WorldWideScience

Sample records for single orf transfectants

  1. Repeated Aurora-A siRNA Transfection Results in Effective Apoptosis of A549 Cells Compared to Single Transfection.

    Science.gov (United States)

    Wang, Zhonghua; Sun, Wenwu; Cao, Jianping; Cui, Haiyang; Ma, Zhuang

    2016-01-01

    Suppression of Aurora kinase A (Aurora-A, AURKA) by Aurora-A siRNA has been proposed for lung tumor treatment. However, protocols using single administration have shown little benefit in some types of lung tumor. Given that transfection efficiency of Aurora-A siRNA is low due to tightly packed cells in the tumor, we hypothesized that repeated administration would result in efficient cell apoptosis. We compared single vs. repeated transfection (thrice) in A549 cells by transfecting Aurora-A siRNA (siA) on the 1st or 1st, 2nd and 3rd day after cell seeding. A random sequence was used as the negative siRNA control (siC). Cells in the single transfection group received only transfection reagent without siRNAs on the 2nd and 3rd day. Two days after the third transfection, both single and repeated siA administration decreased mRNA expression of Aurora-A and cell viability compared to no administration and siC single administration. However, the decrease in these two indices with repeated transfection was more obvious than that following single administration: cell viability decreased to 72.8 ± 3.05% (p transfection and to 64.2 ± 1.99% (p transfection, compared with normal control cells, respectively. Gene expression decreased to 17 ± 16.6% (p transfection and to 43.2 ± 13.0% (p transfection. Compared to single transfection, repeated Aurora-A siRNA transfection decreased Aurora-A, which, in turn, resulted in effective apoptosis of A549 cells.

  2. High-Efficient Transfection of Human Embryonic Stem Cells by Single-Cell Plating and Starvation.

    Science.gov (United States)

    Liu, Hui; Ren, Caiping; Zhu, Bin; Wang, Lei; Liu, Weidong; Shi, Jia; Lin, Jianxing; Xia, Xiaomeng; Zeng, Fei; Chen, Jiawen; Jiang, Xingjun

    2016-03-15

    Nowadays, the low efficiency of small interfering RNA (siRNA) or plasmid DNA (pDNA) transfection is a critical issue in genetic manipulation of human embryonic stem (hES) cells. Development of an efficient transfection method for delivery of siRNAs and plasmids into hES cells becomes more and more imperative. In this study, we tried to modify the traditional transfection protocol by introducing two crucial processes, single-cell plating and starvation, to increase the transfection efficiency in hES cells. Furthermore, we comparatively examined the transfection efficiency of some commercially available siRNA or pDNA transfection reagents in hES cells. Our results showed that the new developed method markedly enhanced the transfection efficiency without influencing the proliferation and pluripotency of hES cells. Lipofectamine RNAiMAX exhibited much higher siRNA transfection efficiency than the other reagents, and FuGENE HD was identified as the best suitable reagent for efficient pDNA transfection of hES cells among the tested reagents.

  3. Spatio-temporally controlled transfection by quantitative injection into a single cell.

    Science.gov (United States)

    Kwon, Hyosung; Park, Hang-soo; Yu, Jewon; Hong, Sunghoi; Choi, Yeonho

    2015-10-01

    Transfection-based cellular control has been widely used in biology; however, conventional transfection methods cannot control spatio-temporal differences in gene expression or the quantity of delivered materials such as external DNA or RNA. Here, we present a non-viral and spatio-temporally controlled transfection technique of a quantitative injection into a single cell. DNA was quantitatively injected into a single cell at a desired location and time, and the optimal gene delivery and expression conditions were determined based on the amount of the delivered DNA and the transfection efficacy. Interestingly, an injection of 1500 DNAs produced an about average 30% gene expression efficiency, which was the optimal condition, and gene expression was sustained for more than 14 days. In a single cell, fluorescent intensity and polymerase chain reaction (PCR) results were compared for the quantity of gene expression. The high coincidence of both results suggests that the fluorescence intensity can reveal gene expression level which was investigated by PCR. In addition, 3 multiple DNA genes were successfully expressed in a single cell with different ratio. Overall, these results demonstrate that spatio-temporally controlled transfection by quantitative transfection is a useful technique for regulating gene expression in a single cell, which suggests that this technique may be used for stem cell research, including the creation of induced pluripotent stem (iPS) cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Single-Tailed Lipidoids Enhance the Transfection Activity of Their Double-Tailed Counterparts.

    Science.gov (United States)

    Wu, Yihang; Li, Linxian; Chen, Qing; Su, Yi; Levkin, Pavel A; Davidson, Gary

    2016-01-11

    Cationic lipid-like molecules (lipidoids) are widely used for in vitro and in vivo gene delivery. Nearly all lipidoids developed to date employ double-tail or multiple-tail structures for transfection. Single-tail lipidoids are seldom considered for transfection as they have low efficiency in gene delivery. So far, there is no detailed study on the contribution to transfection efficiency of single-tail lipidoids when combined with standard double-tail lipidoids. Here, we use combinatorial chemistry to synthesize 17 double-tail and 17 single-tail lipidoids using thiol-yne and thiol-ene click chemistry, respectively. HEK 293T cells were used to analyze transfection efficiency by fluorescence microscopy and calculated based on the percentage of cells transfected. The size and zeta potential of liposomes and lipoplexes were characterized by dynamic light scattering (DLS). Intracellular DNA delivery and trafficking was further examined using confocal microscopy. Our study shows that combining single with double-tail lipidoids increases uptake of lipoplexes, as well as cellular transfection efficiency.

  5. Single Cell Transfection through Precise Microinjection with Quantitatively Controlled Injection Volumes

    Science.gov (United States)

    Chow, Yu Ting; Chen, Shuxun; Wang, Ran; Liu, Chichi; Kong, Chi-Wing; Li, Ronald A.; Cheng, Shuk Han; Sun, Dong

    2016-04-01

    Cell transfection is a technique wherein foreign genetic molecules are delivered into cells. To elucidate distinct responses during cell genetic modification, methods to achieve transfection at the single-cell level are of great value. Herein, we developed an automated micropipette-based quantitative microinjection technology that can deliver precise amounts of materials into cells. The developed microinjection system achieved precise single-cell microinjection by pre-patterning cells in an array and controlling the amount of substance delivered based on injection pressure and time. The precision of the proposed injection technique was examined by comparing the fluorescence intensities of fluorescent dye droplets with a standard concentration and water droplets with a known injection amount of the dye in oil. Injection of synthetic modified mRNA (modRNA) encoding green fluorescence proteins or a cocktail of plasmids encoding green and red fluorescence proteins into human foreskin fibroblast cells demonstrated that the resulting green fluorescence intensity or green/red fluorescence intensity ratio were well correlated with the amount of genetic material injected into the cells. Single-cell transfection via the developed microinjection technique will be of particular use in cases where cell transfection is challenging and genetically modified of selected cells are desired.

  6. Transfection efficiency of normal and cancer cell lines and monitoring of promoter activity by single-cell bioluminescence imaging.

    Science.gov (United States)

    Horibe, Tomohisa; Torisawa, Aya; Akiyoshi, Ryutaro; Hatta-Ohashi, Yoko; Suzuki, Hirobumi; Kawakami, Koji

    2014-02-01

    The bioluminescence system (luciferase reporter assay system) is widely used to study gene expression, signal transduction and other cellular activities. Although transfection of reporter plasmid DNA to mammalian cell lines is an indispensable experimental step, the transfection efficiency of DNA varies among cell lines, and several cell lines are not suitable for this type of assay because of the low transfection efficiency. In this study, we confirm the transfection efficiency of reporter DNA to several cancer and normal cell lines after transient transfection by single-cell imaging. Luminescence images could be obtained from living single cells after transient transfection, and the calculated transfection efficiency of this method was similar to that of the conventional reporter assay using a luminometer. We attempted to measure the activity of the Bip promoter under endoplasmic reticulum stress conditions using both high and low transfection efficiency cells for plasmid DNA at the single-cell level, and observed activation of this promoter even in cells with the lowest transfection efficiency. These results show that bioluminescence imaging of single cells is a powerful tool for the analysis of gene expression based on a reporter assay using limited samples such as clinical specimens or cells from primary culture, and could provide additional information compared with the conventional assay. Copyright © 2013 John Wiley & Sons, Ltd.

  7. Subcelluar localization of orf126 of Bombyx mori nucleopolyhedrovirus

    African Journals Online (AJOL)

    In order to explore the mechanism of orf126 of Bombyx mori nucleopolyhedro virus, the subcellular localization of ORF126 was conducted. The egfp gene was fused with the C-terminal of orf126 genes, BmN cells were transfected with different plasmid DNA and the superinfection were performed at 12 h post transfection.

  8. Optically-controlled platforms for transfection and single- and sub-cellular surgery

    DEFF Research Database (Denmark)

    Villangca, Mark Jayson; Casey, Duncan; Glückstad, Jesper

    2015-01-01

    Improving the resolution of biological research to the single- or sub-cellular level is of critical importance in a wide variety of processes and disease conditions. Most obvious are those linked to aging and cancer, many of which are dependent upon stochastic processes where individual, unpredic...

  9. Reduced expression of Autographa californica nucleopolyhedrovirus ORF34, an essential gene, enhances heterologous gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Salem, Tamer Z. [Department of Entomology, Michigan State University, East Lansing, MI 48824 (United States); Department of Microbial Molecular Biology, AGERI, Agricultural Research Center, Giza 12619 (Egypt); Division of Biomedical Sciences, Zewail University, Zewail City of Science and Technology, Giza 12588 (Egypt); Zhang, Fengrui [Department of Entomology, Michigan State University, East Lansing, MI 48824 (United States); Thiem, Suzanne M., E-mail: smthiem@msu.edu [Department of Entomology, Michigan State University, East Lansing, MI 48824 (United States); Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824 (United States)

    2013-01-20

    Autographa californica multiple nucleopolyhedrovirus ORF34 is part of a transcriptional unit that includes ORF32, encoding a viral fibroblast growth factor (FGF) and ORF33. We identified ORF34 as a candidate for deletion to improve protein expression in the baculovirus expression system based on enhanced reporter gene expression in an RNAi screen of virus genes. However, ORF34 was shown to be an essential gene. To explore ORF34 function, deletion (KO34) and rescue bacmids were constructed and characterized. Infection did not spread from primary KO34 transfected cells and supernatants from KO34 transfected cells could not infect fresh Sf21 cells whereas the supernatant from the rescue bacmids transfection could recover the infection. In addition, budded viruses were not observed in KO34 transfected cells by electron microscopy, nor were viral proteins detected from the transfection supernatants by western blots. These demonstrate that ORF34 is an essential gene with a possible role in infectious virus production.

  10. Construction and Testing of orfA +/- FIV Reporter Viruses

    Directory of Open Access Journals (Sweden)

    Eric M. Poeschla

    2012-01-01

    Full Text Available Single cycle reporter viruses that preserve the majority of the HIV-1 genome, long terminal repeat-promoted transcription and Rev-dependent structural protein expression are useful for investigating the viral life cycle. Reporter viruses that encode the viral proteins in cis in this way have been lacking for feline immunodeficiency virus (FIV, where the field has used genetically minimized transfer vectors with viral proteins supplied in trans. Here we report construction and use of a panel of single cycle FIV reporter viruses that express fluorescent protein markers. The viruses can be produced to high titer using human cell transfection and can transduce diverse target cells. To illustrate utility, we tested versions that are (+ and (- for OrfA, an FIV accessory protein required for replication in primary lymphocytes and previously implicated in down-regulation of the primary FIV entry receptor CD134. We observed CD134 down-regulation after infection with or without OrfA, and equivalent virion production as well. These results suggest a role for FIV proteins besides Env or OrfA in CD134 down-regulation.

  11. Cholesterol Domains Enhance Transfection

    Science.gov (United States)

    Betker, Jamie L.; Kullberg, Max; Gomez, Joe; Anchordoquy, Thomas J.

    2014-01-01

    The formation of cholesterol domains in lipoplexes has been associated with enhanced serum stability and transfection rates both in cell culture and in vivo. This study utilizes the ability of saturated phosphatidylcholines to promote the formation of cholesterol domains at much lower cholesterol contents than have been utilized in previous work. The results show that lipoplexes with identical cholesterol and cationic lipid contents exhibit significantly improved transfection efficiencies when a domain is present, consistent with previous work. In addition, studies assessing transfection rates in the absence of serum demonstrate that the ability of domains to enhance transfection is not dependent on interactions with serum proteins. Consistent with this hypothesis, characterization of the adsorbed proteins composing the corona of these lipoplex formulations did not reveal a correlation between transfection and the adsorption of a specific protein. Finally, we show that the interaction with serum proteins can promote domain formation in some formulations, and thereby result in enhanced transfection only after serum exposure. PMID:23557286

  12. Stable transfection of Acanthamoeba.

    Science.gov (United States)

    Yin, J; Henney, H R

    1997-03-01

    The promoter activity of an Acanthamoeba polyubiquitin gene was analyzed in its homologous system. A modified calcium phosphate transfection method using a neomycin marker vector was developed to achieve highly efficient transfection of the Acanthamoeba polyubiquitin gene into Acanthamoeba cells. In this transfection procedure, the calcium phosphate-DNA complex was formed gradually in the medium during incubation with cells and precipitated on the cells. The crucial factors for obtaining efficient transfection were the pH (6.95) of the transfection buffer used for the calcium phosphate precipitation and the amount (25 micrograms/96-well tissue culture plate) and form (circular) of transfecting DNA. Under these conditions, Acanthamoeba isolate 1B6 was transfected at an efficiency of about 40% with the constructed vector pOPSBU, a pOP13CAT-based polyubiquitin gene incorporated neomycin resistance vector. Acanthamoeba polyphaga was transfected at an efficiency of about 10% with this vector. Transfection of both Acanthamoeba strains appeared to result in low copy plasmid integration (about two copies per cell are suggested). The chloramphenicol acetyltransferase (CAT) assays showed that the promoter of the Acanthamoeba polyubiquitin gene in the constructed vector was especially strong in A. polyphaga, thus the pOPSBU-Acanthamoeba system may be useful for the construction of cDNA expression libraries, as well as for the expression of cloned genes.

  13. Graphene based gene transfection

    Science.gov (United States)

    Feng, Liangzhu; Zhang, Shuai; Liu, Zhuang

    2011-03-01

    Graphene as a star in materials research has been attracting tremendous attentions in the past few years in various fields including biomedicine. In this work, for the first time we successfully use graphene as a non-toxic nano-vehicle for efficient gene transfection. Graphene oxide (GO) is bound with cationic polymers, polyethyleneimine (PEI) with two different molecular weights at 1.2 kDa and 10 kDa, forming GO-PEI-1.2k and GO-PEG-10k complexes, respectively, both of which are stable in physiological solutions. Cellular toxicity tests reveal that our GO-PEI-10k complex exhibits significantly reduced toxicity to the treated cells compared to the bare PEI-10k polymer. The positively charged GO-PEI complexes are able to further bind with plasmid DNA (pDNA) for intracellular transfection of the enhanced green fluorescence protein (EGFP) gene in HeLa cells. While EGFP transfection with PEI-1.2k appears to be ineffective, high EGFP expression is observed using the corresponding GO-PEI-1.2k as the transfection agent. On the other hand, GO-PEI-10k shows similar EGFP transfection efficiency but lower toxicity compared with PEI-10k. Our results suggest graphene to be a novel gene delivery nano-vector with low cytotoxicity and high transfection efficiency, promising for future applications in non-viral based gene therapy.Graphene as a star in materials research has been attracting tremendous attentions in the past few years in various fields including biomedicine. In this work, for the first time we successfully use graphene as a non-toxic nano-vehicle for efficient gene transfection. Graphene oxide (GO) is bound with cationic polymers, polyethyleneimine (PEI) with two different molecular weights at 1.2 kDa and 10 kDa, forming GO-PEI-1.2k and GO-PEG-10k complexes, respectively, both of which are stable in physiological solutions. Cellular toxicity tests reveal that our GO-PEI-10k complex exhibits significantly reduced toxicity to the treated cells compared to the bare PEI

  14. Efficient transfection of MG-63 osteoblasts using magnetic nanoparticles and oscillating magnetic fields.

    Science.gov (United States)

    Fouriki, A; Clements, M A; Farrow, N; Dobson, J

    2014-03-01

    To examine the potential of magnetic nanoparticles (MNPs) in transfecting human osteosarcoma fibroblasts (MG-63) and investigate the effects of a novel non-viral oscillating nanomagnetic gene transfection system (magnefect-nano™) in enhancing transfection efficiency (TE). MG-63 cells were transfected using MNPs coupled with a GFP-carrying plasmid. The magnefect-nano system was evaluated for transfection efficiency and potential associated effects on cell viability. MG-63 cells were efficiently transfected using MNPs and the magnefect-nano system significantly enhanced overall transfection efficiency. MNPs were not found to affect cell viability and/or function of the cells. Non-viral transfection using MNPs and the magnefect-nano system can be used to transfect MG-63 cells and assist reporter gene delivery on a single cell basis, highlighting the wide potential of nanomagnetic gene transfection in gene therapy. Copyright © 2012 John Wiley & Sons, Ltd.

  15. Human coronavirus 229E encodes a single ORF4 protein between the spike and the envelope genes

    NARCIS (Netherlands)

    Dijkman, Ronald; Jebbink, Maarten F.; Wilbrink, Berry; Pyrc, Krzysztof; Zaaijer, Hans L.; Minor, Philip D.; Franklin, Sally; Berkhout, Ben; Thiel, Volker; van der Hoek, Lia

    2006-01-01

    BACKGROUND: The genome of coronaviruses contains structural and non-structural genes, including several so-called accessory genes. All group 1b coronaviruses encode a single accessory protein between the spike and envelope genes, except for human coronavirus (HCoV) 229E. The prototype virus has a

  16. Transfection of Platyhelminthes

    Directory of Open Access Journals (Sweden)

    Bárbara Moguel

    2015-01-01

    Full Text Available Flatworms are one of the most diverse groups within Lophotrochozoa with more than 20,000 known species, distributed worldwide in different ecosystems, from the free-living organisms in the seas and lakes to highly specialized parasites living in a variety of hosts, including humans. Several infections caused by flatworms are considered major neglected diseases affecting countries in the Americas, Asia, and Africa. For several decades, a particular interest on free-living flatworms was due to their ability to regenerate considerable portions of the body, implying the presence of germ cells that could be important for medicine. The relevance of reverse genetics for this group is clear; understanding the phenotypic characteristics of specific genes will shed light on developmental traits of free-living and parasite worms. The genetic manipulation of flatworms will allow learning more about the mechanisms for tissue regeneration, designing new and more effective anthelmintic drugs, and explaining the host-parasite molecular crosstalk so far partially inaccessible for experimentation. In this review, availability of transfection techniques is analyzed across flatworms, from the initial transient achievements to the stable manipulations now developed for free-living and parasite species.

  17. The C9ORF72 expansion mutation is a common cause of ALS+/-FTD in Europe and has a single founder

    NARCIS (Netherlands)

    Smith, Bradley N.; Newhouse, Stephen; Shatunov, Aleksey; Vance, Caroline; Topp, Simon; Johnson, Lauren; Miller, Jack; Lee, Younbok; Troakes, Claire; Scott, Kirsten M.; Jones, Ashley; Gray, Ian; Wright, Jamie; Hortobágyi, Tibor; Al-Sarraj, Safa; Rogelj, Boris; Powell, John; Lupton, Michelle; Lovestone, Simon; Sapp, Peter C.; Weber, Markus; Nestor, Peter J.; Schelhaas, Helenius J.; ten Asbroek, A. A.; Silani, Vincenzo; Gellera, Cinzia; Taroni, Franco; Ticozzi, Nicola; van den Berg, Leonard; Veldink, Jan; van Damme, Phillip; Robberecht, Wim; Shaw, Pamela J.; Kirby, Janine; Pall, Hardev; Morrison, Karen E.; Morris, Alex; de Belleroche, Jacqueline; de Jong, J. M. B. Vianney; Baas, Frank; Andersen, Peter M.; Landers, John; Brown, Robert H.; Weale, Michael E.; Al-Chalabi, Ammar; Shaw, Christopher E.

    2013-01-01

    A massive hexanucleotide repeat expansion mutation (HREM) in C9ORF72 has recently been linked to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here we describe the frequency, origin and stability of this mutation in ALS+/-FTD from five European cohorts (total n=1347).

  18. Correlation between cationic lipid-based transfection and cell division.

    Science.gov (United States)

    Kirchenbuechler, Inka; Kirchenbuechler, David; Elbaum, Michael

    2016-07-01

    We evaluate the temporal relation between protein expression by cationic lipid-mediated transfection and cell division using time lapse fluorescence microscopy. Detailed image analysis provides new insights on the single cell level while simultaneously achieving appropriate statistics. Earlier evidence by less direct methods such as flow cytometry indicates a primary route for transfection involving nuclear envelope breakdown, but also suggests the existence of a pathway independent of mitosis. We confirm and quantify both mechanisms. We found the timing for successful transfection to be unexpectedly flexible, contrary to assertions of a narrow time window. Specifically, cells dividing more than 24h after exposure to the transfection medium express the probed protein at a comparable level to cells in a mitotic state during or shortly after transfection. This finding can have a profound impact on the guidance and development of non-viral gene delivery materials. Copyright © 2016. Published by Elsevier Inc.

  19. Correlation between cationic lipid-based transfection and cell division

    Energy Technology Data Exchange (ETDEWEB)

    Kirchenbuechler, Inka; Kirchenbuechler, David; Elbaum, Michael, E-mail: michael@elbaum.ac.il

    2016-07-01

    We evaluate the temporal relation between protein expression by cationic lipid-mediated transfection and cell division using time lapse fluorescence microscopy. Detailed image analysis provides new insights on the single cell level while simultaneously achieving appropriate statistics. Earlier evidence by less direct methods such as flow cytometry indicates a primary route for transfection involving nuclear envelope breakdown, but also suggests the existence of a pathway independent of mitosis. We confirm and quantify both mechanisms. We found the timing for successful transfection to be unexpectedly flexible, contrary to assertions of a narrow time window. Specifically, cells dividing more than 24 h after exposure to the transfection medium express the probed protein at a comparable level to cells in a mitotic state during or shortly after transfection. This finding can have a profound impact on the guidance and development of non-viral gene delivery materials. - Highlights: • Cationic lipid-based transfection supports protein expression without cell division. • Protein expression is unrelated to cell cycle status at the time of transfection. • Time-lapse imaging provides direct evaluation without statistical averaging. • Lipoplex dissociation is a likely target for improvement of transfection efficiency.

  20. Orf: contagious pustular dermatitis.

    LENUS (Irish Health Repository)

    Nadeem, M

    2010-05-01

    Orf is a common viral infection in sheep. It spreads to humans by direct contact. It is self-limiting, treatment having no beneficial effect. Misdiagnosis by those unfamiliar with its characteristic features is common, and may result in unnecessary treatment with antibiotics or surgery. We present a series of five cases of Orf in children of farmers in the west of Ireland, seen over a 10 year period.

  1. Characterization of L1 ORF1p self-interaction and cellular localization using a mammalian two-hybrid system.

    Directory of Open Access Journals (Sweden)

    Mark Sokolowski

    Full Text Available Long INterspersed Element-1 (LINE-1, L1 is an active retrotransposon that mobilizes using a ribonucleoprotein particle (RNP intermediate composed of the full-length bicistronic L1 mRNA and the two proteins (ORF1p and ORF2p encoded by that mRNA. ORF1p and ORF2p demonstrate cis-preference for their encoding mRNA. Previous studies of ORF1p, purified from bacterial and insect cells demonstrated that this protein forms trimers in vitro. While valuable for understanding ORF1p function, these in vitro approaches do not provide any information on ORF1p self-interaction in the context of mammalian cells. We used a mammalian two-hybrid (M2H system in order to study L1 ORF1p self-interaction in human and mouse cells. We demonstrate that the M2H system successfully detects human and mouse ORF1p self-interactions in transiently transfected mammalian cells. We also generated mouse and human ORF1p-specific antibodies to characterize the expression of ORF1p fusion proteins used in the M2H system. Using these antibodies, we demonstrate that ORF1p interaction in trans leads to the formation of heterodimers that are expected to produce a positive signal in the M2H system. Although the role for L1 ORF1p cis-preference in L1 mobilization is established, the impact of ability of ORF1pto interact in trans on the L1 replication cycle is not known. Furthermore, western blot analysis of ORF1p generated by a full-length L1, wild type ORF1, or a codon-optimized ORF1 expression vector is detected in the nucleus. In contrast, the addition of a tag to the N-terminus of the mouse and human ORF1 proteins can significantly alter the subcellular localization in a tag-specific manner. These data support that nuclear localization of ORF1p may contribute to L1 (and potentially the SINE Alu RNP nuclear access in the host cell.

  2. Toward Contactless Biology: Acoustophoretic DNA Transfection

    Science.gov (United States)

    Vasileiou, Thomas; Foresti, Daniele; Bayram, Adem; Poulikakos, Dimos; Ferrari, Aldo

    2016-02-01

    Acoustophoresis revolutionized the field of container-less manipulation of liquids and solids by enabling mixing procedures which avoid contamination and loss of reagents due to the contact with the support. While its applications to chemistry and engineering are straightforward, additional developments are needed to obtain reliable biological protocols in a contactless environment. Here, we provide a first, fundamental step towards biological reactions in air by demonstrating the acoustophoretic DNA transfection of mammalian cells. We developed an original acoustophoretic design capable of levitating, moving and mixing biological suspensions of living mammalians cells and of DNA plasmids. The precise and sequential delivery of the mixed solutions into tissue culture plates is actuated by a novel mechanism based on the controlled actuation of the acoustophoretic force. The viability of the contactless procedure is tested using a cellular model sensitive to small perturbation of neuronal differentiation pathways. Additionally, the efficiency of the transfection procedure is compared to standard, container-based methods for both single and double DNA transfection and for different cell types including adherent growing HeLa cancer cells, and low adhesion neuron-like PC12 cells. In all, this work provides a proof of principle which paves the way to the development of high-throughput acoustophoretic biological reactors.

  3. Identification and Characterization of Two Novel Spliced Genes Located in the orf47-orf46-orf45 Gene Locus of Kaposi's Sarcoma-Associated Herpesvirus

    OpenAIRE

    Chang, Pey-Jium; Hung, Chien-Hui; Wang, Shie-Shan; Tsai, Ping-Hsin; Shih, Ying-Ju; Chen, Li-Yu; Huang, Hsiao-Yun; Wei, Ling-Huei; Yen, Ju-Bei; Lin, Chun-Liang; Chen, Lee-Wen

    2014-01-01

    The orf47-orf46-orf45 gene cluster of Kaposi's sarcoma-associated herpesvirus (KSHV) is known to serially encode glycoprotein L (gL), uracil DNA glycosylase, and a viral tegument protein. Here, we identify two novel mRNA variants, orf47/45-A and orf47/45-B, alternatively spliced from a tricistronic orf47-orf46-orf45 mRNA that is expressed in the orf47-orf46-orf45 gene locus during the early stages of viral reactivation. The spliced gene products, ORF47/45-A and ORF47/45-B, consist of only a p...

  4. [Rapid selection of recombinant orf virus expression vectors using green fluorescent protein].

    Science.gov (United States)

    Zhang, Jiachun; Guo, Xianfeng; Zhang, Min; Wu, Feifan; Peng, Yongzheng

    2016-01-01

    To construct a universal, highly attenuated orf virus expression vector for exogenous genes using green fluorescent protein (GFP) as the reporter gene. The flanking regions of the ORFV132 of orf virus DNA were amplified by PCR to construct the shuttle plasmid pSPV-132LF-EGFP-132RF. The shuttle plasmid was transfected into OFTu cells and GFP was incorporated into orf virus IA82Delta 121 by homologous recombination. The recombinant IA82Delta121-V was selected by green fluorescent signal. The deletion gene was identified by PCR and sequencing. The effects of ORFV132 knockout were evaluated by virus titration and by observing the proliferation of the infected vascular endothelial cells in vitro. The recombinant orf virus IA82Delta121-V was obtained successfully and quickly, and the deletion of ORFV132 did not affect the replication of the virus in vitro but reduced its virulence. Green fluorescent protein is a selectable marker for rapid, convenient and stable selection of the recombinant viruses. Highly attenuated recombinant orf virus IA82Delta121-V can serve as a new expression vector for exogenous genes.

  5. A novel rapid and reproducible flow cytometric method for optimization of transfection efficiency in cells.

    Science.gov (United States)

    Homann, Stefanie; Hofmann, Christian; Gorin, Aleksandr M; Nguyen, Huy Cong Xuan; Huynh, Diana; Hamid, Phillip; Maithel, Neil; Yacoubian, Vahe; Mu, Wenli; Kossyvakis, Athanasios; Sen Roy, Shubhendu; Yang, Otto Orlean; Kelesidis, Theodoros

    2017-01-01

    Transfection is one of the most frequently used techniques in molecular biology that is also applicable for gene therapy studies in humans. One of the biggest challenges to investigate the protein function and interaction in gene therapy studies is to have reliable monospecific detection reagents, particularly antibodies, for all human gene products. Thus, a reliable method that can optimize transfection efficiency based on not only expression of the target protein of interest but also the uptake of the nucleic acid plasmid, can be an important tool in molecular biology. Here, we present a simple, rapid and robust flow cytometric method that can be used as a tool to optimize transfection efficiency at the single cell level while overcoming limitations of prior established methods that quantify transfection efficiency. By using optimized ratios of transfection reagent and a nucleic acid (DNA or RNA) vector directly labeled with a fluorochrome, this method can be used as a tool to simultaneously quantify cellular toxicity of different transfection reagents, the amount of nucleic acid plasmid that cells have taken up during transfection as well as the amount of the encoded expressed protein. Finally, we demonstrate that this method is reproducible, can be standardized and can reliably and rapidly quantify transfection efficiency, reducing assay costs and increasing throughput while increasing data robustness.

  6. Upstream ORF affects MYCN translation depending on exon 1b alternative splicing

    International Nuclear Information System (INIS)

    Besançon, Roger; Puisieux, Alain; Valsesia-Wittmann, Sandrine; Locher, Clara; Delloye-Bourgeois, Céline; Furhman, Lydie; Tutrone, Giovani; Bertrand, Christophe; Jallas, Anne-Catherine; Garin, Elisabeth

    2009-01-01

    The MYCN gene is transcribed into two major mRNAs: one full-length (MYCN) and one exon 1b-spliced (MYCN Δ1b ) mRNA. But nothing is known about their respective ability to translate the MYCN protein. Plasmids were prepared to enable translation from the upstream (uORF) and major ORF of the two MYCN transcripts. Translation was studied after transfection in neuroblastoma SH-EP cell line. Impact of the upstream AUG on translation was evaluated after directed mutagenesis. Functional study with the two MYCN mRNAs was conducted by a cell viability assay. Existence of a new protein encoded by the MYCN Δ1b uORF was explored by designing a rabbit polyclonal antibody against a specific epitope of this protein. Both are translated, but higher levels of protein were seen with MYCN Δ1b mRNA. An upstream ORF was shown to have positive cis-regulatory activity on translation from MYCN but not from MYCN Δ1b mRNA. In transfected SH-EP neuroblastoma cells, high MYCN dosage obtained with MYCN Δ1b mRNA translation induces an antiapoptotic effect after serum deprivation that was not observed with low MYCN expression obtained with MYCN mRNA. Here, we showed that MYCNOT: MYCN Overlap Transcript, a new protein of unknown function is translated from the upstream AUG of MYCN Δ1b mRNA. Existence of upstream ORF in MYCN transcripts leads to a new level of MYCN regulation. The resulting MYCN dosage has a weak but significant anti-apoptotic activity after intrinsic apoptosis induction

  7. Simulation of micro/nano electroporation for cell transfection

    Science.gov (United States)

    Zhang, Guocheng; Fan, Na; Jiang, Hai; Guo, Jian; Peng, Bei

    2018-03-01

    The 3D micro/nano electroporation for transfection has become a powerful biological cell research technique with the development of micro-nano manufacturing technology. The micro channels connected the cells with transfection reagents on the chip were important to the transmemnbrane potentical, which directly influences the electroporation efficiency. In this study, a two-dimensional model for electroporation of cells was designed to address the effects of channels’ sizes and number on transmembrane potential. The simulation results indicated that the transmembrane potential increased with increasing size of channels’ entrances. Moreover, compared with single channel entrance, the transmembrane potential was higher when the cells located at multiple channels entrances. These results suggest that it IS required to develop higher micro manufacturing technology to create channels as we expected size.

  8. Bio-Orthogonal Mediated Nucleic Acid Transfection of Cells via Cell Surface Engineering

    Science.gov (United States)

    2017-01-01

    . Moreover the transfection is efficient with high cell viability and does not require a postsorting step to separate transfected from nontransfected cells in the cell population. We also show for the first time a precision transfection strategy where a single cell type in a coculture is target transfected via bio-orthogonal click chemistry. PMID:28573212

  9. Optimization of renal transfection using a renal suction-mediated transfection method in mice.

    Science.gov (United States)

    Taniguchi, Yota; Kawakami, Shigeru; Fuchigami, Yuki; Oyama, Natsuko; Yamashita, Fumiyoshi; Konishi, Satoshi; Shimizu, Kazunori; Hashida, Mitsuru

    2016-01-01

    We previously developed a suction-mediated transfection method in mice. The purpose of this study was to optimize the suction-mediated transfection conditions using a pressure-controlled computer system for efficient and safe kidney-targeted gene delivery in mice. Naked pCMV-Luc was injected into the tail vein in mice, and then the right kidney was suctioned by a device of the suction pressure-controlled system. The effects of renal transfection conditions, such as the suction pressure degree, suction pressure waveform and device area were evaluated by measuring luciferase expression. In addition, renal injury was examined. The renal suction-mediated transfection method at -30 kPa showed high transgene expression. The renal suction waveform did not affect the transfection activity. Under the optimized conditions, the high transgene expression was mostly observed at the renal suctioned site. The transfection conditions used did not induce histological defects or increases in two renal injury biomarkers (Kidney injury molecule-1 mRNA and Clusterin mRNA). We have clarified the transfection conditions for efficient and safe transfection in the kidney using the suction-mediated transfection method in mice.

  10. Optimization of transfection of green fluorescent protein in pursuing mesenchymal stem cells in vivo

    Directory of Open Access Journals (Sweden)

    Pınar Elçi

    2008-12-01

    Full Text Available OBJECTIVE: Green Fluorescent Protein (GFP has been used as a marker of gene expression and a single cell marker in living organisms in cell biology studies. The important areas that GFP is used are expression levels of different genes in different organisms by inserting GFP in these genes and as a marker in living cells. In this study, we tried to optimize transfection of mesenchymal stem cells, (MSCs used for regeneration of damaged tissues in animals, by GFP containing plasmid vector by which MSCs can be followed in vivo.METHODS: To this aim, phM-GFP plasmid vector carrying GFP gene and effectene transfection reagent were used. RESULTS: The data revealed that twice transfection of MSCs resulted in higher expression of GFP for longer times as compared to once transfected MSCs. On the other hand, leaving the chemical transfection agents in the medium induced apoptosis after a while. CONCLUSION: As a conclusion we suggest the transfection of MSCs twice with 48 hours interval and removal of transfection agents after 8 hours which removed toxic and apoptotic effects of the chemicals.

  11. Transfected parvalbumin alters calcium homeostasis in teratocarcinoma PCC7 cells

    DEFF Research Database (Denmark)

    Müller, B K; Kabos, P; Belhage, B

    1996-01-01

    transfected. Parvalbumin-transfected and mock-transfected cells were loaded with the calcium indicator fura-2 and were exposed, in the same dish, to different concentrations of the calcium ionophore A23187 or to KCI. The results show that parvalbumin-transfected PCC7 cells had much better calcium buffering...

  12. Optimized PEI-based Transfection Method for Transient Transfection and Lentiviral Production.

    Science.gov (United States)

    Yang, Shaozhe; Zhou, Xiaoling; Li, Rongxiang; Fu, Xiuhong; Sun, Pingnan

    2017-09-14

    Polyethyleneimine (PEI), a cationic polymer vehicle, forms a complex with DNA which then can carry anionic nucleic acids into eukaryotic cells. PEI-based transfection is widely used for transient transfection of plasmid DNA. The efficiency of PEI-based transfection is affected by numerous factors, including the way the PEI/DNA complex is prepared, the ratio of PEI to DNA, the concentration of DNA, the storage conditions of PEI solutions, and more. Considering the major influencing factors, PEI-based transfection has been optimized to improve its efficiency, reproducibility, and consistency. This protocol outlines the steps for ordinary transient transfection and lentiviral production using PEI. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley and Sons, Inc.

  13. The novel protein C9orf116 promotes rat liver cell line BRL-3A proliferation.

    Directory of Open Access Journals (Sweden)

    Chunyan Zhang

    Full Text Available Our previous study has proved that the chromosome 9 open reading frame 116 (C9orf116 (NM_001106564.1 was significantly up-regulated in the proliferation phase of liver regeneration. To study its possible physiological function, we analyzed the effect of C9orf116 on BRL-3A cells via over-expression and interference technique. MTT results showed that the cell viability of the interference group was significantly lower than the control group at 48h after transfection (P<0.05, whereas it was significantly higher in the over-expression group (P<0.05. The flow cytometry results showed that C9orf116 knockdown or over-expression had little effect on BRL-3A cell apoptosis. However, the number of cells in division phase (G2/M was significantly reduced in the interference group (P<0.05, but significantly increased in the over-expression group (P<0.01. Furthermore, the expressions of cell proliferation-related genes CCNA2, CCND1 and MYC both at mRNA and protein levels were down-regulated in the interference group and up-regulated in the over-expression group. Therefore, we concluded that C9orf116 may promote cell proliferation by modulating cell cycle transition and the expression of key genes CCNA2, CCND1 and MYC in BRL-3A cells.

  14. Femtosecond optical transfection as a tool for genetic manipulation of human embryonic stem cells

    Science.gov (United States)

    Torres-Mapa, M. L.; Gardner, J.; Bradburn, H.; King, J.; Dholakia, K.; Gunn-Moore, F.

    2013-03-01

    We demonstrate the use of femtosecond optical transfection for the genetic manipulation of human embryonic stem cells. Using a system with an SLM combined with a scanning mirror allows poration of both single-cell and colony-formed human embryonic stem cells in a rapid and targeted manner. In this work, we show successful transfection of plasmid DNA tagged with fluorescent reporters into human embryonic stem cells using three doses of focused femtosecond laser. A significant number of transfected cells retained their undifferentiated morphological feature of large nucleus with high nucleus to cytoplasmic ratio, 48h after photoporation. Furthermore, DNA constructs driven by different types of promoters were also successfully transfected into human embryonic stem cells using this technique.

  15. SPARC Expression Is Selectively Suppressed in Tumor Initiating Urospheres Isolated from As+3- and Cd+2-Transformed Human Urothelial Cells (UROtsa Stably Transfected with SPARC.

    Directory of Open Access Journals (Sweden)

    Andrea Slusser-Nore

    Full Text Available This laboratory previously analyzed the expression of SPARC in the parental UROtsa cells, their arsenite (As(+3 and cadmium (Cd(+2-transformed cell lines, and tumor transplants generated from the transformed cells. It was demonstrated that SPARC expression was down-regulated to background levels in Cd(+2-and As(+3-transformed UROtsa cells and tumor transplants compared to parental cells. In the present study, the transformed cell lines were stably transfected with a SPARC expression vector to determine the effect of SPARC expression on the ability of the cells to form tumors in immune-compromised mice.Real time PCR, western blotting, immunohistochemistry, and immunofluorescence were used to define the expression of SPARC in the As(+3-and Cd(+2-transformed cell lines, and urospheres isolated from these cell lines, following their stable transfection with an expression vector containing the SPARC open reading frame (ORF. Transplantation of the cultured cells into immune-compromised mice by subcutaneous injection was used to assess the effect of SPARC expression on tumors generated from the above cell lines and urospheres.It was shown that the As(+3-and Cd(+2-transformed UROtsa cells could undergo stable transfection with a SPARC expression vector and that the transfected cells expressed both SPARC mRNA and secreted protein. Tumors formed from these SPARC-transfected cells were shown to have no expression of SPARC. Urospheres isolated from cultures of the SPARC-transfected As(+3-and Cd(+2-transformed cell lines were shown to have only background expression of SPARC. Urospheres from both the non-transfected and SPARC-transfected cell lines were tumorigenic and thus fit the definition for a population of tumor initiating cells.Tumor initiating cells isolated from SPARC-transfected As(+3-and Cd(+2-transformed cell lines have an inherent mechanism to suppress the expression of SPARC mRNA.

  16. Fibronectin enhances transfection of Staphylococcus aureus.

    OpenAIRE

    Thompson, N E; Bergdoll, M S; Pattee, P A

    1985-01-01

    The factor in normal sera primarily responsible for the enhancement of transfection (and transformation) of Staphylococcus aureus was identified as fibronectin. Serum samples which were depleted of fibronectin by affinity chromatography showed a marked decrease in enhancing activity. Fibronectin isolated from sera of several animal species demonstrated enhancing activity.

  17. Optomizing Transfection Efficiency of Cervical Cancer Cells Transfected by Cationic Liposomes LipofectamineTM2000.

    Science.gov (United States)

    Huang, Fei; Zhao, Feng; Liang, Li-Ping; Zhou, Mei; Qu, Zhi-Ling; Cao, Yan-Zhen; Lin, Chen

    2015-01-01

    Currently, cationic liposome has become the commonly used vehicles for gene transfection. Furthermore, one of the most significant steps in microRNAs expression studies is transferring microRNAs into cell cultures successfully. In this study we aim to approach the feasibility of transfection of cervical cancer cell lines mediated by liposome and to obtain the optimized transfection condition for cervical cancer cell lines. Lipofectamine(TM)2000 as the carrier, miR-101 mimic was transfected into Hela cells and Siha cells. Using green fluorescent protein as reporter gene, to set different groups according to cell seeding density, the amount of miRNA , miRNA and the proportion of Liposomes, Whether to add serum into medium to study their impact on the liposomal transfection efficiency. Finally, MTT assay was used to analyze the relative minimal cell toxicity of liposome reagents. The seeding density of Hela cell line and Siha are 1.5 x 10(4) (per well of 24 well plates), miRNA amount is 1ul of both, the ratio of miRNA and liposome is 1:0.5 of Hela cell line; 1:0.7 of Siha cell line respectively, after 24 hours we can get the highest transfection efficiency. Compared with serum medium, only Siha cells cultured with serum-free medium obtained higher transfection efficiency before transfection (Ptransfected is a suitable way and it can be an efficient reagent for miRNA delivery for Hela cells and Siha cells in vitro. It may serve as a reference for the further research or application.

  18. Molecular studies of fibroblasts transfected with hepatitis B virus DNA

    International Nuclear Information System (INIS)

    Chen, M.L.; Hood, A.; Thung, S.N.; Gerber, M.A.

    1987-01-01

    Two subclones (D7 and F8) derived from an NIH 3T3 mouse fibroblast cell line after transfection with hepatitis B virus (HBV) genomes, secreted significantly different amounts of HBsAg and HBeAg. DNA extracted from the subclones revealed only integrated and no extrachromosomal HBV DNA sequences as determined by the Southern blot technique with a /sup 32/P-labeled full length HBV DNA probe. The amount and integration sites of HBV sequences were significantly different in the two subclones. HBV DNA sequences coding for HBsAg and HBcAg were detected by alkaline phosphatase-conjugated, single-stranded synthetic gene-specific oligonucleotide probes revealing a larger number of copies in D7 DNA than in F8 DNA. Using a biotinylated probe for in situ hybridization, HBV DNA was found in the nuclei of all D7 cells with predominant localization to a single chromsome, but only in 10-20% of F8 cells. These observations demonstrate different integration patterns of HBV and DNA in two subclones derived from a transfected cell line and suggest that the amount of integrated HBV DNA is proportional to the amount of HBV antigens produced

  19. Lipid-based Transfection Reagents Exhibit Cryo-induced Increase in Transfection Efficiency

    Directory of Open Access Journals (Sweden)

    Helena Sork

    2016-01-01

    Full Text Available The advantages of lipid-based transfection reagents have permitted their widespread use in molecular biology and gene therapy. This study outlines the effect of cryo-manipulation of a cationic lipid-based formulation, Lipofectamine 2000, which, after being frozen and thawed, showed orders of magnitude higher plasmid delivery efficiency throughout eight different cell lines, without compromising cell viability. Increased transfection efficiency with the freeze-thawed reagent was also seen with 2'-O-methyl phosphorothioate oligonucleotide delivery and in a splice-correction assay. Most importantly, a log-scale improvement in gene delivery using the freeze-thawed reagent was seen in vivo. Using three different methods, we detected considerable differences in the polydispersity of the different nucleic acid complexes as well as observed a clear difference in their surface spreading and sedimentation, with the freeze-thawed ones displaying substantially higher rate of dispersion and deposition on the glass surface. This hitherto overlooked elevated potency of the freeze-thawed reagent facilitates the targeting of hard-to-transfect cells, accomplishes higher transfection rates, and decreases the overall amount of reagent needed for delivery. Additionally, as we also saw a slight increase in plasmid delivery using other freeze-thawed transfection reagents, we postulate that freeze-thawing might prove to be useful for an even wider variety of transfection reagents.

  20. Cytokinesis is blocked in mammalian cells transfected with Chlamydia trachomatis gene CT223

    Directory of Open Access Journals (Sweden)

    Weeks Sara K

    2009-01-01

    Full Text Available Abstract Background The chlamydiae alter many aspects of host cell biology, including the division process, but the molecular biology of these alterations remains poorly characterized. Chlamydial inclusion membrane proteins (Incs are likely candidates for direct interactions with host cell cytosolic proteins, as they are secreted to the inclusion membrane and exposed to the cytosol. The inc gene CT223 is one of a sequential set of orfs that encode or are predicted to encode Inc proteins. CT223p is localized to the inclusion membrane in all tested C. trachomatis serovars. Results A plasmid transfection approach was used to examine the function of the product of CT223 and other Inc proteins within uninfected mammalian cells. Fluorescence microscopy was used to demonstrate that CT223, and, to a lesser extent, adjacent inc genes, are capable of blocking host cell cytokinesis and facilitating centromere supranumeracy defects seen by others in chlamydiae-infected cells. Both phenotypes were associated with transfection of plasmids encoding the carboxy-terminal tail of CT223p, a region of the protein that is likely exposed to the cytosol in infected cells. Conclusion These studies suggest that certain Inc proteins block cytokinesis in C. trachomatis-infected cells. These results are consistent with the work of others showing chlamydial inhibition of host cell cytokinesis.

  1. Photo-transfection of mammalian cells via femtosecond laser pulses

    CSIR Research Space (South Africa)

    Mthunzi, P

    2009-06-01

    Full Text Available ). Transfection efficiencies between 40 - 63 % are recorded. We show for the first time that, due to their different sensitivity, surface receptors and membrane structure the cell lines mentioned above displayed varying photo-transfection efficiencies at different...

  2. Effect on radiosensitivity in human umbilical vein endothelial cells after transfection of pcDNA3.1 + Apel plasmid

    International Nuclear Information System (INIS)

    Tan Yonghong; Xiang Debing; Shi Xikai; Yin Xiaoling; Wang Dong

    2008-01-01

    Objective: To investigate the possible effects on radiosensitivity in human umbilical vein endothelial cells after transfection of pcDNA3.1 + Apel plasmid. Methods: The expressing vector pcDNA3.1 + Apel, the control vector pcDNA3.1 + or non-transfection cells was irradiated by 2, 4, 6, and 8 Gy photon beam at 48 h post-transfection. The value of initial and residual Oliver tail moment (OTM) under the alkaline single cell gelelectrophoresis assay and the colony forming test were utilized as the markers for the evaluation of cells intrinsic radiosensitivity. The effect on radiosensitivity in human umbilical vein endothelial cells after transfection of the expressing vector pcDNA3.1 + Apel was analyzed according to the radio-dose, compared to the empty vecor control and non-transfection cells. Results: The initial and residual OTM value of endothelial cells transfected by 3 μg pcDNA3.1 + Apel plasmid was lower significantly than ones of endothelial cells untransfected at 2 Gy irradiation (P 0.05), and SF 2 was higher remarkably in transfected cells than one in untransfected cells (P 4 , SF 6 and SF 8 were no significant differences (all of P>0.05). Conclusions: The transfection of pcDNA3.1 + Apel plasmid could enhance radioresistance of endothelial cells to the low-dose irradiation. (authors)

  3. Optimizing conditions for calcium phosphate mediated transient transfection

    Directory of Open Access Journals (Sweden)

    Ling Guo

    2017-03-01

    Conclusions: Calcium phosphate mediated transfection is the most low-cost approach to introduce recombinant DNA into culture cells. However, the utility of this procedure is limited in highly-differentiated cells. Here we describe the specific HBS-buffered saline, PH, glycerol shock, vortex strength, transfection medium, and particle concentrations conditions necessary to optimize this transfection method in highly differentiated cells.

  4. Towards optical cell transfection inside a micro flow cell

    Science.gov (United States)

    Breunig, H. G.; Uchugonova, A.; König, K.

    2014-03-01

    For optical transfection, cells are shortly subjected to intense, focused laser radiation which leads to a temporary opening in the cell membrane. Although the method is very efficient and ensures high cell viability, the targeting of single cells with laser pulses is a tedious and slow approach. We present first measurements aiming at an experimental setup which is suitable for high throughput and automated optical cell transfection. In our setup, cells flow through a micro flow cell where they are spatially confined. The laser radiation is focused into the cell in a way that an elongated focal region is realized. This makes the time consuming aiming of the laser beam at individual cells unnecessary and opens the possibility to develop a completely automated system. The elongated laser focal region is realized by a quasi-Bessel beam which is generated by an axicon lens setup and continuously scanned from side to side of the cell. We present test measurements of the newly employed setup and discuss its suitability to be fully integrated into a flow cell sequencing system.

  5. ORF List: [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available atedDec2004aaSeq 4541); TEL12*; involved in controlling telomere length | ataxia telangiectasia (ATM) gene h...omolog; Overlap with orf19.5580 :* :* *:* ... 4541); TEL12*; involved in controlling telomere length | ataxia telangiectasia (ATM) gene homolog; Overlap with orf19.5580 ...

  6. Evaluation of the Expression of Amyloid Precursor Protein and the Ratio of Secreted Amyloid Beta 42 to Amyloid Beta 40 in SH-SY5Y Cells Stably Transfected with Wild-Type, Single-Mutant and Double-Mutant Forms of the APP Gene for the Study of Alzheimer's Disease Pathology.

    Science.gov (United States)

    Pahrudin Arrozi, Aslina; Shukri, Siti Nur Syazwani; Wan Ngah, Wan Zurinah; Mohd Yusof, Yasmin Anum; Ahmad Damanhuri, Mohd Hanafi; Makpol, Suzana

    2017-11-01

    Neuroblastoma cell lines such as SH-SY5Y are the most frequently utilized models in neurodegenerative research, and their use has advanced the understanding of the pathology of neurodegeneration over the past few decades. In Alzheimer's disease (AD), several pathogenic mutations have been described, all of which cause elevated levels of pathological hallmarks such as amyloid-beta (Aβ). Although the genetics of Alzheimer's disease is well known, familial AD only accounts for a small number of cases in the population, with the rest being sporadic AD, which contains no known mutations. Currently, most of the in vitro models used to study AD pathogenesis only examine the level of Aβ42 as a confirmation of successful model generation and only perform comparisons between wild-type APP and single mutants of the APP gene. Recent findings have shown that the Aβ42/40 ratio in cerebrospinal fluid (CSF) is a better diagnostic indicator for AD patients than is Aβ42 alone and that more extensive Aβ formation, such as accumulation of intraneuronal Aβ, Aβ plaques, soluble oligomeric Aβ (oAβ), and insoluble fibrillar Aβ (fAβ) occurs in TgCRND8 mice expressing a double-mutant form (Swedish and Indiana) of APP, later leading to greater progressive impairment of the brain. In this study, we generated SH-SY5Y cells stably transfected separately with wild-type APP, the Swedish mutation of APP, and the Swedish and Indiana mutations of APP and evaluated the APP expression as well as the Aβ42/40 ratio in those cells. The double-mutant form of APP (Swedish/Indiana) expressed markedly high levels of APP protein and showed a high Aβ2/40 ratio compared to wild-type and single-mutant cells.

  7. Hydrophobic modification of polyethyleneimine for gene transfectants

    International Nuclear Information System (INIS)

    Kim, Sung Tae; Choi, Joon Sig; Jang, Hyung Suk; Suh, Hea Ran; Park, Jong Sang

    2001-01-01

    A new gene transfer system was developed by using polylipoplexes, which were prepared by hydrophobic modification of polyethyleneimine (PEI, MW 2000). PEI 25kDa is well known for its excellent transfection efficiency but it has extreme cytotoxicity; therefore, its application for medical use is strictly limited. PEI 2kDa is able to form complexes with DNA and has low cytotoxicity. However, unfortunately, it shows no transfection efficiency so it can not be a candidate carrier for gene therapy. We designed novel polycationic amphilphiles by conjugating hydrophobic moieties, such as cholesterol and myristate, to PEI 2kDa. Cholesterol-conjugated PEI (PEI-Chol: P10C, P17C and P30C) and myristate-conjugated PEI (PEI-Myr:P10M, P16M and P26M) are different from the other cationic lipids in that they can form lipopolyplexes with plasmid DNA that have extra multi-positive charges in their hydrophilic parts. From a different point of view, they are also considered to be PEI derivatives with a small proportion of hydrophobic moiety. As a result of the modification, PEI-Chol and PEI-Myr showed much enhanced transfection activity but somewhat increased cytotoxicity. We also examined the effect of the amount of hydrophobic moiety on lipopolyplex-mediated gene transfer and observed that P17C and P26M are the most effective carriers in the series of two groups. MTT assay indicated that the more myristyl groups were attached to PEI, the more injurious results were observed. In the case of PEI-Chol, however, the opposite tendency was observed

  8. In vivo and in vitro recombination of lambda DNA in CaC12 transfection.

    Science.gov (United States)

    Betcke, A; Pfeifer, M; Pöhlmann, C H; Kurth, M; Hartmann, M; Liebscher, D H

    1980-01-01

    Using CaCl2 mediated transfection with Lambda DNA fragments, in vitro joining by ligase and in vivo recombination with helper phage DNA are effective systems for generating artificial recombinants. Recombination efficiencies are 20--30% in the in vitro and in vivo recombination systems. At 30 to 37 degree C T4 ligase mainly joins natural cohesive alpha ends, while at 12 degrees C the EcoRI-generated termini are preferentially ligated to form biologically active molecules, if the cloning vector alpha 401 is used, which has only one EcoRI target. The ligation products were characterized by gel electrophoresis and CaCl2 transfection. For in vivo recombination a new CaCl2 transfection system was developed, termed postinfection-dependent CaCl2 transfection system, which is based on the infection of recipient cells with helper phages after transfection. In marker rescue experiments using this method not only single but also double recombination occurred between two independent alpha DNA fragments and the helper phage DNA.

  9. Structure and Mechanism of ORF36, an Amino Sugar Oxidizing Enzyme in Everninomicin Biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Vey, Jessica L.; Al-Mestarihi, Ahmad; Hu, Yunfeng; Funk, Michael A.; Bachmann, Brian O.; Iverson, T.M. (Vanderbilt)

    2010-12-07

    Everninomicin is a highly modified octasaccharide that belongs to the orthosomycin family of antibiotics and possesses potent Gram-positive antibiotic activity, including broad-spectrum efficacy against multidrug resistant enterococci and Staphylococcus aureus. Among its distinctive structural features is a nitro sugar, L-evernitrose, analogues of which decorate a variety of natural products. Recently, we identified a nitrososynthase enzyme encoded by orf36 from Micromonospora carbonacea var. africana that mediates the flavin-dependent double oxidation of synthetically generated thymidine diphosphate (TDP)-L-epi-vancosamine to the corresponding nitroso sugar. Herein, we utilize a five-enzyme in vitro pathway both to verify that ORF36 catalyzes oxidation of biogenic TDP-L-epi-vancosamine and to determine whether ORF36 exhibits catalytic competence for any of its biosynthetic progenitors, which are candidate substrates for nitrososynthases in vivo. Progenitors solely undergo single-oxidation reactions and terminate in the hydroxylamine oxidation state. Performing the in vitro reactions in the presence of {sup 18}O{sub 2} establishes that molecular oxygen, rather than oxygen from water, is incorporated into ORF36-generated intermediates and products and identifies an off-pathway product that correlates with the oxidation product of a progenitor substrate. The 3.15 {angstrom} resolution X-ray crystal structure of ORF36 reveals a tetrameric enzyme that shares a fold with acyl-CoA dehydrogenases and class D flavin-containing monooxygenases, including the nitrososynthase KijD3. However, ORF36 and KijD3 have unusually open active sites in comparison to these related enzymes. Taken together, these studies map substrate determinants and allow the proposal of a minimal monooxygenase mechanism for amino sugar oxidation by ORF36.

  10. A mechanistic investigation exploring the differential transfection efficiencies between the easy-to-transfect SK-BR3 and difficult-to-transfect CT26 cell lines.

    Science.gov (United States)

    Figueroa, Elizabeth; Bugga, Pallavi; Asthana, Vishwaratn; Chen, Allen L; Stephen Yan, J; Evans, Emily Reiser; Drezek, Rebekah A

    2017-05-02

    Gold-polyamidoamine (AuPAMAM) has previously been shown to successfully transfect cells with high efficiency. However, we have observed that certain cell types are more amenable to Au-PAMAM transfection than others. Here we utilized two representative cell lines-a "difficult to transfect" CT26 cell line and an "easy to transfect" SK-BR3 cell line-and attempted to determine the underlying mechanism for differential transfection in both cell types. Using a commonly established poly-cationic polymer similar to PAMAM (polyethyleneimine, or PEI), we additionally sought to quantify the relative transfection efficiencies of each vector in CT26 and SK-BR3 cells, in the hopes of elucidating any mechanistic differences that may exist between the two transfection vectors. A comparative time course analysis of green fluorescent protein reporter-gene expression and DNA uptake was conducted to quantitatively compare PEI- and AuPAMAM-mediated transfection in CT26 and SK-BR3, while flow cytometry and confocal microscopy were used to determine the contribution of cellular uptake, endosomal escape, and cytoplasmic transport to the overall gene delivery process. Results from the time course analysis and flow cytometry studies revealed that initial complex uptake and cytoplasmic trafficking to the nucleus are likely the two main factors limiting CT26 transfectability. The cell type-dependent uptake and intracellular transport mechanisms impacting gene therapy remain largely unexplored and present a major hurdle in the application-specific design and efficiency of gene delivery vectors. This systematic investigation offers insights into the intracellular mechanistic processes that may account for cell-to-cell differences, as well as vector-to-vector differences, in gene transfectability.

  11. Direct and sustained intracellular delivery of exogenous molecules using acoustic-transfection with high frequency ultrasound

    Science.gov (United States)

    Yoon, Sangpil; Kim, Min Gon; Chiu, Chi Tat; Hwang, Jae Youn; Kim, Hyung Ham; Wang, Yingxiao; Shung, K. Kirk

    2016-02-01

    Controlling cell functions for research and therapeutic purposes may open new strategies for the treatment of many diseases. An efficient and safe introduction of membrane impermeable molecules into target cells will provide versatile means to modulate cell fate. We introduce a new transfection technique that utilizes high frequency ultrasound without any contrast agents such as microbubbles, bringing a single-cell level targeting and size-dependent intracellular delivery of macromolecules. The transfection apparatus consists of an ultrasonic transducer with the center frequency of over 150 MHz and an epi-fluorescence microscope, entitled acoustic-transfection system. Acoustic pulses, emitted from an ultrasonic transducer, perturb the lipid bilayer of the cell membrane of a targeted single-cell to induce intracellular delivery of exogenous molecules. Simultaneous live cell imaging using HeLa cells to investigate the intracellular concentration of Ca2+ and propidium iodide (PI) and the delivery of 3 kDa dextran labeled with Alexa 488 were demonstrated. Cytosolic delivery of 3 kDa dextran induced via acoustic-transfection was manifested by diffused fluorescence throughout whole cells. Short-term (6 hr) cell viability test and long-term (40 hr) cell tracking confirmed that the proposed approach has low cell cytotoxicity.

  12. pEGFP transfection into murine skeletal muscle by electrosonoporation

    Science.gov (United States)

    Tamošiūnas, Mindaugas; Jakovels, Dainis; Rubins, Uldis; Kadikis, Roberts; Petrovska, Ramona; Šatkauskas, Saulius

    2017-12-01

    In this study, we aimed to determine whether the combination of electroporation (EP) and ultrasound (US) waves (sonoporation) can affect the plasmid DNA transfection to mice tibialis cranialis muscle. Multispectral imaging technique combined with fluorescence spectroscopy point measurements has been used for the transcutaneous detection of enhanced green fluorescent protein (EGFP) fluorescence, providing information on location and duration of EGFP expression. We found that electrosonoporation, commonly enhancing pDNA transfection in vitro, had no positive effect on EGFP transfection efficiency increase in vivo with respect to electroporation alone. We presume that this may be associated with decreased viability of transfected fibers.

  13. Transfected parvalbumin alters calcium homeostasis in teratocarcinoma PCC7 cells

    DEFF Research Database (Denmark)

    Müller, B K; Kabos, P; Belhage, B

    1996-01-01

    Indirect evidence supports a protective role of some EF-hand calcium-binding proteins against calcium-induced neurotoxicity. Little is known about how these proteins influence cytosolic calcium levels. After cloning the parvalbumin cDNA into an expression vector, teratocarcinoma cells (PCC7) were...... transfected. Parvalbumin-transfected and mock-transfected cells were loaded with the calcium indicator fura-2 and were exposed, in the same dish, to different concentrations of the calcium ionophore A23187 or to KCI. The results show that parvalbumin-transfected PCC7 cells had much better calcium buffering...

  14. Inducement of radionuclides targeting therapy by gene transfection

    International Nuclear Information System (INIS)

    Luo Quanyong

    2001-01-01

    The author presents an overview of gene transfection methods to genetically induce tumor cells to express enhanced levels of cell surface antigens and receptors to intake radiolabeled antibody and peptide targeting and thus increase their therapeutic effect in radiotherapy. The current research include inducement of radioimmunotherapy through CEA gene transfection, inducement of iodine-131 therapy by sodium iodide symporter gene transfection and inducement of MIBG therapy by noradrenaline transporter gene transfection. These studies raise the prospect that gene-therapy techniques could be used to enable the treatment of a wide range of tumors with radiopharmaceuticals of established clinical acceptability

  15. Optimization of input parameters of acoustic-transfection for the intracellular delivery of macromolecules using FRET-based biosensors

    Science.gov (United States)

    Yoon, Sangpil; Wang, Yingxiao; Shung, K. K.

    2016-03-01

    Acoustic-transfection technique has been developed for the first time. We have developed acoustic-transfection by integrating a high frequency ultrasonic transducer and a fluorescence microscope. High frequency ultrasound with the center frequency over 150 MHz can focus acoustic sound field into a confined area with the diameter of 10 μm or less. This focusing capability was used to perturb lipid bilayer of cell membrane to induce intracellular delivery of macromolecules. Single cell level imaging was performed to investigate the behavior of a targeted single-cell after acoustic-transfection. FRET-based Ca2+ biosensor was used to monitor intracellular concentration of Ca2+ after acoustic-transfection and the fluorescence intensity of propidium iodide (PI) was used to observe influx of PI molecules. We changed peak-to-peak voltages and pulse duration to optimize the input parameters of an acoustic pulse. Input parameters that can induce strong perturbations on cell membrane were found and size dependent intracellular delivery of macromolecules was explored. To increase the amount of delivered molecules by acoustic-transfection, we applied several acoustic pulses and the intensity of PI fluorescence increased step wise. Finally, optimized input parameters of acoustic-transfection system were used to deliver pMax-E2F1 plasmid and GFP expression 24 hours after the intracellular delivery was confirmed using HeLa cells.

  16. ORF List: [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available 04aaSeq 56530; PNC12*; nicotinamidase | pyrazinamidase; truncated protein :* :* *:* ... 56530; PNC12*; nicotinamidase | pyrazinamidase; truncated protein ... ... ... orf19.6708; Contig19-10253; 56171.. Eukaryota Candida_albicans Ca19AnnotatedDec20

  17. Human Orf: Report of two cases

    Directory of Open Access Journals (Sweden)

    Ahmet Karakas

    2010-10-01

    Full Text Available Orf or ecthyma contagiosum is a viral zoonosis of domesticated sheep and goats. It was described clinically in man for the first time in 1934 by Newson and Cross. All physicians should remain aware that human orf may occur anywhere and consider it in the differential diagnosis of cases with relevant animal exposure. Orf lesions with delayed healing on the hands and arms can be cause to unnecessary interventions such as drainage and prolonged antibacterial therapy. We should only try to prevent or heal the eventual complications except extraordinary situations. In the case with delayed healing pyodermia like lesion on the fingers after slaughtering activity, orf must be kept in mind. [TAF Prev Med Bull 2010; 9(5.000: 551-552

  18. [Comparison of efficiency and cytotoxicity of different transfection reagents in transfecting RIP140-siRNA into Kupffer cells].

    Science.gov (United States)

    Li, Ji; Liu, Zuojin

    2015-12-01

    To compare the efficiency and cytotoxicity of different transfection reagents used in transfection of RIP140-siRNA into Kupffer cells to optimize the transfection conditions. Kupffer cells were transfected with RIP140-siRNA labeled with GFP as the reporter gene using lipofectamine 2000, Roche reagent (X-treme GENE siRNA Transfection Reagent) and puro screening lentivirus (1.0×10(8) TU/mL) as the transfection reagents. The transfection effect was observed under a fluorescent inverted microscope, and laser scanning confocal microscopy was used to analyze RIP140 expression in trasnfected Kupffer cells. Flow cytometry was performed to detect cell apoptosis, and CCK-8 test was used to evaluate the cell proliferation inhibition. RT-RCR and Western blotting were performed to detect the expressions of RIP140 mRNA and protein in the trasnfected cells. Puro screening lentivirus yielded the highest cell transfection efficiency, which exceeded 90%, followed by Roche reagent and then by lipofectamine 2000. Flow cytometry and CCK-8 test showed that the cytotoxicity was the mildest with Roche reagent, moderate with lentivirus, and severe with lipofectamine 2000. The cells trasnfected with lentivirus showed a significantly lower RIP140 expression than cells trasnfected with lipofectamine 2000 and Roche reagent (Ptransfection, as compared with the other two trasnfection reagents, can achieve good transfection efficiency with a relativelty low cytotoxicity, and allows for better controllability and stability of the trasnfectiion conditions.

  19. Improved transfection of HUVEC and MEF cells using DNA ...

    Indian Academy of Sciences (India)

    Cells such as mouse embryonic fibroblasts (MEFs) and human umbilical vein endothelial cells (HUVECs) used in stem cell research and endothelial cell physiology and pathology studies are difficult to transfect using 'standard' nonviral transfection methods. We have developed a novel gene delivery technique, which uses ...

  20. Highly efficient transfection of human THP-1 macrophages by nucleofection.

    Science.gov (United States)

    Maeß, Marten B; Wittig, Berith; Lorkowski, Stefan

    2014-09-02

    Macrophages, as key players of the innate immune response, are at the focus of research dealing with tissue homeostasis or various pathologies. Transfection with siRNA and plasmid DNA is an efficient tool for studying their function, but transfection of macrophages is not a trivial matter. Although many different approaches for transfection of eukaryotic cells are available, only few allow reliable and efficient transfection of macrophages, but reduced cell vitality and severely altered cell behavior like diminished capability for differentiation or polarization are frequently observed. Therefore a transfection protocol is required that is capable of transferring siRNA and plasmid DNA into macrophages without causing serious side-effects thus allowing the investigation of the effect of the siRNA or plasmid in the context of normal cell behavior. The protocol presented here provides a method for reliably and efficiently transfecting human THP-1 macrophages and monocytes with high cell vitality, high transfection efficiency, and minimal effects on cell behavior. This approach is based on Nucleofection and the protocol has been optimized to maintain maximum capability for cell activation after transfection. The protocol is adequate for adherent cells after detachment as well as cells in suspension, and can be used for small to medium sample numbers. Thus, the method presented is useful for investigating gene regulatory effects during macrophage differentiation and polarization. Apart from presenting results characterizing macrophages transfected according to this protocol in comparison to an alternative chemical method, the impact of cell culture medium selection after transfection on cell behavior is also discussed. The presented data indicate the importance of validating the selection for different experimental settings.

  1. Optical reprogramming of human cells in an ultrashort femtosecond laser microfluidic transfection platform.

    Science.gov (United States)

    Uchugonova, Aisada; Breunig, Hans Georg; Batista, Ana; König, Karsten

    2016-09-01

    Induced pluripotent stem cell (iPS cell) technology can be used to produce unlimited numbers of functional cells for both research and therapeutic purposes without ethical controversy. Typically, viruses are applied for efficient intracellular delivery of genes/transcription factors to generate iPS cells. However, the viral genomic integration may cause a risk of mutation as well as tumor formation therefore limits its clinical application. Here we demonstrate that spatially shaped extreme ultrashort laser pulses of sub-20 femtoseconds induce transient membrane permeabilisation which enables contamination-free transfection of cells in a microfluidic tube with multiple genes at the individual cell level in order to achieve optical reprogramming of large cell populations. We found that the ultrashort femtosecond laser-microfluidic cell transfection platform enhanced the efficacy of iPS-like colony-forming following merely a single transfection. Illustration of the spatially shaped femtosecond laser-assisted microfluidic cell transfection platform for production of iPS cell colonies. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Characterization of a tachykinin peptide NK sub 2 receptor transfected into murine fibroblast B82 cells

    Energy Technology Data Exchange (ETDEWEB)

    Van Giersbergen, P.L.M. (Marion Merrell Dow Research Inst., Cincinnati, OH (United States) Univ. of Cincinnati, OH (United States)); Shatzer, S.A.; Buck, S.H. (Marion Merrell Dow Research Inst., Cincinnati, OH (United States)); Henderson, A.K.; Lai, J.; Yamamura, Henry, I. (Univ. of Arizona, Tucson (United States)); Nakanishi, Shigetada (Kyoto Univ. (Japan))

    1991-03-01

    Membranes isolated from a murine fibroblast B82 cell line (SKLKB82{number sign}3) transfected with the bovine stomach cDNA pSKR56S exhibited binding of (His({sup 125}I){sup 1})neurokinin A ({sup 125}I-NKA) to a single population of sites with a B{sub max} of 147 fmol/mg of protein and a K{sub d} of 0.59 nM. The ligand binding in SKLKB82{number sign}3 cells was reversible. Thus, SKLKB82{number sign}3 cells have been transfected with NK{sub 2} receptors that have become associated with an endogenous guanine nucleotide-binding protein. In comparison with membranes from the hamster urinary bladder, a tissue enriched in NK{sub 2} receptors, NK{sub 2} receptor antagonists displayed markedly different potencies, either more or less potent, in inhibiting specific binding in membranes of the transfected cells. Furthermore, inhibition of {sup 125}I-NKA binding by nucleotide analogues was markedly different in SKLKB82{number sign}3 cells compared with hamster bladder tissue. The different binding profile in the cells is not due to an artefact introduced during cDNA transfection because a similar profile was also observed in bovine stomach membranes. These results may indicate the existence of two distinct NK{sub 2} receptors.

  3. Transfection of isolated rainbow trout, Oncorhynchus mykiss, granulosa cells through chemical transfection and electroporation at 12°C.

    Science.gov (United States)

    Marivin, E; Mourot, B; Loyer, P; Rime, H; Bobe, J; Fostier, A

    2015-09-15

    Over-expression or inhibition of gene expression can be efficiently used to analyse the functions and/or regulation of target genes. Modulation of gene expression can be achieved through transfection of exogenous nucleic acids into target cells. Such techniques require the development of specific protocols to transfect cell cultures with nucleic acids. The aim of this study was to develop a method of transfection suitable for rainbow trout granulosa cells in primary culture. After the isolation of rainbow trout granulosa cells, chemical transfection of cells with a fluorescent morpholino oligonucleotide (MO) was tested using FuGENE HD at 12 °C. Electroporation was also employed to transfect these cells with either a plasmid or MO. Transfection was more efficient using electroporation (with the following settings: 1200 V/40 ms/1p) than chemical transfection, but electroporation by itself was deleterious, resulting in a decrease of the steroidogenic capacity of the cells, measured via estradiol production from its androgenic substrate. The disturbance of cell biology induced by the transfection method per se should be taken into account in data interpretation when investigating the effects of under- or over-expression of candidate genes. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Identification and characterization of two novel spliced genes located in the orf47-orf46-orf45 gene locus of Kaposi's sarcoma-associated herpesvirus.

    Science.gov (United States)

    Chang, Pey-Jium; Hung, Chien-Hui; Wang, Shie-Shan; Tsai, Ping-Hsin; Shih, Ying-Ju; Chen, Li-Yu; Huang, Hsiao-Yun; Wei, Ling-Huei; Yen, Ju-Bei; Lin, Chun-Liang; Chen, Lee-Wen

    2014-09-01

    The orf47-orf46-orf45 gene cluster of Kaposi's sarcoma-associated herpesvirus (KSHV) is known to serially encode glycoprotein L (gL), uracil DNA glycosylase, and a viral tegument protein. Here, we identify two novel mRNA variants, orf47/45-A and orf47/45-B, alternatively spliced from a tricistronic orf47-orf46-orf45 mRNA that is expressed in the orf47-orf46-orf45 gene locus during the early stages of viral reactivation. The spliced gene products, ORF47/45-A and ORF47/45-B, consist of only a partial region of gL (ORF47), a unique 7-amino-acid motif, and the complete tegument protein ORF45. Like the ORF45 protein, ORF47/45-A and ORF47/45-B expressed in cells sufficiently activate the phosphorylation of p90 ribosomal S6 kinase (RSK) and extracellular signal-regulated protein kinase (ERK). However, unlike ORF45, both ORF47/45-A and ORF47/45-B contain a signal peptide sequence and are localized at the endoplasmic reticulum (ER). Additionally, we found that ORF47/45-A and ORF47/45-B have an extra function that mediates the upregulation of GRP78, a master regulator of ER homeostasis. The important event regarding GRP78 upregulation can be observed in all tested KSHV-positive cell lines after viral reactivation, and knockdown of GRP78 in cells significantly impairs viral lytic cycle progression, especially at late lytic stages. Compared with some other viral glycoproteins synthesized through the ER, our results strongly implicate that the ORF47/45 proteins may serve as key effectors for controlling GRP78 expression and ER homeostasis in cells. Taken together, our findings provide evidence showing the reciprocal association between the modulation of ER homeostasis and the progression of the KSHV lytic cycle. Emerging evidence has shown that several viruses appear to use different strategies to control ER homeostasis for supporting their productive infections. The two parts of this study identify two aspects of the association between the regulation of ER homeostasis and the

  5. Transfection of Bacillus subtilis protoplasts by bacteriophage phi do7 DNA.

    OpenAIRE

    Perkins, J B; Dean, D H

    1983-01-01

    DNA from the Bacillus subtilis temperate bacteriophage phi do7 was found to efficiently transfect B. subtilis protoplasts; protoplast transfection was more efficient than competent cell transfection by a magnitude of 10(3). Unlike competent cell transfection, protoplast transfection did not require primary recombination, suggesting that phi do7 DNA enters the protoplast as double-stranded molecules.

  6. Acoustic Liquid Handling for Rapid siRNA Transfection Optimization.

    Science.gov (United States)

    Xiao, Andrew S; Lightcap, Eric S; Bouck, David C

    2015-09-01

    Gene knockdown by small interfering RNA (siRNA) has been used extensively to investigate the function of genes in targeted and genome-wide studies. One of the primary challenges of siRNA studies of any scale is to achieve sufficient gene knockdown to produce the biological changes that lead to measurable phenotypes. Reverse, lipid-based transfection efficiency minimally requires the optimization of the following parameters: cell number, knockdown duration, siRNA oligonucleotide concentration, type/brand of transfection lipid, and transfection lipid concentration. In this study, we describe a methodology to utilize the flexibility and low-volume range of the Echo acoustic liquid handler to rapidly screen a matrix of transfection conditions. The matrix includes six different transfection lipids from three separate vendors across a broad range of concentrations. Our results validate acoustic liquid transfer for the delivery of siRNAs and transfection reagents. Finally, this methodology is applied to rapidly optimize transfection conditions across many tissue culture cell lines derived from various originating tissues. © 2015 Society for Laboratory Automation and Screening.

  7. Enhancement of DNA-transfection frequency by X-rays

    International Nuclear Information System (INIS)

    Iwamoto, Ryota; Fushimi, Kazuo; Hiraki, Yoshio; Namba, Masayoshi

    1997-01-01

    This study was conducted to evaluate the frequency of DNA transfection into human cells following X-ray irradiation. We transfected plasmid DNA (pSV2neo) into human cells, HeLa and PA-1, by either calcium phosphate precipitation or the lipofection method immediately after irradiating the cells with various doses of X-rays. The transfection frequency was evaluated by counting the number of G418-resistant colonies. When circular plasmid DNA was used, irradiation up to a dose of 2 Gy dose-dependently increased the transfection frequency, which reached a maximum of 5 to 10-fold that of the control unirradiated cells. When linear plasmid DNA was used, the transfection frequency was 2 times higher than that of circular DNA. All five of the clones that were randomly chosen expressed the transfected neo gene. In addition, the pSV2neo gene was randomly integrated into the genomic DNA of each clone. These findings indicate that X-ray treatment can facilitate foreign DNA transfer into human cells and that radiation-induced DNA breaks may promote the insertion of foreign DNA into host DNA. The enhancement of DNA transfection with X-rays may be instrumental in practicing gene therapy. (author)

  8. An update on sORFs.org: a repository of small ORFs identified by ribosome profiling.

    Science.gov (United States)

    Olexiouk, Volodimir; Van Criekinge, Wim; Menschaert, Gerben

    2018-01-04

    sORFs.org (http://www.sorfs.org) is a public repository of small open reading frames (sORFs) identified by ribosome profiling (RIBO-seq). This update elaborates on the major improvements implemented since its initial release. sORFs.org now additionally supports three more species (zebrafish, rat and Caenorhabditis elegans) and currently includes 78 RIBO-seq datasets, a vast increase compared to the three that were processed in the initial release. Therefore, a novel pipeline was constructed that also enables sORF detection in RIBO-seq datasets comprising solely elongating RIBO-seq data while previously, matching initiating RIBO-seq data was necessary to delineate the sORFs. Furthermore, a novel noise filtering algorithm was designed, able to distinguish sORFs with true ribosomal activity from simulated noise, consequently reducing the false positive identification rate. The inclusion of other species also led to the development of an inner BLAST pipeline, assessing sequence similarity between sORFs in the repository. Building on the proof of concept model in the initial release of sORFs.org, a full PRIDE-ReSpin pipeline was now released, reprocessing publicly available MS-based proteomics PRIDE datasets, reporting on true translation events. Next to reporting those identified peptides, sORFs.org allows visual inspection of the annotated spectra within the Lorikeet MS/MS viewer, thus enabling detailed manual inspection and interpretation. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Infectious alphavirus production from a simple plasmid transfection+

    Directory of Open Access Journals (Sweden)

    Olson Ken E

    2011-07-01

    Full Text Available Abstract We have developed a new method for producing infectious double subgenomic alphaviruses from plasmids transfected into mammalian cells. A double subgenomic Sindbis virus (TE3'2J was transcribed from a cytomegalovirus PolII promoter, which results in the production of infectious virus. Transfection of as little as 125 ng of plasmid is able to produce 1 × 108 plaque forming units/ml (PFU/ml of infectious virus 48 hours post-transfection. This system represents a more efficient method for producing recombinant Sindbis viruses.

  10. Size Specific Transfection to Mammalian Cells by Micropillar Array Electroporation

    Science.gov (United States)

    Zu, Yingbo; Huang, Shuyan; Lu, Yang; Liu, Xuan; Wang, Shengnian

    2016-12-01

    Electroporation serves as a promising non-viral gene delivery approach, while its current configuration carries several drawbacks associated with high-voltage electrical pulses and heterogeneous treatment on individual cells. Here we developed a new micropillar array electroporation (MAE) platform to advance the electroporation-based delivery of DNA and RNA probes into mammalian cells. By introducing well-patterned micropillar array texture on the electrode surface, the number of pillars each cell faces varies with its plasma membrane surface area, despite their large population and random locations. In this way, cell size specific electroporation is conveniently carried out, contributing to a 2.5~3 fold increase on plasmid DNA transfection and an additional 10-55% transgene knockdown with siRNA probes, respectively. The delivery efficiency varies with the number and size of micropillars as well as their pattern density. As MAE works like many single cell electroporation are carried out in parallel, the electrophysiology response of individual cells is representative, which has potentials to facilitate the tedious, cell-specific protocol screening process in current bulk electroporation (i.e., electroporation to a large population of cells). Its success might promote the wide adoption of electroporation as a safe and effective non-viral gene delivery approach needed in many biological research and clinical treatments.

  11. Manipulation of lipoplex concentration at the cell surface boosts transfection efficiency in hard-to-transfect cells.

    Science.gov (United States)

    Palchetti, Sara; Pozzi, Daniela; Marchini, Cristina; Amici, Augusto; Andreani, Cristina; Bartolacci, Caterina; Digiacomo, Luca; Gambini, Valentina; Cardarelli, Francesco; Di Rienzo, Carmine; Peruzzi, Giovanna; Amenitsch, Heinz; Palermo, Rocco; Screpanti, Isabella; Caracciolo, Giulio

    2017-02-01

    To date, efficiency upon non-viral DNA delivery remains low and this implies the existence of unidentified transfection barriers. Here we explore the mechanisms of action of multicomponent (MC) cationic liposome/DNA complexes (lipoplexes) by a combination of reporter technologies, dynamic light scattering (DLS), synchrotron small angle X-ray scattering (SAXS), fluorescence activated cell sorting (FACS) analysis and laser scanning confocal microscopy (LSCM) in live cells. Lipofectamine - the gold standard among transfection reagents - was used as a reference. On the basis of our results, we suggest that an additional transfection barrier impairs transfection efficiency, that is: low lipoplex concentration at the cell surface. Based on the acquired knowledge we propose an optimized transfection protocol that allowed us to efficiently transfect DND41, JURKAT, MOLT3, P12-ICHIKAWA, ALL-SILL, TALL-1 human T-cell acute lymphoblastic leukemia (T-ALL) cell lines known to be difficult-to-transfect by using non-viral vectors and where LFN-based technologies fail to give satisfactory results. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Effects of osteoprotegerin from transfection of pcDNA3.1(+/chOPG on bioactivity of chicken osteoclasts

    Directory of Open Access Journals (Sweden)

    Yao Jing

    2011-03-01

    Full Text Available Abstract Background Osteoprotegerin (OPG has been reported to prevent bone resorption by inhibiting the formation, function, and survival of osteoclasts in a variety of animal models. However, the effects of OPG on bone metabolism in avian species have not been described. The objective of this study was to investigate the effects of chicken OPG (chOPG expressed in chicken embryo fibroblasts (CEFs on chicken osteoclast function in vitro. Methods The chOPG sequence containing the open reading frame (ORF was amplified from chicken embryo frontal bone and inserted into the pcDNA3.1 (+ vector. PcDNA3.1 (+/chOPG was transiently transfected into CEFs by lipofectamine 2000. Transcription of OPG mRNA and expression of chOPG recombinant protein were detected by reverse transcription polymerase chain reaction (RT-PCR and indirect immunofluorescence. The level of chOPG recombinant protein was detected by enzyme-linked immunosorbent assay. The suspension of osteoclasts was separated from chicken embryos and divided into three groups (control group, pcDNA3.1 (+ group and pcDNA3.1 (+/chOPG group. The percentage of osteoclast apoptosis was detected by flow cytometry. The tartrate-resistant acid phosphatase (TRAP secreted by osteoclasts was measured by the diazol method. The resorbing activity of osteoclasts was evaluated by the area of lacunae on bone flaps and the concentration of calcium in the supernatant liquid of osteoclasts. Results 48 h after transfection, the exogenous OPG gene transcription was detected by RT-PCR. After 72 h, the CEFs transfected from pcDNA3.1 (+/chOPG displayed green fluorescence and the concentration of chOPG protein was 15.78 ± 0.22 ng/mL. After chicken osteoclasts were cultured for 5 d in a medium containing supernatant from transfected CEFs, the percentage of osteoclast apoptosis was increased significantly, the concentration of TRAP, the area of lacunae on bone flaps and calcium concentration were decreased significantly in the

  13. DyNAvectors: dynamic constitutional vectors for adaptive DNA transfection.

    Science.gov (United States)

    Clima, Lilia; Peptanariu, Dragos; Pinteala, Mariana; Salic, Adrian; Barboiu, Mihail

    2015-12-25

    Dynamic constitutional frameworks, based on squalene, PEG and PEI components, reversibly connected to core centers, allow the efficient identification of adaptive vectors for good DNA transfection efficiency and are well tolerated by mammalian cells.

  14. Optical sorting and photo-transfection of mammalian cells

    CSIR Research Space (South Africa)

    Mthunzi, P

    2010-02-01

    Full Text Available ), embryonic kidney, Chinese hamster ovary as well as pluripotent stem cells using a tightly focused titanium sapphire femtosecond pulsed laser beam spot. These investigations permitted advanced biological studies in femtosecond laser transfection: firstly...

  15. KSHV ORF K9 (vIRF) is an oncogene which inhibits the interferon signaling pathway.

    Science.gov (United States)

    Gao, S J; Boshoff, C; Jayachandra, S; Weiss, R A; Chang, Y; Moore, P S

    1997-10-16

    Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus linked to the development of Kaposi's sarcoma and a rare B cell lymphoma, primary effusion lymphoma. The KSHV gene ORF K9 encodes vIRF which is a protein with low but significant homology to members of the interferon (IFN) regulatory factor (IRF) family responsible for regulating intracellular interferon signal transduction (Moore PS, Boshoff C, Weiss RA and Chang Y. (1996). Science, 274, 1739-1744). vIRF inhibits IFN-beta signal transduction as measured using an IFN-responsive ISG54 reporter construct co-transfected with ORF K9 into HeLa and 293 cells. vIRF also suppresses genes under IFN regulatory control as shown by inhibition of the IFN-beta inducibility of p21WAF1/CIP1, however, no direct DNA-binding or protein-protein interactions characteristic for IRF repressor proteins were identified. Stable transfectant NIH3T3 clones expressing vIRF grew in soft agar and at low serum concentrations, lost contact inhibition and formed tumors after injection into nude mice indicating that vIRF has the properties of a viral oncogene. Since vIRF is primarily expressed in KSHV-infected B cells, not KS spindle cells, this study suggests that vIRF is a transforming oncogene active in B cell neoplasias that may provide a unique immune escape mechanism for infected cells. This data is consistent with tumor suppressor pathways serving a dual function as host cell antiviral pathways.

  16. Calcium-microRNA Complexes Functionalized Nanotubular Implant Surface for Highly Efficient Transfection and Enhanced Osteogenesis of Mesenchymal Stem Cells

    DEFF Research Database (Denmark)

    Song, Wen; Yang, Chuanxu; Svend Le, Dang Quang

    2018-01-01

    effective delivery method of small RNA therapeutics into hMSCs from an implant surface by calcium ions. First, we demonstrated that simple Ca/siGFP nanocomplexes were able to efficiently silence GFP in GFP-expressing hMSCs with adequate Ca2+ concentration (>5 mM). In addition, a single transfection could...

  17. Evaluation of the magnetic field requirements for nanomagnetic gene transfection

    Science.gov (United States)

    Fouriki, A.; Farrow, N.; Clements, M.A.; Dobson, J.

    2010-01-01

    The objective of this work was to examine the effects of magnet distance (and by proxy, field strength) on nanomagnetic transfection efficiency. Methods non-viral magnetic nanoparticle-based transfection was evaluated using both static and oscillating magnet arrays. Results Fluorescence intensity (firefly luciferase) of transfected H292 cells showed no increase using a 96-well NdFeB magnet array when the magnets were 5 mm from the cell culture plate or nearer. At 6 mm and higher, fluorescence intensity decreased systematically. Conclusion In all cases, fluorescence intensity was higher when using an oscillating array compared to a static array. For distances closer than 5 mm, the oscillating system also outperformed Lipofectamine 2000™. PMID:22110859

  18. Evaluation of the magnetic field requirements for nanomagnetic gene transfection

    Directory of Open Access Journals (Sweden)

    A. Fouriki

    2010-07-01

    Full Text Available The objective of this work was to examine the effects of magnet distance (and by proxy, field strength on nanomagnetic transfection efficiency. Methods: non-viral magnetic nanoparticle-based transfection was evaluated using both static and oscillating magnet arrays. Results: Fluorescence intensity (firefly luciferase of transfected H292 cells showed no increase using a 96-well NdFeB magnet array when the magnets were 5 mm from the cell culture plate or nearer. At 6 mm and higher, fluorescence intensity decreased systematically. Conclusion: In all cases, fluorescence intensity was higher when using an oscillating array compared to a static array. For distances closer than 5 mm, the oscillating system also outperformed Lipofectamine 2000™.

  19. Modulation of microfilament protein composition by transfected cytoskeletal actin genes

    Energy Technology Data Exchange (ETDEWEB)

    Ng, S.Y.; Erba, H.; Latter, G.; Kedes, L.; Leavitt, J.

    1988-04-01

    HuT-14T is a highly tumorigenic fibroblast cell line which exhibits a reduced steady-state level of ..beta..-actin due to coding mutations in one of two ..beta..-actin alleles. The normal rate of total actin synthesis could be restored in some clones of cells following transfection of the functional ..beta..-actin gene but not following transfection of the functional ..gamma..-actin gene. In ..gamma..-actin gene-transfected substrains that have increased rates of ..gamma..-actin synthesis, ..beta..-actin synthesis is further reduced in a manner consistent with an autoregulatory mechanism, resulting in abnormal ratios of actin isoforms. Thus, both ..beta..- and ..gamma..-actin proteins can apparently regulate the synthesis of their coexpressed isoforms. In addition, decreased synthesis of normal ..beta..-actin seems to correlate with a concomitant down-regulation of tropomyosin isoforms.

  20. Epizone: Interlaboratory Ring Trial to Compare Dna Transfection Efficiencies

    DEFF Research Database (Denmark)

    Dory, Daniel; Albina, Emmanuel; Kwiatek, Olivier

    of viruses by reverse genetics and/or generation of mutated viruses. A large number of transfection chemicals like calcium phospate, branched organic compounds, liposomes, cationic polymers etc. are available on the market which are used by different laboratories for different cell lines. To obtain...... an overview on the efficiencies of varying transfection procedures, an interlaboratory ring trial was initiated within EPIZONE theme 5. A total of 15 participitating laboratories from 7 member institutions received RK13 cells, plasmid DNA encoding firefly luciferase under the transcriptional control...... of the human cytomegalovirus major immediate early promoter, a specially developed lysis buffer and a detailed protocol. Transfected cells were harvested in the laboratories of the participants, frozen and sent to the FLI where both the luciferase activity and protein content of the individual samples were...

  1. Establishment of transient and stable transfection systems for Babesia ovata.

    Science.gov (United States)

    Hakimi, Hassan; Yamagishi, Junya; Kegawa, Yuto; Kaneko, Osamu; Kawazu, Shin-Ichiro; Asada, Masahito

    2016-03-23

    Bovine babesiosis is a tick-borne disease caused by several species of Babesia which produce acute and fatal disease in cattle and affect livestock industry worldwide. Babesia ovata is a benign species widespread in east Asian countries and causes anemia, particularly in cattle which are co-infected with Theileria orientalis. The development of genetic manipulation methods is necessary to improve our understanding of the basic biology of protozoan pathogens toward a better control of disease. Such tools have not been developed for B. ovata, and are the aim of this study. In this study we transfected constructs that were designed to evaluate the ability of several B. ovata promoter candidates to drive expression of a reporter luciferase. We found that the elongation factor-1 alpha intergenic region (ef-1α IG) and the actin 5' non-coding region (NR) had highest promoter activities. To establish a stable transfection system, we generated a plasmid construct in which the ef-1α IG promoter drives gfp expression, and the actin 5' NR mediates expression of the selectable marker hdhfr. The plasmid was designed for episomal transfection, as well as to integrate by double cross-over homologous recombination into the ef-1α locus. Circular or linearized plasmid was transfected by electroporation into in vitro cultured B. ovata and retention of the plasmid was facilitated by drug selection with 5 nM WR99210 initiated 48 h after transfection. After one-week cultivation with WR99210, GFP-expressing parasites were observed by fluorescence microscopy. Integration of the plasmid construct into the ef-1α locus was confirmed by PCR, Southern blot analysis, and sequencing of recombination sites. These results confirm successful development of a stable transfection system for B. ovata. The current study provides a fundamental molecular tool to aid in molecular and cellular studies of B. ovata.

  2. Cell transfection as a tool to study growth hormone action

    DEFF Research Database (Denmark)

    Norstedt, G; Enberg, B; Francis, S

    1994-01-01

    of cellular function that mimic those of the endogenous GHR. GHR cDNA transfected cells also offer a system where the mechanism of GH action can be studied. Such a system has been used to demonstrate that the GHR itself becomes tyrosine phosphorylated and that further phosphorylation of downstream proteins...... is important in GH action. The GH signals are transmitted to the nucleus and GH regulated genes have now begun to be characterized. The ability to use cell transfection for mechanistic studies of GH action will be instrumental to define domains within the receptor that are of functional importance...

  3. The Effect of Environmental pH on Polymeric Transfection Efficiency

    OpenAIRE

    Kang, Han Chang; Samsonova, Olga; Kang, Sun-Woong; Bae, You Han

    2011-01-01

    Although polymers, polyplexes, and cells are exposed to various extracellular and intracellular pH environments during polyplex preparation and polymeric transfection, the impact of environmental pH on polymeric transfection has not yet been investigated. This study aims to understand the influence of environmental pH on polymeric transfection by modulating the pH of the transfection medium or the culture medium. Changes in the extracellular pH affected polymeric transfection by way of comple...

  4. ORF List: * [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available * orf19.7368; Contig19-2513; complement(50456..51988); PUB1*; polyadenylated RNA-binding protein | not repo...rted to associate with polyribosomes; Eukaryota Candida_albicans Ca19AnnotatedDec2004aaSeq 1fxlA:gb|EAK97614.1| *:gb|EAK97614.1| 37:200 ... 1fxlA

  5. ORF List: * [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available * orf19.7368; Contig19-2513; complement(50456..51988); PUB1*; polyadenylated RNA-binding protein | not repo...rted to associate with polyribosomes; Eukaryota Candida_albicans Ca19AnnotatedDec2004aaSeq 1whxA:emb|CAG84729.1| *:emb|CAG84729.1| 222:319 ... 1whxA

  6. Transfection of Primary Human Skin Fibroblasts for Peroxisomal Studies

    NARCIS (Netherlands)

    Koster, Janet; Waterham, Hans R.

    2017-01-01

    Functional studies with primary human skin fibroblasts from patients with a peroxisomal disorder often require efficient transfection with plasmids to correct the genetic defect or to express heterologous reporter proteins. Here, we describe a protocol we commonly use for efficient nonviral

  7. [Cashmere goat bacterial artificial chromosome recombination and cell transfection system].

    Science.gov (United States)

    Huang, Tian; Cao, Zhongyang; Yang, Yaohui; Cao, Gengsheng

    2016-03-01

    The Cashmere goat is mainly used to produce cashmere, which is very popular for its delicate fiber, luscious softness and natural excellent warm property. Keratin associated protein (KAP) and bone morphogenetic protein (BMP) of the Cashmere goat play an important role in the proliferation and development of cashmere fiber follicle cells. Bacterial artificial chromosome containing kap6.3, kap8.1 and bmp4 genes were used to increase the production and quality of Cashmere. First, we constructed bacterial artificial chromosomes by homology recombination. Then Tol2 transposon was inserted into bacterial artificial chromosomes that were then transfected into Cashmere goat fibroblasts by Amaxa Nucleofector technology according to the manufacture's instructions. We successfully constructed the BAC-Tol2 vectors containing target genes. Each vector contained egfp report gene with UBC promoter, Neomycin resistant gene for cell screening and two loxp elements for resistance removing after transfected into cells. The bacterial artificial chromosome-Tol2 vectors showed a high efficiency of transfection that can reach 1% to 6% with a highest efficiency of 10%. We also obtained Cashmere goat fibroblasts integrated exogenous genes (kap6.3, kap8.1 and bmp4) preparing for the clone of Cashmere goat in the future. Our research demonstrates that the insertion of Tol2 transposons into bacterial artificial chromosomes improves the transfection efficiency and accuracy of bacterial artificial chromosome error-free recombination.

  8. Optimization of in vitro culture and transfection condition of bovine ...

    African Journals Online (AJOL)

    The present study aimed to optimize the in vitro culture and transfection efficiency of bovine primary spermatogonial stem cells (SSCs). To this end, SSCs were obtained from newborn Holstein bull calves by two-step enzymatic digestion. After enrichment and culture, SSCs were characterized by using alkaline phosphatase ...

  9. D-Glucosamine Promotes Transfection Efficiency during Electroporation

    Directory of Open Access Journals (Sweden)

    Kazunari Igawa

    2014-01-01

    Full Text Available D-Glucosamine is a useful medicament in various fields of medicine and dentistry. With respect to stability of the cell membrane, it has been reported that bradykinin-induced nociceptive responses are significantly suppressed by the direct application of D-glucosamine. Electroporation is usually used to effectively introduce foreign genes into tissue culture cells. Buffers for electroporation with or without D-glucosamine are used in experiments of transfection vectors. This is the first study to indirectly observe the stability and protection of the osteoblast membrane against both electric stress and gene uptake (the proton sponge hypothesis: osmotic rupture during endosomes prior to fusion with lysosomes in electroporation with D-glucosamine application. The transfection efficiency was evaluated as the fluorescence intensity of the transfected green fluorescent protein (GFP in the cultured cells (osteoblasts; NOS-1 cells. The transfection efficiency increased over 30% in the electroporation samples treated with D-glucosamine-supplemented buffer after one day. The membrane absorption of D-glucosamine is the primary mechanism of membrane stress induced by electric stress. This new function of D-glucosamine is useful and meaningful for developing more effective transformation procedures.

  10. Acheta domesticus Volvovirus, a Novel Single-Stranded Circular DNA Virus of the House Cricket.

    Science.gov (United States)

    Pham, Hanh T; Bergoin, Max; Tijssen, Peter

    2013-03-14

    The genome of a novel virus of the house cricket consists of a 2,517-nucleotide (nt) circular single-stranded DNA (ssDNA) molecule with 4 open reading frames (ORFs). One ORF had a low identity to circovirus nucleotide sequences (NS). The unique properties of this volvovirus suggested that it belongs to a new virus family or genus.

  11. Acheta domesticus Volvovirus, a Novel Single-Stranded Circular DNA Virus of the House Cricket

    OpenAIRE

    Pham, Hanh T.; Bergoin, Max; Tijssen, Peter

    2013-01-01

    International audience; The genome of a novel virus of the house cricket consists of a 2,517-nucleotide (nt) circular single-stranded DNA (ssDNA) molecule with 4 open reading frames (ORFs). One ORF had a low identity to circovirus nucleotide sequences (NS). The unique properties of this volvovirus suggested that it belongs to a new virus family or genus.

  12. DNA transfection of bone marrow mesenchymal stem cells using micro electroporation chips

    KAUST Repository

    Deng, Peigang

    2011-02-01

    Experimental study of electroporation of bone marrow mesenchymal stem cells (MSCs) at the single-cell level was carried out on a micro EP chip by using single electric rectangular pulse. The threshold values of the electrode potential and pulse width for gas bubble generation on the micro electrodes due to electrolysis of water were revealed as 4.5 volt and 100 μs, respectively. Quantitative EP study was performed with various electric field strengths for various pulse widths, ranging from 20μs to 15ms. Over 1,000 single-cell EP results were used to construct an EP "phase diagram", which delineates the boundaries for (1) effective EP of MSCs and (2) electric cell lysis of MSCs. Finally, the micro EP chip showed successful transfection of the pEGFP-C1 plasmid into the MSCs by properly choosing the electric parameters from the EP "phase diagram". © 2011 IEEE.

  13. [RECOMBINANT ADENOVIRUS-MEDIATED BONE MORPHOGENETIC PROTEIN 9 AND ERYTHROPOIETIN GENES CO-TRANSFECTION IN PROMOTING OSTEOGENIC DIFFERENTIATION OF ADIPOSE-DERIVED STEM CELLS IN VITRO].

    Science.gov (United States)

    Zhang, Guangde; Su, Chengshuai; Jin, Xia; Yang, Shimao; Fang, Dianji; Guo, Yanwei

    2016-03-01

    expressions of osteoblast-related genes and protein than non-transfected and single gene transfection.

  14. Photoporation and cell transfection using a violet diode laser

    Science.gov (United States)

    Paterson, L.; Agate, B.; Comrie, M.; Ferguson, R.; Lake, T. K.; Morris, J. E.; Carruthers, A. E.; Brown, C. T. A.; Sibbett, W.; Bryant, P. E.; Gunn-Moore, F.; Riches, A. C.; Dholakia, Kishan

    2005-01-01

    The introduction and subsequent expression of foreign DNA inside living mammalian cells (transfection) is achieved by photoporation with a violet diode laser. We direct a compact 405 nm laser diode source into an inverted optical microscope configuration and expose cells to 0.3 mW for 40 ms. The localized optical power density of ~1200 MW/m2 is six orders of magnitude lower than that used in femtosecond photoporation (~104 TW/m2). The beam perforates the cell plasma membrane to allow uptake of plasmid DNA containing an antibiotic resistant gene as well as the green fluorescent protein (GFP) gene. Successfully transfected cells then expand into clonal groups which are used to create stable cell lines. The use of the violet diode laser offers a new and simple poration technique compatible with standard microscopes and is the simplest method of laser-assisted cell poration reported to date.

  15. Deep sequencing reveals complex spurious transcription from transiently transfected plasmids

    Czech Academy of Sciences Publication Activity Database

    Nejepínská, Jana; Malík, Radek; Moravec, Martin

    2012-01-01

    Roč. 7, č. 8 (2012), e43283 E-ISSN 1932-6203 R&D Projects: GA ČR GA204/09/0085 Grant - others:EMBO(XE) 0001488 Institutional research plan: CEZ:AV0Z50520514 Institutional support: RVO:68378050 Keywords : transient plasmid transfection * deep sequencing Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.730, year: 2012

  16. Transient transfection and expression of firefly luciferase in Giardia lamblia.

    OpenAIRE

    Yee, J; Nash, T E

    1995-01-01

    We have developed a gene transfer system for the protozoan parasite Giardia lamblia. This organism is responsible for many cases of diarrhea worldwide and is considered to be one of the most primitive eukaryotes. Expression of a heterologous gene was detected in this parasite after electroporation with appropriate DNA constructs. We constructed a series of transfection plasmids using flanking sequences of the Giardia glutamate dehydrogenase (GDH) gene to drive expression of the firefly lucife...

  17. Uptake of DNA by cancer cells without a transfection reagent.

    Science.gov (United States)

    Kong, Yanping; Zhang, Xianbo; Zhao, Yongliang; Xue, Yanfang; Zhang, Ye

    2017-01-21

    Cancer cells exhibit elevated levels of glucose uptake and may obtain pre-formed, diet-derived fatty acids from the bloodstream to boost their rapid growth; they may also use nucleic acid from their microenvironment. The study of processing nucleic acid by cancer cells will help improve the understanding of the metabolism of cancer. DNA is commonly packaged into a viral or lipid particle to be transferred into cells; this process is called transfection in laboratory. Cancer cells are known for having gene mutations and the evolving ability of endocytosis. Their uptake of DNAs might be different from normal cells; they may take in DNAs directly from the environment. In this report, we studied the uptake of DNAs in cancer cells without a transfection reagent. A group of DNA fragments were prepared with PCR and labeled with isotope phosphorous-32 to test their uptake by Huh 7 (liver cancer) and THLE3 (normal liver cells) after incubation overnight by counting radioactivity of the cells' genomic DNA. Multiple cell lines including breast cancer and lung cancer were tested with the same method. DNA molecules were also labeled with fluorescence to test the location in the cells using a kit of "label it fluorescence in situ hybridization (FISH)" from Mirus (USA). The data demonstrated that hepatocellular carcinoma cells possess the ability to take in large DNA fragments directly without a transfection reagent whereas normal liver cells cannot. Huh7 and MDA-MB231 cells displayed a significantly higher Rhodamine density in the cytoplasmic phagosomes and this suggests that the mechanism of uptake of large DNA by cancer cells is likely endocytosis. The efficacy of uptake is related to the DNA's size. Some cell lines of lung cancer and breast cancer also showed similar uptake of DNA. In the present study, we have revealed the evidence that some cancer cells, but not nontumorigenic cells, can take DNA fragments directly from the environment without the aid of the transfecting

  18. Association between a C8orf13–BLK Polymorphism and Polymyositis/Dermatomyositis in the Japanese Population: An Additive Effect with STAT4 on Disease Susceptibility

    Science.gov (United States)

    Sugiura, Tomoko; Kawaguchi, Yasushi; Goto, Kanako; Hayashi, Yukiko; Gono, Takahisa; Furuya, Takefumi; Nishino, Ichizo; Yamanaka, Hisashi

    2014-01-01

    Background Accumulating evidence has shown that several non-HLA genes are involved in the susceptibility to polymyositis/dermatomyositis. This study aimed to investigate the involvement of C8orf13–BLK, one of the strongest candidate genes for autoimmune diseases, in susceptibility to polymyositis/dermatomyositis in the Japanese population. A possible gene–gene interaction between C8orf13–BLK and STAT4, which we recently showed to be associated with Japanese polymyositis/dermatomyositis, was also analyzed. Methods A single-nucleotide polymorphism in C8orf13–BLK (dbSNP ID: rs13277113) was investigated in the Japanese population using a TaqMan assay in 283 polymyositis patients, 194 dermatomyositis patients, and 656 control subjects. Results The C8orf13–BLK rs13277113A allele was associated with overall polymyositis/dermatomyositis (Pdermatomyositis (Pdermatomyositis susceptibility. The strongest association was observed in dermatomyositis, with an OR of 3.07 (95% CI; 1.57–6.02) for the carriers of four risk alleles at the two SNP sites, namely, rs1327713 and rs7574865. Conclusions This study established C8orf13–BLK as a new genetic susceptibility factor for polymyositis/dermatomyositis. Both C8orf13–BLK and STAT4 exert additive effects on disease susceptibility. These observations suggested that C8orf13–BLK, in combination with STAT4, plays a pivotal role in creating genetic susceptibility to polymyositis/dermatomyositis in Japanese individuals. PMID:24632671

  19. DNA uptake, intracellular trafficking and gene transfection after ultrasound exposure.

    Science.gov (United States)

    Liu, Ying; Yan, Jing; Santangelo, Philip J; Prausnitz, Mark R

    2016-07-28

    Ultrasound has been studied as a promising tool for intracellular gene delivery. In this work, we studied gene transfection of a human prostate cancer cell line exposed to megahertz pulsed ultrasound in the presence of contrast agent and assessed the efficiency of fluorescently labelled DNA delivery into cell nuclei, which is necessary for gene transfection. At the sonication conditions studied, ~30% of cells showed DNA uptake 30min after sonication, but that fraction decreased over time to ~10% of cells after 24h. Most cells containing DNA had DNA in their nuclei, but the amount varied significantly. Transfection efficiency peaked at ~10% at 8h post sonication. Among those cells containing DNA, ~30% of DNA was localized in the cell nuclei, ~30% was in autophagosomes/autophagolysosomes and the remainder was "free" in the cytoplasm 30min after sonication. At later times up to 24h, ~30% of DNA continued to be found in the nuclei and most or all of the rest of the DNA was in autophagosomes/autophagolysosomes. These results demonstrate that ultrasound can deliver DNA into cell nuclei shortly after sonication and that the rest of the DNA can be cleared by autophagosomes/autophagolysosomes. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Characterization of cell lines stably transfected with rubella virus replicons

    International Nuclear Information System (INIS)

    Tzeng, Wen-Pin; Xu, Jie; Frey, Teryl K.

    2012-01-01

    Rubella virus (RUBV) replicons expressing a drug resistance gene and a gene of interest were used to select cell lines uniformly harboring the replicon. Replicons expressing GFP and a virus capsid protein GFP fusion (C-GFP) were compared. Vero or BHK cells transfected with either replicon survived drug selection and grew into a monolayer. However, survival was ∼9-fold greater following transfection with the C-GFP-replicon than with the GFP-expressing replicon and while the C-GFP-replicon cells grew similarly to non-transfected cells, the GFP-replicon cells grew slower. Neither was due to the ability of the CP to enhance RNA synthesis but survival during drug selection was correlated with the ability of CP to inhibit apoptosis. Additionally, C-GFP-replicon cells were not cured of the replicon in the absence of drug selection. Interferon-alpha suppressed replicon RNA and protein synthesis, but did not cure the cells, explaining in part the ability of RUBV to establish persistent infections.

  1. Characterization of cell lines stably transfected with rubella virus replicons

    Energy Technology Data Exchange (ETDEWEB)

    Tzeng, Wen-Pin; Xu, Jie [Department of Biology, Georgia State University, P.O. Box 4010, Atlanta GA 30302-4010 (United States); Frey, Teryl K., E-mail: tfrey@gsu.edu [Department of Biology, Georgia State University, P.O. Box 4010, Atlanta GA 30302-4010 (United States)

    2012-07-20

    Rubella virus (RUBV) replicons expressing a drug resistance gene and a gene of interest were used to select cell lines uniformly harboring the replicon. Replicons expressing GFP and a virus capsid protein GFP fusion (C-GFP) were compared. Vero or BHK cells transfected with either replicon survived drug selection and grew into a monolayer. However, survival was {approx}9-fold greater following transfection with the C-GFP-replicon than with the GFP-expressing replicon and while the C-GFP-replicon cells grew similarly to non-transfected cells, the GFP-replicon cells grew slower. Neither was due to the ability of the CP to enhance RNA synthesis but survival during drug selection was correlated with the ability of CP to inhibit apoptosis. Additionally, C-GFP-replicon cells were not cured of the replicon in the absence of drug selection. Interferon-alpha suppressed replicon RNA and protein synthesis, but did not cure the cells, explaining in part the ability of RUBV to establish persistent infections.

  2. Tumor priming enhances siRNA delivery and transfection in intraperitoneal tumors

    Science.gov (United States)

    Wang, Jie; Lu, Ze; Yeung, Bertrand Z.; Wientjes, M. Guillaume; Cole, David J.; Au, Jessie L.-S.

    2014-01-01

    Cancers originating from digestive system account for 290,000 or ~20% of all new cancer cases annually in the US. We previously developed paclitaxel-loaded tumor-penetrating microparticles (TPM) for intraperitoneal (IP) treatment of peritoneal tumors [1–3]. TPM is undergoing NIH-supported IND-enabling studies for clinical evaluation. The present study evaluated the hypothesis that TPM, via inducing apoptosis and expanding the interstitial space, promotes the delivery and transfection of lipid vectors containing siRNA. The in vivo model was the metastatic human Hs766T pancreatic tumor that, upon IP injection, produced widely distributed solid tumors and ascites in the peritoneal cavity in 100% animals. The target gene was survivin, an anti-apoptotic protein induced by chemotherapy and associated with metastases and poor prognosis of patients with gastric and colorectal cancer. The siRNA carrier was pegylated liposomes comprising cationic and neutral lipids plus a fusogenic lipid (PCat). PCat-loaded with survivin siRNA (PCat-siSurvivin) was active in cultured cells (decreased survivin mRNA and protein levels, reduced cell clonogenicity, enhanced paclitaxel activity), but lost its activity in vivo; this difference is consistent with the well-known problem of inadequate delivery and transfection of siRNA in vivo. In comparison, single agent TPM prolonged animal survival and, as expected, induced survivin expression in tumors. Addition of PCat-siSurvivin reversed the TPM-induced survivin expression and enhanced the antitumor activity of TPM. The finding that in vivo survivin knockdown by PCat-siSurvivin was successful only when it was given in combination with TPM provides the proof-of-concept that tumor priming promotes the delivery and transfection of liposomal siRNA. The data further suggest the TPM/PCat-siSurvivin combination as a potentially useful chemo-gene therapy for peritoneal cancer. PMID:24462901

  3. Paclitaxel tumor priming promotes delivery and transfection of intravenous lipid-siRNA in pancreatic tumors.

    Science.gov (United States)

    Wang, Jie; Lu, Ze; Wang, Junfeng; Cui, Minjian; Yeung, Bertrand Z; Cole, David J; Wientjes, M Guillaume; Au, Jessie L-S

    2015-10-28

    The major barrier for using small interfering RNA (siRNA) as cancer therapeutics is the inadequate delivery and transfection in solid tumors. We have previously shown that paclitaxel tumor priming, by inducing apoptosis, expands the tumor interstitial space, improves the penetration and dispersion of nanoparticles and siRNA-lipoplexes in 3-dimensional tumor histocultures, and promotes the delivery and transfection efficiency of siRNA-lipoplexes under the locoregional setting in vivo (i.e., intraperitoneal treatment of intraperitoneal tumors). The current study evaluated whether tumor priming is functional for systemically delivered siRNA via intravenous injection, which would subject siRNA to several additional delivery barriers and elimination processes. We used the same pegylated cationic (PCat)-siRNA lipoplexes as in the intraperitoneal study to treat mice bearing subcutaneous human pancreatic Hs766T xenograft tumors. The target gene was survivin, an inducible chemoresistance gene. The results show single agent paclitaxel delayed tumor growth but also significantly induced the survivin protein level in residual tumors, whereas addition of PCat-siSurvivin completely reversed the paclitaxel-induced survivin and enhanced the paclitaxel activity (ppriming, by promoting the interstitial transport and cytoplasmic release, is critical to promote the delivery and transfection of siRNA in vivo. In addition, because paclitaxel has broad spectrum activity and is used to treat multiple types of solid tumors including the hard-to-treat pancreatic cancer, the synergistic paclitaxel+siSurvivin combination represents a potentially useful chemo-gene therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Enhanced Nanomagnetic Gene Transfection of Human Prenatal Cardiac Progenitor Cells and Adult Cardiomyocytes

    Science.gov (United States)

    Subramanian, Mahendran; Lim, Jenson; Dobson, Jon

    2013-01-01

    Magnetic nanoparticle-based gene transfection has been shown to be an effective, non-viral technique for delivery of both plasmid DNA and siRNA into cells in culture. It has several advantages over other non-viral delivery techniques, such as short transfection times and high cell viability. These advantages have been demonstrated in a number of primary cells and cell lines. Here we report that oscillating magnet array-based nanomagnetic transfection significantly improves transfection efficiency in both human prenatal cardiac progenitor cells and adult cardiomyocytes when compared to static magnetofection, cationic lipid reagents and electroporation, while maintaining high cell viability. In addition, transfection of adult cardiomyocytes was improved further by seeding the cells onto Collagen I-coated plates, with transfection efficiencies of up to 49% compared to 24% with lipid reagents and 19% with electroporation. These results demonstrate that oscillating nanomagnetic transfection far outperforms other non-viral transfection techniques in these important cells. PMID:23936108

  5. Delivery of episomal vectors into primary cells by means of commercial transfection reagents.

    Science.gov (United States)

    Han, Na Rae; Lee, Hyun; Baek, Song; Yun, Jung Im; Park, Kyu Hyun; Lee, Seung Tae

    2015-05-29

    Although episomal vectors are commonly transported into cells by electroporation, a number of electroporation-derived problems have led to the search for alternative transfection protocols, such as the use of transfection reagents, which are inexpensive and easy to handle. Polyplex-mediated transport of episomal vectors into the cytoplasm has been conducted successfully in immortalized cell lines, but no report exists of successful transfection of primary cells using this method. Accordingly, we sought to optimize the conditions for polyplex-mediated transfection for effective delivery of episomal vectors into the cytoplasm of primary mouse embryonic fibroblasts. Episomal vectors were complexed with the commercially available transfection reagents Lipofectamine 2000, FuGEND HD and jetPEI. The ratio of transfection reagent to episomal vectors was varied, and the subsequent transfection efficiency and cytotoxicity of the complexes were analyzed using flow cytometry and trypan blue exclusion assay, respectively. No cytotoxicity and the highest transfection yield were observed when the ratio of transfection reagent to episomal vector was 4 (v/wt) in the cases of Lipofectamine 2000 and FuGENE HD, and 2 in the case of jetPEI. Of the three transfection reagents tested, jetPEI showed the highest transfection efficiency without any cytotoxicity. Thus, we confirmed that the transfection reagent jetPEI could be used to effectively deliver episomal vectors into primary cells without electroporation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  6. An upstream open reading frame (uORF) signals for cellular localization of the virulence factor implicated in pregnancy associated malaria.

    Science.gov (United States)

    Fastman, Yair; Assaraf, Shany; Rose, Miriam; Milrot, Elad; Basore, Katherine; Arasu, B Sivanandam; Desai, Sanjay A; Elbaum, Michael; Dzikowski, Ron

    2018-03-15

    Plasmodium falciparum, the causative agent of the deadliest form of human malaria, alternates expression of variable antigens, encoded by members of a multi-copy gene family named var. In var2csa, the var gene implicated in pregnancy-associated malaria, translational repression is regulated by a unique upstream open reading frame (uORF) found only in its 5' UTR. Here, we report that this translated uORF significantly alters both transcription and posttranslational protein trafficking. The parasite can alter a protein's destination without any modifications to the protein itself, but instead by an element within the 5' UTR of the transcript. This uORF-dependent localization was confirmed by single molecule STORM imaging, followed by fusion of the uORF to a reporter gene which changes its cellular localization from cytoplasmic to ER-associated. These data point towards a novel regulatory role of uORF in protein trafficking, with important implications for the pathology of pregnancy-associated malaria.

  7. Open reading frame 122 of Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus encodes a novel structurual protein of occlusion-derived virions

    NARCIS (Netherlands)

    Long, G.; Chen Xinwen,; Peters, D.; Vlak, J.M.; Hu, Z.

    2003-01-01

    Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus (HaSNPV) and its closely related variant H. zea SNPV (HzSNPV) contain 20 open reading frames (ORFs) unique among baculoviruses. In this report, the function of HaSNPV ORF 122 (Ha122) is investigated. Ha122 was transcribed as a

  8. [Three patients with orf (ecthyma contagiosum)].

    Science.gov (United States)

    Schimmer, B; Sprenger, H G; Wismans, P J; van Genderen, P J

    2004-04-17

    Orf was diagnosed in three patients: a 16-year-old Moroccan girl who had cut her finger in a butcher's shop, a 47-year-old Dutch woman who had allowed a lamb to suck on her finger on a children's farm, and a 50-year-old Dutch farm woman. Orf or ecthyma contagiosum is a well-known viral disease among sheep and goats. Transmission to humans as a zoonosis is rare but can take place via direct contact with infected animals or animal products. The clinical picture is usually characterized by a solitary lesion that develops on the dorsal side of the fingers or hands. This viral condition produces little or no systemic complaints and the lesions usually regress spontaneously without scar formation within 6 weeks (range 4-9 weeks). The correct diagnosis can usually be made on clinical grounds. The diagnosis may be confirmed by demonstration of the virus by electron microscopy or the polymerase chain reaction in fluid obtained from the skin lesions or by conventional histopathology. Early clinical recognition and knowledge of this benign, self-limiting viral condition is vital to avoid unnecessary surgical intervention. Proper information and reassurance of the infected patient are very important. All three patients recovered.

  9. Efficient Transformation of Oil Palm Protoplasts by PEG-Mediated Transfection and DNA Microinjection

    Science.gov (United States)

    Masani, Mat Yunus Abdul; Noll, Gundula A.; Parveez, Ghulam Kadir Ahmad; Sambanthamurthi, Ravigadevi; Prüfer, Dirk

    2014-01-01

    Background Genetic engineering remains a major challenge in oil palm (Elaeis guineensis) because particle bombardment and Agrobacterium-mediated transformation are laborious and/or inefficient in this species, often producing chimeric plants and escapes. Protoplasts are beneficial as a starting material for genetic engineering because they are totipotent, and chimeras are avoided by regenerating transgenic plants from single cells. Novel approaches for the transformation of oil palm protoplasts could therefore offer a new and efficient strategy for the development of transgenic oil palm plants. Methodology/Principal Findings We recently achieved the regeneration of healthy and fertile oil palms from protoplasts. Therefore, we focused on the development of a reliable PEG-mediated transformation protocol for oil palm protoplasts by establishing and validating optimal heat shock conditions, concentrations of DNA, PEG and magnesium chloride, and the transfection procedure. We also investigated the transformation of oil palm protoplasts by DNA microinjection and successfully regenerated transgenic microcalli expressing green fluorescent protein as a visible marker to determine the efficiency of transformation. Conclusions/Significance We have established the first successful protocols for the transformation of oil palm protoplasts by PEG-mediated transfection and DNA microinjection. These novel protocols allow the rapid and efficient generation of non-chimeric transgenic callus and represent a significant milestone in the use of protoplasts as a starting material for the development of genetically-engineered oil palm plants. PMID:24821306

  10. Synthesis, characterization and transfection activity of new saturated and unsaturated cationic lipids.

    Science.gov (United States)

    Arpicco, Silvia; Canevari, Silvana; Ceruti, Maurizio; Galmozzi, Enrico; Rocco, Flavio; Cattel, Luigi

    2004-11-01

    We synthesized new cationic lipids, analogue to N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA) and 1,2-dimyristyloxypropyl-3-dimethyl-hydroxyethylammonium bromide (DMRIE), in order to compare those containing a dodecyl chain with those having a relatively long chain with two or five double bonds, such as squalenyl and dihydrofarnesyl derivatives, or complex saturated structures, such as squalane derivatives. The fusogenic helper lipid dioleoylphosphatidylethanolamine (DOPE) was added to cationic lipids to form a stable complex. Liposomes composed of 50:50 w/w cationic lipid/DOPE were prepared and incubated with plasmidic DNA at various charge ratios and the diameter and zeta potential of the complexes were measured. The surface charge of the DNA/lipid complexes can be controlled by adjusting the cationic lipid/DNA ratio. Finally, we tested the in vitro transfection efficiency of the cationic lipid/DNA complexes using different cell lines. The transfection efficiency was highest for the dodecyloxy derivative containing a single hydroxyethyl group in the head, followed by the dodecyloxy and the farnesyloxy trimethylammonium derivatives. Instead the C27 squalenyl and C27 squalanyl derivatives resulted inactive.

  11. The Agrobacterium rhizogenes oncogenes rolB and ORF13 increase formation of generative shoots and induce dwarfism in Arabidopsis thaliana (L.) Heynh

    DEFF Research Database (Denmark)

    Kodahl, Nete; Müller, Renate; Lütken, Henrik Vlk

    2016-01-01

    Plant transformation with the wild type Ri plasmid T-DNA of Agrobacterium rhizogenes is a promising method for breeding of compact plants and has been the subject of numerous studies. However, knowledge concerning the isolated functions of single genes and ORFs from the plasmid is limited. The rol...

  12. Predicting carrier-mediated hepatic disposition of rosuvastatin in man by scaling from individual transfected cell-lines in vitro using absolute transporter protein quantification and PBPK modeling.

    NARCIS (Netherlands)

    Bosgra, S.; Steeg, E. van de; Vlaming, M.L.; Verhoeckx, K.C.; Huisman, M.T.; Verwei, M.; Wortelboer, H.M.

    2014-01-01

    In contrast to primary hepatocytes, estimating carrier-mediated hepatic disposition by using a panel of single transfected cell-lines provides direct information on the contribution of the individual transporters to the net disposition. The most direct way to correct for differences in transporter

  13. Persistent human cardiac Na+ currents in stably transfected mammalian cells

    Science.gov (United States)

    Wang, Ging Kuo; Russell, Gabriella; Wang, Sho-Ya

    2013-01-01

    Miniature persistent late Na+ currents in cardiomyocytes have been linked to arrhythmias and sudden death. The goals of this study are to establish a stable cell line expressing robust persistent cardiac Na+ currents and to test Class 1 antiarrhythmic drugs for selective action against resting and open states. After transient transfection of an inactivation-deficient human cardiac Na+ channel clone (hNav1.5-CW with L409C/A410W double mutations), transfected mammalian HEK293 cells were treated with 1 mg/ml G-418. Individual G-418-resistant colonies were isolated using glass cylinders. One colony with high expression of persistent Na+ currents was subjected to a second colony selection. Cells from this colony remained stable in expressing robust peak Na+ currents of 996 ± 173 pA/pF at +50 mV (n = 20). Persistent late Na+ currents in these cells were clearly visible during a 4-second depolarizing pulse albeit decayed slowly. This slow decay is likely due to slow inactivation of Na+ channels and could be largely eliminated by 5 μM batrachotoxin. Peak cardiac hNav1.5-CW Na+ currents were blocked by tetrodotoxin with an IC50 value of 2.27 ± 0.08 μM (n = 6). At clinic relevant concentrations, Class 1 antiarrhythmics are much more selective in blocking persistent late Na+ currents than their peak counterparts, with a selectivity ratio ranging from 80.6 (flecainide) to 3 (disopyramide). We conclude that (1) Class 1 antiarrhythmics differ widely in their resting- vs. open-channel selectivity, and (2) stably transfected HEK293 cells expressing large persistent hNav1.5-CW Na+ currents are suitable for studying as well as screening potent open-channel blockers. PMID:23695971

  14. Graphene and carbon nanotube nanocomposite for gene transfection.

    Science.gov (United States)

    Hollanda, L M; Lobo, A O; Lancellotti, M; Berni, E; Corat, E J; Zanin, H

    2014-06-01

    Graphene and carbon nanotube nanocomposite (GCN) was synthesised and applied in gene transfection of pIRES plasmid conjugated with green fluorescent protein (GFP) in NIH-3T3 and NG97 cell lines. The tips of the multi-walled carbon nanotubes (MWCNTs) were exfoliated by oxygen plasma etching, which is also known to attach oxygen content groups on the MWCNT surfaces, changing their hydrophobicity. The nanocomposite was characterised by high resolution scanning electron microscopy; energy-dispersive X-ray, Fourier transform infrared and Raman spectroscopies, as well as zeta potential and particle size analyses using dynamic light scattering. BET adsorption isotherms showed the GCN to have an effective surface area of 38.5m(2)/g. The GCN and pIRES plasmid conjugated with the GFP gene, forming π-stacking when dispersed in water by magnetic stirring, resulting in a helical wrap. The measured zeta potential confirmed that the plasmid was connected to the nanocomposite. The NIH-3T3 and NG97 cell lines could phagocytize this wrap. The gene transfection was characterised by fluorescent protein produced in the cells and pictured by fluorescent microscopy. Before application, we studied GCN cell viability in NIH-3T3 and NG97 line cells using both MTT and Neutral Red uptake assays. Our results suggest that GCN has moderate stability behaviour as colloid solution and has great potential as a gene carrier agent in non-viral based therapy, with low cytotoxicity and good transfection efficiency. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Tissue Engineering Using Transfected Growth-Factor Genes

    Science.gov (United States)

    Madry, Henning; Langer, Robert S.; Freed, Lisa E.; Trippel, Stephen; Vunjak-Novakovic, Gordana

    2005-01-01

    A method of growing bioengineered tissues includes, as a major component, the use of mammalian cells that have been transfected with genes for secretion of regulator and growth-factor substances. In a typical application, one either seeds the cells onto an artificial matrix made of a synthetic or natural biocompatible material, or else one cultures the cells until they secrete a desired amount of an extracellular matrix. If such a bioengineered tissue construct is to be used for surgical replacement of injured tissue, then the cells should preferably be the patient s own cells or, if not, at least cells matched to the patient s cells according to a human-leucocyteantigen (HLA) test. The bioengineered tissue construct is typically implanted in the patient's injured natural tissue, wherein the growth-factor genes enhance metabolic functions that promote the in vitro development of functional tissue constructs and their integration with native tissues. If the matrix is biodegradable, then one of the results of metabolism could be absorption of the matrix and replacement of the matrix with tissue formed at least partly by the transfected cells. The method was developed for articular chondrocytes but can (at least in principle) be extended to a variety of cell types and biocompatible matrix materials, including ones that have been exploited in prior tissue-engineering methods. Examples of cell types include chondrocytes, hepatocytes, islet cells, nerve cells, muscle cells, other organ cells, bone- and cartilage-forming cells, epithelial and endothelial cells, connective- tissue stem cells, mesodermal stem cells, and cells of the liver and the pancreas. Cells can be obtained from cell-line cultures, biopsies, and tissue banks. Genes, molecules, or nucleic acids that secrete factors that influence the growth of cells, the production of extracellular matrix material, and other cell functions can be inserted in cells by any of a variety of standard transfection techniques.

  16. The Effect of Environmental pH on Polymeric Transfection Efficiency

    Science.gov (United States)

    Kang, Han Chang; Samsonova, Olga; Kang, Sun-Woong; Bae, You Han

    2011-01-01

    Although polymers, polyplexes, and cells are exposed to various extracellular and intracellular pH environments during polyplex preparation and polymeric transfection, the impact of environmental pH on polymeric transfection has not yet been investigated. This study aims to understand the influence of environmental pH on polymeric transfection by modulating the pH of the transfection medium or the culture medium. Changes in the extracellular pH affected polymeric transfection by way of complex factors such as pH-induced changes in polymer characteristics (e.g., proton buffering capacity and ionization), polyplex characteristics (e.g., size, surface charge, and decomplexation), and cellular characteristics (e.g., cellular uptake, cell cycle phases, and intracellular pH environment). Notably, acidic medium delayed endocytosis, endosomal acidification, cytosolic release, and decomplexation of polyplexes, thereby negatively affecting gene expression. However, acidic medium inhibited mitosis and reduced dilution of gene expression, resulting in increased transfection efficiency. Compared to pH 7.4 medium, acidic transfection medium reduced gene expression 1.6~7.7-fold whereas acidic culture medium enhanced transfection efficiency 2.1~2.6-fold. Polymeric transfection was affected more by the culture medium than by the transfection medium. Understanding the effects of extracellular pH during polymeric transfection may stimulate new strategies for determining effective and safe polymeric gene carriers. PMID:22130563

  17. Immune monitoring using mRNA-transfected dendritic cells

    DEFF Research Database (Denmark)

    Borch, Troels Holz; Svane, Inge Marie; Met, Özcan

    2016-01-01

    Dendritic cells are known to be the most potent antigen presenting cell in the immune system and are used as cellular adjuvants in therapeutic anticancer vaccines using various tumor-associated antigens or their derivatives. One way of loading antigen into the dendritic cells is by m...... and understand the immunological impact of dendritic cell vaccination in order to improve clinical benefit. In this chapter, we describe a method for performing immune monitoring using peripheral blood mononuclear cells and autologous dendritic cells transfected with tumor-associated antigen-encoding mRNA....

  18. Establishing malaria parasite transfection technology in South Africa.

    CSIR Research Space (South Africa)

    Van Brummelen, AC

    2010-01-01

    Full Text Available stream_source_info van Brummelen_2010.pdf.txt stream_content_type text/plain stream_size 3034 Content-Encoding UTF-8 stream_name van Brummelen_2010.pdf.txt Content-Type text/plain; charset=UTF-8 Oral ( ) / Poster (X...@csir.co.za Keywords: transfection, malaria, Plasmodium Topic: Genomics Biochemistry and Molecular Biology The most important contributing factor to the current malaria crisis is the rapid spread of parasite resistance to available anti-malarial drugs. Anti...

  19. Enhanced gene transfection performance and biocompatibility of polyethylenimine through pseudopolyrotaxane formation with α-cyclodextrin

    Science.gov (United States)

    Hu, Li-Zhong; Wan, Ning; Ma, Xi-Xi; Jing, Zi-Wei; Zhang, Ya-Xuan; Li, Chen; Zhou, Si-Yuan; Zhang, Bang-Le

    2017-03-01

    Polyethylenimine (PEI), a commercially available gene transfection reagent, is a promising nonviral vector due to its inherent ability to efficiently condense genetic materials and its successful transfection performance in vitro. However, its low transfection efficiency in vivo, along with its high cytotoxicity, limit any further applications in gene therapy. To enhance the gene transfection performance and reduce the cytotoxicity of linear polyethylenimine, pseudopolyrotaxane PEI25k/CD and the polyrotaxanes PEI25k/CD-PA and PEI25k/CD-PB were prepared and their transfection efficiencies were then evaluated. The pseudopolyrotaxane PEI25k/CD exhibited better transfection efficiency and lower cytotoxicity than the transfection reagent linear PEI25k, even in the presence of serum. It also showed a remarkably higher cell viability, similar DNA protecting capability, and better DNA decondensation and release ability, and could be useful for the development of novel and safe nonviral gene delivery vectors for gene therapy.

  20. Improvement of efficiency and viability in plasma gene transfection by plasma minimization and optimization electrode configuration

    Science.gov (United States)

    Jinno, Masafumi; Tachibana, Kunihide; Motomura, Hideki; Saeki, Noboru; Satoh, Susumu

    2016-07-01

    Plasma gene transfection is expected as a safe and useful method of gene transfection. However, in this method, there is difficulty in keeping both high transfection efficiency and less cell damage simultaneously. The authors have evaluated transfection efficiency and cell viability using four different plasma sources, such as arc discharge, plasma jet, dielectric barrier discharge (DBD), and microplasma. A high transfection efficiency was achieved by discharge forms in which the electric current flows via the cells. This suggested that an electric current plays an important role in plasma gene transfection. The total volume of gas flow must be small or zero and the area in which the cells are directly irradiated by plasma must be small in order to achieve a higher cell viability. The microplasma that satisfies these conditions achieved both the highest transfection efficiency and the highest cell viability simultaneously.

  1. Preparation of gene gun bullets and biolistic transfection of neurons in slice culture.

    Science.gov (United States)

    Woods, Georgia; Zito, Karen

    2008-02-13

    Biolistic transfection is a physical means of transfecting cells by bombarding tissue with high velocity DNA coated particles. We provide a detailed protocol for biolistic transfection of rat hippocampal slices, from the initial preparation of DNA coated bullets to the final shooting of the organotypic slice cultures using a gene gun. Gene gun transfection is an efficient and easy means of transfecting neurons and is especially useful for fluorescently labeling a small subset of cells in tissue slice. In this video, we first outline the steps required to coat gold particles with DNA. We next demonstrate how to line the inside of plastic tubing with the gold/DNA bullets, and how to cut this tubing to obtain the plastic cartridges for loading into the gene gun. Finally, we perform biolistic transfection of rat hippocampal slice cultures, demonstrating handling of the Bio-Rad Helios gene gun, and offering trouble shooting advice to obtain healthy and optimally transfected tissue slices.

  2. Comparison of nanoparticle-mediated transfection methods for DNA expression plasmids: efficiency and cytotoxicity

    Science.gov (United States)

    2011-01-01

    Background Reproducibly high transfection rates with low methodology-induced cytotoxic side effects are essential to attain the required effect on targeted cells when exogenous DNA is transfected. Different approaches and modifications such as the use of nanoparticles (NPs) are being evaluated to increase transfection efficiencies. Several studies have focused on the attained transfection efficiency after NP-mediated approaches. However, data comparing toxicity of these novel approaches with conventional methods is still rare. Transfection efficiency and methodology-induced cytotoxicity were analysed after transfection with different NP-mediated and conventional approaches. Two eukaryotic DNA-expression-plasmids were used to transfect the mammalian cell line MTH53A applying six different transfection protocols: conventional transfection reagent (FuGENE HD, FHD), FHD in combination with two different sizes of stabilizer-free laser-generated AuNPs (PLAL-AuNPs_S1,_S2), FHD and commercially available AuNPs (Plano-AuNP), and two magnetic transfection protocols. 24 h post transfection efficiency of each protocol was analysed using fluorescence microscopy and GFP-based flow cytometry. Toxicity was assessed measuring cell proliferation and percentage of propidium iodide (PI%) positive cells. Expression of the respective recombinant proteins was evaluated by immunofluorescence. Results The addition of AuNPs to the transfection protocols significantly increased transfection efficiency in the pIRES-hrGFPII-eIL-12 transfections (FHD: 16%; AuNPs mean: 28%), whereas the magnet-assisted protocols did not increase efficiency. Ligand-free PLAL-AuNPs had no significant cytotoxic effect, while the ligand-stabilized Plano-AuNPs induced a significant increase in the PI% and lower cell proliferation. For pIRES-hrGFPII-rHMGB1 transfections significantly higher transfection efficiency was observed with PLAL-AuNPs (FHD: 31%; PLAL-AuNPs_S1: 46%; PLAL-AuNPs_S2: 50%), while the magnet

  3. OrfX, a Nucleomodulin Required for Listeria monocytogenes Virulence

    Directory of Open Access Journals (Sweden)

    Andrzej Prokop

    2017-10-01

    Full Text Available Listeria monocytogenes is a bacterial pathogen causing severe foodborne infections in humans and animals. Listeria can enter into host cells and survive and multiply therein, due to an arsenal of virulence determinants encoded in different loci on the chromosome. Several key Listeria virulence genes are clustered in Listeria pathogenicity island 1. This important locus also contains orfX (lmo0206, a gene of unknown function. Here, we found that OrfX is a small, secreted protein whose expression is positively regulated by PrfA, the major transcriptional activator of Listeria virulence genes. We provide evidence that OrfX is a virulence factor that dampens the oxidative response of infected macrophages, which contributes to intracellular survival of bacteria. OrfX is targeted to the nucleus and interacts with the regulatory protein RybP. We show that in macrophages, the expression of OrfX decreases the level of RybP, which controls cellular infection. Collectively, these data reveal that Listeria targets RybP and evades macrophage oxidative stress for efficient infection. Altogether, OrfX is after LntA, the second virulence factor acting directly in the nucleus.

  4. Improved DNA condensation, stability, and transfection with alkyl sulfonyl-functionalized PAMAM G2

    Energy Technology Data Exchange (ETDEWEB)

    Rata-Aguilar, Azahara, E-mail: azahara@ugr.es; Maldonado-Valderrama, Julia; Jódar-Reyes, Ana Belén; Ortega-Vinuesa, Juan Luis [University of Granada, Biocolloid and Fluid Physics Group, Department of Applied Physics (Spain); Santoyo-Gonzalez, Francisco [University of Granada, Organic Chemistry Department, Institute of Biotechnology (Spain); Martín-Rodríguez, Antonio [University of Granada, Biocolloid and Fluid Physics Group, Department of Applied Physics (Spain)

    2015-04-15

    In this work, we have used a second-generation PAMAM grafted with octadecyl sulfonyl chains to condense plasmid DNA. The influence of this modification at different levels was investigated by comparison with original PAMAM G2. The condensation process and temporal stability of the complexes was studied with DLS, finding that the aliphatic chains influence DNA compaction via hydrophobic forces and markedly improve the formation and temporal stability of a single populated system with a hydrodynamic diameter below 100 nm. Interaction with a cell membrane model was also evaluated with a pendant drop tensiometer, resulting in further incorporation of the C18-PAMAM dendriplexes onto the interface. The improvement observed in transfection with our C18 grafted PAMAM is ascribed to the size, stability, and interfacial behavior of the complexes, which in turn are consequence of the DNA condensation process and the interactions involved.

  5. A robust transfection reagent for the transfection of CHO and HEK293 cells and production of recombinant proteins and lentiviral particles - PTG1.

    Science.gov (United States)

    Gonçalves, Cristine; Gross, Fabian; Guégan, Philippe; Cheradame, Hervé; Midou, Patrick

    2014-11-01

    Bioproduction of recombinant proteins (r-proteins) and recombinant lentiviral particles (r-lentiviral particles) requires robust transfections consisting of efficient protocols that are easy to implement, with good reproducibility for a maximum production of proteins and lentiviral particles in a short time with low cytotoxicity. This study evaluates the capacity of histidinylated polyethyleneimine I (PTG1) to facilitate robust DNA transfection, with low cytotoxicity, of Chinese hamster ovary (CHO) and human embryonic kidney (HEK293T) cells for the production of r-proteins and r-lentiviral particles. We report that PTG1 transfection of cells in suspension with a plasmid DNA encoding enhanced green fluorescent protein leads to 72 and 97% of transfected CHO and HEK293T cells respectively, and does not significantly affect cell viability. PTG1 transfection of 100 mL of CHO-S cell culture in suspension at a cell density of 2 × 10(6) cells /mL resulted in a high level of transfected cells and protein expression after transfection with 0.75 μg/mL plasmid DNA. Transfection with PTG1 is more efficient than LipofectAmine2000™, and gene expression is higher than observed with FreeStyle™ and JetPEI®. Tri-transfection of HEK293T packaging cells leads to the production of a higher level of r-lentiviral particles compared to the calcium phosphate method, and permits two harvests of viral particles within three days. These results show that PTG1 is a powerful new transfection reagent for cell lines frequently used for recombinant protein and lentiviral particle production. PTG1 could be used in protocols for bioproduction of therapeutic proteins such as antibodies for cancer treatments and viral vectors for gene therapy applications. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Fast and Efficient Transfection of Mouse Embryonic Stem Cells Using Non-Viral Reagents.

    Science.gov (United States)

    Tamm, Christoffer; Kadekar, Sandeep; Pijuan-Galitó, Sara; Annerén, Cecilia

    2016-10-01

    Reliable and efficient DNA and RNA transfection methods are required when studying the role of individual genes in mouse pluripotent stem cells. However, these cells usually grow in tight clusters and are therefore more difficult to transfect than many other cell lines. We have found that transfection is especially challenging when mouse embryonic stem (mES) cells are cultured in the newly described 2i medium, which is based on two chemical inhibitors of differentiation pathways. In the present study we have performed a side-by-side comparison of commercially available, non-viral transfection reagents with regard to their ability to deliver plasmid DNA and siRNA into adherent and/or trypsinized mES cells cultured in 2i medium, assessing transfection rates, plasmid gene expression, siRNA mediated knockdown of Oct4 and viability. Finally, we present a fast and efficient method for transfection of trypsinized mES cells using the liposomal-based Lipofectamine 2000. With only a five-minute long transfection time we obtained at least 85 % transfected cells with 80 % maintained viability. Moreover, this protocol saves up to a day of experimental time since the cells are in suspension at the time of transfection, which allows for immediately re-plating into the appropriate format. This fast, simplified and highly efficient transfection method will be valuable for both basic research and high-throughput applications.

  7. [Optimization of triple plasmids transfection into HEK293 cells mediated by polyethylenimine].

    Science.gov (United States)

    Fu, Qiang; Li, Yan; Zheng, Zhaofen; Liu, Aizhong; Yuan, Zhenhua; Peng, Jianqiang; He, Jin

    2015-02-01

    In the present study, packaging system composed of pAAV-CMV-GFP, pAAV-RC and pHelper were transfected into human embryonic kidney 293 cells (HEK293 cells) mediated by polyethyleneimine (PEI) to explore an optimal transfection condition. Different total plasmid DNA dosages (1, 2, 3, 4, 5, 6 μg) and different PEI/Plasmid ratios (1:1, 3:1, 5:1, 7:1) were tested with detection of green fluorescence protein (GFP) with ImagePro Plus6. 0 Software. Then transfection efficiency of the optimized transfection system was further observed for different time periods(12, 24, 36, 48, 60, 72 h). The results showed that total plasmid dosage of 4 μg/well with PEI/plasmid ratio of 3 : 1-5 : 1 was an efficient transfection condition. Transfection efficiency-time curve was an S-shaped curve. Transfection efficiency reached a plateau at 60 h after transfection. The optimized conditions for PEI-mediated transfection at the optimal time result in enhanced transfection efficiency of triple plasmid into HEK293 cells.

  8. ORF Sequence: Ca19AnnotatedDec2004aaSeq [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available Ca19AnnotatedDec2004aaSeq orf19.7258 >orf19.7258; Contig19-2507; 88880..89851; DDI1*; response to DNA alkyl...ation; MQLTISLDHSGDIISVDVPDSLCLEDFKAYLSAETGLEASVQVLKFNGRELVGNATLSELQIHDNDLLQLSKKQVA

  9. ORF Sequence: Ca19AnnotatedDec2004aaSeq [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available Ca19AnnotatedDec2004aaSeq orf19.7549 >orf19.7549; Contig19-2518; complement(3667.....5844); PMT5*; dolichyl-phosphate-mannose-protein mannosyltransferase; gene family MTKELPSGYFQGPFRPYKTFQPSLTE

  10. ORF Sequence: Ca19AnnotatedDec2004aaSeq [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available Ca19AnnotatedDec2004aaSeq orf19.3852 >orf19.3852; Contig19-10193; complement(6245.....8632); ; putative alpha-1,2-mannosidase; MNFILTIIFLISNYLLVVESVAIKNLYSYLSLHKKDNAGDSSNDVFKNVDLFYGTDKNGHMFPGIT

  11. ORF Sequence: Ca19AnnotatedDec2004aaSeq [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available Ca19AnnotatedDec2004aaSeq orf19.7030 >orf19.7030; Contig19-10262; complement(71490.....72194); CCW14*(CCW14); cell wall mannoprotein | secretory Stress Response protein; MASFLKISTLIAIVSTLQTTLAA

  12. ORF Sequence: Ca19AnnotatedDec2004aaSeq [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available Ca19AnnotatedDec2004aaSeq orf19.4475 >orf19.4475; Contig19-10206; complement(34852.....36294); MNT4; putative mannosyltransferase; MISFISLRRRKLISILAIFTIFILSGSIIGYYNGHHHIIKMVENYTPDDFQNSITALTNKFD

  13. ORF Sequence: Ca19AnnotatedDec2004aaSeq [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available Ca19AnnotatedDec2004aaSeq orf19.1036 >orf19.1036; Contig19-10087; 26898..28745; MNS1*; mann...osyl- oligosaccharide 1,2-alpha-mannosidase; MSFSFGINNISKGNNTYKDKPAGGALPLFYKDKVPAFHPAHTSKNKKRILMLLK

  14. ORF Sequence: Ca19AnnotatedDec2004aaSeq [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available Ca19AnnotatedDec2004aaSeq orf19.4175 >orf19.4175; Contig19-10200; complement(34037.....36262); TOK1*; outward-rectifier potassium channel; MGFHAPLNGSSKNSKSSAFASFDSASVMQIVNKAKDKIVPDAQFHQTITDQGIR

  15. ORF Sequence: Ca19AnnotatedDec2004aaSeq [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available Ca19AnnotatedDec2004aaSeq orf19.1969 >orf19.1969; Contig19-10137; complement(91851.....92666); CCW14*; cell wall mannoprotein involved in cell stress response; MLVLVIALVFLKSILATPPACFLSCINEIAHDC

  16. ORF Sequence: Ca19AnnotatedDec2004aaSeq [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available Ca19AnnotatedDec2004aaSeq orf19.5917.3 >orf19.5917.3; Contig19-10236; join(118231.....118503,119407..119817); YRA1*; RNA annealing protein; MSASLDKSLDDIISSNKKTFKSKRPGAKFGAKGGNRVGKKIGGTNNNKKPIAK

  17. ORF Sequence: Ca19AnnotatedDec2004aaSeq [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available Ca19AnnotatedDec2004aaSeq orf19.849 >orf19.849; Contig19-10076; complement(119209.....121755); MNN4*; regulator of cell wall mannosyl phosphorylation; gene family MPRLKRALLSPKLFVKSILLFTIVYTIYLS

  18. ORF Sequence: Ca19AnnotatedDec2004aaSeq [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available Ca19AnnotatedDec2004aaSeq orf19.4362 >orf19.4362; Contig19-10203; complement(28509.....29618); MSP1*; 40 kDa putative membrane-spanning ATPase; MINKLKIDFGKFKIDLKLLGDLFVLAGAGLSVYYILNTILNDYLDNTVK

  19. ORF Sequence: Ca19AnnotatedDec2004aaSeq [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available Ca19AnnotatedDec2004aaSeq orf19.851 >orf19.851; Contig19-10076; 128258..130774; MN...N41*; regulator of cell wall mannosyl phosphorylation; gene family MFIIRRSRGILLLVSIVVFNLIVLSLFQFTPIDNYVIGNKY

  20. ORF Sequence: Ca19AnnotatedDec2004aaSeq [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available Ca19AnnotatedDec2004aaSeq orf19.2768 >orf19.2768; Contig19-10158; complement(22521...7..228684); AMS1*; vacuolar alpha mannosidase; MGYDNINLQPNFKPIDHLYDDRLRQFTDTGGQFHNLNLPKFYDIHRQEIHDLKSWKVPDDS

  1. ORF Sequence: Ca19AnnotatedDec2004aaSeq [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available Ca19AnnotatedDec2004aaSeq orf19.4765 >orf19.4765; Contig19-10215; complement(92513.....93172); CCW12*; cell wall mannoprotein; MQFQTLLVVAGSLVASTLAVNSTVTEHHTTEITITHCSDNKCATSVAPAVQSVNTVTIEGVVTEYT

  2. ORF Sequence: Ca19AnnotatedDec2004aaSeq [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available Ca19AnnotatedDec2004aaSeq orf19.1011 >orf19.1011; Contig19-10083; complement(4999.....6981); MNN2*; alpha-1,2-mannosyltransferase; MFQQLTYRLRLFRRRHKYIFINSIFLSVIIIFLIYSYWSNLPAEDNSAIINEKGTYHRSLWE

  3. ORF Sequence: Ca19AnnotatedDec2004aaSeq [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available Ca19AnnotatedDec2004aaSeq orf19.4600.1 >orf19.4600.1; Contig19-10212; complement(7...5938..76216); DPM3*; dolichol-phosphate-mannose synthase; MTKATETGLTIFALSAIYFALITGVIPTPAKIHDEILPYLPWWGLVTFGSYALSTLGWGIVTFKDKEHKYKELKIQIEEAKDFYKTKGIDLD*

  4. ORF Sequence: Ca19AnnotatedDec2004aaSeq [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available Ca19AnnotatedDec2004aaSeq orf19.5164 >orf19.5164; Contig19-10219; complement(75211.....76965); ECM39*; alpha-1,6- mannosyltransferase; MYRYNKVLDATLIALVSFHLVISPFTKVEESFNIQAIHDILKFGIFPLETIDNYDHKQ

  5. ORF Sequence: Ca19AnnotatedDec2004aaSeq [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available Ca19AnnotatedDec2004aaSeq orf19.2881 >orf19.2881; Contig19-10162; complement(27312.....30302); MNN42*; involved in mannose metabolism and cell wall synthesis; MSNTIPQYFIRIFNLIFSARRKNFQLALISGLLF

  6. ORF Sequence: Ca19AnnotatedDec2004aaSeq [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available Ca19AnnotatedDec2004aaSeq orf19.2370 >orf19.2370; Contig19-10147; complement(50671..52716); DSL1*; retrogra...de ER-to-golgi transport; MPSIEQQLEDQELYLKDIEQNINKTLSKINKTTLENDNDFRKQFEEIPQDSNTTESN

  7. Functionalization with C-terminal cysteine enhances transfection efficiency of cell-penetrating peptides through dimer formation

    International Nuclear Information System (INIS)

    Åmand, Helene L.; Nordén, Bengt; Fant, Kristina

    2012-01-01

    Highlights: ► Reversible CPP dimerisation is a simple yet efficient strategy to improve delivery. ► Dimer formation enhances peptiplex stability, resulting in increased transfection. ► By dimerisation, the CPP EB1 even gain endosomal escape properties while lowering cytotoxicity. -- Abstract: Cell-penetrating peptides have the ability to stimulate uptake of macromolecular cargo in mammalian cells in a non-toxic manner and therefore hold promise as efficient and well tolerated gene delivery vectors. Non-covalent peptide-DNA complexes (“peptiplexes”) enter cells via endocytosis, but poor peptiplex stability and endosomal entrapment are considered as main barriers to peptide-mediated delivery. We explore a simple, yet highly efficient, strategy to improve the function of peptide-based vectors, by adding one terminal cysteine residue. This allows the peptide to dimerize by disulfide bond formation, increasing its affinity for nucleic acids by the “chelate effect” and, when the bond is reduced intracellularly, letting the complex dissociate to deliver the nucleic acid. By introducing a single C-terminal cysteine in the classical CPP penetratin and the penetratin analogs PenArg and EB1, we show that this minor modification greatly enhances the transfection capacity for plasmid DNA in HEK293T cells. We conclude that this effect is mainly due to enhanced thermodynamic stability of the peptiplexes as endosome-disruptive chloroquine is still required for transfection and the effect is more pronounced for peptides with lower inherent DNA condensation capacity. Interestingly, for EB1, addition of one cysteine makes the peptide able to mediate transfection in absence of chloroquine, indicating that dimerisation can also improve endosomal escape properties. Further, the cytotoxicity of EB1 peptiplexes is considerably reduced, possibly due to lower concentration of free peptide dimer resulting from its stronger binding to DNA.

  8. The effects of MicroRNA transfections on global patterns of gene expression in ovarian cancer cells are functionally coordinated

    Directory of Open Access Journals (Sweden)

    Shahab Shubin W

    2012-08-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are a class of small RNAs that have been linked to a number of diseases including cancer. The potential application of miRNAs in the diagnostics and therapeutics of ovarian and other cancers is an area of intense interest. A current challenge is the inability to accurately predict the functional consequences of exogenous modulations in the levels of potentially therapeutic miRNAs. Methods In an initial effort to systematically address this issue, we conducted miRNA transfection experiments using two miRNAs (miR-7, miR-128. We monitored the consequent changes in global patterns of gene expression by microarray and quantitative (real-time polymerase chain reaction. Network analysis of the expression data was used to predict the consequence of each transfection on cellular function and these predictions were experimentally tested. Results While ~20% of the changes in expression patterns of hundreds to thousands of genes could be attributed to direct miRNA-mRNA interactions, the majority of the changes are indirect, involving the downstream consequences of miRNA-mediated changes in regulatory gene expression. The changes in gene expression induced by individual miRNAs are functionally coordinated but distinct between the two miRNAs. MiR-7 transfection into ovarian cancer cells induces changes in cell adhesion and other developmental networks previously associated with epithelial-mesenchymal transitions (EMT and other processes linked with metastasis. In contrast, miR-128 transfection induces changes in cell cycle control and other processes commonly linked with cellular replication. Conclusions The functionally coordinated patterns of gene expression displayed by different families of miRNAs have the potential to provide clinicians with a strategy to treat cancers from a systems rather than a single gene perspective.

  9. Comparative characterization of transfection- and infection-derived simian immunodeficiency virus challenge stocks for in vivo nonhuman primate studies.

    Science.gov (United States)

    Del Prete, Gregory Q; Scarlotta, Matthew; Newman, Laura; Reid, Carolyn; Parodi, Laura M; Roser, James D; Oswald, Kelli; Marx, Preston A; Miller, Christopher J; Desrosiers, Ronald C; Barouch, Dan H; Pal, Ranajit; Piatak, Michael; Chertova, Elena; Giavedoni, Luis D; O'Connor, David H; Lifson, Jeffrey D; Keele, Brandon F

    2013-04-01

    Simian immunodeficiency virus (SIV) stocks for in vivo nonhuman primate models of AIDS are typically generated by transfection of 293T cells with molecularly cloned viral genomes or by expansion in productively infected T cells. Although titers of stocks are determined for infectivity in vitro prior to in vivo inoculation, virus production methods may differentially affect stock features that are not routinely analyzed but may impact in vivo infectivity, mucosal transmissibility, and early infection events. We performed a detailed analysis of nine SIV stocks, comprising five infection-derived SIVmac251 viral swarm stocks and paired infection- and transfected-293T-cell-derived stocks of both SIVmac239 and SIVmac766. Representative stocks were evaluated for (i) virus content, (ii) infectious titer, (iii) sequence diversity and polymorphism frequency by single-genome amplification and 454 pyrosequencing, (iv) virion-associated Env content, and (v) cytokine and chemokine content by 36-plex Luminex analysis. Regardless of production method, all stocks had comparable particle/infectivity ratios, with the transfected-293T stocks possessing the highest overall virus content and infectivity titers despite containing markedly lower levels of virion-associated Env than infection-derived viruses. Transfected-293T stocks also contained fewer and lower levels of cytokines and chemokines than infection-derived stocks, which had elevated levels of multiple analytes, with substantial variability among stocks. Sequencing of the infection-derived SIVmac251 stocks revealed variable levels of viral diversity between stocks, with evidence of stock-specific selection and expansion of unique viral lineages. These analyses suggest that there may be underappreciated features of SIV in vivo challenge stocks with the potential to impact early infection events, which may merit consideration when selecting virus stocks for in vivo studies.

  10. Spatial and Temporal Control of Cavitation Allows High In Vitro Transfection Efficiency in the Absence of Transfection Reagents or Contrast Agents.

    Science.gov (United States)

    Chettab, Kamel; Roux, Stéphanie; Mathé, Doriane; Cros-Perrial, Emeline; Lafond, Maxime; Lafon, Cyril; Dumontet, Charles; Mestas, Jean-Louis

    2015-01-01

    Sonoporation using low-frequency high-pressure ultrasound (US) is a non-viral approach for in vitro and in vivo gene delivery. In this study, we developed a new sonoporation device designed for spatial and temporal control of ultrasound cavitation. The regulation system incorporated in the device allowed a real-time control of the cavitation level during sonoporation. This device was evaluated for the in vitro transfection efficiency of a plasmid coding for Green Fluorescent Protein (pEGFP-C1) in adherent and non-adherent cell lines. The transfection efficiency of the device was compared to those observed with lipofection and nucleofection methods. In both adherent and non-adherent cell lines, the sonoporation device allowed high rate of transfection of pEGFP-C1 (40-80%), as determined by flow cytometry analysis of GFP expression, along with a low rate of mortality assessed by propidium iodide staining. The transfection efficiency and toxicity of sonoporation on the non-adherent cell lines Jurkat and K562 were similar to those of nucleofection, while these two cell lines were resistant to transfection by lipofection. Moreover, sonoporation was used to produce three stably transfected human lymphoma and leukemia lines. Significant transfection efficiency was also observed in two fresh samples of human acute myeloid leukemia cells. In conclusion, we developed a user-friendly and cost-effective ultrasound device, well adapted for routine in vitro high-yield transfection experiments and which does not require the use of any transfection reagent or gas micro-bubbles.

  11. Repair of ionizing radiation damage in primate αDNA transfected into rat cells

    International Nuclear Information System (INIS)

    Bases, R.; Mendez, F.

    1992-01-01

    The time-course of repair of irradiated primate αDNA was studied after transfection and recovery from rat NRK cells. Rat cells were chosen for transfection because they have no αDNA. Plasmid pBUC4α10, containing 10 tandem 172 bp αDNA subunits in its 5kbp DNA, was irradiated and introduced into the rat cells by electroporation. The transfected αDNA was then recovered from NRK nuclei free of extraneous rat DNA, permitting study of the fate of the transfected αDNA in time-course experiments. αDNA continuously entered nuclei for processing in the first 2.5h after transfection. The pool of damaged bases in αDNA in NRK nuclei was detectable 2.5 h after transfection. (author)

  12. G0/G1 arrest and apoptosis induced by SARS-CoV 3b protein in transfected cells

    Directory of Open Access Journals (Sweden)

    Chen Jiapei

    2005-08-01

    Full Text Available Abstract Severe Acute Respiratory Syndrome coronavirus (SARS-CoV, cause of the life-threatening atypical pneumonia, infects many organs, such as lung, liver and immune organ, and induces parenchyma cells apoptosis and necrosis. The genome of SARS-CoV, not closely related to any of the previously characterized coronavirus, encodes replicase and four major structural proteins and a number of non-structural proteins. Published studies suggest that some non-structural proteins may play important roles in the replication, virulence and pathogenesis of viruses. Among the potential SARS-CoV non-structural proteins, 3b protein (ORF4 is predicted encoding 154 amino acids, lacking significant similarities to any known proteins. Till now, there is no report about the function of 3b protein. In this study, 3b gene was linked with the EGFP tag at the C- terminus. Through cell cycle analysis, it was found that over-expression of 3b-EGFP protein in Vero, 293 and COS-7 cells could induce cell cycle arrest at G0/G1 phase, and that especially in COS-7 cells, expression of 3b-EGFP was able to induce the increase of sub-G1 phase from 24 h after transfection, which was most obvious at 48 h. The apoptosis induction of 3b fusion protein in COS-7 cells was further confirmed by double cell labeling with 7-AAD and Annexin V, the function of 3b protein inducing cell G0/G1 arrest and apoptosis may provide a new insight for further study on the mechanism of SARS pathogenesis.

  13. In vitro studies of magnetically enhanced transfection in COS-7 cells

    International Nuclear Information System (INIS)

    Ang, D.; Tay, C.Y.; Tan, L.P.; Preiser, P.R.; Ramanujan, R.V.

    2011-01-01

    In the magnetically enhanced gene delivery technique, DNA complexed with polymer coated aggregated magnetic nanoparticles (AMNPs) is used for effecting transfection. The aim of this study is to examine the relationship between transfection efficiency and the physical characteristics of the polymer coated AMNPs. In vitro studies of transfection efficiency in COS-7 cells were carried out using pEGFP-N1 and pMIR-REPORT complexed polyethylenimine (PEI) coated iron oxide magnetic nanoparticles. PEI coated AMNPs (PEI-AMNPs) with average individual particle diameters in the range of 8 nm to 30 nm were studied and characterized by transmission electron microscopy, vibrating sample magnetometry, X-ray diffractometry, thermal gravimetric analysis and photon correlation spectroscopy methods. PEI-A8MNP and PEI-A30MNP yielded higher transfection efficiency compared to commercial polyMAG particles as well as PEI of equivalent molar ratio of nitrogen/phosphorous (N/P ratio). The transfection efficiency was related to the physical characteristics of the PEI-AMNPs and its complexes: transfection efficiency was strongly positively correlated with saturation magnetization (Ms) and susceptibility (χ), strongly negatively correlated with N/P ratio, moderately positively correlated to zeta potential and moderately negatively correlated to hydrodynamic diameter of the complex. PEI-A8MNP and PEI-A30MNP possessing higher Ms, χ, lower N/P ratio and smaller complex size exhibited higher transfection efficiency compared to PEI-A16MNP which have weaker magnetic properties, higher N/P ratio and larger complex size. We have demonstrated that optimization of the physical properties of PEI-AMNPs is needed to maximize transfection efficiency. - Research highlights: →The transfection efficiency in magnetically enhanced gene delivery was studied. →Transfection efficiency was strongly positively correlated to magnetic properties. →Transfection efficiency was strongly negatively correlated with

  14. Identification of putative regulatory upstream ORFs in the yeast genome using heuristics and evolutionary conservation

    Directory of Open Access Journals (Sweden)

    Bilsland Elizabeth

    2007-08-01

    Full Text Available Abstract Background The translational efficiency of an mRNA can be modulated by upstream open reading frames (uORFs present in certain genes. A uORF can attenuate translation of the main ORF by interfering with translational reinitiation at the main start codon. uORFs also occur by chance in the genome, in which case they do not have a regulatory role. Since the sequence determinants for functional uORFs are not understood, it is difficult to discriminate functional from spurious uORFs by sequence analysis. Results We have used comparative genomics to identify novel uORFs in yeast with a high likelihood of having a translational regulatory role. We examined uORFs, previously shown to play a role in regulation of translation in Saccharomyces cerevisiae, for evolutionary conservation within seven Saccharomyces species. Inspection of the set of conserved uORFs yielded the following three characteristics useful for discrimination of functional from spurious uORFs: a length between 4 and 6 codons, a distance from the start of the main ORF between 50 and 150 nucleotides, and finally a lack of overlap with, and clear separation from, neighbouring uORFs. These derived rules are inherently associated with uORFs with properties similar to the GCN4 locus, and may not detect most uORFs of other types. uORFs with high scores based on these rules showed a much higher evolutionary conservation than randomly selected uORFs. In a genome-wide scan in S. cerevisiae, we found 34 conserved uORFs from 32 genes that we predict to be functional; subsequent analysis showed the majority of these to be located within transcripts. A total of 252 genes were found containing conserved uORFs with properties indicative of a functional role; all but 7 are novel. Functional content analysis of this set identified an overrepresentation of genes involved in transcriptional control and development. Conclusion Evolutionary conservation of uORFs in yeasts can be traced up to 100

  15. Evaluating the role of low-speed centrifugation towards transfecting human peripheral blood mononuclear cell culture.

    Science.gov (United States)

    Majumdar, M; Ratho, R; Chawla, Y; Singh, M P

    2014-01-01

    The conventional method of transfection of suspension cells by chemical has proven to be very difficult. We present a new transfection protocol, wherein, low-speed centrifugation of cell culture plates immediately after adding the lipid: DNA complex significantly enhances the transfection efficiency. Peripheral blood mononuclear cells (PBMCs) were transfected with BLOCK-iT™ Fluorescent Oligo (scrambled siRNA) and lipofectamine complex using conventional and low-speed centrifugation modified transfection protocols. The efficiency of transfection was determined using flowcytometer and cell viability was checked using MTT assay. Incorporation of low-speed centrifugation significantly enhances the transfection efficiency of BLOCK-iT™ in the suspension culture of PBMCs as compared to conventional transfection method (99.8% vs 28.3%; P Centrifugation enhanced transfection (CET) technique is simple, time-saving and novel application without compromising the cell viability in the context of recently popular RNA interference in suspension cultures of PBMCs. This undemanding modification might be applicable to a wide variety of cell lines and solve crucial problem of researchers working with RNA interference in suspension cultures.

  16. Evaluating the role of low-speed centrifugation towards transfecting human peripheral blood mononuclear cell culture

    Directory of Open Access Journals (Sweden)

    M Majumdar

    2014-01-01

    Full Text Available The conventional method of transfection of suspension cells by chemical has proven to be very difficult. We present a new transfection protocol, wherein, low-speed centrifugation of cell culture plates immediately after adding the lipid: DNA complex significantly enhances the transfection efficiency. Peripheral blood mononuclear cells (PBMCs were transfected with BLOCK-iT™ Fluorescent Oligo (scrambled siRNA and lipofectamine complex using conventional and low-speed centrifugation modified transfection protocols. The efficiency of transfection was determined using flowcytometer and cell viability was checked using MTT assay. Incorporation of low-speed centrifugation significantly enhances the transfection efficiency of BLOCK-iT™ in the suspension culture of PBMCs as compared to conventional transfection method (99.8% vs 28.3%; P < 0.0001, even at a low concentration of 40 picomoles without affecting the cell viability. Centrifugation enhanced transfection (CET technique is simple, time-saving and novel application without compromising the cell viability in the context of recently popular RNA interference in suspension cultures of PBMCs. This undemanding modification might be applicable to a wide variety of cell lines and solve crucial problem of researchers working with RNA interference in suspension cultures.

  17. Combinational use of lipid-based reagents for efficient transfection of primary fibroblasts and hepatoblasts.

    Science.gov (United States)

    Ishiguro, Kazuhiro; Watanabe, Osamu; Nakamura, Masanao; Yamamura, Takeshi; Matsushita, Masanobu; Goto, Hidemi; Hirooka, Yoshiki

    2017-07-01

    Commercially available lipid-based transfection reagents are widely used to deliver DNA to cells. However, these lipid-based transfection reagents show poor gene transfer efficiency in primary cells. Here, we demonstrate a simple method to improve gene transfer efficiency in primary fibroblasts and hepatoblasts using a combination of lipid-based transfection reagents. Our data show that combined use of Lipofectamine LTX and FuGENE HD increases the efficiency of gene transfer compared with the use of either reagent alone, and this combination achieves the best result of any pairwise combination of Lipofectamine LTX, FuGENE HD, TransFectin, and Fibroblast Transfection Reagent.

  18. Malignant transformation of diploid human fibroblasts by transfection of oncogenes: Progress report, July 1986--June 1989

    International Nuclear Information System (INIS)

    McCormick, J.J.; Maher, V.M.

    1989-01-01

    Although there is good evidence that carcinogen exposure is a major cause of human cancer, it has proven impossible to transform normal human fibroblasts or epithelial cells in culture into malignant cells by treating them with carcinogens. This failure may reflect an inability to identify and isolate cells containing one or more premalignant changes so that these can be expanded and exposed to carcinogens a second time to induce additional required changes. A second serious roadblock to the sequential introduction of changes and expansion of clonally-derived cells containing such premalignant changes in the finite life span of human cells in culture. Using transfection of specific human oncogenes in a series of specially-selected vectors, we have overcome these obstacles and have recently succeeded in generating an infinite life span diploid human cell strain MSU-1.0, which appears to be normal in all other characteristics. From that cell a second cell strain, MSU-1.1, was generated which we have been able to transform into a malignant state not only by transfecting the cells with oncogenes but also by treating them with chemical carcinogens. We now have evidence that there is not just a single linear process which results in malignant transformation. Rather, cells appear to progress to malignancy on a series of parallel, sometimes overlapping tracks. We now propose to carry out detailed studies of the specific mechanisms of malignant cell transformation using the cell strains available in this laboratory to achieve the goal of building relevant quantitative models of carcinogenesis. 29 refs

  19. Identification and characterization of sORF-encoded polypeptides.

    Science.gov (United States)

    Chu, Qian; Ma, Jiao; Saghatelian, Alan

    2015-01-01

    Molecular biology, genomics and proteomics methods have been utilized to reveal a non-annotated class of endogenous polypeptides (small proteins and peptides) encoded by short open reading frames (sORFs), or small open reading frames (smORFs). We refer to these polypeptides as s(m)ORF-encoded polypeptides or SEPs. The early SEPs were identified via genetic screens, and many of the RNAs that contain s(m)ORFs were originally considered to be non-coding; however, elegant work in bacteria and flies demonstrated that these s(m)ORFs code for functional polypeptides as small as 11-amino acids in length. The discovery of these initial SEPs led to search for these molecules using methods such as ribosome profiling and proteomics, which have revealed the existence of many SEPs, including novel human SEPs. Unlike screens, omics methods do not necessarily link a SEP to a cellular or biological function, but functional genomic and proteomic strategies have demonstrated that at least some of these newly discovered SEPs have biochemical and cellular functions. Here, we provide an overview of these results and discuss the future directions in this emerging field.

  20. A comprehensive high-throughput FTIR spectroscopy-based method for evaluating the transfection event: estimating the transfection efficiency and extracting associated metabolic responses.

    Science.gov (United States)

    Rosa, Filipa; Sales, Kevin C; Cunha, Bernardo R; Couto, Andreia; Lopes, Marta B; Calado, Cecília R C

    2015-10-01

    Reporter genes are routinely used in every laboratory for molecular and cellular biology for studying heterologous gene expression and general cellular biological mechanisms, such as transfection processes. Although well characterized and broadly implemented, reporter genes present serious limitations, either by involving time-consuming procedures or by presenting possible side effects on the expression of the heterologous gene or even in the general cellular metabolism. Fourier transform mid-infrared (FT-MIR) spectroscopy was evaluated to simultaneously analyze in a rapid (minutes) and high-throughput mode (using 96-wells microplates), the transfection efficiency, and the effect of the transfection process on the host cell biochemical composition and metabolism. Semi-adherent HEK and adherent AGS cell lines, transfected with the plasmid pVAX-GFP using Lipofectamine, were used as model systems. Good partial least squares (PLS) models were built to estimate the transfection efficiency, either considering each cell line independently (R (2) ≥ 0.92; RMSECV ≤ 2 %) or simultaneously considering both cell lines (R (2) = 0.90; RMSECV = 2 %). Additionally, the effect of the transfection process on the HEK cell biochemical and metabolic features could be evaluated directly from the FT-IR spectra. Due to the high sensitivity of the technique, it was also possible to discriminate the effect of the transfection process from the transfection reagent on KEK cells, e.g., by the analysis of spectral biomarkers and biochemical and metabolic features. The present results are far beyond what any reporter gene assay or other specific probe can offer for these purposes.

  1. Transfection of Sertoli cells with androgen receptor alters gene expression without androgen stimulation.

    Science.gov (United States)

    Fietz, D; Markmann, M; Lang, D; Konrad, L; Geyer, J; Kliesch, S; Chakraborty, T; Hossain, H; Bergmann, M

    2015-12-29

    Androgens play an important role for the development of male fertility and gained interest as growth and survival factors for certain types of cancer. Androgens act via the androgen receptor (AR/Ar), which is involved in various cell biological processes such as sex differentiation. To study the functional mechanisms of androgen action, cell culture systems and AR-transfected cell lines are needed. Transfection of AR into cell lines and subsequent gene expression analysis after androgen treatment is well established to investigate the molecular biology of target cells. However, it remains unclear how the transfection with AR itself can modulate the gene expression even without androgen stimulation. Therefore, we transfected Ar-deficient rat Sertoli cells 93RS2 by electroporation using a full length human AR. Transfection success was confirmed by Western Blotting, immunofluorescence and RT-PCR. AR transfection-related gene expression alterations were detected with microarray-based genome-wide expression profiling of transfected and non-transfected 93RS2 cells without androgen stimulation. Microarray analysis revealed 672 differentially regulated genes with 200 up- and 472 down-regulated genes. These genes could be assigned to four major biological categories (development, hormone response, immune response and metabolism). Microarray results were confirmed by quantitative RT-PCR analysis for 22 candidate genes. We conclude from our data, that the transfection of Ar-deficient Sertoli cells with AR has a measurable effect on gene expression even without androgen stimulation and cause Sertoli cell damage. Studies using AR-transfected cells, subsequently stimulated, should consider alterations in AR-dependent gene expression as off-target effects of the AR transfection itself.

  2. Effects of overexpression and antisense RNA expression of Orf17, a MutT-type enzyme.

    Science.gov (United States)

    Hori, Mika; Asanuma, Taketoshi; Inanami, Osamu; Kuwabara, Mikinori; Harashima, Hideyoshi; Kamiya, Hiroyuki

    2006-06-01

    The Escherichia coli Orf17 (NtpA, NudB) protein, a MutT-type enzyme, hydrolyzes oxidized deoxyribonucleotides, including 8-hydroxy-2'-deoxyadenosine 5'-triphosphate and 8-hydroxy-2'-deoxyguanosine 5'-triphosphate, in vitro. To examine its in vivo role(s) in bacteria, plasmid DNAs containing the orf17 gene in the sense and antisense orientations were introduced. When the Orf17 protein was overexpressed in mutT cells, the rpoB mutant frequency was decreased. On the other hand, similar effects were not observed when Orf17 was overexpressed in wild type and orf135 cells. Expression of the antisense RNA of the orf17 gene did not produce an obvious phenotype, such as increased mutant frequency and resistance to ionizing radiation. These results suggest that the role of the Orf17 protein is to back up the MutT function, and to assist in the elimination of 8-hydroxy-2'-deoxyguanosine nucleotides.

  3. Superhydrophilic-Superhydrophobic Patterned Surfaces as High-Density Cell Microarrays: Optimization of Reverse Transfection.

    Science.gov (United States)

    Ueda, Erica; Feng, Wenqian; Levkin, Pavel A

    2016-10-01

    High-density microarrays can screen thousands of genetic and chemical probes at once in a miniaturized and parallelized manner, and thus are a cost-effective alternative to microwell plates. Here, high-density cell microarrays are fabricated by creating superhydrophilic-superhydrophobic micropatterns in thin, nanoporous polymer substrates such that the superhydrophobic barriers confine both aqueous solutions and adherent cells within each superhydrophilic microspot. The superhydrophobic barriers confine and prevent the mixing of larger droplet volumes, and also control the spreading of droplets independent of the volume, minimizing the variability that arises due to different liquid and surface properties. Using a novel liposomal transfection reagent, ScreenFect A, the method of reverse cell transfection is optimized on the patterned substrates and several factors that affect transfection efficiency and cytotoxicity are identified. Higher levels of transfection are achieved on HOOC- versus NH 2 -functionalized superhydrophilic spots, as well as when gelatin and fibronectin are added to the transfection mixture, while minimizing the amount of transfection reagent improves cell viability. Almost no diffusion of the printed transfection mixtures to the neighboring microspots is detected. Thus, superhydrophilic-superhydrophobic patterned surfaces can be used as cell microarrays and for optimizing reverse cell transfection conditions before performing further cell screenings. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Spontaneous gene transfection of human bone cells using 3D mineralized alginate-chitosan macrocapsules.

    Science.gov (United States)

    Green, David W; Kim, Eun-Jung; Jung, Han-Sung

    2015-09-01

    The effectiveness of nonviral gene therapy remains uncertain because of low transfection efficiencies and high toxicities compared with viral-based strategies. We describe a simple system for transient transfection of continuous human cell lines, with low toxicity, using mineral-coated chitosan and alginate capsules. As proof-of-concept, we demonstrate transfection of Saos-2 and MG63 human osteosarcoma continuous cell lines with gfp, LacZ reporter genes, and a Sox-9 carrying plasmid, to illustrate expression of a functional gene with therapeutic relevance. We show that continuous cell lines transfect with significant efficiency of up to 65% possibly through the interplay between chitosan and DNA complexation and calcium/phosphate-induced translocation into cells entrapped within the 3D polysaccharide based environment, as evidenced by an absence of transfection in unmineralized and chitosan-free capsules. We demonstrated that our transfection system was equally effective at transfection of primary human bone marrow stromal cells. To illustrate, the Sox-9, DNA plasmid was spontaneously expressed in primary human bone marrow stromal cells at 7 days with up to 90% efficiency in two repeats. Mineralized polysaccharide macrocapsules are gene delivery vehicles with a number of biological and practical advantages. They are highly efficient at self-transfecting primary bone cells, with programmable spatial and temporal delivery prospects, premineralized bone-like environments, and have no cytotoxic effects, as compared with many other nonviral systems. © 2015 Wiley Periodicals, Inc.

  5. Acute and persistent infection by a transfected Mo7 strain of Babesia bovis

    Science.gov (United States)

    Stable transfection of the Mo7 strain of Babesia bovis and expression of an exogenous gene has been demonstrated in long term culture. However, the use of transfected parasites as marker vaccines or vehicles for expressing exogenous antigens in vivo requires demonstration of acute and persistent inf...

  6. Environmental parameters influence non-viral transfection of human mesenchymal stem cells for tissue engineering applications

    Science.gov (United States)

    King, William J.; Kouris, Nicholas A.; Choi, Siyoung; Ogle, Brenda M.; Murphy, William L.

    2012-01-01

    Non-viral transfection is a promising technique which could be used to increase the therapeutic potential of stem cells. The purpose of this study was to explore practical culture parameters of relevance in potential human mesenchymal stem cell (hMSC) clinical and tissue engineering applications, including type of polycationic transfection reagent, N/P ratio and dose of polycation/pDNA polyplexes, cell passage number, cell density, and cell proliferation. The non-viral transfection efficiency was significantly influenced by N/P ratio, polyplex dose, cell density, and cell passage number. hMSC culture conditions that inhibited cell division also decreased transfection efficiency, suggesting that strategies to promote hMSC proliferation may be useful to enhance transfection efficiency in future tissue engineering studies. Non-viral transfection treatments influenced hMSC phenotype, including the expression level of the hMSC marker CD105, and the ability of hMSCs to differentiate down the osteogenic and adipogenic lineages. The parameters found here to promote hMSC transfection efficiency, minimize toxicity, and influence hMSC phenotype may be instructive in future non-viral transfection studies and tissue engineering applications. PMID:22277991

  7. Targeted surface expression of an exogenous antigen in stably transfected babesia bovis

    Science.gov (United States)

    Babesia bovis is a tick-borne intraerythocytic protozoan responsible for acute disease in cattle which can be controlled by vaccination with attenuated B. bovis strains. Emerging B. bovis transfection technologies may increase the usefulness of these live vaccines. Here we propose using transfected ...

  8. Transfection of glioma cells with the neural-cell adhesion molecule NCAM

    DEFF Research Database (Denmark)

    Edvardsen, K; Pedersen, P H; Bjerkvig, R

    1994-01-01

    The tumor growth and the invasive capacity of a rat glioma cell line (BT4Cn) were studied after transfection with the human transmembrane 140-kDa isoform of the neural-cell adhesion molecule, NCAM. After s.c. injection, the NCAM-transfected cells showed a slower growth rate than the parent cell...

  9. [An experimental study on recombinant adenovirus p53 transfected in oral dysplastic epithelial cells].

    Science.gov (United States)

    Xu, Bo; Zhang, Song-Tao; Li, Long-Jiang; Han, Bo; Zhao, Hong-Wei; Pan, Jian

    2009-04-01

    To investigate and evaluate the appropriate virus titer and transfection efficiency of recombinant adenovirus p53 into the oral dysplastic epithelial cells (POE-9n) and provide reference for oral precancerosis research. The transfection sensitivity of adenovirus into oral dysplastic epithelial cells was evaluated by the recombinant adenovirus p53 containing green fluorescent protein (rAd-GFP). Different titre rAd -p53 was transfected into oral dysplastic epithelial cells to evaluate the effects of rAd-p53 on cell proliferation inhibition by MIT assay. The expression of exogenous p53 gene in POE-9n cells was detected by immunocytochemistry. More than 95% POE-9n cells were transfected by rAd-GFP with MOI from 100 to 500 and there was no statistical difference between different MOI values (r=-0.124, P>0.05). It was found that rAd-p53 had significant inhibition effects on POE-9n cell proliferation with MOI from 100 to 500, and there were no significant differences at 96 h and 120 h after the transfection on cell proliferation inhibition (P>0.05). P53 protein was well expressed in rAd-p53 transfected POE-9n cells. Exogenous p53 can be successfully transfected into POE-9n cells by rAd-p53 and the virus titer of MOI 100 was high enough to ensure efficient transfection.

  10. Large-Scale mRNA Transfection of Dendritic Cells by Electroporation in Continuous Flow Systems

    DEFF Research Database (Denmark)

    Selmeczi, Dávid; Hansen, Thomas Steen; Met, Özcan

    2016-01-01

    Electroporation is well established for transient mRNA transfection of many mammalian cells, including immune cells such as dendritic cells used in cancer immunotherapy. Therapeutic application requires methods to efficiently electroporate and transfect millions of immune cells in a fast process...

  11. Migratory, invasive and metastatic capacity of NCAM transfected rat glioma cells

    DEFF Research Database (Denmark)

    Edvardsen, K; Brünner, N; Spang-Thomsen, M

    1993-01-01

    A cDNA encoding a transmembrane 140 kDa isoform of the neural cell adhesion molecule, NCAM, was transfected into the rat glioma cell line BT4Cn. Transfectants with a homogeneously high expression of NCAM-B showed a decreased capacity for penetration of an artificial basement membrane when compared...

  12. Nucleic acid transfection and transgenesis in parasitic nematodes.

    Science.gov (United States)

    Lok, James B

    2012-04-01

    Transgenesis is an essential tool for assessing gene function in any organism, and it is especially crucial for parasitic nematodes given the dwindling armamentarium of effective anthelmintics and the consequent need to validate essential molecular targets for new drugs and vaccines. Two of the major routes of gene delivery evaluated to date in parasitic nematodes, bombardment with DNA-coated microparticles and intragonadal microinjection of DNA constructs, draw upon experience with the free-living nematode Caenorhabditis elegans. Bombardment has been used to transiently transfect Ascaris suum, Brugia malayi and Litomosoides sigmodontis with both RNA and DNA. Microinjection has been used to achieve heritable transgenesis in Strongyloides stercoralis, S. ratti and Parastrongyloides trichosuri and for additional transient expression studies in B. malayi. A third route of gene delivery revisits a classic method involving DNA transfer facilitated by calcium-mediated permeabilization of recipient cells in developing B. malayi larvae and results in transgene inheritance through host and vector passage. Assembly of microinjected transgenes into multi-copy episomal arrays likely results in their transcriptional silencing in some parasitic nematodes. Methods such as transposon-mediated transgenesis that favour low-copy number chromosomal integration may remedy this impediment to establishing stable transgenic lines. In the future, stable transgenesis in parasitic nematodes could enable loss-of-function approaches by insertional mutagenesis, in situ expression of inhibitory double-stranded RNA or boosting RNAi susceptibility through heterologous expression of dsRNA processing and transport proteins.

  13. A simple, rapid method for evaluation of transfection efficiency based on fluorescent dye.

    Science.gov (United States)

    Peng, Lin; Xiong, Wendian; Cai, Yanfei; Chen, Yun; He, Yang; Yang, Jianfeng; Jin, Jian; Li, Huazhong

    2017-05-04

    Enhanced transfection efficiency of transient gene expression (TGE) and electroporation is a useful approach for improvement of recombinant therapeutic proteins in mammalian cells. A novel method is described here in which CHO cells expressing recombinant FVII (rFVII) were labeled with fluorescent dye and analyzed by confocal microscopy. Cells with or without rFVII encoding gene were detectable by flow cytometry. Thus, we were able to distinguish positive cells (with rFVII encoding gene) and quantify their percentages. We evaluated the effects of varying electroporation conditions (voltage, number of repetitions, plasmid amount, carrier DNA) in order to optimize transfection efficiency. The highest transfection efficiency achieved was ∼86%. The method described here allows rapid evaluation of transfection efficiency without co-expression of reporter genes. In combination with appropriate antibodies, the method can be extended to evaluation of transfection efficiency in cells expressing other recombinant proteins.

  14. Analysis of acquired resistance to cis-diamminedichloroplatinum(II) in oncogene transfected SHOK cells

    International Nuclear Information System (INIS)

    Kinashi, Yuko; Masunaga, Shinichiro; Suzuki, Minoru; Ono, Koji; Akaboshi, Mitsuhiko; Watanabe, Masami.

    1998-01-01

    SHOK (Syrian hamster Osaka-Kanazawa) cells were transfected with activated oncogenes (v-mos, c-myc, N-ras, H-ras, K-ras). These oncogene transfected cells were treated with 195m Pt-cis-diamminedichloroplatinum(II) (CDDP). Clonogenic cell survival assay showed that oncogene-transfected cells exhibited a 1.3-4.8 fold increases resistance to cisplatin compared to the parental SHOK cells. The CDDP concentration binding to DNA, RNA and protein were measured by counting the 195m Pt-radioactivity. The CDDP uptake was decreased in these oncogene transfected cells. The CDDP uptake in DNA of H-ras transfected cells decreased faster than control SHOK cells. (author)

  15. Membrane fusion inducers, chloroquine and spermidine increase lipoplex-mediated gene transfection

    International Nuclear Information System (INIS)

    Wong-Baeza, Carlos; Bustos, Israel; Serna, Manuel; Tescucano, Alonso; Alcantara-Farfan, Veronica; Ibanez, Miguel; Montanez, Cecilia; Wong, Carlos; Baeza, Isabel

    2010-01-01

    Gene transfection into mammalian cells can be achieved with viral and non-viral vectors. Non-viral vectors, such as cationic lipids that form lipoplexes with DNA, are safer and more stable than viral vectors, but their transfection efficiencies are lower. Here we describe that the simultaneous treatment with a membrane fusion inducer (chlorpromazine or procainamide) plus the lysosomotropic agent chloroquine increases lipoplex-mediated gene transfection in human (HEK293 and C-33 A) and rat (PC12) cell lines (up to 9.2-fold), as well as in situ in BALB/c mice spleens and livers (up to 6-fold); and that the polyamine spermidine increases lipoplex-mediated gene transfection and expression in cell cultures. The use of these four drugs provides a novel, safe and relatively inexpensive way to considerably increase lipoplex-mediated gene transfection efficiency.

  16. A High-Throughput Microfluidic Platform for Mammalian Cell Transfection and Culturing

    Science.gov (United States)

    Woodruff, Kristina; Maerkl, Sebastian J.

    2016-01-01

    Mammalian synthetic biology could be augmented through the development of high-throughput microfluidic systems that integrate cellular transfection, culturing, and imaging. We created a microfluidic chip that cultures cells and implements 280 independent transfections at up to 99% efficiency. The chip can perform co-transfections, in which the number of cells expressing each protein and the average protein expression level can be precisely tuned as a function of input DNA concentration and synthetic gene circuits can be optimized on chip. We co-transfected four plasmids to test a histidine kinase signaling pathway and mapped the dose dependence of this network on the level of one of its constituents. The chip is readily integrated with high-content imaging, enabling the evaluation of cellular behavior and protein expression dynamics over time. These features make the transfection chip applicable to high-throughput mammalian protein and synthetic biology studies. PMID:27030663

  17. NBD-conjugated biosurfactant (MEL-A) shows a new pathway for transfection.

    Science.gov (United States)

    Ueno, Yoshinobu; Inoh, Yoshikazu; Furuno, Tadahide; Hirashima, Naohide; Kitamoto, Dai; Nakanishi, Mamoru

    2007-11-20

    Gene transfection is a fundamental technology for molecular and cell biology, and also clinical gene therapy. A variety of non-viral vectors have been investigated for gene transfection, but their gene delivery had remained an inefficient process. Recently, we found that a biosurfactant, mannosylerythritol lipid (MEL)-A, dramatically increased the efficiency in transfection of plasmid DNA mediated by cationic liposomes. However, its mechanism has not been understood yet. Here we examined the mechanism of the transfection mediated by cationic liposomes with NBD-conjugated MEL-A. We found that MEL-A first gradually distributed on the intracellular membranes through the plasma membranes of target cells, while the cationic liposomes with MEL-A fused to the plasma membranes in 20-35 min. Thereafter, the oligonucleotide released from the vesicles was immediately transferred to the nucleus. The present results showed a new role of non-viral vectors in transfection.

  18. ORFcor: identifying and accommodating ORF prediction inconsistencies for phylogenetic analysis.

    Directory of Open Access Journals (Sweden)

    Jonathan L Klassen

    Full Text Available The high-throughput annotation of open reading frames (ORFs required by modern genome sequencing projects necessitates computational protocols that sometimes annotate orthologous ORFs inconsistently. Such inconsistencies hinder comparative analyses by non-uniformly extending or truncating 5' and/or 3' sequence ends, causing ORFs that are in fact identical to artificially diverge. Whereas strategies exist to correct such inconsistencies during whole-genome annotation, equivalent software designed to correct subsets of these data without genome reannotation is lacking. We therefore developed ORFcor, which corrects annotation inconsistencies using consensus start and stop positions derived from sets of closely related orthologs. ORFcor corrects inconsistent ORF annotations in diverse test datasets with specificities and sensitivities approaching 100% when sufficiently related orthologs (e.g., from the same taxonomic family are available for comparison. The ORFcor package is implemented in Perl, multithreaded to handle large datasets, includes related scripts to facilitate high-throughput phylogenomic analyses, and is freely available at www.currielab.wisc.edu/downloads.html.

  19. ORF Alignment: NC_000909 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_000909 gi|15669589 >1vhtA 3 200 2 186 2e-14 ... ref|NP_248402.1| alignment in /usr/local/projects...408.1| ... alignment in ... /usr/local/projects/ARG/Intergenic/ARG_R584_orf2.nr ... [Me

  20. ORF Alignment: NC_005791 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_005791 gi|45359158 >1q7hA 13 141 446 567 8e-09 ... ref|NP_248016.1| alignment in /usr/local/projects...B99026.1| ... alignment in ... /usr/local/projects/ARG/Intergenic/ARG_R428_orf1.nr ...

  1. ORF Alignment: NC_000909 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_000909 gi|15669211 >1q7hA 13 141 446 567 8e-09 ... ref|NP_248016.1| alignment in /usr/local/projects...B99026.1| ... alignment in ... /usr/local/projects/ARG/Intergenic/ARG_R428_orf1.nr ...

  2. Factors that affect the efficiency of antisense oligodeoxyribonucleotide transfection by insonated gas-filled lipid microbubbles

    International Nuclear Information System (INIS)

    Zhao Yingzheng; Lu Cuitao

    2008-01-01

    Objective: To investigate the factors that affect the efficiency of antisense oligodeoxyribonucleotide(AS-ODNs) transfection by insonated gas-filled lipid microbubbles. Methods: Lipid microbubbles filled with two types of gases-air and C 3 F 8 , were prepared respectively. An AS-ODNs sequence HA824 and a breast cancer cell line SK-BR-3 were used to define the various operating variables determining the transfection efficiency of insonated microbubbles. Two mixing methods, three levels of mixing speed, different mixing durations and various ultrasound initiation time after mixing were examined respectively. Transfection efficiency was detected by fluorescence microscopy. Results: C 3 F 8 microbubbles gave higher levels of AS-ODNs transfection efficiency than air microbubbles in all test conditions. Transfection efficiency resulted from mixing method A (incubation of HA824 and microbubbles before mixing cells) did not show significant difference with that of mixing method B (without incubation of HA824 and microbubbles before mixing cells). Mixing speed, duration of mixing and ultrasound initiation time after mixing were central to determining HA824 transfection efficiency in vitro. The optimum parameters for SK-BR-3 cells were found at a mixing speed of 40-50 rpm for 30-60 s with less than 60 s delay before ultrasound. Conclusion: Ultrasound-mediated AS-ODNs transfection enhanced by C 3 F 8 -filled lipid microbubbles represents an effective avenue for AS-ODNs transfer

  3. Investigation of plasma induced electrical and chemical factors and their contribution processes to plasma gene transfection.

    Science.gov (United States)

    Jinno, Masafumi; Ikeda, Yoshihisa; Motomura, Hideki; Kido, Yugo; Satoh, Susumu

    2016-09-01

    This study has been done to know what kind of factors in plasmas and processes on cells induce plasma gene transfection. We evaluated the contribution weight of three groups of the effects and processes, i.e. electrical, chemical and biochemical ones, inducing gene transfection. First, the laser produced plasma (LPP) was employed to estimate the contribution of the chemical factors. Second, liposomes were fabricated and employed to evaluate the effects of plasma irradiation on membrane under the condition without biochemical reaction. Third, the clathrin-dependent endocytosis, one of the biochemical processes was suppressed. It becomes clear that chemical factors (radicals and reactive oxygen/nitrogen species) do not work by itself alone and electrical factors (electrical current, charge and field) are essential to plasma gene transfection. It turned out the clathrin-dependent endocytosis is the process of the transfection against the 60% in all the transfected cells. The endocytosis and electrical poration are dominant in plasma gene transfection, and neither permeation through ion channels nor chemical poration is dominant processes. The simultaneous achievement of high transfection efficiency and high cell survivability is attributed to the optimization of the contribution weight among three groups of processes by controlling the weight of electrical and chemical factors. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. DNA Targeting Sequence Improves Magnetic Nanoparticle-Based Plasmid DNA Transfection Efficiency in Model Neurons.

    Science.gov (United States)

    Vernon, Matthew M; Dean, David A; Dobson, Jon

    2015-08-17

    Efficient non-viral plasmid DNA transfection of most stem cells, progenitor cells and primary cell lines currently presents an obstacle for many applications within gene therapy research. From a standpoint of efficiency and cell viability, magnetic nanoparticle-based DNA transfection is a promising gene vectoring technique because it has demonstrated rapid and improved transfection outcomes when compared to alternative non-viral methods. Recently, our research group introduced oscillating magnet arrays that resulted in further improvements to this novel plasmid DNA (pDNA) vectoring technology. Continued improvements to nanomagnetic transfection techniques have focused primarily on magnetic nanoparticle (MNP) functionalization and transfection parameter optimization: cell confluence, growth media, serum starvation, magnet oscillation parameters, etc. Noting that none of these parameters can assist in the nuclear translocation of delivered pDNA following MNP-pDNA complex dissociation in the cell's cytoplasm, inclusion of a cassette feature for pDNA nuclear translocation is theoretically justified. In this study incorporation of a DNA targeting sequence (DTS) feature in the transfecting plasmid improved transfection efficiency in model neurons, presumably from increased nuclear translocation. This observation became most apparent when comparing the response of the dividing SH-SY5Y precursor cell to the non-dividing and differentiated SH-SY5Y neuroblastoma cells.

  5. Effects of molecular size and chemical factor on plasma gene transfection

    Science.gov (United States)

    Ikeda, Yoshihisa; Motomura, Hideki; Kido, Yugo; Satoh, Susumu; Jinno, Masafumi

    2016-07-01

    In order to clarify the mechanism of plasma gene transfection, the relationship between transfection efficiency and transferred molecular size was investigated. Molecules with low molecular mass (less than 50 kDa; dye or dye-labeled oligonucleotide) and high molecular mass (more than 1 MDa; plasmid DNA or fragment of plasmid DNA) were transferred to L-929 cells. It was found that the transfection efficiency decreases with increasing in transferred molecular size and also depends on the tertiary structure of transferred molecules. Moreover, it was suggested the transfection mechanism is different between the molecules with low (less than 50 kDa) and high molecular mass (higher than 1 MDa). For the amount of gene transfection after plasma irradiation, which is comparable to that during plasma irradiation, it is shown that H2O2 molecules are the main contributor. The transfection efficiency decreased to 0.40 ± 0.22 upon scavenging the H2O2 generated by plasma irradiation using the catalase. On the other hand, when the H2O2 solution is dropped into the cell suspension without plasma irradiation, the transfection efficiency is almost 0%. In these results, it is also suggested that there is a synergetic effect of H2O2 with electrical factors or other reactive species generated by plasma irradiation.

  6. Synergistic effect of electrical and chemical factors on endocytosis in micro-discharge plasma gene transfection

    Science.gov (United States)

    Jinno, M.; Ikeda, Y.; Motomura, H.; Isozaki, Y.; Kido, Y.; Satoh, S.

    2017-06-01

    We have developed a new micro-discharge plasma (MDP)-based gene transfection method, which transfers genes into cells with high efficiency and low cytotoxicity; however, the mechanism underlying the method is still unknown. Studies revealed that the N-acetylcysteine-mediated inhibition of reactive oxygen species (ROS) activity completely abolished gene transfer. In this study, we used laser-produced plasma to demonstrate that gene transfer does not occur in the absence of electrical factors. Our results show that both electrical and chemical factors are necessary for gene transfer inside cells by microplasma irradiation. This indicates that plasma-mediated gene transfection utilizes the synergy between electrical and chemical factors. The electric field threshold required for transfection was approximately 1 kV m-1 in our MDP system. This indicates that MDP irradiation supplies sufficient concentrations of ROS, and the stimulation intensity of the electric field determines the transfection efficiency in our system. Gene transfer by plasma irradiation depends mainly on endocytosis, which accounts for at least 80% of the transfer, and clathrin-mediated endocytosis is a dominant endocytosis. In plasma-mediated gene transfection, alterations in electrical and chemical factors can independently regulate plasmid DNA adhesion and triggering of endocytosis, respectively. This implies that plasma characteristics can be adjusted according to target cell requirements, and the transfection process can be optimized with minimum damage to cells and maximum efficiency. This may explain how MDP simultaneously achieves high transfection efficiency with minimal cell damage.

  7. The Agrobacterium rhizogenes oncogenes rolB and ORF13 increase formation of generative shoots and induce dwarfism in Arabidopsis thaliana (L.) Heynh.

    Science.gov (United States)

    Kodahl, Nete; Müller, Renate; Lütken, Henrik

    2016-11-01

    Plant transformation with the wild type Ri plasmid T-DNA of Agrobacterium rhizogenes is a promising method for breeding of compact plants and has been the subject of numerous studies. However, knowledge concerning the isolated functions of single genes and ORFs from the plasmid is limited. The rolB and ORF13 oncogenes of A. rhizogenes show considerable promise in plant breeding, but have not been comprehensively studied. Detailed information regarding the morphological impact of specific genes of the Ri plasmid will allow for optimized targeted breeding of plants transformed with the wild type Ri plasmid T-DNA. rolB and ORF13 were recombined into the genome of Arabidopsis thaliana using Gateway ® cloning and the effect on plant growth was assessed biometrically throughout the plants' life cycle. rolB-lines exhibited dwarfing, early necrosis of rosette leaves, altered leaf and flower morphology, and developed an increased number of inflorescences per rosette area compared to the wild type. ORF13-lines were extremely dwarfed, attaining only ca. 1% of the rosette area of the wild type, leaf and flower size was reduced, and the shape modified. The study documents that the traits inferred by the rolB oncogene yield plants with increased formation of generative shoots, but also result in some degree of premature senescence of vegetative organs. The extreme dwarfism seen in ORF13-lines indicate that this oncogene may be more important in the dwarfing response of plants transformed with the wild type Ri plasmid T-DNA than previously assumed and that transformation with this oncogene induces a very compact phenotype. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Antigen-presenting cells transfected with Hsp65 messenger RNA fail to treat experimental tuberculosis

    International Nuclear Information System (INIS)

    Rocha, C.D.; Trombone, A.P.F.; Lorenzi, J.C.C.; Almeida, L.P.; Gembre, A.F.; Padilha, E.; Ramos, S.G.; Silva, C.L.; Coelho-Castelo, A.A.M.

    2012-01-01

    In the last several years, the use of dendritic cells has been studied as a therapeutic strategy against tumors. Dendritic cells can be pulsed with peptides or full-length protein, or they can be transfected with DNA or RNA. However, comparative studies suggest that transfecting dendritic cells with messenger RNA (mRNA) is superior to other antigen-loading techniques in generating immunocompetent dendritic cells. In the present study, we evaluated a new therapeutic strategy to fight tuberculosis using dendritic cells and macrophages transfected with Hsp65 mRNA. First, we demonstrated that antigen-presenting cells transfected with Hsp65 mRNA exhibit a higher level of expression of co-stimulatory molecules, suggesting that Hsp65 mRNA has immunostimulatory properties. We also demonstrated that spleen cells obtained from animals immunized with mock and Hsp65 mRNA-transfected dendritic cells were able to generate a mixed Th1/Th2 response with production not only of IFN-γ but also of IL-5 and IL-10. In contrast, cells recovered from mice immunized with Hsp65 mRNA-transfected macrophages were able to produce only IL-5. When mice were infected with Mycobacterium tuberculosis and treated with antigen-presenting cells transfected with Hsp65 mRNA (therapeutic immunization), we did not detect any decrease in the lung bacterial load or any preservation of the lung parenchyma, indicating the inability of transfected cells to confer curative effects against tuberculosis. In spite of the lack of therapeutic efficacy, this study reports for the first time the use of antigen-presenting cells transfected with mRNA in experimental tuberculosis

  9. Preliminary study on the mechanism of radioresistance of SHG44 cells transfected by PKB

    International Nuclear Information System (INIS)

    Liu Fenju; Sun Zhiqiang; Yang Xueqin; Jiang Yaqi; Xue Jing

    2007-01-01

    Objective: To explore the radiosensitivity of SHG44 cells increased by suppressing the protein kinase B (PKB), in order to prove whether the PKB activity is related to the radioresistance of SHG44 cells. Methods: PKB gene(pCMV5.HA-m/p-PKBα(PKB), pCMV5.HA-PKBα-DD (T308D/S473D) (PKBD)) were transfected into SHG44 cells by electroporation, the cell proliferation rate was observed among the control, PKB transfected and irradiated groups by MTT assay. The laser confocal microscope was used to detect the changes of cell apoptosis and its microstructure in control, control + radiation, PKB transfected + radiation, PKBD transfected + radiation group. The proliferation of PKB transfected SHG44 cells and the relative factors of inducing apoptosis were analyzed. Results: The plasmid containing extrinsic PKB was successfully transfected into SHG44 cells and expressed PKB mRNA, while there was no expression in the control group; the proliferation rate of transfected SHG44 cells was significantly different from the control group (P 60 Co γ rays could induce SHG44 cell apoptosis with the changes of cell nuclei shape. The SHG44 cells transfected by PKB in the PKB + control group were complete, with few apoptosis cells seen, while the apoptosis was more significant in PKBD + irradiation group comparing to the control-irradiation group. Conclusions: SHG44 cells transfected by PKB could resist the cell apoptosis induced by radiation, suggesting that there were some relations between PKB activity and SHG44 cells radioresistance. (authors)

  10. Repeated Gene Transfection Impairs the Engraftment of Transplanted Porcine Neonatal Pancreatic Cells

    Directory of Open Access Journals (Sweden)

    Min Koo Seo

    2011-02-01

    Full Text Available BackgroundPreviously, we reported that neonatal porcine pancreatic cells transfected with hepatocyte growth factor (HGF gene in an Epstein-Barr virus (EBV-based plasmid (pEBVHGF showed improved proliferation and differentiation compared to those of the control. In this study, we examined if pancreatic cells transfected repeatedly with pEBVHGF can be successfully grafted to control blood glucose in a diabetes mouse model.MethodsNeonatal porcine pancreatic cells were cultured as a monolayer and were transfected with pEBVHGF every other day for a total of three transfections. The transfected pancreatic cells were re-aggregated and transplanted into kidney capsules of diabetic nude mice or normal nude mice. Blood glucose level and body weight were measured every other day after transplantation. The engraftment of the transplanted cells and differentiation into beta cells were assessed using immunohistochemistry.ResultsRe-aggregation of the pancreatic cells before transplantation improved engraftment of the cells and facilitated neovascularization of the graft. Right before transplantation, pancreatic cells that were transfected with pEBVHGF and then re-aggregated showed ductal cell marker expression. However, ductal cells disappeared and the cells underwent fibrosis in a diabetes mouse model two to five weeks after transplantation; these mice also did not show controlled blood glucose levels. Furthermore, pancreatic cells transplanted into nude mice with normal blood glucose showed poor graft survival regardless of the type of transfected plasmid (pCEP4, pHGF, or pEBVHGF.ConclusionFor clinical application of transfected neonatal porcine pancreatic cells, further studies are required to develop methods of overcoming the damage for the cells caused by repeated transfection and to re-aggregate them into islet-like structures.

  11. Antigen-presenting cells transfected with Hsp65 messenger RNA fail to treat experimental tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, C.D.; Trombone, A.P.F.; Lorenzi, J.C.C.; Almeida, L.P.; Gembre, A.F.; Padilha, E. [Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Ramos, S.G. [Departamento de Patologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Silva, C.L.; Coelho-Castelo, A.A.M. [Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2012-09-21

    In the last several years, the use of dendritic cells has been studied as a therapeutic strategy against tumors. Dendritic cells can be pulsed with peptides or full-length protein, or they can be transfected with DNA or RNA. However, comparative studies suggest that transfecting dendritic cells with messenger RNA (mRNA) is superior to other antigen-loading techniques in generating immunocompetent dendritic cells. In the present study, we evaluated a new therapeutic strategy to fight tuberculosis using dendritic cells and macrophages transfected with Hsp65 mRNA. First, we demonstrated that antigen-presenting cells transfected with Hsp65 mRNA exhibit a higher level of expression of co-stimulatory molecules, suggesting that Hsp65 mRNA has immunostimulatory properties. We also demonstrated that spleen cells obtained from animals immunized with mock and Hsp65 mRNA-transfected dendritic cells were able to generate a mixed Th1/Th2 response with production not only of IFN-γ but also of IL-5 and IL-10. In contrast, cells recovered from mice immunized with Hsp65 mRNA-transfected macrophages were able to produce only IL-5. When mice were infected with Mycobacterium tuberculosis and treated with antigen-presenting cells transfected with Hsp65 mRNA (therapeutic immunization), we did not detect any decrease in the lung bacterial load or any preservation of the lung parenchyma, indicating the inability of transfected cells to confer curative effects against tuberculosis. In spite of the lack of therapeutic efficacy, this study reports for the first time the use of antigen-presenting cells transfected with mRNA in experimental tuberculosis.

  12. Single cell electroporation on chip

    NARCIS (Netherlands)

    Valero, Ana

    2006-01-01

    In this thesis the results of the development of microfluidic cell trap devices for single cell electroporation are described, which are to be used for gene transfection. The performance of two types of Lab-on-a-Chip trapping devices was tested using beads and cells, whereas the functionality for

  13. Migratory, invasive and metastatic capacity of NCAM transfected rat glioma cells

    DEFF Research Database (Denmark)

    Edvardsen, K; Brünner, N; Spang-Thomsen, M

    1993-01-01

    A cDNA encoding a transmembrane 140 kDa isoform of the neural cell adhesion molecule, NCAM, was transfected into the rat glioma cell line BT4Cn. Transfectants with a homogeneously high expression of NCAM-B showed a decreased capacity for penetration of an artificial basement membrane when compared...... to cells transfected with expression-vector alone or untransfected cells. However, when injected subcutaneously into nude mice, both NCAM expressing cells and control cells produced invasive tumors. Nude mice injected with NCAM positive cells developed tumors with slower growth rates as compared to those...

  14. Effect of NCAM-transfection on growth and invasion of a human cancer cell line

    DEFF Research Database (Denmark)

    Edvardsen, K; Bock, E; Jirus, S

    1997-01-01

    A cDNA encoding the human transmembrane 140 kDa isoform of the neural cell adhesion molecule (NCAM) was transfected into the highly invasive MDA-MB-231 human breast cancer cell line. Transfectants with a homogeneous expression of NCAM showed a restricted capacity for penetration of an artificial...... basement membrane. However, when injected into nude mice, both control and NCAM-expressing cell lines produced equally invasive tumors. Tumors generated from NCAM-transfected cells were heterogeneous, containing NCAM-positive as well as NCAM-negative areas, indicating the existence of host factors capable...

  15. Combinatorial treatment with lithium chloride enhances recombinant antibody production in transiently transfected CHO and HEK293E cells

    DEFF Research Database (Denmark)

    Kim, Che Lin; Kwang Ha, Tae; Min Lee, Gyun

    2016-01-01

    Cl was added to the CHO-NK and human embryonic kidney 293E (HEK293E) cell cultures before and/or after transfection with polyethylenimine as a transfection reagent. The effect of this addition on transfection efficiency (pre-treatment) and qp enhancement during TGE (post-treatment) was examined. For the TGE...

  16. [Effects of transfection of human epidermal growth factor gene with adenovirus vector on biological characteristics of human epidermal cells].

    Science.gov (United States)

    Yin, Kai; Ma, Li; Shen, Chuan'an; Shang, Yuru; Li, Dawei; Li, Longzhu; Zhao, Dongxu; Cheng, Wenfeng

    2016-05-01

    To investigate the suitable transfection condition of human epidermal cells (hECs) with human epidermal growth factor (EGF) gene by adenovirus vector (Ad-hEGF) and its effects on the biological characteristics of hECs. hECs were isolated from deprecated human fresh prepuce tissue of circumcision by enzyme digestion method and then sub-cultured. hECs of the third passage were used in the following experiments. (1) Cells were divided into non-transfection group and 5, 20, 50, 100, 150, and 200 fold transfection groups according to the random number table (the same grouping method below), with 3 wells in each group. Cells in non-transfection group were not transfected with Ad-hEGF gene, while cells in the latter six groups were transfected with Ad-hEGF gene in multiplicities of infection (MOI) of 5, 20, 50, 100, 150, and 200 respectively. The morphology of the cells was observed with inverted phase contrast microscope, and expression of green fluorescent protein of the cells was observed with inverted fluorescence microscope at transfection hour (TH) 24, 48, and 72. (2) Another three batches of cells were collected, grouped, and treated as above, respectively. Then the transfection rate of Ad-hEGF gene was detected by flow cytometer (n=3), the mass concentration of EGF in culture supernatant of cells was detected by enzyme-linked immunosorbent assay (n=6), and the proliferation activity of cells was detected by cell counting kit 8 (CCK8) and microplate reader (n=6) at TH 24, 48, and 72, respectively. (3) Cells were collected and divided into non-transfection group and transfection group, with 6 wells in each group. Cells in non-transfection group were cultured with culture supernatant of cells without transfection, while cells in transfection group were cultured with culture supernatant of cells which were transfected with Ad-hEGF gene in the optimum MOI (50). CCK8 and microplate reader were used to measure the biological activity of EGF secreted by cells on culture

  17. Functional genomics of genes with small open reading frames (sORFs) in S. cerevisiae

    Science.gov (United States)

    Kastenmayer, James P.; Ni, Li; Chu, Angela; Kitchen, Lauren E.; Au, Wei-Chun; Yang, Hui; Carter, Carole D.; Wheeler, David; Davis, Ronald W.; Boeke, Jef D.; Snyder, Michael A.; Basrai, Munira A.

    2006-01-01

    Genes with small open reading frames (sORFs; molecular barcode,” bringing the total number of sORF deletion strains to 247. Phenotypic analyses of the new gene-deletion strains identified 22 sORFs required for haploid growth, growth at high temperature, growth in the presence of a nonfermentable carbon source, or growth in the presence of DNA damage and replication-arrest agents. We provide a collection of sORF deletion strains that can be integrated into the existing deletion collection as a resource for the yeast community for elucidating gene function. Moreover, our analyses of the S. cerevisiae sORFs establish that sORFs are conserved across eukaryotes and have important biological functions. PMID:16510898

  18. MERS-CoV Accessory ORFs Play Key Role for Infection and Pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Menachery, Vineet D.; Mitchell, Hugh D.; Cockrell, Adam S.; Gralinski, Lisa E.; Yount, Boyd L.; Graham, Rachel L.; McAnarney, Eileen T.; Douglas, Madeline G.; Scobey, Trevor; Beall, Anne; Dinnon, Kenneth; Kocher, Jacob F.; Hale, Andrew E.; Stratton, Kelly G.; Waters, Katrina M.; Baric, Ralph S.; Racaniello, Vincent R.

    2017-08-22

    ABSTRACT

    While dispensable for viral replication, coronavirus (CoV) accessory open reading frame (ORF) proteins often play critical roles during infection and pathogenesis. Utilizing a previously generated mutant, we demonstrate that the absence of all four Middle East respiratory syndrome CoV (MERS-CoV) accessory ORFs (deletion of ORF3, -4a, -4b, and -5 [dORF3-5]) has major implications for viral replication and pathogenesis. Importantly, attenuation of the dORF3-5 mutant is primarily driven by dysregulated host responses, including disrupted cell processes, augmented interferon (IFN) pathway activation, and robust inflammation.In vitroreplication attenuation also extends toin vivomodels, allowing use of dORF3-5 as a live attenuated vaccine platform. Finally, examination of ORF5 implicates a partial role in modulation of NF-κB-mediated inflammation. Together, the results demonstrate the importance of MERS-CoV accessory ORFs for pathogenesis and highlight them as potential targets for surveillance and therapeutic treatments moving forward.

    IMPORTANCEThe initial emergence and periodic outbreaks of MERS-CoV highlight a continuing threat posed by zoonotic pathogens to global public health. In these studies, mutant virus generation demonstrates the necessity of accessory ORFs in regard to MERS-CoV infection and pathogenesis. With this in mind, accessory ORF functions can be targeted for both therapeutic and vaccine treatments in response to MERS-CoV and related group 2C coronaviruses. In addition, disruption of accessory ORFs in parallel may offer a rapid response platform to attenuation of future emergent strains based on both SARS- and MERS-CoV accessory ORF mutants.

  19. Cell number and transfection volume dependent peptide nucleic acid antisense activity by cationic delivery methods

    DEFF Research Database (Denmark)

    Llovera Nadal, Laia; Berthold, Peter; Nielsen, Peter E

    2012-01-01

    Efficient intracellular delivery is essential for high activity of nucleic acids based therapeutics, including antisense agents. Several strategies have been developed and practically all rely on auxiliary transfection reagents such as cationic lipids, cationic polymers and cell penetrating...... peptides as complexing agents and carriers of the nucleic acids. However, uptake mechanisms remain rather poorly understood, and protocols always require optimization of transfection parameters. Considering that cationic transfection complexes bind to and thus may up-concentrate on the cell surface, we......-octaarginine conjugate upon varying the cell culture transfection volume (and cell density) at fixed PNA concentration. The results show that for all delivery modalities the cellular antisense activity increases (less than proportionally) with increasing volume (in some cases accompanied with increased toxicity...

  20. Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs

    DEFF Research Database (Denmark)

    Khan, Aly A; Betel, Doron; Miller, Martin L

    2009-01-01

    Transfection of small RNAs (such as small interfering RNAs (siRNAs) and microRNAs (miRNAs)) into cells typically lowers expression of many genes. Unexpectedly, increased expression of genes also occurs. We investigated whether this upregulation results from a saturation effect--that is, competition...... among the transfected small RNAs and the endogenous pool of miRNAs for the intracellular machinery that processes small RNAs. To test this hypothesis, we analyzed genome-wide transcript responses from 151 published transfection experiments in seven different human cell types. We show that targets...... of endogenous miRNAs are expressed at significantly higher levels after transfection, consistent with impaired effectiveness of endogenous miRNA repression. This effect exhibited concentration and temporal dependence. Notably, the profile of endogenous miRNAs can be largely inferred by correlating miRNA sites...

  1. DEVELOPMENT OF AN ENVIRONMENTAL ESTROGEN SCREEN USING TRANSIENTLY TRANSFECTED RAINBOW TROUT CELL LINES

    Science.gov (United States)

    Rainbow troutp hepatoma (RTH-149) and gonad cells (RTG-2) were used to develop a screening protocol for estrogen disrupting chemicals. Transfection of an estrogen-responsive luciferase reporter plasmid into...

  2. Oncogene transfection of mink lung cells: effect on growth characteristics in vitro and in vivo.

    Science.gov (United States)

    Khan, M Z; Spandidos, D A; Kerr, D J; McNicol, A M; Lang, J C; De Ridder, L; Freshney, R I

    1991-01-01

    Three sublines have been derived from the parental line Mv1Lu by transfection with normal and mutated Ha-ras, and myc oncogenes, and subsequent cloning. All the oncogenes have increased the growth rate of the cell in vitro, increased their plating efficiency in monolayer and suspension, and reduced their serum dependence. Growth in vivo as xenografts in nude mice has also been increased. Very few tumours were generated from the parental line and those that did form did so after a prolonged lag period, while the transfected lines produced tumours with 100% efficiency, and a short lag period. In general the effects of ras transfection were more extreme, with the highest growth rates and plating efficiencies in vitro and the shortest lag period and doubling times in vivo. There was no increase in plasminogen activator activity as a result of transfection, and the invasive behaviour of the lines in organotypic culture was broadly similar.

  3. Photo-transfection of mouse embryonic stem cells with plasmid DNA using femtosecond laser pulses

    CSIR Research Space (South Africa)

    Thobakgale, Lebogang

    2017-01-01

    Full Text Available This presentation is about the photo-transfection of mouse embryonic stem cells with plasmid DNA using femtosecond laser pulses. It outlines the background on embryonic stem cells (ES) and phototransfection....

  4. Effect of NCAM-transfection on growth and invasion of a human cancer cell line

    DEFF Research Database (Denmark)

    Edvardsen, K; Bock, E; Jirus, S

    1997-01-01

    A cDNA encoding the human transmembrane 140 kDa isoform of the neural cell adhesion molecule (NCAM) was transfected into the highly invasive MDA-MB-231 human breast cancer cell line. Transfectants with a homogeneous expression of NCAM showed a restricted capacity for penetration of an artificial...... basement membrane. However, when injected into nude mice, both control and NCAM-expressing cell lines produced equally invasive tumors. Tumors generated from NCAM-transfected cells were heterogeneous, containing NCAM-positive as well as NCAM-negative areas, indicating the existence of host factors capable...... of modulating NCAM expression in vivo. In nude mice, NCAM-transfected cells developed tumors with longer latency periods and slower growth rates than tumors induced by NCAM-negative control cells, implying that NCAM may be involved not only in adhesive and motile behavior of tumor cells but also in their growth...

  5. Photo-transfection of mouse embryonic stem cells with plasmid DNA using femtosecond laser pulses

    CSIR Research Space (South Africa)

    Thobakgale, Lebogang

    2017-01-01

    Full Text Available disease- iPS, dopaminergic neurons Transplantation • Autologous- bone marrow, tissue defects, leukemia • Haematopoietic- blood dieases, autoimmune disorders • Mesenchymal- neurological disorders Phototransfection • Transfection refers...

  6. Acidity-responsive gene delivery for "superfast" nuclear translocation and transfection with high efficiency.

    Science.gov (United States)

    Zhu, Jing-Yi; Zeng, Xuan; Qin, Si-Yong; Wan, Shuang-Shuang; Jia, Hui-Zhen; Zhuo, Ren-Xi; Feng, Jun; Zhang, Xian-Zheng

    2016-03-01

    In principle, not only efficient but rapid transfection is required since it can maximize the bioavailability of vector-carried gene prior to the cellular excretion. However, the "rapid" goal has been paid few attentions so far in the research field of vector-aided transfection. As a pioneering attempt, the present study designed a lysosome-targeting acidity-responsive nanoassembly as gene vectors, which proved the amazing potency to mediate the "Superfast" transnuclear gene transport and gene transfection with high efficiency in vitro and in vivo. The nanoassembly was constructed on the pH-reversible covalent boronic acid-diol coupling between 1,3-diol-rich oligoethylenimine (OEI-EHDO) and phenylboronic acid modified cholesterol (Chol-PBA). The rapid and efficient nuclei-tropic delivery and transfection was demonstrated to highly rely on the lysosome-acidity induced assembly destruction followed by the easy liberation of gene payloads inside cells. The nanoassembly-mediated transfection at 8 h can afford the outcome even comparable to that achieved at 48 h by the golden standard of PEI25k, and the transfection efficiency can still remain at a high level during 48 h. In contrast, time-dependent efficiency enhancement was identified for the transfections using PEI25k and OEI-EHDO as delivery vectors. Moreover, owing to the hydroxyl-rich surface, this delivery nanosystem presented strong tolerance to the serum-induced transfection inhibition that frequently occurred for the polycationic gene vectors such as PEI25k. The in vitro and in vivo results manifested the low toxicity of this bio-decomposable nanoassembly. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. [EFFECT OF Akt1 GENE TRANSFECTION ON HYPOXIA TOLERANCE OF BONE MARROW MESENCHYMAL STEM CELLS].

    Science.gov (United States)

    Yu, Fengxu; Chen, Yongen; Chen, Feng; Xia, Jiyi; Liu, Hongduan; Fu, Yong; Li, Miaoling; Liao, Bin

    2016-04-01

    To investigate whether Akt1 gene transfection mediated by recombinant lentivirus (LVs) in the bone marrow mesenchymal stem cells (BMSCs) could enhance the ability of hypoxia tolerance so as to provide a theoretical basis for improving the effectiveness of stem cells transplantation. LVs was used as transfection vector, enhanced green fluorescent protein (EGFP) was used as markers to construct the pLVX-EGFP-3FLAG virus vector carrying the Akt1 gene. The 3rd generation BMSCs from 3-5 weeks old Sprague Dawley rats were transfected with pLVX-EGFP virus solution as group B and with pLVX-EGFP-3PLAG virus solution as group C; and untransfected BMSCs served as control group (group A). At 2-3 days after transfection, the expression of green fluorescent was observed by fluorescence microscope; and at 48 hours after transfection, Western blot method was used to detect the expression of Akt1 protein in groups B and C. BMSCs of groups B and C were given hypoxia intervention with 94% N₂, 1% O₂, and 5% CO₂ for 0, 3, 6, 9, and 12 hours (group B1 and group C1). The flow cytometry was used to analyze the cell apoptosis rate and cell death rate, and the MTT method to analyze the cell proliferation, and Western blot to detect the expression of apoptosis related gene Caspase-3. After transfection, obvious green fluorescence was observed in BMSCs under fluorescence microscopy in groups B and C, the transfection efficiency was about 60%. Akt1 expression of group C was significantly higher than that of group B (t = 17.525, P = 0.013). The apoptosis rate and cell death rate of group B1 increased gradually with time, and difference was significant (P transfection mediated by recombinant LVs could significantly improve hypoxia tolerance of BMSCs by inhibiting the apoptosis, which could provide new ideas for improving the effectiveness of stem cells transplantation.

  8. Evaluation of the transfection efficacies of quaternary ammonium salts prepared from sophorolipids

    OpenAIRE

    Delbeke, E,; Lozach, Olivier; Le Gall, T; Berchel, Mathieu,; Montier, T,; Jaffres, Paul-Alain; Van Geem, K,; Stevens, C,

    2016-01-01

    International audience; Five quaternary ammonium amphiphilic compounds were synthesized from sophorolipid 1. These compounds were formulated in aqueous media and some of them (5 and 6) produced well-defined supra-molecular aggregates which were characterized by DLS and zeta measurements. Their capacity to transfect four different eukaryotic cell lines in vitro was assessed. To evaluate the influence of the carbohydrate head group from the sophorolipids on the transfection efficacies, their de...

  9. A regulatory gene (ECO-orf4) required for ECO-0501 biosynthesis in Amycolatopsis orientalis.

    Science.gov (United States)

    Shen, Yang; Huang, He; Zhu, Li; Luo, Minyu; Chen, Daijie

    2014-02-01

    ECO-0501 is a novel linear polyene antibiotic, which was discovered from Amycolatopsis orientalis. Recent study of ECO-0501 biosynthesis pathway revealed the presence of regulatory gene: ECO-orf4. The A. orientalis ECO-orf4 gene from the ECO-0501 biosynthesis cluster was analyzed, and its deduced protein (ECO-orf4) was found to have amino acid sequence homology with large ATP-binding regulators of the LuxR (LAL) family regulators. Database comparison revealed two hypothetical domains, a LuxR-type helix-turn-helix (HTH) DNA binding motif near the C-terminal and an N-terminal nucleotide triphosphate (NTP) binding motif included. Deletion of the corresponding gene (ECO-orf4) resulted in complete loss of ECO-0501 production. Complementation by one copy of intact ECO-orf4 restored the polyene biosynthesis demonstrating that ECO-orf4 is required for ECO-0501 biosynthesis. The results of overexpression ECO-orf4 on ECO-0501 production indicated that it is a positive regulatory gene. Gene expression analysis by reverse transcription PCR of the ECO-0501 gene cluster showed that the transcription of ECO-orf4 correlates with that of genes involved in polyketide biosynthesis. These results demonstrated that ECO-orf4 is a pathway-specific positive regulatory gene that is essential for ECO-0501 biosynthesis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Mutations in c10orf11, a melanocyte-differentiation gene, cause autosomal-recessive albinism

    DEFF Research Database (Denmark)

    Grønskov, Karen; Dooley, Christopher M; Østergaard, Elsebet

    2013-01-01

    in an individual originating from Lithuania. Immunohistochemistry showed localization of C10orf11 in melanoblasts and melanocytes in human fetal tissue, but no localization was seen in retinal pigment epithelial cells. Knockdown of the zebrafish (Danio rerio) homolog with the use of morpholinos resulted...... in substantially decreased pigmentation and a reduction of the apparent number of pigmented melanocytes. The morphant phenotype was rescued by wild-type C10orf11, but not by mutant C10orf11. In conclusion, we have identified a melanocyte-differentiation gene, C10orf11, which when mutated causes autosomal...

  11. C9ORF72 Repeat Expansion in Australian and Spanish Frontotemporal Dementia Patients

    OpenAIRE

    Dobson-Stone, Carol; Hallupp, Marianne; Loy, Clement T.; Thompson, Elizabeth M.; Haan, Eric; Sue, Carolyn M.; Panegyres, Peter K.; Razquin, Cristina; Seijo-Mart?nez, Manuel; Rene, Ramon; Gascon, Jordi; Campdelacreu, Jaume; Schmoll, Birgit; Volk, Alexander E.; Brooks, William S.

    2013-01-01

    A hexanucleotide repeat expansion in C9ORF72 has been established as a common cause of frontotemporal dementia (FTD). However, the minimum repeat number necessary for disease pathogenesis is not known. The aims of our study were to determine the frequency of the C9ORF72 repeat expansion in two FTD patient collections (one Australian and one Spanish, combined n = 190), to examine C9ORF72 expansion allele length in a subset of FTD patients, and to examine C9ORF72 allele length in 'non-expansion...

  12. A general strategy to achieve ultra-high gene transfection efficiency using lipid-nanoparticle composites.

    Science.gov (United States)

    Vankayala, Raviraj; Chiang, Chi-Shiun; Chao, Jui-I; Yuan, Chiun-Jye; Lin, Shyr-Yeu; Hwang, Kuo Chu

    2014-09-01

    Gene therapy provides a new hope for previously "incurable" diseases. Low gene transfection efficiency, however, is the bottle-neck to the success of gene therapy. It is very challenging to develop non-viral nanocarriers to achieve ultra-high gene transfection efficiencies. Herein, we report a novel design of "tight binding-but-detachable" lipid-nanoparticle composite to achieve ultrahigh gene transfection efficiencies of 60∼82%, approaching the best value (∼90%) obtained using viral vectors. We show that Fe@CNPs nanoparticles coated with LP-2000 lipid molecules can be used as gene carriers to achieve ultra-high (60-80%) gene transfection efficiencies in HeLa, U-87MG, and TRAMP-C1 cells. In contrast, Fe@CNPs having surface-covalently bound N,N,N-trimethyl-N-2-methacryloxyethyl ammonium chloride (TMAEA) oligomers can only achieve low (23-28%) gene transfection efficiencies. Similarly ultrahigh gene transfection/expression was also observed in zebrafish model using lipid-coated Fe@CNPs as gene carriers. Evidences for tight binding and detachability of DNA from lipid-nanoparticle nanocarriers will be presented. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Modulating polyplex-mediated gene transfection by small-molecule regulators of autophagy.

    Science.gov (United States)

    Zhong, Xiao; Panus, David; Ji, Weihang; Wang, Chun

    2015-03-02

    Nonviral gene transfection mediated by cationic polymer/DNA polyplexes often imposes stress and toxicity to cells. To better understand the relationship between cellular stress responses and polyplex-mediated transfection, polyplex-induced early autophagy in mouse fibroblasts was characterized and the impact of autophagy modulation on transgene expression evaluated. Transmission electron microscopy revealed the formation of double-membraned autophagosome in the cytoplasm of polyplex-transfected cells. Immunofluorescence staining and microscopy revealed intracellular LC3 punctation that was characteristic of early autophagy activation. Elevated expression of autophagosome-associated LC3 II protein was also detected by Western blot. When cells were treated with small-molecule modulators of autophagy, polyplex-mediated gene transfection efficiency was significantly affected. 3-Methyladenine (3-MA), an early autophagy inhibitor, reduced transfection efficiency, whereas rapamycin, an autophagy inducer, enhanced transgene expression. Importantly, the observed functional impact on gene transfection by autophagy modulation was decoupled from that of other modes of cellular stress response (apoptosis/necrosis). Treatment of cells by 3-MA or rapamycin did not affect the level of intracellular reactive oxygen species (ROS) but did decrease or increase, respectively, nuclear localization of polyplex-delivered plasmid DNA. These findings suggest new possibilities of enhancing polyplex-mediated gene delivery by codelivery of small-molecule regulators of autophagy.

  14. Novel mechanism of gene transfection by low-energy shock wave

    Science.gov (United States)

    Hoon Ha, Chang; Cheol Lee, Seok; Kim, Sunghyen; Chung, Jihwa; Bae, Hasuk; Kwon, Kihwan

    2015-01-01

    Extracorporeal shock wave (SW) therapy has been studied in the transfection of naked nucleic acids into various cell lines through the process of sonoporation, a process that affects the permeation of cell membranes, which can be an effect of cavitation. In this study, siRNAs were efficiently transfected into primary cultured cells and mouse tumor tissue via SW treatment. Furthermore SW-induced siRNA transfection was not mediated by SW-induced sonoporation, but by microparticles (MPs) secreted from the cells. Interestingly, the transfection effect of the siRNAs was transferable through the secreted MPs from human umbilical vein endothelial cell (HUVEC) culture medium after treatment with SW, into HUVECs in another culture plate without SW treatment. In this study, we suggest for the first time a mechanism of gene transfection induced by low-energy SW through secreted MPs, and show that it is an efficient physical gene transfection method in vitro and represents a safe therapeutic strategy for site-specific gene delivery in vivo. PMID:26243452

  15. Transfection of rat embryo cells with mutant p53 increases the intrinsic radiation resistance

    International Nuclear Information System (INIS)

    Pardo, F.S.; Su, M.; Gerweck, L.; Schmidt, E.V.; Borek, C.; Preffer, F.; Dombkowski, D.

    1994-01-01

    Dominant oncogenic sequences have been shown to modulate the intrinsic radiation sensitivity of cells of both human and murine tumor cell lines. Whether transfection with candidate tumor-suppressor genes can modulate intrinsic radiation sensitivity is unknown. The data presented here demonstrate that transfection of rat embryo cells with a mutant p53 allele can increase the intrinsic radiation resistance of cells in vitro. First, transfection with mutant p53 resulted in transformed cellular morphology. Second, the transfected clone and the corresponding pooled population of transfected clones were more resistant to ionizing radiation in vitro. Last, analyses of the parameters of cell kinetics suggested that the radiobiological effects were unlikely to be due to altered parameters of cell kinetics at the time of irradiation, suggesting that mutant p53 altered the intrinsic radiation resistance of transfected cells by a more direct mechanism. Further experimentation will be necessary to develop a mechanistic approach for the study of these alterations. 29 refs., 3 figs., 2 tabs

  16. Investigation of transfection efficacy with transcatheter arterial transporting transferring to enhance p53 gene

    International Nuclear Information System (INIS)

    Lu Qin; Niu Huanzhang; Zhu Guangyu; An Yanli; Qiu Dinghong; Teng Gaojun

    2007-01-01

    Objective: To investigate the function of transferrin-DNA complex, transported by transferrin(Tf) and trans-arterial injection via interventional approach be the duel-target-orientated delivery and the transferring into malignant cells to get more effective therapy. Methods: p53-LipofectAMINE ligand with different concentrations of Tf (0, 10, 25, 50, 100 μg)transfected the 4 strains including LM6,Hep3B,YY and L02 in vitro to evaluate the gene transfection efficiency through western blot. Then, after setting up the VX2 hepatocarcinoma models, we delivered the Tf-p53-LipofectAMlNE complex into the hepatic arteries via interventional techniques to analyse the transfection efficiency in vivo. Results: Tf, within the range of l0 100 μg, could increase gene transfection efficiency mediated by liposome, and the efficiency increases with the raise of Tf concentration. Combination with interventional technique to inject Tf-DNA complex into tumor arteries, gene transfection efficiency was enhanced in rabbit models. Conclusion: Tf can enhance gene-liposome transfection efficiency, furthermore with combination of interventional catheter technique, there would be a potential duel-target-orientated gene therapy method. (authors)

  17. Toward establishing model organisms for marine protists: Successful transfection protocols for Parabodo caudatus (Kinetoplastida: Excavata).

    Science.gov (United States)

    Gomaa, Fatma; Garcia, Paulo A; Delaney, Jennifer; Girguis, Peter R; Buie, Cullen R; Edgcomb, Virginia P

    2017-09-01

    We developed protocols for, and demonstrated successful transfection of, the free-living kinetoplastid flagellate Parabodo caudatus with three plasmids carrying a fluorescence reporter gene (pEF-GFP with the EF1 alpha promoter, pUB-GFP with Ubiquitin C promoter, and pEYFP-Mitotrap with CMV promoter). We evaluated three electroporation approaches: (1) a square-wave electroporator designed for eukaryotes, (2) a novel microfluidic transfection system employing hydrodynamically-controlled electric field waveforms, and (3) a traditional exponential decay electroporator. We found the microfluidic device provides a simple and efficient platform to quickly test a wide range of electric field parameters to find the optimal set of conditions for electroporation of target species. It also allows for processing large sample volumes (>10 ml) within minutes, increasing throughput 100 times over cuvettes. Fluorescence signal from the reporter gene was detected a few hours after transfection and persisted for 3 days in cells transfected by pEF-GFP and pUB-GFP plasmids and for at least 5 days post-transfection for cells transfected with pEYFP-Mitotrap. Expression of the reporter genes (GFP and YFP) was also confirmed using reverse transcription-PCR (RT-PCR). This work opens the door for further efforts with this taxon and close relatives toward establishing model systems for genome editing. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. A study on the transfection of antisense oligonucletide into kidney mediated by lipid microbubbles.

    Science.gov (United States)

    Li, Huiling; Chen, Jinwen; Xu, Xuan; Yang, Ruhao; Xiang, Xudong; Zhang, Dongshan

    2016-02-01

    To study the safety and efficiency of the transfection of antisense oligonucletide into kidney mediated by lipid microbubbles, and to evaluate its potential clinical application. The potential and conditions regarding the transfection self-made lipid microbubbles (CY5)-labeled-oligonucleotide (ODN) or CY5-labeled-ODN connective tissue growth factor (CTGF) into the rat kidney were evaluated. Th e safety was evaluated by HE staining, liver and renal function tests. The transfection efficiency was evaluated by fluorescence microscopy. Th e expression of CTGF was detected by RT-PCR and Western blot. Self-made lipid microbubble and/or ultrasound significantly enhanced the efficiency of gene transfer and expression in the kidney. Especially, 85%-90% of total glomerular could be transfected. CY5-labeled-ODN expression could be observed in glomerular, tubular and interstitial area. Th ere was no significant change in blood tests aft er gene transfer. Levels of LDH in 7 days were decreased compared with that at the fi rst day aft er the transfection (Ptransfection of CTGF-antisense-ODN into kidney. The ultrasound-mediated gene transfer by self-made lipid microbubble could enhance the efficiency of ODN and expression in the rat kidney. Th is self-made lipid microbubbles supplement may be use for transfection of target genes.

  19. Ultrasound-mediated gene transfection: A comparison between cells irradiated in suspension and attachment status

    Science.gov (United States)

    Zhang, Yiwei; Azuma, Takashi; Sasaki, Akira; Yoshinaka, Kiyoshi; Takagi, Shu; Matsumoto, Yoichiro

    2012-10-01

    Sonoporation, in the presence of microbubbles, is a promising nonviral gene transfection method. Although the mechanism is not yet fully understood, shock waves emitted by cavitation bubbles have been known to play an important role in creating pores on cell membranes. This work investigates the gene transfection efficiency and influencing parameters of cells in two different statuses: attachment and suspension based on the fact that cells in suspension have more bubbles surrounding them and that shock wave has distinct effects on hit objects whether the object is attached to a rigid wall or not. Fibroblast cells (NIH3T3), both in attachment and suspension, and green fluorescent protein (GFP) plasmid were exposed to variations in acoustic pressure (0.6-1.2 MPa) and 10% duty cycle at fixed settings of 2 MHz central frequency, 5 kHz pulse repetition frequency and 1 minute insonation time, in the presence of 10% v/v microbubbles (Sonazoid, a commercialized product of ultrasound contrast agent). The transfection efficiency and cell viability are compared for two statuses and a distribution map of GFP transfected cells as well as viable cells over the well bottom is given for attachment status. The results show that cells irradiated in suspension status has higher transfection ratio as well as viability than those irradiated in attachment status with the same intensity and that the transfected cells of attachment status experiment are highly concentrated near the center of the well.

  20. Exploring the Correlation Between Lipid Packaging in Lipoplexes and Their Transfection Efficacy

    Science.gov (United States)

    Moghaddam, Behfar; McNeil, Sarah E.; Zheng, Qinguo; Mohammed, Afzal R.; Perrie, Yvonne

    2011-01-01

    Whilst there is a large body of evidence looking at the design of cationic liposomes as transfection agents, correlates of formulation to function remain elusive. In this research, we investigate if lipid packaging can give further insights into transfection efficacy. DNA lipoplexes composed of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) or 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE) in combination with 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) or 1,2-stearoyl-3-trimethylammonium-propane (DSTAP) were prepared by the lipid hydration method. Each of the formulations was prepared by hydration in dH2O or phosphate buffer saline (PBS) to investigate the effect of buffer salts on lipoplex physicochemical characteristics and in vitro transfection. In addition, Langmuir monolayer studies were performed to investigate any possible correlation between lipid packaging and liposome attributes. Using PBS, rather than dH2O, to prepare the lipoplexes increased the size of vesicles in most of formulations and resulted in variation in transfection efficacies. However, one combination of lipids (DSPE:DOTAP) could not form liposomes in PBS, whilst the DSPE:DSTAP combination could not form liposomes in either aqueous media. Monolayer studies demonstrated saturated lipid combinations offered dramatically closer molecular packing compared to the other combinations which could suggest why this lipid combination could not form vesicles. Of the lipoplexes prepared, those formulated with DSTAP showed higher transfection efficacy, however, the effect of buffer on transfection efficiency was formulation dependent. PMID:24309311

  1. siRNA transfection in larvae of the barnacle Amphibalanus amphitrite

    KAUST Repository

    Zhang, G.

    2015-06-25

    RNA interference (RNAi) provides an efficient and specific technique for functional genomic studies. Yet, no successful application of RNAi has been reported in barnacles. In this study, siRNA against p38 MAPK was synthesized and then transfected into A. amphitrite larvae at either the nauplius or cyprid stage, or at both stages. Effects of siRNA transfection on the p38 MAPK level were hardly detectable in the cyprids when they were transfected at the nauplius stage. In contrast, larvae that were transfected at the cyprid stage showed lower levels of p38 MAPK than the blank and reagent controls. However, significantly decreased levels of phosphorylated p38 MAPK (pp38 MAPK) and reduced settlement rates were observed only in ‘double transfections’, in which larvae were exposed to siRNA solution at both the nauplius and cyprid stages. A relatively longer transfection time and more larval cells directly exposed to siRNA might explain the higher efficiency of double transfection experiments.

  2. Isolation of a XP-A cell clone with intermediate UV sensitivity following transfection with genomic mouse DNA. Isolation and characterization of transfected sequences

    International Nuclear Information System (INIS)

    Blum, M.

    1987-04-01

    The work presented here describes an attempt to restore repair proficiency in xp cells of the most UV sensitive complementation group A by DNA mediated gene transfer. The transfection conditions employed for the cell line used here (XP12Rotk - 1) have been optimized. (orig./MG) [de

  3. Stability of Structured Kaposi's Sarcoma-Associated Herpesvirus ORF57 Protein Is Regulated by Protein Phosphorylation and Homodimerization

    Science.gov (United States)

    Majerciak, Vladimir; Pripuzova, Natalia; Chan, Calvin; Temkin, Nicholas; Specht, Suzanne I.

    2015-01-01

    ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 plays an essential role in KSHV lytic infection by promoting viral gene expression at the posttranscriptional level. Using bioinformatic and biochemical approaches, we determined that ORF57 contains two structurally and functionally distinct domains: a disordered nonstructural N-terminal domain (amino acids [aa] 1 to 152) and a structured α-helix-rich C-terminal domain (aa 153 to 455). The N-terminal domain mediates ORF57 interaction with several RNA-protein complexes essential for ORF57 to function. The N-terminal phosphorylation by cellular casein kinase II (CKII) at S21, T32, and S43, and other cellular kinases at S95 and S97 residues in proximity of the caspase-7 cleavage site, 30-DETD-33, inhibits caspase-7 digestion of ORF57. The structured C-terminal domain mediates homodimerization of ORF57, and the critical region for this function was mapped carefully to α-helices 7 to 9. Introduction of point mutations into α-helix 7 at ORF57 aa 280 to 299, a region highly conserved among ORF57 homologues from other herpesviruses, inhibited ORF57 homodimerization and led to proteasome-mediated degradation of ORF57 protein. Thus, homodimerization of ORF57 via its C terminus prevents ORF57 from degrading and allows two structure-free N termini of the dimerized ORF57 to work coordinately for host factor interactions, leading to productive KSHV lytic infection and pathogenesis. IMPORTANCE KSHV is a human oncogenic virus linked to the development of several malignancies. KSHV-mediated oncogenesis requires both latent and lytic infection. The KSHV ORF57 protein is essential for KSHV lytic replication, as it regulates the expression of viral lytic genes at the posttranscriptional level. This report provides evidence that the structural conformation of the ORF57 protein plays a critical role in regulation of ORF57 stability. Phosphorylation by CKII on the identified serine/threonine residues at the N

  4. The Synergistic Effect between Electrical and Chemical Factors in Plasma Gene/Molecule-Transfection

    Science.gov (United States)

    Jinno, Masafumi

    2016-09-01

    This study has been done to know what kind of factors in plasma and processes on cells promote plasma gene/molecule transfection. We have discovered a new plasma source using a microcapillary electrode which enables high transfection efficiency and high cell survivability simultaneously. However, the mechanism of the transfection by plasma was not clear. To clarify the transfection mechanisms by micro plasma, we focused on the effects of electrical (current, charge, field, etc.) and chemical (radicals, RONS, etc.) factors generated by the micro plasma and evaluated the contribution weight of three groups of the effects and processes, i.e. electrical, chemical and biochemical ones. At first, the necessity of the electrical factors was estimated by the laser produced plasma (LPP). Mouse L-929 fibroblast cell was cultured on a 96-well plate or 12-well micro slide chamber. Plasmids pCX-EGFP in Tris-EDTA buffer was dropped on the cells and they were exposed to the capillary discharge plasma (CDP) or the LPP. In the case of the CDP, the plasma was generated between the tip of the capillary electrode and the cells so that both electrical and chemical factors were supplied to the cells. In this setup, about 20% of average transfection efficiency was obtained. In the case of the LPP, the plasma was generated apart from the cells so that electrical factors were not supplied to the cells. In this setup, no transfection was observed. These results show that the electrical factors are necessary for the plasma gene transfection. Next, the necessity of the chemical factors was estimated the effect of catalase to remove H2O2 in CDP. The transfection efficiency decreased to 0.4 by scavenging H2O2 with catalase. However, only the solution of H2O2 caused no gene transfection in cells. These results shows that H2O2 is important species to cause gene/molecule transfection but still needs a synergistic effect with electrical or other chemical factors. This work was partly supported by

  5. Helios(®) Gene Gun-Mediated Transfection of the Inner Ear Sensory Epithelium: Recent Updates.

    Science.gov (United States)

    Belyantseva, Inna A

    2016-01-01

    The transfection of vertebrate inner ear hair cells has proven to be challenging. Therefore, many laboratories attempt to use and improve different transfection methods. Each method has its own advantages and disadvantages. A particular researcher's skills in addition to available equipment and the type of experiment (in vivo or in vitro) likely determine the transfection method of choice. Biolistic delivery of exogenous DNA, mRNA, or siRNA, also known as Helios(®) Gene Gun-mediated transfection, uses the mechanical energy of compressed helium gas to bombard tissue with micron- or submicron-sized DNA or RNA-coated gold particles, which can penetrate and transfect cells in vitro or in vivo. Helios(®) Gene Gun-mediated transfection has several advantages: (1) it is simple enough to learn in a short time; (2) it is designed to overcome cell barriers even as tough as plant cell membrane or stratum corneum in the epidermis; (3) it can transfect cells deep inside a tissue such as specific neurons within a brain slice; (4) it can accommodate mRNA, siRNA, or DNA practically of any size to be delivered; and (5) it works well with various cell types including non-dividing, terminally differentiated cells that are difficult to transfect, such as neurons or mammalian inner ear sensory hair cells. The latter advantage is particularly important for inner ear research. The disadvantages of this method are: (1) low efficiency of transfection due to many variables that have to be adjusted and (2) potential mechanical damage of the tissue if the biolistic shot parameters are not optimal. This chapter provides a step-by-step protocol and critical evaluation of the Bio-Rad Helios(®) Gene Gun transfection method used to deliver green fluorescent protein (GFP)-tagged full-length cDNAs of myosin 15a, whirlin, β-actin, and Clic5 into rodent hair cells of the postnatal inner ear sensory epithelia in culture.

  6. Subcelluar localization of orf126 of Bombyx mori nucleopolyhedrovirus

    African Journals Online (AJOL)

    Jane

    2011-08-15

    Aug 15, 2011 ... The plasmids containing the different subtypes of orf126-egfp fusion gene were constructed to study the ... Localization of the SX126 and GD126 EGFP-fusion proteins in BmN cells with or without virus ... with BmBacJS13-ph at 12 h p.t., the nuclear DNAs of the cells were stained with Hoechst and were ...

  7. Conserved-peptide upstream open reading frames (CPuORFs are associated with regulatory genes in angiosperms

    Directory of Open Access Journals (Sweden)

    Richard A Jorgensen

    2012-08-01

    Full Text Available Upstream open reading frames (uORFs are common in eukaryotic transcripts, but those that encode conserved peptides (CPuORFs occur in less than 1% of transcripts. The peptides encoded by three plant CPuORF families are known to control translation of the downstream ORF in response to a small signal molecule (sucrose, polyamines and phosphocholine. In flowering plants, transcription factors are statistically over-represented among genes that possess CPuORFs, and in general it appeared that many CPuORF genes also had other regulatory functions, though the significance of this suggestion was uncertain (Hayden and Jorgensen, 2007. Five years later the literature provides much more information on the functions of many CPuORF genes. Here we reassess the functions of 27 known CPuORF gene families and find that 22 of these families play a variety of different regulatory roles, from transcriptional control to protein turnover, and from small signal molecules to signal transduction kinases. Clearly then, there is indeed a strong association of CPuORFs with regulatory genes. In addition, 16 of these families play key roles in a variety of different biological processes. Most strikingly, the core sucrose response network includes three different CPuORFs, creating the potential for sophisticated balancing of the network in response to three different molecular inputs. We propose that the function of most CPuORFs is to modulate translation of a downstream major ORF (mORF in response to a signal molecule recognized by the conserved peptide and that because the mORFs of CPuORF genes generally encode regulatory proteins, many of them centrally important in the biology of plants, CPuORFs play key roles in balancing such regulatory networks.

  8. A family of cationic polyamides for in vitro and in vivo gene transfection.

    Science.gov (United States)

    Zhang, Chengnan; Jin, Rong; Zhao, Peng; Lin, Chao

    2015-08-01

    The purpose of this study is to develop biodegradable cationic polyamides for non-viral gene delivery and elucidate their structural effects on gene transfection activity. To this end, a group of novel cationic polyamides were synthesized by polycondensation reaction between different di-p-nitrophenyl esters and tertiary amine-containing primary diamines. These linear polyamides have flexible alkylene group (ethylene or propylene), protonable amino group and bioreducible disulfide linkage in the polyamide main chain. The alkylene group and disulfide linkage in these polyamides have a distinct effect on their gene delivery properties including buffering capacity, gene binding ability and intracellular gene release profile. Those cationic polyamides containing disulfide linkage and 1,4-bis(3-aminopropyl)piperazine (BAP) residue exhibited high buffering capacity (endosomal escape ability), high gene binding ability, and intracellular gene release ability, thus inducing fast gene nucleus translocation and robust gene transfection in vitro against different cell lines and rat bone marrow mesenchymal stem cells. Moreover, the transfection efficiencies in vitro were comparable or higher than those of 25 kDa branched polyethylenimine and Lipofectamine 2000 transfection agent as positive controls. These cationic polyamides and their polyplexes were of low cytotoxicity when an optimal transfection efficacy was achieved. In vivo transfection tests showed that bioreducible BAP-based polyamides were applicable for intravenous gene delivery in a mouse model, leading to higher level of transgene expression in the liver as compared to 22 kDa linear polyethylenimine as a positive control. These cationic polyamides provide a useful platform to elucidate the relationship between chemical functionalities and gene transfection activity. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Combining polyethylenimine and Fe(III) for mediating pDNA transfection.

    Science.gov (United States)

    Jorge, Andreia F; Röder, Ruth; Kos, Petra; Dias, Rita S; Wagner, Ernst; Pais, Alberto A C C

    2015-06-01

    The potential use of Fe(III) ions in biomedical applications may predict the interest of its combination with pDNA-PEI polyplexes. The present work aims at assessing the impact of this metal on pDNA complex properties. Variations in the formation of complexes were imposed by using two types of biological buffers at different salt conditions. The incorporation of pDNA in complexes was characterised by gel electrophoresis and dynamic light scattering. Transfection efficiency and cytotoxicity were evaluated in HeLa and HUH-7 cell lines, supported by flow cytometry assays. Fe(III) enhances pDNA incorporation in the complex, irrespective of the buffer used. Transfection studies reveal that the addition of Fe(III) to complexes at low ionic strength reduces gene transfection, while those prepared under high salt content do not affect or, in a specific case, increase gene transfection up to 5 times. This increase may be a consequence of a favoured interaction of polyplexes with cell membrane and uptake. At low salt conditions, results attained with chloroquine indicate that the metal may inhibit polyplex endosomal escape. A reduction on the amount of PEI (N/P 5) formed at intermediary ionic strength, complemented by Fe(III), reduces the size of complexes while maintaining a transfection efficiency similar to that obtained to N/P 6. Fe(III) emerges as a good supporting condensing agent to modulate pDNA-PEI properties, including condensation, size and cytotoxicity, without a large penalty on gene transfection. This study highlights important aspects that govern pDNA transfection and elucidates the benefits of incorporating the versatile Fe(III) in a gene delivery system. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Gold nanoparticle mediated laser transfection for efficient siRNA mediated gene knock down.

    Directory of Open Access Journals (Sweden)

    Dag Heinemann

    Full Text Available Laser based transfection methods have proven to be an efficient and gentle alternative to established molecule delivery methods like lipofection or electroporation. Among the laser based methods, gold nanoparticle mediated laser transfection bears the major advantage of high throughput and easy usability. This approach uses plasmon resonances on gold nanoparticles unspecifically attached to the cell membrane to evoke transient and spatially defined cell membrane permeabilization. In this study, we explore the parameter regime for gold nanoparticle mediated laser transfection for the delivery of molecules into cell lines and prove its suitability for siRNA mediated gene knock down. The developed setup allows easy usage and safe laser operation in a normal lab environment. We applied a 532 nm Nd:YAG microchip laser emitting 850 ps pulses at a repetition rate of 20.25 kHz. Scanning velocities of the laser spot over the sample of up to 200 mm/s were tested without a decline in perforation efficiency. This velocity leads to a process speed of ∼8 s per well of a 96 well plate. The optimal particle density was determined to be ∼6 particles per cell using environmental scanning electron microscopy. Applying the optimized parameters transfection efficiencies of 88% were achieved in canine pleomorphic adenoma ZMTH3 cells using a fluorescent labeled siRNA while maintaining a high cell viability of >90%. Gene knock down of d2-EGFP was demonstrated and validated by fluorescence repression and western blot analysis. On basis of our findings and established mathematical models we suppose a mixed transfection mechanism consisting of thermal and multiphoton near field effects. Our findings emphasize that gold nanoparticle mediated laser transfection provides an excellent tool for molecular delivery for both, high throughput purposes and the transfection of sensitive cells types.

  11. Gold Nanoparticle Mediated Laser Transfection for Efficient siRNA Mediated Gene Knock Down

    Science.gov (United States)

    Heinemann, Dag; Schomaker, Markus; Kalies, Stefan; Schieck, Maximilian; Carlson, Regina; Escobar, Hugo Murua; Ripken, Tammo; Meyer, Heiko; Heisterkamp, Alexander

    2013-01-01

    Laser based transfection methods have proven to be an efficient and gentle alternative to established molecule delivery methods like lipofection or electroporation. Among the laser based methods, gold nanoparticle mediated laser transfection bears the major advantage of high throughput and easy usability. This approach uses plasmon resonances on gold nanoparticles unspecifically attached to the cell membrane to evoke transient and spatially defined cell membrane permeabilization. In this study, we explore the parameter regime for gold nanoparticle mediated laser transfection for the delivery of molecules into cell lines and prove its suitability for siRNA mediated gene knock down. The developed setup allows easy usage and safe laser operation in a normal lab environment. We applied a 532 nm Nd:YAG microchip laser emitting 850 ps pulses at a repetition rate of 20.25 kHz. Scanning velocities of the laser spot over the sample of up to 200 mm/s were tested without a decline in perforation efficiency. This velocity leads to a process speed of ∼8 s per well of a 96 well plate. The optimal particle density was determined to be ∼6 particles per cell using environmental scanning electron microscopy. Applying the optimized parameters transfection efficiencies of 88% were achieved in canine pleomorphic adenoma ZMTH3 cells using a fluorescent labeled siRNA while maintaining a high cell viability of >90%. Gene knock down of d2-EGFP was demonstrated and validated by fluorescence repression and western blot analysis. On basis of our findings and established mathematical models we suppose a mixed transfection mechanism consisting of thermal and multiphoton near field effects. Our findings emphasize that gold nanoparticle mediated laser transfection provides an excellent tool for molecular delivery for both, high throughput purposes and the transfection of sensitive cells types. PMID:23536802

  12. Preparation, characterization, and efficient transfection of cationic liposomes and nanomagnetic cationic liposomes

    Directory of Open Access Journals (Sweden)

    Samadikhah HR

    2011-10-01

    Full Text Available Hamid Reza Samadikhah1,*, Asia Majidi2,*, Maryam Nikkhah2, Saman Hosseinkhani11Department of Biochemistry, 2Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran *These authors contributed equally to this work Purpose: Cationic liposomes (CLs are composed of phospholipid bilayers. One of the most important applications of these particles is in drug and gene delivery. However, using CLs to deliver therapeutic nucleic acids and drugs to target organs has some problems, including low transfection efficiency in vivo. The aim of this study was to develop novel CLs containing magnetite to overcome the deficiencies. Patients and methods: CLs and magnetic cationic liposomes (MCLs were prepared using the freeze-dried empty liposome method. Luciferase-harboring vectors (pGL3 were transferred into liposomes and the transfection efficiencies were determined by luciferase assay. Firefly luciferase is one of most popular reporter genes often used to measure the efficiency of gene transfer in vivo and in vitro. Different formulations of liposomes have been used for delivery of different kinds of gene reporters. Lipoplex (liposome–plasmid DNA complexes formation was monitored by gel retardation assay. Size and charge of lipoplexes were determined using particle size analysis. Chinese hamster ovary cells were transfected by lipoplexes (liposome-pGL3; transfection efficiency and gene expression level was evaluated by luciferase assay. Results: High transfection efficiency of plasmid by CLs and novel nanomagnetic CLs was achieved. Moreover, lipoplexes showed less cytotoxicity than polyethyleneimine and Lipofectamine™. Conclusion: Novel liposome compositions (1,2-dipalmitoyl-sn-glycero-3-phosphocholine [DPPC]/dioctadecyldimethylammonium bromide [DOAB] and DPPC/cholesterol/DOAB with high transfection efficiency can be useful in gene delivery in vitro. MCLs can also be used for targeted gene delivery, due to

  13. Mutations in C5ORF42 cause Joubert syndrome in the French Canadian population.

    Science.gov (United States)

    Srour, Myriam; Schwartzentruber, Jeremy; Hamdan, Fadi F; Ospina, Luis H; Patry, Lysanne; Labuda, Damian; Massicotte, Christine; Dobrzeniecka, Sylvia; Capo-Chichi, José-Mario; Papillon-Cavanagh, Simon; Samuels, Mark E; Boycott, Kym M; Shevell, Michael I; Laframboise, Rachel; Désilets, Valérie; Maranda, Bruno; Rouleau, Guy A; Majewski, Jacek; Michaud, Jacques L

    2012-04-06

    Joubert syndrome (JBTS) is an autosomal-recessive disorder characterized by a distinctive mid-hindbrain malformation, developmental delay with hypotonia, ocular-motor apraxia, and breathing abnormalities. Although JBTS was first described more than 40 years ago in French Canadian siblings, the causal mutations have not yet been identified in this family nor in most French Canadian individuals subsequently described. We ascertained a cluster of 16 JBTS-affected individuals from 11 families living in the Lower St. Lawrence region. SNP genotyping excluded the presence of a common homozygous mutation that would explain the clustering of these individuals. Exome sequencing performed on 15 subjects showed that nine affected individuals from seven families (including the original JBTS family) carried rare compound-heterozygous mutations in C5ORF42. Two missense variants (c.4006C>T [p.Arg1336Trp] and c.4690G>A [p.Ala1564Thr]) and a splicing mutation (c.7400+1G>A), which causes exon skipping, were found in multiple subjects that were not known to be related, whereas three other truncating mutations (c.6407del [p.Pro2136Hisfs*31], c.4804C>T [p.Arg1602*], and c.7477C>T [p.Arg2493*]) were identified in single individuals. None of the unaffected first-degree relatives were compound heterozygous for these mutations. Moreover, none of the six putative mutations were detected among 477 French Canadian controls. Our data suggest that mutations in C5ORF42 explain a large portion of French Canadian individuals with JBTS. Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  14. Polyplex micelles with thermoresponsive heterogeneous coronas for prolonged blood retention and promoted gene transfection.

    Science.gov (United States)

    Li, Yang; Li, Junjie; Chen, Biao; Chen, Qixian; Zhang, Guoying; Liu, Shiyong; Ge, Zhishen

    2014-08-11

    Adequate retention in blood circulation is a prerequisite for construction of gene delivery carriers for systemic applications. The stability of gene carriers in the bloodstream requires them to effectively resist protein adsorption and maintain small size in the bloodstream avoiding dissociation, aggregation, and nuclease digestion under salty and proteinous medium. Herein, a mixture of two block catiomers consisting of the same cationic block, poly{N-[N-(2-aminoethyl)-2-aminoethyl]aspartamide} (PAsp(DET)), but varying shell-forming blocks, poly[2-(2-methoxyethoxy) ethyl methacrylate] (PMEO2MA), and poly[oligo(ethylene glycol) methyl ether methacrylate] (POEGMA), was used to complex with plasmid DNA (pDNA) to fabricate polyplex micelles with mixed shells (MPMs) at 20 °C. The thermoresponsive property of PMEO2MA allows distinct phase transition from hydrophilic to hydrophobic by increasing incubation temperature from 20 to 37 °C, which results in a distinct heterogeneous corona containing hydrophilic and hydrophobic regions at the surface of the MPMs. Subsequent study verified that this transition promoted further condensation of pDNA, thereby giving rise to improved complex and colloidal stability. The proposed system has shown remarkable stability in salty and proteinous solution and superior tolerance to nuclease degradation. As compared with polyplex micelles formed from single POEGMA-b-PAsp(DET) block copolymer, in vivo circulation experiments in the bloodstream further confirmed that the retention time of MPMs was prolonged significantly. Moreover, the proposed system exhibited remarkably high cell transfection activity especially at low N/P ratios and negligible cytotoxicity and thus portends promising utility for systemic gene therapy applications.

  15. Cationic, amphiphilic copolymer micelles as nucleic acid carriers for enhanced transfection in rat spinal cord.

    Science.gov (United States)

    Gwak, So-Jung; Nice, Justin; Zhang, Jeremy; Green, Benjamin; Macks, Christian; Bae, Sooneon; Webb, Ken; Lee, Jeoung Soo

    2016-04-15

    Spinal cord injury commonly leads to permanent motor and sensory deficits due to the limited regenerative capacity of the adult central nervous system (CNS). Nucleic acid-based therapy is a promising strategy to deliver bioactive molecules capable of promoting axonal regeneration. Branched polyethylenimine (bPEI: 25kDa) is one of the most widely studied nonviral vectors, but its clinical application has been limited due to its cytotoxicity and low transfection efficiency in the presence of serum proteins. In this study, we synthesized cationic amphiphilic copolymers, poly (lactide-co-glycolide)-graft-polyethylenimine (PgP), by grafting low molecular weight PLGA (4kDa) to bPEI (25kDa) at approximately a 3:1 ratio as an efficient nonviral vector. We show that PgP micelle is capable of efficiently transfecting plasmid DNA (pDNA) and siRNA in the presence of 10% serum in neuroglioma (C6) cells, neuroblastoma (B35) cells, and primary E8 chick forebrain neurons (CFN) with pDNA transfection efficiencies of 58.8%, 75.1%, and 8.1%, respectively. We also show that PgP provides high-level transgene expression in the rat spinal cord in vivo that is substantially greater than that attained with bPEI. The combination of improved transfection and reduced cytotoxicity in vitro in the presence of serum and in vivo transfection of neural cells relative to conventional bPEI suggests that PgP may be a promising nonviral vector for therapeutic nucleic acid delivery for neural regeneration. Gene therapy is a promising strategy to overcome barriers to axonal regeneration in the injured central nervous system. Branched polyethylenimine (bPEI: 25kDa) is one of the most widely studied nonviral vectors, but its clinical application has been limited due to cytotoxicity and low transfection efficiency in the presence of serum proteins. Here, we report cationic amphiphilic copolymers, poly (lactide-co-glycolide)-graft-polyethylenimine (PgP) that are capable of efficiently transfecting reporter

  16. Hydrophobic modification of low molecular weight polyethylenimine for improved gene transfection.

    Science.gov (United States)

    Teo, Pei Yun; Yang, Chuan; Hedrick, James L; Engler, Amanda C; Coady, Daniel J; Ghaem-Maghami, Sadaf; George, Andrew J T; Yang, Yi Yan

    2013-10-01

    Hydrophobic modification of low molecular weight (LMW) polyethylenimine (PEI) is known to increase gene transfection efficiency of LMW PEI. However, few studies have explored how the conjugated hydrophobic groups influence the properties of the modified LMW PEI mainly due to difficulties in obtaining well defined final product compositions and limitations in current chemical synthesis routes. The aim of this study was to modify LMW PEI (Mn 1.8 kDa, PEI-1.8) judiciously with different hydrophobic functional groups and to investigate how hydrophobicity, molecular structure and inclusion of hydrogen bonding properties in the conjugated side groups as well as the conjugation degree (number of primary amine groups of PEI-1.8 modified with hydrophobic groups) influence PEI-1.8 gene transfection efficiency. The modified polymers were characterized for DNA binding ability, particle size, zeta potential, in vitro gene transfection efficiency and cytotoxicity in SKOV-3 human ovarian cancer and HepG2 human liver carcinoma cell lines. The study shows that modified PEI-1.8 polymers are able to condense plasmid DNA into cationic nanoparticles, of sizes ~100 nm, whereas unmodified polymer/DNA complexes display larger particle sizes of 2 μm. Hydrophobic modification also increases the zeta potential of polymer/DNA complexes. Importantly, modified PEI-1.8 shows enhanced transfection efficiency over the unmodified counterpart. Higher transfection efficiency is obtained when PEI-1.8 is modified with shorter hydrophobic groups (MTC-ethyl) as opposed to longer ones (MTC-octyl and MTC-deodecyl). An aromatic structured functional group (MTC-benzyl) also enhances transfection efficiency more than an alkyl functional group (MTC-octyl). An added hydrogen-bonding urea group in the conjugated functional group (MTC-urea) does not enhance transfection efficiency over one without urea (MTC-benzyl). The study also demonstrates that modification degree greatly influences gene transfection, and

  17. Transfection of brain capillary endothelial cells in primary culture with defined blood-brain barrier properties.

    Science.gov (United States)

    Burkhart, Annette; Thomsen, Louiza Bohn; Thomsen, Maj Schneider; Lichota, Jacek; Fazakas, Csilla; Krizbai, István; Moos, Torben

    2015-08-07

    Primary brain capillary endothelial cells (BCECs) are a promising tool to study the blood-brain barrier (BBB) in vitro, as they maintain many important characteristics of the BBB in vivo, especially when co-cultured with pericytes and/or astrocytes. A novel strategy for drug delivery to the brain is to transform BCECs into protein factories by genetic modifications leading to secretion of otherwise BBB impermeable proteins into the central nervous system. However, a huge challenge underlying this strategy is to enable transfection of non-mitotic BCECs, taking a non-viral approach. We therefore aimed to study transfection in primary, non-mitotic BCECs cultured with defined BBB properties without disrupting the cells' integrity. Primary cultures of BCECs, pericytes and astrocytes were generated from rat brains and used in three different in vitro BBB experimental arrangements, which were characterised based on a their expression of tight junction proteins and other BBB specific proteins, high trans-endothelial electrical resistance (TEER), and low passive permeability to radiolabeled mannitol. Recombinant gene expression and protein synthesis were examined in primary BCECs. The BCECs were transfected using a commercially available transfection agent Turbofect™ to express the red fluorescent protein HcRed1-C1. The BCECs were transfected at different time points to monitor transfection in relation to mitotic or non-mitotic cells, as indicated by fluorescence-activated cell sorting analysis after 5-and 6-carboxylfluorescein diacetate succinidyl ester incorporation. The cell cultures exhibited important BBB characteristics judged from their expression of BBB specific proteins, high TEER values, and low passive permeability. Among the three in vitro BBB models, co-culturing with BCECs and astrocytes was well suited for the transfection studies. Transfection was independent of cell division and with equal efficacy between the mitotic and non-mitotic BCECs. Importantly

  18. Chitosan-graft-branched polyethylenimine copolymers: influence of degree of grafting on transfection behavior.

    Directory of Open Access Journals (Sweden)

    Daniele Pezzoli

    Full Text Available BACKGROUND: Successful non-viral gene delivery currently requires compromises to achieve useful transfection levels while minimizing toxicity. Despite high molecular weight (MW branched polyethylenimine (bPEI is considered the gold standard polymeric transfectant, it suffers from high cytotoxicity. Inversely, its low MW counterpart is less toxic and effective in transfection. Moreover, chitosan is a highly biocompatible and biodegradable polymer but characterized by very low transfection efficiency. In this scenario, a straightforward approach widely exploited to develop effective transfectants relies on the synthesis of chitosan-graft-low MW bPEIs (Chi-g-bPEI(x but, despite the vast amount of work that has been done in developing promising polymeric assemblies, the possible influence of the degree of grafting on the overall behavior of copolymers for gene delivery has been largely overlooked. METHODOLOGY/PRINCIPAL FINDINGS: With the aim of providing a comprehensive evaluation of the pivotal role of the degree of grafting in modulating the overall transfection effectiveness of copolymeric vectors, we have synthesized seven Chi-g-bPEI(x derivatives with a variable amount of bPEI grafts (minimum: 0.6%; maximum: 8.8%. Along the Chi-g-bPEI(x series, the higher the degree of grafting, the greater the ζ-potential and the cytotoxicity of the resulting polyplexes. Most important, in all cell lines tested the intermediate degree of grafting of 2.7% conferred low cytotoxicity and higher transfection efficiency compared to other Chi-g-bPEI(x copolymers. We emphasize that, in transfection experiments carried out in primary articular chondrocytes, Chi-g-bPEI(2.7% was as effective as and less cytotoxic than the gold standard 25 kDa bPEI. CONCLUSIONS/SIGNIFICANCE: This work underlines for the first time the pivotal role of the degree of grafting in modulating the overall transfection effectiveness of Chi-g-bPEI(x copolymers. Crucially, we have demonstrated

  19. Chitosan-graft-branched polyethylenimine copolymers: influence of degree of grafting on transfection behavior.

    Science.gov (United States)

    Pezzoli, Daniele; Olimpieri, Francesca; Malloggi, Chiara; Bertini, Sabrina; Volonterio, Alessandro; Candiani, Gabriele

    2012-01-01

    Successful non-viral gene delivery currently requires compromises to achieve useful transfection levels while minimizing toxicity. Despite high molecular weight (MW) branched polyethylenimine (bPEI) is considered the gold standard polymeric transfectant, it suffers from high cytotoxicity. Inversely, its low MW counterpart is less toxic and effective in transfection. Moreover, chitosan is a highly biocompatible and biodegradable polymer but characterized by very low transfection efficiency. In this scenario, a straightforward approach widely exploited to develop effective transfectants relies on the synthesis of chitosan-graft-low MW bPEIs (Chi-g-bPEI(x)) but, despite the vast amount of work that has been done in developing promising polymeric assemblies, the possible influence of the degree of grafting on the overall behavior of copolymers for gene delivery has been largely overlooked. With the aim of providing a comprehensive evaluation of the pivotal role of the degree of grafting in modulating the overall transfection effectiveness of copolymeric vectors, we have synthesized seven Chi-g-bPEI(x) derivatives with a variable amount of bPEI grafts (minimum: 0.6%; maximum: 8.8%). Along the Chi-g-bPEI(x) series, the higher the degree of grafting, the greater the ζ-potential and the cytotoxicity of the resulting polyplexes. Most important, in all cell lines tested the intermediate degree of grafting of 2.7% conferred low cytotoxicity and higher transfection efficiency compared to other Chi-g-bPEI(x) copolymers. We emphasize that, in transfection experiments carried out in primary articular chondrocytes, Chi-g-bPEI(2.7%) was as effective as and less cytotoxic than the gold standard 25 kDa bPEI. This work underlines for the first time the pivotal role of the degree of grafting in modulating the overall transfection effectiveness of Chi-g-bPEI(x) copolymers. Crucially, we have demonstrated that, along the copolymer series, the fine tuning of the degree of grafting

  20. ORF Sequence: Ca19AnnotatedDec2004aaSeq [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available Ca19AnnotatedDec2004aaSeq orf19.6996 >orf19.6996; Contig19-2500; 87694..89670; MNT44*; alpha-1,3- mann...osyltransferase involved in adding the 4th and 5th mannose residues of O-linked glycans;

  1. ORF Sequence: Ca19AnnotatedDec2004aaSeq [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available Ca19AnnotatedDec2004aaSeq orf19.7450 >orf19.7450; Contig19-2514; 103272..104363; B...NI5*; may localize to mother-bud neck in a septin-dependent manner | similar to mammalian homer porteins; MP

  2. ORF Sequence: Ca19AnnotatedDec2004aaSeq [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available Ca19AnnotatedDec2004aaSeq orf19.3622 >orf19.3622; Contig19-10184; complement(58884..60170); ANP1*; mann...an 8 | Golgi mannosyltransferase required for protein glycosylation; MFYSLRTLIISIVIGIIT

  3. ORF Sequence: Ca19AnnotatedDec2004aaSeq [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available Ca19AnnotatedDec2004aaSeq orf19.6778 >orf19.6778; Contig19-10254; complement(10843...2..112394); DRS2*; membrane-spanning Ca-ATPase (P- type); gene family MSNYNRTDNSKSNANPNPNANPNNPFSDNANNLIDLDL

  4. ORF Sequence: Ca19AnnotatedDec2004aaSeq [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available Ca19AnnotatedDec2004aaSeq orf19.1665 >orf19.1665; Contig19-10123; 125727..127022; ...KTR1*(KRE2); alpha-1,2-mannosyltransferase involved in n-linked and o-linked glycosylation; MASTRSNARLIRFGIF

  5. ORF Sequence: Ca19AnnotatedDec2004aaSeq [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available Ca19AnnotatedDec2004aaSeq orf19.4442 >orf19.4442; Contig19-10205; 58921..60603; ALG9*; mann...osyltransferase that catalyzes the transfer of mannose from Dol-P-Man to lipid-linked oligosacchari

  6. ORF Sequence: Ca19AnnotatedDec2004aaSeq [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available Ca19AnnotatedDec2004aaSeq orf19.1042 >orf19.1042; Contig19-10087; complement(35388.....36236); POR1*(OMP2); porin|voltage-dependent anion channel(VDAC); MAPAAYSDLSKASNDLINKDFYHLSTAAVDVKTVAPNGVT

  7. ORF Sequence: Ca19AnnotatedDec2004aaSeq [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available Ca19AnnotatedDec2004aaSeq orf19.3734 >orf19.3734; Contig19-10190; 27973..30552; ; ...voltage-gated protein/chloride channel involved in intracellular iron metabolism; gene family MRSRFFGKVHDTFI

  8. ORF Sequence: Ca19AnnotatedDec2004aaSeq [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available Ca19AnnotatedDec2004aaSeq orf19.4874 >orf19.4874; Contig19-10215; complement(31986...2..321682); MNN3*; type II Golgi membrane protein | alpha-1, 2- mannosyltransferase; gene family MSINFLSIPRN

  9. Structural and functional brain signatures of C9orf72 in motor neuron disease.

    Science.gov (United States)

    Agosta, Federica; Ferraro, Pilar M; Riva, Nilo; Spinelli, Edoardo Gioele; Domi, Teuta; Carrera, Paola; Copetti, Massimiliano; Falzone, Yuri; Ferrari, Maurizio; Lunetta, Christian; Comi, Giancarlo; Falini, Andrea; Quattrini, Angelo; Filippi, Massimo

    2017-09-01

    This study investigated structural and functional magnetic resonance imaging abnormalities in hexanucleotide repeat expansion in chromosome 9 open reading frame 72 (C9orf72) motor neuron disease (MND) relative to disease severity-matched sporadic MND cases. We enrolled 19 C9orf72 and 67 disease severity-matched sporadic MND patients, and 22 controls. Sporadic cases were grouped in patients with: no cognitive/behavioral deficits (sporadic-motor); same patterns of cognitive/behavioral impairment as C9orf72 cases (sporadic-cognitive); shorter disease duration versus other sporadic groups (sporadic-early). C9orf72 patients showed cerebellar and thalamic atrophy versus all sporadic cases. All MND patients showed motor, frontal, and temporoparietal cortical thinning and motor and extramotor white matter damage versus controls, independent of genotype and presence of cognitive impairment. Compared with sporadic-early, C9orf72 patients revealed an occipital cortical thinning. C9orf72 patients had enhanced visual network functional connectivity versus sporadic-motor and sporadic-early cases. Structural cerebellar and thalamic damage and posterior cortical alterations are the brain magnetic resonance imaging signatures of C9orf72 MND. Frontotemporal cortical and widespread white matter involvement are likely to be an effect of the disease evolution rather than a C9orf72 marker. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Porcine circovirus type 2 ORF4 protein binds heavy chain ferritin

    Indian Academy of Sciences (India)

    2015-08-13

    Aug 13, 2015 ... bands were visualized by chemiluminescence using an en- hanced ECL western blotting analysis system (Thermo). Detection of cellular protein GAPDH served as an internal control. 2.6 Confocal microscopy. To examine the intracellular distribution of ORF4 and FHC proteins, ORF4 and FTH1 genes were ...

  11. Novel compound heterozygous frameshift mutations of C2orf37 in a ...

    Indian Academy of Sciences (India)

    ganglia, T-wave abnormalities and depressed insulin-like growth factor 1 levels. A mutation in the C2orf37 gene was described as the cause of WSS in 2008 in the Saudi families including the ones originally described by Woodhouse and Sakati (Alazami et al. 2008). Additional mutations in. C2orf37 were also described by ...

  12. Porcine circovirus type 2 ORF4 protein binds heavy chain ferritin

    Indian Academy of Sciences (India)

    associated disease (PCVAD) in swine. ORF4 protein is a newly identified viral protein of PCV2 and is involved in virus-induced apoptosis. However, the molecular mechanisms of ORF4 protein regulation of apoptosis remain unclear, especially given ...

  13. The development of mechanically formed stable nanobubbles intended for sonoporation-mediated gene transfection.

    Science.gov (United States)

    Abdalkader, Rodi; Kawakami, Shigeru; Unga, Johan; Higuchi, Yuriko; Suzuki, Ryo; Maruyama, Kazuo; Yamashita, Fumiyoshi; Hashida, Mitsuru

    2017-11-01

    In this study, stable nano-sized bubbles (nanobubbles [NBs]) were produced using the mechanical agitation method in the presence of perfluorocarbon gases. NBs made with perfluoropropane had a smaller size (around 400 nm) compared to that of those made with perfluorobutane or nitrogen gas. The lipid concentration in NBs affected both their initial size and post-formulation stability. NBs formed with a final lipid concentration of 0.5 mg/ml tended to be more stable, having a uniform size distribution for 24 h at room temperature and 50 h at 4 °C. In vitro gene expression revealed that NBs/pDNA in combination with ultrasound (US) irradiation had significantly higher transfection efficacy in colon C26 cells. Moreover, for in vivo gene transfection in mice left limb muscles, there was notable local transfection activity by NBs/pDNA when combined with US irradiation. In addition, the aged NBs kept at room temperature or 4 °C were still functional at enhancing gene transfection in mice. We succeeded in preparing stable NBs for efficient in vivo gene transfection, using the mechanical agitation method.

  14. Glucocorticoid Cell Priming Enhances Transfection Outcomes in Adult Human Mesenchymal Stem Cells

    Science.gov (United States)

    Kelly, Abby M; Plautz, Sarah A; Zempleni, Janos; Pannier, Angela K

    2016-01-01

    Human mesenchymal stem cells (hMSCs) are one of the most widely researched stem cell types with broad applications from basic research to therapeutics, the majority of which require introduction of exogenous DNA. However, safety and scalability issues hinder viral delivery, while poor efficiency hinders nonviral gene delivery, particularly to hMSCs. Here, we present the use of a pharmacologic agent (glucocorticoid) to overcome barriers to hMSC DNA transfer to enhance transfection using three common nonviral vectors. Glucocorticoid priming significantly enhances transfection in hMSCs, demonstrated by a 3-fold increase in efficiency, 4–15-fold increase in transgene expression, and prolonged transgene expression when compared to transfection without glucocorticoids. These effects are dependent on glucocorticoid receptor binding and caused in part by maintenance of normal metabolic function and increased cellular (5-fold) and nuclear (6–10-fold) DNA uptake over hMSCs transfected without glucocorticoids. Results were consistent across five human donors and in cells up to passage five. Glucocorticoid cell priming is a simple and effective technique to significantly enhance nonviral transfection of hMSCs that should enhance their clinical use, accelerate new research, and decrease reliance on early passage cells. PMID:26478250

  15. Photoenhanced gene transfection by a curcumin loaded CS-g-PZLL micelle.

    Science.gov (United States)

    Lin, Jian-Tao; Pan, Wen-Jia; Zhang, Jun-Ai; Wang, Wei; Zhong, Jia; Su, Jia-Min; Li, Tong; Zou, Ying; Wang, Guan-Hai

    2017-09-01

    The codelivery of drug and gene is a promising method for cancer treatment. In our previous works, we prepared a cationic micelles based on chitosan and poly-(N-3-carbobenzyloxylysine) (CS-g-PZLL), but transfection ratio of CS-g-PZLL to Hela cell was low. Herein, to improve the transfection efficiency of CS-g-PZLL, curcumin was loaded in the CS-g-PZLL micelle. After irradiation, the obtained curcumin loaded micelle showed a better transfection, and the p53 protein expression in Hela cells was higher. The apoptosis assay showed that the complex could induce a more significant apoptosis to Hela cells than that of curcumin or p53 used alone, and the curcumin loaded micelle inducing apoptosis was best after irradiation. Therefore, CS-g-PZLL is a safe and effective carrier for the codelivery of drug/gene, and curcumin could be used as a photosensitizer to induce a photoenhanced gene transfection, which should be encouraged in improving transfection and tumor therapy. Copyright © 2017. Published by Elsevier B.V.

  16. Ultrasound-mediated interferon β gene transfection inhibits growth of malignant melanoma

    International Nuclear Information System (INIS)

    Yamaguchi, Kazuki; Feril, Loreto B.; Tachibana, Katsuro; Takahashi, Akira; Matsuo, Miki; Endo, Hitomi; Harada, Yoshimi; Nakayama, Juichiro

    2011-01-01

    Highlights: → Successful ultrasound-mediated transfection of melanoma (C32) cells with IFN-β genes both in vitro and in vivo. → Ultrasound-mediated IFN-β transfection inhibited proliferation of melanoma cells in vitro. → Ultrasound-mediated IFN-β transfection inhibited melanoma tumor growth in vivo. -- Abstract: We investigated the effects of ultrasound-mediated transfection (sonotransfection) of interferon β (IFN-β) gene on melanoma (C32) both in vitro and in vivo. C32 cells were sonotransfected with IFN-β in vitro. Subcutaneous C32 tumors in mice were sonicated weekly immediately after intra-tumor injection with IFN-β genes mixed with microbubbles. Successful sonotransfection with IFN-β gene in vitro was confirmed by ELISA, which resulted in C32 growth inhibition. In vivo, the growth ratio of tumors transfected with IFN-β gene was significantly lower than the other experimental groups. These results may lead to a new method of treatment against melanoma and other hard-to-treat cancers.

  17. Improved transfection of spleen-derived antigen-presenting cells in culture using TATp-liposomes.

    Science.gov (United States)

    Pappalardo, Juan Sebastián; Quattrocchi, Valeria; Langellotti, Cecilia; Di Giacomo, Sebastián; Gnazzo, Victoria; Olivera, Valeria; Calamante, Gabriela; Zamorano, Patricia I; Levchenko, Tatyana S; Torchilin, Vladimir P

    2009-02-20

    Antigen presenting cells (APC) are among the most important cells of the immune system since they link the innate and the adaptative immune responses, directing the type of immune response to be elicited. To modulate the immune response in immune preventing or treating therapies, gene delivery into immunocompetent cells could be used. However, APC are very resistant to transfection. To increase the efficiency of APC transfection, we have used liposome-based lipoplexes additionally modified with cell-penetrating TAT peptide (TATp) for better intracellular delivery of a model plasmid encoding for the enhanced-green fluorescent protein (pEGFP). pEGFP-bearing lipoplexes made of a mixture of PC:Chol:DOTAP (60:30:10 molar ratio) with the addition of 2% mol of polyethylene glycol-phosphatidylethanolamine (PEG-PE) conjugate (plain-L) or TATp-PEG-PE (TATp-L) were shown to effectively protect the incorporated DNA from degradation. Uptake assays of rhodamine-labeled lipoplexes and transfections with the EGFP reporter gene were performed with APC derived from the mouse spleen. TATp-L-based lipoplexes allowed for significantly enhanced both, the uptake and transfection in APC. Such a tool could be used for the APC transfection as a first step in immune therapy.

  18. Characterization of ORF89 - A latency-related gene of white spot syndrome virus

    International Nuclear Information System (INIS)

    Hossain, M.S.; Khadijah, Siti; Kwang, Jimmy

    2004-01-01

    Open reading frame 89 (ORF89) is one of the three genes that are believed to be involved in the latent infection of white spot syndrome virus (WSSV). Here, we report the structure and functional characterization of ORF89. cDNA sequencing, 5' RLM-RACE, and 3' RLM-RACE showed that ORF89 gene is transcribed into an unspliced mRNA of 4436 nucleotides, which is predicted to encode a protein of 1437 amino acids. ORF89 expressed an approximately 165-kDa protein in Sf9 cells that localized in the nucleus. Amino acids 678-683 were found to be essential for nuclear localization. Cotransfection assays demonstrated that ORF89 protein repressed its own promoter as well as those of a protein kinase and the thymidine-thymidylate kinase genes of WSSV. SYBR Green real-time PCR indicated that the repression occurred at the transcriptional level

  19. Live-cell imaging to compare the transfection and gene silencing efficiency of calcium phosphate nanoparticles and a liposomal transfection agent.

    Science.gov (United States)

    Chernousova, S; Epple, M

    2017-05-01

    The processing of DNA (for transfection) and short interfering RNA (siRNA; for gene silencing), introduced into HeLa cells by triple-shell calcium phosphate nanoparticles, was followed by live-cell imaging. For comparison, the commercial liposomal transfection agent Lipofectamine was used. The cells were incubated with these delivery systems, carrying either enhanced green fluorescent protein (eGFP)-encoding DNA or siRNA against eGFP. In the latter case, HeLa cells that stably expressed eGFP were used. The expression of eGFP started after 5 h in the case of nanoparticles and after 4 h in the case of Lipofectamine. The corresponding times for gene silencing were 5 h (nanoparticles) and immediately after incubation (Lipofectamine). The expression of eGFP was notably enhanced 2-3 h after cell division (mitosis). In general, the transfection and gene silencing efficiencies of the nanoparticles were lower than those of Lipofectamime, even at a substantially higher dose (factor 20) of nucleic acids. However, the cytotoxicity of the nanoparticles was lower than that of Lipofectamine, making them suitable vectors for in vivo application.

  20. KSHV inhibits stress granule formation by viral ORF57 blocking PKR activation.

    Directory of Open Access Journals (Sweden)

    Nishi R Sharma

    2017-10-01

    Full Text Available TIA-1 positive stress granules (SG represent the storage sites of stalled mRNAs and are often associated with the cellular antiviral response. In this report, we provide evidence that Kaposi's sarcoma-associated herpesvirus (KSHV overcomes the host antiviral response by inhibition of SG formation via a viral lytic protein ORF57. By immunofluorescence analysis, we found that B lymphocytes with KSHV lytic infection are refractory to SG induction. KSHV ORF57, an essential post-transcriptional regulator of viral gene expression and the production of new viral progeny, inhibits SG formation induced experimentally by arsenite and poly I:C, but not by heat stress. KSHV ORF37 (vSOX bearing intrinsic endoribonuclease activity also inhibits arsenite-induced SG formation, but KSHV RTA, vIRF-2, ORF45, ORF59 and LANA exert no such function. ORF57 binds both PKR-activating protein (PACT and protein kinase R (PKR through their RNA-binding motifs and prevents PACT-PKR interaction in the PKR pathway which inhibits KSHV production. Consistently, knocking down PKR expression significantly promotes KSHV virion production. ORF57 interacts with PKR to inhibit PKR binding dsRNA and its autophosphorylation, leading to inhibition of eIF2α phosphorylation and SG formation. Homologous protein HSV-1 ICP27, but not EBV EB2, resembles KSHV ORF57 in the ability to block the PKR/eIF2α/SG pathway. In addition, KSHV ORF57 inhibits poly I:C-induced TLR3 phosphorylation. Altogether, our data provide the first evidence that KSHV ORF57 plays a role in modulating PKR/eIF2α/SG axis and enhances virus production during virus lytic infection.

  1. Enhanced transfection efficiency and reduced cytotoxicity of novel lipid-polymer hybrid nanoplexes

    DEFF Research Database (Denmark)

    Jain, Sanyog; Kumar, Sandeep; Agrawal, Ashish Kumar

    2013-01-01

    The present study reports the development, characterization, and evaluation of novel polyelectrolytes stabilized lipoplexes as a nonviral vector for gene delivery. In order to achieve the advantage of both DOTAP (1,2-dioleoyl-3-trimethylammonium propane) and PEI (high transfection efficiency...... size of 242.6 ± 9.4 nm and zeta potential of +23.1 ± 1.5 mV. Following development nanoplexes were evaluated for cellular uptake, nuclear colocalization, transfection efficiency, and cellular toxicity in MCF-7, HeLa, and HEK-293 cell lines. In support of our hypothesis nanoplexes exhibited higher...... uptake and nuclear colocalization in comparison with DOTAP/PC, DOTAP/DOPE lipoplexes, and PEI polyplexes. Nanoplexes also exhibited 50-80, 11-12, 6-7, and 5-6 fold higher transfection efficiency in comparison with DOTAP/PC-lipoplexes, DOTAP/DOPE-lipoplexes, PEI-polyplexes, and lipofectamine, respectively...

  2. Tetracycline-regulated transgene expression in hippocampal neurones following transfection with adenoviral vectors.

    Science.gov (United States)

    Harding, T C; Geddes, B J; Noel, J D; Murphy, D; Uney, J B

    1997-12-01

    A transfer system that enabled the efficient introduction of transgenes into neurones and the quantitative control of the expressed transgene would greatly facilitate studies into neuronal gene function. To develop such a system we incorporated the tetracycline (Tet)-responsive On/Off regulatory elements into type-5 adenoviral (Ad) vectors. Regulation of transgene expression following transfection was measured by placing the enhanced green fluorescent protein (EGFP) gene upstream of the Tet regulatory element. The results showed that cultures of primary hippocampal cells could be transfected with very high efficiency (<70%) by the AdTet-On and AdTet-Off systems. Following transfection with the AdTet-On system no EGFP-fluorescent cells could be detected until doxycycline was added. The AdTet-Off system showed the reverse transcriptional regulation, in that the addition of Tet caused EGFP fluorescence to be abolished.

  3. Purification of DNA for the transfection of a Spodoptera frugiperda cell line.

    Science.gov (United States)

    Slack, Jeffrey M; Lawrence, Susan D

    2002-01-01

    Spodoptera frugiperda (Sf-9) cells have been widely used in baculovirus expression systems, transient gene expression studies and transgenic cell lines. These applications commonly require the transfection of bacterial plasmid DNA. One of the most reliable methods of preparing transfection-quality plasmid DNA is cesium chloride (CsCl) density gradient centrifugation. However, the traditional CsCl DNA purification is a long and laborious process. We have made a series of modifications to the traditional method that makes it faster, safer and easier. In the current study we demonstrate that DNA prepared by our modified CsCl method was also better for the transfection of Sf-9 cells than DNA prepared by the traditional CsCl method.

  4. Colony polymerase chain reaction of stably transfected Trypanosoma cruzi grown on solid medium

    Directory of Open Access Journals (Sweden)

    Wagner G dos Santos

    2000-01-01

    Full Text Available Tools for the genetic manipulation of Trypanosoma cruzi are largely unavailable, although several vectors for transfection of epimastigotes and expression of foreign or recombinant genes have been developed. We have previously constructed several plasmid vectors in which recombinant genes are expressed in T. cruzi using the rRNA promoter. In this report, we demonstrate that one of these vectors can simultaneously mediate expression of neomycin phosphotransferase and green fluorescent protein when used to stably transfect cultured epimastigotes. These stably transfected epimastigotes can be selected and cloned as unique colonies on solid medium. We describe a simple colony PCR approach to the screening of these T. cruzi colonies for relevant genes. Thus, the methodologies outlined herein provide important new tools for the genetic dissection of this important parasite.

  5. Use of cryopreserved transiently transfected cells in high-throughput pregnane X receptor transactivation assay.

    Science.gov (United States)

    Zhu, Zhengrong; Puglisi, Jaime; Connors, David; Stewart, Jeremy; Herbst, John; Marino, Anthony; Sinz, Michael; O'Connell, Jonathan; Banks, Martyn; Dickinson, Kenneth; Cacace, Angela

    2007-03-01

    Cryopreserved, transiently transfected HepG2 cells were compared to freshly transfected HepG2 cells for use in a pregnane X receptor (PXR) transactivation assay. Assay performance was similar for both cell preparations; however, cryopreserved cells demonstrated less interassay variation. Validation with drugs of different PXR activation potencies and efficacies demonstrated an excellent correlation (r(2) > 0.95) between cryopreserved and fresh cells. Cryopreservation did not change the effect of known CYP3A4 inducers that have poor cell permeability, indicating that cryopreservation had little effect on membrane permeability. In addition, cryopreserved HepG2 cells did not exhibit enhanced susceptibility to cytotoxic compounds compared to transiently transfected control cells. The use of cryopreserved cells enables this assay to run with enhanced efficiency.

  6. Ocular nanoparticle toxicity and transfection of the retina and retinal pigment epithelium.

    Science.gov (United States)

    Prow, Tarl W; Bhutto, Imran; Kim, Sahng Y; Grebe, Rhonda; Merges, Carol; McLeod, D Scott; Uno, Koichi; Mennon, Mohamed; Rodriguez, Li; Leong, Kam; Lutty, Gerard A

    2008-12-01

    Chitosan, PCEP (poly{[(cholesteryl oxocarbonylamido ethyl) methyl bis(ethylene) ammonium iodide] ethyl phosphate}), and magnetic nanoparticles (MNPs) were evaluated for the safe delivery of genes in the eye. Rabbits were injected with nanoparticles either intravitreally (IV) or subretinally (SR) and sacrificed 7 days later. Eyes were grossly evaluated for retinal pigment epithelium abnormalities, retinal degeneration, and inflammation. All eyes were cryopreserved and sectioned for analysis of toxicity and expression of either enhanced green or red fluorescent proteins. All of the nanoparticles were able to transfect cells in vitro and in vivo. IV chitosan showed inflammation in 12/13 eyes, whereas IV PCEP and IV MNPs were not inflammatory and did not induce retinal pathology. SR PCEP was nontoxic in the majority of cases but yielded poor transfection, whereas SR MNPs were nontoxic and yielded good transfection. Therefore, we conclude that the best nanoparticle evaluated in vivo was the least toxic nanoparticle tested, the MNP.

  7. A comparative study of transfection methods for RNA interference in bone marrow-derived murine dendritic cells

    DEFF Research Database (Denmark)

    Pedersen, Charlotte Demuth; Fang, J J; Pedersen, Anders Elm

    2009-01-01

    Selective gene silencing using RNA interference (RNAi) has been shown to be an efficient method for manipulation of cellular functions. In this study, we compare three previously established methods for transfection of murine bone marrow-derived DC (BM-DC). We tested the efficacy of electroporation...... with the Mouse Nucleofector kit((R)) from Amaxa Biosystems and lipid-based transfection methods using transfection reagents from Santa Cruz Biotechnology or Genlantis. To analyse the transfection efficacy we used FITC-conjugated siRNA as a positive control together with CD80 and CD86 specific siRNA. We show...... that electroporation using the Mouse Nucleofector kit((R)) from Amaxa Biosystems was not an efficient method to transfect BM-DC with siRNA in our hands. Transfection with Santa Cruz Biotechnology reagents resulted in up to 59% FITC-siRNA positive cells, but did not result in effective silencing of CD80 surface...

  8. Within-population diversity of koala Chlamydophila pecorum at ompA VD1-VD3 and the ORF663 hypothetical gene.

    Science.gov (United States)

    Higgins, D P; Beninati, T; Meek, M; Irish, J; Griffith, J E

    2012-05-04

    Infection of koalas by Chlamydophila pecorum is very common and causes significant morbidity, infertility and mortality. Fundamental to management of the disease is an understanding of the importance of multi-serotype infection or pathogen virulence in pathogenesis; these may need consideration in plans involving koala movement, vaccination, or disease risk assessment. Here we describe diversity of ompA VD1-3, and ORF663 hypothetical gene tandem repeat regions, in a single population of koalas with diverse disease outcomes. We PCR amplified and sequenced 72 partial ompA segments and amplified 25 tandem repeat segments (ORF663 hypothetical gene) from C. pecorum obtained from 62 koalas. Although several ompA genotypes were identified nationally, only one ompA genotype existed within the population studied, indicating that severe chlamydial disease occurs commonly in free-ranging koalas in the absence of infection by multiple MOMP serotypes of C. pecorum. In contrast, variation in tandem repeats within the ORF663 hypothetical gene was very high, approaching the entire range reported for pathogenic and non-pathogenic C. pecorum of European ruminants; providing an impetus for further investigation of this as a potential virulence trait. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Gene Transfection in High Serum Levels: Case Studies with New Cholesterol Based Cationic Gemini Lipids

    Science.gov (United States)

    Misra, Santosh K.; Biswas, Joydeep; Kondaiah, Paturu; Bhattacharya, Santanu

    2013-01-01

    Background Six new cationic gemini lipids based on cholesterol possessing different positional combinations of hydroxyethyl (-CH2CH2OH) and oligo-oxyethylene -(CH2CH2O)n- moieties were synthesized. For comparison the corresponding monomeric lipid was also prepared. Each new cationic lipid was found to form stable, clear suspensions in aqueous media. Methodology/Principal Findings To understand the nature of the individual lipid aggregates, we have studied the aggregation properties using transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential measurements and X-ray diffraction (XRD). We studied the lipid/DNA complex (lipoplex) formation and the release of the DNA from such lipoplexes using ethidium bromide. These gemini lipids in presence of a helper lipid, 1, 2-dioleoyl phophatidyl ethanol amine (DOPE) showed significant enhancements in the gene transfection compared to several commercially available transfection agents. Cholesterol based gemini having -CH2-CH2-OH groups at the head and one oxyethylene spacer was found to be the most effective lipid, which showed transfection activity even in presence of high serum levels (50%) greater than Effectene, one of the potent commercially available transfecting agents. Most of these geminis protected plasmid DNA remarkably against DNase I in serum, although the degree of stability was found to vary with their structural features. Conclusions/Significance -OH groups present on the cationic headgroups in combination with oxyethylene linkers on cholesterol based geminis, gave an optimized combination of new genera of gemini lipids possessing high transfection efficiency even in presence of very high percentage of serum. This property makes them preferential transfection reagents for possible in vivo studies. PMID:23861884

  10. Noninvasive imaging of transplanted living functional cells transfected with a reporter estrogen receptor gene

    International Nuclear Information System (INIS)

    Takamatsu, Shinji; Furukawa, Takako; Mori, Tetsuya; Yonekura, Yoshiharu; Fujibayashi, Yasuhisa

    2005-01-01

    The transplantation of functional cells such as dopaminergic cells into damaged tissue is now clinically ongoing, but at present the population of surviving cells at the transplantation site mostly cannot be noninvasively examined. To visualize surviving transplanted functional cells using a noninvasive method, we chose the estrogen receptor ligand binding domain (ERL) as a reporter molecule and 16α-[ 18 F]-fluoro-17β-estradiol (FES) for its ligand. We used a mouse embryonic stem (ES) cell line for recipient cells as a model. To obtain ES cells that constitutively or inducibly express ERL, we transfected two types of expression vectors into EB5 parental ES cell line using the lipofection method and obtained about 30 clones for each of the two types of transfectants. Then, to examine the expression level of ERL, we performed Western blotting analysis. Ligand uptake experiments were carried out using [ 3 H]-estradiol with or without excessive unlabeled estradiol for control cells and ERL transfectants. Each selected clone was also used for in vivo positron emission tomography (PET) imaging studies involving FES in nude mice transplanted with control cells and ERL transfectants. In some of the clones transfected with the inducible-type ERL gene, protein was expressed much higher than in the controls. However, constitutive-type ERL gene-transfected ES cells showed no protein production in spite of their gene expression activity being considerably high. All clones also expressed equal levels of the Oct-3/4 gene, a marker of pluripotency, in comparison with the parental cells. Also, the specific uptake of [ 3 H]-estradiol was over 30 times higher in inducer-treated ERL-expressing ES cells compared to untreated control cells. Finally, by performing dynamic PET imaging, we successfully visualized ERL-expressing teratomas using FES

  11. Intracellular characterization of Gag VLP production by transient transfection of HEK 293 cells.

    Science.gov (United States)

    Cervera, Laura; González-Domínguez, Irene; Segura, María Mercedes; Gòdia, Francesc

    2017-11-01

    Transient transfection is a fast, flexible, and cost-effective approach to produce biological products. Despite the continued interest in transient transfection, little is known regarding the transfection process at the intracellular level, particularly for complex products, such as virus-like particles (VLPs). The kinetics of PEI-mediated transfection following an established in-house protocol is reported in this work with the aim of characterizing and understanding the complete process leading to VLP generation and identifying important events driving process improvement. For this purpose, DNA/PEI polyplexes' internalization in cells was tracked using Cy3 DNA staining. The production of a fluorescently labeled Gag polyprotein (a Gag-GFP fusion construct that forms fluorescent Gag-VLPs) was monitored by flow cytometry and confocal microscopy, and the VLP concentration in supernatants was measured by fluorometry. DNA/PEI polyplexes interact with the cell membrane immediately after polyplex addition to the cell culture. A linear increase in the number of cells expressing the protein is observed during the first 60 min of contact between the cells and polyplexes. No additional improvement in the number of cells expressing the protein (up to 60%) or VLP production (up to 1 × 10 10 VLPs/mL) is observed with additional contact time between the cells and polyplexes. Polyplexes can be detected in the cytoplasm of transfected cells as early as 1.5 h post-transfection (hpt) and reach the nucleus approximately 4 hpt. GFP fluorescence is observed homogeneously in the cytoplasm of transfected cells 24 hpt, but generalized VLP budding is not observed by microscopy until 48 hpt. Although all cells have internalized a polyplex soon after transfection, only a fraction of cells (60%) express the fluorescent Gag protein. VLP production kinetics was also studied. Fluorescence in the supernatant (enveloped VLPs) is 40% less than total fluorescence, supernatant plus pellet

  12. The cytosolic tail of the Golgi apyrase Ynd1 mediates E4orf4-induced toxicity in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Karin Mittelman

    Full Text Available The adenovirus E4 open reading frame 4 (E4orf4 protein contributes to regulation of the progression of virus infection. When expressed individually, E4orf4 was shown to induce non-classical transformed cell-specific apoptosis in mammalian cells. At least some of the mechanisms underlying E4orf4-induced toxicity are conserved from yeast to mammals, including the requirement for an interaction of E4orf4 with protein phosphatase 2A (PP2A. A genetic screen in yeast revealed that the Golgi apyrase Ynd1 associates with E4orf4 and contributes to E4orf4-induced toxicity, independently of Ynd1 apyrase activity. Ynd1 and PP2A were shown to contribute additively to E4orf4-induced toxicity in yeast, and to interact genetically and physically. A mammalian orthologue of Ynd1 was shown to bind E4orf4 in mammalian cells, confirming the evolutionary conservation of this interaction. Here, we use mutation analysis to identify the cytosolic tail of Ynd1 as the protein domain required for mediation of the E4orf4 toxic signal and for the interaction with E4orf4. We also show that E4orf4 associates with cellular membranes in yeast and is localized at their cytoplasmic face. However, E4orf4 is membrane-associated even in the absence of Ynd1, suggesting that additional membrane proteins may mediate E4orf4 localization. Based on our results and on a previous report describing a collection of Ynd1 protein partners, we propose that the Ynd1 cytoplasmic tail acts as a scaffold, interacting with a multi-protein complex, whose targeting by E4orf4 leads to cell death.

  13. Generation and Selection of Orf Virus (ORFV) Recombinants.

    Science.gov (United States)

    Rziha, Hanns-Joachim; Rohde, Jörg; Amann, Ralf

    2016-01-01

    Orf virus (ORFV) is an epitheliotropic poxvirus, which belongs to the genus Parapoxvirus. Among them the highly attenuated, apathogenic strain D1701-V is regarded as a promising candidate for novel virus vector vaccines. Our recent work demonstrated that those ORFV-based recombinants were able to induce protective, long-lasting immunity in various hosts that are non-permissive for ORFV. In this chapter we describe procedures for the generation, selection, propagation, and titration of ORFV recombinants as well as transgene detection by PCR or immunohistochemical staining.

  14. ORF Alignment: NC_002655 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available exneri 2a str. ... 2457T] ref|NP_753636.1| Protein yciO [Escherichia coli ...|AAN80198.1| Protein ... yciO [Escherichia coli CFT073] ref|NP_415783.3| ... hypothetical protein b1267 [Escheric...ein; conserved ... protein [Escherichia coli K12] gb|AAG56548.1| orf, ... hypothetical protein [Escheric...hia coli O157:H7 EDL933] ... dbj|BAB35262.1| hypothetical protein [Escherichia coli ... ... ... O157:H7] pir||G90858 hypothetical protein ECs1839 ... [imported] - Escheric

  15. ORF Alignment: NC_000913 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available exneri 2a str. ... 2457T] ref|NP_753636.1| Protein yciO [Escherichia coli ...|AAN80198.1| Protein ... yciO [Escherichia coli CFT073] ref|NP_415783.3| ... hypothetical protein b1267 [Escheric...ein; conserved ... protein [Escherichia coli K12] gb|AAG56548.1| orf, ... hypothetical protein [Escheric...hia coli O157:H7 EDL933] ... dbj|BAB35262.1| hypothetical protein [Escherichia coli ... ... ... O157:H7] pir||G90858 hypothetical protein ECs1839 ... [imported] - Escheric

  16. ORF Alignment: NC_004741 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available exneri 2a str. ... 2457T] ref|NP_753636.1| Protein yciO [Escherichia coli ...|AAN80198.1| Protein ... yciO [Escherichia coli CFT073] ref|NP_415783.3| ... hypothetical protein b1267 [Escheric...ein; conserved ... protein [Escherichia coli K12] gb|AAG56548.1| orf, ... hypothetical protein [Escheric...hia coli O157:H7 EDL933] ... dbj|BAB35262.1| hypothetical protein [Escherichia coli ... ... ... O157:H7] pir||G90858 hypothetical protein ECs1839 ... [imported] - Escheric

  17. ORF Alignment: NC_004337 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available exneri 2a str. ... 2457T] ref|NP_753636.1| Protein yciO [Escherichia coli ...|AAN80198.1| Protein ... yciO [Escherichia coli CFT073] ref|NP_415783.3| ... hypothetical protein b1267 [Escheric...ein; conserved ... protein [Escherichia coli K12] gb|AAG56548.1| orf, ... hypothetical protein [Escheric...hia coli O157:H7 EDL933] ... dbj|BAB35262.1| hypothetical protein [Escherichia coli ... ... ... O157:H7] pir||G90858 hypothetical protein ECs1839 ... [imported] - Escheric

  18. ORF Alignment: NC_004431 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available exneri 2a str. ... 2457T] ref|NP_753636.1| Protein yciO [Escherichia coli ...|AAN80198.1| Protein ... yciO [Escherichia coli CFT073] ref|NP_415783.3| ... hypothetical protein b1267 [Escheric...ein; conserved ... protein [Escherichia coli K12] gb|AAG56548.1| orf, ... hypothetical protein [Escheric...hia coli O157:H7 EDL933] ... dbj|BAB35262.1| hypothetical protein [Escherichia coli ... ... ... O157:H7] pir||G90858 hypothetical protein ECs1839 ... [imported] - Escheric

  19. ORF Alignment: NC_002695 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available exneri 2a str. ... 2457T] ref|NP_753636.1| Protein yciO [Escherichia coli ...|AAN80198.1| Protein ... yciO [Escherichia coli CFT073] ref|NP_415783.3| ... hypothetical protein b1267 [Escheric...ein; conserved ... protein [Escherichia coli K12] gb|AAG56548.1| orf, ... hypothetical protein [Escheric...hia coli O157:H7 EDL933] ... dbj|BAB35262.1| hypothetical protein [Escherichia coli ... ... ... O157:H7] pir||G90858 hypothetical protein ECs1839 ... [imported] - Escheric

  20. Heterogeneity among orf virus isolates from goats in Fujian Province, Southern China.

    Directory of Open Access Journals (Sweden)

    Xuelin Chi

    Full Text Available Orf virus is a parapoxvirus that causes recurring contagious ecthyma or orf disease in goat, sheep and other wild and domestic ruminants. Infected animals show signs of pustular lesions on the mouth and muzzle and develop scabs over the lesions. Although the infection is usually cleared within 1-2 months, delayed growth and associated secondary infections could still impact the herds. Orf virus can also infect humans, causing lesions similar to the animals in pathological histology. Prior infection of orf virus apparently offers little protective immunity against future infections. Several gene products of orf virus have been identified as responsible for immunomodulatory functions. In our recent study of orf virus isolates from an area along the Minjiang River in northern Fujian Province, we found a high heterogeneity among isolates from 10 farms within a 120-kilometer distance. Only two isolates from locations within 1 km to each other had same viral genes. There is no correlation between the geographical distance between the corresponding collection sites and the phylogenetic distance in ORFV011 or ORV059 genes for any two isolates. This finding suggests that there are diverse populations of orf virus present in the environment. This may in part contribute to the phenomenon of recurring outbreaks and heighten the need for better surveillance.

  1. C-terminal KDEL-modified cystatin C is retained in transfected CHO cells

    DEFF Research Database (Denmark)

    Johansen, Teit Eliot; Vogel, Charlotte Katrine; Schwartz, Thue W.

    1990-01-01

    The significance of a C-terminal tetrapeptide, Lys-Asp-Glu-Leu (KDEL), as a retention signal for the endoplasmatic reticulum was studied using cystatin C, a general thiol protease inhibitor, as the reporter protein. Clones of CHO cells were analyzed after stable transfection with eukaryotic...

  2. Transfection of myoblasts in primary culture with isomeric cationic cholesterol derivatives

    NARCIS (Netherlands)

    Bischoff, Rainer; Cordier, Y.; Perraud, F.; Thioudellet, C.; Braun, S.; Pavirani, A.

    1997-01-01

    Transfection of satellite cells from dog muscle (myoblasts) in primary culture has been optimized with respect to the position of the cholesteryl moiety along the polyamine chain of spermidine or spermine. Spermidine or spermine were derivatized with cholesterylchloroformate giving rise to three

  3. Transfection of tumor-infiltrating T cells with mRNA encoding CXCR2

    DEFF Research Database (Denmark)

    Idorn, Manja; thor Straten, Eivind Per; Svane, Inge Marie

    2016-01-01

    infused T cells migrating to the tumor and the clinical response, but also that only a small fraction of adoptively transferred Tcells reach the tumor site. In this chapter, we describe a protocol for transfection of TILs with mRNA encoding the chemokine receptor CXCR2 transiently redirecting...

  4. Comparative Analysis of Non-viral Transfection Methods in Mouse Embryonic Fibroblast Cells.

    Science.gov (United States)

    Lee, Migi; Chea, Kathleen; Pyda, Rajyalakshmi; Chua, Melissa; Dominguez, Isabel

    2017-07-01

    Mouse embryonic fibroblast (MEF) cells are an important in vitro model for developmental biology, disease, and reprogramming studies. However, as with other primary cells, they are challenging to transfect. Although viral gene-delivery methods achieve high gene-delivery efficiency, challenges with cell mutagenesis and safety among others have led to the use and improvement of non-viral gene-delivery methods in MEF cells. Despite the importance of gene delivery in MEF cells, there is limited comparison of method/reagent efficacy. In this study, we compared the effectiveness of different gene-delivery methods and several reagents currently available in MEF cells by introducing a plasmid containing enhanced green fluorescent protein (EGFP). We analyze transfection efficiency by EGFP fluorescence. Our results suggest that two gene-delivery methods-electroporation and magnetofection in combination with a lipid reagent, are the most efficient transfection methods in MEF cells. This study provides a foundation for the selection of transfection methods or reagents when using MEF cells.

  5. Development of a confocal ultrasound device using an inertial cavitation control for transfection in-vitro

    Science.gov (United States)

    Mestas, J. L.; Chettab, K.; Roux, S.; Prieur, F.; Lafond, M.; Dumontet, C.; Lafon, C.

    2015-12-01

    Sonoporation using low-frequency high-pressure ultrasound (US) is a non-viral approach for in vitro and in vivo gene delivery. We developed a new sonoporation device designed for spatial and temporal control of ultrasound cavitation. This device was evaluated for the in vitro transfection efficiency of a plasmid coding for Green Fluorescent Protein (peGFP- C1) in adherent and non-adherent cell lines. The frequency spectrum of the signal receive by a hydrophone is used to compute a cavitation index (CI) representative of the inertial cavitation activity. The influence of the CI on transfection efficiency, as well as reproducibility were determined. A real-time feedback loop control on CI was integrated in the process to regulate the cavitation level during sonoporation. In both adherent and non-adherent cell lines, the sonoporation device produced a highly efficient transfection of peGFP-C1 (40-80%), as determined by flow cytometry analysis of GFP expression, along with a low rate of mortality assessed by propidium iodide staining. Moreover, the sonoporation of non-adherent cell lines Jurkat and K562 was found to be equivalent to nucleofection in terms of efficiency and toxicity while these two cell lines were resistant to transfection with lipofection.

  6. Efficient Transfection of siRNA by Peptide Dendrimer-Lipid Conjugates.

    Science.gov (United States)

    Kwok, Albert; Eggimann, Gabriela A; Heitz, Marc; Reymond, Jean-Louis; Hollfelder, Florian; Darbre, Tamis

    2016-12-02

    Efficient delivery of small interfering RNA (siRNA) into cells is the basis of target-gene-specific silencing and, ultimately, gene therapy. However, current transfection reagents are relatively inefficient, and very few studies provide the sort of systematic understanding based on structure-activity relationships that would provide rationales for their improvement. This work established peptide dendrimers (administered with cationic lipids) as siRNA transfection reagents and recorded structure-activity relationships that highlighted the importance of positive charge distribution in the two outer layers and a hydrophobic core as key features for efficient performance. These dendrimer-based transfection reagents work as well as highly optimised commercial reagents, yet show less toxicity and fewer off-target effects. Additionally, the degrees of freedom in the synthetic procedure will allow the placing of decisive recognition features to enhance and fine-tune transfection and cell specificity in the future. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Delivery of proteins to mammalian cells via gold nanoparticle mediated laser transfection

    International Nuclear Information System (INIS)

    Heinemann, D; Kalies, S; Schomaker, M; Ertmer, W; Meyer, H; Ripken, T; Murua Escobar, H

    2014-01-01

    Nanoparticle laser interactions are in widespread use in cell manipulation. In particular, molecular medicine needs techniques for the directed delivery of molecules into mammalian cells. Proteins are the final mediator of most cellular cascades. However, despite several methodical approaches, the efficient delivery of proteins to cells remains challenging. This paper presents a new protein transfection technique via laser scanning of cells previously incubated with gold nanoparticles. The laser-induced plasmonic effects on the gold nanoparticles cause a transient permeabilization of the cellular membrane, allowing proteins to enter the cell. Applying this technique, it was possible to deliver green fluorescent protein into mammalian cells with an efficiency of 43%, maintaining a high level of cell viability. Furthermore, a functional delivery of Caspase 3, an apoptosis mediating protein, was demonstrated and evaluated in several cellular assays. Compared to conventional protein transfection techniques such as microinjection, the methodical approach presented here enables high-throughput transfection of about 10 000 cells per second. Moreover, a well-defined point in time of delivery is guaranteed by gold nanoparticle mediated laser transfection, allowing the detailed temporal analysis of cellular pathways and protein trafficking. (papers)

  8. Transfection mediated by gemini surfactants : Engineered escape from the endosomal compartment

    NARCIS (Netherlands)

    Bell, PC; Bergsma, M; Dolbnya, IP; Bras, W; Stuart, MCA; Rowan, AE; Feiters, MC; Engberts, JBFN

    2003-01-01

    The structure of the lipoplex formed from DNA and the sugar-based cationic gemini surfactant 1, which exhibits excellent transfection efficiency, has been investigated in the pH range 8.8-3.0 utilizing small-angle X-ray scattering (SAXS) and cryo-electron microscopy (cryo-TEM). Uniquely, three

  9. Enhanced gene transfection by photochemical internalization of protomine sulfate/DNA complexes

    Science.gov (United States)

    Hirschberg, Henry; Mathews, Marlon B.; Shih, En-Chung; Madsen, Steen J.; Kwon, Young Jik

    2012-02-01

    Introduction: One of many limitations for cancer gene therapy is the inability of the therapeutic gene to transfect a sufficient number of tumor cells. Photochemical internalization (PCI) is a photodynamic therapy-based approach for improving the delivery of macromolecules and genes into the cell cytosol. The utility of PCI for the delivery of the GFP indicator gene on the same plasmid as a tumor suppressor gene (PTEN) was investigated in monolayers of U251 human glioma cells. Materials and Methods: U251 monolayers were incubated in AlPcS2a for 18 h. The monolayers were incubated with non-viral vectors for either 4 or 18 hrs. In all cases, light treatment was performed with a diode laser at a wavelength of 670 nm. The non-viral transfection agents, branched PEI or protomine sulfate (PS), were used with the plasmid construct (GFP-PTEN). Results: PS was much less toxic to the gliomas cells compared to BPEI but was highly inefficient at gene transfection. PCI resulted in a 5-10 fold increase in GFP protein expression compared to controls. Conclusions: Collectively, the results suggest that AlPcS2a-mediated PCI can be used to enhance transfection of tumor suppressor genes in glioma cells.

  10. Purification of transfection-grade plasmid DNA from bacterial cells with superparamagnetic nanoparticles

    Science.gov (United States)

    Chiang, Chen-Li; Sung, Ching-Shan

    2006-07-01

    The functionalized magnetic nanobeads were used to develop a rapid protocol for extracting and purifying transfection-grade plasmid DNA from bacterial culture. Nanosized superparamagnetic nanoparticles (Fe 3O 4) were prepared by chemical coprecipitation method using Fe 2+, Fe 3+ salt, and ammonium hydroxide under a nitrogen atmosphere. The surface of Fe 3O 4 nanoparticles was modified by coating with the multivalent cationic agent, polyethylenimine (PEI). The PEI-modified magnetic nanobeads were employed to simplify the purification of plasmid DNA from bacterial cells. We demonstrated a useful plasmid, pRSETB-EGFP, encoding the green fluorescent protein with T7 promoter, was amplified in DE3 strain of Escherichia coli. The loaded nanobeads are recovered by magnetically driven separation and regenerated by exposure to the elution buffer with optimal ionic strength (1.25 M) and pH (9.0). Up to approximately 819 μg of high-purity (A 260/A 280 ratio=1.86) plasmid DNA was isolated from 100 ml of overnight bacterial culture. The eluted plasmid DNA was used directly for restriction enzyme digestion, bacterial cell transformation and animal cell transfection applications with success. The PEI-modified magnetic nanobead delivers significant time-savings, overall higher yields and better transfection efficiencies compared to anion-exchange and other methods. The results presented in this report show that PEI-modified magnetic nanobeads are suitable for isolation and purification of transfection-grade plasmid DNA.

  11. Elevation of Transfection Efficiency by Conjugation of Poly(amindoamine)-diethylenetriamine (PAM-DET) with Dexamethasone

    International Nuclear Information System (INIS)

    Jeong, Yunseong; Park, Jihye; Jin, Geunwoo; Park, Jongsang

    2012-01-01

    We successfully conjugated hydrophobic group, dexamethasone onto the surface of PAM-DET to synthesize PAM-DET-DX to form polyplexes with enhanced stability against ionic strength. We evaluated its stability by measuring the size of its polyplexes; the conjugated PAM-DET polyplex showed decreased growth compared to the PAM-DET polyplex in an environment with increased ionic strength, which implies that the conjugated PAM-DET has enhanced stability against increased ionic strength. Furthermore, conjugation of hydrophobic group caused a slight increase in the transfection efficiency without inducing toxicity. Of course, it isn't a neglectable factor that nuclear localization effect of DX can drive the advanced transfection efficiency of PAM-DET-DX polyplex. It means that the hydrophobic moieties which have some other positive properties in transfection are good candidates that can be introduced to non-viral polymeric gene delivery carrier. This strongly indicates that the introduction of hydrophobic moiety on PAM-DET is a good method to enhance polyplex stability against ionic strength without diminishing its advantageous properties, such as high transfection efficiency and low cytotoxicity

  12. Cationic solid-lipid nanoparticles can efficiently bind and transfect plasmid DNA

    NARCIS (Netherlands)

    Olbrich, C; Bakowsky, U; Muller, RH; Kneuer, C

    2001-01-01

    The suitability of cationically modified solid-lipid nanoparticles (SLN) as a novel transfection agent was investigated. SLN were produced by hot homogenisation using either Compritol ATO 888 or paraffin as matrix lipid, a mixture of Tween 80 and Span 85 as tenside and either EQ1

  13. Rigid aromatic linking moiety in cationic lipids for enhanced gene transfection efficiency.

    Science.gov (United States)

    Wang, Bing; Zhao, Rui-Mo; Zhang, Ji; Liu, Yan-Hong; Huang, Zheng; Yu, Qing-Ying; Yu, Xiao-Qi

    2017-08-18

    Although numerous cationic lipids have been developed as non-viral gene vectors, the structure-activity relationship (SAR) of these materials remains unclear and needs further investigation. In this work, a series of lysine-derived cationic lipids containing linkages with different rigidity were designed and synthesized. SAR studies showed that lipids with rigid aromatic linkage could promote the formation of tight liposomes and enhance DNA condensation, which is essential for the gene delivery process. These lipids could give much higher transfection efficiency than those containing more flexible aliphatic linkage in various cell lines. Moreover, the rigid aromatic linkage also affords the material higher serum tolerance ability. Flow cytometry assay revealed that the target lipids have good cellular uptake, while confocal microscopy observation showed weaker endosome escape than Lipofectamine 2000. To solve such problem and further increase the transfection efficiency, some lysosomotropic reagents were used to improve the endosome escape of lipoplex. As expected, higher transfection efficiency than Lipofectamine 2000 could be obtained via this strategy. Cytotoxicity assay showed that these lipids have lower toxicity in various cell lines than Lipofectamine 2000, suggesting their potential for further application. This work demonstrates that a rigid aromatic linkage might distinctly improve the gene transfection abilities of cationic lipids and affords information to construct safe and efficient gene vector towards practical application. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Off-target responses in the HeLa proteome subsequent to transient plasmid-mediated transfection.

    Science.gov (United States)

    Hagen, Lars; Sharma, Animesh; Aas, Per Arne; Slupphaug, Geir

    2015-01-01

    Transient transfection of mammalian cells with plasmid expression vectors and chemical transfection reagents is widely used to study protein transport and dynamics as well as phenotypic alterations mediated by the overexpressed protein. Despite the undisputed impact of this technique, surprisingly little is known about the cellular effects mediated by the transfection process per se. Conceivably, off-target effects could have implications upon proteins or processes being studied and understanding the molecular pathways affected would add value to the interpretation of experimental observations subsequent to cell transfection. Here we have used a SILAC-based proteomic approach to study differentially expressed proteins after transfection of HeLa cells with ECFP vector using a commonly employed non-liposome based transfection reagent, Fugene®HD. Whereas the transfection reagent itself mediated minimal effects upon protein expression, 11 proteins were found to be significantly upregulated after transfection, all of which were associated with an interferon type I/II response. The upregulated proteins might potentially inflict major cellular processes such as RNA splicing, chromatin remodeling, post-translational protein modification and cell cycle control. The results were validated by western analysis as well as quantitative RT-PCR and this demonstrated that an essentially identical response was induced in HeLa by transfection using an empty pUC18 vector, which does not contain a mammalian virus promoter, as well as a liposome-based transfection reagent, Lipofectamine(TM)2000. Notably, no induction of the interferon response was observed in HEK293 cells, suggesting that these cells might be preferable to HeLa to avoid undesired off-target effects in transfection studies encompassing interferon-signaling and antiviral responses. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Viral FGARAT ORF75A promotes early events in lytic infection and gammaherpesvirus pathogenesis in mice

    Science.gov (United States)

    Hogan, Chad H.; Oldenburg, Darby G.; Kara, Mehmet

    2018-01-01

    Gammaherpesviruses encode proteins with homology to the cellular purine metabolic enzyme formyl-glycinamide-phosphoribosyl-amidotransferase (FGARAT), but the role of these viral FGARATs (vFGARATs) in the pathogenesis of a natural host has not been investigated. We report a novel role for the ORF75A vFGARAT of murine gammaherpesvirus 68 (MHV68) in infectious virion production and colonization of mice. MHV68 mutants with premature stop codons in orf75A exhibited a log reduction in acute replication in the lungs after intranasal infection, which preceded a defect in colonization of multiple host reservoirs including the mediastinal lymph nodes, peripheral blood mononuclear cells, and the spleen. Intraperitoneal infection rescued splenic latency, but not reactivation. The 75A.stop virus also exhibited defective replication in primary fibroblast and macrophage cells. Viruses produced in the absence of ORF75A were characterized by an increase in the ratio of particles to PFU. In the next round of infection this led to the alteration of early events in lytic replication including the deposition of the ORF75C tegument protein, the accelerated kinetics of viral gene expression, and induction of TNFα release and cell death. Infecting cells to deliver equivalent genomes revealed that ORF75A was required for initiating early events in infection. In contrast with the numerous phenotypes observed in the absence of ORF75A, ORF75B was dispensable for replication and pathogenesis. These studies reveal that murine rhadinovirus vFGARAT family members ORF75A and ORF75C have evolved to perform divergent functions that promote replication and colonization of the host. PMID:29390024

  16. Sequence and functional analysis of a homolog of interleukin-10 encoded by the parapoxvirus orf virus.

    Science.gov (United States)

    Fleming, S B; Haig, D M; Nettleton, P; Reid, H W; McCaughan, C A; Wise, L M; Mercer, A

    2000-01-01

    Orf virus is a large DNA virus and is the type species of the Parapoxvirus genus of the family Poxviridae. Orf virus infects the epithelium of sheep and goats and is transmissible to humans. Recently we discovered a gene in orf virus that encodes a polypeptide with remarkable homology to mammalian interleukin (IL-10) and viral encoded IL-10s of herpes viruses. The predicted polypeptide sequence shows high levels of amino acid identity to IL-10 of sheep (80%), cattle (75%), humans (67%) and mice (64%), as well as IL-10-like proteins of Epstein-Barr virus (63%) and equine herpes virus (67%). The C-terminal region, comprising two-thirds of the orf virus protein, is identical to ovine IL-10 which suggests that this gene has been captured from its host sheep during the evolution of orf virus. In contrast the N-terminal region shows little homology with cellular IL10s and in this respect resembles other viral IL-10s. IL-10 is a pleiotrophic cytokine that can exert either immunostimulatory or immunosuppressive effects on many cell types. IL-10 is a potent anti-inflammatory cytokine with inhibitory effects on non-specific immunity in particular macrophage function and Thl effector function. Our studies so far, indicate, that the functional activities of orf virus IL-10 are the same as ovine IL-10. Orf virus IL-10 stimulates mouse thymocyte proliferation and inhibits cytokine synthesis in lipopolysaccharide-activated ovine macrophages, peripheral blood monocytes and keratinocytes. Infection of sheep with an IL-10 deletion mutant of orf virus has shown that interferon-gamma levels are higher in tissue infected with the mutant virus than the parent virus. The functional activities of IL-10 and our data on orf virus IL-10 suggest a role in immune evasion.

  17. GENE TRANSFER ON Betta imbellis THROUGH TRANSFECTION METHOD WITH DIFFERENT DNA CONCENTRATION

    Directory of Open Access Journals (Sweden)

    Eni Kusrini

    2016-12-01

    Full Text Available Big size betta (Giant have a high economic value compared to normal size betta, and over expression of growth hormone gene can produce giant fish.  As an initial step of giant transgenic betta productions, this study was conducted in order to obtain DNA plasmid concentration which provide higher hatching and survival rate of betta larvae.  Construction of PhGH pCcBA gene contains growth hormone gene of Siamese catfish (PhGH and it is controlled by the CCBA promoter. Betta imbellis broodstocks were spawned naturally, and embryos were collected 1-2 minutes after spawning time. One hundred embryos were dipped in 2 mL of transfectan X-treme gene which containp CcBA-PhGH construction genes (50 µg/mL, on room temperature for about 30 minutes. Treatments on this study were different transfectant : DNA plasmid ratiosnamely:A (0,75 µL: 0,25 µL; B (0,75 µL : 0,50 µL; C (0,75 µL: 0,75 µL, D as Control 1(without transfectant, 0,25 µL DNA; E.as Control 2(0,75 µL transfectant, without DNA, and Fas control 3 (without transfectant and without DNA. Every treatments was repeated three times.  Transfection embryos were hatched on a container (1L Volume. Study results showed that hatching rate and larvae survival rate  (4 days after hatching on treatment A were the same with the control, but slightly higher than B and C treatments. PCR analysis with DNA template showing that PhGH gene were found on embryos and larvae (pooled sample of treatment A, B and C. Furthermore, RT-PCR analysis showing the existence of mRNA PhGH expression on embryos and larvae (pooled sample. Therefore, embryo transfection with transfectant ratio 0,75 µL and  DNA 0,25 µLshowing the best results.

  18. Plasmid transfection in mammalian cells spatiotemporally tracked by a gold nanoparticle.

    Science.gov (United States)

    Muroski, Megan E; Carnevale, Kate J F; Riskowski, Ryan A; Strouse, Geoffrey F

    2015-01-27

    Recent advances in cell transfection have suggested that delivery of a gene on a gold nanoparticle (AuNP) can enhance transfection efficiency. The mechanism of transfection is poorly understood, particularly when the gene is appended to a AuNP, as expression of the desired exogenous protein is dependent not only on the efficiency of the gene being taken into the cell but also on efficient endosomal escape and cellular processing of the nucleic acid. Design of a multicolor surface energy transfer (McSET) molecular beacon by independently dye labeling a linearized plasmid and short duplex DNA (sdDNA) appended to a AuNP allows spatiotemporal profiling of the transfection events, providing insight into package uptake, disassembly, and final plasmid expression. Delivery of the AuNP construct encapsulated in Lipofectamine2000 is monitored in Chinese hamster ovary cells using live-cell confocal microscopy. The McSET beacon signals the location and timing of the AuNP release and endosomal escape events for the plasmid and the sdDNA discretely, which are correlated with plasmid transcription by fluorescent protein expression within the cell. It is observed that delivery of the construct leads to endosomal release of the plasmid and sdDNA from the AuNP surface at different rates, prior to endosomal escape. Slow cytosolic diffusion of the nucleic acids is believed to be the limiting step for transfection, impacting the time-dependent expression of protein. The overall protein expression yield is enhanced when delivered on a AuNP, possibly due to better endosomal escape or lower degradation prior to endosomal escape.

  19. Covalently bound DNA on naked iron oxide nanoparticles: Intelligent colloidal nano-vector for cell transfection.

    Science.gov (United States)

    Magro, Massimiliano; Martinello, Tiziana; Bonaiuto, Emanuela; Gomiero, Chiara; Baratella, Davide; Zoppellaro, Giorgio; Cozza, Giorgio; Patruno, Marco; Zboril, Radek; Vianello, Fabio

    2017-11-01

    Conversely to common coated iron oxide nanoparticles, novel naked surface active maghemite nanoparticles (SAMNs) can covalently bind DNA. Plasmid (pDNA) harboring the coding gene for GFP was directly chemisorbed onto SAMNs, leading to a novel DNA nanovector (SAMN@pDNA). The spontaneous internalization of SAMN@pDNA into cells was compared with an extensively studied fluorescent SAMN derivative (SAMN@RITC). Moreover, the transfection efficiency of SAMN@pDNA was evaluated and explained by computational model. SAMN@pDNA was prepared and characterized by spectroscopic and computational methods, and molecular dynamic simulation. The size and hydrodynamic properties of SAMN@pDNA and SAMN@RITC were studied by electron transmission microscopy, light scattering and zeta-potential. The two nanomaterials were tested by confocal scanning microscopy on equine peripheral blood-derived mesenchymal stem cells (ePB-MSCs) and GFP expression by SAMN@pDNA was determined. Nanomaterials characterized by similar hydrodynamic properties were successfully internalized and stored into mesenchymal stem cells. Transfection by SAMN@pDNA occurred and GFP expression was higher than lipofectamine procedure, even in the absence of an external magnetic field. A computational model clarified that transfection efficiency can be ascribed to DNA availability inside cells. Direct covalent binding of DNA on naked magnetic nanoparticles led to an extremely robust gene delivery tool. Hydrodynamic and chemical-physical properties of SAMN@pDNA were responsible of the successful uptake by cells and of the efficiency of GFP gene transfection. SAMNs are characterized by colloidal stability, excellent cell uptake, persistence in the host cells, low toxicity and are proposed as novel intelligent DNA nanovectors for efficient cell transfection. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Comparative nucleic acid transfection efficacy in primary hepatocytes for gene silencing and functional studies

    Directory of Open Access Journals (Sweden)

    Morral Núria

    2011-01-01

    Full Text Available Abstract Background Primary hepatocytes are the best resource for in vitro studies directed at understanding hepatic processes at the cellular and molecular levels, necessary for novel drug development to treat highly prevalent diseases such as non-alcoholic steatohepatitis, cardiovascular disease and type 2 diabetes. There is a need to identify simple methods to genetically manipulate primary hepatocytes and conduct functional studies with plasmids, small interfering RNA (siRNA or microRNA (miRNA. New lipofection reagents are available that have the potential to yield higher levels of transfection with reduced toxicity. Findings We have tested several liposome-based transfection reagents used in molecular biology research. We show that transfection efficiency with one of the most recently developed formulations, Metafectene Pro, is high with plasmid DNA (>45% cells as well as double stranded RNA (>90% with siRNA or microRNA. In addition, negligible cytotoxicity was present with all of these nucleic acids, even if cells were incubated with the DNA:lipid complex for 16 hours. To provide the proof of concept that these conditions can be used not only for overexpression of a gene of interest, but also in RNA interference applications, we targeted two liver expressed genes, Sterol Regulatory Element-Binding Protein-1 and Fatty Acid Binding Protein 5 using plasmid-mediated short hairpin RNA expression. In addition, similar transfection conditions were used to optimally deliver siRNA and microRNA. Conclusions We have identified a lipid-based reagent for primary hepatocyte transfection of nucleic acids currently used in molecular biology laboratories. The conditions described here can be used to expedite a large variety of research applications, from gene function studies to microRNA target identification.

  1. BMP7 transfection induces in-vitro osteogenic differentiation of dental pulp mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Ka Po John Yau

    2013-01-01

    Full Text Available Objective: To assess whether in-vitro osteogenic differentiation of human dental pulp mesenchymal stem cells can be induced by transient transfection with the gene encoding human bone morphogenic protein 7 (BMP7. Materials and Methods: A mesenchymal stem cell population was isolated from the dental pulp of two extracted permanent premolars, expanded and characterized. The human BMP7 gene, as a recombinant pcDNA3.1/V5-His-TOPO-BMP7 plasmid, was transfected into the cells. Three negative controls were used: No plasmid, empty vector, and an unrelated vector encoding green fluorescent protein. After the interval of 24 and 48 h, mRNA levels of alkaline phosphatase and osteocalcin as markers of in-vitro osteogenic differentiation were measured by real-time polymerase chain reaction and standardized against β-actin mRNA levels. Results: The level of alkaline phosphatase mRNA was significantly higher for the BMP7 group than for all three negative controls 48 h after transfection (706.9 vs. 11.24 for untransfected cells, 78.05 for empty vector, and 73.10 for green fluorescent protein vector. The level of osteocalcin mRNA was significantly higher for the BMP7 group than for all three negative controls 24 h after transfection (1.0, however, decreased after another 24 h. Conclusions: In-vitro osteoblastic differentiation of human dental pulp mesenchymal stem cells, as indicated by expression of alkaline phosphatase and osteocalcin, can be induced by transient transfection with the BMP7 gene.

  2. Marked transfection enhancement by the DPL (DNA/peptide/lipid) complex.

    Science.gov (United States)

    Moon, Ik-Jae; Kang, Hyungu; Seu, Young-Bae; Chang, Byeong-Churl; Song, Dae-Kyu; Park, Jong-Gu

    2007-10-01

    A short peptide, corresponding to the nuclear localization signal of the human immunodeficiency virus-1 Tat protein, Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg, was modified by adding a cysteine residue at the COOH terminus. The peptide was mixed with a reporter plasmid, and then with cationic lipids, to form a tripartite complex, DNA/peptide/lipid (DPL). Various cell lines were treated with the DPL complex and compared for transfection efficiency with those of the conventional DNA/lipid (DL) complex. With the simple inclusion of the peptide, the DPL complex showed much enhanced transfection. Meanwhile, the plasmid DNA mixed only with the peptide exhibited some improvement but with much lower transfection than the DPL complex. When the DPL complex was formed with various cationic lipids, the DOSPA/DOPE exhibited superior transfection efficiency than the other cationic lipids tested at the optimal ratio of 1:3:5 (w:w:w) in many cell types. At the optimal ratio of the DPL components, transfection efficiency was routinely shown to be approximately 10-fold higher for reporter gene expression than that of the conventional DL complex. Furthermore, when subcutaneous tumors of a colon cancer cell line (SW480) were treated intratumorally with antisense oligos, k-ras-RiAS, delivered as a DPL complex, tumor growth was markedly suppressed. This study shows that the DPL complex, which is easy to formulate by ordered mixing, can be employed for a much enhanced cellular uptake of a transgene both in vitro and in vivo.

  3. Inclusion of the helper lipid dioleoyl-phosphatidylethanolamine in solid lipid nanoparticles inhibits their transfection efficiency.

    Science.gov (United States)

    de Jesus, Marcelo B; Radaic, Allan; Hinrichs, Wouter L J; Ferreira, Carmen V; de Paula, Eneida; Hoekstra, Dick; Zuhorn, Inge S

    2014-02-01

    Solid lipid nanoparticles (SLNs) are a promising system for the delivery of lipophilic and hydrophilic drugs. They consist of a solid lipid core that is stabilized by a layer of surfactants. By the incorporation of cationic lipids in the formulation, positively charged SLNs can be generated, that are suitable carriers for nucleic acids (DNA, siRNA). Considering the beneficial effect of helper lipids on the transfection efficiency with cationic liposomes, the effect of the helper lipid 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) on transfection with cationic lipid-containing solid lipid nanoparticles was investigated in PC3 prostate cancer cells. The inclusion of DOPE in SLN formulations, instead of promoted, strongly inhibited SLN transfection efficiency, by frustrating the accommodation of DNA by the particles, as was revealed by biochemical analysis. SLNs devoid of DOPE maintained a homogenous size distribution of approximately 150 nm following lipoplex assembly and cellular delivery, and showed transfection efficiency comparable to that of Lipofectamine 2000' (LF2k). Moreover, the SLNs maintain their high transfection efficiency after lyophilization and long-term storage (1-2 years), an important asset for biomedical applications. There is even the possibility to lyophilize the SLN carrier together with its DNA cargo, which represents an interesting pharmaceutical advantage of the SLN formulations over LF2k. These results reflect marked differences between the physicochemical properties of cationic liposomes and SLNs, the latter requiring more critical lipid-depending properties for effective 'packaging' of DNA but displaying a higher storage stability than cationic lipid based carriers like LF2k.

  4. Gene therapy of transplant arteriopathy by liposome-mediated transfection of endothelial nitric oxide synthase.

    Science.gov (United States)

    Iwata, A; Sai, S; Moore, M; Nyhuis, J; de Fries-Hallstrand, R; Quetingco, G C; Allen, M D

    2000-11-01

    Transplant arteriopathy is the major factor limiting long-term survival after cardiac transplantation. We have previously demonstrated that liposome-mediated gene delivery of endothelial nitric oxide synthase (eNOS) to donor hearts reduces ischemia-reperfusion injury by blocking NFkappaB activation, adhesion molecule expression, and leukocyte infiltration. In this study, we used gene transfer of eNOS in a rabbit carotid transplant model to see whether these same effects would similarly ameliorate transplant arteriopathy. Liposomes complexed to the gene encoding eNOS were injected into donor carotid arterial segments that were transplanted orthotopically into recipient carotid arteries (n = 10). Controls included transplanted carotids transfected with liposomes complexed to empty plasmids (no functional gene) (n = 4) and transplanted carotids treated with saline (n = 6). Transplanted arteries were harvested for processing at 21 days. Intima/media (I/M) area ratios were calculated by computerized image analysis. Infiltrating T-lymphocytes and macrophages, and expression of VCAM-1 and ICAM-1 were quantified on immunocytochemistry. The I/M ratio was significantly reduced in eNOS-transfected arteries compared with arteries transfected with empty plasmids and saline-treated controls. Compared to transplanted control arteries, eNOS-transfected arteries demonstrated significantly reduced T-cell infiltration into the intima and significantly reduced macrophage infiltration into the media. Cell surface expression of VCAM-1 and ICAM-1 were both reduced in eNOS-transfected arteries. ENOS gene delivery can suppress neointimal lesion formation and T-lymphocyte and macrophage infiltration in transplanted arteries, associated with a reduction in relevant adhesion molecule expression. Thus, gene therapy with eNOS may not only reduce ischemia-reperfusion injury but may also ameliorate transplant arteriopathy in transplanted hearts.

  5. Two alphapartitiviruses co-infecting a single isolate of the plant pathogenic fungus Rhizoctonia solani.

    Science.gov (United States)

    Lyu, Ruiling; Zhang, Yi; Tang, Qing; Li, Yangyi; Cheng, Jiasen; Fu, Yanping; Chen, Tao; Jiang, Daohong; Xie, Jiatao

    2018-02-01

    Seven dsRNA segments were detected from a single Rhizoctonia solani strain HG81. From the full-length cDNA sequences of four smaller dsRNA segments, the genomes of two related partitiviruses, designated as Rhizoctonia solani partitivirus 3 (RsPV3) and RsPV4, were determined. The genomes of RsPV3 and RsPV4 are both composed of two separate dsRNA segments, with each segment possessing a single open reading frame (ORF). ORF1 from RsPV3 and RsPV4 encodes a putative RNA-dependent RNA polymerase, while ORF2 of RsPV3 and RsPV4 encodes a putative capsid protein. RsPV3 and RsPV4 share high sequence identity with viruses classified within the genus Alphapartitivirus, family Partitiviridae.

  6. ORF 2 from the Bacillus cereus linear plasmid pBClin15 encodes a DNA binding protein.

    Science.gov (United States)

    Stabell, F B; Egge-Jacobsen, W; Risøen, P A; Kolstø, A-B; Økstad, O A

    2009-01-01

    To isolate and identify DNA-binding protein(s) with affinity for the mobile chromosomal repeat element bcr1 in Bacillus cereus group bacteria. A biotinylated bcr1 element was immobilized to streptavidin-coated magnetic beads and used to pull out a 20 kDa DNA-binding protein from a whole cell protein extract of B. cereus ATCC 14579. The protein was identified as the product of ORF 2 encoded by the bacteriophage-related autonomously replicating linear genetic element pBClin15 carried by the strain. DNA binding was not bcr1-specific. By Northern blotting ORF 2 was co-transcribed with ORF 1, and also in certain instances with ORF 3 by transcriptional readthrough of the terminator located between ORF 2 and ORF 3. ORF 2 from pBClin15 encodes a DNA-binding protein. ORF 2 is co-transcribed with its upstream gene ORF 1, and in a subset of the transcripts also with the downstream gene ORF 3 through alternative transcription termination. The B. cereus group contains bacterial species of medical and economic importance. Bacteriophages or phage-encoded proteins from these bacteria have been suggested as potential therapeutic agents. Understanding the biology of bacteriophage-related genetic elements through functional characterization of their genes is of high relevance.

  7. Polyethyleneimine-poly(ethylene glycol)-star-copolymers as efficient and biodegradable vectors for mammalian cell transfection.

    Science.gov (United States)

    Ladewig, Katharina; Xu, Zhi Ping; Gray, Peter; Max Lu, G Q

    2014-07-01

    High molecular weight (MW) polyethyleneimine (PEI) has been successfully used for the transfection of a broad variety of cell lines. In contrast to low MW PEI, which exhibits low transfection efficiencies but also low cytotoxicity, high MW PEI-mediated transfection achieves much higher efficiencies but at the cost of cell viability; therefore its use in commercial scale transfection and clinical application is limited. In this work we address this problem by constructing biodegradable high MW PEI mimics built from low MW PEI building blocks. The end-groups of small 5-arm star polyethylene glycol (PEG) prepolymers were decorated with linear oligo-ethyleneimine (OEI)/PEI arms of various MW via azomethine linkages. The resultant PEI-PEG-star-copolymers were investigated for their ability to complex plasmid DNA. Polymer/DNA complexes were characterized using techniques such as dynamic light scattering and transmission electron microscopy. Having established their cytotoxicity limits, they were tested as gene delivery vehicles for the transfection of suspension adapted Chinese hamster ovary (CHO-S) cells under serum-free conditions and adherent human embryonic kidney cells (HEK293T) in serum containing medium. Our PEI-PEG-star-copolymers showed a reduced cytotoxicity compared to high MW PEI while maintaining the ability to complex plasmid DNA and transfect mammalian cells, with significant transfection efficiencies. The effects of the optimum parameters on the transfection of mammalian cells using such novel polymers are discussed. © 2013 Wiley Periodicals, Inc.

  8. Inner ear gene transfection in neonatal mice using adeno-associated viral vector: a comparison of two approaches.

    Directory of Open Access Journals (Sweden)

    Li Xia

    Full Text Available Local gene transfection is a promising technique for the prevention and/or correction of inner ear diseases, particularly those resulting from genetic defects. Adeno-associated virus (AAV is an ideal viral vector for inner ear gene transfection because of its safety, stability, long-lasting expression, and its high tropism for many different cell types. Recently, a new generation of AAV vectors with a tyrosine mutation (mut-AAV has demonstrated significant improvement in transfection efficiency. A method for inner ear gene transfection via the intact round window membrane (RWM has been developed in our laboratory. This method has not been tested in neonatal mice, an important species for the study of inherited hearing loss. Following a preliminary study to optimize the experimental protocol in order to reduce mortality, the present study investigated inner ear gene transfection in mice at postnatal day 7. We compared transfection efficiency, the safety of the scala tympani injection via RWM puncture, and the trans-RWM diffusion following partial digestion with an enzyme technique. The results revealed that approximately 47% of inner hair cells (IHCs and 17% of outer hair cells (OHCs were transfected via the trans-RWM approach. Transfection efficiency via RWM puncture (58% and 19% for IHCs and OHCs, respectively was slightly higher, but the difference was not significant.

  9. Loss of C9orf72 Enhances Autophagic Activity via Deregulated mTOR and TFEB Signaling.

    Directory of Open Access Journals (Sweden)

    Janet Ugolino

    2016-11-01

    Full Text Available The most common cause of the neurodegenerative diseases amyotrophic lateral sclerosis and frontotemporal dementia is a hexanucleotide repeat expansion in C9orf72. Here we report a study of the C9orf72 protein by examining the consequences of loss of C9orf72 functions. Deletion of one or both alleles of the C9orf72 gene in mice causes age-dependent lethality phenotypes. We demonstrate that C9orf72 regulates nutrient sensing as the loss of C9orf72 decreases phosphorylation of the mTOR substrate S6K1. The transcription factor EB (TFEB, a master regulator of lysosomal and autophagy genes, which is negatively regulated by mTOR, is substantially up-regulated in C9orf72 loss-of-function animal and cellular models. Consistent with reduced mTOR activity and increased TFEB levels, loss of C9orf72 enhances autophagic flux, suggesting that C9orf72 is a negative regulator of autophagy. We identified a protein complex consisting of C9orf72 and SMCR8, both of which are homologous to DENN-like proteins. The depletion of C9orf72 or SMCR8 leads to significant down-regulation of each other's protein level. Loss of SMCR8 alters mTOR signaling and autophagy. These results demonstrate that the C9orf72-SMCR8 protein complex functions in the regulation of metabolism and provide evidence that loss of C9orf72 function may contribute to the pathogenesis of relevant diseases.

  10. Genome-wide association study and meta-analysis in multiple populations identifies new loci for peanut allergy and establishes C11orf30/EMSY as a genetic risk factor for food allergy.

    Science.gov (United States)

    Asai, Yuka; Eslami, Aida; van Ginkel, C Dorien; Akhabir, Loubna; Wan, Ming; Ellis, George; Ben-Shoshan, Moshe; Martino, David; Ferreira, Manuel A; Allen, Katrina; Mazer, Bruce; de Groot, Hans; de Jong, Nicolette W; Gerth van Wijk, Roy N; Dubois, Anthony E J; Chin, Rick; Cheuk, Stephen; Hoffman, Joshua; Jorgensen, Eric; Witte, John S; Melles, Ronald B; Hong, Xiumei; Wang, Xiaobin; Hui, Jennie; Musk, Arthur W Bill; Hunter, Michael; James, Alan L; Koppelman, Gerard H; Sandford, Andrew J; Clarke, Ann E; Daley, Denise

    2018-03-01

    Peanut allergy (PA) is a complex disease with both environmental and genetic risk factors. Previously, PA loci were identified in filaggrin (FLG) and HLA in candidate gene studies, and loci in HLA were identified in a genome-wide association study and meta-analysis. We sought to investigate genetic susceptibility to PA. Eight hundred fifty cases and 926 hyper-control subjects and more than 7.8 million genotyped and imputed single nucleotide polymorphisms (SNPs) were analyzed in a genome-wide association study to identify susceptibility variants for PA in the Canadian population. A meta-analysis of 2 phenotypes (PA and food allergy) was conducted by using 7 studies from the Canadian, American (n = 2), Australian, German, and Dutch (n = 2) populations. An SNP near integrin α6 (ITGA6) reached genome-wide significance with PA (P = 1.80 × 10 -8 ), whereas SNPs associated with Src kinase-associated phosphoprotein 1 (SKAP1), matrix metallopeptidase 12 (MMP12)/MMP13, catenin α3 (CTNNA3), rho GTPase-activating protein 24 (ARHGAP24), angiopoietin 4 (ANGPT4), chromosome 11 open reading frame (C11orf30/EMSY), and exocyst complex component 4 (EXOC4) reached a threshold suggestive of association (P ≤ 1.49 × 10 -6 ). In the meta-analysis of PA, loci in or near ITGA6, ANGPT4, MMP12/MMP13, C11orf30, and EXOC4 were significant (P ≤ 1.49 × 10 -6 ). When a phenotype of any food allergy was used for meta-analysis, the C11orf30 locus reached genome-wide significance (P = 7.50 × 10 -11 ), whereas SNPs associated with ITGA6, ANGPT4, MMP12/MMP13, and EXOC4 and additional C11orf30 SNPs were suggestive (P ≤ 1.49 × 10 -6 ). Functional annotation indicated that SKAP1 regulates expression of CBX1, which colocalizes with the EMSY protein coded by C11orf30. This study identifies multiple novel loci as risk factors for PA and food allergy and establishes C11orf30 as a risk locus for both PA and food allergy. Multiple genes (C11orf30

  11. Orf virus 002 protein targets ovine protein S100A4 and inhibits NF-kappa B signaling

    Directory of Open Access Journals (Sweden)

    Daxiang Chen

    2016-09-01

    Full Text Available Orf virus (ORFV, a member of Parapoxvirus, has evolved various strategies to modulate the immune responses of host cells. The ORFV-encoded protein ORFV002, a regulator factor, has been found to inhibit the acetylation of NF-κB-p65 by blocking phosphorylation of NF-kB-p65 at Ser276 and also to disrupt the binding of NF-kB-p65 and p300. To explore the mechanism by which ORFV002 regulates NF-κB signaling, the understanding of ORFV002 potential binding partners in host cells is critical. In this study, ovine S100 calcium binding protein A4 (S100A4, prolylendopeptidase-like (PREPL and NADH dehydrogenase (ubiquinone 1 alpha subcomplex 8 (NDUFA8 were found to interact with ORFV002 based on the yeast two-hybrid (Y2H assay using a cDNA library derived from primary ovine fetal turbinate cells (OFTu. GST pull-down and bidirectional co-immunoprecipitation assay results demonstrate that ORFV002 interacts with S100A4 directly. Following the pEGFP-ORFV002 (p002GFP transfection, we found that cytoplasmic S100A4 translocates into the nucleus and co-localizes with ORFV002. Furthermore, the inhibitory effect of ORFV002 on NF-κB signaling was significantly restored by S100A4 knock-down phenotype, suggesting ovine S100A4 participating in the ORFV002-mediated NF-κB signaling. These data demonstrate that ORFV002 inhibits the NF-κB activation through its interaction with S100A4 along with its nucleus translocation.

  12. Improvement of AdCMV-GFP gene transfection efficiency induced by heavy-ion beam irradiation on murine melanoma cells

    International Nuclear Information System (INIS)

    Duan Xin; Min Fengling; Liu Bing; Zhou Qingming; Li Xiaoda; Wang Yanling; Chinese Academy of Sciences, Beijing; Zhang Hong; Qiu Rong; Hao Jifang; Zhou Guangming; Gao Qingxiang

    2007-01-01

    The effect of 12 C 6+ beam irradiation on AdCMV-GFP (a replication deficient recombinant adenoviral vector containing CMV promoter and green fluorescent protein) gene transfection efficiency for murine melanoma cell B16 has been investigated. B16 cells infected with AdCMV-GFP were irradiated by different doses of 12 C 6+ beam. The transfection efficiency was assessed by flow cytometry (FCM). Results show that 12 C 6+ beam irradiation can improve transfection efficiency of AdCMV-GFP on murine melanoma cell B16 in a dose-dependent manner. In addition, the transfection efficiency in pre-tranfection plus irradiation group is higher than that in pre-irradiation plus transfection group at the same dose irradiation dose. (authors)

  13. Antibody transfection into neurons as a tool to study disease pathogenesis.

    Science.gov (United States)

    Douglas, Joshua N; Gardner, Lidia A; Lee, Sangmin; Shin, Yoojin; Groover, Chassidy J; Levin, Michael C

    2012-09-26

    Antibodies provide the ability to gain novel insight into various events taking place in living systems. The ability to produce highly specific antibodies to target proteins has allowed for very precise biological questions to be addressed. Importantly, antibodies have been implicated in the pathogenesis of a number of human diseases including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), paraneoplastic syndromes, multiple sclerosis (MS) and human T-lymphotropic virus type 1 (HTLV-1) associated myelopathy/tropical spastic paraparesis (HAM/TSP). How antibodies cause disease is an area of ongoing investigation, and data suggests that interactions between antibodies and various intracellular molecules results in inflammation, altered cellular messaging, and apoptosis. It has been shown that patients with MS and HAM/TSP produce autoantibodies to the intracellular RNA binding protein heterogeneous ribonuclear protein A1 (hnRNP A1). Recent data indicate that antibodies to both intra-neuronal and surface antigens are pathogenic. Thus, a procedure that allows for the study of intracellular antibody:protein interactions would lend great insight into disease pathogenesis. Genes are commonly transfected into primary cells and cell lines in culture, however transfection of antibodies into cells has been hindered by alteration of antibody structure or poor transfection efficiency. Other methods of transfection include antibody transfection based on cationic liposomes (consisting of DOTAP/DOPE) and polyethylenimines (PEI); both of which resulted in a ten-fold decrease in antibody transfection compared to controls. The method performed in our study is similar to cationic lipid-mediated methods and uses a lipid-based mechanism to form non-covalent complexes with the antibodies through electrostatic and hydrophobic interactions. We utilized Ab-DeliverIN reagent, which is a lipid formulation capable of capturing antibodies through non-covalent electrostatic and

  14. Unexpected abundance of self-splicing introns in the genome of bacteriophage Twort: Introns in multiple genes, a single gene with three introns, and exon skipping by group I ribozymes

    OpenAIRE

    Landthaler, Markus; Shub, David A.

    1999-01-01

    Analysis of RNA that can be labeled with GTP indicates the existence of group I introns in genes of at least three transcriptional classes in the genome of Staphylococcus aureus bacteriophage Twort. A single ORF of 142 amino acids (Orf142) is interrupted by three self-splicing group I introns, providing the first example of a phage gene with multiple intron insertions. Twort Orf142 is encoded in a message that is abundant 15–20 min after infection and is highly similar to a late gene product ...

  15. Genetic and bibliographic information: C7orf16 [GenLibi

    Lifescience Database Archive (English)

    Full Text Available ses (C18) > Metabolic Diseases (C18.452) > Lipid Metabolism Disorders (C18.452.584)...C7orf16 chromosome 7 open reading frame 16 human hypercholesterolemia (MeSH) Nutritional and Metabolic Disea

  16. Human Xip1 (C2orf13) is a novel regulator of cellular responses to DNA strand breaks

    DEFF Research Database (Denmark)

    Bekker-Jensen, Simon; Fugger, Kasper; Danielsen, Jannie Rendtlew

    2007-01-01

    in the C terminus of Xip1. The initial recruitment kinetics of Xip1 closely paralleled that of XRCC1, a central organizer of single strand break (SSB) repair, and its accumulation was both delayed and sustained when the detection of SSBs was abrogated by inhibition of PARP-1. Xip1 and XRCC1 stably...... identify the previously uncharacterized human protein Xip1 (C2orf13) as a novel component of the checkpoint response to DNA strand breaks. Green fluorescent protein-tagged Xip1 was rapidly recruited to sites of DNA breaks, and this accumulation was dependent on a novel type of zinc finger motif located...... interacted through recognition of CK2 phosphorylation sites in XRCC1 by the Forkhead-associated (FHA) domain of Xip1, and XRCC1 was required to maintain steady-state levels of Xip1. Moreover, Xip1 was phosphorylated on Ser-116 by ataxia telangiectasia-mutated in response to ionizing radiation, further...

  17. Development of Anti-Human Mesothelin-Targeted Chimeric Antigen Receptor Messenger RNA-transfected Peripheral Blood Lymphocytes for Ovarian Cancer Therapy.

    Science.gov (United States)

    Hung, Chien-Fu; Xu, Xuequn; Li, Linhong; Ma, Ying; Jin, Qiu; Viley, Angelia; Allen, Cornell; Natarajan, Pachai; Shivakumar, Rama; Peshwa, Madhusudan V; Emens, Leisha A

    2018-04-02

    CD19-targeted chimeric antigen receptor (CAR) engineered T/natural killer (NK)-cell therapies can result in durable clinical responses in B-cell malignancies. However, CAR-based immunotherapies have been much less successful in solid cancers, in part due to "on-target off-tumor" toxicity related to expression of target tumor antigens on normal tissue. Based on preliminary observations of safety and clinical activity in proof-of-concept clinical trials, tumor antigen-specific messenger RNA (mRNA) CAR transfection into selected, activated, and expanded T/NK cells may permit prospective control of "on-target off-tumor" toxicity. To develop a commercial product for solid tumors, mesothelin was selected as an antigen target based on its association with poor prognosis and overexpression in multiple solid cancers. It was hypothesized that selecting, activating, and expanding cells ex vivo prior to mRNA CAR transfection would not be necessary, thus simplifying the complexity and cost of manufacturing. Now, the development of anti-human mesothelin mRNA CAR transfected peripheral blood lymphocytes (CARMA-hMeso) is reported, demonstrating the manufacture and cryopreservation of multiple cell aliquots for repeat administrations from a single human leukapheresis. A rapid, automated, closed system for cGMP-compliant transfection of mRNA CAR in up to 20 × 10 9 peripheral blood lymphocytes was developed. Here we show that CARMA-hMeso cells recognize and lyse tumor cells in a mesothelin-specific manner. Expression of CAR was detectable over approximately 7 days in vitro, with a progressive decline of CAR expression that appears to correlate with in vitro cell expansion. In a murine ovarian cancer model, a single intraperitoneal injection of CARMA-hMeso resulted in the dose-dependent inhibition of tumor growth and improved survival of mice. Furthermore, repeat weekly intraperitoneal administrations of the optimal CARMA-hMeso dose further prolonged disease control and survival

  18. A negative element involved in Kaposi's sarcoma-associated herpesvirus-encoded ORF11 gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lei [Los Alamos National Laboratory

    2009-01-01

    The ORF11 of the Kaposi's sarcoma-associated herpesvirus (KSHV) is a lytic viral gene with delayed-early expression kinetics. How the ORF11 gene expression is regulated in the KSHV lytic cascade is largely unknown. Here we report that the deletion of the KSHV viral IL-6 gene from the viral genome leads to deregulated ORF11 gene expression. The KSHV-encoded viral IL-6 protein was found not to be essentially involved in the regulation of ORF11, suggesting a potential transcriptional cis-regulation. A negative element was identified downstream of the ORF11 gene, which suppresses the ORF11 basal promoter activity in a position-independent manner.

  19. The metabolic signature of C9ORF72-related ALS: FDG PET comparison with nonmutated patients

    International Nuclear Information System (INIS)

    Cistaro, Angelina; Fania, Piercarlo; Pagani, Marco; Montuschi, Anna; Moglia, Cristina; Canosa, Antonio; Calvo, Andrea; Lopiano, Leonardo; Restagno, Gabriella; Brunetti, Maura; Traynor, Bryan J.; Nobili, Flavio; Carrara, Giovanna; Valentini, M.C.; Chio, Adriano

    2014-01-01

    Recently, a GGGGCC hexanucleotide repeat expansion in the C9ORF72 gene, located on chromosome 9p21 has been demonstrated to be the commonest cause of familial amyotrophic lateral sclerosis (ALS) and to account for 5 to 10 % of apparently sporadic ALS. Relatively little is known about the brain metabolism profile of patients carrying the expansion. Our aim was to identify the [ 18 F]FDG PET profile in ALS patients with the C9ORF72 expansion (C9ORF72-ALS). Fifteen C9ORF72-ALS patients were compared with 12 patients with ALS and comorbid frontotemporal dementia (FTD) without the C9ORF72 expansion (ALS-FTD) and 30 cognitively normal patients with ALS without mutations of ALS-related genes (sALS). The three groups were then cross-matched to 40 neurologically normal controls. All patients underwent FDG PET within 4 months of diagnosis. The C9ORF72-ALS patients compared with the sALS patients showed significant hypometabolism in the anterior and posterior cingulate cortex, insula, caudate and thalamus, the left frontal and superior temporal cortex, and hypermetabolism in the midbrain, bilateral occipital cortex, globus pallidus and left inferior temporal cortex. The ALS-FTD patients compared with the sALS patients showed more limited hypometabolic areas, including the orbitofrontal, prefrontal, anterior cingulate and insular cortex, and hypermetabolic areas, including the bilateral occipital cortex, the left precentral and postcentral cortex and superior temporal gyrus. The C9ORF72-ALS patients compared with the ALS-FTD patients showed hypometabolism in the left temporal cortex. ALS patients with the C9ORF72 hexanucleotide repeat expansion had a more widespread central nervous system involvement than ALS patients without genetic mutations, with or without comorbid FTD, consistent with their more severe clinical picture. (orig.)

  20. ORF Sequence: Ca19AnnotatedDec2004aaSeq [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available Ca19AnnotatedDec2004aaSeq orf19.4769; Contig19-10215; join(105865..106689,106749.....107408); IPT1*; necessary for synthesis of mannose-(inositol-P)2-ceramide (M(IP)2C) | inositolphosphotransfe...rase 1 ... >orf19.4769; Contig19-10215; join(105865..106689,106749..107408); IPT1*; necessary for synthesis of mann...ose-(inositol-P)2-ceramide (M(IP)2C) | inositolphosphotransferase 1 | mannosy

  1. The metabolic signature of C9ORF72-related ALS: FDG PET comparison with nonmutated patients

    Energy Technology Data Exchange (ETDEWEB)

    Cistaro, Angelina; Fania, Piercarlo [Positron Emission Tomography Center IRMET S.p.A, Torino (Italy); Pagani, Marco [Institute of Cognitive Sciences and Technologies, Consiglio Nazionale delle Ricerche (CNR), Rome (Italy); Karolinska Hospital, Department of Nuclear Medicine, Stockholm (Sweden); Montuschi, Anna; Moglia, Cristina; Canosa, Antonio [University of Torino, ' Rita Levi Montalcini' Department of Neuroscience, Torino (Italy); Calvo, Andrea; Lopiano, Leonardo [University of Torino, ' Rita Levi Montalcini' Department of Neuroscience, Torino (Italy); Neuroscience Institute of Turin, Turin (Italy); Restagno, Gabriella; Brunetti, Maura [Azienda Ospedaliera Citta della Salute e della Scienza, Molecular Genetics Unit, Department of Clinical Pathology, Torino (Italy); Traynor, Bryan J. [National Institute on Ageing, National Institutes of Health, Neuromuscular Diseases Research Unit, Laboratory of Neurogenetics, Bethesda, MD (United States); Nobili, Flavio [University of Genova, Clinical Neurophysiology Unit, Department of Neurosciences, Ophthalmology and Genetics, Genova (Italy); Carrara, Giovanna; Valentini, M.C. [Azienda Ospedaliera Citta della Salute e della Scienza, Department of Neuroradiology, Torino (Italy); Chio, Adriano [University of Torino, ' Rita Levi Montalcini' Department of Neuroscience, Torino (Italy); Neuroscience Institute of Turin, Turin (Italy); ALS Center, ' Rita Levi Montalcini' Department of Neuroscience, Torino (Italy)

    2014-05-15

    Recently, a GGGGCC hexanucleotide repeat expansion in the C9ORF72 gene, located on chromosome 9p21 has been demonstrated to be the commonest cause of familial amyotrophic lateral sclerosis (ALS) and to account for 5 to 10 % of apparently sporadic ALS. Relatively little is known about the brain metabolism profile of patients carrying the expansion. Our aim was to identify the [{sup 18}F]FDG PET profile in ALS patients with the C9ORF72 expansion (C9ORF72-ALS). Fifteen C9ORF72-ALS patients were compared with 12 patients with ALS and comorbid frontotemporal dementia (FTD) without the C9ORF72 expansion (ALS-FTD) and 30 cognitively normal patients with ALS without mutations of ALS-related genes (sALS). The three groups were then cross-matched to 40 neurologically normal controls. All patients underwent FDG PET within 4 months of diagnosis. The C9ORF72-ALS patients compared with the sALS patients showed significant hypometabolism in the anterior and posterior cingulate cortex, insula, caudate and thalamus, the left frontal and superior temporal cortex, and hypermetabolism in the midbrain, bilateral occipital cortex, globus pallidus and left inferior temporal cortex. The ALS-FTD patients compared with the sALS patients showed more limited hypometabolic areas, including the orbitofrontal, prefrontal, anterior cingulate and insular cortex, and hypermetabolic areas, including the bilateral occipital cortex, the left precentral and postcentral cortex and superior temporal gyrus. The C9ORF72-ALS patients compared with the ALS-FTD patients showed hypometabolism in the left temporal cortex. ALS patients with the C9ORF72 hexanucleotide repeat expansion had a more widespread central nervous system involvement than ALS patients without genetic mutations, with or without comorbid FTD, consistent with their more severe clinical picture. (orig.)

  2. Optimization of transfection conditions and analysis of siRNA potency using real-time PCR.

    Science.gov (United States)

    Cheng, Angie; Magdaleno, Susan; Vlassov, Alexander V

    2011-01-01

    RNA interference (RNAi) is a mechanism by which the introduction of small interfering RNAs (siRNAs) into cultured cells causes degradation of the complementary mRNA. Applications of RNAi include gene function analysis, pathway analysis, and target validation. While RNAi experiments have become common practice in research labs, multiple factors can influence the extent of siRNA-induced knockdown (and thus biological outcome). A properly designed and selected siRNA sequence, siRNA modification format, choice of transfection reagent/technique, optimized protocols of siRNA in vitro delivery, and an appropriate and optimized readout are all critical for ensuring a successful experiment. In this chapter, we describe a typical in vitro siRNA experiment with optimization of transfection conditions and analysis of siRNA potency, i.e., mRNA knockdown with quantitative real-time PCR.

  3. ViralORFeome: an integrated database to generate a versatile collection of viral ORFs.

    Science.gov (United States)

    Pellet, J; Tafforeau, L; Lucas-Hourani, M; Navratil, V; Meyniel, L; Achaz, G; Guironnet-Paquet, A; Aublin-Gex, A; Caignard, G; Cassonnet, P; Chaboud, A; Chantier, T; Deloire, A; Demeret, C; Le Breton, M; Neveu, G; Jacotot, L; Vaglio, P; Delmotte, S; Gautier, C; Combet, C; Deleage, G; Favre, M; Tangy, F; Jacob, Y; Andre, P; Lotteau, V; Rabourdin-Combe, C; Vidalain, P O

    2010-01-01

    Large collections of protein-encoding open reading frames (ORFs) established in a versatile recombination-based cloning system have been instrumental to study protein functions in high-throughput assays. Such 'ORFeome' resources have been developed for several organisms but in virology, plasmid collections covering a significant fraction of the virosphere are still needed. In this perspective, we present ViralORFeome 1.0 (http://www.viralorfeome.com), an open-access database and management system that provides an integrated set of bioinformatic tools to clone viral ORFs in the Gateway(R) system. ViralORFeome provides a convenient interface to navigate through virus genome sequences, to design ORF-specific cloning primers, to validate the sequence of generated constructs and to browse established collections of virus ORFs. Most importantly, ViralORFeome has been designed to manage all possible variants or mutants of a given ORF so that the cloning procedure can be applied to any emerging virus strain. A subset of plasmid constructs generated with ViralORFeome platform has been tested with success for heterologous protein expression in different expression systems at proteome scale. ViralORFeome should provide our community with a framework to establish a large collection of virus ORF clones, an instrumental resource to determine functions, activities and binding partners of viral proteins.

  4. ARA-PEPs: a repository of putative sORF-encoded peptides in Arabidopsis thaliana.

    Science.gov (United States)

    Hazarika, Rashmi R; De Coninck, Barbara; Yamamoto, Lidia R; Martin, Laura R; Cammue, Bruno P A; van Noort, Vera

    2017-01-17

    Many eukaryotic RNAs have been considered non-coding as they only contain short open reading frames (sORFs). However, there is increasing evidence for the translation of these sORFs into bioactive peptides with potent signaling, antimicrobial, developmental, antioxidant roles etc. Yet only a few peptides encoded by sORFs are annotated in the model organism Arabidopsis thaliana. To aid the functional annotation of these peptides, we have developed ARA-PEPs (available at http://www.biw.kuleuven.be/CSB/ARA-PEPs ), a repository of putative peptides encoded by sORFs in the A. thaliana genome starting from in-house Tiling arrays, RNA-seq data and other publicly available datasets. ARA-PEPs currently lists 13,748 sORF-encoded peptides with transcriptional evidence. In addition to existing data, we have identified 100 novel transcriptionally active regions (TARs) that might encode 341 novel stress-induced peptides (SIPs). To aid in identification of bioactivity, we add functional annotation and sequence conservation to predicted peptides. To our knowledge, this is the largest repository of plant peptides encoded by sORFs with transcript evidence, publicly available and this resource will help scientists to effortlessly navigate the list of experimentally studied peptides, the experimental and computational evidence supporting the activity of these peptides and gain new perspectives for peptide discovery.

  5. Developing a puncture-free in ovo chicken transfection strategy based on bypassing albumen nucleases.

    Science.gov (United States)

    Amini, Hamid-Reza; Pakdel, Abbas; Shahr-Babak, Hossein Moradi; Eghbalsaied, Shahin

    2017-03-15

    Chicken is a dual-purpose animal important from both agricultural and medical aspects. Even though significant improvements have been made in chicken transgenesis technologies, chicken genome manipulation has not been widely used in developmental biology. This study was aimed to evaluate chicken egg white nuclease properties and thereof plausibility of devising an in vivo transfection technology without causing physical damage to the embryo. First, the nuclease activity of egg albumen was assessed. The egg white nucleases were strongly active in degrading DNA and RNA. The egg white DNase activity was comparable to commercially available DNase-I. Nuclease activities were also assessed after heating, proteinase K, or EDTA treatment. Unlike proteinase K, both heating and EDTA were noticeably effective for the nuclease inactivation. Simultaneous application of lipoplex form of DNA (1 μg pDB2: 3 μl Lipofectamine2000) and EDTA showed a synergistic effect in protection against egg white nucleases. Finally, we injected the lipoplexes with or without EDTA close to the embryo at day0, but outside the embryonic epiblast. Implementation of a scrutinized PCR assay indicated that transfection took place only when EDTA was complemented to the lipoplexes. The transfection rate of day4 embryos and the hatched chicks were 54.5 and 30.0%, respectively. EGFP expression was detected in two out of three transgenic chicks. In conclusion, this study provided a detail analysis of chicken egg albumen nuclease properties and suggested the feasibility of developing a puncture-free handmade technology for transfection of the chicken embryo. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. DOTAP/DOPE ratio and cell type determine transfection efficiency with DOTAP-liposomes.

    Science.gov (United States)

    Kim, Bieong-Kil; Hwang, Guen-Bae; Seu, Young-Bae; Choi, Jong-Soo; Jin, Kyeong Sik; Doh, Kyung-Oh

    2015-10-01

    The effects of lipid compositions on their physicochemical properties and transfection efficiencies were investigated. Four liposome formulations with different 1,2-dioleoyl-3-trimethylammoniumpropane (DOTAP) to dioleoylphosphatidylethanolamine (DOPE) weight ratios were investigated, that is, weight ratios 1:0 (T1P0), 3:1 (T3P1), 1:1 (T1P1), and 1:3 (T1P3). Mean sizes of liposomes were influenced by their lipid composition and the preparation concentration at the time of sonication. Zeta potentials of liposomes were inversely correlated with their liposome sizes. However, neither liposome sizes nor zeta potentials were correlated with transfection efficiency. The optimum composition of liposomes was cell-line dependent (T1P0 and T3P1 for Huh7 and AGS, T3P1 and T1P1 for COS7, and T1P1 and T1P3 for A549). The shape of lipoplexes was changed from lamellar to inverted hexagonal structure according to the increased ratio of DOPE, but there was no definite advantage of specific structure in transfection efficiency throughout all used cell lines. However, cellular internalization was consistently faster in T1P0, T3P1, T1P1 compared to T1P3 in all cell lines, suggesting the importance of endosomal escape. Our findings show that the transfection efficiency of DOTAP liposomes is mainly influenced by lipid composition and cell type, and not by size or zeta potential. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Conditions for gene transfection into the HL-60 human leukaemia cell line by electroporation

    Czech Academy of Sciences Publication Activity Database

    Pacherník, Jiří; Janík, Robert; Hofmanová, Jiřina; Bryja, Vítězslav; Kozubík, Alois

    2002-01-01

    Roč. 48, č. 4 (2002), s. 154-156 ISSN 0015-5500 R&D Projects: GA ČR GA524/99/0694; GA AV ČR IBS5004009; GA AV ČR KSK5011112 Institutional research plan: CEZ:AV0Z5004920 Keywords : leukaemia cell line HL-60 * electroporation * gene transfection Subject RIV: BO - Biophysics Impact factor: 0.615, year: 2002

  8. Characterization of nanoparticle mediated laser transfection by femtosecond laser pulses for applications in molecular medicine.

    Science.gov (United States)

    Schomaker, Markus; Heinemann, Dag; Kalies, Stefan; Willenbrock, Saskia; Wagner, Siegfried; Nolte, Ingo; Ripken, Tammo; Murua Escobar, Hugo; Meyer, Heiko; Heisterkamp, Alexander

    2015-02-03

    In molecular medicine, the manipulation of cells is prerequisite to evaluate genes as therapeutic targets or to transfect cells to develop cell therapeutic strategies. To achieve these purposes it is essential that given transfection techniques are capable of handling high cell numbers in reasonable time spans. To fulfill this demand, an alternative nanoparticle mediated laser transfection method is presented herein. The fs-laser excitation of cell-adhered gold nanoparticles evokes localized membrane permeabilization and enables an inflow of extracellular molecules into cells. The parameters for an efficient and gentle cell manipulation are evaluated in detail. Efficiencies of 90% with a cell viability of 93% were achieved for siRNA transfection. The proof for a molecular medical approach is demonstrated by highly efficient knock down of the oncogene HMGA2 in a rapidly proliferating prostate carcinoma in vitro model using siRNA. Additionally, investigations concerning the initial perforation mechanism are conducted. Next to theoretical simulations, the laser induced effects are experimentally investigated by spectrometric and microscopic analysis. The results indicate that near field effects are the initial mechanism of membrane permeabilization. This methodical approach combined with an automated setup, allows a high throughput targeting of several 100,000 cells within seconds, providing an excellent tool for in vitro applications in molecular medicine. NIR fs lasers are characterized by specific advantages when compared to lasers employing longer (ps/ns) pulses in the visible regime. The NIR fs pulses generate low thermal impact while allowing high penetration depths into tissue. Therefore fs lasers could be used for prospective in vivo applications.

  9. An in vivo transfection system for inducible gene expression and gene silencing in murine hepatocytes.

    Science.gov (United States)

    Hubner, Eric K; Lechler, Christian; Kohnke-Ertel, Birgit; Zmoos, Anne-Flore; Sage, Julien; Schmid, Roland M; Ehmer, Ursula

    2017-01-01

    Hydrodynamic tail vein injection (HTVI) of transposon-based integration vectors is an established system for stably transfecting mouse hepatocytes in vivo that has been successfully employed to study key questions in liver biology and cancer. Refining the vectors for transposon-mediated hepatocyte transfection will further expand the range of applications of this technique in liver research. In the present study, we report an advanced transposon-based system for manipulating gene expression in hepatocytes in vivo. Transposon-based vector constructs were generated to enable the constitutive expression of inducible Cre recombinase (CreER) together with tetracycline-inducible transgene or miR-small hairpin RNA (shRNA) expression (Tet-ON system). Transposon and transposase expression vectors were co-injected into R26R-mTmG reporter mice by HTVI. Cre-mediated gene recombination was induced by tamoxifen, followed by the administration of doxycycline to drive tetracycline-inducible gene or shRNA expression. Expression was visualized by immunofluorescence staining in livers of injected mice. After HTVI, Cre recombination by tamoxifen led to the expression of membrane-bound green fluorescent protein in transfected hepatocytes. Activation of inducible gene or shRNA expression was detected by immunostaining in up to one-third of transfected hepatocytes, with an efficiency dependent on the promoter driving the Tet-ON system. Our vector system combines Cre-lox mediated gene mutation with inducible gene expression or gene knockdown, respectively. It provides the opportunity for rapid and specific modification of hepatocyte gene expression and can be a useful tool for genetic screening approaches and analysis of target genes specifically in genetically engineered mouse models. Copyright © 2016 John Wiley & Sons, Ltd.

  10. [Expression of human Jagged-1 protein on eukaryotic cells and establishment of stable transfectant cell line].

    Science.gov (United States)

    Gan, Zhi-Hua; Chen, Yu; Yan, Hua; Wang, Kan-Kan

    2010-08-01

    Jagged-1 protein is one of the ligands belonging to Notch signaling pathway. Notch signaling pathway is one of the major signaling pathways mediated by contact between cells and plays an important role to regulate the process of proliferation and differentiation of hematopoietic cells in the hematopoietic microenvironment. To study the biological effect after the combination of receptor and ligand in Notch signaling pathway and the mechanism of Notch signaling pathway in bone marrow stromal cells mediated-drug resistance, a NIH-3T3 cell line over-expressing Jagged-1 protein was constructed for further research purposes. A full coding region of Jagged-1 gene was cloned and inserted into eukaryotic expression plasmid to construct pEGFP-IRES2-Jagged-1 eukaryotic expression vector, then transfected into NIH-3T3 cell line, a mammalian cells. As a result Western blot analysis confirmed that the transfectant NIH-3T3 cells highly expressed Jagged-1 protein and flow cytometry analysis confirmed that the NIH-3T3-pEGFP-IRES2-Jagged-1 cell line over-expressed Jagged-1 protein was monoclonal after screened by selective medium and limiting dilution analysis. It is concluded that the pEGFP-IRES2-Jagged-1 eukaryotic expression vector and a stable transfectant monoclonal NIH-3T3 cell line are successfully established. The construction of the stable transfectant monoclonal NIH-3T3 cell line which overexpressed Jagged-1 protein, provides the conditions to further study the mechanism of the bone marrow stromal cell-mediated drug resistance and to discover the new drug targets.

  11. In vitro transfection of bone marrow-derived dendritic cells with TATp-liposomes

    Directory of Open Access Journals (Sweden)

    Pappalardo JS

    2014-02-01

    Full Text Available Juan Sebastián Pappalardo,1–3 Cecilia A Langellotti,2 Sebastián Di Giacomo,1 Valeria Olivera,1 Valeria Quattrocchi,2 Patricia I Zamorano,1,2 William C Hartner,3 Tatyana S Levchenko,3 Vladimir P Torchilin3 1Virology Institute, Center for Research in Veterinary and Agronomic Sciences, National Institute for Agricultural Technology (INTA, Hurlingham, BA, Argentina; 2National Council for Scientific and Technical Research (CONICET, Autonomous City of Buenos Aires, Argentina; 3Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA Abstract: Dendritic cells (DC are antigen-presenting cells uniquely capable of priming naïve T cells and cross-presenting antigens, and they determine the type of immune response elicited against an antigen. TAT peptide (TATp, is an amphipathic, arginine-rich, cationic peptide that promotes penetration and translocation of various molecules and nanoparticles into cells. TATp-liposomes (TATp-L used for DC transfection were prepared using TATp derivatized with a lipid-terminated polymer capable of anchoring in the liposomal membrane. Here, we show that the addition of TATp to DNA-loaded liposomes increased the uptake of DNA in DC. DNA-loaded TATp-L increased the in vitro transfection efficiency in DC cultures as evidenced by a higher expression of the enhanced green fluorescent protein and bovine herpes virus type 1 glycoprotein D (gD. The de novo synthesized gD protein was immunologically stimulating when transfections were performed with TATp-L, as indicated by the secretion of interleukin 6. Keywords: dendritic cell transfection, green fluorescent protein, bovine herpes virus 1 glycoprotein D, liposomes, TAT peptide, interleukin 6

  12. Stable transfection of provirus of human immunodeficiency virus into a murine packaging cell line.

    Science.gov (United States)

    Rozera, C; Baccarini, S; Gentile, M; Torrisi, M R; Proietti, E; Federico, M; Pulciani, S

    1997-04-01

    In order to generate HIV (murine leukemia virus (MuLV)) pseudotypes, HIV genome was transfected into the ecotropic murine packaging cell line (GP+E86) and four of the nine transfected clones were extensively characterized. One clone (801), harbouring a full copy of integrated HIV sequences, exhibited a detectable level of intracellular HIV p24 antigen expression. Northern blot analysis revealed that clone 801 expressed all three classes of HIV mRNAs. Multispliced 2 kb mRNAs were detected in another clone (8.14). Two other clones (1.31 and 1.32) also exhibited a complete HIV provirus, but did not show any viral expression, as evaluated by Northern blot analysis or HIV p24 ELISA. Reverse transcription-polymerase chain reaction (RT-PCR) experiments revealed the presence of full length genomic RNA in four transfected clones, which were extensively characterized. A co-cultivation of clone 801 with human CD4' cells resulted in syncytia formation. By electron microscopy, mature HIV particles were observed after co-cultivation of uninfected C8166 cells with 801 cells. These results demonstrated that the murine clone was stably transfected with the complete HIV genome and was capable of shuttling infectious HIV to human cells. Clone 801 was co-cultivated with murine NIH-3T3 fibroblasts. In several experiments, HIV infection of NIH-3T3 cells was revealed by PCR technique. Thus, 801 cells appear to produce low levels of HIV (MuLV) pseudotypes capable of transferring the HIV genome into mouse cells.

  13. Transfection Studies with Colloidal Systems Containing Highly Purified Bipolar Tetraether Lipids from Sulfolobus acidocaldarius

    Science.gov (United States)

    Pinnapireddy, Shashank Reddy; Baghdan, Elias; Jedelská, Jarmila

    2017-01-01

    Lipid vectors are commonly used to facilitate the transfer of nucleic acids into mammalian cells. In this study, two fractions of tetraether lipids from the archaea Sulfolobus acidocaldarius were extracted and purified using different methods. The purified lipid fractions polar lipid fraction E (PLFE) and hydrolysed glycerol-dialkyl-nonitol tetraether (hGDNT) differ in their structures, charge, size, and miscibility from conventional lipids. Liposomes were prepared by mixing tetraether lipids with cholesterol (CH) and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) resulting in stable vectors for gene delivery. Lipoplexes were prepared by complexation of liposomes with a luciferase expressing plasmid (pCMV-luc) at certain nitrogen-to-phosphorus (N/P) ratios and optimised for the transient transfection of ovarian adenocarcinoma cells (SK-OV-3). Complexation efficacy was investigated by gel-red fluorescence assay. Biophysical properties, like size, surface charge, and morphology, were investigated by differential light scattering (DLS), atomic force microscopy (AFM), and scanning electron microscopy (Cryo-SEM), respectively, revealing structural differences between liposomes and lipoplexes. A range of stable transfecting agents containing tetraether lipids were obtained by incorporating 5 mol% of tetraether lipids. Lipoplexes showed a decrease in free gel-red with increasing N/P ratios indicating efficient incorporation of plasmid DNA (pDNA) and remarkable stability. Transfection experiments of the lipoplexes revealed successful and superior transfection of SK-OV-3 cell line compared to the commercially available DOTAP and branched polyethyleneimine (25 kDa bPEI). PMID:28239294

  14. Transfection Studies with Colloidal Systems Containing Highly Purified Bipolar Tetraether Lipids from Sulfolobus acidocaldarius

    Directory of Open Access Journals (Sweden)

    Konrad H. Engelhardt

    2017-01-01

    Full Text Available Lipid vectors are commonly used to facilitate the transfer of nucleic acids into mammalian cells. In this study, two fractions of tetraether lipids from the archaea Sulfolobus acidocaldarius were extracted and purified using different methods. The purified lipid fractions polar lipid fraction E (PLFE and hydrolysed glycerol-dialkyl-nonitol tetraether (hGDNT differ in their structures, charge, size, and miscibility from conventional lipids. Liposomes were prepared by mixing tetraether lipids with cholesterol (CH and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP resulting in stable vectors for gene delivery. Lipoplexes were prepared by complexation of liposomes with a luciferase expressing plasmid (pCMV-luc at certain nitrogen-to-phosphorus (N/P ratios and optimised for the transient transfection of ovarian adenocarcinoma cells (SK-OV-3. Complexation efficacy was investigated by gel-red fluorescence assay. Biophysical properties, like size, surface charge, and morphology, were investigated by differential light scattering (DLS, atomic force microscopy (AFM, and scanning electron microscopy (Cryo-SEM, respectively, revealing structural differences between liposomes and lipoplexes. A range of stable transfecting agents containing tetraether lipids were obtained by incorporating 5 mol% of tetraether lipids. Lipoplexes showed a decrease in free gel-red with increasing N/P ratios indicating efficient incorporation of plasmid DNA (pDNA and remarkable stability. Transfection experiments of the lipoplexes revealed successful and superior transfection of SK-OV-3 cell line compared to the commercially available DOTAP and branched polyethyleneimine (25 kDa bPEI.

  15. Effects of parameters, plasmid dosages and topological structures on transfection efficiency of porcine fetal fibroblasts using different electroporators.

    Science.gov (United States)

    Zhong, Cui-Li; Li, Guo-Ling; Mo, Jian-Xin; Quan, Rong; Wang, Hao-Qiang; Li, Zi-Cong; Wu, Zhen-Fang; Zhang, Xian-Wei

    2017-10-20

    To obtain an ideal transfection efficiency of porcine fetal fibroblasts, fluorescence activated cell sorting (FACS) was used to optimize parameters for transfection of porcine fetal fibroblasts (PFFs) with ECM? 830, NEPA 21 and Nucleofector? 2b in different conditions such as electroporation parameters, plasmid dosages and topological structures. The results show that the optimum poring pulse parameter of NEPA 21 is voltage 200 V, continuous 3 ms, interval 50 ms, 3 times, voltage attenuation range of 10%; and the transfection efficiency of Nucleofector? 2b is highest under U-023 program. Under the optimum conditions, FACS analysis demonstrates that Nucleofector? 2b and ECM? 830 have the highest transfection efficiency when transfecting 10 μg supercoiled plasmids into PFFs, and 8 μg for NEPA 21. Supercoiled plasmids show higher transfection efficiencies than linearized plasmids. Moreover, Nucleofector? 2b has the highest transfection efficiency among the three electroporation instruments. This study paves the way to generate transgenic or gene editing pigs with high efficiency.

  16. Comparison of small interfering RNA (siRNA) delivery into bovine monocyte-derived macrophages by transfection and electroporation.

    Science.gov (United States)

    Jensen, Kirsty; Anderson, Jennifer A; Glass, Elizabeth J

    2014-04-15

    The manipulation of the RNA interference pathway using small interfering RNA (siRNA) has become the most frequently used gene silencing method. However, siRNA delivery into primary cells, especially primary macrophages, is often considered challenging. Here we report the investigation of the suitability of two methodologies: transient transfection and electroporation, to deliver siRNA targeted against the putative immunomodulatory gene Mediterranean fever (MEFV) into primary bovine monocyte-derived macrophages (bMDM). Eleven commercial transfection reagents were investigated with variable results with respect to siRNA uptake, target gene knock-down, cell toxicity and type I interferon (IFN) response induction. Three transfection reagents: Lipofectamine 2000, Lipofectamine RNAiMAX and DharmaFECT 3, were found to consistently give the best results. However, all the transfection reagents tested induced an IFN response in the absence of siRNA, which could be minimized by reducing the transfection reagent incubation period. In addition, optimized siRNA delivery into bMDM by electroporation achieved comparable levels of target gene knock-down as transient transfection, without a detectable IFN response, but with higher levels of cell toxicity. The optimized transient transfection and electroporation methodologies may provide a starting point for optimizing siRNA delivery into macrophages derived from other species or other cells considered difficult to investigate with siRNA. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Optimization of transfection parameters for ultrasound/SonoVue microbubble-mediated hAng-1 gene delivery in vitro.

    Science.gov (United States)

    Zhou, Qing; Chen, Jin-Ling; Chen, Qian; Wang, Xiao; Deng, Qing; Hu, Bo; Guo, Rui-Qiang

    2012-12-01

    This study aimed to explore the effects of microbubble concentration, gene dosage, cell-microbubble mixing mode and fetal bovine serum (FBS) on gene delivery. 293T cells were transfected with Sonovue microbubbles carrying the hAng-1 gene via ultrasound irradiation. Various ultrasound exposure parameters and microbubble and DNA concentrations were investigated. In addition, FBS and the cell suspension or adherent mode was explored. Transfection efficiency and cell viability were used to determine the optimal transfection parameters. hAng-1 gene transfection efficiency gradually increased with elongation of ultrasound exposure and increasing microbubble concentration. However, if ultrasound irradiation exceeded 1.5 W/cm² and 30 sec or the microbubble concentration was over 20%, hAng-1 gene expression was significantly decreased, coupled with extensive cell death. Gene transfection levels were low under DNA concentrations less than 15 µg/ml. Furthermore, the gene transfer rate was significantly increased under cell suspension mode; FBS had no effect on hAng-1 gene transfection. The integrity of hAng-1 DNA was not affected by ultrasonic irradiation under optimal conditions. The optimal transfection parameters for the hAng-1 gene and Sonovue microbubble were ultrasound exposure of 1.5 W/cm² and 30 sec, 20% microbubbles, 15 µg/ml of DNA and under cell suspension mode.

  18. Effects of AC/DC magnetic fields, frequency, and nanoparticle aspect ratio on cellular transfection of gene vectors

    Science.gov (United States)

    Ford, Kris; Mair, Lamar; Fisher, Mike; Rowshon Alam, Md.; Juliano, Rudolph; Superfine, Richard

    2008-10-01

    In order to make non-viral gene delivery a useful tool in the study and treatment of genetic disorders, it is imperative that these methodologies be further refined to yield optimal results. Transfection of magnetic nanoparticles and nanorods are used as non-viral gene vectors to transfect HeLa EGFP-654 cells that stably express a mutated enhanced green fluorescent protein (EGFP) gene. We deliver antisense oligonucleotides to these cells designed to correct the aberrant splicing caused by the mutation in the EGFP gene. We also transfect human bronchial endothelial cells and immortalized WI-38 lung cells with pEGFP-N1 vectors. To achieve this we bind the genes to magnetic nanoparticles and nanorods and introduce magnetic fields to effect transfection. We wish to examine the effects of magnetic fields on the transfection of these particles and the benefits of using alternating (AC) magnetic fields in improving transfection rates over direct (DC) magnetic fields. We specifically look at the frequency dependence of the AC field and particle aspect ratio as it pertains to influencing transfection rate. We posit that the increase in angular momentum brought about by the AC field and the high aspect ratio of the nanorod particles, is vital to generating the force needed to move the particle through the cell membrane.

  19. Efficient Gene Knockdown in Mouse Oocytes through Peptide Nanoparticle-Mediated SiRNA Transfection.

    Directory of Open Access Journals (Sweden)

    Zhen Jin

    Full Text Available The use of mouse oocytes as a model for studying female meiosis is very important in reproductive medicine. Gene knockdown by specific small interfering RNA (siRNA is usually the first step in the study of the function of a target gene in mouse oocytes during in vitro maturation. Traditionally, the only way to introduce siRNA into mouse oocytes is through microinjection, which is certainly less efficient and strenuous than siRNA transfection in somatic cells. Recently, in research using somatic cells, peptide nanoparticle-mediated siRNA transfection has been gaining popularity over liposome nanoparticle-mediated methods because of its high efficiency, low toxicity, good stability, and strong serum compatibility. However, no researchers have yet tried transfecting siRNA into mouse oocytes because of the existence of the protective zona pellucida surrounding the oocyte membrane (vitelline membrane. We therefore tested whether peptide nanoparticles can introduce siRNA into mouse oocytes. In the present study, we showed for the first time that our optimized program can efficiently knock down a target gene with high specificity. Furthermore, we achieved the expected meiotic phenotypes after we knocked down a test unknown target gene TRIM75. We propose that peptide nanoparticles may be superior for preliminary functional studies of unknown genes in mouse oocytes.

  20. Reduced repair of non-dimer photoproducts in a gene transfected into xeroderma pigmentosum cells

    International Nuclear Information System (INIS)

    Protic-Sabljic, Miroslava; Kraemer, K.H.

    1986-01-01

    Cells from patients with the sun sensitive cancer-prone disease, xeroderma pigmentosum (XP) have defective repair of UV damaged DNA with reduced excision of the major photoproduct, the cyclobutane type pyrimidine dimer. Other (non-dimer) photoproducts, have recently been implicated in UV mutagenesis. Utilizing an expression vector host cell reactivation assay, UV damaged transfecting DNA that was treated by in vitro photoreactivation to reverse pyrimidine dimers while not altering other photoproducts was studied. It was found that the reduced expression of a UV damaged transfecting plasmid in XP complementation group A cells is only partially reversed by photoreactivation. E. coli photolyase treatment of pSV2catSVgpt exposed to 100 or 200 J m -2 of 254 nm radiation removed 99% of the T4 endonuclease V sensitive sites. Transfection of XP12BE(SV40) cells with photoreactivated pSV2catSVgpt showed residual inhibition corresponding to 25 to 37% of the lethal hits to the cat gene. This residual inhibition corresponds to the fraction of non-dimer photoproducts induced by UV. This result implies that XP12BE(SV40) cells do not repair most of the non-dimer photoproducts in DNA. (author)

  1. X-ray sensitive strains of CHO cells show decreased frequency of stable transfection

    International Nuclear Information System (INIS)

    Jeggo, P.; Smith, J.

    1987-01-01

    Six X-ray sensitive (xrs) strains of the Chinese hamster ovary cell line have previously been isolated and shown to have a defect in double strand break rejoining. In this study, these strains have been investigated for their ability to take up and integrate foreign DNA. All the xrs strains investigated so far have shown a decreased frequency of stable transfectants compared to their parent line, in experiments using the plasmid pSV2gpt, which contains the selectable bacterial gene, guanine phosphoribosyl transferase. This decreased frequency is observed over a wide range of DNA concentrations (0.1 to 20 μg DNA) but is more pronounced at higher DNA concentrations. In contrast, these xrs strains show the same level of transfection proficiency as the wild type parent using a transient transfection system with a plasmid containing the bacterial CAT (chloramphenicol acetyl transferase) gene. Since the level of CAT activity does not depend on integration of foreign DNA, this suggests that the xrs strains are able to take up the same amount of DNA as the parent strains, but have a defect in the integration of foreign DNA. Since this integration of foreign DNA probably occurs by non-homologous recombination, this may indicate a role of the xrs gene product in this process

  2. Extended gene expression by medium exchange and repeated transient transfection for recombinant protein production enhancement.

    Science.gov (United States)

    Cervera, Laura; Gutiérrez-Granados, Sonia; Berrow, Nicholas Simon; Segura, Maria Mercedes; Gòdia, Francesc

    2015-05-01

    Production of recombinant products in mammalian cell cultures can be achieved by stable gene expression (SGE) or transient gene expression (TGE). The former is based on the integration of a plasmid DNA into the host cell genome allowing continuous gene expression. The latter is based on episomal plasmid DNA expression. Conventional TGE is limited to a short production period of usually about 96 h, therefore limiting productivity. A novel gene expression approach termed extended gene expression (EGE) is explored in this study. The aim of EGE is to prolong the production period by the combination of medium exchange and repeated transfection of cell cultures with plasmid DNA to improve overall protein production. The benefit of this methodology was evaluated for the production of three model recombinant products: intracellular GFP, secreted GFP, and a Gag-GFP virus-like particles (VLPs). Productions were carried out in HEK 293 cell suspension cultures grown in animal-derived component free media using polyethylenimine (PEI) as transfection reagent. Transfections were repeated throughout the production process using different plasmid DNA concentrations, intervals of time, and culture feeding conditions in order to identify the best approach to achieve sustained high-level gene expression. Using this novel EGE strategy, the production period was prolonged between 192 and 240 h with a 4-12-fold increase in production levels, depending on the product type considered. © 2014 Wiley Periodicals, Inc.

  3. Ultrasound-targeted microbubble destruction enhances naked plasmid DNA transfection in rabbit Achilles tendons in vivo.

    Science.gov (United States)

    Qiu, L; Zhang, L; Wang, L; Jiang, Y; Luo, Y; Peng, Y; Lin, L

    2012-07-01

    The study was to investigate the probability of increasing the transfection of the gene in tendons by ultrasound-targeted microbubble destruction (UTMD), and to search for the most suitable transfection conditions. A mixture of microbubbles and enhanced green fluorescent protein (EGFP) plasmids was injected into rabbit Achilles tendons by different administration routes and the tendons were ultrasound pulse by different ultrasonic conditions in order to determine the most appropriate conditions. Then, the rabbits were divided into four groups: (1) ultrasound + microbubbles + plasmid; (2) ultrasound+ plasmid; (3) microbubble + plasmid; (4) plasmid only. EGFP expression in the tendons and other tissues, and the damage to tendon and paratenon were all observed. The results showed that EGFP expression in the tendon was higher by ultrasound pulse with 2 W cm(-2) of output intensity and a 20% duty cycle for 10 min. Local injection was determined to be the better administration route. Among the four groups, EGFP expression in Group 1 was higher than that in other groups. EGFP expression was highest on seventh day, then it gradually decrease over time, and lasted more than 56 days. EGFP expression was not found in other tissues. There was no obvious injury caused by UTMD. Under suitable conditions, it is feasible to use UTMD as a safe and effective gene transfection therapy for tendon injuries.

  4. Gene Therapy Vectors with Enhanced Transfection Based on Hydrogels Modified with Affinity Peptides

    Science.gov (United States)

    Shepard, Jaclyn A.; Wesson, Paul J.; Wang, Christine E.; Stevans, Alyson C.; Holland, Samantha J.; Shikanov, Ariella; Grzybowski, Bartosz A.; Shea, Lonnie D.

    2011-01-01

    Regenerative strategies for damaged tissue aim to present biochemical cues that recruit and direct progenitor cell migration and differentiation. Hydrogels capable of localized gene delivery are being developed to provide a support for tissue growth, and as a versatile method to induce the expression of inductive proteins; however, the duration, level, and localization of expression isoften insufficient for regeneration. We thus investigated the modification of hydrogels with affinity peptides to enhance vector retention and increase transfection within the matrix. PEG hydrogels were modified with lysine-based repeats (K4, K8), which retained approximately 25% more vector than control peptides. Transfection increased 5- to 15-fold with K8 and K4 respectively, over the RDG control peptide. K8- and K4-modified hydrogels bound similar quantities of vector, yet the vector dissociation rate was reduced for K8, suggesting excessive binding that limited transfection. These hydrogels were subsequently applied to an in vitro co-culture model to induce NGF expression and promote neurite outgrowth. K4-modified hydrogels promoted maximal neurite outgrowth, likely due to retention of both the vector and the NGF. Thus, hydrogels modified with affinity peptides enhanced vector retention and increased gene delivery, and these hydrogels may provide a versatile scaffold for numerous regenerative medicine applications. PMID:21514659

  5. Structural mediation on polycation nanoparticles by sulfadiazine to enhance DNA transfection efficiency and reduce toxicity.

    Science.gov (United States)

    Long, Xingwen; Zhang, Zhihui; Han, Shangcong; Tang, Minjie; Zhou, Junhui; Zhang, Jianhua; Xue, Zhenyi; Li, Yan; Zhang, Rongxin; Deng, Liandong; Dong, Anjie

    2015-04-15

    Reducing the toxicity while maintaining high transfection efficiency is an important issue for cationic polymers as gene carriers in clinical application. In this paper, a new zwitterionic copolymer, polycaprolactone-g-poly(dimethylaminoethyl methyacrylate-co-sulfadiazine methacrylate) (PC-SDZ) with unique pH-sensitivity, was designed and prepared. The incorporation of sulfadiazine into poly(dimethylaminoethyl methacrylate) (PDMAEMA) chains successfully mediates the surface properties including compacter shell structure, lower density of positive charges, stronger proton buffer capability, and enhanced hydrophobicity, which lead to reduction in toxicity and enhancements in stability, cellular uptake, endosome escape, and transfection efficiency for the PC-SDZ2 nanoparticles (NPs)/DNA complexes. Excellent transfection efficiency at the optimal N/P ratio of 10 was observed for PC-SDZ2 NPs/DNA complexes, which was higher than that of the commercial reagent-branched polyethylenimine (PEI). The cytotoxicity was evaluated by CCK8 measurement, and the results showed significant reduction in cytotoxicity even at high concentration of complexes after sulfadiazine modification. Therefore, this work may demonstrate a new way of structural mediation of cationic polymer carriers for gene delivery with high efficiency and low toxicity.

  6. In vitro transfection of bone marrow-derived dendritic cells with TATp-liposomes.

    Science.gov (United States)

    Pappalardo, Juan Sebastián; Langellotti, Cecilia A; Di Giacomo, Sebastián; Olivera, Valeria; Quattrocchi, Valeria; Zamorano, Patricia I; Hartner, William C; Levchenko, Tatyana S; Torchilin, Vladimir P

    2014-01-01

    Dendritic cells (DC) are antigen-presenting cells uniquely capable of priming naïve T cells and cross-presenting antigens, and they determine the type of immune response elicited against an antigen. TAT peptide (TATp), is an amphipathic, arginine-rich, cationic peptide that promotes penetration and translocation of various molecules and nanoparticles into cells. TATp-liposomes (TATp-L) used for DC transfection were prepared using TATp derivatized with a lipid-terminated polymer capable of anchoring in the liposomal membrane. Here, we show that the addition of TATp to DNA-loaded liposomes increased the uptake of DNA in DC. DNA-loaded TATp-L increased the in vitro transfection efficiency in DC cultures as evidenced by a higher expression of the enhanced green fluorescent protein and bovine herpes virus type 1 glycoprotein D (gD). The de novo synthesized gD protein was immunologically stimulating when transfections were performed with TATp-L, as indicated by the secretion of interleukin 6.

  7. Transfection of mouse cytotoxic T lymphocyte with an antisense granzyme A vector reduces lytic activity.

    Science.gov (United States)

    Talento, A; Nguyen, M; Law, S; Wu, J K; Poe, M; Blake, J T; Patel, M; Wu, T J; Manyak, C L; Silberklang, M

    1992-12-15

    Murine CTL have seven serine proteases, known as granzymes, in their lytic granules. Despite considerable effort, convincing evidence that these enzymes play an obligatory role in the lytic process has not been presented. To investigate the function of one of these proteases, granzyme A (GA), we utilized an antisense expression vector to lower the level of the enzyme in the cells. An expression vector containing antisense cDNA for GA and the gene for hygromycin B resistance was constructed and electroporated into the murine CTL line, AR1. Transfectants were selected based on resistance to hygromycin B, and a number of stable lines were developed. One of the antisense lines had greatly reduced levels of GA mRNA, when compared to the parental cells or to control lines transfected with the vector lacking the antisense DNA. The message levels for two other CTL granule proteins, granzyme B and perforin, were unaffected by the antisense vector. The amount of GA, as measured by enzymatic activity, was 3- to 10-fold lower in the transfectant. Most significantly, this line also consistently showed 50 to 70% lower ability to lyse nucleated target cells and to degrade their DNA. Furthermore, it exhibited 90 to 95% lower lytic activity to anti-CD3-coated SRBC. Conjugate formation with target cells, however, was normal. These data provide strong evidence that GA plays an important role in the cytolytic cycle, and that the quantity of enzyme is a limiting factor in these cytolytic cells.

  8. Simplified lentivirus vector production in protein-free media using polyethylenimine-mediated transfection.

    Science.gov (United States)

    Kuroda, Hitoshi; Kutner, Robert H; Bazan, Nicolas G; Reiser, Jakob

    2009-05-01

    During the past 12 years, lentiviral vectors have emerged as valuable tools for transgene delivery because of their ability to transduce nondividing cells and their capacity to sustain long-term transgene expression. Despite significant progress, the production of high-titer high-quality lentiviral vectors is cumbersome and costly. The most commonly used method to produce lentiviral vectors involves transient transfection using calcium phosphate (CaP)-mediated precipitation of plasmid DNAs. However, inconsistencies in pH can cause significant batch-to-batch variations in lentiviral vector titers, making this method unreliable. This study describes optimized protocols for lentiviral vector production based on polyethylenimine (PEI)-mediated transfection, resulting in more consistent lentiviral vector stocks. To achieve this goal, simple production methods for high-titer lentiviral vector production involving transfection of HEK 293T cells immediately after plating were developed. Importantly, high titers were obtained with cell culture media lacking serum or other protein additives altogether. As a consequence, large-scale lentiviral vector stocks can now be generated with fewer batch-to-batch variations and at reduced costs and with less labor compared to the standard protocols.

  9. Drug Delivery and Cell Transfection Using Shock Waves Produced by Nanothermites

    Science.gov (United States)

    Gangopadhyay, Shubhra

    2009-06-01

    Shock waves have non-destructive life science applications in cell transfection and drug delivery. Based on molecular dynamics simulations, the shockwave causes transient compression of the cell membrane, which causes the hydrophobic interior of the lipid bilayer to become thinner. This allows diffusion of water molecules across the membrane. Recently, the nanothermite composition consisting of CuO nanorods and Al nanoparticles was shown to propagate at velocities in the same range as metallic azides and fulminates; however, the CuO/Al mixture produces lower pressure levels. An in vitro testing system was developed to deliver shock waves produced by nanothermites into cell suspensions and/or tissues. The plasmid encoded for production of green-fluorescent protein was delivered into cells including, among other types, chicken cardiomyocytes, cell lines (T47-D and Ins-1), and Arabidopsis plant cells. It was found that the nanothermite pressure impulses induced transfection resulting in production of green fluorescent protein in 99% of the cardiomyocytes. Additionally, transfected cell survival was evaluated, and the pressure impulses did not produce any elevated levels of cell death compared with control cell suspensions.

  10. Effects of Microbubble Size on Ultrasound-Mediated Gene Transfection in Auditory Cells

    Directory of Open Access Journals (Sweden)

    Ai-Ho Liao

    2014-01-01

    Full Text Available Gene therapy for sensorineural hearing loss has recently been used to insert genes encoding functional proteins to preserve, protect, or even regenerate hair cells in the inner ear. Our previous study demonstrated a microbubble- (MB-facilitated ultrasound (US technique for delivering therapeutic medication to the inner ear. The present study investigated whether MB-US techniques help to enhance the efficiency of gene transfection by means of cationic liposomes on HEI-OC1 auditory cells and whether MBs of different sizes affect such efficiency. Our results demonstrated that the size of MBs was proportional to the concentration of albumin or dextrose. At a constant US power density, using 0.66, 1.32, and 2.83 μm albumin-shelled MBs increased the transfection rate as compared to the control by 30.6%, 54.1%, and 84.7%, respectively; likewise, using 1.39, 2.12, and 3.47 μm albumin-dextrose-shelled MBs increased the transfection rates by 15.9%, 34.3%, and 82.7%, respectively. The results indicate that MB-US is an effective technique to facilitate gene transfer on auditory cells in vitro. Such size-dependent MB oscillation behavior in the presence of US plays a role in enhancing gene transfer, and by manipulating the concentration of albumin or dextrose, MBs of different sizes can be produced.

  11. The Effect of Linear PEI on Characteristics and Transfection Efficiency of PEI-Based Cationic Nanoliposomes

    Directory of Open Access Journals (Sweden)

    Mohammad Ramezani

    2011-01-01

    Full Text Available Objective(sThe development of efficient and safe carrier system to transfer DNA into cells is essential in non-viral gene therapy. The aim of the present study was to evaluate the effect of linear polyetheneimine (lPEI (2500 Da on the physicochemical and biological properties of lipopolyplexes constructed from liposomes and lPEI. Materials and MethodsDifferent lipopolymers were synthesized from lPEI and acrylate derivatives. Nanocarriers were composed of the lipids (DOPE, DPPE and DOTAP and the synthesized lipopolymers. After characterization of the prepared vectors by determination of size and zeta potential, transfection activity was tested in Neuro2A cells. Ethidium bromide and MTT test were used to evaluate the DNA condensation ability and cytotoxicity of vectors, respectively. Results Vector’s size ranged from 95 to 337 nm and they had positive charge. The differences in DNA binding properties of lipopolyplexes were not significant. Among lipids, DOTAP showed better impact on transfection efficiency. The highest transfection activity was achieved by liposomal formulation consist of DOTAP and lipopolymer composed of lPEI and hexyl acrylate. The lipopolyplexes showed minimum cytotoxicity to the cultured cells in vitro. Conclusion The results of study confirmed that it is possible to improve gene expression using lipopolyplexes.

  12. Polyethyleneimine-mediated transfection of cultured postmitotic neurons from rat sympathetic ganglia and adult human retina

    Directory of Open Access Journals (Sweden)

    Higgins Dennis

    2001-02-01

    Full Text Available Abstract Background Chemical methods of transfection that have proven successful with cell lines often do not work with primary cultures of neurons. Recent data, however, suggest that linear polymers of the cation polyethyleneimine (PEI can facilitate the uptake of nucleic acids by neurons. Consequently, we examined the ability of a commercial PEI preparation to allow the introduction of foreign genes into postmitotic mammalian neurons. Sympathetic neurons were obtained from perinatal rat pups and maintained for 5 days in vitro in the absence of nonneuronal cells. Cultures were then transfected with varying amounts of a plasmid encoding either E. coli β-galactosidase or enhanced green fluorescence protein (EGFP using PEI. Results Optimal transfection efficiency was observed with 1 μg/ml of plasmid DNA and 5 μg/ml PEI. Expression of β-galactosidase was both rapid and stable, beginning within 6 hours and lasting for at least 21 days. A maximum yield was obtained within 72 hours with ∼ 9% of the neurons expressing β-galactosidase, as assessed by both histochemistry and antibody staining. Cotransfection of two plasmids encoding reporter genes was achieved. Postmitotic neurons from adult human retinal cultures also demonstrated an ability to take up and express foreign DNA using PEI as a vector. Conclusions These data suggest that PEI is a useful agent for the stable expression of plasmid-encoded genes in neuronal cultures.

  13. Regulation of translocated c-myc genes transfected into plasmacytoma cells

    International Nuclear Information System (INIS)

    Feo, S.; Harvey, R.; Showe, L.; Croce, C.M.

    1986-01-01

    The authors have transfected two translocated c-myc oncogene clones, derived from two human lymphomas carrying the t(8;14) chromosome translocation, into mouse plasmacytoma cells to study the regulation of their expression. In one case, the transfected clone contained the two coding exons of the c-myc oncogene translocated to an immunoglobulin heavy-chain switch region; in the other case, the two coding exons were translocated 5' of the enhancer element located between the heavy-chain joining region (J/sub H/) and the switch region S/sub μ/. Nuclease S1 protection experiments indicate that only the c-myc translocated 5' of the enhancer element is transcribed in the plasmacytoma cells. Thus, 5'-truncation of the c-myc gene per se does not lead to c-myc deregulation. Further, since the level of c-myc transcripts in the parental human lymphoma cells was 3- to 4-fold higher than in the transfectants, it seems likely that additional elements within the heavy-chain locus may play a role in the enhancement of c-myc gene transcription in lymphoma cells

  14. Poly(ester-anhydride):poly(beta-amino ester) micro- and nanospheres: DNA encapsulation and cellular transfection.

    Science.gov (United States)

    Pfeifer, Blaine A; Burdick, Jason A; Little, Steve R; Langer, Robert

    2005-11-04

    Poly(ester-anhydride) delivery devices allow flexibility regarding carrier dimensions (micro- versus nanospheres), degradation rate (anhydride versus ester hydrolysis), and surface labeling (through the anhydride functional unit), and were therefore tested for DNA encapsulation and transfection of a macrophage P388D1 cell line. Poly(l-lactic acid-co-sebacic anhydride) and poly(l-lactic acid-co-adipic anhydride) were synthesized through melt condensation, mixed with 25 wt.% poly(beta-amino ester), and formulated with plasmid DNA (encoding firefly luciferase) into micro- and nanospheres using a double emulsion/solvent evaporation technique. The micro- and nanospheres were then characterized (size, morphology, zeta potential, DNA release) and assayed for DNA encapsulation and cellular transfection over a range of poly(ester-anhydride) copolymer ratios. Poly(ester-anhydride):poly(beta-amino ester) composite microspheres (6-12 microm) and nanospheres (449-1031 nm), generated with copolymers containing between 0 and 25% total polyanhydride content, encapsulated plasmid DNA (>or=20% encapsulation efficiency). Within this polyanhydride range, poly(adipic anhydride) copolymers provided DNA encapsulation at an increased anhydride content (10%, microspheres; 10-25%, nanospheres) compared to poly(sebacic anhydride) copolymers (1%, microspheres and nanospheres) with cellular transfection correlating with the observed DNA encapsulation.

  15. Agonists and inverse agonists for the herpesvirus 8-encoded constitutively active seven-transmembrane oncogene product, ORF-74

    DEFF Research Database (Denmark)

    Rosenkilde, M M; Kledal, T N; Bräuner-Osborne, Hans

    1999-01-01

    A number of CXC chemokines competed with similar, nanomolar affinity against 125I-interleukin-8 (IL-8) binding to ORF-74, a constitutively active seven-transmembrane receptor encoded by human herpesvirus 8. However, in competition against 125I-labeled growth-related oncogene (GRO)-alpha, the ORF-74...... receptor was highly selective for GRO peptides, with IL-8 being 10,000-fold less potent. The constitutive stimulating activity of ORF-74 on phosphatidylinositol turnover was not influenced by, for example, IL-8 binding. In contrast, GRO peptides acted as potent agonists in stimulating ORF-74 signaling...

  16. A short synthetic peptide fragment of human C2ORF40 has therapeutic potential in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chaoyang [Shandong Univ., Jinan (China); Zhang, Pengju [Shandong Univ., Jinan (China); Jiang, Anli [Shandong Univ., Jinan (China); Mao, Jian-Hua [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wei, Guangwei [Shandong Univ. School of Medicine, Jinan (China)

    2017-03-30

    C2ORF40 encodes a secreted protein which is cleaved to generate soluble peptides by proteolytic processing and this process is believed to be necessary for C2ORF40 to exert cell type specific biological activity. Here, we reported a short mimic peptide of human C2ORF40 acts potential therapeutic efficacy in human cancer cells in vitro and in vivo. We synthesized a short peptide of human C2ORF40, named C2ORF40 mimic peptide fragment and assessed its biological function on cancer cell growth, migration and tumorigenesis. Cell growth assay showed that C2ORF40 mimic peptide fragment significantly suppressed cell proliferation of breast and lung cancer cells. Moreover, C2ORF40 mimic peptide fragment significantly inhibited the migration and invasion of breast cancer cells. Furthermore, we showed that this peptide suppressed tumorigenesis in breast tumor xenograft model. Cell cycle assay indicated that the C2ORF40 mimic peptide fragment suppressed the growth of tumor cells through inducing mitotic phase arrest. In conclusion, our results firstly suggested that this short synthetic peptide of human C2ORF40 may be a candidate tumor therapeutic agent.

  17. A short synthetic peptide fragment of human C2ORF40 has therapeutic potential in breast cancer.

    Science.gov (United States)

    Li, Chaoyang; Zhang, Pengju; Jiang, Anli; Mao, Jian-Hua; Wei, Guangwei

    2017-06-27

    C2ORF40 encodes a secreted protein which is cleaved to generate soluble peptides by proteolytic processing and this process is believed to be necessary for C2ORF40 to exert cell type specific biological activity. Here, we reported a short mimic peptide of human C2ORF40 acts potential therapeutic efficacy in human cancer cells in vitro and in vivo. We synthesized a short peptide of human C2ORF40, named C2ORF40 mimic peptide fragment and assessed its biological function on cancer cell growth, migration and tumorigenesis. Cell growth assay showed that C2ORF40 mimic peptide fragment significantly suppressed cell proliferation of breast and lung cancer cells. Moreover, C2ORF40 mimic peptide fragment significantly inhibited the migration and invasion of breast cancer cells. Furthermore, we showed that this peptide suppressed tumorigenesis in breast tumor xenograft model. Cell cycle assay indicated that the C2ORF40 mimic peptide fragment suppressed the growth of tumor cells through inducing mitotic phase arrest. In conclusion, our results firstly suggested that this short synthetic peptide of human C2ORF40 may be a candidate tumor therapeutic agent.

  18. Inhibition of human colorectal adenocarcinoma cells with AdCMV-p53 gene transfection induced by irradiation

    International Nuclear Information System (INIS)

    Liu Bing; Min Fengling; Xie Yi; Zhou Qingming; Duan Xin; Chinese Academy of Sciences, Beijing; Zhang Hong; Li Wenjian; Hao Jifang; Zhou Guangming; Gao Qingxiang

    2006-01-01

    The effect of AdCMV-p53 gene transfection induced by γ-ray irradiation on human colorectal adenocarcinoma cells was investigated. The HT-29 cells were irradiated by 0.5, 1.0, 2.0 Gy 60 Co γ-rays, then were transfected with AdCMV-GFP (a replication of deficient recombinant adenoviral vector containing a CMV promoter and green fluorescent protein) or AdCMV-p53 (a replication of deficient recombinant adenoviral vector containing a CMV promoter and carrying human wild p53 gene). Cytotoxity was measured by clonogenic survival assay; apoptosis and the p53 expression were determined by flow cytometry. The results show that the pre-exposure of 0.5 Gy 60 Co γ-rays significantly enhanced the inhibition of HT-29 cells with AdCMV-53 transfection and promoted cell apoptosis. The inhibition rates for the groups of pre-exposure with 0.5 Gy and transfection with 40 and 80 MOI AdCMV-p53 were 50% and 20% higher than those for the groups of the mere transfection, and 40% more than the mere irradiation group. In the case of higher than 0.5 Gy pre-exposure, no significant difference was found between the pre-exposure with transfection group and the mere irradiation group. So 0.5 Gy pre-irradiation and AdCMV-p53 transfection obviously increases the inhibition of HT-29 cells with AdCMV-p53 transfection. The optimum condition is the lower than 1.0 Gy pre-exposure combined with the lower than 80 MOI AdCMV-p53 transfection. (authors)

  19. Imaging targeted at tumor with 188Re-labeled VEGF189 exon 6-encoded peptide and effects of the transfecting truncated KDR gene in tumor-bearing nude mice

    International Nuclear Information System (INIS)

    Qin Zhexue; Li Qianwei; Liu Guangyuan; Luo Chaoxue; Xie Ganfeng; Zheng Lei; Huang Dingde

    2009-01-01

    Introduction: Planar imaging of 188 Re-labeled vascular endothelial growth factor (VEGF) 189 exon 6-encoded peptide (QKRKRKKSRYKS) with single photon emission computed tomography (SPECT) in tumor-bearing nude mice and effects of the transfecting truncated KDR gene on its imaging were investigated, so as to provide a basis for further applying the peptide to tumor-targeted radionuclide treatment. Methods: QKRKRKKSRYKS, coupling with mercaptoacetyltriglycine (MAG 3 ) chelator was labeled with 188 Re; then in vivo distribution, planar imaging with SPECT and blocking experiment in tumor-bearing nude mice were analyzed. Recombinant adenovirus vectors carrying the truncated KDR gene were constructed to transfect tumor tissues to evaluate the effects of truncated KDR on the in vivo distribution and tumor planar imaging of 188 Re-MAG 3 -QKRKRKKSRYKS in tumor-bearing nude mice. Results: The labeled peptide exhibited a sound receptor binding activity. Planar imaging with SPECT demonstrated significant radioactivity accumulation in tumor 1 h after injection of the labeled peptide and disappearance of radioactivity 3 h later. Significant radioactivity accumulation was also observed in the liver, intestines and kidneys but was not obvious in other tissues. An hour after injection of the labeled peptide, the percentage of the injected radioactive dose per gram (%ID/g) of tumor and tumor/contralateral muscle tissues ratio were 1.98±0.38 and 2.53±0.33, respectively, and increased to 3.08±0.84 and 3.61±0.59 in the group transfected with the truncated KDR gene, respectively, and radioactivity accumulation in tumor with planar imaging also increased significantly in the transfection group. Conclusion: 188 Re-MAG 3 -QKRKRKKSRYKS can accumulate in tumor tissues, which could be increased by the transfection of truncated KDR gene. This study provides a basis for further applying the peptide to tumor targeted radionuclide imaging and treatment.

  20. PiggyBac transposon-mediated gene delivery efficiently generates stable transfectants derived from cultured primary human deciduous tooth dental pulp cells (HDDPCs) and HDDPC-derived iPS cells.

    Science.gov (United States)

    Inada, Emi; Saitoh, Issei; Watanabe, Satoshi; Aoki, Reiji; Miura, Hiromi; Ohtsuka, Masato; Murakami, Tomoya; Sawami, Tadashi; Yamasaki, Youichi; Sato, Masahiro

    2015-09-14

    The ability of human deciduous tooth dental pulp cells (HDDPCs) to differentiate into odontoblasts that generate mineralized tissue holds immense potential for therapeutic use in the field of tooth regenerative medicine. Realization of this potential depends on efficient and optimized protocols for the genetic manipulation of HDDPCs. In this study, we demonstrate the use of a PiggyBac (PB)-based gene transfer system as a method for introducing nonviral transposon DNA into HDDPCs and HDDPC-derived inducible pluripotent stem cells. The transfection efficiency of the PB-based system was significantly greater than previously reported for electroporation-based transfection of plasmid DNA. Using the neomycin resistance gene as a selection marker, HDDPCs were stably transfected at a rate nearly 40-fold higher than that achieved using conventional methods. Using this system, it was also possible to introduce two constructs simultaneously into a single cell. The resulting stable transfectants, expressing tdTomato and enhanced green fluorescent protein, exhibited both red and green fluorescence. The established cell line did not lose the acquired phenotype over three months of culture. Based on our results, we concluded that PB is superior to currently available methods for introducing plasmid DNA into HDDPCs. There may be significant challenges in the direct clinical application of this method for human dental tissue engineering due to safety risks and ethical concerns. However, the high level of transfection achieved with PB may have significant advantages in basic scientific research for dental tissue engineering applications, such as functional studies of genes and proteins. Furthermore, it is a useful tool for the isolation of genetically engineered HDDPC-derived stem cells for studies in tooth regenerative medicine.

  1. High-throughput screening of microscale pitted substrate topographies for enhanced nonviral transfection efficiency in primary human fibroblasts

    DEFF Research Database (Denmark)

    Adler, Andrew F; Speidel, Alessondra T; Christoforou, Nicolas

    2011-01-01

    Optimization of nonviral gene delivery typically focuses on the design of particulate carriers that are endowed with desirable membrane targeting, internalization, and endosomal escape properties. Topographical control of cell transfectability, however, remains a largely unexplored parameter...... of microscale topographies, we have demonstrated an improvement in nonviral transfection efficiency for cells cultured on dense micropit patterns compared to smooth substrates, as verified with flow cytometry. A 25% increase in GFP(+) cells was observed independent of proliferation rate, accompanied by SEM...... and confocal microscopy characterization to help explain the phenomenon qualitatively. This finding encourages researchers to investigate substrate topography as a new design consideration for the optimization of nonviral transfection systems....

  2. The radio-sensitivity effect of E1A gene transfected by PEI on colon carcinoma cell in vitro

    International Nuclear Information System (INIS)

    Wu Yinxia; Liu Dongfang; Liu Yongbiao; Xu Dongmei; Yao Side; Sheng Kanglong

    2011-01-01

    As a neotype nonviral vector, (Polyethylenimine, PEI) has been studied in gene transfection experiment. This study was investigated the growth inhibition and radio-sensitizing effect of E1A gene transfected by PEI on human colon carcinoma cell in vitro. The PSV-E1A recombinant plasmid, which was designed for high-level expression of E1A gene in a variety of eukaryotic cell lines, was transfected into SW480 cells by PEI. The transfection was confirmed by RT-PCR and G418 was used to get colon carcinoma cells stably expressed E1A gene. The cell growth curve were investigated to observe the growth inhibition induced by E1A gene. The redistributions of cell cycle were analyzed by flow cytometry. Cells before and after transfection were treated with irradiation, then the changes of radiation-sensitivity were tested by MTT assay after 24 h meanwhile the expression of HER-2 gene in SW480 cells before and after transfection was detected by western-blot. As results, (1) the colon carcinoma cells expressed E1A gene was confirmed by G418. (2) The result of RT-PCR demonstrated that PEI could transfect plasmid psv-E1A and the cells could stably express E1A gene. (3) Flow cytometry revealed that E1A gene transfected into human colon carcinoma cell could induce S stage suppression (p<0.001) and G2/M stage arrest (p<0.001). (4) Compared with the Non-transfected cells, the E1A-transfected cells (SW480-E1A cells) grew slowly observed by MTT assay which was used to get the absorbance of SW480 cell and SW480-E1A cell. (5) The radiation-sensitivity of SW480 cells transfected with E1A gene was up-regulated obviously (p<0.001). (6) The E1A gene obviously down-regulated HER-2 protein expression in colon carcinoma cells. Anyway, PEI can transfect plasmid psv-E1A gene which can significantly inhibit the growth rate of SW480 cell. Moreover, it also obviously enhanced the cell sensitivity to irradiation. (authors)

  3. Type II thioesterase gene (ECO-orf27) from Amycolatopsis orientalis influences production of the polyketide antibiotic, ECO-0501 (LW01).

    Science.gov (United States)

    Shen, Yang; Huang, He; Zhu, Li; Luo, Minyu; Chen, Daijie

    2012-11-01

    ECO-orf27 associated with the cluster of ECO-0501 (LW01) from Amycolatopsis orientalis is deduced to encode a type II thioesterase. Disruption of ECO-orf27 reduced LW01 production by 95 %. Complementation of the disrupted mutant with intact ECO-orf27 restored the production of LW01 suggesting that ECO-orf27 is crucial for LW01 biosynthesis. ECO-TE I, the gene encoding type I thioesterase from LW01 polyketide synthases, cannot complement ECO-orf27 deficient mutant distinguishing ECO-orf27 from type I thioesterase gene. Type II thioesterase gene pikAV from Streptomyces venezuelae could complement ECO-orf27 in A. orientalis indicating that the two genes are equivalent in their function. Overexpression of ECO-orf27 resulted in a 20 % increase in LW01 production providing an alternative approach for yield improvement.

  4. orf4 of the Bacillus cereus sigB gene cluster encodes a general stress-inducible Dps-like bacterioferritin.

    Science.gov (United States)

    Wang, Shin-Wei; Chen, Chien-Yen; Tseng, Joseph T; Liang, Shih-Hsiung; Chen, Ssu-Ching; Hsieh, Chienyan; Chen, Yen-hsu; Chen, Chien-Cheng

    2009-07-01

    The function of orf4 in the sigB cluster in Bacillus cereus ATCC 14579 remains to be explored. Amino-acid sequence analysis has revealed that Orf4 is homologous with bacterioferritins and Dps. In this study, we generated an orf4-null mutant and produced recombinant protein rOrf4 to establish the role of orf4. In vitro, the purified rOrf4 was found to exist in two distinct forms, a dimeric form and a polymer form, through size exclusion analysis. The latter form exhibited a unique filament structure, in contrast to the typical spherical tetracosamer structure of bacterioferritins; the former can be induced to form rOrf4 polymers immediately after the addition of FeCl(2). Catalysis of the oxidation of ferrous irons by ferroxidase activity was detected with rOrf4, and the mineralized irons were subsequently sequestered only in the rOrf4 polymer. Moreover, rOrf4 exerted DNA-protective activity against oxidative damage via DNA binding in a nonspecific manner, as is seen with Dps. In vivo, deletion of orf4 had no effect on activation of the alternative sigma factor sigma(B), and therefore, orf4 is not associated with sigma(B) regulation; however, orf4 can be significantly upregulated upon environmental stress but not H(2)O(2) treatment. B. cereus strains with constitutive Orf4 expression exhibited a viability higher than that of the orf4-null mutant, under specific oxidative stress or heat shock. Taken together, these results suggest that Orf4 functions as a Dps-like bacterioferritin in response to environmental stress and can provide cell protection from oxidative damage through iron sequestration and DNA binding.

  5. Mutations in c10orf11, a melanocyte-differentiation gene, cause autosomal-recessive albinism.

    Science.gov (United States)

    Grønskov, Karen; Dooley, Christopher M; Østergaard, Elsebet; Kelsh, Robert N; Hansen, Lars; Levesque, Mitchell P; Vilhelmsen, Kaj; Møllgård, Kjeld; Stemple, Derek L; Rosenberg, Thomas

    2013-03-07

    Autosomal-recessive albinism is a hypopigmentation disorder with a broad phenotypic range. A substantial fraction of individuals with albinism remain genetically unresolved, and it has been hypothesized that more genes are to be identified. By using homozygosity mapping of an inbred Faroese family, we identified a 3.5 Mb homozygous region (10q22.2-q22.3) on chromosome 10. The region contains five protein-coding genes, and sequencing of one of these, C10orf11, revealed a nonsense mutation that segregated with the disease and showed a recessive inheritance pattern. Investigation of additional albinism-affected individuals from the Faroe Islands revealed that five out of eight unrelated affected persons had the nonsense mutation in C10orf11. Screening of a cohort of autosomal-recessive-albinism-affected individuals residing in Denmark showed a homozygous 1 bp duplication in C10orf11 in an individual originating from Lithuania. Immunohistochemistry showed localization of C10orf11 in melanoblasts and melanocytes in human fetal tissue, but no localization was seen in retinal pigment epithelial cells. Knockdown of the zebrafish (Danio rerio) homolog with the use of morpholinos resulted in substantially decreased pigmentation and a reduction of the apparent number of pigmented melanocytes. The morphant phenotype was rescued by wild-type C10orf11, but not by mutant C10orf11. In conclusion, we have identified a melanocyte-differentiation gene, C10orf11, which when mutated causes autosomal-recessive albinism in humans. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  6. Mitochondrial ORF79 levels determine pollen abortion in cytoplasmic male sterile rice.

    Science.gov (United States)

    Kazama, Tomohiko; Itabashi, Etsuko; Fujii, Shinya; Nakamura, Takahiro; Toriyama, Kinya

    2016-03-01

    Cytoplasmic male sterility (CMS) is an important agricultural trait characterized by lack of functional pollen, and caused by ectopic and defective mitochondrial gene expression. The pollen function in CMS plants is restored by the presence of nuclear-encoded restorer of fertility (Rf) genes. Previously, we cloned Rf2, which restores the fertility of Lead Rice (LD)-type CMS rice. However, neither the function of Rf2 nor the identity of the mitochondrial gene causing CMS has been determined in LD-CMS rice. Here, we show that the mitochondrial gene orf79 acts as a CMS-associated gene in LD-CMS rice, similar to its role in BT-CMS rice originating from Chinsurah Boro II, and Rf2 weakly restores fertility in BT-CMS rice. We also show that RF2 promotes degradation of atp6-orf79 RNA in a different manner from that of RF1, which is the Rf gene product in BT-CMS rice. The amount of ORF79 protein in LD-CMS rice was one-twentieth of the amount in BT-CMS rice. The difference in ORF79 protein levels probably accounts for the mild and severe pollen defects in LD-CMS and BT-CMS rice, respectively. In the presence of Rf2, accumulation of ORF79 was reduced to almost zero and 25% in LD-CMS and BT-CMS rice, respectively, which probably accounts for the complete and weak fertility restoration abilities of Rf2 in LD-CMS and BT-CMS rice, respectively. These observations indicate that the amount of ORF79 influences the pollen fertility in two strains of rice in which CMS is induced by orf79. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  7. Plasmid transfection in bovine cells: Optimization using a realtime monitoring of green fluorescent protein and effect on gene reporter assay.

    Science.gov (United States)

    Osorio, Johan S; Bionaz, Massimo

    2017-08-30

    Gene reporter technology (GRT) has opened several new avenues for monitoring biological events including the activation of transcription factors, which are central to the study of nutrigenomics. However, this technology relies heavily on the insertion of foreign plasmid DNA into the nuclei of cells (i.e., transfection), which can be very challenging and highly variable among cell types. The objective of this study was to investigate the optimal conditions to generate reliable GRT assay data on bovine immortalized cell lines, Madin Darby Bovine Kidney (MDBK) and bovine mammary epithelial alveolar (MACT) cells. Results are reported for two experiments. In Experiment 1, using 96 well-plate and a robotic inverted fluorescent microscope, we compared transfection efficiency among commercially available transfection reagents (TR) Lipofectamine® 3000 (Lipo3), Lipofectamine® LTX (LipoLTX), and TransIT-X2® (TransX2), three doses of TR (i.e., 0.15, 0.3, and 0.4μL/well), and three doses of Green Fluorescent Protein plasmid DNA (i.e., 10, 25, and 50ng/well). Transfection efficiency and mortality rate were analyzed using CellProfiler software. Transfection efficiency increased until the end of the experiment (20h post-transfection) at which point MACT had greater transfection than MDBK cells (16.3% vs. 2.2%). It is unclear the reason for the low transfection in MDBK cells. Maximal transfection efficiency was obtained with 0.3μL/well of LipoLTX plus 25ng/well of plasmid DNA (ca. 29.5±1.9%) and 0.15μL/well of LipoLTX plus 25ng/well of plasmid DNA (ca. 4.0±0.4%) for MACT and MDBK cells, respectively. The higher amount of TR and DNA was generally associated with higher cell mortality. Using high, medium, and low transfection efficiency conditions determined in Experiment 1, we performed a GRT assay for peroxisome proliferator-activated response element (PPRE) luciferase in MACT and MDBK cells treated with 10nM or 100nM of synthetic Peroxisome Proliferator-activated Receptor

  8. Immobilization of gold nanoparticles on cell culture surfaces for safe and enhanced gold nanoparticle-mediated laser transfection

    Science.gov (United States)

    Kalies, Stefan; Heinemann, Dag; Schomaker, Markus; Gentemann, Lara; Meyer, Heiko; Ripken, Tammo

    2014-01-01

    Abstract. In comparison to standard transfection methods, gold nanoparticle-mediated laser transfection has proven to be a versatile alternative. This is based on its minor influence on cell viability and its high efficiency, especially for the delivery of small molecules like small interfering RNA. However, in order to transfer it to routine usage, a safety aspect is of major concern: The avoidance of nanoparticle uptake by the cells is desired. The immobilization of the gold nanoparticles on cell culture surfaces can address this issue. In this study, we achieved this by silanization of the appropriate surfaces and the binding of gold nanoparticles to them. Comparable perforation efficiencies to the previous approaches of gold nanoparticle-mediated laser transfection with free gold nanoparticles are demonstrated. The uptake of the immobilized particles by the cells is unlikely. Consequently, these investigations offer the possibility of bringing gold nanoparticle-mediated laser transfection closer to routine usage. PMID:25069006

  9. Immobilization of gold nanoparticles on cell culture surfaces for safe and enhanced gold nanoparticle-mediated laser transfection.

    Science.gov (United States)

    Kalies, Stefan; Heinemann, Dag; Schomaker, Markus; Gentemann, Lara; Meyer, Heiko; Ripken, Tammo

    2014-01-01

    In comparison to standard transfection methods, gold nanoparticle-mediated laser transfection has proven to be a versatile alternative. This is based on its minor influence on cell viability and its high efficiency, especially for the delivery of small molecules like small interfering RNA. However, in order to transfer it to routine usage, a safety aspect is of major concern: The avoidance of nanoparticle uptake by the cells is desired. The immobilization of the gold nanoparticles on cell culture surfaces can address this issue. In this study, we achieved this by silanization of the appropriate surfaces and the binding of gold nanoparticles to them. Comparable perforation efficiencies to the previous approaches of gold nanoparticle-mediated laser transfection with free gold nanoparticles are demonstrated. The uptake of the immobilized particles by the cells is unlikely. Consequently, these investigations offer the possibility of bringing gold nanoparticle-mediated laser transfection closer to routine usage.

  10. Acceleration of gene transfection efficiency in neuroblastoma cells through polyethyleneimine/poly(methyl methacrylate) core-shell magnetic nanoparticles

    Science.gov (United States)

    Tencomnao, Tewin; Klangthong, Kewalin; Pimpha, Nuttaporn; Chaleawlert-umpon, Saowaluk; Saesoo, Somsak; Woramongkolchai, Noppawan; Saengkrit, Nattika

    2012-01-01

    Background The purpose of this study was to demonstrate the potential of magnetic poly(methyl methacrylate) (PMMA) core/polyethyleneimine (PEI) shell (mag-PEI) nanoparticles, which possess high saturation magnetization for gene delivery. By using mag-PEI nanoparticles as a gene carrier, this study focused on evaluation of transfection efficiency under magnetic induction. The potential role of this newly synthesized nanosphere for therapeutic delivery of the tryptophan hydroxylase-2 (TPH-2) gene was also investigated in cultured neuronal LAN-5 cells. Methods The mag-PEI nanoparticles were prepared by one-step emulsifier-free emulsion polymerization, generating highly loaded and monodispersed magnetic polymeric nanoparticles bearing an amine group. The physicochemical properties of the mag-PEI nanoparticles and DNA-bound mag-PEI nanoparticles were investigated using the gel retardation assay, atomic force microscopy, and zeta size measurements. The gene transfection efficiencies of mag-PEI nanoparticles were evaluated at different transfection times. Confocal laser scanning microscopy confirmed intracellular uptake of the magnetoplex. The optimal conditions for transfection of TPH-2 were selected for therapeutic gene transfection. We isolated the TPH-2 gene from the total RNA of the human medulla oblongata and cloned it into an expression vector. The plasmid containing TPH-2 was subsequently bound onto the surfaces of the mag-PEI nanoparticles via electrostatic interaction. Finally, the mag-PEI nanoparticle magnetoplex was delivered into LAN-5 cells. Reverse-transcriptase polymerase chain reaction was performed to evaluate TPH-2 expression in a quantitative manner. Results The study demonstrated the role of newly synthesized high-magnetization mag-PEI nanoparticles for gene transfection in vitro. The expression signals of a model gene, luciferase, and a therapeutic gene, TPH-2, were enhanced under magnetic-assisted transfection. An in vitro study in neuronal cells

  11. Construction of rat beta defensin-2 eukaryotic expression vector and expression in the transfected rat corneal epithelial cell

    Directory of Open Access Journals (Sweden)

    Jing Dan

    2017-03-01

    Full Text Available AIM: To construct a recombinant eukaryotic expression vector of rat beta defensin-2(rBD-2, transfect it into the rat corneal epithelial cells with lipofection, determine the expression of target gene in the transfected cells, and discuss the potentiality of recombinant plasmid expressed in corneal epithelial cells, hoping to provide an experimental foundation for further study on the antimicrobial activity of rBD-2 in vitro and in vivo and to assess the probability of defensins as a new application for infectious corneal diseases in the future. METHODS: The synthetic rBD-2 DNA fragment was inserted between the XhoI and BamHI restriction enzyme cutting sites of eukaryotic expression vector pIRES2-ZsGreen1 to construct the recombinant plasmid pIRES2-ZsGreen1-rBD-2, then transformed it into E.coli DH5α, positive clones were screened by kanamycin and identified with restriction endonucleases and sequencing analysis. Transfection into the rat corneal epithelial cells was performed by lipofection. Then the experiment was divided into three groups: rat corneal epithelial cell was transfected with the recombinant plasmid pIRES2- ZsGreen1-rBD-2, rat corneal epithelial cell was transfected with the empty plasmid pIRES2-ZsGreen1 and the non-transfected group. The inverted fluorescence microscope was used to observe the transfection process. At last, the level of rBD-2 mRNA expressed in the transfected cells and the control groups are compared by the real-time fluoresence relative quantitative PCR. RESULTS: The recombinant eukaryotic expression vector of pIRES2-ZsGreen1-rBD-2 was successfully constructed. The level of rBD-2 mRNA in transfected cells was significantly higher than that in control groups through the real-time fluorescence relative quantitative PCR. CONCLUSION: The recombinant eukaryotic expression vector pIRES2-ZsGreen1-rBD-2 could be transfected into rat corneal epithelial cells, and exogenous rBD-2 gene could be transcripted into mRNA in

  12. High‐throughput screening of clinically approved drugs that prime polyethylenimine transfection reveals modulation of mitochondria dysfunction response improves gene transfer efficiencies

    Science.gov (United States)

    Nguyen, Albert; Beyersdorf, Jared; Riethoven, Jean‐Jack

    2016-01-01

    Abstract Nonviral gene delivery methods are advantageous over viral vectors in terms of safety, cost, and flexibility in design and application, but suffer from lower gene transfer efficiency. In addition to modifications to nucleic acid design and nonviral carriers, new tools are sought to enhance transfection. Priming is the pharmacological modulation of transfection efficiency and transgene expression, and has demonstrated transfection increase in several compounds, for example, chloroquine and glucocorticoids. To develop a library of transfection priming compounds, a high‐throughput screen was performed of the NIH Clinical Collection (NCC) to identify clinical compounds that prime polyethylenimine (PEI) transfection. HEK293T cells were treated with priming compounds, then transfected with enhanced green fluorescent protein (EGFP)‐encoding plasmid by PEI. After 48‐hr culture, primed and transfected cells were assayed for transfection, cell proliferation, and cell viability by fluorescence measurement of EGFP reporter, Hoechst 33342 nuclei stain, and resazurin metabolic assay. From the microscope image analysis and microplate measurements, transfection fold‐changes were determined, and compounds resulting in statistically significant transfection fold‐change were identified. NCC compounds were clustered using PubChem fingerprint similarity by Tanimoto coefficients in ChemmineTools. Fold‐changes for each compound were linked to drug clusters, from which drug classes that prime transfection were identified. Among the identified drugs classes that primed transfection increases were antioxidants, GABAA receptor modulators, and glucocorticoids. Resveratrol and piceid, stilbenoid antioxidants found in grapes, and zolpidem, a GABAA modulator, increased transfection nearly three‐fold. Literature indicate interaction of the identified transfection priming drug clusters with mitochondria, which may modulate mitochondrial dysfunction known to be associated

  13. Modulated protonation of side chain aminoethylene repeats in N-substituted polyaspartamides promotes mRNA transfection.

    Science.gov (United States)

    Uchida, Hirokuni; Itaka, Keiji; Nomoto, Takahiro; Ishii, Takehiko; Suma, Tomoya; Ikegami, Masaru; Miyata, Kanjiro; Oba, Makoto; Nishiyama, Nobuhiro; Kataoka, Kazunori

    2014-09-03

    Fine-tuning of chemical structures of polycation-based carriers (polyplexes) is an attractive strategy for safe and efficient mRNA transfaction. Here, mRNA polyplexes comprising N-substituted polyaspartamides with varied numbers of side chain aminoethylene repeats were constructed, and their transfection ability against human hepatoma cells was examined. Transfection efficacy clearly correlated with the number of aminoethylene repeats: polyplexes with odd number repeats (PA-Os) produced sustained increases in mRNA expression compared with those with even number repeats (PA-Es). This predominant efficacy of PA-Os over PA-Es was contradictory to our previous findings for pDNA polyplexes prepared from the same N-substituted polyaspartamides, that is, PA-Es revealed superior transfection efficacy of pDNA than PA-Os. Intracellular FRET analysis using flow cytometry and polyplex tracking under confocal laser scanning microscopy revealed that overall transfection efficacy was determined through the balance between endosomal escaping capability and stability of translocated mRNA in cytoplasm. PA-Es efficiently transported mRNA into the cytoplasm. However, their poor cytoplasmic stability led to facile degradation of mRNA, resulting in a less durable pattern of transfection. Alternatively, PA-Os with limited capability of endosomal escape eventually protect mRNA in the cytoplasm to induce sustainable mRNA expression. Higher cytoplasmic stability of pDNA compared to mRNA may shift the limiting step in transfection from cytoplasmic stability to endosomal escape capacity, thereby giving an opposite odd-even effect in transfection efficacy. Endosomal escaping capability and nuclease stability of polyplexes are correlated with the modulated protonation behavior in aminoethylene repeats responding to pH, appealing the substantial importance of chemistry to design polycation structures for promoted mRNA transfection.

  14. Non-viral bone morphogenetic protein 2 transfection of rat dental pulp stem cells using calcium phosphate nanoparticles as carriers.

    Science.gov (United States)

    Yang, Xuechao; Walboomers, X Frank; van den Dolder, Juliette; Yang, Fang; Bian, Zhuan; Fan, Mingwen; Jansen, John A

    2008-01-01

    Calcium phosphate nanoparticles have shown potential as non-viral vectors for gene delivery. The aim of this study was to induce bone morphogenetic protein (Bmp)2 transfection in rat dental pulp stem cells using calcium phosphate nanoparticles as a gene vector and then to evaluate the efficiency and bioactivity of the transfection. We also intended to investigate the behavior of transfected cells when seeded on 3-dimensional titanium fiber mesh scaffolds. Nanoparticles of calcium phosphate encapsulating plasmid deoxyribonucleic acid (DNA) (plasmid enhanced green fluorescent protein-BMP2) were prepared. Then, STRO-1-selected rat dental pulp stem cells were transfected using these nanoparticles. Transfection and bioactivity of the secreted BMP2 were examined. Thereafter, the transfected cells were cultured on a fibrous titanium mesh. The cultures were investigated using scanning electron microscipy and evaluated for cell proliferation, alkaline phosphatase activity and calcium content. Finally, real-time polymerase chain reaction was performed for odontogenesis-related gene expression. The results showed that the size of the DNA-loaded particles was approximately 100 nm in diameter. Nanoparticles could protect the DNA encapsulated inside from external DNase and release the loaded DNA in a low-acid environment (pH 3.0). In vitro, nanoparticle transfection was shown to be effective and to accelerate or promote the odontogenic differentiation of rat dental pulp stem cells when cultured in the 3-dimensional scaffolds. Based on our results, plasmid DNA-loaded calcium phosphate nanoparticles appear to be an effective non-viral vector for gene delivery and functioned well for odontogenic differentiation through Bmp2 transfection.

  15. Transplantation of neurotrophin-3-transfected bone marrow mesenchymal stem cells for the repair of spinal cord injury

    OpenAIRE

    Dong, Yuzhen; Yang, Libin; Yang, Lin; Zhao, Hongxing; Zhang, Chao; Wu, Dapeng

    2014-01-01

    Bone marrow mesenchymal stem cell transplantation has been shown to be therapeutic in the repair of spinal cord injury. However, the low survival rate of transplanted bone marrow mesenchymal stem cells in vivo remains a problem. Neurotrophin-3 promotes motor neuron survival and it is hypothesized that its transfection can enhance the therapeutic effect. We show that in vitro transfection of neurotrophin-3 gene increases the number of bone marrow mesenchymal stem cells in the region of spinal ...

  16. A genome wide association study of alcohol dependence symptom counts in extended pedigrees identifies C15orf53

    Science.gov (United States)

    Wang, Jen-Chyong; Foroud, Tatiana; Hinrichs, Anthony L; Le, Nhung XH; Bertelsen, Sarah; Budde, John P; Harari, Oscar; Koller, Daniel L; Wetherill, Leah; Agrawal, Arpana; Almasy, Laura; Brooks, Andrew I; Bucholz, Kathleen; Dick, Danielle; Hesselbrock, Victor; Johnson, Eric O; Kang, Sun; Kapoor, Manav; Kramer, John; Kuperman, Samuel; Madden, Pamela AF; Manz, Niklas; Martin, Nicholas G; McClintick, Jeanette N; Montgomery, Grant W; Nurnberger, John I; Rangaswamy, Madhavi; Rice, John; Schuckit, Marc; Tischfield, Jay A; Whitfield, John B; Xuei, Xiaoling; Porjesz, Bernice; Heath, Andrew C; Edenberg, Howard J; Bierut, Laura J; Goate, Alison M

    2013-01-01

    Several studies have identified genes associated with alcohol use disorders, but the variation in each of these genes explains only a small portion of the genetic vulnerability. The goal of the present study was to perform a genome-wide association study (GWAS) in extended families from the Collaborative Study on the Genetics of Alcoholism (COGA) to identify novel genes affecting risk for alcohol dependence. To maximize the power of the extended family design we used a quantitative endophenotype, measured in all individuals: number of alcohol dependence symptoms endorsed (symptom count). Secondary analyses were performed to determine if the single nucleotide polymorphisms (SNPs) associated with symptom count were also associated with the dichotomous phenotype, DSM-IV alcohol dependence. This family-based GWAS identified SNPs in C15orf53 that are strongly associated with DSM-IV alcohol (p=4.5×10−8, inflation corrected p=9.4×10−7). Results with DSM-IV alcohol dependence in the regions of interest support our findings with symptom count, though the associations were less significant. Attempted replications of the most promising association results were conducted in two independent samples: non-overlapping subjects from the Study of Addiction: Genes and Environment (SAGE) and the Australian twin-family study of alcohol use disorders (OZALC). Nominal association of C15orf53 with symptom count was observed in SAGE. The variant that showed strongest association with symptom count, rs12912251 and its highly correlated variants (D′=1, r2≥ 0.95), has previously been associated with risk for bipolar disorder. PMID:23089632

  17. A genome-wide association study of alcohol-dependence symptom counts in extended pedigrees identifies C15orf53.

    Science.gov (United States)

    Wang, J-C; Foroud, T; Hinrichs, A L; Le, N X H; Bertelsen, S; Budde, J P; Harari, O; Koller, D L; Wetherill, L; Agrawal, A; Almasy, L; Brooks, A I; Bucholz, K; Dick, D; Hesselbrock, V; Johnson, E O; Kang, S; Kapoor, M; Kramer, J; Kuperman, S; Madden, P A F; Manz, N; Martin, N G; McClintick, J N; Montgomery, G W; Nurnberger, J I; Rangaswamy, M; Rice, J; Schuckit, M; Tischfield, J A; Whitfield, J B; Xuei, X; Porjesz, B; Heath, A C; Edenberg, H J; Bierut, L J; Goate, A M

    2013-11-01

    Several studies have identified genes associated with alcohol-use disorders (AUDs), but the variation in each of these genes explains only a small portion of the genetic vulnerability. The goal of the present study was to perform a genome-wide association study (GWAS) in extended families from the Collaborative Study on the Genetics of Alcoholism to identify novel genes affecting risk for alcohol dependence (AD). To maximize the power of the extended family design, we used a quantitative endophenotype, measured in all individuals: number of alcohol-dependence symptoms endorsed (symptom count (SC)). Secondary analyses were performed to determine if the single nucleotide polymorphisms (SNPs) associated with SC were also associated with the dichotomous phenotype, DSM-IV AD. This family-based GWAS identified SNPs in C15orf53 that are strongly associated with DSM-IV alcohol-dependence symptom counts (P=4.5 × 10(-8), inflation-corrected P=9.4 × 10(-7)). Results with DSM-IV AD in the regions of interest support our findings with SC, although the associations were less significant. Attempted replications of the most promising association results were conducted in two independent samples: nonoverlapping subjects from the Study of Addiction: Genes and Environment (SAGE) and the Australian Twin Family Study of AUDs (OZALC). Nominal association of C15orf53 with SC was observed in SAGE. The variant that showed strongest association with SC, rs12912251 and its highly correlated variants (D'=1, r(2) 0.95), have previously been associated with risk for bipolar disorder.

  18. Selection and optimization of transfection enhancer additives for increased virus-like particle production in HEK293 suspension cell cultures.

    Science.gov (United States)

    Cervera, Laura; Fuenmayor, Javier; González-Domínguez, Irene; Gutiérrez-Granados, Sonia; Segura, Maria Mercedes; Gòdia, Francesc

    2015-12-01

    The manufacturing of biopharmaceuticals in mammalian cells typically relies on the use of stable producer cell lines. However, in recent years, transient gene expression has emerged as a suitable technology for rapid production of biopharmaceuticals. Transient gene expression is particularly well suited for early developmental phases, where several potential therapeutic targets need to be produced and tested in vivo. As a relatively new bioprocessing modality, a number of opportunities exist for improving cell culture productivity upon transient transfection. For instance, several compounds have shown positive effects on transient gene expression. These transfection enhancers either facilitate entry of PEI/DNA transfection complexes into the cell or nucleus or increase levels of gene expression. In this work, the potential of combining transfection enhancers to increase Gag-based virus-like particle production levels upon transfection of suspension-growing HEK 293 cells is evaluated. Using Plackett-Burman design of experiments, it is first tested the effect of eight transfection enhancers: trichostatin A, valproic acid, sodium butyrate, dimethyl sulfoxide (DMSO), lithium acetate, caffeine, hydroxyurea, and nocodazole. An optimal combination of compounds exhibiting the highest effect on gene expression levels was subsequently identified using a surface response experimental design. The optimal consisted on the addition of 20 mM lithium acetate, 3.36 mM valproic acid, and 5.04 mM caffeine which increased VLP production levels 3.8-fold, while maintaining cell culture viability at 94%.

  19. Suppression of mRNA Nanoparticle Transfection in Human Fibroblasts by Selected Interferon Inhibiting Small Molecule Compounds.

    Science.gov (United States)

    Liu, Yang; Krishnan, Manoj N; Phua, Kyle K L

    2017-07-31

    In vitro transcribed (IVT) mRNA is increasingly applied in lieu of DNA to deliver reprogramming genes to fibroblasts for stem cell derivation. However, IVT mRNA induces interferon (IFN) responses from mammalian cells that reduces transfection efficiency. It has been previously suggested that small molecule inhibitors of IFN are a viable strategy to enhance mRNA transfection efficiency. Herein, we screen a list of commercially available small molecules, including published IFN inhibitors, for their potential to enhance mRNA transfection in BJ fibroblasts. Transfection enhancement is quantified by relative mean fluorescence intensity of translated green fluorescent protein (GFP) in treated cells compared to dimethyl sulfoxide treated controls. Within toxicological constrains, all tested small molecules did not enhance mRNA transfection in BJ fibroblasts while a third of the tested compounds unexpectedly inhibited GFP expression even though IFN-β production is inhibited. Based on the results of our study, we conclude that small molecule inhibitors, including IFN inhibitors, tested in this study do not enhance in vitro mRNA transfection efficiency in human fibroblasts.

  20. Liposome-based vascular endothelial growth factor-165 transfection with skeletal myoblast for treatment of ischaemic limb disease.

    Science.gov (United States)

    Ye, Lei; Haider, Husnain Kh; Esa, Wahidah Bte; Su, Liping; Law, Peter K; Zhang, Wei; Lim, Yeanteng; Poh, Kian Keong; Sim, Eugene K W

    2010-01-01

    The study aims to use cholesterol (Chol) + DOTAP liposome (CD liposome) based human vascular endothelial growth factor-165 (VEGF(165)) gene transfer into skeletal myoblasts (SkMs) for treatment of acute hind limb ischaemia in a rabbit model. The feasibility and efficacy of CD liposome mediated gene transfer with rabbit SkMs were characterized using plasmid carrying enhanced green fluorescent protein (pEGFP) and assessed by flow cytometry. After optimization, SkMs were transfected with CD lipoplexes carrying plasmid-VEGF(165) (CD-pVEGF(165)) and transplanted into rabbit ischaemic limb. Animals were randomized to receive intramuscular injection of Medium199 (M199; group 1), non-transfected SkM (group 2) or CD-pVEGF(165) transfected SkM (group 3). Flow cytometry revealed that up to 16% rabbit SkMs were successfully transfected with pEGFP. Based on the optimized transfection condition, transfected rabbit SkM expressed VEGF(165) up to day 18 with peak at day 2. SkMs were observed in all cell-transplanted groups, as visualized with 6-diamidino-2-phenylindole and bromodeoxyuridine. Angiographic blood vessel score revealed increased collateral vessel development in group 3 (39.7 +/- 2.0) compared with group 2 (21.6 +/- 1.1%, P limb and may serve as a safe and new therapeutic modality for the repair of acute ischaemic limb disease.

  1. A convenient method of preparing gene vector for real time monitoring transfection process based on the quantum dots

    International Nuclear Information System (INIS)

    Zhang, Hai-Li; Zhang, Ming-Zhen; Li, Xiang-Yong; Wan, Min; Li, Yong-Qiang; Zhang, Rong-Ying; Zhao, Yuan-Di

    2012-01-01

    Highlights: ► An easy and direct way to prepare QDs–DNA complexes was developed. ► Surface charge of QDs was tuned with different ratio of amino and glycolate. ► Transfection efficiency was dependent on the surface zeta potentials of QDs. ► Cellular toxicity of this gene vectors is much lower than commercial liposome. ► Whole intracellular behavior of QDs–DNA complexes can be monitored in real time. -- Abstract: Nanoparticle carrier has been developed by combining water-soluble quantum dots and plasmid DNA expressed enhanced green fluorescent protein (EGFP) in a convenient and direct way. First the QDs with different surface charges were obtained by coating with amino and carboxyl terminals at different ratios. Then plasmid DNA was conjugated to QDs via electrostatic interaction. The resultant QDs–DNA complexes showed enhanced resistance to DNase I digestion. The following transfection experiments demonstrated that the transfection efficiency was dependent on the surface charges on QDs. The real time imaging of the transfection process showed that the nanoparticles experienced binding, penetrating the cell membrane and entering cytoplasm in the first 6 h of transfection. The green fluorescence of EGFP began to appear after 18 h transfection and plasmid DNA was fully expressed in the following 6 h. This new QDs–DNA platform showed great potential as new gene delivery carrier.

  2. Abrogation of radiation-inducible telomerase upregulation in HPV16 E6 transfectants of human lymphoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Neuhof, D.; Auberger, F.; Ruess, A.; Weber, K.J. [Radiobiology Research Lab., Dept. of Clinical Radiology, Univ. of Heidelberg (Germany); Wenz, F. [Section for Radiation Oncology, Univ. Clinic Mannheim (Germany)

    2004-01-01

    Background: telomerase activity in a human lymphoblastoid cell line with wild-type p53 status (TK6) was previously shown to be rapidly induced by ionizing radiation doses as low as 10 cgy. Since this low-dose response was absent in a closely related cell line overexpressing a mutant form of p53 (WTK1), the putative involvement of p53 was further investigated using stable human papillomavirus 16 (HPV16) E6 transfectants of these cell lines. The E6 product mediates rapid degradation of wild-type p53, but has also been found to upregulate telomerase. Material and methods: telomerase activity in HPV16 E6 transfectants of the human lymphoblastoid cell lines TK6 and WTK1 was measured by PCR/ELISA and was quantified using internal standards (titration by cell number) run within each separate assay. Mean telomere length was determined by southern hybridization of terminal restriction fragments with a biotin-labeled telomeric DNA probe. Results: the TK6E6 and the WTK1E6 cells exhibited higher baseline telomerase activities than the parental cells. This was also accompanied by increased telomere lengths. Radiation exposure (up to 10 gy) was unable to significantly further enhance telomerase activities, although the dynamic range of the assay would have allowed to record higher signals. Conclusion: the lacking radiation induction of telomerase activities in the E6 transfectants could reflect saturation, if E6 and radiation would share a common pathway of telomerase upregulation. Present evidence from the literature, however, suggests that E6 mediates telomerase reverse transcriptase (TERT) subunit transcriptional activation, whereas radiation signals to posttranscriptional/posttranslational control of telomerase activity. Therefore, the present data enforce the previous hypothesis of a p53 dependence of telomerase upregulation by low doses of radiation and its abrogation, likely due to p53 degradation, in E6-expressing cells. (orig.)

  3. Cationic nanoparticles with quaternary ammonium-functionalized PLGA-PEG-based copolymers for potent gene transfection

    Science.gov (United States)

    Wang, Yan-Hsung; Fu, Yin-Chih; Chiu, Hui-Chi; Wang, Chau-Zen; Lo, Shao-Ping; Ho, Mei-Ling; Liu, Po-Len; Wang, Chih-Kuang

    2013-11-01

    The objective of the present work was to develop new cationic nanoparticles (cNPs) with amphiphilic cationic copolymers for the delivery of plasmid DNA (pDNA). Cationic copolymers were built on the synthesis of quaternary ammonium salt compounds from diethylenetriamine (DETA) to include the positively charged head group and amphiphilic multi-grafts. PLGA- phe-PEG- qDETA (PPD), phe-PEG- qDETA-PLGA (PDP), and PLGA- phe-PEG- qDETA-PLGA (PPDP) cationic copolymers were created by this moiety of DETA quaternary ammonium, heterobifunctional polyethylene glycol (COOH-PEG-NH2), phenylalanine ( phe), and poly(lactic- co-glycolic acid) (PLGA). These new cNPs were prepared by the water miscible solvent displacement method. They exhibit good pDNA binding ability, as shown in a retardation assay that occurred at a particle size of 217 nm. The zeta potential was approximately +21 mV when the cNP concentration was 25 mg/ml. The new cNPs also have a better buffering capacity than PLGA NPs. However, the pDNA binding ability was demonstrated starting at a weight ratio of approximately 6.25 cNPs/pDNA. Gene transfection results showed that these cNPs had transfection effects similar to those of Lipofectamine 2000 in 293T cells. Furthermore, cNPs can also transfect human adipose-derived stem cells. The results indicate that the newly developed cNP is a promising candidate for a novel gene delivery vehicle.

  4. The Ig heavy chain switch region is a hotspot for insertion of transfected DNA

    Energy Technology Data Exchange (ETDEWEB)

    Baar, J.; Shulman, M.J. [Univ. of Toronto, Ontario (Canada)

    1995-08-15

    The Ig heavy chain switch usually occurs by breaking and rejoining DNA in the switch (S) regions, which consist of tandemly repeated sequences 5{prime} of the constant region exons. Various studies have suggested that S DNA can also recombine with non-S sequences. To measure the frequency of such recombination events, the hybridoma cell line igm692, a deletion mutant that lacks the C{mu}1 and C{mu}2 exons and the 3{prime} end of the S{mu} region, was transfected with a fragment bearing the C{mu}1-2 exons, but no S{mu} DNA. Insertion of this fragment into the residual VDJ-C{mu} intron of igm692 can restore a functional {mu} gene, yielding a transformant that is detected as a plaque-forming cell (PFC). PFCs comprise {approximately}8 x 10{sup -7} of the surviving transfected cells. In 10 of 12 PFCs, the C{mu}1-2 fragment inserted into the 2.5-kb residual S{mu} region, whereas insertion in two cases occurred in the 3.5-kb segment 5{prime} of S{mu}. Using a PCR assay to measure the frequency of insertion of the tranferred fragment elsewhere in the hybridoma genome, we found that {approximately}9% of the surviving tranfected cells had stably acquired the C{mu}1-2 fragment. These results indicate that the S{mu} region is {approximately}100-fold more recombinogenic than the average genomic site, and {approximately}7-fold more recombinogenic than the non-S{mu} segment of the residual VDJ-C{mu}, i.e., the S{mu} region is a hotspot for insertion of transfected DNA.

  5. Cationic nanoparticles with quaternary ammonium-functionalized PLGA–PEG-based copolymers for potent gene transfection

    International Nuclear Information System (INIS)

    Wang, Yan-Hsung; Fu, Yin-Chih; Chiu, Hui-Chi; Wang, Chau-Zen; Lo, Shao-Ping; Ho, Mei-Ling; Liu, Po-Len; Wang, Chih-Kuang

    2013-01-01

    The objective of the present work was to develop new cationic nanoparticles (cNPs) with amphiphilic cationic copolymers for the delivery of plasmid DNA (pDNA). Cationic copolymers were built on the synthesis of quaternary ammonium salt compounds from diethylenetriamine (DETA) to include the positively charged head group and amphiphilic multi-grafts. PLGA-phe-PEG-qDETA (PPD), phe-PEG-qDETA-PLGA (PDP), and PLGA-phe-PEG-qDETA-PLGA (PPDP) cationic copolymers were created by this moiety of DETA quaternary ammonium, heterobifunctional polyethylene glycol (COOH-PEG-NH 2 ), phenylalanine (phe), and poly(lactic-co-glycolic acid) (PLGA). These new cNPs were prepared by the water miscible solvent displacement method. They exhibit good pDNA binding ability, as shown in a retardation assay that occurred at a particle size of ∼217 nm. The zeta potential was approximately +21 mV when the cNP concentration was 25 mg/ml. The new cNPs also have a better buffering capacity than PLGA NPs. However, the pDNA binding ability was demonstrated starting at a weight ratio of approximately 6.25 cNPs/pDNA. Gene transfection results showed that these cNPs had transfection effects similar to those of Lipofectamine 2000 in 293T cells. Furthermore, cNPs can also transfect human adipose-derived stem cells. The results indicate that the newly developed cNP is a promising candidate for a novel gene delivery vehicle

  6. One pyrimidine dimer inactivates expression of a transfected gene in xeroderma pigmentosum cells

    International Nuclear Information System (INIS)

    Protic-Sabljic, M.; Kraemer, K.H.

    1985-01-01

    The authors have developed a host cell reactivation assay of DNA repair utilizing UV-treated plasmid vectors. The assay primarily reflects cellular repair of transcriptional activity of damaged DNA measured indirectly as enzyme activity of the transfected genes. They studied three plasmids (pSV2cat, 5020 base pairs; pSV2catSVgpt, 7268 base pairs; and pRSVcat, 5027 base pairs) with different sizes and promoters carrying the bacterial cat gene (CAT, chloramphenicol acetyltransferase) in a construction that permits cat expression in human cells. All human simian virus 40-transformed cells studied expressed high levels of the transfected cat gene. UV treatment of the plasmids prior to transfection resulted in differential decrease in CAT activity in different cell lines. With pSV2catSVgpt, UV inactivation of CAT expression was greater in the xeroderma pigmentosum group A and D lines than in the other human cell lines tested. The D 0 of the CAT inactivation curve was 50 J X m-2 for pSV2cat and for pRSVcat in the xeroderma pigmentosum group A cells. The similarity of the D0 data in the xeroderma pigmentosum group A cells for three plasmids of different size and promoters implies they all have similar UV-inactivation target size. UV-induced pyrimidine dimer formation in the plasmids was quantified by assay of the number of UV-induced T4 endonuclease V-sensitive sites. In the most sensitive xeroderma pigmentosum cells, with all three plasmids, one UV-induced pyrimidine dimer inactivates a target of about 2 kilobases, close to the size of the putative CAT mRNA

  7. Overexpression and rapid purification of the orfE/rph gene product, RNase PH of Escherichia coli

    DEFF Research Database (Denmark)

    Jensen, Kaj Frank; Andersen, J T; Poulsen, Peter

    1992-01-01

    acid residue protein which was recently identified as the phosphorolytic ribonuclease, RNase PH, that removes nucleotides from the 3' ends of tRNA precursors. In this paper we report the construction of a plasmid, which overexpresses the orfE and pyrE gene products substantially, as well...

  8. Clinical characteristics of rod and cone photoreceptor dystrophies in patients with mutations in the C8orf37 gene

    NARCIS (Netherlands)

    Huet, R.A.C. van; Estrada-Cuzcano, A.; Banin, E.; Rotenstreich, Y.; Hipp, S.; Kohl, S.; Hoyng, C.B.; Hollander, A.I. den; Collin, R.W.J.; Klevering, B.J.

    2013-01-01

    PURPOSE: To provide the clinical features in patients with retinal disease caused by C8orf37 gene mutations. METHODS: Eight patients--four diagnosed with retinitis pigmentosa (RP) and four with cone-rod dystrophy (CRD), carrying causal C8orf37 mutations--were clinically evaluated, including

  9. Selective elimination of high constitutive activity or chemokine binding in the human herpesvirus 8 encoded seven transmembrane oncogene ORF74

    DEFF Research Database (Denmark)

    Rosenkilde, M M; Kledal, T N; Holst, Peter Johannes

    2000-01-01

    expressing ORF74 under control of the CD2 promoter develop highly vascularized Kaposi's sarcoma-like tumors. Through targeted mutagenesis we here create three distinct phenotypes of ORF74: a receptor with normal, high constitutive signaling through the phospholipase C pathway but deprived of binding...

  10. Efficient Gene Knockdown in Mouse Oocytes through Peptide Nanoparticle-Mediated SiRNA Transfection

    OpenAIRE

    Jin, Zhen; Li, Ruichao; Zhou, Chunxiang; Shi, Liya; Zhang, Xiaolan; Yang, Zhixia; Zhang, Dong

    2016-01-01

    The use of mouse oocytes as a model for studying female meiosis is very important in reproductive medicine. Gene knockdown by specific small interfering RNA (siRNA) is usually the first step in the study of the function of a target gene in mouse oocytes during in vitro maturation. Traditionally, the only way to introduce siRNA into mouse oocytes is through microinjection, which is certainly less efficient and strenuous than siRNA transfection in somatic cells. Recently, in research using soma...

  11. 3D nanochannel electroporation for high-throughput cell transfection with high uniformity and dosage control

    Science.gov (United States)

    Chang, Lingqian; Bertani, Paul; Gallego-Perez, Daniel; Yang, Zhaogang; Chen, Feng; Chiang, Chiling; Malkoc, Veysi; Kuang, Tairong; Gao, Keliang; Lee, L. James; Lu, Wu

    2015-12-01

    Of great interest to modern medicine and biomedical research is the ability to inject individual target cells with the desired genes or drug molecules. Some advances in cell electroporation allow for high throughput, high cell viability, or excellent dosage control, yet no platform is available for the combination of all three. In an effort to solve this problem, here we show a ``3D nano-channel electroporation (NEP) chip'' on a silicon platform designed to meet these three criteria. This NEP chip can simultaneously deliver the desired molecules into 40 000 cells per cm2 on the top surface of the device. Each 650 nm pore aligns to a cell and can be used to deliver extremely small biological elements to very large plasmids (>10 kbp). When compared to conventional bulk electroporation (BEP), the NEP chip shows a 20 fold improvement in dosage control and uniformity, while still maintaining high cell viability (>90%) even in cells such as cardiac cells which are characteristically difficult to transfect. This high-throughput 3D NEP system provides an innovative and medically valuable platform with uniform and reliable cellular transfection, allowing for a steady supply of healthy, engineered cells.Of great interest to modern medicine and biomedical research is the ability to inject individual target cells with the desired genes or drug molecules. Some advances in cell electroporation allow for high throughput, high cell viability, or excellent dosage control, yet no platform is available for the combination of all three. In an effort to solve this problem, here we show a ``3D nano-channel electroporation (NEP) chip'' on a silicon platform designed to meet these three criteria. This NEP chip can simultaneously deliver the desired molecules into 40 000 cells per cm2 on the top surface of the device. Each 650 nm pore aligns to a cell and can be used to deliver extremely small biological elements to very large plasmids (>10 kbp). When compared to conventional bulk

  12. Improving the Gene Transfection in Human Embryonic Stem Cells: Balancing with Cytotoxicity and Pluripotent Maintenance.

    Science.gov (United States)

    Luo, Chunhua; Lü, Dongyuan; Pan, Jun; Long, Mian

    2016-04-06

    Manipulation of genes in human embryonic stem cells (hESCs) is imperative for their highly potential applications; however, the transduction efficiency remains very low. Although existing evidence revealed the type, size, and zeta potential of vector affect gene transfection efficiency in cells, the systematic study in hESCs is scarce. In this study, using poly(amidoamine) (PAMAM) dendrimers ended with amine, hydroxyl, or carboxyl as model, we tested the influences of size and surface group as well as cytotoxicity and endocytosis on hESC gene transfection. We found that in culture medium of mTeSR the particle sizes of G5, G7, G4.5COOH, and G5OH were around 5 nm and G1 had a smaller size of 3.14 nm. G5 and G7 had a slight and significant positive zeta potential, respectively, whereas G1 was slightly negative, and G4.5COOH and G5OH were significantly negative. We demonstrated that only amine-terminated dendrimers accomplished gene transfection in hESCs, which is greater than that from Lipofectamine 2000 transfection. Ten micromolar G5 had the greatest efficiency and was better than 1000 μM G1. Only a low concentration (0.5 and 1 μM) of G7 realized gene delivery. Amine-ended dendrimers, especially with higher generations, were detrimental to the growth and pluripotent maintenance of hESCs. In contrast, similarly sized hydroxyl- and carboxyl-terminated dendrimers exerted much lower cytotoxicity, in which carboxyl-terminated dendrimer maintained pluripotency of hESCs. We also confirmed the endocytosis into and significant exocytosis from hESCs using FITC-labeled G5 dendrimer. These results suggested that careful considerations of size, concentration, and zeta potential, particularly the identity and position of groups, as well as minimized exocytosis in the design of a vector for hESC gene delivery are necessary, which helps to better design an effective vector in hESC gene transduction.

  13. Imaging of transfection and intracellular release of intact, non-labeled DNA using fluorescent nanodiamonds

    Science.gov (United States)

    Petrakova, V.; Benson, V.; Buncek, M.; Fiserova, A.; Ledvina, M.; Stursa, J.; Cigler, P.; Nesladek, M.

    2016-06-01

    Efficient delivery of stabilized nucleic acids (NAs) into cells and release of the NA payload are crucial points in the transfection process. Here we report on the fabrication of a nanoscopic cellular delivery carrier that is additionally combined with a label-free intracellular sensor device, based on biocompatible fluorescent nanodiamond particles. The sensing function is engineered into nanodiamonds by using nitrogen-vacancy color centers, providing stable non-blinking luminescence. The device is used for monitoring NA transfection and the payload release in cells. The unpacking of NAs from a poly(ethyleneimine)-terminated nanodiamond surface is monitored using the color shift of nitrogen-vacancy centers in the diamond, which serve as a nanoscopic electric charge sensor. The proposed device innovates the strategies for NA imaging and delivery, by providing detection of the intracellular release of non-labeled NAs without affecting cellular processing of the NAs. Our system highlights the potential of nanodiamonds to act not merely as labels but also as non-toxic and non-photobleachable fluorescent biosensors reporting complex molecular events.Efficient delivery of stabilized nucleic acids (NAs) into cells and release of the NA payload are crucial points in the transfection process. Here we report on the fabrication of a nanoscopic cellular delivery carrier that is additionally combined with a label-free intracellular sensor device, based on biocompatible fluorescent nanodiamond particles. The sensing function is engineered into nanodiamonds by using nitrogen-vacancy color centers, providing stable non-blinking luminescence. The device is used for monitoring NA transfection and the payload release in cells. The unpacking of NAs from a poly(ethyleneimine)-terminated nanodiamond surface is monitored using the color shift of nitrogen-vacancy centers in the diamond, which serve as a nanoscopic electric charge sensor. The proposed device innovates the strategies for

  14. Transfection using hydroxyapatite nanoparticles in the inner ear via an intact round window membrane in chinchilla

    Energy Technology Data Exchange (ETDEWEB)

    Wu Xuewen; Ding Dalian [Central South University, Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital (China); Jiang Haiyan [State University of New York at Buffalo, Center for Hearing and Deafness (United States); XingXiaowei [Central South University, Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital (China); Huang, Suping [Central South University, State Key Laboratory of Powder Metallurgy (China); Liu Hong [Central South University, Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital (China); Chen Zhedong [Central South University, State Key Laboratory of Powder Metallurgy (China); Sun Hong, E-mail: shjhaj@vip.163.com [Central South University, Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital (China)

    2012-01-15

    Hydroxyapatite nanoparticles (nHAT) are known to have excellent biocompatibility, and have attracted increasing attention as new candidates of non-viral vectors for gene therapy. In our previous studies, nHAT carrying a therapeutic gene and a reporter gene were successfully transfected into the spiral ganglion neurons in the inner ear of guinea pigs in vivo as well as in the cultured cell lines, although the transfection efficiencies were never higher than 30%. In this study, the surface modification of nHAT with polyethylenimine (PEI) was made (PEI-nHAT, diameter = 73.09 {+-} 27.32 nm) and a recombinant plasmid carrying enhanced green fluorescent protein (EGFP) gene and neurotrophin-3 (NT-3) gene was constructed as pEGFPC2-NT3. The PEI modified nHAT and the recombinant plasmid was then connected to form the nHAT-based vector-gene complex (PEI-nHAT-pEGFPC2-NT3). This complex was then placed onto the intact round window membranes of the chinchillas for inner ear transfection. Auditory brainstem response (ABR) was tested to evaluate auditory function. Green fluorescence of EGFP was observed using confocal microscopy 48 h after administering vector-gene complexes. There was no significant threshold shift in tone burst-evoked ABR at any tested frequency. Abundant, condensed green fluorescence was found in dark cells on both sides of the crista and around the macula of the utricle. Scattered EGFP signals were also detected in vestibular hair cells, some Schwann cells in the cochlear spiral ganglion region, some outer pillar cells in the organ of Corti, and a few cells in the stria vascularis. The density of green fluorescence-marked cells was obviously higher in the vestibular dark cell area than in other areas of the inner ear, suggesting that vestibular dark cells may have the ability to actively engulf the nHAT-based vector-gene complexes. Considering the high transfection efficiency in the vestibular system, PEI-nHAT may be a potential vector for gene therapy of

  15. Transfection using hydroxyapatite nanoparticles in the inner ear via an intact round window membrane in chinchilla

    International Nuclear Information System (INIS)

    Wu Xuewen; Ding Dalian; Jiang Haiyan; XingXiaowei; Huang, Suping; Liu Hong; Chen Zhedong; Sun Hong

    2012-01-01

    Hydroxyapatite nanoparticles (nHAT) are known to have excellent biocompatibility, and have attracted increasing attention as new candidates of non-viral vectors for gene therapy. In our previous studies, nHAT carrying a therapeutic gene and a reporter gene were successfully transfected into the spiral ganglion neurons in the inner ear of guinea pigs in vivo as well as in the cultured cell lines, although the transfection efficiencies were never higher than 30%. In this study, the surface modification of nHAT with polyethylenimine (PEI) was made (PEI–nHAT, diameter = 73.09 ± 27.32 nm) and a recombinant plasmid carrying enhanced green fluorescent protein (EGFP) gene and neurotrophin-3 (NT-3) gene was constructed as pEGFPC2–NT3. The PEI modified nHAT and the recombinant plasmid was then connected to form the nHAT-based vector–gene complex (PEI–nHAT–pEGFPC2–NT3). This complex was then placed onto the intact round window membranes of the chinchillas for inner ear transfection. Auditory brainstem response (ABR) was tested to evaluate auditory function. Green fluorescence of EGFP was observed using confocal microscopy 48 h after administering vector–gene complexes. There was no significant threshold shift in tone burst-evoked ABR at any tested frequency. Abundant, condensed green fluorescence was found in dark cells on both sides of the crista and around the macula of the utricle. Scattered EGFP signals were also detected in vestibular hair cells, some Schwann cells in the cochlear spiral ganglion region, some outer pillar cells in the organ of Corti, and a few cells in the stria vascularis. The density of green fluorescence-marked cells was obviously higher in the vestibular dark cell area than in other areas of the inner ear, suggesting that vestibular dark cells may have the ability to actively engulf the nHAT-based vector–gene complexes. Considering the high transfection efficiency in the vestibular system, PEI–nHAT may be a potential vector for

  16. Transfected Babesia bovis Expressing a Tick GST as a Live Vector Vaccine.

    Directory of Open Access Journals (Sweden)

    Daiane P Oldiges

    2016-12-01

    Full Text Available The Rhipicephalus microplus tick is a notorious blood-feeding ectoparasite of livestock, especially cattle, responsible for massive losses in animal production. It is the main vector for transmission of pathogenic bacteria and parasites, including Babesia bovis, an intraerythrocytic apicomplexan protozoan parasite responsible for bovine Babesiosis. This study describes the development and testing of a live B. bovis vaccine expressing the protective tick antigen glutathione-S-transferase from Haemaphysalis longicornis (HlGST. The B. bovis S74-T3B parasites were electroporated with a plasmid containing the bidirectional Ef-1α (elongation factor 1 alpha promoter of B. bovis controlling expression of two independent genes, the selectable marker GFP-BSD (green fluorescent protein-blasticidin deaminase, and HlGST fused to the MSA-1 (merozoite surface antigen 1 signal peptide from B. bovis. Electroporation followed by blasticidin selection resulted in the emergence of a mixed B. bovis transfected line (termed HlGST in in vitro cultures, containing parasites with distinct patterns of insertion of both exogenous genes, either in or outside the Ef-1α locus. A B. bovis clonal line termed HlGST-Cln expressing intracellular GFP and HlGST in the surface of merozoites was then derived from the mixed parasite line HlGST using a fluorescent activated cell sorter. Two independent calf immunization trials were performed via intravenous inoculation of the HlGST-Cln and a previously described control consisting of an irrelevant transfected clonal line of B. bovis designated GFP-Cln. The control GFP-Cln line contains a copy of the GFP-BSD gene inserted into the Ef-1α locus of B. bovis in an identical fashion as the HIGST-Cln parasites. All animals inoculated with the HlGST-Cln and GFP-Cln transfected parasites developed mild babesiosis. Tick egg fertility and fully engorged female tick weight was reduced significantly in R. microplus feeding on Hl

  17. Real-time impedimetric monitoring of Poly(ethylenimine)s-mediated cytotoxicity during gene transfection

    DEFF Research Database (Denmark)

    Caviglia, Claudia; Carminati, Marco; Heiskanen, Arto

    Poly(ethylenimine)s (PEIs) are able to condense DNA and RNA into stable toroidal and globular nanostructures (polyplexes) and are among the most efficient and promising synthetic transfectants, but they induce severe cytotoxicity. The mechanisms of PEI-mediated cytotoxicity have not been fully...... delineated but PEI toxicity appears to predominantly depend on membrane perturbing effects in cellular compartments in which they accumulate. Electrochemical Impedance Spectroscopy (EIS) is used as a non-invasive biophysical approach for the investigation of the electrical properties of biological materials...

  18. Quantitative polymerase chain reaction: another tool to evaluate viable virus content in live attenuated orf vaccine

    Directory of Open Access Journals (Sweden)

    Durlav Prasad Bora

    2012-12-01

    Full Text Available A probe-based real-time polymerase chain reaction (PCR assay based on the highly conserved DNA polymerase gene of orf virus (ORFV for the quality control of attenuated orf vaccine is reported. Primary lamb testis (PLT cells were infected with orf vaccine virus and harvested at a critical time point to obtain maximum viable virus content as determined by real-time PCR. DNA extracted from these harvests was subjected to real-time PCR. A critical time point for the harvesting of PLT cells infected with various log10 dilutions of vaccine virus was found to be 42 h (highest slope of 3.335, which was obtained by comparing the slopes of standard curves of different time intervals. The assay was employed to evaluate viable virus content in different batches of orf vaccine. The titres estimated by real-time PCR and conventional TCID50 were comparable with a correlation of 0.8169. Thus, the real-time PCR assay could provide an alternative method or supplementary tool to estimate live ORFV particles in attenuated orf vaccine.

  19. Molecular characterization of orf virus from sheep and goats in Ethiopia, 2008–2013

    International Nuclear Information System (INIS)

    Gelaye, E.; Achenbach, J.E.; Jenberie, S.; Ayelet, G.; Belay, A.; Yami, M.; Loitsch, A.; Grabherr, R.; Diallo, A.; Lamien, C.E.

    2016-01-01

    Full text: Orf is a contagious disease of sheep, goats and wild ungulates caused by orf virus (ORFV) a member of the genus Parapoxvirus, Poxviridae family. Although orf is endemic in Ethiopia, little attention has been given so far as it is not a notifiable disease by the World Organization for Animal Health. In this work, we have investigated orf outbreaks representing five different geographical locations of Ethiopia, in Amba Giorgis, Gondar Zuria, Adet, Debre Zeit and Adami Tulu, between 2008 and 2013. The viral isolation and the sequence analysis of the A32L and the B2L genes of eighteen representative isolates confirmed that sampled animals were infected by ORFVs. The phylogenetic study and the comparative analysis of the deduced amino acid profile suggests that there were two main clusters of ORFV isolates which were responsible for the investigated outbreaks. Additionally the analysis of these two genes showed limited variability to ORFVs encountered elsewhere. This is the first report on the genetic characterization of the ORFV isolates from sheep and goats in Ethiopia. The molecular characterization of Ethiopian ORFV isolates highlighted the circulation of two main clusters causing orf disease in sheep and goats. The use of laboratory based methods and a constant monitoring of Ethiopian ORFV isolates is needed to better understand the dynamic of ORFV circulating in the country and facilitate the implementation of control measures. (author)

  20. Identification and characterization of two linear epitope motifs in hepatitis E virus ORF2 protein.

    Directory of Open Access Journals (Sweden)

    Heng Wang

    Full Text Available Hepatitis E virus (HEV is responsible for hepatitis E, which represents a global public health problem. HEV genotypes 3 and 4 are reported to be zoonotic, and animals are monitored for HEV infection in the interests of public hygiene and food safety. The development of novel diagnostic methods and vaccines for HEV in humans is thus important topics of research. Opening reading frame (ORF 2 of HEV includes both linear and conformational epitopes and is regarded as the primary candidate for vaccines and diagnostic tests. We investigated the precise location of the HEV epitopes in the ORF2 protein. We prepared four monoclonal antibodies (mAbs against genotype 4 ORF2 protein and identified two linear epitopes, G438IVIPHD444 and Y457DNQH461, corresponding to two of these mAbs using phage display biopanning technology. Both these epitopes were speculated to be universal to genotypes 1, 2, 3, 4, and avian HEVs. We also used two 12-mer fragments of ORF2 protein including these two epitopes to develop a peptide-based enzyme-linked immunosorbent assay (ELISA to detect HEV in serum. This assay demonstrated good specificity but low sensitivity compared with the commercial method, indicating that these two epitopes could serve as potential candidate targets for diagnosis. Overall, these results further our understanding of the epitope distribution of HEV ORF2, and provide important information for the development of peptide-based immunodiagnostic tests to detect HEV in serum.

  1. Proteomic profiling of mammary carcinomas identifies C7orf24, a gamma-glutamyl cyclotransferase, as a potential cancer biomarker

    DEFF Research Database (Denmark)

    Gromov, Pavel; Gromova, Irina; Friis, Esbern

    2010-01-01

    , and a novel protein, C7orf24, was identified as being upregulated in cancer cells. Protein expression levels of C7orf24 were evaluated by immunohistochemical assays to qualify deregulation of this protein. Analysis of C7orf24 expression showed up-regulation in 36.4 and 23.4% of cases present in the discovery...... in different types of cancer suggests deregulation of C7orf24 to be a general event in epithelial carcinogenesis, indicating that this protein may play an important role in cancer cell biology and thus constitute a novel therapeutic target. Furthermore, as C7orf24 is externalized to the tissue extracellular......Breast cancer is the leading cause of cancer deaths in women today and is the most common cancer (excluding skin cancers) among women in the Western world. Although cancers detected by screening mammography are significantly smaller than nonscreening ones, noninvasive biomarkers for detection...

  2. Depletion of C3orf1/TIMMDC1 Inhibits Migration and Proliferation in 95D Lung Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Huiling Wu

    2014-11-01

    Full Text Available In our previous study, we identified an association of high expression of c3orf1, also known as TIMMDC1 (translocase of inner mitochondrial membrane domain-containing protein 1, with metastatic characteristics in lung carcinoma cells. To investigate the preliminary function and mechanism of this mitochondrial protein, we depleted C3orf1 expression by introducing siRNA into 95D lung carcinoma cells. We demonstrated that C3orf1 depletion significantly suppressed 95D cell growth and migration. We confirmed C3orf1 localization in the inner mitochondrial membrane and showed that mitochondrial viability, membrane potential, and ATPase activity were remarkably reduced upon depletion of C3orf1. Microarray data indicated that genes involved in regulation of cell death, migration, and cell-cycle arrest were significantly altered after C3orf1 depletion for 48 h. The expression of genes involved in focal adhesion, ECM-receptor interaction, and p53-signaling pathways were notably altered. Furthermore, cell-cycle arrest genes such as CCNG2 and PTEN as well as genes involved in cell migration inhibition, such as TIMP3 and COL3A1, were upregulated after C3orf1 depletion in 95D cells. Concurrently, expression of the migration-promoting gene NUPR1 was markedly reduced, as confirmed by real-time PCR. We conclude that C3orf1 is critical for mitochondrial function, migration, and proliferation in 95D lung carcinoma cells. Depletion of C3orf1 inhibited cell migration and cell proliferation in association with upregulation of genes involved in cell-cycle arrest and cell migration inhibition. These results suggest that C3orf1 (TIMMDC1 may be a viable treatment target for lung carcinoma, and that further study of the role of this protein in lung carcinoma pathogenesis is justified.

  3. Cholesterol-conjugated supramolecular assemblies of low generations polyamidoamine dendrimers for enhanced EGFP plasmid DNA transfection

    Science.gov (United States)

    Golkar, Nasim; Samani, Soliman Mohammadi; Tamaddon, Ali Mohammad

    2016-05-01

    Aimed to prepare an enhanced gene delivery system with low cytotoxicity and high transfection efficiency, various cholesterol-conjugated derivates of low generation polyamidoamine (PAMAM) dendrimers were prepared. The conjugates were characterized by TNBS assay, FTIR, and 1H-NMR spectroscopy. Self-assembly of the dendrimer conjugates (G1-Chol, G2-Chol, and G3-Chol) was investigated by pyrene assay. Following formation of the complexes between enhanced green fluorescence protein plasmid and the dendrimer conjugates at various N (primary amine)/P (phosphate) mole ratios, plasmid condensation, biologic stability, cytotoxicity, and protein expression were investigated. The conjugates self-assembled into micellar dispersions with the critical micelle concentration values (transfection efficiency was determined higher for the cholesterol conjugates than unmodified dendrimers in HepG2 cells, showing the highest for G2-Chol at 40 % degree of cholesterol modification (G2-Chol40 %) among various dendrimer generations. Interestingly, such conjugate showed a complete protection of plasmid against serum nucleases. Our results confirmed that the cholesterol conjugation to PAMAM dendrimers of low generations bearing little cytotoxicity improves their several physicochemical and biological characteristics required for an enhanced delivery of plasmid DNA into cells.

  4. Amiloride-enhanced gene transfection of octa-arginine functionalized calcium phosphate nanoparticles

    Science.gov (United States)

    Tenkumo, Taichi; Kamano, Yuya; Egusa, Hiroshi; Sasaki, Keiichi

    2017-01-01

    Nanoparticles represent promising gene delivery systems in biomedicine to facilitate prolonged gene expression with low toxicity compared to viral vectors. Specifically, nanoparticles of calcium phosphate (nCaP), the main inorganic component of human bone, exhibit high biocompatibility and good biodegradability and have been reported to have high affinity for protein or DNA, having thus been used as gene transfer vectors. On the other hand, Octa-arginine (R8), which has a high permeability to cell membrane, has been reported to improve intracellular delivery systems. Here, we present an optimized method for nCaP-mediated gene delivery using an octa-arginine (R8)-functionalized nCaP vector containing a marker or functional gene construct. nCaP particle size was between 220–580 nm in diameter and all R8-functionalized nCaPs carried a positive charge. R8 concentration significantly improved nCaP transfection efficiency with high cell compatibility in human mesenchymal stem cells (hMSC) and human osteoblasts (hOB) in particular, suggesting nCaPs as a good option for non-viral vector gene delivery. Furthermore, pre-treatment with different endocytosis inhibitors identified that the endocytic pathway differed among cell lines and functionalized nanoparticles, with amiloride increasing transfection efficiency of R8-functionalized nCaPs in hMSC and hOB. PMID:29145481

  5. Protective Effects of Moringa oleifera on HBV Genotypes C and H Transiently Transfected Huh7 Cells

    Science.gov (United States)

    Feustel, Sina; Ayón-Pérez, Fabiola; Sandoval-Rodriguez, Ana; Rodríguez-Echevarría, Roberto; Contreras-Salinas, Homero

    2017-01-01

    Chronic hepatitis B infection treatment implicates a long-lasting treatment. M. oleifera extracts contain compounds with antiviral, antioxidant, and antifibrotic properties. In this study, the effect of M. oleifera was evaluated in Huh7 cells expressing either HBV genotypes C or H for the antiviral, antifibrotic, anti-inflammatory, and antioxidative responses. Huh7 cells were treated with an aqueous extract of M. oleifera (leaves) at doses of 0, 30, 45, or 60 μg/mL. The replicative virus and TGF-β1, CTGF, CAT, IFN-β1, and pgRNA expressions were measured by real time. HBsAg and IL-6 titers were determined by ELISA. CTGF, TGF-β1, IFN-β1, and pgRNA expressions decreased with M. oleifera treatment irrespective of the HBV genotype. HBsAg secretion in the supernatant of transfected Huh7 cells with both HBV genotypes was decreased regardless of the dose of M. oleifera. Similar effect was observed in proinflammatory cytokine IL-6, which had a tendency to decrease at 24 hours of treatment. Transfection with both HBV genotypes strongly decreased CAT expression, which is retrieved with M. oleifera treatment. M. oleifera treatment reduced fibrosis markers, IL-6, and HBsAg secretion in HBV genotypes C and H. However, at the level of replication, only HBV-DNA genotype C was slightly reduced with this treatment. PMID:29214184

  6. Cholesterol-conjugated supramolecular assemblies of low generations polyamidoamine dendrimers for enhanced EGFP plasmid DNA transfection

    Energy Technology Data Exchange (ETDEWEB)

    Golkar, Nasim; Samani, Soliman Mohammadi; Tamaddon, Ali Mohammad, E-mail: amtamadon@gmail.com [Shiraz University of Medical Sciences, Department of Pharmaceutics, School of Pharmacy (Iran, Islamic Republic of)

    2016-05-15

    Aimed to prepare an enhanced gene delivery system with low cytotoxicity and high transfection efficiency, various cholesterol-conjugated derivates of low generation polyamidoamine (PAMAM) dendrimers were prepared. The conjugates were characterized by TNBS assay, FTIR, and {sup 1}H-NMR spectroscopy. Self-assembly of the dendrimer conjugates (G1-Chol, G2-Chol, and G3-Chol) was investigated by pyrene assay. Following formation of the complexes between enhanced green fluorescence protein plasmid and the dendrimer conjugates at various N (primary amine)/P (phosphate) mole ratios, plasmid condensation, biologic stability, cytotoxicity, and protein expression were investigated. The conjugates self-assembled into micellar dispersions with the critical micelle concentration values (<50 µg/ml) depending on the dendrimer generation and cholesterol/amine mole ratio. Cholesterol conjugation resulted in higher resistance of the condensed plasmid DNA in a competition assay with heparin sulfate. Also, the transfection efficiency was determined higher for the cholesterol conjugates than unmodified dendrimers in HepG2 cells, showing the highest for G2-Chol at 40 % degree of cholesterol modification (G2-Chol{sub 40 %}) among various dendrimer generations. Interestingly, such conjugate showed a complete protection of plasmid against serum nucleases. Our results confirmed that the cholesterol conjugation to PAMAM dendrimers of low generations bearing little cytotoxicity improves their several physicochemical and biological characteristics required for an enhanced delivery of plasmid DNA into cells.

  7. Intracellular Protein Delivery and Gene Transfection by Electroporation Using a Microneedle Electrode Array

    Science.gov (United States)

    Choi, Seong-O; Kim, Yeu-Chun; Lee, Jeong Woo; Park, Jung-Hwan

    2012-01-01

    The impact of many biopharmaceuticals, including protein- and gene-based therapies, has been limited by the need for better methods of delivery into cells within tissues. Here, we present intracellular delivery of molecules and transfection with plasmid DNA by electroporation using a novel microneedle electrode array designed for targeted treatment of skin and other tissue surfaces. The microneedle array is molded out of polylactic acid. Electrodes and circuitry required for electroporation are applied to the microneedle array surface by a new metal-transfer micromolding method. The microneedle array maintains mechanical integrity after insertion into pig cadaver skin and is able to electroporate human prostate cancer cells in vitro. Quantitative measurements show that increasing electroporation pulse voltage increases uptake efficiency of calcein and bovine serum albumin, whereas increasing pulse length has lesser effects over the range studied. Uptake of molecules by up to 50 % of cells and transfection of 12 % of cells with a gene for green fluorescent protein is demonstrated at high cell viability. We conclude that the microneedle electrode array is able to electroporate cells, resulting in intracellular uptake of molecules, and has potential applications to improve intracellular delivery of proteins, DNA and other biopharmaceuticals. PMID:22328093

  8. Development of an electro-responsive platform for the controlled transfection of mammalian cells

    Science.gov (United States)

    Hook, Andrew L.; Thissen, Helmut W.; Hayes, Jason P.; Voelcker, Nicolas H.

    2005-02-01

    The recent development of living microarrays as novel tools for the analysis of gene expression in an in-situ environment promises to unravel gene function within living organisms. In order to significantly enhance microarray performance, we are working towards electro-responsive DNA transfection chips. This study focuses on the control of DNA adsorption and desorption by appropriate surface modification of highly doped p++ silicon. Silicon was modified by plasma polymerisation of allylamine (ALAPP), a non-toxic surface that sustains cell growth. Subsequent high surface density grafting of poly(ethylene oxide) formed a layer resistant to biomolecule adsorption and cell attachment. Spatially controlled excimer laser ablation of the surface produced micron resolution patterns of re-exposed plasma polymer whilst the rest of the surface remained non-fouling. We observed electro-stimulated preferential adsorption of DNA to the ALAPP surface and subsequent desorption by the application of a negative bias. Cell culture experiments with HEK 293 cells demonstrated efficient and controlled transfection of cells using the expression of green fluorescent protein as a reporter. Thus, these chemically patterned surfaces are promising platforms for use as living microarrays.

  9. Specific transfection of inflamed brain by macrophages: a new therapeutic strategy for neurodegenerative diseases.

    Directory of Open Access Journals (Sweden)

    Matthew J Haney

    Full Text Available The ability to precisely upregulate genes in inflamed brain holds great therapeutic promise. Here we report a novel class of vectors, genetically modified macrophages that carry reporter and therapeutic genes to neural cells. Systemic administration of macrophages transfected ex vivo with a plasmid DNA (pDNA encoding a potent antioxidant enzyme, catalase, produced month-long expression levels of catalase in the brain resulting in three-fold reductions in inflammation and complete neuroprotection in mouse models of Parkinson's disease (PD. This resulted in significant improvements in motor functions in PD mice. Mechanistic studies revealed that transfected macrophages secreted extracellular vesicles, exosomes, packed with catalase genetic material, pDNA and mRNA, active catalase, and NF-κb, a transcription factor involved in the encoded gene expression. Exosomes efficiently transfer their contents to contiguous neurons resulting in de novo protein synthesis in target cells. Thus, genetically modified macrophages serve as a highly efficient system for reproduction, packaging, and targeted gene and drug delivery to treat inflammatory and neurodegenerative disorders.

  10. Transfection of normal human bronchial epithelial cells with the bcl-2 oncogene

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, C.H.; Kenyon, K.D.; Tesfaigzi, J. [and others

    1995-12-01

    In vitro, studies examining the transformation of virus-immortalized human bronchial epithelial (HBE) cells after exposure to chemical and physical carcinogens have contributed to our understanding of the mechanisms that underlie the development of lung cancer. Virus-immortalized HBE cells have been used because of both the limited life span of normal human bronchial epithelial (NHBE) cells in culture (approximately 30-35 population doublins) and their resistance to in vitro malignant transformation. For example, human papillomavirus (HPV)-immortalized HBE cells have been used to study the genetic changes that occur after exposure to {alpha}-particles in vitro. Although this model may prove to be useful for studying the 18% or less of bronchogenic carcinomas found to contain HPV sequences, it is not an appropriate model for studying the majority of lung epithelial malignancies in which HPV DNA is not detected. This view is supported by the fact that HPV-immortalized cell lines commonly exhibit aneuploidy. This results of this study suggest that: (1) NHBE cells can be transiently transfected with the pCMV{Beta} vector; and (2) the antibiotic hygromycin-resistant transfected cells.

  11. Photobiomodulation on KATP Channels of Kir6.2-Transfected HEK-293 Cells

    Directory of Open Access Journals (Sweden)

    Fu-qing Zhong

    2014-01-01

    Full Text Available Background and Objective. ATP-sensitive potassium (KATP channel couples cell metabolism to excitability. To explore role of KATP channels in cellular photobiomodulation, we designed experiment to study effect of low intensity 808 nm laser irradiation on the activity of membrane KATP channel. Study Design/Materials and Methods. Plasmids encoding Kir6.2 was constructed and heterologously expressed in cultured mammalian HEK-293 cells. The patch-clamp and data acquisition systems were used to record KATP channel current before and after irradiation. A laser beam of Ga-As 808 nm at 5 mW/cm2 was used in experiments. A one-way ANOVA test followed by a post hoc Student-Newman-Keuls test was used to assess the statistical differences between data groups. Results. Obvious openings of KATP channels of Kir6.2-transfected HEK-293 cells and excised patches were recorded during and after low intensity 808 nm laser irradiation. Compared with the channels that did not undergo irradiation, open probability, current amplitude, and dwell time of KATP channels after irradiation improved. Conclusions. Low intensity 808 nm laser irradiation may activate membrane KATP channels of Kir6.2-transfected HEK-293 cells and in excised patches.

  12. A targeted ultrasound contrast agent carrying gene and cell-penetrating peptide: preparation and gene transfection in vitro.

    Science.gov (United States)

    Ren, Jianli; Zhang, Ping; Tian, Ju; Zhou, Zhiyi; Liu, Xingzhao; Wang, Dong; Wang, Zhigang

    2014-09-01

    Targeted and high efficient gene delivery is a main issue in gene treatment. Taking advantage of ischemic memory target P-selectin and our previous study-synergistic effects of ultrasound-targeted microbubble destruction (UTMD) and TAT peptide on gene transfection, which were characterized by targeted aggregation and high efficient gene transfection, we set up a 'smart' gene delivery system-targeted ultrasound contrast agent (UCA) carrying gene and cell-permeable peptides (CPP). Such UCA had a strong binding force with DNA which was protected from being hydrolysed by nuclease. Moreover, synergistic effects of UTMD and TAT peptide increased gene transfection. Specifically, the UCA were reacted with an ischemic memory target P-selectin overexpressed by ischemic issues (including ischemic heart disease) and loaded with gene and CPP, which enabled targeted localization and gene delivery to ischemic cells overexpressing P-selectin. We demonstrated their targeting affinity for hypoxia human umbilical vein endothelial cell (HUVEC) and gene transfection in vitro. The results of confocal laser scanning microscopy (CLSM) showed that gene and CPP were distributed on the shell of UCA. Red fluorescence was observed on the surface of targeted UCA using immunofluorescent microscopy, which demonstrated that the antibody was successfully connected to the UCA. The targeted UCA was specifically and tightly binded to hypoxia HUVEC, while there were no or little non-targeted UCA binding around hypoxia HUVEC. 24h after transfection, gene transfection efficiency detected by FCM was higher in targeted group than non-targeted group. Overall, the targeted UCA carrying gene and CPP was prepared successfully. It had a strong target binding capacity to hypoxia HUVEC and high efficient gene transfection, which maybe provide a novel strategy for gene therapy. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Design of pH-sensitive peptides from natural antimicrobial peptides for enhancing polyethylenimine-mediated gene transfection.

    Science.gov (United States)

    Zhang, Shi-Kun; Song, Jin-Wen; Li, Su-Bo; Gao, Hong-Wei; Chang, Hong-Yu; Jia, Li-Li; Gong, Feng; Tan, Ying-Xia; Ji, Shou-Ping

    2017-05-01

    Poor endosomal release is a major barrier of polyplex-mediated gene transfection. Antimicrobial peptides (AMPs) are commonly used to improve polyethylenimine (PEI)-mediated gene transfection by increasing endosomal release. In the present study, we designed novel pH-sensitive peptides that highly enhance transfection efficiency compared to their parent peptides. Two analogues of melittin (Mel) and RV-23 (RV) were synthesized by replacing the positively-charged residues in their sequences with glutamic acid residues. The pH-sensitive lysis ability of the peptides, the effect of the peptides on physicochemical characteristics, the intracellular trafficking, the transfection efficiency, and the cytotoxicity of the polyplexes were determined. The acidic peptides showed pH-sensitive lytic activity. The hemolytic activity of acidic peptides at pH 5.0 was higher than that at pH 7.4. The incorporation of acidic peptides did not affect the DNA binding ability of PEI but affected the physicochemical characteristics of the PEI/DNA polyplexes, which may be beneficial for endosomal release and gene transfection. The incorporation of acidic peptides into PEI/DNA polyplexes enhanced the PEI-mediated transfection efficiency corresponding to up to 42-fold higher luciferase activity compared to that of PEI alone. The results of the present study indicate that replacement of positively-charged residues with glutamic acid residues in the AMP sequence yields pH-sensitive peptides, which enhance the transfection efficiency of PEI/DNA polyplexes in various cell lines. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Poly(β-Amino Ester)-Nanoparticle Mediated Transfection of Retinal Pigment Epithelial Cells In Vitro and In Vivo

    Science.gov (United States)

    Bhutto, Imran; Handa, James T.; Green, Jordan J.

    2012-01-01

    A variety of genetic diseases in the retina, including retinitis pigmentosa and leber congenital amaurosis, might be excellent targets for gene delivery as treatment. A major challenge in non-viral gene delivery remains finding a safe and effective delivery system. Poly(beta-amino ester)s (PBAEs) have shown great potential as gene delivery reagents because they are easily synthesized and they transfect a wide variety of cell types with high efficacy in vitro. We synthesized a combinatorial library of PBAEs and evaluated them for transfection efficacy and toxicity in retinal pigment epithelial (ARPE-19) cells to identify lead polymer structures and transfection formulations. Our optimal polymer (B5-S5-E7 at 60 w/w polymer∶DNA ratio) transfected ARPE-19 cells with 44±5% transfection efficacy, significantly higher than with optimized formulations of leading commercially available reagents Lipofectamine 2000 (26±7%) and X-tremeGENE HP DNA (22±6%); (ptransfection efficacy. This high non-viral efficacy was achieved with comparable cytotoxicity (23±6%) to controls; optimized formulations of Lipofectamine 2000 and X-tremeGENE HP DNA showed 15±3% and 32±9% toxicity respectively (p>0.05 for both). Our optimal polymer was also significantly better than a gold standard polymeric transfection reagent, branched 25 kDa polyethyleneimine (PEI), which achieved only 8±1% transfection efficacy with 25±6% cytotoxicity. Subretinal injections using lyophilized GFP-PBAE nanoparticles resulted in 1.1±1×103-fold and 1.5±0.7×103-fold increased GFP expression in the retinal pigment epithelium (RPE)/choroid and neural retina respectively, compared to injection of DNA alone (p = 0.003 for RPE/choroid, ptransfection of the RPE in vivo suggests that these nanoparticles could be used to study a number of genetic diseases in the laboratory with the potential to treat debilitating eye diseases. PMID:22629417

  15. Candida albicans orf19.3727 encodes phytase activity and is essential for human tissue damage.

    Directory of Open Access Journals (Sweden)

    Paul Wai-Kei Tsang

    Full Text Available Candida albicans is a clinically important human fungal pathogen. We previously identified the presence of cell-associated phytase activity in C. albicans. Here, we reveal for the first time, that orf19.3727 contributes to phytase activity in C. albicans and ultimately to its virulence potency. Compared with its wild type counterpart, disruption of C. albicans orf19.3727 led to decreased phytase activity, reduced ability to form hyphae, attenuated in vitro adhesion, and reduced ability to penetrate human epithelium, which are the major virulence attributes of this yeast. Thus, orf19.3727 of C. albicans plays a key role in fungal pathogenesis. Further, our data uncover a putative novel strategy for anti-Candidal drug design through inhibition of phytase activity of this common pathogen.

  16. Microglia and C9orf72 in neuroinflammation and ALS and frontotemporal dementia.

    Science.gov (United States)

    Lall, Deepti; Baloh, Robert H

    2017-09-01

    Amyotrophic lateral sclerosis (ALS) is a degenerative disorder that is characterized by loss of motor neurons and shows clinical, pathological, and genetic overlap with frontotemporal dementia (FTD). Activated microglia are a universal feature of ALS/FTD pathology; however, their role in disease pathogenesis remains incompletely understood. The recent discovery that ORF 72 on chromosome 9 (C9orf72), the gene most commonly mutated in ALS/FTD, has an important role in myeloid cells opened the possibility that altered microglial function plays an active role in disease. This Review highlights the contribution of microglia to ALS/FTD pathogenesis, discusses the connection between autoimmunity and ALS/FTD, and explores the possibility that C9orf72 and other ALS/FTD genes may have a "dual effect" on both neuronal and myeloid cell function that could explain a shared propensity for altered systemic immunity and neurodegeneration.

  17. EasyGene – a prokaryotic gene finder that ranks ORFs by statistical significance

    DEFF Research Database (Denmark)

    Larsen, Thomas Schou; Krogh, Anders Stærmose

    2003-01-01

    is the expected number of ORFs in one megabase of random sequence at the same significance level or better, where the random sequence has the same statistics as the genome in the sense of a third order Markov chain.Conclusions: The result is a flexible gene finder whose overall performance matches or exceeds......Background: Contrary to other areas of sequence analysis, a measure of statistical significance of a putative gene has not been devised to help in discriminating real genes from the masses of random Open Reading Frames (ORFs) in prokaryotic genomes. Therefore, many genomes have too many short ORFs...... annotated as genes.Results: In this paper, we present a new automated gene-finding method, EasyGene, which estimates the statistical significance of a predicted gene. The gene finder is based on a hidden Markov model (HMM) that is automatically estimated for a new genome. Using extensions of similarities...

  18. Enhanced effect of nuclear localization signal peptide during ultrasound‑targeted microbubble destruction‑mediated gene transfection.

    Science.gov (United States)

    Cao, Sheng; Zhou, Qing; Chen, Jin-Ling; Jiang, Nan; Wang, Yi-Jia; Deng, Qing; Hu, Bo; Guo, Rui-Qiang

    2017-07-01

    Ultrasound‑targeted microbubble destruction (UTMD) can promote the entry of plasmid DNA (pDNA) into the cell cytoplasm, by increasing the permeability of the cell membrane. But the transfection efficiency remains low due to inability of the pDNA to enter the nucleus. Various methods have been explored to improve the UTMD transfection efficiency, but with little success. In cells, the classic nuclear localization signal (cNLS) peptide is an amino acid sequence that signals proteins that are due for nuclear transport. The present study aimed to investigate whether binding of a cNLS peptide to the pDNA may improve the transfection efficiency of UTMD. Four experimental groups were analyzed: Control group (UTMD + pDNA), group with cNLS (UTMD + pDNA + cNLS), group with mutated NLS (mNLS; UTMD + pDNA + mNLS), and group with cNLS and the nuclear import blocker, wheat germ agglutinin (WGA; UTMD + pDNA + cNLS + WGA). The NLS was labeled by fluorescein isothiocyanate, whereas pDNA was labeled with Cy3. Different molar ratios were tested for the NLS and pDNA combination in order to achieve optimal binding of the two molecules. Human umbilical vein endothelial cells were then transfected using the optimum ultrasonic irradiation parameters and NLS/pDNA molar ratio. At 6 h post‑transfection, the rates of Cy3‑labeled pDNA inside the cells and their nuclei were detected by flow cytometry and laser confocal microscopy, and the cellular vs. nuclear uptake of pDNA was calculated. In order to further evaluate the effect of NLS on UTMD‑mediated gene transfection, the transfection efficiency and relative expression levels of mRNA and protein were detected at 48 h post‑transfection. The results demonstrated that the optimal molar ratio of NLS with pDNA was 104:1. The rates of pDNA successful entry into the cell and nucleus were significantly higher in the cNLS group compared with the control group. The transfection efficiency, and relative expression levels of mRNA and protein

  19. [EFFECT OF TRITON X-100 ON LIPOSOME MEDIATED BONE MORPHOGENETIC PROTEIN 2 BY TRANSFECTION OF RAT BONE MARROW MESENCHYMAL STEM CELLS].

    Science.gov (United States)

    Xia, Delin; Huang, Mingke; Fu, Guangxing; Ma, Zheng; Wu, Shuangjiang; Zhou, Hangyu

    2015-01-01

    To study the effect of Triton X-100 promoting liposome-mediated bone morphogenetic protein 2 (BMP-2) gene transfection of rat bone marrow mesenchymal stem cells (BMSCs). BMSCs were separated and cultured from the femur and tibia of healthy Wistar rats (8-week-old, male). The 3rd passage BMSCs identified by detecting the surface antigen were used to transfect. The optimum concentration of Triton X-100 for liposome mediated gene transfection was determined with ELISA meter by the way of MTT. In optimum concentration of Triton X-100, liposome mediated BMP-2 gene was transfected to BMSCs. The experiment was divided into 3 groups according to types of trasfection agents: BMSCs were transfected with Triton X-100+liposome+BMP-2 (experimental group), with liposome+ BMP-2 (conventional transfection group), and untransfected BMSCs served as blank control group. After 48 hours of transfecting, the green fluorescent protein (GFP) in cells was detected through inverted fluorescence microscope. After 72 hours of transfection, real-time fluorescence quantitative PCR was applied to measure the mRNA expression of BMP-2. 0.01% Triton X-100 was determined to be the optimum concentration for not only making the BMSCs maintain vitality, but also achieving a certain effect on BMSCs. After trasfecting for 48 hours, GFP was observed through inverted fluorescence microscope in the experimental group and conventional transfection group, but was not observed in the blank control group. After trasfecting for 72 hours, the relative BMP-2 mRNA expression level was 5.94 ± 0.12 in the experimental group, and was 4.99 ± 0.08 in the conventional transfection group, showing significant difference (t = 360.28, P = 0.02). The transfection efficiency was increased by 19% in the experimental group. 0.010% Triton X-100 can promote the liposome mediated BMP-2 gene transfection of rat BMSUs, and can improve the transfection efficiency.

  20. Highly Branched poly(5-amino-1-pentanol-co-1,4-butanediol diacrylate for High Performance Gene Transfection

    Directory of Open Access Journals (Sweden)

    Ming Zeng

    2017-05-01

    Full Text Available The top-performing linear poly(β-amino ester (LPAE, poly(5-amino-1-pentanol-co-1,4-butanediol diacrylate (C32, has demonstrated gene transfection efficiency comparable to viral-mediated gene delivery. Herein, we report the synthesis of a series of highly branched poly(5-amino-1-pentanol-co-1,4-butanediol diacrylate (HC32 and explore how the branching structure influences the performance of C32 in gene transfection. HC32 were synthesized by an “A2 + B3 + C2” Michal addition strategy. Gaussia luciferase (Gluciferase and green fluorescent protein (GFP coding plasmid DNA were used as reporter genes and the gene transfection efficiency was evaluated in human cervical cancer cell line (HeLa and human recessive dystrophic epidermolysis bullosa keratinocyte (RDEBK cells. We found that the optimal branching structure led to a much higher gene transfection efficiency in comparison to its linear counterpart and commercial reagents, while preserving high cell viability in both cell types. The branching strategy affected DNA binding, proton buffering capacity and degradation of polymers as well as size, zeta potential, stability, and DNA release rate of polyplexes significantly. Polymer degradation and DNA release rate played pivotal parts in achieving the high gene transfection efficiency of HC32-103 polymers, providing new insights for the development of poly(β-amino esters-based gene delivery vectors.

  1. An Acanthamoeba polyubiquitin gene and application of its promoter to the establishment of a transient transfection system.

    Science.gov (United States)

    Hu, Q; Henney, H R

    1997-03-20

    We have isolated and sequenced a 2388 bp polyubiquitin encoding genomic DNA from Acanthamoeba encompassing two complete and one incomplete ubiquitin units. Codon usage frequency shows extreme bias. The deduced amino acid sequences of each unit are identical to each other and the same as that deduced from a previously sequenced Acanthamoeba castellanii cDNA. The upstream region of this gene, which contained some putative regulatory modules, was recovered by PCR (polymerase chain reaction) amplification and subcloning. This upstream fragment was ligated to the CAT (chloramphenicol acetyltransferase) gene in a eukaryotic expression plasmid and successfully applied to the establishment of an Acanthamoeba transient transfection system. Transfection was performed by electroporation and the optimal voltage was 4500 volts/cm at capacitance 25 microF. DEAE-dextran (25 microg/ml) added into the electroporation buffer increased the transfection efficiency by about 45%. The CAT activity was proportional to the amount of DNA transfected and reached the peak level 48 h after transfection. CAT assays showed that the polyubiquitin gene upstream fragment contains a functional promoter which is about 2.5 times as strong as a viral RSV-LTR promoter when driving CAT expression in Acanthamoeba.

  2. Experimental Model of Gene Transfection in Healthy Canine Myocardium: Perspectives of Gene Therapy for Ischemic Heart Disease

    Directory of Open Access Journals (Sweden)

    Renato A. K. Kalil

    2002-09-01

    Full Text Available OBJECTIVE: To assess the transfection of the gene that encodes green fluorescent protein (GFP through direct intramyocardial injection. METHODS: The pREGFP plasmid vector was used. The EGFP gene was inserted downstream from the constitutive promoter of the Rous sarcoma virus. Five male dogs were used (mean weight 13.5 kg, in which 0.5 mL of saline solution (n=1 or 0.5 mL of plasmid solution containing 0.5 µg of pREGFP/dog (n=4 were injected into the myocardium of the left ventricular lateral wall. The dogs were euthanized 1 week later, and cardiac biopsies were obtained. RESULTS: Fluorescence microscopy showed differences between the cells transfected and not transfected with pREGFP plasmid. Mild fluorescence was observed in the cardiac fibers that received saline solution; however, the myocardial cells transfected with pREGFP had overt EGFP expression. CONCLUSION: Transfection with the EGFP gene in healthy canine myocardium was effective. The reproduction of this efficacy using vascular endothelial growth factor (VEGF instead of EGFP aims at developing gene therapy for ischemic heart disease.

  3. Enhancing oligodendrocyte differentiation by transient transcription activation via DNA nanoparticle-mediated transfection.

    Science.gov (United States)

    Li, Xiaowei; Tzeng, Stephany Y; Zamboni, Camila Gadens; Koliatsos, Vassilis E; Ming, Guo-Li; Green, Jordan J; Mao, Hai-Quan

    2017-05-01

    Current approaches to derive oligodendrocytes from human pluripotent stem cells (hPSCs) need extended exposure of hPSCs to growth factors and small molecules, which limits their clinical application because of the lengthy culture time required and low generation efficiency of myelinating oligodendrocytes. Compared to extrinsic growth factors and molecules, oligodendrocyte differentiation and maturation can be more effectively modulated by regulation of the cell transcription network. In the developing central nervous system (CNS), two basic helix-loop-helix transcription factors, Olig1 and Olig2, are decisive in oligodendrocyte differentiation and maturation. Olig2 plays a critical role in the specification of oligodendrocytes and Olig1 is crucial in promoting oligodendrocyte maturation. Recently viral vectors have been used to overexpress Olig2 and Olig1 in neural stem/progenitor cells (NSCs) to induce the maturation of oligodendrocytes and enhance the remyelination activity in vivo. Because of the safety issues with viral vectors, including the insertional mutagenesis and potential tumor formation, non-viral transfection methods are preferred for clinical translation. Here we report a poly(β-amino ester) (PBAE)-based nanoparticle transfection method to deliver Olig1 and Olig2 into human fetal tissue-derived NSCs and demonstrate efficient oligodendrocyte differentiation following transgene expression of Olig1 and Olig2. This approach is potentially translatable for engineering stem cells to treat injured or diseased CNS tissues. Current protocols to derive oligodendrocytes from human pluripotent stem cells (hPSCs) require lengthy culture time with low generation efficiencies of mature oligodendrocytes. We described a new approach to enhance oligodendrocyte differentiation through nanoparticle-mediated transcription modulation. We tested an effective transfection method using cell-compatible poly (β-amino ester) (PBAE)/DNA nanoparticles as gene carrier to deliver

  4. Cloning, expression, purification, crystallization and X-ray crystallographic analysis of recombinant human C1ORF123 protein.

    Science.gov (United States)

    Rahaman, Siti Nurulnabila A; Mat Yusop, Jastina; Mohamed-Hussein, Zeti-Azura; Ho, Kok Lian; Teh, Aik-Hong; Waterman, Jitka; Ng, Chyan Leong

    2016-03-01

    C1ORF123 is a human hypothetical protein found in open reading frame 123 of chromosome 1. The protein belongs to the DUF866 protein family comprising eukaryote-conserved proteins with unknown function. Recent proteomic and bioinformatic analyses identified the presence of C1ORF123 in brain, frontal cortex and synapses, as well as its involvement in endocrine function and polycystic ovary syndrome (PCOS), indicating the importance of its biological role. In order to provide a better understanding of the biological function of the human C1ORF123 protein, the characterization and analysis of recombinant C1ORF123 (rC1ORF123), including overexpression and purification, verification by mass spectrometry and a Western blot using anti-C1ORF123 antibodies, crystallization and X-ray diffraction analysis of the protein crystals, are reported here. The rC1ORF123 protein was crystallized by the hanging-drop vapor-diffusion method with a reservoir solution comprised of 20% PEG 3350, 0.2 M magnesium chloride hexahydrate, 0.1 M sodium citrate pH 6.5. The crystals diffracted to 1.9 Å resolution and belonged to an orthorhombic space group with unit-cell parameters a = 59.32, b = 65.35, c = 95.05 Å. The calculated Matthews coefficient (VM) value of 2.27 Å(3) Da(-1) suggests that there are two molecules per asymmetric unit, with an estimated solvent content of 45.7%.

  5. A C9ORF72/SMCR8-containing complex regulates ULK1 and plays a dual role in autophagy.

    Science.gov (United States)

    Yang, Mei; Liang, Chen; Swaminathan, Kunchithapadam; Herrlinger, Stephanie; Lai, Fan; Shiekhattar, Ramin; Chen, Jian-Fu

    2016-09-01

    The intronic GGGGCC hexanucleotide repeat expansion in chromosome 9 open reading frame 72 (C9ORF72) is a prevalent genetic abnormality identified in both frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Smith-Magenis syndrome chromosomal region candidate gene 8 (SMCR8) is a protein with unclear functions. We report that C9ORF72 is a component of a multiprotein complex containing SMCR8, WDR41, and ATG101 (an important regulator of autophagy). The C9ORF72 complex displays guanosine triphosphatase (GTPase) activity and acts as a guanosine diphosphate-guanosine 5'-triphosphate (GDP-GTP) exchange factor (GEF) for RAB39B. We created Smcr8 knockout mice and found that Smcr8 mutant cells exhibit impaired autophagy induction, which is similarly observed in C9orf72 knockdown cells. Mechanistically, SMCR8/C9ORF72 interacts with the key autophagy initiation ULK1 complex and regulates expression and activity of ULK1. The complex has an additional role in regulating later stages of autophagy. Whereas autophagic flux is enhanced in C9orf72 knockdown cells, depletion of Smcr8 results in a reduced flux with an abnormal expression of lysosomal enzymes. Thus, C9ORF72 and SMCR8 have similar functions in modulating autophagy induction by regulating ULK1 and play distinct roles in regulating autophagic flux.

  6. Cysteine residues of the porcine reproductive and respiratory syndrome virus ORF5a protein are not essential for virus viability.

    Science.gov (United States)

    Sun, Lichang; Zhou, Yan; Liu, Runxia; Li, Yanhua; Gao, Fei; Wang, Xiaomin; Fan, Hongjie; Yuan, Shishan; Wei, Zuzhang; Tong, Guangzhi

    2015-02-02

    ORF5a protein was recently identified as a novel structural protein in porcine reproductive and respiratory syndrome virus (PRRSV). The ORF5a protein possesses two cysteines at positions 29 and 30 that are highly conserved among type 2 PRRSV. In this study, the significance of the ORF5a protein cysteine residues on virus replication was determined based on a type 2 PRRSV cDNA clone (pAJXM). Each cysteine was substituted by serine or glycine and the mutations were introduced into pAJXM. We found that the replacement of cysteine to glycine at position 30 was lethal for virus viability, but all serine mutant clones produced infectious progeny viruses. This data indicated that cysteine residues in the ORF5a protein were not essential for replication of type 2 PRRSV. The bimolecular fluorescence complementation (BiFC) and Co-immunoprecipitation (Co-IP) assay were used to study ORF5a protein interacted with other enveloped proteins. These results showed that ORF5a protein interacted non-covalently with itself and interacted with GP4 and 2b protein. The replacement of cysteine to glycine at position 30 affected the ORF5a protein interacted non-covalently with itself, which may account for the lethal phenotype of mutants carrying substitution of cysteine to glycine at position 30. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Nerve growth factor (NGF) induces neuronal differentiation in neuroblastoma cells transfected with the NGF receptor cDNA

    International Nuclear Information System (INIS)

    Matsushima, H.; Bogenmann, E.

    1990-01-01

    Human nerve growth factor (NGF) receptor (NGFR) cDNA was transfected into a neuroblastoma cell line (HTLA 230) which does not express a functional NGF-NGFR signal transduction cascade. Short-term treatment of stably transfected cells (98-3) expressing membrane-bound NGF receptor molecules resulted in a cell cycle-dependent, transient expression of the c-fos gene upon treatment with NGF, suggesting the presence of functional high-affinity NGFR. Extensive outgrowth of neurites and cessation of DNA synthesis occurred in transfectants grown on an extracellular matrix after long-term treatment with NGF, suggesting terminal differentiation. Our data support the idea that introduction of a constitutively expressed NGFR cDNA into cells with neuronal background results in the assembly of a functional NGF-NGFR signal cascade in a permissive extracellular environment

  8. Optimizing the transient transfection process of HEK-293 suspension cells for protein production by nucleotide ratio monitoring

    DEFF Research Database (Denmark)

    de Los Milagros Bassani Molinas, Maria; Beer, Christiane; Hesse, F

    2014-01-01

    Large scale, transient gene expression (TGE) is highly dependent of the physiological status of a cell line. Therefore, intracellular nucleotide pools and ratios were used for identifying and monitoring the optimal status of a suspension cell line used for TGE. The transfection efficiency upon...... polyethyleneimine (PEI)-mediated transient gene delivery into HEK-293 cells cultured in suspension was investigated to understand the effect of different culture and transfection conditions as well as the significance of the culture age and the quality of the cell line used. Based on two different bicistronic model...... plasmids expressing the human erythropoietin gene (rHuEPO) in the first position and green fluorescent protein as reporter gene in the second position and vice versa, a completely serum-free transient transfection process was established. The process makes use of a 1:1 mixture of a special calcium...

  9. Increased radiosensitivity of p16 gene-deleted human glioma cells after transfection with wild-type p16 gene

    International Nuclear Information System (INIS)

    Miyakoshi, Junji; Kitagawa, Kaori; Yamagishi, Nobuyuki; Ohtsu, Shuji; Takebe, Hikaru; Day, R.S. III.

    1997-01-01

    The A1235 and T98 cell lines derived from human gliomas have homozygous deletions in their p16 genes and are radiosensitive and radioresistant, respectively, with respect to other established glioma cell lines. These differences in radiosensitivity may be due to variations to some extent among cell lines, rather than genetically defined resistance or sensitivity. We examined the effect on radiation sensitivity of introducing a wild-type p16 gene into both p16-deficient glioma cell lines. The plasmid pOPMTS containing human wild-type p16 cDNA and a neomycin resistance gene, or the control plasmid pOPRSV1, were transfected into these cells. Clones from both cell lines, which expressed wild-type p16 mRNA constitutively after transfection with pOPMTS, were more radiosensitive than the parental cells and clones obtained after transfection with the negative control plasmid. (author)

  10. Processing of pro-CGRP in a rat medullary thyroid carcinoma cell line transfected with protease inhibitors

    DEFF Research Database (Denmark)

    Johansen, Teit Eliot; Schifter, S; Vogel, Charlotte Katrine

    1991-01-01

    A rat medullary thyroid carcinoma cell line, CA77, was used to study the effect of a series of biosynthesized protease inhibitors on the proteolytic cleavage of the endogenously synthesized pro-CGRP. This cell line efficiently converted the pro-CGRP to mature CGRP as assessed by chromatography...... of cell extracts followed by radioimmunoassay for CGRP. CA77 cells were transfected with expression vectors encoding protease inhibitors: the Arg-serpins, alpha 1-antitrypsin Pittsburgh (358 Met----Arg) and plasminogen activator inhibitor 1, the Kazal type serine protease inhibitor, pancreatic secretory...... trypsin inhibitor, and the general thiol protease inhibitor, cystatin C. Only the chromatography of cell extracts from CA77 cells transfected with a plasmid encoding cystatin C showed an apparent higher content of unprocessed pro-CGRP as compared to non-transfected cells. No effect on pro-CGRP processing...

  11. Transfection of embryonated Muscovy duck eggs with a recombinant plasmid is suitable for rescue of infectious Muscovy duck parvovirus.

    Science.gov (United States)

    Wang, Jianye; Huang, Yu; Ling, Jueyi; Wang, Zhixiang; Zhu, Guoqiang

    2017-12-01

    For members of the family Parvoviridae, rescue of infectious virus from recombinant plasmid is usually done in cultured cells. In this study, the whole genome of the pathogenic Muscovy duck parvovirus (MDPV) strain YY was cloned into the pBluescript II (SK) vector, generating recombinant plasmid pYY. With the aid of a transfection reagent, pYY plasmid was inoculated into 11-day-old embryonated Muscovy duck eggs via the chorioallantoic membrane route, resulting in the successful rescue of infectious virus and death of the embryos. The rescued virus exhibited pathogenicity in Muscovy ducklings similar to that of its parental strain, as evaluated based on the mortality rate. The results demonstrate that plasmid transfection in embryonated Muscovy duck eggs is a convenient and efficacious method for rescue of infectious MDPV in comparison to transfection of primary cells, which is somewhat time-consuming and laborious.

  12. High efficiency transfection of embryonic limb mesenchyme with plasmid DNA using square wave pulse electroporation and sucrose buffer.

    Science.gov (United States)

    Bobick, Brent E; Alexander, Peter G; Tuan, Rocky S

    2014-01-01

    Micromass cultures of primary embryonic limb mesenchyme are a valuable model system for studying cartilage formation in vitro. However, high efficiency introduction of plasmid DNA into this hard-to-transfect cell type typically results in considerable cell death and significantly impeded chondrogenesis when the cells are subsequently plated in high density micromass. Here, we describe a novel method in which square wave pulse electroporation of chick embryo wing bud mesenchyme suspended in protective sucrose buffer results in high efficiency transfection without substantially affecting micromass culture cell viability or chondrogenic differentiation potential. Furthermore, we show that this protocol can be employed, along with effector gene expression vectors, to generate observable changes in the amount of cartilage tissue formed in micromass, unlike lower efficiency, higher cytotoxicity techniques that require co-transfection of reporter plasmids to monitor changes in the extent of chondrogenesis and correct for differences in cell viability.

  13. Construction of spherical liposome on solid transducers for electrochemical DNA sensing and transfection.

    Science.gov (United States)

    Bhuvana, Mohanlal; Dharuman, Venkataraman

    2014-10-01

    Cationic 1,2-dioleoyl trimethyl ammonium propane (DOTAP) and neutral 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) are anchored on cysteamine (cyst), mercaptopropionic acid (MPA) monolayer (thiol monolayers) modified on an individual gold transducer. DOTAP and DOPE are mixed with gold nanoparticle (AuNP) to form spherical liposome-AuNP. The electrochemical behaviors of the surface attached DOTAP-AuNP and DOPE-AuNP in presence of [Fe(CN)6](3-/4-) depend on the method of layer formation. Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), and ultraviolet (UV)-visible spectroscopic techniques are used to characterize the liposome-AuNP nanocomposite. The studies indicate stability of spherical liposome-AuNP on the gold transducer. Label-free DNA hybridization detection on these surfaces reveals different detection limits. Confocal laser scanning microscopy (CLSM) is used to confirm the cell transfection.

  14. Data on macrophage mediated muscle transfection upon delivery of naked plasmid DNA with block copolymers

    Directory of Open Access Journals (Sweden)

    Vivek Mahajan

    2016-06-01

    Full Text Available The data contains 14 figures supporting the research article “Horizontal gene transfer from macrophages to ischemic muscles upon delivery of naked DNA with Pluronic block copolymers” [1]. The data explains the surgical procedure and histological characterization of Murine Hind Limb Ischemia. The data also shows the kinetics of luciferase gene expression, spread of GFP expression through muscle and the colocalization of GFP with cellular markers in ischemic muscles injected with pDNA alone or pDNA/Pluronic. Finally the data shows the effect of Pluronic Block Copolymer to enhance total gene expression (cmv-promoter driven luciferase gene in coculture of DNA transfected MØs with muscle cells.

  15. Correlated fluorescence microscopy and cryo-electron tomography of virus-infected or transfected mammalian cells.

    Science.gov (United States)

    Hampton, Cheri M; Strauss, Joshua D; Ke, Zunlong; Dillard, Rebecca S; Hammonds, Jason E; Alonas, Eric; Desai, Tanay M; Marin, Mariana; Storms, Rachel E; Leon, Fredrick; Melikyan, Gregory B; Santangelo, Philip J; Spearman, Paul W; Wright, Elizabeth R

    2017-01-01

    Correlative light and electron microscopy (CLEM) combines spatiotemporal information from fluorescence light microscopy (fLM) with high-resolution structural data from cryo-electron tomography (cryo-ET). These technologies provide opportunities to bridge knowledge gaps between cell and structural biology. Here we describe our protocol for correlated cryo-fLM, cryo-electron microscopy (cryo-EM), and cryo-ET (i.e., cryo-CLEM) of virus-infected or transfected mammalian cells. Mammalian-derived cells are cultured on EM substrates, using optimized conditions that ensure that the cells are spread thinly across the substrate and are not physically disrupted. The cells are then screened by fLM and vitrified before acquisition of cryo-fLM and cryo-ET images, which is followed by data processing. A complete session from grid preparation through data collection and processing takes 5-15 d for an individual experienced in cryo-EM.

  16. Lipid-based DNA/siRNA transfection agents disrupt neuronal bioenergetics and mitophagy.

    Science.gov (United States)

    Napoli, Eleonora; Liu, Siming; Marsilio, Ilaria; Zarbalis, Konstantinos; Giulivi, Cecilia

    2017-11-10

    A multitude of natural and artificial compounds have been recognized to modulate autophagy, providing direct or, through associated pathways, indirect entry points to activation and inhibition. While these pharmacological tools are extremely useful in the study of autophagy, their abundance also suggests the potential presence of unidentified autophagic modulators that may interfere with experimental designs if applied unknowingly. Here, we report unanticipated effects on autophagy and bioenergetics in neuronal progenitor cells (NPCs) incubated with the widely used lipid-based transfection reagent lipofectamine (LF), which induced mitochondria depolarization followed by disruption of electron transport. When NPCs were exposed to LF for 5 h followed by 24, 48, and 72 h in LF-free media, an immediate increase in mitochondrial ROS production and nitrotyrosine formation was observed. These events were accompanied by disrupted mitophagy (accumulation of dysfunctional and damaged mitochondria, and of LC3II and p62), in an mTOR- and AMPK-independent manner, and despite the increased mitochondrial PINK1 (PTEN-inducible kinase 1) localization. Evidence supported a role for a p53-mediated abrogation of parkin translocation and/or abrogation of membrane fusion between autophagosome and lysosomes. While most of the outcomes were LF-specific, only two were shared by OptiMEM exposure (with no serum and reduced glucose levels) albeit at lower extents. Taken together, our findings show that the use of transfection reagents requires critical evaluation with respect to consequences for overall cellular health, particularly in experiments designed to address autophagy-inducing effects and/or energy stress. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  17. Thiolated chitosan nanoparticles: transfection study in the Caco-2 differentiated cell culture

    Energy Technology Data Exchange (ETDEWEB)

    Martien, Ronny [Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innrain 52, Josef Moeller Haus, A-6020 Innsbruck (Austria); Loretz, Brigitta [Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innrain 52, Josef Moeller Haus, A-6020 Innsbruck (Austria); Sandbichler, Adolf Michael [Institute of Zoology, Leopold-Franzens-University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck (Austria); Schnuerch, Andreas Bernkop [Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innrain 52, Josef Moeller Haus, A-6020 Innsbruck (Austria)

    2008-01-30

    The aim of this study was to monitor the expression of secreted protein in differentiated Caco-2 cells after transfection with nanoparticles, in order to improve gene delivery. Based on unmodified chitosan and thiolated chitosan conjugates, nanoparticles with the gene reporter pSEAP (recombinant Secreted Alkaline Phosphatase) were generated at pH 4.0. Transfection studies of thiolated chitosan in Caco-2 cells during the exponential growth phase and differentiation growth phase of the cells led to a 5.0-fold and 2.0-fold increase in protein expression when compared to unmodified chitosan nanoparticles. The mean particle size for both unmodified chitosan and cross-linked thiolated chitosan nanoparticles is 212.2 {+-} 86 and 113.6 {+-} 40 nm, respectively. The zeta potential of nanoparticles was determined to be 7.9 {+-} 0.38 mV for unmodified chitosan nanoparticles and 4.3 {+-} 0.74 mV for cross-linked thiolated chitosan nanoparticles. Red blood cell lysis evaluation was used to evaluate the membrane damaging properties of unmodified and thiolated chitosan nanoparticles and led to 4.61 {+-} 0.36% and 2.29 {+-} 0.25% lysis, respectively. Additionally, cross-linked thiolated chitosan nanoparticles were found to exhibit higher stability toward degradation in gastric juices. Furthermore the reversible effect of thiolated chitosan on barrier properties was monitored by measuring the transepithelial electrical resistance (TEER) and is supported by immunohistochemical staining for the tight junction protein claudin. According to these results cross-linked thiolated chitosan nanoparticles have the potential to be used as a non-viral vector system for gene therapy.

  18. Thiolated chitosan nanoparticles: transfection study in the Caco-2 differentiated cell culture

    International Nuclear Information System (INIS)

    Martien, Ronny; Loretz, Brigitta; Sandbichler, Adolf Michael; Schnuerch, Andreas Bernkop

    2008-01-01

    The aim of this study was to monitor the expression of secreted protein in differentiated Caco-2 cells after transfection with nanoparticles, in order to improve gene delivery. Based on unmodified chitosan and thiolated chitosan conjugates, nanoparticles with the gene reporter pSEAP (recombinant Secreted Alkaline Phosphatase) were generated at pH 4.0. Transfection studies of thiolated chitosan in Caco-2 cells during the exponential growth phase and differentiation growth phase of the cells led to a 5.0-fold and 2.0-fold increase in protein expression when compared to unmodified chitosan nanoparticles. The mean particle size for both unmodified chitosan and cross-linked thiolated chitosan nanoparticles is 212.2 ± 86 and 113.6 ± 40 nm, respectively. The zeta potential of nanoparticles was determined to be 7.9 ± 0.38 mV for unmodified chitosan nanoparticles and 4.3 ± 0.74 mV for cross-linked thiolated chitosan nanoparticles. Red blood cell lysis evaluation was used to evaluate the membrane damaging properties of unmodified and thiolated chitosan nanoparticles and led to 4.61 ± 0.36% and 2.29 ± 0.25% lysis, respectively. Additionally, cross-linked thiolated chitosan nanoparticles were found to exhibit higher stability toward degradation in gastric juices. Furthermore the reversible effect of thiolated chitosan on barrier properties was monitored by measuring the transepithelial electrical resistance (TEER) and is supported by immunohistochemical staining for the tight junction protein claudin. According to these results cross-linked thiolated chitosan nanoparticles have the potential to be used as a non-viral vector system for gene therapy

  19. Peptide-enhanced mRNA transfection in cultured mouse cardiac fibroblasts and direct reprogramming towards cardiomyocyte-like cells.

    Science.gov (United States)

    Lee, Kunwoo; Yu, Pengzhi; Lingampalli, Nithya; Kim, Hyun Jin; Tang, Richard; Murthy, Niren

    2015-01-01

    The treatment of myocardial infarction is a major challenge in medicine due to the inability of heart tissue to regenerate. Direct reprogramming of endogenous cardiac fibroblasts into functional cardiomyocytes via the delivery of transcription factor mRNAs has the potential to regenerate cardiac tissue and to treat heart failure. Even though mRNA delivery to cardiac fibroblasts has the therapeutic potential, mRNA transfection in cardiac fibroblasts has been challenging. Herein, we develop an efficient mRNA transfection in cultured mouse cardiac fibroblasts via a polyarginine-fused heart-targeting peptide and lipofectamine complex, termed C-Lipo and demonstrate the partial direct reprogramming of cardiac fibroblasts towards cardiomyocyte cells. C-Lipo enabled the mRNA-induced direct cardiac reprogramming due to its efficient transfection with low toxicity, which allowed for multiple transfections of Gata4, Mef2c, and Tbx5 (GMT) mRNAs for a period of 2 weeks. The induced cardiomyocyte-like cells had α-MHC promoter-driven GFP expression and striated cardiac muscle structure from α-actinin immunohistochemistry. GMT mRNA transfection of cultured mouse cardiac fibroblasts via C-Lipo significantly increased expression of the cardiomyocyte marker genes, Actc1, Actn2, Gja1, Hand2, and Tnnt2, after 2 weeks of transfection. Moreover, this study provides the first direct evidence that the stoichiometry of the GMT reprogramming factors influence the expression of cardiomyocyte marker genes. Our results demonstrate that mRNA delivery is a potential approach for cardiomyocyte generation.

  20. Influence of nanoparticle-mediated transfection on proliferation of primary immune cells in vitro and in vivo.

    Science.gov (United States)

    Przybylski, Susanne; Gasch, Michaela; Marschner, Anne; Ebert, Marcus; Ewe, Alexander; Helmig, Gisa; Hilger, Nadja; Fricke, Stephan; Rudzok, Susanne; Aigner, Achim; Burkhardt, Jana

    2017-01-01

    One of the main obstacles in the widespread application of gene therapeutic approaches is the necessity for efficient and safe transfection methods. For the introduction of small oligonucleotide gene therapeutics into a target cell, nanoparticle-based methods have been shown to be highly effective and safe. While immune cells are a most interesting target for gene therapy, transfection might influence basic immune functions such as cytokine expression and proliferation, and thus positively or negatively affect therapeutic intervention. Therefore, we investigated the effects of nanoparticle-mediated transfection such as polyethylenimine (PEI) or magnetic beads on immune cell proliferation. Human adherent and non-adherent PBMCs were transfected by various methods (e.g. PEI, Lipofectamine® 2000, magnetofection) and stimulated. Proliferation was measured by lymphocyte transformation test (LTT). Cell cycle stages as well as expression of proliferation relevant genes were analyzed. Additionally, the impact of nanoparticles was investigated in vivo in a murine model of the severe systemic immune disease GvHD (graft versus host disease). The proliferation of primary immune cells was influenced by nanoparticle-mediated transfection. In particular in the case of magnetic beads, proliferation inhibition coincided with short-term cell cycle arrest and reduced expression of genes relevant for immune cell proliferation. Notably, proliferation inhibition translated into beneficial effects in a murine GvHD model with animals treated with PEI-nanoparticles showing increased survival (pPEI = 0.002) most likely due to reduced inflammation. This study shows for the first time that nanoparticles utilized for gene therapeutic transfection are able to alter proliferation of immune cells and that this effect depends on the type of nanoparticle. For magnetic beads, this was accompanied by temporary cell cycle arrest. Notably, in GvHD this nonspecific anti-proliferative effect might

  1. Addition of Ascorbic Acid to the Extracellular Environment Activates Lipoplexes of a Ferrocenyl Lipid and Promotes Cell Transfection

    Science.gov (United States)

    Aytar, Burcu S.; Muller, John P. E.; Golan, Sharon; Hata, Shinichi; Takahashi, Hiro; Kondo, Yukishige; Talmon, Yeshayahu; Abbott, Nicholas L.; Lynn, David M.

    2011-01-01

    The level of cell transfection mediated by lipoplexes formed using the ferrocenyl lipid bis(11-ferrocenylundecyl)dimethylammonium bromide (BFDMA) depends strongly on the oxidation state of the two ferrocenyl groups of the lipid (reduced BFDMA generally mediates high levels of transfection, but oxidized BFDMA mediates very low levels of transfection). Here, we report that it is possible to chemically transform inactive lipoplexes (formed using oxidized BFMDA) to “active” lipoplexes that mediate high levels of transfection by treatment with the small-molecule reducing agent ascorbic acid (vitamin C). Our results demonstrate that this transformation can be conducted in cell culture media and in the presence of cells by addition of ascorbic acid to lipoplex-containing media in which cells are growing. Treatment of lipoplexes of oxidized BFDMA with ascorbic acid resulted in lipoplexes composed of reduced BFDMA, as characterized by UV/vis spectrophotometry, and lead to activated lipoplexes that mediated high levels of transgene expression in the COS-7, HEK 293T/17, HeLa, and NIH 3T3 cell lines. Characterization of internalization of DNA by confocal microscopy and measurements of the zeta potentials of lipoplexes suggested that these large differences in cell transfection result from (i) differences in the extents to which these lipoplexes are internalized by cells and (ii) changes in the oxidation state of BFDMA that occur in the extracellular environment (i.e., prior to internalization of lipoplexes by cells). Characterization of lipoplexes by small-angle neutron scattering (SANS) and by cryogenic transmission electron microscopy (cryo-TEM) revealed changes in the nanostructures of lipoplexes upon the addition of ascorbic acid, from aggregates that were generally amorphous, to aggregates with a more extensive multilamellar nanostructure. The results of this study provide guidance for the design of redox-active lipids that could lead to methods that enable spatial

  2. Induction of osteogenic differentiation of stem cells via a lyophilized microRNA reverse transfection formulation on a tissue culture plate

    Science.gov (United States)

    Wu, Kaimin; Xu, Jie; Liu, Mengyuan; Song, Wen; Yan, Jun; Gao, Shan; Zhao, Lingzhou; Zhang, Yumei

    2013-01-01

    MicroRNA (miRNA) regulation is a novel approach to manipulating the fate of mesenchymal stem cells, but an easy, safe, and highly efficient method of transfection is required. In this study, we developed an miRNA reverse transfection formulation by lyophilizing Lipofectamine 2000-miRNA lipoplexes on a tissue culture plate. The lipoplexes can be immobilized on a tissue culture plate with an intact pseudospherical structure and lyophilization without any lyoprotectant. In this study, reverse transfection resulted in highly efficient cellular uptake of miRNA and enabled significant manipulation of the intracellular target miRNA level. Reverse transfection formulations containing Lipofectamine 2000 1 μL per well generated much higher transfection efficiency without obvious cytotoxicity compared with conventional and other transfection methods. Further, the transfection efficiency of the reverse transfection formulations did not deteriorate during 90 days of storage at 4°C and −20°C. We then assessed the efficiency of the miRNA reverse transfection formulation in promoting osteogenic differentiation of mesenchymal stem cells. We found that transfection with anti-miR-138 and miR-148b was efficient for enhancing osteogenic differentiation, as indicated by enhanced osteogenesis-related gene expression, amount of alkaline phosphatase present, production of collagen, and matrix mineralization. Overall, the miRNA reverse transfection formulation developed in this study is a promising approach for miRNA transfection which can control stem cell fate and is suitable for loading miRNAs onto various biomaterials. PMID:23662054

  3. mRNA-transfected dendritic cell vaccine in combination with metronomic cyclophosphamide as treatment for patients with advanced malignant melanoma

    DEFF Research Database (Denmark)

    Borch, Troels Holz; Engell-Noerregaard, Lotte; Iversen, Trine Zeeberg

    2016-01-01

    ). A metronomic regimen of cyclophosphamide (mCy) has been shown to selectively deplete Tregs. To test this in a clinical setting, we conducted a phase I trial to evaluate the feasibility and safety of vaccination with DCs transfected with mRNA in combination with mCy in patients with metastatic malignant...... during treatment.  Conclusion: Treatment with autologous DCs transfected with mRNA in combination with mCy was feasible and safe. Importantly, mCy did not alter the percentage of Tregs in our patient cohort. There was an indication of clinical benefit; however, more knowledge is needed in order for DCs...

  4. Peptide-enhanced mRNA transfection in cultured mouse cardiac fibroblasts and direct reprogramming towards cardiomyocyte-like cells

    Directory of Open Access Journals (Sweden)

    Lee K

    2015-03-01

    Full Text Available Kunwoo Lee,1,2 Pengzhi Yu,3 Nithya Lingampalli,1 Hyun Jin Kim,1 Richard Tang,1 Niren Murthy1,2 1Department of Bioengineering, University of California, Berkeley, CA, USA; 2UC Berkeley and UCSF Joint Graduate Program in Bioengineering, Berkeley/San Francisco, CA, USA; 3Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA Abstract: The treatment of myocardial infarction is a major challenge in medicine due to the inability of heart tissue to regenerate. Direct reprogramming of endogenous cardiac fibroblasts into functional cardiomyocytes via the delivery of transcription factor mRNAs has the potential to regenerate cardiac tissue and to treat heart failure. Even though mRNA delivery to cardiac fibroblasts has the therapeutic potential, mRNA transfection in cardiac fibroblasts has been challenging. Herein, we develop an efficient mRNA transfection in cultured mouse cardiac fibroblasts via a polyarginine-fused heart-targeting peptide and lipofectamine complex, termed C-Lipo and demonstrate the partial direct reprogramming of cardiac fibroblasts towards cardiomyocyte cells. C-Lipo enabled the mRNA-induced direct cardiac reprogramming due to its efficient transfection with low toxicity, which allowed for multiple transfections of Gata4, Mef2c, and Tbx5 (GMT mRNAs for a period of 2 weeks. The induced cardiomyocyte-like cells had α-MHC promoter-driven GFP expression and striated cardiac muscle structure from a-actinin immunohistochemistry. GMT mRNA transfection of cultured mouse cardiac fibroblasts via C-Lipo significantly increased expression of the cardiomyocyte marker genes, Actc1, Actn2, Gja1, Hand2, and Tnnt2, after 2 weeks of transfection. Moreover, this study provides the first direct evidence that the stoichiometry of the GMT reprogramming factors influence the expression of cardiomyocyte marker genes. Our results demonstrate that mRNA delivery is a potential approach for cardiomyocyte generation. Keywords: direct cardiac

  5. Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone

    International Nuclear Information System (INIS)

    Adachi, A.; Gendelman, H.E.; Koenig, S.; Folks, T.; Willey, R.; Rabson, A.; Martin, M.A.

    1986-01-01

    The authors considered an infectious molecular clone of acquired immunodeficiency syndrome-associated retrovirus. Upon transfection, this clone directed the production of infectious virus particles in a wide variety of cells in addition to human T4 cells. The progeny, infectious virions, were synthesized in mouse, mink, monkey, and several human non-T cell lines, indicating the absence of any intracellular obstacle to viral RNA or protein production or assembly. During the course of these studies, a human colon carcinoma cell line, exquisitely sensitive to DNA transfection, was identified

  6. A C9ORF72/SMCR8-containing complex regulates ULK1 and plays a dual role in autophagy

    OpenAIRE

    Yang, Mei; Liang, Chen; Swaminathan, Kunchithapadam; Herrlinger, Stephanie; Lai, Fan; Shiekhattar, Ramin; Chen, Jian-Fu

    2016-01-01

    The intronic GGGGCC hexanucleotide repeat expansion in chromosome 9 open reading frame 72 (C9ORF72) is a prevalent genetic abnormality identified in both frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Smith-Magenis syndrome chromosomal region candidate gene 8 (SMCR8) is a protein with unclear functions. We report that C9ORF72 is a component of a multiprotein complex containing SMCR8, WDR41, and ATG101 (an important regulator of autophagy). The C9ORF72 complex displays ...

  7. ORF virus infection in a hunter in Western Austria, presumably transmitted by game.

    Science.gov (United States)

    Kitchen, Maria; Müller, Hansgeorg; Zobl, Alexandra; Windisch, Andrea; Romani, Nikolaus; Huemer, Hartwig

    2014-03-01

    A variety of animals host parapoxviruses. Orf virus is prevalent in sheep and goats in the Tyrol region of Austria and Northern Italy. Zoonotic infections in humans mostly occur after occupational exposure. We report here a case of a hunter with a typical Orf lesion (contagious ecthyma) on the finger, with no history of direct contact with domestic animals. Three weeks previously he had been hunting chamois (Rupicapra rupicapra) and cut his finger while handling a carcass. Parapoxvirus infection was confirmed by electron microscopy and PCR, and the species was identified by DNA sequencing. The sequence was highly homologous with prevalent sheep Orf virus and rather distant from parapoxviruses found in red deer in Northern Italy. As this case indicated that the infection was acquired via game, we performed spot testing in the suspected area and detected several seropositive animals. This is a strong indication that Orf virus has been introduced into chamois in Western Austria. This probably occurred via roaming domestic sheep sharing the high alpine areas during the summer months.

  8. Screening for the C9ORF72 repeat expansion in a greek frontotemporal dementia cohort.

    Science.gov (United States)

    Kartanou, Chrisoula; Karadima, Georgia; Koutsis, Georgios; Breza, Marianthi; Papageorgiou, Sokratis G; Paraskevas, George P; Kapaki, Elisabeth; Panas, Marios

    2018-02-01

    The C9orf72 repeat expansion is a common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) in European populations. A previous study has reported a high frequency of the expansion in Greek ALS. However, no data have been reported on the frequency of the expansion in Greek FTD. Currently, we investigated the frequency of the C9orfF72 expansion in a well-characterized cohort of 64 Greek FTD patients. We detected the C9orf72 repeat expansion in 9.3% of cases. Overall, 27.7% of familial and 2.2% of sporadic cases were expansion-positive. Five out of 6 cases had a diagnosis of behavioral variant FTD. All expansion-positive cases had fairly typical FTD presentations. Clinical features included motor neuron disease, Parkinsonism and hallucinations. We conclude that the overall frequency of C9orf72-positive cases in Greek FTD is high, comparable to Greek ALS, similar to some Western European, but significantly higher than some Mediterranean FTD populations.

  9. Efficient identification of phosphatidylserine-binding proteins by ORF phage display

    International Nuclear Information System (INIS)

    Caberoy, Nora B.; Zhou, Yixiong; Alvarado, Gabriela; Fan, Xianqun; Li, Wei

    2009-01-01

    To efficiently elucidate the biological roles of phosphatidylserine (PS), we developed open-reading-frame (ORF) phage display to identify PS-binding proteins. The procedure of phage panning was optimized with a phage clone expressing MFG-E8, a well-known PS-binding protein. Three rounds of phage panning with ORF phage display cDNA library resulted in ∼300-fold enrichment in PS-binding activity. A total of 17 PS-binding phage clones were identified. Unlike phage display with conventional cDNA libraries, all 17 PS-binding clones were ORFs encoding 13 real proteins. Sequence analysis revealed that all identified PS-specific phage clones had dimeric basic amino acid residues. GST fusion proteins were expressed for 3 PS-binding proteins and verified for their binding activity to PS liposomes, but not phosphatidylcholine liposomes. These results elucidated previously unknown PS-binding proteins and demonstrated that ORF phage display is a versatile technology capable of efficiently identifying binding proteins for non-protein molecules like PS.

  10. Corticobasal and ataxia syndromes widen the spectrum of C9ORF72 hexanucleotide expansion disease

    DEFF Research Database (Denmark)

    Lindquist, Sg; Duno, M; Batbayli, M

    2013-01-01

    Recently, a hexanucleotide (GGGGCC) repeat expansion in the first intron of C9ORF72 was reported as the cause of chromosome 9p21-linked frontotemporal dementia-amyotrophic lateral sclerosis (FTD-ALS). We here report the prevalence of the expansion in a hospital-based cohort and associated clinical...

  11. Repression of RNA polymerase by the archaeo-viral regulator ORF145/RIP

    DEFF Research Database (Denmark)

    Sheppard, Carol; Blombach, Fabian; Belsom, Adam

    2016-01-01

    Little is known about how archaeal viruses perturb the transcription machinery of their hosts. Here we provide the first example of an archaeo-viral transcription factor that directly targets the host RNA polymerase (RNAP) and efficiently represses its activity. ORF145 from the temperate Acidianus...

  12. Differential expression of early viral gene BmORF51 in Bombyx mori ...

    African Journals Online (AJOL)

    USER

    2010-06-21

    Jun 21, 2010 ... Differential expression of early viral gene BmORF51 in. Bombyx mori nucleopolyhedrovirus infection of resistant and susceptible silkworms. Feng Lin, Qin Yao, Huiqing Chen, Yang Zhou and KePing Chen*. Institute of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, P. R. China.

  13. ORF Alignment: Ca19AnnotatedDec2004aaSeq [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available Ca19AnnotatedDec2004aaSeq orf19.4769; Contig19-10215; join(105865..106689,106749.....107408); IPT1*; necessary for synthesis of mannose-(inositol-P)2-ceramide (M(IP)2C) | inositolphosphotransfe

  14. ORF Alignment: Ca19AnnotatedDec2004aaSeq [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available Ca19AnnotatedDec2004aaSeq orf19.3449; >1chc0 2 68 535 601 5e-19 ... ref|XP_429145.1| ...PREDICTED: similar to Potassium/sodium hyperpolarization-activated ... cyclic nucleotide-gated channe...l 1 (Brain cyclic ... nucleotide gated channel 1) (BCNG-1) [Gallus gallus] ... Length = 67 ... Qu

  15. ORF Alignment: Ca19AnnotatedDec2004aaSeq [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available Ca19AnnotatedDec2004aaSeq orf19.2937; >1u02A 1 220 11 247 4e-27 ... gb|EAL02637.1| hy....10454 [Candida ... albicans SC5314] gb|AAA34356.1| phosphomannomutase ... [Candida albicans] ...sp|P31353|PMM_CANAL ... Phosphomannomutase (PMM) ... Length = 237 ...

  16. ORF Alignment: Ca19AnnotatedDec2004aaSeq [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available Ca19AnnotatedDec2004aaSeq orf19.1042; Contig19-10087; complement(35388..36236); PO...R1*(OMP2); porin|voltage-dependent anion channel(VDAC); >1o08A 3 187 2 193 2e-06 ... ref|ZP_00163152.1| COG0546

  17. ORF Alignment: Ca19AnnotatedDec2004aaSeq [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available Ca19AnnotatedDec2004aaSeq orf19.3111; >1eb6A 4 175 45 228 4e-34 ... gb|AAC00525.1| pH...8 kDa fibrinogen ... binding mannoprotein) ... Length = 184 ... Query: 45 ... SSCNATQYNQLSTGLQEAQLLA

  18. Diagnosis of ORF in West African dwarf goats in Uyo, Akwa Ibom ...

    African Journals Online (AJOL)

    Background: Sixty (60) male West African Dwarf goats were reported with clinical signs of enlarged lymph nodes, scabs on the mouth, nose and ears. Two of the goats died and post mortem examination reveals enlarged submandibular lymph nodes and vesicular lesions on the tongue. Clinical diagnosis of Orf has been ...

  19. Genetic Fingerprinting of Wheat and Its Progenitors by Mitochondrial Gene orf256

    Directory of Open Access Journals (Sweden)

    Mona M. Elseehy

    2012-04-01

    Full Text Available orf256 is a wheat mitochondrial gene associated with cytoplasmic male sterility (CMS that has different organization in various species. This study exploited the orf256 gene as a mitochondrial DNA marker to study the genetic fingerprint of Triticum and Aegilops species. PCR followed by sequencing of common parts of the orf256 gene were employed to determine the fingerprint and molecular evolution of Triticum and Aegilops species. Although many primer pairs were used, two pairs of orf256 specific primers (5:-94/C: 482, 5:253/C: 482, amplified DNA fragments of 576 bp and 230 bp respectively in all species were tested. A common 500 bp of nine species of Triticum and Aegilops were aligned and showed consistent results with that obtained from other similar chloroplast or nuclear genes. Base alignment showed that there were various numbers of base substitutions in all species compared to S. cereal (Sc (the outgroup species. Phylogenetic relationship revealed similar locations and proximity on phylogenetic trees established using plastid and nuclear genes. The results of this study open a good route to use unknown function genes of mitochondria in studying the molecular relationships and evolution of wheat and complex plant genomes.

  20. Identification of C12orf4 as a gene for autosomal recessive intellectual disability.

    Science.gov (United States)

    Philips, A K; Pinelli, M; de Bie, C I; Mustonen, A; Määttä, T; Arts, H H; Wu, K; Roepman, R; Moilanen, J S; Raza, S; Varilo, T; Scala, G; Cocozza, S; Gilissen, C; van Gassen, K L I; Järvelä, I

    2017-01-01

    Intellectual disability (ID) is a major health problem in our society. Genetic causes of ID remain unknown because of its vast heterogeneity. Here we report two Finnish families and one Dutch family with affected individuals presenting with mild to moderate ID, neuropsychiatric symptoms and delayed speech development. By utilizing whole exome sequencing (WES), we identified a founder missense variant c.983T>C (p.Leu328Pro) in seven affected individuals from two Finnish consanguineous families and a deletion c.799_1034-429delinsTTATGA (p.Gln267fs) in one affected individual from a consanguineous Dutch family in the C12orf4 gene on chromosome 12. Both the variants co-segregated in the respective families as an autosomal recessive trait. Screening of the p.Leu328Pro variant showed enrichment in the North Eastern sub-isolate of Finland among anonymous local blood donors with a carrier frequency of 1:53, similar to other disease mutations with a founder effect in that region. To date, only one Arab family with a three affected individuals with a frameshift insertion variant in C12orf4 has been reported. In summary, we expand and establish the clinical and mutational spectrum of C12orf4 variants. Our findings implicate C12orf4 as a causative gene for autosomal recessive ID. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Influences of ORF1 on the virulence and immunogenicity of Actinobacillus pleuropneumoniae.

    Science.gov (United States)

    Yuan, Fangyan; Liu, Jinlin; Guo, Yi; Tan, Chen; Fu, Shulin; Zhao, Jin; Chen, Huanchun; Bei, Weicheng

    2011-12-01

    Actinobacillus pleuropneumoniae is a Gram-negative pathogen that causes porcine pleuropneumonia. The pathogenicity of A. pleuropneumoniae is strongly correlated with the production of active repeat-in-toxin (RTX) proteins such as ApxIVA. We evaluated the contribution of a potential ApxIVA activator, ORF1, to the virulence and immunogenicity of A. pleuropneumoniae in pigs. The orf1 gene in A. pleuropneumoniae SLW03 (serovar 1, ΔapxICΔapxIIC) was deleted, producing strain SLW05 (ΔapxICΔapxIICΔorf1). The virulence of strains SLW03 and SLW05 was compared in pigs. Clinical signs and pulmonary lesions induced by strain SLW05 were slighter than that of strain SLW03 (P pigs immunized with strain SLW03 or SLW05 developed high antibody titers against ApxIA, ApxIIA, and ApxIVA before challenge. Two weeks after a second immunization, pigs were challenged intratracheally with either a fully virulent A. pleuropneumoniae serovar 1 or serovar 3 strain. Vaccination with strains SLW03 or SLW05 provided significantly greater protection compared to the negative control (P Immunized pigs displayed significantly fewer clinical signs and lower lung lesion scores than non-immunized pigs. These results suggested that ORF1 plays an important role in the development of ApxIVA toxicity. Furthermore, strain SLW05 is a highly attenuated strain able to induce protective immunity against A. pleuropneumoniae infection.

  2. Transfection with extracellularly UV-damaged DNA induces human and rat cells to express a mutator phenotype towards parvovirus H-1

    Energy Technology Data Exchange (ETDEWEB)

    Dinsart, C.; Cornelis, J.J.; Klein, B.; van der Eb, A.J.; Rommelaere, J.

    1984-02-01

    Human and rat cells transfected with UV-irradiated linear double-stranded DNA from calf thymus displayed a mutator activity. This phenotype was identified by growing a lytic thermosensitive single-stranded DNA virus (parvovirus H-1) in those cells and determining viral reversion frequencies. Likewise, exogenous UV-irradiated closed circular DNAs, either double-stranded (simian virus 40) or single-stranded (phi X174), enhanced the ability of recipient cells to mutate parvovirus H-1. The magnitude of mutator activity expression increased along with the number of UV lesions present in the inoculated DNA up to a saturation level. Unirradiated DNA displayed little inducing capacity, irrespective of whether it was single or double stranded. Deprivation of a functional replication origin did not impede UV-irradiated simian virus 40 DNA from providing rat and human cells with a mutator function. Our data suggest that in mammalian cells a trans-acting mutagenic signal might be generated from UV-irradiated DNA without the necessity for damaged DNA to replicate.

  3. Enhanced efflux of [3H]vinblastine from Chinese hamster ovary cells transfected with a full-length complementary DNA clone for the mdr1 gene

    International Nuclear Information System (INIS)

    Hammond, J.R.; Johnstone, R.M.; Gros, P.

    1989-01-01

    Multidrug-resistant Chinese hamster ovary cell clones stably transfected with, and overexpressing, the mouse mdr1 complementary DNA clone along with drug-sensitive Chinese hamster ovary control cells were characterized for their capacities to accumulate and retain [ 3 H]vinblastine. Multidrug-resistant mdr1 transfectants show a 3-4-fold decrease in [ 3 H]vinblastine accumulation, compared to their drug-sensitive counterparts. After ATP depletion, this difference in [ 3 H]vinblastine accumulation between mdr1 transfectants and control cells effectively disappears. This ATP-dependent decreased drug accumulation is paralleled in mdr1 transfectants by an enhanced capacity of these cells to extrude the drug in an ATP-dependent manner. In medium containing glucose and glutamine, the mdr1 transfectants release preloaded drug at a rate five times that of control, drug-sensitive cells. In ATP-depleted control and mdr1-transfected cells, there is little difference in the rate or extent of [ 3 H]vinblastine release. The observation that the mdr1 transfectants show a decreased [ 3 H]vinblastine accumulation and an increased vinblastine release, both of which are abolished when cellular ATP levels are reduced, provides a direct demonstration that the product of the transfected mdr1 gene is responsible for a mechanism controlling cellular drug levels in an ATP-dependent manner. However, attempts to establish competition for [ 3 H]vinblastine transport by vincristine, daunomycin, and actinomycin D were only partly successful in mdr1 transfectants

  4. Effects of sodium lactate Ringer's injection on transfection of human protein kinase C-α antisense oligonucleotide in A549 lung cancer cells.

    Science.gov (United States)

    Wang, Z H; Sun, W W; Han, Y L; Ma, Z

    2016-08-26

    In the present study, we evaluated the effects of four solutions [Dulbecco's modified Eagle's medium (DMEM), sodium lactate Ringer's injection (SLRI), phosphate-buffered saline (PBS), and NaCl] on the transfection of the human protein kinase C-a antisense oligonucleotide (PKC-a ASO) aprinocarsen in human lung carcinoma A549 cells. Specifically, SLRI, DMEM, PBS, or NaCl were used as the growth solutions for A549 cells, and OPTI-MEM was used as the PKC-a ASO diluent for transfection. Additionally, SLRI, DMEM, PBS, or NaCl were used as both the growth solutions and diluents for transfection. The cell viability and transfection efficiency were determined. The results demonstrated that when SLRI was used as either the growth solution or both the growth solution and diluent for aprinocarsen transfection in A549 cells, the effects were close to the best effects observed with DMEM as the growth solution and OPTI-MEM as the diluent, which supported the transfection of aprinocarsen into the cells. Moreover, SLRI resulted in higher transfection efficiency than those of PBS and NaCl. In in vitro experiments, aprinocarsen effectively induced apoptosis in A549 cells. In conclusion, SLRI may replace PBS or NaCl in clinical trials as a transfection solution readily accepted by the human body. To our knowledge, this is the first report demonstrating the use of SLRI as a transfection solution in lung-cancer cell lines.

  5. Gene-specific mitochondria dysfunctions in human TARDBP and C9ORF72 fibroblasts.

    Science.gov (United States)

    Onesto, Elisa; Colombrita, Claudia; Gumina, Valentina; Borghi, Maria Orietta; Dusi, Sabrina; Doretti, Alberto; Fagiolari, Gigliola; Invernizzi, Federica; Moggio, Maurizio; Tiranti, Valeria; Silani, Vincenzo; Ratti, Antonia

    2016-05-05

    Dysregulation of RNA metabolism represents an important pathogenetic mechanism in both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) due to the involvement of the DNA/RNA-binding proteins TDP-43 and FUS and, more recently, of C9ORF72. A potential link between dysregulation of RNA metabolism and mitochondrial dysfunction is recently emerged in TDP-43 disease models. To further investigate the possible relationship between these two pathogenetic mechanisms in ALS/FTD, we studied mitochondria functionality in human mutant TARDBP(p.A382T) and C9ORF72 fibroblasts grown in galactose medium to induce a switch from a glycolytic to an oxidative metabolism. In this condition we observed significant changes in mitochondria morphology and ultrastructure in both mutant cells with a fragmented mitochondria network particularly evident in TARDBP(p.A382T) fibroblasts. From analysis of the mitochondrial functionality, a decrease of mitochondria membrane potential with no alterations in oxygen consumption rate emerged in TARDBP fibroblasts. Conversely, an increased oxygen consumption and mitochondria hyperpolarization were observed in C9ORF72 fibroblasts in association to increased ROS and ATP content. We found evidence of autophagy/mitophagy in dynamic equilibrium with the biogenesis of novel mitochondria, particularly in mutant C9ORF72 fibroblasts where an increase of mitochondrial DNA content and mass, and of PGC1-α protein was observed. Our imaging and biochemical data show that wild-type and mutant TDP-43 proteins do not localize at mitochondria so that the molecular mechanisms responsible for such mitochondria impairment remain to be further elucidated. For the first time our findings assess a link between C9ORF72 and mitochondria dysfunction and indicate that mitochondria functionality is affected in TARDBP and C9ORF72 fibroblasts with gene-specific features in oxidative conditions. As in neuronal metabolism mitochondria are actively used for ATP

  6. In-cell intrabody selection from a diverse human library identifies C12orf4 protein as a new player in rodent mast cell degranulation.

    Directory of Open Access Journals (Sweden)

    Elsa Mazuc

    Full Text Available The high specificity of antibodies for their antigen allows a fine discrimination of target conformations and post-translational modifications, making antibodies the first choice tool to interrogate the proteome. We describe here an approach based on a large-scale intracellular expression and selection of antibody fragments in eukaryotic cells, so-called intrabodies, and the subsequent identification of their natural target within living cell. Starting from a phenotypic trait, this integrated system allows the identification of new therapeutic targets together with their companion inhibitory intrabody. We applied this system in a model of allergy and inflammation. We first cloned a large and highly diverse intrabody library both in a plasmid and a retroviral eukaryotic expression vector. After transfection in the RBL-2H3 rat basophilic leukemia cell line, we performed seven rounds of selection to isolate cells displaying a defect in FcεRI-induced degranulation. We used high throughput sequencing to identify intrabody sequences enriched during the course of selection. Only one intrabody was common to both plasmid and retroviral selections, and was used to capture and identify its target from cell extracts. Mass spectrometry analysis identified protein RGD1311164 (C12orf4, with no previously described function. Our data demonstrate that RGD1311164 is a cytoplasmic protein implicated in the early signaling events following FcεRI-induced cell activation. This work illustrates the strength of the intrabody-based in-cell selection, which allowed the identification of a new player in mast cell activation together with its specific inhibitor intrabody.

  7. Development of CRTEIL and CETRIZ, Cre-loxP-Based Systems, Which Allow Change of Expression of Red to Green or Green to Red Fluorescence upon Transfection with a Cre-Expression Vector

    Directory of Open Access Journals (Sweden)

    Masato Ohtsuka

    2009-01-01

    Full Text Available We developed Cre-loxP-based systems, termed CRTEIL and CETRIZ, which allow gene switching in a noninvasive manner. Single transfection with pCRTEIL resulted in predominant expression of red fluorescence. Cotransfection with pCRTEIL and Cre-expression plasmid (pCAG/NCre caused switching from red to green fluorescence. Similarly, cotransfection with pCETRIZ and pCAG/NCre resulted in change of green to red fluorescence. These noninvasive systems will be useful in cell lineage analysis, since descendants of cells exhibiting newly activated gene expression can be continuously monitored in noninvasive fashion.

  8. EasyGene – a prokaryotic gene finder that ranks ORFs by statistical significance

    Directory of Open Access Journals (Sweden)

    Larsen Thomas

    2003-06-01

    Full Text Available Abstract Background Contrary to other areas of sequence analysis, a measure of statistical significance of a putative gene has not been devised to help in discriminating real genes from the masses of random Open Reading Frames (ORFs in prokaryotic genomes. Therefore, many genomes have too many short ORFs annotated as genes. Results In this paper, we present a new automated gene-finding method, EasyGene, which estimates the statistical significance of a predicted gene. The gene finder is based on a hidden Markov model (HMM that is automatically estimated for a new genome. Using extensions of similarities in Swiss-Prot, a high quality training set of genes is automatically extracted from the genome and used to estimate the HMM. Putative genes are then scored with the HMM, and based on score and length of an ORF, the statistical significance is calculated. The measure of statistical significance for an ORF is the expected number of ORFs in one megabase of random sequence at the same significance level or better, where the random sequence has the same statistics as the genome in the sense of a third order Markov chain. Conclusions The result is a flexible gene finder whose overall performance matches or exceeds other methods. The entire pipeline of computer processing from the raw input of a genome or set of contigs to a list of putative genes with significance is automated, making it easy to apply EasyGene to newly sequenced organisms. EasyGene with pre-trained models can be accessed at http://www.cbs.dtu.dk/services/EasyGene.

  9. Genome-wide mutagenesis reveals that ORF7 is a novel VZV skin-tropic factor.

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    2010-07-01

    Full Text Available The Varicella Zoster Virus (VZV is a ubiquitous human alpha-herpesvirus that is the causative agent of chicken pox and shingles. Although an attenuated VZV vaccine (v-Oka has been widely used in children in the United States, chicken pox outbreaks are still seen, and the shingles vaccine only reduces the risk of shingles by 50%. Therefore, VZV still remains an important public health concern. Knowledge of VZV replication and pathogenesis remains limited due to its highly cell-associated nature in cultured cells, the difficulty of generating recombinant viruses, and VZV's almost exclusive tropism for human cells and tissues. In order to circumvent these hurdles, we cloned the entire VZV (p-Oka genome into a bacterial artificial chromosome that included a dual-reporter system (GFP and luciferase reporter genes. We used PCR-based mutagenesis and the homologous recombination system in the E. coli to individually delete each of the genome's 70 unique ORFs. The collection of viral mutants obtained was systematically examined both in MeWo cells and in cultured human fetal skin organ samples. We use our genome-wide deletion library to provide novel functional annotations to 51% of the VZV proteome. We found 44 out of 70 VZV ORFs to be essential for viral replication. Among the 26 non-essential ORF deletion mutants, eight have discernable growth defects in MeWo. Interestingly, four ORFs were found to be required for viral replication in skin organ cultures, but not in MeWo cells, suggesting their potential roles as skin tropism factors. One of the genes (ORF7 has never been described as a skin tropic factor. The global profiling of the VZV genome gives further insights into the replication and pathogenesis of this virus, which can lead to improved prevention and therapy of chicken pox and shingles.

  10. Proteasomal targeting and minigene repetition improve cell-surface presentation of a transfected, modified melanoma tumour antigen

    DEFF Research Database (Denmark)

    Rasmussen, A B; Zocca, M-B; Bonefeld, C M

    2004-01-01

    on the density of specific major histocompatibility complex-peptide complexes on the surface of the antigen-presenting cell. In this study, we explored the cell-surface presentation of a substituted MART-1 peptide encoded by transfected minigenes. We investigated the potential of proteasomal targeting compared...

  11. Comparative study of the transfection efficiency of commonly used viral vectors in rhesus monkey (Macaca mulatta) brains.

    Science.gov (United States)

    Wu, Shi-Hao; Liao, Zhi-Xing; D Rizak, Joshua; Zheng, Na; Zhang, Lin-Heng; Tang, Hen; He, Xiao-Bin; Wu, Yang; He, Xia-Ping; Yang, Mei-Feng; Li, Zheng-Hui; Qin, Dong-Dong; Hu, Xin-Tian

    2017-03-18

    Viral vector transfection systems are among the simplest of biological agents with the ability to transfer genes into the central nervous system. In brain research, a series of powerful and novel gene editing technologies are based on these systems. Although many viral vectors are used in rodents, their full application has been limited in non-human primates. To identify viral vectors that can stably and effectively express exogenous genes within non-human primates, eleven commonly used recombinant adeno-associated viral and lentiviral vectors, each carrying a gene to express green or red fluorescence, were injected into the parietal cortex of four rhesus monkeys. The expression of fluorescent cells was used to quantify transfection efficiency. Histological results revealed that recombinant adeno-associated viral vectors, especially the serotype 2/9 coupled with the cytomegalovirus, human synapsin I, or Ca 2+ /calmodulin-dependent protein kinase II promoters, and lentiviral vector coupled with the human ubiquitin C promoter, induced higher expression of fluorescent cells, representing high transfection efficiency. This is the first comparison of transfection efficiencies of different viral vectors carrying different promoters and serotypes in non-human primates (NHPs). These results can be used as an aid to select optimal vectors to transfer exogenous genes into the central nervous system of non-human primates.

  12. Preliminary study of a novel transfection modality for in vivo siRNA delivery to vocal fold fibroblasts.

    Science.gov (United States)

    Kraja, Iv; Bing, Renjie; Hiwatashi, Nao; Rousseau, Bernard; Nalband, Danielle; Kirshenbaum, Kent; Branski, Ryan C

    2017-07-01

    An obstacle to clinical use of RNA-based gene suppression is instability and inefficiency of current delivery modalities. Nanoparticle delivery likely holds great promise, but the kinetics and transfection conditions must be optimized prior to in vivo utility. We investigated a RNA nanoparticle complex incorporating a lipitoid transfection reagent in comparison to a commercially available reagent. In vitro. We investigated which variables influence transfection efficiency of lipitoid oligomers and a commercially available reagent across species, in vitro. These variables included duration, dose, and number of administrations, as well as serum and media conditions. The target gene was Smad3, a signaling protein in the transforming growth factor-β cascade implicated in fibroplasia in the vocal folds and other tissues. The two reagents suppressed Smad3 mRNA for up to 96 hours; lipitoid performed favorably and comparably. Both compounds yielded 60% to 80% mRNA knockdown in rat, rabbit, and human vocal fold fibroblasts (P transfection conditions. These preliminary data are encouraging, and lipitoid warrants further investigation with the goal of clinical utility. NA. Laryngoscope, 127:E231-E237, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  13. Polyurethane dispersion containing quaternized ammonium groups: An efficient nanosize gene delivery carrier for A549 cancer cell line transfection.

    Science.gov (United States)

    Yousefpour Marzbali, Mahsa; Yari Khosroushahi, Ahmad; Movassaghpour, AliAkbar; Yeganeh, Hamid

    2016-01-25

    A novel polyurethane containing cationic ammonium groups (QPU) was synthesized and used as vector for gene therapy and cancer gene targeting. The synthesized QPU was characterized by Fourier transform infrared and nuclear magnetic resonance spectroscopy methods. An agarose gel retardation electrophoresis assay was conducted to verify the complete complex formation between QPU and pDNA. The particles size and zeta potential of neat polymers, plasmid DNA, polymers/DNA polyplexes were determined by the dynamic light scattering technique. The polyplexes cytotoxicity was determined using [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay and its transfection efficiency was examined qualitatively by fluorescent microscopy and quantitatively by flow cytometery methods. The gel retardation assay, particle size and zeta potential measurements were confirmed that the synthesized cationic polymer could condense DNA efficiently in the physiologic condition. QPU polyplexes showed a significantly lower cytotoxicity compared to Polyfect polyplexes in the examined human cancerous (A549) or normal cells (KDR). Based on our findings, the transfection efficiency by QPU was 2.2 fold higher than Polyfect in the A549 cells whereas in the KDR cells, the cell transfection by Polyfect was 18.1 fold higher than QPU. Due to low cytotoxicity for normal cells and high transfection efficiency in cancer cells, the potential applicability of designed QPU as a non-viral gene carrier for targeting of cancer gene therapy was confirmed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. A protocol for preparation and transfection of rat entorhinal cortex organotypic cultures for electrophysiological whole-cell recordings

    Directory of Open Access Journals (Sweden)

    Nicholas I. Cilz

    2017-01-01

    Full Text Available Understanding how neuromodulators influence synaptic transmission and intrinsic excitability within the entorhinal cortex (EC is critical to furthering our understanding of the molecular and cellular aspects of this region. Organotypic cultures can provide a cost-effective means to employ selective molecular biological strategies in elucidating cellular mechanisms of neuromodulation in the EC. We therefore adapted our acute slice model for organotypic culture applications and optimized a protocol for the preparation and biolistic transfection of cultured horizontal EC slices. Here, we present our detailed protocol for culturing EC slices. Using an n-methyl-d-glucamine (NMDG-containing cutting solution, we obtain healthy EC slice cultures for electrophysiological recordings. We also present our protocol for the preparation of “bullets” carrying one or more constructs and demonstrate successful transfection of EC slices. We build upon previous methods and highlight specific aspects in our method that greatly improved the quality of our results. We validate our methods using immunohistochemical, imaging, and electrophysiological techniques. The novelty of this method is that it provides a description of culturing and transfection of EC neurons for specifically addressing their functionality. This method will enable researchers interested in entorhinal function to quickly adopt a similar slice culture transfection system for their own investigations.

  15. Calcium Imaging of GPCR Activation Using Arrays of Reverse Transfected HEK293 Cells in a Microfluidic System.

    Science.gov (United States)

    Roelse, Margriet; Henquet, Maurice G L; Verhoeven, Harrie A; de Ruijter, Norbert C A; Wehrens, Ron; van Lenthe, Marco S; Witkamp, Renger F; Hall, Robert D; Jongsma, Maarten A

    2018-02-16

    Reverse-transfected cell arrays in microfluidic systems have great potential to perform large-scale parallel screening of G protein-coupled receptor (GPCR) activation. Here, we report the preparation of a novel platform using reverse transfection of HEK293 cells, imaging by stereo-fluorescence microscopy in a flowcell format, real-time monitoring of cytosolic calcium ion fluctuations using the fluorescent protein Cameleon and analysis of GPCR responses to sequential sample exposures. To determine the relationship between DNA concentration and gene expression, we analyzed cell arrays made with variable concentrations of plasmid DNA encoding fluorescent proteins and the Neurokinin 1 (NK1) receptor. We observed pronounced effects on gene expression of both the specific and total DNA concentration. Reverse transfected spots with NK1 plasmid DNA at 1% of total DNA still resulted in detectable NK1 activation when exposed to its ligand. By varying the GPCR DNA concentration in reverse transfection, the sensitivity and robustness of the receptor response for sequential sample exposures was optimized. An injection series is shown for an array containing the NK1 receptor, bitter receptor TAS2R8 and controls. Both receptors were exposed 14 times to alternating samples of two ligands. Specific responses remained reproducible. This platform introduces new opportunities for high throughput screening of GPCR libraries.

  16. Transfection of HeLa-cells with pEGFP plasmid by impedance power-assisted electroporation

    DEFF Research Database (Denmark)

    Glahder, Jacob; Norrild, Bodil; Persson, Mikael B

    2005-01-01

    Bioimpedance spectrometry was applied to study cell viability and pEGFP plasmid-transfection efficiency in electroporation (EP) of 20,000 HeLa cells with 0.3 microg DNA in 90 microl low conductivity 0.32 M sucrose medium of pH 7.5. Monopolar rectangular pulses, of field strength 75 V/mm, and puls...

  17. Low-frequency ac electroporation shows strong frequency dependence and yields comparable transfection results to dc electroporation.

    Science.gov (United States)

    Zhan, Yihong; Cao, Zhenning; Bao, Ning; Li, Jianbo; Wang, Jun; Geng, Tao; Lin, Hao; Lu, Chang

    2012-06-28

    Conventional electroporation has been conducted by employing short direct current (dc) pulses for delivery of macromolecules such as DNA into cells. The use of alternating current (ac) field for electroporation has mostly been explored in the frequency range of 10kHz-1MHz. Based on Schwan equation, it was thought that with low ac frequencies (10Hz-10kHz), the transmembrane potential does not vary with the frequency. In this report, we utilized a flow-through electroporation technique that employed continuous 10Hz-10kHz ac field (based on either sine waves or square waves) for electroporation of cells with defined duration and intensity. Our results reveal that electropermeabilization becomes weaker with increased frequency in this range. In contrast, transfection efficiency with DNA reaches its maximum at medium frequencies (100-1000Hz) in the range. We postulate that the relationship between the transfection efficiency and the ac frequency is determined by combined effects from electrophoretic movement of DNA in the ac field, dependence of the DNA/membrane interaction on the ac frequency, and variation of transfection under different electropermeabilization intensities. The fact that ac electroporation in this frequency range yields high efficiency for transfection (up to ~71% for Chinese hamster ovary cells) and permeabilization suggests its potential for gene delivery. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Non-viral bone morphogenetic protein 2 transfection of rat dental pulp stem cells using calcium phosphate nanoparticles as carriers.

    NARCIS (Netherlands)

    Yang, X.; Walboomers, X.F.; Dolder, J. van den; Yang, F.; Bian, Z.; Fan, M.; Jansen, J.A.

    2008-01-01

    Calcium phosphate nanoparticles have shown potential as non-viral vectors for gene delivery. The aim of this study was to induce bone morphogenetic protein (Bmp)2 transfection in rat dental pulp stem cells using calcium phosphate nanoparticles as a gene vector and then to evaluate the efficiency and

  19. Regions of incompatibility in single-stranded DNA bacteriophages phi X174 and G4

    NARCIS (Netherlands)

    van der Avoort, H. G.; van der Ende, A.; van Arkel, G. A.; Weisbeek, P. J.

    1984-01-01

    The intracellular presence of a recombinant plasmid containing the intercistronic region between the genes H and A of bacteriophage phi X174 strongly inhibits the conversion of infecting single-stranded phi X DNA to parental replicative-form DNA. Also, transfection with single-stranded or

  20. Influence of DNA-Microbubble Coupling on Contrast Ultrasound-Mediated Gene Transfection in Muscle and Liver.

    Science.gov (United States)

    Xie, Aris; Wu, Melinda D; Cigarroa, Gabriella; Belcik, J Todd; Ammi, Azzdine; Moccetti, Federico; Lindner, Jonathan R

    2016-08-01

    Contrast ultrasound-mediated gene delivery (CUMGD) is a promising approach for enhancing gene therapy that relies on microbubble (MB) cavitation to augment complementary deoxyribonucleic acid (cDNA) transfection. The aims of this study were to determine optimal conditions for charge-coupling cDNA to MBs and to evaluate the advantages of surface loading for gene transfection in muscle and liver. Charge coupling of fluorescently labeled cDNA to either neutral MBs (MBN) or cationic MBs (MB+) in low- to high-ionic conditions (0.3%-1.8% NaCl) was assessed by flow cytometry. MB aggregation from cDNA coupling was determined by electrozone sensing. Tissue transfection of luciferase in murine hindlimb skeletal muscle and liver was made by CUMGD with MBN or MB+ combined with subsaturated, saturated, or supersaturated cDNA concentrations (2.5, 50, and 200 μg/10(8) MBs). Charge-coupling of cDNA was detected for MB+ but not MBN. Coupling occurred over almost the entire range of ionic conditions, with a peak at 1.2% NaCl, although electrostatic interference occurred at >1.5% NaCl. DNA-mediated aggregation of MB+ was observed at ≤0.6% NaCl but did not reduce the ability to produce inertial cavitation. Transfection with CUMGD in muscle and liver was low for both MBs at subsaturation concentrations. In muscle, higher cDNA concentrations produced a 10-fold higher degree of transfection with MB+, which was approximately fivefold higher (P transfection with MBN equal to that of MB+. Efficient charge-coupling of cDNA to MB+ but not MBN occurs over a relatively wide range of ionic conditions without aggregation. Transfection with CUMGD is much more efficient with charge-coupling of cDNA to MBs and is not affected by supersaturation except in the liver, which is specialized for macromolecular and cDNA uptake. Copyright © 2016 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.

  1. Mutant p53 transfection of astrocytic cells results in altered cell cycle control, radiation sensitivity, and tumorigenicity

    International Nuclear Information System (INIS)

    Kanady, Kirk E.; Mei Su; Proulx, Gary; Malkin, David M.; Pardo, Francisco S.

    1995-01-01

    Introduction: Alterations in the p53 tumor suppressor gene are one of the most frequent genetic alterations in malignant gliomas. An understanding of the molecular genetic events leading to glial tumor progression would aid in designing therapeutic vectors for controlling these challenging tumor types. We investigated whether mutations in coding exons of the p53 gene result in functional changes altering cell cycle 'checkpoint' control and the intrinsic radiation sensitivity of glial cells. Methods: An astrocytic cell line was derived from a low grade astrocytoma and characterized to be of human karyotype and GFAP positivity. Additionally, the cellular population has never formed tumors in immune-deficient mice. At early passage ( 2 as parameters. Cell kinetic analyses after 2, 5, and 10 Gy of ionizing radiation were conducted using propidium iodide FACS analyses. Results: Overall levels of p53 expression were increased 5-10 fold in the transfected cellular populations. Astrocytic cellular populations transfected with mutant p53 revealed a statistically significant increase in levels of resistance to ionizing radiation in vitro (2-tailed test, SF2, MID). Astrocytic cellular populations transfected with mutant p53, unlike the parental cells, were tumorigenic in SCID mice. Cell kinetic analyses indicated that the untransfected cell line demonstrated dose dependent G1 and G2 arrests. Following transfection, however, the resultant cellular population demonstrated a predominant G2 arrest. Conclusions: Astrocytic cellular populations derived from low grade astrocytomas, are relatively radiation sensitive, non-tumorigenic, and have intact cell cycle ''checkpoints.'' Cellular populations resulting upon transfection of parental cells with a dominant negative p53 mutation, are relatively radiation resistant, when compared to both parental and mock-transfected cells. Transfected cells demonstrate abnormalities of cell cycle control at the G1/S checkpoint, increases in levels

  2. Gene delivery: A single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus

    OpenAIRE

    Zanta, Maria Antonietta; Belguise-Valladier, Pascale; Behr, Jean-Paul

    1999-01-01

    Translocation of exogenous DNA through the nuclear membrane is a major concern of gene delivery technologies. To take advantage of the cellular import machinery, we have synthesized a capped 3.3-kbp CMVLuciferase-NLS gene containing a single nuclear localization signal peptide (PKKKRKVEDPYC). Transfection of cells with the tagged gene remained effective down to nanogram amounts of DNA. Transfection enhancement (10- to 1,000-fold) as a result of the signal peptide was observed irrespective of ...

  3. Genetically engineered cardiac pacemaker: Stem cells transfected with HCN2 gene and myocytes-A model

    Energy Technology Data Exchange (ETDEWEB)

    Kanani, S. [Institut Genomique Fonctionelle, 141 Rue de la Cardonille, 34396 Montpellier (France); Institut Non Lineaire de Nice, CNRS and Universite de Nice, 1361 route des Lucioles, 06560 Valbonne (France); Pumir, A. [Institut Non Lineaire de Nice, CNRS and Universite de Nice, 1361 route des Lucioles, 06560 Valbonne (France); Laboratoire J.A. Dieudonne, CNRS and Universite de Nice, Parc Valrose, 06108 Nice (France)], E-mail: alain.pumir@unice.fr; Krinsky, V. [Institut Non Lineaire de Nice, CNRS and Universite de Nice, 1361 route des Lucioles, 06560 Valbonne (France)

    2008-01-07

    One of the successfully tested methods to design genetically engineered cardiac pacemaker cells consists in transfecting a human mesenchymal stem cell (hMSC) with a HCN2 gene and connecting it to a myocyte. We develop and study a mathematical model, describing a myocyte connected to a hMSC transfected with a HCN2 gene. The cardiac action potential is described both with the simple Beeler-Reuter model, as well as with the elaborate dynamic Luo-Rudy model. The HCN2 channel is described by fitting electrophysiological records, in the spirit of Hodgkin-Huxley. The model shows that oscillations can occur in a pair myocyte-stem cell, that was not observed in the experiments yet. The model predicted that: (1) HCN pacemaker channels can induce oscillations only if the number of expressed I{sub K1} channels is low enough. At too high an expression level of I{sub K1} channels, oscillations cannot be induced, no matter how many pacemaker channels are expressed. (2) At low expression levels of I{sub K1} channels, a large domain of values in the parameter space (n, N) exists, where oscillations should be observed. We denote N the number of expressed pacemaker channels in the stem cell, and n the number of gap junction channels coupling the stem cell and the myocyte. (3) The expression levels of I{sub K1} channels observed in ventricular myocytes, both in the Beeler-Reuter and in the dynamic Luo-Rudy models are too high to allow to observe oscillations. With expression levels below {approx}1/4 of the original value, oscillations can be observed. The main consequence of this work is that in order to obtain oscillations in an experiment with a myocyte-stem cell pair, increasing the values of n, N is unlikely to be helpful, unless the expression level of I{sub K1} has been reduced enough. The model also allows us to explore levels of gene expression not yet achieved in experiments, and could be useful to plan new experiments, aimed at improving the robustness of the oscillations.

  4. Mesoporous Silica Nanomaterials for Applications in Catalysis, Sensing, Drug Delivery and Gene Transfection

    Energy Technology Data Exchange (ETDEWEB)

    Radu, Daniela Rodica [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    the surface of MSN and utilize them to complex cationic DNA. The p-EGFP-CI gene-coated MSN nanocomposite was able to transfect cancer cell lines, such as human HeLa and CHO cancer cell lines. The gene carrier ability of MSNs was further proved by transfecting primary cells and cotransfecting of two different genes in cancer cell lines. In sum, MSN are versatile partners in several types of applications.

  5. Phosphoproteomic Analysis of KSHV-Infected Cells Reveals Roles of ORF45-Activated RSK during Lytic Replication.

    Directory of Open Access Journals (Sweden)

    Denis Avey

    2015-07-01

    Full Text Available Kaposi's Sarcoma-Associated Herpesvirus (KSHV is an oncogenic virus which has adapted unique mechanisms to modulate the cellular microenvironment of its human host. The pathogenesis of KSHV is intimately linked to its manipulation of cellular signaling pathways, including the extracellular signal-regulated kinase (ERK mitogen-activated protein kinase (MAPK pathway. We have previously shown that KSHV ORF45 contributes to the sustained activation of both ERK and p90 ribosomal S6 kinase (RSK, a major functional mediator of ERK/MAPK signaling during KSHV lytic replication. ORF45-activated RSK is required for optimal KSHV lytic gene expression and progeny virion production, though the underlying mechanisms downstream of this activation are still unclear. We hypothesized that the activation of RSK by ORF45 causes differential phosphorylation of cellular and viral substrates, affecting biological processes essential for efficient KSHV lytic replication. Accordingly, we observed widespread and significant differences in protein phosphorylation upon induction of lytic replication. Mass-spectrometry-based phosphoproteomic screening identified putative substrates of ORF45-activated RSK in KSHV-infected cells. Bioinformatic analyses revealed that nuclear proteins, including several transcriptional regulators, were overrepresented among these candidates. We validated the ORF45/RSK-dependent phosphorylation of several putative substrates by employing KSHV BAC mutagenesis, kinase inhibitor treatments, and/or CRISPR-mediated knockout of RSK in KSHV-infected cells. Furthermore, we assessed the consequences of knocking out these substrates on ORF45/RSK-dependent regulation of gene expression and KSHV progeny virion production. Finally, we show data to support that ORF45 regulates the translational efficiency of a subset of viral/cellular genes with complex secondary structure in their 5' UTR. Altogether, these data shed light on the mechanisms by which KSHV ORF45

  6. Similar activation of signal transduction pathways by the herpesvirus-encoded chemokine receptors US28 and ORF74

    DEFF Research Database (Denmark)

    McLean, Katherine A; Holst, Peter J; Martini, Lene

    2004-01-01

    The virally encoded chemokine receptors US28 from human cytomegalovirus and ORF74 from human herpesvirus 8 are both constitutively active. We show that both receptors constitutively activate the transcription factors nuclear factor of activated T cells (NFAT) and cAMP response element binding...... viral gene expression similarly. As ORF74 is a known inducer of neoplasia, these findings may have important implications for cytomegalovirus-associated pathogenicity....

  7. Apo B100 similarities to viral proteins suggest basis for LDL-DNA binding and transfection capacity.

    Science.gov (United States)

    Guevara, Juan; Prashad, Nagindra; Ermolinsky, Boris; Gaubatz, John W; Kang, Dongcheul; Schwarzbach, Andrea E; Loose, David S; Guevara, Natalia Valentinova

    2010-07-01

    LDL mediates transfection with plasmid DNA in a variety of cell types in vitro and in several tissues in vivo in the rat. The transfection capacity of LDL is based on apo B100, as arginine/lysine clusters, suggestive of nucleic acid-binding domains and nuclear localization signal sequences, are present throughout the molecule. Apo E may also contribute to this capacity because of its similarity to the Dengue virus capsid proteins and its ability to bind DNA. Synthetic peptides representing two apo B100 regions with prominent Arg/Lys clusters were shown to bind DNA. Region 1 (0014Lys-Ser0160) shares sequence motifs present in DNA binding domains of Interferon Regulatory Factors and Flaviviridae capsid/core proteins. It also contains a close analog of the B/E receptor ligand of apo E. Region 1 peptides, B1-1 (0014Lys-Glu0054) and B1-2 (0055Leu-Ala0096), mediate transfection of HeLa cells but are cytotoxic. Region 2 (3313Asp-Thr3431), containing the known B/E receptor ligand, shares analog motifs with the human herpesvirus 5 immediate-early transcriptional regulator (UL122) and Flaviviridae NS3 helicases. Region 2 peptides, B2-1 (3313Asp-Glu3355), and B2-2 (3356Gly-Thr3431) are ineffective in cell transfection and are noncytotoxic. These results confirm the role of LDL as a natural transfection vector in vivo, a capacity imparted by the apo B100, and suggest a basis for Flaviviridae cell entry.

  8. Transfection of the Human Heme Oxygenase Gene Into Rabbit Coronary Microvessel Endothelial Cells: Protective Effect Against Heme and Hemoglobin Toxicity

    Science.gov (United States)

    Abraham, N. G.; Lavrovsky, Y.; Schwartzman, M. L.; Stoltz, R. A.; Levere, R. D.; Gerritsen, M. E.

    1995-07-01

    Heme oxygenase (HO) is a stress protein and has been suggested to participate in defense mechanisms against agents that may induce oxidative injury such as metals, endotoxin, heme/hemoglobin, and various cytokines. Overexpression of HO in cells might therefore protect against oxidative stress produced by certain of these agents, specifically heme and hemoglobin, by catalyzing their degradation to bilirubin, which itself has antioxidant properties. We report here the successful in vitro transfection of rabbit coronary microvessel endothelial cells with a functioning gene encoding the human HO enzyme. A plasmid containing the cytomegalovirus promoter and the human HO cDNA complexed to cationic liposomes (Lipofectin) was used to transfect rabbit endothelial cells. Cells transfected with human HO exhibited an ≈3.0-fold increase in enzyme activity and expressed a severalfold induction of human HO mRNA as compared with endogenous rabbit HO mRNA. Transfected and nontransfected cells expressed factor VIII antigen and exhibited similar acetylated low-density lipoprotein uptake (two important features that characterize endothelial cells) with >85% of cells staining positive for each marker. Moreover, cells transfected with the human HO gene acquired substantial resistance to toxicity produced by exposure to recombinant hemoglobin and heme as compared with nontransfected cells. The protective effect of HO overexpression against heme/hemoglobin toxicity in endothelial cells shown in these studies provides direct evidence that the inductive response of human HO to such injurious stimuli represents an important tissue adaptive mechanism for moderating the severity of cell damage produced by these blood components.

  9. Constructional apraxia in frontotemporal dementia associated with the C9orf72 mutation: broadening the clinical and neuropsychological phenotype.

    Science.gov (United States)

    Floris, Gianluca; Borghero, Giuseppe; Cannas, Antonino; Di Stefano, Francesca; Ruiu, Elisa; Murru, Maria R; Corongiu, Daniela; Cuccu, Stefania; Tranquilli, Stefania; Sardu, Claudia; Marrosu, Maria G; Chiò, Adriano; Marrosu, Francesco

    2015-03-01

    In our study we analysed clinical and neuropsychological data in a cohort of 57 Sardinian patients with FTD (55 apparently unrelated and two belonging to the same family), who underwent genetic screening for the C9orf72 mutation. Eight out of 56 patients were found positive for the C9orf72 mutation representing 14% of the entire cohort and 31.6% of the familial cases (6/19). C9orf72 mutated patients differed from the other FTD cases of the cohort for a younger age of onset, higher frequency of familial history for FTD and higher prevalence of delusional psychotic symptoms and hallucinations. In the neuropsychological assessment, C9orf72 mutated patients differed from non-mutated for the high frequency of visuospatial dysfunction regarding constructional apraxia (p = 0.02). In conclusion, our study confirms that Sardinian FTD patients have peculiar genetic characteristics and that C9orf72 mutated patients have a distinctive clinical and neuropsychological profile that could help differentiate them from other FTD patients. In our cohort we found that constructional apraxia, rarely reported in FTD, can properly discriminate between C9orf72 mutated and non-mutated patients and contribute to broaden the neuropsychological profile in frontotemporal dementia associated with this mutation.

  10. C2orf62 and TTC17 are involved in actin organization and ciliogenesis in zebrafish and human.

    Directory of Open Access Journals (Sweden)

    Franck Bontems

    Full Text Available Vertebrate genomes contain around 20,000 protein-encoding genes, of which a large fraction is still not associated with specific functions. A major task in future genomics will thus be to assign physiological roles to all open reading frames revealed by genome sequencing. Here we show that C2orf62, a highly conserved protein with little homology to characterized proteins, is strongly expressed in testis in zebrafish and mammals, and in various types of ciliated cells during zebrafish development. By yeast two hybrid and GST pull-down, C2orf62 was shown to interact with TTC17, another uncharacterized protein. Depletion of either C2orf62 or TTC17 in human ciliated cells interferes with actin polymerization and reduces the number of primary cilia without changing their length. Zebrafish embryos injected with morpholinos against C2orf62 or TTC17, or with mRNA coding for the C2orf62 C-terminal part containing a RII dimerization/docking (R2D2 - like domain show morphological defects consistent with imperfect ciliogenesis. We provide here the first evidence for a C2orf62-TTC17 axis that would regulate actin polymerization and ciliogenesis.

  11. C2orf62 and TTC17 are involved in actin organization and ciliogenesis in zebrafish and human.

    Science.gov (United States)

    Bontems, Franck; Fish, Richard J; Borlat, Irene; Lembo, Frédérique; Chocu, Sophie; Chalmel, Frédéric; Borg, Jean-Paul; Pineau, Charles; Neerman-Arbez, Marguerite; Bairoch, Amos; Lane, Lydie

    2014-01-01

    Vertebrate genomes contain around 20,000 protein-encoding genes, of which a large fraction is still not associated with specific functions. A major task in future genomics will thus be to assign physiological roles to all open reading frames revealed by genome sequencing. Here we show that C2orf62, a highly conserved protein with little homology to characterized proteins, is strongly expressed in testis in zebrafish and mammals, and in various types of ciliated cells during zebrafish development. By yeast two hybrid and GST pull-down, C2orf62 was shown to interact with TTC17, another uncharacterized protein. Depletion of either C2orf62 or TTC17 in human ciliated cells interferes with actin polymerization and reduces the number of primary cilia without changing their length. Zebrafish embryos injected with morpholinos against C2orf62 or TTC17, or with mRNA coding for the C2orf62 C-terminal part containing a RII dimerization/docking (R2D2) - like domain show morphological defects consistent with imperfect ciliogenesis. We provide here the first evidence for a C2orf62-TTC17 axis that would regulate actin polymerization and ciliogenesis.

  12. C11orf83, a mitochondrial cardiolipin-binding protein involved in bc1 complex assembly and supercomplex stabilization.

    Science.gov (United States)

    Desmurs, Marjorie; Foti, Michelangelo; Raemy, Etienne; Vaz, Frédéric Maxime; Martinou, Jean-Claude; Bairoch, Amos; Lane, Lydie

    2015-04-01

    Mammalian mitochondria may contain up to 1,500 different proteins, and many of them have neither been confidently identified nor characterized. In this study, we demonstrated that C11orf83, which was lacking experimental characterization, is a mitochondrial inner membrane protein facing the intermembrane space. This protein is specifically associated with the bc1 complex of the electron transport chain and involved in the early stages of its assembly by stabilizing the bc1 core complex. C11orf83 displays some overlapping functions with Cbp4p, a yeast bc1 complex assembly factor. Therefore, we suggest that C11orf83, now called UQCC3, is the functional human equivalent of Cbp4p. In addition, C11orf83 depletion in HeLa cells caused abnormal crista morphology, higher sensitivity to apoptosis, a decreased ATP level due to impaired respiration and subtle, but significant, changes in cardiolipin composition. We showed that C11orf83 binds to cardiolipin by its α-helices 2 and 3 and is involved in the stabilization of bc1 complex-containing supercomplexes, especially the III2/IV supercomplex. We also demonstrated that the OMA1 metalloprotease cleaves C11orf83 in response to mitochondrial depolarization, suggesting a role in the selection of cells with damaged mitochondria for their subsequent elimination by apoptosis, as previously described for OPA1. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. C2orf62 and TTC17 Are Involved in Actin Organization and Ciliogenesis in Zebrafish and Human

    Science.gov (United States)

    Bontems, Franck; Fish, Richard J.; Borlat, Irene; Lembo, Frédérique; Chocu, Sophie; Chalmel, Frédéric; Borg, Jean-Paul; Pineau, Charles; Neerman-Arbez, Marguerite; Bairoch, Amos; Lane, Lydie

    2014-01-01

    Vertebrate genomes contain around 20,000 protein-encoding genes, of which a large fraction is still not associated with specific functions. A major task in future genomics will thus be to assign physiological roles to all open reading frames revealed by genome sequencing. Here we show that C2orf62, a highly conserved protein with little homology to characterized proteins, is strongly expressed in testis in zebrafish and mammals, and in various types of ciliated cells during zebrafish development. By yeast two hybrid and GST pull-down, C2orf62 was shown to interact with TTC17, another uncharacterized protein. Depletion of either C2orf62 or TTC17 in human ciliated cells interferes with actin polymerization and reduces the number of primary cilia without changing their length. Zebrafish embryos injected with morpholinos against C2orf62 or TTC17, or with mRNA coding for the C2orf62 C-terminal part containing a RII dimerization/docking (R2D2) – like domain show morphological defects consistent with imperfect ciliogenesis. We provide here the first evidence for a C2orf62-TTC17 axis that would regulate actin polymerization and ciliogenesis. PMID:24475127

  14. Cytokine Profiles and Cell Proliferation Responses to Truncated ORF2 Protein in Iranian Patients Recovered from Hepatitis E Infection.

    Science.gov (United States)

    Taherkhani, Reza; Farshadpour, Fatemeh; Makvandi, Manoochehr; Rajabi Memari, Hamid; Samarbafzadeh, Ali Reza; Sharifi, Nasrin; Naeimi, Behrouz; Tajbakhsh, Saeed; Akbarzadeh, Samad

    2015-01-01

    Background. The aim of this study was to evaluate hepatitis E virus (HEV) specific cellular immune responses to truncated ORF2 protein in Iranian patients recovered from HEV infection. Information about HEV-specific immune responses could be useful in finding an effective way for development of HEV vaccine. Methods. A truncated form of HEV ORF2 protein containing amino acids 112-608 was used to stimulate peripheral blood mononuclear cells (PBMCs) separated from HEV-recovered and control groups. Finally, the levels of four cytokines, IFN-γ ELISPOT, and cell proliferative responses following stimulation with the truncated ORF2 protein were assessed in the both groups. Results. The truncated ORF2 protein was able to induce IFN-γ ELISPOT and cell proliferation responses and to produce significant amounts of IFN-γ and IL-12 cytokines, but low amounts of IL-10 and IL-4 cytokines in vitro. These responses were significantly higher in the recovered group compared to the control group. These results indicate the antigenic nature of the truncated ORF2 protein and production of T helper type 1 cytokines. Conclusion. The truncated ORF2 protein can effectively induce significant cellular immune responsesand can be introduced as a potential vaccine candidate. However, further studies are required to evaluate this protein in vivo.

  15. Cytokine Profiles and Cell Proliferation Responses to Truncated ORF2 Protein in Iranian Patients Recovered from Hepatitis E Infection

    Directory of Open Access Journals (Sweden)

    Reza Taherkhani

    2015-01-01

    Full Text Available Background. The aim of this study was to evaluate hepatitis E virus (HEV specific cellular immune responses to truncated ORF2 protein in Iranian patients recovered from HEV infection. Information about HEV-specific immune responses could be useful in finding an effective way for development of HEV vaccine. Methods. A truncated form of HEV ORF2 protein containing amino acids 112-608 was used to stimulate peripheral blood mononuclear cells (PBMCs separated from HEV-recovered and control groups. Finally, the levels of four cytokines, IFN-γ ELISPOT, and cell proliferative responses following stimulation with the truncated ORF2 protein were assessed in the both groups. Results. The truncated ORF2 protein was able to induce IFN-γ ELISPOT and cell proliferation responses and to produce significant amounts of IFN-γ and IL-12 cytokines, but low amounts of IL-10 and IL-4 cytokines in vitro. These responses were significantly higher in the recovered group compared to the control group. These results indicate the antigenic nature of the truncated ORF2 protein and production of T helper type 1 cytokines. Conclusion. The truncated ORF2 protein can effectively induce significant cellular immune responsesand can be introduced as a potential vaccine candidate. However, further studies are required to evaluate this protein in vivo.

  16. C9orf72’s interaction with Rab GTPases - modulation of membrane traffic and autophagy

    Directory of Open Access Journals (Sweden)

    Bor Luen Tang

    2016-10-01

    Full Text Available Hexanucleotide repeat expansion in an intron of Chromosome 9 open reading frame 72 (C9orf72 is the most common genetic cause of Amyotrophic Lateral Sclerosis (ALS and Frontotemporal Dementia (FTD. While functional haploinsufficiency of C9orf72 resulting from the mutation may play a role in ALS/FTD, the actual cellular role of the protein has been unclear. Recent findings have now shown that C9orf72 physically and functionally interacts with multiple members of the Rab small GTPases family, consequently exerting important influences on cellular membrane traffic and the process of autophagy. Loss of C9orf72 impairs endocytosis in neuronal cell lines, and attenuated autophagosome formation. Interestingly, C9orf72 could influence autophagy both as part of a Guanine nucleotide exchange factor (GEF complex, or as a Rab effector that facilitates transport of the Unc-51-like Autophagy Activating Kinase 1 (Ulk1 autophagy initiation complex. The cellular function of C9orf72 is discussed in the light of these recent findings

  17. ORF Alignment: NC_002755 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available ructure Of The Single-Stranded Dna-Binding ... Protein From Mycobacterium Tuberculosis pdb|1UE7|C Cha...Protein From Mycobacterium Tuberculosis pdb|1UE7|B Chain ... B, Crystal Structure Of The Single-Stran...ded Dna-Binding ... Protein From Mycobacterium Tuberculosis pdb|1UE7|A Chain ... A, Crystal St...ructure Of The Single-Stranded Dna-Binding ... Protein From Mycobacterium Tuberculosis pdb|1UE6|D Cha...Protein From Mycobacterium Tuberculosis pdb|1UE6|C Chain ... C, Crystal Structure Of The Single-Stran

  18. ORF Alignment: NC_000962 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available ructure Of The Single-Stranded Dna-Binding ... Protein From Mycobacterium Tuberculosis pdb|1UE7|C Cha...Protein From Mycobacterium Tuberculosis pdb|1UE7|B Chain ... B, Crystal Structure Of The Single-Stran...ded Dna-Binding ... Protein From Mycobacterium Tuberculosis pdb|1UE7|A Chain ... A, Crystal St...ructure Of The Single-Stranded Dna-Binding ... Protein From Mycobacterium Tuberculosis pdb|1UE6|D Cha...Protein From Mycobacterium Tuberculosis pdb|1UE6|C Chain ... C, Crystal Structure Of The Single-Stran

  19. ORF Alignment: NC_002945 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available ructure Of The Single-Stranded Dna-Binding ... Protein From Mycobacterium Tuberculosis pdb|1UE7|C Cha...Protein From Mycobacterium Tuberculosis pdb|1UE7|B Chain ... B, Crystal Structure Of The Single-Stran...ded Dna-Binding ... Protein From Mycobacterium Tuberculosis pdb|1UE7|A Chain ... A, Crystal St...ructure Of The Single-Stranded Dna-Binding ... Protein From Mycobacterium Tuberculosis pdb|1UE6|D Cha...Protein From Mycobacterium Tuberculosis pdb|1UE6|C Chain ... C, Crystal Structure Of The Single-Stran

  20. ORF Sequence: NC_003366 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available protein [Clostridium perfringens str. 13] MNKVDLIGRVATKIEVKESKNKKKYVRFRIAVNSFNGREETTTFLSVITWSKSTVDFLEKFVNIGDLVSVSGEIVESRYESESGEVRYYTNIQTSNINLLNKAKEKEIS ... NC_003366 gi|18310649 >gi|18310649|ref|NP_562583.1| probable single-strand binding