mei; Lu Fuquan; Zhang Xuemei

    2006-01-01

    The absolute single electron detachment (SED) cross sections of carbon group elements C - , Si - , Ge - in the energy range of 0.05-0.29 a.u. (5 keV-30 keV) and oxygen group elements O - and S - 0.08-0.27 a.u. (5 keV-30 keV), incident on helium are measured with growth rate method. In our energy region, the SED cross sections of C - , Si - , S - and Ge - increase with the projectiles velocity, at the same time, O - cross sections reach a conspicuous maximum at 0.18 a.u. Some abnormal behavior occurs in measurement of SED cross sections for the oxygen group collision with helium. Our results have been compared with a previous work

  6. Interaction between single gold atom and the graphene edge: A study via aberration-corrected transmission electron microscopy

    KAUST Repository

    Wang, Hongtao

    2012-01-01

    Interaction between single noble metal atoms and graphene edges has been investigated via aberration-corrected and monochromated transmission electron microscopy. A collective motion of the Au atom and the nearby carbon atoms is observed in transition between energy-favorable configurations. Most trapping and detrapping processes are assisted by the dangling carbon atoms, which are more susceptible to knock-on displacements by electron irradiation. Thermal energy is lower than the activation barriers in transition among different energy-favorable configurations, which suggests electron-beam irradiation can be an efficient way of engineering the graphene edge with metal atoms. © 2012 The Royal Society of Chemistry.

  7. Single-molecule studies of DNA transcription using atomic force microscopy

    International Nuclear Information System (INIS)

    Billingsley, Daniel J; Crampton, Neal; Thomson, Neil H; Bonass, William A; Kirkham, Jennifer

    2012-01-01

    Atomic force microscopy (AFM) can detect single biomacromolecules with a high signal-to-noise ratio on atomically flat biocompatible support surfaces, such as mica. Contrast arises from the innate forces and therefore AFM does not require imaging contrast agents, leading to sample preparation that is relatively straightforward. The ability of AFM to operate in hydrated environments, including humid air and aqueous buffers, allows structure and function of biological and biomolecular systems to be retained. These traits of the AFM are ensuring that it is being increasingly used to study deoxyribonucleic acid (DNA) structure and DNA–protein interactions down to the secondary structure level. This report focuses in particular on reviewing the applications of AFM to the study of DNA transcription in reductionist single-molecule bottom-up approaches. The technique has allowed new insights into the interactions between ribonucleic acid (RNA) polymerase to be gained and enabled quantification of some aspects of the transcription process, such as promoter location, DNA wrapping and elongation. More recently, the trend is towards studying the interactions of more than one enzyme operating on a single DNA template. These methods begin to reveal the mechanics of gene expression at the single-molecule level and will enable us to gain greater understanding of how the genome is transcribed and translated into the proteome. (topical review)

  8. Growth and properties of oxygen doped Bi2Sr2CaCu2O8+δ single crystals

    International Nuclear Information System (INIS)

    Kapitulnik, A.; Mitzi, D.B.

    1990-01-01

    This paper reports results on oxygen doped single crystals in the Bi 2 Sr 2 CaCu 2 O 8+δ system grown by a directional solidification method. Annealing of as made crystals in increasing partial pressure of oxygen reversibly depresses the superconducting transition temperature from 90K (as made) to 77K (oxygen pressure annealed). Magnetic and photoemission properties of these crystals will be discussed

  9. Prospects of Optical Single Atom Detection in Noble Gas Solids for Measurements of Rare Nuclear Reactions

    Science.gov (United States)

    Singh, Jaideep; Bailey, Kevin G.; Lu, Zheng-Tian; Mueller, Peter; O'Connor, Thomas P.; Xu, Chen-Yu; Tang, Xiaodong

    2013-04-01

    Optical detection of single atoms captured in solid noble gas matrices provides an alternative technique to study rare nuclear reactions relevant to nuclear astrophysics. I will describe the prospects of applying this approach for cross section measurements of the ^22Ne,,),25Mg reaction, which is the crucial neutron source for the weak s process inside of massive stars. Noble gas solids are a promising medium for the capture, detection, and manipulation of atoms and nuclear spins. They provide stable and chemically inert confinement for a wide variety of guest species. Because noble gas solids are transparent at optical wavelengths, the guest atoms can be probed using lasers. We have observed that ytterbium in solid neon exhibits intersystem crossing (ISC) which results in a strong green fluorescence (546 nm) under excitation with blue light (389 nm). Several groups have observed ISC in many other guest-host pairs, notably magnesium in krypton. Because of the large wavelength separation of the excitation light and fluorescence light, optical detection of individual embedded guest atoms is feasible. This work is supported by DOE, Office of Nuclear Physics, under contract DE-AC02-06CH11357.

  10. Atomically layer-by-layer diffusion of oxygen/hydrogen in highly epitaxial PrBaCo{sub 2}O{sub 5.5+δ} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Shanyong; Xu, Xing; Enriquez, Erik; Mace, Brennan E.; Chen, Garry; Kelliher, Sean P.; Chen, Chonglin, E-mail: cl.chen@utsa.edu [Department of Physics and Astronomy, University of Texas, San Antonio, Texas 78249 (United States); Zhang, Yamei [Department of Physics, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003 (China); Whangbo, Myung-Hwan [North Carolina State University, Raleigh, North Carolina 27695-8204 (United States); Dong, Chuang; Zhang, Qinyu [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024 (China)

    2015-12-14

    Single-crystalline epitaxial thin films of PrBaCo{sub 2}O{sub 5.5+δ} (PrBCO) were prepared, and their resistance R(t) under a switching flow of oxidizing and reducing gases were measured as a function of the gas flow time t in the temperature range of 200–800 °C. During the oxidation cycle under O{sub 2}, the PrBCO films exhibit fast oscillations in their dR(t)/dt vs. t plots, which reflect the oxidation processes, Co{sup 2+}/Co{sup 3+} → Co{sup 3+} and Co{sup 3+} → Co{sup 3+}/Co{sup 4+}, that the Co atoms of PrBCO undergo. Each oscillation consists of two peaks, with larger and smaller peaks representing the oxygen/hydrogen diffusion through the (BaO)(CoO{sub 2})(PrO)(CoO{sub 2}) layers of PrBCO via the oxygen-vacancy-exchange mechanism. This finding paves a significant avenue for cathode materials operating in low-temperature solid-oxide-fuel-cell devices and for chemical sensors with wide range of operating temperature.

  11. Reaction kinetics of oxygen on single-phase alloys, oxidation of nickel and niobium alloys

    International Nuclear Information System (INIS)

    Lalauze, Rene

    1973-01-01

    This research thesis first addresses the reaction kinetics of oxygen on alloys. It presents some generalities on heterogeneous reactions (conventional theory, theory of jumps), discusses the core reaction (with the influence of pressure), discusses the influence of metal self-diffusion on metal oxidation kinetics (equilibrium conditions at the interface, hybrid diffusion regime), reports the application of the hybrid diffusion model to the study of selective oxidation of alloys (Wagner model, hybrid diffusion model) and the study of the oxidation kinetics of an alloy forming a solid solution of two oxides. The second part reports the investigation of the oxidation of single phase nickel and niobium alloys (phase α, β and γ)

  12. Control of single-photon routing in a T-shaped waveguide by another atom

    Science.gov (United States)

    Huang, Jin-Song; Wang, Jing-Wen; Wang, Yan; Li, Yan-Ling; Huang, You-Wen

    2018-04-01

    Quantum routers with a high routing rate of much more than 0.5 are of great importance for quantum networks. We provide a scheme to perform bidirectional high routing-rate transfer in a T-shaped coupled-resonator waveguide (CRW), which extends a recent unidirectional scheme proposed by Lu et al. (Opt Express 23:22955, 2015). By locating an extra two-level atom in the infinite CRW channel of the T-shaped CRW with a three-level system, an effective potential is generated. Our numerical results show that high routing capability from the infinite CRW channel to the semi-infinite channel can be achieved, and routing capability from the semi-infinite CRW channel to the infinite channel can also be significantly enhanced, with the help of the effective potential. Therefore, the proposed double-atom configuration could be utilized as a bidirectional quantum routing controller to implement high transfer rate routing of single photons.

  13. Single OR molecule and OR atomic circuit logic gates interconnected on a Si(100)H surface

    International Nuclear Information System (INIS)

    Ample, F; Joachim, C; Duchemin, I; Hliwa, M

    2011-01-01

    Electron transport calculations were carried out for three terminal OR logic gates constructed either with a single molecule or with a surface dangling bond circuit interconnected on a Si(100)H surface. The corresponding multi-electrode multi-channel scattering matrix (where the central three terminal junction OR gate is the scattering center) was calculated, taking into account the electronic structure of the supporting Si(100)H surface, the metallic interconnection nano-pads, the surface atomic wires and the molecule. Well interconnected, an optimized OR molecule can only run at a maximum of 10 nA output current intensity for a 0.5 V bias voltage. For the same voltage and with no molecule in the circuit, the output current of an OR surface atomic scale circuit can reach 4 μA.

  14. Photon statistics of a single-atom intracavity system involving electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Rebic, S.; Parkins, A.S.; Tan, S.M.

    2002-01-01

    We explore the photon statistics of light emitted from a system comprising a single four-level atom strongly coupled to a high-finesse optical cavity mode that is driven by a coherent laser field. In the weak driving regime this system is found to exhibit a photon blockade effect. For intermediate driving strengths we find a sudden change in the photon statistics of the light emitted from the cavity. Photon antibunching switches to photon bunching over a very narrow range of intracavity photon number. It is proven that this sudden change in photon statistics occurs due to the existence of robust quantum interference of transitions between the dressed states of the atom-cavity system. Furthermore, it is shown that the strong photon bunching is a nonclassical effect for certain values of driving field strength, violating classical inequalities for field correlations

  15. The scattering of low energy helium ions and atoms from a copper single crystal, ch. 2

    International Nuclear Information System (INIS)

    Verheij, L.K.; Poelsema, B.; Boers, A.L.

    1976-01-01

    The scattering of 4-10 keV helium ions from a copper surface cannot be completely described with elastic, single collisions. The general behaviour of the measured energy and width of the surface peak can be explained by differences in inelastic energy losses for scattering from an ideal surface and from surface structures (damage). Multiple scattering effects have a minor influence. Additional information about the inelastic processes is obtained from scattering experiments with a primary atom beam. For large angles of incidence, the energy of the reflected ions is reduced about 20 eV if the primary beam consists of atoms instead of ions. An explanation of this effect and an explanation of the different behaviour of small angles is given. In the investigated energy range, the electronic stopping power might depend on the charge state of the primary particles. The experimental results are rather well explained by the Lindhard, Scharff, Schioett theory

  16. High quality single atomic layer deposition of hexagonal boron nitride on single crystalline Rh(111) four-inch wafers

    Energy Technology Data Exchange (ETDEWEB)

    Hemmi, A.; Bernard, C.; Cun, H.; Roth, S.; Klöckner, M.; Kälin, T.; Osterwalder, J.; Greber, T., E-mail: greber@physik.uzh.ch [Physik-Institut, Universität Zürich, CH-8057 Zürich (Switzerland); Weinl, M.; Gsell, S.; Schreck, M. [Institut für Physik, Universität Augsburg, D-86135 Augsburg (Germany)

    2014-03-15

    The setup of an apparatus for chemical vapor deposition (CVD) of hexagonal boron nitride (h-BN) and its characterization on four-inch wafers in ultra high vacuum (UHV) environment is reported. It provides well-controlled preparation conditions, such as oxygen and argon plasma assisted cleaning and high temperature annealing. In situ characterization of a wafer is accomplished with target current spectroscopy. A piezo motor driven x-y stage allows measurements with a step size of 1 nm on the complete wafer. To benchmark the system performance, we investigated the growth of single layer h-BN on epitaxial Rh(111) thin films. A thorough analysis of the wafer was performed after cutting in atmosphere by low energy electron diffraction, scanning tunneling microscopy, and ultraviolet and X-ray photoelectron spectroscopies. The apparatus is located in a clean room environment and delivers high quality single layers of h-BN and thus grants access to large area UHV processed surfaces, which had been hitherto restricted to expensive, small area single crystal substrates. The facility is versatile enough for customization to other UHV-CVD processes, e.g., graphene on four-inch wafers.

  17. Atomic-Oxygen-Durable and Electrically-Conductive CNT-POSS-Polyimide Flexible Films for Space Applications.

    Science.gov (United States)

    Atar, Nurit; Grossman, Eitan; Gouzman, Irina; Bolker, Asaf; Murray, Vanessa J; Marshall, Brooks C; Qian, Min; Minton, Timothy K; Hanein, Yael

    2015-06-10

    In low Earth orbit (LEO), hazards such as atomic oxygen (AO) or electrostatic discharge (ESD) degrade polymeric materials, specifically, the extensively used polyimide (PI) Kapton. We prepared PI-based nanocomposite films that show both AO durability and ESD protection by incorporating polyhedral oligomeric silsesquioxane (POSS) and carbon nanotube (CNT) additives. The unique methods that are reported prevent CNT agglomeration and degradation of the CNT properties that are common in dispersion-based processes. The influence of the POSS content on the electrical, mechanical, and thermo-optical properties of the CNT-POSS-PI films was investigated and compared to those of control PI and CNT-PI films. CNT-POSS-PI films with 5 and 15 wt % POSS content exhibited sheet resistivities as low as 200 Ω/□, and these resistivities remained essentially unchanged after exposure to AO with a fluence of ∼2.3 × 10(20) O atoms cm(-2). CNT-POSS-PI films with 15 wt % POSS content exhibited an erosion yield of 4.8 × 10(-25) cm(3) O atom(-1) under 2.3 × 10(20) O atoms cm(-2) AO fluence, roughly one order of magnitude lower than that of pure PI films. The durability of the conductivity of the composite films was demonstrated by rolling film samples with a tight radius up to 300 times. The stability of the films to thermal cycling and ionizing radiation was also demonstrated. These properties make the prepared CNT-POSS-PI films with 15 wt % POSS content excellent candidates for applications where AO durability and electrical conductivity are required for flexible and thermally stable materials. Hence, they are suggested here for LEO applications such as the outer layers of spacecraft thermal blankets.

  18. Lattice location of diffused Zn atoms in GaAs and InP single crystals

    International Nuclear Information System (INIS)

    Chan, L.Y.; Yu, K.M.; Ben-Tzur, M.; Haller, E.E.; Jaklevic, J.M.; Walukiewicz, W.; Hanson, C.M.

    1991-01-01

    We have investigated the saturation phenomenon of the free carrier concentration in p-type GaAs and InP single crystals doped by zinc diffusion. The free hole saturation occurs at 10 20 cm -3 for GaAs, but the maximum concentration for InP appears at mid 10 18 cm -3 . The difference in the saturation hole concentrations for these materials is investigated by studying the incorporation and the lattice location of the impurity zinc, an acceptor when located on a group III atom site. Zinc is diffused into the III-V wafers in a sealed quartz ampoule. Particle-induced x-ray emission with ion-channeling techniques are employed to determine the exact lattice location of the zinc atoms. We have found that over 90% of all zinc atoms occupy Ga sites in the diffused GaAs samples, while for the InP case, the zinc substitutionality is dependent on the cooling rate of the sample after high-temperature diffusion. For the slowly cooled sample, a large fraction (∼90%) of the zinc atoms form random precipitates of Zn 3 P 2 and elemental Zn. However, when rapidly cooled only 60% of the zinc forms such precipitates while the rest occupies specific sites in the InP. We analyze our results in terms of the amphoteric native defect model. We show that the difference in the electrical activity of the Zn atoms in GaAs and InP is a consequence of the different location of the Fermi level stabilization energy in these two materials

  19. Research on the Single Grit Scratching Process of Oxygen-Free Copper (OFC

    Directory of Open Access Journals (Sweden)

    Libin Zhang

    2018-04-01

    Full Text Available Single grit scratching is a basic form of material removal for many processes, such as grinding single point diamond turning and coating bonding performance tests. It has been widely used in the study of micro-scale and nano-scale material removal mechanisms. In this study, single grit linearly loading scratching tests were carried out on a scratching tester. A Rockwell indenter made of natural diamond was selected as the tool used, and the material of the workpiece was oxygen-free copper. Scratch topography was measured using a super-depth microscope to analyze the material deformation of the scratching process. A single grit scratching simulation has been developed by AdvantEdge™ to comprehensively study the material deformation of scratching processes. A material constitutive model and friction model were acquired using a quasi-static uniaxial compression experiment and a reciprocating friction test, respectively. These two models were used as the input models in the finite simulations. The simulated scratching forces aligned well with the experimental scratching forces, which verified the precision of the simulation model. Since only the scratching force could be obtained in the scratching experiment, the plastic strain, material flow, and residual stress of the scratching were further analyzed using simulations. The results showed that the plastic strain of the workpiece increased with the increase in scratching depth, and further analysis showed that the workpiece surface was distributed with residual compressive stress and the sub-surface was distributed with residual tensile stress in single grit scratching.

  20. The relationship between alveolar oxygen tension and the single-breath carbon monoxide diffusing capacity.

    Science.gov (United States)

    Kanner, R E; Crapo, R O

    1986-04-01

    The effects of alveolar oxygen tension (PAO2) on the single-breath carbon monoxide diffusing capacity (DLCO) were quantified and a factor was derived to accommodate for differences in PAO2 over commonly encountered altitudes and/or varying concentrations of oxygen in the test gas mixture (FIO2) We performed duplicate measurements of DLCO in 7 normal subjects with 6 different oxygen fractions (0.176, 0.196, 0.211, 0.22, 0.25, and 0.27). The PAO2 for each test was measured as the PO2 in the alveolar gas sample bag. DLCO varied inversely with PAO2 and changed by 0.35% for each mmHg change in PAO2 (r = -0.62, p less than 0.001). At an FIO2 of 0.25, PAO2 varied between subjects and was highly correlated with each subject's residual volume to total lung capacity ratio (r = -0.84, p less than 0.001). We suggest that laboratories can adjust the measured DLCO when PAO2 is not congruent to 120 mmHg by the following formula: DLCO (corrected = DLCO (measured) x [1.0 + 0.0035 (PAO2 - 120)].

  1. Clustered atom-replaced structure in single-crystal-like metal oxide

    Science.gov (United States)

    Araki, Takeshi; Hayashi, Mariko; Ishii, Hirotaka; Yokoe, Daisaku; Yoshida, Ryuji; Kato, Takeharu; Nishijima, Gen; Matsumoto, Akiyoshi

    2018-06-01

    By means of metal organic deposition using trifluoroacetates (TFA-MOD), we replaced and localized two or more atoms in a single-crystalline structure having almost perfect orientation. Thus, we created a new functional structure, namely, clustered atom-replaced structure (CARS), having single-crystal-like metal oxide. We replaced metals in the oxide with Sm and Lu and localized them. Energy dispersive x-ray spectroscopy results, where the Sm signal increases with the Lu signal in the single-crystalline structure, confirm evidence of CARS. We also form other CARS with three additional metals, including Pr. The valence number of Pr might change from 3+ to approximately 4+, thereby reducing the Pr–Ba distance. We directly observed the structure by a high-angle annular dark-field image, which provided further evidence of CARS. The key to establishing CARS is an equilibrium chemical reaction and a combination of additional larger and smaller unit cells to matrix cells. We made a new functional metal oxide with CARS and expect to realize CARS in other metal oxide structures in the future by using the above-mentioned process.

  2. Single and multiple ionization of noble gas atoms by H0 impact

    International Nuclear Information System (INIS)

    Sarkadi, L.; Gulyas, L.; Herczku, P.; Kovacs, S.T.S.; Koever, A.

    2012-01-01

    Complete text of publication follows. The understanding of the mechanisms of collisions between energetic charged particles and neutral atoms is of fundamental significance, and it has large importance in many research fields (plasma physics, astrophysics, materials science, etc.), as well as in number of practical applications. In the present work we measured total direct ionization and electron loss cross sections for the collisions of H 0 atoms with noble gas atoms (He, Ne, Ar, Kr) in the energy range 75-300 keV. The experiment was carried out at the 1.5 MV Van de Graaff accelerator of Atomki by coincident detection of the recoil target ions and the charge-state analyzed scattered projectiles. With this study we wished to obtain information about the role played by the electron of the H 0 projectile in the process of the single and multiple vacancy production induced by the collision. For this purpose we repeated the measurements also with proton projectile under the same experimental conditions. For calibration of the measuring system and normalization of our data we used the cross section values of Ref. [1]. The experimental results were analysed with using the classical trajectory Monte Carlo (CTMC) method. CTMC describes well the experimental data for both projectiles for the single vacancy creation, however we observed increasing deviation between the theory and experiment with increasing number of the created vacancies, as well as with decreasing atomic number of the target atoms. Fig. 1 shows our results obtained for the single, double and triple ionization (q = 1, 2, 3) of Kr at H 0 impact for the two cases when the outgoing projectile is H 0 (a) and H + (b), i.e., for pure ionization of the target, and ionization of the target with simultaneous electron loss of the projectile. The curves in the figure were obtained by two versions of the three-body CTMC theory: a conventional model (dashed curves); and a model taking partially account of the many

  3. Hetero-atom doped carbon nanotubes for dye degradation and oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Nandan, Ravi, E-mail: aerawat27@gmail.com; Nanda, Karuna Kar [Materials Research Centre, Indian Institute of Science, Bangalore-560012 (India)

    2015-06-24

    We report the synthesis of nitrogen doped vertically aligned multi-walled (MWNCNTs) carbon nanotubes by pyrolysis and its catalytic performance for degradation of methylene blue (MB) dye & oxygen reduction reaction (ORR). The degradation of MB was monitored spectrophotometrically with time. Kinetic studies show the degradation of MB follows a first order kinetic with rate constant k=0.0178 min{sup −1}. The present rate constant is better than that reported for various supported/non-supported semiconducting nanomaterials. Further ORR performance in alkaline media makes MWNCNTs a promising cost-effective, fuel crossover tolerance, metal-free, eco-friendly cathode catalyst for direct alcohol fuel cell.

  4. Atmospheric plasma generates oxygen atoms as oxidizing species in aqueous solutions

    Czech Academy of Sciences Publication Activity Database

    Hefny, M.M.; Pattyn, C.; Lukeš, Petr; Benedikt, J.

    2016-01-01

    Roč. 49, č. 40 (2016), s. 404002 ISSN 0022-3727 R&D Projects: GA MŠk(CZ) LD14080 Grant - others:European Cooperation in Science and Technology(XE) COST TD1208 Institutional support: RVO:61389021 Keywords : atmospheric pressure plasma * transport of reactive species * reactive oxygen species * aqueous phase chemistry * plasma and liquids * phenol aqueous chemistry Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.588, year: 2016 http://iopscience.iop.org/article/10.1088/0022-3727/49/40/404002

  5. Atmospheric plasma generates oxygen atoms as oxidizing species in aqueous solutions

    International Nuclear Information System (INIS)

    Hefny, Mohamed Mokhtar; Pattyn, Cedric; Benedikt, Jan; Lukes, Petr

    2016-01-01

    A remote microscale atmospheric pressure plasma jet ( µ APPJ) with He, He/H 2 O, He/O 2 , and He/O 2 /H 2 O gas mixtures was used to study the transport of reactive species from the gas phase into the liquid and the following aqueous phase chemistry. The effects induced by the µ APPJ in water were quantitatively studied using phenol as a chemical probe and by measuring H 2 O 2 concentration and pH values. These results were combined with the analysis of the absolute densities of the reactive species and the modeling of convective/diffusion transport and recombination reactions in the effluent of the plasma jet. Additionally, modified plasma jets were used to show that the role of emitted photons in aqueous chemistry is negligible for these plasma sources. The fastest phenol degradation was measured for the He/O 2 plasma, followed by He/H 2 O, He/O 2 /H 2 O, and He plasmas. The modeled quantitative flux of O atoms into the liquid in the He/O 2 plasma case was highly comparable with the phenol degradation rate and showed a very high transfer efficiency of reactive species from the plasma into the liquid, where more than half of the O atoms leaving the jet nozzle entered the liquid. The results indicate that the high oxidative effect of He/O 2 plasma was primarily due to solvated O atoms, whereas OH radicals dominated the oxidative effects induced in water by plasmas with other gas mixtures. These findings help to understand, in a quantitative way, the complex interaction of cold atmospheric plasmas with aqueous solutions and will allow a better understanding of the interaction of these plasmas with water or buffered solutions containing biological macromolecules, microorganisms, or even eukaryotic cells. Additionally, the µ APPJ He/O 2 plasma source seems to be an ideal tool for the generation of O atoms in aqueous solutions for any future studies of their reactivity. (paper)

  6. Coupling of carbon monoxide molecules over oxygen-defected UO2(111) single crystal and thin film surfaces.

    Science.gov (United States)

    Senanayake, S D; Waterhouse, G I N; Idriss, H; Madey, Theodore E

    2005-11-22

    While coupling reactions of carbon-containing compounds are numerous in organometallic chemistry, they are very rare on well-defined solid surfaces. In this work we show that the reductive coupling of two molecules of carbon monoxide to C2 compounds (acetylene and ethylene) could be achieved on oxygen-defected UO2(111) single crystal and thin film surfaces. This result allows in situ electron spectroscopic investigation of a typical organometallic reaction such as carbon coupling and extends it to heterogeneous catalysis and solids. By using high-resolution photoelectron spectroscopy (HRXPS) it was possible to track the changes in surface states of the U and O atoms as well as identify the intermediate of the reaction. Upon CO adsorption U cations in low oxidation states are oxidized to U4+ ions; this was accompanied by an increase of the O-to-U surface ratios. The HRXPS C 1s lines show the presence of adsorbed species assigned to diolate species (-OCH=CHO-) that are most likely the reaction intermediate in the coupling of two CO molecules to acetylene and ethylene.

  7. Coupling of Carbon Monoxide Molecules over Oxygen Defected UO2 (111) Single Crystal and Thin Film Surfaces

    International Nuclear Information System (INIS)

    Senanayake, S.; Waterhouse, G.; Idriss, H.; Madey, T.

    2005-01-01

    While coupling reactions of carbon-containing compounds are numerous in organometallic chemistry, they are very rare on well-defined solid surfaces. In this work we show that the reductive coupling of two molecules of carbon monoxide to C 2 compounds (acetylene and ethylene) could be achieved on oxygen-defected UO 2 (111) single crystal and thin film surfaces. This result allows in situ electron spectroscopic investigation of a typical organometallic reaction such as carbon coupling and extends it to heterogeneous catalysis and solids. By using high-resolution photoelectron spectroscopy (HRXPS) it was possible to track the changes in surface states of the U and O atoms as well as identify the intermediate of the reaction. Upon CO adsorption U cations in low oxidation states are oxidized to U 4+ ions; this was accompanied by an increase of the O-to-U surface ratios. The HRXPS C 1s lines show the presence of adsorbed species assigned to diolate species (-OCH=CHO-) that are most likely the reaction intermediate in the coupling of two CO molecules to acetylene and ethylene

  8. The effect of atomic hydrogen adsorption on single-walled carbon nano tubes properties

    International Nuclear Information System (INIS)

    Jalili, S.; Majidi, R.

    2007-01-01

    We investigated the adsorption of hydrogen atoms on metallic single-walled carbon nano tubes using ab initio molecular dynamics method. It was found that the geometric structures and the electronic properties of hydrogenated SWNTs can be strongly changed by varying hydrogen coverage. The circular cross sections of the CNTs were changed with different hydrogen coverage. When hydrogen is chemisorbed on the surface of the carbon nano tube, the energy gap will be appeared. This is due to the degree of the Sp 3 hybridization, and the hydrogen coverage can control the band gap of the carbon nano tube

  9. Highly efficient electron gun with a single-atom electron source

    International Nuclear Information System (INIS)

    Ishikawa, Tsuyoshi; Urata, Tomohiro; Cho, Boklae; Rokuta, Eiji; Oshima, Chuhei; Terui, Yoshinori; Saito, Hidekazu; Yonezawa, Akira; Tsong, Tien T.

    2007-01-01

    The authors have demonstrated highly collimated electron-beam emission from a practical electron gun with a single-atom electron source; ∼80% of the total emission current entered the electron optics. This ratio was two or three orders of magnitude higher than those of the conventional electron sources such as a cold field emission gun and a Zr/O/W Schottky gun. At the pressure of less than 1x10 -9 Pa, the authors observed stable emission of 20 nA, which generates the specimen current of 5 pA required for scanning electron microscopes

  10. Shot noise as a probe of spin-correlated transport through single atoms

    Science.gov (United States)

    Pradhan, S.; Fransson, J.

    2018-03-01

    We address the shot noise in the tunneling current through a local spin, pertaining to recent experiments on magnetic adatoms and single molecular magnets. We show that both uncorrelated and spin-correlated scattering processes contribute vitally to the noise spectrum. The spin-correlated scattering processes provide an additional contribution to the Landauer-Büttiker shot noise expression, accounting for correlations between the tunneling electrons and the localized spin moment. By calculating the Fano factor, we show that both super- and sub-Poissonian shot noise can be described within our approach. Our theory provides transparent insights into noise spectroscopy, consistent with recent experiments using local probing techniques on magnetic atoms.

  11. Electron-ion correlation effects in ion-atom single ionization

    Energy Technology Data Exchange (ETDEWEB)

    Colavecchia, F.D.; Garibotti, C.R. [Centro Atomico Bariloche and Consejo Nacional de Investigaciones Cientificas y Tecnicas, 8400 San Carlos de Bariloche (Argentina); Gasaneo, G. [Departamento de Fisica, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahia Blanca (Argentina)

    2000-06-28

    We study the effect of electron-ion correlation in single ionization processes of atoms by ion impact. We present a distorted wave model where the final state is represented by a correlated function solution of a non-separable three-body continuum Hamiltonian, that includes electron-ion correlation as coupling terms of the wave equation. A comparison of the electronic differential cross sections computed with this model with other theories and experimental data reveals that the influence of the electron-ion correlation is more significant for low energy emitted electrons. (author). Letter-to-the-editor.

  12. Communication: atomic force detection of single-molecule nonlinear optical vibrational spectroscopy.

    Science.gov (United States)

    Saurabh, Prasoon; Mukamel, Shaul

    2014-04-28

    Atomic Force Microscopy (AFM) allows for a highly sensitive detection of spectroscopic signals. This has been first demonstrated for NMR of a single molecule and recently extended to stimulated Raman in the optical regime. We theoretically investigate the use of optical forces to detect time and frequency domain nonlinear optical signals. We show that, with proper phase matching, the AFM-detected signals closely resemble coherent heterodyne-detected signals. Applications are made to AFM-detected and heterodyne-detected vibrational resonances in Coherent Anti-Stokes Raman Spectroscopy (χ((3))) and sum or difference frequency generation (χ((2))).

  13. Manipulating molecular quantum states with classical metal atom inputs: demonstration of a single molecule NOR logic gate.

    Science.gov (United States)

    Soe, We-Hyo; Manzano, Carlos; Renaud, Nicolas; de Mendoza, Paula; De Sarkar, Abir; Ample, Francisco; Hliwa, Mohamed; Echavarren, Antonio M; Chandrasekhar, Natarajan; Joachim, Christian

    2011-02-22

    Quantum states of a trinaphthylene molecule were manipulated by putting its naphthyl branches in contact with single Au atoms. One Au atom carries 1-bit of classical information input that is converted into quantum information throughout the molecule. The Au-trinaphthylene electronic interactions give rise to measurable energy shifts of the molecular electronic states demonstrating a NOR logic gate functionality. The NOR truth table of the single molecule logic gate was characterized by means of scanning tunnelling spectroscopy.

  14. Room-temperature current blockade in atomically defined single-cluster junctions

    Science.gov (United States)

    Lovat, Giacomo; Choi, Bonnie; Paley, Daniel W.; Steigerwald, Michael L.; Venkataraman, Latha; Roy, Xavier

    2017-11-01

    Fabricating nanoscopic devices capable of manipulating and processing single units of charge is an essential step towards creating functional devices where quantum effects dominate transport characteristics. The archetypal single-electron transistor comprises a small conducting or semiconducting island separated from two metallic reservoirs by insulating barriers. By enabling the transfer of a well-defined number of charge carriers between the island and the reservoirs, such a device may enable discrete single-electron operations. Here, we describe a single-molecule junction comprising a redox-active, atomically precise cobalt chalcogenide cluster wired between two nanoscopic electrodes. We observe current blockade at room temperature in thousands of single-cluster junctions. Below a threshold voltage, charge transfer across the junction is suppressed. The device is turned on when the temporary occupation of the core states by a transiting carrier is energetically enabled, resulting in a sequential tunnelling process and an increase in current by a factor of ∼600. We perform in situ and ex situ cyclic voltammetry as well as density functional theory calculations to unveil a two-step process mediated by an orbital localized on the core of the cluster in which charge carriers reside before tunnelling to the collector reservoir. As the bias window of the junction is opened wide enough to include one of the cluster frontier orbitals, the current blockade is lifted and charge carriers can tunnel sequentially across the junction.

  15. Localization and force analysis at the single virus particle level using atomic force microscopy

    International Nuclear Information System (INIS)

    Liu, Chih-Hao; Horng, Jim-Tong; Chang, Jeng-Shian; Hsieh, Chung-Fan; Tseng, You-Chen; Lin, Shiming

    2012-01-01

    Highlights: ► Localization of single virus particle. ► Force measurements. ► Force mapping. -- Abstract: Atomic force microscopy (AFM) is a vital instrument in nanobiotechnology. In this study, we developed a method that enables AFM to simultaneously measure specific unbinding force and map the viral glycoprotein at the single virus particle level. The average diameter of virus particles from AFM images and the specificity between the viral surface antigen and antibody probe were integrated to design a three-stage method that sets the measuring area to a single virus particle before obtaining the force measurements, where the influenza virus was used as the object of measurements. Based on the purposed method and performed analysis, several findings can be derived from the results. The mean unbinding force of a single virus particle can be quantified, and no significant difference exists in this value among virus particles. Furthermore, the repeatability of the proposed method is demonstrated. The force mapping images reveal that the distributions of surface viral antigens recognized by antibody probe were dispersed on the whole surface of individual virus particles under the proposed method and experimental criteria; meanwhile, the binding probabilities are similar among particles. This approach can be easily applied to most AFM systems without specific components or configurations. These results help understand the force-based analysis at the single virus particle level, and therefore, can reinforce the capability of AFM to investigate a specific type of viral surface protein and its distributions.

  16. Irradiation of cells by single and double pulses of high intensity radiation: oxygen sensitization and diffusion kinetics

    International Nuclear Information System (INIS)

    Epp, E.R.; Ling, C.C.; Weiss, H.

    1976-01-01

    This paper discusses advances made on both experimental and theoretical approaches involving single and double pulses of high intensity ionizing radiation delivered to cultured bacterial and mammalian cells where the effect of oxygen is concerned. Information gained on the lifetime of oxygen-sensitive species suspected to be produced in critical molecules in irradiated cells and perhaps intimately related to the still unknown mechanisms of oxygen sensitization is described. The diffusion characteristics of oxygen at the cellular level obtained from experimental data are discussed. Current knowledge on intracellular radiolytic oxygen depletion is also presented. Future work on the use of high intensity pulsed radiation as a tool in cellular radiobiological research is outlined. It is expected that obtaining knowledge of the time available for damaged molecules to enter into chemical reactions may lead to insights into the mechanisms of radiation injury in cells, such as those involved in the oxygen effect. (Auth.)

  17. First-Principles Study on the Structural and Electronic Properties of N Atoms Doped-Rutile TiO2 of Oxygen Vacancies

    Directory of Open Access Journals (Sweden)

    Zhong-Liang Zeng

    2015-01-01

    Full Text Available For the propose of considering the actual situation of electronic neutral, a simulation has been down on the basis of choosing the position of dual N and researching the oxygen vacancy. It is found that the reason why crystal material gets smaller is due to the emergence of impurity levels. By introducing the oxygen vacancy to the structure, the results show that while the oxygen vacancy is near the two nitrogen atoms which have a back to back position, its energy gets the lowest level and its structure gets the most stable state. From its energy band structure and density, the author finds that the impurity elements do not affect the migration of Fermi level while the oxygen vacancy has been increased. Instead of that, the conduction band of metal atoms moves to the Fermi level and then forms the N-type semiconductor material, but the photocatalytic activity is not as good as the dual N-doping state.

  18. Simple and efficient absorption filter for single photons from a cold atom quantum memory.

    Science.gov (United States)

    Stack, Daniel T; Lee, Patricia J; Quraishi, Qudsia

    2015-03-09

    The ability to filter unwanted light signals is critical to the operation of quantum memories based on neutral atom ensembles. Here we demonstrate an efficient frequency filter which uses a vapor cell filled with (85)Rb and a buffer gas to attenuate both residual laser light and noise photons by nearly two orders of magnitude with little loss to the single photons associated with our cold (87)Rb quantum memory. This simple, passive filter provides an additional 18 dB attenuation of our pump laser and erroneous spontaneous emissions for every 1 dB loss of the single photon signal. We show that the addition of a frequency filter increases the non-classical correlations and the retrieval efficiency of our quantum memory by ≈ 35%.

  19. Quantum Hall states of atomic Bose gases: Density profiles in single-layer and multilayer geometries

    International Nuclear Information System (INIS)

    Cooper, N. R.; Lankvelt, F. J. M. van; Reijnders, J. W.; Schoutens, K.

    2005-01-01

    We describe the density profiles of confined atomic Bose gases in the high-rotation limit, in single-layer and multilayer geometries. We show that, in a local-density approximation, the density in a single layer shows a landscape of quantized steps due to the formation of incompressible liquids, which are analogous to fractional quantum Hall liquids for a two-dimensional electron gas in a strong magnetic field. In a multilayered setup we find different phases, depending on the strength of the interlayer tunneling t. We discuss the situation where a vortex lattice in the three-dimensional condensate (at large tunneling) undergoes quantum melting at a critical tunneling t c 1 . For tunneling well below t c 1 one expects weakly coupled or isolated layers, each exhibiting a landscape of quantum Hall liquids. After expansion, this gives a radial density distribution with characteristic features (cusps) that provide experimental signatures of the quantum Hall liquids

  20. Single Pd Atoms on θ-Al2O3 (010) Surface do not Catalyze NO Oxidation.

    Science.gov (United States)

    Narula, Chaitanya K; Allard, Lawrence F; Moses-DeBusk, Melanie; Stocks, G Malcom; Wu, Zili

    2017-04-03

    New convenient wet-chemistry synthetic routes have made it possible to explore catalytic activities of a variety of single supported atoms, however, the single supported atoms on inert substrates (e.g. alumina) are limited to adatoms and cations of Pt, Pd, and Ru. Previously, we have found that single supported Pt atoms are remarkable NO oxidation catalysts. In contrast, we report that Pd single atoms are completely inactive for NO oxidation. The diffuse reflectance infra-red spectroscopy (DRIFTS) results show the absence of nitrate formation on catalyst. To explain these results, we explored modified Langmuir-Hinshelwood type pathways that have been proposed for oxidation reactions on single supported atom. In the first pathway, we find that there is energy barrier for the release of NO 2 which prevent NO oxidation. In the second pathway, our results show that there is no driving force for the formation of O=N-O-O intermediate or nitrate on single supported Pd atoms. The decomposition of nitrate, if formed, is an endothermic event.

  1. Mid-latitude empirical model of the height distribution of atomic oxygen in the MLT region for different solar and geophysical conditions

    Science.gov (United States)

    Semenov, A.; Shefov, N.; Fadel, Kh.

    The model of altitude distributions of atomic oxygen in the region of the mesopause and lower thermosphere (MLT) is constructed on the basis of empirical models of variations of the intensities, temperatures and altitudes of maximum of the layers of the emissions of atomic oxygen at 557.7 nm, hydroxyl and Atmospheric system of molecular oxygen. An altitude concentration distribution of neutral components is determined on the basis of systematization of the long-term data of temperature of the middle atmosphere from rocket, nightglow and ionospheric measurements at heights of 30-110 km in middle latitudes. They include dependence on a season, solar activity and a long-term trend. Examples of results of calculation for different months of year for conditions of the lower and higher solar activity are presented. With increasing of solar activity, the height of a layer of a maximum of atomic oxygen becomes lower, and the thickness of the layer increases. There is a high correlation between characteristics of a layer of atomic oxygen and a maximum of temperature at heights of the mesopause and lower thermosphere. This work is supported by grant of ISTC No. 2274.

  2. Preparation of high-content hexagonal boron nitride composite film and characterization of atomic oxygen erosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu; Li, Min; Gu, Yizhuo; Wang, Shaokai, E-mail: wsk@buaa.edu.cn; Zhang, Zuoguang

    2017-04-30

    Highlights: • Hexagonal boron nitride nanosheets can be well exfoliated with the help of nanofibrillated cellulose. • A carpet-like rough surface and distortion in crystal structure of h-BN are found in both h-BN film and h-BN/epoxy film after AO exposure. • H-BN/epoxy film exhibits a higher mass loss and erosion yield, different element content changes and chemical oxidations compared with h-BN film. - Abstract: Space aircrafts circling in low earth orbit are suffered from highly reactive atomic oxygen (AO). To shield AO, a flexible thin film with 80 wt.% hexagonal boron nitride (h-BN) and h-BN/epoxy film were fabricated through vacuum filtration and adding nanofibrillated cellulose fibers. H-BN nanosheets were hydroxylated for enhancing interaction in the films. Mass loss and erosion yield at accumulated AO fluence about 3.04 × 10{sup 20} atoms/cm{sup 2} were adopted to evaluate the AO resistance properties of the films. A carpet-like rough surface, chemical oxidations and change in crystal structure of h-BN were found after AO treatment, and the degrading mechanism was proposed. The mass loss and erosion yield under AO attack were compared between h-BN film and h-BN/epoxy film, and the comparison was also done for various types of shielding AO materials. Excellent AO resistance property of h-BN film is shown, and the reasons are analyzed.

  3. Calibration of reconstruction parameters in atom probe tomography using a single crystallographic orientation

    International Nuclear Information System (INIS)

    Suram, Santosh K.; Rajan, Krishna

    2013-01-01

    The purpose of this work is to develop a methodology to estimate the APT reconstruction parameters when limited crystallographic information is available. Reliable spatial scaling of APT data currently requires identification of multiple crystallographic poles from the field desorption image for estimating the reconstruction parameters. This requirement limits the capacity of accurately reconstructing APT data for certain complex systems, such as highly alloyed systems and nanostructured materials wherein more than one pole is usually not observed within one grain. To overcome this limitation, we develop a quantitative methodology for calibrating the reconstruction parameters in an APT dataset by ensuring accurate inter-planar spacing and optimizing the curvature correction for the atomic planes corresponding to a single crystallographic orientation. We validate our approach on an aluminum dataset and further illustrate its capabilities by computing geometric reconstruction parameters for W and Al–Mg–Sc datasets. - Highlights: ► Quantitative approach is developed to accurately reconstruct APT data. ► Curvature of atomic planes in APT data is used to calibrate the reconstruction. ► APT reconstruction parameters are determined from a single crystallographic axis. ► Quantitative approach is demonstrated on W, Al and Al–Mg–Sc systems. ► Accurate APT reconstruction of complex materials is now possible

  4. Nonperturbative theory of single/multiphoton processes in atoms and molecules induced by intense laser fields

    International Nuclear Information System (INIS)

    Lau, A.M.F.

    1975-04-01

    A quantum nonperturbative theory is given for the problem of a general n discrete-level atomic/molecular system interacting with a strong single-mode/multimode radiation field. The atomic/molecular energy-level structures are modified due to interaction with the laser field. These energy level shifts are derived in the rigorous solution to the adiabatic eigenvalue problem of the charge--field system, involving a simple iterative procedure. The task of solution is simplified by recurrence relations between matrices connecting probability amplitudes of successive photon numbers. New formulae for calculating probability of single/multiphoton transitions between three resonant shifted levels and between some cases of two near-resonant shifted levels are derived. This general formalism can be applied to calculate transition probabilities of various atomic/molecular photo processes of interest. Numerical values are obtained for the inelastic cross section of the slow-collisional process Li + H and for dissociation cross section of LiH molecule. The transition probabilities of Na (3s → 5s by absorption of two photon of lambda = 0.60233μ -- 0.602396 μ) and of Li (2s → 3s by absorption of eight photons of lambda = 2.9406 μ -- 2.945 μ) irradiated by a strong pulse are calculated. Finally, a parametric study is carried out for the process where a molecular system is interacting with two intense radiation fields of different wavelengths. Owing to potential barrier shift due to the much more intense field, the molecular system penetrates into an otherwise inaccessible region in the potential level where it is allowed to radiate to a lower level by emitting photons at a second wavelength. (12 figures, 6 tables) (U.S.)

  5. Oxidation of nitrite by a trans-dioxoruthenium(VI) complex: direct evidence for reversible oxygen atom transfer.

    Science.gov (United States)

    Man, Wai-Lun; Lam, William W Y; Wong, Wai-Yeung; Lau, Tai-Chu

    2006-11-15

    Reaction of trans-[Ru(VI)(L)(O)(2)](2+) (1, L = 1,12-dimethyl-3,4:9,10-dibenzo-1,12-diaza-5,8-dioxacyclopentadecane, a tetradentate macrocyclic ligand with N(2)O(2) donor atoms) with nitrite in aqueous solution or in H(2)O/CH(3)CN produces the corresponding (nitrato)oxoruthenium(IV) species, trans-[Ru(IV)(L)(O)(ONO(2))](+) (2), which then undergoes relatively slow aquation to give trans-[Ru(IV)(L)(O)(OH(2))](2+). These processes have been monitored by both ESI/MS and UV/vis spectrophotometry. The structure of trans-[Ru(IV)(L)(O)(ONO(2))](+) (2) has been determined by X-ray crystallography. The ruthenium center adopts a distorted octahedral geometry with the oxo and the nitrato ligands trans to each other. The Ru=O distance is 1.735(3) A, the Ru-ONO(2) distance is 2.163(4) A, and the Ru-O-NO(2) angle is 138.46(35) degrees . Reaction of trans-[Ru(VI)(L)((18)O)(2)](2+) (1-(18)O(2)) with N(16)O(2)(-) in H(2)O/CH(3)CN produces the (18)O-enriched (nitrato)oxoruthenium(IV) species 2-(18)O(2). Analysis of the ESI/MS spectrum of 2-(18)O(2) suggests that scrambling of the (18)O atoms has occurred. A mechanism that involves linkage isomerization of the nitrato ligand and reversible oxygen atom transfer is proposed.

  6. Detecting and locating light atoms from high-resolution STEM images: The quest for a single optimal design

    Energy Technology Data Exchange (ETDEWEB)

    Gonnissen, J.; De Backer, A. [Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Dekker, A.J. den [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk (Belgium); Delft Center for Systems and Control (DCSC), Delft University of Technology, Mekelweg 2, 2628 CD Delft (Netherlands); Sijbers, J. [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk (Belgium); Van Aert, S., E-mail: sandra.vanaert@uantwerpen.be [Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2016-11-15

    In the present paper, the optimal detector design is investigated for both detecting and locating light atoms from high resolution scanning transmission electron microscopy (HR STEM) images. The principles of detection theory are used to quantify the probability of error for the detection of light atoms from HR STEM images. To determine the optimal experiment design for locating light atoms, use is made of the so-called Cramér–Rao Lower Bound (CRLB). It is investigated if a single optimal design can be found for both the detection and location problem of light atoms. Furthermore, the incoming electron dose is optimised for both research goals and it is shown that picometre range precision is feasible for the estimation of the atom positions when using an appropriate incoming electron dose under the optimal detector settings to detect light atoms. - Highlights: • The optimal detector design to detect and locate light atoms in HR STEM is derived. • The probability of error is quantified and used to detect light atoms. • The Cramér–Rao lower bound is calculated to determine the atomic column precision. • Both measures are evaluated and result in the single optimal LAADF detector regime. • The incoming electron dose is optimised for both research goals.

  7. Using micro-patterned sensors and cell self-assembly for measuring the oxygen consumption rate of single cells

    International Nuclear Information System (INIS)

    Etzkorn, James R; Parviz, Babak A; Wu, Wen-Chung; Tian, Zhiyuan; Kim, Prince; Jang, Sei-Hum; Jen, Alex K-Y; Meldrum, Deirdre R

    2010-01-01

    We present a method for self-assembling arrays of live single cells on a glass chip using a photopatternable polymer to form micro-traps. We have studied the single-cell self-assembly method and optimized the process to obtain a 52% yield of single-trapped cells. We also report a method to measure the oxygen consumption rate of a single cell using micro-patterned sensors. These molecular oxygen sensors were fabricated around each micro-trap allowing optical interrogation of oxygen concentration in the immediate environment of the trapped cell. Micromachined micro-wells were then used to seal the trap, sensor and cell in order to determine the oxygen consumption rate of single cells. These techniques reported here add to the collection of tools for performing 'singe-cell' biology. An oxygen consumption rate of 1.05 ± 0.28 fmol min −1 was found for a data set consisting of 25 single A549 cells.

  8. Single-cell manipulation and DNA delivery technology using atomic force microscopy and nanoneedle.

    Science.gov (United States)

    Han, Sung-Woong; Nakamura, Chikashi; Miyake, Jun; Chang, Sang-Mok; Adachi, Taiji

    2014-01-01

    The recent single-cell manipulation technology using atomic force microscopy (AFM) not only allows high-resolution visualization and probing of biomolecules and cells but also provides spatial and temporal access to the interior of living cells via the nanoneedle technology. Here we review the development and application of single-cell manipulations and the DNA delivery technology using a nanoneedle. We briefly describe various DNA delivery methods and discuss their advantages and disadvantages. Fabrication of the nanoneedle, visualization of nanoneedle insertion into living cells, DNA modification on the nanoneedle surface, and the invasiveness of nanoneedle insertion into living cells are described. Different methods of DNA delivery into a living cell, such as lipofection, microinjection, and nanoneedles, are then compared. Finally, single-cell diagnostics using the nanoneedle and the perspectives of the nanoneedle technology are outlined. The nanoneedle-based DNA delivery technology provides new opportunities for efficient and specific introduction of DNA and other biomolecules into precious living cells with a high spatial resolution within a desired time frame. This technology has the potential to be applied for many basic cellular studies and for clinical studies such as single-cell diagnostics.

  9. Detecting and locating light atoms from high-resolution STEM images: The quest for a single optimal design.

    Science.gov (United States)

    Gonnissen, J; De Backer, A; den Dekker, A J; Sijbers, J; Van Aert, S

    2016-11-01

    In the present paper, the optimal detector design is investigated for both detecting and locating light atoms from high resolution scanning transmission electron microscopy (HR STEM) images. The principles of detection theory are used to quantify the probability of error for the detection of light atoms from HR STEM images. To determine the optimal experiment design for locating light atoms, use is made of the so-called Cramér-Rao Lower Bound (CRLB). It is investigated if a single optimal design can be found for both the detection and location problem of light atoms. Furthermore, the incoming electron dose is optimised for both research goals and it is shown that picometre range precision is feasible for the estimation of the atom positions when using an appropriate incoming electron dose under the optimal detector settings to detect light atoms. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters.

    Science.gov (United States)

    Chin, Ya-Huei Cathy; Buda, Corneliu; Neurock, Matthew; Iglesia, Enrique

    2011-10-12

    barrierless. In the absence of O(2), alternate weaker oxidants, such as H(2)O or CO(2), lead to a final kinetic regime in which C-H bond dissociation on *-* pairs at bare cluster surfaces limit CH(4) conversion rates. Rates become first-order in CH(4) and independent of coreactant and normal CH(4)/CD(4) kinetic isotope effects are observed. In this case, turnover rates increase with increasing dispersion, because low-coordination Pt atoms stabilize the C-H bond activation transition states more effectively via stronger binding to CH(3) and H fragments. These findings and their mechanistic interpretations are consistent with all rate and isotopic data and with theoretical estimates of activation barriers and of cluster size effects on transition states. They serve to demonstrate the essential role of the coverage and reactivity of chemisorbed oxygen in determining the type and effectiveness of surface structures in CH(4) oxidation reactions using O(2), H(2)O, or CO(2) as oxidants, as well as the diversity of rate dependencies, activation energies and entropies, and cluster size effects that prevail in these reactions. These results also show how theory and experiments can unravel complex surface chemistries on realistic catalysts under practical conditions and provide through the resulting mechanistic insights specific predictions for the effects of cluster size and surface coordination on turnover rates, the trends and magnitude of which depend sensitively on the nature of the predominant adsorbed intermediates and the kinetically relevant steps.

  11. FORMING SELF-ASSEMBLED CELL ARRAYS AND MEASURING THE OXYGEN CONSUMPTION RATE OF A SINGLE LIVE CELL.

    Science.gov (United States)

    Etzkorn, James R; McQuaide, Sarah C; Anderson, Judy B; Meldrum, Deirdre R; Parviz, Babak A

    2009-06-01

    We report a method for forming arrays of live single cells on a chip using polymer micro-traps made of SU8. We have studied the toxicity of the microfabricated structures and the associated environment for two cell lines. We also report a method for measuring the oxygen consumption rate of a single cell using optical interrogation of molecular oxygen sensors placed in micromachined micro-wells by temporarily sealing the cells in the micro-traps. The new techniques presented here add to the collection of tools available for performing "single-cell" biology. A single-cell self-assembly yield of 61% was achieved with oxygen draw down rates of 0.83, 0.82, and 0.71 fmol/minute on three isolated live A549 cells.

  12. Theoretical insight into an empirical rule about organic corrosion inhibitors containing nitrogen, oxygen, and sulfur atoms

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Lei, E-mail: cqglei@163.com [School of Material and Chemical Engieering, Tongren University, Tongren 554300 (China); Obot, Ime Bassey [Center of Research Excellence in Corrosion, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Zheng, Xingwen [Material Corrosion and Protection Key Laboratory of Sichuan province, Zigong 643000 (China); Shen, Xun [School of Material and Chemical Engieering, Tongren University, Tongren 554300 (China); Qiang, Yujie [Material Corrosion and Protection Key Laboratory of Sichuan province, Zigong 643000 (China); Kaya, Savaş; Kaya, Cemal [Department of Chemistry, Faculty of Science, Cumhuriyet University, Sivas 58140 (Turkey)

    2017-06-01

    Highlights: • We obtained the habit information of α-Fe obtained by the “Morphology” module. • The adsorption of pyrrole, furan, and thiophene on Fe(110) surface were studied by DFT calculations. • Our DFT modeling provided a reasonable micro-explanation to the empirical rule. - Abstract: Steel is an important material in industry. Adding heterocyclic organic compounds have proved to be very efficient for steel protection. There exists an empirical rule that the general trend in the inhibition efficiencies of molecules containing heteroatoms is such that O < N < S. However, an atomic-level insight into the inhibition mechanism is still lacked. Thus, in this work, density functional theory calculations was used to investigate the adsorption of three typical heterocyclic molecules, i.e., pyrrole, furan, and thiophene, on Fe(110) surface. The approach is illustrated by carrying out geometric optimization of inhibitors on the stable and most exposed plane of α-Fe. Some salient features such as charge density difference, changes of work function, density of states were detailedly described. The present study is helpful to understand the afore-mentioned experiment rule.

  13. Solar photolysis of ozone to singlet D oxygen atoms, O(1D)

    International Nuclear Information System (INIS)

    Blackburn, T.E.

    1984-01-01

    Ground level solar photolysis rate coefficients (jO 3 ) were measured for the photolysis of ozone by sunlight, (O 3 + hnu( 2 + O( 1 D)). The O( 1 D) atoms produced react with nitrous oxide (N 2 O) carrier gas to form higher oxides of nitrogen (NOx). Computer model predictions show that these are mainly N 2 O 5 and NO 3 . Seventy five days of data were taken during the summer of 1983, at Ann Arbor, Michigan, and are presented in the appendix. Over 390 clear air jO 3 values are correlated with effective ozone column densities, and 500 nm aerosol optical depths. The solar direct beam component of ozone photolysis was measured for the different aerosol optical depths, over two entire days from sun-up to sun-down. Temperature dependence of jO 3 was measured from 10 0 C to 39 0 C with good agreement to models. Comparison of jO 3 versus global and ultraviolet radiation are made under various ozone column densities and aerosol optical depths. A jO 3 -photometer was built using an interference filter to pass only ozone photolyzing light. Improvements to instrumental parts are shown for balloon and aircraft flyable payloads

  14. Switchable diode effect in oxygen vacancy-modulated SrTiO{sub 3} single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Xinqiang; Shuai, Yao; Wu, Chuangui; Luo, Wenbo; Sun, Xiangyu; Zeng, Huizhong; Bai, Xiaoyuan; Gong, Chaoguan; Jian, Ke; Zhang, Wanli [University of Electronic Science and Technology of China, State Key Laboratory of Electronic Thin Films and Integrated Devices, Chengdu (China); Zhang, Lu; Guo, Hongliang [University of Electronic Science and Technology of China, The Center for Robotics, Chengdu (China); Tian, Benlang [26th Institute of China Electronics Technology Group Corporation, Chongqing (China)

    2017-09-15

    SrTiO{sub 3} (STO) single crystal wafer was annealed in vacuum, and co-planar metal-insulator-metal structure of Pt/Ti/STO/Ti/Pt were formed by sputtering Pt/Ti electrodes onto the surface of STO after annealing. The forming-free resistive switching behavior with self-compliance property was observed in the sample. The sample showed switchable diode effect, which is explained by a simple model that redistribution of oxygen vacancies (OVs) under the external electric field results in the formation of n-n{sup +} junction or n{sup +}-n junction (n donated n-type semiconductor; n{sup +} donated heavily doped n-type semiconductor). The self-compliance property is also interpreted by the formation of n-n{sup +}/n{sup +}-n junction caused by the migration of the OVs under the electric field. (orig.)

  15. High time resolution measurements of the thermosphere from Fabry-Perot Interferometer measurements of atomic oxygen

    Directory of Open Access Journals (Sweden)

    E. A. K. Ford

    2007-06-01

    Full Text Available Recent advances in the performance of CCD detectors have enabled a high time resolution study of the high latitude upper thermosphere with Fabry-Perot Interferometers (FPIs to be performed. 10-s integration times were used during a campaign in April 2004 on an FPI located in northern Sweden in the auroral oval. The FPI is used to study the thermosphere by measuring the oxygen red line emission at 630.0 nm, which emits at an altitude of approximately 240 km. Previous time resolutions have been 4 min at best, due to the cycle of look directions normally observed. By using 10 s rather than 40 s integration times, and by limiting the number of full cycles in a night, high resolution measurements down to 15 s were achievable. This has allowed the maximum variability of the thermospheric winds and temperatures, and 630.0 nm emission intensities, at approximately 240 km, to be determined as a few minutes. This is a significantly greater variability than the often assumed value of 1 h or more. A Lomb-Scargle analysis of this data has shown evidence of gravity wave activity with waves with short periods. Gravity waves are an important feature of mesosphere-lower thermosphere (MLT dynamics, observed using many techniques and providing an important mechanism for energy transfer between atmospheric regions. At high latitudes gravity waves may be generated in-situ by localised auroral activity. Short period waves were detected in all four clear nights when this experiment was performed, in 630.0 nm intensities and thermospheric winds and temperatures. Waves with many periodicities were observed, from periods of several hours, down to 14 min. These waves were seen in all parameters over several nights, implying that this variability is a typical property of the thermosphere.

  16. Population densities and rate coefficients for electron impact excitation in singly ionized oxygen

    International Nuclear Information System (INIS)

    Awakowicz, P.; Behringer, K.

    1995-01-01

    In non-LTE arc plasmas, O II excited state number densities were measured relative to the O II ground and metastable states. The results were compared with collisional-radiative code calculations on the basis of the JET ADAS programs. Stationary He plasmas with small oxygen admixtures, generated in a 5 mm diameter cascade arc chamber (pressures 13-70 hPa, arc current 150 A), were investigated spectroscopically in the visible and the VUV spectral range. The continuum of a 2 mm diameter pure He arc (atmospheric pressure, current 100 A) served for calibration of the VUV system response. Plasma diagnostics on the basis of Hβ Stark broadening yielded electron densities between 2.4 x 10 14 and 2.0 x 10 15 cm -3 for the low-pressure O II mixture plasmas. The agreement of measured and calculated excited state populations is generally very satisfactory, thus confirming the rate coefficients in the code. This is of particular interest in this intermediate region between corona balance and LTE, where many atomic data are required in the simulation. Clear indications were found for the diffusion of metastables lowering their number densities significantly below their statistical values. (author)

  17. Single d-metal atoms on F(s) and F(s+) defects of MgO(001): a theoretical study across the periodic table.

    Science.gov (United States)

    Neyman, Konstantin M; Inntam, Chan; Matveev, Alexei V; Nasluzov, Vladimir A; Rösch, Notker

    2005-08-24

    Single d-metal atoms on oxygen defects F(s) and F(s+) of the MgO(001) surface were studied theoretically. We employed an accurate density functional method combined with cluster models, embedded in an elastic polarizable environment, and we applied two gradient-corrected exchange-correlation functionals. In this way, we quantified how 17 metal atoms from groups 6-11 of the periodic table (Cu, Ag, Au; Ni, Pd, Pt; Co, Rh, Ir; Fe, Ru, Os; Mn, Re; and Cr, Mo, W) interact with terrace sites of MgO. We found bonding with F(s) and F(s+) defects to be in general stronger than that with O2- sites, except for Mn-, Re-, and Fe/F(s) complexes. In M/F(s) systems, electron density is accumulated on the metal center in a notable fashion. The binding energy on both kinds of O defects increases from 3d- to 4d- to 5d-atoms of a given group, at variance with the binding energy trend established earlier for the M/O2- complexes, 4d period, group 7 atoms are slightly destabilized compared to their group 6 congeners in both the F(s) and F(s+) complexes; for later transition elements, the binding energy increases gradually up to group 10 and finally decreases again in group 11, most strongly on the F(s) site. This trend is governed by the negative charge on the adsorbed atoms. We discuss implications for an experimental detection of metal atoms on oxide supports based on computed core-level energies.

  18. Nonheme Fe(IV) Oxo Complexes of Two New Pentadentate Ligands and Their Hydrogen-Atom and Oxygen-Atom Transfer Reactions.

    Science.gov (United States)

    Mitra, Mainak; Nimir, Hassan; Demeshko, Serhiy; Bhat, Satish S; Malinkin, Sergey O; Haukka, Matti; Lloret-Fillol, Julio; Lisensky, George C; Meyer, Franc; Shteinman, Albert A; Browne, Wesley R; Hrovat, David A; Richmond, Michael G; Costas, Miquel; Nordlander, Ebbe

    2015-08-03

    Two new pentadentate {N5} donor ligands based on the N4Py (N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine) framework have been synthesized, viz. [N-(1-methyl-2-benzimidazolyl)methyl-N-(2-pyridyl)methyl-N-(bis-2-pyridyl methyl)amine] (L(1)) and [N-bis(1-methyl-2-benzimidazolyl)methyl-N-(bis-2-pyridylmethyl)amine] (L(2)), where one or two pyridyl arms of N4Py have been replaced by corresponding (N-methyl)benzimidazolyl-containing arms. The complexes [Fe(II)(CH3CN)(L)](2+) (L = L(1) (1); L(2) (2)) were synthesized, and reaction of these ferrous complexes with iodosylbenzene led to the formation of the ferryl complexes [Fe(IV)(O)(L)](2+) (L = L(1) (3); L(2) (4)), which were characterized by UV-vis spectroscopy, high resolution mass spectrometry, and Mössbauer spectroscopy. Complexes 3 and 4 are relatively stable with half-lives at room temperature of 40 h (L = L(1)) and 2.5 h (L = L(2)). The redox potentials of 1 and 2, as well as the visible spectra of 3 and 4, indicate that the ligand field weakens as ligand pyridyl substituents are progressively substituted by (N-methyl)benzimidazolyl moieties. The reactivities of 3 and 4 in hydrogen-atom transfer (HAT) and oxygen-atom transfer (OAT) reactions show that both complexes exhibit enhanced reactivities when compared to the analogous N4Py complex ([Fe(IV)(O)(N4Py)](2+)), and that the normalized HAT rates increase by approximately 1 order of magnitude for each replacement of a pyridyl moiety; i.e., [Fe(IV)(O)(L(2))](2+) exhibits the highest rates. The second-order HAT rate constants can be directly related to the substrate C-H bond dissociation energies. Computational modeling of the HAT reactions indicates that the reaction proceeds via a high spin transition state.

  19. Absolute atomic oxygen and nitrogen densities in radio-frequency driven atmospheric pressure cold plasmas: Synchrotron vacuum ultra-violet high-resolution Fourier-transform absorption measurements

    International Nuclear Information System (INIS)

    Niemi, K.; O'Connell, D.; Gans, T.; Oliveira, N. de; Joyeux, D.; Nahon, L.; Booth, J. P.

    2013-01-01

    Reactive atomic species play a key role in emerging cold atmospheric pressure plasma applications, in particular, in plasma medicine. Absolute densities of atomic oxygen and atomic nitrogen were measured in a radio-frequency driven non-equilibrium plasma operated at atmospheric pressure using vacuum ultra-violet (VUV) absorption spectroscopy. The experiment was conducted on the DESIRS synchrotron beamline using a unique VUV Fourier-transform spectrometer. Measurements were carried out in plasmas operated in helium with air-like N 2 /O 2 (4:1) admixtures. A maximum in the O-atom concentration of (9.1 ± 0.7)×10 20 m −3 was found at admixtures of 0.35 vol. %, while the N-atom concentration exhibits a maximum of (5.7 ± 0.4)×10 19 m −3 at 0.1 vol. %

  20. Aspherical-atom modeling of coordination compounds by single-crystal X-ray diffraction allows the correct metal atom to be identified.

    Science.gov (United States)

    Dittrich, Birger; Wandtke, Claudia M; Meents, Alke; Pröpper, Kevin; Mondal, Kartik Chandra; Samuel, Prinson P; Amin Sk, Nurul; Singh, Amit Pratap; Roesky, Herbert W; Sidhu, Navdeep

    2015-02-02

    Single-crystal X-ray diffraction (XRD) is often considered the gold standard in analytical chemistry, as it allows element identification as well as determination of atom connectivity and the solid-state structure of completely unknown samples. Element assignment is based on the number of electrons of an atom, so that a distinction of neighboring heavier elements in the periodic table by XRD is often difficult. A computationally efficient procedure for aspherical-atom least-squares refinement of conventional diffraction data of organometallic compounds is proposed. The iterative procedure is conceptually similar to Hirshfeld-atom refinement (Acta Crystallogr. Sect. A- 2008, 64, 383-393; IUCrJ. 2014, 1,61-79), but it relies on tabulated invariom scattering factors (Acta Crystallogr. Sect. B- 2013, 69, 91-104) and the Hansen/Coppens multipole model; disordered structures can be handled as well. Five linear-coordinate 3d metal complexes, for which the wrong element is found if standard independent-atom model scattering factors are relied upon, are studied, and it is shown that only aspherical-atom scattering factors allow a reliable assignment. The influence of anomalous dispersion in identifying the correct element is investigated and discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Process design and simulation for optimizing the oxygen concentration in Czochralski-grown single-crystal silicon

    International Nuclear Information System (INIS)

    Jung, Y. J.; Kim, W. K.; Jung, J. H.

    2014-01-01

    The highest-concentration impurity in a single-crystal silicon ingot is oxygen, which infiltrates the ingot during growth stage. This oxygen adversely affects the wafer is quality. This study was aimed at finding an optimal design for the Czochralski (Cz) process to enable high-quality and low cost (by reducing power consumption) wafer production by controlling the oxygen concentration in the silicon ingots. In the Cz process, the characteristics of silicon ingots during crystallization are greatly influenced by the design and the configuration of the hot zone, and by crystallization rate. In order to identify process conditions for obtaining an optimal oxygen concentration of 11 - 13 ppma (required for industrial-grade ingots), designed two shield shapes for the hot zone. Furthermore, oxygen concentrations corresponding to these two shapes were compared by evaluating each shape at five different production speeds. In addition, simulations were performed to identify the optimal shield design for industrial applications.

  2. Process design and simulation for optimizing the oxygen concentration in Czochralski-grown single-crystal silicon

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Y. J.; Kim, W. K.; Jung, J. H. [Yeungnam University, Gyeongsan (Korea, Republic of)

    2014-08-15

    The highest-concentration impurity in a single-crystal silicon ingot is oxygen, which infiltrates the ingot during growth stage. This oxygen adversely affects the wafer is quality. This study was aimed at finding an optimal design for the Czochralski (Cz) process to enable high-quality and low cost (by reducing power consumption) wafer production by controlling the oxygen concentration in the silicon ingots. In the Cz process, the characteristics of silicon ingots during crystallization are greatly influenced by the design and the configuration of the hot zone, and by crystallization rate. In order to identify process conditions for obtaining an optimal oxygen concentration of 11 - 13 ppma (required for industrial-grade ingots), designed two shield shapes for the hot zone. Furthermore, oxygen concentrations corresponding to these two shapes were compared by evaluating each shape at five different production speeds. In addition, simulations were performed to identify the optimal shield design for industrial applications.

  3. Localization and force analysis at the single virus particle level using atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chih-Hao [Institute of Applied Mechanics, Nation Taiwan University, Roosevelt Road, Taipei 10617, Taiwan (China); Horng, Jim-Tong [Department of Biochemistry, Chang Gung University, 259 Wen-Hwa First Road, Kweishan, Taoyuan 333, Taiwan (China); Chang, Jeng-Shian [Institute of Applied Mechanics, Nation Taiwan University, Roosevelt Road, Taipei 10617, Taiwan (China); Hsieh, Chung-Fan [Graduate Institute of Biomedical Sciences, Chang Gung University, Kweishan, Taoyuan 333, Taiwan (China); Tseng, You-Chen [Institute of Applied Mechanics, Nation Taiwan University, Roosevelt Road, Taipei 10617, Taiwan (China); Lin, Shiming, E-mail: til@ntu.edu.tw [Institute of Applied Mechanics, Nation Taiwan University, Roosevelt Road, Taipei 10617, Taiwan (China); Center for Optoelectronic Biomedicine, College of Medicine, Nation Taiwan University, 1-1 Jen-Ai Road, Taipei 10051, Taiwan (China)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Localization of single virus particle. Black-Right-Pointing-Pointer Force measurements. Black-Right-Pointing-Pointer Force mapping. -- Abstract: Atomic force microscopy (AFM) is a vital instrument in nanobiotechnology. In this study, we developed a method that enables AFM to simultaneously measure specific unbinding force and map the viral glycoprotein at the single virus particle level. The average diameter of virus particles from AFM images and the specificity between the viral surface antigen and antibody probe were integrated to design a three-stage method that sets the measuring area to a single virus particle before obtaining the force measurements, where the influenza virus was used as the object of measurements. Based on the purposed method and performed analysis, several findings can be derived from the results. The mean unbinding force of a single virus particle can be quantified, and no significant difference exists in this value among virus particles. Furthermore, the repeatability of the proposed method is demonstrated. The force mapping images reveal that the distributions of surface viral antigens recognized by antibody probe were dispersed on the whole surface of individual virus particles under the proposed method and experimental criteria; meanwhile, the binding probabilities are similar among particles. This approach can be easily applied to most AFM systems without specific components or configurations. These results help understand the force-based analysis at the single virus particle level, and therefore, can reinforce the capability of AFM to investigate a specific type of viral surface protein and its distributions.

  4. Low Po2 conditions induce reactive oxygen species formation during contractions in single skeletal muscle fibers

    Science.gov (United States)

    Shiah, Amy; Roberts, William J.; Chien, Michael T.; Wagner, Peter D.; Hogan, Michael C.

    2013-01-01

    Contractions in whole skeletal muscle during hypoxia are known to generate reactive oxygen species (ROS); however, identification of real-time ROS formation within isolated single skeletal muscle fibers has been challenging. Consequently, there is no convincing evidence showing increased ROS production in intact contracting fibers under low Po2 conditions. Therefore, we hypothesized that intracellular ROS generation in single contracting skeletal myofibers increases during low Po2 compared with a value approximating normal resting Po2. Dihydrofluorescein was loaded into single frog (Xenopus) fibers, and fluorescence was used to monitor ROS using confocal microscopy. Myofibers were exposed to two maximal tetanic contractile periods (1 contraction/3 s for 2 min, separated by a 60-min rest period), each consisting of one of the following treatments: high Po2 (30 Torr), low Po2 (3–5 Torr), high Po2 with ebselen (antioxidant), or low Po2 with ebselen. Ebselen (10 μM) was administered before the designated contractile period. ROS formation during low Po2 treatment was greater than during high Po2 treatment, and ebselen decreased ROS generation in both low- and high-Po2 conditions (P Po2. Force was reduced >30% for each condition except low Po2 with ebselen, which only decreased ∼15%. We concluded that single myofibers under low Po2 conditions develop accelerated and more oxidative stress than at Po2 = 30 Torr (normal human resting Po2). Ebselen decreases ROS formation in both low and high Po2, but only mitigates skeletal muscle fatigue during reduced Po2 conditions. PMID:23576612

  5. Imaging single atoms using secondary electrons with an aberration-corrected electron microscope.

    Science.gov (United States)

    Zhu, Y; Inada, H; Nakamura, K; Wall, J

    2009-10-01

    Aberration correction has embarked on a new frontier in electron microscopy by overcoming the limitations of conventional round lenses, providing sub-angstrom-sized probes. However, improvement of spatial resolution using aberration correction so far has been limited to the use of transmitted electrons both in scanning and stationary mode, with an improvement of 20-40% (refs 3-8). In contrast, advances in the spatial resolution of scanning electron microscopes (SEMs), which are by far the most widely used instrument for surface imaging at the micrometre-nanometre scale, have been stagnant, despite several recent efforts. Here, we report a new SEM, with aberration correction, able to image single atoms by detecting electrons emerging from its surface as a result of interaction with the small probe. The spatial resolution achieved represents a fourfold improvement over the best-reported resolution in any SEM (refs 10-12). Furthermore, we can simultaneously probe the sample through its entire thickness with transmitted electrons. This ability is significant because it permits the selective visualization of bulk atoms and surface ones, beyond a traditional two-dimensional projection in transmission electron microscopy. It has the potential to revolutionize the field of microscopy and imaging, thereby opening the door to a wide range of applications, especially when combined with simultaneous nanoprobe spectroscopy.

  6. Low-kilovolt coherent electron diffractive imaging instrument based on a single-atom electron source

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chun-Yueh [Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Chang, Wei-Tse; Chen, Yi-Sheng; Hwu, En-Te; Chang, Chia-Seng; Hwang, Ing-Shouh, E-mail: ishwang@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan (China); Hsu, Wei-Hao [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2016-03-15

    In this work, a transmission-type, low-kilovolt coherent electron diffractive imaging instrument was constructed. It comprised a single-atom field emitter, a triple-element electrostatic lens, a sample holder, and a retractable delay line detector to record the diffraction patterns at different positions behind the sample. It was designed to image materials thinner than 3 nm. The authors analyzed the asymmetric triple-element electrostatic lens for focusing the electron beams and achieved a focused beam spot of 87 nm on the sample plane at the electron energy of 2 kV. High-angle coherent diffraction patterns of a suspended graphene sample corresponding to (0.62 Å){sup −1} were recorded. This work demonstrated the potential of coherent diffractive imaging of thin two-dimensional materials, biological molecules, and nano-objects at a voltage between 1 and 10 kV. The ultimate goal of this instrument is to achieve atomic resolution of these materials with high contrast and little radiation damage.

  7. Positron states and nanoobjects in proton-irradiated quartz single crystals: Positronium atom in quartz

    International Nuclear Information System (INIS)

    Grafutin, V. I.; Zaluzhnyi, A. G.; Timoshenkov, S. P.; Britkov, O. M.; Ilyukhina, O. V.; Myasishcheva, G. G.; Prokop'ev, E. P.; Funtikov, Yu. V.

    2008-01-01

    The influence of proton bombardment and metal atom impurities on the structure of quartz single crystals has been studied. The related defects have been studied using positron annihilation spectroscopy (angular correlation of positron-annihilation photons), acoustic absorption, and optical absorption measurements. It is shown that the presence of a narrow component f in the angular distribution of annihilation photons (ADAP), which is related to the formation of parapositronium, determines a high sensitivity of this method with respect to features of the crystal structure of quartz. It is established that the defectness of the structure of irradiated quartz crystals can be characterized by the ratio f/f 0 of the relative intensities of narrow components in the ADAP curves measured before (f 0 ) and after (f) irradiation. Any process leading to a decrease in the probability of positronium formation (e.g., positron loss as a result of the trapping on defects and the interaction with impurity atoms and lattice distortions) decreases the intensity of the narrow component. Based on the ADAP data, estimates of the radii and concentrations of nanodefects in quartz have been obtained and their variation upon annealing at temperatures up to T = 873 K has been studied

  8. Engineering giant magnetic anisotropy in single-molecule magnets by dimerizing heavy transition-metal atoms

    Science.gov (United States)

    Qu, Jiaxing; Hu, Jun

    2018-05-01

    The search for single-molecule magnets with large magnetic anisotropy energy (MAE) is essential for the development of molecular spintronics devices for use at room temperature. Through systematic first-principles calculations, we found that an Os–Os or Ir–Ir dimer embedded in the (5,5‧-Br2-salophen) molecule gives rise to a large MAE of 41.6 or 51.4 meV, respectively, which is large enough to hold the spin orientation at room temperature. Analysis of the electronic structures reveals that the top Os and Ir atoms play the most important part in the total spin moments and large MAEs of the molecules.

  9. Surface diffusion coefficient of Au atoms on single layer graphene grown on Cu

    Energy Technology Data Exchange (ETDEWEB)

    Ruffino, F., E-mail: francesco.ruffino@ct.infn.it; Cacciato, G.; Grimaldi, M. G. [Dipartimento di Fisica ed Astronomia-Universitá di Catania, via S. Sofia 64, 95123 Catania, Italy and MATIS IMM-CNR, via S. Sofia 64, 95123 Catania (Italy)

    2014-02-28

    A 5 nm thick Au film was deposited on single layer graphene sheets grown on Cu. By thermal processes, the dewetting phenomenon of the Au film on the graphene was induced so to form Au nanoparticles. The mean radius, surface-to-surface distance, and surface density evolution of the nanoparticles on the graphene sheets as a function of the annealing temperature were quantified by scanning electron microscopy analyses. These quantitative data were analyzed within the classical mean-field nucleation theory so to obtain the temperature-dependent Au atoms surface diffusion coefficient on graphene: D{sub S}(T)=[(8.2±0.6)×10{sup −8}]exp[−(0.31±0.02(eV)/(at) )/kT] cm{sup 2}/s.

  10. Phase locking of a semiconductor double-quantum-dot single-atom maser

    Science.gov (United States)

    Liu, Y.-Y.; Hartke, T. R.; Stehlik, J.; Petta, J. R.

    2017-11-01

    We experimentally study the phase stabilization of a semiconductor double-quantum-dot (DQD) single-atom maser by injection locking. A voltage-biased DQD serves as an electrically tunable microwave frequency gain medium. The statistics of the maser output field demonstrate that the maser can be phase locked to an external cavity drive, with a resulting phase noise L =-99 dBc/Hz at a frequency offset of 1.3 MHz. The injection locking range, and the phase of the maser output relative to the injection locking input tone are in good agreement with Adler's theory. Furthermore, the electrically tunable DQD energy level structure allows us to rapidly switch the gain medium on and off, resulting in an emission spectrum that resembles a frequency comb. The free running frequency comb linewidth is ≈8 kHz and can be improved to less than 1 Hz by operating the comb in the injection locked regime.

  11. Atomic force microscope observation of branching in single transcript molecules derived from human cardiac muscle

    International Nuclear Information System (INIS)

    Reed, Jason; Hsueh, Carlin; Gimzewski, James K; Mishra, Bud

    2008-01-01

    We have used an atomic force microscope to examine a clinically derived sample of single-molecule gene transcripts, in the form of double-stranded cDNA, (c: complementary) obtained from human cardiac muscle without the use of polymerase chain reaction (PCR) amplification. We observed a log-normal distribution of transcript sizes, with most molecules being in the range of 0.4-7.0 kilobase pairs (kb) or 130-2300 nm in contour length, in accordance with the expected distribution of mRNA (m: messenger) sizes in mammalian cells. We observed novel branching structures not previously known to exist in cDNA, and which could have profound negative effects on traditional analysis of cDNA samples through cloning, PCR and DNA sequencing

  12. Filling of double vacancy in the K atomic shell with emission of one single photon

    International Nuclear Information System (INIS)

    Jalbert, G.

    1978-12-01

    A method was developed to calculate the transition rate for two-electron one-photon K(sub αα) transition (2s 2p → 1s 2 ). The method was tested for Ni with two K-shell vacancies in the initial state. The (sub αα) rate is calculated within the framework of a single system formed by the atom and the radiation. The transition is originated in the interactiion between the parts of that system. In the dipole approximation, the transition rate is obtained from the second order term of the time dependente perturbation theory. Hartree-Fock-Slater wave functions were used in the calculations for Ni. The results are compared with the available theoretical and experimental information. (Author) [pt

  13. Isotope shifts in odd and even energy levels of the neutral and singly ionised gadolinium atom

    International Nuclear Information System (INIS)

    Ahmad, S.A.; Venugopalan, A.; Saksena, G.D.

    1979-01-01

    Isotope shift studies in the gadolinium spectra have been extended in the region 4140 to 4535 A. Isotope shift Δσ(156 to 160) have been measured in 315 lines of the neutral and singly ionised gadolinium atom using a recording Fabry-Perot Spectrometer and gadolinium samples enriched in 156 Gd and 160 Gd isotopes. Some of the Gd I lines studied involve transitions from newly identified high odd levels of 4f 8 6s6p, 4f 7 5d6s7s and 4f 7 5d 3 configurations to low even levels of 4f 8 6s 2 and 4f 7 6s 2 6p configurations. Electronic configurations of the energy levels have been discussed on the basis of observed isotope shifts. In some cases assigned configurations have been revised and probable configurations have been suggested. (author)

  14. Minimizing pulling geometry errors in atomic force microscope single molecule force spectroscopy.

    Science.gov (United States)

    Rivera, Monica; Lee, Whasil; Ke, Changhong; Marszalek, Piotr E; Cole, Daniel G; Clark, Robert L

    2008-10-01

    In atomic force microscopy-based single molecule force spectroscopy (AFM-SMFS), it is assumed that the pulling angle is negligible and that the force applied to the molecule is equivalent to the force measured by the instrument. Recent studies, however, have indicated that the pulling geometry errors can drastically alter the measured force-extension relationship of molecules. Here we describe a software-based alignment method that repositions the cantilever such that it is located directly above the molecule's substrate attachment site. By aligning the applied force with the measurement axis, the molecule is no longer undergoing combined loading, and the full force can be measured by the cantilever. Simulations and experimental results verify the ability of the alignment program to minimize pulling geometry errors in AFM-SMFS studies.

  15. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics.

    Science.gov (United States)

    Wu, Wenzhuo; Wang, Lei; Li, Yilei; Zhang, Fan; Lin, Long; Niu, Simiao; Chenet, Daniel; Zhang, Xian; Hao, Yufeng; Heinz, Tony F; Hone, James; Wang, Zhong Lin

    2014-10-23

    The piezoelectric characteristics of nanowires, thin films and bulk crystals have been closely studied for potential applications in sensors, transducers, energy conversion and electronics. With their high crystallinity and ability to withstand enormous strain, two-dimensional materials are of great interest as high-performance piezoelectric materials. Monolayer MoS2 is predicted to be strongly piezoelectric, an effect that disappears in the bulk owing to the opposite orientations of adjacent atomic layers. Here we report the first experimental study of the piezoelectric properties of two-dimensional MoS2 and show that cyclic stretching and releasing of thin MoS2 flakes with an odd number of atomic layers produces oscillating piezoelectric voltage and current outputs, whereas no output is observed for flakes with an even number of layers. A single monolayer flake strained by 0.53% generates a peak output of 15 mV and 20 pA, corresponding to a power density of 2 mW m(-2) and a 5.08% mechanical-to-electrical energy conversion efficiency. In agreement with theoretical predictions, the output increases with decreasing thickness and reverses sign when the strain direction is rotated by 90°. Transport measurements show a strong piezotronic effect in single-layer MoS2, but not in bilayer and bulk MoS2. The coupling between piezoelectricity and semiconducting properties in two-dimensional nanomaterials may enable the development of applications in powering nanodevices, adaptive bioprobes and tunable/stretchable electronics/optoelectronics.

  16. Pt atoms stabilized on hexagonal boron nitride as efficient single-atom catalysts for CO oxidation: A first-principles investigation

    KAUST Repository

    Liu, Xin

    2015-01-01

    Taking CO oxidation as a probe, we investigated the electronic structure and reactivity of Pt atoms stabilized by vacancy defects on hexagonal boron nitride (h-BN) by first-principles-based calculations. As a joint effect of the high reactivity of both a single Pt atom and a boron vacancy defect (PtBV), the Pt-N interaction is -4.40 eV and is already strong enough to prohibit the diffusion and aggregation of the stabilized Pt atom. Facilitated by the upshifted Pt-d states originated from the Pt-N interaction, the barriers for CO oxidation through the Langmuir-Hinshelwood mechanism for formation and dissociation of peroxide-like intermediate and the regeneration are as low as 0.38, 0.10 and 0.04 eV, respectively, suggesting the superiority of PtBV as a catalyst for low temperature CO oxidation.

  17. The oxygen enhancement ratio for single- and double-strand breaks induced by tritium incorporated in DNA of cultured human T1 cells. Impact of the transmutation effect.

    Science.gov (United States)

    Tisljar-Lentulis, G; Henneberg, P; Feinendegen, L E; Commerford, S L

    1983-04-01

    The effect of oxygen, expressed as the oxygen enhancement ratio (OER), on the number of single-strand breaks (SSB) and double-strand breaks (DSB) induced in DNA by the radioactive decay of tritium was measured in human T1 cells whose DNA had been labeled with tritium at carbon atom number 6 of thymidine. Decays were accumulated in vivo under aerobic conditions at 0-1 degrees C and at -196 degrees C and in a nitrogen atmosphere at 0-1 degrees C. The number of SSB and DSB produced was analyzed by sucrose gradient centrifugation. For each tritium decay there were 0.25 DSB in cells exposed to air at 0-1 degrees C and 0.07 in cells kept under nitrogen, indicating an OER of 3.6, a value expected for such low-LET radiation. However, for each tritium decay there were 1.25 SSB in cells exposed to air at 0-1 degrees C and 0.76 in cells kept under nitrogen indicating an OER of only 1.7. The corresponding values for 60Co gamma radiation, expressed as SSB per 100 eV absorbed energy, were 4.5 and 1.0, giving an OER of 4.5. The low OER value found for SSB induced by tritium decay can be explained if 31% of the total SSB produced in air result from transmutation by a mechanism which does not produce DSB and is unaffected by oxygen.

  18. Dramatic Influence of an Anionic Donor on the Oxygen-Atom Transfer Reactivity of a MnV–Oxo Complex

    Science.gov (United States)

    Neu, Heather M; Quesne, Matthew G; Yang, Tzuhsiung; Prokop-Prigge, Katharine A; Lancaster, Kyle M; Donohoe, James; DeBeer, Serena; de Visser, Sam P; Goldberg, David P

    2014-01-01

    Addition of an anionic donor to an MnV(O) porphyrinoid complex causes a dramatic increase in 2-electron oxygen-atom-transfer (OAT) chemistry. The 6-coordinate [MnV(O)(TBP8Cz)(CN)]− was generated from addition of Bu4N+CN− to the 5-coordinate MnV(O) precursor. The cyanide-ligated complex was characterized for the first time by Mn K-edge X-ray absorption spectroscopy (XAS) and gives Mn–O=1.53 Å, Mn–CN=2.21 Å. In combination with computational studies these distances were shown to correlate with a singlet ground state. Reaction of the CN− complex with thioethers results in OAT to give the corresponding sulfoxide and a 2e−-reduced MnIII(CN)− complex. Kinetic measurements reveal a dramatic rate enhancement for OAT of approximately 24 000-fold versus the same reaction for the parent 5-coordinate complex. An Eyring analysis gives ΔH≠=14 kcal mol−1, ΔS≠=−10 cal mol−1 K−1. Computational studies fully support the structures, spin states, and relative reactivity of the 5- and 6-coordinate MnV(O) complexes. PMID:25256417

  19. Influence of crystal defects on the chemical reactivity of recoil atoms in oxygen-containing chromium compounds

    International Nuclear Information System (INIS)

    Costea, T.

    1969-01-01

    The influence of crystal defects on the chemical reactivity of recoil atoms produced by the reaction 50 Cr (n,γ) 51 Cr in oxygen-containing chromium compounds has been studied. Three methods have been used to introduce the defects: doping (K 2 CrO 4 doped with BaCrO 4 ), irradiation by ionizing radiation (K 2 CrO 4 irradiated in the presence of Li 2 CO 3 ) and non-stoichiometry (the semi-conducting oxides of the CrO 3 -Cr 2 O 3 series). The thermal annealing kinetics of the irradiated samples have been determined, and the activation energy has been calculated. In all cases it has been observed that there is a decrease in the activation energy for thermal annealing in the presence of the defects. In order to explain the annealing process, an electronic mechanism has been proposed based on the interaction between the recoil species and the charge-carriers (holes or electrons). (author) [fr

  20. Oxygen vacancy defect engineering using atomic layer deposited HfAlOx in multi-layered gate stack

    Science.gov (United States)

    Bhuyian, M. N.; Sengupta, R.; Vurikiti, P.; Misra, D.

    2016-05-01

    This work evaluates the defects in high quality atomic layer deposited (ALD) HfAlOx with extremely low Al (estimated by the high temperature current voltage measurement shows that the charged oxygen vacancies, V+/V2+, are the primary source of defects in these dielectrics. When Al is added in HfO2, the V+ type defects with a defect activation energy of Ea ˜ 0.2 eV modify to V2+ type to Ea ˜ 0.1 eV with reference to the Si conduction band. When devices were stressed in the gate injection mode for 1000 s, more V+ type defects are generated and Ea reverts back to ˜0.2 eV. Since Al has a less number of valence electrons than do Hf, the change in the co-ordination number due to Al incorporation seems to contribute to the defect level modifications. Additionally, the stress induced leakage current behavior observed at 20 °C and at 125 °C demonstrates that the addition of Al in HfO2 contributed to suppressed trap generation process. This further supports the defect engineering model as reduced flat-band voltage shifts were observed at 20 °C and at 125 °C.

  1. Determination of mercury in ash and soil samples by oxygen flask combustion method-Cold vapor atomic fluorescence spectrometry (CVAFS)

    International Nuclear Information System (INIS)

    Geng Wenhua; Nakajima, Tsunenori; Takanashi, Hirokazu; Ohki, Akira

    2008-01-01

    A simple method was developed for the determination of mercury (Hg) in coal fly ash (CFA), waste incineration ash (WIA), and soil by use of oxygen flask combustion (OFC) followed by cold vapor atomic fluorescence spectrometry (CVAFS). A KMnO 4 solution was used as an absorbent in the OFC method, and the sample containing a combustion agent and an ash or soil sample was combusted by the OFC method. By use of Hg-free graphite as the combustion agent, the determination of Hg in ash and soil was successfully carried out; the Hg-free graphite was prepared by use of a mild pyrolysis procedure at 500 deg. C. For six certified reference materials (three CFA samples and three soil samples), the values of Hg obtained by this method were in good agreement with the certified or reference values. In addition, real samples including nine CFAs collected from some coal-fired power plants, five WIAs collected from waste incineration plants, and two soils were analyzed by the present method, and the data were compared to those from microwave-acid digestion (MW-AD) method

  2. Experimental study of single-electron loss by Ar{sup +} ions in rare-gas atoms

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, P.G. [Facultad de Ciencias, UNAM, Coyoacan (Mexico); Castillo, F. [Instituto de Ciencias Nucleares, UNAM, Coyoacan (Mexico); Martinez, H. [Centro de Ciencias Fisicas, UNAM, Cuernavaca, Morelos (Mexico)]. E-mail: hm@fis.unam.mx

    2001-04-28

    Absolute differential and total cross sections for single-electron loss were measured for Ar{sup +} ions on rare-gas atoms in the laboratory energy range of 1.5 to 5.0 keV. The electron loss cross sections for all the targets studied are found to be in the order of magnitude between 10{sup -19} and 10{sup -22} cm{sup 2}, and show a monotonically increasing behaviour as a function of the incident energy. The behaviour of the total single-electron loss cross sections with the atomic target number, Z{sub t}, shows different dependences as the collision energy increases. In all cases the present results display experimental evidence of saturation in the single-electron loss cross section as the atomic number of the target increases. (author)

  3. Electromechanical Characterization of Single GaN Nanobelt Probed with Conductive Atomic Force Microscope

    Science.gov (United States)

    Yan, X. Y.; Peng, J. F.; Yan, S. A.; Zheng, X. J.

    2018-04-01

    The electromechanical characterization of the field effect transistor based on a single GaN nanobelt was performed under different loading forces by using a conductive atomic force microscope (C-AFM), and the effective Schottky barrier height (SBH) and ideality factor are simulated by the thermionic emission model. From 2-D current image, the high value of the current always appears on the nanobelt edge with the increase of the loading force less than 15 nN. The localized (I-V) characteristic reveals a typical rectifying property, and the current significantly increases with the loading force at the range of 10-190 nN. The ideality factor is simulated as 9.8 within the scope of GaN nano-Schottky diode unity (6.5-18), therefore the thermionic emission current is dominant in the electrical transport of the GaN-tip Schottky junction. The SBH is changed through the piezoelectric effect induced by the loading force, and it is attributed to the enhanced current. Furthermore, a single GaN nanobelt has a high mechanical-induced current ratio that could be made use of in a nanoelectromechanical switch.

  4. Interplay of tensor correlations and vibrational coupling for single-particle states in atomic nuclei

    International Nuclear Information System (INIS)

    Colo, G.; SAgawa, H.; Bortignon, P. F.

    2009-01-01

    To study the structure of atomic nuclei, the ab-initio methods can nowadays be applied only for mass number A smaller than ∼ 10-15. For heavier systems, the self-consistent mean-field (SCMF) approach is probably the most microscopic approach which can be systematically applied to stable and exotic nuclei. In practice, the SCMF is mostly based on parametrizations of an effective interaction. However, the are groups who are intensively working on the development of a general density functional (DF) which is not necessarily extracted from an Hamiltonian. The basic question is to what extent this allows improving on the existing functionals. In this contribution we analyze the performance of existing functionals as far as the reproduction of single-particle states is concerned. We start by analyzing the effect of the tensor terms, on which the attention of several groups have recently focused. Then we discuss the impact of the particle-vibration coupling (PVC). Although the basic idea of this approach dates back to long time ago, we present here for the first time calculations which are entirely based on microscopic interactions without dropping any term or introducing ad hoc parameters. We show results both for well-known, benchmark nuclei like 4 0C a and 2 08P b as well as unstable nuclei like 1 32S n. Both single-particle energies and spectroscopic factors are discussed.(author)

  5. Wet chemical deposition of single crystalline epitaxial manganite thin films with atomically flat surface

    International Nuclear Information System (INIS)

    Mishra, Amita; Dutta, Anirban; Samaddar, Sayanti; Gupta, Anjan K.

    2013-01-01

    We report the wet chemical deposition of single crystalline epitaxial thin films of the colossal magneto-resistive manganite La 0.67 Sr 0.33 MnO 3 on the lattice-matched (001)-face of a La 0.3 Sr 0.7 Al 0.65 Ta 0.35 O 3 substrate. Topographic images of these films taken with a scanning tunneling microscope show atomically flat terraces separated by steps of monatomic height. The resistivity of these films shows an insulator-metal transition at 310 K, nearly coincident with the Curie temperature of 340 K, found from magnetization measurements. The films show a magnetoresistance of 7% at 300 K and 1.2 T. Their saturation magnetization value at low temperatures is consistent with that of the bulk. - Highlights: ► Wet chemical deposition of La 0.67 Sr 0.33 MnO 3 (LSMO) on a lattice-matched substrate. ► Single crystalline epitaxial LSMO films obtained. ► Flat terraces separated by monatomic steps observed by scanning tunneling microscope

  6. Single Molecule Science for Personalized Nanomedicine: Atomic Force Microscopy of Biopolymer-Protein Interactions

    Science.gov (United States)

    Hsueh, Carlin

    Nanotechnology has a unique and relatively untapped utility in the fields of medicine and dentistry at the level of single-biopolymer and -molecule diagnostics. In recent years atomic force microscopy (AFM) has garnered much interest due to its ability to obtain atomic-resolution of molecular structures and probe biophysical behaviors of biopolymers and proteins in a variety of biologically significant environments. The work presented in this thesis focuses on the nanoscale manipulation and observation of biopolymers to develop an innovative technology for personalized medicine while understanding complex biological systems. These studies described here primarily use AFM to observe biopolymer interactions with proteins and its surroundings with unprecedented resolution, providing a better understanding of these systems and interactions at the nanoscale. Transcriptional profiling, the measure of messenger RNA (mRNA) abundance in a single cell, is a powerful technique that detects "behavior" or "symptoms" at the tissue and cellular level. We have sought to develop an alternative approach, using our expertise in AFM and single molecule nanotechnology, to achieve a cost-effective high throughput method for sensitive detection and profiling of subtle changes in transcript abundance. The technique does not require amplification of the mRNA sample because the AFM provides three-dimensional views of molecules with unprecedented resolution, requires minimal sample preparation, and utilizes a simple tagging chemistry on cDNA molecules. AFM images showed collagen polymers in teeth and of Drebrin-A remodeling of filamentous actin structure and mechanics. AFM was used to image collagen on exposed dentine tubules and confirmed tubule occlusion with a desensitizing prophylaxis paste by Colgate-Palmolive. The AFM also superseded other microscopy tools in resolving F-actin helix remodeling and possible cooperative binding by a neuronal actin binding protein---Drebrin-A, an

  7. Assembling three-dimensional nanostructures on metal surfaces with a reversible vertical single-atom manipulation: A theoretical modeling

    International Nuclear Information System (INIS)

    Yang Tianxing; Ye Xiang; Huang Lei; Xie Yiqun; Ke Sanhuang

    2012-01-01

    Highlights: ► We simulate the reversible vertical single-atom manipulations on several metal surfaces. ► We propose a method to predict whether a reversible vertical single-atom manipulation can be successful on several metal surfaces. ► A 3-dimensional Ni nanocluster is assembled on the Ni(1 1 1) surface using a Ni trimer-apex tip. - Abstract: We propose a theoretical model to show that pulling up an adatom from an atomic step requires a weaker force than from the flat surfaces of Al(0 0 1), Ni(1 1 1), Pt(1 1 0) and Au(1 1 0). Single adatom in the atomic step can be extracted vertically by a trimer-apex tip while can be released to the flat surface. This reversible vertical manipulation can then be used to fabricate a supported three-dimensional (3D) nanostructure on the Ni(1 1 1) surface. The present modeling can be used to predict whether the reversible vertical single-atom manipulation and thus the assembling of 3D nanostructures can be achieved on a metal surface.

  8. Thermally stable single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation

    KAUST Repository

    Zhang, Zailei

    2017-07-27

    Single-atom metal catalysts offer a promising way to utilize precious noble metal elements more effectively, provided that they are catalytically active and sufficiently stable. Herein, we report a synthetic strategy for Pt single-atom catalysts with outstanding stability in several reactions under demanding conditions. The Pt atoms are firmly anchored in the internal surface of mesoporous Al2O3, likely stabilized by coordinatively unsaturated pentahedral Al3+ centres. The catalyst keeps its structural integrity and excellent performance for the selective hydrogenation of 1,3-butadiene after exposure to a reductive atmosphere at 200 °C for 24 h. Compared to commercial Pt nanoparticle catalyst on Al2O3 and control samples, this system exhibits significantly enhanced stability and performance for n-hexane hydro-reforming at 550 °C for 48 h, although agglomeration of Pt single-atoms into clusters is observed after reaction. In CO oxidation, the Pt single-atom identity was fully maintained after 60 cycles between 100 and 400 °C over a one-month period.

  9. STM studies of an atomic-scale gate electrode formed by a single charged vacancy in GaAs

    Science.gov (United States)

    Lee, Donghun; Daughton, David; Gupta, Jay

    2009-03-01

    Electric-field control of spin-spin interactions at the atomic level is desirable for the realization of spintronics and spin-based quantum computation. Here we demonstrate the realization of an atomic-scale gate electrode formed by a single charged vacancy on the GaAs(110) surface[1]. We can position these vacancies with atomic precision using the tip of a home-built, low temperature STM. Tunneling spectroscopy of single Mn acceptors is used to quantify the electrostatic field as a function of distance from the vacancy. Single Mn acceptors are formed by substituting Mn adatoms for Ga atoms in the first layer of the p-GaAs(110) surface[2]. Depending on the distance, the in-gap resonance of single Mn acceptors can shift as much as 200meV. Our data indicate that the electrostatic field decays according to a screened Coulomb potential. The charge state of the vacancy can be switched to neutral, as evidenced by the Mn resonance returning to its unperturbed position. Reversible control of the local electric field as well as charged states of defects in semiconductors can open new insights such as realizing an atomic-scale gate control and studying spin-spin interactions in semiconductors. http://www.physics.ohio-state.edu/sim jgupta [1] D. Lee and J.A. Gupta (in preparation) [2] D. Kitchen et al., Nature 442, 436-439 (2006)

  10. Intensity-gradient induced Sisyphus cooling of a single atom in a localized hollow-beam trap

    International Nuclear Information System (INIS)

    Yin, Yaling; Xia, Yong; Ren, Ruimin; Du, Xiangli; Yin, Jianping

    2015-01-01

    In order to realize a convenient and efficient laser cooling of a single atom, we propose a simple and promising scheme to cool a single neutral atom in a blue-detuned localized hollow-beam trap by intensity-gradient induced Sisyphus cooling, and study the dynamic process of the intensity-gradient cooling of a single 87 Rb atom in the localized hollow-beam trap by using Monte-Carlo simulations. Our study shows that a single 87 Rb atom with a temperature of 120 μK from a magneto-optical trap (MOT) can be directly cooled to a final temperature of 4.64 μK in our proposed scheme. We also investigate the dependences of the cooling results on the laser detuning δ of the localized hollow-beam, the power RP 0 of the re-pumping laser beam, the sizes of both the localized hollow-beam and the re-pumping beam, and find that there is a pair of optimal cooling parameters (δ and RP 0 ) for an expected lowest temperature, and the cooling results strongly depend on the size of the re-pumping beam, but weakly depend on the size of the localized hollow-beam. Finally, we further study the cooling potential of our localized hollow-beam trap for the initial temperature of a single atom, and find that a single 87 Rb atom with an initial temperature of higher than 1 mK can also be cooled directly to about 6.6 μK. (paper)

  11. Protease resistance of infectious prions is suppressed by removal of a single atom in the cellular prion protein.

    Science.gov (United States)

    Leske, Henning; Hornemann, Simone; Herrmann, Uli Simon; Zhu, Caihong; Dametto, Paolo; Li, Bei; Laferriere, Florent; Polymenidou, Magdalini; Pelczar, Pawel; Reimann, Regina Rose; Schwarz, Petra; Rushing, Elisabeth Jane; Wüthrich, Kurt; Aguzzi, Adriano

    2017-01-01

    Resistance to proteolytic digestion has long been considered a defining trait of prions in tissues of organisms suffering from transmissible spongiform encephalopathies. Detection of proteinase K-resistant prion protein (PrPSc) still represents the diagnostic gold standard for prion diseases in humans, sheep and cattle. However, it has become increasingly apparent that the accumulation of PrPSc does not always accompany prion infections: high titers of prion infectivity can be reached also in the absence of protease resistant PrPSc. Here, we describe a structural basis for the phenomenon of protease-sensitive prion infectivity. We studied the effect on proteinase K (PK) resistance of the amino acid substitution Y169F, which removes a single oxygen atom from the β2-α2 loop of the cellular prion protein (PrPC). When infected with RML or the 263K strain of prions, transgenic mice lacking wild-type (wt) PrPC but expressing MoPrP169F generated prion infectivity at levels comparable to wt mice. The newly generated MoPrP169F prions were biologically indistinguishable from those recovered from prion-infected wt mice, and elicited similar pathologies in vivo. Surprisingly, MoPrP169F prions showed greatly reduced PK resistance and density gradient analyses showed a significant reduction in high-density aggregates. Passage of MoPrP169F prions into mice expressing wt MoPrP led to full recovery of protease resistance, indicating that no strain shift had taken place. We conclude that a subtle structural variation in the β2-α2 loop of PrPC affects the sensitivity of PrPSc to protease but does not impact prion replication and infectivity. With these findings a specific structural feature of PrPC can be linked to a physicochemical property of the corresponding PrPSc.

  12. Molecular Processes Studied at a Single-Molecule Level Using DNA Origami Nanostructures and Atomic Force Microscopy

    Directory of Open Access Journals (Sweden)

    Ilko Bald

    2014-09-01

    Full Text Available DNA origami nanostructures allow for the arrangement of different functionalities such as proteins, specific DNA structures, nanoparticles, and various chemical modifications with unprecedented precision. The arranged functional entities can be visualized by atomic force microscopy (AFM which enables the study of molecular processes at a single-molecular level. Examples comprise the investigation of chemical reactions, electron-induced bond breaking, enzymatic binding and cleavage events, and conformational transitions in DNA. In this paper, we provide an overview of the advances achieved in the field of single-molecule investigations by applying atomic force microscopy to functionalized DNA origami substrates.

  13. Study of apical oxygen atoms in a spin-ladder cuprate compound by X-ray absorption spectroscopy near the Cu K edge

    Energy Technology Data Exchange (ETDEWEB)

    Hatterer, C.J.; Eustache, B.; Collin, L.; Beuran, C.F.; Partiot, C.; Germain, P.; Xu, X.Z.; Lagues, M. [CNRS, Paris (France). Surfaces et Supraconducteurs; Michalowicz, A. [Laboratoire de Physique des Milieux Desordonnes, Universite Paris XII Val-de-Marne, 61 avenue du general de Gaulle, 94010, Creteil Cedex (France)]|[LURE, Universite Paris Sud, 91405, Orsay Cedex (France); Moscovici, J. [Laboratoire de Physique des Milieux Desordonnes, Universite Paris XII Val-de-Marne, 61 avenue du general de Gaulle, 94010, Creteil Cedex (France); Deville Cavellin, C. [CNRS, Paris (France). Surfaces et Supraconducteurs]|[Laboratoire d`Electronique, Universite Paris XII Val-de-Marne, 61 av. du general de Gaulle, 94010, Creteil Cedex (France); Traverse, A. [LURE, Universite Paris Sud, 91405, Orsay Cedex (France)

    1997-04-01

    The structure of high-T{sub c} superconducting cuprate compounds is based on CuO{sub 2} planes alternating with blocks that behave as charge reservoirs. The apical oxygen atoms which belong to these reservoirs are suspected to play a role in the mechanism of superconductivity. It thus seems necessary to measure the amount of apical oxygen atoms in various compounds, as a function of the superconducting properties. Polarisation dependent X-ray absorption spectroscopy (XAS) measurements were performed near the Cu K-edge on three types of phases. We collected information about the neighbourhood of the copper atom in the cuprate planes and in the direction perpendicular to these planes. Two of these phases have well known structures: Bi2212 in which copper atoms are on a pyramidal site and infinite layer phase, a square planar cuprate without apical oxygen. We used the obtained results as reference data to study a new copper-rich phase related to the spin-ladder series. (orig.)

  14. Single Cell Responses to Spatially Controlled Photosensitized Production of Extracellular Singlet Oxygen

    DEFF Research Database (Denmark)

    Pedersen, Brian Wett; Sinks, Louise E.; Breitenbach, Thomas

    2011-01-01

    The response of individual HeLa cells to extracellularly produced singlet oxygen was examined. The spatial domain of singlet oxygen production was controlled using the combination of a membrane-impermeable Pd porphyrin-dendrimer, which served as a photosensitizer, and a focused laser, which served...... to localize the sensitized production of singlet oxygen. Cells in close proximity to the domain of singlet oxygen production showed morphological changes commonly associated with necrotic cell death. The elapsed post-irradiation “waiting period” before necrosis became apparent depended on (a) the distance...... between the cell membrane and the domain irradiated, (b) the incident laser fluence and, as such, the initial concentration of singlet oxygen produced, and (c) the lifetime of singlet oxygen. The data imply that singlet oxygen plays a key role in this process of light-induced cell death. The approach...

  15. Nuclear reaction analysis of Ge ion-implanted ZnO bulk single crystals: The evaluation of the displacement in oxygen lattices

    Energy Technology Data Exchange (ETDEWEB)

    Kamioka, K.; Oga, T.; Izawa, Y. [College of Engineering and Research Center of Ion Beam Technology, Hosei University, Koganei, Tokyo 184-8584 (Japan); Kuriyama, K., E-mail: kuri@ionbeam.hosei.ac.jp [College of Engineering and Research Center of Ion Beam Technology, Hosei University, Koganei, Tokyo 184-8584 (Japan); Kushida, K. [Department of Arts and Science, Osaka Kyouiku University, Kashiwara, Osaka 582-8582 (Japan); Kinomura, A. [National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568 (Japan)

    2014-08-01

    The displacement of oxygen lattices in Ge ion-implanted ZnO bulk single crystals is studied by nuclear reaction analysis (NAR), photoluminescence (PL), and Van der Pauw methods. The Ge ion-implantation (net concentration: 2.6 × 10{sup 20} cm{sup −3}) into ZnO is performed using a multiple-step energy. The high resistivity of ∼10{sup 3} Ω cm in un-implanted samples remarkably decreased to ∼10{sup −2} Ω cm after implanting Ge-ion and annealing subsequently. NRA measurements of as-implanted and annealed samples suggest the existence of the lattice displacement of O atoms acting as acceptor defects. As O related defects still remain after annealing, these defects are not attributed to the origin of the low resistivity in 800 and 1000 °C annealed ZnO.

  16. Nuclear reaction analysis of Ge ion-implanted ZnO bulk single crystals: The evaluation of the displacement in oxygen lattices

    Science.gov (United States)

    Kamioka, K.; Oga, T.; Izawa, Y.; Kuriyama, K.; Kushida, K.; Kinomura, A.

    2014-08-01

    The displacement of oxygen lattices in Ge ion-implanted ZnO bulk single crystals is studied by nuclear reaction analysis (NAR), photoluminescence (PL), and Van der Pauw methods. The Ge ion-implantation (net concentration: 2.6 × 1020 cm-3) into ZnO is performed using a multiple-step energy. The high resistivity of ∼103 Ω cm in un-implanted samples remarkably decreased to ∼10-2 Ω cm after implanting Ge-ion and annealing subsequently. NRA measurements of as-implanted and annealed samples suggest the existence of the lattice displacement of O atoms acting as acceptor defects. As O related defects still remain after annealing, these defects are not attributed to the origin of the low resistivity in 800 and 1000 °C annealed ZnO.

  17. Remarkable effects of disorder on superconductivity of single atomic layers of lead on silicon

    Science.gov (United States)

    Brun, Christophe

    2015-03-01

    It is well known that conventional superconductivity is very robust against non-magnetic disorder. Nevertheless for thin and ultrathin films the structural properties play a major role in determining the superconducting properties, through a subtle interplay between disorder and Coulomb interactions. Unexpectedly, in 2010 superconductivity was discovered in single atomic layers of lead and indium grown on silicon substrate using scanning tunneling spectroscopy and confirmed later on by macroscopic transport measurements. Such well-controlled and tunable crystalline monolayers are ideal systems for studying the influence of various kinds of structural defects on the superconducting properties at the atomic and mesoscopic scale. In particular, Pb monolayers offer the opportunity of probing new effects of disorder because not only superconductivity is 2D but also the electronic wave functions are 2D. Our study of two Pb monolayers of different crystal structures by very-low temperature STM (300 mK) under magnetic field reveals unexpected results involving new spatial spectroscopic variations. Our results show that although the sheet resistance of the Pb monolayers is much below the resistance quantum, strong non-BCS corrections appear leading to peak heights fluctuations in the dI/dV tunneling spectra at a spatial scale much smaller than the superconducting coherence length. Furthermore, strong local evidence of the signature of Rashba effect on the superconductivity of the Pb/Si(111) monolayer is revealed through filling of in gap states and local spatial variations of this filling. Finally the nature of vortices in a monolayer is found to be very sensitive to the properties of step edges areas. This work was supported by University Pierre et Marie Curie UPMC `Emergence' project, French ANR Project `ElectroVortex,' ANR-QuDec and Templeton Foundation (40381), ARO (W911NF-13-1-0431) and CNRS PICS funds. Partial funding by US-DOE Grant DE-AC02-07CH1.

  18. Xenon gas field ion source from a single-atom tip

    Science.gov (United States)

    Lai, Wei-Chiao; Lin, Chun-Yueh; Chang, Wei-Tse; Li, Po-Chang; Fu, Tsu-Yi; Chang, Chia-Seng; Tsong, T. T.; Hwang, Ing-Shouh

    2017-06-01

    Focused ion beam (FIB) systems have become powerful diagnostic and modification tools for nanoscience and nanotechnology. Gas field ion sources (GFISs) built from atomic-size emitters offer the highest brightness among all ion sources and thus can improve the spatial resolution of FIB systems. Here we show that the Ir/W(111) single-atom tip (SAT) can emit high-brightness Xe+ ion beams with a high current stability. The ion emission current versus extraction voltage was analyzed from 150 K up to 309 K. The optimal emitter temperature for maximum Xe+ ion emission was ˜150 K and the reduced brightness at the Xe gas pressure of 1 × 10-4 torr is two to three orders of magnitude higher than that of a Ga liquid metal ion source, and four to five orders of magnitude higher than that of a Xe inductively coupled plasma ion source. Most surprisingly, the SAT emitter remained stable even when operated at 309 K. Even though the ion current decreased with increasing temperature, the current at room temperature (RT) could still reach over 1 pA when the gas pressure was higher than 1 × 10-3 torr, indicating the feasibility of RT-Xe-GFIS for application to FIB systems. The operation temperature of Xe-SAT-GFIS is considerably higher than the cryogenic temperature required for the helium ion microscope (HIM), which offers great technical advantages because only simple or no cooling schemes can be adopted. Thus, Xe-GFIS-FIB would be easy to implement and may become a powerful tool for nanoscale milling and secondary ion mass spectroscopy.

  19. Study of the Dissociative Processes in O{sub 2} Discharges. Development of an Atomic Oxygen Beam Source; Etude de la dissociation de O{sub 2} dans les decharges d'oxygene. Application a la realisation de sources d'atomes

    Energy Technology Data Exchange (ETDEWEB)

    Pagnon, Daniel

    1992-09-24

    The first part of this work is devoted to the study of dissociative processes in an oxygen glow discharge at low pressure (0,1-5 Torr, 1-80 mA). The kinetics of oxygen atoms has been determined supported by the measurements of atomic concentrations by VUV absorption spectroscopy and actinometry. The reaction coefficients for dissociative excitation and direct excitation of oxygen atoms have been calculated using the cross sections of the literature and a previously calculated EEDF. It has been demonstrated that dissociative excitation is negligible in respect with direct excitation for dissociation rates smaller than 2,5 %. An upper limit of 20 % for dissociative rates is observed. This limit has been explained by the increase of the atomic recombination at the discharge wall with increasing wall temperature. Using all these results, we have designed and optimized a source of oxygen atoms which has then been adapted on a MBE device. The spatial distribution of the atomic density has been measured in molecular jet by laser induced fluorescence (LIF) and Resonant Multi-Photon Ionization (RMPI). A stimulated emission has been evidenced and the coefficient for this process evaluated. A model for the effusion of atoms has been developed from which the flow of atoms on the sample can be predicted. This source has already been used in industrial MBE devices for in-situ oxidation of copper films, superconductors, and substrates for VLSI high speed applications. The methodology of this work and the diagnostics developed can be applied to other kinds of discharges, of other molecular gases, to design sources of atoms for the treatment of large area samples. (author) [French] Ce travail debute par l'etude de la dissociation dans une decharge luminescente d'oxygene a basse pression (0,1-5 torr, 1-80 ma). La cinetique des atomes d'oxygene a ete etablie a partir de la mesure des concentrations atomiques par spectroscopie d'absorption vuv et par actinometrie. Les coefficients de

  20. Structure sensitivity in CO oxidation by a single Au atom supported on ceria

    NARCIS (Netherlands)

    Song, W.; Hensen, E.J.M.

    2013-01-01

    The mechanism of CO oxidation by a CeO2(110)-supported gold atom has been investigated by DFT calculations. A novel stable surface structure has been identified in which one surface O atom of ceria migrates toward the isolated Au atom, resulting in a surface Au–O species that can react with CO.