International Nuclear Information System (INIS)
Wiorkowski, P.; Walther, H.
1990-01-01
Modern methods of laser spectroscopy allow the study of single atoms or ions in an unperturbed environment. This has opened up interesting new experiments, among them the detailed study of radiation-atom coupling. In this paper, the following two experiments dealing with this problem are reviewed: the single-atom maser and the study of the resonance fluorescence of a single stored ion. The simplest and most fundamental system for studying radiation-matter coupling is a single two-level atom interacting with a single mode of an electromagnetic field in a cavity. This problem received a great deal of attention shortly after the maser was invented
Single-ion nonlinear mechanical oscillator
International Nuclear Information System (INIS)
Akerman, N.; Kotler, S.; Glickman, Y.; Dallal, Y.; Keselman, A.; Ozeri, R.
2010-01-01
We study the steady-state motion of a single trapped ion oscillator driven to the nonlinear regime. Damping is achieved via Doppler laser cooling. The ion motion is found to be well described by the Duffing oscillator model with an additional nonlinear damping term. We demonstrate here the unique ability of tuning both the linear as well as the nonlinear damping coefficients by controlling the laser-cooling parameters. Our observations pave the way for the investigation of nonlinear dynamics on the quantum-to-classical interface as well as mechanical noise squeezing in laser-cooling dynamics.
Modeling nonlinearities in MEMS oscillators.
Agrawal, Deepak K; Woodhouse, Jim; Seshia, Ashwin A
2013-08-01
We present a mathematical model of a microelectromechanical system (MEMS) oscillator that integrates the nonlinearities of the MEMS resonator and the oscillator circuitry in a single numerical modeling environment. This is achieved by transforming the conventional nonlinear mechanical model into the electrical domain while simultaneously considering the prominent nonlinearities of the resonator. The proposed nonlinear electrical model is validated by comparing the simulated amplitude-frequency response with measurements on an open-loop electrically addressed flexural silicon MEMS resonator driven to large motional amplitudes. Next, the essential nonlinearities in the oscillator circuit are investigated and a mathematical model of a MEMS oscillator is proposed that integrates the nonlinearities of the resonator. The concept is illustrated for MEMS transimpedance-amplifier- based square-wave and sine-wave oscillators. Closed-form expressions of steady-state output power and output frequency are derived for both oscillator models and compared with experimental and simulation results, with a good match in the predicted trends in all three cases.
Signatures of nonlinearity in single cell noise-induced oscillations
Thomas, P.; Straube, A.V.; Timmer, J.; Fleck, C.; Grima, R.
2013-01-01
A class of theoretical models seeks to explain rhythmic single cell data by postulating that they are generated by intrinsic noise in biochemical systems whose deterministic models exhibit only damped oscillations. The main features of such noise-induced oscillations are quantified by the power
Modeling microtubule oscillations
DEFF Research Database (Denmark)
Jobs, E.; Wolf, D.E.; Flyvbjerg, H.
1997-01-01
Synchronization of molecular reactions in a macroscopic volume may cause the volume's physical properties to change dynamically and thus reveal much about the reactions. As an example, experimental time series for so-called microtubule oscillations are analyzed in terms of a minimal model...... for this complex polymerization-depolymerization cycle. The model reproduces well the qualitatively different time series that result from different experimental conditions, and illuminates the role and importance of individual processes in the cycle. Simple experiments are suggested that can further test...... and define the model and the polymer's reaction cycle....
Single ICCII Sinusoidal Oscillators Employing Grounded Capacitors
Directory of Open Access Journals (Sweden)
J. W. Horng
2011-09-01
Full Text Available Two inverting second-generation current conveyors (ICCII based sinusoidal oscillators are presented. The first sinusoidal oscillator is composed of one ICCII, two grounded capacitors and two resistors. The oscillation condition and oscillation frequency can be orthogonally controllable. The second sinusoidal oscillator is composed of one ICCII, two grounded capacitors and three resistors. The oscillation condition and oscillation frequency can be independently controllable through different resistors.
Modelling solar-like oscillators
Energy Technology Data Exchange (ETDEWEB)
Eggenberger, P; Miglio, A [Institut d' Astrophysique et de Geophysique de l' Universite de Liege, 17 Allee du 6 Aout, B-4000 Liege (Belgium); Carrier, F [Institute of Astronomy, University of Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); Mathis, S [CEA/DSM/DAPNIA/Service d' Astrophysique, CEA/Saclay, AIM-Unite Mixte de Recherche CEA-CNRS-Universite Paris VII, UMR 7158, 91191 Gif-sur-Yvette Cedex (France)], E-mail: eggenberger@Qastro.ulg.ac.be
2008-10-15
The computation of models of stars for which solar-like oscillations have been observed is discussed. After a brief intoduction on the observations of solar-like oscillations, the modelling of isolated stars and of stars belonging to a binary system is presented with specific examples of recent theoretical calibrations. Finally the input physics introduced in stellar evolution codes for the computation of solar-type stars is discussed with a peculiar emphasis on the modelling of rotation for these stars.
On the nonlinear modeling of ring oscillators
Elwakil, Ahmed S.
2009-06-01
We develop higher-order nonlinear models of three-stage and five-stage ring oscillators based on a novel inverter model. The oscillation condition and oscillation frequency are derived and compared to classical linear model analysis. Two important special cases for five-stage ring oscillators are also studied. Numerical simulations are shown. © 2009 World Scientific Publishing Company.
On the nonlinear modeling of ring oscillators
Elwakil, Ahmed S.; Salama, Khaled N.
2009-01-01
We develop higher-order nonlinear models of three-stage and five-stage ring oscillators based on a novel inverter model. The oscillation condition and oscillation frequency are derived and compared to classical linear model analysis. Two important special cases for five-stage ring oscillators are also studied. Numerical simulations are shown. © 2009 World Scientific Publishing Company.
Signatures of nonlinearity in single cell noise-induced oscillations.
Thomas, Philipp; Straube, Arthur V; Timmer, Jens; Fleck, Christian; Grima, Ramon
2013-10-21
A class of theoretical models seeks to explain rhythmic single cell data by postulating that they are generated by intrinsic noise in biochemical systems whose deterministic models exhibit only damped oscillations. The main features of such noise-induced oscillations are quantified by the power spectrum which measures the dependence of the oscillatory signal's power with frequency. In this paper we derive an approximate closed-form expression for the power spectrum of any monostable biochemical system close to a Hopf bifurcation, where noise-induced oscillations are most pronounced. Unlike the commonly used linear noise approximation which is valid in the macroscopic limit of large volumes, our theory is valid over a wide range of volumes and hence affords a more suitable description of single cell noise-induced oscillations. Our theory predicts that the spectra have three universal features: (i) a dominant peak at some frequency, (ii) a smaller peak at twice the frequency of the dominant peak and (iii) a peak at zero frequency. Of these, the linear noise approximation predicts only the first feature while the remaining two stem from the combination of intrinsic noise and nonlinearity in the law of mass action. The theoretical expressions are shown to accurately match the power spectra determined from stochastic simulations of mitotic and circadian oscillators. Furthermore it is shown how recently acquired single cell rhythmic fibroblast data displays all the features predicted by our theory and that the experimental spectrum is well described by our theory but not by the conventional linear noise approximation. © 2013 Elsevier Ltd. All rights reserved.
Modeling of Coupled Chaotic Oscillators
International Nuclear Information System (INIS)
Lai, Y.; Grebogi, C.
1999-01-01
Chaotic dynamics may impose severe limits to deterministic modeling by dynamical equations of natural systems. We give theoretical argument that severe modeling difficulties may occur for high-dimensional chaotic systems in the sense that no model is able to produce reasonably long solutions that are realized by nature. We make these ideas concrete by investigating systems of coupled chaotic oscillators. They arise in many situations of physical and biological interests, and they also arise from discretization of nonlinear partial differential equations. copyright 1999 The American Physical Society
Oscillating water column structural model
Energy Technology Data Exchange (ETDEWEB)
Copeland, Guild [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bull, Diana L [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jepsen, Richard Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gordon, Margaret Ellen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2014-09-01
An oscillating water column (OWC) wave energy converter is a structure with an opening to the ocean below the free surface, i.e. a structure with a moonpool. Two structural models for a non-axisymmetric terminator design OWC, the Backward Bent Duct Buoy (BBDB) are discussed in this report. The results of this structural model design study are intended to inform experiments and modeling underway in support of the U.S. Department of Energy (DOE) initiated Reference Model Project (RMP). A detailed design developed by Re Vision Consulting used stiffeners and girders to stabilize the structure against the hydrostatic loads experienced by a BBDB device. Additional support plates were added to this structure to account for loads arising from the mooring line attachment points. A simplified structure was designed in a modular fashion. This simplified design allows easy alterations to the buoyancy chambers and uncomplicated analysis of resulting changes in buoyancy.
Measured oscillator strengths in singly ionized molybdenum
Mayo-García, R.; Aragón, C.; Aguilera, J. A.; Ortiz, M.
2015-11-01
In this article, 112 oscillator strengths from Mo II have been measured, 79 of which for the first time. The radiative parameters have been obtained by laser-induced breakdown spectroscopy (LIBS). The plasma is produced from a fused glass sample prepared from molybdenum oxide with a Mo atomic concentration of 0.1%. The plasma evolved in air at atmospheric pressure, and measurements were carried out with the following plasma parameters: an electron density of (2.5+/- 0.1)\\cdot {10}17 cm-3 and an electron temperature of 14,400+/- 200 K. In these conditions, a local thermodynamic equilibrium environment and an optically thin plasma were confirmed for the measurements. The relative intensities were placed on an absolute scale by combining branching fractions with the measured lifetimes and by comparing well-known lines using the plasma temperature. Comparisons were made to previously obtained experimental and theoretical values wherever possible.
Load Insensitive, Low Voltage Quadrature Oscillator Using Single Active Element
Directory of Open Access Journals (Sweden)
Jitendra Mohan
2017-01-01
Full Text Available In this paper, a load insensitive quadrature oscillator using single differential voltage dual-X second generation current conveyor operated at low voltage is proposed. The proposed circuit employs single active element, three grounded resistors and two grounded capacitors. The proposed oscillator offers two load insensitive quadrature current outputs and three quadrature voltage outputs simultaneously. Effects of non-idealities along with the effects of parasitic are further studied. The proposed circuit enjoys the feature of low active and passive sensitivities. Additionally, a resistorless realization of the proposed quadrature oscillator is also explored. Simulation results using PSPICE program on cadence tool using 90 nm Complementary Metal Oxide Semiconductor (CMOS process parameters confirm the validity and practical utility of the proposed circuit.
Non-linear phenomena in electronic systems consisting of coupled single-electron oscillators
International Nuclear Information System (INIS)
Kikombo, Andrew Kilinga; Hirose, Tetsuya; Asai, Tetsuya; Amemiya, Yoshihito
2008-01-01
This paper describes non-linear dynamics of electronic systems consisting of single-electron oscillators. A single-electron oscillator is a circuit made up of a tunneling junction and a resistor, and produces simple relaxation oscillation. Coupled with another, single electron oscillators exhibit complex behavior described by a combination of continuous differential equations and discrete difference equations. Computer simulation shows that a double-oscillator system consisting of two coupled oscillators produces multi-periodic oscillation with a single attractor, and that a quadruple-oscillator system consisting of four oscillators also produces multi-periodic oscillation but has a number of possible attractors and takes one of them determined by initial conditions
Synchronization of hyperchaotic oscillators via single unidirectional chaotic-coupling
International Nuclear Information System (INIS)
Zou Yanli; Zhu Jie; Chen Guanrong; Luo Xiaoshu
2005-01-01
In this paper, synchronization of two hyperchaotic oscillators via a single variable's unidirectional coupling is studied. First, the synchronizability of the coupled hyperchaotic oscillators is proved mathematically. Then, the convergence speed of this synchronization scheme is analyzed. In order to speed up the response with a relatively large coupling strength, two kinds of chaotic coupling synchronization schemes are proposed. In terms of numerical simulations and the numerical calculation of the largest conditional Lyapunov exponent, it is shown that in a given range of coupling strengths, chaotic-coupling synchronization is quicker than the typical continuous-coupling synchronization. Furthermore, A circuit realization based on the chaotic synchronization scheme is designed and Pspice circuit simulation validates the simulated hyperchaos synchronization mechanism
A Wnt oscillator model for somitogenesis
DEFF Research Database (Denmark)
Jensen, Peter B; Pedersen, Lykke; Krishna, Sandeep
2010-01-01
We propose a model for the segmentation clock in vertebrate somitogenesis, based on the Wnt signaling pathway. The core of the model is a negative feedback loop centered around the Axin2 protein. Axin2 is activated by beta-catenin, which in turn is degraded by a complex of GSK3beta and Axin2....... The model produces oscillatory states of the involved constituents with typical time periods of a few hours (ultradian oscillations). The oscillations are robust to changes in parameter values and are often spiky, where low concentration values of beta-catenin are interrupted by sharp peaks. Necessary...
A Wnt Oscillator Model for Somitogenesis
Jensen, Peter B.; Pedersen, Lykke; Krishna, Sandeep; Jensen, Mogens H.
2010-01-01
We propose a model for the segmentation clock in vertebrate somitogenesis, based on the Wnt signaling pathway. The core of the model is a negative feedback loop centered around the Axin2 protein. Axin2 is activated by β-catenin, which in turn is degraded by a complex of GSK3β and Axin2. The model produces oscillatory states of the involved constituents with typical time periods of a few hours (ultradian oscillations). The oscillations are robust to changes in parameter values and are often sp...
Experimental researches on the single-bubble rising behavior in the water excited by oscillation
International Nuclear Information System (INIS)
Cai Jiejin; Zhong Minghuang; Wang Ke; Zeng Xixiang; Lin Yongcheng; WATANABE Tadashi
2014-01-01
This study try to carry out experiments to research the bubble rising behavior in the water excited by oscillation and focus on its dynamics characteristics under the oscillation condition with different oscillation frequencies and amplitudes, and get the relationship between bubble's characteristic parameter, such as the bubble shape, rising velocity, etc, and the influence parameters of time, oscillation frequencies, amplitudes, etc. The rising rule of the single bubble in the water excited by oscillation has been concluded. (authors)
Modeling diauxic glycolytic oscillations in yeast
DEFF Research Database (Denmark)
Hald, Bjørn Olav; Sørensen, Preben Graae
2010-01-01
for investigations of central metabolism dynamics of yeast cells. We have previously proposed a model for the open system comprised of the primary fermentative reactions in yeast that quantitatively describes the oscillatory dynamics. However, this model fails to describe the transient behavior of metabolic......Glycolytic oscillations in a stirred suspension of starved yeast cells is an excellent model system for studying the dynamics of metabolic switching in living systems. In an open-flow system the oscillations can be maintained indefinitely at a constant operating point where they can....... Experimental and computational results strongly suggest that regulation of acetaldehyde explains the observed behavior. We have extended the original model with regulation of pyruvate decarboxylase, a reversible alcohol dehydrogenase, and drainage of pyruvate. Using the method of time rescaling in the extended...
Strong-field effects in Rabi oscillations between a single state and a superposition of states
International Nuclear Information System (INIS)
Zhdanovich, S.; Milner, V.; Hepburn, J. W.
2011-01-01
Rabi oscillations of quantum population are known to occur in two-level systems driven by spectrally narrow laser fields. In this work we study Rabi oscillations induced by shaped broadband femtosecond laser pulses. Due to the broad spectral width of the driving field, the oscillations are initiated between a ground state and a coherent superposition of excited states, or a ''wave packet,'' rather than a single excited state. Our experiments reveal an intricate dependence of the wave-packet phase on the intensity of the laser field. We confirm numerically that the effect is associated with the strong-field nature of the interaction and provide a qualitative picture by invoking a simple theoretical model.
Directory of Open Access Journals (Sweden)
Jorrit Steven Montijn
2012-05-01
Full Text Available In divisive normalization models of covert attention, spike rate modulations are commonly used as indicators of the effect of top-down attention. In addition, an increasing number of studies have shown that top-down attention increases the synchronization of neuronal oscillations as well, particularly those in gamma-band frequencies (25 to 100 Hz. Although modulations of spike rate and synchronous oscillations are not mutually exclusive as mechanisms of attention, there has thus far been little effort to integrate these concepts into a single framework of attention. Here, we aim to provide such a unified framework by expanding the normalization model of attention with a time dimension; allowing the simulation of a recently reported backward progression of attentional effects along the visual cortical hierarchy. A simple hierarchical cascade of normalization models simulating different cortical areas however leads to signal degradation and a loss of discriminability over time. To negate this degradation and ensure stable neuronal stimulus representations, we incorporate oscillatory phase entrainment into our model, a mechanism previously proposed as the communication-through-coherence (CTC hypothesis. Our analysis shows that divisive normalization and oscillation models can complement each other in a unified account of the neural mechanisms of selective visual attention. The resulting hierarchical normalization and oscillation (HNO model reproduces several additional spatial and temporal aspects of attentional modulation.
Montijn, Jorrit Steven; Klink, P Christaan; van Wezel, Richard J A
2012-01-01
Divisive normalization models of covert attention commonly use spike rate modulations as indicators of the effect of top-down attention. In addition, an increasing number of studies have shown that top-down attention increases the synchronization of neuronal oscillations as well, particularly in gamma-band frequencies (25-100 Hz). Although modulations of spike rate and synchronous oscillations are not mutually exclusive as mechanisms of attention, there has thus far been little effort to integrate these concepts into a single framework of attention. Here, we aim to provide such a unified framework by expanding the normalization model of attention with a multi-level hierarchical structure and a time dimension; allowing the simulation of a recently reported backward progression of attentional effects along the visual cortical hierarchy. A simple cascade of normalization models simulating different cortical areas is shown to cause signal degradation and a loss of stimulus discriminability over time. To negate this degradation and ensure stable neuronal stimulus representations, we incorporate a kind of oscillatory phase entrainment into our model that has previously been proposed as the "communication-through-coherence" (CTC) hypothesis. Our analysis shows that divisive normalization and oscillation models can complement each other in a unified account of the neural mechanisms of selective visual attention. The resulting hierarchical normalization and oscillation (HNO) model reproduces several additional spatial and temporal aspects of attentional modulation and predicts a latency effect on neuronal responses as a result of cued attention.
New Realizations of Single OTRA-Based Sinusoidal Oscillators
Directory of Open Access Journals (Sweden)
Hung-Chun Chien
2014-01-01
Full Text Available This study proposes three new sinusoidal oscillators based on an operational transresistance amplifier (OTRA. Each of the proposed oscillator circuits consists of one OTRA combined with a few passive components. The first circuit is an OTRA-based minimum RC oscillator. The second circuit is capable of providing independent control on the condition of oscillation without affecting the oscillation frequency. The third circuit exhibits independent control of oscillation frequency through a capacitor. This study first introduces the OTRA and the related formulations of the proposed oscillator circuits, and then discusses the nonideal effects, sensitivity analyses, and frequency stability of the presented circuits. The proposed oscillators exhibit low sensitivities and good frequency stability. Because the presented circuits feature low impedance output, they can be connected directly to the next stage without cascading additional voltage buffers. HSPICE simulations and experimental results confirm the feasibility of the new oscillator circuits.
Oscillations in epidemic models with spread of awareness.
Just, Winfried; Saldaña, Joan; Xin, Ying
2018-03-01
We study ODE models of epidemic spreading with a preventive behavioral response that is triggered by awareness of the infection. Previous studies of such models have mostly focused on the impact of the response on the initial growth of an outbreak and the existence and location of endemic equilibria. Here we study the question whether this type of response is sufficient to prevent future flare-ups from low endemic levels if awareness is assumed to decay over time. In the ODE context, such flare-ups would translate into sustained oscillations with significant amplitudes. Our results show that such oscillations are ruled out in Susceptible-Aware-Infectious-Susceptible models with a single compartment of aware hosts, but can occur if we consider two distinct compartments of aware hosts who differ in their willingness to alert other susceptible hosts.
Generalized model for Memristor-based Wien family oscillators
Talukdar, Abdul Hafiz Ibne
2012-07-23
In this paper, we report the unconventional characteristics of Memristor in Wien oscillators. Generalized mathematical models are developed to analyze four members of the Wien family using Memristors. Sustained oscillation is reported for all types though oscillating resistance and time dependent poles are present. We have also proposed an analytical model to estimate the desired amplitude of oscillation before the oscillation starts. These Memristor-based oscillation results, presented for the first time, are in good agreement with simulation results. © 2011 Elsevier Ltd.
A simple model of intraseasonal oscillations
Fuchs, Željka; Raymond, David J.
2017-06-01
The intraseasonal oscillations and in particular the MJO have been and still remain a "holy grail" of today's atmospheric science research. Why does the MJO propagate eastward? What makes it unstable? What is the scaling for the MJO, i.e., why does it prefer long wavelengths or planetary wave numbers 1-3? What is the westward moving component of the intraseasonal oscillation? Though linear WISHE has long been discounted as a plausible model for intraseasonal oscillations and the MJO, the version we have developed explains many of the observed features of those phenomena, in particular, the preference for large zonal scale. In this model version, the moisture budget and the increase of precipitation with tropospheric humidity lead to a "moisture mode." The destabilization of the large-scale moisture mode occurs via WISHE only and there is no need to postulate large-scale radiatively induced instability or negative effective gross moist stability. Our WISHE-moisture theory leads to a large-scale unstable eastward propagating mode in n = -1 case and a large-scale unstable westward propagating mode in n = 1 case. We suggest that the n = -1 case might be connected to the MJO and the observed westward moving disturbance to the observed equatorial Rossby mode.
Generalized model for Memristor-based Wien family oscillators
Talukdar, Abdul Hafiz Ibne; Radwan, Ahmed G.; Salama, Khaled N.
2012-01-01
In this paper, we report the unconventional characteristics of Memristor in Wien oscillators. Generalized mathematical models are developed to analyze four members of the Wien family using Memristors. Sustained oscillation is reported for all types
Electronically Tunable Current-Mode Quadrature Oscillator Using Single MCDTA
Directory of Open Access Journals (Sweden)
Y. Li
2010-12-01
Full Text Available This paper presents a modified current differencing transconductance amlpifier (MCDTA and the MCDTA based quadrature oscillator. The oscillator is current-mode and provides current output from high output impedance terminals. The circuit uses only one MCDTA and two grounded capacitors, and is easy to be integrated. Its oscillation frequency can be tuned electronically by tuning bias currents of MCDTA. Finally, frequency error is analyzed. The results of circuit simulations are in agreement with theory.
State space modeling of Memristor-based Wien oscillator
Talukdar, Abdul Hafiz Ibne
2011-12-01
State space modeling of Memristor based Wien \\'A\\' oscillator has been demonstrated for the first time considering nonlinear ion drift in Memristor. Time dependant oscillating resistance of Memristor is reported in both state space solution and SPICE simulation which plausibly provide the basis of realizing parametric oscillation by Memristor based Wien oscillator. In addition to this part Memristor is shown to stabilize the final oscillation amplitude by means of its nonlinear dynamic resistance which hints for eliminating diode in the feedback network of conventional Wien oscillator. © 2011 IEEE.
State space modeling of Memristor-based Wien oscillator
Talukdar, Abdul Hafiz Ibne; Radwan, Ahmed G.; Salama, Khaled N.
2011-01-01
State space modeling of Memristor based Wien 'A' oscillator has been demonstrated for the first time considering nonlinear ion drift in Memristor. Time dependant oscillating resistance of Memristor is reported in both state space solution and SPICE simulation which plausibly provide the basis of realizing parametric oscillation by Memristor based Wien oscillator. In addition to this part Memristor is shown to stabilize the final oscillation amplitude by means of its nonlinear dynamic resistance which hints for eliminating diode in the feedback network of conventional Wien oscillator. © 2011 IEEE.
Modeling Bloch oscillations in nanoscale Josephson junctions
Vora, Heli; Kautz, R. L.; Nam, S. W.; Aumentado, J.
2018-01-01
Bloch oscillations in nanoscale Josephson junctions with a Coulomb charging energy comparable to the Josephson coupling energy are explored within the context of a model previously considered by Geigenmüller and Schön that includes Zener tunneling and treats quasiparticle tunneling as an explicit shot-noise process. The dynamics of the junction quasicharge are investigated numerically using both Monte Carlo and ensemble approaches to calculate voltage-current characteristics in the presence of microwaves. We examine in detail the origin of harmonic and subharmonic Bloch steps at dc biases I = (n/m)2ef induced by microwaves of frequency f and consider the optimum parameters for the observation of harmonic (m = 1) steps. We also demonstrate that the GS model allows a detailed semiquantitative fit to experimental voltage-current characteristics previously obtained at the Chalmers University of Technology, confirming and strengthening the interpretation of the observed microwave-induced steps in terms of Bloch oscillations. PMID:29577106
Investigation on phase noise of the signal from a singly resonant optical parametric oscillator
Jinxia, Feng; Yuanji, Li; Kuanshou, Zhang
2018-04-01
The phase noise of the signal from a singly resonant optical parametric oscillator (SRO) is investigated theoretically and experimentally. An SRO based on periodically poled lithium niobate is built up that generates the signal with a maximum power of 5.2 W at 1.5 µm. The intensity noise of the signal reaches the shot noise level for frequencies above 5 MHz. The phase noise of the signal oscillates depending on the analysis frequency, and there are phase noise peaks above the shot noise level at the peak frequencies. To explain the phase noise feature of the signal, a semi-classical theoretical model of SROs including the guided acoustic wave Brillouin scattering effect within the nonlinear crystal is developed. The theoretical predictions are in good agreement with the experimental results.
Collective signaling behavior in a networked-oscillator model
Liu, Z.-H.; Hui, P. M.
2007-09-01
We propose and study the collective behavior of a model of networked signaling objects that incorporates several ingredients of real-life systems. These ingredients include spatial inhomogeneity with grouping of signaling objects, signal attenuation with distance, and delayed and impulsive coupling between non-identical signaling objects. Depending on the coupling strength and/or time-delay effect, the model exhibits completely, partially, and locally collective signaling behavior. In particular, a correlated signaling (CS) behavior is observed in which there exist time durations when nearly a constant fraction of oscillators in the system are in the signaling state. These time durations are much longer than the duration of a spike when a single oscillator signals, and they are separated by regular intervals in which nearly all oscillators are silent. Such CS behavior is similar to that observed in biological systems such as fireflies, cicadas, crickets, and frogs. The robustness of the CS behavior against noise is also studied. It is found that properly adjusting the coupling strength and noise level could enhance the correlated behavior.
Hybrid spin-nanomechanics with single spins in diamond mechanical oscillators
Barfuss, Arne
2017-01-01
Hybrid spin-oscillator systems, formed by single spins coupled to mechanical oscillators, have attracted ever-increasing attention over the past few years, triggered largely by the prospect of employing such devices as high-performance nanoscale sensors or transducers in multi-qubit networks. Provided the spin-oscillator coupling is strong and robust, such systems can even serve as test-beds for studying macroscopic objects in the quantum regime. In this thesis we present a novel hybrid sp...
Memcapacitor model and its application in chaotic oscillator with memristor.
Wang, Guangyi; Zang, Shouchi; Wang, Xiaoyuan; Yuan, Fang; Iu, Herbert Ho-Ching
2017-01-01
Memristors and memcapacitors are two new nonlinear elements with memory. In this paper, we present a Hewlett-Packard memristor model and a charge-controlled memcapacitor model and design a new chaotic oscillator based on the two models for exploring the characteristics of memristors and memcapacitors in nonlinear circuits. Furthermore, many basic dynamical behaviors of the oscillator, including equilibrium sets, Lyapunov exponent spectrums, and bifurcations with various circuit parameters, are investigated theoretically and numerically. Our analysis results show that the proposed oscillator possesses complex dynamics such as an infinite number of equilibria, coexistence oscillation, and multi-stability. Finally, a discrete model of the chaotic oscillator is given and the main statistical properties of this oscillator are verified via Digital Signal Processing chip experiments and National Institute of Standards and Technology tests.
Polymerization and oscillation stuttering in a filamentous model of the subcellular Min oscillation
Rutenberg, Andrew; Sengupta, Supratim; Sain, Anirban; Derr, Julien
2011-03-01
We present a computational model of the E. coli Min oscillation that involves polymerization of MinD filaments followed by depolymerization stimulated by filament-end zones of MinE. Our stochastic model is fully three-dimensional, and tracks the diffusion and interactions of every MinD and MinE molecule. We recover self-organized Min oscillations. We investigate the experimental phenomenon of oscillation stuttering, which we relate to the disruption of MinE tip-binding at the filament scale.
Chemical event chain model of coupled genetic oscillators.
Jörg, David J; Morelli, Luis G; Jülicher, Frank
2018-03-01
We introduce a stochastic model of coupled genetic oscillators in which chains of chemical events involved in gene regulation and expression are represented as sequences of Poisson processes. We characterize steady states by their frequency, their quality factor, and their synchrony by the oscillator cross correlation. The steady state is determined by coupling and exhibits stochastic transitions between different modes. The interplay of stochasticity and nonlinearity leads to isolated regions in parameter space in which the coupled system works best as a biological pacemaker. Key features of the stochastic oscillations can be captured by an effective model for phase oscillators that are coupled by signals with distributed delays.
Chemical event chain model of coupled genetic oscillators
Jörg, David J.; Morelli, Luis G.; Jülicher, Frank
2018-03-01
We introduce a stochastic model of coupled genetic oscillators in which chains of chemical events involved in gene regulation and expression are represented as sequences of Poisson processes. We characterize steady states by their frequency, their quality factor, and their synchrony by the oscillator cross correlation. The steady state is determined by coupling and exhibits stochastic transitions between different modes. The interplay of stochasticity and nonlinearity leads to isolated regions in parameter space in which the coupled system works best as a biological pacemaker. Key features of the stochastic oscillations can be captured by an effective model for phase oscillators that are coupled by signals with distributed delays.
Parameters of oscillation generation regions in open star cluster models
Danilov, V. M.; Putkov, S. I.
2017-07-01
We determine the masses and radii of central regions of open star cluster (OCL) models with small or zero entropy production and estimate the masses of oscillation generation regions in clustermodels based on the data of the phase-space coordinates of stars. The radii of such regions are close to the core radii of the OCL models. We develop a new method for estimating the total OCL masses based on the cluster core mass, the cluster and cluster core radii, and radial distribution of stars. This method yields estimates of dynamical masses of Pleiades, Praesepe, and M67, which agree well with the estimates of the total masses of the corresponding clusters based on proper motions and spectroscopic data for cluster stars.We construct the spectra and dispersion curves of the oscillations of the field of azimuthal velocities v φ in OCL models. Weak, low-amplitude unstable oscillations of v φ develop in cluster models near the cluster core boundary, and weak damped oscillations of v φ often develop at frequencies close to the frequencies of more powerful oscillations, which may reduce the non-stationarity degree in OCL models. We determine the number and parameters of such oscillations near the cores boundaries of cluster models. Such oscillations points to the possible role that gradient instability near the core of cluster models plays in the decrease of the mass of the oscillation generation regions and production of entropy in the cores of OCL models with massive extended cores.
Reply to Steele & Ferrer : Modeling Oscillation, Approximately or Exactly?
Oud, Johan H. L.; Folmer, Henk
2011-01-01
This article addresses modeling oscillation in continuous time. It criticizes Steele and Ferrer's article "Latent Differential Equation Modeling of Self-Regulatory and Coregulatory Affective Processes" (2011), particularly the approximate estimation procedure applied. This procedure is the latent
Reply to Steele & Ferrer: Modeling oscillation, approximately or exactly?
Folmer, H.; Oud, J.H.L.
2011-01-01
This article addresses modeling oscillation in continuous time. It criticizes Steele and Ferrer's article "Latent Differential Equation Modeling of Self-Regulatory and Coregulatory Affective Processes" (2011), particularly the approximate estimation procedure applied. This procedure is the latent
Miró-Bueno, Jesús M.; Rodríguez-Patón, Alfonso
2011-01-01
Negative and positive transcriptional feedback loops are present in natural and synthetic genetic oscillators. A single gene with negative transcriptional feedback needs a time delay and sufficiently strong nonlinearity in the transmission of the feedback signal in order to produce biochemical rhythms. A single gene with only positive transcriptional feedback does not produce oscillations. Here, we demonstrate that this single-gene network in conjunction with a simple negative interaction can also easily produce rhythms. We examine a model comprised of two well-differentiated parts. The first is a positive feedback created by a protein that binds to the promoter of its own gene and activates the transcription. The second is a negative interaction in which a repressor molecule prevents this protein from binding to its promoter. A stochastic study shows that the system is robust to noise. A deterministic study identifies that the dynamics of the oscillator are mainly driven by two types of biomolecules: the protein, and the complex formed by the repressor and this protein. The main conclusion of this paper is that a simple and usual negative interaction, such as degradation, sequestration or inhibition, acting on the positive transcriptional feedback of a single gene is a sufficient condition to produce reliable oscillations. One gene is enough and the positive transcriptional feedback signal does not need to activate a second repressor gene. This means that at the genetic level an explicit negative feedback loop is not necessary. The model needs neither cooperative binding reactions nor the formation of protein multimers. Therefore, our findings could help to clarify the design principles of cellular clocks and constitute a new efficient tool for engineering synthetic genetic oscillators. PMID:22205920
Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter
Energy Technology Data Exchange (ETDEWEB)
Yu, Y. H. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jenne, D. S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Thresher, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Copping, A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Geerlofs, S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hanna, L. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2015-01-01
This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter (OSWEC) reference model design in a complementary manner to Reference Models 1-4 contained in the above report. A conceptual design for a taut moored oscillating surge wave energy converter was developed. The design had an annual electrical power of 108 kilowatts (kW), rated power of 360 kW, and intended deployment at water depths between 50 m and 100 m. The study includes structural analysis, power output estimation, a hydraulic power conversion chain system, and mooring designs. The results were used to estimate device capital cost and annual operation and maintenance costs. The device performance and costs were used for the economic analysis, following the methodology presented in SAND2013-9040 that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays up to 100 devices. The levelized cost of energy estimated for the Reference Model 5 OSWEC, presented in this report, was for a single device and arrays of 10, 50, and 100 units, and it enabled the economic analysis to account for cost reductions associated with economies of scale. The baseline commercial levelized cost of energy estimate for the Reference Model 5 device in an array comprised of 10 units is $1.44/kilowatt-hour (kWh), and the value drops to approximately $0.69/kWh for an array of 100 units.
Controlled vesicle deformation and lysis by single oscillating bubbles
Marmottant, Philippe; Hilgenfeldt, Sascha
2003-05-01
The ability of collapsing (cavitating) bubbles to focus and concentrate energy, forces and stresses is at the root of phenomena such as cavitation damage, sonochemistry or sonoluminescence. In a biomedical context, ultrasound-driven microbubbles have been used to enhance contrast in ultrasonic images. The observation of bubble-enhanced sonoporation-acoustically induced rupture of membranes-has also opened up intriguing possibilities for the therapeutic application of sonoporation as an alternative to cell-wall permeation techniques such as electroporation and particle guns. However, these pioneering experiments have not been able to pinpoint the mechanism by which the violently collapsing bubble opens pores or larger holes in membranes. Here we present an experiment in which gentle (linear) bubble oscillations are sufficient to achieve rupture of lipid membranes. In this regime, the bubble dynamics and the ensuing sonoporation can be accurately controlled. The use of microbubbles as focusing agents makes acoustics on the micrometre scale (microacoustics) a viable tool, with possible applications in cell manipulation and cell-wall permeation as well as in microfluidic devices.
Modeling of termokinetic oscillations at partial oxidation of methane
Arutyunov, A. V.; Belyaev, A. A.; Inovenkov, I. N.; Nefedov, V. V.
2017-12-01
Partial oxidation of natural gas at moderate temperatures below 1500 K has significant interest for a number of industrial applications. But such processes can proceed at different unstable regimes including oscillating modes. Nonlinear phenomena at partial oxidation of methane were observed at different conditions. The investigation of the complex nonlinear system of equations that describes this process is a real method to insure its stability at industrial conditions and, at the same time, is an effective tool for its further enhancement. Numerical analysis of methane oxidation kinetics in the continuous stirred-tank reactor, with the use of detailed kinetic model has shown the possibility of the appearance of oscillating modes in the appropriate range of reaction parameters that characterize the composition, pressure, reagents flow, thermophysical features of the system, and geometry of the reactor. The appearance of oscillating modes is connected both with the reaction kinetics, heat release and sink and reagents introduction and removing. At that, oscillations appear only at a limited range of parameters, but can be accompanied by significant change in the yield of products. We have determined the range of initial temperature and pressure at which oscillations can be observed, if all other parameters remained fixed. The boundaries of existence of oscillations on the phase plane were calculated. It was shown that depending on the position inside the oscillation region the oscillations have different frequency and amplitude. It was reviled the role of heat exchange with the environment: at the absence of heat exchange the oscillating modes are impossible. In the vicinity of the boundary of phase range, where oscillations exist, significant change of concentration of some products were observed, for example, that of CO2, which in this case one of the principal products is. At that, insignificant increase in pressure not only change the character of CO2 behaving
An oscillating dynamic model of collective cells in a monolayer
Lin, Shao-Zhen; Xue, Shi-Lei; Li, Bo; Feng, Xi-Qiao
2018-03-01
Periodic oscillations of collective cells occur in the morphogenesis and organogenesis of various tissues and organs. In this paper, an oscillating cytodynamic model is presented by integrating the chemomechanical interplay between the RhoA effector signaling pathway and cell deformation. We show that both an isolated cell and a cell aggregate can undergo spontaneous oscillations as a result of Hopf bifurcation, upon which the system evolves into a limit cycle of chemomechanical oscillations. The dynamic characteristics are tailored by the mechanical properties of cells (e.g., elasticity, contractility, and intercellular tension) and the chemical reactions involved in the RhoA effector signaling pathway. External forces are found to modulate the oscillation intensity of collective cells in the monolayer and to polarize their oscillations along the direction of external tension. The proposed cytodynamic model can recapitulate the prominent features of cell oscillations observed in a variety of experiments, including both isolated cells (e.g., spreading mouse embryonic fibroblasts, migrating amoeboid cells, and suspending 3T3 fibroblasts) and multicellular systems (e.g., Drosophila embryogenesis and oogenesis).
DEFF Research Database (Denmark)
Orozco-Santillán, Arturo; Ruiz-Boullosa, Ricardo; Cutanda Henríquez, Vicente
2007-01-01
It is well known that acoustic waves exert forces on a boundary with which they interact; these forces can be so intense that they can compensate for the weight of small objects up to a few grams. In this way, it is possible to maintain solid or liquid samples levitating in a fluid, avoiding...... the use of containers, which may be undesirable for certain applications. Moreover, small samples can be manipulated by means of acoustic waves. In this paper, we report a study on the oscillational instabilities that can appear on a levitated solid sphere in single-axis acoustic devices. A theory...... proportional to the oscillation frequency of the levitated sample. We also present experimental results that show that the oscillational instabilities can be reduced if the amplitude of the acoustic wave is increased; as a result, stable conditions can be obtained where the oscillations of the sphere...
Report on first masing and single mode locking in a prebunched beam FEM oscillator
Energy Technology Data Exchange (ETDEWEB)
Cohen, M.; Eichenbaum, A.; Kleinman, H. [Tel-Aviv Univ., Ramat-Aviv (Israel)] [and others
1995-12-31
Radiation characteristics of a table-top free electron maser (FEM) are described in this paper. The FEM employs a prebunched electron beam and is operated as an oscillator in the low-gain collective (Raman) regime. Using electron beam prebunching single mode locking at any one of the possible oscillation modes was obtained. The electron beam is prebunched by a microwave tube section before it is injected into the wiggler. By tuning the electron beam bunching frequency, the FEM oscillation frequency can be locked to any eigen frequency of the resonant waveguide cavity which is within the frequency band of net gain of the FEM. The oscillation build up process is sped up, when the FEM operates with a prebunched electron beam, and the build-up time of radiation is shortened significantly. First measurements of masing with and without prebunching and characterization of the emitted radiation are reported.
A Chaotic Oscillator Based on HP Memristor Model
Directory of Open Access Journals (Sweden)
Guangyi Wang
2015-01-01
Full Text Available This paper proposes a simple autonomous memristor-based oscillator for generating periodic signals. Applying an external sinusoidal excitation to the autonomous system, a nonautonomous oscillator is obtained, which contains HP memristor model and four linear circuit elements. This memristor-based oscillator can generate periodic, chaotic, and hyperchaotic signals under the periodic excitation and an appropriate set of circuit parameters. It also shows that the system exhibits alternately a hidden attractor with no equilibrium and a self-excited attractor with a line equilibrium as time goes on. Furthermore, some specialties including burst chaos, irregular periodic bifurcations, and nonintermittence chaos of the circuit are found by theoretical analysis and numerical simulations. Finally, a discrete model for the HP memristor is given and the main statistical properties of this memristor-based oscillator are verified via DSP chip experiments and NIST (National Institute of Standards and Technology tests.
Solvable model for chimera states of coupled oscillators.
Abrams, Daniel M; Mirollo, Rennie; Strogatz, Steven H; Wiley, Daniel A
2008-08-22
Networks of identical, symmetrically coupled oscillators can spontaneously split into synchronized and desynchronized subpopulations. Such chimera states were discovered in 2002, but are not well understood theoretically. Here we obtain the first exact results about the stability, dynamics, and bifurcations of chimera states by analyzing a minimal model consisting of two interacting populations of oscillators. Along with a completely synchronous state, the system displays stable chimeras, breathing chimeras, and saddle-node, Hopf, and homoclinic bifurcations of chimeras.
Modelling of Spherical Gas Bubble Oscillations and Sonoluminescence
Prosperetti, A.; Hao, Y.
1999-01-01
The discovery of single-bubble sonoluminescence has led to a renewed interest in the forced radial oscillations of gas bubbles. Many of the more recent studies devoted to this topic have used several simplifications in the modelling, and in particular in accounting for liquid compressibility and thermal processes in the bubble. In this paper the significance of these simplifications is explored by contrasting the results of Lohse and co-workers with those of a more detailed model. It is found that, even though there may be little apparent difference between the radius-versus time behaviour of the bubble as predicted by the two models, quantities such as the spherical stability boundary and the threshold for rectified diffusion are affected in a quantitatively significant way. These effects are a manifestation of the subtle dependence upon dissipative processes of the phase of radial motion with respect to the driving sound field. The parameter space region, where according to the theory of Lohse and co-workers, sonoluminescence should be observable, is recalculated with the new model and is found to be enlarged with respect to the earlier estimate. The dependence of this parameter region on sound frequency is also illustrated.
Montijn, Jorrit Steven; Klink, P. Christaan; van Wezel, Richard J. A.
2012-01-01
Divisive normalization models of covert attention commonly use spike rate modulations as indicators of the effect of top-down attention. In addition, an increasing number of studies have shown that top-down attention increases the synchronization of neuronal oscillations as well, particularly in gamma-band frequencies (25–100 Hz). Although modulations of spike rate and synchronous oscillations are not mutually exclusive as mechanisms of attention, there has thus far been little effort to inte...
Fiber Laser Pumped Continuous-wave Singly-resonant Optical Parametric Oscillator
Klein, M.E.; Gross, P.; Walde, T.; Boller, Klaus J.; Auerbach, M.; Wessels, P.; Fallnich, C.; Fejer, Martin M.
2002-01-01
We report on the first fiber-pumped CW LiNbO/sub 3/ optical parametric oscillator (OPO). The OPO is singly resonant (SRO) and generates idler wavelengths in the range of 3.0 /spl mu/m to 3.7 /spl mu/m with a maximum output power of 1.9 watt.
Quantitative analysis of circadian single cell oscillations in response to temperature.
Abraham, Ute; Schlichting, Julia Katharina; Kramer, Achim; Herzel, Hanspeter
2018-01-01
Body temperature rhythms synchronize circadian oscillations in different tissues, depending on the degree of cellular coupling: the responsiveness to temperature is higher when single circadian oscillators are uncoupled. So far, the role of coupling in temperature responsiveness has only been studied in organotypic tissue slices of the central circadian pacemaker, because it has been assumed that peripheral target organs behave like uncoupled multicellular oscillators. Since recent studies indicate that some peripheral tissues may exhibit cellular coupling as well, we asked whether peripheral network dynamics also influence temperature responsiveness. Using a novel technique for long-term, high-resolution bioluminescence imaging of primary cultured cells, exposed to repeated temperature cycles, we were able to quantitatively measure period, phase, and amplitude of central (suprachiasmatic nuclei neuron dispersals) and peripheral (mouse ear fibroblasts) single cell oscillations in response to temperature. Employing temperature cycles of different lengths, and different cell densities, we found that some circadian characteristics appear cell-autonomous, e.g. period responses, while others seem to depend on the quality/degree of cellular communication, e.g. phase relationships, robustness of the oscillation, and amplitude. Overall, our findings indicate a strong dependence on the cell's ability for intercellular communication, which is not only true for neuronal pacemakers, but, importantly, also for cells in peripheral tissues. Hence, they stress the importance of comparative studies that evaluate the degree of coupling in a given tissue, before it may be used effectively as a target for meaningful circadian manipulation.
Commensurability oscillations in NdBa2Cu3Oy single crystals
Indian Academy of Sciences (India)
gated by angular dependent magnetization in very pure twinned and twin-free NdBa2 Cu3 Oy single ... The layered structure and the c-axis coherence length, ξc ≈ 4 ˚A, smaller than the lattice ... The high quality of both crystals is demonstrated by ... Commensurability oscillations in NdBa2Cu3Oy single crystals. 2. 3. 4. 5. 6.
Voelkle, Manuel C; Oud, Johan H L
2013-02-01
When designing longitudinal studies, researchers often aim at equal intervals. In practice, however, this goal is hardly ever met, with different time intervals between assessment waves and different time intervals between individuals being more the rule than the exception. One of the reasons for the introduction of continuous time models by means of structural equation modelling has been to deal with irregularly spaced assessment waves (e.g., Oud & Delsing, 2010). In the present paper we extend the approach to individually varying time intervals for oscillating and non-oscillating processes. In addition, we show not only that equal intervals are unnecessary but also that it can be advantageous to use unequal sampling intervals, in particular when the sampling rate is low. Two examples are provided to support our arguments. In the first example we compare a continuous time model of a bivariate coupled process with varying time intervals to a standard discrete time model to illustrate the importance of accounting for the exact time intervals. In the second example the effect of different sampling intervals on estimating a damped linear oscillator is investigated by means of a Monte Carlo simulation. We conclude that it is important to account for individually varying time intervals, and encourage researchers to conceive of longitudinal studies with different time intervals within and between individuals as an opportunity rather than a problem. © 2012 The British Psychological Society.
Seizure Dynamics of Coupled Oscillators with Epileptor Field Model
Zhang, Honghui; Xiao, Pengcheng
The focus of this paper is to investigate the dynamics of seizure activities by using the Epileptor coupled model. Based on the coexistence of seizure-like event (SLE), refractory status epilepticus (RSE), depolarization block (DB), and normal state, we first study the dynamical behaviors of two coupled oscillators in different activity states with Epileptor model by linking them with slow permittivity coupling. Our research has found that when one oscillator in normal states is coupled with any oscillator in SLE, RSE or DB states, these two oscillators can both evolve into SLE states under appropriate coupling strength. And then these two SLE oscillators can perform epileptiform synchronization or epileptiform anti-synchronization. Meanwhile, SLE can be depressed when considering the fast electrical or chemical coupling in Epileptor model. Additionally, a two-dimensional reduced model is also given to show the effect of coupling number on seizures. Those results can help to understand the dynamical mechanism of the initiation, maintenance, propagation and termination of seizures in focal epilepsy.
Silva, Fabrice; Debut, Vincent; Kergomard, Jean; Vergez, Christophe; Deblevid, Aude; Guillemain, Philippe
2007-01-01
This paper investigates the sound production in a system made of a bore coupled with a reed valve. Extending previous work (Debut, 2004), the input impedance of the bore is projected on the modes of the air column. The acoustic pressure is therefore calculated as the sum of modal components. The airrrﬂow blown into the bore is modulated by reed motion, assuming the reed to be a single degree of freedom oscillator. Calculation of self-sustained oscillations controlled by time-varyi...
Reply to Steele & Ferrer: Modeling Oscillation, Approximately or Exactly?
Oud, Johan H. L.; Folmer, Henk
2011-01-01
This article addresses modeling oscillation in continuous time. It criticizes Steele and Ferrer's article "Latent Differential Equation Modeling of Self-Regulatory and Coregulatory Affective Processes" (2011), particularly the approximate estimation procedure applied. This procedure is the latent version of the local linear approximation procedure…
A simple mechanical model for the isotropic harmonic oscillator
International Nuclear Information System (INIS)
Nita, Gelu M
2010-01-01
A constrained elastic pendulum is proposed as a simple mechanical model for the isotropic harmonic oscillator. The conceptual and mathematical simplicity of this model recommends it as an effective pedagogical tool in teaching basic physics concepts at advanced high school and introductory undergraduate course levels.
Modeling paraxial wave propagation in free-electron laser oscillators
Karssenberg, J.G.; van der Slot, Petrus J.M.; Volokhine, I.; Verschuur, Jeroen W.J.; Boller, Klaus J.
2006-01-01
Modeling free-electron laser (FEL) oscillators requires calculation of both the light-beam interaction within the undulator and the light propagation outside the undulator. We have developed a paraxial optical propagation code that can be combined with various existing models of gain media, for
Quantum resonances in a single plaquette of Josephson junctions: excitations of Rabi oscillations
Fistul, M. V.
2002-03-01
We present a theoretical study of a quantum regime of the resistive (whirling) state of dc driven anisotropic single plaquette containing small Josephson junctions. The current-voltage characteristics of such systems display resonant steps that are due to the resonant interaction between the time dependent Josephson current and the excited electromagnetic oscillations (EOs). The voltage positions of the resonances are determined by the quantum interband transitions of EOs. We show that in the quantum regime as the system is driven on the resonance, coherent Rabi oscillations between the quantum levels of EOs occur. At variance with the classical regime the magnitude and the width of resonances are determined by the frequency of Rabi oscillations that in turn, depends in a peculiar manner on an externally applied magnetic field and the parameters of the system.
Improvement of the low frequency oscillation model for Hall thrusters
Energy Technology Data Exchange (ETDEWEB)
Wang, Chunsheng, E-mail: wangcs@hit.edu.cn; Wang, Huashan [Yanshan University, College of Vehicles and Energy, Qinhuangdao 066004, Hebei (China)
2016-08-15
The low frequency oscillation of the discharge current in Hall thrusters is a major aspect of these devices that requires further study. While the existing model captures the ionization mechanism of the low frequency oscillation, it unfortunately fails to express the dynamic characteristics of the ion acceleration. The analysis in this paper shows this is because of the simplification of the electron equation, which affects both the electric field distribution and the ion acceleration process. Additionally, the electron density equation is revised and a new model that is based on the physical properties of ion movement is proposed.
Design of single-longitudinal-mode laser oscillator for edge Thomson scattering system in ITER
International Nuclear Information System (INIS)
Hatae, Takaki; Kusama, Yoshinori; Kubomura, Hiroyuki; Matsuoka, Shin-ichi
2006-06-01
A high output energy (5J) and high repetition rate (100 Hz) laser system is required for the edge Thomson scattering system in ITER. A YAG laser (Nd:YAG laser) is a first candidate for the laser system satisfying the requirements. It is important to develop a high beam quality and single longitudinal mode (SLM) laser oscillator in order to realize this high power laser system. In this design work, following activities relating to the SLM laser oscillator have been carried out: design of the laser head and the resonator, estimation of the output power for the SLM laser oscillator, consideration of the feedback control scheme and consideration of interface for amplification system to achieve required performance (5J, 100 Hz). It is expected that the designed laser diode (LD) pumped SLM laser oscillator realizes: 100 Hz of repetition rate, 10 mJ of output energy, 10 ns of pulse width, single longitudinal mode, TEM 00 of transversal mode, divergence less than 4 times of the diffraction limit, energy stability within 5%. (author)
Prevention of Pressure Oscillations in Modeling a Cavitating Acoustic Fluid
Directory of Open Access Journals (Sweden)
B. Klenow
2010-01-01
Full Text Available Cavitation effects play an important role in the UNDEX loading of a structure. For far-field UNDEX, the structural loading is affected by the formation of local and bulk cavitation regions, and the pressure pulses resulting from the closure of the cavitation regions. A common approach to numerically modeling cavitation in far-field underwater explosions is Cavitating Acoustic Finite Elements (CAFE and more recently Cavitating Acoustic Spectral Elements (CASE. Treatment of cavitation in this manner causes spurious pressure oscillations which must be treated by a numerical damping scheme. The focus of this paper is to investigate the severity of these oscillations on the structural response and a possible improvement to CAFE, based on the original Boris and Book Flux-Corrected Transport algorithm on structured meshes [6], to limit oscillations without the energy loss associated with the current damping schemes.
Oscillation and stability of delay models in biology
Agarwal, Ravi P; Saker, Samir H
2014-01-01
Environmental variation plays an important role in many biological and ecological dynamical systems. This monograph focuses on the study of oscillation and the stability of delay models occurring in biology. The book presents recent research results on the qualitative behavior of mathematical models under different physical and environmental conditions, covering dynamics including the distribution and consumption of food. Researchers in the fields of mathematical modeling, mathematical biology, and population dynamics will be particularly interested in this material.
Single longitudinal mode operation of a solid-state dye laser oscillator
Lim, G; Kim, H S; Cha, B H; Lee, J M
2000-01-01
We have operated a single longitudinal mode of a solid-state dye laser oscillator in a Littman configuration. The host material of the solid-state gain medium was rhodamine dye-doped poly (methyl methacrylate). The pumping source was the second harmonic of a Nd:YAG laser with a repetition rate of 10 Hz. The measured linewidth of the laser output was about 1.5 GHz.
Quantum resonances in a single plaquette of Josephson junctions: excitations of Rabi oscillations
Fistul, M. V.
2001-01-01
We present a theoretical study of a quantum regime of the resistive (whirling) state of dc driven anisotropic single plaquette containing three small Josephson junctions. The current-voltage characteristics of such a system display resonant steps that are due to the resonant interaction between the time dependent Josephson current and the excited electromagnetic oscillations (EOs). The voltage positions of the resonances are determined by the quantum interband transitions of EOs. We show that...
Ma, Hongbin
2015-01-01
This book presents the fundamental fluid flow and heat transfer principles occurring in oscillating heat pipes and also provides updated developments and recent innovations in research and applications of heat pipes. Starting with fundamental presentation of heat pipes, the focus is on oscillating motions and its heat transfer enhancement in a two-phase heat transfer system. The book covers thermodynamic analysis, interfacial phenomenon, thin film evaporation, theoretical models of oscillating motion and heat transfer of single phase and two-phase flows, primary factors affecting oscillating motions and heat transfer, neutron imaging study of oscillating motions in an oscillating heat pipes, and nanofluid’s effect on the heat transfer performance in oscillating heat pipes. The importance of thermally-excited oscillating motion combined with phase change heat transfer to a wide variety of applications is emphasized. This book is an essential resource and learning tool for senior undergraduate, gradua...
Modelling vertical human walking forces using self-sustained oscillator
Kumar, Prakash; Kumar, Anil; Racic, Vitomir; Erlicher, Silvano
2018-01-01
This paper proposes a model of a self-sustained oscillator which can generate reliably the vertical contact force between the feet of a healthy pedestrian and the supporting flat rigid surface. The model is motivated by the self-sustained nature of the walking process, i.e. a pedestrian generates the required inner energy to sustain its repetitive body motion. The derived model is a fusion of the well-known Rayleigh, Van der Pol and Duffing oscillators. Some additional nonlinear terms are added to produce both the odd and even harmonics observed in the experimentally measured force data. The model parameters were derived from force records due to twelve pedestrians walking on an instrumented treadmill at ten speeds using a linear least square technique. The stability analysis was performed using the energy balance method and perturbation method. The results obtained from the model show a good agreement with the experimental results.
Montijn, J.S.; Klink, P.C.; van Wezel, R.J.A.
2012-01-01
Divisive normalization models of covert attention commonly use spike rate modulations as indicators of the effect of top-down attention. In addition, an increasing number of studies have shown that top-down attention increases the synchronization of neuronal oscillations as well, particularly in
A physical model of Mirnov oscillations and plasma disruptions
International Nuclear Information System (INIS)
Cross, R.C.
1983-07-01
A physical model is proposed which accounts for the general behaviour of Mirnov oscillations and plasma disruptions in tokamak devices. The model also accounts for the stability of those devices which operate with edge safety factors less than 1.5. The model is based on the propagation of localized torsional Alfven and ion acoustic wavepackets. These packets remain phase coherent for considerable distances and are guided along helical field lines in toroidal plasmas, leading to the formation of standing waves on those field lines which close on themselves after one or more toroidal revolutions. Standing waves are driven resonantly on the rational surfaces by fluctuations in the poloidal field, causing localized heating and hence filamentation of the plasma current. This model indicates that Mirnov oscillations are produced by standing acoustic waves, while plasma disruptions occur as a result of the formation of MHD unstable current filaments
Oscillations in a simple climate–vegetation model
Directory of Open Access Journals (Sweden)
J. Rombouts
2015-05-01
Full Text Available We formulate and analyze a simple dynamical systems model for climate–vegetation interaction. The planet we consider consists of a large ocean and a land surface on which vegetation can grow. The temperature affects vegetation growth on land and the amount of sea ice on the ocean. Conversely, vegetation and sea ice change the albedo of the planet, which in turn changes its energy balance and hence the temperature evolution. Our highly idealized, conceptual model is governed by two nonlinear, coupled ordinary differential equations, one for global temperature, the other for vegetation cover. The model exhibits either bistability between a vegetated and a desert state or oscillatory behavior. The oscillations arise through a Hopf bifurcation off the vegetated state, when the death rate of vegetation is low enough. These oscillations are anharmonic and exhibit a sawtooth shape that is characteristic of relaxation oscillations, as well as suggestive of the sharp deglaciations of the Quaternary. Our model's behavior can be compared, on the one hand, with the bistability of even simpler, Daisyworld-style climate–vegetation models. On the other hand, it can be integrated into the hierarchy of models trying to simulate and explain oscillatory behavior in the climate system. Rigorous mathematical results are obtained that link the nature of the feedbacks with the nature and the stability of the solutions. The relevance of model results to climate variability on various timescales is discussed.
Oscillations in a simple climate-vegetation model
Rombouts, J.; Ghil, M.
2015-05-01
We formulate and analyze a simple dynamical systems model for climate-vegetation interaction. The planet we consider consists of a large ocean and a land surface on which vegetation can grow. The temperature affects vegetation growth on land and the amount of sea ice on the ocean. Conversely, vegetation and sea ice change the albedo of the planet, which in turn changes its energy balance and hence the temperature evolution. Our highly idealized, conceptual model is governed by two nonlinear, coupled ordinary differential equations, one for global temperature, the other for vegetation cover. The model exhibits either bistability between a vegetated and a desert state or oscillatory behavior. The oscillations arise through a Hopf bifurcation off the vegetated state, when the death rate of vegetation is low enough. These oscillations are anharmonic and exhibit a sawtooth shape that is characteristic of relaxation oscillations, as well as suggestive of the sharp deglaciations of the Quaternary. Our model's behavior can be compared, on the one hand, with the bistability of even simpler, Daisyworld-style climate-vegetation models. On the other hand, it can be integrated into the hierarchy of models trying to simulate and explain oscillatory behavior in the climate system. Rigorous mathematical results are obtained that link the nature of the feedbacks with the nature and the stability of the solutions. The relevance of model results to climate variability on various timescales is discussed.
The Vortex Oscillations and Abelian Higgs Model
International Nuclear Information System (INIS)
Karkowski, J.; Swierczynski, Z.
2000-01-01
The excitations of the vortex in Abelian Higgs model with small ratio of vector and Higgs particle masses are considered. Three main modes encountered in numerical computations are described in detail. They are also compared to analytic results obtained recently by Arodz and Hadasz in Phys. Rev. D54, 4004 (1996). (author)
Oscillating shells: A model for a variable cosmic object
Nunez, Dario
1997-01-01
A model for a possible variable cosmic object is presented. The model consists of a massive shell surrounding a compact object. The gravitational and self-gravitational forces tend to collapse the shell, but the internal tangential stresses oppose the collapse. The combined action of the two types of forces is studied and several cases are presented. In particular, we investigate the spherically symmetric case in which the shell oscillates radially around a central compact object.
Coupled oscillators as models of phantom and scalar field cosmologies
International Nuclear Information System (INIS)
Faraoni, Valerio
2004-01-01
We study a toy model for phantom cosmology recently introduced in the literature and consisting of two oscillators, one of which carries negative kinetic energy. The results are compared with the exact phase space picture obtained for similar dynamical systems describing, respectively, a massive canonical scalar field conformally coupled to the spacetime curvature and a conformally coupled massive phantom. Finally, the dynamical system describing exactly a minimally coupled phantom is studied and compared with the toy model
A finite oscillator model related to sl(2|1)
International Nuclear Information System (INIS)
Jafarov, E I; Van der Jeugt, J
2012-01-01
We investigate a new model for the finite one-dimensional quantum oscillator based upon the Lie superalgebra sl(2|1). In this setting, it is natural to present the position and momentum operators of the oscillator as odd elements of the Lie superalgebra. The model involves a parameter p (0 j of sl(2|1), the Hamiltonian has the usual equidistant spectrum. The spectrum of the position operator is discrete and turns out to be of the form ±√k, where k = 0, 1, …, j. We construct the discrete position wavefunctions, which are given in terms of certain Krawtchouk polynomials. These wavefunctions have appealing properties, as can already be seen from their plots. The model is sufficiently simple in the sense that the corresponding discrete Fourier transform (relating position wavefunctions to momentum wavefunctions) can be constructed explicitly. (paper)
Integrating Seasonal Oscillations into Basel II Behavioural Scoring Models
Directory of Open Access Journals (Sweden)
Goran Klepac
2007-09-01
Full Text Available The article introduces a new methodology of temporal influence measurement (seasonal oscillations, temporal patterns for behavioural scoring development purposes. The paper shows how significant temporal variables can be recognised and then integrated into the behavioural scoring models in order to improve model performance. Behavioural scoring models are integral parts of the Basel II standard on Internal Ratings-Based Approaches (IRB. The IRB approach much more precisely reflects individual risk bank profile.A solution of the problem of how to analyze and integrate macroeconomic and microeconomic factors represented in time series into behavioural scorecard models will be shown in the paper by using the REF II model.
Detecting CP violation in a single neutrino oscillation channel at very long baselines
International Nuclear Information System (INIS)
Latimer, D. C.; Escamilla, J.; Ernst, D. J.
2007-01-01
We propose a way of detecting CP violation in a single neutrino oscillation channel at very long baselines (on the order of several thousands of kilometers), given precise knowledge of the smallest mass-squared difference. It is shown that CP violation can be characterized by a shift in L/E of the peak oscillation in the ν e -ν μ appearance channel, both in vacuum and in matter. In fact, matter effects enhance the shift at a fixed energy. We consider the case in which sub-GeV neutrinos are measured with varying baseline and also the case of a fixed baseline. For the varied baseline, accurate knowledge of the absolute neutrino flux would not be necessary; however, neutrinos must be distinguishable from antineutrinos. For the fixed baseline, it is shown that CP violation can be distinguished if the mixing angle θ 13 were known
'Oscillator-wave' model: properties and heuristic instances
International Nuclear Information System (INIS)
Damgov, Vladimir; Trenchev, Plamen; Sheiretsky, Kostadin
2003-01-01
The article considers a generalized model of an oscillator, subjected to the influence of an external wave. It is shown that the systems of diverse physical background, which this model encompasses by their nature, should belong to the broader, proposed in previous works class of 'kick-excited self-adaptive dynamical systems'. The theoretical treatment includes an analytic approach to the conditions for emergence of small and large amplitudes, i.e. weak and strong non-linearity of the system. Derived also are generalized conditions for the transition of systems of this 'oscillator-wave' type to non-regular and chaotic behaviour. For the purpose of demonstrating the heuristic properties of the generalized oscillator-wave model from this point of view are considered the relevant systems and phenomena of the quantized cyclotron resonance and the megaquantum resonance-wave model of the Solar System. We point to a number of other natural and scientific phenomena, which can be effectively analyzed from the point of view of the developed approach. In particular we stress on the possibility for development and the wide applicability of specific wave influences, for example for the improvement and the speeding up of technological processes
Cardiovascular oscillations: in search of a nonlinear parametric model
Bandrivskyy, Andriy; Luchinsky, Dmitry; McClintock, Peter V.; Smelyanskiy, Vadim; Stefanovska, Aneta; Timucin, Dogan
2003-05-01
We suggest a fresh approach to the modeling of the human cardiovascular system. Taking advantage of a new Bayesian inference technique, able to deal with stochastic nonlinear systems, we show that one can estimate parameters for models of the cardiovascular system directly from measured time series. We present preliminary results of inference of parameters of a model of coupled oscillators from measured cardiovascular data addressing cardiorespiratory interaction. We argue that the inference technique offers a very promising tool for the modeling, able to contribute significantly towards the solution of a long standing challenge -- development of new diagnostic techniques based on noninvasive measurements.
Modeling Bloch oscillations in ultra-small Josephson junctions
Vora, Heli; Kautz, Richard; Nam, Sae Woo; Aumentado, Jose
In a seminal paper, Likharev et al. developed a theory for ultra-small Josephson junctions with Josephson coupling energy (Ej) less than the charging energy (Ec) and showed that such junctions demonstrate Bloch oscillations which could be used to make a fundamental current standard that is a dual of the Josephson volt standard. Here, based on the model of Geigenmüller and Schön, we numerically calculate the current-voltage relationship of such an ultra-small junction which includes various error processes present in a nanoscale Josephson junction such as random quasiparticle tunneling events and Zener tunneling between bands. This model allows us to explore the parameter space to see the effect of each process on the width and height of the Bloch step and serves as a guide to determine whether it is possible to build a quantum current standard of a metrological precision using Bloch oscillations.
A quantum anharmonic oscillator model for the stock market
Gao, Tingting; Chen, Yu
2017-02-01
A financially interpretable quantum model is proposed to study the probability distributions of the stock price return. The dynamics of a quantum particle is considered an analog of the motion of stock price. Then the probability distributions of price return can be computed from the wave functions that evolve according to Schrodinger equation. Instead of a harmonic oscillator in previous studies, a quantum anharmonic oscillator is applied to the stock in liquid market. The leptokurtic distributions of price return can be reproduced by our quantum model with the introduction of mixed-state and multi-potential. The trend following dominant market, in which the price return follows a bimodal distribution, is discussed as a specific case of the illiquid market.
Simple Chaotic Oscillator: From Mathematical Model to Practical Experiment
Directory of Open Access Journals (Sweden)
S. Hanus
2006-04-01
Full Text Available This paper shows the circuitry implementation and practical verification of the autonomous nonlinear oscillator. Since it is described by a single third-order differential equation, its state variables can be considered as the position, velocity and acceleration and thus have direct connection to a real physical system. Moreover, for some specific configurations of internal system parameters, it can exhibit a period doubling bifurcation leading to chaos. Two different structures of the nonlinear element were verified by a comparison of numerically integrated trajectory with the oscilloscope screenshots .
A Method to Determine Oscillation Emergence Bifurcation in Time-Delayed LTI System with Single Lag
Directory of Open Access Journals (Sweden)
Yu Xiaodan
2014-01-01
Full Text Available One type of bifurcation named oscillation emergence bifurcation (OEB found in time-delayed linear time invariant (abbr. LTI systems is fully studied. The definition of OEB is initially put forward according to the eigenvalue variation. It is revealed that a real eigenvalue splits into a pair of conjugated complex eigenvalues when an OEB occurs, which means the number of the system eigenvalues will increase by one and a new oscillation mode will emerge. Next, a method to determine OEB bifurcation in the time-delayed LTI system with single lag is developed based on Lambert W function. A one-dimensional (1-dim time-delayed system is firstly employed to explain the mechanism of OEB bifurcation. Then, methods to determine the OEB bifurcation in 1-dim, 2-dim, and high-dimension time-delayed LTI systems are derived. Finally, simulation results validate the correctness and effectiveness of the presented method. Since OEB bifurcation occurs with a new oscillation mode emerging, work of this paper is useful to explore the complex phenomena and the stability of time-delayed dynamic systems.
Hong, Hyunsuk; Strogatz, Steven H
2011-02-04
We consider a generalization of the Kuramoto model in which the oscillators are coupled to the mean field with random signs. Oscillators with positive coupling are "conformists"; they are attracted to the mean field and tend to synchronize with it. Oscillators with negative coupling are "contrarians"; they are repelled by the mean field and prefer a phase diametrically opposed to it. The model is simple and exactly solvable, yet some of its behavior is surprising. Along with the stationary states one might have expected (a desynchronized state, and a partially-synchronized state, with conformists and contrarians locked in antiphase), it also displays a traveling wave, in which the mean field oscillates at a frequency different from the population's mean natural frequency.
Dynamical Tangles in Third-Order Oscillator with Single Jump Function
Directory of Open Access Journals (Sweden)
Jiří Petržela
2014-01-01
Full Text Available This contribution brings a deep and detailed study of the dynamical behavior associated with nonlinear oscillator described by a single third-order differential equation with scalar jump nonlinearity. The relative primitive geometry of the vector field allows making an exhaustive numerical analysis of its possible solutions, visualizations of the invariant manifolds, and basins of attraction as well as proving the existence of chaotic motion by using the concept of both Shilnikov theorems. The aim of this paper is also to complete, carry out and link the previous works on simple Newtonian dynamics, and answer the question how individual types of the phenomenon evolve with time via understandable notes.
Bifurcation and category learning in network models of oscillating cortex
Baird, Bill
1990-06-01
A genetic model of oscillating cortex, which assumes “minimal” coupling justified by known anatomy, is shown to function as an associative memory, using previously developed theory. The network has explicit excitatory neurons with local inhibitory interneuron feedback that forms a set of nonlinear oscillators coupled only by long-range excitatory connections. Using a local Hebb-like learning rule for primary and higher-order synapses at the ends of the long-range connections, the system learns to store the kinds of oscillation amplitude patterns observed in olfactory and visual cortex. In olfaction, these patterns “emerge” during respiration by a pattern forming phase transition which we characterize in the model as a multiple Hopf bifurcation. We argue that these bifurcations play an important role in the operation of real digital computers and neural networks, and we use bifurcation theory to derive learning rules which analytically guarantee CAM storage of continuous periodic sequences-capacity: N/2 Fourier components for an N-node network-no “spurious” attractors.
Reference Model 6 (RM6): Oscillating Wave Energy Converter.
Energy Technology Data Exchange (ETDEWEB)
Bull, Diana L; Smith, Chris; Jenne, Dale Scott; Jacob, Paul; Copping, Andrea; Willits, Steve; Fontaine, Arnold; Brefort, Dorian; Gordon, Margaret Ellen; Copeland, Robert; Jepsen, Richard Alan
2014-10-01
This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter reference model design in a complementary manner to Reference Models 1-4 contained in the above report. In this report, a conceptual design for an Oscillating Water Column Wave Energy Converter (WEC) device appropriate for the modeled reference resource site was identified, and a detailed backward bent duct buoy (BBDB) device design was developed using a combination of numerical modeling tools and scaled physical models. Our team used the methodology in SAND2013-9040 for the economic analysis that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays, up to 100 devices. The methodology was applied to identify key cost drivers and to estimate levelized cost of energy (LCOE) for this RM6 Oscillating Water Column device in dollars per kilowatt-hour ($/kWh). Although many costs were difficult to estimate at this time due to the lack of operational experience, the main contribution of this work was to disseminate a detailed set of methodologies and models that allow for an initial cost analysis of this emerging technology. This project is sponsored by the U.S. Department of Energy's (DOE) Wind and Water Power Technologies Program Office (WWPTO), within the Office of Energy Efficiency & Renewable Energy (EERE). Sandia National Laboratories, the lead in this effort, collaborated with partners from National Laboratories, industry, and universities to design and test this reference model.
Pehlivan Rhodin, A.; Belmonte, M. T.; Engström, L.; Lundberg, H.; Nilsson, H.; Hartman, H.; Pickering, J. C.; Clear, C.; Quinet, P.; Fivet, V.; Palmeri, P.
2017-12-01
The lifetimes of 17 even-parity levels (3d5s, 3d4d, 3d6s and 4p2) in the region 57 743-77 837 cm-1 of singly ionized scandium (Sc II) were measured by two-step time-resolved laser induced fluorescence spectroscopy. Oscillator strengths of 57 lines from these highly excited upper levels were derived using a hollow cathode discharge lamp and a Fourier transform spectrometer. In addition, Hartree-Fock calculations where both the main relativistic and core-polarization effects were taken into account were carried out for both low- and high-excitation levels. There is a good agreement for most of the lines between our calculated branching fractions and the measurements of Lawler & Dakin in the region 9000-45 000 cm-1 for low excitation levels and with our measurements for high excitation levels in the region 23 500-63 100 cm-1. This, in turn, allowed us to combine the calculated branching fractions with the available experimental lifetimes to determine semi-empirical oscillator strengths for a set of 380 E1 transitions in Sc II. These oscillator strengths include the weak lines that were used previously to derive the solar abundance of scandium. The solar abundance of scandium is now estimated to logε⊙ = 3.04 ± 0.13 using these semi-empirical oscillator strengths to shift the values determined by Scott et al. The new estimated abundance value is in agreement with the meteoritic value (logεmet = 3.05 ± 0.02) of Lodders, Palme & Gail.
Higher dimensional models of cross-coupled oscillators and application to design
Elwakil, Ahmed S.; Salama, Khaled N.
2010-01-01
We present four-dimensional and five-dimensional models for classical cross-coupled LC oscillators. Using these models, sinusoidal oscillation condition, frequency and amplitude can be found. Further, undesired behaviors such as relaxation-mode oscillations and latchup can be explained and detected. A simple graphical design procedure is also described. © 2010 World Scientific Publishing Company.
An Energy Balanced Double Oscillator Model for Vortex-Induced Vibrations
DEFF Research Database (Denmark)
Krenk, S.; Nielsen, Søren R. K.
A model consisting of two couple oscillators is developed for the representation of vortex-induced oscillations of structural elements. The mutual forcing terms are different from previous models and based on exact transfer of energy from the fluid to the structural oscillator. This leads...
Higher dimensional models of cross-coupled oscillators and application to design
Elwakil, Ahmed S.
2010-06-01
We present four-dimensional and five-dimensional models for classical cross-coupled LC oscillators. Using these models, sinusoidal oscillation condition, frequency and amplitude can be found. Further, undesired behaviors such as relaxation-mode oscillations and latchup can be explained and detected. A simple graphical design procedure is also described. © 2010 World Scientific Publishing Company.
A model-independent approach to the search for the sun neutrino oscillations from SNO data
International Nuclear Information System (INIS)
Beshtoev, Kh.M.
1996-01-01
A model-independent approach to analyse the existence of the Sun neutrino oscillations from SNO data is proposed. The used approximations for the calculations are offered as well as a scheme to determine the existence of the neutrino oscillations
Lahiri, Abhirup; Herencsár, Norbert
2012-01-01
This paper proposes a very compact CMOS realization of active RC sinusoidal oscillator capable of generating four quadrature voltage outputs. The oscillator is based on the cascade of lossless and lossy integrators in loop. The governing laws for the condition of oscillation (CO) and the frequency of oscillation (FO) are single-resistance-controlled (SRC) and which allow independent FO tuning. Unlike previously reported SRC-based sinusoidal oscillators based on the active building block (ABB)...
Anisotropic Exciton Rabi Oscillation in Single Telecommunication-Band Quantum Dot
Toshiyuki Miyazawa,; Toshihiro Nakaoka,; Katsuyuki Watanabe,; Naoto Kumagai,; Naoki Yokoyama,; Yasuhiko Arakawa,
2010-06-01
Anisotropic Rabi oscillation in the exciton state in a single InAs/GaAs quantum dot (QD) was demonstrated in the telecommunication-band by selecting two orthogonal polarization angles of the excitation laser. Our InAs QDs were embedded in an intrinsic layer of an n-i-Schottky diode, which provides an electric field to extract photoexcited carriers from QDs. Owing to the potential anisotropy of QDs, the fine structure splitting (FSS) energy in the exciton state in single InAs QDs was ˜110 μeV, measured by polarization-resolved photocurrent spectroscopy. The ratio between two different Rabi frequencies, which reflect anisotropic dipole moments of two orthogonal exciton states, was estimated to be ˜1.2. This demonstrates that the selective control of two orthogonal polarized exciton states is a promising technique for exciton-based-quantum information devices compatible with fiber optics.
Modeling stock return distributions with a quantum harmonic oscillator
Ahn, K.; Choi, M. Y.; Dai, B.; Sohn, S.; Yang, B.
2017-11-01
We propose a quantum harmonic oscillator as a model for the market force which draws a stock return from short-run fluctuations to the long-run equilibrium. The stochastic equation governing our model is transformed into a Schrödinger equation, the solution of which features “quantized” eigenfunctions. Consequently, stock returns follow a mixed χ distribution, which describes Gaussian and non-Gaussian features. Analyzing the Financial Times Stock Exchange (FTSE) All Share Index, we demonstrate that our model outperforms traditional stochastic process models, e.g., the geometric Brownian motion and the Heston model, with smaller fitting errors and better goodness-of-fit statistics. In addition, making use of analogy, we provide an economic rationale of the physics concepts such as the eigenstate, eigenenergy, and angular frequency, which sheds light on the relationship between finance and econophysics literature.
Gas dynamics models for an oscillating gaseous core fission reactor
Energy Technology Data Exchange (ETDEWEB)
Kuijper, J.C.; Dam, H. van; Hoogenboom, J.E. (Interuniversitair Reactor Inst., Delft (Netherlands))
1991-01-01
Two one-dimensional models are developed for the investigation of the gas dynamical behaviour of the fuel gas in a cylindrical gaseous core fission reactor. By numerical and analytical calculations, it is shown that, for the case where a direct energy extraction mechanism (such as magneto-hydrodynamics (MHD)) is not present, increasing density oscillations occur in the gas. Also an estimate is made of the attainable direct energy conversion efficiency, for the case where a direct energy extraction mechanism is present. (author).
Can we scan the supernova model space for collective oscillations?
International Nuclear Information System (INIS)
Pehlivan, Y.; Subaşı, A. L.; Birol, S.; Ghazanfari, N.; Yuksel, H.; Balantekin, A. B.; Kajino, Toshitaka
2016-01-01
Collective neutrino oscillations in a core collapse supernova is a many-body phenomenon which can transform the neutrino energy spectra through emergent effects. One example of this behavior is the neutrino spectral swaps in which neutrinos of different flavors partially or completely exchange their spectra. In this talk, we address the question of how model dependent this behavior is. In particular, we demonstrate that these swaps may be independent of the mean field approximation that is typically employed in numerical treatments by showing an example of a spectral swap in the exact many-body picture.
Herpen, M.M.J.W. van; Bisson, S.E.; Ngai, A.K.Y.; Harren, F.J.M.
2004-01-01
A new singly resonant, single-frequency optical parametric oscillator (OPO) has been developed for the 2.6-4.7 mum infrared wavelength region, using a high power (>20 W), widely tunable (1024-1034 nm) Yb:YAG pump source. With the OPO frequency stabilized with an intracavity etalon, the OPO achieved
Synchronization scenarios in the Winfree model of coupled oscillators
Gallego, Rafael; Montbrió, Ernest; Pazó, Diego
2017-10-01
Fifty years ago Arthur Winfree proposed a deeply influential mean-field model for the collective synchronization of large populations of phase oscillators. Here we provide a detailed analysis of the model for some special, analytically tractable cases. Adopting the thermodynamic limit, we derive an ordinary differential equation that exactly describes the temporal evolution of the macroscopic variables in the Ott-Antonsen invariant manifold. The low-dimensional model is then thoroughly investigated for a variety of pulse types and sinusoidal phase response curves (PRCs). Two structurally different synchronization scenarios are found, which are linked via the mutation of a Bogdanov-Takens point. From our results, we infer a general rule of thumb relating pulse shape and PRC offset with each scenario. Finally, we compare the exact synchronization threshold with the prediction of the averaging approximation given by the Kuramoto-Sakaguchi model. At the leading order, the discrepancy appears to behave as an odd function of the PRC offset.
A modified wake oscillator model for predicting vortex induced vibration of heat exchanger tube
International Nuclear Information System (INIS)
Feng Zhipeng; Zang Fenggang; Zhang Yixiong; Ye Xianhui
2014-01-01
Base on the classical wake oscillator model, a new modified wake oscillator model is proposed, for predicting vortex induced vibration of heat exchanger tube in uniform current. The comparison between the new wake oscillator model and experimental show that the present model can simulate the characteristics of vortex induced vibration of tube. Firstly, the research shows that the coupled fluid-structure dynamical system should be modeled by combined displacement and acceleration mode. Secondly, the empirical parameter in wake oscillator model depends on the material properties of the structure, instead of being a universal constant. Lastly, the results are compared between modified wake oscillator model and fluid-structure interaction numerical model. It shows the present, predicted results are compared to the fluid-structure interaction numerical data. The new modified wake oscillator model can predict the vortex induced heat exchanger tube vibration feasibly. (authors)
Stochastic population oscillations in spatial predator-prey models
International Nuclear Information System (INIS)
Taeuber, Uwe C
2011-01-01
It is well-established that including spatial structure and stochastic noise in models for predator-prey interactions invalidates the classical deterministic Lotka-Volterra picture of neutral population cycles. In contrast, stochastic models yield long-lived, but ultimately decaying erratic population oscillations, which can be understood through a resonant amplification mechanism for density fluctuations. In Monte Carlo simulations of spatial stochastic predator-prey systems, one observes striking complex spatio-temporal structures. These spreading activity fronts induce persistent correlations between predators and prey. In the presence of local particle density restrictions (finite prey carrying capacity), there exists an extinction threshold for the predator population. The accompanying continuous non-equilibrium phase transition is governed by the directed-percolation universality class. We employ field-theoretic methods based on the Doi-Peliti representation of the master equation for stochastic particle interaction models to (i) map the ensuing action in the vicinity of the absorbing state phase transition to Reggeon field theory, and (ii) to quantitatively address fluctuation-induced renormalizations of the population oscillation frequency, damping, and diffusion coefficients in the species coexistence phase.
Shapes of nuclear configurations in a cranked harmonic oscillator model
International Nuclear Information System (INIS)
Troudet, T.; Arvieu, R.
1980-05-01
The shapes of nuclear configurations are calculated using Slater determinants built with cranked harmonic oscillator single particle states. The nuclear forces role is played by a volume conservation condition (of the potential or of the density) in a first part. In a second part, we have used the finite range, density dependent interaction of Cogny. A very simple classification of configurations emerges in the first part, the relevant parameter being the equatorial eccentricity of the nuclear density. A critical equatorial eccentricity is obtained which governs the accession to the case for which the nucleus is oblate and symmetric around its axis of rotation. Nuclear configurations calculated in the second part observe remarkably well these behaviors
Simple membrane-based model of the Min oscillator
International Nuclear Information System (INIS)
Petrášek, Zdeněk; Schwille, Petra
2015-01-01
Min proteins in E. coli bacteria organize into a dynamic pattern oscillating between the two cell poles. This process identifies the middle of the cell and enables symmetric cell division. In an experimental model system consisting of a flat membrane with effectively infinite supply of proteins and energy source, the Min proteins assemble into travelling waves. Here we propose a simple one-dimensional model of the Min dynamics that, unlike the existing models, reproduces the sharp decrease of Min concentration when the majority of protein detaches from the membrane, and even the narrow MinE maximum immediately preceding the detachment. The proposed model thus provides a possible mechanism for the formation of the MinE ring known from cells. The model is restricted to one dimension, with protein interactions described by chemical kinetics allowing at most bimolecular reactions, and explicitly considering only three, membrane-bound, species. The bulk solution above the membrane is approximated as being well-mixed, with constant concentrations of all species. Unlike other models, our proposal does not require autocatalytic binding of MinD to the membrane. Instead, it is assumed that two MinE molecules are necessary to induce the dissociation of the MinD dimer and its subsequent detachment from the membrane. We investigate which reaction schemes lead to unstable homogeneous steady states and limit cycle oscillations, and how diffusion affects their stability. The suggested model qualitatively describes the shape of the Min waves observed on flat membranes, and agrees with the experimental dependence of the wave period on the MinE concentration. These results highlight the importance of MinE presence on the membrane without being bound to MinD, and of the reactions of Min proteins on the membrane. (paper)
Modeling of dielectric elastomer oscillators for soft biomimetic applications.
Henke, E-F M; Wilson, Katherine E; Anderson, I A
2018-06-26
Biomimetic, entirely soft robots with animal-like behavior and integrated artificial nervous systems will open up totally new perspectives and applications. However, until now, most presented studies on soft robots were limited to only partly soft designs, since all solutions at least needed conventional, stiff electronics to sense, process signals and activate actuators. We present a novel approach for a set up and the experimental validation of an artificial pace maker that is able to drive basic robotic structures and act as artificial central pattern generator. The structure is based on multi-functional dielectric elastomers (DEs). DE actuators, DE switches and DE resistors are combined to create complex DE oscillators (DEOs). Supplied with only one external DC voltage, the DEO autonomously generates oscillating signals that can be used to clock a robotic structure, control the cyclic motion of artificial muscles in bionic robots or make a whole robotic structure move. We present the basic functionality, derive a mathematical model for predicting the generated signal waveform and verify the model experimentally.
Modeling Tides, Planetary Waves, and Equatorial Oscillations in the MLT
Mengel, J. G.; Mayr, H. G.; Drob, D. P.; Porter, H. S.; Bhartia, P. K. (Technical Monitor)
2001-01-01
Applying Hines Doppler Spread Parameterization for gravity waves (GW), our 3D model reproduces some essential features that characterize the observed seasonal variations of tides and planetary waves in the upper mesosphere. In 2D, our model also reproduces the large Semi-Annual Oscillation (SAO) and Quasi Biennial Oscillation (QBO) observed in this region at low latitudes. It is more challenging to describe these features combined in a more comprehensive self consistent model, and we give a progress report that outlines the difficulties and reports some success. In 3D, the GW's are partially absorbed by tides and planetary waves to amplify them. Thus the waves are less efficient in generating the QBO and SAO at equatorial latitudes. Some of this deficiency is compensated by the fact that the GW activity is observed to be enhanced at low latitudes. Increasing the GW source has the desired effect to boost the QBO, but the effect is confined primarily to the stratosphere. With increasing altitude, the meridional circulation becomes more important in redistributing the momentum deposited in the background flow by the GW's. Another factor involved is the altitude at which the GW's originate, which we had originally chosen to be the surface. Numerical experiments show that moving this source altitude to the top of the troposphere significantly increases the efficiency for generating the QBO without affecting much the tides and planetary waves in the model. Attention to the details in which the GW source comes into play thus appears to be of critical importance in modeling the phenomenology of the MLT. Among the suite of numerical experiments reported, we present a simulation that produced significant variations of tides and planetary waves in the upper mesosphere. The effect is related to the QBO generated in the model, and GW filtering is the likely cause.
Energy Technology Data Exchange (ETDEWEB)
Minati, Ludovico, E-mail: lminati@ieee.org, E-mail: ludovico.minati@unitn.it [MR-Lab, Center for Mind/Brain Science, University of Trento, Italy and Scientific Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (Italy)
2014-12-01
In this paper, experimental evidence of multiple synchronization phenomena in a large (n = 30) ring of chaotic oscillators is presented. Each node consists of an elementary circuit, generating spikes of irregular amplitude and comprising one bipolar junction transistor, one capacitor, two inductors, and one biasing resistor. The nodes are mutually coupled to their neighbours via additional variable resistors. As coupling resistance is decreased, phase synchronization followed by complete synchronization is observed, and onset of synchronization is associated with partial synchronization, i.e., emergence of communities (clusters). While component tolerances affect community structure, the general synchronization properties are maintained across three prototypes and in numerical simulations. The clusters are destroyed by adding long distance connections with distant notes, but are otherwise relatively stable with respect to structural connectivity changes. The study provides evidence that several fundamental synchronization phenomena can be reliably observed in a network of elementary single-transistor oscillators, demonstrating their generative potential and opening way to potential applications of this undemanding setup in experimental modelling of the relationship between network structure, synchronization, and dynamical properties.
International Nuclear Information System (INIS)
Minati, Ludovico
2014-01-01
In this paper, experimental evidence of multiple synchronization phenomena in a large (n = 30) ring of chaotic oscillators is presented. Each node consists of an elementary circuit, generating spikes of irregular amplitude and comprising one bipolar junction transistor, one capacitor, two inductors, and one biasing resistor. The nodes are mutually coupled to their neighbours via additional variable resistors. As coupling resistance is decreased, phase synchronization followed by complete synchronization is observed, and onset of synchronization is associated with partial synchronization, i.e., emergence of communities (clusters). While component tolerances affect community structure, the general synchronization properties are maintained across three prototypes and in numerical simulations. The clusters are destroyed by adding long distance connections with distant notes, but are otherwise relatively stable with respect to structural connectivity changes. The study provides evidence that several fundamental synchronization phenomena can be reliably observed in a network of elementary single-transistor oscillators, demonstrating their generative potential and opening way to potential applications of this undemanding setup in experimental modelling of the relationship between network structure, synchronization, and dynamical properties
Continuous-wave singly resonant optical parametric oscillator placed inside a ring laser
DEFF Research Database (Denmark)
Abitan, Haim; Buchhave, Preben
2003-01-01
A cw singly resonant optical parametric oscillator (SRO) was built and placed inside the cavity of a ring laser. The system consists of a diode-end-pumped Nd:YVO4 ring laser with intracavity periodically poled lithium niobate as the nonlinear gain medium of the SRO. When the laser was operated...... in a unidirectional mode, we obtained more than 520 mW of signal power in one beam. When the laser was operated in a bidirectional mode, we obtained 600 mW of signal power (300 mW in two separate beams). The power and the spectral features of the laser in the unidirectional and bidirectional modes were measured while...... the laser was coupled with the SRO. The results show that it is preferable to couple a SRO with a unidirectional ring laser....
Temporal structure of neuronal population oscillations with empirical model decomposition
International Nuclear Information System (INIS)
Li Xiaoli
2006-01-01
Frequency analysis of neuronal oscillation is very important for understanding the neural information processing and mechanism of disorder in the brain. This Letter addresses a new method to analyze the neuronal population oscillations with empirical mode decomposition (EMD). Following EMD of neuronal oscillation, a series of intrinsic mode functions (IMFs) are obtained, then Hilbert transform of IMFs can be used to extract the instantaneous time frequency structure of neuronal oscillation. The method is applied to analyze the neuronal oscillation in the hippocampus of epileptic rats in vivo, the results show the neuronal oscillations have different descriptions during the pre-ictal, seizure onset and ictal periods of the epileptic EEG at the different frequency band. This new method is very helpful to provide a view for the temporal structure of neural oscillation
Directory of Open Access Journals (Sweden)
Joseph D. Monaco
2011-09-01
Full Text Available Mammals navigate by integrating self-motion signals (‘path integration’ and occasionally fixing on familiar environmental landmarks. The rat hippocampus is a model system of spatial representation in which place cells are thought to integrate both sensory and spatial information from entorhinal cortex. The localized firing fields of hippocampal place cells and entorhinal grid cells demonstrate a phase relationship with the local theta (6–10 Hz rhythm that may be a temporal signature of path integration. However, encoding self-motion in the phase of theta oscillations requires high temporal precision and is susceptible to idiothetic noise, neuronal variability, and a changing environment. We present a model based on oscillatory interference theory, previously studied in the context of grid cells, in which transient temporal synchronization among a pool of path-integrating theta oscillators produces hippocampal-like place fields. We hypothesize that a spatiotemporally extended sensory interaction with external cues modulates feedback to the theta oscillators. We implement a form of this cue-driven feedback and show that it can retrieve fixed points in the phase code of position. A single cue can smoothly reset oscillator phases to correct for both systematic errors and continuous noise in path integration. Further, simulations in which local and global cues are rotated against each other reveal a phase-code mechanism in which conflicting cue arrangements can reproduce experimentally observed distributions of ‘partial remapping’ responses. This abstract model demonstrates that phase-code feedback can provide stability to the temporal coding of position during navigation and may contribute to the context-dependence of hippocampal spatial representations. While the anatomical substrates of these processes have not been fully characterized, our findings suggest several signatures that can be evaluated in future experiments.
Single and multiple vibrational resonance in a quintic oscillator with monostable potentials.
Jeyakumari, S; Chinnathambi, V; Rajasekar, S; Sanjuan, M A F
2009-10-01
We analyze the occurrence of vibrational resonance in a damped quintic oscillator with three cases of single well of the potential V(x)=1/2omega(0)(2)x(2)+1/4betax(4)+1/6gammax(6) driven by both low-frequency force f cos omegat and high-frequency force g cos Omegat with Omega > omega. We restrict our analysis to the parametric choices (i) omega(0)(2), beta, gamma > 0 (single well), (ii) omega(0)(2), gamma > 0, beta 0, beta arbitrary, gamma choice (i) at most one resonance occur while for the other two choices (ii) and (iii) multiple resonance occur. Further, g(VR) is found to be independent of the damping strength d while omega(VR) depends on d. The theoretical predictions are found to be in good agreement with the numerical result. We illustrate that the vibrational resonance can be characterized in terms of width of the orbit also.
Single-trial regression elucidates the role of prefrontal theta oscillations in response conflict
Directory of Open Access Journals (Sweden)
Michael X Cohen
2011-02-01
Full Text Available In most cognitive neuroscience experiments there are many behavioral and experimental dynamics, and many indices of brain activity, that vary from trial to trial. For example, in studies of response conflict, conflict is usually treated as a binary variable (i.e., response conflict exists or does not in any given trial, whereas some evidence and intuition suggests that conflict may vary in intensity from trial to trial. Here we demonstrate that single-trial multiple regression of time-frequency electrophysiological activity reveals neural mechanisms of cognitive control that are not apparent in cross-trial averages. We also introduce a novel extension to oscillation phase coherence and synchronization analyses, based on weighted phase modulation, that has advantages over standard coherence measures in terms of linking electrophysiological dynamics to trial-varying behavior and experimental variables. After replicating previous response conflict findings using trial-averaged data, we extend these findings using single trial analytic methods to provide novel evidence for the role of medial frontal-lateral prefrontal theta-band synchronization in conflict-induced response time dynamics, including a role for lateral prefrontal theta-band activity in biasing response times according to perceptual conflict. Given that these methods shed new light on the prefrontal mechanisms of response conflict, they are also likely to be useful for investigating other neurocognitive processes.
Quantum Brownian motion in a bath of parametric oscillators: A model for system-field interactions
International Nuclear Information System (INIS)
Hu, B.L.; Matacz, A.
1994-01-01
The quantum Brownian motion paradigm provides a unified framework where one can see the interconnection of some basic quantum statistical processes such as decoherence, dissipation, particle creation, noise, and fluctuation. The present paper continues the investigation begun in earlier papers on the quantum Brownian motion in a general environment via the influence functional formalism. Here, the Brownian particle is coupled linearly to a bath of the most general time-dependent quadratic oscillators. This bath of parametric oscillators minics a scalar field, while the motion of the Brownian particle modeled by a single oscillator could be used to depict the behavior of a particle detector, a quantum field mode, or the scale factor of the Universe. An important result of this paper is the derivation of the influence functional encompassing the noise and dissipation kernels in terms of the Bogolubov coefficients, thus setting the stage for the influence functional formalism treatment of problems in quantum field theory in curved spacetime. This method enables one to trace the source of statistical processes such as decoherence and dissipation to vacuum fluctuations and particle creation, and in turn impart a statistical mechanical interpretation of quantum field processes. With this result we discuss the statistical mechanical origin of quantum noise and thermal radiance from black holes and from uniformly accelerated observers in Minkowski space as well as from the de Sitter universe discovered by Hawking, Unruh, and Gibbons and Hawking. We also derive the exact evolution operator and master equation for the reduced density matrix of the system interacting with a parametric oscillator bath in an initial squeezed thermal state. These results are useful for decoherence and back reaction studies for systems and processes of interest in semiclassical cosmology and gravity. Our model and results are also expected to be useful for related problems in quantum optics
Modeling Intracellular Oscillations and Polarity Transition in Fission Yeast
Drake, Tyler; Das, Maitreyi; Verde, Fulvia; Vavylonis, Dimitrios
2011-03-01
Fission yeast, a pill-shaped model organism, restricts growth to its tips. These cells maintain an asymmetric growth state, growing at only one tip, until they meet length and cell-cycle requirements. With these met, they grow at both. The mechanism of this transition, new-end take-off (NETO), remains unclear. We find that NETO occurs due to long-range competition for fast-diffusing signaling protein Cdc42 between the old and new tips. From experimental results, we suppose that symmetric tips compete for Cdc42, which triggers growth. We describe a symmetric growth model based on competition between tips. This model restricts short cells to monopolar states while allowing longer cells to be bipolar. Autocatalytic Cdc42 recruiting at both cells tips leads to broken symmetry, and the recruiting cuts off as tip Cdc42 levels saturate. Non-linear differential equations describe the model, with stable attractors indicating valid distributions. Linear stability analysis and numerical methods identify stable fixed points over a twofold increase in cell length. The model reproduces qualitative behavior of the organism. We show that observed pole-to-pole Cdc42 oscillations may facilitate the polarity transition and discuss their relationship to the Min system in E. Coli.
Mina, Petros; di Bernardo, Mario; Savery, Nigel J; Tsaneva-Atanasova, Krasimira
2013-01-06
Population-level measurements of phenotypic behaviour in biological systems may not necessarily reflect individual cell behaviour. To assess qualitative changes in the behaviour of a single cell, when alone and when part of a community, we developed an agent-based model describing the metabolic states of a population of quorum-coupled cells. The modelling is motivated by published experimental work of a synthetic genetic regulatory network (GRN) used in Escherichia coli cells that exhibit oscillatory behaviour across the population. To decipher the mechanisms underlying oscillations in the system, we investigate the behaviour of the model via numerical simulation and bifurcation analysis. In particular, we study the effect of an increase in population size as well as the spatio-temporal behaviour of the model. Our results demonstrate that oscillations are possible only in the presence of a high concentration of the coupling chemical and are due to a time scale separation in key regulatory components of the system. The model suggests that the population establishes oscillatory behaviour as the system's preferred stable state. This is achieved via an effective increase in coupling across the population. We conclude that population effects in GRN design need to be taken into consideration and be part of the design process. This is important in planning intervention strategies or designing specific cell behaviours.
Independent oscillator model of a heat bath: exact diagonalization of the Hamiltonian
International Nuclear Information System (INIS)
Ford, G.W.; Lewis, J.T.; O'Connell, R.F.
1988-01-01
The problem of a quantum oscillator coupled to an independent-oscillator model of a heat bath is discussed. The transformation to normal coordinates is explicitly constructed using the method of Ullersma. With this transformation an alternative derivation of an exact formula for the oscillator free energy is constructed. The various contributions to the oscillator energy are calculated, with the aim of further understanding this formula. Finally, the limitations of linear coupling models, such as that used by Ullersma, are discussed in the form of some critical remarks
Distinction between the model of vector dominance and the model of oscillations
International Nuclear Information System (INIS)
Beshtoev, Kh.M.
2010-01-01
The distinction between the model of vector dominance and the model of oscillations is considered on the example of γ→ρ 0 transitions. It is shown that transition probabilities in these cases differ by a factor of 2. The physical reason of these transition schemes is also discussed
International Nuclear Information System (INIS)
Jayaraman, Jambunatha; Lima Rodrigues, R. de
1994-01-01
In the context of the 3 D generalized SUSY model oscillator Hamiltonian of Celka and Hussin (CH), a generalized Dirac oscillator interaction is studied, that leads, in the non-relativistic limit considered for both signs of energy, to the CH's generalized 3 D SUSY oscillator. The relevance of this interaction to the CH's SUSY model and the SUSY breaking dependent on the Wigner parameter is brought out. (author). 6 refs
The Two-Capacitor Problem Revisited: A Mechanical Harmonic Oscillator Model Approach
Lee, Keeyung
2009-01-01
The well-known two-capacitor problem, in which exactly half the stored energy disappears when a charged capacitor is connected to an identical capacitor, is discussed based on the mechanical harmonic oscillator model approach. In the mechanical harmonic oscillator model, it is shown first that "exactly half" the work done by a constant applied…
Nonlinear coherent beam-beam oscillations in the rigid bunch model
International Nuclear Information System (INIS)
Dikansky, N.; Pestrikov, D.
1990-01-01
Within the framework of the rigid bunch model coherent oscillations of strong-strong colliding bunches are described by equations which are specific for the weak-strong beam case. In this paper some predictions of the model for properties of nonlinear coherent oscillations as well as for associated limitations of the luminosity are discussed. 14 refs.; 6 figs
Models with oscillator terms in noncommutative quantum field theory
International Nuclear Information System (INIS)
Kronberger, E.
2010-01-01
The main focus of this Ph.D. thesis is on noncommutative models involving oscillator terms in the action. The first one historically is the successful Grosse-Wulkenhaar (G.W.) model which has already been proven to be renormalizable to all orders of perturbation theory. Remarkably it is furthermore capable of solving the Landau ghost problem. In a first step, we have generalized the G.W. model to gauge theories in a very straightforward way, where the action is BRS invariant and exhibits the good damping properties of the scalar theory by using the same propagator, the so-called Mehler kernel. To be able to handle some more involved one-loop graphs we have programmed a powerful Mathematica package, which is capable of analytically computing Feynman graphs with many terms. The result of those investigations is that new terms originally not present in the action arise, which led us to the conclusion that we should better start from a theory where those terms are already built in. Fortunately there is an action containing this complete set of terms. It can be obtained by coupling a gauge field to the scalar field of the G.W. model, integrating out the latter, and thus 'inducing' a gauge theory. Hence the model is called Induced Gauge Theory. Despite the advantage that it is by construction completely gauge invariant, it contains also some unphysical terms linear in the gauge field. Advantageously we could get rid of these terms using a special gauge dedicated to this purpose. Within this gauge we could again establish the Mehler kernel as gauge field propagator. Furthermore we where able to calculate the ghost propagator, which turned out to be very involved. Thus we were able to start with the first few loop computations showing the expected behavior. The next step is to show renormalizability of the model, where some hints towards this direction will also be given. (author) [de
Numerical investigations of single bubble oscillations generated by a dual frequency excitation
International Nuclear Information System (INIS)
Guédra, Matthieu; Inserra, Claude; Gilles, Bruno; Béra, Jean-Christophe
2015-01-01
The oscillations of a single bubble excited with a dual frequency acoustic field are numerically investigated. Computations are made for an air bubble in water exposed to an acoustic field with a linearly varying amplitude. The bubble response to an excitation containing two frequencies f 1 = 500 kHz and f 2 = 400 kHz at the same amplitude is compared to the monofrequency case where only f 1 is present. Time-frequency representations show a sharp transition in the bifrequency case, for which the low frequency component f 2 becomes resonant while the high frequency component f 1 is strongly attenuated. The temporal evolution of the power spectra reveals that the resonance of the low frequency component is correlated with the time varying mean radius of the bubble. It is also observed that the total power of the bubble response in the bifrequency case can reach almost twice the power obtained in the monofrequency case, which indicates a strong enhancement of the cavitating behavior of the bubble for this specific frequency combination. (paper)
A robust single-beam optical trap for a gram-scale mechanical oscillator.
Altin, P A; Nguyen, T T-H; Slagmolen, B J J; Ward, R L; Shaddock, D A; McClelland, D E
2017-11-06
Precise optical control of microscopic particles has been mastered over the past three decades, with atoms, molecules and nano-particles now routinely trapped and cooled with extraordinary precision, enabling rapid progress in the study of quantum phenomena. Achieving the same level of control over macroscopic objects is expected to bring further advances in precision measurement, quantum information processing and fundamental tests of quantum mechanics. However, cavity optomechanical systems dominated by radiation pressure - so-called 'optical springs' - are inherently unstable due to the delayed dynamical response of the cavity. Here we demonstrate a fully stable, single-beam optical trap for a gram-scale mechanical oscillator. The interaction of radiation pressure with thermo-optic feedback generates damping that exceeds the mechanical loss by four orders of magnitude. The stability of the resultant spring is robust to changes in laser power and detuning, and allows purely passive self-locking of the cavity. Our results open up a new way of trapping and cooling macroscopic objects for optomechanical experiments.
Low-frequency oscillations in radiative-convective models
Energy Technology Data Exchange (ETDEWEB)
Hu, Qi; Randall, D.A.
1991-12-31
Although eastward propagation is usually regarded as an essential feature of the low-frequency ``Madden-Julian oscillation`` observed in the tropical atmosphere, many observations indicate that there is an important stationary or quasi-stationary component of the oscillation. Yasunari (1979), for example, investigated the stationary 30--60 day variation in upper tropospheric cloudiness in the Asian summer monsoon region. In a case study of the 30--60 day oscillation. Hsu et al. (1990) found a strong stationary oscillation of the divergence, outgoing longwave mdiadon and other fields. A recent observational study by Weickmann and Khalsa (1990) offers further evidence that the Madden-Julian oscillation has an important stationary component. In this paper, we present evidence that intraseasonal oscillations can be produced by local radiative and convective processes. This suggests that the observed propagating Madden-Julian wave is produced by interactions between these local processes and the large scale motion field, and is not essential for the existence of the observed oscillation.
Low-frequency oscillations in radiative-convective models
Energy Technology Data Exchange (ETDEWEB)
Hu, Qi; Randall, D.A.
1991-01-01
Although eastward propagation is usually regarded as an essential feature of the low-frequency Madden-Julian oscillation'' observed in the tropical atmosphere, many observations indicate that there is an important stationary or quasi-stationary component of the oscillation. Yasunari (1979), for example, investigated the stationary 30--60 day variation in upper tropospheric cloudiness in the Asian summer monsoon region. In a case study of the 30--60 day oscillation. Hsu et al. (1990) found a strong stationary oscillation of the divergence, outgoing longwave mdiadon and other fields. A recent observational study by Weickmann and Khalsa (1990) offers further evidence that the Madden-Julian oscillation has an important stationary component. In this paper, we present evidence that intraseasonal oscillations can be produced by local radiative and convective processes. This suggests that the observed propagating Madden-Julian wave is produced by interactions between these local processes and the large scale motion field, and is not essential for the existence of the observed oscillation.
West Coast Swing Dancing as a Driven Harmonic Oscillator Model
Ferrara, Davon; Holzer, Marie; Kyere, Shirley
The study of physics in sports not only provides valuable insight for improved athletic performance and injury prevention, but offers undergraduate students an opportunity to engage in both short- and long-term research efforts. In this project, conducted by two non-physics majors, we hypothesized that a driven harmonic oscillator model can be used to better understand the interaction between two west coast swing dancers since the stiffness of the physical connection between dance partners is a known factor in the dynamics of the dance. The hypothesis was tested by video analysis of two dancers performing a west coast swing basic, the sugar push, while changing the stiffness of the physical connection. The difference in stiffness of the connection from the ideal was estimated by the leader; the position with time data from the video was used to measure changes in the amplitude and phase difference between the leader and follower. While several aspects of our results agree with the proposed model, some key characteristics do not, possibly due to the follower relying on visual leads. Corresponding author and principal investigator.
Stopping power. Projectile and target modeled as oscillators
International Nuclear Information System (INIS)
Stevanovic, N.; Nikezic, D.
2005-01-01
In this Letter the collision of two quantum harmonic oscillators was considered. The oscillators interact through the Coulomb interaction. Stopping power of projectile was calculated assuming that both, target and projectile may be excited. It has been shown that the frequency of the projectile oscillation, ω p influences on stopping power, particularly in the region of Bragg peak. If, ω p ->0 is substitute in the expression for stopping power derived in this Letter, then it comes to the form when the projectile has been treated as point like charged particle
The Madden-Julian Oscillation in NCEP Coupled Model Simulation
Directory of Open Access Journals (Sweden)
Wanqiu Wang Kyong-Hwan Seo
2009-01-01
Full Text Available This study documents a detailed analysis on the Madden-Julian Oscillation (MJO simulated by the National Centers for Environmental Prediction (NCEP using the Global Forecast System (GFS model version 2003 coupled with the Climate Forecast System model (CFS consisting of the 2003 version of GFS and the Geophysical Fluid Dynamics Laboratory (GFDL Modular Ocean Model V.3 (MOM3. The analyses are based upon a 21-year simulation of AMIP-type with GFS and CMIP-type with CFS. It is found that air-sea coupling in CFS is shown to improve the coherence between convection and large-scale circulation associated with the MJO. The too fast propagation of convection from the Indian Ocean to the maritime continents and the western Pacific in GFS is improved (slowed down in CFS. Both GFS and CFS produce too strong intraseasonal convective heating and circulation anomalies in the central-eastern Pacific; further, the air-sea coupling in CFS enhances this unrealistic feature. The simulated mean slow phase speed of east ward propagating low-wavenumber components shown in the wavenumber-frequency spectra is due to the slow propagation in the central-eastern Pacific in both GFS and CFS. Errors in model climatology may have some effect upon the simulated MJO and two possible influences are: (i CFS fails to simulate the westerlies over maritime continents and western Pacific areas, resulting in an unrealistic representation of surface latent heat flux associated with the MJO; and (ii vertical easterly wind shear from the Indian Ocean to the western Pacific in CFS is much weaker than that in the observation and in GFS, which may adversely affect the eastward propagation of the simulated MJO.
Cavity Formation Modeling of Fiber Fuse in Single-Mode Optical Fibers
Directory of Open Access Journals (Sweden)
Yoshito Shuto
2017-01-01
Full Text Available The evolution of a fiber-fuse phenomenon in a single-mode optical fiber was studied theoretically. To clarify both the silica-glass densification and cavity formation, which have been observed in fiber fuse propagation, we investigated a nonlinear oscillation model using the Van Der Pol equation. This model was able to phenomenologically explain both the densification of the core material and the formation of periodic cavities in the core layer as a result of a relaxation oscillation.
International Nuclear Information System (INIS)
Du Zeng-Ji; Lin Wan-Tao; Mo Jia-Qi
2012-01-01
The EI Niño-southern oscillation (ENSO) is an interannual phenomenon involved in tropical Pacific ocean-atmosphere interactions. In this paper, we develop an asymptotic method of solving the nonlinear equation using the ENSO model. Based on a class of the oscillator of the ENSO model, a approximate solution of the corresponding problem is studied employing the perturbation method
An oscillator model of the timing of turn-taking.
Wilson, Margaret; Wilson, Thomas P
2005-12-01
When humans talk without conventionalized arrangements, they engage in conversation--that is, a continuous and largely nonsimultaneous exchange in which speakers take turns. Turn-taking is ubiquitous in conversation and is the normal case against which alternatives, such as interruptions, are treated as violations that warrant repair. Furthermore, turn-taking involves highly coordinated timing, including a cyclic rise and fall in the probability of initiating speech during brief silences, and involves the notable rarity, especially in two-party conversations, of two speakers' breaking a silence at once. These phenomena, reported by conversation analysts, have been neglected by cognitive psychologists, and to date there has been no adequate cognitive explanation. Here, we propose that, during conversation, endogenous oscillators in the brains of the speaker and the listeners become mutually entrained, on the basis of the speaker's rate of syllable production. This entrained cyclic pattern governs the potential for initiating speech at any given instant for the speaker and also for the listeners (as potential next speakers). Furthermore, the readiness functions of the listeners are counterphased with that of the speaker, minimizing the likelihood of simultaneous starts by a listener and the previous speaker. This mutual entrainment continues for a brief period when the speech stream ceases, accounting for the cyclic property of silences. This model not only captures the timing phenomena observed inthe literature on conversation analysis, but also converges with findings from the literatures on phoneme timing, syllable organization, and interpersonal coordination.
Averaging of the Equations of the Standard Cosmological Model over Rapid Oscillations
Ignat'ev, Yu. G.; Samigullina, A. R.
2017-11-01
An averaging of the equations of the standard cosmological model (SCM) is carried out. It is shown that the main contribution to the macroscopic energy density of the scalar field comes from its microscopic oscillations with the Compton period. The effective macroscopic equation of state of the oscillations of the scalar field corresponds to the nonrelativistic limit.
International Nuclear Information System (INIS)
Xiong Gang; Sun Zhouzhou; Wang Xiangrong
2007-01-01
We generalize a simple model for superlattices to include the effect of differential capacitance. It is shown that the model always has a stable steady-state solution (SSS) if all differential capacitances are positive. On the other hand, when negative differential capacitance is included, the model can have no stable SSS and be in a self-sustained current oscillation behavior. Therefore, we find a possible minimum toy model with both negative differential resistance and negative differential capacitance which can include the phenomena of both self-sustained current oscillation and I-V oscillation of stable SSSs.
MATHEMATICAL MODEL OF WHEELSET OSCILLATIONS WITH INDEPENDENT WHEEL ROTATION IN THE HORIZONTAL PLANE
Directory of Open Access Journals (Sweden)
S. V. Myamlin
2016-08-01
Full Text Available Purpose. The work is devoted to the study of horizontal oscillation and the assessment of the motion stability of a single wheelset with independent wheel rotation, and to the comparison of stability indicators of the typical wheelset and the wheelset with independent wheel rotation. This is connected with the necessity to increase traffic speed of rolling stock, improve road safety and comfort of passengers. Methodology. To achieve this purpose we used the methods of mathematical simulation of railway rolling stock dynamics, as well as the linear algebra methods to assess the stability of solutions of the linear homogeneous differential equations. Findings. To solve the set task the design model of a single wheelset with independent wheel rotation was created. The wheelset is not a single solid body; each of the wheelset axles has a surplus degree of freedom. Thus, we obtained the system with 4 degrees of freedom. The design model allowed to obtain the system of linear homogeneous differential equations describing the oscillations of the represented wheelset in a horizontal plane on a straight track section. On the basis of the computer modeling were calculated the eigenvalues of the differential equation system coefficients and the asymptotic stability analysis of the wheelset motion with independent wheel rotation. The increment and the frequency of fluctuations were compared with similar indicators for the standard wheelset. The authors also discussed non-oscillatory forms of the wheelset motion and the issues of wheelset self-centering on the track. Originality. The result of the work is the mathematical model of the sinuous movement of a single wheelset, in two-dimensional formulation, with independent wheel rotation and the estimate of the dynamic indices during its motion on a straight track section without any irregularities. There were also proposed the ways to ensure the self-centering on the track of the wheelset with independent
Wang, Wenhong
2013-07-12
We report the observation of a large linear magnetoresistance (MR) and Shubnikov-de Hass (SdH) quantum oscillations in single crystals of YPdBi Heusler topological insulators. Owning to the successfully obtained the high-quality YPdBi single crystals, large non-saturating linear MR of as high as 350% at 5K and over 120% at 300K under a moderate magnetic field of 7T is observed. In addition to the large, field-linear MR, the samples exhibit pronounced SdH quantum oscillations at low temperature. Analysis of the SdH data manifests that the high-mobility bulk electron carriers dominate the magnetotransport and are responsible for the observed large linear MR in YPdBi crystals. These findings imply that the Heusler-based topological insulators have superiorities for investigating the novel quantum transport properties and developing the potential applications.
Wang, Wenhong; Du, Yin; Xu, Guizhou; Zhang, Xiaoming; Liu, Enke; Liu, Zhongyuan; Shi, Youguo; Chen, Jinglan; Wu, Guangheng; Zhang, Xixiang
2013-01-01
We report the observation of a large linear magnetoresistance (MR) and Shubnikov-de Hass (SdH) quantum oscillations in single crystals of YPdBi Heusler topological insulators. Owning to the successfully obtained the high-quality YPdBi single crystals, large non-saturating linear MR of as high as 350% at 5K and over 120% at 300K under a moderate magnetic field of 7T is observed. In addition to the large, field-linear MR, the samples exhibit pronounced SdH quantum oscillations at low temperature. Analysis of the SdH data manifests that the high-mobility bulk electron carriers dominate the magnetotransport and are responsible for the observed large linear MR in YPdBi crystals. These findings imply that the Heusler-based topological insulators have superiorities for investigating the novel quantum transport properties and developing the potential applications.
International Nuclear Information System (INIS)
Mariz, A.M.; Rio Grande do Norte Univ., Natal; Tsallis, C.
1982-01-01
The quantum single one-dimensional oscillator associated with a potential proportional to /X/ sup(#betta#) (#betta# > 0) is discussed. The exact energy eigenvalues recently established by Turschner are further elaborated and convenient exact as well as asymptotic relations are exhibited. The exact T → 0 and T → infinite specific heat is discussed and numerical results for typical values of #betta# and intermediate temperature are presented. (Author) [pt
Fitness voter model: Damped oscillations and anomalous consensus.
Woolcock, Anthony; Connaughton, Colm; Merali, Yasmin; Vazquez, Federico
2017-09-01
We study the dynamics of opinion formation in a heterogeneous voter model on a complete graph, in which each agent is endowed with an integer fitness parameter k≥0, in addition to its + or - opinion state. The evolution of the distribution of k-values and the opinion dynamics are coupled together, so as to allow the system to dynamically develop heterogeneity and memory in a simple way. When two agents with different opinions interact, their k-values are compared, and with probability p the agent with the lower value adopts the opinion of the one with the higher value, while with probability 1-p the opposite happens. The agent that keeps its opinion (winning agent) increments its k-value by one. We study the dynamics of the system in the entire 0≤p≤1 range and compare with the case p=1/2, in which opinions are decoupled from the k-values and the dynamics is equivalent to that of the standard voter model. When 0≤psystem approaches exponentially fast to the consensus state of the initial majority opinion. The mean consensus time τ appears to grow logarithmically with the number of agents N, and it is greatly decreased relative to the linear behavior τ∼N found in the standard voter model. When 1/2system initially relaxes to a state with an even coexistence of opinions, but eventually reaches consensus by finite-size fluctuations. The approach to the coexistence state is monotonic for 1/2oscillations around the coexistence value. The final approach to coexistence is approximately a power law t^{-b(p)} in both regimes, where the exponent b increases with p. Also, τ increases respect to the standard voter model, although it still scales linearly with N. The p=1 case is special, with a relaxation to coexistence that scales as t^{-2.73} and a consensus time that scales as τ∼N^{β}, with β≃1.45.
A Modular Approach to Model Oscillating Control Surfaces Using Navier Stokes Equations
Guruswamy, Guru P.; Lee, Henry
2014-01-01
The use of active controls for rotorcraft is becoming more important for modern aerospace configurations. Efforts to reduce the vibrations of helicopter blades with use of active-controls are in progress. Modeling oscillating control surfaces using the linear aerodynamics theory is well established. However, higher-fidelity methods are needed to account for nonlinear effects, such as those that occur in transonic flow. The aeroelastic responses of a wing with an oscillating control surface, computed using the transonic small perturbation (TSP) theory, have been shown to cause important transonic flow effects such as a reversal of control surface effectiveness that occurs as the shock wave crosses the hinge line. In order to account for flow complexities such as blade-vortex interactions of rotor blades higher-fidelity methods based on the Navier-Stokes equations are used. Reference 6 presents a procedure that uses the Navier-Stokes equations with moving-sheared grids and demonstrates up to 8 degrees of control-surface amplitude, using a single grid. Later, this procedure was extended to accommodate larger amplitudes, based on sliding grid zones. The sheared grid method implemented in EulerlNavier-Stokes-based aeroelastic code ENS AERO was successfully applied to active control design by industry. Recently there are several papers that present results for oscillating control surface using Reynolds Averaged Navier-Stokes (RANS) equations. References 9 and 10 report 2-D cases by filling gaps with overset grids. Reference 9 compares integrated forces with the experiment at low oscillating frequencies whereas Ref. 10 reports parametric studies but with no validation. Reference II reports results for a 3D case by modeling the gap region with a deformed grid and compares force results with the experiment only at the mid-span of flap. In Ref. II grid is deformed to match the control surface deflections at the section where the measurements are made. However, there is no
Rabi oscillation between states of a coupled harmonic oscillator
International Nuclear Information System (INIS)
Park, Tae Jun
2003-01-01
Rabi oscillation between bound states of a single potential is well known. However the corresponding formula between the states of two different potentials has not been obtained yet. In this work, we derive Rabi formula between the states of a coupled harmonic oscillator which may be used as a simple model for the electron transfer. The expression is similar to typical Rabi formula for a single potential. This result may be used to describe transitions between coupled diabatic potential curves
Ko, D K; Binks, D J; Gloster, L A W; King, T A
1998-01-01
We demonstrate stable single mode operation in a pulsed Ti:sapphire laser oscillator with a novel grazing-incidence four-mirror coupled cavity. This cavity consists of a grating, a gain medium, and four mirrors and, therefore, has a four-arm interferometer configuration. Through the interferometric effect, we could suppress the adjacent modes and obtain stable single mode operation with a bandwidth of < 200 MHz. We also have developed a general analysis of the laser modes and the threshold conditions for configuration and the experimental results agree well with the theoretical predictions.
Singh, Yogesh; Martin, C.; Bud'Ko, S. L.; Ellern, A.; Prozorov, R.; Johnston, D. C.
2010-10-01
Single crystals of superconducting OsB2 [Tc=2.10(5)K] have been grown using a Cu-B eutectic flux. We confirm that OsB2 crystallizes in the reported orthorhombic structure (space group Pmmn ) at room temperature. Both the normal and superconducting state properties of the crystals are studied using various techniques. Heat capacity versus temperature C(T) measurements yield the normal state electronic specific heat coefficient γ=1.95(1)mJ/molK2 and the Debye temperature ΘD=539(2)K . The measured frequencies of Shubnikov-de Haas oscillations are in good agreement with those predicted by band structure calculations. Magnetic susceptibility χ(T,H) , electrical resistivity ρ(T) , and C(T,H) measurements ( H is the magnetic field) demonstrate that OsB2 is a bulk low- κ [κ(Tc)=2(1)] type-II superconductor that is intermediate between the clean and dirty limits [(ξ(T=0)/ℓ=0.97)] with a small upper critical magnetic field Hc2(T=0)=186(4)Oe . The penetration depth is λ(T=0)=0.300μm . An anomalous (not single-gap BCS) T dependence of λ was fitted by a two-gap model with Δ1(T=0)/kBTc=1.9 and Δ2(T=0)/kBTc=1.25 , respectively. The discontinuity in the heat capacity at Tc , ΔC/γTc=1.32 , is smaller than the weak-coupling BCS value of 1.43, consistent with the two-gap nature of the superconductivity in OsB2 . An anomalous increase in ΔC at Tc of unknown origin is found in finite H ; e.g., ΔC/γTc≈2.5 for H≈25Oe .
Directory of Open Access Journals (Sweden)
Alex Pavlides
2015-12-01
Full Text Available In Parkinson's disease, an increase in beta oscillations within the basal ganglia nuclei has been shown to be associated with difficulty in movement initiation. An important role in the generation of these oscillations is thought to be played by the motor cortex and by a network composed of the subthalamic nucleus (STN and the external segment of globus pallidus (GPe. Several alternative models have been proposed to describe the mechanisms for generation of the Parkinsonian beta oscillations. However, a recent experimental study of Tachibana and colleagues yielded results which are challenging for all published computational models of beta generation. That study investigated how the presence of beta oscillations in a primate model of Parkinson's disease is affected by blocking different connections of the STN-GPe circuit. Due to a large number of experimental conditions, the study provides strong constraints that any mechanistic model of beta generation should satisfy. In this paper we present two models consistent with the data of Tachibana et al. The first model assumes that Parkinsonian beta oscillation are generated in the cortex and the STN-GPe circuits resonates at this frequency. The second model additionally assumes that the feedback from STN-GPe circuit to cortex is important for maintaining the oscillations in the network. Predictions are made about experimental evidence that is required to differentiate between the two models, both of which are able to reproduce firing rates, oscillation frequency and effects of lesions carried out by Tachibana and colleagues. Furthermore, an analysis of the models reveals how the amplitude and frequency of the generated oscillations depend on parameters.
Gas-evolution oscillators. 10. A model based on a delay equation
Energy Technology Data Exchange (ETDEWEB)
Bar-Eli, K.; Noyes, R.M. [Univ. of Oregon, Eugene, OR (United States)
1992-09-17
This paper develops a simplified method to model the behavior of a gas-evolution oscillator with two differential delay equations in two unknowns consisting of the population of dissolved molecules in solution and the pressure of the gas.
Gas-evolution oscillators. 10. A model based on a delay equation
International Nuclear Information System (INIS)
Bar-Eli, K.; Noyes, R.M.
1992-01-01
This paper develops a simplified method to model the behavior of a gas-evolution oscillator with two differential delay equations in two unknowns consisting of the population of dissolved molecules in solution and the pressure of the gas
A membrane model for cytosolic calcium oscillations. A study using Xenopus oocytes.
Jafri, M S; Vajda, S; Pasik, P; Gillo, B
1992-01-01
Cytosolic calcium oscillations occur in a wide variety of cells and are involved in different cellular functions. We describe these calcium oscillations by a mathematical model based on the putative electrophysiological properties of the endoplasmic reticulum (ER) membrane. The salient features of our membrane model are calcium-dependent calcium channels and calcium pumps in the ER membrane, constant entry of calcium into the cytosol, calcium dependent removal from the cytosol, and buffering ...
Asymptotic solution for the El Niño time delay sea—air oscillator model
International Nuclear Information System (INIS)
Mo Jia-Qi; Lin Wan-Tao; Lin Yi-Hua
2011-01-01
A sea—air oscillator model is studied using the time delay theory. The aim is to find an asymptotic solving method for the El Niño-southern oscillation (ENSO) model. Employing the perturbed method, an asymptotic solution of the corresponding problem is obtained. Thus we can obtain the prognoses of the sea surface temperature (SST) anomaly and the related physical quantities. (general)
Energy Technology Data Exchange (ETDEWEB)
Min, Seung-Ki; Hense, Andreas [Univ. of Bonn (Germany). Meteorological Inst.; Legutke, Stephanie [Max Planck Inst. for Meteorology, Hamburg (Germany); Kwon, Won-Tae [Meteorological Research Inst., Seoul (Korea, Republic of)
2005-08-01
A 1000-yr control simulation (CTL) performed with the atmosphere-ocean global climate model ECHO-G is analysed with regard to the El Nino Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO), the two major natural climatic variabilities, in comparison with observations and other model simulations. The ENSO-related sea surface temperature climate and its seasonal cycle in the tropical Pacific and a single Intertropical Convergence Zone in the eastern tropical Pacific are simulated reasonably, and the ENSO phase-locking to the annual cycle and the subsurface ocean behaviour related to equatorial wave dynamics are also reproduced well. The simulated amplitude of the ENSO signal is however too large and its occurrence is too regular and frequent. Also, the observed westward propagation of zonal wind stress over the equatorial Pacific is not captured by the model. Nevertheless, the ENSO-related teleconnection patterns of near-surface temperature (T2m), precipitation (PCP) and mean sea level pressure (MSLP) are reproduced realistically. The NAO index, defined as the MSLP difference between Gibraltar and Iceland, has a 'white' noise spectrum similar to that of the detrended index obtained from observed data. The correlation and regression patterns of T2m, PCP and MSLP with the NAO index are also successfully simulated. However, the model overestimates the warming over the North Pacific in the high index phase of the NAO, a feature it shares with other coupled models. This might be associated with an enhanced Atlantic/Pacific teleconnection, which is hardly seen in the observations. A detection analysis of the NAO index shows that the observed recent 4060 yr trend cannot be explained by the model's internal variability while the recent 2030 yr trend occurs with a more than 1% chance in ECHO-G CTL.
International Nuclear Information System (INIS)
Xiao Yu; Li Can; Xu Shan-Hui; Feng Zhou-Ming; Yang Chang-Sheng; Zhao Qi-Lai; Yang Zhong-Min
2015-01-01
Effective multiple optoelectronic feedback circuits for simultaneously suppressing low-frequency and relaxation oscillation intensity noise in a single-frequency phosphate fiber laser are demonstrated. The forward transfer function, which relates the laser output intensity to the pump modulations, is measured and analyzed. A custom two-path feedback system operating at different frequency bands is designed to adjust the pump current directly. The relative intensity noise is decreased by 20 dB from 0.2 to 5kHz and over 10 dB from 5 to 10 kHz. The relaxation oscillation peak is suppressed by 22 dB. In addition, a long term (24 h) laser instability of less than 0.05% is achieved. (paper)
Quasi-decadal Oscillation in the CMIP5 and CMIP3 Climate Model Simulations: California Case
Wang, J.; Yin, H.; Reyes, E.; Chung, F. I.
2014-12-01
The ongoing three drought years in California are reminding us of two other historical long drought periods: 1987-1992 and 1928-1934. This kind of interannual variability is corresponding to the dominating 7-15 yr quasi-decadal oscillation in precipitation and streamflow in California. When using global climate model projections to assess the climate change impact on water resources planning in California, it is natural to ask if global climate models are able to reproduce the observed interannual variability like 7-15 yr quasi-decadal oscillation. Further spectral analysis to tree ring retrieved precipitation and historical precipitation record proves the existence of 7-15 yr quasi-decadal oscillation in California. But while implementing spectral analysis to all the CMIP5 and CMIP3 global climate model historical simulations using wavelet analysis approach, it was found that only two models in CMIP3 , CGCM 2.3.2a of MRI and NCAP PCM1.0, and only two models in CMIP5, MIROC5 and CESM1-WACCM, have statistically significant 7-15 yr quasi-decadal oscillations in California. More interesting, the existence of 7-15 yr quasi-decadal oscillation in the global climate model simulation is also sensitive to initial conditions. 12-13 yr quasi-decadal oscillation occurs in one ensemble run of CGCM 2.3.2a of MRI but does not exist in the other four ensemble runs.
Is the Langevin phase equation an efficient model for oscillating neurons?
Ota, Keisuke; Tsunoda, Takamasa; Omori, Toshiaki; Watanabe, Shigeo; Miyakawa, Hiroyoshi; Okada, Masato; Aonishi, Toru
2009-12-01
The Langevin phase model is an important canonical model for capturing coherent oscillations of neural populations. However, little attention has been given to verifying its applicability. In this paper, we demonstrate that the Langevin phase equation is an efficient model for neural oscillators by using the machine learning method in two steps: (a) Learning of the Langevin phase model. We estimated the parameters of the Langevin phase equation, i.e., a phase response curve and the intensity of white noise from physiological data measured in the hippocampal CA1 pyramidal neurons. (b) Test of the estimated model. We verified whether a Fokker-Planck equation derived from the Langevin phase equation with the estimated parameters could capture the stochastic oscillatory behavior of the same neurons disturbed by periodic perturbations. The estimated model could predict the neural behavior, so we can say that the Langevin phase equation is an efficient model for oscillating neurons.
Is the Langevin phase equation an efficient model for oscillating neurons?
International Nuclear Information System (INIS)
Ota, Keisuke; Tsunoda, Takamasa; Aonishi, Toru; Omori, Toshiaki; Okada, Masato; Watanabe, Shigeo; Miyakawa, Hiroyoshi
2009-01-01
The Langevin phase model is an important canonical model for capturing coherent oscillations of neural populations. However, little attention has been given to verifying its applicability. In this paper, we demonstrate that the Langevin phase equation is an efficient model for neural oscillators by using the machine learning method in two steps: (a) Learning of the Langevin phase model. We estimated the parameters of the Langevin phase equation, i.e., a phase response curve and the intensity of white noise from physiological data measured in the hippocampal CA1 pyramidal neurons. (b) Test of the estimated model. We verified whether a Fokker-Planck equation derived from the Langevin phase equation with the estimated parameters could capture the stochastic oscillatory behavior of the same neurons disturbed by periodic perturbations. The estimated model could predict the neural behavior, so we can say that the Langevin phase equation is an efficient model for oscillating neurons.
Directory of Open Access Journals (Sweden)
GholamReza Roshan
2012-12-01
Full Text Available The rapid rise of Caspian Sea water level (about 2.25 meters since 1978 has caused much concern to all five surrounding countries, primarily because flooding has destroyed or damaged buildings and other engineering structures, roads, beaches and farm lands in thecoastal zone. Given that climate, and more specifically climate change, is a primary factor influencing oscillations in Caspian Sea water levels, the effect of different climate change scenarios on future Caspian Sea levels was stimulated. Variations in environmentalparameters such as temperature, precipitation, evaporation, tmospheric carbon dioxide and water level oscillations of the Caspian sea and surrounding regions, are considered for bothpast (1951-2006 and future (2025-2100 time frames. The output of the UKHADGEM general circulation model and five alternative scenarios including A1CAI, BIASF, BIMES WRE450 and WRE750 were extracted using the MAGICC SCENGEN Model software(version 5.3. The results suggest that the mean temperature of the Caspian Sea region (Bandar-E-Anzali monitoring site has increased by ca. 0.17ºC per decade under the impacts of atmospheric carbon dioxide changes (r=0.21. The Caspian Sea water level has increasedby ca. +36 mm per decade (r=0.82 between the years 1951-2006. Mean results from all modeled scenarios indicate that the temperature will increase by ca. 3.64ºC and precipitation will decrease by ca. 10% (182 mm over the Caspian Sea, whilst in the Volga river basin,temperatures are projected to increase by ca. 4.78ºC and precipitation increase by ca. 12% (58 mm by the year 2100. Finally, statistical modeling of the Caspian Sea water levels projectfuture water level increases of between 86 cm and 163 cm by the years 2075 and 2100, respectively.
Measurements of natural frequency and damping constant of single steam bubble oscillating in water
International Nuclear Information System (INIS)
Morioka, Mikio
1983-01-01
The natural frequency fsub(n) and damping constant delta of a bubble in liquid have been determined by observing the resonance of the bubble to forced oscillation. The bubble was retained under a rigid plate horizontal disk, and the oscillation was applied by underwater speaker. The applied frequency f was kept constant while letting the bubble increase its volume and vary its radius R. Bubble resonance was detected by observing wrinkles appearing on the bubble due to surface waves. Resonance curves relating the amplitude of bubble radius variation to the intensity of applied oscillation is derived theoretically. Good agreement was seen between the data obtained from experiment and the theoretically derived resonance curves at test to the validity of the method proposed of determining fsub(n) and delta from bubble resonance. The values of delta and of the resonant bubble radius R 0 of large steam bubbles (8.5mm< R<11.5mm) in water were determined at f=270, 290 and 358 Hz. The results support the assumption that for large bubbles the value of fsub(n) is little influenced by the exchange of mass between liquid and gaseous phases through evaporation and condensation accompanying bubble pressure oscillation. On the other hand, delta is found to be one order of magnitude higher than calculated for steam bubbles without taking into evaporation and condensation the interphase exchange of mass. The effect brought on delta by the interphase mass exchange can be taken into account by adding a new constant deltasub(ph) to the terms constituting the total damping constant. (author)
Stuttering Min oscillations within E. coli bacteria: a stochastic polymerization model
International Nuclear Information System (INIS)
Sengupta, Supratim; Derr, Julien; Sain, Anirban; Rutenberg, Andrew D
2012-01-01
We have developed a 3D off-lattice stochastic polymerization model to study the subcellular oscillation of Min proteins in the bacteria Escherichia coli, and used it to investigate the experimental phenomenon of Min oscillation stuttering. Stuttering was affected by the rate of immediate rebinding of MinE released from depolymerizing filament tips (processivity), protection of depolymerizing filament tips from MinD binding and fragmentation of MinD filaments due to MinE. Processivity, protection and fragmentation each reduce stuttering, speed oscillations and MinD filament lengths. Neither processivity nor tip protection were, on their own, sufficient to produce fast stutter-free oscillations. While filament fragmentation could, on its own, lead to fast oscillations with infrequent stuttering; high levels of fragmentation degraded oscillations. The infrequent stuttering observed in standard Min oscillations is consistent with short filaments of MinD, while we expect that mutants that exhibit higher stuttering frequencies will exhibit longer MinD filaments. Increased stuttering rate may be a useful diagnostic to find observable MinD polymerization under experimental conditions. (paper)
Stuttering Min oscillations within E. coli bacteria: a stochastic polymerization model
Sengupta, Supratim; Derr, Julien; Sain, Anirban; Rutenberg, Andrew D.
2012-10-01
We have developed a 3D off-lattice stochastic polymerization model to study the subcellular oscillation of Min proteins in the bacteria Escherichia coli, and used it to investigate the experimental phenomenon of Min oscillation stuttering. Stuttering was affected by the rate of immediate rebinding of MinE released from depolymerizing filament tips (processivity), protection of depolymerizing filament tips from MinD binding and fragmentation of MinD filaments due to MinE. Processivity, protection and fragmentation each reduce stuttering, speed oscillations and MinD filament lengths. Neither processivity nor tip protection were, on their own, sufficient to produce fast stutter-free oscillations. While filament fragmentation could, on its own, lead to fast oscillations with infrequent stuttering; high levels of fragmentation degraded oscillations. The infrequent stuttering observed in standard Min oscillations is consistent with short filaments of MinD, while we expect that mutants that exhibit higher stuttering frequencies will exhibit longer MinD filaments. Increased stuttering rate may be a useful diagnostic to find observable MinD polymerization under experimental conditions.
Quantum Oscillator in the Thermostat as a Model in the Thermodynamics of Open Quantum Systems
Sukhanov, Aleksander
2005-01-01
The quantum oscillator in the thermostat is considered as the model of an open quantum system. Our analysis will be heavily founded on the use of the Schroedinger generalized uncertainties relations (SUR). Our first aim is to demonstrate that for the quantum oscillator the state of thermal equilibrium belongs to the correlated coherent states (CCS), which imply the saturation of SUR at any temperature. The obtained results open the perspective for the search of some statistical theory, which ...
International Nuclear Information System (INIS)
Schulze-Halberg, Axel; Wang, Jie
2015-01-01
We obtain series solutions, the discrete spectrum, and supersymmetric partners for a quantum double-oscillator system. Its potential features a superposition of the one-parameter Mathews-Lakshmanan interaction and a one-parameter harmonic or inverse harmonic oscillator contribution. Furthermore, our results are transferred to a generalized Pöschl-Teller model that is isospectral to the double-oscillator system
Energy Technology Data Exchange (ETDEWEB)
Schulze-Halberg, Axel, E-mail: axgeschu@iun.edu, E-mail: xbataxel@gmail.com [Department of Mathematics and Actuarial Science and Department of Physics, Indiana University Northwest, 3400 Broadway, Gary, Indiana 46408 (United States); Wang, Jie, E-mail: wangjie@iun.edu [Department of Computer Information Systems, Indiana University Northwest, 3400 Broadway, Gary, Indiana 46408 (United States)
2015-07-15
We obtain series solutions, the discrete spectrum, and supersymmetric partners for a quantum double-oscillator system. Its potential features a superposition of the one-parameter Mathews-Lakshmanan interaction and a one-parameter harmonic or inverse harmonic oscillator contribution. Furthermore, our results are transferred to a generalized Pöschl-Teller model that is isospectral to the double-oscillator system.
Modeling Friction Performance of Drill String Torsional Oscillation Using Dynamic Friction Model
Directory of Open Access Journals (Sweden)
Xingming Wang
2017-01-01
Full Text Available Drill string torsional and longitudinal oscillation can significantly reduce axial drag in horizontal drilling. An improved theoretical model for the analysis of the frictional force was proposed based on microscopic contact deformation theory and a bristle model. The established model, an improved dynamic friction model established for drill strings in a wellbore, was used to determine the relationship of friction force changes and the drill string torsional vibration. The model results were in good agreement with the experimental data, verifying the accuracy of the established model. The analysis of the influence of drilling mud properties indicated that there is an approximately linear relationship between the axial friction force and dynamic shear and viscosity. The influence of drill string torsional oscillation on the axial friction force is discussed. The results indicated that the drill string transverse velocity is a prerequisite for reducing axial friction. In addition, low amplitude of torsional vibration speed can significantly reduce axial friction. Then, increasing the amplitude of transverse vibration speed, the effect of axial reduction is not significant. In addition, by involving general field drilling parameters, this model can accurately describe the friction behavior and quantitatively predict the frictional resistance in horizontal drilling.
Entanglement in a QFT Model of Neutrino Oscillations
International Nuclear Information System (INIS)
Illuminati, F.; Blasone, M.; Dell’Anno, F.; De Siena, S.
2014-01-01
Tools of quantum information theory can be exploited to provide a convenient description of the phenomena of particle mixing and flavor oscillations in terms of entanglement, a fundamental quantum resource. We extend such a picture to the domain of quantum field theory where, due to the nontrivial nature of flavor neutrino states, the presence of antiparticles provides additional contributions to flavor entanglement. We use a suitable entanglement measure, the concurrence, that allows extracting the two-mode (flavor) entanglement from the full multimode, multiparticle flavor neutrino states
Directory of Open Access Journals (Sweden)
Guoshi Li
2017-10-01
Full Text Available The thalamus plays a critical role in the genesis of thalamocortical oscillations, yet the underlying mechanisms remain elusive. To understand whether the isolated thalamus can generate multiple distinct oscillations, we developed a biophysical thalamic model to test the hypothesis that generation of and transition between distinct thalamic oscillations can be explained as a function of neuromodulation by acetylcholine (ACh and norepinephrine (NE and afferent synaptic excitation. Indeed, the model exhibited four distinct thalamic rhythms (delta, sleep spindle, alpha and gamma oscillations that span the physiological states corresponding to different arousal levels from deep sleep to focused attention. Our simulation results indicate that generation of these distinct thalamic oscillations is a result of both intrinsic oscillatory cellular properties and specific network connectivity patterns. We then systematically varied the ACh/NE and input levels to generate a complete map of the different oscillatory states and their transitions. Lastly, we applied periodic stimulation to the thalamic network and found that entrainment of thalamic oscillations is highly state-dependent. Our results support the hypothesis that ACh/NE modulation and afferent excitation define thalamic oscillatory states and their response to brain stimulation. Our model proposes a broader and more central role of the thalamus in the genesis of multiple distinct thalamo-cortical rhythms than previously assumed.
Global attractor and asymptotic dynamics in the Kuramoto model for coupled noisy phase oscillators
International Nuclear Information System (INIS)
Giacomin, Giambattista; Pakdaman, Khashayar; Pellegrin, Xavier
2012-01-01
We study the dynamics of the large N limit of the Kuramoto model of coupled phase oscillators, subject to white noise. We introduce the notion of shadow inertial manifold and we prove their existence for this model, supporting the fact that the long-term dynamics of this model is finite dimensional. Following this, we prove that the global attractor of this model takes one of two forms. When coupling strength is below a critical value, the global attractor is a single equilibrium point corresponding to an incoherent state. Otherwise, when coupling strength is beyond this critical value, the global attractor is a two-dimensional disc composed of radial trajectories connecting a saddle-point equilibrium (the incoherent state) to an invariant closed curve of locally stable equilibria (partially synchronized state). Our analysis hinges, on the one hand, upon sharp existence and uniqueness results and their consequence for the existence of a global attractor, and, on the other hand, on the study of the dynamics in the vicinity of the incoherent and coherent (or synchronized) equilibria. We prove in particular nonlinear stability of each synchronized equilibrium, and normal hyperbolicity of the set of such equilibria. We explore mathematically and numerically several properties of the global attractor, in particular we discuss the limit of this attractor as noise intensity decreases to zero
On the single-mass model of the vocal folds
International Nuclear Information System (INIS)
Howe, M S; McGowan, R S
2010-01-01
An analysis is made of the fluid-structure interactions necessary to support self-sustained oscillations of a single-mass mechanical model of the vocal folds subject to a nominally steady subglottal overpressure. The single-mass model of Fant and Flanagan is re-examined and an analytical representation of vortex shedding during 'voiced speech' is proposed that promotes cooperative, periodic excitation of the folds by the glottal flow. Positive feedback that sustains glottal oscillations is shown to occur during glottal contraction, when the flow separates from the 'trailing edge' of the glottis producing a low-pressure 'suction' force that tends to pull the folds together. Details are worked out for flow that can be regarded as locally two-dimensional in the glottal region. Predictions of free-streamline theory are used to model the effects of quasi-static variations in the separation point on the glottal wall. Numerical predictions are presented to illustrate the waveform of the sound radiated towards the mouth from the glottis. The theory is easily modified to include feedback on the glottal flow of standing acoustic waves, both in the vocal tract beyond the glottis and in the subglottal region. (invited paper)
Sticky orbits in a kicked-oscillator model
Lowenstein, J H; Vivaldi, F
2005-01-01
We study a 4-fold symmetric kicked-oscillator map with sawtooth kick function. For the values of the kick amplitude $\\lambda=2\\cos(2\\pi p/q)$ with rational $p/q$, the dynamics is known to be pseudochaotic, with no stochastic web of non-zero Lebesgue measure. We show that this system can be represented as a piecewise affine map of the unit square ---the so-called local map--- driving a lattice map. We develop a framework for the study of long-time behaviour of the orbits, in the case in which the local map features exact scaling. We apply this method to several quadratic irrational values of $\\lambda$, for which the local map possesses a full Legesgue measure of periodic orbits; these are promoted to either periodic orbits or accelerator modes of the kicked-oscillator map. By constrast, the aperiodic orbits of the local map can generate various asymptotic behaviours. For some parameter values the orbits remain bounded, while others have excursions which grow logarithmically or as a power of the time. In the po...
Semiclassical calculation for collision induced dissociation. II. Morse oscillator model
International Nuclear Information System (INIS)
Rusinek, I.; Roberts, R.E.
1978-01-01
A recently developed semiclassical procedure for calculating collision induced dissociation probabilities P/sup diss/ is applied to the collinear collision between a particle and a Morse oscillator diatomic. The particle--diatom interaction is described with a repulsive exponential potential function. P/sup diss/ is reported for a system of three identical particles, as a function of collision energy E/sub t/ and initial vibrational state of the diatomic n 1 . The results are compared with the previously reported values for the collision between a particle and a truncated harmonic oscillator. The two studies show similar features, namely: (a) there is an oscillatory structure in the P/sup diss/ energy profiles, which is directly related to n 1 ; (b) P/sup diss/ becomes noticeable (> or approx. =10 -3 ) for E/sub t/ values appreciably higher than the energetic threshold; (c) vibrational enhancement (inhibition) of collision induced dissociation persists at low (high) energies; and (d) good agreement between the classical and semiclassical results is found above the classical dynamic threshold. Finally, the convergence of P/sup diss/ for increasing box length is shown to be rapid and satisfactory
Collapse and revival in inter-band oscillations of a two-band Bose-Hubbard model
Energy Technology Data Exchange (ETDEWEB)
Ploetz, Patrick; Wimberger, Sandro [Institut fuer Theoretische Physik, Universitaet Heidelberg, Philosophenweg 19, 69120 Heidelberg (Germany); Madronero, Javier, E-mail: ploetz@thphys.uni-heidelberg.d [Physik Department, Technische Universitaet Muenchen, James-Franck-Str. 1, 85748 Garching (Germany)
2010-04-28
We study the effect of a many-body interaction on inter-band oscillations in a two-band Bose-Hubbard model with an external Stark force. Weak and strong inter-band oscillations are observed, where the latter arise from a resonant coupling of the bands. These oscillations collapse and revive due to a weak two-body interaction between the atoms. Effective models for oscillations in and out of resonance are introduced that provide predictions for the system's behaviour, particularly for the time scales for the collapse and revival of the resonant inter-band oscillations. (fast track communication)
Intra-Seasonal Monthly Oscillations in Stratospheric NCEP Data and Model Results
Mayr, H. G.; Mengel, J. G.; Huang, F. T.; Nash, E. R.
2009-01-01
Intra-seasonal oscillations (ISO) are observed in the zonal-mean of mesospheric wind and temperature measurements-and the numerical spectral model (NSM) generates such oscillations. Relatively large temperature ISO are evident also in stratospheric CPC (NCEP) data at high latitudes, where the NSM produces amplitudes around 3 K at 30 km. Analyzing the NCEP data for the years 1996-2006, we find in Fourier spectra signatures of oscillations with periods between 1.7 and 3 months. With statistical confidence levels exceeding 70%, the spectral features are induced by nonlinear interactions involving the annual and semi-annual variations. The synthesized data show for the 10-year average that the temperature ISO peak in winter, having amplitudes close to 4 K. The synthesized complete spectrum for periods around 2 months produces oscillations, varying from year to year, which can reach peak amplitudes of 15 and 5 K respectively at northern and southern polar latitudes.
Energy Technology Data Exchange (ETDEWEB)
Minati, Ludovico, E-mail: lminati@ieee.org, E-mail: ludovico.minati@unitn.it, E-mail: lminati@istituto-besta.it [Scientific Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (Italy); Center for Mind/Brain Sciences, University of Trento, Trento (Italy); Chiesa, Pietro; Tabarelli, Davide; Jovicich, Jorge [Center for Mind/Brain Sciences, University of Trento, Trento (Italy); D' Incerti, Ludovico [Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (Italy)
2015-03-15
In this paper, the topographical relationship between functional connectivity (intended as inter-regional synchronization), spectral and non-linear dynamical properties across cortical areas of the healthy human brain is considered. Based upon functional MRI acquisitions of spontaneous activity during wakeful idleness, node degree maps are determined by thresholding the temporal correlation coefficient among all voxel pairs. In addition, for individual voxel time-series, the relative amplitude of low-frequency fluctuations and the correlation dimension (D{sub 2}), determined with respect to Fourier amplitude and value distribution matched surrogate data, are measured. Across cortical areas, high node degree is associated with a shift towards lower frequency activity and, compared to surrogate data, clearer saturation to a lower correlation dimension, suggesting presence of non-linear structure. An attempt to recapitulate this relationship in a network of single-transistor oscillators is made, based on a diffusive ring (n = 90) with added long-distance links defining four extended hub regions. Similarly to the brain data, it is found that oscillators in the hub regions generate signals with larger low-frequency cycle amplitude fluctuations and clearer saturation to a lower correlation dimension compared to surrogates. The effect emerges more markedly close to criticality. The homology observed between the two systems despite profound differences in scale, coupling mechanism and dynamics appears noteworthy. These experimental results motivate further investigation into the heterogeneity of cortical non-linear dynamics in relation to connectivity and underline the ability for small networks of single-transistor oscillators to recreate collective phenomena arising in much more complex biological systems, potentially representing a future platform for modelling disease-related changes.
International Nuclear Information System (INIS)
Minati, Ludovico; Chiesa, Pietro; Tabarelli, Davide; Jovicich, Jorge; D'Incerti, Ludovico
2015-01-01
In this paper, the topographical relationship between functional connectivity (intended as inter-regional synchronization), spectral and non-linear dynamical properties across cortical areas of the healthy human brain is considered. Based upon functional MRI acquisitions of spontaneous activity during wakeful idleness, node degree maps are determined by thresholding the temporal correlation coefficient among all voxel pairs. In addition, for individual voxel time-series, the relative amplitude of low-frequency fluctuations and the correlation dimension (D 2 ), determined with respect to Fourier amplitude and value distribution matched surrogate data, are measured. Across cortical areas, high node degree is associated with a shift towards lower frequency activity and, compared to surrogate data, clearer saturation to a lower correlation dimension, suggesting presence of non-linear structure. An attempt to recapitulate this relationship in a network of single-transistor oscillators is made, based on a diffusive ring (n = 90) with added long-distance links defining four extended hub regions. Similarly to the brain data, it is found that oscillators in the hub regions generate signals with larger low-frequency cycle amplitude fluctuations and clearer saturation to a lower correlation dimension compared to surrogates. The effect emerges more markedly close to criticality. The homology observed between the two systems despite profound differences in scale, coupling mechanism and dynamics appears noteworthy. These experimental results motivate further investigation into the heterogeneity of cortical non-linear dynamics in relation to connectivity and underline the ability for small networks of single-transistor oscillators to recreate collective phenomena arising in much more complex biological systems, potentially representing a future platform for modelling disease-related changes
Curing critical links in oscillator networks as power flow models
International Nuclear Information System (INIS)
Rohden, Martin; Meyer-Ortmanns, Hildegard; Witthaut, Dirk; Timme, Marc
2017-01-01
Modern societies crucially depend on the robust supply with electric energy so that blackouts of power grids can have far reaching consequences. Typically, large scale blackouts take place after a cascade of failures: the failure of a single infrastructure component, such as a critical transmission line, results in several subsequent failures that spread across large parts of the network. Improving the robustness of a network to prevent such secondary failures is thus key for assuring a reliable power supply. In this article we analyze the nonlocal rerouting of power flows after transmission line failures for a simplified AC power grid model and compare different strategies to improve network robustness. We identify critical links in the grid and compute alternative pathways to quantify the grid’s redundant capacity and to find bottlenecks along the pathways. Different strategies are developed and tested to increase transmission capacities to restore stability with respect to transmission line failures. We show that local and nonlocal strategies typically perform alike: one can equally well cure critical links by providing backup capacities locally or by extending the capacities of bottleneck links at remote locations. (paper)
Simplest simulation model for three-dimensional xenon oscillations in large PWRs
International Nuclear Information System (INIS)
Shimazu, Yoichiro
2004-01-01
Xenon oscillations in large PWRs are well understood and there have been no operational problems remained. However, in order to suppress the oscillations effectively, optimal control strategy is preferable. Generally speaking in such optimality search based on the modern control theory, a large volume of transient core analyses is required. For example, three dimensional core calculations are inevitable for the analyses of radial oscillations. From this point of view, a very simple 3-D model is proposed, which is based on a reactor model of only four points. As in the actual reactor operation, the magnitude of xenon oscillations should be limited from the view point of safety, the model further assumes that the neutron leakage can be also small or even constant. It can explicitly use reactor parameters such as reactivity coefficients and control rod worth directly. The model is so simplified as described above that it can predict oscillation behavior in a very short calculation time even on a PC. However the prediction result is good. The validity of the model in comparison with measured data and the applications are discussed. (author)
The Influence of Acoustic Field Induced by HRT on Oscillation Behavior of a Single Droplet
Directory of Open Access Journals (Sweden)
Can Ruan
2017-01-01
Full Text Available This paper presents an experimental and theoretical study on the effects of an acoustic field induced by Hartmann Resonance Tube (HRT on droplet deformation behavior. The characteristics of the acoustic field generated by HRT are investigated. Results show that the acoustic frequency decreases with the increase of the resonator length, the sound pressure level (SPL increases with the increase of nozzle pressure ratio (NPR, and it is also noted that increasing resonator length can cause SPL to decrease, which has rarely been reported in published literature. Further theoretical analysis reveals that the resonance frequency of a droplet has several modes, and when the acoustic frequency equals the droplet’s frequency, heightened droplet responses are observed with the maximum amplitude of the shape oscillation. The experimental results for different resonator cavity lengths, nozzle pressure ratios and droplet diameters confirm the non-linear nature of this problem, and this conclusion is in good agreement with theoretical analysis. Measurements by high speed camera have shown that the introduction of an acoustic field can greatly enhance droplet oscillation, which means with the use of an ultrasonic atomizer based on HRT, the quality of atomization and combustion can be highly improved.
Canards and mixed-mode oscillations in a forest pest model
DEFF Research Database (Denmark)
Brøns, Morten; Kaasen, Rune
2010-01-01
of high pest concentration. For small values of the timescale of the young trees, the model can be reduced to a two-dimensional model. By a geometrical analysis we identify a canard explosion in the reduced model, that is, a change over a narrow parameter interval from outbreak dynamics to small...... oscillations around an endemic state. For larger values of the timescale of the young trees the two-dimensional approximation breaks down, and a broader parameter interval with mixed-mode oscillations appear, replacing the simple canard explosion. The analysis only relies on simple and generic properties...
Single-tier city logistics model for single product
Saragih, N. I.; Nur Bahagia, S.; Suprayogi; Syabri, I.
2017-11-01
This research develops single-tier city logistics model which consists of suppliers, UCCs, and retailers. The problem that will be answered in this research is how to determine the location of UCCs, to allocate retailers to opened UCCs, to assign suppliers to opened UCCs, to control inventory in the three entities involved, and to determine the route of the vehicles from opened UCCs to retailers. This model has never been developed before. All the decisions will be simultaneously optimized. Characteristic of the demand is probabilistic following a normal distribution, and the number of product is single.
Directory of Open Access Journals (Sweden)
Elena Adomaitienė
2017-01-01
Full Text Available We suggest employing the first-order stable RC filters, based on a single capacitor, for control of unstable fixed points in an array of oscillators. A single capacitor is sufficient to stabilize an entire array, if the oscillators are coupled strongly enough. An array, composed of 24 to 30 mean-field coupled FitzHugh–Nagumo (FHN type asymmetric oscillators, is considered as a case study. The investigation has been performed using analytical, numerical, and experimental methods. The analytical study is based on the mean-field approach, characteristic equation for finding the eigenvalue spectrum, and the Routh–Hurwitz stability criteria using low-rank Hurwitz matrix to calculate the threshold value of the coupling coefficient. Experiments have been performed with a hardware electronic analog, imitating dynamical behavior of an array of the FHN oscillators.
Herencsár, Norbert; Vrba, Kamil; Koton, Jaroslav; Lahiri, Abhirup
2010-01-01
This article presents realisations of single-resistance-controlled-oscillators (SRCOs) using the recently proposed modern active building block (ABB), namely the generalised current follower transconductance amplifier (GCFTA) and unity-gain voltage-follower (UGVF). The SRCO is made using reduced number of components: one GCFTA and one UGVF as the ABBs, two resistors and two grounded capacitors. The circuit offers the advantage of non-interactive control of condition of oscillation and frequen...
An exactly solvable model of an oscillator with nonlinear coupling and zeros of Bessel functions
Dodonov, V. V.; Klimov, A. B.
1993-01-01
We consider an oscillator model with nonpolynomial interaction. The model admits exact solutions for two situations: for energy eigenvalues in terms of zeros of Bessel functions, that were considered as functions of the continuous index; and for the corresponding eigenstates in terms of Lommel polynomials.
About the functions of the Wigner distribution for the q-deformed harmonic oscillator model
International Nuclear Information System (INIS)
Atakishiev, N.M.; Nagiev, S.M.; Djafarov, E.I.; Imanov, R.M.
2005-01-01
Full text : A q-deformed model of the linear harmonic oscillator in the Wigner phase-space is studied. It was derived an explicit expression for the Wigner probability distribution function, as well as the Wigner distribution function of a thermodynamic equilibrium for this model
Fox, William
2012-01-01
The purpose of our modeling effort is to predict future outcomes. We assume the data collected are both accurate and relatively precise. For our oscillating data, we examined several mathematical modeling forms for predictions. We also examined both ignoring the oscillations as an important feature and including the oscillations as an important…
International Nuclear Information System (INIS)
Midgley, S. L. W.; Olsen, M. K.; Bradley, A. S.; Pfister, O.
2010-01-01
We examine the feasibility of generating continuous-variable multipartite entanglement in an intracavity concurrent downconversion scheme that has been proposed for the generation of cluster states by Menicucci et al. [Phys. Rev. Lett. 101, 130501 (2008)]. By calculating optimized versions of the van Loock-Furusawa correlations we demonstrate genuine quadripartite entanglement and investigate the degree of entanglement present. Above the oscillation threshold the basic cluster state geometry under consideration suffers from phase diffusion. We alleviate this problem by incorporating a small injected signal into our analysis. Finally, we investigate squeezed joint operators. While the squeezed joint operators approach zero in the undepleted regime, we find that this is not the case when we consider the full interaction Hamiltonian and the presence of a cavity. In fact, we find that the decay of these operators is minimal in a cavity, and even depletion alone inhibits cluster state formation.
Discrete series representations for sl(2|1), Meixner polynomials and oscillator models
International Nuclear Information System (INIS)
Jafarov, E I; Van der Jeugt, J
2012-01-01
We explore a model for a one-dimensional quantum oscillator based on the Lie superalgebra sl(2|1). For this purpose, a class of discrete series representations of sl(2|1) is constructed, each representation characterized by a real number β > 0. In this model, the position and momentum operators of the oscillator are odd elements of sl(2|1) and their expressions involve an arbitrary parameter γ. In each representation, the spectrum of the Hamiltonian is the same as that of a canonical oscillator. The spectrum of a position operator can be continuous or infinite discrete, depending on the value of γ. We determine the position wavefunctions both in the continuous and the discrete case and discuss their properties. In the discrete case, these wavefunctions are given in terms of Meixner polynomials. From the embedding osp(1|2) subset of sl(2|1), it can be seen why the case γ = 1 corresponds to a paraboson oscillator. Consequently, taking the values (β, γ) = (1/2, 1) in the sl(2|1) model yields a canonical oscillator. (paper)
López-Ruiz, F. F.; Guerrero, J.; Aldaya, V.; Cossío, F.
2012-08-01
Using a quantum version of the Arnold transformation of classical mechanics, all quantum dynamical systems whose classical equations of motion are non-homogeneous linear second-order ordinary differential equations (LSODE), including systems with friction linear in velocity such as the damped harmonic oscillator, can be related to the quantum free-particle dynamical system. This implies that symmetries and simple computations in the free particle can be exported to the LSODE-system. The quantum Arnold transformation is given explicitly for the damped harmonic oscillator, and an algebraic connection between the Caldirola-Kanai model for the damped harmonic oscillator and the Bateman system will be sketched out.
International Nuclear Information System (INIS)
López-Ruiz, F F; Guerrero, J; Aldaya, V; Cossío, F
2012-01-01
Using a quantum version of the Arnold transformation of classical mechanics, all quantum dynamical systems whose classical equations of motion are non-homogeneous linear second-order ordinary differential equations (LSODE), including systems with friction linear in velocity such as the damped harmonic oscillator, can be related to the quantum free-particle dynamical system. This implies that symmetries and simple computations in the free particle can be exported to the LSODE-system. The quantum Arnold transformation is given explicitly for the damped harmonic oscillator, and an algebraic connection between the Caldirola-Kanai model for the damped harmonic oscillator and the Bateman system will be sketched out.
Indian Academy of Sciences (India)
IMTECH),. Chandigarh. Praveen Kumar is pursuing his PhD in chemical dynamics at. Panjab University,. Chandigarh. Keywords. Chemical oscillations, autoca-. talYSis, Lotka-Volterra model, bistability, hysteresis, Briggs-. Rauscher reaction.
Time-dependent Hartree approximation and time-dependent harmonic oscillator model
International Nuclear Information System (INIS)
Blaizot, J.P.
1982-01-01
We present an analytically soluble model for studying nuclear collective motion within the framework of the time-dependent Hartree (TDH) approximation. The model reduces the TDH equations to the Schroedinger equation of a time-dependent harmonic oscillator. Using canonical transformations and coherent states we derive a few properties of the time-dependent harmonic oscillator which are relevant for applications. We analyse the role of the normal modes in the time evolution of a system governed by TDH equations. We show how these modes couple together due to the anharmonic terms generated by the non-linearity of the theory. (orig.)
Directory of Open Access Journals (Sweden)
Hyein Lim
2013-01-01
Full Text Available Spin-torque oscillator (STO is a promising new technology for the future RF oscillators, which is based on the spin-transfer torque (STT effect in magnetic multilayered nanostructure. It is expected to provide a larger tunability, smaller size, lower power consumption, and higher level of integration than the semiconductor-based oscillators. In our previous work, a circuit-level model of the giant magnetoresistance (GMR STO was proposed. In this paper, we present a physics-based circuit-level model of the magnetic tunnel junction (MTJ-based STO. MTJ-STO model includes the effect of perpendicular torque that has been ignored in the GMR-STO model. The variations of three major characteristics, generation frequency, mean oscillation power, and generation linewidth of an MTJ-STO with respect to the amount of perpendicular torque, are investigated, and the results are applied to our model. The operation of the model was verified by HSPICE simulation, and the results show an excellent agreement with the experimental data. The results also prove that a full circuit-level simulation with MJT-STO devices can be made with our proposed model.
Oscillating nonlinear acoustic shock waves
DEFF Research Database (Denmark)
Gaididei, Yuri; Rasmussen, Anders Rønne; Christiansen, Peter Leth
2016-01-01
We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show that at resona......We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show...... polynomial in the space and time variables, we find analytical approximations to the observed single shock waves in an infinitely long tube. Using perturbation theory for the driven acoustic system approximative analytical solutions for the off resonant case are determined....
Constraints on mirror models of dark matter from observable neutron-mirror neutron oscillation
Mohapatra, Rabindra N.; Nussinov, Shmuel
2018-01-01
The process of neutron-mirror neutron oscillation, motivated by symmetric mirror dark matter models, is governed by two parameters: n -n‧ mixing parameter δ and n -n‧ mass splitting Δ. For neutron mirror neutron oscillation to be observable, the splitting between their masses Δ must be small and current experiments lead to δ ≤ 2 ×10-27 GeV and Δ ≤10-24 GeV. We show that in mirror universe models where this process is observable, this small mass splitting constrains the way that one must implement asymmetric inflation to satisfy the limits of Big Bang Nucleosynthesis on the number of effective light degrees of freedom. In particular we find that if asymmetric inflation is implemented by inflaton decay to color or electroweak charged particles, the oscillation is unobservable. Also if one uses SM singlet fields for this purpose, they must be weakly coupled to the SM fields.
Synchronization of multi-phase oscillators: an Axelrod-inspired model
Kuperman, M. N.; Zanette, D. H.
2009-07-01
Inspired by Axelrod’s model of culture dissemination, we introduce and analyze a model for a population of coupled oscillators where different levels of synchronization can be assimilated to different degrees of cultural organization. The state of each oscillator is represented by a set of phases, and the interaction - which occurs between homologous phases - is weighted by a decreasing function of the distance between individual states. Both ordered arrays and random networks are considered. We find that the transition between synchronization and incoherent behaviour is mediated by a clustering regime with rich organizational structure, where any two oscillators can be synchronized in some of their phases, while their remain unsynchronized in the others.
National Aeronautics and Space Administration — The overall objective is to demonstrate the concept of Yb:YAG crystalline fiber MOPA laser and investigation the technical feasibility toward 50 mJ single frequency...
Stochastic mixed-mode oscillations in a three-species predator-prey model
Sadhu, Susmita; Kuehn, Christian
2018-03-01
The effect of demographic stochasticity, in the form of Gaussian white noise, in a predator-prey model with one fast and two slow variables is studied. We derive the stochastic differential equations (SDEs) from a discrete model. For suitable parameter values, the deterministic drift part of the model admits a folded node singularity and exhibits a singular Hopf bifurcation. We focus on the parameter regime near the Hopf bifurcation, where small amplitude oscillations exist as stable dynamics in the absence of noise. In this regime, the stochastic model admits noise-driven mixed-mode oscillations (MMOs), which capture the intermediate dynamics between two cycles of population outbreaks. We perform numerical simulations to calculate the distribution of the random number of small oscillations between successive spikes for varying noise intensities and distance to the Hopf bifurcation. We also study the effect of noise on a suitable Poincaré map. Finally, we prove that the stochastic model can be transformed into a normal form near the folded node, which can be linked to recent results on the interplay between deterministic and stochastic small amplitude oscillations. The normal form can also be used to study the parameter influence on the noise level near folded singularities.
International Nuclear Information System (INIS)
Chao, A.W.; Morton, P.L.; Rees, J.R.
1979-03-01
To describe the horizontal motion of the bunch, we need four coordinates, x and z are the horizontal and longitudinal displacements of the bunch center relative to the ideal trajectory; x' is the angle between the bunch's direction of motion and the ideal trajectory; and δ=ΔE/E is relative energy error of the bunch. Among the four variables, x and z are easy to measure by position monitors, while x' and δ are easy to change by electromagnetic devices. In combination, this suggests four possible types of feedback systems. In the following, we will present a complete analysis of the Type (x, δ) feedback system, using a matrix method. The analyses of other types are similar to that of Type (x, δ) and only the results are included. We then include some comparisons of these types of feedback schemes in terms of power consumptions and the effectiveness in damping the horizontal-betatron and synchrotron oscillations. We will also discuss some effects of position measuring errors on the performance of the feedback system. 2 refs., 3 tabs
International Nuclear Information System (INIS)
Li Bin; Ding Xin; Sheng Quan; Yin Su-Jia; Shi Chun-Peng; Li Xue; Wen Wu-Qi; Yao Jian-Quan; Yu Xuan-Yi
2012-01-01
We report an efficient continuous-wave (CW) tunable intra-cavity singly resonant optical parametric oscillator based on the multi-period periodically poled lithium niobate and using a laser diode (LD) end-pumped CW 1064 nm Nd:YVO 4 laser as the pump source. A highly efficiency CW operation is realized through a careful cavity design for mode matching and thermal stability. The signal tuning range is 1401–1500 nm obtained by varying the domain period. The maximum output power of 2.2 W at 1500 nm is obtained with a 17.1 W 808 nm LD power and the corresponding conversion efficiency is 12.9%. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Zhang, Qiang; Zhu, Boxing; Zhang, Deping; Gu, Jingwang; Zhao, Dongfeng; Chen, Yang
2017-12-01
We present a pulsed single longitudinal mode optical parametric oscillator that was recently constructed for sub-Doppler spectroscopic studies of transient species in a supersonic slit jet expansion environment. The system consists of a Littman-type grazing-incidence-grating resonator and a KTP crystal and is pumped at 532 nm. By spatially filtering the pump laser beam and employing an active cavity-length-stabilization scheme, a frequency down-conversion efficiency up to 18% and generation of Fourier-transform limited pulses with a typical pulse duration of ˜5.5 ns and a bandwidth less than 120 MHz have been achieved. In combination with a slit jet expansion, a sub-Doppler spectrum of SiC2 has been recorded at ˜498 nm, showing a spectral resolution of Δν/ν ≈ 6.2 × 10-7.
International Nuclear Information System (INIS)
Ţălu, Ştefan; Marković, Zoran; Stach, Sebastian; Todorović Marković, B.; Ţălu, Mihai
2014-01-01
This study presents a multifractal approach, obtained with atomic force microscopy analysis, to characterize the structural evolution of single wall carbon nanotube thin films upon exposure to optical parametric oscillator laser irradiation at wavelength of 430 nm. Microstructure and morphological changes of carbon nanotube films deposited on different substrates (mica and TGX grating) were recorded by atomic force microscope. A detailed methodology for surface multifractal characterization, which may be applied for atomic force microscopy data, was presented. Multifractal analysis of surface roughness revealed that carbon nanotube films surface has a multifractal geometry at various magnifications. The generalized dimension D q and the singularity spectrum f(α) provided quantitative values that characterize the local scale properties of carbon nanotube films surface morphology at nanometer scale. Multifractal analysis provides different yet complementary information to that offered by traditional surface statistical parameters.
Torque balance, Taylor's constraint and torsional oscillations in a numerical model of the geodynamo
Dumberry, Mathieu; Bloxham, Jeremy
2003-11-01
Theoretical considerations and observations suggest that, to a first approximation, the Earth's dynamo is in a quasi-Taylor state, where the axial Lorentz torque on cylindrical surfaces co-axial with the rotation axis vanishes, except for the part involved in torsional oscillations. The latter are rigid azimuthal accelerations of cylindrical surfaces which oscillate with typical periods of decades. We present a solution of a numerical model of the geodynamo in which rigid accelerations of cylinder surfaces are observed. The underlying dynamic state in the model is not a Taylor state because the Reynolds stresses and viscous torque remain large and provide an effective way to balance a large Lorentz torque. This is a consequence of the limited parameter regime which can be attained numerically. Nevertheless, departures in the torque equilibrium are primarily counterbalanced by rigid accelerations of cylindrical surfaces, which, in turn, excite rigid azimuthal oscillations of the surfaces. We show that the azimuthal motion is indeed quasi-rigid, though the torsional oscillations that are produced in the model probably differ from those in the Earth's core because of the large influence of the Reynolds stresses on their dynamics. We also show that the continual excitation of rigid cylindrical accelerations is produced by the advection of the non-axisymmetric structure of the fields by a mean differential rotation of the cylindrical surfaces which produces disconnections and reconnections and continual fluctuations in the Lorentz torque and Reynolds stresses. We propose that the torque balance in Earth's core may evolve in a similar chaotic fashion, except that the influence of the Reynolds stresses is probably weaker. If this is the case, the Lorentz torque on a cylindrical surface is continually fluctuating, even though its time-averaged value vanishes and satisfies Taylor's constraint. Rigid accelerations of cylindrical surfaces are continually excited by the
Extracting Models in Single Molecule Experiments
Presse, Steve
2013-03-01
Single molecule experiments can now monitor the journey of a protein from its assembly near a ribosome to its proteolytic demise. Ideally all single molecule data should be self-explanatory. However data originating from single molecule experiments is particularly challenging to interpret on account of fluctuations and noise at such small scales. Realistically, basic understanding comes from models carefully extracted from the noisy data. Statistical mechanics, and maximum entropy in particular, provide a powerful framework for accomplishing this task in a principled fashion. Here I will discuss our work in extracting conformational memory from single molecule force spectroscopy experiments on large biomolecules. One clear advantage of this method is that we let the data tend towards the correct model, we do not fit the data. I will show that the dynamical model of the single molecule dynamics which emerges from this analysis is often more textured and complex than could otherwise come from fitting the data to a pre-conceived model.
Simulations of the Madden-Julian oscillation in four pairs of coupled and uncoupled global models
Energy Technology Data Exchange (ETDEWEB)
Zhang, Chidong; Dong, Min [RSMAS, University of Miami, Miami, FL (United States); Gualdi, Silvio [National Institute of Geophysics and Volcanology, Bologna (Italy); Hendon, Harry H. [BMRC, Melbourne, VIC (Australia); Maloney, Eric D. [Oregon State University, Corvallis, OR (United States); Marshall, Andrew [Monash University, Melbourne, VIC (Australia); Sperber, Kenneth R. [PCMDI, Lawrence Livermore National Laboratory, Livermore, CA (United States); Wang, Wanqiu [CPC/NCEP/NOAA, Camp Springs, MD (United States)
2006-11-15
The status of the numerical reproduction of the Madden-Julian Oscillation (MJO) by current global models was assessed through diagnoses of four pairs of coupled and uncoupled simulations. Slow eastward propagation of the MJO, especially in low-level zonal wind, is realistic in all these simulations. However, the simulated MJO suffers from several common problems. The MJO signal in precipitation is generally too weak and often eroded by an unrealistic split of an equatorial maximum of precipitation into a double ITCZ structure over the western Pacific. The MJO signal in low-level zonal wind, on the other hand, is sometimes too strong over the eastern Pacific but too weak over the Indian Ocean. The observed phase relationship between precipitation and low-level zonal wind associated with the MJO in the western Pacific and their coherence in general are not reproduced by the models. The seasonal migration in latitude of MJO activity is missing in most simulations. Air-sea coupling generally strengthens the simulated eastward propagating signal, but its effects on the phase relationship and coherence between precipitation and low-level zonal wind, and on their geographic distributions, seasonal cycles, and interannual variability are inconsistent among the simulations. Such inconsistency cautions generalization of results from MJO simulations using a single model. In comparison to observations, biases in the simulated MJO appear to be related to biases in the background state of mean precipitation, low-level zonal wind, and boundary-layer moisture convergence. This study concludes that, while the realistic simulations of the eastward propagation of the MJO are encouraging, reproducing other fundamental features of the MJO by current global models remains an unmet challenge. (orig.)
The nuclear single particle model
International Nuclear Information System (INIS)
Mang, H.
1985-01-01
Twenty years ago in December 1963 one half of the Nobel prize in Physics was awarded to Maria Goeppert-Mayer and Johannes Daniel Jensen for their work on the nuclear shell model. They suggested independently that a strong spin-orbit force with the opposite sign of the one known from atomic physics should be added to the shell-model potential. This proved to be the crucial new idea, because then all the bits of and pieces of evidence that had accumulated over the years fell into place. The author begins with the basic assumption: In a nucleus nucleons move almost independently of each other in an average or shell-model potential. He then provides experimental evidence plausibility arguments and mathematical deductions
A generalized Jaynes-Cummings model: The relativistic parametric amplifier and a single trapped ion
Energy Technology Data Exchange (ETDEWEB)
Ojeda-Guillén, D., E-mail: dojedag@ipn.mx [Escuela Superior de Cómputo, Instituto Politécnico Nacional, Av. Juan de Dios Bátiz esq. Av. Miguel Othón de Mendizábal, Col. Lindavista, Delegación Gustavo A. Madero, C.P. 07738 Ciudad de México (Mexico); Mota, R. D. [Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Culhuacán, Instituto Politécnico Nacional, Av. Santa Ana No. 1000, Col. San Francisco Culhuacán, Delegación Coyoacán, C.P. 04430 Ciudad de México (Mexico); Granados, V. D. [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Ed. 9, Unidad Profesional Adolfo López Mateos, Delegación Gustavo A. Madero, C.P. 07738 Ciudad de México (Mexico)
2016-06-15
We introduce a generalization of the Jaynes-Cummings model and study some of its properties. We obtain the energy spectrum and eigenfunctions of this model by using the tilting transformation and the squeezed number states of the one-dimensional harmonic oscillator. As physical applications, we connect this new model to two important and novelty problems: the relativistic parametric amplifier and the quantum simulation of a single trapped ion.
Asymptotic solving method for sea-air coupled oscillator ENSO model
International Nuclear Information System (INIS)
Zhou Xian-Chun; Yao Jing-Sun; Mo Jia-Qi
2012-01-01
The ENSO is an interannual phenomenon involved in the tropical Pacific ocean-atmosphere interaction. In this article, we create an asymptotic solving method for the nonlinear system of the ENSO model. The asymptotic solution is obtained. And then we can furnish weather forecasts theoretically and other behaviors and rules for the atmosphere-ocean oscillator of the ENSO. (general)
Phase-locking regions in a forced model of slow insulin and glucose oscillations
DEFF Research Database (Denmark)
Sturis, Jeppe; Knudsen, Carsten; O'Meara, Niall M.
1995-01-01
We present a detailed numerical investigation of the phase-locking regions in a forced model of slow oscillations in human insulin secretion and blood glucose concentration. The bifurcation structures of period 2pi and 4pi tongues are mapped out and found to be qualitatively identical to those...
Phase-locking regions in a forced model of slow insulin and glucose oscillations
DEFF Research Database (Denmark)
Sturis, J.; Knudsen, C.; O'Meara, N.M.
1996-01-01
We present a detailed numerical investigation of the phase-locking regions in a forced model of slow oscillations in human insulin secretion and blood glucose concentration. The bifurcation structures of period 2pi and 4pi tongues are mapped out and found to be qualitatively identical to those...
(g-2)μ anomaly and neutrino oscillations within the left-right model
International Nuclear Information System (INIS)
Boyarkin, O.M.; Bakanova, T.I.
2003-12-01
The Higgs sector structure of the left right model is investigated. The coupling constants of the physical Higgs bosons are expressed in terms of the oscillation parameters of the heavy neutrinos. The electroweak corrections to the value of the anomalous magnetic moment of the muon coming from the Higgs bosons axe found. It is shown that in the LRM the motion of the light neutrino flux in matter is described within the hybrid three-neutrino scheme, namely, the neutrino oscillations and the non standard neutrino interactions, caused by the Higgs sector. These non standard contributions may considerably change the matter potential compared with the SM prediction. Therefore, the analysis of the (g-2)μ, anomaly and the oscillations of the light neutrinos in matter could be used to constrain the parameters of the heavy neutrinos. (author)
International Nuclear Information System (INIS)
Oguma, Ritsuo
1980-01-01
In the HBWR (Halden Boiling Water Reactor), there exists a resonant power oscillation with period about 0.04 Hz at power levels higher than about 9.5 MWt. While the resonant oscillation in not so large as to affect the normal reactor operation, it is significant, from the viewpoint of reactor diagnosis, to grasp its characteristics and find the cause. Noise analysis based on the autoregressive (AR) modeling technique has been made to reveal the driving source for this oscillation which led to the suggestion that it is attributed to the dynamic interference of heat exchange process between two parallel-connected steam transformers against the reactor. The present study demonstrates that the method used here is highly effective for tracing back to a noise source inducing the variation of quantities in a system, and also applicable to problems of reactor noise analysis and diagnosis. (author)
Non-Radial Oscillation Modes of Superfluid Neutron Stars Modeled with CompOSE
Directory of Open Access Journals (Sweden)
Prashanth Jaikumar
2018-03-01
Full Text Available We compute the principal non-radial oscillation mode frequencies of Neutron Stars described with a Skyrme-like Equation of State (EoS, taking into account the possibility of neutron and proton superfluidity. Using the CompOSE database and interpolation routines to obtain the needed thermodynamic quantities, we solve the fluid oscillation equations numerically in the background of a fully relativistic star, and identify imprints of the superfluid state. Though these modes cannot be observed with current technology, increased sensitivity of future Gravitational-Wave Observatories could allow us to observe these oscillations and potentially constrain or refine models of dense matter relevant to the interior of neutron stars.
Directory of Open Access Journals (Sweden)
Manish Gupta
2017-01-01
Full Text Available The manuscript presents a circuit that can act as a universal filter as well as a single resistence controlled oscillator by unpretentiously changing the switch positions. The circuit employs only two active devices and all grounded passive elements. The utilization of only grounded passive components makes this circuit a better choice for integrated circuit implementation. The current mode biquadratic filter offers all the five basic responses along with independent tunability of its quality factor. The dual-mode quadrature sinusoidal oscillator offers explicit current outputs along with voltage outputs. The circuit also offers a simple and uncoupled condition of oscillation and frequency of oscillation. The typical analysis such as non-ideal, sensitivity and parasitic analysis along with the regular simulation results as well as experimental results are exposed here, to strengthen the design idea.
Williams, E M; Viale, J P; Hamilton, R M; McPeak, H; Sutton, L; Hahn, C E
2000-09-01
Tidal ventilation causes within-breath oscillations in alveolar oxygen concentration, with an amplitude which depends on the prevailing ventilator settings. These alveolar oxygen oscillations are transmitted to arterial oxygen tension, PaO2, but with an amplitude which now depends upon the magnitude of venous admixture or true shunt, QS/QT. We investigated the effect of positive end-expiratory pressure (PEEP) on the amplitude of the PaO2 oscillations, using an atelectasis model of shunt. Blood PaO2 was measured on-line with an intravascular PaO2 sensor, which had a 2-4 s response time (10-90%). The magnitude of the time-varying PaO2 oscillation was titrated against applied PEEP while tidal volume, respiratory rate and inspired oxygen concentration were kept constant. The amplitude of the PaO2 oscillation, delta PaO2, and the mean PaO2 value varied with the level of PEEP applied. At zero PEEP, both the amplitude and the mean were at their lowest values. As PEEP was increased to 1.5 kPa, both delta PaO2 and the mean PaO2 increased to a maximum. Thereafter, the mean PaO2 increased but delta PaO2 decreased. Clear oscillations of PaO2 were seen even at the lowest mean PaO2, 9.5 kPa. Conventional respiratory models of venous admixture predict that these PaO2 oscillations will be reduced by the steep part of the oxyhaemoglobin dissociation curve if a constant pulmonary shunt exists throughout the whole respiratory cycle. The facts that the PaO2 oscillations occurred at all mean PaO2 values and that their amplitude increased with increasing PEEP suggest that QS/QT, in the atelectasis model, varies between end-expiration and end-inspiration, having a much lower value during inspiration than during expiration.
Directory of Open Access Journals (Sweden)
Tope eLanre-Amos
2010-09-01
Full Text Available Brain oscillations are critical for cognitive processes, and their alterations in schizophrenia have been proposed to contribute to cognitive impairments. Network oscillations rely upon GABAergic interneurons, which also show characteristic changes in schizophrenia. The aim of this study was to examine the capability of hippocampal networks to generate oscillations in a rat model previously shown to reproduce the stereotypic structural alterations of the hippocampal interneuron circuit seen in schizophrenic patients. This model uses injection of GABA-A receptor antagonist picrotoxin into the basolateral amygdala which causes cell-type specific disruption of interneuron signaling in the hippocampus. We found that after such treatment, hippocampal theta rhythm was still present during REM sleep, locomotion, and exploration of novel environment and could be elicited under urethane anesthesia. Subtle changes in theta and gamma parameters were observed in both preparations; specifically in the stimulus intensity—theta frequency relationship under urethane and in divergent reactions of oscillations at the two major theta dipoles in freely moving rats. Thus, theta power in the CA1 region was generally enhanced as compared with deep theta dipole which decreased or did not change. The results indicate that pathologic reorganization of interneurons that follows the over-activation of the amygdala-hippocampal pathway, as shown for this model of schizophrenia, does not lead to destruction of the oscillatory circuit but changes the normal balance of rhythmic activity in its various compartments.
Energy Technology Data Exchange (ETDEWEB)
Pendyala, Rajashekhar; Jayanti, Sreenivas; Balakrishnan, A.R. [Indian Institute of Technology Madras, Department of Chemical Engineering, Chennai, Tamil Nadu (India)
2008-05-15
The effect of oscillations on the heat transfer in a vertical tube has been studied experimentally. A vertical tube was mounted on a plate and the whole plate was subjected to oscillations in the vertical plane using a mechanical oscillator to provide low frequency oscillations. A section of the tube in the middle is subjected to a constant heat flux. The effect of the oscillations on the heat transfer coefficient has been examined. It was found that the heat transfer coefficient increased with oscillations in the laminar regime. In turbulent flow regime (Re > 2,100) it is found that the effect of oscillations did not show any change. A correlation has been developed for enhancement of the local Nusselt number in terms of the effective acceleration and Reynolds number. Using this, an expression has been proposed to calculate the mean Nusselt number as a function of the tube length. (orig.)
Zhu, Yenan; Hsieh, Yee-Hsee; Dhingra, Rishi R.; Dick, Thomas E.; Jacono, Frank J.; Galán, Roberto F.
2013-02-01
Interactions between oscillators can be investigated with standard tools of time series analysis. However, these methods are insensitive to the directionality of the coupling, i.e., the asymmetry of the interactions. An elegant alternative was proposed by Rosenblum and collaborators [M. G. Rosenblum, L. Cimponeriu, A. Bezerianos, A. Patzak, and R. Mrowka, Phys. Rev. EPLEEE81063-651X10.1103/PhysRevE.65.041909 65, 041909 (2002); M. G. Rosenblum and A. S. Pikovsky, Phys. Rev. EPLEEE81063-651X10.1103/PhysRevE.64.045202 64, 045202 (2001)] which consists in fitting the empirical phases to a generic model of two weakly coupled phase oscillators. This allows one to obtain the interaction functions defining the coupling and its directionality. A limitation of this approach is that a solution always exists in the least-squares sense, even in the absence of coupling. To preclude spurious results, we propose a three-step protocol: (1) Determine if a statistical dependency exists in the data by evaluating the mutual information of the phases; (2) if so, compute the interaction functions of the oscillators; and (3) validate the empirical oscillator model by comparing the joint probability of the phases obtained from simulating the model with that of the empirical phases. We apply this protocol to a model of two coupled Stuart-Landau oscillators and show that it reliably detects genuine coupling. We also apply this protocol to investigate cardiorespiratory coupling in anesthetized rats. We observe reciprocal coupling between respiration and heartbeat and that the influence of respiration on the heartbeat is generally much stronger than vice versa. In addition, we find that the vagus nerve mediates coupling in both directions.
Directory of Open Access Journals (Sweden)
Lance M. Optican
2017-08-01
Full Text Available Eye and body oscillations are shared features of several neurological diseases, yet their pathophysiology remains unclear. Recently, we published a report on two tennis players with a novel presentation of eye and body oscillations following self-administration of performance-enhancing substances. Opsoclonus/flutter and limb tremor were diagnosed in both patients. Common causes of opsoclonus/flutter were excluded. High-resolution eye movement recordings from one patient showed novel spindle-shaped, asymmetric saccadic oscillations (at ~3.6 Hz and ocular tremor (~40–60 Hz. Based on these findings, we proposed that the oscillations are the result of increased GABAA receptor sensitivity in a circuit involving the cerebellum (vermis and fastigial nuclei, the inferior olives, and the brainstem saccade premotor neurons (excitatory and inhibitory burst neurons, and omnipause neurons. We present a mathematical model of the saccadic system, showing that the proposed dysfunction in the network can reproduce the types of saccadic oscillations seen in these patients.
Cao, Pengxing; Tan, Xiahui; Donovan, Graham; Sanderson, Michael J; Sneyd, James
2014-08-01
The inositol trisphosphate receptor ([Formula: see text]) is one of the most important cellular components responsible for oscillations in the cytoplasmic calcium concentration. Over the past decade, two major questions about the [Formula: see text] have arisen. Firstly, how best should the [Formula: see text] be modeled? In other words, what fundamental properties of the [Formula: see text] allow it to perform its function, and what are their quantitative properties? Secondly, although calcium oscillations are caused by the stochastic opening and closing of small numbers of [Formula: see text], is it possible for a deterministic model to be a reliable predictor of calcium behavior? Here, we answer these two questions, using airway smooth muscle cells (ASMC) as a specific example. Firstly, we show that periodic calcium waves in ASMC, as well as the statistics of calcium puffs in other cell types, can be quantitatively reproduced by a two-state model of the [Formula: see text], and thus the behavior of the [Formula: see text] is essentially determined by its modal structure. The structure within each mode is irrelevant for function. Secondly, we show that, although calcium waves in ASMC are generated by a stochastic mechanism, [Formula: see text] stochasticity is not essential for a qualitative prediction of how oscillation frequency depends on model parameters, and thus deterministic [Formula: see text] models demonstrate the same level of predictive capability as do stochastic models. We conclude that, firstly, calcium dynamics can be accurately modeled using simplified [Formula: see text] models, and, secondly, to obtain qualitative predictions of how oscillation frequency depends on parameters it is sufficient to use a deterministic model.
Bisimulation for Single-Agent Plausibility Models
DEFF Research Database (Denmark)
Andersen, Mikkel Birkegaard; Bolander, Thomas; van Ditmarsch, H.
2013-01-01
define a proper notion of bisimulation, and prove that bisimulation corresponds to logical equivalence on image-finite models. We relate our results to other epistemic notions, such as safe belief and degrees of belief. Our results imply that there are only finitely many non-bisimilar single......-agent epistemic plausibility models on a finite set of propositions. This gives decidability for single-agent epistemic plausibility planning....
Phase models and clustering in networks of oscillators with delayed coupling
Campbell, Sue Ann; Wang, Zhen
2018-01-01
We consider a general model for a network of oscillators with time delayed coupling where the coupling matrix is circulant. We use the theory of weakly coupled oscillators to reduce the system of delay differential equations to a phase model where the time delay enters as a phase shift. We use the phase model to determine model independent existence and stability results for symmetric cluster solutions. Our results extend previous work to systems with time delay and a more general coupling matrix. We show that the presence of the time delay can lead to the coexistence of multiple stable clustering solutions. We apply our analytical results to a network of Morris Lecar neurons and compare these results with numerical continuation and simulation studies.
Nayfeh, Ali Hasan
1995-01-01
Nonlinear Oscillations is a self-contained and thorough treatment of the vigorous research that has occurred in nonlinear mechanics since 1970. The book begins with fundamental concepts and techniques of analysis and progresses through recent developments and provides an overview that abstracts and introduces main nonlinear phenomena. It treats systems having a single degree of freedom, introducing basic concepts and analytical methods, and extends concepts and methods to systems having degrees of freedom. Most of this material cannot be found in any other text. Nonlinear Oscillations uses sim
International Nuclear Information System (INIS)
Nana Nbendjo, B.R.; Salissou, Y.; Woafo, P.
2005-01-01
In this paper, the control of escape and Melnikov chaos of an harmonically excited particle from a catastrophic (unbounded) single well phi 4 potential is considered. In the linear limit, the range of the control gain parameter leading to good control is obtained and the effect of time delays on the control force is taken into account. The approximate critical external forcing amplitudes for catastrophe and chaos are obtained by using the energy and Melnikov methods. The control efficiency is found by analysing the behaviour of the external critical forcing amplitude of the controlled system as compared to that of the uncontrolled system
Wu, Meng-Ru; Qian, Yong-Zhong; Martínez-Pinedo, Gabriel; Fischer, Tobias; Huther, Lutz
2015-03-01
In this paper, we explore the effects of neutrino flavor oscillations on supernova nucleosynthesis and on the neutrino signals. Our study is based on detailed information about the neutrino spectra and their time evolution from a spherically symmetric supernova model for an 18 M⊙ progenitor. We find that collective neutrino oscillations are not only sensitive to the detailed neutrino energy and angular distributions at emission, but also to the time evolution of both the neutrino spectra and the electron density profile. We apply the results of neutrino oscillations to study the impact on supernova nucleosynthesis and on the neutrino signals from a Galactic supernova. We show that in our supernova model, collective neutrino oscillations enhance the production of rare isotopes 138La and 180Ta but have little impact on the ν p -process nucleosynthesis. In addition, the adiabatic Mikheyev-Smirnov-Wolfenstein flavor transformation, which occurs in the C /O and He shells of the supernova, may affect the production of light nuclei such as 7Li and 11B. For the neutrino signals, we calculate the rate of neutrino events in the Super-Kamiokande detector and in a hypothetical liquid argon detector. Our results suggest the possibility of using the time profiles of the events in both detectors, along with the spectral information of the detected neutrinos, to infer the neutrino mass hierarchy.
Directory of Open Access Journals (Sweden)
Yi Sui
2017-05-01
Full Text Available A single-phase axially-magnetized permanent-magnet (PM oscillating machine which can be integrated with a free-piston Stirling engine to generate electric power, is investigated for miniature aerospace power sources. Machine structure, operating principle and detent force characteristic are elaborately studied. With the sinusoidal speed characteristic of the mover considered, the proposed machine is designed by 2D finite-element analysis (FEA, and some main structural parameters such as air gap diameter, dimensions of PMs, pole pitches of both stator and mover, and the pole-pitch combinations, etc., are optimized to improve both the power density and force capability. Compared with the three-phase PM linear machines, the proposed single-phase machine features less PM use, simple control and low controller cost. The power density of the proposed machine is higher than that of the three-phase radially-magnetized PM linear machine, but lower than the three-phase axially-magnetized PM linear machine.
International Nuclear Information System (INIS)
Carcelen, V.; Rodriguez-Fernandez, J.; Dieguez, E.; Hidalgo, P.
2010-01-01
The II-VI compound semiconductor cadmium zinc telluride (CZT) is very useful for room temperature radiation detection applications. In the present research, we have successfully grown Bi doped CZT single crystals with two different zinc concentrations (8 and 14 at. %) by the Bridgman oscillation method, in which one experiment has been carried out with a platinum (Pt) tube as the ampoule support. Pt also acts as a cold finger and reduces the growth velocity and enhances crystalline perfection. The grown single crystals have been studied with different analysis methods. The stoichiometry was confirmed by energy dispersive by x-ray and inductively coupled plasma mass spectroscopy analyses and it was found there is no incorporation of impurities in the grown crystal. The presence of Cd and Te vacancies was determined by cathodoluminescence studies. Electrical properties were assessed by I-V analysis and indicated higher resistive value (8.53x10 8 Ω cm) for the crystal grown with higher zinc concentration (with Cd excess) compare to the other (3.71x10 5 Ω cm).
Sui, Yi; Zheng, Ping; Cheng, Luming; Wang, Weinan; Liu, Jiaqi
2017-05-01
A single-phase axially-magnetized permanent-magnet (PM) oscillating machine which can be integrated with a free-piston Stirling engine to generate electric power, is investigated for miniature aerospace power sources. Machine structure, operating principle and detent force characteristic are elaborately studied. With the sinusoidal speed characteristic of the mover considered, the proposed machine is designed by 2D finite-element analysis (FEA), and some main structural parameters such as air gap diameter, dimensions of PMs, pole pitches of both stator and mover, and the pole-pitch combinations, etc., are optimized to improve both the power density and force capability. Compared with the three-phase PM linear machines, the proposed single-phase machine features less PM use, simple control and low controller cost. The power density of the proposed machine is higher than that of the three-phase radially-magnetized PM linear machine, but lower than the three-phase axially-magnetized PM linear machine.
Directory of Open Access Journals (Sweden)
Nikola Jakšić
2014-01-01
Full Text Available The paper presents phase portraits of the autonomous Duffing single-degree-of-freedom system with Coulomb dry friction in its δ-γ-ε parameter space. The considered nonlinearities of the cubic stiffness (ε and Coulomb dry friction (γ are widely used throughout the literature. It has been shown that there can be more than one sticking region in the phase plane. It has also been shown that an equilibrium point occurs at the critical combinations of values of the parameters γ and ε which gives rise to zero eigenvalue of the linearised system. The unstable limit cycle may appear in the case of negative viscous damping (δ; δ<0.
Non-adiabatic pumping in an oscillating-piston model
Chuchem, Maya; Dittrich, Thomas; Cohen, Doron
2012-05-01
We consider the prototypical "piston pump" operating on a ring, where a circulating current is induced by means of an AC driving. This can be regarded as a generalized Fermi-Ulam model, incorporating a finite-height moving wall (piston) and non-trivial topology (ring). The amount of particles transported per cycle is determined by a layered structure of phase space. Each layer is characterized by a different drift velocity. We discuss the differences compared with the adiabatic and Boltzmann pictures, and highlight the significance of the "diabatic" contribution that might lead to a counter-stirring effect.
Computer Modelling of Functional Aspects of Noise in Endogenously Oscillating Neurons
Huber, M. T.; Dewald, M.; Voigt, K.; Braun, H. A.; Moss, F.
1998-03-01
Membrane potential oscillations are a widespread feature of neuronal activity. When such oscillations operate close to the spike-triggering threshold, noise can become an essential property of spike-generation. According to that, we developed a minimal Hodgkin-Huxley-type computer model which includes a noise term. This model accounts for experimental data from quite different cells ranging from mammalian cortical neurons to fish electroreceptors. With slight modifications of the parameters, the model's behavior can be tuned to bursting activity, which additionally allows it to mimick temperature encoding in peripheral cold receptors including transitions to apparently chaotic dynamics as indicated by methods for the detection of unstable periodic orbits. Under all conditions, cooperative effects between noise and nonlinear dynamics can be shown which, beyond stochastic resonance, might be of functional significance for stimulus encoding and neuromodulation.
A new mammalian circadian oscillator model including the cAMP module
International Nuclear Information System (INIS)
Jun-Wei, Wang; Tian-Shou, Zhou
2009-01-01
In this paper, we develop a new mathematical model for the mammalian circadian clock, which incorporates both transcriptional/translational feedback loops (TTFLs) and a cAMP-mediated feedback loop. The model shows that TTFLs and cAMP signalling cooperatively drive the circadian rhythms. It reproduces typical experimental observations with qualitative similarities, e.g. circadian oscillations in constant darkness and entrainment to light–dark cycles. In addition, it can explain the phenotypes of cAMP-mutant and Rev-erbα −/− -mutant mice, and help us make an experimentally-testable prediction: oscillations may be rescued when arrhythmic mice with constitutively low concentrations of cAMP are crossed with Rev-erbα −/− mutant mice. The model enhances our understanding of the mammalian circadian clockwork from the viewpoint of the entire cell. (cross-disciplinary physics and related areas of science and technology)
Oscillations in a Growth Model with Capital, Technology and Environment with Exogenous Shocks
Directory of Open Access Journals (Sweden)
Wei-Bin Zhang
2015-07-01
Full Text Available This paper generalizes the dynamic growth model with wealth accumulation, technological change and environmental change by Zhang (2012 by making all the parameters as time-dependent parameters. The model treats physical capital accumulation, knowledge creation and utilization, and environmental change as endogenous variables. It synthesizes the basic ideas of the neoclassical growth theory, Arrow’s learning-by-doing model and the traditional dynamic models of environmental change within a comprehensive framework. The behavior of the household is described with an alternative approach to household behavior. We simulated the model to demonstrate existence of equilibrium points, motion of the dynamic system, and oscillations due to different exogenous shocks.
Separation control with fluidic oscillators in water
Schmidt, H.-J.; Woszidlo, R.; Nayeri, C. N.; Paschereit, C. O.
2017-08-01
The present study assesses the applicability of fluidic oscillators for separation control in water. The first part of this work evaluates the properties of the fluidic oscillators including frequency, cavitation effects, and exerted thrust. Derived from the governing internal dynamics, the oscillation frequency is found to scale directly with the jet's exit velocity and the size of the fluidic oscillator independent of the working fluid. Frequency data from various experiments collapse onto a single curve. The occurrence of cavitation is examined by visual inspection and hydrophone measurements. The oscillation frequency is not affected by cavitation because it does not occur inside the oscillators. The spectral information obtained with the hydrophone provide a reliable indicator for the onset of cavitation at the exit. The performance of the fluidic oscillators for separation control on a bluff body does not seem to be affected by the presence of cavitation. The thrust exerted by an array of fluidic oscillators with water as the working fluid is measured to be even larger than theoretically estimated values. The second part of the presented work compares the performance of fluidic oscillators for separation control in water with previous results in air. The array of fluidic oscillators is installed into the rear end of a bluff body model. The drag improvements based on force balance measurements agree well with previous wind tunnel experiments on the same model. The flow field is examined by pressure measurements and with particle image velocimetry. Similar performance and flow field characteristics are observed in both water and air.
Jaynes-Cummings model and the deformed-oscillator algebra
International Nuclear Information System (INIS)
Crnugelj, J.; Martinis, M.; Mikuta-Martinis, V.
1994-01-01
We study the time evolution of the deformed Jaynes-Cummings model (DJCM). It is shown that the standard JCM and its recent non-linear generalizations involving the intensity-dependent coupling and/or the multiphoton coupling are only particular cases of the DJCM. The time evolution of the mean phonon number and the population inversion are evaluated. A special case of the q-deformed JCM is analyzed explicitly. The long time quasi-periodic revival effects of the q-deformed JCM are observed for q∼1 and an initially large mean photon number. For other values of the deformation parameter q we observe chaotic-like behaviour of the population inversion. Photons are assumed to be initially in the deformed coherent state. ((orig.))
UNDERSTANDING SOLAR TORSIONAL OSCILLATIONS FROM GLOBAL DYNAMO MODELS
International Nuclear Information System (INIS)
Guerrero, G.; Smolarkiewicz, P. K.; Pino, E. M. de Gouveia Dal; Kosovichev, A. G.; Mansour, N. N.
2016-01-01
The phenomenon of solar “torsional oscillations” (TO) represents migratory zonal flows associated with the solar cycle. These flows are observed on the solar surface and, according to helioseismology, extend through the convection zone. We study the origin of the TO using results from a global MHD simulation of the solar interior that reproduces several of the observed characteristics of the mean-flows and magnetic fields. Our results indicate that the magnetic tension (MT) in the tachocline region is a key factor for the periodic changes in the angular momentum transport that causes the TO. The torque induced by the MT at the base of the convection zone is positive at the poles and negative at the equator. A rising MT torque at higher latitudes causes the poles to speed up, whereas a declining negative MT torque at the lower latitudes causes the equator to slow-down. These changes in the zonal flows propagate through the convection zone up to the surface. Additionally, our results suggest that it is the magnetic field at the tachocline that modulates the amplitude of the surface meridional flow rather than the opposite as assumed by flux-transport dynamo models of the solar cycle.
WINKLER'S SINGLE-PARAMETER SUBGRADE MODEL FROM ...
African Journals Online (AJOL)
Preferred Customer
Page 1 ... corresponding single-parameter Winkler model presented in this work. Keywords: Heterogeneous subgrade, Reissner's simplified continuum, Shear interaction, Simplified continuum, Winkler ... model in practical applications and its long time familiarity among practical engineers, its usage has endured to this date ...
A Physical Model of Pulsars as Gravitational Shielding and Oscillating Neutron Stars
Directory of Open Access Journals (Sweden)
Zhang T. X.
2015-04-01
Full Text Available Pulsars are thought to be fast rotating neutron stars, synchronously emitting periodic Dirac-delta-shape radio-frequency pulses and Lorentzian-shape oscillating X-rays. The acceleration of charged particles along the magnetic field lines of neutron stars above the magnetic poles that deviate from the rotating axis initiates coherent beams of ra- dio emissions, which are viewed as pulses of radiation whenever the magnetic poles sweep the viewers. However, the conventional lighthouse model of pulsars is only con- ceptual. The mechanism through which particles are accelerated to produce coherent beams is still not fully understood. The process for periodically oscillating X-rays to emit from hot spots at the inner edge of accretion disks remains a mystery. In addition, a lack of reflecting X-rays of the pulsar by the Crab Nebula in the OFF phase does not support the lighthouse model as expected. In this study, we develop a physical model of pulsars to quantitatively interpret the emission characteristics of pulsars, in accor- dance with the author’s well-developed five-dimensional fully covariant Kaluza-Klein gravitational shielding theory and the physics of thermal and accelerating charged par- ticle radiation. The results obtained from this study indicate that, with the significant gravitational shielding by scalar field, a neutron star nonlinearly oscillates and produces synchronous periodically Dirac-delta-shape radio-frequency pulses (emitted by the os- cillating or accelerating charged particles as well as periodically Lorentzian-shape os- cillating X-rays (as the thermal radiation of neutron stars whose temperature varies due to the oscillation. This physical model of pulsars broadens our understanding of neu- tron stars and develops an innovative mechanism to model the emissions of pulsars.
Kori, Hiroshi; Yamaguchi, Yoshiaki; Okamura, Hitoshi
2017-04-01
The endogenous circadian clock drives oscillations that are completely synchronized with the environmental day-night rhythms with a period of approximately 24 hours. Temporal misalignment between one’s internal circadian clock and the external solar time often occurs in shift workers and long-distance travelers; such misalignments are accompanied by sleep disturbances and gastrointestinal distress. Repeated exposure to jet lag and rotating shift work increases the risk of lifestyle-related diseases, such as cardiovascular complaints and metabolic insufficiencies. However, the mechanism behind the disruption of one’s internal clock is not well understood. In this paper, we therefore present a new theoretical concept called “jet lag separatrix” to understand circadian clock disruption and slow recovery from jet lag based on the mathematical model describing the hierarchical structure of the circadian clock. To demonstrate the utility of our theoretical study, we applied it to predict that re-entrainment via a two-step jet lag in which a four-hour shift of the light-dark cycle is given in the span of two successive days requires fewer days than when given as a single eight-hour shift. We experimentally verified the feasibility of our theory in C57BL/6 strain mice, with results indicating that this pre-exposure of jet lag is indeed beneficial.
International Nuclear Information System (INIS)
Basnarkov, Lasko; Urumov, Viktor
2009-01-01
We consider an analytically solvable version of the Winfree model of synchronization of phase oscillators (proposed by Ariaratnam and Strogatz 2001 Phys. Rev. Lett. 86 4278). It is obtained that the transition from incoherence to a partial death state is characterized by third-order or higher phase transitions according to the Ehrenfest classification. The order of the transition depends on the shape of the distribution function for natural frequencies of oscillators in the vicinity of their lowest frequency. The corresponding critical exponents are found analytically and verified with numerical simulations of equations of motion. We also consider the generalized Winfree model with the interaction strength proportional to a power of the Kuramoto order parameter and find the domain where the critical exponent remains unchanged by this modification
Mogilevich, L. I.; Popov, V. S.; Popova, A. A.; Christoforova, A. V.
2018-01-01
The forced oscillations of the elastic fixed stamp and the plate, resting on Pasternak foundation are studied. The oscillations are caused by pressure pulsation in liquid layer between the stamp and the plate. Pasternak model is chosen as an elastic foundation. The laws of the stamp movement, the plate deflection and pressure in the liquid are discovered on the basis of hydroelasticity problem analytical solution. The functions of amplitude deflection distribution and liquid pressure along the plate are constructed, as well as the stamp amplitude-frequency characteristic. The obtained mathematical model allows to investigate the dynamics of hydroelastic interaction of the stamp with the plate, resting on elastic foundation, to define resonance frequencies of the plate and the stamp and corresponding deflections amplitudes, as well as liquid presser amplitudes.
Hidden Attractors in a Model of a Bubble Contrast Agent Oscillating Near an Elastic Wall
Garashchuk, Ivan; Sinelshchikov, Dmitry; Kudryashov, Nikolay
2018-02-01
A model describing the dynamics of a spherical gas bubble in a compressible viscous liquid is studied. The bubble is oscillating close to an elastic wall of finite thickness under the influence of an external pressure field which simulates a contrast agent oscillating close to a blood vessel wall. Here we investigate numerically the coexistence of chaotic and periodic attractors in this model. One of the tools applied for seeking coexisting attractors is the perpetual points method. This method can be helpful for localizing coexisting attractors, occurring in various physically realistic ranges of variation of the control parameters. We provide some examples of coexisting attractors to demonstrate the importance of the multistability problem for the applications.
Korman, M. S.; Duong, D. V.; Kalsbeck, A. E.
2015-10-01
significant curvature when the soil particle velocity is relatively higher. An oscillator with hysteresis modeled by a distribution of parallel spring elements each with a different threshold slip condition seems to describe fairly linear backbone curve behavior [W. D. Iwan, Transactions of the ASME, J. of Applied Mech., 33,(1966), 893-900], while a single bilinear hysteresis element describes the backbone curvature results in the experiments reported here [T. K. Caughey, Transactions of the ASME, J. of Applied Mech., 27, (1960), 640-643]. When "off target" resonances have a different backbone curvature than "on the mine" backbone curves, then false alarms may be eliminated due to resonances from the natural soil layering. See [R. A. Guyer, J. TenCate, and P. Johnson, "Hysteresis and the Dynamic Elasticity of Consolidated Granular Materials," Phys. Rev. Lett., 82, 16 (1999), 3280-3283] for recent models of nonlinear mesoscopic behavior.
Large time asymptotics of solutions to the anharmonic oscillator model from nonlinear optics
Jochmann, Frank
2005-01-01
The anharmonic oscillator model describing the propagation of electromagnetic waves in an exterior domain containing a nonlinear dielectric medium is investigated. The system under consideration consists of a generally nonlinear second order differential equation for the dielectrical polarization coupled with Maxwell's equations for the electromagnetic field. Local decay of the electromagnetic field for t to infinity in the charge free case is shown for a large class of potentials. (This pape...
Noise-Induced Transition in a Voltage-Controlled Oscillator Neuron Model
International Nuclear Information System (INIS)
Xie Huizhang; Liu Xuemei; Li Zhibing; Ai Baoquan; Liu Lianggang
2008-01-01
In the presence of Gaussian white noise, we study the properties of voltage-controlled oscillator neuron model and discuss the effects of the additive and multiplicative noise. It is found that the additive noise can accelerate and counterwork the firing of neuron, which depends on the value of central frequency of neuron itself, while multiplicative noise can induce the continuous change or mutation of membrane potential
Directory of Open Access Journals (Sweden)
Sylvain Druart
2014-01-01
Full Text Available We present a methodology and a circuit to extract liquid resistance and capacitance simultaneously from the same output signal using interdigitated sensing electrodes. The principle consists in the generation of a current square wave and its application to the sensor to create a triangular output voltage which contains both the conductivity and permittivity parameters in a single periodic segment. This concept extends the Triangular Waveform Voltage (TWV signal generation technique and is implemented by a system which consists in a closed-loop current-controlled oscillator and only requires DC power to operate. The system interface is portable and only a small number of electrical components are used to generate the expected signal. Conductivities of saline NaCl and KCl solutions, being first calibrated by commercial equipment, are characterized by a system prototype. The results show excellent linearity and prove the repeatability of the measurements. Experiments on water-glycerol mixtures validate the proposed sensing approach to measure the permittivity and the conductivity simultaneously. We discussed and identified the sources of measurement errors as circuit parasitic capacitances, switching clock feedthrough, charge injection, bandwidth, and control-current quality.
Development of a model to predict flow oscillations in low-flow sodium boiling
International Nuclear Information System (INIS)
Levin, A.E.; Griffith, P.
1980-04-01
Tests performed in a small scale water loop showed that voiding oscillations, similar to those observed in sodium, were present in water, as well. An analytical model, appropriate for either sodium or water, was developed and used to describe the water flow behavior. The experimental results indicate that water can be successfully employed as a sodium simulant, and further, that the condensation heat transfer coefficient varies significantly during the growth and collapse of vapor slugs during oscillations. It is this variation, combined with the temperature profile of the unheated zone above the heat source, which determines the oscillatory behavior of the system. The analytical program has produced a model which qualitatively does a good job in predicting the flow behavior in the wake experiment. The amplitude discrepancies are attributable to experimental uncertainties and model inadequacies. Several parameters (heat transfer coefficient, unheated zone temperature profile, mixing between hot and cold fluids during oscillations) are set by the user. Criteria for the comparison of water and sodium experiments have been developed
Partial synchronization in networks of non-linearly coupled oscillators: The Deserter Hubs Model
Energy Technology Data Exchange (ETDEWEB)
Freitas, Celso, E-mail: cbnfreitas@gmail.com; Macau, Elbert, E-mail: elbert.macau@inpe.br [Associate Laboratory for Computing and Applied Mathematics - LAC, Brazilian National Institute for Space Research - INPE (Brazil); Pikovsky, Arkady, E-mail: pikovsky@uni-potsdam.de [Department of Physics and Astronomy, University of Potsdam, Germany and Department of Control Theory, Nizhni Novgorod State University, Gagarin Av. 23, 606950, Nizhni Novgorod (Russian Federation)
2015-04-15
We study the Deserter Hubs Model: a Kuramoto-like model of coupled identical phase oscillators on a network, where attractive and repulsive couplings are balanced dynamically due to nonlinearity of interactions. Under weak force, an oscillator tends to follow the phase of its neighbors, but if an oscillator is compelled to follow its peers by a sufficient large number of cohesive neighbors, then it actually starts to act in the opposite manner, i.e., in anti-phase with the majority. Analytic results yield that if the repulsion parameter is small enough in comparison with the degree of the maximum hub, then the full synchronization state is locally stable. Numerical experiments are performed to explore the model beyond this threshold, where the overall cohesion is lost. We report in detail partially synchronous dynamical regimes, like stationary phase-locking, multistability, periodic and chaotic states. Via statistical analysis of different network organizations like tree, scale-free, and random ones, we found a measure allowing one to predict relative abundance of partially synchronous stationary states in comparison to time-dependent ones.
Drug perfusion enhancement in tissue model by steady streaming induced by oscillating microbubbles.
Oh, Jin Sun; Kwon, Yong Seok; Lee, Kyung Ho; Jeong, Woowon; Chung, Sang Kug; Rhee, Kyehan
2014-01-01
Drug delivery into neurological tissue is challenging because of the low tissue permeability. Ultrasound incorporating microbubbles has been applied to enhance drug delivery into these tissues, but the effects of a streaming flow by microbubble oscillation on drug perfusion have not been elucidated. In order to clarify the physical effects of steady streaming on drug delivery, an experimental study on dye perfusion into a tissue model was performed using microbubbles excited by acoustic waves. The surface concentration and penetration length of the drug were increased by 12% and 13%, respectively, with streaming flow. The mass of dye perfused into a tissue phantom for 30s was increased by about 20% in the phantom with oscillating bubbles. A computational model that considers fluid structure interaction for streaming flow fields induced by oscillating bubbles was developed, and mass transfer of the drug into the porous tissue model was analyzed. The computed flow fields agreed with the theoretical solutions, and the dye concentration distribution in the tissue agreed well with the experimental data. The computational results showed that steady streaming with a streaming velocity of a few millimeters per second promotes mass transfer into a tissue. © 2013 Published by Elsevier Ltd.
International Nuclear Information System (INIS)
Eliasi, H.; Menhaj, M.B.; Davilu, H.
2011-01-01
Research highlights: → In this work, a robust nonlinear model predictive control algorithm is developed. → This algorithm is applied to control the power level for load following. → The state constraints are imposed on the predicted trajectory during optimization. → The xenon oscillations are the main constraint for the load following problem. → In this algorithm, xenon oscillations are bounded within acceptable limits. - Abstract: One of the important operations in nuclear power plants is load-following in which imbalance of axial power distribution induces xenon oscillations. These oscillations must be maintained within acceptable limits otherwise the nuclear power plant could become unstable. Therefore, bounded xenon oscillation considered to be a constraint for the load-following operation. In this paper, a robust nonlinear model predictive control for the load-following operation problem is proposed that ensures xenon oscillations are kept bounded within acceptable limits. The proposed controller uses constant axial offset (AO) strategy to maintain xenon oscillations to be bounded. The constant AO is a robust state constraint for load-following problem. The controller imposes restricted state constraints on the predicted trajectory during optimization which guarantees robust satisfaction of state constraints without restoring to a min-max optimization problem. Simulation results show that the proposed controller for the load-following operation is so effective so that the xenon oscillations kept bounded in the given region.
Oscillating in synchrony with a metronome: serial dependence, limit cycle dynamics, and modeling.
Torre, Kjerstin; Balasubramaniam, Ramesh; Delignières, Didier
2010-07-01
We analyzed serial dependencies in periods and asynchronies collected during oscillations performed in synchrony with a metronome. Results showed that asynchronies contain 1/f fluctuations, and the series of periods contain antipersistent dependence. The analysis of the phase portrait revealed a specific asymmetry induced by synchronization. We propose a hybrid limit cycle model including a cycle-dependent stiffness parameter provided with fractal properties, and a parametric driving function based on velocity. This model accounts for most experimentally evidenced statistical features, including serial dependence and limit cycle dynamics. We discuss the results and modeling choices within the framework of event-based and emergent timing.
Sato, Katsuhiko; Shima, Shin-ichiro
2015-10-01
We investigate a phase model that includes both locally attractive and globally repulsive coupling in one dimension. This model exhibits nontrivial spatiotemporal patterns that have not been observed in systems that contain only local or global coupling. Depending on the relative strengths of the local and global coupling and on the form of global coupling, the system can show a spatially uniform state (in-phase synchronization), a monotonically increasing state (traveling wave), and three types of oscillations of relative phase difference. One of the oscillations of relative phase difference has the characteristic of being locally unstable but globally attractive. That is, any small perturbation to the periodic orbit in phase space destroys its periodic motion, but after a long time the system returns to the original periodic orbit. This behavior is closely related to the emergence of saddle two-cluster states for global coupling only, which are connected to each other by attractive heteroclinic orbits. The mechanism of occurrence of this type of oscillation is discussed.
Constraints on mirror models of dark matter from observable neutron-mirror neutron oscillation
Directory of Open Access Journals (Sweden)
Rabindra N. Mohapatra
2018-01-01
Full Text Available The process of neutron-mirror neutron oscillation, motivated by symmetric mirror dark matter models, is governed by two parameters: n−n′ mixing parameter δ and n−n′ mass splitting Δ. For neutron mirror neutron oscillation to be observable, the splitting between their masses Δ must be small and current experiments lead to δ≤2×10−27 GeV and Δ≤10−24 GeV. We show that in mirror universe models where this process is observable, this small mass splitting constrains the way that one must implement asymmetric inflation to satisfy the limits of Big Bang Nucleosynthesis on the number of effective light degrees of freedom. In particular we find that if asymmetric inflation is implemented by inflaton decay to color or electroweak charged particles, the oscillation is unobservable. Also if one uses SM singlet fields for this purpose, they must be weakly coupled to the SM fields.
Coupled Oscillator Model of the Business Cycle withFluctuating Goods Markets
Ikeda, Y.; Aoyama, H.; Fujiwara, Y.; Iyetomi, H.; Ogimoto, K.; Souma, W.; Yoshikawa, H.
The sectoral synchronization observed for the Japanese business cycle in the Indices of Industrial Production data is an example of synchronization. The stability of this synchronization under a shock, e.g., fluctuation of supply or demand, is a matter of interest in physics and economics. We consider an economic system made up of industry sectors and goods markets in order to analyze the sectoral synchronization observed for the Japanese business cycle. A coupled oscillator model that exhibits synchronization is developed based on the Kuramoto model with inertia by adding goods markets, and analytic solutions of the stationary state and the coupling strength are obtained. We simulate the effects on synchronization of a sectoral shock for systems with different price elasticities and the coupling strengths. Synchronization is reproduced as an equilibrium solution in a nearest neighbor graph. Analysis of the order parameters shows that the synchronization is stable for a finite elasticity, whereas the synchronization is broken and the oscillators behave like a giant oscillator with a certain frequency additional to the common frequency for zero elasticity.
Effects of stochastic time-delayed feedback on a dynamical system modeling a chemical oscillator
González Ochoa, Héctor O.; Perales, Gualberto Solís; Epstein, Irving R.; Femat, Ricardo
2018-05-01
We examine how stochastic time-delayed negative feedback affects the dynamical behavior of a model oscillatory reaction. We apply constant and stochastic time-delayed negative feedbacks to a point Field-Körös-Noyes photosensitive oscillator and compare their effects. Negative feedback is applied in the form of simulated inhibitory electromagnetic radiation with an intensity proportional to the concentration of oxidized light-sensitive catalyst in the oscillator. We first characterize the system under nondelayed inhibitory feedback; then we explore and compare the effects of constant (deterministic) versus stochastic time-delayed feedback. We find that the oscillatory amplitude, frequency, and waveform are essentially preserved when low-dispersion stochastic delayed feedback is used, whereas small but measurable changes appear when a large dispersion is applied.
International Nuclear Information System (INIS)
Bondarenko, Vladimir E.; Cymbalyuk, Gennady S.; Patel, Girish; DeWeerth, Stephen P.; Calabrese, Ronald L.
2004-01-01
Oscillatory activity in the central nervous system is associated with various functions, like motor control, memory formation, binding, and attention. Quasiperiodic oscillations are rarely discussed in the neurophysiological literature yet they may play a role in the nervous system both during normal function and disease. Here we use a physical system and a model to explore scenarios for how quasiperiodic oscillations might arise in neuronal networks. An oscillatory system of two mutually inhibitory neuronal units is a ubiquitous network module found in nervous systems and is called a half-center oscillator. Previously we created a half-center oscillator of two identical oscillatory silicon (analog Very Large Scale Integration) neurons and developed a mathematical model describing its dynamics. In the mathematical model, we have shown that an in-phase limit cycle becomes unstable through a subcritical torus bifurcation. However, the existence of this torus bifurcation in experimental silicon two-neuron system was not rigorously demonstrated or investigated. Here we demonstrate the torus predicted by the model for the silicon implementation of a half-center oscillator using complex time series analysis, including bifurcation diagrams, mapping techniques, correlation functions, amplitude spectra, and correlation dimensions, and we investigate how the properties of the quasiperiodic oscillations depend on the strengths of coupling between the silicon neurons. The potential advantages and disadvantages of quasiperiodic oscillations (torus) for biological neural systems and artificial neural networks are discussed
Assessing Model Characterization of Single Source ...
Aircraft measurements made downwind from specific coal fired power plants during the 2013 Southeast Nexus field campaign provide a unique opportunity to evaluate single source photochemical model predictions of both O3 and secondary PM2.5 species. The model did well at predicting downwind plume placement. The model shows similar patterns of an increasing fraction of PM2.5 sulfate ion to the sum of SO2 and PM2.5 sulfate ion by distance from the source compared with ambient based estimates. The model was less consistent in capturing downwind ambient based trends in conversion of NOX to NOY from these sources. Source sensitivity approaches capture near-source O3 titration by fresh NO emissions, in particular subgrid plume treatment. However, capturing this near-source chemical feature did not translate into better downwind peak estimates of single source O3 impacts. The model estimated O3 production from these sources but often was lower than ambient based source production. The downwind transect ambient measurements, in particular secondary PM2.5 and O3, have some level of contribution from other sources which makes direct comparison with model source contribution challenging. Model source attribution results suggest contribution to secondary pollutants from multiple sources even where primary pollutants indicate the presence of a single source. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, deci
Shu, Hongying; Wang, Lin; Watmough, James
2014-01-01
Sustained and transient oscillations are frequently observed in clinical data for immune responses in viral infections such as human immunodeficiency virus, hepatitis B virus, and hepatitis C virus. To account for these oscillations, we incorporate the time lag needed for the expansion of immune cells into an immunosuppressive infection model. It is shown that the delayed antiviral immune response can induce sustained periodic oscillations, transient oscillations and even sustained aperiodic oscillations (chaos). Both local and global Hopf bifurcation theorems are applied to show the existence of periodic solutions, which are illustrated by bifurcation diagrams and numerical simulations. Two types of bistability are shown to be possible: (i) a stable equilibrium can coexist with another stable equilibrium, and (ii) a stable equilibrium can coexist with a stable periodic solution.
Hoellinger, Thomas; Petieau, Mathieu; Duvinage, Matthieu; Castermans, Thierry; Seetharaman, Karthik; Cebolla, Ana-Maria; Bengoetxea, Ana; Ivanenko, Yuri; Dan, Bernard; Cheron, Guy
2013-01-01
The existence of dedicated neuronal modules such as those organized in the cerebral cortex, thalamus, basal ganglia, cerebellum, or spinal cord raises the question of how these functional modules are coordinated for appropriate motor behavior. Study of human locomotion offers an interesting field for addressing this central question. The coordination of the elevation of the 3 leg segments under a planar covariation rule (Borghese et al., 1996) was recently modeled (Barliya et al., 2009) by phase-adjusted simple oscillators shedding new light on the understanding of the central pattern generator (CPG) processing relevant oscillation signals. We describe the use of a dynamic recurrent neural network (DRNN) mimicking the natural oscillatory behavior of human locomotion for reproducing the planar covariation rule in both legs at different walking speeds. Neural network learning was based on sinusoid signals integrating frequency and amplitude features of the first three harmonics of the sagittal elevation angles of the thigh, shank, and foot of each lower limb. We verified the biological plausibility of the neural networks. Best results were obtained with oscillations extracted from the first three harmonics in comparison to oscillations outside the harmonic frequency peaks. Physiological replication steadily increased with the number of neuronal units from 1 to 80, where similarity index reached 0.99. Analysis of synaptic weighting showed that the proportion of inhibitory connections consistently increased with the number of neuronal units in the DRNN. This emerging property in the artificial neural networks resonates with recent advances in neurophysiology of inhibitory neurons that are involved in central nervous system oscillatory activities. The main message of this study is that this type of DRNN may offer a useful model of physiological central pattern generator for gaining insights in basic research and developing clinical applications.
Free oscillations in a climate model with ice-sheet dynamics
Kallen, E.; Crafoord, C.; Ghil, M.
1979-01-01
A study of stable periodic solutions to a simple nonlinear model of the ocean-atmosphere-ice system is presented. The model has two dependent variables: ocean-atmosphere temperature and latitudinal extent of the ice cover. No explicit dependence on latitude is considered in the model. Hence all variables depend only on time and the model consists of a coupled set of nonlinear ordinary differential equations. The globally averaged ocean-atmosphere temperature in the model is governed by the radiation balance. The reflectivity to incoming solar radiation, i.e., the planetary albedo, includes separate contributions from sea ice and from continental ice sheets. The major physical mechanisms active in the model are (1) albedo-temperature feedback, (2) continental ice-sheet dynamics and (3) precipitation-rate variations. The model has three-equilibrium solutions, two of which are linearly unstable, while one is linearly stable. For some choices of parameters, the stability picture changes and sustained, finite-amplitude oscillations obtain around the previously stable equilibrium solution. The physical interpretation of these oscillations points to the possibility of internal mechanisms playing a role in glaciation cycles.
Graphical models for inferring single molecule dynamics
Directory of Open Access Journals (Sweden)
Gonzalez Ruben L
2010-10-01
Full Text Available Abstract Background The recent explosion of experimental techniques in single molecule biophysics has generated a variety of novel time series data requiring equally novel computational tools for analysis and inference. This article describes in general terms how graphical modeling may be used to learn from biophysical time series data using the variational Bayesian expectation maximization algorithm (VBEM. The discussion is illustrated by the example of single-molecule fluorescence resonance energy transfer (smFRET versus time data, where the smFRET time series is modeled as a hidden Markov model (HMM with Gaussian observables. A detailed description of smFRET is provided as well. Results The VBEM algorithm returns the model’s evidence and an approximating posterior parameter distribution given the data. The former provides a metric for model selection via maximum evidence (ME, and the latter a description of the model’s parameters learned from the data. ME/VBEM provide several advantages over the more commonly used approach of maximum likelihood (ML optimized by the expectation maximization (EM algorithm, the most important being a natural form of model selection and a well-posed (non-divergent optimization problem. Conclusions The results demonstrate the utility of graphical modeling for inference of dynamic processes in single molecule biophysics.
Dynamics of a model of two delay-coupled relaxation oscillators
Ruelas, R. E.; Rand, R. H.
2010-08-01
This paper investigates the dynamics of a new model of two coupled relaxation oscillators. The model replaces the usual DDE (differential-delay equation) formulation with a discrete-time approach with jumps. Existence, bifurcation and stability of in-phase periodic motions is studied. Simple periodic motions, which involve exactly two jumps per period, are found to have large plateaus in parameter space. These plateaus are separated by regions of complicated dynamics, reminiscent of the Devil's Staircase. Stability of motions in the in-phase manifold are contrasted with stability of motions in the full phase space.
Loop calculations for the non-commutative U*(1) gauge field model with oscillator term
International Nuclear Information System (INIS)
Blaschke, Daniel N.; Grosse, Harald; Kronberger, Erwin; Schweda, Manfred; Wohlgenannt, Michael
2010-01-01
Motivated by the success of the non-commutative scalar Grosse-Wulkenhaar model, a non-commutative U * (1) gauge field theory including an oscillator-like term in the action has been put forward in (Blaschke et al. in Europhys. Lett. 79:61002, 2007). The aim of the current work is to analyze whether that action can lead to a fully renormalizable gauge model on non-commutative Euclidean space. In a first step, explicit one-loop graph computations are hence presented, and their results as well as necessary modifications of the action are successively discussed. (orig.)
Oscillator strength of partially ionized high-Z atom on Hartree-Fock Slater model
International Nuclear Information System (INIS)
Nakamura, S.; Nishikawa, T.; Takabe, H.; Mima, K.
1991-01-01
The Hartree-Fock Slater (HFS) model has been solved for the partially ionized gold ions generated when an intense laser light is irradiated on a gold foil target. The resultant energy levels are compared with those obtained by a simple screened hydrogenic model with l-splitting effect (SHML). It is shown that the energy levels are poorly model by SHML as the ionization level becomes higher. The resultant wave functions are used to evaluate oscillator strength of important line radiations and compared with those obtained by a simple model using hydrogenic wave functions. Its demonstrated that oscillator strength of the 4p-4d and 4d-4f lines are well modeled by the simple method, while the 4-5 transitions such as 4f-5g, 4d-5f, 4p-5d, and 4f-5p forming the so-called N-band emission are poorly modeled and HFS results less strong line emissions. (author)
Theoretical models for designing a 220-GHz folded waveguide backward wave oscillator
International Nuclear Information System (INIS)
Cai Jin-Chi; Chen Huai-Bi; Hu Lin-Lin; Ma Guo-Wu; Chen Hong-Bin; Jin Xiao
2015-01-01
In this paper, the basic equations of beam-wave interaction for designing the 220 GHz folded waveguide (FW) backward wave oscillator (BWO) are described. On the whole, these equations are mainly classified into small signal model (SSM), large signal model (LSM), and simplified small signal model (SSSM). Using these linear and nonlinear one-dimensional (1D) models, the oscillation characteristics of the FW BWO of a given configuration of slow wave structure (SWS) can be calculated by numerical iteration algorithm, which is more time efficient than three-dimensional (3D) particle-in-cell (PIC) simulation. The SSSM expressed by analytical formulas is innovatively derived for determining the initial values of the FW SWS conveniently. The dispersion characteristics of the FW are obtained by equivalent circuit analysis. The space charge effect, the end reflection effect, the lossy wall effect, and the relativistic effect are all considered in our models to offer more accurate results. The design process of the FW BWO tube with output power of watt scale in a frequency range between 215 GHz and 225 GHz based on these 1D models is demonstrated. The 3D PIC method is adopted to verify the theoretical design results, which shows that they are in good agreement with each other. (paper)
The influence of boreal spring Arctic Oscillation on the subsequent winter ENSO in CMIP5 models
Chen, Shangfeng; Chen, Wen; Yu, Bin
2017-05-01
This study examines the influence of boreal spring Arctic Oscillation (AO) on the subsequent winter El Niño-Southern Oscillation (ENSO) using 15 climate model outputs from the Coupled Model Intercomparison Project Phase 5 (CMIP5). Results show that, out of the 15 CMIP5 models, CCSM4 and CNRM-CM5 can well reproduce the significant AO-ENSO connection. These two models capture the observed spring AO related anomalous cyclone (anticyclone) over the subtropical western-central North Pacific, and westerly (easterly) winds over the tropical western-central Pacific. In contrast, the spring AO-related anomalous circulation over the subtropical North Pacific is insignificant in the other 13 models, and the simulations in these models cannot capture the significant influence of the spring AO on ENSO. Further analyses indicate that the performance of the CMIP5 simulations in reproducing the AO-ENSO connection is related to the ability in simulating the spring North Pacific synoptic eddy intensity and the spring AO's Pacific component. Strong synoptic-scale eddy intensity results in a strong synoptic eddy feedback on the mean flow, leading to strong cyclonic circulation anomalies over the subtropical North Pacific, which contributes to a significant AO-ENSO connection. In addition, a strong spring AO's Pacific component and associated easterly wind anomalies to its south may provide more favorable conditions for the development of spring AO-related cyclonic circulation anomalies over the subtropical North Pacific.
Energy Technology Data Exchange (ETDEWEB)
Wang, Huan; Fenton, J. C.; Chiatti, O. [London Centre for Nanotechnology, University College London, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Warburton, P. A. [London Centre for Nanotechnology, University College London, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom)
2013-07-15
Nanoscale mechanical resonators are highly sensitive devices and, therefore, for application as highly sensitive mass balances, they are potentially superior to micromachined cantilevers. The absolute measurement of nanoscale displacements of such resonators remains a challenge, however, since the optical signal reflected from a cantilever whose dimensions are sub-wavelength is at best very weak. We describe a technique for quantitative analysis and fitting of scanning-electron microscope (SEM) linescans across a cantilever resonator, involving deconvolution from the vibrating resonator profile using the stationary resonator profile. This enables determination of the absolute amplitude of nanomechanical cantilever oscillations even when the oscillation amplitude is much smaller than the cantilever width. This technique is independent of any model of secondary-electron emission from the resonator and is, therefore, applicable to resonators with arbitrary geometry and material inhomogeneity. We demonstrate the technique using focussed-ion-beam–deposited tungsten cantilevers of radius ∼60–170 nm inside a field-emission SEM, with excitation of the cantilever by a piezoelectric actuator allowing measurement of the full frequency response. Oscillation amplitudes approaching the size of the primary electron-beam can be resolved. We further show that the optimum electron-beam scan speed is determined by a compromise between deflection of the cantilever at low scan speeds and limited spatial resolution at high scan speeds. Our technique will be an important tool for use in precise characterization of nanomechanical resonator devices.
Coupled slow and fast surface dynamics in an electrocatalytic oscillator: Model and simulations
International Nuclear Information System (INIS)
Nascimento, Melke A.; Nagao, Raphael; Eiswirth, Markus; Varela, Hamilton
2014-01-01
The co-existence of disparate time scales is pervasive in many systems. In particular for surface reactions, it has been shown that the long-term evolution of the core oscillator is decisively influenced by slow surface changes, such as progressing deactivation. Here we present an in-depth numerical investigation of the coupled slow and fast surface dynamics in an electrocatalytic oscillator. The model consists of four nonlinear coupled ordinary differential equations, investigated over a wide parameter range. Besides the conventional bifurcation analysis, the system was studied by means of high-resolution period and Lyapunov diagrams. It was observed that the bifurcation diagram changes considerably as the irreversible surface poisoning evolves, and the oscillatory region shrinks. The qualitative dynamics changes accordingly and the chaotic oscillations are dramatically suppressed. Nevertheless, periodic cascades are preserved in a confined region of the resistance vs. voltage diagram. Numerical results are compared to experiments published earlier and the latter reinterpreted. Finally, the comprehensive description of the time-evolution in the period and Lyapunov diagrams suggests further experimental studies correlating the evolution of the system's dynamics with changes of the catalyst structure
A one-dimensional model of the semiannual oscillation driven by convectively forced gravity waves
Sassi, Fabrizio; Garcia, Rolando R.
1994-01-01
A one-dimensional model that solves the time-dependent equations for the zonal mean wind and a wave of specified zonal wavenumber has been used to illustrate the ability of gravity waves forced by time-dependent tropospheric heating to produce a semiannual oscillation (SAO) in the middle atmosphere. When the heating has a strong diurnal cycle, as observed over tropical landmasses, gravity waves with zonal wavelengths of a few thousand kilometers and phase velocities in the range +/- 40-50 m/sec are excited efficiently by the maximum vertical projection criterion (vertical wavelength approximately equals 2 x forcing depth). Calculations show that these waves can account for large zonal mean wind accelerations in the middle atmosphere, resulting in realistic stratopause and mesopause oscillations. Calculations of the temporal evolution of a quasi-conserved tracer indicate strong down-welling in the upper stratosphere near the equinoxes, which is associated with the descent of the SAO westerlies. In the upper mesosphere, there is a semiannual oscillation in tracer mixing ratio driven by seasonal variability in eddy mixing, which increases at the solstices and decreases at the equinoxes.
Ouyang, Hao; Liu, Weidong; Sun, Mingbo
2017-08-01
Cavity has been validated to be efficient flameholders for scramjet combustors, but the influence of its parameters on the combustion oscillation in scramjet combustor has barely been studied. In the present work, a series of experiments focusing on this issue have been carried out. The influence of flameholding cavity position, its length to depth ratio L/D and aft wall angle θ and number on ethylene combustion oscillation characteristics in scramjet combustor has been researched. The obtained experimental results show that, as the premixing distance between ethylene injector and flameholding cavity varies, the ethylene combustion flame will take on two distinct forms, small-amplitude high frequency fluctuation, and large-amplitude low frequency oscillation. The dominant frequency of the large-amplitude combustion oscillation is in inverse proportion to the pre-mixing distance. Moreover, the influence of cavity length to depth ratio and the aft wall angleθexists diversity when the flameholding cavity position is different and can be recognized as unnoticeable compared to the impact of the premixing distance. In addition, we also find that, when the premixing distance is identical and sufficient, increasing the number of tandem flameholding cavities can change the dominant frequency of combustion oscillation hardly, let alone avoid the combustion oscillation. It is believed that the present investigation will provide a useful reference for the design of the scramjet combustor.
THE BERTRAND MODEL OF THE SINGLE MARKET
Directory of Open Access Journals (Sweden)
Vadasan Ioana
2010-12-01
Full Text Available Starting with the signification of the rationality hypothesis when the agent’s contentment is directly affected by the other agents’ decisions, the theory of games defines solutions for solving different situations of conflict. The economic actors have different behaviours of the Single Market. Oligopoly strategic behaviours were analysed by the Bertrand model. The two types revealed in the work show that strategic interactions are sensitive to the companies’ features, products and markets. Regarding the situation when we have an oligopoly competition, the companies make interdependent decisions in the environment affected by risk and uncertainty of the Single Market. For this reason it is an opportunity to study the structure of oligopoly type of of the Single Market with the aid of non – cooperative games.
A model for the effect of submerged aquatic vegetation on turbulence induced by an oscillating grid
Pujol, Dolors; Colomer, Jordi; Serra, Teresa; Casamitjana, Xavier
2012-12-01
The aim of this study is to model, under controlled laboratory conditions, the effect of submerged aquatic vegetation (SAV) on turbulence generated in a water column by an oscillating grid turbulence (OGT). Velocity profiles have been measured by an acoustic Doppler velocimeter (MicroADV). Experimental conditions are analysed in two canopy models (rigid and semi-rigid), using nine plant-to-plant distances (ppd), three stem diameters (d), four types of natural SAV (Cladium mariscus, Potamogeton nodosus, Myriophyllum verticillatum and Ruppia maritima) and two oscillation grid frequencies (f). To quantify this response, we have developed a non-dimensional model, with a specific turbulent kinetic energy (TKE), f, stroke (s), d, ppd, distance from the virtual origin to the measurement (zm) and space between grid bars (M). The experimental data show that, at zm/zc 1, TKE decreases faster with zm and scales to the model variables according to TKE/(f·s)∝(·(. Therefore, at zm/zc > 1 the TKE is affected by the geometric characteristics of the plants (both diameter and plant-to-plant distance), an effect called sheltering. Results from semi-rigid canopies and natural SAV are found to scale with the non-dimensional model proposed for rigid canopies. We also discuss the practical implications for field conditions (wind and natural SAV).
From the harmonic oscillator to the A-D-E classification of conformal models
International Nuclear Information System (INIS)
Itzykson, C.
1988-01-01
Arithmetical aspects of the solution of systems involving dimensional statistical models and conformal field theory. From this perspective, the analysis of the harmonic oscillator, the free particle in a box, the rational billards is effectuated. Moreover, the description of the classification of minimal conformal models and Weiss-Lumino-Witten models, based on the simplest affine algebra is also given. Attempts to interpret and justify the appearance of A-D-E classification of algebra in W-Z-W model are made. Extensions of W-Z-W model, based on SU(N) level one, and the ways to deal with rank two Lie groups, using the arithmetics of quadratic intergers, are described
Local and global bifurcations at infinity in models of glycolytic oscillations
DEFF Research Database (Denmark)
Sturis, Jeppe; Brøns, Morten
1997-01-01
We investigate two models of glycolytic oscillations. Each model consists of two coupled nonlinear ordinary differential equations. Both models are found to have a saddle point at infinity and to exhibit a saddle-node bifurcation at infinity, giving rise to a second saddle and a stable node...... at infinity. Depending on model parameters, a stable limit cycle may blow up to infinite period and amplitude and disappear in the bifurcation, and after the bifurcation, the stable node at infinity then attracts all trajectories. Alternatively, the stable node at infinity may coexist with either a stable...... sink (not at infinity) or a stable limit cycle. This limit cycle may then disappear in a heteroclinic bifurcation at infinity in which the unstable manifold from one saddle at infinity joins the stable manifold of the other saddle at infinity. These results explain prior reports for one of the models...
Influence of parameter values on the oscillation sensitivities of two p53-Mdm2 models.
Cuba, Christian E; Valle, Alexander R; Ayala-Charca, Giancarlo; Villota, Elizabeth R; Coronado, Alberto M
2015-09-01
Biomolecular networks that present oscillatory behavior are ubiquitous in nature. While some design principles for robust oscillations have been identified, it is not well understood how these oscillations are affected when the kinetic parameters are constantly changing or are not precisely known, as often occurs in cellular environments. Many models of diverse complexity level, for systems such as circadian rhythms, cell cycle or the p53 network, have been proposed. Here we assess the influence of hundreds of different parameter sets on the sensitivities of two configurations of a well-known oscillatory system, the p53 core network. We show that, for both models and all parameter sets, the parameter related to the p53 positive feedback, i.e. self-promotion, is the only one that presents sizeable sensitivities on extrema, periods and delay. Moreover, varying the parameter set values to change the dynamical characteristics of the response is more restricted in the simple model, whereas the complex model shows greater tunability. These results highlight the importance of the presence of specific network patterns, in addition to the role of parameter values, when we want to characterize oscillatory biochemical systems.
Model of rhythmic ball bouncing using a visually controlled neural oscillator.
Avrin, Guillaume; Siegler, Isabelle A; Makarov, Maria; Rodriguez-Ayerbe, Pedro
2017-10-01
The present paper investigates the sensory-driven modulations of central pattern generator dynamics that can be expected to reproduce human behavior during rhythmic hybrid tasks. We propose a theoretical model of human sensorimotor behavior able to account for the observed data from the ball-bouncing task. The novel control architecture is composed of a Matsuoka neural oscillator coupled with the environment through visual sensory feedback. The architecture's ability to reproduce human-like performance during the ball-bouncing task in the presence of perturbations is quantified by comparison of simulated and recorded trials. The results suggest that human visual control of the task is achieved online. The adaptive behavior is made possible by a parametric and state control of the limit cycle emerging from the interaction of the rhythmic pattern generator, the musculoskeletal system, and the environment. NEW & NOTEWORTHY The study demonstrates that a behavioral model based on a neural oscillator controlled by visual information is able to accurately reproduce human modulations in a motor action with respect to sensory information during the rhythmic ball-bouncing task. The model attractor dynamics emerging from the interaction between the neuromusculoskeletal system and the environment met task requirements, environmental constraints, and human behavioral choices without relying on movement planning and explicit internal models of the environment. Copyright © 2017 the American Physiological Society.
Accurate analytic model potentials for D2 and H2 based on the perturbed-Morse--oscillator model
International Nuclear Information System (INIS)
Huffaker, J.N.; Cohen, D.I.
1986-01-01
Model potentials with as few as 19 free parameters are fitted to published ab initio abiabatic potentials for D 2 and H 2 , with accuracy such that rovibrational eigenvalues are in error by only about 10 -2 cm -1 . A three-parameter model is suggested for describing nonadiabatic effects on eigenvalues, with the intention that such a model might be suitable for all hydrides. Dunham coefficients are calculated from the perturbed-Morse--oscillator series expansion of the model, permitting a critical evaluation of convergence properties of both the Dunham series and the WKB series
Volume Oscillations Delivered to a Lung Model Using 4 Different Bubble CPAP Systems.
Poli, Jonathan A; Richardson, C Peter; DiBlasi, Robert M
2015-03-01
High-frequency pressure oscillations created by gas bubbling through an underwater seal during bubble CPAP may enhance ventilation and aid in lung recruitment in premature infants. We hypothesized that there are no differences in the magnitude of oscillations in lung volume (ΔV) in a preterm neonatal lung model when different bubble CPAP systems are used. An anatomically realistic replica of an infant nasal airway model was attached to a Silastic test lung sealed within a calibrated plethysmograph. Nasal prongs were affixed to the simulated neonate and supported using bubble CPAP systems set at 6 cm H2O. ΔV was calculated using pressure measurements obtained from the plethysmograph. The Fisher & Paykel Healthcare bubble CPAP system provided greater ΔV than any of the other devices at all of the respective bias flows (P CPAP systems. The magnitude of ΔV increased at bias flows of > 4 L/min in the Fisher & Paykel Healthcare, Airways Development, and homemade systems, but appeared to decrease as bias flow increased with the Babi.Plus system. The major finding of this study is that bubble CPAP can provide measureable ventilation effects in an infant lung model. We speculate that the differences noted in ΔV between the different devices are a combination of the circuit/nasal prong configuration, bubbler configuration, and frequency of oscillations. Additional testing is needed in spontaneously breathing infants to determine whether a physiologic benefit exists when using the different bubble CPAP systems. Copyright © 2015 by Daedalus Enterprises.
Chakrabarti, S.; Martin, J. J.; Pearson, J. B.; Lewis, R. A.
2003-01-01
The NASA MSFC Propulsion Research Center (PRC) is conducting a research activity examining the storage of low energy antiprotons. The High Performance Antiproton Trap (HiPAT) is an electromagnetic system (Penning-Malmberg design) consisting of a 4 Tesla superconductor, a high voltage confinement electrode system, and an ultra high vacuum test section; designed with an ultimate goal of maintaining charged particles with a half-life of 18 days. Currently, this system is being experimentally evaluated using normal matter ions which are cheap to produce and relatively easy to handle and provide a good indication of overall trap behavior, with the exception of assessing annihilation losses. Computational particle-in-cell plasma modeling using the XOOPIC code is supplementing the experiments. Differing electrode voltage configurations are employed to contain charged particles, typically using flat, modified flat and harmonic potential wells. Ion cloud oscillation frequencies are obtained experimentally by amplification of signals induced on the electrodes by the particle motions. XOOPIC simulations show that for given electrode voltage configurations, the calculated charged particle oscillation frequencies are close to experimental measurements. As a two-dimensional axisymmetric code, XOOPIC cannot model azimuthal plasma variations, such as those induced by radio-frequency (RF) modulation of the central quadrupole electrode in experiments designed to enhance ion cloud containment. However, XOOPIC can model analytically varying electric potential boundary conditions and particle velocity initial conditions. Application of these conditions produces ion cloud axial and radial oscillation frequency modes of interest in achieving the goal of optimizing HiPAT for reliable containment of antiprotons.
A single quark effective potential model
International Nuclear Information System (INIS)
Bodmann, B.E.J.; Vasconcellos, C.A.Z.
1994-01-01
In the present work we construct a radial spherical symmetric single quark potential model for the nucleon, consistent with asymptotic freedom and confinement. The quark mass enters as potential parameter and that way induces indirectly an isospin dependence in the interaction. As a consequence, a contribution to the negative charge square radius of the neutron arises an an effect of the quark core, which simulates an isospin symmetry breaking effect in the nucleon due to strong interaction. (author)
Deboeck, Pascal R.; Boker, Steven M.; Bergeman, C. S.
2008-01-01
Among the many methods available for modeling intraindividual time series, differential equation modeling has several advantages that make it promising for applications to psychological data. One interesting differential equation model is that of the damped linear oscillator (DLO), which can be used to model variables that have a tendency to…
Kori, Hiroshi; Kiss, István Z.; Jain, Swati; Hudson, John L.
2018-04-01
Experiments and supporting theoretical analysis are presented to describe the synchronization patterns that can be observed with a population of globally coupled electrochemical oscillators close to a homoclinic, saddle-loop bifurcation, where the coupling is repulsive in the electrode potential. While attractive coupling generates phase clusters and desynchronized states, repulsive coupling results in synchronized oscillations. The experiments are interpreted with a phenomenological model that captures the waveform of the oscillations (exponential increase) followed by a refractory period. The globally coupled autocatalytic integrate-and-fire model predicts the development of partially synchronized states that occur through attracting heteroclinic cycles between out-of-phase two-cluster states. Similar behavior can be expected in many other systems where the oscillations occur close to a saddle-loop bifurcation, e.g., with Morris-Lecar neurons.
Allahverdi, Rouzbeh; Dev, P. S. Bhupal; Dutta, Bhaskar
2018-04-01
We study a simple TeV-scale model of baryon number violation which explains the observed proximity of the dark matter and baryon abundances. The model has constraints arising from both low and high-energy processes, and in particular, predicts a sizable rate for the neutron-antineutron (n - n bar) oscillation at low energy and the monojet signal at the LHC. We find an interesting complementarity among the constraints arising from the observed baryon asymmetry, ratio of dark matter and baryon abundances, n - n bar oscillation lifetime and the LHC monojet signal. There are regions in the parameter space where the n - n bar oscillation lifetime is found to be more constraining than the LHC constraints, which illustrates the importance of the next-generation n - n bar oscillation experiments.
International Nuclear Information System (INIS)
Strong, C.; Jin, F.; Ghil, M.
1994-01-01
Intraseasonal oscillations with a period of 40-50 days were discovered in zonal winds over the tropical Pacific by Madden and Julian in the 1970s. Since that time, considerable modeling and observational literature on intraseasonal tropical variability has emerged. Links have been established between such fluctuations and those in global atmospheric angular momentum (AAM). This study sheds further light on the seasonal dependence of intraseasonal variability. Floquet theory is used to study the stability of the large-scale, midlatitude atmospheric system's periodic basic state
Neutrino mass and oscillation angle phenomena within the asymmetric left-right models
International Nuclear Information System (INIS)
Boyarkin, O.; Rein, D.
1994-07-01
The light and heavy Majorana neutrinos which appear naturally in SU(2) L x SU(2) R x U(1) B-L model are investigated. The exact solutions are presented for the system of two neutrinos with multipole moments propagating through magnetic and matter fields. The cross section of the reaction e - e - → W - k W - n calculated and its dependence on the mass of the right-handed neutrino and the oscillation angle is investigated. The process e + e - → W + k W - n is also included in our analysis. (author). 26 refs, 9 figs
Two-phase flow dynamics in a model steam generator under vertical acceleration oscillation field
International Nuclear Information System (INIS)
Ishida, T.; Teshima, N.; Sakurai, S.
1992-01-01
The influence of periodically varying acceleration on hydrodynamic response has been studied experimentally using an experimental rig which models a marine reactor subject to vertical motion. The effect on the primary loop is small, but the effect on the secondary loop is large. The variables of the secondary loop, such as circulation flow rate and water level, oscillate with acceleration. The variation of gains in frequency response is analysed. The variations of flow in the secondary loop and in the downcome water level, increase in proportion to the acceleration. The effect of the flow resistance in the secondary loop on the two-phase flow dynamics is clarified. (7 figures) (Author)
Spontaneous oscillations in microfluidic networks
Case, Daniel; Angilella, Jean-Regis; Motter, Adilson
2017-11-01
Precisely controlling flows within microfluidic systems is often difficult which typically results in systems being heavily reliant on numerous external pumps and computers. Here, I present a simple microfluidic network that exhibits flow rate switching, bistablity, and spontaneous oscillations controlled by a single pressure. That is, by solely changing the driving pressure, it is possible to switch between an oscillating and steady flow state. Such functionality does not rely on external hardware and may even serve as an on-chip memory or timing mechanism. I use an analytic model and rigorous fluid dynamics simulations to show these results.
Tropospheric biennial oscillation and south Asian summer monsoon rainfall in a coupled model
Konda, Gopinadh; Chowdary, J. S.; Srinivas, G.; Gnanaseelan, C.; Parekh, Anant; Attada, Raju; Rama Krishna, S. S. V. S.
2018-06-01
In this study Tropospheric Biennial Oscillation (TBO) and south Asian summer monsoon rainfall are examined in the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFSv2) hindcast. High correlation between the observations and model TBO index suggests that the model is able to capture most of the TBO years. Spatial patterns of rainfall anomalies associated with positive TBO over the south Asian region are better represented in the model as in the observations. However, the model predicted rainfall anomaly patterns associated with negative TBO years are improper and magnitudes are underestimated compared to the observations. It is noted that positive (negative) TBO is associated with La Niña (El Niño) like Sea surface temperature (SST) anomalies in the model. This leads to the fact that model TBO is El Niño-Southern Oscillation (ENSO) driven, while in the observations Indian Ocean Dipole (IOD) also plays a role in the negative TBO phase. Detailed analysis suggests that the negative TBO rainfall anomaly pattern in the model is highly influenced by improper teleconnections allied to IOD. Unlike in the observations, rainfall anomalies over the south Asian region are anti-correlated with IOD index in CFSv2. Further, summer monsoon rainfall over south Asian region is highly correlated with IOD western pole than eastern pole in CFSv2 in contrast to the observations. Altogether, the present study highlights the importance of improving Indian Ocean SST teleconnections to south Asian summer rainfall in the model by enhancing the predictability of TBO. This in turn would improve monsoon rainfall prediction skill of the model.
Tropospheric biennial oscillation and south Asian summer monsoon rainfall in a coupled model
Konda, Gopinadh; Chowdary, Jasti S.; Srinivas, G; Gnanaseelan, C; Parekh, Anant; Attada, Raju; Rama Krishna, S S V S
2018-01-01
In this study Tropospheric Biennial Oscillation (TBO) and south Asian summer monsoon rainfall are examined in the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFSv2) hindcast. High correlation between the observations and model TBO index suggests that the model is able to capture most of the TBO years. Spatial patterns of rainfall anomalies associated with positive TBO over the south Asian region are better represented in the model as in the observations. However, the model predicted rainfall anomaly patterns associated with negative TBO years are improper and magnitudes are underestimated compared to the observations. It is noted that positive (negative) TBO is associated with La Niña (El Niño) like Sea surface temperature (SST) anomalies in the model. This leads to the fact that model TBO is El Niño-Southern Oscillation (ENSO) driven, while in the observations Indian Ocean Dipole (IOD) also plays a role in the negative TBO phase. Detailed analysis suggests that the negative TBO rainfall anomaly pattern in the model is highly influenced by improper teleconnections allied to IOD. Unlike in the observations, rainfall anomalies over the south Asian region are anti-correlated with IOD index in CFSv2. Further, summer monsoon rainfall over south Asian region is highly correlated with IOD western pole than eastern pole in CFSv2 in contrast to the observations. Altogether, the present study highlights the importance of improving Indian Ocean SST teleconnections to south Asian summer rainfall in the model by enhancing the predictability of TBO. This in turn would improve monsoon rainfall prediction skill of the model.
Tropospheric biennial oscillation and south Asian summer monsoon rainfall in a coupled model
Konda, Gopinadh
2018-05-22
In this study Tropospheric Biennial Oscillation (TBO) and south Asian summer monsoon rainfall are examined in the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFSv2) hindcast. High correlation between the observations and model TBO index suggests that the model is able to capture most of the TBO years. Spatial patterns of rainfall anomalies associated with positive TBO over the south Asian region are better represented in the model as in the observations. However, the model predicted rainfall anomaly patterns associated with negative TBO years are improper and magnitudes are underestimated compared to the observations. It is noted that positive (negative) TBO is associated with La Niña (El Niño) like Sea surface temperature (SST) anomalies in the model. This leads to the fact that model TBO is El Niño-Southern Oscillation (ENSO) driven, while in the observations Indian Ocean Dipole (IOD) also plays a role in the negative TBO phase. Detailed analysis suggests that the negative TBO rainfall anomaly pattern in the model is highly influenced by improper teleconnections allied to IOD. Unlike in the observations, rainfall anomalies over the south Asian region are anti-correlated with IOD index in CFSv2. Further, summer monsoon rainfall over south Asian region is highly correlated with IOD western pole than eastern pole in CFSv2 in contrast to the observations. Altogether, the present study highlights the importance of improving Indian Ocean SST teleconnections to south Asian summer rainfall in the model by enhancing the predictability of TBO. This in turn would improve monsoon rainfall prediction skill of the model.
International Nuclear Information System (INIS)
Yamasita, Kiyonobu; Harada, Hiroo; Murata, Isao; Shindo, Ryuichi; Tsuruoka, Takuya.
1993-01-01
Xenon oscillations of large graphite-moderated reactors have been analyzed by a multi-group diffusion code with two- and three-dimensional core models to study the effects of the geometric core models and the neutron energy group structures on the evaluation of the Xe oscillation behavior. The study clarified the following. It is important for accurate Xe oscillation simulations to use the neutron energy group structure that describes well the large change in the absorption cross section of Xe in the thermal energy range of 0.1∼0.65 eV, because the energy structure in this energy range has significant influences on the amplitude and the period of oscillations in power distributions. Two-dimensional R-Z models can be used instead of three-dimensional R-θ-Z models for evaluation of the threshold power of Xe oscillation, but two-dimensional R-θ models cannot be used for evaluation of the threshold power. Although the threshold power evaluated with the R-θ-Z models coincides with that of the R-Z models, it does not coincide with that of the R-θ models. (author)
Lu, Meili; Wei, Xile; Loparo, Kenneth A
2017-11-01
Altered firing properties and increased pathological oscillations in the basal ganglia have been proven to be hallmarks of Parkinson's disease (PD). Increasing evidence suggests that abnormal synchronous oscillations and suppression in the cortex may also play a critical role in the pathogenic process and treatment of PD. In this paper, a new closed-loop network including the cortex and basal ganglia using the Izhikevich models is proposed to investigate the synchrony and pathological oscillations in motor circuits and their modulation by deep brain stimulation (DBS). Results show that more coherent dynamics in the cortex may cause stronger effects on the synchrony and pathological oscillations of the subthalamic nucleus (STN). The pathological beta oscillations of the STN can both be efficiently suppressed with DBS applied directly to the STN or to cortical neurons, respectively, but the underlying mechanisms by which DBS suppresses the beta oscillations are different. This research helps to understand the dynamics of pathological oscillations in PD-related motor regions and supports the therapeutic potential of stimulation of cortical neurons.
Modeling and analysis of mover gaps in tubular moving-magnet linear oscillating motors
Directory of Open Access Journals (Sweden)
Xuesong LUO
2018-05-01
Full Text Available A tubular moving-magnet linear oscillating motor (TMMLOM has merits of high efficiency and excellent dynamic capability. To enhance the thrust performance, quasi-Halbach permanent magnet (PM arrays are arranged on its mover in the application of a linear electro-hydrostatic actuator in more electric aircraft. The arrays are assembled by several individual segments, which lead to gaps between them inevitably. To investigate the effects of the gaps on the radial magnetic flux density and the machine thrust in this paper, an analytical model is built considering both axial and radial gaps. The model is validated by finite element simulations and experimental results. Distributions of the magnetic flux are described in condition of different sizes of radial and axial gaps. Besides, the output force is also discussed in normal and end windings. Finally, the model has demonstrated that both kinds of gaps have a negative effect on the thrust, and the linear motor is more sensitive to radial ones. Keywords: Air-gap flux density, Linear motor, Mover gaps, Quasi-Halbach array, Thrust output, Tubular moving-magnet linear oscillating motor (TMMLOM
Baird, Bill
1986-08-01
A neural network model describing pattern recognition in the rabbit olfactory bulb is analysed to explain the changes in neural activity observed experimentally during classical Pavlovian conditioning. EEG activity recorded from an 8×8 arry of 64 electrodes directly on the surface on the bulb shows distinct spatial patterns of oscillation that correspond to the animal's recognition of different conditioned odors and change with conditioning to new odors. The model may be considered a variant of Hopfield's model of continuous analog neural dynamics. Excitatory and inhibitory cell types in the bulb and the anatomical architecture of their connection requires a nonsymmetric coupling matrix. As the mean input level rises during each breath of the animal, the system bifurcates from homogenous equilibrium to a spatially patterned oscillation. The theory of multiple Hopf bifurcations is employed to find coupled equations for the amplitudes of these unstable oscillatory modes independent of frequency. This allows a view of stored periodic attractors as fixed points of a gradient vector field and thereby recovers the more familiar dynamical systems picture of associative memory.
The two-capacitor problem revisited: a mechanical harmonic oscillator model approach
International Nuclear Information System (INIS)
Lee, Keeyung
2009-01-01
The well-known two-capacitor problem, in which exactly half the stored energy disappears when a charged capacitor is connected to an identical capacitor, is discussed based on the mechanical harmonic oscillator model approach. In the mechanical harmonic oscillator model, it is shown first that exactly half the work done by a constant applied force is dissipated irrespective of the form of dissipation mechanism when the system comes to a new equilibrium after a constant force is abruptly applied. This model is then applied to the energy loss mechanism in the capacitor charging problem or the two-capacitor problem. This approach allows a simple explanation of the energy dissipation mechanism in these problems and shows that the dissipated energy should always be exactly half the supplied energy whether that is caused by the Joule heat or by the radiation. This paper, which provides a simple treatment of the energy dissipation mechanism in the two-capacitor problem, is suitable for all undergraduate levels
van Albada, S J; Gray, R T; Drysdale, P M; Robinson, P A
2009-04-21
Neuronal correlates of Parkinson's disease (PD) include a shift to lower frequencies in the electroencephalogram (EEG) and enhanced synchronized oscillations at 3-7 and 7-30 Hz in the basal ganglia, thalamus, and cortex. This study describes the dynamics of a recent physiologically based mean-field model of the basal ganglia-thalamocortical system, and shows how it accounts for many key electrophysiological correlates of PD. Its detailed functional connectivity comprises partially segregated direct and indirect pathways through two populations of striatal neurons, a hyperdirect pathway involving a corticosubthalamic projection, thalamostriatal feedback, and local inhibition in striatum and external pallidum (GPe). In a companion paper, realistic steady-state firing rates were obtained for the healthy state, and after dopamine loss modeled by weaker direct and stronger indirect pathways, reduced intrapallidal inhibition, lower firing thresholds of the GPe and subthalamic nucleus (STN), a stronger projection from striatum to GPe, and weaker cortical interactions. Here it is shown that oscillations around 5 and 20 Hz can arise with a strong indirect pathway, which also causes increased synchronization throughout the basal ganglia. Furthermore, increased theta power with progressive nigrostriatal degeneration is correlated with reduced alpha power and peak frequency, in agreement with empirical results. Unlike the hyperdirect pathway, the indirect pathway sustains oscillations with phase relationships that coincide with those found experimentally. Alterations in the responses of basal ganglia to transient stimuli accord with experimental observations. Reduced cortical gains due to both nigrostriatal and mesocortical dopamine loss lead to slower changes in cortical activity and may be related to bradykinesia. Finally, increased EEG power found in some studies may be partly explained by a lower effective GPe firing threshold, reduced GPe-GPe inhibition, and/or weaker
Umakanth, U.
2015-11-07
The aim of the study is to evaluate the performance of regional climate model (RegCM) version 4.4 over south Asian CORDEX domain to simulate seasonal mean and monsoon intraseasonal oscillations (MISOs) during Indian summer monsoon. Three combinations of Grell (G) and Emanuel (E) cumulus schemes namely, RegCM-EG, RegCM-EE and RegCM-GE have been used. The model is initialized at 1st January, 2000 for a 13-year continuous simulation at a spatial resolution of 50 km. The models reasonably simulate the seasonal mean low level wind pattern though they differ in simulating mean precipitation pattern. All models produce dry bias in precipitation over Indian land region except in RegCM-EG where relatively low value of dry bias is observed. On seasonal scale, the performance of RegCM-EG is more close to observation though it fails at intraseasonal time scales. In wave number-frequency spectrum, the observed peak in zonal wind (850 hPa) at 40–50 day scale is captured by all models with a slight change in amplitude, however, the 40–50 day peak in precipitation is completely absent in RegCM-EG. The space–time characteristics of MISOs are well captured by RegCM-EE over RegCM-GE, however it fails to show the eastward propagation of the convection across the Maritime Continent. Except RegCM-EE all other models completely underestimates the moisture advection from Equatorial Indian Ocean onto Indian land region during life-cycle of MISOs. The characteristics of MISOs are studied for strong (SM) and weak (WM) monsoon years and the differences in model performances are analyzed. The wavelet spectrum of rainfall over central India denotes that, the SM years are dominated by high frequency oscillations (period <20 days) whereas little higher periods (>30 days) along with dominated low periods (<20 days) observed during WM years. During SM, RegCM-EE is dominated with high frequency oscillations (period <20 days) whereas in WM, RegCM-EE is dominated with periods >20
Oscillations and chaos in renal blood flow control
DEFF Research Database (Denmark)
Holstein-Rathlou, N H
1993-01-01
In normotensive, halothane-anesthetized rats, oscillations can be found both in the single-nephron blood flow and in the tubular pressure. Experimental data and computer simulations support the hypothesis that the oscillations are caused by the tubuloglomerular feedback (TGF) mechanism. Model...... oscillations. The parameter range where model studies show instability overlaps with the physiologic range for the values of the same parameters. The system appears to be poised on the border between stability and oscillation, and a small parameter change may cause the system to move from one state...
Quantitative occupational risk model: Single hazard
International Nuclear Information System (INIS)
Papazoglou, I.A.; Aneziris, O.N.; Bellamy, L.J.; Ale, B.J.M.; Oh, J.
2017-01-01
A model for the quantification of occupational risk of a worker exposed to a single hazard is presented. The model connects the working conditions and worker behaviour to the probability of an accident resulting into one of three types of consequence: recoverable injury, permanent injury and death. Working conditions and safety barriers in place to reduce the likelihood of an accident are included. Logical connections are modelled through an influence diagram. Quantification of the model is based on two sources of information: a) number of accidents observed over a period of time and b) assessment of exposure data of activities and working conditions over the same period of time and the same working population. Effectiveness of risk reducing measures affecting the working conditions, worker behaviour and/or safety barriers can be quantified through the effect of these measures on occupational risk. - Highlights: • Quantification of occupational risk from a single hazard. • Influence diagram connects working conditions, worker behaviour and safety barriers. • Necessary data include the number of accidents and the total exposure of worker • Effectiveness of risk reducing measures is quantified through the impact on the risk • An example illustrates the methodology.
Hwang, Yuh-Shyan; Kung, Che-Min; Lin, Ho-Cheng; Chen, Jiann-Jong
2009-02-01
A low-sensitivity, low-bounce, high-linearity current-controlled oscillator (CCO) suitable for a single-supply mixed-mode instrumentation system is designed and proposed in this paper. The designed CCO can be operated at low voltage (2 V). The power bounce and ground bounce generated by this CCO is less than 7 mVpp when the power-line parasitic inductance is increased to 100 nH to demonstrate the effect of power bounce and ground bounce. The power supply noise caused by the proposed CCO is less than 0.35% in reference to the 2 V supply voltage. The average conversion ratio KCCO is equal to 123.5 GHz/A. The linearity of conversion ratio is high and its tolerance is within +/-1.2%. The sensitivity of the proposed CCO is nearly independent of the power supply voltage, which is less than a conventional current-starved oscillator. The performance of the proposed CCO has been compared with the current-starved oscillator. It is shown that the proposed CCO is suitable for single-supply mixed-mode instrumentation systems.
A Madden-Julian oscillation event realistically simulated by a global cloud-resolving model.
Miura, Hiroaki; Satoh, Masaki; Nasuno, Tomoe; Noda, Akira T; Oouchi, Kazuyoshi
2007-12-14
A Madden-Julian Oscillation (MJO) is a massive weather event consisting of deep convection coupled with atmospheric circulation, moving slowly eastward over the Indian and Pacific Oceans. Despite its enormous influence on many weather and climate systems worldwide, it has proven very difficult to simulate an MJO because of assumptions about cumulus clouds in global meteorological models. Using a model that allows direct coupling of the atmospheric circulation and clouds, we successfully simulated the slow eastward migration of an MJO event. Topography, the zonal sea surface temperature gradient, and interplay between eastward- and westward-propagating signals controlled the timing of the eastward transition of the convective center. Our results demonstrate the potential making of month-long MJO predictions when global cloud-resolving models with realistic initial conditions are used.
The dynamics of p53 in single cells: physiologically based ODE and reaction–diffusion PDE models
International Nuclear Information System (INIS)
Eliaš, Ján; Clairambault, Jean; Dimitrio, Luna; Natalini, Roberto
2014-01-01
The intracellular signalling network of the p53 protein plays important roles in genome protection and the control of cell cycle phase transitions. Recently observed oscillatory behaviour in single cells under stress conditions has inspired several research groups to simulate and study the dynamics of the protein with the aim of gaining a proper understanding of the physiological meanings of the oscillations. We propose compartmental ODE and PDE models of p53 activation and regulation in single cells following DNA damage and we show that the p53 oscillations can be retrieved by plainly involving p53–Mdm2 and ATM–p53–Wip1 negative feedbacks, which are sufficient for oscillations experimentally, with no further need to introduce any delays into the protein responses and without considering additional positive feedback. (paper)
An analysis of heart rhythm dynamics using a three-coupled oscillator model
International Nuclear Information System (INIS)
Gois, Sandra R.F.S.M.; Savi, Marcelo A.
2009-01-01
Rhythmic phenomena represent one of the most striking manifestations of the dynamic behavior in biological systems. Understanding the mechanisms responsible for biological rhythms is crucial for the comprehension of the dynamics of life. Natural rhythms could be either regular or irregular over time and space. Each kind of dynamical behavior may be related to both normal and pathological physiological functioning. The cardiac conducting system can be treated as a network of self-excitatory elements and, since these elements exhibit oscillatory behavior, they can be modeled as nonlinear oscillators. This paper proposes a mathematical model to describe heart rhythms considering three modified Van der Pol oscillators connected with time delay couplings. Therefore, the heart dynamics is represented by a system of differential difference equations. Numerical simulations are carried out presenting qualitative agreement with the general heart rhythm behavior. Normal and pathological rhythms represented by the ECG signals are reproduced. Pathological rhythms are generated by either the coupling alterations that represents communications aspects in the heart electric system or forcing excitation representing external pacemaker excitation.
Norman, Kenneth A; Newman, Ehren L; Perotte, Adler J
2005-11-01
The stability-plasticity problem (i.e. how the brain incorporates new information into its model of the world, while at the same time preserving existing knowledge) has been at the forefront of computational memory research for several decades. In this paper, we critically evaluate how well the Complementary Learning Systems theory of hippocampo-cortical interactions addresses the stability-plasticity problem. We identify two major challenges for the model: Finding a learning algorithm for cortex and hippocampus that enacts selective strengthening of weak memories, and selective punishment of competing memories; and preventing catastrophic forgetting in the case of non-stationary environments (i.e. when items are temporarily removed from the training set). We then discuss potential solutions to these problems: First, we describe a recently developed learning algorithm that leverages neural oscillations to find weak parts of memories (so they can be strengthened) and strong competitors (so they can be punished), and we show how this algorithm outperforms other learning algorithms (CPCA Hebbian learning and Leabra at memorizing overlapping patterns. Second, we describe how autonomous re-activation of memories (separately in cortex and hippocampus) during REM sleep, coupled with the oscillating learning algorithm, can reduce the rate of forgetting of input patterns that are no longer present in the environment. We then present a simple demonstration of how this process can prevent catastrophic interference in an AB-AC learning paradigm.
The CLAIR model: Extension of Brodmann areas based on brain oscillations and connectivity.
Başar, Erol; Düzgün, Aysel
2016-05-01
Since the beginning of the last century, the localization of brain function has been represented by Brodmann areas, maps of the anatomic organization of the brain. They are used to broadly represent cortical structures with their given sensory-cognitive functions. In recent decades, the analysis of brain oscillations has become important in the correlation of brain functions. Moreover, spectral connectivity can provide further information on the dynamic connectivity between various structures. In addition, brain responses are dynamic in nature and structural localization is almost impossible, according to Luria (1966). Therefore, brain functions are very difficult to localize; hence, a combined analysis of oscillation and event-related coherences is required. In this study, a model termed as "CLAIR" is described to enrich and possibly replace the concept of the Brodmann areas. A CLAIR model with optimum function may take several years to develop, but this study sets out to lay its foundation. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Kretzschmar, Martin
1999-01-01
-dimensional (the lowest nontrivial) sector of the Hilbert space associated with the type I (SU(2)-algebra) interaction. The Bloch vector, well known from quantum optics, is the expectation value of our Bloch operator. On the other hand, the description of ion motion in the Penning trap requires the whole infinite dimensional Hilbert space of our model. Classical ion trajectories are obtained by calculating for the observables corresponding to position and momentum the expectation values with respect to minimum uncertainty coherent oscillator states
MATHEMATICAL MODEL OF OSCILLATIONS OF BEARING BODY FRAME OF EMERGENCY AND REPAIR RAILCARS
Directory of Open Access Journals (Sweden)
Galina KHROMOVA
2017-04-01
Full Text Available Nowadays, the importance of maintenance and effective use of available railcars in the railway transport is growing, and researchers and technical experts are working to address this issue with the use of various techniques. The authors address the use of analytical technique, which includes mathematical solutions for flexural and longitudinal fluctuations of the bearing framework of a railcar body frame. The calculation is performed in connection with the modernization of the body frame of emergency and repair rail service car, taking into account the variability in section, mass, longitudinal stiffness, and bending stiffness. It allows for extension of the useful life of their operation, with special focus on vehicles owned by Joint-Stock Company "Uzbekistan Railways". The simulation of equivalent bearing body frame of emergency and repair rail service car was carried out using an elastic rod with variable parameters including stiffness and mass. The difference between the proposed model and the existing ones is due to the variability in cross section, mass, and the longitudinal and bending stiffness along the length of equivalent beam, which corresponds to the actual conditions of operation and data of the experimental studies conducted by the authors on the bearing frames of electric locomotives’ variable sections. The frequency analysis that was carried out with the use of the Mathcad 14 programming showed that the frequencies of natural oscillations change on n harmonicas = 1, 2, 3 … 5. As regards longitudinal oscillations of system, in case of introduction of the damping subfloor, the frequency of natural oscillations of the upgraded rail car frame λ1mn increases on comparing with standard λ1n (for example, in case of n = 5 the frequency is 0.587 and 0.602 Hz/m, respectively.
MacLeod, A. M.; Yan, X.; Gillespie, W. A.; Knippels, G.M.H.; Oepts, D.; van der Meer, A. F. G.; Rella, C. W.; Smith, T. J.; Schwettman, H. A.
2000-01-01
The detailed shape of picosecond optical pulses from a free-electron laser (FEL) oscillator has been studied for various cavity detunings. For large values of the cavity detuning the optical pulse develops an exponential leading edge, with a time constant proportional to the applied cavity detuning
Lv, Yang-Yang; Zhang, Bin-Bin; Li, Xiao; Zhang, Kai-Wen; Li, Xiang-Bing; Yao, Shu-Hua; Chen, Y. B.; Zhou, Jian; Zhang, Shan-Tao; Lu, Ming-Hui; Li, Shao-Chun; Chen, Yan-Feng
2018-03-01
The study of ZrT e5 crystals is revived because of the recent theoretical prediction of topological phase in bulk ZrT e5 . However, the current conclusions for the topological character of bulk ZrT e5 are quite contradictory. To resolve this puzzle, we here identify the Berry phase on both b - and c planes of high-quality ZrT e5 crystals by the Shubnikov-de-Hass (SdH) oscillation under tilted magnetic field at 2 K. The angle-dependent SdH oscillation frequency, both on b - and c planes of ZrT e5 , demonstrates the two-dimensional feature. However, phase analysis of SdH verifies that a nontrivial π-Berry phase is observed in the c -plane SdH oscillation, but not in the b -plane one. Compared to bulk Fermi surface predicted by the first-principle calculation, the two-dimensional-like behavior of SdH oscillation measured at b plane comes from the bulk electron. Based on these analyses, it is suggested that bulk ZrT e5 at low temperature (˜2 K) belongs to a weak topological insulator, rather than Dirac semimetal or strong topological insulator as reported previously.
Modelling transport in single electron transistor
International Nuclear Information System (INIS)
Dinh Sy Hien; Huynh Lam Thu Thao; Le Hoang Minh
2009-01-01
We introduce a model of single electron transistor (SET). Simulation programme of SET is used as the exploratory tool in order to gain better understanding of process and device physics. This simulator includes a graphic user interface (GUI) in Matlab. The SET was simulated using GUI in Matlab to get current-voltage (I-V) characteristics. In addition, effects of device capacitance, bias, temperature on the I-V characteristics were obtained. In this work, we review the capabilities of the simulator of the SET. Typical simulations of the obtained I-V characteristics of the SET are presented.
Donoso, José R; Schmitz, Dietmar; Maier, Nikolaus; Kempter, Richard
2018-03-21
Hippocampal ripples are involved in memory consolidation, but the mechanisms underlying their generation remain unclear. Models relying on interneuron networks in the CA1 region disagree on the predominant source of excitation to interneurons: either "direct," via the Schaffer collaterals that provide feedforward input from CA3 to CA1, or "indirect," via the local pyramidal cells in CA1, which are embedded in a recurrent excitatory-inhibitory network. Here, we used physiologically constrained computational models of basket-cell networks to investigate how they respond to different conditions of transient, noisy excitation. We found that direct excitation of interneurons could evoke ripples (140-220 Hz) that exhibited intraripple frequency accommodation and were frequency-insensitive to GABA modulators, as previously shown in in vitro experiments. In addition, the indirect excitation of the basket-cell network enabled the expression of intraripple frequency accommodation in the fast-gamma range (90-140 Hz), as in vivo In our model, intraripple frequency accommodation results from a hysteresis phenomenon in which the frequency responds differentially to the rising and descending phases of the transient excitation. Such a phenomenon predicts a maximum oscillation frequency occurring several milliseconds before the peak of excitation. We confirmed this prediction for ripples in brain slices from male mice. These results suggest that ripple and fast-gamma episodes are produced by the same interneuron network that is recruited via different excitatory input pathways, which could be supported by the previously reported intralaminar connectivity bias between basket cells and functionally distinct subpopulations of pyramidal cells in CA1. Together, our findings unify competing inhibition-first models of rhythm generation in the hippocampus. SIGNIFICANCE STATEMENT The hippocampus is a part of the brain of humans and other mammals that is critical for the acquisition and
Dias, Frédéric; Renzi, Emiliano; Gallagher, Sarah; Sarkar, Dripta; Wei, Yanji; Abadie, Thomas; Cummins, Cathal; Rafiee, Ashkan
2017-08-01
The development of new wave energy converters has shed light on a number of unanswered questions in fluid mechanics, but has also identified a number of new issues of importance for their future deployment. The main concerns relevant to the practical use of wave energy converters are sustainability, survivability, and maintainability. Of course, it is also necessary to maximize the capture per unit area of the structure as well as to minimize the cost. In this review, we consider some of the questions related to the topics of sustainability, survivability, and maintenance access, with respect to sea conditions, for generic wave energy converters with an emphasis on the oscillating wave surge converter. New analytical models that have been developed are a topic of particular discussion. It is also shown how existing numerical models have been pushed to their limits to provide answers to open questions relating to the operation and characteristics of wave energy converters.
Periodic and chaotic oscillations in a tumor and immune system interaction model with three delays
International Nuclear Information System (INIS)
Bi, Ping; Ruan, Shigui; Zhang, Xinan
2014-01-01
In this paper, a tumor and immune system interaction model consisted of two differential equations with three time delays is considered in which the delays describe the proliferation of tumor cells, the process of effector cells growth stimulated by tumor cells, and the differentiation of immune effector cells, respectively. Conditions for the asymptotic stability of equilibria and existence of Hopf bifurcations are obtained by analyzing the roots of a second degree exponential polynomial characteristic equation with delay dependent coefficients. It is shown that the positive equilibrium is asymptotically stable if all three delays are less than their corresponding critical values and Hopf bifurcations occur if any one of these delays passes through its critical value. Numerical simulations are carried out to illustrate the rich dynamical behavior of the model with different delay values including the existence of regular and irregular long periodic oscillations
Dias, Frédéric; Renzi, Emiliano; Gallagher, Sarah; Sarkar, Dripta; Wei, Yanji; Abadie, Thomas; Cummins, Cathal; Rafiee, Ashkan
2017-01-01
The development of new wave energy converters has shed light on a number of unanswered questions in fluid mechanics, but has also identified a number of new issues of importance for their future deployment. The main concerns relevant to the practical use of wave energy converters are sustainability, survivability, and maintainability. Of course, it is also necessary to maximize the capture per unit area of the structure as well as to minimize the cost. In this review, we consider some of the questions related to the topics of sustainability, survivability, and maintenance access, with respect to sea conditions, for generic wave energy converters with an emphasis on the oscillating wave surge converter. New analytical models that have been developed are a topic of particular discussion. It is also shown how existing numerical models have been pushed to their limits to provide answers to open questions relating to the operation and characteristics of wave energy converters.
Synchrony-induced modes of oscillation of a neural field model
Esnaola-Acebes, Jose M.; Roxin, Alex; Avitabile, Daniele; Montbrió, Ernest
2017-11-01
We investigate the modes of oscillation of heterogeneous ring networks of quadratic integrate-and-fire (QIF) neurons with nonlocal, space-dependent coupling. Perturbations of the equilibrium state with a particular wave number produce transient standing waves with a specific temporal frequency, analogously to those in a tense string. In the neuronal network, the equilibrium corresponds to a spatially homogeneous, asynchronous state. Perturbations of this state excite the network's oscillatory modes, which reflect the interplay of episodes of synchronous spiking with the excitatory-inhibitory spatial interactions. In the thermodynamic limit, an exact low-dimensional neural field model describing the macroscopic dynamics of the network is derived. This allows us to obtain formulas for the Turing eigenvalues of the spatially homogeneous state and hence to obtain its stability boundary. We find that the frequency of each Turing mode depends on the corresponding Fourier coefficient of the synaptic pattern of connectivity. The decay rate instead is identical for all oscillation modes as a consequence of the heterogeneity-induced desynchronization of the neurons. Finally, we numerically compute the spectrum of spatially inhomogeneous solutions branching from the Turing bifurcation, showing that similar oscillatory modes operate in neural bump states and are maintained away from onset.
Investigation of the density wave oscillation in ocean motions with reduced order models
International Nuclear Information System (INIS)
Yan, B.H.; Li, R.
2018-01-01
Highlights: •The parameter about the degree of instability is defined. •The results are in satisfactory agreement with experimental results. •The effect of ocean motions on DWO is analyzed quantitatively. •The results are of good universality and generality. -- Abstract: The two phase flow instability is an important phenomenon in nuclear power and thermal systems. In the research and design of small modular reactor, the effect of ocean motions on the two phase flow instability should be evaluated. In this work, the density wave oscillation in a uniformly heated channel in ocean motions is investigated with reduced order model by transforming the partial differential equations to ordinary differential equations. This kind of frequency domain method is complementary to the time domain analysis with system codes, not as alternatives. The parameter about the degree of instability is defined for the quantitative analysis of two phase flow instability. The results are in satisfactory agreement with experimental results. The effect of ocean motions on density wave oscillation in a uniformly heated channel is analyzed quantitatively. The parametric study is also carried out.
Salgotra, Aprajita; Pan, Somnath
2018-05-01
This paper explores a two-level control strategy by blending local controller with centralized controller for the low frequency oscillations in a power system. The proposed control scheme provides stabilization of local modes using a local controller and minimizes the effect of inter-connection of sub-systems performance through a centralized control. For designing the local controllers in the form of proportional-integral power system stabilizer (PI-PSS), a simple and straight forward frequency domain direct synthesis method is considered that works on use of a suitable reference model which is based on the desired requirements. Several examples both on one machine infinite bus and multi-machine systems taken from the literature are illustrated to show the efficacy of the proposed PI-PSS. The effective damping of the systems is found to be increased remarkably which is reflected in the time-responses; even unstable operation has been stabilized with improved damping after applying the proposed controller. The proposed controllers give remarkable improvement in damping the oscillations in all the illustrations considered here and as for example, the value of damping factor has been increased from 0.0217 to 0.666 in Example 1. The simulation results obtained by the proposed control strategy are favourably compared with some controllers prevalent in the literature. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Single toxin dose-response models revisited
Energy Technology Data Exchange (ETDEWEB)
Demidenko, Eugene, E-mail: eugened@dartmouth.edu [Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH03756 (United States); Glaholt, SP, E-mail: sglaholt@indiana.edu [Indiana University, School of Public & Environmental Affairs, Bloomington, IN47405 (United States); Department of Biological Sciences, Dartmouth College, Hanover, NH03755 (United States); Kyker-Snowman, E, E-mail: ek2002@wildcats.unh.edu [Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH03824 (United States); Shaw, JR, E-mail: joeshaw@indiana.edu [Indiana University, School of Public & Environmental Affairs, Bloomington, IN47405 (United States); Chen, CY, E-mail: Celia.Y.Chen@dartmouth.edu [Department of Biological Sciences, Dartmouth College, Hanover, NH03755 (United States)
2017-01-01
The goal of this paper is to offer a rigorous analysis of the sigmoid shape single toxin dose-response relationship. The toxin efficacy function is introduced and four special points, including maximum toxin efficacy and inflection points, on the dose-response curve are defined. The special points define three phases of the toxin effect on mortality: (1) toxin concentrations smaller than the first inflection point or (2) larger then the second inflection point imply low mortality rate, and (3) concentrations between the first and the second inflection points imply high mortality rate. Probabilistic interpretation and mathematical analysis for each of the four models, Hill, logit, probit, and Weibull is provided. Two general model extensions are introduced: (1) the multi-target hit model that accounts for the existence of several vital receptors affected by the toxin, and (2) model with a nonzero mortality at zero concentration to account for natural mortality. Special attention is given to statistical estimation in the framework of the generalized linear model with the binomial dependent variable as the mortality count in each experiment, contrary to the widespread nonlinear regression treating the mortality rate as continuous variable. The models are illustrated using standard EPA Daphnia acute (48 h) toxicity tests with mortality as a function of NiCl or CuSO{sub 4} toxin. - Highlights: • The paper offers a rigorous study of a sigmoid dose-response relationship. • The concentration with highest mortality rate is rigorously defined. • A table with four special points for five morality curves is presented. • Two new sigmoid dose-response models have been introduced. • The generalized linear model is advocated for estimation of sigmoid dose-response relationship.
Directory of Open Access Journals (Sweden)
Roshan GholamReza
2012-12-01
Full Text Available Abstract The rapid rise of Caspian Sea water level (about 2.25 meters since 1978 has caused much concern to all five surrounding countries, primarily because flooding has destroyed or damaged buildings and other engineering structures, roads, beaches and farm lands in the coastal zone. Given that climate, and more specifically climate change, is a primary factor influencing oscillations in Caspian Sea water levels, the effect of different climate change scenarios on future Caspian Sea levels was simulated. Variations in environmental parameters such as temperature, precipitation, evaporation, atmospheric carbon dioxide and water level oscillations of the Caspian sea and surrounding regions, are considered for both past (1951-2006 and future (2025-2100 time frames. The output of the UKHADGEM general circulation model and five alternative scenarios including A1CAI, BIASF, BIMES WRE450 and WRE750 were extracted using the MAGICC SCENGEN Model software (version 5.3. The results suggest that the mean temperature of the Caspian Sea region (Bandar-E-Anzali monitoring site has increased by ca. 0.17°C per decade under the impacts of atmospheric carbon dioxide changes (r=0.21. The Caspian Sea water level has increased by ca. +36cm per decade (r=0.82 between the years 1951-2006. Mean results from all modeled scenarios indicate that the temperature will increase by ca. 3.64°C and precipitation will decrease by ca. 10% (182 mm over the Caspian Sea, whilst in the Volga river basin, temperatures are projected to increase by ca. 4.78°C and precipitation increase by ca. 12% (58 mm by the year 2100. Finally, statistical modeling of the Caspian Sea water levels project future water level increases of between 86 cm and 163 cm by the years 2075 and 2100, respectively.
Roshan, Gholamreza; Moghbel, Masumeh; Grab, Stefan
2012-12-12
The rapid rise of Caspian Sea water level (about 2.25 meters since 1978) has caused much concern to all five surrounding countries, primarily because flooding has destroyed or damaged buildings and other engineering structures, roads, beaches and farm lands in the coastal zone. Given that climate, and more specifically climate change, is a primary factor influencing oscillations in Caspian Sea water levels, the effect of different climate change scenarios on future Caspian Sea levels was simulated. Variations in environmental parameters such as temperature, precipitation, evaporation, atmospheric carbon dioxide and water level oscillations of the Caspian sea and surrounding regions, are considered for both past (1951-2006) and future (2025-2100) time frames. The output of the UKHADGEM general circulation model and five alternative scenarios including A1CAI, BIASF, BIMES WRE450 and WRE750 were extracted using the MAGICC SCENGEN Model software (version 5.3). The results suggest that the mean temperature of the Caspian Sea region (Bandar-E-Anzali monitoring site) has increased by ca. 0.17°C per decade under the impacts of atmospheric carbon dioxide changes (r=0.21). The Caspian Sea water level has increased by ca. +36cm per decade (r=0.82) between the years 1951-2006. Mean results from all modeled scenarios indicate that the temperature will increase by ca. 3.64°C and precipitation will decrease by ca. 10% (182 mm) over the Caspian Sea, whilst in the Volga river basin, temperatures are projected to increase by ca. 4.78°C and precipitation increase by ca. 12% (58 mm) by the year 2100. Finally, statistical modeling of the Caspian Sea water levels project future water level increases of between 86 cm and 163 cm by the years 2075 and 2100, respectively.
Ih tunes theta/gamma oscillations and cross-frequency coupling in an in silico CA3 model.
Directory of Open Access Journals (Sweden)
Samuel A Neymotin
Full Text Available Ih channels are uniquely positioned to act as neuromodulatory control points for tuning hippocampal theta (4-12 Hz and gamma (25 Hz oscillations, oscillations which are thought to have importance for organization of information flow. contributes to neuronal membrane resonance and resting membrane potential, and is modulated by second messengers. We investigated oscillatory control using a multiscale computer model of hippocampal CA3, where each cell class (pyramidal, basket, and oriens-lacunosum moleculare cells, contained type-appropriate isoforms of . Our model demonstrated that modulation of pyramidal and basket allows tuning theta and gamma oscillation frequency and amplitude. Pyramidal also controlled cross-frequency coupling (CFC and allowed shifting gamma generation towards particular phases of the theta cycle, effected via 's ability to set pyramidal excitability. Our model predicts that in vivo neuromodulatory control of allows flexibly controlling CFC and the timing of gamma discharges at particular theta phases.
All-Atom Polarizable Force Field for DNA Based on the Classical Drude Oscillator Model
Savelyev, Alexey; MacKerell, Alexander D.
2014-01-01
Presented is a first generation atomistic force field for DNA in which electronic polarization is modeled based on the classical Drude oscillator formalism. The DNA model is based on parameters for small molecules representative of nucleic acids, including alkanes, ethers, dimethylphosphate, and the nucleic acid bases and empirical adjustment of key dihedral parameters associated with the phosphodiester backbone, glycosidic linkages and sugar moiety of DNA. Our optimization strategy is based on achieving a compromise between satisfying the properties of the underlying model compounds in the gas phase targeting QM data and reproducing a number of experimental properties of DNA duplexes in the condensed phase. The resulting Drude force field yields stable DNA duplexes on the 100 ns time scale and satisfactorily reproduces (1) the equilibrium between A and B forms of DNA and (2) transitions between the BI and BII sub-states of B form DNA. Consistency with the gas phase QM data for the model compounds is significantly better for the Drude model as compared to the CHARMM36 additive force field, which is suggested to be due to the improved response of the model to changes in the environment associated with the explicit inclusion of polarizability. Analysis of dipole moments associated with the nucleic acid bases shows the Drude model to have significantly larger values than those present in CHARMM36, with the dipoles of individual bases undergoing significant variations during the MD simulations. Additionally, the dipole moment of water was observed to be perturbed in the grooves of DNA. PMID:24752978
International Nuclear Information System (INIS)
Hudson, M.K.; Kotelnikov, A.D.; Li, X.; Lyon, J.G.; Roth, I.; Temerin, M.; Wygant, J.R.; Blake, J.B.; Gussenhoven, M.S.; Yumoto, K.; Shiokawa, K.
1996-01-01
The rapid formation of a new proton radiation belt at L≅2.5 following the March 24, 1991 Storm Sudden Commencement (SSC) observed at the CRRES satellite is modelled using a relativistic guiding center test particle code. The new radiation belt formed on a time scale shorter than the drift period of eg. 20 MeV protons. The SSC is modelled by a bipolar electric field and associated compression and relaxation in the magnetic field, superimposed on a background dipole magnetic field. The source population consists of solar protons that populated the outer magnetosphere during the solar proton event that preceeded the SSC and trapped inner zone protons. The simulations show that both populations contribute to drift echoes in the 20 endash 80 MeV range measured by the Aerospace instrument and in lower energy channels of the Protel instrument on CRRES, while primary contribution to the newly trapped population is from solar protons. Proton acceleration by the SSC differs from electron acceleration in two notable ways: different source populations contribute and nonrelativistic conservation of the first adiabatic invariant leads to greater energization of protons for a given decrease in L than for relativistic electrons. Model drift echoes, energy spectra and flux distribution in L at the time of injection compare well with CRRES observations. On the outbound pass, ∼2 hours after the SSC, the broad spectral peak of the new radiation belt extends to higher energies (20 endash 40 MeV) than immediately after formation. Electron flux oscillations observed at this later time are attributed to post-SSC impulses evident in ground magnetograms, while two minute period ULF oscillations also evident in CRRES field data appear to be cavity modes in the inner magnetosphere. copyright 1996 American Institute of Physics
Lashina, Elena A; Kaichev, Vasily V; Saraev, Andrey A; Vinokurov, Zakhar S; Chumakova, Nataliya A; Chumakov, Gennadii A; Bukhtiyarov, Valerii I
2017-09-21
The self-sustained kinetic oscillations in the oxidation of CH 4 over Ni foil have been studied at atmospheric pressure using an X-ray diffraction technique and mass spectrometry. It has been shown that the regular oscillations appear under oxygen-deficient conditions; CO, CO 2 , H 2 , and H 2 O are detected as the products. According to in situ X-ray diffraction measurements, nickel periodically oxidizes to NiO initiating the reaction-rate oscillations. To describe the oscillations, we have proposed a five-stage mechanism of the partial oxidation of methane over Ni and a corresponding three-variable kinetic model. The mechanism considers catalytic methane decomposition, dissociative adsorption of oxygen, transformation of chemisorbed oxygen to surface nickel oxide, and reaction of adsorbed carbon and oxygen species to form CO. Analysis of the kinetic model indicates that the competition of two processes, i.e., the oxidation and the carbonization of the catalyst surface, is the driving force of the self-sustained oscillations in the oxidation of methane. We have compared this mechanism with the detailed 18-stage mechanism described previously by Lashina et al. (Kinetics and Catalysis 2012, 53, 374-383). It has been shown that both kinetic mechanisms coupled with a continuous stirred-tank reactor model describe well the oscillatory behavior in the oxidation of methane under non-isothermal conditions.
Directory of Open Access Journals (Sweden)
Naziah Madani
2014-07-01
Full Text Available Latar belakang penelitian ini adalah pentingnya kajian mengenai MJO sebagai salah satu osilasi dominan di kawasan ekuator. Penelitian ini bertujuan untuk membuat model prediksi MJO berdasarkan analisis data WPR. Pada penelitian ini kejadian MJO diidentifikasi dari data kecepatan angin zonal pada lapisan 850 mb di kawasan Pontianak, Manado, dan Biak. Sebelum data angin zonal ini dimanfaatkan untuk melihat perilaku MJO, maka data angin tersebut terlebih dahulu dibandingkan dengan data indeks MJO yaitu RMM1 dan RMM2. RMM1 dan RMM2 merupakan sepasang indeks untuk memonitor kejadian MJO secara realtime. Hasil analisis Power Spectral Density (PSD data kecepatan angin zonal lapisan 850 mb menunjukkan adanya sinyal MJO kuat yang dicirikan dengan adanya osilasi sekitar 45 harian. Hasil korelasi dan regresi juga menunjukkan bahwa terdapat keterkaitan yang signifikan antara kedua data tersebut. Hal tersebut mengindikasikan bahwa data kecepatan angin zonal lapisan 850 mb dapat digunakan untuk analisis MJO. Pada penelitian ini, prediksi MJO didasarkan pada data kecepatan angin zonal menggunakan metode ARIMA Box-Jenkins. Melalui metode ini, model yang mendekati data deret waktu kecepatan angin zonal pada lapisan 850 mb di Pontianak adalah ARIMA(2,0,0, model prediksi untuk Manado adalah ARIMA(2,1,2, sedangkan untuk Biak adalah ARIMA(0,1,3. Model-model tersebut bermanfaat untuk melihat perilaku sinyal MJO pada data angin zonal berkaitan dengan pola curah hujan di wilayah kajian. Background of this research is to study the importance of MJO as one of the predominant peak oscillation in the equator area. This study aims to make prediction models of MJO based on the analysis of zonal wind speed data observed by WPR that compared by the MJO index data, namely RMM1 and RMM2. The results of PSD show strong MJO signal of 45 day periods oscillations. The result of corrrelation and regression analyses also show significant relationship between both data. Therefore
Decuyper, J.; De Troyer, T.; Runacres, M. C.; Tiels, K.; Schoukens, J.
2018-01-01
The flow-induced vibration of bluff bodies is an important problem of many marine, civil, or mechanical engineers. In the design phase of such structures, it is vital to obtain good predictions of the fluid forces acting on the structure. Current methods rely on computational fluid dynamic simulations (CFD), with a too high computational cost to be effectively used in the design phase or for control applications. Alternative methods use heuristic mathematical models of the fluid forces, but these lack the accuracy (they often assume the system to be linear) or flexibility to be useful over a wide operating range. In this work we show that it is possible to build an accurate, flexible and low-computational-cost mathematical model using nonlinear system identification techniques. This model is data driven: it is trained over a user-defined region of interest using data obtained from experiments or simulations, or both. Here we use a Van der Pol oscillator as well as CFD simulations of an oscillating circular cylinder to generate the training data. Then a discrete-time polynomial nonlinear state-space model is fit to the data. This model relates the oscillation of the cylinder to the force that the fluid exerts on the cylinder. The model is finally validated over a wide range of oscillation frequencies and amplitudes, both inside and outside the so-called lock-in region. We show that forces simulated by the model are in good agreement with the data obtained from CFD.
Farner, Snorre; Vergez, Christophe; Kergomard, Jean; Lizée, Aude
2006-03-01
The harmonic balance method (HBM) was originally developed for finding periodic solutions of electronical and mechanical systems under a periodic force, but has been adapted to self-sustained musical instruments. Unlike time-domain methods, this frequency-domain method does not capture transients and so is not adapted for sound synthesis. However, its independence of time makes it very useful for studying any periodic solution, whether stable or unstable, without care of particular initial conditions in time. A computer program for solving general problems involving nonlinearly coupled exciter and resonator, HARMBAL, has been developed based on the HBM. The method as well as convergence improvements and continuation facilities are thoroughly presented and discussed in the present paper. Applications of the method are demonstrated, especially on problems with severe difficulties of convergence: the Helmholtz motion (square signals) of single-reed instruments when no losses are taken into account, the reed being modeled as a simple spring.
Nature's Autonomous Oscillators
Mayr, H. G.; Yee, J.-H.; Mayr, M.; Schnetzler, R.
2012-01-01
Nonlinearity is required to produce autonomous oscillations without external time dependent source, and an example is the pendulum clock. The escapement mechanism of the clock imparts an impulse for each swing direction, which keeps the pendulum oscillating at the resonance frequency. Among nature's observed autonomous oscillators, examples are the quasi-biennial oscillation and bimonthly oscillation of the Earth atmosphere, and the 22-year solar oscillation. The oscillations have been simulated in numerical models without external time dependent source, and in Section 2 we summarize the results. Specifically, we shall discuss the nonlinearities that are involved in generating the oscillations, and the processes that produce the periodicities. In biology, insects have flight muscles, which function autonomously with wing frequencies that far exceed the animals' neural capacity; Stretch-activation of muscle contraction is the mechanism that produces the high frequency oscillation of insect flight, discussed in Section 3. The same mechanism is also invoked to explain the functioning of the cardiac muscle. In Section 4, we present a tutorial review of the cardio-vascular system, heart anatomy, and muscle cell physiology, leading up to Starling's Law of the Heart, which supports our notion that the human heart is also a nonlinear oscillator. In Section 5, we offer a broad perspective of the tenuous links between the fluid dynamical oscillators and the human heart physiology.
Directory of Open Access Journals (Sweden)
Hong-en Qu
2017-01-01
Full Text Available Essential tremor, also referred to as familial tremor, is an autosomal dominant genetic disease and the most common movement disorder. It typically involves a postural and motor tremor of the hands, head or other part of the body. Essential tremor is driven by a central oscillation signal in the brain. However, the corticospinal mechanisms involved in the generation of essential tremor are unclear. Therefore, in this study, we used a neural computational model that includes both monosynaptic and multisynaptic corticospinal pathways interacting with a propriospinal neuronal network. A virtual arm model is driven by the central oscillation signal to simulate tremor activity behavior. Cortical descending commands are classified as alpha or gamma through monosynaptic or multisynaptic corticospinal pathways, which converge respectively on alpha or gamma motoneurons in the spinal cord. Several scenarios are evaluated based on the central oscillation signal passing down to the spinal motoneurons via each descending pathway. The simulated behaviors are compared with clinical essential tremor characteristics to identify the corticospinal pathways responsible for transmitting the central oscillation signal. A propriospinal neuron with strong cortical inhibition performs a gating function in the generation of essential tremor. Our results indicate that the propriospinal neuronal network is essential for relaying the central oscillation signal and the production of essential tremor.
Qu, Hong-En; Niu, Chuanxin M; Li, Si; Hao, Man-Zhao; Hu, Zi-Xiang; Xie, Qing; Lan, Ning
2017-12-01
Essential tremor, also referred to as familial tremor, is an autosomal dominant genetic disease and the most common movement disorder. It typically involves a postural and motor tremor of the hands, head or other part of the body. Essential tremor is driven by a central oscillation signal in the brain. However, the corticospinal mechanisms involved in the generation of essential tremor are unclear. Therefore, in this study, we used a neural computational model that includes both monosynaptic and multisynaptic corticospinal pathways interacting with a propriospinal neuronal network. A virtual arm model is driven by the central oscillation signal to simulate tremor activity behavior. Cortical descending commands are classified as alpha or gamma through monosynaptic or multisynaptic corticospinal pathways, which converge respectively on alpha or gamma motoneurons in the spinal cord. Several scenarios are evaluated based on the central oscillation signal passing down to the spinal motoneurons via each descending pathway. The simulated behaviors are compared with clinical essential tremor characteristics to identify the corticospinal pathways responsible for transmitting the central oscillation signal. A propriospinal neuron with strong cortical inhibition performs a gating function in the generation of essential tremor. Our results indicate that the propriospinal neuronal network is essential for relaying the central oscillation signal and the production of essential tremor.
Kang, Guiyeom; Lowery, Madeleine M
2013-03-01
Growing evidence suggests that synchronized neural oscillations in the cortico-basal ganglia network may play a critical role in the pathophysiology of Parkinson's disease. In this study, a new model of the closed loop network is used to explore the generation and interaction of network oscillations and their suppression through deep brain stimulation (DBS). Under simulated dopamine depletion conditions, increased gain through the hyperdirect pathway resulted in the interaction of neural oscillations at different frequencies in the cortex and subthalamic nucleus (STN), leading to the emergence of synchronized oscillations at a new intermediate frequency. Further increases in synaptic gain resulted in the cortex driving synchronous oscillatory activity throughout the network. When DBS was added to the model a progressive reduction in STN power at the tremor and beta frequencies was observed as the frequency of stimulation was increased, with resonance effects occurring for low frequency DBS (40 Hz) in agreement with experimental observations. The results provide new insights into the mechanisms by which synchronous oscillations can arise within the network and how DBS may suppress unwanted oscillatory activity.
Energy Technology Data Exchange (ETDEWEB)
Fleifil, M.; Annaswamy, A.M.; Ghoneim, A.F. [Massachusetts Inst. of Technology, Cambridge, MA (United States); Ghoneim, Z.A. [Ain Shams Univ., Abassia (Egypt)
1996-09-01
Combustion instability is a resonance phenomenon that arises due to the coupling between the system acoustics and the unsteady heat release. The constructive feedback between the two processes, which is known to occur as a certain phase relationship between the pressure and the unsteady heat release rate is satisfied, depends on many parameters among which is the acoustic mode, the flame holder characteristics, and the dominant burning pattern. In this paper, the authors construct an analytical model to describe the dynamic response of a laminar premixed flame stabilized on the rim of a tube to velocity oscillation. They consider uniform and nonuniform velocity perturbations superimposed on a pipe flow velocity profile. The model results show that the magnitude of heat release perturbation and its phase with respect to the dynamic perturbation dependent primarily on the flame Strohal number, representing the ratio of the dominant frequency times the tube radius to the laminar burning velocity. In terms of this number, high-frequency perturbations pass through the flame while low frequencies lead to a strong response. The phase with respect to the velocity perturbation behaves in the opposite way. Results of this model are shown to agree with experimental observations and to be useful in determining how the combustion excited model is selected among all the acoustic unstable modes. The model is then used to obtain a time-domain differential equation describing the relationship between the velocity perturbation and the heat release response over the entire frequency range.
Hurwitz, Margaret M.; Oman, Luke David; Newman, Paul A.; Song, InSun
2013-01-01
A Goddard Earth Observing System Chemistry- Climate Model (GEOSCCM) simulation with strong tropical non-orographic gravity wave drag (GWD) is compared to an otherwise identical simulation with near-zero tropical non-orographic GWD. The GEOSCCM generates a quasibiennial oscillation (QBO) zonal wind signal in response to a tropical peak in GWD that resembles the zonal and climatological mean precipitation field. The modelled QBO has a frequency and amplitude that closely resembles observations. As expected, the modelled QBO improves the simulation of tropical zonal winds and enhances tropical and subtropical stratospheric variability. Also, inclusion of the QBO slows the meridional overturning circulation, resulting in a generally older stratospheric mean age of air. Slowing of the overturning circulation, changes in stratospheric temperature and enhanced subtropical mixing all affect the annual mean distributions of ozone, methane and nitrous oxide. Furthermore, the modelled QBO enhances polar stratospheric variability in winter. Because tropical zonal winds are easterly in the simulation without a QBO, there is a relative increase in tropical zonal winds in the simulation with a QBO. Extratropical differences between the simulations with and without a QBO thus reflect the westerly shift in tropical zonal winds: a relative strengthening of the polar stratospheric jet, polar stratospheric cooling and a weak reduction in Arctic lower stratospheric ozone.
Mathematical Modeling of Oscillating Water Columns Wave-Structure Interaction in Ocean Energy Plants
Directory of Open Access Journals (Sweden)
Aitor J. Garrido
2015-01-01
Full Text Available Oscillating Water Column (OWC-based power take-off systems are one of the potential solutions to the current energy problems arising from the use of nuclear fission and the consumption of fossil fuels. This kind of energy converter turns wave energy into electric power by means of three different stages: firstly wave energy is transformed into pneumatic energy in the OWC chamber, and then a turbine turns it into mechanical energy and finally the turbogenerator module attached to the turbine creates electric power from the rotational mechanical energy. To date, capture chambers have been the least studied part. In this context, this paper presents an analytical model describing the dynamic behavior of the capture chamber, encompassing the wave motion and its interaction with the OWC structure and turbogenerator module. The model is tested for the case of the Mutriku wave power plant by means of experimental results. For this purpose, representative case studies are selected from wave and pressure drop input-output data. The results show an excellent matching rate between the values predicted by the model and the experimental measured data with a small bounded error in all cases, so that the validity of the proposed model is proven.
On forced oscillations of a simple model for a novel wave energy converter
Orazov, Bayram
2011-05-11
The dynamics of a simple model for an ocean wave energy converter is discussed. The model for the converter is a hybrid system consisting of a pair of harmonically excited mass-spring-dashpot systems and a set of four state-dependent switching rules. Of particular interest is the response of the model to a wide spectrum of harmonic excitations. Partially because of the piecewise-smooth dynamics of the system, the response is far more interesting than the linear components of the model would suggest. As expected with hybrid systems of this type, it is difficult to establish analytical results, and hence, with the assistance of an extensive series of numerical integrations, an atlas of qualitative results on the limit cycles and other forms of bounded oscillations exhibited by the system is presented. In addition, the presence of unstable limit cycles, the stabilization of the unforced system using low-frequency excitation, the peculiar nature of the response of the system to high-frequency excitation, and the implications of these results on the energy harvesting capabilities of the wave energy converter are discussed. © 2011 Springer Science+Business Media B.V.
A Design Principle for a Posttranslational Biochemical Oscillator
Directory of Open Access Journals (Sweden)
Craig C. Jolley
2012-10-01
Full Text Available Multisite phosphorylation plays an important role in biological oscillators such as the circadian clock. Its general role, however, has been elusive. In this theoretical study, we show that a simple substrate with two modification sites acted upon by two opposing enzymes (e.g., a kinase and a phosphatase can show oscillations in its modification state. An unbiased computational analysis of this oscillator reveals two common characteristics: a unidirectional modification cycle and sequestering of an enzyme by a specific modification state. These two motifs cause a substrate to act as a coupled system in which a unidirectional cycle generates single-molecule oscillators, whereas sequestration synchronizes the population by limiting the available enzyme under conditions in which substrate is in excess. We also demonstrate the conditions under which the oscillation period is temperature compensated, an important feature of the circadian clock. This theoretical model will provide a framework for analyzing and synthesizing posttranslational oscillators.
Institute of Scientific and Technical Information of China (English)
应阳君; 黄祖洽
2001-01-01
Frequency catastrophe is found in a cell Ca2+ nonlinear oscillation model with time delay. The relation of the frequency transition to the time delay is studied by numerical simulations and theoretical analysis. There is a range of parameters in which two kinds of attractors with great frequency differences co-exist in the system. Along with parameter changes, a critical phenomenon occurs and the oscillation frequency changes greatly. This mechanism helps us to deepen the understanding of the complex dynamics of delay systems, and might be of some meaning in cell signalling.
The natural oscillation of two types of ENSO events based on analyses of CMIP5 model control runs
Xu, Kang; Su, Jingzhi; Zhu, Congwen
2014-07-01
The eastern- and central-Pacific El Niño-Southern Oscillation (EP- and CP-ENSO) have been found to be dominant in the tropical Pacific Ocean, and are characterized by interannual and decadal oscillation, respectively. In the present study, we defined the EP- and CP-ENSO modes by singular value decomposition (SVD) between SST and sea level pressure (SLP) anomalous fields. We evaluated the natural features of these two types of ENSO modes as simulated by the pre-industrial control runs of 20 models involved in phase five of the Coupled Model Intercomparison Project (CMIP5). The results suggested that all the models show good skill in simulating the SST and SLP anomaly dipolar structures for the EP-ENSO mode, but only 12 exhibit good performance in simulating the tripolar CP-ENSO modes. Wavelet analysis suggested that the ensemble principal components in these 12 models exhibit an interannual and multi-decadal oscillation related to the EP- and CP-ENSO, respectively. Since there are no changes in external forcing in the pre-industrial control runs, such a result implies that the decadal oscillation of CP-ENSO is possibly a result of natural climate variability rather than external forcing.
Energy Technology Data Exchange (ETDEWEB)
Arzel, Olivier [The University of New South Wales, Climate Change Research Centre (CCRC), Sydney (Australia); Universite de Bretagne Occidentale, Laboratoire de Physique des Oceans (LPO), Brest (France); England, Matthew H. [The University of New South Wales, Climate Change Research Centre (CCRC), Sydney (Australia); Verdiere, Alain Colin de; Huck, Thierry [Universite de Bretagne Occidentale, Laboratoire de Physique des Oceans (LPO), Brest (France)
2012-07-15
The origin and bifurcation structure of abrupt millennial-scale climate transitions under steady external solar forcing and in the absence of atmospheric synoptic variability is studied by means of a global coupled model of intermediate complexity. We show that the origin of Dansgaard-Oeschger type oscillations in the model is caused by the weaker northward oceanic heat transport in the Atlantic basin. This is in agreement with previous studies realized with much simpler models, based on highly idealized geometries and simplified physics. The existence of abrupt millennial-scale climate transitions during glacial times can therefore be interpreted as a consequence of the weakening of the negative temperature-advection feedback. This is confirmed through a series of numerical experiments designed to explore the sensitivity of the bifurcation structure of the Atlantic meridional overturning circulation to increased atmospheric CO{sub 2} levels under glacial boundary conditions. Contrasting with the cold, stadial, phases of millennial oscillations, we also show the emergence of strong interdecadal variability in the North Atlantic sector during warm interstadials. The instability driving these interdecadal-interstadial oscillations is shown to be identical to that found in ocean-only models forced by fixed surface buoyancy fluxes, that is, a large-scale baroclinic instability developing in the vicinity of the western boundary current in the North Atlantic. Comparisons with modern observations further suggest a physical mechanism similar to that driving the 30-40 years time scale associated with the Atlantic multidecadal oscillation. (orig.)
CSIR Research Space (South Africa)
Turner, GR
2014-09-01
Full Text Available A one-dimensional electrostatic sheet model of a coaxial geometry Virtual Cathode Oscillator (VCO) is presented. The cathode is centrally located and connects to a peripherally located plate electrode to form a resonant cavity, and is thus...
Courbin, L.; Benayad, A.; Panizza, P.
2006-01-01
By means of several rheophysics techniques, we report on an extensive study of the couplings between flow and microstructures in a two-phase fluid made of lamellar (Lα) and sponge (L3) phases. Depending on the nature of the imposed dynamical parameter (stress or shear rate) and on the experimental conditions (brine salinity or temperature), we observe several different structural steady states consisting of either multilamellar droplets (with or without a long range order) or elongated (L3) phase domains. Two different astonishing phenomena, shear-induced phase inversion and relaxation oscillations, are observed. We show that (i) phase inversion is related to a shear-induced topological change between monodisperse multilamellar droplets and elongated structures and (ii) droplet size relaxation oscillations result from a shear-induced change of the surface tension between both coexisting (Lα) and (L3) phases. To explain these relaxation oscillations, we present a phenomenological model and compare its numerical predictions to our experimental results.
Sun, Cheng; Li, Jianping; Kucharski, Fred; Xue, Jiaqing; Li, Xiang
2018-04-01
The spatial structure of Atlantic multidecadal oscillation (AMO) is analyzed and compared between the observations and simulations from slab ocean models (SOMs) and fully coupled models. The observed sea surface temperature (SST) pattern of AMO is characterized by a basin-wide monopole structure, and there is a significantly high degree of spatial coherence of decadal SST variations across the entire North Atlantic basin. The observed SST anomalies share a common decadal-scale signal, corresponding to the basin-wide average (i. e., the AMO). In contrast, the simulated AMO in SOMs (AMOs) exhibits a tripole-like structure, with the mid-latitude North Atlantic SST showing an inverse relationship with other parts of the basin, and the SOMs fail to reproduce the observed strong spatial coherence of decadal SST variations associated with the AMO. The observed spatial coherence of AMO SST anomalies is identified as a key feature that can be used to distinguish the AMO mechanism. The tripole-like SST pattern of AMOs in SOMs can be largely explained by the atmosphere-forced thermodynamics mechanism due to the surface heat flux changes associated with the North Atlantic Oscillation (NAO). The thermodynamic forcing of AMOs by the NAO gives rise to a simultaneous inverse NAO-AMOs relationship at both interannual and decadal timescales and a seasonal phase locking of the AMOs variability to the cold season. However, the NAO-forced thermodynamics mechanism cannot explain the observed NAO-AMO relationship and the seasonal phase locking of observed AMO variability to the warm season. At decadal timescales, a strong lagged relationship between NAO and AMO is observed, with the NAO leading by up to two decades, while the simultaneous correlation of NAO with AMO is weak. This lagged relationship and the spatial coherence of AMO can be well understood from the view point of ocean dynamics. A time-integrated NAO index, which reflects the variations in Atlantic meridional overturning
A novel optogenetically tunable frequency modulating oscillator.
Directory of Open Access Journals (Sweden)
Tarun Mahajan
Full Text Available Synthetic biology has enabled the creation of biological reconfigurable circuits, which perform multiple functions monopolizing a single biological machine; Such a system can switch between different behaviours in response to environmental cues. Previous work has demonstrated switchable dynamical behaviour employing reconfigurable logic gate genetic networks. Here we describe a computational framework for reconfigurable circuits in E.coli using combinations of logic gates, and also propose the biological implementation. The proposed system is an oscillator that can exhibit tunability of frequency and amplitude of oscillations. Further, the frequency of operation can be changed optogenetically. Insilico analysis revealed that two-component light systems, in response to light within a frequency range, can be used for modulating the frequency of the oscillator or stopping the oscillations altogether. Computational modelling reveals that mixing two colonies of E.coli oscillating at different frequencies generates spatial beat patterns. Further, we show that these oscillations more robustly respond to input perturbations compared to the base oscillator, to which the proposed oscillator is a modification. Compared to the base oscillator, the proposed system shows faster synchronization in a colony of cells for a larger region of the parameter space. Additionally, the proposed oscillator also exhibits lesser synchronization error in the transient period after input perturbations. This provides a strong basis for the construction of synthetic reconfigurable circuits in bacteria and other organisms, which can be scaled up to perform functions in the field of time dependent drug delivery with tunable dosages, and sets the stage for further development of circuits with synchronized population level behaviour.
Directory of Open Access Journals (Sweden)
Elena eCid
2014-04-01
Full Text Available Developmental cortical malformations comprise a large spectrum of histopathological brain abnormalities and syndromes. Their genetic, developmental and clinical complexity suggests they should be better understood in terms of the complementary action of independently timed perturbations (i.e. the multiple-hit hypothesis. However, understanding the underlying biological processes remains puzzling. Here we induced developmental cortical malformations in offspring, after intraventricular injection of methylazoxymethanol (MAM in utero in mice. We combined extensive histological and electrophysiological studies to characterize the model. We found that MAM injections at E14 and E15 induced a range of cortical and hippocampal malformations resembling histological alterations of specific genetic mutations and transplacental mitotoxic agent injections. However, in contrast to most of these models, intraventricularly MAM-injected mice remained asymptomatic and showed no clear epilepsy-related phenotype as tested in long-term chronic recordings and with pharmacological manipulations. Instead, they exhibited a non-specific reduction of hippocampal-related brain oscillations (mostly in CA1; including theta, gamma and HFOs; and enhanced thalamocortical spindle activity during non-REM sleep. These data suggest that developmental cortical malformations do not necessarily correlate with epileptiform activity. We propose that the intraventricular in utero MAM approach exhibiting a range of rhythmopathies is a suitable model for multiple-hit studies of associated neurological disorders.
Energy Technology Data Exchange (ETDEWEB)
Ajayamohan, R.S. [University of Victoria, Canadian Centre for Climate Modelling and Analysis, P.O. Box 3065, Victoria, BC (Canada); Annamalai, H.; Hafner, Jan [University of Hawaii, International Pacific Research Center, Honolulu (United States); Luo, Jing-Jia [Japan Agency for Marine-Earth Science and Technology, Frontier Research Centre for Global Change, Yokohama (Japan); Yamagata, Toshio [Japan Agency for Marine-Earth Science and Technology, Frontier Research Centre for Global Change, Yokohama (Japan); The University of Tokyo, Department of Earth and Planetary Science, Tokyo (Japan)
2011-09-15
The study compares the simulated poleward migration characteristics of boreal summer intraseasonal oscillations (BSISO) in a suite of coupled ocean-atmospheric model sensitivity integrations. The sensitivity experiments are designed in such a manner to allow full coupling in specific ocean basins but forced by temporally varying monthly climatological sea surface temperature (SST) adopted from the fully coupled model control runs (ES10). While the local air-sea interaction is suppressed in the tropical Indian Ocean and allowed in the other oceans in the ESdI run, it is suppressed in the tropical Pacific and allowed in the other oceans in the ESdP run. Our diagnostics show that the basic mean state in precipitation and easterly vertical shear as well as the BSISO properties remain unchanged due to either inclusion or exclusion of local air-sea interaction. In the presence of realistic easterly vertical shear, the continuous emanation of Rossby waves from the equatorial convection is trapped over the monsoon region that enables the poleward propagation of BSISO anomalies in all the model sensitivity experiments. To explore the internal processes that maintain the tropospheric moisture anomalies ahead of BSISO precipitation anomalies, moisture and moist static energy budgets are performed. In all model experiments, advection of anomalous moisture by climatological winds anchors the moisture anomalies that in turn promote the northward migration of BSISO precipitation. While the results indicate the need for realistic simulation of all aspects of the basic state, our model results need to be taken with caution because in the ECHAM family of coupled models the internal variance at intraseasonal timescales is indeed very high, and therefore local air-sea interactions may not play a pivotal role. (orig.)
Steyn-Ross, Moira L.; Steyn-Ross, D. A.; Sleigh, J. W.
2013-04-01
Electrical recordings of brain activity during the transition from wake to anesthetic coma show temporal and spectral alterations that are correlated with gross changes in the underlying brain state. Entry into anesthetic unconsciousness is signposted by the emergence of large, slow oscillations of electrical activity (≲1Hz) similar to the slow waves observed in natural sleep. Here we present a two-dimensional mean-field model of the cortex in which slow spatiotemporal oscillations arise spontaneously through a Turing (spatial) symmetry-breaking bifurcation that is modulated by a Hopf (temporal) instability. In our model, populations of neurons are densely interlinked by chemical synapses, and by interneuronal gap junctions represented as an inhibitory diffusive coupling. To demonstrate cortical behavior over a wide range of distinct brain states, we explore model dynamics in the vicinity of a general-anesthetic-induced transition from “wake” to “coma.” In this region, the system is poised at a codimension-2 point where competing Turing and Hopf instabilities coexist. We model anesthesia as a moderate reduction in inhibitory diffusion, paired with an increase in inhibitory postsynaptic response, producing a coma state that is characterized by emergent low-frequency oscillations whose dynamics is chaotic in time and space. The effect of long-range axonal white-matter connectivity is probed with the inclusion of a single idealized point-to-point connection. We find that the additional excitation from the long-range connection can provoke seizurelike bursts of cortical activity when inhibitory diffusion is weak, but has little impact on an active cortex. Our proposed dynamic mechanism for the origin of anesthetic slow waves complements—and contrasts with—conventional explanations that require cyclic modulation of ion-channel conductances. We postulate that a similar bifurcation mechanism might underpin the slow waves of natural sleep and comment on the
Directory of Open Access Journals (Sweden)
Moira L. Steyn-Ross
2013-05-01
Full Text Available Electrical recordings of brain activity during the transition from wake to anesthetic coma show temporal and spectral alterations that are correlated with gross changes in the underlying brain state. Entry into anesthetic unconsciousness is signposted by the emergence of large, slow oscillations of electrical activity (≲1 Hz similar to the slow waves observed in natural sleep. Here we present a two-dimensional mean-field model of the cortex in which slow spatiotemporal oscillations arise spontaneously through a Turing (spatial symmetry-breaking bifurcation that is modulated by a Hopf (temporal instability. In our model, populations of neurons are densely interlinked by chemical synapses, and by interneuronal gap junctions represented as an inhibitory diffusive coupling. To demonstrate cortical behavior over a wide range of distinct brain states, we explore model dynamics in the vicinity of a general-anesthetic-induced transition from “wake” to “coma.” In this region, the system is poised at a codimension-2 point where competing Turing and Hopf instabilities coexist. We model anesthesia as a moderate reduction in inhibitory diffusion, paired with an increase in inhibitory postsynaptic response, producing a coma state that is characterized by emergent low-frequency oscillations whose dynamics is chaotic in time and space. The effect of long-range axonal white-matter connectivity is probed with the inclusion of a single idealized point-to-point connection. We find that the additional excitation from the long-range connection can provoke seizurelike bursts of cortical activity when inhibitory diffusion is weak, but has little impact on an active cortex. Our proposed dynamic mechanism for the origin of anesthetic slow waves complements—and contrasts with—conventional explanations that require cyclic modulation of ion-channel conductances. We postulate that a similar bifurcation mechanism might underpin the slow waves of natural
The Madden-Julian oscillation in ECHAM4 coupled and uncoupled general circulation models
Energy Technology Data Exchange (ETDEWEB)
Sperber, Kenneth R. [Lawrence Livermore National Laboratory, Program for Climate Model Diagnosis and Intercomparison, Livermore, CA (United States); Gualdi, Silvio [National Institute of Geophysics and Volcanology, Bologna (Italy); Legutke, Stephanie; Gayler, Veronika [Max Planck Institute of Meteorology, Models and Data Group, Hamburg (Germany)
2005-08-01
The Madden-Julian oscillation (MJO) dominates tropical variability on timescales of 30-70 days. During the boreal winter/spring, it is manifested as an eastward propagating disturbance, with a strong convective signature over the eastern hemisphere. The space-time structure of the MJO is analyzed using simulations with the ECHAM4 atmospheric general circulation model run with observed monthly mean sea-surface temperatures (SSTs), and coupled to three different ocean models. The coherence of the eastward propagation of MJO convection is sensitive to the ocean model to which ECHAM4 is coupled. For ECHAM4/OPYC and ECHO-G, models for which 100 years of daily data is available, Monte Carlo sampling indicates that their metrics of eastward propagation are different at the 1% significance level. The flux-adjusted coupled simulations, ECHAM4/OPYC and ECHO-G, maintain a more realistic mean-state, and have a more realistic MJO simulation than the nonadjusted scale interaction experiment (SINTEX) coupled runs. The SINTEX model exhibits a cold bias in Indian Ocean and tropical West Pacific Ocean sea-surface temperature of 0.5 C. This cold bias affects the distribution of time-mean convection over the tropical eastern hemisphere. Furthermore, the eastward propagation of MJO convection in this model is not as coherent as in the two models that used flux adjustment or when compared to an integration of ECHAM4 with prescribed observed SST. This result suggests that simulating a realistic basic state is at least as important as air-sea interaction for organizing the MJO. While all of the coupled models simulate the warm (cold) SST anomalies that precede (succeed) the MJO convection, the interaction of the components of the net surface heat flux that lead to these anomalies are different over the Indian Ocean. The ECHAM4/OPYC model in which the atmospheric model is run at a horizontal resolution of T42, has eastward propagating zonal wind anomalies and latent heat flux anomalies
Characteristics of Oscillating Flames in a Coaxial Confined Jet
Directory of Open Access Journals (Sweden)
Min Suk Cha
2010-12-01
Full Text Available Flame characteristics when a non-premixed n-butane jet is ejected into a coaxial cylindrical tube are investigated experimentally. Flame stability depends mainly on the characteristics of flame propagation as well as air entrainment which depend on the jet momentum and on the distance between the nozzle exit and the base of a confined tube. As flow rate increases, the flame lifts off from a nozzle attached diffusion flame and a stationary lifted flame can be stabilized. The liftoff height increases nearly linearly with the average velocity at the nozzle exit. The lifted flame has a tribrachial flame structure, which consists of a rich premixed flame, a lean premixed flame, and a diffusion flame, all extending from a single location. As flow rate further increases, periodically oscillating flames are observed inside the confined tube. Once flame oscillation occurs, the flame undergoes relatively stable oscillation such that it has nearly constant oscillation amplitude and frequency. The criteria of flame oscillation are mapped as functions of nozzle diameter, the distance between nozzle and tube, and jet velocity. This type of flame oscillation can be characterized by Strouhal number in terms of flame oscillation amplitude, frequency, and jet velocity. Buoyancy driven flame oscillation which is one of the viable mechanism for flame oscillation is modeled and the results agrees qualitatively with experimental results, suggesting that the oscillation is due to periodic blowoff and flashback under the influence of buoyancy.
Rapid and Sustained Nuclear-Cytoplasmic ERK Oscillations Induced by Epidermal Growth Factor
Energy Technology Data Exchange (ETDEWEB)
Shankaran, Harish; Ippolito, Danielle L.; Chrisler, William B.; Resat, Haluk; Bollinger, Nikki; Opresko, Lee K.; Wiley, H. S.
2009-12-01
Mathematical modeling has predicted that ERK activity should oscillate in response to cell stimulation, but this has never been observed. To explore this inconsistency, we expressed an ERK1-GFP fusion protein in mammary epithelial cells. Following EGF stimulation, we observed rapid and continuous ERK oscillations between the nucleus and cytoplasm with a periodicity of approximately 15 minutes. These oscillations were remarkably persistent (>45 cycles), displayed an asymmetric waveform, and were highly dependent on cell density, essentially disappearing at confluency. We conclude that the ERK pathway is an intrinsic oscillator. Although the functional implications of the observed oscillations are uncertain, this property can be used to continuously monitor ERK activity in single cells.
Energy Technology Data Exchange (ETDEWEB)
Aguilar-Lopez, Ricardo [Division de Ciencias Basicas e Ingenieria, Universidad Autonoma Metropolitana, Av. San Pablo No. 180, Reynosa-Tamaulipas, 02200, Azcapotzalco, Mexico D.F. (Mexico)], E-mail: raguilar@correo.azc.uam.mx; Martinez-Guerra, Rafael [Departamento de Control Automatico, CINVESTAV-IPN, Apartado Postal 14-740, 07360 Mexico D.F. (Mexico)], E-mail: rguerra@ctrl.cinvestav.mx
2008-10-15
The goal of this work is related with the control of chaotic oscillators for chaos suppression and synchronization purposes. The proposed methodology is related with a class of robust active control (RAC) law, where the stabilizing part of the control structure is related with an integral high order sliding-mode and proportional form of the so-called control error. The proposed controller is applied to chaos suppression, synchronization and anti-synchronization tasks for nonlinear oscillators with different order and structure. Numerical experiments illustrate the satisfactory performance of the proposed methodology, when it is applied to Duffing and Chen oscillators.
International Nuclear Information System (INIS)
Aguilar-Lopez, Ricardo; Martinez-Guerra, Rafael
2008-01-01
The goal of this work is related with the control of chaotic oscillators for chaos suppression and synchronization purposes. The proposed methodology is related with a class of robust active control (RAC) law, where the stabilizing part of the control structure is related with an integral high order sliding-mode and proportional form of the so-called control error. The proposed controller is applied to chaos suppression, synchronization and anti-synchronization tasks for nonlinear oscillators with different order and structure. Numerical experiments illustrate the satisfactory performance of the proposed methodology, when it is applied to Duffing and Chen oscillators
N-anti N oscillation in SO(10) and SU(6) supersymmetric grand unified models
International Nuclear Information System (INIS)
Fujimoto, Y.; Zhiyong, Z.
1982-06-01
N-anti N oscillation in SO(10) and SU(6) S.G.U.M. is considered. We find a new type of diagram leading to a faster oscillation rate than in non-supersymmetric case. It is also noted that in SO(10) S.G.U.M. with intermediate SU(4)sub(C)xSU(2)sub(L)xSU(2)sub(R) symmetry N-anti N oscillation would be highly suppressed, which may not necessarily be the case for SU(6) S.G.U.M. (author)
A PK-PD model of ketamine-induced high-frequency oscillations
Flores, Francisco J.; Ching, ShiNung; Hartnack, Katharine; Fath, Amanda B.; Purdon, Patrick L.; Wilson, Matthew A.; Brown, Emery N.
2015-10-01
Objective. Ketamine is a widely used drug with clinical and research applications, and also known to be used as a recreational drug. Ketamine produces conspicuous changes in the electrocorticographic (ECoG) signals observed both in humans and rodents. In rodents, the intracranial ECoG displays a high-frequency oscillation (HFO) which power is modulated nonlinearly by ketamine dose. Despite the widespread use of ketamine there is no model description of the relationship between the pharmacokinetic-pharmacodynamics (PK-PDs) of ketamine and the observed HFO power. Approach. In the present study, we developed a PK-PD model based on estimated ketamine concentration, its known pharmacological actions, and observed ECoG effects. The main pharmacological action of ketamine is antagonism of the NMDA receptor (NMDAR), which in rodents is accompanied by an HFO observed in the ECoG. At high doses, however, ketamine also acts at non-NMDAR sites, produces loss of consciousness, and the transient disappearance of the HFO. We propose a two-compartment PK model that represents the concentration of ketamine, and a PD model based in opposing effects of the NMDAR and non-NMDAR actions on the HFO power. Main results. We recorded ECoG from the cortex of rats after two doses of ketamine, and extracted the HFO power from the ECoG spectrograms. We fit the PK-PD model to the time course of the HFO power, and showed that the model reproduces the dose-dependent profile of the HFO power. The model provides good fits even in the presence of high variability in HFO power across animals. As expected, the model does not provide good fits to the HFO power after dosing the pure NMDAR antagonist MK-801. Significance. Our study provides a simple model to relate the observed electrophysiological effects of ketamine to its actions at the molecular level at different concentrations. This will improve the study of ketamine and rodent models of schizophrenia to better understand the wide and divergent
An Application of the Harmonic Oscillator Model to Verify Dunning’s Theory of the Economic Growth
Directory of Open Access Journals (Sweden)
Marcin Salamaga
2013-09-01
Full Text Available Analogies with mechanisms ruling the natural world have oft en been sought in the course of economic phenomena.Th is paper is also an attempt to combine the physical phenomenon of a harmonious oscillator withthe theory of economic growth by J. H. Dunning (1981. In his theory, Dunning distinguished stages of economicgrowth of countries that imply the dependency between the investment position of countries and theirGDP per capita, while the graph presenting this dependency reminds a trajectory of oscillating motion of adamped harmonic oscillator. Th is analogy has given inspiration to reinterpret the theory of economy on thegrounds of the mechanism of a physical model. In this paper, the harmonious oscillator motion equation wasadapted to the description of dependencies shown in the theory of economic growth by J. H. Dunning. Th emathematical solution of this equation is properly parameterised and parameters are estimated with the useof the Gauss-Newton algorithm. Th e main objective of this paper is to allocate a specifi c stage in the economicgrowth to each country on the basis of the values of parameter estimations of the proposed cyclical models ofchanges in the net investment indicator.
Sustainability, collapse and oscillations in a simple World-Earth model
Nitzbon, Jan; Heitzig, Jobst; Parlitz, Ulrich
2017-07-01
The Anthropocene is characterized by close interdependencies between the natural Earth system and the global human society, posing novel challenges to model development. Here we present a conceptual model describing the long-term co-evolution of natural and socio-economic subsystems of Earth. While the climate is represented via a global carbon cycle, we use economic concepts to model socio-metabolic flows of biomass and fossil fuels between nature and society. A well-being-dependent parametrization of fertility and mortality governs human population dynamics. Our analysis focuses on assessing possible asymptotic states of the Earth system for a qualitative understanding of its complex dynamics rather than quantitative predictions. Low dimension and simple equations enable a parameter-space analysis allowing us to identify preconditions of several asymptotic states and hence fates of humanity and planet. These include a sustainable co-evolution of nature and society, a global collapse and everlasting oscillations. We consider different scenarios corresponding to different socio-cultural stages of human history. The necessity of accounting for the ‘human factor’ in Earth system models is highlighted by the finding that carbon stocks during the past centuries evolved opposing to what would ‘naturally’ be expected on a planet without humans. The intensity of biomass use and the contribution of ecosystem services to human well-being are found to be crucial determinants of the asymptotic state in a (pre-industrial) biomass-only scenario without capital accumulation. The capitalistic, fossil-based scenario reveals that trajectories with fundamentally different asymptotic states might still be almost indistinguishable during even a centuries-long transient phase. Given current human population levels, our study also supports the claim that besides reducing the global demand for energy, only the extensive use of renewable energies may pave the way into a
Romanova, Taisiia A.; Knyazev, Dmitry A.; Wang, Zhaosheng; Sadakov, Andrey V.; Prudkoglyad, Valery A.
2018-05-01
We report Shubnikov-de Haas (SdH) and Hall oscillations in Cu-doped high quality bismuth selenide single crystals. To increase the accuracy of Berry phase determination by means of the of the SdH oscillations phase analysis we present a study of n-type samples with bulk carrier density n ∼1019 -1020cm-3 at high magnetic field up to 60 Tesla. In particular, Landau level fan diagram starting from the value of the Landau index N = 4 was plotted. Thus, from our data we found π-Berry phase that directly indicates the Dirac nature of the carriers in three-dimensional topological insulator (3D TI) based on Cu-doped bismuth selenide. We argued that in our samples the magnetotransport is determined by a general group of carriers that exhibit quasi-two-dimensional (2D) behaviour and are characterized by topological π-Berry phase. Along with the main contribution to the conductivity the presence of a small group of bulk carriers was registered. For 3D-pocket Berry phase was identified as zero, which is a characteristic of trivial metallic states.
Mathematical model of rod oscillations with account of material relaxation behaviour
Kudinov, I. V.; Kudinov, V. A.; Eremin, A. V.; Zhukov, V. V.
2018-03-01
Taking into account the bounded velocity of strains and deformations propagation in the formula given in the Hooke’s law, the authors have obtained the differential equation of rod damped oscillations that includes the first and the third time derivatives of displacement as well as the mixed derivative (with respect to space and time variables). Study of its precise analytical solution found by means of separation of variables has shown that rod recovery after being disturbed is accompanied by low-amplitude damped oscillations that occur at the start time and only within the range of positive displacement values. The oscillations amplitude decreases with increase of relaxation factor. Rod is recovered virtually without an oscillating process both in the limit and with any high values of the relaxation factor.
Marine Mammals as Models for Cost Efficient AUVs: Specifications of Oscillating Hydrofoils
National Research Council Canada - National Science Library
Williams, Terrie
2004-01-01
...), California sea lions (Zalophus californianus), river otters (Lontra canadensis), and sea otters (Enhydra lutris) to assess the mechanical operation and energetic cost of oscillating hydrofoils performing in controlled environments...
Memory as the "whole brain work": a large-scale model based on "oscillations in super-synergy".
Başar, Erol
2005-01-01
According to recent trends, memory depends on several brain structures working in concert across many levels of neural organization; "memory is a constant work-in progress." The proposition of a brain theory based on super-synergy in neural populations is most pertinent for the understanding of this constant work in progress. This report introduces a new model on memory basing on the processes of EEG oscillations and Brain Dynamics. This model is shaped by the following conceptual and experimental steps: 1. The machineries of super-synergy in the whole brain are responsible for formation of sensory-cognitive percepts. 2. The expression "dynamic memory" is used for memory processes that evoke relevant changes in alpha, gamma, theta and delta activities. The concerted action of distributed multiple oscillatory processes provides a major key for understanding of distributed memory. It comprehends also the phyletic memory and reflexes. 3. The evolving memory, which incorporates reciprocal actions or reverberations in the APLR alliance and during working memory processes, is especially emphasized. 4. A new model related to "hierarchy of memories as a continuum" is introduced. 5. The notions of "longer activated memory" and "persistent memory" are proposed instead of long-term memory. 6. The new analysis to recognize faces emphasizes the importance of EEG oscillations in neurophysiology and Gestalt analysis. 7. The proposed basic framework called "Memory in the Whole Brain Work" emphasizes that memory and all brain functions are inseparable and are acting as a "whole" in the whole brain. 8. The role of genetic factors is fundamental in living system settings and oscillations and accordingly in memory, according to recent publications. 9. A link from the "whole brain" to "whole body," and incorporation of vegetative and neurological system, is proposed, EEG oscillations and ultraslow oscillations being a control parameter.
International Nuclear Information System (INIS)
Rodrigues, R. de Lima
2007-01-01
In the present work we obtain a new representation for the Dirac oscillator based on the Clifford algebra C 7. The symmetry breaking and the energy eigenvalues for our model of the Dirac oscillator are studied in the non-relativistic limit. (author)
Sadeghi, F.; Ansari, R.; Darvizeh, M.
2016-02-01
Research concerning the fabrication of nano-oscillators with operating frequency in the gigahertz (GHz) range has become a focal point in recent years. In this paper, a new type of GHz oscillators is introduced based on a C60 fullerene inside a cyclic peptide nanotube (CPN). To study the dynamic behavior of such nano-oscillators, using the continuum approximation in conjunction with the 6-12 Lennard-Jones (LJ) potential function, analytical expressions are derived to determine the van der Waals (vdW) potential energy and interaction force between the two interacting molecules. Employing Newton's second law, the equation of motion is solved numerically to arrive at the telescopic oscillatory motion of a C60 fullerene inside CPNs. It is shown that the fullerene molecule exhibits different kinds of oscillation inside peptide nanotubes which are sensitive to the system parameters. Furthermore, for the precise evaluation of the oscillation frequency, a novel semi-analytical expression is proposed based on the conservation of the mechanical energy principle. Numerical results are presented to comprehensively study the effects of the number of peptide units and initial conditions (initial separation distance and velocity) on the oscillatory behavior of C60 -CPN oscillators. It is found out that for peptide nanotubes comprised of one unit, the maximum achievable frequency is obtained when the inner core oscillates with respect to its preferred positions located outside the tube, while for other numbers of peptide units, such frequency is obtained when the inner core oscillates with respect to the preferred positions situated in the space between the two first or the two last units. It is further found out that four peptide units are sufficient to obtain the optimal frequency.
Directory of Open Access Journals (Sweden)
Gimara Rajapakse
2017-10-01
Full Text Available Despite the predictability and availability at large scale, wave energy conversion (WEC has still not become a mainstream renewable energy technology. One of the main reasons is the large variations in the extracted power which could lead to instabilities in the power grid. In addition, maintaining the speed of the turbine within optimal range under changing wave conditions is another control challenge, especially in oscillating water column (OWC type WEC systems. As a solution to the first issue, this paper proposes the direct connection of a battery bank into the dc-link of the back-to-back power converter system, thereby smoothening the power delivered to the grid. For the second issue, model predictive controllers (MPCs are developed for the rectifier and the inverter of the back-to-back converter system aiming to maintain the turbine speed within its optimum range. In addition, MPC controllers are designed to control the battery current as well, in both charging and discharging conditions. Operations of the proposed battery direct integration scheme and control solutions are verified through computer simulations. Simulation results show that the proposed integrated energy storage and control solutions are capable of delivering smooth power to the grid while maintaining the turbine speed within its optimum range under varying wave conditions.
Kinetic Ising model in a time-dependent oscillating external magnetic field: effective-field theory
International Nuclear Information System (INIS)
Deviren, Bayram; Canko, Osman; Keskin, Mustafa
2010-01-01
Recently, Shi et al. [2008 Phys. Lett. A 372 5922] have studied the dynamical response of the kinetic Ising model in the presence of a sinusoidal oscillating field and presented the dynamic phase diagrams by using an effective-field theory (EFT) and a mean-field theory (MFT). The MFT results are in conflict with those of the earlier work of Tomé and de Oliveira, [1990 Phys. Rev. A 41 4251]. We calculate the dynamic phase diagrams and find that our results are similar to those of the earlier work of Tomé and de Oliveira; hence the dynamic phase diagrams calculated by Shi et al. are incomplete within both theories, except the low values of frequencies for the MFT calculation. We also investigate the influence of external field frequency (ω) and static external field amplitude (h 0 ) for both MFT and EFT calculations. We find that the behaviour of the system strongly depends on the values of ω and h 0 . (general)
Parekh, Anant
2017-04-07
This study reports the improvement in the predictability of circulation and precipitation associated with monsoon intraseasonal oscillations (MISO) when the initial state is produced by assimilating Atmospheric Infrared Sounder (AIRS) retrieved temperature and water vapour profiles in Weather Research Forecast (WRF) model. Two separate simulations are carried out for nine years (2003 to 2011) . In the first simulation, forcing is from National Centers for Environmental Prediction (NCEP, CTRL) and in the second, apart from NCEP forcing, AIRS temperature and moisture profiles are assimilated (ASSIM). Ten active and break cases are identified from each simulation. Three dimensional temperature states of identified active and break cases are perturbed using twin perturbation method and carried out predictability tests. Analysis reveals that the limit of predictability of low level zonal wind is improved by four (three) days during active (break) phase. Similarly the predictability of upper level zonal wind (precipitation) is enhanced by four (two) and two (four) days respectively during active and break phases. This suggests that the initial state using AIRS observations could enhance predictability limit of MISOs in WRF. More realistic baroclinic response and better representation of vertical state of atmosphere associated with monsoon enhance the predictability of circulation and rainfall.
Observation of Quasichanneling Oscillations
International Nuclear Information System (INIS)
Wistisen, T. N.; Mikkelsen, R. E.; Uggerhoj, University I.; Wienands, University; Markiewicz, T. W.
2017-01-01
Here, we report on the first experimental observations of quasichanneling oscillations, recently seen in simulations and described theoretically. Although above-barrier particles penetrating a single crystal are generally seen as behaving almost as in an amorphous substance, distinct oscillation peaks nevertheless appear for particles in that category. The quasichanneling oscillations were observed at SLAC National Accelerator Laboratory by aiming 20.35 GeV positrons and electrons at a thin silicon crystal bent to a radius of R = 0.15 m, exploiting the quasimosaic effect. For electrons, two relatively faint quasichanneling peaks were observed, while for positrons, seven quasichanneling peaks were clearly identified.
Modeling the Activity of Single Genes
Mjolsness, Eric; Gibson, Michael
1999-01-01
the key questions in gene regulation are: What genes are expressed in a certain cell at a certain time? How does gene expression differ from cell to cell in a multicellular organism? Which proteins act as transcription factors, i.e., are important in regulating gene expression? From questions like these, we hope to understand which genes are important for various macroscopic processes. Nearly all of the cells of a multicellular organism contain the same DNA. Yet this same genetic information yields a large number of different cell types. The fundamental difference between a neuron and a liver cell, for example, is which genes are expressed. Thus understanding gene regulation is an important step in understanding development. Furthermore, understanding the usual genes that are expressed in cells may give important clues about various diseases. Some diseases, such as sickle cell anemia and cystic fibrosis, are caused by defects in single, non-regulatory genes; others, such as certain cancers, are caused when the cellular control circuitry malfunctions - an understanding of these diseases will involve pathways of multiple interacting gene products. There are numerous challenges in the area of understanding and modeling gene regulation. First and foremost, biologists would like to develop a deeper understanding of the processes involved, including which genes and families of genes are important, how they interact, etc. From a computation point of view, there has been embarrassingly little work done. In this chapter there are many areas in which we can phrase meaningful, non-trivial computational questions, but questions that have not been addressed. Some of these are purely computational (what is a good algorithm for dealing with a model of type X) and others are more mathematical (given a system with certain characteristics, what sort of model can one use? How does one find biochemical parameters from system-level behavior using as few experiments as possible?). In
International Nuclear Information System (INIS)
Oda, Ryuichi; Ishida, Shin; Wada, Hiroaki; Yamada, Kenji; Sekiguchi, Motoo
1999-01-01
We examine mass spectra and wave functions of the nn-bar, cc-bar and bb-bar meson systems within the framework of the covariant oscillator quark model with the boosted LS-coupling scheme. We solve nonperturbatively an eigenvalue problem for the squared-mass operator, which incorporates the four-dimensional color-Coulomb-type interaction, by taking a set of covariant oscillator wave functions as an expansion basis. We obtain mass spectra of these meson systems, which reproduce quite well their experimental behavior. The resultant manifestly covariant wave functions, which are applicable to analyses of various reaction phenomena, are given. Our results seem to suggest that the present model may be considered effectively as a covariant version of the nonrelativistic linear-plus-Coulomb potential quark model. (author)
Oscillation Baselining and Analysis Tool
Energy Technology Data Exchange (ETDEWEB)
2017-03-27
PNNL developed a new tool for oscillation analysis and baselining. This tool has been developed under a new DOE Grid Modernization Laboratory Consortium (GMLC) Project (GM0072 - “Suite of open-source applications and models for advanced synchrophasor analysis”) and it is based on the open platform for PMU analysis. The Oscillation Baselining and Analysis Tool (OBAT) performs the oscillation analysis and identifies modes of oscillations (frequency, damping, energy, and shape). The tool also does oscillation event baselining (fining correlation between oscillations characteristics and system operating conditions).
Zelenev, V.V.; Bruggen, van A.H.C.; Leffelaar, P.A.; Bloem, J.; Semenov, A.M.
2006-01-01
Recently, regular oscillations in bacterial populations and growth rates of bacterial feeding nematodes (BFN) were shown to occur after addition of fresh organic matter to soil. This paper presents a model developed to investigate potential mechanisms of those oscillations, and whether they were
Directory of Open Access Journals (Sweden)
Emmanuel Frenod
2002-01-01
Full Text Available We study the qualitative behavior of solutions to the Vlasov equation with strong external magnetic field and oscillating electric field. This model is relevant to the understanding of isotop resonant separation. We show that the effective equation is a kinetic equation with a memory term. This memory term involves a pseudo-differential operator whose kernel is characterized by an integral equation involving Bessel functions. The kernel is explicitly given in some particular cases.
Regular and chaotic behaviors of plasma oscillations modeled by a modified Duffing equation
International Nuclear Information System (INIS)
Enjieu Kadji, H.G.; Chabi Orou, J.B.; Woafo, P.; Abdus Salam International Centre for Theoretical Physics, Trieste
2005-07-01
The regular and chaotic behavior of plasma oscillations governed by a modified Duffing equation is studied. The plasma oscillations are described by a nonlinear differential equation of the form x + w 0 2 x + βx 2 + αx 3 = 0 which is similar to a Duffing equation. By focusing on the quadratic term, which is mainly the term modifying the Duffing equation, the harmonic balance method and the fourth order Runge-Kutta algorithm are used to derive regular and chaotic motions respectively. A strong chaotic behavior exhibited by the system in that event when the system is subjected to an external periodic forcing oscillation is reported as β varies. (author)
Chemotaxis and Actin Oscillations
Bodenschatz, Eberhard; Hsu, Hsin-Fang; Negrete, Jose; Beta, Carsten; Pumir, Alain; Gholami, Azam; Tarantola, Marco; Westendorf, Christian; Zykov, Vladimir
Recently, self-oscillations of the cytoskeletal actin have been observed in Dictyostelium, a model system for studying chemotaxis. Here we report experimental results on the self-oscillation mechanism and the role of regulatory proteins and myosin II. We stimulate cells rapidly and periodically by using photo un-caging of the chemoattractant in a micro-fluidic device and measured the cellular responses. We found that the response amplitude grows with stimulation strength only in a very narrow region of stimulation, after which the response amplitude reaches a plateau. Moreover, the frequency-response is not constant but rather varies with the strength of external stimuli. To understand the underlying mechanism, we analyzed the polymerization and de-polymerization time in the single cell level. Despite of the large cell-to-cell variability, we found that the polymerization time is independent of external stimuli and the de-polymerization time is prolonged as the stimulation strength increases. Our conclusions will be summarized and the role of noise in the signaling network will be discussed. German Science Foundation CRC 937.
Energy Technology Data Exchange (ETDEWEB)
Levin, A.E.; Griffith, P.
1980-04-01
Tests performed in a small scale water loop showed that voiding oscillations, similar to those observed in sodium, were present in water, as well. An analytical model, appropriate for either sodium or water, was developed and used to describe the water flow behavior. The experimental results indicate that water can be successfully employed as a sodium simulant, and further, that the condensation heat transfer coefficient varies significantly during the growth and collapse of vapor slugs during oscillations. It is this variation, combined with the temperature profile of the unheated zone above the heat source, which determines the oscillatory behavior of the system. The analytical program has produced a model which qualitatively does a good job in predicting the flow behavior in the wake experiment. The amplitude discrepancies are attributable to experimental uncertainties and model inadequacies. Several parameters (heat transfer coefficient, unheated zone temperature profile, mixing between hot and cold fluids during oscillations) are set by the user. Criteria for the comparison of water and sodium experiments have been developed.
Pascoe, D. J.; Anfinogentov, S. A.; Goddard, C. R.; Nakariakov, V. M.
2018-06-01
The shape of the damping profile of kink oscillations in coronal loops has recently allowed the transverse density profile of the loop to be estimated. This requires accurate measurement of the damping profile that can distinguish the Gaussian and exponential damping regimes, otherwise there are more unknowns than observables. Forward modeling of the transverse intensity profile may also be used to estimate the width of the inhomogeneous layer of a loop, providing an independent estimate of one of these unknowns. We analyze an oscillating loop for which the seismological determination of the transverse structure is inconclusive except when supplemented by additional spatial information from the transverse intensity profile. Our temporal analysis describes the motion of a coronal loop as a kink oscillation damped by resonant absorption, and our spatial analysis is based on forward modeling the transverse EUV intensity profile of the loop under the isothermal and optically thin approximations. We use Bayesian analysis and Markov chain Monte Carlo sampling to apply our spatial and temporal models both individually and simultaneously to our data and compare the results with numerical simulations. Combining the two methods allows both the inhomogeneous layer width and density contrast to be calculated, which is not possible for the same data when each method is applied individually. We demonstrate that the assumption of an exponential damping profile leads to a significantly larger error in the inferred density contrast ratio compared with a Gaussian damping profile.
Airflow visualization in a model of human glottis near the self-oscillating vocal folds model
Czech Academy of Sciences Publication Activity Database
Horáček, Jaromír; Uruba, Václav; Radolf, Vojtěch; Veselý, Jan; Bula, Vítězslav
2011-01-01
Roč. 5, č. 1 (2011), s. 21-28 ISSN 1802-680X R&D Projects: GA ČR GA101/08/1155 Institutional research plan: CEZ:AV0Z20760514 Keywords : biomechanics of human voice * voice production modelling * PIV measurement of streamline patterns Subject RIV: BI - Acoustics
A single product perishing inventory model with demand interaction
African Journals Online (AJOL)
The paper describes a single perishing product inventory model in which ... continuous review inventory models have been studied recently by Yadavalli et al ...... stochastic inventory system with lost sales, Stochastic Analysis and Applications ...
International Nuclear Information System (INIS)
McNeill, G.A.
1981-01-01
Present high-speed data acquisition systems in nuclear diagnostics use high-frequency oscillators to provide timing references for signals recorded on fast, traveling-wave oscilloscopes. An oscillator's sinusoidal wave shape is superimposed on the recorded signal with each cycle representing a fixed time increment. During data analysis the sinusoid is stripped from the signal, leaving a clean signal shape with known timing. Since all signal/time relationships are totally dependant upon working oscillators, these critical devices must have remote verification of proper operation. This manual presents the newly-developed oscillator monitor which will provide the required verification
Single-cluster dynamics for the random-cluster model
Deng, Y.; Qian, X.; Blöte, H.W.J.
2009-01-01
We formulate a single-cluster Monte Carlo algorithm for the simulation of the random-cluster model. This algorithm is a generalization of the Wolff single-cluster method for the q-state Potts model to noninteger values q>1. Its results for static quantities are in a satisfactory agreement with those
Using transfer functions to quantify El Niño Southern Oscillation dynamics in data and models.
MacMartin, Douglas G; Tziperman, Eli
2014-09-08
Transfer function tools commonly used in engineering control analysis can be used to better understand the dynamics of El Niño Southern Oscillation (ENSO), compare data with models and identify systematic model errors. The transfer function describes the frequency-dependent input-output relationship between any pair of causally related variables, and can be estimated from time series. This can be used first to assess whether the underlying relationship is or is not frequency dependent, and if so, to diagnose the underlying differential equations that relate the variables, and hence describe the dynamics of individual subsystem processes relevant to ENSO. Estimating process parameters allows the identification of compensating model errors that may lead to a seemingly realistic simulation in spite of incorrect model physics. This tool is applied here to the TAO array ocean data, the GFDL-CM2.1 and CCSM4 general circulation models, and to the Cane-Zebiak ENSO model. The delayed oscillator description is used to motivate a few relevant processes involved in the dynamics, although any other ENSO mechanism could be used instead. We identify several differences in the processes between the models and data that may be useful for model improvement. The transfer function methodology is also useful in understanding the dynamics and evaluating models of other climate processes.
Palmer, Jonathan; Cook, Edward; Turney, Chris; Cook, Benjamin; Fenwick, Pavla; Allen, Kathy; Baker, Patrick; Henley, Benjamin
2017-04-01
The development of the eastern Australia and New Zealand summer drought atlas (i.e. ANZDA; Palmer et al., 2015) highlighted the potential for exploring the reconstruction of the Henley et al. (2015) tripole Interdecadal Pacific Oscillation index (TPI). The approach taken was to use both the 1375 drought atlas scPDSI (self-calibrating Palmer Drought Severity Index) grid-points and the 176 tree-ring and single coral proxies to determine the strength and spatial expression of their relationship to TPI. An important concern was the potential geographic bias of the proxies relative to the TPI. To examine this concern more closely, each of three main TPI regions of sea surface temperatures were extracted and then correlated to the ANZDA scPDSI grid-points. Results showed a robust correlation field to each of the three poles although the closest "Tasman" pole was, as expected, the strongest. Next, the 177 proxies were used in regressions to calibrate/verify to the TPI over the period CE 1871-1975. The positive results provided confidence for the reconstruction "summer" TPI values extending back to CE 1410. The wavelet pattern of the reconstruction shows the ENSO (2-7 year) band frequency has increased during the 20th century while the longer (10-30 year) periodicities are scattered throughout the entire time interval. Finally, the different recognised phases of the IPO are compared to the two reconstructions (grid-points and TPI) and earlier periods discussed. References: Henley BJ, Gergis J, Karoly DJ, Power S, Kennedy J, Folland CK (2015) A Tripole Index for the Inter-decadal Pacific Oscillation. Climate Dynamics 45, 3077-3090. doi:10.1007/s00382-015-2525-1. Palmer J, Cook ER, Turney CSM, Allen K, Fenwick P, Cook BI, O'Donnell A, Lough J, Grierson P, Baker P (2016) Drought variability in the eastern Australia and New Zealand summer drought atlas (ANZDA, CE 1500-2012) modulated by the Interdecadal Pacific Oscillation. Environmental Research Letters 10, 1-12. doi:10.1088/1748-9326/10/12/124002.
The Two-Beam Free Electron Laser Oscillator
Thompson, Neil R
2004-01-01
A one-dimensional model of a free-electron laser operating simultaneously with two electron beams of different energies [1] is extended to an oscillator configuration. The electron beam energies are chosen so that an harmonic of the lower energy beam is at the fundamental radiation wavelength of the higher energy beam. Potential benefits over a single-beam free-electron laser oscillator are discussed.
Chen, Andrew C H; Tang, Yongqiang; Rangaswamy, Madhavi; Wang, Jen C; Almasy, Laura; Foroud, Tatiana; Edenberg, Howard J; Hesselbrock, Victor; Nurnberger, John; Kuperman, Samuel; O'Connor, Sean J; Schuckit, Marc A; Bauer, Lance O; Tischfield, Jay; Rice, John P; Bierut, Laura; Goate, Alison; Porjesz, Bernice
2009-04-05
Evidence suggests the P3 amplitude of the event-related potential and its underlying superimposed event-related oscillations (EROs), primarily in the theta (4-5 Hz) and delta (1-3 Hz) frequencies, as endophenotypes for the risk of alcoholism and other disinhibitory disorders. Major neurochemical substrates contributing to theta and delta rhythms and P3 involve strong GABAergic, cholinergic and glutamatergic system interactions. The aim of this study was to test the potential associations between single nucleotide polymorphisms (SNPs) in glutamate receptor genes and ERO quantitative traits. GRM8 was selected because it maps at chromosome 7q31.3-q32.1 under the peak region where we previously identified significant linkage (peak LOD = 3.5) using a genome-wide linkage scan of the same phenotype (event-related theta band for the target visual stimuli). Neural activities recorded from scalp electrodes during a visual oddball task in which rare target elicited P3s were analyzed in a subset of the Collaborative Study on the Genetics of Alcoholism (COGA) sample comprising 1,049 Caucasian subjects from 209 families (with 472 DSM-IV alcohol dependent individuals). The family-based association test (FBAT) detected significant association (P power to target visual stimuli, and also with alcohol dependence, even after correction for multiple comparisons by false discovery rate (FDR). Our results suggest that variation in GRM8 may be involved in modulating event-related theta oscillations during information processing and also in vulnerability to alcoholism. These findings underscore the utility of electrophysiology and the endophenotype approach in the genetic study of psychiatric disorders. (c) 2008 Wiley-Liss, Inc.
Pagitsas, M; Sazou, D
2003-01-01
Analysis of the passive-active oscillatory region of the Fe-0.75 M H sub 2 SO sub 4 system, perturbed by adding small amounts of halide species, allow the distinction between pitting and general corrosion. Complex periodic and aperiodic current oscillations characterize pitting corrosion whereas monoperiodic oscillations of a relaxation type indicate general corrosion. A point defect model (PDM) is considered for the microscopic description of the growth and breakdown of the iron oxide film. The physicochemical processes leading to different types of corrosion can be clarified in terms of the PDM. Occupation of an anion vacancy by a halide ion results in the localized attack of the passive oxide and pitting corrosion. On the other hand, the formation of surface soluble iron complexes is related to the uniform dissolution of the passive oxide and general corrosion.
Modelling of Trapped Plasma Mode Oscillations in a p+ n – n+ ...
African Journals Online (AJOL)
... frequency limits. The influence of the diode physical parameters and the effects of the package circuit parasitic on the diode performance are explored, and curves for practical design presented. The predicted RF performance shows good agreement with experimental measurement for a typical L-band TRAPATT oscillator ...
Czech Academy of Sciences Publication Activity Database
Powell, A. D.; Saintot, P.P.; Gill, K. K.; Bharathan, A.; Buck, S.C.; Morris, G.; Jiruška, Přemysl; Jefferys, J. G. R.
2014-01-01
Roč. 9, č. 5 (2014), e95871 E-ISSN 1932-6203 Institutional support: RVO:67985823 Keywords : intellectual disability * gamma oscillations * synaptopathy * X-linked mental retardation Subject RIV: FH - Neurology Impact factor: 3.234, year: 2014
Matrix eigenvalue method for free-oscillations modelling of spherical elastic bodies
Czech Academy of Sciences Publication Activity Database
Zábranová, Eliška; Hanyk, L.; Matyska, C.
2017-01-01
Roč. 211, č. 2 (2017), s. 1254-1271 ISSN 0956-540X Institutional support: RVO:67985891 Keywords : numerical solutions * surface waves and free oscillations Subject RIV: DC - Siesmology, Volcanology, Earth Structure OBOR OECD: Geology Impact factor: 2.414, year: 2016
A Model for Cortical 40 Hz oscillations invokes inter-area interactions
DEFF Research Database (Denmark)
Cotterill, Rodney M J; Helix Nielsen, Claus
1991-01-01
COMPUTER simulation of the dynamics of neuronal assemblies within minicolumns, and of the interactions between minicolumns in different cortical areas, has produced a quantitative explanation of the 35-60 Hz oscillations recently observed in adult cat striate cortices. The observed behavior...
Excitation of Solar-like Oscillations: From PMS to MS Stellar Models ...
Indian Academy of Sciences (India)
excited modes in pre-main sequence stars are also discussed. Key words. Turbulence—convection—oscillations—excitation—sun, stars: α Cen A—stars: main and pre-main sequence stars. 1. Introduction. In the past approximately five years, solar-like oscillations have been detected in several intermediate massive stars ...
Stochastic modeling of kHz quasi-periodic oscillation light curves
DEFF Research Database (Denmark)
Vio, R.; Rebusco, P.; Andreani, P.
2006-01-01
Kluzniak & Abramowicz explain the high frequency, double peak, "3:2" QPOs observed in neutron star and black hole sources in terms of a non-linear parametric resonance between radial and vertical epicyclic oscillations of an almost Keplerian accretion disk. The 3:2 ratio of epicyclic frequencies ...
Generalized oscillator systems and their parabosonic interpretation
Energy Technology Data Exchange (ETDEWEB)
Macfarlane, A J [Cambridge Univ. (United Kingdom). Dept. of Applied Mathematics and Theoretical Physics
1994-12-31
The Fock space description of various bosonic oscillator systems are carried out. All descriptions are based on a single creation - annihilation pair. Special attention is paid to the q-deformed Calogero-Vasiliev oscillator. 23 refs.
Single-layer model for surface roughness.
Carniglia, C K; Jensen, D G
2002-06-01
Random roughness of an optical surface reduces its specular reflectance and transmittance by the scattering of light. The reduction in reflectance can be modeled by a homogeneous layer on the surface if the refractive index of the layer is intermediate to the indices of the media on either side of the surface. Such a layer predicts an increase in the transmittance of the surface and therefore does not provide a valid model for the effects of scatter on the transmittance. Adding a small amount of absorption to the layer provides a model that predicts a reduction in both reflectance and transmittance. The absorbing layer model agrees with the predictions of a scalar scattering theory for a layer with a thickness that is twice the rms roughness of the surface. The extinction coefficient k for the layer is proportional to the thickness of the layer.
Directory of Open Access Journals (Sweden)
Takeru Honda
2011-07-01
Full Text Available Information processing of the cerebellar granular layer composed of granule and Golgi cells is regarded as an important first step toward the cerebellar computation. Our previous theoretical studies have shown that granule cells can exhibit random alternation between burst and silent modes, which provides a basis of population representation of the passage-of-time (POT from the onset of external input stimuli. On the other hand, another computational study has reported that granule cells can exhibit synchronized oscillation of activity, as consistent with observed oscillation in local field potential recorded from the granular layer while animals keep still. Here we have a question of whether an identical network model can explain these distinct dynamics. In the present study, we carried out computer simulations based on a spiking network model of the granular layer varying two parameters: the strength of a current injected to granule cells and the concentration of Mg²⁺ which controls the conductance of NMDA channels assumed on the Golgi cell dendrites. The simulations showed that cells in the granular layer can switch activity states between synchronized oscillation and random burst-silent alternation depending on the two parameters. For higher Mg²⁺ concentration and a weaker injected current, granule and Golgi cells elicited spikes synchronously (synchronized oscillation state. In contrast, for lower Mg²⁺ concentration and a stronger injected current, those cells showed the random burst-silent alternation (POT-representing state. It is suggested that NMDA channels on the Golgi cell dendrites play an important role for determining how the granular layer works in response to external input.
Busschaert, C.; Falize, É.; Michaut, C.; Bonnet-Bidaud, J.-M.; Mouchet, M.
2015-07-01
Context. Magnetic cataclysmic variables are close binary systems containing a strongly magnetized white dwarf that accretes matter coming from an M-dwarf companion. The high magnetic field strength leads to the formation of an accretion column instead of an accretion disk. High-energy radiation coming from those objects is emitted from the column close to the white dwarf photosphere at the impact region. Its properties depend on the characteristics of the white dwarf and an accurate accretion column model allows the properties of the binary system to be inferred, such as the white dwarf mass, its magnetic field, and the accretion rate. Aims: We study the temporal and spectral behaviour of the accretion region and use the tools we developed to accurately connect the simulation results to the X-ray and optical astronomical observations. Methods: The radiation hydrodynamics code Hades was adapted to simulate this specific accretion phenomena. Classical approaches were used to model the radiative losses of the two main radiative processes: bremsstrahlung and cyclotron. Synthetic light curves and X-ray spectra were extracted from numerical simulations. A fast Fourier analysis was performed on the simulated light curves. The oscillation frequencies and amplitudes in the X-ray and optical domains are studied to compare those numerical results to observational ones. Different dimensional formulae were developed to complete the numerical evaluations. Results: The complete characterization of the emitting region is described for the two main radiative regimes: when only the bremsstrahlung losses and when both cyclotron and bremsstrahlung losses are considered. The effect of the non-linear cooling instability regime on the accretion column behaviour is analysed. Variation in luminosity on short timescales (~1 s quasi-periodic oscillations) is an expected consequence of this specific dynamic. The importance of secondary shock instability on the quasi-periodic oscillation
Lites, B.W.; Rutten, R.J.; Thomas, J.H.
1995-01-01
We show results from SO/Sacramento Peak data to discuss three issues: (i)--the spatial occurrence of chromospheric 3--min oscillations; (ii)--the validity of Ca II H&K line-center Doppler Shift measurements; (iii)--the signi ?cance of oscillation power and phase at frequencies above 10 mHz.
Energy Technology Data Exchange (ETDEWEB)
Yuce, C [Physics Department, Anadolu University, Eskisehir (Turkey); Kilic, A [Physics Department, Anadolu University, Eskisehir (Turkey); Coruh, A [Physics Department, Sakarya University, Sakarya (Turkey)
2006-07-15
The inverted harmonic oscillator problem is investigated quantum mechanically. The exact wavefunction for the confined inverted oscillator is obtained and it is shown that the associated energy eigenvalues are discrete, and the energy is given as a linear function of the quantum number n.
Evaluation of single crystal LaB6 cathodes for use in a high frequency backward wave oscillator tube
Swanson, L. W.; Davis, P. R.; Schwind, G. A.
1984-01-01
The results of thermionic emission and evaporation studies of single crystal LaB6 cathodes are given. A comparison between the (100), (210) and (310) crystal planes shows the (310) and (210) planes to possess a work function approx 0.2 eV lower than (100). This translates into a significant increase in current density, J, at a specified temperature. Comparison with a state-of-the-art impregnated dispenser cathode shows that LaB6 (310) is a superior cathode in nearly all respects except operating temperature at j 10 A/sq cm. The 1600 K thermionic and room temperature retarding potential work functions for LaB6 (310) are 2.42 and 2.50 respectively.
Sandford, M. C.; Ricketts, R. H.; Watson, J. J.
1981-01-01
A high aspect ratio supercritical wing with oscillating control surfaces is described. The semispan wing model was instrumented with 252 static orifices and 164 in situ dynamic pressure gases for studying the effects of control surface position and sinusoidal motion on steady and unsteady pressures. Data from the present test (this is the second in a series of tests on this model) were obtained in the Langley Transonic Dynamics Tunnel at Mach numbers of 0.60 and 0.78 and are presented in tabular form.
Pope, R.; Chipperfield, M.
2017-12-01
The North Atlantic Oscillation (NAO) has a strong influence on winter-time North Atlantic and European circulation patterns. Under the positive phase of the NAO (NAO+), intensification of the climatological Icelandic low and Azores high pressure systems results in strong westerly flow across the Atlantic into Europe. Under the NAO negative phase (NAO-), there is a weakening of this meridional pressure gradient resulting in a southerly shift in the westerlies flow towards the sub-tropical Atlantic. Therefore, NAO+ and NAO- introduce unstable stormy and drier stable conditions into Europe, respectively. Under NAO+ conditions, the strong westerlies tend to enhance transport of European pollution (e.g. nitrogen oxides) away from anthropogenic source regions. While during NAO-, the more stable conditions lead to a build up of pollutants. However, secondary pollutants (i.e. tropospheric ozone) show the opposite signal where NAO+, while transporting primary pollutants away, introduces Atlantic ozone enriched air into Europe. Here ozone can form downwind of pollution from continental North America and be transported into Europe via the westerly flow. Under NAO-, this westerly ozone transport is reduced yielding lower European ozone concentrations also depleted further by ozone loss through the reaction with NOx, which has accumulated over the continent. Peroxyacetyl nitrate (PAN), observed in the upper troposphere - lower stratosphere (UTLS) by satellite, peaks over Iceland/Southern Greenland in NAO-, between 200-100 hPa, consistent with trapping by an anticyclone at this altitude. During NAO+, PAN is enhanced over the sub-tropical Atlantic and Arctic. Model simulations show that enhanced PAN over Iceland/Southern Greenland in NAO- is associated with vertical transport from the troposphere into the UTLS, while peak Arctic PAN in NAO+ is its accumulation given the strong northerly meridional transport in the UTLS. UTLS ozone spatial anomalies, relative to the winter
Macedo, R G; Verhaagen, B; Fernandez Rivas, D; Gardeniers, J G E; van der Sluis, L W M; Wesselink, P R; Versluis, M
2014-01-01
Ultrasonically Activated Irrigation makes use of an ultrasonically oscillating file in order to improve the cleaning of the root canal during a root canal treatment. Cavitation has been associated with these oscillating files, but the nature and characteristics of the cavitating bubbles were not yet fully elucidated. Using sensitive equipment, the sonoluminescence (SL) and sonochemiluminescence (SCL) around these files have been measured in this study, showing that cavitation occurs even at very low power settings. Luminol photography and high-speed visualizations provided information on the spatial and temporal distribution of the cavitation bubbles. A large bubble cloud was observed at the tip of the files, but this was found not to contribute to SCL. Rather, smaller, individual bubbles observed at antinodes of the oscillating file with a smaller amplitude were leading to SCL. Confinements of the size of bovine and human root canals increased the amount of SL and SCL. The root canal models also showed the occurrence of air entrainment, resulting in the generation of stable bubbles, and of droplets, near the air-liquid interface and leading eventually to a loss of the liquid. Copyright © 2013 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
Koichiro Uriu
2017-08-01
Full Text Available In development and disease, cells move as they exchange signals. One example is found in vertebrate development, during which the timing of segment formation is set by a ‘segmentation clock’, in which oscillating gene expression is synchronized across a population of cells by Delta-Notch signaling. Delta-Notch signaling requires local cell-cell contact, but in the zebrafish embryonic tailbud, oscillating cells move rapidly, exchanging neighbors. Previous theoretical studies proposed that this relative movement or cell mixing might alter signaling and thereby enhance synchronization. However, it remains unclear whether the mixing timescale in the tissue is in the right range for this effect, because a framework to reliably measure the mixing timescale and compare it with signaling timescale is lacking. Here, we develop such a framework using a quantitative description of cell mixing without the need for an external reference frame and constructing a physical model of cell movement based on the data. Numerical simulations show that mixing with experimentally observed statistics enhances synchronization of coupled phase oscillators, suggesting that mixing in the tailbud is fast enough to affect the coherence of rhythmic gene expression. Our approach will find general application in analyzing the relative movements of communicating cells during development and disease.
Directory of Open Access Journals (Sweden)
Achim Ionita
2009-01-01
Full Text Available The oscillation susceptibility of the ADMIRE aircraft along the path of longitudinal flight equilibriums is analyzed numerically in the general and in a simplified flight model. More precisely, the longitudinal flight equilibriums, the stability of these equilibriums, and the existence of bifurcations along the path of these equilibriums are researched in both models. Maneuvers and appropriate piloting tasks for the touch-down moment are simulated in both models. The computed results obtained in the models are compared in order to see if the movement concerning the landing phase computed in the simplified model is similar to that computed in the general model. The similarity we find is not a proof of the structural stability of the simplified system, what as far we know never been made, but can increase the confidence that the simplified system correctly describes the real phenomenon.
Modeling the Aerodynamic Lift Produced by Oscillating Airfoils at Low Reynolds Number
Khalid, Muhammad Saif Ullah; Akhtar, Imran
2014-01-01
For present study, setting Strouhal Number (St) as control parameter, numerical simulations for flow past oscillating NACA-0012 airfoil at 1,000 Reynolds Numbers (Re) are performed. Temporal profiles of unsteady forces; lift and thrust, and their spectral analysis clearly indicate the solution to be a period-1 attractor for low Strouhal numbers. This study reveals that aerodynamic forces produced by plunging airfoil are independent of initial kinematic conditions of airfoil that proves the ex...
Energy Technology Data Exchange (ETDEWEB)
Rahmani, S.; Hassanabadi, H. [Shahrood University of Technology, Physics Department, Shahrood (Iran, Islamic Republic of)
2017-09-15
Employing generalized quantum isotonic oscillator potential we determine wave function for mesonic system in nonrelativistic formalism. Then we investigate branching ratios of leptonic decays for heavy-light mesons including a charm quark. Next, by applying the Isgur-Wise function we obtain branching ratios of semileptonic decays for mesons including a bottom quark. The weak decay of the B{sub c} meson is also analyzed to study the life time. Comparison with other available theoretical approaches is presented. (orig.)
Gao, Xi-feng; Xie, Wu-de; Xu, Wan-hai; Bai, Yu-chuan; Zhu, Hai-tao
2018-04-01
It is well known that the Reynolds number has a significant effect on the vortex-induced vibrations (VIV) of cylinders. In this paper, a novel in-line (IL) and cross-flow (CF) coupling VIV prediction model for circular cylinders has been proposed, in which the influence of the Reynolds number was comprehensively considered. The Strouhal number linked with the vortex shedding frequency was calculated through a function of the Reynolds number. The coefficient of the mean drag force was fitted as a new piecewise function of the Reynolds number, and its amplification resulted from the CF VIV was also taken into account. The oscillating drag and lift forces were modelled with classical van der Pol wake oscillators and their empirical parameters were determined based on the lock-in boundaries and the peak-amplitude formulas. A new peak-amplitude formula for the IL VIV was developed under the resonance condition with respect to the mass-damping ratio and the Reynolds number. When compared with the results from the experiments and some other prediction models, the present model could give good estimations on the vibration amplitudes and frequencies of the VIV both for elastically-mounted rigid and long flexible cylinders. The present model considering the influence of the Reynolds number could generally provide better results than that neglecting the effect of the Reynolds number.
Factors affecting GEBV accuracy with single-step Bayesian models.
Zhou, Lei; Mrode, Raphael; Zhang, Shengli; Zhang, Qin; Li, Bugao; Liu, Jian-Feng
2018-01-01
A single-step approach to obtain genomic prediction was first proposed in 2009. Many studies have investigated the components of GEBV accuracy in genomic selection. However, it is still unclear how the population structure and the relationships between training and validation populations influence GEBV accuracy in terms of single-step analysis. Here, we explored the components of GEBV accuracy in single-step Bayesian analysis with a simulation study. Three scenarios with various numbers of QTL (5, 50, and 500) were simulated. Three models were implemented to analyze the simulated data: single-step genomic best linear unbiased prediction (GBLUP; SSGBLUP), single-step BayesA (SS-BayesA), and single-step BayesB (SS-BayesB). According to our results, GEBV accuracy was influenced by the relationships between the training and validation populations more significantly for ungenotyped animals than for genotyped animals. SS-BayesA/BayesB showed an obvious advantage over SSGBLUP with the scenarios of 5 and 50 QTL. SS-BayesB model obtained the lowest accuracy with the 500 QTL in the simulation. SS-BayesA model was the most efficient and robust considering all QTL scenarios. Generally, both the relationships between training and validation populations and LD between markers and QTL contributed to GEBV accuracy in the single-step analysis, and the advantages of single-step Bayesian models were more apparent when the trait is controlled by fewer QTL.
Klein, K U; Boehme, S; Hartmann, E K; Szczyrba, M; Heylen, L; Liu, T; David, M; Werner, C; Markstaller, K; Engelhard, K
2013-02-01
Cyclic recruitment and derecruitment (R/D) play a key role in the pathomechanism of acute lung injury (ALI) leading to respiration-dependent oscillations of arterial partial pressure of oxygen (Pa(O(2))). These Pa(O(2)) oscillations could also be forwarded to the cerebral microcirculation. In 12 pigs, partial pressure of oxygen was measured in the thoracic aorta (Pa(O(2))) and subcortical cerebral tissue (Pbr(O(2))). Cerebral cortical haemoglobin oxygen saturation (Sbr(O(2))), cerebral blood flow (CBF), and peripheral haemoglobin saturation (Sp(O(2))) were assessed by spectroscopy and laser Doppler flowmetry. Measurements at different fractions of inspired oxygen (F(I(O(2)))) were performed at baseline and during cyclic R/D. frequency domain analysis, the Mann-Whitney test, linear models to test the influence of Pa(O(2)) and systolic arterial pressure (SAP) oscillations on cerebral measurements. Parameters [mean (SD)] remained stable during baseline. Pa(O(2)) oscillations [10.6 (8) kPa, phase(reference)], systemic arterial pressure (SAP) oscillations [20 (9) mm Hg, phase(Pa(O(2))-SAP) -33 (72)°], and Sp(O(2))oscillations [1.9 (1.7)%, phase(Pa(O(2))-Sp(O(2))) 264 (72)°] were detected during lung R/D at 1.0. Pa(O(2)) oscillations decreased [2.7 (3.5) kPa, P=0.0008] and Sp(O(2)) oscillations increased [6.8 (3.9)%, P=0.0014] at F(I(O(2))) 0.3. In the brain, synchronized Pbr(O(2)) oscillations [0.6 (0.4) kPa, phase(Pa(O(2))-Pbr(O(2))) 90 (39)°], Sbr(O(2)) oscillations [4.1 (1.5)%, phase(Pa(O(2))-Sbr(O(2))) 182 (54)°], and CBF oscillations [198 (176) AU, phase(Pa(O(2))-CBF) 201 (63)°] occurred that were dependent on Pa(O(2)) and SAP oscillations. Pa(O(2)) oscillations caused by cyclic R/D are transmitted to the cerebral microcirculation in a porcine model of ALI. These cyclic oxygen alterations could play a role in the crosstalk of acute lung and brain injury.
A single grain approach applied to modelling recrystallization kinetics in a single-phase metal
Chen, S.P.; Zwaag, van der S.
2004-01-01
A comprehensive model for the recrystallization kinetics is proposed which incorporates both microstructure and the textural components in the deformed state. The model is based on the single-grain approach proposed previously. The influence of the as-deformed grain orientation, which affects the
Oscillators and operational amplifiers
Lindberg, Erik
2005-01-01
A generalized approach to the design of oscillators using operational amplifiers as active elements is presented. A piecewise-linear model of the amplifier is used so that it make sense to investigate the eigenvalues of the Jacobian of the differential equations. The characteristic equation of the general circuit is derived. The dynamic nonlinear transfer characteristic of the amplifier is investigated. Examples of negative resistance oscillators are discussed.
Two-electron Rabi oscillations in real-time time-dependent density-functional theory
International Nuclear Information System (INIS)
Habenicht, Bradley F.; Tani, Noriyuki P.; Provorse, Makenzie R.; Isborn, Christine M.
2014-01-01
We investigate the Rabi oscillations of electrons excited by an applied electric field in several simple molecular systems using time-dependent configuration interaction (TDCI) and real-time time-dependent density-functional theory (RT-TDDFT) dynamics. While the TDCI simulations exhibit the expected single-electron Rabi oscillations at a single resonant electric field frequency, Rabi oscillations in the RT-TDDFT simulations are a two-electron process. The existence of two-electron Rabi oscillations is determined both by full population inversion between field-free molecular orbitals and the behavior of the instantaneous dipole moment during the simulations. Furthermore, the Rabi oscillations in RT-TDDFT are subject to an intensity threshold of the electric field, below which Rabi oscillations do not occur and above which the two-electron Rabi oscillations occur at a broad range of frequencies. It is also shown that at field intensities near the threshold intensity, the field frequency predicted to induce Rabi oscillations by linear response TDDFT only produces detuned Rabi oscillations. Instead, the field frequency that yields the full two-electron population inversion and Rabi oscillation behavior is shown to be the average of single-electron transition frequencies from the ground S 0 state and the doubly-excited S 2 state. The behavior of the two-electron Rabi oscillations is rationalized via two possible models. The first model is a multi-photon process that results from the electric field interacting with the three level system such that three level Rabi oscillations may occur. The second model suggests that the mean-field nature of RT-TDDFT induces paired electron propagation
Tests of the single-pion exchange model
International Nuclear Information System (INIS)
Treiman, S.B.; Yang, C.N.
1983-01-01
The single-pion exchange model (SPEM) of high-energy particle reactions provides an attractively simple picture of seemingly complex processes and has accordingly been much discussed in recent times. The purpose of this note is to call attention to the possibility of subjecting the model to certain tests precisely in the domain where the model stands the best chance of making sense
Modeling of calcination of single kaolinitic clay particle
DEFF Research Database (Denmark)
Gebremariam, Abraham Teklay; Yin, Chungen; Rosendahl, Lasse
The present work aims at modeling of the calcination (dehydroxylation) process of clay particles, specifically kaolinite, and its thermal transformation. For such purpose, 1D single particle calcination model was developed based on the concept of shrinking core model to assess the dehydroxylation...
International Nuclear Information System (INIS)
Rodrigues, Serafim; Terry, John R.; Breakspear, Michael
2006-01-01
In this Letter, the genesis of spike-wave activity-a hallmark of many generalized epileptic seizures-is investigated in a reduced mean-field model of human neural activity. Drawing upon brain modelling and dynamical systems theory, we demonstrate that the thalamic circuitry of the system is crucial for the generation of these abnormal rhythms, observing that the combination of inhibition from reticular nuclei and excitation from the cortical signal, interplay to generate the spike-wave oscillation. The mechanism revealed provides an explanation of why approaches based on linear stability and Heaviside approximations to the activation function have failed to explain the phenomena of spike-wave behaviour in mean-field models. A mathematical understanding of this transition is a crucial step towards relating spiking network models and mean-field approaches to human brain modelling
Mixture of Regression Models with Single-Index
Xiang, Sijia; Yao, Weixin
2016-01-01
In this article, we propose a class of semiparametric mixture regression models with single-index. We argue that many recently proposed semiparametric/nonparametric mixture regression models can be considered special cases of the proposed model. However, unlike existing semiparametric mixture regression models, the new pro- posed model can easily incorporate multivariate predictors into the nonparametric components. Backfitting estimates and the corresponding algorithms have been proposed for...
Entanglement in neutrino oscillations
Energy Technology Data Exchange (ETDEWEB)
Blasone, M.; Dell' Anno, F.; De Siena, S.; Illuminati, F. [Universita degli Studi di Salerno Via Ponte don Melillon, Dipt. di Matematica e Informatica, Fisciano SA (Italy); INFN Sezione di Napoli, Gruppo collegato di Salerno - Baronissi SA (Italy); Dell' Anno, F.; De Siena, S.; Illuminati, F. [CNR-INFM Coherentia - Napoli (Italy); Blasone, M. [ISI Foundation for Scientific Interchange, Torino (Italy)
2009-03-15
Flavor oscillations in elementary particle physics are related to multimode entanglement of single-particle states. We show that mode entanglement can be expressed in terms of flavor transition probabilities, and therefore that single-particle entangled states acquire a precise operational characterization in the context of particle mixing. We treat in detail the physically relevant cases of two- and three-flavor neutrino oscillations, including the effective measure of CP violation. We discuss experimental schemes for the transfer of the quantum information encoded in single-neutrino states to spatially delocalized two-flavor charged-lepton states, thus showing, at least in principle, that single-particle entangled states of neutrino mixing are legitimate physical resources for quantum information tasks. (authors)
Entanglement in neutrino oscillations
International Nuclear Information System (INIS)
Blasone, M.; Dell'Anno, F.; De Siena, S.; Illuminati, F.; Dell'Anno, F.; De Siena, S.; Illuminati, F.; Blasone, M.
2009-01-01
Flavor oscillations in elementary particle physics are related to multimode entanglement of single-particle states. We show that mode entanglement can be expressed in terms of flavor transition probabilities, and therefore that single-particle entangled states acquire a precise operational characterization in the context of particle mixing. We treat in detail the physically relevant cases of two- and three-flavor neutrino oscillations, including the effective measure of CP violation. We discuss experimental schemes for the transfer of the quantum information encoded in single-neutrino states to spatially delocalized two-flavor charged-lepton states, thus showing, at least in principle, that single-particle entangled states of neutrino mixing are legitimate physical resources for quantum information tasks. (authors)
Automated Detection of Oscillating Regions in the Solar Atmosphere
Ireland, J.; Marsh, M. S.; Kucera, T. A.; Young, C. A.
2010-01-01
Recently observed oscillations in the solar atmosphere have been interpreted and modeled as magnetohydrodynamic wave modes. This has allowed for the estimation of parameters that are otherwise hard to derive, such as the coronal magnetic-field strength. This work crucially relies on the initial detection of the oscillations, which is commonly done manually. The volume of Solar Dynamics Observatory (SDO) data will make manual detection inefficient for detecting all of the oscillating regions. An algorithm is presented that automates the detection of areas of the solar atmosphere that support spatially extended oscillations. The algorithm identifies areas in the solar atmosphere whose oscillation content is described by a single, dominant oscillation within a user-defined frequency range. The method is based on Bayesian spectral analysis of time series and image filtering. A Bayesian approach sidesteps the need for an a-priori noise estimate to calculate rejection criteria for the observed signal, and it also provides estimates of oscillation frequency, amplitude, and noise, and the error in all of these quantities, in a self-consistent way. The algorithm also introduces the notion of quality measures to those regions for which a positive detection is claimed, allowing for simple post-detection discrimination by the user. The algorithm is demonstrated on two Transition Region and Coronal Explorer (TRACE) datasets, and comments regarding its suitability for oscillation detection in SDO are made.
Slow oscillations orchestrating fast oscillations and memory consolidation.
Mölle, Matthias; Born, Jan
2011-01-01
Slow-wave sleep (SWS) facilitates the consolidation of hippocampus-dependent declarative memory. Based on the standard two-stage memory model, we propose that memory consolidation during SWS represents a process of system consolidation which is orchestrated by the neocortical memory. The slow oscillations temporally group neuronal activity into up-states of strongly enhanced neuronal activity and down-states of neuronal silence. In a feed-forward efferent action, this grouping is induced not only in the neocortex but also in other structures relevant to consolidation, namely the thalamus generating 10-15Hz spindles, and the hippocampus generating sharp wave-ripples, with the latter well known to accompany a replay of newly encoded memories taking place in hippocampal circuitries. The feed-forward synchronizing effect of the slow oscillation enables the formation of spindle-ripple events where ripples and accompanying reactivated hippocampal memory information become nested into the single troughs of spindles. Spindle-ripple events thus enable reactivated memory-related hippocampal information to be fed back to neocortical networks in the excitable slow oscillation up-state where they can induce enduring plastic synaptic changes underlying the effective formation of long-term memories. Copyright © 2011 Elsevier B.V. All rights reserved.
Indian Academy of Sciences (India)
the law of mass-action that every simple reaction approaches ... from thermodynamic equilibrium. Such oscillating systems cor- respond to thermodynamically open systems. .... experimentally observable, and the third is always unstable.
Wang, Jack C.; Tsai-Lin, Rong; Chang, Loren C.; Wu, Qian; Lin, Charles C. H.; Yue, Jia
2018-06-01
The Quasi-biennial Oscillation (QBO) is a persistent oscillation in the zonal mean zonal winds of the low latitude middle atmosphere that is driven by breaking planetary and gravity waves with a period near two years. The atmospheric tides that dominate the dynamics of the mesosphere and lower thermosphere region (MLT, between heights of 70-120 km) are excited in the troposphere and stratosphere, and propagate through QBO-modulated zonal mean zonal wind fields. This allows the MLT tidal response to also be modulated by the QBO, with implications for ionospheric/thermospheric variability. Interannual oscillations in solar radiation can also directly drive the variations in the ionosphere with similar periodicities through the photoionization. Many studies have observed the connection between the solar activity and QBO signal in ionospheric features such as total electron content (TEC). In this research, we develop an empirical model to isolate stratospheric QBO-related tidal variability in the MLT diurnal and semidiurnal tides using values from assimilated TIMED satellite data. Migrating tidal fields corresponding to stratospheric QBO eastward and westward phases, as well as with the quasi-biennial variations in solar activity isolated by the Multi-dimensional Ensemble Empirical Mode Decomposition (MEEMD) analysis from Hilbert-Huang Transform (HHT), are then used to drive the NCAR Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM). The numerical experiment results indicate that the ionospheric QBO is mainly driven by the solar quasi-biennial variations during the solar maximum, since the solar quasi-biennial variation amplitude is directly proportionate to the solar cycle. The ionospheric QBO in the model is sensitive to both the stratospheric QBO and solar quasi-biennial variations during the solar minimum, with solar effects still playing a stronger role.
A model of the two-dimensional quantum harmonic oscillator in an AdS{sub 3} background
Energy Technology Data Exchange (ETDEWEB)
Frick, R. [Universitaet zu Koeln, Institut fuer Theoretische Physik, Cologne (Germany)
2016-10-15
In this paper we study a model of the two-dimensional quantum harmonic oscillator in a three-dimensional anti-de Sitter background. We use a generalized Schroedinger picture in which the analogs of the Schroedinger operators of the particle are independent of both the time and the space coordinates in different representations. The spacetime independent operators of the particle induce the Lie algebra of Killing vector fields of the AdS{sub 3} spacetime. In this picture, we have a metamorphosis of the Heisenberg uncertainty relations. (orig.)
Experiments and modeling of single plastic particle conversion in suspension
DEFF Research Database (Denmark)
Nakhaei, Mohammadhadi; Wu, Hao; Grévain, Damien
2018-01-01
Conversion of single high density polyethylene (PE) particles has been studied by experiments and modeling. The experiments were carried out in a single particle combustor for five different shapes and masses of particles at temperature conditions of 900 and 1100°C. Each experiment was recorded...... against the experiments as well as literature data. Furthermore, a simplified isothermal model appropriate for CFD applications was developed, in order to model the combustion of plastic particles in cement calciners. By comparing predictions with the isothermal and the non–isothermal models under typical...
Coherent and intermittent ensemble oscillations emerge from networks of irregular spiking neurons.
Hoseini, Mahmood S; Wessel, Ralf
2016-01-01
Local field potential (LFP) recordings from spatially distant cortical circuits reveal episodes of coherent gamma oscillations that are intermittent, and of variable peak frequency and duration. Concurrently, single neuron spiking remains largely irregular and of low rate. The underlying potential mechanisms of this emergent network activity have long been debated. Here we reproduce such intermittent ensemble oscillations in a model network, consisting of excitatory and inhibitory model neurons with the characteristics of regular-spiking (RS) pyramidal neurons, and fast-spiking (FS) and low-threshold spiking (LTS) interneurons. We find that fluctuations in the external inputs trigger reciprocally connected and irregularly spiking RS and FS neurons in episodes of ensemble oscillations, which are terminated by the recruitment of the LTS population with concurrent accumulation of inhibitory conductance in both RS and FS neurons. The model qualitatively reproduces experimentally observed phase drift, oscillation episode duration distributions, variation in the peak frequency, and the concurrent irregular single-neuron spiking at low rate. Furthermore, consistent with previous experimental studies using optogenetic manipulation, periodic activation of FS, but not RS, model neurons causes enhancement of gamma oscillations. In addition, increasing the coupling between two model networks from low to high reveals a transition from independent intermittent oscillations to coherent intermittent oscillations. In conclusion, the model network suggests biologically plausible mechanisms for the generation of episodes of coherent intermittent ensemble oscillations with irregular spiking neurons in cortical circuits. Copyright © 2016 the American Physiological Society.
International Nuclear Information System (INIS)
Gonzalez, Alvaro; Munduate, Xabier
2007-01-01
An implementation of the Beddoes-Leishman dynamic stall model has been developed at CENER, for modelling the unsteady aerodynamics on oscillating blade sections. The parameters of the model were adjusted for the S809 aerofoil, using an optimization based on genetic algorithms, and taking into account the values found in the literature and the physics of the aerodynamic process. Once the parameters were fixed to a unique set, oscillating cases of the 2D S809 aerofoil were computed, and compared with experimental data. Thus, the accuracy of the model was evaluated. On the other hand, oscillating cases of different span stations of the NREL phase VI parked blade were computed and compared with experimental data, to analyze the three-dimensionality of the dynamic stall on the blade sections. For the unsteady computations on the blade, the model was fed with the steady data of the blade section, to directly consider the geometry influence. In general, the results of the computations for the 2D aerofoil and 3D blade sections were very encouraging
Kim, Suhwan; Baek, Juyeong; Jung, Unsang; Lee, Sangwon; Jung, Woonggyu; Kim, Jeehyun; Kang, Shinwon
2013-05-01
Recently, Mouse neuroblastoma cells are considered as an attractive model for the study of human neurological and prion diseases, and intensively used as a model system in different areas. Among those areas, differentiation of neuro2a (N2A) cells, receptor mediated ion current, and glutamate induced physiological response are actively investigated. The reason for the interest to mouse neuroblastoma N2A cells is that they have a fast growing rate than other cells in neural origin with a few another advantages. This study evaluated the calcium oscillations and neural spikes recording of mouse neuroblastoma N2A cells in an epileptic condition. Based on our observation of neural spikes in mouse N2A cell with our proposed imaging modality, we report that mouse neuroblastoma N2A cells can be an important model related to epileptic activity studies. It is concluded that the mouse neuroblastoma N2A cells produce the epileptic spikes in vitro in the same way as produced by the neurons or the astrocytes. This evidence advocates the increased and strong level of neurotransmitters release by enhancement in free calcium using the 4-aminopyridine which causes the mouse neuroblastoma N2A cells to produce the epileptic spikes and calcium oscillation.
Kim, Suhwan; Jung, Unsang; Baek, Juyoung; Lee, Sangwon; Jung, Woonggyu; Kim, Jeehyun; Kang, Shinwon
2013-01-01
Recently, mouse neuroblastoma cells have been considered as an attractive model for the study of human neurological and prion diseases, and they have been intensively used as a model system in different areas. For example, the differentiation of neuro2a (N2A) cells, receptor-mediated ion current, and glutamate-induced physiological responses have been actively investigated with these cells. These mouse neuroblastoma N2A cells are of interest because they grow faster than other cells of neural origin and have a number of other advantages. The calcium oscillations and neural spikes of mouse neuroblastoma N2A cells in epileptic conditions are evaluated. Based on our observations of neural spikes in these cells with our proposed imaging modality, we reported that they can be an important model in epileptic activity studies. We concluded that mouse neuroblastoma N2A cells produce epileptic spikes in vitro in the same way as those produced by neurons or astrocytes. This evidence suggests that increased levels of neurotransmitter release due to the enhancement of free calcium from 4-aminopyridine causes the mouse neuroblastoma N2A cells to produce epileptic spikes and calcium oscillations.
Wang, L.; Jiang, T. L.; Dai, H. L.; Ni, Q.
2018-05-01
The present study develops a new three-dimensional nonlinear model for investigating vortex-induced vibrations (VIV) of flexible pipes conveying internal fluid flow. The unsteady hydrodynamic forces associated with the wake dynamics are modeled by two distributed van der Pol wake oscillators. In particular, the nonlinear partial differential equations of motion of the pipe and the wake are derived, taking into account the coupling between the structure and the fluid. The nonlinear equations of motion for the coupled system are then discretized by means of the Galerkin technique, resulting in a high-dimensional reduced-order model of the system. It is shown that the natural frequencies for in-plane and out-of-plane motions of the pipe may be different at high internal flow velocities beyond the threshold of buckling instability. The orientation angle of the postbuckling configuration is time-varying due to the disturbance of hydrodynamic forces, thus yielding sometimes unexpected results. For a buckled pipe with relatively low cross-flow velocity, interestingly, examining the nonlinear dynamics of the pipe indicates that the combined effects of the cross-flow-induced resonance of the in-plane first mode and the internal-flow-induced buckling on the IL and CF oscillation amplitudes may be significant. For higher cross-flow velocities, however, the effect of internal fluid flow on the nonlinear VIV responses of the pipe is not pronounced.
Variance Function Partially Linear Single-Index Models1.
Lian, Heng; Liang, Hua; Carroll, Raymond J
2015-01-01
We consider heteroscedastic regression models where the mean function is a partially linear single index model and the variance function depends upon a generalized partially linear single index model. We do not insist that the variance function depend only upon the mean function, as happens in the classical generalized partially linear single index model. We develop efficient and practical estimation methods for the variance function and for the mean function. Asymptotic theory for the parametric and nonparametric parts of the model is developed. Simulations illustrate the results. An empirical example involving ozone levels is used to further illustrate the results, and is shown to be a case where the variance function does not depend upon the mean function.
Conservative Chaos Generators with CCII+ Based on Mathematical Model of Nonlinear Oscillator
Directory of Open Access Journals (Sweden)
J. Slezak
2008-09-01
Full Text Available In this detailed paper, several novel oscillator's configurations which consist only of five positive second generation current conveyors (CCII+ are presented and experimentally verified. Each network is able to generate the conservative chaotic attractors with the certain degree of the structural stability. It represents a class of the autonomous deterministic dynamical systems with two-segment piecewise linear (PWL vector fields suitable also for the theoretical analysis. Route to chaos can be traced and observed by a simple change of the external dc voltage. Advantages and other possible improvements are briefly discussed in the text.
Boulanger, Eliot; Thiel, Walter
2012-11-13
Accurate quantum mechanical/molecular mechanical (QM/MM) treatments should account for MM polarization and properly include long-range electrostatic interactions. We report on a development that covers both these aspects. Our approach combines the classical Drude oscillator (DO) model for the electronic polarizability of the MM atoms with the generalized solvent boundary Potential (GSBP) and the solvated macromolecule boundary potential (SMBP). These boundary potentials (BP) are designed to capture the long-range effects of the outer region of a large system on its interior. They employ a finite difference approximation to the Poisson-Boltzmann equation for computing electrostatic interactions and take into account outer-region bulk solvent through a polarizable dielectric continuum (PDC). This approach thus leads to fully polarizable three-layer QM/MM-DO/BP methods. As the mutual responses of each of the subsystems have to be taken into account, we propose efficient schemes to converge the polarization of each layer simultaneously. For molecular dynamics (MD) simulations using GSBP, this is achieved by considering the MM polarizable model as a dynamical degree of freedom, and hence contributions from the boundary potential can be evaluated for a frozen state of polarization at every time step. For geometry optimizations using SMBP, we propose a dual self-consistent field approach for relaxing the Drude oscillators to their ideal positions and converging the QM wave function with the proper boundary potential. The chosen coupling schemes are evaluated with a test system consisting of a glycine molecule in a water ball. Both boundary potentials are capable of properly reproducing the gradients at the inner-region atoms and the Drude oscillators. We show that the effect of the Drude oscillators must be included in all terms of the boundary potentials to obtain accurate results and that the use of a high dielectric constant for the PDC does not lead to a polarization
SPICE Modeling of Single-Grain Si TFTs using BSIMSOI
Baiano, A.; Ishihara, R.; Saputra, N.; Long, J.; Karaki, N.; Inoue, S.; Metselaar, W.; Beenakker, C.I.M.
2007-01-01
Single Grain Thin-film transistors (SG-TFTs) fabricated inside a location-controlled grain by µ-Czochralski process have as high as SOI performance. To model them, BSIMSOI with a proper modification of the mobility is proposed. The model has been verified for n- and p-channel DC and low frequency AC
International Nuclear Information System (INIS)
Turner, Geoffrey R.
2014-01-01
A one-dimensional electrostatic sheet model of a coaxial geometry Virtual Cathode Oscillator (VCO) is presented. The cathode is centrally located and connects to a peripherally located plate electrode to form a resonant cavity, and is thus considered to be a novel design. Charge is modelled as concentric sheets about the cathode whose absolute position and velocity are determined as a function of time by solving the relativistic equations of motion. The model predicts the formation of a virtual cathode between the grid and plate electrodes for the case of a space-charge limited current. Setting the electron reflexing frequency (as a function of the grid potential) comparable with the cavity resonant frequency is predicted to improve the efficiency of microwave emission
International Nuclear Information System (INIS)
Aniel-Buchheit, Sylvie; Podowski, Michael Z.
2006-01-01
The purpose of this paper is to discuss the development in progress of a complete space- and time-dependent model of the coupled neutron kinetic and reactor thermal-hydraulics. The neutron kinetics model is based on two-group diffusion equations with Doppler and void reactivity feedback effects. This model is coupled with the model of two-phase flow and heat transfer in parallel coolant channels. The modeling concepts considered for this purpose include one-dimensional drift flux and two-fluid models, as well a CFD model implemented in the NPHASE advanced computational multiphase fluid dynamics (CMFD) computer code. Two methods of solution for the overall model are proposed. One is based on direct numerical integration of the spatially-discretized governing equations. The other approach is based on a quasi-analytical modal approach to the neutronics model, in which a complete set of eigenvectors is found for step-wise temporal changes of the cross-sections of core materials (fuel and coolant/moderator). The issues investigated in the paper include details of model formulation, as well as the results of calculations for neutronically-coupled density-wave oscillations. (authors)
The sound of oscillating air jets: Physics, modeling and simulation in flute-like instruments
de La Cuadra, Patricio
Flute-like instruments share a common mechanism that consists of blowing across one open end of a resonator to produce an air jet that is directed towards a sharp edge. Analysis of its operation involves various research fields including fluid dynamics, aero-acoustics, and physics. An effort has been made in this study to extend this description from instruments with fixed geometry like recorders and organ pipes to flutes played by the lips. An analysis of the jet's response to a periodic excitation is the focus of this study, as are the parameters under the player's control in forming the jet. The jet is excited with a controlled excitation consisting of two loudspeakers in opposite phase. A Schlieren system is used to visualize the jet, and image detection algorithms are developed to extract quantitative information from the images. In order to study the behavior of jets observed in different flute-like instruments, several geometries of the excitation and jet shapes are studied. The obtained data is used to propose analytical models that correctly fit the observed measurements and can be used for simulations. The control exerted by the performer on the instrument is of crucial importance in the quality of the sound produced for a number of flute-like instruments. The case of the transverse flute is experimentally studied. An ensemble of control parameters are measured and visualized in order to describe some aspects of the subtle control attained by an experienced flautist. Contrasting data from a novice flautist are compared. As a result, typical values for several non-dimensional parameters that characterize the normal operation of the instrument have been measured, and data to feed simulations has been collected. The information obtained through experimentation is combined with research developed over the last decades to put together a time-domain simulation. The model proposed is one-dimensional and driven by a single physical input. All the variables in the
Case for neutrino oscillations
International Nuclear Information System (INIS)
Ramond, P.
1982-01-01
The building of a machine capable of producing an intense, well-calibrated beam of muon neutrinos is regarded by particle physicists with keen interest because of its ability of studying neutrino oscillations. The possibility of neutrino oscillations has long been recognized, but it was not made necessary on theoretical or experimental grounds; one knew that oscillations could be avoided if neutrinos were massless, and this was easily done by the conservation of lepton number. The idea of grand unification has led physicists to question the existence (at higher energies) of global conservation laws. The prime examples are baryon-number conservation, which prevents proton decay, and lepton-number conservation, which keeps neutrinos massless, and therefore free of oscillations. The detection of proton decay and neutrino oscillations would therefore be an indirect indication of the idea of Grand Unification, and therefore of paramount importance. Neutrino oscillations occur when neutrinos acquire mass in such a way that the neutrino mass eigenstates do not match the (neutrino) eigenstates produced by the weak interactions. We shall study the ways in which neutrinos can get mass, first at the level of the standard SU 2 x U 1 model, then at the level of its Grand Unification Generalizations
The Asian-Australian Monsoon and El Niño-Southern Oscillation in the NCAR Climate System Model*.
Meehl, Gerald A.; Arblaster, Julie M.
1998-06-01
Features associated with the Asian-Australian monsoon system and El Niño-Southern Oscillation (ENSO) are described in the National Center for Atmospheric Research (NCAR) global coupled Climate System Model (CSM). Simulation characteristics are compared with a version of the atmospheric component of the CSM, the NCAR CCM3, run with time-evolving SSTs from 1950 to 1994, and with observations. The CSM is shown to represent most major features of the monsoon system in terms of mean climatology, interannual variability, and connections to the tropical Pacific. This includes a representation of the Southern Oscillation links between strong Asian-Australian monsoons and associated negative SST anomalies in the eastern equatorial Pacific. The equatorial SST gradient across the Pacific in the CSM is shown to be similar to the observed with somewhat cooler mean SSTs across the entire Pacific by about 1°-2°C. The seasonal cycle of SSTs in the eastern equatorial Pacific has the characteristic signature seen in the observations of relatively warmer SSTs propagating westward in the first half of the year followed by the reestablishment of the cold tongue with relatively colder SSTs propagating westward in the second half of the year. Like other global coupled models, the propagation is similar to the observed but with the establishment of the relatively warmer water in the first half of the year occurring about 1-2 months later than observed. The seasonal cycle of precipitation in the tropical eastern Pacific is also similar to other global coupled models in that there is a tendency for a stronger-than-observed double ITCZ year round, particularly in northern spring, but with a well-reproduced annual maximum of ITCZ strength north of the equator in the second half of the year. Time series of area-averaged SSTs for the NINO3 region in the eastern equatorial Pacific show that the CSM is producing about 60% of the amplitude of the observed variability in that region, consistent
Clusters in nonsmooth oscillator networks
Nicks, Rachel; Chambon, Lucie; Coombes, Stephen
2018-03-01
For coupled oscillator networks with Laplacian coupling, the master stability function (MSF) has proven a particularly powerful tool for assessing the stability of the synchronous state. Using tools from group theory, this approach has recently been extended to treat more general cluster states. However, the MSF and its generalizations require the determination of a set of Floquet multipliers from variational equations obtained by linearization around a periodic orbit. Since closed form solutions for periodic orbits are invariably hard to come by, the framework is often explored using numerical techniques. Here, we show that further insight into network dynamics can be obtained by focusing on piecewise linear (PWL) oscillator models. Not only do these allow for the explicit construction of periodic orbits, their variational analysis can also be explicitly performed. The price for adopting such nonsmooth systems is that many of the notions from smooth dynamical systems, and in particular linear stability, need to be modified to take into account possible jumps in the components of Jacobians. This is naturally accommodated with the use of saltation matrices. By augmenting the variational approach for studying smooth dynamical systems with such matrices we show that, for a wide variety of networks that have been used as models of biological systems, cluster states can be explicitly investigated. By way of illustration, we analyze an integrate-and-fire network model with event-driven synaptic coupling as well as a diffusively coupled network built from planar PWL nodes, including a reduction of the popular Morris-Lecar neuron model. We use these examples to emphasize that the stability of network cluster states can depend as much on the choice of single node dynamics as it does on the form of network structural connectivity. Importantly, the procedure that we present here, for understanding cluster synchronization in networks, is valid for a wide variety of systems in
Directory of Open Access Journals (Sweden)
Gang Chen
2012-01-01
Full Text Available It is not easy for the system identification-based reduced-order model (ROM and even eigenmode based reduced-order model to predict the limit cycle oscillation generated by the nonlinear unsteady aerodynamics. Most of these traditional ROMs are sensitive to the flow parameter variation. In order to deal with this problem, a support vector machine- (SVM- based ROM was investigated and the general construction framework was proposed. The two-DOF aeroelastic system for the NACA 64A010 airfoil in transonic flow was then demonstrated for the new SVM-based ROM. The simulation results show that the new ROM can capture the LCO behavior of the nonlinear aeroelastic system with good accuracy and high efficiency. The robustness and computational efficiency of the SVM-based ROM would provide a promising tool for real-time flight simulation including nonlinear aeroelastic effects.
Micoulaut, Matthieu
2010-07-21
A low temperature Monte Carlo dynamics of a Keating-like oscillator model is used to study the relationship between the nature of network glasses from the viewpoint of rigidity, the thermal reversibility during the glass transition and the strong-fragile behaviour of glass-forming liquids. The model shows that a Phillips optimal glass formation with minimal enthalpic changes is obtained under a cooling/annealing cycle when the system is optimally constrained by the harmonic interactions, i.e. when it is isostatically rigid. For these peculiar systems with a nearly reversible glass transition, the computed activation energy for relaxation time shows also a minimum, which demonstrates that isostatically rigid glasses are strong (Arrhenius-like) glass-forming liquids. Experiments on chalcogenide and oxide glass-forming liquids are discussed under this new perspective and confirm the theoretical prediction for chalcogenide network glasses whereas limitations of the approach appear for weakly interacting (non-covalent, ionic) systems.
International Nuclear Information System (INIS)
Sakurai, Atsunori; Tanimura, Yoshitaka
2014-01-01
The quantum dissipative dynamics of a tunneling process through double barrier structures is investigated on the basis of non-perturbative and non-Markovian treatment. We employ a Caldeira–Leggett Hamiltonian with an effective potential calculated self-consistently, accounting for the electron distribution. With this Hamiltonian, we use the reduced hierarchy equations of motion in the Wigner space representation to study non-Markovian and non-perturbative thermal effects at finite temperature in a rigorous manner. We study current variation in time and the current–voltage (I–V ) relation of the resonant tunneling diode for several widths of the contact region, which consists of doped GaAs. Hysteresis and both single and double plateau-like behavior are observed in the negative differential resistance (NDR) region. While all of the current oscillations decay in time in the NDR region in the case of a strong system–bath coupling, there exist self-excited high-frequency current oscillations in some parts of the plateau in the NDR region in the case of weak coupling. We find that the effective potential in the oscillating case possesses a basin-like form on the emitter side (emitter basin) and that the current oscillation results from tunneling between the emitter basin and the quantum well in the barriers. We find two distinct types of current oscillations, with large and small oscillation amplitudes, respectively. These two types of oscillation appear differently in the Wigner space, with one exhibiting tornado-like motion and the other exhibiting a two piston engine-like motion. (paper)
Ngonghala, Calistus N; Teboh-Ewungkem, Miranda I; Ngwa, Gideon A
2015-06-01
We derive and study a deterministic compartmental model for malaria transmission with varying human and mosquito populations. Our model considers disease-related deaths, asymptomatic immune humans who are also infectious, as well as mosquito demography, reproduction and feeding habits. Analysis of the model reveals the existence of a backward bifurcation and persistent limit cycles whose period and size is determined by two threshold parameters: the vectorial basic reproduction number Rm, and the disease basic reproduction number R0, whose size can be reduced by reducing Rm. We conclude that malaria dynamics are indeed oscillatory when the methodology of explicitly incorporating the mosquito's demography, feeding and reproductive patterns is considered in modeling the mosquito population dynamics. A sensitivity analysis reveals important control parameters that can affect the magnitudes of Rm and R0, threshold quantities to be taken into consideration when designing control strategies. Both Rm and the intrinsic period of oscillation are shown to be highly sensitive to the mosquito's birth constant λm and the mosquito's feeding success probability pw. Control of λm can be achieved by spraying, eliminating breeding sites or moving them away from human habitats, while pw can be controlled via the use of mosquito repellant and insecticide-treated bed-nets. The disease threshold parameter R0 is shown to be highly sensitive to pw, and the intrinsic period of oscillation is also sensitive to the rate at which reproducing mosquitoes return to breeding sites. A global sensitivity and uncertainty analysis reveals that the ability of the mosquito to reproduce and uncertainties in the estimations of the rates at which exposed humans become infectious and infectious humans recover from malaria are critical in generating uncertainties in the disease classes.
Thomas, Rainer; Möllmann, Christian; Ziebart, Alexander; Liu, Tanghua; David, Matthias; Hartmann, Erik K
2017-07-11
Oscillations of the arterial partial pressure of oxygen induced by varying shunt fractions occur during cyclic alveolar recruitment within the injured lung. Recently, these were proposed as a pathomechanism that may be relevant for remote organ injury following acute respiratory distress syndrome. This study examines the transmission of oxygen oscillations to the renal tissue and their tidal volume dependency. Lung injury was induced by repetitive bronchoalveolar lavage in eight anaesthetized pigs. Cyclic alveolar recruitment was provoked by high tidal volume ventilation. Oscillations of the arterial partial pressure of oxygen were measured in real-time in the macrocirculation by multi-frequency phase fluorimetry and in the renal microcirculation by combined white-light spectrometry and laser-Doppler flowmetry during tidal volume down-titration. Significant respiratory-dependent oxygen oscillations were detected in the macrocirculation and transmitted to the renal microcirculation in a substantial extent. The amplitudes of these oscillations significantly correlate to the applied tidal volume and are minimized during down-titration. In a porcine model oscillations of the arterial partial pressure of oxygen are induced by cyclic alveolar recruitment and transmitted to the renal microcirculation in a tidal volume-dependent fashion. They might play a role in organ crosstalk and remote organ damage following lung injury.
Current oscillations in avalanche particle detectors with PNIPN-structure
International Nuclear Information System (INIS)
Lukin, K.A.
1995-08-01
The model of an avalanche high energy particle detector consisting of two pn-junctions, connected through an intrinsic semiconductor with a reverse biased voltage applied. This detector is able to generate the oscillatory response on the single particle passage through the structure. The possibility of oscillations leading to chaotic behaviour is pointed out
Optogenetically evoked gamma oscillations are disturbed by cocaine administration
Directory of Open Access Journals (Sweden)
Jonathan E Dilgen
2013-11-01
Full Text Available Drugs of abuse have enormous societal impact by degrading the cognitive abilities, emotional state and social behavior of addicted individuals. Among other events involved in the addiction cycle, the study of a single exposure to cocaine, and the contribution of the effects of that event to the continuous and further use of drugs of abuse are fundamental. Gamma oscillations are thought to be important neural correlates of cognitive processing in the prefrontal cortex (PFC which include decision making, set shifting and working memory. It follows that cocaine exposure might modulate gamma oscillations, which could result in reduced cognitive ability. Parvalbumin-positive fast-spiking interneurons play an orchestrating role in gamma oscillation induction and it has been shown recently that gamma oscillations can be induced in an anesthetized animal using optogenetic techniques. We use a knock-in mouse model together with optogenetics and in vivo electrophysiology to study the effects of acute cocaine on PFC gamma oscillation as a step toward understanding the cortical changes that may underlie continuous use of stimulants. Our results show that acute cocaine administration increases entrainment of the gamma oscillation to the optogentically induced driving frequency. Our results also suggest that this modulation of gamma oscillations is driven trough activation of DAD1 receptors. The acute cocaine-mediated changes in mPFC may underlie the enhancement of attention and awareness commonly reported by cocaine users and may contribute to the further use and abuse of psychostimulants.
Suppressing nonlinear resonances in an impact oscillator using SMAs
International Nuclear Information System (INIS)
Sitnikova, Elena; Pavlovskaia, Ekaterina; Ing, James; Wiercigroch, Marian
2012-01-01
In this paper, we study the resonant responses of an impact oscillator with a one sided SMA motion constraint operating in the pseudoelastic regime. The effectiveness of the SMA restraint in suppressing nonlinear resonances of the impact oscillator is assessed by comparing the dynamic responses of the impact oscillator with SMA and elastic restraints. It is shown that the hysteretic behaviour of the SMA restraint provides an overall vibration reduction in the resonant frequency ranges. Due to the softening behaviour of the SMA element, the resonant frequencies for the SMA oscillator were found to be lower than for the oscillator with an elastic restraint. At each resonance, a single periodic response for the oscillator with the elastic restraint corresponds to two co-existing periodic responses of the SMA oscillator. While at the first resonance peak the emergence of one of the co-existing responses is associated with the hardening effect of the SMA restraint when the pseudoelastic force varies over a complete transformation cycle, at higher frequency resonances incomplete phase transformations in the SMA were detected for both responses. The experimental study undertaken verified the response-modification effects predicted by the numerical analysis conducted under the isothermal approximation. The experimental results showed a good quantitative correspondence with the mathematical modelling. (paper)
Nonlinearity in oscillating bridges
Directory of Open Access Journals (Sweden)
Filippo Gazzola
2013-09-01
Full Text Available We first recall several historical oscillating bridges that, in some cases, led to collapses. Some of them are quite recent and show that, nowadays, oscillations in suspension bridges are not yet well understood. Next, we survey some attempts to model bridges with differential equations. Although these equations arise from quite different scientific communities, they display some common features. One of them, which we believe to be incorrect, is the acceptance of the linear Hooke law in elasticity. This law should be used only in presence of small deviations from equilibrium, a situation which does not occur in widely oscillating bridges. Then we discuss a couple of recent models whose solutions exhibit self-excited oscillations, the phenomenon visible in real bridges. This suggests a different point of view in modeling equations and gives a strong hint how to modify the existing models in order to obtain a reliable theory. The purpose of this paper is precisely to highlight the necessity of revisiting the classical models, to introduce reliable models, and to indicate the steps we believe necessary to reach this target.
On the Predictiveness of Single-Field Inflationary Models
Burgess, C.P.; Trott, Michael
2014-01-01
We re-examine the predictiveness of single-field inflationary models and discuss how an unknown UV completion can complicate determining inflationary model parameters from observations, even from precision measurements. Besides the usual naturalness issues associated with having a shallow inflationary potential, we describe another issue for inflation, namely, unknown UV physics modifies the running of Standard Model (SM) parameters and thereby introduces uncertainty into the potential inflationary predictions. We illustrate this point using the minimal Higgs Inflationary scenario, which is arguably the most predictive single-field model on the market, because its predictions for $A_s$, $r$ and $n_s$ are made using only one new free parameter beyond those measured in particle physics experiments, and run up to the inflationary regime. We find that this issue can already have observable effects. At the same time, this UV-parameter dependence in the Renormalization Group allows Higgs Inflation to occur (in prin...
Dynamical Friedel oscillations of a Fermi sea
Zhang, J. M.; Liu, Y.
2018-02-01
We study the scenario of quenching an interaction-free Fermi sea on a one-dimensional lattice ring by suddenly changing the potential of a site. From the point-of-view of the conventional Friedel oscillation, which is a static or equilibrium problem, it is of interest what temporal and spatial oscillations the local sudden quench will induce. Numerically, the primary observation is that for a generic site, the local particle density switches between two plateaus periodically in time. Making use of the proximity of the realistic model to an exactly solvable model and employing the Abel regularization to assign a definite value to a divergent series, we obtain an analytical formula for the heights of the plateaus, which turns out to be very accurate for sites not too close to the quench site. The unexpect relevance and the incredible accuracy of the Abel regularization are yet to be understood. Eventually, when the contribution of the defect mode is also taken into account, the plateaus for those sites close to or on the quench site can also be accurately predicted. We have also studied the infinite lattice case. In this case, ensuing the quench, the out-going wave fronts leave behind a stable density oscillation pattern. Because of some interesting single-particle property, this dynamically generated Friedel oscillation differs from its conventional static counterpart only by the defect mode.
Single-particle spectral density of the Hubbard model
Mehlig, B.; Eskes, H.; Hayn, R.; Meinders, M.B.J.
1995-01-01
We calculate the single-particle spectral function for the Hubbard model within the framework of a projection technique equivalent to the two-pole approximation. We show that the two-pole approximation can be well understood as an average characterization of the upper and the lower Hubbard bands,
SINGLE-PARTICLE SPECTRAL DENSITY OF THE HUBBARD-MODEL
MEHLIG, B; ESKES, H; HAYN, R; MEINDERS, MBJ
1995-01-01
We calculate the single-particle spectral function for the Hubbard model within the framework of a projection technique equivalent to the two-pole approximation. We show that the two-pole approximation can be well understood as an average characterization of the upper and the lower Hubbard bands,
Modeling single cell antibody excretion on a biosensor
Stojanovic, Ivan; Baumgartner, W.; van der Velden, T.J.G.; Terstappen, Leonardus Wendelinus Mathias Marie; Schasfoort, Richardus B.M.
2016-01-01
We simulated, using Comsol Multiphysics, the excretion of antibodies by single hybridoma cells and their subsequent binding on a surface plasmon resonance imaging (SPRi) sensor. The purpose was to confirm that SPRi is suitable to accurately quantify antibody (anti-EpCAM) excretion. The model showed
Single-Index Additive Vector Autoregressive Time Series Models
LI, YEHUA; GENTON, MARC G.
2009-01-01
We study a new class of nonlinear autoregressive models for vector time series, where the current vector depends on single-indexes defined on the past lags and the effects of different lags have an additive form. A sufficient condition is provided
Modeling single versus multiple systems in implicit and explicit memory.
Starns, Jeffrey J; Ratcliff, Roger; McKoon, Gail
2012-04-01
It is currently controversial whether priming on implicit tasks and discrimination on explicit recognition tests are supported by a single memory system or by multiple, independent systems. In a Psychological Review article, Berry and colleagues used mathematical modeling to address this question and provide compelling evidence against the independent-systems approach. Copyright © 2012 Elsevier Ltd. All rights reserved.
Interpolation solution of the single-impurity Anderson model
International Nuclear Information System (INIS)
Kuzemsky, A.L.
1990-10-01
The dynamical properties of the single-impurity Anderson model (SIAM) is studied using a novel Irreducible Green's Function method (IGF). The new solution for one-particle GF interpolating between the strong and weak correlation limits is obtained. The unified concept of relevant mean-field renormalizations is indispensable for strong correlation limit. (author). 21 refs
Discrete dislocation plasticity modeling of short cracks in single crystals
Deshpande, VS; Needleman, A; Van der Giessen, E
2003-01-01
The mode-I crack growth behavior of geometrically similar edge-cracked single crystal specimens of varying size subject to both monotonic and cyclic axial loading is analyzed using discrete dislocation dynamics. Plastic deformation is modeled through the motion of edge dislocations in an elastic
Effective single scattering albedo estimation using regional climate model
CSIR Research Space (South Africa)
Tesfaye, M
2011-09-01
Full Text Available In this study, by modifying the optical parameterization of Regional Climate model (RegCM), the authors have computed and compared the Effective Single-Scattering Albedo (ESSA) which is a representative of VIS spectral region. The arid, semi...
Kim, Go-Un; Seo, Kyong-Hwan
2018-01-01
A key physical factor in regulating the performance of Madden-Julian oscillation (MJO) simulation is examined by using 26 climate model simulations from the World Meteorological Organization's Working Group for Numerical Experimentation/Global Energy and Water Cycle Experiment Atmospheric System Study (WGNE and MJO-Task Force/GASS) global model comparison project. For this, intraseasonal moisture budget equation is analyzed and a simple, efficient physical quantity is developed. The result shows that MJO skill is most sensitive to vertically integrated intraseasonal zonal wind convergence (ZC). In particular, a specific threshold value of the strength of the ZC can be used as distinguishing between good and poor models. An additional finding is that good models exhibit the correct simultaneous convection and large-scale circulation phase relationship. In poor models, however, the peak circulation response appears 3 days after peak rainfall, suggesting unfavorable coupling between convection and circulation. For an improving simulation of the MJO in climate models, we propose that this delay of circulation in response to convection needs to be corrected in the cumulus parameterization scheme.
Lemkul, Justin A; Roux, Benoît; van der Spoel, David; MacKerell, Alexander D
2015-07-15
Explicit treatment of electronic polarization in empirical force fields used for molecular dynamics simulations represents an important advancement in simulation methodology. A straightforward means of treating electronic polarization in these simulations is the inclusion of Drude oscillators, which are auxiliary, charge-carrying particles bonded to the cores of atoms in the system. The additional degrees of freedom make these simulations more computationally expensive relative to simulations using traditional fixed-charge (additive) force fields. Thus, efficient tools are needed for conducting these simulations. Here, we present the implementation of highly scalable algorithms in the GROMACS simulation package that allow for the simulation of polarizable systems using extended Lagrangian dynamics with a dual Nosé-Hoover thermostat as well as simulations using a full self-consistent field treatment of polarization. The performance of systems of varying size is evaluated, showing that the present code parallelizes efficiently and is the fastest implementation of the extended Lagrangian methods currently available for simulations using the Drude polarizable force field. © 2015 Wiley Periodicals, Inc.
Comparing single- and dual-process models of memory development.
Hayes, Brett K; Dunn, John C; Joubert, Amy; Taylor, Robert
2017-11-01
This experiment examined single-process and dual-process accounts of the development of visual recognition memory. The participants, 6-7-year-olds, 9-10-year-olds and adults, were presented with a list of pictures which they encoded under shallow or deep conditions. They then made recognition and confidence judgments about a list containing old and new items. We replicated the main trends reported by Ghetti and Angelini () in that recognition hit rates increased from 6 to 9 years of age, with larger age changes following deep than shallow encoding. Formal versions of the dual-process high threshold signal detection model and several single-process models (equal variance signal detection, unequal variance signal detection, mixture signal detection) were fit to the developmental data. The unequal variance and mixture signal detection models gave a better account of the data than either of the other models. A state-trace analysis found evidence for only one underlying memory process across the age range tested. These results suggest that single-process memory models based on memory strength are a viable alternative to dual-process models for explaining memory development. © 2016 John Wiley & Sons Ltd.
NEAR-INFRARED AND X-RAY QUASI-PERIODIC OSCILLATIONS IN NUMERICAL MODELS OF Sgr A*
International Nuclear Information System (INIS)
Dolence, Joshua C.; Gammie, Charles F.; Shiokawa, Hotaka; Noble, Scott C.
2012-01-01
We report transient quasi-periodic oscillations (QPOs) on minute timescales in relativistic, radiative models of the galactic center source Sgr A*. The QPOs result from nonaxisymmetric m = 1 structure in the accretion flow excited by MHD turbulence. Near-infrared (NIR) and X-ray power spectra show significant peaks at frequencies comparable to the orbital frequency at the innermost stable circular orbit (ISCO) f o . The excess power is associated with inward propagating magnetic filaments inside the ISCO. The amplitudes of the QPOs are sensitive to the electron distribution function. We argue that transient QPOs appear at a range of frequencies in the neighborhood of f o and that the power spectra, averaged over long times, likely show a broad bump near f o rather than distinct, narrow QPO features.
International Nuclear Information System (INIS)
Mohan, C.; Singh, V.P.
1979-01-01
Kopal's method of Roche coordinates used by the authors in an earlier paper (Mohan and Singh, 1978) to study the problems of small oscillations of tidally-distorted stars has been extended further to take into account the effect of second-order terms in tidal distortion. The results show that the effect of including terms of second order of smallness in tidal distortion in the metric coefficients of the Roche coordinates of tidally distroted stars is quite significant, especially in case of stars with extended envelopes and (or) larger values of the companion star producing tidal distortion. Some of the models which were earlier found stable against small perturbations now become dynamically unstable with the inclusion of the terms of second order of smallness in tidal effects. (Auth.)
International Nuclear Information System (INIS)
Romberg, T.M.
1982-12-01
Industrial plant such as heat exchangers and nuclear and conventional boilers are prone to coolant flow oscillations which may not be detected. In this report, a hydrodynamic model is formulated in which the one-dimensional, non-linear, partial differential equations for the conservation of mass, energy and momentum are perturbed with respect to time, linearised, and Laplace-transformed into the s-domain for frequency response analysis. A computer program has been developed to integrate numerically the resulting non-linear ordinary differential equations by finite difference methods. A sample problem demonstrates how the computer code is used to analyse the frequency response and flow stability characteristics of a heated channel
Modelling of oscillations in two-dimensional echo-spectra of the Fenna-Matthews-Olson complex
International Nuclear Information System (INIS)
Hein, Birgit; Kreisbeck, Christoph; Kramer, Tobias; Rodríguez, Mirta
2012-01-01
Recent experimental observations of time-dependent beatings in the two-dimensional echo-spectra of light-harvesting complexes at ambient temperatures have opened up the question of whether coherence and wave-like behaviour play a significant role in photosynthesis. We carry out a numerical study of the absorption and echo-spectra of the Fenna-Matthews-Olson (FMO) complex in Chlorobium tepidum and analyse the requirements in the theoretical model needed to reproduce beatings in the calculated spectra. The energy transfer in the FMO pigment-protein complex is theoretically described by an exciton Hamiltonian coupled to a phonon bath which accounts for the pigments' electronic and vibrational excitations, respectively. We use the hierarchical equations of motions method to treat the strong couplings in a non-perturbative way. We show that the oscillations in the two-dimensional echo-spectra persist in the presence of thermal noise and static disorder. (paper)
Modeling Rabbit Responses to Single and Multiple Aerosol ...
Journal Article Survival models are developed here to predict response and time-to-response for mortality in rabbits following exposures to single or multiple aerosol doses of Bacillus anthracis spores. Hazard function models were developed for a multiple dose dataset to predict the probability of death through specifying dose-response functions and the time between exposure and the time-to-death (TTD). Among the models developed, the best-fitting survival model (baseline model) has an exponential dose-response model with a Weibull TTD distribution. Alternative models assessed employ different underlying dose-response functions and use the assumption that, in a multiple dose scenario, earlier doses affect the hazard functions of each subsequent dose. In addition, published mechanistic models are analyzed and compared with models developed in this paper. None of the alternative models that were assessed provided a statistically significant improvement in fit over the baseline model. The general approach utilizes simple empirical data analysis to develop parsimonious models with limited reliance on mechanistic assumptions. The baseline model predicts TTDs consistent with reported results from three independent high-dose rabbit datasets. More accurate survival models depend upon future development of dose-response datasets specifically designed to assess potential multiple dose effects on response and time-to-response. The process used in this paper to dev
Oscillating universe with quintom matter
International Nuclear Information System (INIS)
Xiong Huahui; Cai Yifu; Qiu Taotao; Piao Yunsong; Zhang Xinmin
2008-01-01
In this Letter, we study the possibility of building a model of the oscillating universe with quintom matter in the framework of 4-dimensional Friedmann-Robertson-Walker background. Taking the two-scalar-field quintom model as an example, we find in the model parameter space there are five different types of solutions which correspond to: (I) a cyclic universe with the minimal and maximal values of the scale factor remaining the same in every cycle, (II) an oscillating universe with its minimal and maximal values of the scale factor increasing cycle by cycle, (III) an oscillating universe with its scale factor always increasing, (IV) an oscillating universe with its minimal and maximal values of the scale factor decreasing cycle by cycle, and (V) an oscillating universe with its scale factor always decreasing
Bartels, Robert E.; Funk, Christie; Scott, Robert C.
2015-01-01
Research focus in recent years has been given to the design of aircraft that provide significant reductions in emissions, noise and fuel usage. Increases in fuel efficiency have also generally been attended by overall increased wing flexibility. The truss-braced wing (TBW) configuration has been forwarded as one that increases fuel efficiency. The Boeing company recently tested the Subsonic Ultra Green Aircraft Research (SUGAR) Truss-Braced Wing (TBW) wind-tunnel model in the NASA Langley Research Center Transonic Dynamics Tunnel (TDT). This test resulted in a wealth of accelerometer data. Other publications have presented details of the construction of that model, the test itself, and a few of the results of the test. This paper aims to provide a much more detailed look at what the accelerometer data says about the onset of aeroelastic instability, usually known as flutter onset. Every flight vehicle has a location in the flight envelope of flutter onset, and the TBW vehicle is not different. For the TBW model test, the flutter onset generally occurred at the conditions that the Boeing company analysis said it should. What was not known until the test is that, over a large area of the Mach number dynamic pressure map, the model displayed wing/engine nacelle aeroelastic limit cycle oscillation (LCO). This paper dissects that LCO data in order to provide additional insights into the aeroelastic behavior of the model.
2D and 3D Models of Convective Turbulence and Oscillations in Intermediate-Mass Main-Sequence Stars
Guzik, Joyce Ann; Morgan, Taylor H.; Nelson, Nicholas J.; Lovekin, Catherine; Kitiashvili, Irina N.; Mansour, Nagi N.; Kosovichev, Alexander
2015-08-01
We present multidimensional modeling of convection and oscillations in main-sequence stars somewhat more massive than the sun, using three separate approaches: 1) Applying the spherical 3D MHD ASH (Anelastic Spherical Harmonics) code to simulate the core convection and radiative zone. Our goal is to determine whether core convection can excite low-frequency gravity modes, and thereby explain the presence of low frequencies for some hybrid gamma Dor/delta Sct variables for which the envelope convection zone is too shallow for the convective blocking mechanism to drive g modes; 2) Using the 3D planar ‘StellarBox’ radiation hydrodynamics code to model the envelope convection zone and part of the radiative zone. Our goals are to examine the interaction of stellar pulsations with turbulent convection in the envelope, excitation of acoustic modes, and the role of convective overshooting; 3) Applying the ROTORC 2D stellar evolution and dynamics code to calculate evolution with a variety of initial rotation rates and extents of core convective overshooting. The nonradial adiabatic pulsation frequencies of these nonspherical models will be calculated using the 2D pulsation code NRO of Clement. We will present new insights into gamma Dor and delta Sct pulsations gained by multidimensional modeling compared to 1D model expectations.
Mechanistic modelling of the drying behaviour of single pharmaceutical granules
DEFF Research Database (Denmark)
Thérèse F.C. Mortier, Séverine; Beer, Thomas De; Gernaey, Krist
2012-01-01
The trend to move towards continuous production processes in pharmaceutical applications enhances the necessity to develop mechanistic models to understand and control these processes. This work focuses on the drying behaviour of a single wet granule before tabletting, using a six...... phase (submodel 2), the water inside the granule evaporates. The second submodel contains an empirical power coefficient, b. A sensitivity analysis was performed to study the influence of parameters on the moisture content of single pharmaceutical granules, which clearly points towards the importance...
An optical channel modeling of a single mode fiber
Nabavi, Neda; Liu, Peng; Hall, Trevor James
2018-05-01
The evaluation of the optical channel model that accurately describes the single mode fibre as a coherent transmission medium is reviewed through analytical, numerical and experimental analysis. We used the numerical modelling of the optical transmission medium and experimental measurements to determine the polarization drift as a function of time for a fixed length of fibre. The probability distribution of the birefringence vector was derived, which is associated to the 'Poole' equation. The theory and experimental evidence that has been disclosed in the literature in the context of polarization mode dispersion - Stokes & Jones formulations and solutions for key statistics by integration of stochastic differential equations has been investigated. Besides in-depth definition of the single-mode fibre-optic channel, the modelling which concerns an ensemble of fibres each with a different instance of environmental perturbation has been analysed.
Comparison of Methods for Oscillation Detection
DEFF Research Database (Denmark)
Odgaard, Peter Fogh; Trangbæk, Klaus
2006-01-01
This paper compares a selection of methods for detecting oscillations in control loops. The methods are tested on measurement data from a coal-fired power plant, where some oscillations are occurring. Emphasis is put on being able to detect oscillations without having a system model and without...... using process knowledge. The tested methods show potential for detecting the oscillations, however, transient components in the signals cause false detections as well, motivating usage of models in order to remove the expected signals behavior....
From excitability to oscillations
DEFF Research Database (Denmark)
Postnov, D. E.; Neganova, A. Y.; Jacobsen, J. C. B.
2013-01-01
One consequence of cell-to-cell communication is the appearance of synchronized behavior, where many cells cooperate to generate new dynamical patterns. We present a simple functional model of vasomotion based on the concept of a two-mode oscillator with dual interactions: via relatively slow dif...
Electron-helium S-wave model benchmark calculations. I. Single ionization and single excitation
Bartlett, Philip L.; Stelbovics, Andris T.
2010-02-01
A full four-body implementation of the propagating exterior complex scaling (PECS) method [J. Phys. B 37, L69 (2004)] is developed and applied to the electron-impact of helium in an S-wave model. Time-independent solutions to the Schrödinger equation are found numerically in coordinate space over a wide range of energies and used to evaluate total and differential cross sections for a complete set of three- and four-body processes with benchmark precision. With this model we demonstrate the suitability of the PECS method for the complete solution of the full electron-helium system. Here we detail the theoretical and computational development of the four-body PECS method and present results for three-body channels: single excitation and single ionization. Four-body cross sections are presented in the sequel to this article [Phys. Rev. A 81, 022716 (2010)]. The calculations reveal structure in the total and energy-differential single-ionization cross sections for excited-state targets that is due to interference from autoionization channels and is evident over a wide range of incident electron energies.
Christensen, H. M.; Berner, J.; Sardeshmukh, P. D.
2017-12-01
Stochastic parameterizations have been used for more than a decade in atmospheric models. They provide a way to represent model uncertainty through representing the variability of unresolved sub-grid processes, and have been shown to have a beneficial effect on the spread and mean state for medium- and extended-range forecasts. There is increasing evidence that stochastic parameterization of unresolved processes can improve the bias in mean and variability, e.g. by introducing a noise-induced drift (nonlinear rectification), and by changing the residence time and structure of flow regimes. We present results showing the impact of including the Stochastically Perturbed Parameterization Tendencies scheme (SPPT) in coupled runs of the National Center for Atmospheric Research (NCAR) Community Atmosphere Model, version 4 (CAM4) with historical forcing. SPPT results in a significant improvement in the representation of the El Nino-Southern Oscillation in CAM4, improving the power spectrum, as well as both the inter- and intra-annual variability of tropical pacific sea surface temperatures. We use a Linear Inverse Modelling framework to gain insight into the mechanisms by which SPPT has improved ENSO-variability.
Saidi, Hiba; Erath, Byron D.
2015-11-01
The vocal folds play a major role in human communication by initiating voiced sound production. During voiced speech, the vocal folds are set into sustained vibrations. Synthetic self-oscillating vocal fold models are regularly employed to gain insight into flow-structure interactions governing the phonation process. Commonly, a fixed boundary condition is applied to the lateral, anterior, and posterior sides of the synthetic vocal fold models. However, physiological observations reveal the presence of adipose tissue on the lateral surface between the thyroid cartilage and the vocal folds. The goal of this study is to investigate the influence of including this substrate layer of adipose tissue on the dynamics of phonation. For a more realistic representation of the human vocal folds, synthetic multi-layer vocal fold models have been fabricated and tested while including a soft lateral layer representative of adipose tissue. Phonation parameters have been collected and are compared to those of the standard vocal fold models. Results show that vocal fold kinematics are affected by adding the adipose tissue layer as a new boundary condition.
International Nuclear Information System (INIS)
Hoeye, Gudrun Kristine
1999-01-01
We have studied radial and nonradial oscillations in neutron stars, both in a general relativistic and non-relativistic frame, for several different equilibrium models. Different equations of state were combined, and our results show that it is possible to distinguish between the models based on their oscillation periods. We have particularly focused on the p-, f-, and g-modes. We find oscillation periods of II approx. 0.1 ms for the p-modes, II approx. 0.1 - 0.8 ms for the f-modes and II approx. 10 - 400 ms for the g-modes. For high-order (l → 4) f-modes we were also able to derive a formula that determines II l+1 from II l and II l-1 to an accuracy of 0.1%. Further, for the radial f-mode we find that the oscillation period goes to infinity as the maximum mass of the star is approached. Both p-, f-, and g-modes are sensitive to changes in the central baryon number density n c , while the g-modes are also sensitive to variations in the surface temperature. The g-modes are concentrated in the surface layer, while p- and f-modes can be found in all parts of the star. The effects of general relativity were studied, and we find that these are important at high central baryon number densities, especially for the p- and f-modes. General relativistic effects can therefore not be neglected when studying oscillations in neutron stars. We have further developed an improved Cowling approximation in the non-relativistic frame, which eliminates about half of the gap in the oscillation periods that results from use of the ordinary Cowling approximation. We suggest to develop an improved Cowling approximation also in the general relativistic frame. (Author)
Energy Technology Data Exchange (ETDEWEB)
Hoeye, Gudrun Kristine
1999-07-01
We have studied radial and nonradial oscillations in neutron stars, both in a general relativistic and non-relativistic frame, for several different equilibrium models. Different equations of state were combined, and our results show that it is possible to distinguish between the models based on their oscillation periods. We have particularly focused on the p-, f-, and g-modes. We find oscillation periods of II approx. 0.1 ms for the p-modes, II approx. 0.1 - 0.8 ms for the f-modes and II approx. 10 - 400 ms for the g-modes. For high-order (l (>{sub )} 4) f-modes we were also able to derive a formula that determines II{sub l+1} from II{sub l} and II{sub l-1} to an accuracy of 0.1%. Further, for the radial f-mode we find that the oscillation period goes to infinity as the maximum mass of the star is approached. Both p-, f-, and g-modes are sensitive to changes in the central baryon number density n{sub c}, while the g-modes are also sensitive to variations in the surface temperature. The g-modes are concentrated in the surface layer, while p- and f-modes can be found in all parts of the star. The effects of general relativity were studied, and we find that these are important at high central baryon number densities, especially for the p- and f-modes. General relativistic effects can therefore not be neglected when studying oscillations in neutron stars. We have further developed an improved Cowling approximation in the non-relativistic frame, which eliminates about half of the gap in the oscillation periods that results from use of the ordinary Cowling approximation. We suggest to develop an improved Cowling approximation also in the general relativistic frame. (Author)
Botari, Tiago; Leonel, Edson D
2013-01-01
A modification of the one-dimensional Fermi accelerator model is considered in this work. The dynamics of a classical particle of mass m, confined to bounce elastically between two rigid walls where one is described by a nonlinear van der Pol type oscillator while the other one is fixed, working as a reinjection mechanism of the particle for a next collision, is carefully made by the use of a two-dimensional nonlinear mapping. Two cases are considered: (i) the situation where the particle has mass negligible as compared to the mass of the moving wall and does not affect the motion of it; and (ii) the case where collisions of the particle do affect the movement of the moving wall. For case (i) the phase space is of mixed type leading us to observe a scaling of the average velocity as a function of the parameter (χ) controlling the nonlinearity of the moving wall. For large χ, a diffusion on the velocity is observed leading to the conclusion that Fermi acceleration is taking place. On the other hand, for case (ii), the motion of the moving wall is affected by collisions with the particle. However, due to the properties of the van der Pol oscillator, the moving wall relaxes again to a limit cycle. Such kind of motion absorbs part of the energy of the particle leading to a suppression of the unlimited energy gain as observed in case (i). The phase space shows a set of attractors of different periods whose basin of attraction has a complicated organization.
Ergodic time-reversible chaos for Gibbs' canonical oscillator
International Nuclear Information System (INIS)
Hoover, William Graham; Sprott, Julien Clinton; Patra, Puneet Kumar
2015-01-01
Nosé's pioneering 1984 work inspired a variety of time-reversible deterministic thermostats. Though several groups have developed successful doubly-thermostated models, single-thermostat models have failed to generate Gibbs' canonical distribution for the one-dimensional harmonic oscillator. A 2001 doubly-thermostated model, claimed to be ergodic, has a singly-thermostated version. Though neither of these models is ergodic this work has suggested a successful route toward singly-thermostated ergodicity. We illustrate both ergodicity and its lack for these models using phase-space cross sections and Lyapunov instability as diagnostic tools. - Highlights: • We develop cross-section and Lyapunov methods for diagnosing ergodicity. • We apply these methods to several thermostatted-oscillator problems. • We demonstrate the nonergodicity of previous work. • We find a novel family of ergodic thermostatted-oscillator problems.
Energy Technology Data Exchange (ETDEWEB)
Gevorgyan, Samvel [Department of Physics, Yerevan State University, 1 Alex Manoogian Street, Yerevan 0025 (Armenia); Institute for Physical Researches, National Academy of Sciences, Gitavan IFI, 0203 Ashtarak-2 (Armenia)], E-mail: gevs_sam@web.am; Gevorgyan, Vardan [Department of Physics, Yerevan State University, 1 Alex Manoogian Street, Yerevan 0025 (Armenia); Institute for Physical Researches, National Academy of Sciences, Gitavan IFI, 0203 Ashtarak-2 (Armenia); International Scientific-Educational Center, National Academy of Sciences, 24-D Marshal Baghramyan av., Yerevan 0019 (Armenia); Karapetyan, Gagik [Department of Physics, Yerevan State University, 1 Alex Manoogian Street, Yerevan 0025 (Armenia); Institute for Physical Researches, National Academy of Sciences, Gitavan IFI, 0203 Ashtarak-2 (Armenia)
2008-05-15
A new class super-broadband, nano-scale-resolution position sensor is tested. It is used as an additional sensor in seismograph. It enables to extend the band and enhance the sensitivity of the available technique by at least an order of magnitude. It allows transferring of mechanical vibrations of constructions and buildings, with amplitudes over 1 nm, into detectable signal in a frequency range starting practically from quasi-static movements. It is based on detection of position changes of a vibrating normal-metallic plate placed near the flat coil-being used as a pick-up in a stable tunnel diode oscillator. Frequency of the oscillator is used as a detecting parameter, and the measuring effect is determined by a distortion of the MHz-range testing field configuration near a coil by a vibrating plate, leading to magnetic inductance changes of the coil, with a resolution {approx}10 pH. This results in changes of oscillator frequency. We discuss test data of such a position sensor, installed in a Russian SM-3 seismometer, as an additional pick-up component, showing its advantages compared to traditional techniques. We also discuss the future of such a novel sensor involving substitution of a metallic coil by a superconductive one and replacement of a tunnel diode by an S/I/S hetero-structure-as much less-powered active element in the oscillator, compared to tunnel diode. These may strongly improve the stability of oscillators, and therefore enhance the resolution of seismic techniques.
Energy Technology Data Exchange (ETDEWEB)
Török, Gabriel; Goluchová, Katerina; Urbanec, Martin, E-mail: gabriel.torok@gmail.com, E-mail: katka.g@seznam.cz, E-mail: martin.urbanec@physics.cz [Research Centre for Computational Physics and Data Processing, Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo nám. 13, CZ-746, 01 Opava (Czech Republic); and others
2016-12-20
Twin-peak quasi-periodic oscillations (QPOs) are observed in the X-ray power-density spectra of several accreting low-mass neutron star (NS) binaries. In our previous work we have considered several QPO models. We have identified and explored mass–angular-momentum relations implied by individual QPO models for the atoll source 4U 1636-53. In this paper we extend our study and confront QPO models with various NS equations of state (EoS). We start with simplified calculations assuming Kerr background geometry and then present results of detailed calculations considering the influence of NS quadrupole moment (related to rotationally induced NS oblateness) assuming Hartle–Thorne spacetimes. We show that the application of concrete EoS together with a particular QPO model yields a specific mass–angular-momentum relation. However, we demonstrate that the degeneracy in mass and angular momentum can be removed when the NS spin frequency inferred from the X-ray burst observations is considered. We inspect a large set of EoS and discuss their compatibility with the considered QPO models. We conclude that when the NS spin frequency in 4U 1636-53 is close to 580 Hz, we can exclude 51 of the 90 considered combinations of EoS and QPO models. We also discuss additional restrictions that may exclude even more combinations. Namely, 13 EOS are compatible with the observed twin-peak QPOs and the relativistic precession model. However, when considering the low-frequency QPOs and Lense–Thirring precession, only 5 EOS are compatible with the model.
Vacuum Rabi Oscillation of an Atom without Rotating-Wave Approximation
International Nuclear Information System (INIS)
Fa-Qiang, Wang; Wei-Ci, Liu; Rui-Sheng, Liang
2008-01-01
We have investigated vacuum Rabi oscillation of an atom coupled with single-mode cavity field exactly, and compared the results with that of the Jaynes–Cummings (J–C) model. The results show that for resonant case, there is no Rabi oscillation for an atom. For small detuning and weak coupling case, the probability for the atom in excited state oscillates against time with different frequencies and amplitudes from that of the J-C model. It exhibits that the counter-rotating wave interaction could significantly effect the dynamic behaviour of the atom, even under the condition in which the RWA is considered to be justified
Computational Modeling of Photonic Crystal Microcavity Single-Photon Emitters
Saulnier, Nicole A.
Conventional cryptography is based on algorithms that are mathematically complex and difficult to solve, such as factoring large numbers. The advent of a quantum computer would render these schemes useless. As scientists work to develop a quantum computer, cryptographers are developing new schemes for unconditionally secure cryptography. Quantum key distribution has emerged as one of the potential replacements of classical cryptography. It relics on the fact that measurement of a quantum bit changes the state of the bit and undetected eavesdropping is impossible. Single polarized photons can be used as the quantum bits, such that a quantum system would in some ways mirror the classical communication scheme. The quantum key distribution system would include components that create, transmit and detect single polarized photons. The focus of this work is on the development of an efficient single-photon source. This source is comprised of a single quantum dot inside of a photonic crystal microcavity. To better understand the physics behind the device, a computational model is developed. The model uses Finite-Difference Time-Domain methods to analyze the electromagnetic field distribution in photonic crystal microcavities. It uses an 8-band k · p perturbation theory to compute the energy band structure of the epitaxially grown quantum dots. We discuss a method that combines the results of these two calculations for determining the spontaneous emission lifetime of a quantum dot in bulk material or in a microcavity. The computational models developed in this thesis are used to identify and characterize microcavities for potential use in a single-photon source. The computational tools developed are also used to investigate novel photonic crystal microcavities that incorporate 1D distributed Bragg reflectors for vertical confinement. It is found that the spontaneous emission enhancement in the quasi-3D cavities can be significantly greater than in traditional suspended slab
Macedo, R.G.; Verhaagen, B.; Fernandez Rivas, D.; Gardeniers, J.G.E.; van der Sluis, L.W.M.; Wesselink, P.R.; Versluis, M.
2014-01-01
Ultrasonically Activated Irrigation makes use of an ultrasonically oscillating file in order to improve the cleaning of the root canal during a root canal treatment. Cavitation has been associated with these oscillating files, but the nature and characteristics of the cavitating bubbles were not yet
Directory of Open Access Journals (Sweden)
Sakhno V.P.
2016-08-01
Full Text Available There is the problem of traffic congestion of large cities of Ukraine. The introduction of the monorail will solve this problem. To ensure the comfort and safety of the transport of passengers it is proposed to investigate the lateral stability of this type of transportation, namely, to consider the question of self-oscillations. An approximate analysis of the amplitudes of oscillation of the model "one-wheeled" vehicle when driving on a straight-line segment of the overpass was performed. The diagram of the amplitudes of the oscillation system, which is received when changing the longitudinal speed of the crew allows us to estimate the influence of structural parameters of the system on the boundary of oscillatory instability and the amplitude of oscillation occurring. Rational selection of parameters of the transverse stiffness of the guide wheel module according to this method is consistent with the previously obtained research results. On the basis of the offered analytically-numerical method it is proved that rational choice of design parameters of systems that enable sustainable movement in the range operating speed (the maximum constructional speed of V = 140 km/h, moreover, security buckling when exceeding this speed. The amplitude of oscillation in excess of a critical value of the velocity parameter increases monotonically and does not exceed 3°, with V = 280 km/h.
Single-Index Additive Vector Autoregressive Time Series Models
LI, YEHUA
2009-09-01
We study a new class of nonlinear autoregressive models for vector time series, where the current vector depends on single-indexes defined on the past lags and the effects of different lags have an additive form. A sufficient condition is provided for stationarity of such models. We also study estimation of the proposed model using P-splines, hypothesis testing, asymptotics, selection of the order of the autoregression and of the smoothing parameters and nonlinear forecasting. We perform simulation experiments to evaluate our model in various settings. We illustrate our methodology on a climate data set and show that our model provides more accurate yearly forecasts of the El Niño phenomenon, the unusual warming of water in the Pacific Ocean. © 2009 Board of the Foundation of the Scandinavian Journal of Statistics.
Modelling a single phase voltage controlled rectifier using Laplace transforms
Kraft, L. Alan; Kankam, M. David
1992-01-01
The development of a 20 kHz, AC power system by NASA for large space projects has spurred a need to develop models for the equipment which will be used on these single phase systems. To date, models for the AC source (i.e., inverters) have been developed. It is the intent of this paper to develop a method to model the single phase voltage controlled rectifiers which will be attached to the AC power grid as an interface for connected loads. A modified version of EPRI's HARMFLO program is used as the shell for these models. The results obtained from the model developed in this paper are quite adequate for the analysis of problems such as voltage resonance. The unique technique presented in this paper uses the Laplace transforms to determine the harmonic content of the load current of the rectifier rather than a curve fitting technique. Laplace transforms yield the coefficient of the differential equations which model the line current to the rectifier directly.
Wang, Xin; Chen, Mengyan; Wang, Chunzai; Yeh, Sang-Wook; Tan, Wei
2018-04-01
Previous observational studies have documented that the occurrence frequency of El Niño Modoki is closely linked to the North Pacific Oscillation (NPO). The present paper evaluates the relationships between the frequency of El Niño Modoki and the NPO in the historical runs of the Coupled Model Intercomparison Project Phase 5 (CMIP5) and examines the related physical processes. It is found that six of 25 CMIP5 models can reproduce both the spatial patterns of the NPO and El Niño Modoki. Four of these six models exhibit good performance in simulating the positive correlation between the NPO index and the frequency of El Niño Modoki. The analyses further show that the key physical processes determining the relationships between the NPO and the frequency of El Niño Modoki are the intensity of wind-evaporation-SST (WES) feedback in the subtropical northeastern North Pacific. This study enhances the understanding of the connections between the North Pacific mid-latitude climate system and El Niño Modoki, and has an important implication for the change of El Niño Modoki under global warming. If global warming favors to produce an oceanic and atmospheric pattern similar to the positive phase of the NPO in the North Pacific, more El Niño Modoki events will occur in the tropical Pacific with the assistance of the WES feedback processes.
Energy Technology Data Exchange (ETDEWEB)
Thiery, Mylene [Aerodynamics and Energetics Modelling Department, Turbulence Modelling and Prediction Unit, ONERA Toulouse, 2 avenue Edouard Belin, 31055 Toulouse Cedex 4 (France); Coustols, Eric [Aerodynamics and Energetics Modelling Department, Turbulence Modelling and Prediction Unit, ONERA Toulouse, 2 avenue Edouard Belin, 31055 Toulouse Cedex 4 (France)]. E-mail: Eric.Coustols@onera.fr
2006-08-15
The present study deals with recent numerical results from on-going research conducted at ONERA/DMAE regarding the prediction of transonic flows, for which shock wave/boundary layer interaction is important. When this interaction is strong enough (M {>=} 1.3), shock induced oscillations (SIO) appear at the suction side of the airfoil and lead to the formation of unsteady separated areas. The main issue is then to perform unsteady computations applying appropriate turbulence modelling and relevant boundary conditions with respect to the test case. Computations were performed with the ONERA elsA software and the URANS-type approach, closure relationships being achieved from transport-equation models. Applications are provided for the OAT15A airfoil data base, well documented for unsteady CFD validation (mean and r.m.s. pressure, phase-averaged LDA data, ...). In this paper, the capabilities of turbulence models are evaluated with two 2D URANS strategies, under free-stream or confined conditions. The latter takes into account the adaptive upper and lower wind-tunnel walls. A complete 3D URANS simulation was then performed to demonstrate the real impact of all lateral wind-tunnel walls on such a flow.
International Nuclear Information System (INIS)
Thiery, Mylene; Coustols, Eric
2006-01-01
The present study deals with recent numerical results from on-going research conducted at ONERA/DMAE regarding the prediction of transonic flows, for which shock wave/boundary layer interaction is important. When this interaction is strong enough (M ≥ 1.3), shock induced oscillations (SIO) appear at the suction side of the airfoil and lead to the formation of unsteady separated areas. The main issue is then to perform unsteady computations applying appropriate turbulence modelling and relevant boundary conditions with respect to the test case. Computations were performed with the ONERA elsA software and the URANS-type approach, closure relationships being achieved from transport-equation models. Applications are provided for the OAT15A airfoil data base, well documented for unsteady CFD validation (mean and r.m.s. pressure, phase-averaged LDA data, ...). In this paper, the capabilities of turbulence models are evaluated with two 2D URANS strategies, under free-stream or confined conditions. The latter takes into account the adaptive upper and lower wind-tunnel walls. A complete 3D URANS simulation was then performed to demonstrate the real impact of all lateral wind-tunnel walls on such a flow
Unified Model of Dynamic Forced Barrier Crossing in Single Molecules
Energy Technology Data Exchange (ETDEWEB)
Friddle, R W
2007-06-21
Thermally activated barrier crossing in the presence of an increasing load can reveal kinetic rate constants and energy barrier parameters when repeated over a range of loading rates. Here we derive a model of the mean escape force for all relevant loading rates--the complete force spectrum. Two well-known approximations emerge as limiting cases; one of which confirms predictions that single-barrier spectra should converge to a phenomenological description in the slow loading limit.
A macroscopic model for magnetic shape-memory single crystals
Czech Academy of Sciences Publication Activity Database
Bessoud, A. L.; Kružík, Martin; Stefanelli, U.
2013-01-01
Roč. 64, č. 2 (2013), s. 343-359 ISSN 0044-2275 R&D Projects: GA AV ČR IAA100750802; GA ČR GAP201/10/0357 Institutional support: RVO:67985556 Keywords : magnetostriction * evolution Subject RIV: BA - General Mathematics Impact factor: 1.214, year: 2013 http://library.utia.cas.cz/separaty/2012/MTR/kruzik-a macroscopic model for magnetic shape- memory single crystals.pdf
Stochastic models for spike trains of single neurons
Sampath, G
1977-01-01
1 Some basic neurophysiology 4 The neuron 1. 1 4 1. 1. 1 The axon 7 1. 1. 2 The synapse 9 12 1. 1. 3 The soma 1. 1. 4 The dendrites 13 13 1. 2 Types of neurons 2 Signals in the nervous system 14 2. 1 Action potentials as point events - point processes in the nervous system 15 18 2. 2 Spontaneous activi~ in neurons 3 Stochastic modelling of single neuron spike trains 19 3. 1 Characteristics of a neuron spike train 19 3. 2 The mathematical neuron 23 4 Superposition models 26 4. 1 superposition of renewal processes 26 4. 2 Superposition of stationary point processe- limiting behaviour 34 4. 2. 1 Palm functions 35 4. 2. 2 Asymptotic behaviour of n stationary point processes superposed 36 4. 3 Superposition models of neuron spike trains 37 4. 3. 1 Model 4. 1 39 4. 3. 2 Model 4. 2 - A superposition model with 40 two input channels 40 4. 3. 3 Model 4. 3 4. 4 Discussion 41 43 5 Deletion models 5. 1 Deletion models with 1nd~endent interaction of excitatory and inhibitory sequences 44 VI 5. 1. 1 Model 5. 1 The basic de...
Umakanth, U.; Kesarkar, Amit P.; Attada, Raju; Vijaya Bhaskar Rao, S.
2015-01-01
combinations of Grell (G) and Emanuel (E) cumulus schemes namely, RegCM-EG, RegCM-EE and RegCM-GE have been used. The model is initialized at 1st January, 2000 for a 13-year continuous simulation at a spatial resolution of 50 km. The models reasonably simulate
Transient combustion modeling of an oscillating lean premixed methane/air flam
Withag, J.A.M.; Kok, Jacobus B.W.; Syed, Khawar
2009-01-01
The main objective of the present study is to demonstrate accurate low frequency transient turbulent combustion modeling. For accurate flame dynamics some improvements were made to the standard TFC combustion model for lean premixed combustion. With use of a 1D laminar flamelet code, predictions
One-dimensional modelling of limit-cycle oscillation and H-mode power scaling
DEFF Research Database (Denmark)
Wu, Xingquan; Xu, Guosheng; Wan, Baonian
2015-01-01
To understand the connection between the dynamics of microscopic turbulence and the macroscale power scaling in the L-I-H transition in magnetically confined plasmas, a new time-dependent, one-dimensional (in radius) model has been developed. The model investigates the radial force balance equati...
A toy model for single field open inflation
International Nuclear Information System (INIS)
Vaudrevange, Pascal M.; Westphal, Alexander
2012-05-01
Inflation in an open universe produced by Coleman-De Luccia (CDL) tunneling induces a friction term that is strong enough to allow for successful small-field inflation in models that would otherwise suffer from a severe overshoot problem. In this paper, we present a polynomial scalar potential which allows for a full analysis. This provides a simple model of single-field open inflation on a small-field inflection point after tunneling. We present numerical results and compare them with analytic approximations.
Graf, Rudolf F
1996-01-01
This series of circuits provides designers with a quick source for oscillator circuits. Why waste time paging through huge encyclopedias when you can choose the topic you need and select any of the specialized circuits sorted by application?This book in the series has 250-300 practical, ready-to-use circuit designs, with schematics and brief explanations of circuit operation. The original source for each circuit is listed in an appendix, making it easy to obtain additional information.Ready-to-use circuits.Grouped by application for easy look-up.Circuit source listing
Theoretical performance model for single image depth from defocus.
Trouvé-Peloux, Pauline; Champagnat, Frédéric; Le Besnerais, Guy; Idier, Jérôme
2014-12-01
In this paper we present a performance model for depth estimation using single image depth from defocus (SIDFD). Our model is based on an original expression of the Cramér-Rao bound (CRB) in this context. We show that this model is consistent with the expected behavior of SIDFD. We then study the influence on the performance of the optical parameters of a conventional camera such as the focal length, the aperture, and the position of the in-focus plane (IFP). We derive an approximate analytical expression of the CRB away from the IFP, and we propose an interpretation of the SIDFD performance in this domain. Finally, we illustrate the predictive capacity of our performance model on experimental data comparing several settings of a consumer camera.
Dynamic Human Body Modeling Using a Single RGB Camera.
Zhu, Haiyu; Yu, Yao; Zhou, Yu; Du, Sidan
2016-03-18
In this paper, we present a novel automatic pipeline to build personalized parametric models of dynamic people using a single RGB camera. Compared to previous approaches that use monocular RGB images, our system can model a 3D human body automatically and incrementally, taking advantage of human motion. Based on coarse 2D and 3D poses estimated from image sequences, we first perform a kinematic classification of human body parts to refine the poses and obtain reconstructed body parts. Next, a personalized parametric human model is generated by driving a general template to fit the body parts and calculating the non-rigid deformation. Experimental results show that our shape estimation method achieves comparable accuracy with reconstructed models using depth cameras, yet requires neither user interaction nor any dedicated devices, leading to the feasibility of using this method on widely available smart phones.
A transient single particle model under FCI conditions
Institute of Scientific and Technical Information of China (English)
LI Xiao-Yan; SHANG Zhi; XU Ji-Jun
2005-01-01
The paper is focused on the coupling effect between film boiling heat transfer and evaporation drag around a hot-particle in cold liquid. Based on the continuity, momentum and energy equations of the vapor film, a transient two-dimensional single particle model has been established. This paper contains a detailed description of HPMC (High-temperature Particle Moving in Coolant) model for studying some aspects of the premixing stage of fuel-coolant interactions (FCIs). The transient process of high-temperature particles moving in coolant can be simulated. Comparisons between the experiment results and the calculations using HPMC model demonstrate that HPMC model achieves a good agreement in predicting the time-varying characteristic of high-temperature spheres moving in coolant.
A single model procedure for tank calibration function estimation
International Nuclear Information System (INIS)
York, J.C.; Liebetrau, A.M.
1995-01-01
Reliable tank calibrations are a vital component of any measurement control and accountability program for bulk materials in a nuclear reprocessing facility. Tank volume calibration functions used in nuclear materials safeguards and accountability programs are typically constructed from several segments, each of which is estimated independently. Ideally, the segments correspond to structural features in the tank. In this paper the authors use an extension of the Thomas-Liebetrau model to estimate the entire calibration function in a single step. This procedure automatically takes significant run-to-run differences into account and yields an estimate of the entire calibration function in one operation. As with other procedures, the first step is to define suitable calibration segments. Next, a polynomial of low degree is specified for each segment. In contrast with the conventional practice of constructing a separate model for each segment, this information is used to set up the design matrix for a single model that encompasses all of the calibration data. Estimation of the model parameters is then done using conventional statistical methods. The method described here has several advantages over traditional methods. First, modeled run-to-run differences can be taken into account automatically at the estimation step. Second, no interpolation is required between successive segments. Third, variance estimates are based on all the data, rather than that from a single segment, with the result that discontinuities in confidence intervals at segment boundaries are eliminated. Fourth, the restrictive assumption of the Thomas-Liebetrau method, that the measured volumes be the same for all runs, is not required. Finally, the proposed methods are readily implemented using standard statistical procedures and widely-used software packages
Thermal asymmetry model of single slope single basin solar still with sponge liner
Directory of Open Access Journals (Sweden)
Shanmugan Sengottain
2014-01-01
Full Text Available An attempt has been made to propose a thermal asymmetry model for single slope basin type solar still with sponge liner of different thickness (3cm, 5cm, and 10cm in the basin. Two different color sponge liners have been used i.e., yellow and black. In the proposed design, a suitable dripping arrangement has been designed and used to pour water drop by drop over the sponge liner instead of sponge liner in stagnant saline water in the basin. The special arrangement overcomes the dryness of the sponge during peak sunny hours. The performance of the system with black color sponge of 3cm thickness shows better result with an output of 5.3 kg/m2 day and the proposed model have used to find the thermal asymmetries during the working hours of the still.