WorldWideScience

Sample records for single neuronal system

  1. Single neuron computation

    CERN Document Server

    McKenna, Thomas M; Zornetzer, Steven F

    1992-01-01

    This book contains twenty-two original contributions that provide a comprehensive overview of computational approaches to understanding a single neuron structure. The focus on cellular-level processes is twofold. From a computational neuroscience perspective, a thorough understanding of the information processing performed by single neurons leads to an understanding of circuit- and systems-level activity. From the standpoint of artificial neural networks (ANNs), a single real neuron is as complex an operational unit as an entire ANN, and formalizing the complex computations performed by real n

  2. NONLINEAR SYSTEM MODELING USING SINGLE NEURON CASCADED NEURAL NETWORK FOR REAL-TIME APPLICATIONS

    Directory of Open Access Journals (Sweden)

    S. Himavathi

    2012-04-01

    Full Text Available Neural Networks (NN have proved its efficacy for nonlinear system modeling. NN based controllers and estimators for nonlinear systems provide promising alternatives to the conventional counterpart. However, NN models have to meet the stringent requirements on execution time for its effective use in real time applications. This requires the NN model to be structurally compact and computationally less complex. In this paper a parametric method of analysis is adopted to determine the compact and faster NN model among various neural network architectures. This work proves through analysis and examples that the Single Neuron Cascaded (SNC architecture is distinct in providing compact and simpler models requiring lower execution time. The unique structural growth of SNC architecture enables automation in design. The SNC Network is shown to combine the advantages of both single and multilayer neural network architectures. Extensive analysis on selected architectures and their models for four benchmark nonlinear theoretical plants and a practical application are tested. A performance comparison of the NN models is presented to demonstrate the superiority of the single neuron cascaded architecture for online real time applications.

  3. Single-neuron diversity generated by Protocadherin-β cluster in mouse central and peripheral nervous systems

    Directory of Open Access Journals (Sweden)

    Keizo eHirano

    2012-08-01

    Full Text Available The generation of complex neural circuits depends on the correct wiring of neurons with diverse individual characteristics. To understand the complexity of the nervous system, the molecular mechanisms for specifying the identity and diversity of individual neurons must be elucidated. The clustered protocadherins (Pcdh in mammals consist of approximately 50 Pcdh genes (Pcdh-α, Pcdh-β, and Pcdh-γ that encode cadherin-family cell surface adhesion proteins. Individual neurons express a random combination of Pcdh-α and Pcdh-γ, whereas the expression patterns for the Pcdh-β genes, 22 one-exon genes in mouse, are not fully understood. Here we show that the Pcdh-β genes are expressed in a 3’-polyadenylated form in mouse brain. In situ hybridization using a pan-Pcdh-β probe against a conserved Pcdh-β sequence showed widespread labeling in the brain, with prominent signals in the olfactory bulb, hippocampus, and cerebellum. In situ hybridization with specific probes for individual Pcdh-β genes showed their expression to be scattered in Purkinje cells from P10 to P150. The scattered expression patterns were confirmed by performing a newly developed single-cell 3’-RACE analysis of Purkinje cells, which clearly demonstrated that the Pcdh-β genes are expressed monoallelically and combinatorially in individual Purkinje cells. Scattered expression patterns of individual Pcdh-β genes were also observed in pyramidal neurons in the hippocampus and cerebral cortex, neurons in the trigeminal and dorsal root ganglion, GABAergic interneurons, and cholinergic neurons. Our results extend previous observations of diversity at the single-neuron level generated by Pcdh expression and suggest that the Pcdh-β cluster genes contribute to specifying the identity and diversity of individual neurons.

  4. Biomechanics of single cortical neurons.

    Science.gov (United States)

    Bernick, Kristin B; Prevost, Thibault P; Suresh, Subra; Socrate, Simona

    2011-03-01

    This study presents experimental results and computational analysis of the large strain dynamic behavior of single neurons in vitro with the objective of formulating a novel quantitative framework for the biomechanics of cortical neurons. Relying on the atomic force microscopy (AFM) technique, novel testing protocols are developed to enable the characterization of neural soma deformability over a range of indentation rates spanning three orders of magnitude, 10, 1, and 0.1 μm s(-1). Modified spherical AFM probes were utilized to compress the cell bodies of neonatal rat cortical neurons in load, unload, reload and relaxation conditions. The cell response showed marked hysteretic features, strong non-linearities, and substantial time/rate dependencies. The rheological data were complemented with geometrical measurements of cell body morphology, i.e. cross-diameter and height estimates. A constitutive model, validated by the present experiments, is proposed to quantify the mechanical behavior of cortical neurons. The model aimed to correlate empirical findings with measurable degrees of (hyper)elastic resilience and viscosity at the cell level. The proposed formulation, predicated upon previous constitutive model developments undertaken at the cortical tissue level, was implemented in a three-dimensional finite element framework. The simulated cell response was calibrated to the experimental measurements under the selected test conditions, providing a novel single cell model that could form the basis for further refinements. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Discrimination of communication vocalizations by single neurons and groups of neurons in the auditory midbrain.

    Science.gov (United States)

    Schneider, David M; Woolley, Sarah M N

    2010-06-01

    Many social animals including songbirds use communication vocalizations for individual recognition. The perception of vocalizations depends on the encoding of complex sounds by neurons in the ascending auditory system, each of which is tuned to a particular subset of acoustic features. Here, we examined how well the responses of single auditory neurons could be used to discriminate among bird songs and we compared discriminability to spectrotemporal tuning. We then used biologically realistic models of pooled neural responses to test whether the responses of groups of neurons discriminated among songs better than the responses of single neurons and whether discrimination by groups of neurons was related to spectrotemporal tuning and trial-to-trial response variability. The responses of single auditory midbrain neurons could be used to discriminate among vocalizations with a wide range of abilities, ranging from chance to 100%. The ability to discriminate among songs using single neuron responses was not correlated with spectrotemporal tuning. Pooling the responses of pairs of neurons generally led to better discrimination than the average of the two inputs and the most discriminating input. Pooling the responses of three to five single neurons continued to improve neural discrimination. The increase in discriminability was largest for groups of neurons with similar spectrotemporal tuning. Further, we found that groups of neurons with correlated spike trains achieved the largest gains in discriminability. We simulated neurons with varying levels of temporal precision and measured the discriminability of responses from single simulated neurons and groups of simulated neurons. Simulated neurons with biologically observed levels of temporal precision benefited more from pooling correlated inputs than did neurons with highly precise or imprecise spike trains. These findings suggest that pooling correlated neural responses with the levels of precision observed in the

  6. Current Source Density Estimation for Single Neurons

    Directory of Open Access Journals (Sweden)

    Dorottya Cserpán

    2014-03-01

    Full Text Available Recent developments of multielectrode technology made it possible to measure the extracellular potential generated in the neural tissue with spatial precision on the order of tens of micrometers and on submillisecond time scale. Combining such measurements with imaging of single neurons within the studied tissue opens up new experimental possibilities for estimating distribution of current sources along a dendritic tree. In this work we show that if we are able to relate part of the recording of extracellular potential to a specific cell of known morphology we can estimate the spatiotemporal distribution of transmembrane currents along it. We present here an extension of the kernel CSD method (Potworowski et al., 2012 applicable in such case. We test it on several model neurons of progressively complicated morphologies from ball-and-stick to realistic, up to analysis of simulated neuron activity embedded in a substantial working network (Traub et al, 2005. We discuss the caveats and possibilities of this new approach.

  7. Stochastic models for spike trains of single neurons

    CERN Document Server

    Sampath, G

    1977-01-01

    1 Some basic neurophysiology 4 The neuron 1. 1 4 1. 1. 1 The axon 7 1. 1. 2 The synapse 9 12 1. 1. 3 The soma 1. 1. 4 The dendrites 13 13 1. 2 Types of neurons 2 Signals in the nervous system 14 2. 1 Action potentials as point events - point processes in the nervous system 15 18 2. 2 Spontaneous activi~ in neurons 3 Stochastic modelling of single neuron spike trains 19 3. 1 Characteristics of a neuron spike train 19 3. 2 The mathematical neuron 23 4 Superposition models 26 4. 1 superposition of renewal processes 26 4. 2 Superposition of stationary point processe- limiting behaviour 34 4. 2. 1 Palm functions 35 4. 2. 2 Asymptotic behaviour of n stationary point processes superposed 36 4. 3 Superposition models of neuron spike trains 37 4. 3. 1 Model 4. 1 39 4. 3. 2 Model 4. 2 - A superposition model with 40 two input channels 40 4. 3. 3 Model 4. 3 4. 4 Discussion 41 43 5 Deletion models 5. 1 Deletion models with 1nd~endent interaction of excitatory and inhibitory sequences 44 VI 5. 1. 1 Model 5. 1 The basic de...

  8. Stimulus-response functions of single avian olfactory bulb neurones.

    Science.gov (United States)

    McKeegan, Dorothy E F; Demmers, Theodorus G M; Wathes, Christopher M; Jones, R Bryan; Gentle, Michael J

    2002-10-25

    This study investigated olfactory processing in a functional context by examining the responses of single avian olfactory bulb neurones to two biologically important gases over relevant concentration ranges. Recordings of extracellular spike activity were made from 80 single units in the left olfactory bulb of 11 anaesthetised, freely breathing adult hens (Gallus domesticus). The units were spontaneously active, exhibiting widely variable firing rates (0.07-47.28 spikes/s) and variable temporal firing patterns. Single units were tested for their response to an ascending concentration series of either ammonia (2.5-100 ppm) or hydrogen sulphide (1-50 ppm), delivered directly to the olfactory epithelium. Stimulation with a calibrated gas delivery system resulted in modification of spontaneous activity causing either inhibition (47% of units) or excitation (53%) of firing. For ammonia, 20 of the 35 units tested exhibited a response, while for hydrogen sulphide, 25 of the 45 units tested were responsive. Approximate response thresholds for ammonia (median threshold 3.75 ppm (range 2.5-60 ppm, n=20)) and hydrogen sulphide (median threshold 1 ppm (range 1-10 ppm, n=25)) were determined with most units exhibiting thresholds near the lower end of these ranges. Stimulus response curves were constructed for 23 units; 16 (the most complete) were subjected to a linear regression analysis to determine whether they were best fitted by a linear, log or power function. No single function provided the best fit for all the curves (seven were linear, eight were log, one was power). These findings show that avian units respond to changes in stimulus concentration in a manner generally consistent with reported responses in mammalian olfactory bulb neurones. However, this study illustrates a level of fine-tuning to small step changes in concentration (<5 ppm) not previously demonstrated in vertebrate single olfactory bulb neurones.

  9. A single-neuron tracing study of arkypallidal and prototypic neurons in healthy rats.

    Science.gov (United States)

    Fujiyama, Fumino; Nakano, Takashi; Matsuda, Wakoto; Furuta, Takahiro; Udagawa, Jun; Kaneko, Takeshi

    2016-12-01

    The external globus pallidus (GP) is known as a relay nucleus of the indirect pathway of the basal ganglia. Recent studies in dopamine-depleted and healthy rats indicate that the GP comprises two main types of pallidofugal neurons: the so-called "prototypic" and "arkypallidal" neurons. However, the reconstruction of complete arkypallidal neurons in healthy rats has not been reported. Here we visualized the entire axonal arborization of four single arkypallidal neurons and six single prototypic neurons in rat brain using labeling with a viral vector expressing membrane-targeted green fluorescent protein and examined the distribution of axon boutons in the target nuclei. Results revealed that not only the arkypallidal neurons but nearly all of the prototypic neurons projected to the striatum with numerous axon varicosities. Thus, the striatum is a major target nucleus for pallidal neurons. Arkypallidal and prototypic GP neurons located in the calbindin-positive and calbindin-negative regions mainly projected to the corresponding positive and negative regions in the striatum. Because the GP and striatum calbindin staining patterns reflect the topographic organization of the striatopallidal projection, the striatal neurons in the sensorimotor and associative regions constitute the reciprocal connection with the GP neurons in the corresponding regions.

  10. Single neuron dynamics during experimentally induced anoxic depolarization

    NARCIS (Netherlands)

    Zandt, B.; Stigen, Tyler; ten Haken, Bernard; Netoff, Theoden; van Putten, Michel Johannes Antonius Maria

    2013-01-01

    We studied single neuron dynamics during anoxic depolarizations, which are often observed in cases of neuronal energy depletion. Anoxic and similar depolarizations play an important role in several pathologies, notably stroke, migraine, and epilepsy. One of the effects of energy depletion was

  11. Neurosemantics, neurons and system theory.

    Science.gov (United States)

    Breidbach, Olaf

    2007-08-01

    Following the concept of internal representations, signal processing in a neuronal system has to be evaluated exclusively based on internal system characteristics. Thus, this approach omits the external observer as a control function for sensory integration. Instead, the configuration of the system and its computational performance are the effects of endogenous factors. Such self-referential operation is due to a strictly local computation in a network and, thereby, computations follow a set of rules that constitute the emergent behaviour of the system. These rules can be shown to correspond to a "logic" that is intrinsic to the system, an idea which provides the basis for neurosemantics.

  12. Single-Cell Gene Expression Analysis of Cholinergic Neurons in the Arcuate Nucleus of the Hypothalamus.

    Directory of Open Access Journals (Sweden)

    Jae Hoon Jeong

    Full Text Available The cholinoceptive system in the hypothalamus, in particular in the arcuate nucleus (ARC, plays a role in regulating food intake. Neurons in the ARC contain multiple neuropeptides, amines, and neurotransmitters. To study molecular and neurochemical heterogeneity of ARC neurons, we combine single-cell qRT-PCR and single-cell whole transcriptome amplification methods to analyze expression patterns of our hand-picked 60 genes in individual neurons in the ARC. Immunohistochemical and single-cell qRT-PCR analyses show choline acetyltransferase (ChAT-expressing neurons in the ARC. Gene expression patterns are remarkably distinct in each individual cholinergic neuron. Two-thirds of cholinergic neurons express tyrosine hydroxylase (Th mRNA. A large subset of these Th-positive cholinergic neurons is GABAergic as they express the GABA synthesizing enzyme glutamate decarboxylase and vesicular GABA transporter transcripts. Some cholinergic neurons also express the vesicular glutamate transporter transcript gene. POMC and POMC-processing enzyme transcripts are found in a subpopulation of cholinergic neurons. Despite this heterogeneity, gene expression patterns in individual cholinergic cells appear to be highly regulated in a cell-specific manner. In fact, membrane receptor transcripts are clustered with their respective intracellular signaling and downstream targets. This novel population of cholinergic neurons may be part of the neural circuitries that detect homeostatic need for food and control the drive to eat.

  13. Training a Single Sigmoidal Neuron is Hard

    Czech Academy of Sciences Publication Activity Database

    Šíma, Jiří

    2002-01-01

    Roč. 14, č. 11 (2002), s. 2709-2729 ISSN 0899-7667 R&D Projects: GA MŠk LN00A056 Keywords : sigmoidal neuron * loading problem * NP-hardness Subject RIV: BA - General Mathematics Impact factor: 2.313, year: 2002

  14. [The ontogeny of the mirror neuron system].

    Science.gov (United States)

    Myowa-Yamakoshi, Masako

    2014-06-01

    Abstract Humans utilize the mirror neuron system to understand and predict others' actions. However, the ontogeny of the mirror neuron system remains unknown. Whether mirror neuron function is an innate trait or whether mirror neurons acquire their sensorimotor matching properties ontogenetically remains to be clarified. In this paper, I review the ontogenetic theory of the mirror neuron system. I then discuss the functioning of the mirror neuron system in the context of social cognitive abilities, which are unique to humans. Recently, some researchers argue that it is too early to interpret the function of mirror neurons as an understanding of the underlying psychological states of others. They imply that such functioning would require inferential cognitive processes that are known to involve areas outside the mirror neuron system. Filling in this missing link may be the key to elucidating the unique ability of humans to understand others' actions.

  15. Understanding metal homeostasis in primary cultured neurons. Studies using single neuron subcellular and quantitative metallomics.

    Science.gov (United States)

    Colvin, Robert A; Lai, Barry; Holmes, William R; Lee, Daewoo

    2015-07-01

    The purpose of this study was to demonstrate how single cell quantitative and subcellular metallomics inform us about both the spatial distribution and cellular mechanisms of metal buffering and homeostasis in primary cultured neurons from embryonic rat brain, which are often used as models of human disease involving metal dyshomeostasis. The present studies utilized synchrotron radiation X-ray fluorescence (SRXRF) and focused primarily on zinc and iron, two abundant metals in neurons that have been implicated in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Total single cell contents for calcium, iron, zinc, copper, manganese, and nickel were determined. Resting steady state zinc showed a diffuse distribution in both soma and processes, best defined by the mass profile of the neuron with an enrichment in the nucleus compared with the cytoplasm. Zinc buffering and homeostasis was studied using two modes of cellular zinc loading - transporter and ionophore (pyrithione) mediated. Single neuron zinc contents were shown to statistically significantly increase by either loading method - ionophore: 160 million to 7 billion; transporter 160 million to 280 million atoms per neuronal soma. The newly acquired and buffered zinc still showed a diffuse distribution. Soma and processes have about equal abilities to take up zinc via transporter mediated pathways. Copper levels are distributed diffusely as well, but are relatively higher in the processes relative to zinc levels. Prior studies have observed iron puncta in certain cell types, but others have not. In the present study, iron puncta were characterized in several primary neuronal types. The results show that iron puncta could be found in all neuronal types studied and can account for up to 50% of the total steady state content of iron in neuronal soma. Although other metals can be present in iron puncta, they are predominantly iron containing and do not appear to be

  16. Parameter estimation in neuronal stochastic differential equation models from intracellular recordings of membrane potentials in single neurons

    DEFF Research Database (Denmark)

    Ditlevsen, Susanne; Samson, Adeline

    2016-01-01

    Dynamics of the membrane potential in a single neuron can be studied by estimating biophysical parameters from intracellular recordings. Diffusion processes, given as continuous solutions to stochastic differential equations, are widely applied as models for the neuronal membrane potential evolut...

  17. Specific expression of channelrhodopsin-2 in single neurons of Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Cornelia Schmitt

    Full Text Available Optogenetic approaches using light-activated proteins like Channelrhodopsin-2 (ChR2 enable investigating the function of populations of neurons in live Caenorhabditis elegans (and other animals, as ChR2 expression can be targeted to these cells using specific promoters. Sub-populations of these neurons, or even single cells, can be further addressed by restricting the illumination to the cell of interest. However, this is technically demanding, particularly in free moving animals. Thus, it would be helpful if expression of ChR2 could be restricted to single neurons or neuron pairs, as even wide-field illumination would photostimulate only this particular cell. To this end we adopted the use of Cre or FLP recombinases and conditional ChR2 expression at the intersection of two promoter expression domains, i.e. in the cell of interest only. Success of this method depends on precise knowledge of the individual promoters' expression patterns and on relative expression levels of recombinase and ChR2. A bicistronic expression cassette with GFP helps to identify the correct expression pattern. Here we show specific expression in the AVA reverse command neurons and the aversive polymodal sensory ASH neurons. This approach shall enable to generate strains for optogenetic manipulation of each of the 302 C. elegans neurons. This may eventually allow to model the C. elegans nervous system in its entirety, based on functional data for each neuron.

  18. Crypt neurons express a single V1R-related ora gene.

    Science.gov (United States)

    Oka, Yuichiro; Saraiva, Luis R; Korsching, Sigrun I

    2012-03-01

    Both ciliated and microvillous olfactory sensory neuron populations express large families of olfactory receptor genes. However, individual neurons generally express only a single receptor gene according to the "one neuron-one receptor" rule. We report here that crypt neurons, the third type of olfactory neurons in fish species, use an even more restricted mode of expression. We recently identified a novel olfactory receptor family of 6 highly conserved G protein-coupled receptors, the v1r-like ora genes. We show now that a single member of this family, ora4 is expressed in nearly all crypt neurons, whereas the other 5 ora genes are not found in this cell type. Consistent with these findings, ora4 is never coexpressed with any of the remaining 5 ora genes. Furthermore, several lines of evidence indicate the absence of any other olfactory receptor families in crypt neurons. These results suggest that the vast majority of the crypt neuron population may select one and the same olfactory receptor gene, a "one cell type-one receptor" mode of expression. Such an expression pattern is familiar in the visual system, with rhodopsin as the sole light receptor of rod photoreceptor cells, but unexpected in the sense of smell.

  19. Racing to learn: statistical inference and learning in a single spiking neuron with adaptive kernels.

    Science.gov (United States)

    Afshar, Saeed; George, Libin; Tapson, Jonathan; van Schaik, André; Hamilton, Tara J

    2014-01-01

    This paper describes the Synapto-dendritic Kernel Adapting Neuron (SKAN), a simple spiking neuron model that performs statistical inference and unsupervised learning of spatiotemporal spike patterns. SKAN is the first proposed neuron model to investigate the effects of dynamic synapto-dendritic kernels and demonstrate their computational power even at the single neuron scale. The rule-set defining the neuron is simple: there are no complex mathematical operations such as normalization, exponentiation or even multiplication. The functionalities of SKAN emerge from the real-time interaction of simple additive and binary processes. Like a biological neuron, SKAN is robust to signal and parameter noise, and can utilize both in its operations. At the network scale neurons are locked in a race with each other with the fastest neuron to spike effectively "hiding" its learnt pattern from its neighbors. The robustness to noise, high speed, and simple building blocks not only make SKAN an interesting neuron model in computational neuroscience, but also make it ideal for implementation in digital and analog neuromorphic systems which is demonstrated through an implementation in a Field Programmable Gate Array (FPGA). Matlab, Python, and Verilog implementations of SKAN are available at: http://www.uws.edu.au/bioelectronics_neuroscience/bens/reproducible_research.

  20. Responses of single neurons and neuronal ensembles in frog first- and second-order olfactory neurons

    Czech Academy of Sciences Publication Activity Database

    Rospars, J. P.; Šanda, Pavel; Lánský, Petr; Duchamp-Viret, P.

    2013-01-01

    Roč. 1536, NOV 6 (2013), s. 144-158 ISSN 0006-8993 R&D Projects: GA ČR(CZ) GBP304/12/G069; GA ČR(CZ) GAP103/11/0282 Institutional support: RVO:67985823 Keywords : olfaction * spiking activity * neuronal model Subject RIV: JD - Computer Applications, Robotics Impact factor: 2.828, year: 2013

  1. Creation of defined single cell resolution neuronal circuits on microelectrode arrays

    Science.gov (United States)

    Pirlo, Russell Kirk

    2009-12-01

    The way cell-cell organization of neuronal networks influences activity and facilitates function is not well understood. Microelectrode arrays (MEAs) and advancing cell patterning technologies have enabled access to and control of in vitro neuronal networks spawning much new research in neuroscience and neuroengineering. We propose that small, simple networks of neurons with defined circuitry may serve as valuable research models where every connection can be analyzed, controlled and manipulated. Towards the goal of creating such neuronal networks we have applied microfabricated elastomeric membranes, surface modification and our unique laser cell patterning system to create defined neuronal circuits with single-cell precision on MEAs. Definition of synaptic connectivity was imposed by the 3D physical constraints of polydimethylsiloxane elastomeric membranes. The membranes had 20mum clear-through holes and 2-3mum deep channels which when applied to the surface of the MEA formed microwells to confine neurons to electrodes connected via shallow tunnels to direct neurite outgrowth. Tapering and turning of channels was used to influence neurite polarity. Biocompatibility of the membranes was increased by vacuum baking, oligomer extraction, and autoclaving. Membranes were bound to the MEA by oxygen plasma treatment and heated pressure. The MEA/membrane surface was treated with oxygen plasma, poly-D-lysine and laminin to improve neuron attachment, survival and neurite outgrowth. Prior to cell patterning the outer edge of culture area was seeded with 5x10 5 cells per cm and incubated for 2 days. Single embryonic day 7 chick forebrain neurons were then patterned into the microwells and onto the electrodes using our laser cell patterning system. Patterned neurons successfully attached to and were confined to the electrodes. Neurites extended through the interconnecting channels and connected with adjacent neurons. These results demonstrate that neuronal circuits can be

  2. Multi-Scale Molecular Deconstruction of the Serotonin Neuron System.

    Science.gov (United States)

    Okaty, Benjamin W; Freret, Morgan E; Rood, Benjamin D; Brust, Rachael D; Hennessy, Morgan L; deBairos, Danielle; Kim, Jun Chul; Cook, Melloni N; Dymecki, Susan M

    2015-11-18

    Serotonergic (5HT) neurons modulate diverse behaviors and physiology and are implicated in distinct clinical disorders. Corresponding diversity in 5HT neuronal phenotypes is becoming apparent and is likely rooted in molecular differences, yet a comprehensive approach characterizing molecular variation across the 5HT system is lacking, as is concomitant linkage to cellular phenotypes. Here we combine intersectional fate mapping, neuron sorting, and genome-wide RNA-seq to deconstruct the mouse 5HT system at multiple levels of granularity-from anatomy, to genetic sublineages, to single neurons. Our unbiased analyses reveal principles underlying system organization, 5HT neuron subtypes, constellations of differentially expressed genes distinguishing subtypes, and predictions of subtype-specific functions. Using electrophysiology, subtype-specific neuron silencing, and conditional gene knockout, we show that these molecularly defined 5HT neuron subtypes are functionally distinct. Collectively, this resource classifies molecular diversity across the 5HT system and discovers sertonergic subtypes, markers, organizing principles, and subtype-specific functions with potential disease relevance. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Massively Parallel Single Nucleus Transcriptional Profiling Defines Spinal Cord Neurons and Their Activity during Behavior

    Directory of Open Access Journals (Sweden)

    Anupama Sathyamurthy

    2018-02-01

    Full Text Available To understand the cellular basis of behavior, it is necessary to know the cell types that exist in the nervous system and their contributions to function. Spinal networks are essential for sensory processing and motor behavior and provide a powerful system for identifying the cellular correlates of behavior. Here, we used massively parallel single nucleus RNA sequencing (snRNA-seq to create an atlas of the adult mouse lumbar spinal cord. We identified and molecularly characterized 43 neuronal populations. Next, we leveraged the snRNA-seq approach to provide unbiased identification of neuronal populations that were active following a sensory and a motor behavior, using a transcriptional signature of neuronal activity. This approach can be used in the future to link single nucleus gene expression data with dynamic biological responses to behavior, injury, and disease.

  4. Massively Parallel Single Nucleus Transcriptional Profiling Defines Spinal Cord Neurons and Their Activity during Behavior.

    Science.gov (United States)

    Sathyamurthy, Anupama; Johnson, Kory R; Matson, Kaya J E; Dobrott, Courtney I; Li, Li; Ryba, Anna R; Bergman, Tzipporah B; Kelly, Michael C; Kelley, Matthew W; Levine, Ariel J

    2018-02-20

    To understand the cellular basis of behavior, it is necessary to know the cell types that exist in the nervous system and their contributions to function. Spinal networks are essential for sensory processing and motor behavior and provide a powerful system for identifying the cellular correlates of behavior. Here, we used massively parallel single nucleus RNA sequencing (snRNA-seq) to create an atlas of the adult mouse lumbar spinal cord. We identified and molecularly characterized 43 neuronal populations. Next, we leveraged the snRNA-seq approach to provide unbiased identification of neuronal populations that were active following a sensory and a motor behavior, using a transcriptional signature of neuronal activity. This approach can be used in the future to link single nucleus gene expression data with dynamic biological responses to behavior, injury, and disease. Published by Elsevier Inc.

  5. Carbon nanotubes: artificial nanomaterials to engineer single neurons and neuronal networks.

    Science.gov (United States)

    Fabbro, Alessandra; Bosi, Susanna; Ballerini, Laura; Prato, Maurizio

    2012-08-15

    In the past decade, nanotechnology applications to the nervous system have often involved the study and the use of novel nanomaterials to improve the diagnosis and therapy of neurological diseases. In the field of nanomedicine, carbon nanotubes are evaluated as promising materials for diverse therapeutic and diagnostic applications. Besides, carbon nanotubes are increasingly employed in basic neuroscience approaches, and they have been used in the design of neuronal interfaces or in that of scaffolds promoting neuronal growth in vitro. Ultimately, carbon nanotubes are thought to hold the potential for the development of innovative neurological implants. In this framework, it is particularly relevant to document the impact of interfacing such materials with nerve cells. Carbon nanotubes were shown, when modified with biologically active compounds or functionalized in order to alter their charge, to affect neurite outgrowth and branching. Notably, purified carbon nanotubes used as scaffolds can promote the formation of nanotube-neuron hybrid networks, able per se to affect neuron integrative abilities, network connectivity, and synaptic plasticity. We focus this review on our work over several years directed to investigate the ability of carbon nanotube platforms in providing a new tool for nongenetic manipulations of neuronal performance and network signaling.

  6. Transcriptional profiling at whole population and single cell levels reveals somatosensory neuron molecular diversity

    Science.gov (United States)

    Chiu, Isaac M; Barrett, Lee B; Williams, Erika K; Strochlic, David E; Lee, Seungkyu; Weyer, Andy D; Lou, Shan; Bryman, Gregory S; Roberson, David P; Ghasemlou, Nader; Piccoli, Cara; Ahat, Ezgi; Wang, Victor; Cobos, Enrique J; Stucky, Cheryl L; Ma, Qiufu; Liberles, Stephen D; Woolf, Clifford J

    2014-01-01

    The somatosensory nervous system is critical for the organism's ability to respond to mechanical, thermal, and nociceptive stimuli. Somatosensory neurons are functionally and anatomically diverse but their molecular profiles are not well-defined. Here, we used transcriptional profiling to analyze the detailed molecular signatures of dorsal root ganglion (DRG) sensory neurons. We used two mouse reporter lines and surface IB4 labeling to purify three major non-overlapping classes of neurons: 1) IB4+SNS-Cre/TdTomato+, 2) IB4−SNS-Cre/TdTomato+, and 3) Parv-Cre/TdTomato+ cells, encompassing the majority of nociceptive, pruriceptive, and proprioceptive neurons. These neurons displayed distinct expression patterns of ion channels, transcription factors, and GPCRs. Highly parallel qRT-PCR analysis of 334 single neurons selected by membership of the three populations demonstrated further diversity, with unbiased clustering analysis identifying six distinct subgroups. These data significantly increase our knowledge of the molecular identities of known DRG populations and uncover potentially novel subsets, revealing the complexity and diversity of those neurons underlying somatosensation. DOI: http://dx.doi.org/10.7554/eLife.04660.001 PMID:25525749

  7. Somatosensory neuron types identified by high-coverage single-cell RNA-sequencing and functional heterogeneity

    Science.gov (United States)

    Li, Chang-Lin; Li, Kai-Cheng; Wu, Dan; Chen, Yan; Luo, Hao; Zhao, Jing-Rong; Wang, Sa-Shuang; Sun, Ming-Ming; Lu, Ying-Jin; Zhong, Yan-Qing; Hu, Xu-Ye; Hou, Rui; Zhou, Bei-Bei; Bao, Lan; Xiao, Hua-Sheng; Zhang, Xu

    2016-01-01

    Sensory neurons are distinguished by distinct signaling networks and receptive characteristics. Thus, sensory neuron types can be defined by linking transcriptome-based neuron typing with the sensory phenotypes. Here we classify somatosensory neurons of the mouse dorsal root ganglion (DRG) by high-coverage single-cell RNA-sequencing (10 950 ± 1 218 genes per neuron) and neuron size-based hierarchical clustering. Moreover, single DRG neurons responding to cutaneous stimuli are recorded using an in vivo whole-cell patch clamp technique and classified by neuron-type genetic markers. Small diameter DRG neurons are classified into one type of low-threshold mechanoreceptor and five types of mechanoheat nociceptors (MHNs). Each of the MHN types is further categorized into two subtypes. Large DRG neurons are categorized into four types, including neurexophilin 1-expressing MHNs and mechanical nociceptors (MNs) expressing BAI1-associated protein 2-like 1 (Baiap2l1). Mechanoreceptors expressing trafficking protein particle complex 3-like and Baiap2l1-marked MNs are subdivided into two subtypes each. These results provide a new system for cataloging somatosensory neurons and their transcriptome databases. PMID:26691752

  8. A Route to Chaotic Behavior of Single Neuron Exposed to External Electromagnetic Radiation.

    Science.gov (United States)

    Feng, Peihua; Wu, Ying; Zhang, Jiazhong

    2017-01-01

    Non-linear behaviors of a single neuron described by Fitzhugh-Nagumo (FHN) neuron model, with external electromagnetic radiation considered, is investigated. It is discovered that with external electromagnetic radiation in form of a cosine function, the mode selection of membrane potential occurs among periodic, quasi-periodic, and chaotic motions as increasing the frequency of external transmembrane current, which is selected as a sinusoidal function. When the frequency is small or large enough, periodic, and quasi-periodic motions are captured alternatively. Otherwise, when frequency is in interval 0.778 electromagnetic radiation. The frequency apparently plays a more important role in determining the system behavior.

  9. Neural Plasticity: Single Neuron Models for Discrimination and Generalization and AN Experimental Ensemble Approach.

    Science.gov (United States)

    Munro, Paul Wesley

    A special form for modification of neuronal response properties is described in which the change in the synaptic state vector is parallel to the vector of afferent activity. This process is termed "parallel modification" and its theoretical and experimental implications are examined. A theoretical framework has been devised to describe the complementary functions of generalization and discrimination by single neurons. This constitutes a basis for three models each describing processes for the development of maximum selectivity (discrimination) and minimum selectivity (generalization) by neurons. Strengthening and weakening of synapses is expressed as a product of the presynaptic activity and a nonlinear modulatory function of two postsynaptic variables--namely a measure of the spatially integrated activity of the cell and a temporal integration (time-average) of that activity. Some theorems are given for low-dimensional systems and computer simulation results from more complex systems are discussed. Model neurons that achieve high selectivity mimic the development of cat visual cortex neurons in a wide variety of rearing conditions. A role for low-selectivity neurons is proposed in which they provide inhibitory input to neurons of the opposite type, thereby suppressing the common component of a pattern class and enhancing their selective properties. Such contrast-enhancing circuits are analyzed and supported by computer simulation. To enable maximum selectivity, the net inhibition to a cell must become strong enough to offset whatever excitation is produced by the non-preferred patterns. Ramifications of parallel models for certain experimental paradigms are analyzed. A methodology is outlined for testing synaptic modification hypotheses in the laboratory. A plastic projection from one neuronal population to another will attain stable equilibrium under periodic electrical stimulation of constant intensity. The perturbative effect of shifting this intensity level

  10. Reliable neuronal systems: the importance of heterogeneity.

    Directory of Open Access Journals (Sweden)

    Johannes Lengler

    Full Text Available For every engineer it goes without saying: in order to build a reliable system we need components that consistently behave precisely as they should. It is also well known that neurons, the building blocks of brains, do not satisfy this constraint. Even neurons of the same type come with huge variances in their properties and these properties also vary over time. Synapses, the connections between neurons, are highly unreliable in forwarding signals. In this paper we argue that both these fact add variance to neuronal processes, and that this variance is not a handicap of neural systems, but that instead predictable and reliable functional behavior of neural systems depends crucially on this variability. In particular, we show that higher variance allows a recurrently connected neural population to react more sensitively to incoming signals, and processes them faster and more energy efficient. This, for example, challenges the general assumption that the intrinsic variability of neurons in the brain is a defect that has to be overcome by synaptic plasticity in the process of learning.

  11. Reconstruction of neuronal input through modeling single-neuron dynamics and computations

    International Nuclear Information System (INIS)

    Qin, Qing; Wang, Jiang; Yu, Haitao; Deng, Bin; Chan, Wai-lok

    2016-01-01

    Mathematical models provide a mathematical description of neuron activity, which can better understand and quantify neural computations and corresponding biophysical mechanisms evoked by stimulus. In this paper, based on the output spike train evoked by the acupuncture mechanical stimulus, we present two different levels of models to describe the input-output system to achieve the reconstruction of neuronal input. The reconstruction process is divided into two steps: First, considering the neuronal spiking event as a Gamma stochastic process. The scale parameter and the shape parameter of Gamma process are, respectively, defined as two spiking characteristics, which are estimated by a state-space method. Then, leaky integrate-and-fire (LIF) model is used to mimic the response system and the estimated spiking characteristics are transformed into two temporal input parameters of LIF model, through two conversion formulas. We test this reconstruction method by three different groups of simulation data. All three groups of estimates reconstruct input parameters with fairly high accuracy. We then use this reconstruction method to estimate the non-measurable acupuncture input parameters. Results show that under three different frequencies of acupuncture stimulus conditions, estimated input parameters have an obvious difference. The higher the frequency of the acupuncture stimulus is, the higher the accuracy of reconstruction is.

  12. Reconstruction of neuronal input through modeling single-neuron dynamics and computations

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Qing; Wang, Jiang; Yu, Haitao; Deng, Bin, E-mail: dengbin@tju.edu.cn; Chan, Wai-lok [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China)

    2016-06-15

    Mathematical models provide a mathematical description of neuron activity, which can better understand and quantify neural computations and corresponding biophysical mechanisms evoked by stimulus. In this paper, based on the output spike train evoked by the acupuncture mechanical stimulus, we present two different levels of models to describe the input-output system to achieve the reconstruction of neuronal input. The reconstruction process is divided into two steps: First, considering the neuronal spiking event as a Gamma stochastic process. The scale parameter and the shape parameter of Gamma process are, respectively, defined as two spiking characteristics, which are estimated by a state-space method. Then, leaky integrate-and-fire (LIF) model is used to mimic the response system and the estimated spiking characteristics are transformed into two temporal input parameters of LIF model, through two conversion formulas. We test this reconstruction method by three different groups of simulation data. All three groups of estimates reconstruct input parameters with fairly high accuracy. We then use this reconstruction method to estimate the non-measurable acupuncture input parameters. Results show that under three different frequencies of acupuncture stimulus conditions, estimated input parameters have an obvious difference. The higher the frequency of the acupuncture stimulus is, the higher the accuracy of reconstruction is.

  13. Audio-vocal interaction in single neurons of the monkey ventrolateral prefrontal cortex.

    Science.gov (United States)

    Hage, Steffen R; Nieder, Andreas

    2015-05-06

    Complex audio-vocal integration systems depend on a strong interconnection between the auditory and the vocal motor system. To gain cognitive control over audio-vocal interaction during vocal motor control, the PFC needs to be involved. Neurons in the ventrolateral PFC (VLPFC) have been shown to separately encode the sensory perceptions and motor production of vocalizations. It is unknown, however, whether single neurons in the PFC reflect audio-vocal interactions. We therefore recorded single-unit activity in the VLPFC of rhesus monkeys (Macaca mulatta) while they produced vocalizations on command or passively listened to monkey calls. We found that 12% of randomly selected neurons in VLPFC modulated their discharge rate in response to acoustic stimulation with species-specific calls. Almost three-fourths of these auditory neurons showed an additional modulation of their discharge rates either before and/or during the monkeys' motor production of vocalization. Based on these audio-vocal interactions, the VLPFC might be well positioned to combine higher order auditory processing with cognitive control of the vocal motor output. Such audio-vocal integration processes in the VLPFC might constitute a precursor for the evolution of complex learned audio-vocal integration systems, ultimately giving rise to human speech. Copyright © 2015 the authors 0270-6474/15/357030-11$15.00/0.

  14. The Mirror Neuron System: A Fresh View

    Science.gov (United States)

    Casile, Antonino; Caggiano, Vittorio; Ferrari, Pier Francesco

    2013-01-01

    Mirror neurons are a class of visuomotor neurons in the monkey premotor and parietal cortices that discharge during the execution and observation of goal-directed motor acts. They are deemed to be at the basis of primates’ social abilities. In this review, the authors provide a fresh view about two still open questions about mirror neurons. The first question is their possible functional role. By reviewing recent neurophysiological data, the authors suggest that mirror neurons might represent a flexible system that encodes observed actions in terms of several behaviorally relevant features. The second question concerns the possible developmental mechanisms responsible for their initial emergence. To provide a possible answer to question, the authors review two different aspects of sensorimotor development: facial and hand movements, respectively. The authors suggest that possibly two different “mirror” systems might underlie the development of action understanding and imitative abilities in the two cases. More specifically, a possibly prewired system already present at birth but shaped by the social environment might underlie the early development of facial imitative abilities. On the contrary, an experience-dependent system might subserve perception-action couplings in the case of hand movements. The development of this latter system might be critically dependent on the observation of own movements. PMID:21467305

  15. G gene-deficient single-round rabies viruses for neuronal circuit analysis.

    Science.gov (United States)

    Ghanem, Alexander; Conzelmann, Karl-Klaus

    2016-05-02

    Rhabdoviruses like the neurotropic rabies virus are fully amenable to pseudotyping with homologous and heterologous membrane proteins, which is being harnessed for the study of viral envelope proteins, viral retargeting, or immunization purposes. Particularly, pseudotyped delta G rabies viruses are emerging as safe and superb tools for mapping direct synaptic connections and analyzing neuronal circuits in the central and peripheral nervous system, which is a fundamental pillar of modern neuroscience. Such retrograde rabies mono-transsynaptic tracers in combination with optogenetics and modern in vivo imaging methods are opening entirely new avenues of investigation in neuroscience and help in answering major outstanding questions of connectivity and function of the nervous system. Here, we provide a brief overview on the biology and life cycle of rabies virus with emphasis on neuronal infection via axon ends, transport, and transsynaptic transmission of the virus. Pseudotyping of single-round, G-deleted virus with foreign glycoproteins allows to determine tropism and entry route, resulting in either retro- or anterograde labeling of neurons. Pseudotyping in vitro also allows specific targeting of cells that serve as starter cells for transsynaptic tracing, and pseudotyping in situ for a single (mono-transsynaptic) step of transmission to presynaptic neurons. We describe principle and experimental variations for defining "starter" cells for mono-transsynaptic tracing with ΔG rabies virus and outline open questions and limitations of the approach. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Synaptic and intrinsic homeostasis cooperate to optimize single neuron response properties and tune integrator circuits

    Science.gov (United States)

    2016-01-01

    Homeostatic processes that provide negative feedback to regulate neuronal firing rate are essential for normal brain function, and observations suggest that multiple such processes may operate simultaneously in the same network. We pose two questions: why might a diversity of homeostatic pathways be necessary, and how can they operate in concert without opposing and undermining each other? To address these questions, we perform a computational and analytical study of cell-intrinsic homeostasis and synaptic homeostasis in single-neuron and recurrent circuit models. We demonstrate analytically and in simulation that when two such mechanisms are controlled on a long time scale by firing rate via simple and general feedback rules, they can robustly operate in tandem to tune the mean and variance of single neuron's firing rate to desired goals. This property allows the system to recover desired behavior after chronic changes in input statistics. We illustrate the power of this homeostatic tuning scheme by using it to regain high mutual information between neuronal input and output after major changes in input statistics. We then show that such dual homeostasis can be applied to tune the behavior of a neural integrator, a system that is notoriously sensitive to variation in parameters. These results are robust to variation in goals and model parameters. We argue that a set of homeostatic processes that appear to redundantly regulate mean firing rate may work together to control firing rate mean and variance and thus maintain performance in a parameter-sensitive task such as integration. PMID:27306675

  17. The mirror neuron system : New frontiers

    NARCIS (Netherlands)

    Keysers, Christian; Fadiga, Luciano

    2008-01-01

    Since the discovery of mirror neurons, much effort has been invested into Studying their location and properties in the human brain. Here we review these original findings and introduce the Main topics of this special issue of Social Neuroscience. What does the mirror system code? How is the mirror

  18. Spiking irregularity and frequency modulate the behavioral report of single-neuron stimulation.

    Science.gov (United States)

    Doron, Guy; von Heimendahl, Moritz; Schlattmann, Peter; Houweling, Arthur R; Brecht, Michael

    2014-02-05

    The action potential activity of single cortical neurons can evoke measurable sensory effects, but it is not known how spiking parameters and neuronal subtypes affect the evoked sensations. Here, we examined the effects of spike train irregularity, spike frequency, and spike number on the detectability of single-neuron stimulation in rat somatosensory cortex. For regular-spiking, putative excitatory neurons, detectability increased with spike train irregularity and decreasing spike frequencies but was not affected by spike number. Stimulation of single, fast-spiking, putative inhibitory neurons led to a larger sensory effect compared to regular-spiking neurons, and the effect size depended only on spike irregularity. An ideal-observer analysis suggests that, under our experimental conditions, rats were using integration windows of a few hundred milliseconds or more. Our data imply that the behaving animal is sensitive to single neurons' spikes and even to their temporal patterning. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Variations in interpulse interval of double action potentials during propagation in single neurons.

    Science.gov (United States)

    Villagran-Vargas, Edgar; Rodríguez-Sosa, Leonardo; Hustert, Reinhold; Blicher, Andreas; Laub, Katrine; Heimburg, Thomas

    2013-02-01

    In this work, we analyzed the interpulse interval (IPI) of doublets and triplets in single neurons of three biological models. Pulse trains with two or three spikes originate from the process of sensory mechanotransduction in neurons of the locust femoral nerve, as well as through spontaneous activity both in the abdominal motor neurons and the caudal photoreceptor of the crayfish. We show that the IPI for successive low-frequency single action potentials, as recorded with two electrodes at two different points along a nerve axon, remains constant. On the other hand, IPI in doublets either remains constant, increases or decreases by up to about 3 ms as the pair propagates. When IPI increases, the succeeding pulse travels at a slower speed than the preceding one. When IPI is reduced, the succeeding pulse travels faster than the preceding one and may exceed the normal value for the specific neuron. In both cases, IPI increase and reduction, the speed of the preceding pulse differs slightly from the normal value, therefore the two pulses travel at different speeds in the same nerve axon. On the basis of our results, we may state that the effect of attraction or repulsion in doublets suggests a tendency of the spikes to reach a stable configuration. We strongly suggest that the change in IPI during spike propagation of doublets opens up a whole new realm of possibilities for neural coding and may have major implications for understanding information processing in nervous systems. Copyright © 2012 Wiley Periodicals, Inc.

  20. Complete functional characterization of sensory neurons by system identification.

    Science.gov (United States)

    Wu, Michael C-K; David, Stephen V; Gallant, Jack L

    2006-01-01

    System identification is a growing approach to sensory neurophysiology that facilitates the development of quantitative functional models of sensory processing. This approach provides a clear set of guidelines for combining experimental data with other knowledge about sensory function to obtain a description that optimally predicts the way that neurons process sensory information. This prediction paradigm provides an objective method for evaluating and comparing computational models. In this chapter we review many of the system identification algorithms that have been used in sensory neurophysiology, and we show how they can be viewed as variants of a single statistical inference problem. We then review many of the practical issues that arise when applying these methods to neurophysiological experiments: stimulus selection, behavioral control, model visualization, and validation. Finally we discuss several problems to which system identification has been applied recently, including one important long-term goal of sensory neuroscience: developing models of sensory systems that accurately predict neuronal responses under completely natural conditions.

  1. Deep learning and shapes similarity for joint segmentation and tracing single neurons in SEM images

    Science.gov (United States)

    Rao, Qiang; Xiao, Chi; Han, Hua; Chen, Xi; Shen, Lijun; Xie, Qiwei

    2017-02-01

    Extracting the structure of single neurons is critical for understanding how they function within the neural circuits. Recent developments in microscopy techniques, and the widely recognized need for openness and standardization provide a community resource for automated reconstruction of dendritic and axonal morphology of single neurons. In order to look into the fine structure of neurons, we use the Automated Tape-collecting Ultra Microtome Scanning Electron Microscopy (ATUM-SEM) to get images sequence of serial sections of animal brain tissue that densely packed with neurons. Different from other neuron reconstruction method, we propose a method that enhances the SEM images by detecting the neuronal membranes with deep convolutional neural network (DCNN) and segments single neurons by active contour with group shape similarity. We joint the segmentation and tracing together and they interact with each other by alternate iteration that tracing aids the selection of candidate region patch for active contour segmentation while the segmentation provides the neuron geometrical features which improve the robustness of tracing. The tracing model mainly relies on the neuron geometrical features and is updated after neuron being segmented on the every next section. Our method enables the reconstruction of neurons of the drosophila mushroom body which is cut to serial sections and imaged under SEM. Our method provides an elementary step for the whole reconstruction of neuronal networks.

  2. Language comprehension warps the mirror neuron system

    Directory of Open Access Journals (Sweden)

    Noah eZarr

    2013-12-01

    Full Text Available Is the mirror neuron system (MNS used in language understanding? According to embodied accounts of language comprehension, understanding sentences describing actions makes use of neural mechanisms of action control, including the MNS. Consequently, repeatedly comprehending sentences describing similar actions should induce adaptation of the MNS thereby warping its use in other cognitive processes such as action recognition and prediction. To test this prediction, participants read blocks of multiple sentences where each sentence in the block described transfer of objects in a direction away or toward the reader. Following each block, adaptation was measured by having participants predict the end-point of videotaped actions. The adapting sentences disrupted prediction of actions in the same direction, but a only for videos of biological motion, and b only when the effector implied by the language (e.g., the hand matched the videos. These findings are signatures of the mirror neuron system.

  3. Effects of dynamic synapses on noise-delayed response latency of a single neuron

    Science.gov (United States)

    Uzuntarla, M.; Ozer, M.; Ileri, U.; Calim, A.; Torres, J. J.

    2015-12-01

    The noise-delayed decay (NDD) phenomenon emerges when the first-spike latency of a periodically forced stochastic neuron exhibits a maximum for a particular range of noise intensity. Here, we investigate the latency response dynamics of a single Hodgkin-Huxley neuron that is subject to both a suprathreshold periodic stimulus and a background activity arriving through dynamic synapses. We study the first-spike latency response as a function of the presynaptic firing rate f . This constitutes a more realistic scenario than previous works, since f provides a suitable biophysically realistic parameter to control the level of activity in actual neural systems. We first report on the emergence of classical NDD behavior as a function of f for the limit of static synapses. Second, we show that when short-term depression and facilitation mechanisms are included at the synapses, different NDD features can be found due to their modulatory effect on synaptic current fluctuations. For example, an intriguing double NDD (DNDD) behavior occurs for different sets of relevant synaptic parameters. Moreover, depending on the balance between synaptic depression and synaptic facilitation, single NDD or DNDD can prevail, in such a way that synaptic facilitation favors the emergence of DNDD whereas synaptic depression favors the existence of single NDD. Here we report the existence of the DNDD effect in the response latency dynamics of a neuron.

  4. A single GABAergic neuron mediates feedback of odor-evoked signals in the mushroom body of larval Drosophila

    Directory of Open Access Journals (Sweden)

    Liria Monica Masuda-Nakagawa

    2014-04-01

    Full Text Available Inhibition has a central role in defining the selectivity of the responses of higher order neurons to sensory stimuli. However, the circuit mechanisms of regulation of these responses by inhibitory neurons are still unclear. In Drosophila, the mushroom bodies (MBs are necessary for olfactory memory, and by implication for the selectivity of learned responses to specific odors. To understand the circuitry of inhibition in the calyx (the input dendritic region of the MBs, and its relationship with MB excitatory activity, we used the simple anatomy of the Drosophila larval olfactory system to identify any inhibitory inputs that could contribute to the selectivity of MB odor responses. We found that a single neuron accounts for all detectable GABA innervation in the calyx of the MBs, and that this neuron has presynaptic terminals in the calyx and postsynaptic branches in the MB lobes (output axonal area. We call this neuron the larval anterior paired lateral (APL neuron, because of its similarity to the previously described adult APL neuron. Reconstitution of GFP partners (GRASP suggests that the larval APL makes extensive contacts with the MB intrinsic neurons, Kenyon Cells (KCs, but few contacts with incoming projection neurons. Using calcium imaging of neuronal activity in live larvae, we show that the larval APL responds to odors, in a mannner that requires output from KCs. Our data suggest that the larval APL is the sole GABAergic neuron that innervates the MB input region and carries inhibitory feedback from the MB output region, consistent with a role in modulating the olfactory selectivity of MB neurons.

  5. Reward-timing-dependent bidirectional modulation of cortical microcircuits during optical single-neuron operant conditioning.

    Science.gov (United States)

    Hira, Riichiro; Ohkubo, Fuki; Masamizu, Yoshito; Ohkura, Masamichi; Nakai, Junichi; Okada, Takashi; Matsuzaki, Masanori

    2014-11-24

    Animals rapidly adapt to environmental change. To reveal how cortical microcircuits are rapidly reorganized when an animal recognizes novel reward contingency, we conduct two-photon calcium imaging of layer 2/3 motor cortex neurons in mice and simultaneously reinforce the activity of a single cortical neuron with water delivery. Here we show that when the target neuron is not relevant to a pre-trained forelimb movement, the mouse increases the target neuron activity and the number of rewards delivered during 15-min operant conditioning without changing forelimb movement behaviour. The reinforcement bidirectionally modulates the activity of subsets of non-target neurons, independent of distance from the target neuron. The bidirectional modulation depends on the relative timing between the reward delivery and the neuronal activity, and is recreated by pairing reward delivery and photoactivation of a subset of neurons. Reward-timing-dependent bidirectional modulation may be one of the fundamental processes in microcircuit reorganization for rapid adaptation.

  6. Neurons the decision makers, Part I: The firing function of a single neuron.

    Science.gov (United States)

    Saaty, Thomas

    2017-02-01

    This paper is concerned with understanding synthesis of electric signals in the neural system based on making pairwise comparisons. Fundamentally, every person and every animal are born with the talent to compare stimuli from things that share properties in space or over time. Comparisons always need experience to distinguish among things. Pairwise comparisons are numerically reciprocal. If a value is assigned to the larger of two elements that have a given property when compared with the smaller one, then the smaller has the reciprocal of that value when compared with the larger. Because making comparisons requires the reciprocal property, we need mathematics that can cope with division. There are four division algebras that would allow us to use our reciprocals arising from comparisons: The real numbers, the complex numbers, the non-commutative quaternions and the non-associative octonions. Rather than inferring function as from electric flow in a network, in this paper we infer the flow from function. Neurons fire in response to stimuli and their firings vary relative to the intensities of the stimuli. We believe neurons use some kind of pairwise comparison mechanism to determine when to fire based on the stimuli they receive. The ideas we develop here about flows are used to deduce how a system based on this kind of firing determination works and can be described. Furthermore the firing of neurons requires continuous comparisons. To develop a formula describing the output of these pairwise comparisons requires solving Fredholm's equation of the second kind which is satisfied if and only if a simple functional equation has solutions. The Fourier transform of the real solution of this equation leads to inverse square laws like those that are common in physics. The Fourier transform applied to a complex valued solution leads to Dirac type of firings. Such firings are dense in the very general fields of functions known as Sobolev spaces and thus can be used to

  7. Imaging Action Potential in Single Mammalian Neurons by Tracking the Accompanying Sub-Nanometer Mechanical Motion.

    Science.gov (United States)

    Yang, Yunze; Liu, Xian-Wei; Wang, Hui; Yu, Hui; Guan, Yan; Wang, Shaopeng; Tao, Nongjian

    2018-03-28

    Action potentials in neurons have been studied traditionally by intracellular electrophysiological recordings and more recently by the fluorescence detection methods. Here we describe a label-free optical imaging method that can measure mechanical motion in single cells with a sub-nanometer detection limit. Using the method, we have observed sub-nanometer mechanical motion accompanying the action potential in single mammalian neurons by averaging the repeated action potential spikes. The shape and width of the transient displacement are similar to those of the electrically recorded action potential, but the amplitude varies from neuron to neuron, and from one region of a neuron to another, ranging from 0.2-0.4 nm. The work indicates that action potentials may be studied noninvasively in single mammalian neurons by label-free imaging of the accompanying sub-nanometer mechanical motion.

  8. Single Purpose Satellite Systems

    OpenAIRE

    Watkins, Warren

    1989-01-01

    This paper examines the need for tactically responsive space systems capable of supporting battlefield and fleet commanders. Terminology used to describe this category of satellite system varies according to organization or agency. The Defense Advanced Research Projects Agency's Lightsat, the Naval Space Command's SPINSAT, and the Air Force Space Command s TACSAT, are reviewed. The United State Space Command's space support mission IS addressed and the role single-purpose satellites can play ...

  9. Zooming Out of Single Neurons Reveals Structure in Mnemonic Representations.

    Science.gov (United States)

    Jazayeri, Mehrdad

    2017-12-20

    In this issue of Neuron, Rossi-Pool et al. (2017) show that the complex and heterogeneous response profiles of individual neurons in the dorsal premotor cortex during comparison of tactile temporal patterns can be understood in terms of two robust activity patterns that emerge across the population. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. A Route to Chaotic Behavior of Single Neuron Exposed to External Electromagnetic Radiation

    Directory of Open Access Journals (Sweden)

    Peihua Feng

    2017-10-01

    Full Text Available Non-linear behaviors of a single neuron described by Fitzhugh-Nagumo (FHN neuron model, with external electromagnetic radiation considered, is investigated. It is discovered that with external electromagnetic radiation in form of a cosine function, the mode selection of membrane potential occurs among periodic, quasi-periodic, and chaotic motions as increasing the frequency of external transmembrane current, which is selected as a sinusoidal function. When the frequency is small or large enough, periodic, and quasi-periodic motions are captured alternatively. Otherwise, when frequency is in interval 0.778 < ω < 2.208, chaotic motion characterizes the main behavior type. The mechanism of mode transition from quasi-periodic to chaotic motion is also observed when varying the amplitude of external electromagnetic radiation. The frequency apparently plays a more important role in determining the system behavior.

  11. A single gene target of an ETS-family transcription factor determines neuronal CO2-chemosensitivity.

    Directory of Open Access Journals (Sweden)

    Julia P Brandt

    Full Text Available Many animals possess neurons specialized for the detection of carbon dioxide (CO(2, which acts as a cue to elicit behavioral responses and is also an internally generated product of respiration that regulates animal physiology. In many organisms how such neurons detect CO(2 is poorly understood. We report here a mechanism that endows C. elegans neurons with the ability to detect CO(2. The ETS-5 transcription factor is necessary for the specification of CO(2-sensing BAG neurons. Expression of a single ETS-5 target gene, gcy-9, which encodes a receptor-type guanylate cyclase, is sufficient to bypass a requirement for ets-5 in CO(2-detection and transforms neurons into CO(2-sensing neurons. Because ETS-5 and GCY-9 are members of gene families that are conserved between nematodes and vertebrates, a similar mechanism might act in the specification of CO(2-sensing neurons in other phyla.

  12. Computation in a single neuron: Hodgkin and Huxley revisited

    OpenAIRE

    Arcas, Blaise Aguera y; Fairhall, Adrienne L.; Bialek, William

    2002-01-01

    A spiking neuron ``computes'' by transforming a complex dynamical input into a train of action potentials, or spikes. The computation performed by the neuron can be formulated as dimensional reduction, or feature detection, followed by a nonlinear decision function over the low dimensional space. Generalizations of the reverse correlation technique with white noise input provide a numerical strategy for extracting the relevant low dimensional features from experimental data, and information t...

  13. Binaural response characteristics of single neurons in the medial superior olivary nucleus of the albino rat.

    Science.gov (United States)

    Inbody, S B; Feng, A S

    1981-04-06

    Binaural response properties of single neurons in the medial superior olivary nucleus (MSO) were investigated in the anesthetized rat. Stimulus parameters studied included interaural time difference and interaural intensity difference. In the present study, of the two cell types observed in the rat MSO nucleus, EE and EI, variations in the binaural response properties of the MSO neurons permitted further subclassifications, which may be related to the dendritic dominance of the MSO neurons.

  14. Laser capture microdissection of enriched populations of neurons or single neurons for gene expression analysis after traumatic brain injury.

    Science.gov (United States)

    Boone, Deborah R; Sell, Stacy L; Hellmich, Helen Lee

    2013-04-10

    Long-term cognitive disability after TBI is associated with injury-induced neurodegeneration in the hippocampus-a region in the medial temporal lobe that is critical for learning, memory and executive function. Hence our studies focus on gene expression analysis of specific neuronal populations in distinct subregions of the hippocampus. The technique of laser capture microdissection (LCM), introduced in 1996 by Emmert-Buck, et al., has allowed for significant advances in gene expression analysis of single cells and enriched populations of cells from heterogeneous tissues such as the mammalian brain that contains thousands of functional cell types. We use LCM and a well established rat model of traumatic brain injury (TBI) to investigate the molecular mechanisms that underlie the pathogenesis of TBI. Following fluid-percussion TBI, brains are removed at pre-determined times post-injury, immediately frozen on dry ice, and prepared for sectioning in a cryostat. The rat brains can be embedded in OCT and sectioned immediately, or stored several months at -80 °C before sectioning for laser capture microdissection. Additionally, we use LCM to study the effects of TBI on circadian rhythms. For this, we capture neurons from the suprachiasmatic nuclei that contain the master clock of the mammalian brain. Here, we demonstrate the use of LCM to obtain single identified neurons (injured and degenerating, Fluoro-Jade-positive, or uninjured, Fluoro-Jade-negative) and enriched populations of hippocampal neurons for subsequent gene expression analysis by real time PCR and/or whole-genome microarrays. These LCM-enabled studies have revealed that the selective vulnerability of anatomically distinct regions of the rat hippocampus are reflected in the different gene expression profiles of different populations of neurons obtained by LCM from these distinct regions. The results from our single-cell studies, where we compare the transcriptional profiles of dying and adjacent surviving

  15. A single gene target of an ETS-family transcription factor determines neuronal CO2-chemosensitivity

    DEFF Research Database (Denmark)

    Brandt, Julia P; Aziz-Zaman, Sonya; Juozaityte, Vaida

    2012-01-01

    . We report here a mechanism that endows C. elegans neurons with the ability to detect CO(2). The ETS-5 transcription factor is necessary for the specification of CO(2)-sensing BAG neurons. Expression of a single ETS-5 target gene, gcy-9, which encodes a receptor-type guanylate cyclase, is sufficient...

  16. Single photon emission computed tomography in motor neuron disease with dementia.

    Science.gov (United States)

    Sawada, H; Udaka, F; Kishi, Y; Seriu, N; Mezaki, T; Kameyama, M; Honda, M; Tomonobu, M

    1988-01-01

    Single photon emission computed tomography with [123 I] isopropylamphetamine was carried out on a patient with motor neuron disease with dementia. [123 I] uptake was decreased in the frontal lobes. This would reflect the histopathological findings such as neuronal loss and gliosis in the frontal lobes.

  17. System identification of Drosophila olfactory sensory neurons.

    Science.gov (United States)

    Kim, Anmo J; Lazar, Aurel A; Slutskiy, Yevgeniy B

    2011-02-01

    The lack of a deeper understanding of how olfactory sensory neurons (OSNs) encode odors has hindered the progress in understanding the olfactory signal processing in higher brain centers. Here we employ methods of system identification to investigate the encoding of time-varying odor stimuli and their representation for further processing in the spike domain by Drosophila OSNs. In order to apply system identification techniques, we built a novel low-turbulence odor delivery system that allowed us to deliver airborne stimuli in a precise and reproducible fashion. The system provides a 1% tolerance in stimulus reproducibility and an exact control of odor concentration and concentration gradient on a millisecond time scale. Using this novel setup, we recorded and analyzed the in-vivo response of OSNs to a wide range of time-varying odor waveforms. We report for the first time that across trials the response of OR59b OSNs is very precise and reproducible. Further, we empirically show that the response of an OSN depends not only on the concentration, but also on the rate of change of the odor concentration. Moreover, we demonstrate that a two-dimensional (2D) Encoding Manifold in a concentration-concentration gradient space provides a quantitative description of the neuron's response. We then use the white noise system identification methodology to construct one-dimensional (1D) and two-dimensional (2D) Linear-Nonlinear-Poisson (LNP) cascade models of the sensory neuron for a fixed mean odor concentration and fixed contrast. We show that in terms of predicting the intensity rate of the spike train, the 2D LNP model performs on par with the 1D LNP model, with a root mean-square error (RMSE) increase of about 5 to 10%. Surprisingly, we find that for a fixed contrast of the white noise odor waveforms, the nonlinear block of each of the two models changes with the mean input concentration. The shape of the nonlinearities of both the 1D and the 2D LNP model appears to be

  18. Integrated neuron circuit for implementing neuromorphic system with synaptic device

    Science.gov (United States)

    Lee, Jeong-Jun; Park, Jungjin; Kwon, Min-Woo; Hwang, Sungmin; Kim, Hyungjin; Park, Byung-Gook

    2018-02-01

    In this paper, we propose and fabricate Integrate & Fire neuron circuit for implementing neuromorphic system. Overall operation of the circuit is verified by measuring discrete devices and the output characteristics of the circuit. Since the neuron circuit shows asymmetric output characteristic that can drive synaptic device with Spike-Timing-Dependent-Plasticity (STDP) characteristic, the autonomous weight update process is also verified by connecting the synaptic device and the neuron circuit. The timing difference of the pre-neuron and the post-neuron induce autonomous weight change of the synaptic device. Unlike 2-terminal devices, which is frequently used to implement neuromorphic system, proposed scheme of the system enables autonomous weight update and simple configuration by using 4-terminal synapse device and appropriate neuron circuit. Weight update process in the multi-layer neuron-synapse connection ensures implementation of the hardware-based artificial intelligence, based on Spiking-Neural- Network (SNN).

  19. Stochastic optimal control of single neuron spike trains

    DEFF Research Database (Denmark)

    Iolov, Alexandre; Ditlevsen, Susanne; Longtin, Andrë

    2014-01-01

    stimulation of a neuron to achieve a target spike train under the physiological constraint to not damage tissue. Approach. We pose a stochastic optimal control problem to precisely specify the spike times in a leaky integrate-and-fire (LIF) model of a neuron with noise assumed to be of intrinsic or synaptic...... to the spike times (open-loop control). Main results. We have developed a stochastic optimal control algorithm to obtain precise spike times. It is applicable in both the supra-threshold and sub-threshold regimes, under open-loop and closed-loop conditions and with an arbitrary noise intensity; the accuracy...... into account physiological constraints on the control. A precise and robust targeting of neural activity based on stochastic optimal control has great potential for regulating neural activity in e.g. prosthetic applications and to improve our understanding of the basic mechanisms by which neuronal firing...

  20. A novel enteric neuron-glia coculture system reveals the role of glia in neuronal development.

    Science.gov (United States)

    Le Berre-Scoul, Catherine; Chevalier, Julien; Oleynikova, Elena; Cossais, François; Talon, Sophie; Neunlist, Michel; Boudin, Hélène

    2017-01-15

    Unlike astrocytes in the brain, the potential role of enteric glial cells (EGCs) in the formation of the enteric neuronal circuit is currently unknown. To examine the role of EGCs in the formation of the neuronal network, we developed a novel neuron-enriched culture model from embryonic rat intestine grown in indirect coculture with EGCs. We found that EGCs shape axonal complexity and synapse density in enteric neurons, through purinergic- and glial cell line-derived neurotrophic factor-dependent pathways. Using a novel and valuable culture model to study enteric neuron-glia interactions, our study identified EGCs as a key cellular actor regulating neuronal network maturation. In the nervous system, the formation of neuronal circuitry results from a complex and coordinated action of intrinsic and extrinsic factors. In the CNS, extrinsic mediators derived from astrocytes have been shown to play a key role in neuronal maturation, including dendritic shaping, axon guidance and synaptogenesis. In the enteric nervous system (ENS), the potential role of enteric glial cells (EGCs) in the maturation of developing enteric neuronal circuit is currently unknown. A major obstacle in addressing this question is the difficulty in obtaining a valuable experimental model in which enteric neurons could be isolated and maintained without EGCs. We adapted a cell culture method previously developed for CNS neurons to establish a neuron-enriched primary culture from embryonic rat intestine which was cultured in indirect coculture with EGCs. We demonstrated that enteric neurons grown in such conditions showed several structural, phenotypic and functional hallmarks of proper development and maturation. However, when neurons were grown without EGCs, the complexity of the axonal arbour and the density of synapses were markedly reduced, suggesting that glial-derived factors contribute strongly to the formation of the neuronal circuitry. We found that these effects played by EGCs were

  1. A Primal Analysis System of Brain Neurons Data

    Directory of Open Access Journals (Sweden)

    Dong-Mei Pu

    2014-01-01

    Full Text Available It is a very challenging work to classify the 86 billions of neurons in the human brain. The most important step is to get the features of these neurons. In this paper, we present a primal system to analyze and extract features from brain neurons. First, we make analysis on the original data of neurons in which one neuron contains six parameters: room type, X, Y, Z coordinate range, total number of leaf nodes, and fuzzy volume of neurons. Then, we extract three important geometry features including rooms type, number of leaf nodes, and fuzzy volume. As application, we employ the feature database to fit the basic procedure of neuron growth. The result shows that the proposed system is effective.

  2. High-Throughput Mapping of Single-Neuron Projections by Sequencing of Barcoded RNA.

    Science.gov (United States)

    Kebschull, Justus M; Garcia da Silva, Pedro; Reid, Ashlan P; Peikon, Ian D; Albeanu, Dinu F; Zador, Anthony M

    2016-09-07

    Neurons transmit information to distant brain regions via long-range axonal projections. In the mouse, area-to-area connections have only been systematically mapped using bulk labeling techniques, which obscure the diverse projections of intermingled single neurons. Here we describe MAPseq (Multiplexed Analysis of Projections by Sequencing), a technique that can map the projections of thousands or even millions of single neurons by labeling large sets of neurons with random RNA sequences ("barcodes"). Axons are filled with barcode mRNA, each putative projection area is dissected, and the barcode mRNA is extracted and sequenced. Applying MAPseq to the locus coeruleus (LC), we find that individual LC neurons have preferred cortical targets. By recasting neuroanatomy, which is traditionally viewed as a problem of microscopy, as a problem of sequencing, MAPseq harnesses advances in sequencing technology to permit high-throughput interrogation of brain circuits. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Breaking It Down: The Ubiquitin Proteasome System in Neuronal Morphogenesis

    Directory of Open Access Journals (Sweden)

    Andrew M. Hamilton

    2013-01-01

    Full Text Available The ubiquitin-proteasome system (UPS is most widely known for its role in intracellular protein degradation; however, in the decades since its discovery, ubiquitination has been associated with the regulation of a wide variety of cellular processes. The addition of ubiquitin tags, either as single moieties or as polyubiquitin chains, has been shown not only to mediate degradation by the proteasome and the lysosome, but also to modulate protein function, localization, and endocytosis. The UPS plays a particularly important role in neurons, where local synthesis and degradation work to balance synaptic protein levels at synapses distant from the cell body. In recent years, the UPS has come under increasing scrutiny in neurons, as elements of the UPS have been found to regulate such diverse neuronal functions as synaptic strength, homeostatic plasticity, axon guidance, and neurite outgrowth. Here we focus on recent advances detailing the roles of the UPS in regulating the morphogenesis of axons, dendrites, and dendritic spines, with an emphasis on E3 ubiquitin ligases and their identified regulatory targets.

  4. Robust Master-Slave Synchronization of Neuronal Systems

    Directory of Open Access Journals (Sweden)

    Hector Puebla

    2017-01-01

    Full Text Available The desire to understand physiological mechanisms of neuronal systems has led to the introduction of engineering concepts to explain how the brain works. The synchronization of neurons is a central topic in understanding the behavior of living organisms in neurosciences and has been addressed using concepts from control engineering. We introduce a simple and reliable robust synchronization approach for neuronal systems. The proposed synchronization method is based on a master-slave configuration in conjunction with a coupling input enhanced with compensation of model uncertainties. Our approach has two nice features for the synchronization of neuronal systems: (i a simple structure that uses the minimum information and (ii good robustness properties against model uncertainties and noise. Two benchmark neuronal systems, Hodgkin-Huxley and Hindmarsh-Rose neurons, are used to illustrate our findings. The proposed synchronization approach is aimed at gaining insight into the effect of external electrical stimulation of nerve cells.

  5. Different cortical projections from three subdivisions of the rat lateral posterior thalamic nucleus: a single-neuron tracing study with viral vectors.

    Science.gov (United States)

    Nakamura, Hisashi; Hioki, Hiroyuki; Furuta, Takahiro; Kaneko, Takeshi

    2015-05-01

    The lateral posterior thalamic nucleus (LP) is one of the components of the extrageniculate pathway in the rat visual system, and is cytoarchitecturally divided into three subdivisions--lateral (LPl), rostromedial (LPrm), and caudomedial (LPcm) portions. To clarify the differences in the dendritic fields and axonal arborisations among the three subdivisions, we applied a single-neuron labeling technique with viral vectors to LP neurons. The proximal dendrites of LPl neurons were more numerous than those of LPrm and LPcm neurons, and LPrm neurons tended to have wider dendritic fields than LPl neurons. We then analysed the axonal arborisations of LP neurons by reconstructing the axon fibers in the cortex. The LPl, LPrm and LPcm were different from one another in terms of the projection targets--the main target cortical regions of LPl and LPrm neurons were the secondary and primary visual areas, whereas those of LPcm neurons were the postrhinal and temporal association areas. Furthermore, the principal target cortical layers of LPl neurons in the visual areas were middle layers, but that of LPrm neurons was layer 1. This indicates that LPl and LPrm neurons can be categorised into the core and matrix types of thalamic neurons, respectively, in the visual areas. In addition, LPl neurons formed multiple axonal clusters within the visual areas, whereas the fibers of LPrm neurons were widely and diffusely distributed. It is therefore presumed that these two types of neurons play different roles in visual information processing by dual thalamocortical innervation of the visual areas. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  6. Stable long-term chronic brain mapping at the single-neuron level.

    Science.gov (United States)

    Fu, Tian-Ming; Hong, Guosong; Zhou, Tao; Schuhmann, Thomas G; Viveros, Robert D; Lieber, Charles M

    2016-10-01

    Stable in vivo mapping and modulation of the same neurons and brain circuits over extended periods is critical to both neuroscience and medicine. Current electrical implants offer single-neuron spatiotemporal resolution but are limited by such factors as relative shear motion and chronic immune responses during long-term recording. To overcome these limitations, we developed a chronic in vivo recording and stimulation platform based on flexible mesh electronics, and we demonstrated stable multiplexed local field potentials and single-unit recordings in mouse brains for at least 8 months without probe repositioning. Properties of acquired signals suggest robust tracking of the same neurons over this period. This recording and stimulation platform allowed us to evoke stable single-neuron responses to chronic electrical stimulation and to carry out longitudinal studies of brain aging in freely behaving mice. Such advantages could open up future studies in mapping and modulating changes associated with learning, aging and neurodegenerative diseases.

  7. Kaleido: Visualizing Big Brain Data with Automatic Color Assignment for Single-Neuron Images.

    Science.gov (United States)

    Wang, Ting-Yuan; Chen, Nan-Yow; He, Guan-Wei; Wang, Guo-Tzau; Shih, Chi-Tin; Chiang, Ann-Shyn

    2018-03-03

    Effective 3D visualization is essential for connectomics analysis, where the number of neural images easily reaches over tens of thousands. A formidable challenge is to simultaneously visualize a large number of distinguishable single-neuron images, with reasonable processing time and memory for file management and 3D rendering. In the present study, we proposed an algorithm named "Kaleido" that can visualize up to at least ten thousand single neurons from the Drosophila brain using only a fraction of the memory traditionally required, without increasing computing time. Adding more brain neurons increases memory only nominally. Importantly, Kaleido maximizes color contrast between neighboring neurons so that individual neurons can be easily distinguished. Colors can also be assigned to neurons based on biological relevance, such as gene expression, neurotransmitters, and/or development history. For cross-lab examination, the identity of every neuron is retrievable from the displayed image. To demonstrate the effectiveness and tractability of the method, we applied Kaleido to visualize the 10,000 Drosophila brain neurons obtained from the FlyCircuit database ( http://www.flycircuit.tw/modules.php?name=kaleido ). Thus, Kaleido visualization requires only sensible computer memory for manual examination of big connectomics data.

  8. Single low doses of MPTP decrease tyrosine hydroxylase expression in the absence of overt neuron loss.

    Science.gov (United States)

    Alam, Gelareh; Edler, Melissa; Burchfield, Shelbie; Richardson, Jason R

    2017-05-01

    Parkinson's disease (PD) is the second most common age-related neurodegenerative disease. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a prototypical neurotoxicant used in mice to mimic primary features of PD pathology including striatal dopamine depletion and dopamine neuron loss in the substantia nigra pars compacta (SNc). In the literature, there are several experimental paradigms involving multiple doses of MPTP that are used to elicit dopamine neuron loss. However, a recent study reported that a single low dose caused significant loss of dopamine neurons. Here, we determined the effect of a single intraperitoneal injection of one of three doses of MPTP (0.1, 2 and 20mg/kg) on dopamine neurons, labeled by tyrosine hydroxylase (TH + ), and total neuron number (Nissl + ) in the SNc using unbiased stereological counting. Data reveal a significant loss of neurons in the SNc (TH + and Nissl + ) only in the group treated with 20mg/kg MPTP. Groups treated with lower dose of MPTP (0.1 and 2mg/kg) only showed significant loss of TH + neurons rather than TH + and Nissl + neurons. Striatal dopamine levels were decreased in the groups treated with 2 and 20mg/kg MPTP and striatal terminal markers including, TH and the dopamine transporter (DAT), were only decreased in the groups treated with 20mg/kg MPTP. These data demonstrate that lower doses of MPTP likely result in loss of TH expression rather than actual dopamine neuron loss in the SN. This finding reinforces the need to measure both total neuron number along with TH + cells in determining dopamine neuron loss. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. The Mirror Neuron System and Action Recognition

    Science.gov (United States)

    Buccino, Giovanni; Binkofski, Ferdinand; Riggio, Lucia

    2004-01-01

    Mirror neurons, first described in the rostral part of monkey ventral premotor cortex (area F5), discharge both when the animal performs a goal-directed hand action and when it observes another individual performing the same or a similar action. More recently, in the same area mirror neurons responding to the observation of mouth actions have been…

  10. On the Non-Learnability of a Single Spiking Neuron

    Czech Academy of Sciences Publication Activity Database

    Šíma, Jiří; Sgall, Jiří

    2005-01-01

    Roč. 17, č. 12 (2005), s. 2635-2647 ISSN 0899-7667 R&D Projects: GA ČR GA201/02/1456; GA AV ČR 1ET100300517; GA MŠk LN00A056; GA MŠk(CZ) 1M0545 Institutional research plan: CEZ:AV0Z10300504; CEZ:AV0Z10190503 Keywords : spiking neuron * consistency problem * NP-completness * PAC model * robust learning * representation problem Subject RIV: BA - General Mathematics Impact factor: 2.591, year: 2005

  11. Induction of associative olfactory memory by targeted activation of single olfactory neurons in Drosophila larvae.

    Science.gov (United States)

    Honda, Takato; Lee, Chi-Yu; Yoshida-Kasikawa, Maki; Honjo, Ken; Furukubo-Tokunaga, Katsuo

    2014-04-25

    It has been postulated that associative memory is formed by at least two sets of external stimuli, CS and US, that are transmitted to the memory centers by distinctive conversing pathways. However, whether associative memory can be induced by the activation of only the olfactory CS and a biogenic amine-mediated US pathways remains to be elucidated. In this study, we substituted the reward signals with dTrpA1-mediated thermogenetic activation of octopaminergic neurons and the odor signals by ChR2-mediated optical activation of a specific class of olfactory neurons. We show that targeted activation of the olfactory receptor and the octopaminergic neurons is indeed sufficient for the formation of associative olfactory memory in the larval brain. We also show that targeted stimulation of only a single type of olfactory receptor neurons is sufficient to induce olfactory memory that is indistinguishable from natural memory induced by the activation of multiple olfactory receptor neurons.

  12. Single Ih channels in pyramidal neuron dendrites: properties, distribution, and impact on action potential output

    NARCIS (Netherlands)

    Kole, Maarten H. P.; Hallermann, Stefan; Stuart, Greg J.

    2006-01-01

    The hyperpolarization-activated cation current (Ih) plays an important role in regulating neuronal excitability, yet its native single-channel properties in the brain are essentially unknown. Here we use variance-mean analysis to study the properties of single Ih channels in the apical dendrites of

  13. Spike Frequency Adaptation in Neurons of the Central Nervous System.

    Science.gov (United States)

    Ha, Go Eun; Cheong, Eunji

    2017-08-01

    Neuronal firing patterns and frequencies determine the nature of encoded information of the neurons. Here we discuss the molecular identity and cellular mechanisms of spike-frequency adaptation in central nervous system (CNS) neurons. Calcium-activated potassium (K Ca ) channels such as BK Ca and SK Ca channels have long been known to be important mediators of spike adaptation via generation of a large afterhyperpolarization when neurons are hyper-activated. However, it has been shown that a strong hyperpolarization via these K Ca channels would cease action potential generation rather than reducing the frequency of spike generation. In some types of neurons, the strong hyperpolarization is followed by oscillatory activity in these neurons. Recently, spike-frequency adaptation in thalamocortical (TC) and CA1 hippocampal neurons is shown to be mediated by the Ca 2+ -activated Cl- channel (CACC), anoctamin-2 (ANO2). Knockdown of ANO2 in these neurons results in significantly reduced spike-frequency adaptation accompanied by increased number of spikes without shifting the firing mode, which suggests that ANO2 mediates a genuine form of spike adaptation, finely tuning the frequency of spikes in these neurons. Based on the finding of a broad expression of this new class of CACC in the brain, it can be proposed that the ANO2-mediated spike-frequency adaptation may be a general mechanism to control information transmission in the CNS neurons.

  14. Simultaneous transcranial magnetic stimulation and single neuron recording in alert non-human primates

    OpenAIRE

    Mueller, Jerel K.; Grigsby, Erinn M.; Prevosto, Vincent; Petraglia, Frank W.; Rao, Hrishikesh; Deng, Zhi-De; Peterchev, Angel V.; Sommer, Marc A.; Egner, Tobias; Platt, Michael L.; Grill, Warren M.

    2014-01-01

    Transcranial magnetic stimulation (TMS) is a widely used, noninvasive method for stimulating nervous tissue, yet its mechanisms of effect are poorly understood. Here we report novel methods for studying the influence of TMS on single neurons in the brain of alert non-human primates. We designed a TMS coil that focuses its effect near the tip of a recording electrode and recording electronics that enable direct acquisition of neuronal signals at the site of peak stimulus strength minimally per...

  15. Functional adaptation to loading of a single bone is neuronally regulated and involves multiple bones.

    Science.gov (United States)

    Sample, Susannah J; Behan, Mary; Smith, Lesley; Oldenhoff, William E; Markel, Mark D; Kalscheur, Vicki L; Hao, Zhengling; Miletic, Vjekoslav; Muir, Peter

    2008-09-01

    Regulation of load-induced bone formation is considered a local phenomenon controlled by osteocytes, although it has also been hypothesized that functional adaptation may be neuronally regulated. The aim of this study was to examine bone formation in multiple bones, in response to loading of a single bone, and to determine whether adaptation may be neuronally regulated. Load-induced responses in the left and right ulnas and humeri were determined after loading of the right ulna in male Sprague-Dawley rats (69 +/- 16 days of age). After a single period of loading at -760-, -2000-, or -3750-microepsilon initial peak strain, rats were given calcein to label new bone formation. Bone formation and bone neuropeptide concentrations were determined at 10 days. In one group, temporary neuronal blocking was achieved by perineural anesthesia of the brachial plexus with bupivicaine during loading. We found right ulna loading induces adaptive responses in other bones in both thoracic limbs compared with Sham controls and that neuronal blocking during loading abrogated bone formation in the loaded ulna and other thoracic limb bones. Skeletal adaptation was more evident in distal long bones compared with proximal long bones. We also found that the single period of loading modulated bone neuropeptide concentrations persistently for 10 days. We conclude that functional adaptation to loading of a single bone in young rapidly growing rats is neuronally regulated and involves multiple bones. Persistent changes in bone neuropeptide concentrations after a single loading period suggest that plasticity exists in the innervation of bone.

  16. Multifunctional mechanosensitive neurons in the enteric nervous system.

    Science.gov (United States)

    Schemann, Michael; Mazzuoli, Gemma

    2010-02-16

    One of the most intriguing abilities of the gut is to function in isolation. This is possible because the gut's own nervous system, the enteric nervous system, contains the necessary elements to control reflex behaviors. Much progress has been made in identifying those neurons that encode mechanical or chemical stimuli. Thus, muscle behaviors in the small and large intestines depend on mechanosensitive neurons which encode a variety of mechanical stimuli, ranging from brief deformation of the neurons soma or processes to sustained tissue stretch. Mechanosensitivity has been recorded in a wide variety of neurons which behave like rapid or slowly adapting mechanosensors. Strikingly, mechanosensitive neurons do not appear to belong to a distinct class of highly specialised neurons but rather differ in their electrophysiology, neurochemistry and morphology. While some mechanosensitive neurons may respond to one stimulus type others appear to be polymodal. Available data would suggest that mechanosensitive enteric neurons are multitasking and hence belong to multifunctional circuits. This review summarises the main arguments in favour of this concept, discusses the stimulus modalities, the response patterns and the functional role of mechanosensitive enteric neurons and concludes with identifying future challenges. Copyright 2009 Elsevier B.V. All rights reserved.

  17. Auditory and audio-vocal responses of single neurons in the monkey ventral premotor cortex.

    Science.gov (United States)

    Hage, Steffen R

    2018-03-20

    Monkey vocalization is a complex behavioral pattern, which is flexibly used in audio-vocal communication. A recently proposed dual neural network model suggests that cognitive control might be involved in this behavior, originating from a frontal cortical network in the prefrontal cortex and mediated via projections from the rostral portion of the ventral premotor cortex (PMvr) and motor cortex to the primary vocal motor network in the brainstem. For the rapid adjustment of vocal output to external acoustic events, strong interconnections between vocal motor and auditory sites are needed, which are present at cortical and subcortical levels. However, the role of the PMvr in audio-vocal integration processes remains unclear. In the present study, single neurons in the PMvr were recorded in rhesus monkeys (Macaca mulatta) while volitionally producing vocalizations in a visual detection task or passively listening to monkey vocalizations. Ten percent of randomly selected neurons in the PMvr modulated their discharge rate in response to acoustic stimulation with species-specific calls. More than four-fifths of these auditory neurons showed an additional modulation of their discharge rates either before and/or during the monkeys' motor production of the vocalization. Based on these audio-vocal interactions, the PMvr might be well positioned to mediate higher order auditory processing with cognitive control of the vocal motor output to the primary vocal motor network. Such audio-vocal integration processes in the premotor cortex might constitute a precursor for the evolution of complex learned audio-vocal integration systems, ultimately giving rise to human speech. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Image-guided recording system for spatial and temporal mapping of neuronal activities in brain slice.

    Science.gov (United States)

    Choi, Geonho; Lee, Jeonghyeon; Kim, Hyeongeun; Jang, Jaemyung; Im, Changkyun; Jeon, Nooli; Jung, Woonggyu

    2018-03-01

    In this study, we introduce the novel image-guided recording system (IGRS) for efficient interpretation of neuronal activities in the brain slice. IGRS is designed to combine microelectrode array (MEA) and optical coherence tomography at the customized upright microscope. It allows to record multi-site neuronal signals and image of the volumetric brain anatomy in a single body configuration. For convenient interconnection between a brain image and neuronal signals, we developed the automatic mapping protocol that enables us to project acquired neuronal signals on a brain image. To evaluate the performance of IGRS, hippocampal signals of the brain slice were monitored, and corresponding with two-dimensional neuronal maps were successfully reconstructed. Our results indicated that IGRS and mapping protocol can provide the intuitive information regarding long-term and multi-sites neuronal signals. In particular, the temporal and spatial mapping capability of neuronal signals would be a very promising tool to observe and analyze the massive neuronal activity and connectivity in MEA-based electrophysiological studies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Integrative Single-Cell Transcriptomics Reveals Molecular Networks Defining Neuronal Maturation During Postnatal Neurogenesis.

    Science.gov (United States)

    Gao, Yu; Wang, Feifei; Eisinger, Brian E; Kelnhofer, Laurel E; Jobe, Emily M; Zhao, Xinyu

    2017-03-01

    In mammalian hippocampus, new neurons are continuously produced from neural stem cells throughout life. This postnatal neurogenesis may contribute to information processing critical for cognition, adaptation, learning, and memory, and is implicated in numerous neurological disorders. During neurogenesis, the immature neuron stage defined by doublecortin (DCX) expression is the most sensitive to regulation by extrinsic factors. However, little is known about the dynamic biology within this critical interval that drives maturation and confers susceptibility to regulatory signals. This study aims to test the hypothesis that DCX-expressing immature neurons progress through developmental stages via activity of specific transcriptional networks. Using single-cell RNA-seq combined with a novel integrative bioinformatics approach, we discovered that individual immature neurons can be classified into distinct developmental subgroups based on characteristic gene expression profiles and subgroup-specific markers. Comparisons between immature and more mature subgroups revealed novel pathways involved in neuronal maturation. Genes enriched in less mature cells shared significant overlap with genes implicated in neurodegenerative diseases, while genes positively associated with neuronal maturation were enriched for autism-related gene sets. Our study thus discovers molecular signatures of individual immature neurons and unveils potential novel targets for therapeutic approaches to treat neurodevelopmental and neurological diseases. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. The role of dendritic non-linearities in single neuron computation

    Directory of Open Access Journals (Sweden)

    Boris Gutkin

    2014-05-01

    Full Text Available Experiment has demonstrated that summation of excitatory post-synaptic protientials (EPSPs in dendrites is non-linear. The sum of multiple EPSPs can be larger than their arithmetic sum, a superlinear summation due to the opening of voltage-gated channels and similar to somatic spiking. The so-called dendritic spike. The sum of multiple of EPSPs can also be smaller than their arithmetic sum, because the synaptic current necessarily saturates at some point. While these observations are well-explained by biophysical models the impact of dendritic spikes on computation remains a matter of debate. One reason is that dendritic spikes may fail to make the neuron spike; similarly, dendritic saturations are sometime presented as a glitch which should be corrected by dendritic spikes. We will provide solid arguments against this claim and show that dendritic saturations as well as dendritic spikes enhance single neuron computation, even when they cannot directly make the neuron fire. To explore the computational impact of dendritic spikes and saturations, we are using a binary neuron model in conjunction with Boolean algebra. We demonstrate using these tools that a single dendritic non-linearity, either spiking or saturating, combined with somatic non-linearity, enables a neuron to compute linearly non-separable Boolean functions (lnBfs. These functions are impossible to compute when summation is linear and the exclusive OR is a famous example of lnBfs. Importantly, the implementation of these functions does not require the dendritic non-linearity to make the neuron spike. Next, We show that reduced and realistic biophysical models of the neuron are capable of computing lnBfs. Within these models and contrary to the binary model, the dendritic and somatic non-linearity are tightly coupled. Yet we show that these neuron models are capable of linearly non-separable computations.

  1. Candidate glutamatergic neurons in the visual system of Drosophila.

    Directory of Open Access Journals (Sweden)

    Shamprasad Varija Raghu

    Full Text Available The visual system of Drosophila contains approximately 60,000 neurons that are organized in parallel, retinotopically arranged columns. A large number of these neurons have been characterized in great anatomical detail. However, studies providing direct evidence for synaptic signaling and the neurotransmitter used by individual neurons are relatively sparse. Here we present a first layout of neurons in the Drosophila visual system that likely release glutamate as their major neurotransmitter. We identified 33 different types of neurons of the lamina, medulla, lobula and lobula plate. Based on the previous Golgi-staining analysis, the identified neurons are further classified into 16 major subgroups representing lamina monopolar (L, transmedullary (Tm, transmedullary Y (TmY, Y, medulla intrinsic (Mi, Mt, Pm, Dm, Mi Am, bushy T (T, translobula plate (Tlp, lobula intrinsic (Lcn, Lt, Li, lobula plate tangential (LPTCs and lobula plate intrinsic (LPi cell types. In addition, we found 11 cell types that were not described by the previous Golgi analysis. This classification of candidate glutamatergic neurons fosters the future neurogenetic dissection of information processing in circuits of the fly visual system.

  2. Single photon emission computed tomography in motor neuron disease with dementia

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, H.; Udaka, F.; Kishi, Y.; Seriu, N.; Ohtani, S.; Abe, K.; Mezaki, T.; Kameyama, M.; Honda, M.; Tomonobu, M.

    1988-12-01

    Single photon emission computed tomography with (123 I) isopropylamphetamine was carried out on a patient with motor neutron disease with dementia. (123 I) uptake was decreased in the frontal lobes. This would reflect the histopathological findings such as neuronal loss and gliosis in the frontal lobes.

  3. Generation of Induced Neuronal Cells by the Single Reprogramming Factor ASCL1

    Directory of Open Access Journals (Sweden)

    Soham Chanda

    2014-08-01

    Full Text Available Direct conversion of nonneural cells to functional neurons holds great promise for neurological disease modeling and regenerative medicine. We previously reported rapid reprogramming of mouse embryonic fibroblasts (MEFs into mature induced neuronal (iN cells by forced expression of three transcription factors: ASCL1, MYT1L, and BRN2. Here, we show that ASCL1 alone is sufficient to generate functional iN cells from mouse and human fibroblasts and embryonic stem cells, indicating that ASCL1 is the key driver of iN cell reprogramming in different cell contexts and that the role of MYT1L and BRN2 is primarily to enhance the neuronal maturation process. ASCL1-induced single-factor neurons (1F-iN expressed mature neuronal markers, exhibited typical passive and active intrinsic membrane properties, and formed functional pre- and postsynaptic structures. Surprisingly, ASCL1-induced iN cells were predominantly excitatory, demonstrating that ASCL1 is permissive but alone not deterministic for the inhibitory neuronal lineage.

  4. Single-cell resolution mapping of neuronal damage in acute focal cerebral ischemia using thallium autometallography.

    Science.gov (United States)

    Stöber, Franziska; Baldauf, Kathrin; Ziabreva, Iryna; Harhausen, Denise; Zille, Marietta; Neubert, Jenni; Reymann, Klaus G; Scheich, Henning; Dirnagl, Ulrich; Schröder, Ulrich H; Wunder, Andreas; Goldschmidt, Jürgen

    2014-01-01

    Neuronal damage shortly after onset or after brief episodes of cerebral ischemia has remained difficult to assess with clinical and preclinical imaging techniques as well as with microscopical methods. We here show, in rodent models of middle cerebral artery occlusion (MCAO), that neuronal damage in acute focal cerebral ischemia can be mapped with single-cell resolution using thallium autometallography (TlAMG), a histochemical technique for the detection of the K(+)-probe thallium (Tl(+)) in the brain. We intravenously injected rats and mice with thallium diethyldithiocarbamate (TlDDC), a lipophilic chelate complex that releases Tl(+) after crossing the blood-brain barrier. We found, within the territories of the affected arteries, areas of markedly reduced neuronal Tl(+) uptake in all animals at all time points studied ranging from 15 minutes to 24 hours after MCAO. In large lesions at early time points, areas with neuronal and astrocytic Tl(+) uptake below thresholds of detection were surrounded by putative penumbral zones with preserved but diminished Tl(+) uptake. At 24 hours, the areas of reduced Tl(+)uptake matched with areas delineated by established markers of neuronal damage. The results suggest the use of (201)TlDDC for preclinical and clinical single-photon emission computed tomography (SPECT) imaging of hyperacute alterations in brain K(+) metabolism and prediction of tissue viability in cerebral ischemia.

  5. Single-cell resolution mapping of neuronal damage in acute focal cerebral ischemia using thallium autometallography

    Science.gov (United States)

    Stöber, Franziska; Baldauf, Kathrin; Ziabreva, Iryna; Harhausen, Denise; Zille, Marietta; Neubert, Jenni; Reymann, Klaus G; Scheich, Henning; Dirnagl, Ulrich; Schröder, Ulrich H; Wunder, Andreas; Goldschmidt, Jürgen

    2014-01-01

    Neuronal damage shortly after onset or after brief episodes of cerebral ischemia has remained difficult to assess with clinical and preclinical imaging techniques as well as with microscopical methods. We here show, in rodent models of middle cerebral artery occlusion (MCAO), that neuronal damage in acute focal cerebral ischemia can be mapped with single-cell resolution using thallium autometallography (TlAMG), a histochemical technique for the detection of the K+-probe thallium (Tl+) in the brain. We intravenously injected rats and mice with thallium diethyldithiocarbamate (TlDDC), a lipophilic chelate complex that releases Tl+ after crossing the blood–brain barrier. We found, within the territories of the affected arteries, areas of markedly reduced neuronal Tl+ uptake in all animals at all time points studied ranging from 15 minutes to 24 hours after MCAO. In large lesions at early time points, areas with neuronal and astrocytic Tl+ uptake below thresholds of detection were surrounded by putative penumbral zones with preserved but diminished Tl+ uptake. At 24 hours, the areas of reduced Tl+uptake matched with areas delineated by established markers of neuronal damage. The results suggest the use of 201TlDDC for preclinical and clinical single-photon emission computed tomography (SPECT) imaging of hyperacute alterations in brain K+ metabolism and prediction of tissue viability in cerebral ischemia. PMID:24129748

  6. Optical imaging of neuronal activity and visualization of fine neural structures in non-desheathed nervous systems.

    Directory of Open Access Journals (Sweden)

    Christopher John Goldsmith

    Full Text Available Locating circuit neurons and recording from them with single-cell resolution is a prerequisite for studying neural circuits. Determining neuron location can be challenging even in small nervous systems because neurons are densely packed, found in different layers, and are often covered by ganglion and nerve sheaths that impede access for recording electrodes and neuronal markers. We revisited the voltage-sensitive dye RH795 for its ability to stain and record neurons through the ganglion sheath. Bath-application of RH795 stained neuronal membranes in cricket, earthworm and crab ganglia without removing the ganglion sheath, revealing neuron cell body locations in different ganglion layers. Using the pyloric and gastric mill central pattern generating neurons in the stomatogastric ganglion (STG of the crab, Cancer borealis, we found that RH795 permeated the ganglion without major residue in the sheath and brightly stained somatic, axonal and dendritic membranes. Visibility improved significantly in comparison to unstained ganglia, allowing the identification of somata location and number of most STG neurons. RH795 also stained axons and varicosities in non-desheathed nerves, and it revealed the location of sensory cell bodies in peripheral nerves. Importantly, the spike activity of the sensory neuron AGR, which influences the STG motor patterns, remained unaffected by RH795, while desheathing caused significant changes in AGR activity. With respect to recording neural activity, RH795 allowed us to optically record membrane potential changes of sub-sheath neuronal membranes without impairing sensory activity. The signal-to-noise ratio was comparable with that previously observed in desheathed preparations and sufficiently high to identify neurons in single-sweep recordings and synaptic events after spike-triggered averaging. In conclusion, RH795 enabled staining and optical recording of neurons through the ganglion sheath and is therefore both a

  7. Single bumps in a 2-population homogenized neuronal network model

    Science.gov (United States)

    Kolodina, Karina; Oleynik, Anna; Wyller, John

    2018-05-01

    We investigate existence and stability of single bumps in a homogenized 2-population neural field model, when the firing rate functions are given by the Heaviside function. The model is derived by means of the two-scale convergence technique of Nguetseng in the case of periodic microvariation in the connectivity functions. The connectivity functions are periodically modulated in both the synaptic footprint and in the spatial scale. The bump solutions are constructed by using a pinning function technique for the case where the solutions are independent of the local variable. In the weakly modulated case the generic picture consists of two bumps (one narrow and one broad bump) for each admissible set of threshold values for firing. In addition, a new threshold value regime for existence of bumps is detected. Beyond the weakly modulated regime the number of bumps depends sensitively on the degree of heterogeneity. For the latter case we present a configuration consisting of three coexisting bumps. The linear stability of the bumps is studied by means of the spectral properties of a Fredholm integral operator, block diagonalization of this operator and the Fourier decomposition method. In the weakly modulated regime, one of the bumps is unstable for all relative inhibition times, while the other one is stable for small and moderate values of this parameter. The latter bump becomes unstable as the relative inhibition time exceeds a certain threshold. In the case of the three coexisting bumps detected in the regime of finite degree of heterogeneity, we have at least one stable bump (and maximum two stable bumps) for small and moderate values of the relative inhibition time.

  8. A Neuron Model Based Ultralow Current Sensor System for Bioapplications

    Directory of Open Access Journals (Sweden)

    A. K. M. Arifuzzman

    2016-01-01

    Full Text Available An ultralow current sensor system based on the Izhikevich neuron model is presented in this paper. The Izhikevich neuron model has been used for its superior computational efficiency and greater biological plausibility over other well-known neuron spiking models. Of the many biological neuron spiking features, regular spiking, chattering, and neostriatal spiny projection spiking have been reproduced by adjusting the parameters associated with the model at hand. This paper also presents a modified interpretation of the regular spiking feature in which the firing pattern is similar to that of the regular spiking but with improved dynamic range offering. The sensor current ranges between 2 pA and 8 nA and exhibits linearity in the range of 0.9665 to 0.9989 for different spiking features. The efficacy of the sensor system in detecting low amount of current along with its high linearity attribute makes it very suitable for biomedical applications.

  9. Single-molecule folding mechanism of an EF-hand neuronal calcium sensor

    DEFF Research Database (Denmark)

    Heiðarsson, Pétur Orri; Otazo, Mariela R.; Bellucci, Luca

    2013-01-01

    EF-hand calcium sensors respond structurally to changes in intracellular Ca2+ concentration, triggering diverse cellular responses and resulting in broad interactomes. Despite impressive advances in decoding their structure-function relationships, the folding mechanism of neuronal calcium sensors...... is still elusive. We used single-molecule optical tweezers to study the folding mechanism of the human neuronal calcium sensor 1 (NCS1). Two intermediate structures induced by Ca2+ binding to the EF-hands were observed during refolding. The complete folding of the C domain is obligatory for the folding...

  10. Single Neurons in the Avian Auditory Cortex Encode Individual Identity and Propagation Distance in Naturally Degraded Communication Calls.

    Science.gov (United States)

    Mouterde, Solveig C; Elie, Julie E; Mathevon, Nicolas; Theunissen, Frédéric E

    2017-03-29

    One of the most complex tasks performed by sensory systems is "scene analysis": the interpretation of complex signals as behaviorally relevant objects. The study of this problem, universal to species and sensory modalities, is particularly challenging in audition, where sounds from various sources and localizations, degraded by propagation through the environment, sum to form a single acoustical signal. Here we investigated in a songbird model, the zebra finch, the neural substrate for ranging and identifying a single source. We relied on ecologically and behaviorally relevant stimuli, contact calls, to investigate the neural discrimination of individual vocal signature as well as sound source distance when calls have been degraded through propagation in a natural environment. Performing electrophysiological recordings in anesthetized birds, we found neurons in the auditory forebrain that discriminate individual vocal signatures despite long-range degradation, as well as neurons discriminating propagation distance, with varying degrees of multiplexing between both information types. Moreover, the neural discrimination performance of individual identity was not affected by propagation-induced degradation beyond what was induced by the decreased intensity. For the first time, neurons with distance-invariant identity discrimination properties as well as distance-discriminant neurons are revealed in the avian auditory cortex. Because these neurons were recorded in animals that had prior experience neither with the vocalizers of the stimuli nor with long-range propagation of calls, we suggest that this neural population is part of a general-purpose system for vocalizer discrimination and ranging. SIGNIFICANCE STATEMENT Understanding how the brain makes sense of the multitude of stimuli that it continually receives in natural conditions is a challenge for scientists. Here we provide a new understanding of how the auditory system extracts behaviorally relevant information

  11. Optogenetic dissection of neuronal circuits in zebrafish using viral gene transfer and the Tet system

    Directory of Open Access Journals (Sweden)

    Peixin Zhu

    2009-12-01

    Full Text Available The conditional expression of transgenes at high levels in sparse and specific populations of neurons is important for high-resolution optogenetic analyses of neuronal circuits. We explored two complementary methods, viral gene delivery and the iTet-Off system, to express transgenes in the brain of zebrafish. High-level gene expression in neurons was achieved by Sindbis and Rabies viruses. The Tet system produced strong and specific gene expression that could be modulated conveniently by doxycycline. Moreover, transgenic lines showed expression in distinct, sparse and stable populations of neurons that appeared to be subsets of the neurons targeted by the promoter driving the Tet activator. The Tet system therefore provides the opportunity to generate libraries of diverse expression patterns similar to gene trap approaches or the thy-1 promoter in mice, but with the additional possibility to pre-select cell types of interest. In transgenic lines expressing channelrhodopsin-2, action potential firing could be precisely controlled by two-photon stimulation at low laser power, presumably because the expression levels of the Tet-controlled genes were high even in adults. In channelrhodopsin-2-expressing larvae, optical stimulation with a single blue LED evoked distinct swimming behaviors including backward swimming. These approaches provide new opportunities for the optogenetic dissection of neuronal circuit structure and function.

  12. Synergistic combinations of five single drugs from Centella asiatica for neuronal differentiation.

    Science.gov (United States)

    Lin, Jinjin; Jiang, Hui; Ding, Xianting

    2017-01-01

    To identify alternatives of nerve growth factor, which could promote NF68 protein expression and contribute toward neuronal differentiation, five compounds namely: asiatic acid, madecassic, madecassoside, quercetin, and isoquercetin, obtained from Centella asiatica, were examined for their neuronal differentiation effects on PC12 cells. C. asiatica has been applied as an effective herbal medicine for the treatment of various diseases, including depression. According to a statistical design of experiments, both single compound and compound combinations were evaluated. A further statistical analysis indicated quantitative interactions between these five single compounds and led to the identification of the optimal drug combinations. Asiatic acid and madecassic appeared to show profound synergistic effects on neurofilaments expression in vitro. The optimized drug combinations were significantly more potent than single drugs and further investigation suggested that the optimal drug combination could be an analogue of nerve growth factor and could represent a potential treatment for neurodegenerative diseases.

  13. Expanding the spectrum of neuronal pathology in multiple system atrophy

    Science.gov (United States)

    Cykowski, Matthew D.; Coon, Elizabeth A.; Powell, Suzanne Z.; Jenkins, Sarah M.; Benarroch, Eduardo E.; Low, Phillip A.; Schmeichel, Ann M.

    2015-01-01

    Multiple system atrophy is a sporadic alpha-synucleinopathy that typically affects patients in their sixth decade of life and beyond. The defining clinical features of the disease include progressive autonomic failure, parkinsonism, and cerebellar ataxia leading to significant disability. Pathologically, multiple system atrophy is characterized by glial cytoplasmic inclusions containing filamentous alpha-synuclein. Neuronal inclusions also have been reported but remain less well defined. This study aimed to further define the spectrum of neuronal pathology in 35 patients with multiple system atrophy (20 male, 15 female; mean age at death 64.7 years; median disease duration 6.5 years, range 2.2 to 15.6 years). The morphologic type, topography, and frequencies of neuronal inclusions, including globular cytoplasmic (Lewy body-like) neuronal inclusions, were determined across a wide spectrum of brain regions. A correlation matrix of pathologic severity also was calculated between distinct anatomic regions of involvement (striatum, substantia nigra, olivary and pontine nuclei, hippocampus, forebrain and thalamus, anterior cingulate and neocortex, and white matter of cerebrum, cerebellum, and corpus callosum). The major finding was the identification of widespread neuronal inclusions in the majority of patients, not only in typical disease-associated regions (striatum, substantia nigra), but also within anterior cingulate cortex, amygdala, entorhinal cortex, basal forebrain and hypothalamus. Neuronal inclusion pathology appeared to follow a hierarchy of region-specific susceptibility, independent of the clinical phenotype, and the severity of pathology was duration-dependent. Neuronal inclusions also were identified in regions not previously implicated in the disease, such as within cerebellar roof nuclei. Lewy body-like inclusions in multiple system atrophy followed the stepwise anatomic progression of Lewy body-spectrum disease inclusion pathology in 25.7% of patients

  14. Neuron-to-Cell Spread of Pseudorabies Virus in a Compartmented Neuronal Culture System

    OpenAIRE

    Ch'ng, T. H.; Enquist, L.W.

    2005-01-01

    Alphaherpesviruses are parasites of the peripheral nervous system in their natural hosts. After the initial infection of peripheral tissues such as mucosal cells, these neurotropic viruses will invade the peripheral nervous system that innervates the site of infection via long-distance axonal transport of the viral genome. In natural hosts, a latent and a nonproductive infection is usually established in the neuronal cell bodies. Upon reactivation, the newly replicated genome will be assemble...

  15. Coordinate control of integral reactor based on single neuron PID controller

    International Nuclear Information System (INIS)

    Liu Yan; Xia Hong

    2014-01-01

    As one of the main type of reactors in the future, the development of the integral reactor has attracted worldwide attention. On the basis of understanding the background of the integral reactor, the author will be familiar with and master the power control of reactor and the feedwater flow control of steam generator, and the speed control of turbine (turbine speed control is associated with the turbine load control). According to the expectative program 'reactor power following turbine load' of the reactor, it will make coordinate control of the three and come to a overall control scheme. The author will use the supervisory learning algorithm of Hebb for single neuron PID controller with self-adaptation to study the coordinate control of integral reactor. Compared with conventional PI or PID controller, to a certain extent, it solves the problems that traditional PID controller is not easy to tune real-time parameters and lack of effective control for a number of complex processes and slow-varying parameter systems. It improves the security, reliability, stability and flexibility of control process and achieves effective control of the system. (authors)

  16. Individual mediodorsal thalamic neurons project to multiple areas of the rat prefrontal cortex: A single neuron-tracing study using virus vectors.

    Science.gov (United States)

    Kuramoto, Eriko; Pan, Shixiu; Furuta, Takahiro; Tanaka, Yasuhiro R; Iwai, Haruki; Yamanaka, Atsushi; Ohno, Sachi; Kaneko, Takeshi; Goto, Tetsuya; Hioki, Hiroyuki

    2017-01-01

    The prefrontal cortex has an important role in a variety of cognitive and executive processes, and is generally defined by its reciprocal connections with the mediodorsal thalamic nucleus (MD). The rat MD is mainly subdivided into three segments, the medial (MDm), central (MDc), and lateral (MDl) divisions, on the basis of the cytoarchitecture and chemoarchitecture. The MD segments are known to topographically project to multiple prefrontal areas at the population level: the MDm mainly to the prelimbic, infralimbic, and agranular insular areas; the MDc to the orbital and agranular insular areas; and the MDl to the prelimbic and anterior cingulate areas. However, it is unknown whether individual MD neurons project to single or multiple prefrontal cortical areas. In the present study, we visualized individual MD neurons with Sindbis virus vectors, and reconstructed whole structures of MD neurons. While the main cortical projection targets of MDm, MDc, and MDl neurons were generally consistent with those of previous results, it was found that individual MD neurons sent their axon fibers to multiple prefrontal areas, and displayed various projection patterns in the target areas. Furthermore, the axons of single MD neurons were not homogeneously spread, but were rather distributed to form patchy axon arbors approximately 1 mm in diameter. The multiple-area projections and patchy axon arbors of single MD neurons might be able to coactivate cortical neuron groups in distant prefrontal areas simultaneously. Furthermore, considerable heterogeneity of the projection patterns is likely, to recruit the different sets of cortical neurons, and thus contributes to a variety of prefrontal functions. J. Comp. Neurol. 525:166-185, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. GABA-ergic neurons in the leach central nervous system

    International Nuclear Information System (INIS)

    Cline, H.T.

    1985-01-01

    GABA is a candidate for an inhibitory neurotransmitter in the leech central nervous system because of the well-documented inhibitory action of GABA in other invertebrates. To demonstrate that GABA meets the criteria used to identify a substance as a neurotransmitter, the author examined GABA metabolism and synaptic interactions of inhibitory motor neurons in two leech species, Hirudo medicinalis and Haementeria ghilianii. Segmental ganglia of the leech ventral nerve cord and identified inhibitors have the capacity to synthesize GABA when incubated in the presence of the precursor glutamate. Application of GABA to cell bodies of excitatory motor neurons or muscle fibers innervated by the inhibitors hyperpolarizes the membrane potential of the target cell and activates a chloride ion conductance channel, similar to the inhibitory membrane response following intracellular stimulation of the inhibitor. Bicuculline methiodide (5 x 10 -5 M), GABA receptor antagonist, blocks reversibly the response to applied GABA and the inhibitory synaptic inputs onto the postsynaptic neurons or muscle fibers without interfering with their excitatory inputs. Furthermore, the inhibitors are included among approximately 25 neurons per segmental ganglion that take up GABA by a high affinity uptake system, as revealed by 3 H-GABA-autoradiography. The development of the capacities to synthesize and to take up GABA were examined in leech embryos. The embryos are able to synthesize GABA at early stages of the development of the nervous system, before any neurons have extended neutrites

  18. Multi-class oscillating systems of interacting neurons

    DEFF Research Database (Denmark)

    Ditlevsen, Susanne; Löcherbach, Eva

    2017-01-01

    We consider multi-class systems of interacting nonlinear Hawkes processes modeling several large families of neurons and study their mean field limits. As the total number of neurons goes to infinity we prove that the evolution within each class can be described by a nonlinear limit differential ...... equation driven by a Poisson random measure, and state associated central limit theorems. We study situations in which the limit system exhibits oscillatory behavior, and relate the results to certain piecewise deterministic Markov processes and their diffusion approximations....

  19. Stability and Hopf Bifurcation of Fractional-Order Complex-Valued Single Neuron Model with Time Delay

    Science.gov (United States)

    Wang, Zhen; Wang, Xiaohong; Li, Yuxia; Huang, Xia

    2017-12-01

    In this paper, the problems of stability and Hopf bifurcation in a class of fractional-order complex-valued single neuron model with time delay are addressed. With the help of the stability theory of fractional-order differential equations and Laplace transforms, several new sufficient conditions, which ensure the stability of the system are derived. Taking the time delay as the bifurcation parameter, Hopf bifurcation is investigated and the critical value of the time delay for the occurrence of Hopf bifurcation is determined. Finally, two representative numerical examples are given to show the effectiveness of the theoretical results.

  20. The mirror-neuron system: a Bayesian perspective

    DEFF Research Database (Denmark)

    Kilner, James; Friston, Karl; Frith, Christopher

    2007-01-01

    Is it possible to understand the intentions of other peopleby simply observing their movements? Many neuroscientists believe that this ability depends on the brain’s mirror-neuron system, which provides a direct link between action and observation. Precisely how intentions can be inferred through...... movement-observation, however, has provoked much debate. One problem in inferring the cause of an observed action, is that the problem is ill-posed because identical movements can be made when performing different actions with different goals. Here we suggest that this problem is solved by the mirror-neuron...... identifies a precise role for the mirror-neuron system in our ability to infer intentions from observed movement and outlines possible computational mechanisms....

  1. Mechanisms of magnetic stimulation of central nervous system neurons.

    Science.gov (United States)

    Pashut, Tamar; Wolfus, Shuki; Friedman, Alex; Lavidor, Michal; Bar-Gad, Izhar; Yeshurun, Yosef; Korngreen, Alon

    2011-03-01

    Transcranial magnetic stimulation (TMS) is a stimulation method in which a magnetic coil generates a magnetic field in an area of interest in the brain. This magnetic field induces an electric field that modulates neuronal activity. The spatial distribution of the induced electric field is determined by the geometry and location of the coil relative to the brain. Although TMS has been used for several decades, the biophysical basis underlying the stimulation of neurons in the central nervous system (CNS) is still unknown. To address this problem we developed a numerical scheme enabling us to combine realistic magnetic stimulation (MS) with compartmental modeling of neurons with arbitrary morphology. The induced electric field for each location in space was combined with standard compartmental modeling software to calculate the membrane current generated by the electromagnetic field for each segment of the neuron. In agreement with previous studies, the simulations suggested that peripheral axons were excited by the spatial gradients of the induced electric field. In both peripheral and central neurons, MS amplitude required for action potential generation was inversely proportional to the square of the diameter of the stimulated compartment. Due to the importance of the fiber's diameter, magnetic stimulation of CNS neurons depolarized the soma followed by initiation of an action potential in the initial segment of the axon. Passive dendrites affect this process primarily as current sinks, not sources. The simulations predict that neurons with low current threshold are more susceptible to magnetic stimulation. Moreover, they suggest that MS does not directly trigger dendritic regenerative mechanisms. These insights into the mechanism of MS may be relevant for the design of multi-intensity TMS protocols, may facilitate the construction of magnetic stimulators, and may aid the interpretation of results of TMS of the CNS.

  2. Mechanisms of magnetic stimulation of central nervous system neurons.

    Directory of Open Access Journals (Sweden)

    Tamar Pashut

    2011-03-01

    Full Text Available Transcranial magnetic stimulation (TMS is a stimulation method in which a magnetic coil generates a magnetic field in an area of interest in the brain. This magnetic field induces an electric field that modulates neuronal activity. The spatial distribution of the induced electric field is determined by the geometry and location of the coil relative to the brain. Although TMS has been used for several decades, the biophysical basis underlying the stimulation of neurons in the central nervous system (CNS is still unknown. To address this problem we developed a numerical scheme enabling us to combine realistic magnetic stimulation (MS with compartmental modeling of neurons with arbitrary morphology. The induced electric field for each location in space was combined with standard compartmental modeling software to calculate the membrane current generated by the electromagnetic field for each segment of the neuron. In agreement with previous studies, the simulations suggested that peripheral axons were excited by the spatial gradients of the induced electric field. In both peripheral and central neurons, MS amplitude required for action potential generation was inversely proportional to the square of the diameter of the stimulated compartment. Due to the importance of the fiber's diameter, magnetic stimulation of CNS neurons depolarized the soma followed by initiation of an action potential in the initial segment of the axon. Passive dendrites affect this process primarily as current sinks, not sources. The simulations predict that neurons with low current threshold are more susceptible to magnetic stimulation. Moreover, they suggest that MS does not directly trigger dendritic regenerative mechanisms. These insights into the mechanism of MS may be relevant for the design of multi-intensity TMS protocols, may facilitate the construction of magnetic stimulators, and may aid the interpretation of results of TMS of the CNS.

  3. Comprehensive Identification and Spatial Mapping of Habenular Neuronal Types Using Single-Cell RNA-Seq.

    Science.gov (United States)

    Pandey, Shristi; Shekhar, Karthik; Regev, Aviv; Schier, Alexander F

    2018-04-02

    The identification of cell types and marker genes is critical for dissecting neural development and function, but the size and complexity of the brain has hindered the comprehensive discovery of cell types. We combined single-cell RNA-seq (scRNA-seq) with anatomical brain registration to create a comprehensive map of the zebrafish habenula, a conserved forebrain hub involved in pain processing and learning. Single-cell transcriptomes of ∼13,000 habenular cells with 4× cellular coverage identified 18 neuronal types and dozens of marker genes. Registration of marker genes onto a reference atlas created a resource for anatomical and functional studies and enabled the mapping of active neurons onto neuronal types following aversive stimuli. Strikingly, despite brain growth and functional maturation, cell types were retained between the larval and adult habenula. This study provides a gene expression atlas to dissect habenular development and function and offers a general framework for the comprehensive characterization of other brain regions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Neocortical Neuronal Loss in Patients with Multiple System Atrophy

    DEFF Research Database (Denmark)

    Salvesen, Lisette; Winge, Kristian; Brudek, Tomasz

    2017-01-01

    To determine the extent of neocortical involvement in multiple system atrophy (MSA), we used design-based stereological methods to estimate the total numbers of neurons, oligodendrocytes, astrocytes, and microglia in the frontal, parietal, temporal, and occipital cortex of brains from 11 patients...... with MSA and 11 age- and gender-matched control subjects. The stereological data were supported by cell marker expression analyses in tissue samples from the prefrontal cortex. We found significantly fewer neurons in the frontal and parietal cortex of MSA brains compared with control brains. Significantly...

  5. Acting together in and beyond the mirror neuron system

    NARCIS (Netherlands)

    Kokal, Idil; Gazzola, Valeria; Keysers, Christian

    2009-01-01

    Moving a set dinner table often takes two people, and doing so without spilling the glasses requires the close coordination of the two agents' actions. It has been argued that the mirror neuron system may be the key neural locus of such coordination. Instead, here we show that such coordination

  6. The Mirror Neuron System: Grasping Others' Actions from Birth?

    Science.gov (United States)

    Lepage, Jean-Francois; Theoret, Hugo

    2007-01-01

    In the adult human brain, the presence of a system matching the observation and the execution of actions is well established. This mechanism is thought to rely primarily on the contribution of so-called "mirror neurons", cells that are active when a specific gesture is executed as well as when it is seen or heard. Despite the wealth of evidence…

  7. On Empathy: The Mirror Neuron System and Art Education

    Science.gov (United States)

    Jeffers, Carol S.

    2009-01-01

    This paper re/considers empathy and its implications for learning in the art classroom, particularly in light of relevant neuroscientific investigations of the mirror neuron system recently discovered in the human brain. These investigations reinterpret the meaning of perception, resonance, and connection, and point to the fundamental importance…

  8. Proteomic signatures and aberrations of mouse embryonic stem cells containing a single human chromosome 21 in neuronal differentiation: an in vitro model of Down syndrome.

    Science.gov (United States)

    Kadota, M; Nishigaki, R; Wang, C C; Toda, T; Shirayoshi, Y; Inoue, T; Gojobori, T; Ikeo, K; Rogers, M S; Oshimura, M

    2004-01-01

    Neurodegeneration in fetal development of Down syndrome (DS) patients is proposed to result in apparent neuropathological abnormalities and to contribute to the phenotypic characteristics of mental retardation and premature development of Alzheimer disease. In order to identify the aberrant and specific genes involved in the early differentiation of DS neurons, we have utilized an in vitro neuronal differentiation system of mouse ES cells containing a single human chromosome 21 (TT2F/hChr21) with TT2F parental ES cells as a control. The paired protein extracts from TT2F and TT2F/hChr21 cells at several stages of neuronal differentiation were subjected to two-dimensional polyacrylamide gel electrophoresis protein separation followed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry to identify the proteins differentially expressed between TT2F and TT2F/hChr21 cells. We provide here a novel set of specific gene products altered in early differentiating DS neuronal cells, which differs from that identified in adult or fetal brain with DS. The aberrant protein expression in early differentiating neurons, due to the hChr21 gene dosage effects or chromosomal imbalance, may affect neuronal outgrowth, proliferation and differentiation, producing developmental abnormalities in neural patterning, which eventually leads to formation of a suboptimal functioning neuronal network in DS.

  9. Simultaneous transcranial magnetic stimulation and single-neuron recording in alert non-human primates.

    Science.gov (United States)

    Mueller, Jerel K; Grigsby, Erinn M; Prevosto, Vincent; Petraglia, Frank W; Rao, Hrishikesh; Deng, Zhi-De; Peterchev, Angel V; Sommer, Marc A; Egner, Tobias; Platt, Michael L; Grill, Warren M

    2014-08-01

    Transcranial magnetic stimulation (TMS) is a widely used, noninvasive method for stimulating nervous tissue, yet its mechanisms of effect are poorly understood. Here we report new methods for studying the influence of TMS on single neurons in the brain of alert non-human primates. We designed a TMS coil that focuses its effect near the tip of a recording electrode and recording electronics that enable direct acquisition of neuronal signals at the site of peak stimulus strength minimally perturbed by stimulation artifact in awake monkeys (Macaca mulatta). We recorded action potentials within ∼1 ms after 0.4-ms TMS pulses and observed changes in activity that differed significantly for active stimulation as compared with sham stimulation. This methodology is compatible with standard equipment in primate laboratories, allowing easy implementation. Application of these tools will facilitate the refinement of next generation TMS devices, experiments and treatment protocols.

  10. Simultaneous transcranial magnetic stimulation and single neuron recording in alert non-human primates

    Science.gov (United States)

    Mueller, Jerel K.; Grigsby, Erinn M.; Prevosto, Vincent; Petraglia, Frank W.; Rao, Hrishikesh; Deng, Zhi-De; Peterchev, Angel V.; Sommer, Marc A.; Egner, Tobias; Platt, Michael L.; Grill, Warren M.

    2014-01-01

    Transcranial magnetic stimulation (TMS) is a widely used, noninvasive method for stimulating nervous tissue, yet its mechanisms of effect are poorly understood. Here we report novel methods for studying the influence of TMS on single neurons in the brain of alert non-human primates. We designed a TMS coil that focuses its effect near the tip of a recording electrode and recording electronics that enable direct acquisition of neuronal signals at the site of peak stimulus strength minimally perturbed by stimulation artifact in intact, awake monkeys (Macaca mulatta). We recorded action potentials within ~1 ms after 0.4 ms TMS pulses and observed changes in activity that differed significantly for active stimulation as compared to sham stimulation. The methodology is compatible with standard equipment in primate laboratories, allowing for easy implementation. Application of these new tools will facilitate the refinement of next generation TMS devices, experiments, and treatment protocols. PMID:24974797

  11. Single-Cell Transcriptional Analysis Reveals Novel Neuronal Phenotypes and Interaction Networks Involved in the Central Circadian Clock.

    Science.gov (United States)

    Park, James; Zhu, Haisun; O'Sullivan, Sean; Ogunnaike, Babatunde A; Weaver, David R; Schwaber, James S; Vadigepalli, Rajanikanth

    2016-01-01

    Single-cell heterogeneity confounds efforts to understand how a population of cells organizes into cellular networks that underlie tissue-level function. This complexity is prominent in the mammalian suprachiasmatic nucleus (SCN). Here, individual neurons exhibit a remarkable amount of asynchronous behavior and transcriptional heterogeneity. However, SCN neurons are able to generate precisely coordinated synaptic and molecular outputs that synchronize the body to a common circadian cycle by organizing into cellular networks. To understand this emergent cellular network property, it is important to reconcile single-neuron heterogeneity with network organization. In light of recent studies suggesting that transcriptionally heterogeneous cells organize into distinct cellular phenotypes, we characterized the transcriptional, spatial, and functional organization of 352 SCN neurons from mice experiencing phase-shifts in their circadian cycle. Using the community structure detection method and multivariate analytical techniques, we identified previously undescribed neuronal phenotypes that are likely to participate in regulatory networks with known SCN cell types. Based on the newly discovered neuronal phenotypes, we developed a data-driven neuronal network structure in which multiple cell types interact through known synaptic and paracrine signaling mechanisms. These results provide a basis from which to interpret the functional variability of SCN neurons and describe methodologies toward understanding how a population of heterogeneous single cells organizes into cellular networks that underlie tissue-level function.

  12. Single-cell Transcriptional Analysis Reveals Novel Neuronal Phenotypes and Interaction Networks involved In the Central Circadian Clock

    Directory of Open Access Journals (Sweden)

    James Park

    2016-10-01

    Full Text Available Single-cell heterogeneity confounds efforts to understand how a population of cells organizes into cellular networks that underlie tissue-level function. This complexity is prominent in the mammalian suprachiasmatic nucleus (SCN. Here, individual neurons exhibit a remarkable amount of asynchronous behavior and transcriptional heterogeneity. However, SCN neurons are able to generate precisely coordinated synaptic and molecular outputs that synchronize the body to a common circadian cycle by organizing into cellular networks. To understand this emergent cellular network property, it is important to reconcile single-neuron heterogeneity with network organization. In light of recent studies suggesting that transcriptionally heterogeneous cells organize into distinct cellular phenotypes, we characterized the transcriptional, spatial, and functional organization of 352 SCN neurons from mice experiencing phase-shifts in their circadian cycle. Using the community structure detection method and multivariate analytical techniques, we identified previously undescribed neuronal phenotypes that are likely to participate in regulatory networks with known SCN cell types. Based on the newly discovered neuronal phenotypes, we developed a data-driven neuronal network structure in which multiple cell types interact through known synaptic and paracrine signaling mechanisms. These results provide a basis from which to interpret the functional variability of SCN neurons and describe methodologies towards understanding how a population of heterogeneous single cells organizes into cellular networks that underlie tissue-level function.

  13. Two-photon compatibility and single-voxel, single-trial detection of subthreshold neuronal activity by a two-component optical voltage sensor.

    Science.gov (United States)

    Fink, Ann E; Bender, Kevin J; Trussell, Laurence O; Otis, Thomas S; DiGregorio, David A

    2012-01-01

    Minimally invasive measurements of neuronal activity are essential for understanding how signal processing is performed by neuronal networks. While optical strategies for making such measurements hold great promise, optical sensors generally lack the speed and sensitivity necessary to record neuronal activity on a single-trial, single-neuron basis. Here we present additional biophysical characterization and practical improvements of a two-component optical voltage sensor (2cVoS), comprised of the neuronal tracer dye, DiO, and dipicrylamine (DiO/DPA). Using laser spot illumination we demonstrate that membrane potential-dependent fluorescence changes can be obtained in a wide variety of cell types within brain slices. We show a correlation between membrane labeling and the sensitivity of the magnitude of fluorescence signal, such that neurons with the brightest membrane labeling yield the largest ΔF/F values per action potential (AP; ∼40%). By substituting a blue-shifted donor for DiO we confirm that DiO/DPA works, at least in part, via a Förster resonance energy transfer (FRET) mechanism. We also describe a straightforward iontophoretic method for labeling multiple neurons with DiO and show that DiO/DPA is compatible with two-photon (2P) imaging. Finally, exploiting the high sensitivity of DiO/DPA, we demonstrate AP-induced fluorescence transients (fAPs) recorded from single spines of hippocampal pyramidal neurons and single-trial measurements of subthreshold synaptic inputs to granule cell dendrites. Our findings suggest that the 2cVoS, DiO/DPA, enables optical measurements of trial-to-trial voltage fluctuations with very high spatial and temporal resolution, properties well suited for monitoring electrical signals from multiple neurons within intact neuronal networks.

  14. Two-photon compatibility and single-voxel, single-trial detection of subthreshold neuronal activity by a two-component optical voltage sensor.

    Directory of Open Access Journals (Sweden)

    Ann E Fink

    Full Text Available Minimally invasive measurements of neuronal activity are essential for understanding how signal processing is performed by neuronal networks. While optical strategies for making such measurements hold great promise, optical sensors generally lack the speed and sensitivity necessary to record neuronal activity on a single-trial, single-neuron basis. Here we present additional biophysical characterization and practical improvements of a two-component optical voltage sensor (2cVoS, comprised of the neuronal tracer dye, DiO, and dipicrylamine (DiO/DPA. Using laser spot illumination we demonstrate that membrane potential-dependent fluorescence changes can be obtained in a wide variety of cell types within brain slices. We show a correlation between membrane labeling and the sensitivity of the magnitude of fluorescence signal, such that neurons with the brightest membrane labeling yield the largest ΔF/F values per action potential (AP; ∼40%. By substituting a blue-shifted donor for DiO we confirm that DiO/DPA works, at least in part, via a Förster resonance energy transfer (FRET mechanism. We also describe a straightforward iontophoretic method for labeling multiple neurons with DiO and show that DiO/DPA is compatible with two-photon (2P imaging. Finally, exploiting the high sensitivity of DiO/DPA, we demonstrate AP-induced fluorescence transients (fAPs recorded from single spines of hippocampal pyramidal neurons and single-trial measurements of subthreshold synaptic inputs to granule cell dendrites. Our findings suggest that the 2cVoS, DiO/DPA, enables optical measurements of trial-to-trial voltage fluctuations with very high spatial and temporal resolution, properties well suited for monitoring electrical signals from multiple neurons within intact neuronal networks.

  15. Integration of Plasticity Mechanisms within a Single Sensory Neuron of C. elegans Actuates a Memory.

    Science.gov (United States)

    Hawk, Josh D; Calvo, Ana C; Liu, Ping; Almoril-Porras, Agustin; Aljobeh, Ahmad; Torruella-Suárez, María Luisa; Ren, Ivy; Cook, Nathan; Greenwood, Joel; Luo, Linjiao; Wang, Zhao-Wen; Samuel, Aravinthan D T; Colón-Ramos, Daniel A

    2018-01-17

    Neural plasticity, the ability of neurons to change their properties in response to experiences, underpins the nervous system's capacity to form memories and actuate behaviors. How different plasticity mechanisms act together in vivo and at a cellular level to transform sensory information into behavior is not well understood. We show that in Caenorhabditis elegans two plasticity mechanisms-sensory adaptation and presynaptic plasticity-act within a single cell to encode thermosensory information and actuate a temperature preference memory. Sensory adaptation adjusts the temperature range of the sensory neuron (called AFD) to optimize detection of temperature fluctuations associated with migration. Presynaptic plasticity in AFD is regulated by the conserved kinase nPKCε and transforms thermosensory information into a behavioral preference. Bypassing AFD presynaptic plasticity predictably changes learned behavioral preferences without affecting sensory responses. Our findings indicate that two distinct neuroplasticity mechanisms function together through a single-cell logic system to enact thermotactic behavior. VIDEO ABSTRACT. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Retrograde labeling of single neurons in conjunction with MALDI high-energy collision-induced dissociation MS/MS analysis for peptide profiling and structural characterization

    NARCIS (Netherlands)

    El Filali, Z.; Hornshaw, M.; Smit, A.B.; Li, K.W.

    2003-01-01

    To reveal the peptide contents of the visually nonidentifiable neurons from a neuronal circuit of interest, we combined retrograde labeling of neurons with mass spectrometric single cell analysis. We used the neuronal circuit involved in the copulation behavior of a freshwater snail, Lymnaea

  17. Timing of neuron development in the rodent vestibular system

    Science.gov (United States)

    Keefe, J. R.

    1982-01-01

    The timing of cell generation (onset and duration) in the developing rat vestibular and proprioceptive systems is investigated. The results clearly indicate a defined time-span for generation of all neurons in the central nervous system nuclei studied. This cytogenetic period in both vestibular and proprioceptive sensory nuclei is determined to occur during and immediately after placentation, a potentially critical period for spaceflight exposure due to alterations in maternal physiology.

  18. Transport of BMAA into Neurons and Astrocytes by System xc.

    Science.gov (United States)

    Albano, Rebecca; Lobner, Doug

    2018-01-01

    The study of the mechanism of β-N-methylamino-L-alanine (BMAA) neurotoxicity originally focused on its effects at the N-methyl-D-aspartate (NMDA) receptor. In recent years, it has become clear that its mechanism of action is more complicated. First, there are certain cell types, such as motor neurons and cholinergic neurons, where the dominate mechanism of toxicity is through action at AMPA receptors. Second, even in cortical neurons where the primary mechanism of toxicity appears to be activation of NMDA receptors, there are other mechanisms involved. We found that along with NMDA receptors, activation of mGLuR5 receptors and effects on the cystine/glutamate antiporter (system x c -) were involved in the toxicity. The effects on system x c - are of particular interest. System x c - mediates the transport of cystine into the cell in exchange for releasing glutamate into the extracellular fluid. By releasing glutamate, system x c - can potentially cause excitotoxicity. However, through providing cystine to the cell, it regulates the levels of cellular glutathione (GSH), the main endogenous intracellular antioxidant, and in this way may protect cells against oxidative stress. We have previously published that BMAA inhibits cystine uptake leading to GSH depletion and had indirect evidence that BMAA is transported into the cells by system x c -. We now present direct evidence that BMAA is transported into both astrocytes and neurons through system x c -. The fact that BMAA is transported by system x c - also provides a mechanism for BMAA to enter brain cells potentially leading to misincorporation into proteins and protein misfolding.

  19. Single-photon emission computed tomographic findings and motor neuron signs in amyotrophic lateral sclerosis

    International Nuclear Information System (INIS)

    Terao, Shin-ichi; Sobue, Gen; Higashi, Naoki; Takahashi, Masahiko; Suga, Hidemichi; Mitsuma, Terunori

    1995-01-01

    123 I-amphetamine-single photon emission computed tomography (SPECT) was performed on 16 patients with amyotrophic lateral sclerosis (ALS) to investigate the correlation between regional cerebral blood flow (rCBF) and upper motor neuron signs. Significant decreased blood flow less than 2 SDs below the mean of controls was observed in the frontal lobe in 4 patients (25%) and in the frontoparietal lobe including the cortical motor area in 4 patients, respectively. The severity of extermity muscular weakness was significantly correlate with decrease in blood flow through the frontal lobe (p<0.05) and through the frontoparietal lobe (p<0.001). A significant correlation was also noted to exist between the severity of bulbar paralysis and decrease in blood flow through the frontoparietal lobe. No correlation, however, was observed between rCBF and severity of spasticity, presence or absence of Babinski's sign and the duration of illness. Although muscular weakness in the limbs and bulbar paralysis are not pure upper motor neuron signs, the observed reduction in blood flow through the frontal or frontoparietal lobes appears to reflect extensive progression of functional or organic lesions of cortical neurons including the motor area. (author)

  20. Diversity of bilateral synaptic assemblies for binaural computation in midbrain single neurons.

    Science.gov (United States)

    He, Na; Kong, Lingzhi; Lin, Tao; Wang, Shaohui; Liu, Xiuping; Qi, Jiyao; Yan, Jun

    2017-11-01

    Binaural hearing confers many beneficial functions but our understanding of its underlying neural substrates is limited. This study examines the bilateral synaptic assemblies and binaural computation (or integration) in the central nucleus of the inferior colliculus (ICc) of the auditory midbrain, a key convergent center. Using in-vivo whole-cell patch-clamp, the excitatory and inhibitory postsynaptic potentials (EPSPs/IPSPs) of single ICc neurons to contralateral, ipsilateral and bilateral stimulation were recorded. According to the contralateral and ipsilateral EPSP/IPSP, 7 types of bilateral synaptic assemblies were identified. These include EPSP-EPSP (EE), E-IPSP (EI), E-no response (EO), II, IE, IO and complex-mode (CM) neurons. The CM neurons showed frequency- and/or amplitude-dependent EPSPs/IPSPs to contralateral or ipsilateral stimulation. Bilateral stimulation induced EPSPs/IPSPs that could be larger than (facilitation), similar to (ineffectiveness) or smaller than (suppression) those induced by contralateral stimulation. Our findings have allowed our group to characterize novel neural circuitry for binaural computation in the midbrain. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Overexpression of cypin alters dendrite morphology, single neuron activity, and network properties via distinct mechanisms

    Science.gov (United States)

    Rodríguez, Ana R.; O'Neill, Kate M.; Swiatkowski, Przemyslaw; Patel, Mihir V.; Firestein, Bonnie L.

    2018-02-01

    Objective. This study investigates the effect that overexpression of cytosolic PSD-95 interactor (cypin), a regulator of synaptic PSD-95 protein localization and a core regulator of dendrite branching, exerts on the electrical activity of rat hippocampal neurons and networks. Approach. We cultured rat hippocampal neurons and used lipid-mediated transfection and lentiviral gene transfer to achieve high levels of cypin or cypin mutant (cypinΔPDZ PSD-95 non-binding) expression cellularly and network-wide, respectively. Main results. Our analysis revealed that although overexpression of cypin and cypinΔPDZ increase dendrite numbers and decrease spine density, cypin and cypinΔPDZ distinctly regulate neuronal activity. At the single cell level, cypin promotes decreases in bursting activity while cypinΔPDZ reduces sEPSC frequency and further decreases bursting compared to cypin. At the network level, by using the Fano factor as a measure of spike count variability, cypin overexpression results in an increase in variability of spike count, and this effect is abolished when cypin cannot bind PSD-95. This variability is also dependent on baseline activity levels and on mean spike rate over time. Finally, our spike sorting data show that overexpression of cypin results in a more complex distribution of spike waveforms and that binding to PSD-95 is essential for this complexity. Significance. Our data suggest that dendrite morphology does not play a major role in cypin action on electrical activity.

  2. Modelling LGMD2 visual neuron system

    OpenAIRE

    Fu, Qinbing; Yue, Shigang

    2015-01-01

    Two Lobula Giant Movement Detectors (LGMDs) have been identified in the lobula region of the locust visual system: LGMD1 and LGMD2. LGMD1 had been successfully used in robot navigation to avoid impending collision. LGMD2 also responds to looming stimuli in depth, and shares most the same properties with LGMD1; however, LGMD2 has its specific collision selective responds when dealing with different visual stimulus. Therefore, in this paper, we propose a novel way to model LGMD2, in order to em...

  3. STDP allows close-to-optimal spatiotemporal spike pattern detection by single coincidence detector neurons.

    Science.gov (United States)

    Masquelier, Timothée

    2017-06-29

    Repeating spatiotemporal spike patterns exist and carry information. How this information is extracted by downstream neurons is unclear. Here we theoretically investigate to what extent a single cell could detect a given spike pattern and what the optimal parameters to do so are, in particular the membrane time constant τ. Using a leaky integrate-and-fire (LIF) neuron with homogeneous Poisson input, we computed this optimum analytically. We found that a relatively small τ (at most a few tens of ms) is usually optimal, even when the pattern is much longer. This is somewhat counter-intuitive as the resulting detector ignores most of the pattern, due to its fast memory decay. Next, we wondered if spike-timing-dependent plasticity (STDP) could enable a neuron to reach the theoretical optimum. We simulated a LIF equipped with additive STDP, and repeatedly exposed it to a given input spike pattern. As in previous studies, the LIF progressively became selective to the repeating pattern with no supervision, even when the pattern was embedded in Poisson activity. Here we show that, using certain STDP parameters, the resulting pattern detector is optimal. These mechanisms may explain how humans learn repeating sensory sequences. Long sequences could be recognized thanks to coincidence detectors working at a much shorter timescale. This is consistent with the fact that recognition is still possible if a sound sequence is compressed, played backward, or scrambled using 10-ms bins. Coincidence detection is a simple yet powerful mechanism, which could be the main function of neurons in the brain. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  4. Isotocin neuronal phenotypes differ among social systems in cichlid fishes

    Science.gov (United States)

    O'Connor, Constance M.; Nesjan, Erin; Cameron, Jason; Hellmann, Jennifer K.; Ligocki, Isaac Y.; Marsh-Rollo, Susan E.; Hamilton, Ian M.; Wylie, Douglas R.; Hurd, Peter L.; Balshine, Sigal

    2017-01-01

    Social living has evolved numerous times across a diverse array of animal taxa. An open question is how the transition to a social lifestyle has shaped, and been shaped by, the underlying neurohormonal machinery of social behaviour. The nonapeptide neurohormones, implicated in the regulation of social behaviours, are prime candidates for the neuroendocrine substrates of social evolution. Here, we examined the brains of eight cichlid fish species with divergent social systems, comparing the number and size of preoptic neurons that express the nonapeptides isotocin and vasotocin. While controlling for the influence of phylogeny and body size, we found that the highly social cooperatively breeding species (n = 4) had fewer parvocellular isotocin neurons than the less social independently breeding species (n = 4), suggesting that the evolutionary transition to group living and cooperative breeding was associated with a reduction in the number of these neurons. In a complementary analysis, we found that the size and number of isotocin neurons significantly differentiated the cooperatively breeding from the independently breeding species. Our results suggest that isotocin is related to sociality in cichlids and may provide a mechanistic substrate for the evolution of sociality. PMID:28573041

  5. [The mirror neuron system in motor and sensory rehabilitation].

    Science.gov (United States)

    Oouchida, Yutaka; Izumi, Shinichi

    2014-06-01

    The discovery of the mirror neuron system has dramatically changed the study of motor control in neuroscience. The mirror neuron system provides a conceptual framework covering the aspects of motor as well as sensory functions in motor control. Previous studies of motor control can be classified as studies of motor or sensory functions, and these two classes of studies appear to have advanced independently. In rehabilitation requiring motor learning, such as relearning movement after limb paresis, however, sensory information of feedback for motor output as well as motor command are essential. During rehabilitation from chronic pain, motor exercise is one of the most effective treatments for pain caused by dysfunction in the sensory system. In rehabilitation where total intervention unifying the motor and sensory aspects of motor control is important, learning through imitation, which is associated with the mirror neuron system can be effective and suitable. In this paper, we introduce the clinical applications of imitated movement in rehabilitation from motor impairment after brain damage and phantom limb pain after limb amputation.

  6. Orientation selectivity in inhibition-dominated networks of spiking neurons: effect of single neuron properties and network dynamics.

    Science.gov (United States)

    Sadeh, Sadra; Rotter, Stefan

    2015-01-01

    The neuronal mechanisms underlying the emergence of orientation selectivity in the primary visual cortex of mammals are still elusive. In rodents, visual neurons show highly selective responses to oriented stimuli, but neighboring neurons do not necessarily have similar preferences. Instead of a smooth map, one observes a salt-and-pepper organization of orientation selectivity. Modeling studies have recently confirmed that balanced random networks are indeed capable of amplifying weakly tuned inputs and generating highly selective output responses, even in absence of feature-selective recurrent connectivity. Here we seek to elucidate the neuronal mechanisms underlying this phenomenon by resorting to networks of integrate-and-fire neurons, which are amenable to analytic treatment. Specifically, in networks of perfect integrate-and-fire neurons, we observe that highly selective and contrast invariant output responses emerge, very similar to networks of leaky integrate-and-fire neurons. We then demonstrate that a theory based on mean firing rates and the detailed network topology predicts the output responses, and explains the mechanisms underlying the suppression of the common-mode, amplification of modulation, and contrast invariance. Increasing inhibition dominance in our networks makes the rectifying nonlinearity more prominent, which in turn adds some distortions to the otherwise essentially linear prediction. An extension of the linear theory can account for all the distortions, enabling us to compute the exact shape of every individual tuning curve in our networks. We show that this simple form of nonlinearity adds two important properties to orientation selectivity in the network, namely sharpening of tuning curves and extra suppression of the modulation. The theory can be further extended to account for the nonlinearity of the leaky model by replacing the rectifier by the appropriate smooth input-output transfer function. These results are robust and do not

  7. Neuronal expression of muskelin in the rodent central nervous system

    Directory of Open Access Journals (Sweden)

    Georges-Labouesse Elisabeth

    2007-05-01

    Full Text Available Abstract Background The kelch repeat protein muskelin mediates cytoskeletal responses to the extracellular matrix protein thrombospondin 1, (TSP1, that is known to promote synaptogenesis in the central nervous system (CNS. Muskelin displays intracellular localization and affects cytoskeletal organization in adherent cells. Muskelin is expressed in adult brain and has been reported to bind the Cdk5 activator p39, which also facilitates the formation of functional synapses. Since little is known about muskelin in neuronal tissues, we here analysed the tissue distribution of muskelin in rodent brain and analysed its subcellular localization using cultured neurons from multiple life stages. Results Our data show that muskelin transcripts and polypeptides are expressed throughout the central nervous system with significantly high levels in hippocampus and cerebellum, a finding that resembles the tissue distribution of p39. At the subcellular level, muskelin is found in the soma, in neurite projections and the nucleus with a punctate distribution in both axons and dendrites. Immunostaining and synaptosome preparations identify partial localization of muskelin at synaptic sites. Differential centrifugation further reveals muskelin in membrane-enriched, rather than cytosolic fractions. Conclusion Our results suggest that muskelin represents a multifunctional protein associated with membranes and/or large protein complexes in most neurons of the central nervous system. These data are in conclusion with distinct roles of muskelin's functional interaction partners.

  8. Elucidating distinct ion channel populations on the surface of hippocampal neurons via single-particle tracking recurrence analysis

    Science.gov (United States)

    Sikora, Grzegorz; Wyłomańska, Agnieszka; Gajda, Janusz; Solé, Laura; Akin, Elizabeth J.; Tamkun, Michael M.; Krapf, Diego

    2017-12-01

    Protein and lipid nanodomains are prevalent on the surface of mammalian cells. In particular, it has been recently recognized that ion channels assemble into surface nanoclusters in the soma of cultured neurons. However, the interactions of these molecules with surface nanodomains display a considerable degree of heterogeneity. Here, we investigate this heterogeneity and develop statistical tools based on the recurrence of individual trajectories to identify subpopulations within ion channels in the neuronal surface. We specifically study the dynamics of the K+ channel Kv1.4 and the Na+ channel Nav1.6 on the surface of cultured hippocampal neurons at the single-molecule level. We find that both these molecules are expressed in two different forms with distinct kinetics with regards to surface interactions, emphasizing the complex proteomic landscape of the neuronal surface. Further, the tools presented in this work provide new methods for the analysis of membrane nanodomains, transient confinement, and identification of populations within single-particle trajectories.

  9. Enhanced Peptide Detection Toward Single-Neuron Proteomics by Reversed-Phase Fractionation Capillary Electrophoresis Mass Spectrometry

    Science.gov (United States)

    Choi, Sam B.; Lombard-Banek, Camille; Muñoz-LLancao, Pablo; Manzini, M. Chiara; Nemes, Peter

    2017-11-01

    The ability to detect peptides and proteins in single cells is vital for understanding cell heterogeneity in the nervous system. Capillary electrophoresis (CE) nanoelectrospray ionization (nanoESI) provides high-resolution mass spectrometry (HRMS) with trace-level sensitivity, but compressed separation during CE challenges protein identification by tandem HRMS with limited MS/MS duty cycle. Here, we supplemented ultrasensitive CE-nanoESI-HRMS with reversed-phase (RP) fractionation to enhance identifications from protein digest amounts that approximate to a few mammalian neurons. An 1 to 20 μg neuronal protein digest was fractionated on a RP column (ZipTip), and 1 ng to 500 pg of peptides were analyzed by a custom-built CE-HRMS system. Compared with the control (no fractionation), RP fractionation improved CE separation (theoretical plates 274,000 versus 412,000 maximum, resp.), which enhanced detection sensitivity (2.5-fold higher signal-to-noise ratio), minimized co-isolation spectral interferences during MS/MS, and increased the temporal rate of peptide identification by up to 57%. From 1 ng of protein digest (development of the brain, including those involved in synaptic transmission and plasticity and cytoskeletal organization. [Figure not available: see fulltext.

  10. Neuronal adaptation in the somatosensory system of rodents.

    Science.gov (United States)

    Lampl, I; Katz, Y

    2017-02-20

    The sensory systems in animals constantly monitor the environment and process salient and relevant features while subtracting background activity. This process requires continuous recalibration of neuronal gain based on recent history. Adaptation has been postulated to be the key mechanism by which neurons rapidly tune their response curves to represent the entire dynamic range of external inputs. Rodents heavily rely on their vibrissa system while gathering information about their surroundings using whisking. Neuronal adaptation is observed in all stages of sensory processing, from the whisker follicle through the brainstem and thalamus up to the barrel cortex. In this review, we discuss the intrinsic, synaptic and network mechanisms of adaptation such as short-term synaptic depression, inhibitory suppression, balance between excitation and inhibition as well as the role of cascading adaptation. Furthermore, we describe recent findings about the different intensity dependent adaptation properties in the two major somatosensory pathways and their possible implications about coding. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Quantitative analysis of axon bouton distribution of subthalamic nucleus neurons in the rat by single neuron visualization with a viral vector.

    Science.gov (United States)

    Koshimizu, Yoshinori; Fujiyama, Fumino; Nakamura, Kouichi C; Furuta, Takahiro; Kaneko, Takeshi

    2013-06-15

    The subthalamic nucleus (STN) of the basal ganglia plays a key role in motor control, and STN efferents are known to mainly target the external segment of the globus pallidus (GPe), entopeduncular nucleus (Ep), and substantia nigra (SN) with some axon collaterals to the other regions. However, it remains to be clarified how each STN neuron projects axon fibers and collaterals to those target nuclei of the STN. Here we visualized the whole axonal arborization of single STN neurons in the rat brain by using a viral vector expressing membrane-targeted green fluorescent protein, and examined the distribution of axon boutons in those target nuclei. The vast majority (8-9) of 10 reconstructed STN neurons projected to the GPe, SN, caudate-putamen (CPu), and Ep, which received, on average ± SD, 457 ± 425, 400 ± 347, 126 ± 143, and 106 ± 100 axon boutons per STN neuron, respectively. Furthermore, the density of axon boutons in the GPe was highest among these nuclei. Although these target nuclei were divided into calbindin-rich and -poor portions, STN projection showed no exclusive preference for those portions. Since STN neurons mainly projected not only to the GPe, SN, and Ep but also to the CPu, the subthalamostriatal projection might serve as a positive feedback path for the striato-GPe-subthalamic disinhibitory pathway, or work as another route of cortical inputs to the striatum through the corticosubthalamostriatal disynaptic excitatory pathway. Copyright © 2012 Wiley Periodicals, Inc.

  12. A single hidden layer feedforward network with only one neuron in the hidden layer can approximate any univariate function

    OpenAIRE

    Guliyev, Namig; Ismailov, Vugar

    2016-01-01

    The possibility of approximating a continuous function on a compact subset of the real line by a feedforward single hidden layer neural network with a sigmoidal activation function has been studied in many papers. Such networks can approximate an arbitrary continuous function provided that an unlimited number of neurons in a hidden layer is permitted. In this paper, we consider constructive approximation on any finite interval of $\\mathbb{R}$ by neural networks with only one neuron in the hid...

  13. Plasticity of marrow mesenchymal stem cells from human first-trimester fetus: from single-cell clone to neuronal differentiation.

    Science.gov (United States)

    Zhang, Yihua; Shen, Wenzheng; Sun, Bingjie; Lv, Changrong; Dou, Zhongying

    2011-02-01

    Recent results have shown that bone marrow mesenchymal stem cells (BMSCs) from human first-trimester abortus (hfBMSCs) are closer to embryonic stem cells and perform greater telomerase activity and faster propagation than mid- and late-prophase fetal and adult BMSCs. However, no research has been done on the plasticity of hfBMSCs into neuronal cells using single-cell cloned strains without cell contamination. In this study, we isolated five single cells from hfBMSCs and obtained five single-cell cloned strains, and investigated their biological property and neuronal differentiation potential. We found that four of the five strains showed similar expression profile of surface antigen markers to hfBMSCs, and most of them differentiated into neuron-like cells expressing Nestin, Pax6, Sox1, β-III Tubulin, NF-L, and NSE under induction. One strain showed different expression profile of surface antigen markers from the four strains and hfBMSCs, and did not differentiate toward neuronal cells. We demonstrated for the first time that some of single-cell cloned strains from hfBMSCs can differentiate into nerve tissue-like cell clusters under induction in vitro, and that the plasticity of each single-cell cloned strain into neuronal cells is different.

  14. Is the human mirror neuron system plastic? Evidence from a transcranial magnetic stimulation study.

    Science.gov (United States)

    Mehta, Urvakhsh Meherwan; Waghmare, Avinash V; Thirthalli, Jagadisha; Venkatasubramanian, Ganesan; Gangadhar, Bangalore N

    2015-10-01

    Virtual lesions in the mirror neuron network using inhibitory low-frequency (1Hz) transcranial magnetic stimulation (TMS) have been employed to understand its spatio-functional properties. However, no studies have examined the influence of neuro-enhancement by using excitatory high-frequency (20Hz) repetitive transcranial magnetic stimulation (HF-rTMS) on these networks. We used three forms of TMS stimulation (HF-rTMS, single and paired pulse) to investigate whether the mirror neuron system facilitates the motor system during goal-directed action observation relative to inanimate motion (motor resonance), a marker of putative mirror neuron activity. 31 healthy individuals were randomized to receive single-sessions of true or sham HF-rTMS delivered to the left inferior frontal gyrus - a component of the human mirror system. Motor resonance was assessed before and after HF-rTMS using three TMS cortical reactivity paradigms: (a) 120% of resting motor threshold (RMT), (b) stimulus intensity set to evoke motor evoked potential of 1-millivolt amplitude (SI1mV) and (c) a short latency paired pulse paradigm. Two-way RMANOVA showed a significant group (true versus sham) X occasion (pre- and post-HF-rTMS motor resonance) interaction effect for SI1mV [F(df)=6.26 (1, 29), p=0.018] and 120% RMT stimuli [F(df)=7.01 (1, 29), p=0.013] indicating greater enhancement of motor resonance in the true HF-rTMS group than the sham-group. This suggests that HF-rTMS could adaptively modulate properties of the mirror neuron system. This neuro-enhancement effect is a preliminary step that can open translational avenues for novel brain stimulation therapeutics targeting social-cognition deficits in schizophrenia and autism. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Divisive normalization and neuronal oscillations in a single hierarchical framework of selective visual attention

    Directory of Open Access Journals (Sweden)

    Jorrit Steven Montijn

    2012-05-01

    Full Text Available In divisive normalization models of covert attention, spike rate modulations are commonly used as indicators of the effect of top-down attention. In addition, an increasing number of studies have shown that top-down attention increases the synchronization of neuronal oscillations as well, particularly those in gamma-band frequencies (25 to 100 Hz. Although modulations of spike rate and synchronous oscillations are not mutually exclusive as mechanisms of attention, there has thus far been little effort to integrate these concepts into a single framework of attention. Here, we aim to provide such a unified framework by expanding the normalization model of attention with a time dimension; allowing the simulation of a recently reported backward progression of attentional effects along the visual cortical hierarchy. A simple hierarchical cascade of normalization models simulating different cortical areas however leads to signal degradation and a loss of discriminability over time. To negate this degradation and ensure stable neuronal stimulus representations, we incorporate oscillatory phase entrainment into our model, a mechanism previously proposed as the communication-through-coherence (CTC hypothesis. Our analysis shows that divisive normalization and oscillation models can complement each other in a unified account of the neural mechanisms of selective visual attention. The resulting hierarchical normalization and oscillation (HNO model reproduces several additional spatial and temporal aspects of attentional modulation.

  16. Functional characteristics of a tiny but specialized olfactory system: olfactory receptor neurons of carrot psyllids (Homoptera: Triozidae).

    Science.gov (United States)

    Kristoffersen, Lina; Larsson, Mattias C; Anderbrant, Olle

    2008-11-01

    With only approximately 50 olfactory receptor neurons (ORNs), the carrot psyllid Trioza apicalis (Homoptera: Psylloidea) may have the smallest olfactory system described in adult Neopteran insects. Using single sensillum recordings (SSR) and gas chromatograph-linked SSR, we characterized 4 olfactory sensilla forming a distinct morphological type, which together house approximately 25% of all ORNs. We recorded responses to extracts and single constituents from Daucus carota ssp. sativus, from the conifers Picea abies, Pinus sylvestris, and Juniperus communis, as well as from male and female T. apicalis. Receptor neurons were highly selective; only 9 compounds in total elicited repeatable responses, and each neuron responded to at most 3 individual compounds. Chemical profiles of carrot and conifers showed significant overlap, with 4 out of 9 electrophysiologically active compounds occurring in more than one type of extract, but a carrot-specific compound elicited the most repeated responses. We identified 4 tentative neuron classes and found a rather high degree of neuronal redundancy, with 1 neuron class present in 3 and another present in all 4 of the sensilla, respectively.

  17. Predicting the functional states of human iPSC-derived neurons with single-cell RNA-seq and electrophysiology.

    Science.gov (United States)

    Bardy, C; van den Hurk, M; Kakaradov, B; Erwin, J A; Jaeger, B N; Hernandez, R V; Eames, T; Paucar, A A; Gorris, M; Marchand, C; Jappelli, R; Barron, J; Bryant, A K; Kellogg, M; Lasken, R S; Rutten, B P F; Steinbusch, H W M; Yeo, G W; Gage, F H

    2016-11-01

    Human neural progenitors derived from pluripotent stem cells develop into electrophysiologically active neurons at heterogeneous rates, which can confound disease-relevant discoveries in neurology and psychiatry. By combining patch clamping, morphological and transcriptome analysis on single-human neurons in vitro, we defined a continuum of poor to highly functional electrophysiological states of differentiated neurons. The strong correlations between action potentials, synaptic activity, dendritic complexity and gene expression highlight the importance of methods for isolating functionally comparable neurons for in vitro investigations of brain disorders. Although whole-cell electrophysiology is the gold standard for functional evaluation, it often lacks the scalability required for disease modeling studies. Here, we demonstrate a multimodal machine-learning strategy to identify new molecular features that predict the physiological states of single neurons, independently of the time spent in vitro. As further proof of concept, we selected one of the potential neurophysiological biomarkers identified in this study-GDAP1L1-to isolate highly functional live human neurons in vitro.

  18. Paraneoplastic and non-paraneoplastic autoimmunity to neurons in the central nervous system

    OpenAIRE

    Melzer, Nico; Meuth, Sven G.; Wiendl, Heinz

    2012-01-01

    Autoimmune central nervous system (CNS) inflammation occurs both in a paraneoplastic and non-paraneoplastic context. In a widening spectrum of clinical disorders, the underlying adaptive (auto) immune response targets neurons with a divergent role for cellular and humoral disease mechanisms: (1) in encephalitis associated with antibodies to intracellular neuronal antigens, neuronal antigen-specific CD8+ T cells seemingly account for irreversible progressive neuronal cell death and neurologica...

  19. Task-dependent changes in cross-level coupling between single neurons and oscillatory activity in multiscale networks.

    Directory of Open Access Journals (Sweden)

    Ryan T Canolty

    Full Text Available Understanding the principles governing the dynamic coordination of functional brain networks remains an important unmet goal within neuroscience. How do distributed ensembles of neurons transiently coordinate their activity across a variety of spatial and temporal scales? While a complete mechanistic account of this process remains elusive, evidence suggests that neuronal oscillations may play a key role in this process, with different rhythms influencing both local computation and long-range communication. To investigate this question, we recorded multiple single unit and local field potential (LFP activity from microelectrode arrays implanted bilaterally in macaque motor areas. Monkeys performed a delayed center-out reach task either manually using their natural arm (Manual Control, MC or under direct neural control through a brain-machine interface (Brain Control, BC. In accord with prior work, we found that the spiking activity of individual neurons is coupled to multiple aspects of the ongoing motor beta rhythm (10-45 Hz during both MC and BC, with neurons exhibiting a diversity of coupling preferences. However, here we show that for identified single neurons, this beta-to-rate mapping can change in a reversible and task-dependent way. For example, as beta power increases, a given neuron may increase spiking during MC but decrease spiking during BC, or exhibit a reversible shift in the preferred phase of firing. The within-task stability of coupling, combined with the reversible cross-task changes in coupling, suggest that task-dependent changes in the beta-to-rate mapping play a role in the transient functional reorganization of neural ensembles. We characterize the range of task-dependent changes in the mapping from beta amplitude, phase, and inter-hemispheric phase differences to the spike rates of an ensemble of simultaneously-recorded neurons, and discuss the potential implications that dynamic remapping from oscillatory activity to

  20. A Neuronal Culture System to Detect Prion Synaptotoxicity.

    Directory of Open Access Journals (Sweden)

    Cheng Fang

    2016-05-01

    Full Text Available Synaptic pathology is an early feature of prion as well as other neurodegenerative diseases. Although the self-templating process by which prions propagate is well established, the mechanisms by which prions cause synaptotoxicity are poorly understood, due largely to the absence of experimentally tractable cell culture models. Here, we report that exposure of cultured hippocampal neurons to PrPSc, the infectious isoform of the prion protein, results in rapid retraction of dendritic spines. This effect is entirely dependent on expression of the cellular prion protein, PrPC, by target neurons, and on the presence of a nine-amino acid, polybasic region at the N-terminus of the PrPC molecule. Both protease-resistant and protease-sensitive forms of PrPSc cause dendritic loss. This system provides new insights into the mechanisms responsible for prion neurotoxicity, and it provides a platform for characterizing different pathogenic forms of PrPSc and testing potential therapeutic agents.

  1. Embodied simulation: from mirror neuron systems to interpersonal relations.

    Science.gov (United States)

    Gallese, Vittorio

    2007-01-01

    A direct form of 'experiential understanding' of others is achieved by modelling their behaviours as intentional experiences on the basis of the equivalence between what the others do and feel and what we do and feel. This modelling mechanism is embodied simulation. By means of embodied simulation we do not just 'see' an action, an emotion, or a sensation. Side by side with the sensory description of the observed social stimuli, internal representations of the body states associated with actions, emotions, and sensations are evoked in the observer, as if he/she would be doing a similar action or experiencing a similar emotion or sensation. Mirror neurons are likely the neural correlate of this mechanism. The mirror neuron matching systems map the different intentional relations in a compressed fashion, which is neutral about the specific quality or identity of the agentive/subjective parameter. By means of a shared neural state realized in two different bodies that nevertheless obey to the same functional rules, the 'objectual other' becomes 'another self'.

  2. Studying the Behaviour of Model of Mirror Neuron System in Case of Autism

    OpenAIRE

    Shikha Anirban; Mohammad Hanif Ali

    2012-01-01

    Several experiment done by the researchers conducted that autism is caused by the dysfunctional mirror neuron system and the dysfunctions of mirror neuron system is proportional to the symptom severity of autism. In the present work those experiments were studied as well as studying a model of mirror neuron system called MNS2 developed by a research group. This research examined the behavior of the model in case of autism and compared the result with those studies conducting dysfunctions of m...

  3. Low-Gain, Low-Noise Integrated Neuronal Amplifier for Implantable Artifact-Reduction Recording System

    Directory of Open Access Journals (Sweden)

    Abdelhamid Benazzouz

    2013-09-01

    Full Text Available Brain neuroprostheses for neuromodulation are being designed to monitor the neural activity of the brain in the vicinity of the region being stimulated using a single macro-electrode. Using a single macro-electrode, recent neuromodulation studies show that recording systems with a low gain neuronal amplifier and successive amplifier stages can reduce or reject stimulation artifacts. These systems were made with off-the-shelf components that are not amendable for future implant design. A low-gain, low-noise integrated neuronal amplifier (NA with the capability of recording local field potentials (LFP and spike activity is presented. In vitro and in vivo characterizations of the tissue/electrode interface, with equivalent impedance as an electrical model for recording in the LFP band using macro-electrodes for rodents, contribute to the NA design constraints. The NA occupies 0.15 mm2 and dissipates 6.73 µW, and was fabricated using a 0.35 µm CMOS process. Test-bench validation indicates that the NA provides a mid-band gain of 20 dB and achieves a low input-referred noise of 4 µVRMS. Ability of the NA to perform spike recording in test-bench experiments is presented. Additionally, an awake and freely moving rodent setup was used to illustrate the integrated NA ability to record LFPs, paving the pathway for future implantable systems for neuromodulation.

  4. Spike Train SIMilarity Space (SSIMS): a frame-work for single neuron and ensemble data analysis

    Science.gov (United States)

    Vargas-Irwin, Carlos E.; Brandman, David M.; Zimmermann, Jonas B.; Donoghue, John P.; Black, Michael J.

    2014-01-01

    Increased emphasis on circuit level activity in the brain makes it necessary to have methods to visualize and evaluate large scale ensemble activity, beyond that revealed by raster-histograms or pairwise correlations. We present a method to evaluate the relative similarity of neural spiking patterns by combining spike train distance metrics with dimensionality reduction. Spike train distance metrics provide an estimate of similarity between activity patterns at multiple temporal resolutions. Vectors of pair-wise distances are used to represent the intrinsic relationships between multiple activity patterns at the level of single units or neuronal ensembles. Dimensionality reduction is then used to project the data into concise representations suitable for clustering analysis as well as exploratory visualization. Algorithm performance and robustness are evaluated using multielectrode ensemble activity data recorded in behaving primates. We demonstrate how Spike train SIMilarity Space (SSIMS) analysis captures the relationship between goal directions for an 8-directional reaching task and successfully segregates grasp types in a 3D grasping task in the absence of kinematic information. The algorithm enables exploration of virtually any type of neural spiking (time series) data, providing similarity-based clustering of neural activity states with minimal assumptions about potential information encoding models. PMID:25380335

  5. Single neuron recordings of bilinguals performing in a continuous recognition memory task.

    Directory of Open Access Journals (Sweden)

    Erika K Hussey

    Full Text Available We report the results of a bilingual continuous recognition memory task during which single- and multi-neuron activity was recorded in human subjects with intracranial microwire implants. Subjects (n = 5 were right-handed Spanish-English bilinguals who were undergoing evaluation prior to surgery for severe epilepsy. Subjects were presented with Spanish and English words and the task was to determine whether any given word had been seen earlier in the testing session, irrespective of the language in which it had appeared. Recordings in the left and right hippocampus revealed notable laterality, whereby both Spanish and English items that had been seen previously in the other language (switch trials triggered increased neural firing in the left hippocampus. Items that had been seen previously in the same language (repeat trials triggered increased neural firings in the right hippocampus. These results are consistent with theories that propose roles of both the left- and right-hemisphere in real-time linguistic processing. Importantly, this experiment presents the first instance of intracranial recordings in bilinguals performing a task with switching demands.

  6. Long-range projection neurons of the mouse ventral tegmental area: a single-cell axon tracing analysis.

    Science.gov (United States)

    Aransay, Ana; Rodríguez-López, Claudia; García-Amado, María; Clascá, Francisco; Prensa, Lucía

    2015-01-01

    Pathways arising from the ventral tegmental area (VTA) release dopamine and other neurotransmitters during the expectation and achievement of reward, and are regarded as central links of the brain networks that create drive, pleasure, and addiction. While the global pattern of VTA projections is well-known, the actual axonal wiring of individual VTA neurons had never been investigated. Here, we labeled and analyzed the axons of 30 VTA single neurons by means of single-cell transfection with the Sindbis-pal-eGFP vector in mice. These observations were complemented with those obtained by labeling the axons of small populations of VTA cells with iontophoretic microdeposits of biotinylated dextran amine. In the single-cell labeling experiments, each entire axonal tree was reconstructed from serial sections, the length of terminal axonal arbors was estimated by stereology, and the dopaminergic phenotype was tested by double-labeling for tyrosine hydroxylase immunofluorescence. We observed two main, markedly different VTA cell morphologies: neurons with a single main axon targeting only forebrain structures (FPN cells), and neurons with multibranched axons targeting both the forebrain and the brainstem (F + BSPN cells). Dopaminergic phenotype was observed in FPN cells. Moreover, four "subtypes" could be distinguished among the FPN cells based on their projection targets: (1) "Mesocorticolimbic" FPN projecting to both neocortex and basal forebrain; (2) "Mesocortical" FPN innervating the neocortex almost exclusively; (3) "Mesolimbic" FPN projecting to the basal forebrain, accumbens and caudateputamen; and (4) "Mesostriatal" FPN targeting only the caudateputamen. While the F + BSPN cells were scattered within VTA, the mesolimbic neurons were abundant in the paranigral nucleus. The observed diversity in wiring architectures is consistent with the notion that different VTA cell subpopulations modulate the activity of specific sets of prosencephalic and brainstem structures.

  7. Conceptual Network Model From Sensory Neurons to Astrocytes of the Human Nervous System.

    Science.gov (United States)

    Yang, Yiqun; Yeo, Chai Kiat

    2015-07-01

    From a single-cell animal like paramecium to vertebrates like ape, the nervous system plays an important role in responding to the variations of the environment. Compared to animals, the nervous system in the human body possesses more intricate organization and utility. The nervous system anatomy has been understood progressively, yet the explanation at the cell level regarding complete information transmission is still lacking. Along the signal pathway toward the brain, an external stimulus first activates action potentials in the sensing neuron and these electric pulses transmit along the spinal nerve or cranial nerve to the neurons in the brain. Second, calcium elevation is triggered in the branch of astrocyte at the tripartite synapse. Third, the local calcium wave expands to the entire territory of the astrocyte. Finally, the calcium wave propagates to the neighboring astrocyte via gap junction channel. In our study, we integrate the existing mathematical model and biological experiments in each step of the signal transduction to establish a conceptual network model for the human nervous system. The network is composed of four layers and the communication protocols of each layer could be adapted to entities with different characterizations. We verify our simulation results against the available biological experiments and mathematical models and provide a test case of the integrated network. As the production of conscious episode in the human nervous system is still under intense research, our model serves as a useful tool to facilitate, complement and verify current and future study in human cognition.

  8. Sensorimotor learning and the ontogeny of the mirror neuron system

    OpenAIRE

    Catmur, C

    2013-01-01

    Mirror neurons, which have now been found in the human and songbird as well as the macaque, respond to both the observation and the performance of the same action. It has been suggested that their matching response properties have evolved as an adaptation for action understanding; alternatively, these properties may arise through sensorimotor experience. Here I review mirror neuron response characteristics from the perspective of ontogeny; I discuss the limited evidence for mirror neurons in ...

  9. Identification of single-input-single-output quantum linear systems

    Science.gov (United States)

    Levitt, Matthew; GuÅ£ǎ, Mǎdǎlin

    2017-03-01

    The purpose of this paper is to investigate system identification for single-input-single-output general (active or passive) quantum linear systems. For a given input we address the following questions: (1) Which parameters can be identified by measuring the output? (2) How can we construct a system realization from sufficient input-output data? We show that for time-dependent inputs, the systems which cannot be distinguished are related by symplectic transformations acting on the space of system modes. This complements a previous result of Guţă and Yamamoto [IEEE Trans. Autom. Control 61, 921 (2016), 10.1109/TAC.2015.2448491] for passive linear systems. In the regime of stationary quantum noise input, the output is completely determined by the power spectrum. We define the notion of global minimality for a given power spectrum, and characterize globally minimal systems as those with a fully mixed stationary state. We show that in the case of systems with a cascade realization, the power spectrum completely fixes the transfer function, so the system can be identified up to a symplectic transformation. We give a method for constructing a globally minimal subsystem direct from the power spectrum. Restricting to passive systems the analysis simplifies so that identifiability may be completely understood from the eigenvalues of a particular system matrix.

  10. Prenatal stress and inhibitory neuron systems: implications for neuropsychiatric disorders

    Science.gov (United States)

    Fine, Rebecca; Zhang, Jie; Stevens, Hanna E.

    2014-01-01

    Prenatal stress is a risk factor for several psychiatric disorders in which inhibitory neuron pathology is implicated. A growing body of research demonstrates that inhibitory circuitry in the brain is directly and persistently affected by prenatal stress. This review synthesizes research that elucidates how this early, developmental risk factor impacts inhibitory neurons and how these findings intersect with research on risk factors and inhibitory neuron pathophysiology in schizophrenia, anxiety, autism and Tourette syndrome. The specific impact of prenatal stress on inhibitory neurons, particularly developmental mechanisms, may elucidate further the pathophysiology of these disorders. PMID:24751963

  11. Spontaneous Neuronal Activity in Developing Neocortical Networks: From Single Cells to Large-Scale Interactions.

    Science.gov (United States)

    Luhmann, Heiko J; Sinning, Anne; Yang, Jenq-Wei; Reyes-Puerta, Vicente; Stüttgen, Maik C; Kirischuk, Sergei; Kilb, Werner

    2016-01-01

    Neuronal activity has been shown to be essential for the proper formation of neuronal circuits, affecting developmental processes like neurogenesis, migration, programmed cell death, cellular differentiation, formation of local and long-range axonal connections, synaptic plasticity or myelination. Accordingly, neocortical areas reveal distinct spontaneous and sensory-driven neuronal activity patterns already at early phases of development. At embryonic stages, when immature neurons start to develop voltage-dependent channels, spontaneous activity is highly synchronized within small neuronal networks and governed by electrical synaptic transmission. Subsequently, spontaneous activity patterns become more complex, involve larger networks and propagate over several neocortical areas. The developmental shift from local to large-scale network activity is accompanied by a gradual shift from electrical to chemical synaptic transmission with an initial excitatory action of chloride-gated channels activated by GABA, glycine and taurine. Transient neuronal populations in the subplate (SP) support temporary circuits that play an important role in tuning early neocortical activity and the formation of mature neuronal networks. Thus, early spontaneous activity patterns control the formation of developing networks in sensory cortices, and disturbances of these activity patterns may lead to long-lasting neuronal deficits.

  12. Not a single but multiple populations of GABAergic neurons control sleep.

    Science.gov (United States)

    Luppi, Pierre-Hervé; Peyron, Christelle; Fort, Patrice

    2017-04-01

    The role of gamma-amino butyric acid (GABA) in sleep induction and maintenance is well accepted since most insomnia treatments target GABAa receptors. However, the population(s) of GABAergic neurons involved in the beneficial effect of GABA on sleep remains to be identified. This is not an easy task since GABAergic neurons are widely distributed in all brain structures. A recently growing number of populations of GABAergic neurons have been involved in sleep control. We first review here possible candidates for inducing non-rapid eye movement (NREM) sleep including the GABAergic neurons of the ventrolateral preoptic area, the parafacial zone in the brainstem, the nucleus accumbens and the cortex. We also discuss the role of several populations of GABAergic neurons in rapid eye movement (REM) sleep control. Indeed, it is well accepted that muscle atonia occurring during REM sleep is due to a GABA/glycinergic hyperpolarization of motoneurons. Recent evidence strongly suggests that these neurons are located in the ventral medullary reticular formation. It has also recently been shown that neurons containing the neuropeptide melanin concentrating hormone and GABA located in the lateral hypothalamic area control REM sleep expression. Finally, a population of REM-off GABAergic neurons located in the ventrolateral periaqueductal gray has been shown to gate REM sleep by inhibiting glutamatergic neurons located in the sublaterodorsal tegmental nucleus. In summary, recent data clearly indicate that multiple populations of GABAergic neurons located throughout the brain from the cortex to the medulla oblongata control NREM and REM sleep. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The mirror neuron system simply. An hypothesis? - biomed 2013.

    Science.gov (United States)

    Pascolo, Paolo B

    2013-01-01

    The announcement that mirror neurons (MNs) had been found in macaques was made in 1996. The ensuing MN System theory (MNST) was based on the “nearly simultaneous” activity of some neurons detected both when the macaque observed an investigator's action and when it performed the action (e.g. grasp to eat). Studying the seminal investigations on macaques published in the literature, we realized that poorly defined time-scales could lead to multiple interpretations. We also noticed that in the original experimental protocol the synchronization between the observed event and the neural activity hypothetically related to the event itself was not investigated. In spite of this criticism, the MNST has enjoyed an extraordinary popularity in general media as well as in the scientific community, and monkeys have, almost magically, acquired the functional ability of MNs. In this paper, we analyze some recent studies about the MNST, specifically those about direct measurements on humans by means of implanted electrodes performed by Mukamel and colleagues in 2010. We also consider some experiments performed on monkeys by Rochat et al. in 2010 and some indirect measurements on humans made by Kujala et al. in 2012. We find the conclusions of the authors of these works to be quite simplistic relative to the inherent complexity of neural networks, reinforcing our interpretation against the MNST. We suggest the reported measurements are the result of conventional neural activity related to the events considered (i.e. grasping, both observed and executed) and are not necessarily imputable to the hypothetical MNs.

  14. Kappe neurons, a novel population of olfactory sensory neurons.

    Science.gov (United States)

    Ahuja, Gaurav; Bozorg Nia, Shahrzad; Zapilko, Veronika; Shiriagin, Vladimir; Kowatschew, Daniel; Oka, Yuichiro; Korsching, Sigrun I

    2014-02-10

    Perception of olfactory stimuli is mediated by distinct populations of olfactory sensory neurons, each with a characteristic set of morphological as well as functional parameters. Beyond two large populations of ciliated and microvillous neurons, a third population, crypt neurons, has been identified in teleost and cartilaginous fishes. We report here a novel, fourth olfactory sensory neuron population in zebrafish, which we named kappe neurons for their characteristic shape. Kappe neurons are identified by their Go-like immunoreactivity, and show a distinct spatial distribution within the olfactory epithelium, similar to, but significantly different from that of crypt neurons. Furthermore, kappe neurons project to a single identified target glomerulus within the olfactory bulb, mdg5 of the mediodorsal cluster, whereas crypt neurons are known to project exclusively to the mdg2 glomerulus. Kappe neurons are negative for established markers of ciliated, microvillous and crypt neurons, but appear to have microvilli. Kappe neurons constitute the fourth type of olfactory sensory neurons reported in teleost fishes and their existence suggests that encoding of olfactory stimuli may require a higher complexity than hitherto assumed already in the peripheral olfactory system.

  15. Studying the Behaviour of Model of Mirror Neuron System in Case of Autism

    Directory of Open Access Journals (Sweden)

    Shikha Anirban

    2012-04-01

    Full Text Available Several experiment done by the researchers conducted that autism is caused by the dysfunctional mirror neuron system and the dysfunctions of mirror neuron system is proportional to the symptom severity of autism. In the present work those experiments were studied as well as studying a model of mirror neuron system called MNS2 developed by a research group. This research examined the behavior of the model in case of autism and compared the result with those studies conducting dysfunctions of mirror neuron system in autism. To perform this, a neural network employing the model was developed which recognized the three types of grasping (faster, normal and slower. The network was implemented with back propagation through time learning algorithm. The whole grasping process was divided into 30 time steps and different hand and object states at each time step was used as the input of the network. Normally the network successfully recognized all of the three types of grasps. The network required more times as the number of inactive neurons increased. And in case of maximum inactive neurons of the mirror neuron system the network became unable to recognize the types of grasp. As the time to recognize the types of grasp is proportional to the number of inactive neurons, the experiment result supports the hypothesis that dysfunctions of MNS is proportional to the symptom severity of autism. Keywords— Autism, MNS, mirror neuron, neural network, BPTT

  16. Attending to and remembering tactile stimuli: a review of brain imaging data and single-neuron responses.

    Science.gov (United States)

    Burton, H; Sinclair, R J

    2000-11-01

    Clinical and neuroimaging observations of the cortical network implicated in tactile attention have identified foci in parietal somatosensory, posterior parietal, and superior frontal locations. Tasks involving intentional hand-arm movements activate similar or nearby parietal and frontal foci. Visual spatial attention tasks and deliberate visuomotor behavior also activate overlapping posterior parietal and frontal foci. Studies in the visual and somatosensory systems thus support a proposal that attention to the spatial location of an object engages cortical regions responsible for the same coordinate referents used for guiding purposeful motor behavior. Tactile attention also biases processing in the somatosensory cortex through amplification of responses to relevant features of selected stimuli. Psychophysical studies demonstrate retention gradients for tactile stimuli like those reported for visual and auditory stimuli, and suggest analogous neural mechanisms for working memory across modalities. Neuroimaging studies in humans using memory tasks, and anatomic studies in monkeys support the idea that tactile information relayed from the somatosensory cortex is directed ventrally through the insula to the frontal cortex for short-term retention and to structures of the medial temporal lobe for long-term encoding. At the level of single neurons, tactile (such as visual and auditory) short-term memory appears as a persistent response during delay intervals between sampled stimuli.

  17. μ-Opioid receptor activation and noradrenaline transport inhibition by tapentadol in rat single locus coeruleus neurons.

    Science.gov (United States)

    Sadeghi, Mahsa; Tzschentke, Thomas M; Christie, MacDonald J

    2015-01-01

    Tapentadol is a novel analgesic that combines moderate μ-opioid receptor agonism and noradrenaline reuptake inhibition in a single molecule. Both mechanisms of action are involved in producing analgesia; however, the potency and efficacy of tapentadol in individual neurons has not been characterized. Whole-cell patch-clamp recordings of G-protein-coupled inwardly rectifying K(+) (KIR 3.x) currents were made from rat locus coeruleus neurons in brain slices to investigate the potency and relative efficacy of tapentadol and compare its intrinsic activity with other clinically used opioids. Tapentadol showed agonist activity at μ receptors and was approximately six times less potent than morphine with respect to KIR 3.x current modulation. The intrinsic activity of tapentadol was lower than [Met]enkephalin, morphine and oxycodone, but higher than buprenorphine and pentazocine. Tapentadol inhibited the noradrenaline transporter (NAT) with potency similar to that at μ receptors. The interaction between these two mechanisms of action was additive in individual LC neurons. Tapentadol displays similar potency for both µ receptor activation and NAT inhibition in functioning neurons. The intrinsic activity of tapentadol at the μ receptor lies between that of buprenorphine and oxycodone, potentially explaining the favourable profile of side effects, related to μ receptors. This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2. © 2013 The British Pharmacological Society.

  18. Vibrotactile discrimination in the rat whisker system is based on neuronal coding of instantaneous kinematic cues.

    Science.gov (United States)

    Waiblinger, Christian; Brugger, Dominik; Schwarz, Cornelius

    2015-04-01

    Which physical parameter of vibrissa deflections is extracted by the rodent tactile system for discrimination? Particularly, it remains unclear whether perception has access to instantaneous kinematic parameters (i.e., the details of the trajectory) or relies on temporally integration of the movement trajectory such as frequency (e.g., spectral information) and intensity (e.g., mean speed). Here, we use a novel detection of change paradigm in head-fixed rats, which presents pulsatile vibrissa stimuli in seamless sequence for discrimination. This procedure ensures that processes of decision making can directly tap into sensory signals (no memory functions involved). We find that discrimination performance based on instantaneous kinematic cues far exceeds the ones provided by frequency and intensity. Neuronal modeling based on barrel cortex single units shows that small populations of sensitive neurons provide a transient signal that optimally fits the characteristic of the subject's perception. The present study is the first to show that perceptual read-out is superior in situations allowing the subject to base perception on detailed trajectory cues, that is, instantaneous kinematic variables. A possible impact of this finding on tactile systems of other species is suggested by evidence for instantaneous coding also in primates. © The Author 2013. Published by Oxford University Press.

  19. Reorganization of neuronal circuits of the central olfactory system during postprandial sleep

    Directory of Open Access Journals (Sweden)

    Masahiro eYamaguchi

    2013-08-01

    Full Text Available Plastic changes in neuronal circuits often occur in association with specific behavioral states. In this review, we focus on an emerging view that neuronal circuits in the olfactory system are reorganized along the wake-sleep cycle. Olfaction is crucial to sustaining the animals’ life, and odor-guided behaviors have to be newly acquired or updated to successfully cope with a changing odor world. It is therefore likely that neuronal circuits in the olfactory system are highly plastic and undergo repeated reorganization in daily life. A remarkably plastic feature of the olfactory system is that newly generated neurons are continually integrated into neuronal circuits of the olfactory bulb (OB throughout life. New neurons in the OB undergo an extensive selection process, during which many are eliminated by apoptosis for the fine tuning of neuronal circuits. The life and death decision of new neurons occurs extensively during a short time window of sleep after food consumption (postprandial sleep, a typical daily olfactory behavior. We review recent studies that explain how olfactory information is transferred between the OB and the olfactory cortex (OC along the course of the wake-sleep cycle. Olfactory sensory input is effectively transferred from the OB to the OC during waking, while synchronized top-down inputs from the OC to the OB are promoted during the slow-wave sleep. We discuss possible neuronal circuit mechanisms for the selection of new neurons in the OB, which involves the encoding of olfactory sensory inputs and memory trace formation during waking and internally generated activities in the OC and OB during subsequent sleep. The plastic changes in the OB and OC are well coordinated along the course of olfactory behavior during wakefulness and postbehavioral rest and sleep. We therefore propose that the olfactory system provides an excellent model in which to understand behavioral state-dependent plastic mechanisms of the neuronal

  20. Induction of specific neuron types by overexpression of single transcription factors.

    Science.gov (United States)

    Teratani-Ota, Yusuke; Yamamizu, Kohei; Piao, Yulan; Sharova, Lioudmila; Amano, Misa; Yu, Hong; Schlessinger, David; Ko, Minoru S H; Sharov, Alexei A

    2016-10-01

    Specific neuronal types derived from embryonic stem cells (ESCs) can facilitate mechanistic studies and potentially aid in regenerative medicine. Existing induction methods, however, mostly rely on the effects of the combined action of multiple added growth factors, which generally tend to result in mixed populations of neurons. Here, we report that overexpression of specific transcription factors (TFs) in ESCs can rather guide the differentiation of ESCs towards specific neuron lineages. Analysis of data on gene expression changes 2 d after induction of each of 185 TFs implicated candidate TFs for further ESC differentiation studies. Induction of 23 TFs (out of 49 TFs tested) for 6 d facilitated neural differentiation of ESCs as inferred from increased proportion of cells with neural progenitor marker PSA-NCAM. We identified early activation of the Notch signaling pathway as a common feature of most potent inducers of neural differentiation. The majority of neuron-like cells generated by induction of Ascl1, Smad7, Nr2f1, Dlx2, Dlx4, Nr2f2, Barhl2, and Lhx1 were GABA-positive and expressed other markers of GABAergic neurons. In the same way, we identified Lmx1a and Nr4a2 as inducers for neurons bearing dopaminergic markers and Isl1, Fezf2, and St18 for cholinergic motor neurons. A time-course experiment with induction of Ascl1 showed early upregulation of most neural-specific messenger RNA (mRNA) and microRNAs (miRNAs). Sets of Ascl1-induced mRNAs and miRNAs were enriched in Ascl1 targets. In further studies, enrichment of cells obtained with the induction of Ascl1, Smad7, and Nr2f1 using microbeads resulted in essentially pure population of neuron-like cells with expression profiles similar to neural tissues and expressed markers of GABAergic neurons. In summary, this study indicates that induction of transcription factors is a promising approach to generate cultures that show the transcription profiles characteristic of specific neural cell types.

  1. Energetics based spike generation of a single neuron: simulation results and analysis

    Directory of Open Access Journals (Sweden)

    Nagarajan eVenkateswaran

    2012-02-01

    Full Text Available Existing current based models that capture spike activity, though useful in studying information processing capabilities of neurons, fail to throw light on their internal functioning. It is imperative to develop a model that captures the spike train of a neuron as a function of its intra cellular parameters for non-invasive diagnosis of diseased neurons. This is the first ever article to present such an integrated model that quantifies the inter-dependency between spike activity and intra cellular energetics. The generated spike trains from our integrated model will throw greater light on the intra-cellular energetics than existing current models. Now, an abnormality in the spike of a diseased neuron can be linked and hence effectively analyzed at the energetics level. The spectral analysis of the generated spike trains in a time-frequency domain will help identify abnormalities in the internals of a neuron. As a case study, the parameters of our model are tuned for Alzheimer disease and its resultant spike trains are studied and presented.

  2. A single pair of neurons links sleep to memory consolidation in Drosophila melanogaster.

    Science.gov (United States)

    Haynes, Paula R; Christmann, Bethany L; Griffith, Leslie C

    2015-01-07

    Sleep promotes memory consolidation in humans and many other species, but the physiological and anatomical relationships between sleep and memory remain unclear. Here, we show the dorsal paired medial (DPM) neurons, which are required for memory consolidation in Drosophila, are sleep-promoting inhibitory neurons. DPMs increase sleep via release of GABA onto wake-promoting mushroom body (MB) α'/β' neurons. Functional imaging demonstrates that DPM activation evokes robust increases in chloride in MB neurons, but is unable to cause detectable increases in calcium or cAMP. Downregulation of α'/β' GABAA and GABABR3 receptors results in sleep loss, suggesting these receptors are the sleep-relevant targets of DPM-mediated inhibition. Regulation of sleep by neurons necessary for consolidation suggests that these brain processes may be functionally interrelated via their shared anatomy. These findings have important implications for the mechanistic relationship between sleep and memory consolidation, arguing for a significant role of inhibitory neurotransmission in regulating these processes.

  3. VTA GABA neurons modulate specific learning behaviours through the control of dopamine and cholinergic systems

    Directory of Open Access Journals (Sweden)

    Meaghan C Creed

    2014-01-01

    Full Text Available The mesolimbic reward system is primarily comprised of the ventral tegmental area (VTA and the nucleus accumbens (NAc as well as their afferent and efferent connections. This circuitry is essential for learning about stimuli associated with motivationally-relevant outcomes. Moreover, addictive drugs affect and remodel this system, which may underlie their addictive properties. In addition to DA neurons, the VTA also contains approximately 30% ɣ-aminobutyric acid (GABA neurons. The task of signalling both rewarding and aversive events from the VTA to the NAc has mostly been ascribed to DA neurons and the role of GABA neurons has been largely neglected until recently. GABA neurons provide local inhibition of DA neurons and also long-range inhibition of projection regions, including the NAc. Here we review studies using a combination of in vivo and ex vivo electrophysiology, pharmacogenetic and optogenetic manipulations that have characterized the functional neuroanatomy of inhibitory circuits in the mesolimbic system, and describe how GABA neurons of the VTA regulate reward and aversion-related learning. We also discuss pharmacogenetic manipulation of this system with benzodiazepines (BDZs, a class of addictive drugs, which act directly on GABAA receptors located on GABA neurons of the VTA. The results gathered with each of these approaches suggest that VTA GABA neurons bi-directionally modulate activity of local DA neurons, underlying reward or aversion at the behavioural level. Conversely, long-range GABA projections from the VTA to the NAc selectively target cholinergic interneurons (CINs to pause their firing and temporarily reduce cholinergic tone in the NAc, which modulates associative learning. Further characterization of inhibitory circuit function within and beyond the VTA is needed in order to fully understand the function of the mesolimbic system under normal and pathological conditions.

  4. The mirror neuron system in post-stroke rehabilitation

    Science.gov (United States)

    2013-01-01

    Different treatments for stroke patients have been proposed; among them the mirror therapy and motion imagery lead to functional recovery by providing a cortical reorganization. Up today the basic concepts of the current literature on mirror neurons and the major findings regarding the use of mirror therapy and motor imagery as potential tools to promote reorganization and functional recovery in post-stroke patients. Bibliographic research was conducted based on publications over the past thirteen years written in English in the databases Scielo, Pubmed/MEDLINE, ISI Web of Knowledge. The studies showed how the interaction among vision, proprioception and motor commands promotes the recruitment of mirror neurons, thus providing cortical reorganization and functional recovery of post-stroke patients. We conclude that the experimental advances on Mirror Neurons will bring new rational therapeutic approaches to post-stroke rehabilitation. PMID:24134862

  5. Operant conditioning of synaptic and spiking activity patterns in single hippocampal neurons.

    Science.gov (United States)

    Ishikawa, Daisuke; Matsumoto, Nobuyoshi; Sakaguchi, Tetsuya; Matsuki, Norio; Ikegaya, Yuji

    2014-04-02

    Learning is a process of plastic adaptation through which a neural circuit generates a more preferable outcome; however, at a microscopic level, little is known about how synaptic activity is patterned into a desired configuration. Here, we report that animals can generate a specific form of synaptic activity in a given neuron in the hippocampus. In awake, head-restricted mice, we applied electrical stimulation to the lateral hypothalamus, a reward-associated brain region, when whole-cell patch-clamped CA1 neurons exhibited spontaneous synaptic activity that met preset criteria. Within 15 min, the mice learned to generate frequently the excitatory synaptic input pattern that satisfied the criteria. This reinforcement learning of synaptic activity was not observed for inhibitory input patterns. When a burst unit activity pattern was conditioned in paired and nonpaired paradigms, the frequency of burst-spiking events increased and decreased, respectively. The burst reinforcement occurred in the conditioned neuron but not in other adjacent neurons; however, ripple field oscillations were concomitantly reinforced. Neural conditioning depended on activation of NMDA receptors and dopamine D1 receptors. Acutely stressed mice and depression model mice that were subjected to forced swimming failed to exhibit the neural conditioning. This learning deficit was rescued by repetitive treatment with fluoxetine, an antidepressant. Therefore, internally motivated animals are capable of routing an ongoing action potential series into a specific neural pathway of the hippocampal network.

  6. Extending the mirror neuron system model, II: what did I just do? A new role for mirror neurons.

    Science.gov (United States)

    Bonaiuto, James; Arbib, Michael A

    2010-04-01

    A mirror system is active both when an animal executes a class of actions (self-actions) and when it sees another execute an action of that class. Much attention has been given to the possible roles of mirror systems in responding to the actions of others but there has been little attention paid to their role in self-actions. In the companion article (Bonaiuto et al. Biol Cybern 96:9-38, 2007) we presented MNS2, an extension of the Mirror Neuron System model of the monkey mirror system trained to recognize the external appearance of its own actions as a basis for recognizing the actions of other animals when they perform similar actions. Here we further extend the study of the mirror system by introducing the novel hypotheses that a mirror system may additionally help in monitoring the success of a self-action and may also be activated by recognition of one's own apparent actions as well as efference copy from one's intended actions. The framework for this computational demonstration is a model of action sequencing, called augmented competitive queuing, in which action choice is based on the desirability of executable actions. We show how this "what did I just do?" function of mirror neurons can contribute to the learning of both executability and desirability which in certain cases supports rapid reorganization of motor programs in the face of disruptions.

  7. A Robust Single Primate Neuroepithelial Cell Clonal Expansion System for Neural Tube Development and Disease Studies

    Directory of Open Access Journals (Sweden)

    Xiaoqing Zhu

    2016-02-01

    Full Text Available Developing a model of primate neural tube (NT development is important to promote many NT disorder studies in model organisms. Here, we report a robust and stable system to allow for clonal expansion of single monkey neuroepithelial stem cells (NESCs to develop into miniature NT-like structures. Single NESCs can produce functional neurons in vitro, survive, and extensively regenerate neuron axons in monkey brain. NT formation and NESC maintenance depend on high metabolism activity and Wnt signaling. NESCs are regionally restricted to a telencephalic fate. Moreover, single NESCs can turn into radial glial progenitors (RGPCs. The transition is accurately regulated by Wnt signaling through regulation of Notch signaling and adhesion molecules. Finally, using the “NESC-TO-NTs” system, we model the functions of folic acid (FA on NT closure and demonstrate that FA can regulate multiple mechanisms to prevent NT defects. Our system is ideal for studying NT development and diseases.

  8. Orexin receptor activation generates gamma band input to cholinergic and serotonergic arousal system neurons and drives an intrinsic Ca2+-dependent resonance in LDT and PPT cholinergic neurons.

    Directory of Open Access Journals (Sweden)

    Masaru eIshibashi

    2015-06-01

    Full Text Available A hallmark of the waking state is a shift in EEG power to higher frequencies with epochs of synchronized intracortical gamma activity (30-60 Hz - a process associated with high-level cognitive functions. The ascending arousal system, including cholinergic laterodorsal (LDT and pedunculopontine (PPT tegmental neurons and serotonergic dorsal raphe (DR neurons, promotes this state. Recently, this system has been proposed as a gamma wave generator, in part, because some neurons produce high-threshold, Ca2+-dependent oscillations at gamma frequencies. However, it is not known whether arousal-related inputs to these neurons generate such oscillations, or whether such oscillations are ever transmitted to neuronal targets. Since key arousal input arises from hypothalamic orexin (hypocretin neurons, we investigated whether the unusually noisy, depolarizing orexin current could provide significant gamma input to cholinergic and serotonergic neurons, and whether such input could drive Ca2+-dependent oscillations. Whole-cell recordings in brain slices were obtained from mice expressing Cre-induced fluorescence in cholinergic LDT and PPT, and serotonergic DR neurons. After first quantifying reporter expression accuracy in cholinergic and serotonergic neurons, we found that the orexin current produced significant high frequency, including gamma, input to both cholinergic and serotonergic neurons. Then, by using a dynamic clamp, we found that adding a noisy orexin conductance to cholinergic neurons induced a Ca2+-dependent resonance that peaked in the theta and alpha frequency range (4 - 14 Hz and extended up to 100 Hz. We propose that this orexin current noise and the Ca2+ dependent resonance work synergistically to boost the encoding of high-frequency synaptic inputs into action potentials and to help ensure cholinergic neurons fire during EEG activation. This activity could reinforce thalamocortical states supporting arousal, REM sleep and intracortical

  9. Thermally activated, single component epoxy systems

    KAUST Repository

    Unruh, David A.

    2011-08-23

    A single component epoxy system in which the resin and hardener components found in many two-component epoxies are combined onto the same molecule is described. The single molecule precursor to the epoxy resin contains both multiple epoxide moieties and a diamine held latent by thermally degradable carbamate linkages. These bis-carbamate "single molecule epoxies" have an essentially infinite shelf life and access a significant range in curing temperatures related to the structure of the carbamate linkages used. © 2011 American Chemical Society.

  10. The mirror-neuron system and observational learning: Implications for the effectiveness of dynamic visualizations.

    OpenAIRE

    Van Gog, Tamara; Paas, Fred; Marcus, Nadine; Ayres, Paul; Sweller, John

    2009-01-01

    Van Gog, T., Paas, F., Marcus, N., Ayres, P., & Sweller, J. (2009). The mirror-neuron system and observational learning: Implications for the effectiveness of dynamic visualizations. Educational Psychology Review, 21, 21-30.

  11. Bayesian nonparametric modeling for comparison of single-neuron firing intensities.

    Science.gov (United States)

    Kottas, Athanasios; Behseta, Sam

    2010-03-01

    We propose a fully inferential model-based approach to the problem of comparing the firing patterns of a neuron recorded under two distinct experimental conditions. The methodology is based on nonhomogeneous Poisson process models for the firing times of each condition with flexible nonparametric mixture prior models for the corresponding intensity functions. We demonstrate posterior inferences from a global analysis, which may be used to compare the two conditions over the entire experimental time window, as well as from a pointwise analysis at selected time points to detect local deviations of firing patterns from one condition to another. We apply our method on two neurons recorded from the primary motor cortex area of a monkey's brain while performing a sequence of reaching tasks.

  12. Wireless Sensor Network Congestion Control Based on Standard Particle Swarm Optimization and Single Neuron PID.

    Science.gov (United States)

    Yang, Xiaoping; Chen, Xueying; Xia, Riting; Qian, Zhihong

    2018-04-19

    Aiming at the problem of network congestion caused by the large number of data transmissions in wireless routing nodes of wireless sensor network (WSN), this paper puts forward an algorithm based on standard particle swarm⁻neural PID congestion control (PNPID). Firstly, PID control theory was applied to the queue management of wireless sensor nodes. Then, the self-learning and self-organizing ability of neurons was used to achieve online adjustment of weights to adjust the proportion, integral and differential parameters of the PID controller. Finally, the standard particle swarm optimization to neural PID (NPID) algorithm of initial values of proportion, integral and differential parameters and neuron learning rates were used for online optimization. This paper describes experiments and simulations which show that the PNPID algorithm effectively stabilized queue length near the expected value. At the same time, network performance, such as throughput and packet loss rate, was greatly improved, which alleviated network congestion and improved network QoS.

  13. Comparative mapping of GABA-immunoreactive neurons in the central nervous systems of nudibranch molluscs.

    Science.gov (United States)

    Gunaratne, Charuni A; Sakurai, Akira; Katz, Paul S

    2014-03-01

    The relative simplicity of certain invertebrate nervous systems, such as those of gastropod molluscs, allows behaviors to be dissected at the level of small neural circuits composed of individually identifiable neurons. Elucidating the neurotransmitter phenotype of neurons in neural circuits is important for understanding how those neural circuits function. In this study, we examined the distribution of γ-aminobutyric-acid;-immunoreactive (GABA-ir) neurons in four species of sea slugs (Mollusca, Gastropoda, Opisthobranchia, Nudibranchia): Tritonia diomedea, Melibe leonina, Dendronotus iris, and Hermissenda crassicornis. We found consistent patterns of GABA immunoreactivity in the pedal and cerebral-pleural ganglia across species. In particular, there were bilateral clusters in the lateral and medial regions of the dorsal surface of the cerebral ganglia as well as a cluster on the ventral surface of the pedal ganglia. There were also individual GABA-ir neurons that were recognizable across species. The invariant presence of these individual neurons and clusters suggests that they are homologous, although there were interspecies differences in the numbers of neurons in the clusters. The GABAergic system was largely restricted to the central nervous system, with the majority of axons confined to ganglionic connectives and commissures, suggesting a central, integrative role for GABA. GABA was a candidate inhibitory neurotransmitter for neurons in central pattern generator (CPG) circuits underlying swimming behaviors in these species, however none of the known swim CPG neurons were GABA-ir. Although the functions of these GABA-ir neurons are not known, it is clear that their presence has been strongly conserved across nudibranchs. Copyright © 2013 Wiley Periodicals, Inc.

  14. Neuronal Subset-Specific Migration and Axonal Wiring Mechanisms in the Developing Midbrain Dopamine System

    Directory of Open Access Journals (Sweden)

    Sara Brignani

    2017-07-01

    Full Text Available The midbrain dopamine (mDA system is involved in the control of cognitive and motor behaviors, and is associated with several psychiatric and neurodegenerative diseases. mDA neurons receive diverse afferent inputs and establish efferent connections with many brain areas. Recent studies have unveiled a high level of molecular and cellular heterogeneity within the mDA system with specific subsets of mDA neurons displaying select molecular profiles and connectivity patterns. During mDA neuron development, molecular differences between mDA neuron subsets allow the establishment of subset-specific afferent and efferent connections and functional roles. In this review, we summarize and discuss recent work defining novel mDA neuron subsets based on specific molecular signatures. Then, molecular cues are highlighted that control mDA neuron migration during embryonic development and that facilitate the formation of selective patterns of efferent connections. The review focuses largely on studies that show differences in these mechanisms between different subsets of mDA neurons and for which in vivo data is available, and is concluded by a section that discusses open questions and provides directions for further research.

  15. Effect of spatially correlated noise on stochastic synchronization in globally coupled FitzHugh-Nagumo neuron systems

    Directory of Open Access Journals (Sweden)

    Yange Shao

    2014-01-01

    Full Text Available The phenomenon of stochastic synchronization in globally coupled FitzHugh-Nagumo (FHN neuron system subjected to spatially correlated Gaussian noise is investigated based on dynamical mean-field approximation (DMA and direct simulation (DS. Results from DMA are in good quantitative or qualitative agreement with those from DS for weak noise intensity and larger system size. Whether the consisting single FHN neuron is staying at the resting state, subthreshold oscillatory regime, or the spiking state, our investigation shows that the synchronization ratio of the globally coupled system becomes higher as the noise correlation coefficient increases, and thus we conclude that spatial correlation has an active effect on stochastic synchronization, and the neurons can achieve complete synchronization in the sense of statistics when the noise correlation coefficient tends to one. Our investigation also discloses that the noise spatial correlation plays the same beneficial role as the global coupling strength in enhancing stochastic synchronization in the ensemble. The result might be useful in understanding the information coding mechanism in neural systems.

  16. Single Bit Radar Systems for Digital Integration

    OpenAIRE

    Bjørndal, Øystein

    2017-01-01

    Small, low cost, radar systems have exciting applications in monitoring and imaging for the industrial, healthcare and Internet of Things (IoT) sectors. We here explore, and show the feasibility of, several single bit square wave radar architectures; that benefits from the continuous improvement in digital technologies for system-on-chip digital integration. By analysis, simulation and measurements we explore novel and harmonic-rich continuous wave (CW), stepped-frequency CW (SFCW) and freque...

  17. Induction of Associative Olfactory Memory by Targeted Activation of Single Olfactory Neurons in Drosophila Larvae

    OpenAIRE

    Honda, Takato; Lee, Chi-Yu; Yoshida-Kasikawa, Maki; Honjo, Ken; Furukubo-Tokunaga, Katsuo

    2014-01-01

    It has been postulated that associative memory is formed by at least two sets of external stimuli, CS and US, that are transmitted to the memory centers by distinctive conversing pathways. However, whether associative memory can be induced by the activation of only the olfactory CS and a biogenic amine-mediated US pathways remains to be elucidated. In this study, we substituted the reward signals with dTrpA1-mediated thermogenetic activation of octopaminergic neurons and the odor signals by C...

  18. Neural Plasticity: Single Neuron Models for Discrimination and Generalization and an Experimental Ensemble Approach.

    Science.gov (United States)

    1983-06-01

    in pamp/cm has been computed by Agin (1964) from the equations of Hodgkin and Huxley (1952) to give the response frequency (pulses/sec) of an axon...J.- Y . (1981) lumunocytochem- ical localization of glutamic acid decarboxylase in monkey striate cortex. Nature2i2.: 605-607. Hodgkin . A. L. and...used to express the output y of a neuron to its inputs zi (1). The coefficients ei i_____i___i __ i_______’____’_____,________’__’___"___i 10 are the

  19. The Glutamatergic System in Primary Somatosensory Neurons and Its Involvement in Sensory Input-Dependent Plasticity.

    Science.gov (United States)

    Fernández-Montoya, Julia; Avendaño, Carlos; Negredo, Pilar

    2017-12-27

    Glutamate is the most common neurotransmitter in both the central and the peripheral nervous system. Glutamate is present in all types of neurons in sensory ganglia, and is released not only from their peripheral and central axon terminals but also from their cell bodies. Consistently, these neurons express ionotropic and metabotropic receptors, as well as other molecules involved in the synthesis, transport and release of the neurotransmitter. Primary sensory neurons are the first neurons in the sensory channels, which receive information from the periphery, and are thus key players in the sensory transduction and in the transmission of this information to higher centers in the pathway. These neurons are tightly enclosed by satellite glial cells, which also express several ionotropic and metabotropic glutamate receptors, and display increases in intracellular calcium accompanying the release of glutamate. One of the main interests in our group has been the study of the implication of the peripheral nervous system in sensory-dependent plasticity. Recently, we have provided novel evidence in favor of morphological changes in first- and second-order neurons of the trigeminal system after sustained alterations of the sensory input. Moreover, these anatomical changes are paralleled by several molecular changes, among which those related to glutamatergic neurotransmission are particularly relevant. In this review, we will describe the state of the art of the glutamatergic system in sensory ganglia and its involvement in input-dependent plasticity, a fundamental ground for advancing our knowledge of the neural mechanisms of learning and adaptation, reaction to injury, and chronic pain.

  20. The fractional-order modeling and synchronization of electrically coupled neuron systems

    KAUST Repository

    Moaddy, K.

    2012-11-01

    In this paper, we generalize the integer-order cable model of the neuron system into the fractional-order domain, where the long memory dependence of the fractional derivative can be a better fit for the neuron response. Furthermore, the chaotic synchronization with a gap junction of two or multi-coupled-neurons of fractional-order are discussed. The circuit model, fractional-order state equations and the numerical technique are introduced in this paper for individual and multiple coupled neuron systems with different fractional-orders. Various examples are introduced with different fractional orders using the non-standard finite difference scheme together with the Grünwald-Letnikov discretization process which is easily implemented and reliably accurate. © 2011 Elsevier Ltd. All rights reserved.

  1. Bidirectional communication between sensory neurons and osteoblasts in an in vitro coculture system.

    Science.gov (United States)

    Kodama, Daisuke; Hirai, Takao; Kondo, Hisataka; Hamamura, Kazunori; Togari, Akifumi

    2017-02-01

    Recent studies have revealed that the sensory nervous system is involved in bone metabolism. However, the mechanism of communication between neurons and osteoblasts is yet to be elucidated. In this study, we investigated the signaling pathways between sensory neurons of the dorsal root ganglion (DRG) and the osteoblast-like MC3T3-E1 cells using an in vitro coculture system. Our findings indicate that signal transduction from DRG-derived neurons to MC3T3-E1 cells is suppressed by antagonists of the AMPA receptor and the NK 1 receptor. Conversely, signal transduction from MC3T3-E1 cells to DRG-derived neurons is suppressed by a P2X 7 receptor antagonist. Our results suggest that these cells communicate with each other by exocytosis of glutamate, substance P in the efferent signal, and ATP in the afferent signal. © 2017 Federation of European Biochemical Societies.

  2. Dynamics and transitions of firing patterns in deterministic and stochastic neuronal systems

    Energy Technology Data Exchange (ETDEWEB)

    Lu Qishao [School of Science, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China)], E-mail: qishaolu@hotmail.com; Yang Zhuoqin; Duan Lixia [School of Science, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China); Gu Huaguang; Ren Wei [Institute of Space Medico-Engineering, P.O. Box 5104, Branch 15, Beijing 100094 (China)

    2009-04-30

    Some recent work on experimental and theoretical studies on complex firing patterns of neurons and their dynamical mechanisms is reviewed. At first, experimental results on various neural firings and the bifurcation scenarios of ISI series are discovered in neural pacemakers. Next, a thorough analysis on dynamical behaviour and transitions of neuronal firing patterns, including the period-adding bursting sequence without chaos, the integer multiple firing and GWN-induced firing activities, are demonstrated in both the deterministic and stochastic Chay neuronal systems by means of the bifurcation theory and fast/slow dynamics. Finally, the parameter regions for different types of bursting as well as their transitions in the Chay and ML neuronal systems are presented.

  3. Interactions of the orexin/hypocretin neurones and the histaminergic system.

    Science.gov (United States)

    Sundvik, M; Panula, P

    2015-02-01

    Histaminergic and orexin/hypocretin systems are components in the brain wake-promoting system. Both are affected in the sleep disorder narcolepsy, but the role of histamine in narcolepsy is unclear. The histaminergic neurones are activated by the orexin/hypocretin system in rodents, and the development of the orexin/hypocretin neurones is bidirectionally regulated by the histaminergic system in zebrafish. This review summarizes the current knowledge of the interactions of these two systems in normal and pathological conditions in humans and different animal models. © 2014 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  4. Automated imaging system for single molecules

    Science.gov (United States)

    Schwartz, David Charles; Runnheim, Rodney; Forrest, Daniel

    2012-09-18

    There is provided a high throughput automated single molecule image collection and processing system that requires minimal initial user input. The unique features embodied in the present disclosure allow automated collection and initial processing of optical images of single molecules and their assemblies. Correct focus may be automatically maintained while images are collected. Uneven illumination in fluorescence microscopy is accounted for, and an overall robust imaging operation is provided yielding individual images prepared for further processing in external systems. Embodiments described herein are useful in studies of any macromolecules such as DNA, RNA, peptides and proteins. The automated image collection and processing system and method of same may be implemented and deployed over a computer network, and may be ergonomically optimized to facilitate user interaction.

  5. A self-organizing state-space-model approach for parameter estimation in hodgkin-huxley-type models of single neurons.

    Directory of Open Access Journals (Sweden)

    Dimitrios V Vavoulis

    Full Text Available Traditional approaches to the problem of parameter estimation in biophysical models of neurons and neural networks usually adopt a global search algorithm (for example, an evolutionary algorithm, often in combination with a local search method (such as gradient descent in order to minimize the value of a cost function, which measures the discrepancy between various features of the available experimental data and model output. In this study, we approach the problem of parameter estimation in conductance-based models of single neurons from a different perspective. By adopting a hidden-dynamical-systems formalism, we expressed parameter estimation as an inference problem in these systems, which can then be tackled using a range of well-established statistical inference methods. The particular method we used was Kitagawa's self-organizing state-space model, which was applied on a number of Hodgkin-Huxley-type models using simulated or actual electrophysiological data. We showed that the algorithm can be used to estimate a large number of parameters, including maximal conductances, reversal potentials, kinetics of ionic currents, measurement and intrinsic noise, based on low-dimensional experimental data and sufficiently informative priors in the form of pre-defined constraints imposed on model parameters. The algorithm remained operational even when very noisy experimental data were used. Importantly, by combining the self-organizing state-space model with an adaptive sampling algorithm akin to the Covariance Matrix Adaptation Evolution Strategy, we achieved a significant reduction in the variance of parameter estimates. The algorithm did not require the explicit formulation of a cost function and it was straightforward to apply on compartmental models and multiple data sets. Overall, the proposed methodology is particularly suitable for resolving high-dimensional inference problems based on noisy electrophysiological data and, therefore, a

  6. A human mirror neuron system for language: Perspectives from signed languages of the deaf.

    Science.gov (United States)

    Knapp, Heather Patterson; Corina, David P

    2010-01-01

    Language is proposed to have developed atop the human analog of the macaque mirror neuron system for action perception and production [Arbib M.A. 2005. From monkey-like action recognition to human language: An evolutionary framework for neurolinguistics (with commentaries and author's response). Behavioral and Brain Sciences, 28, 105-167; Arbib M.A. (2008). From grasp to language: Embodied concepts and the challenge of abstraction. Journal de Physiologie Paris 102, 4-20]. Signed languages of the deaf are fully-expressive, natural human languages that are perceived visually and produced manually. We suggest that if a unitary mirror neuron system mediates the observation and production of both language and non-linguistic action, three prediction can be made: (1) damage to the human mirror neuron system should non-selectively disrupt both sign language and non-linguistic action processing; (2) within the domain of sign language, a given mirror neuron locus should mediate both perception and production; and (3) the action-based tuning curves of individual mirror neurons should support the highly circumscribed set of motions that form the "vocabulary of action" for signed languages. In this review we evaluate data from the sign language and mirror neuron literatures and find that these predictions are only partially upheld. 2009 Elsevier Inc. All rights reserved.

  7. [Effects of blokade of the dopaminergic D1/D2 receptors on the single and network neuronal activity in the frontal and visual cortices and behavior of cats].

    Science.gov (United States)

    Kuleshova, E P; Zaleshin, A V; Sidorina, V V; Merzhanova, G Kh

    2010-01-01

    The results obtained at the levels of single and network neuronal activity in the frontal and visual cortices of cats with different types of behavior revealed features of activity of these structures in normal conditions and after local introductions of antagonists of DI/D2 receptors (SCH23390 and raclopride) into the n. accumbens and frontal cortex. Under the influence of the antagonists, long-latency reactions were characterized by a significant increase in the average frequency of neuronal activity in the frontal cortex, whereas in the visual cortex the average frequency decreased as compared to norm. At the same time, the network activity of the same neurons in the frontal cortex did not change but weakened in the visual cortex, which was expressed in a reduction of the number of neuronal interactions within the visual cortex and between the neurons of the frontal and visual cortices. Normally, during the long-latency conditioned reactions, the average frequency of single neuronal activity and the rate of neuronal interactions in the structures under study were significantly higher as compared to the loss of conditioned reactions. Administration of the dopamine antagonists did not change these features. The results suggest different dopamine modulations of the network activity of the cortical zones under study during the conditioned performance, which is expressed in responsiveness of the cortical projection of a trigger signal (the visual cortex) and visual-frontal networks generated in the course of training.

  8. The Digital Bee Brain: Integrating and Managing Neurons in a Common 3D Reference System.

    Science.gov (United States)

    Rybak, Jürgen; Kuß, Anja; Lamecker, Hans; Zachow, Stefan; Hege, Hans-Christian; Lienhard, Matthias; Singer, Jochen; Neubert, Kerstin; Menzel, Randolf

    2010-01-01

    The honeybee standard brain (HSB) serves as an interactive tool for relating morphologies of bee brain neurons and provides a reference system for functional and bibliographical properties (http://www.neurobiologie.fu-berlin.de/beebrain/). The ultimate goal is to document not only the morphological network properties of neurons collected from separate brains, but also to establish a graphical user interface for a neuron-related data base. Here, we review the current methods and protocols used to incorporate neuronal reconstructions into the HSB. Our registration protocol consists of two separate steps applied to imaging data from two-channel confocal microscopy scans: (1) The reconstruction of the neuron, facilitated by an automatic extraction of the neuron's skeleton based on threshold segmentation, and (2) the semi-automatic 3D segmentation of the neuropils and their registration with the HSB. The integration of neurons in the HSB is performed by applying the transformation computed in step (2) to the reconstructed neurons of step (1). The most critical issue of this protocol in terms of user interaction time - the segmentation process - is drastically improved by the use of a model-based segmentation process. Furthermore, the underlying statistical shape models (SSM) allow the visualization and analysis of characteristic variations in large sets of bee brain data. The anatomy of neural networks composed of multiple neurons that are registered into the HSB are visualized by depicting the 3D reconstructions together with semantic information with the objective to integrate data from multiple sources (electrophysiology, imaging, immunocytochemistry, molecular biology). Ultimately, this will allow the user to specify cell types and retrieve their morphologies along with physiological characterizations.

  9. A primary neuron culture system for the study of herpes simplex virus latency and reactivation.

    Science.gov (United States)

    Kobayashi, Mariko; Kim, Ju-Youn; Camarena, Vladimir; Roehm, Pamela C; Chao, Moses V; Wilson, Angus C; Mohr, Ian

    2012-04-02

    Herpes simplex virus type-1 (HSV-1) establishes a life-long latent infection in peripheral neurons. This latent reservoir is the source of recurrent reactivation events that ensure transmission and contribute to clinical disease. Current antivirals do not impact the latent reservoir and there are no vaccines. While the molecular details of lytic replication are well-characterized, mechanisms controlling latency in neurons remain elusive. Our present understanding of latency is derived from in vivo studies using small animal models, which have been indispensable for defining viral gene requirements and the role of immune responses. However, it is impossible to distinguish specific effects on the virus-neuron relationship from more general consequences of infection mediated by immune or non-neuronal support cells in live animals. In addition, animal experimentation is costly, time-consuming, and limited in terms of available options for manipulating host processes. To overcome these limitations, a neuron-only system is desperately needed that reproduces the in vivo characteristics of latency and reactivation but offers the benefits of tissue culture in terms of homogeneity and accessibility. Here we present an in vitro model utilizing cultured primary sympathetic neurons from rat superior cervical ganglia (SCG) (Figure 1) to study HSV-1 latency and reactivation that fits most if not all of the desired criteria. After eliminating non-neuronal cells, near-homogeneous TrkA(+) neuron cultures are infected with HSV-1 in the presence of acyclovir (ACV) to suppress lytic replication. Following ACV removal, non-productive HSV-1 infections that faithfully exhibit accepted hallmarks of latency are efficiently established. Notably, lytic mRNAs, proteins, and infectious virus become undetectable, even in the absence of selection, but latency-associated transcript (LAT) expression persists in neuronal nuclei. Viral genomes are maintained at an average copy number of 25 per neuron

  10. Optimizing NEURON Simulation Environment Using Remote Memory Access with Recursive Doubling on Distributed Memory Systems.

    Science.gov (United States)

    Shehzad, Danish; Bozkuş, Zeki

    2016-01-01

    Increase in complexity of neuronal network models escalated the efforts to make NEURON simulation environment efficient. The computational neuroscientists divided the equations into subnets amongst multiple processors for achieving better hardware performance. On parallel machines for neuronal networks, interprocessor spikes exchange consumes large section of overall simulation time. In NEURON for communication between processors Message Passing Interface (MPI) is used. MPI_Allgather collective is exercised for spikes exchange after each interval across distributed memory systems. The increase in number of processors though results in achieving concurrency and better performance but it inversely affects MPI_Allgather which increases communication time between processors. This necessitates improving communication methodology to decrease the spikes exchange time over distributed memory systems. This work has improved MPI_Allgather method using Remote Memory Access (RMA) by moving two-sided communication to one-sided communication, and use of recursive doubling mechanism facilitates achieving efficient communication between the processors in precise steps. This approach enhanced communication concurrency and has improved overall runtime making NEURON more efficient for simulation of large neuronal network models.

  11. Does dysfunction of the mirror neuron system contribute to symptoms in amyotrophic lateral sclerosis?

    Science.gov (United States)

    Eisen, Andrew; Lemon, Roger; Kiernan, Matthew C; Hornberger, Michael; Turner, Martin R

    2015-07-01

    There is growing evidence that mirror neurons, initially discovered over two decades ago in the monkey, are present in the human brain. In the monkey, mirror neurons characteristically fire not only when it is performing an action, such as grasping an object, but also when observing a similar action performed by another agent (human or monkey). In this review we discuss the origin, cortical distribution and possible functions of mirror neurons as a background to exploring their potential relevance in amyotrophic lateral sclerosis (ALS). We have recently proposed that ALS (and the related condition of frontotemporal dementia) may be viewed as a failure of interlinked functional complexes having their origins in key evolutionary adaptations. This can include loss of the direct projections from the corticospinal tract, and this is at least part of the explanation for impaired motor control in ALS. Since, in the monkey, corticospinal neurons also show mirror properties, ALS in humans might also affect the mirror neuron system. We speculate that a defective mirror neuron system might contribute to other ALS deficits affecting motor imagery, gesture, language and empathy. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  12. Adaptation of velocity encoding in synaptically coupled neurons in the fly visual system.

    Science.gov (United States)

    Kalb, Julia; Egelhaaf, Martin; Kurtz, Rafael

    2008-09-10

    Although many adaptation-induced effects on neuronal response properties have been described, it is often unknown at what processing stages in the nervous system they are generated. We focused on fly visual motion-sensitive neurons to identify changes in response characteristics during prolonged visual motion stimulation. By simultaneous recordings of synaptically coupled neurons, we were able to directly compare adaptation-induced effects at two consecutive processing stages in the fly visual motion pathway. This allowed us to narrow the potential sites of adaptation effects within the visual system and to relate them to the properties of signal transfer between neurons. Motion adaptation was accompanied by a response reduction, which was somewhat stronger in postsynaptic than in presynaptic cells. We found that the linear representation of motion velocity degrades during adaptation to a white-noise velocity-modulated stimulus. This effect is caused by an increasingly nonlinear velocity representation rather than by an increase of noise and is similarly strong in presynaptic and postsynaptic neurons. In accordance with this similarity, the dynamics and the reliability of interneuronal signal transfer remained nearly constant. Thus, adaptation is mainly based on processes located in the presynaptic neuron or in more peripheral processing stages. In contrast, changes of transfer properties at the analyzed synapse or in postsynaptic spike generation contribute little to changes in velocity coding during motion adaptation.

  13. Correlating Anatomy and Function with Gene Expression in Individual Neurons by Combining in Vivo Labeling, Patch Clamp, and Single Cell RNA-seq

    Directory of Open Access Journals (Sweden)

    Carsten K. Pfeffer

    2017-11-01

    Full Text Available The classification of neurons into distinct types is an ongoing effort aimed at revealing and understanding the diversity of the components of the nervous system. Recently available methods allow us to determine the gene expression pattern of individual neurons in the mammalian cerebral cortex to generate powerful categorization schemes. For a thorough understanding of neuronal diversity such genetic categorization schemes need to be combined with traditional classification parameters like position, axonal projection or response properties to sensory stimulation. Here we describe a method to link the gene expression of individual neurons with their position, axonal projection, or sensory response properties. Neurons are labeled in vivo based on their anatomical or functional properties and, using patch clamp pipettes, their RNA individually harvested in vitro for RNAseq. We validate the methodology using multiple established molecularly and anatomically distinct cell populations and explore molecular differences between uncharacterized neurons in mouse visual cortex. Gene expression patterns between L5 neurons projecting to frontal or contralateral cortex are distinct while L2 neurons differing in position, projection, or function are molecularly similar. With this method we can determine the genetic expression pattern of functionally and anatomically identified individual neurons.

  14. Systems interaction and single failure criterion

    International Nuclear Information System (INIS)

    1981-01-01

    This report documents the results of a six-month study to evaluate the ongoing research programs of the U.S. Nuclear Regulatory Commission (NRC) and U.S. commercial nuclear station owners which address the safety significance of systems interaction and the regulatory adequacy of the single failure criterion. The evaluation of system interactions provided is the initial phase of a more detailed study leading to the development and application of methodology for quantifying the relative safety of operating nuclear plants. (Auth.)

  15. Single event upsets in spacecraft digital systems

    Science.gov (United States)

    Leukowicz, P. E.; Richter, L. J.

    This paper describes the physical environments that can result in random bit changes in spaceborne memory systems. The impact of bit flips in digital telemetry systems is emphasized, with special attention paid to software requirements for protection from single event upset (SEU) effects. Some observations on incidence rates are presented along with an outline of hardware and software methods that can be taken to prevent future SEU problems. Several conclusions are drawn about strategies for preventing data corruption on the next generation of satellites in the presence of SEU-inducing particles.

  16. Neuron Design in Neuromorphic Computing Systems and Its Application in Wireless Communications

    Science.gov (United States)

    2017-03-01

    NEURON DESIGN IN NEUROMORPHIC COMPUTING SYSTEMS AND ITS APPLICATION IN WIRELESS COMMUNICATIONS THE UNIVERSITY OF KANSAS CENTER FOR...2015 – SEP 2016 4. TITLE AND SUBTITLE NEURON DESIGN IN NEUROMORPHIC COMPUTING SYSTEMS AND ITS APPLICATION IN WIRELESS COMMUNICATIONS 5a. CONTRACT...22 14 General Model of Reservoir Computing System …………………………………………..23 15 Whole Layout View of the Encoder Chip……………………………………………………24 16

  17. Study of GABAergic extra-synaptic tonic inhibition in single neurons and neural populations by traversing neural scales: application to propofol-induced anaesthesia.

    Science.gov (United States)

    Hutt, Axel; Buhry, Laure

    2014-12-01

    Anaesthetic agents are known to affect extra-synaptic GABAergic receptors, which induce tonic inhibitory currents. Since these receptors are very sensitive to small concentrations of agents, they are supposed to play an important role in the underlying neural mechanism of general anaesthesia. Moreover anaesthetic agents modulate the encephalographic activity (EEG) of subjects and hence show an effect on neural populations. To understand better the tonic inhibition effect in single neurons on neural populations and hence how it affects the EEG, the work considers single neurons and neural populations in a steady-state and studies numerically and analytically the modulation of their firing rate and nonlinear gain with respect to different levels of tonic inhibition. We consider populations of both type-I (Leaky Integrate-and-Fire model) and type-II (Morris-Lecar model) neurons. To bridge the single neuron description to the population description analytically, a recently proposed statistical approach is employed which allows to derive new analytical expressions for the population firing rate for type-I neurons. In addition, the work shows the derivation of a novel transfer function for type-I neurons as considered in neural mass models and studies briefly the interaction of synaptic and extra-synaptic inhibition. We reveal a strong subtractive and divisive effect of tonic inhibition in type-I neurons, i.e. a shift of the firing rate to higher excitation levels accompanied by a change of the nonlinear gain. Tonic inhibition shortens the excitation window of type-II neurons and their populations while maintaining the nonlinear gain. The gained results are interpreted in the context of recent experimental findings under propofol-induced anaesthesia.

  18. Single neurons with both form/color differential responses and saccade-related responses in the nonretinotopic pulvinar of the behaving macaque monkey.

    Science.gov (United States)

    Benevento, L A; Port, J D

    1995-01-01

    The nonretinotopic portion of the macaque pulvinar complex is interconnected with the occipitoparietal and occipitotemporal transcortical visual systems where information about the location and motion of a visual object or its form and color are modulated by eye movements and attention. We recorded from single cells in and about the border of the dorsal portion of the lateral pulvinar and the adjacent medial pulvinar of awake behaving Macaca mulatta in order to determine how the properties of these two functionally dichotomous cortical systems were represented. We found a class of pulvinar neurons that responded differentially to ten different patterns or broadband wavelengths (colors). Thirty-four percent of cells tested responded to the presentation of at least one of the pattern or color stimuli. These cells often discharged to several of the patterns or colors, but responded best to only one or two of them, and 86% were found to have statistically significant pattern and/or color preferences. Pattern/color preferential cells had an average latency of 79.1 +/- 46.0 ms (range 31-186 ms), responding well before most inferotemporal cortical cell responses. Visually guided and memory-guided saccade tasks showed that 58% of pattern/color preferential cells also had saccade-related properties, e.g. directional presaccadic and postsaccadic discharges, and inhibition of activity during the saccade. In the pulvinar, the mean presacadic response latency was earlier, and the mean postsaccadic response latency was later, than those reported for parietal cortex. We also discovered that the strength of response to patterns or colors changed depending upon the behavioral setting. In comparison to trials in which the monkey fixated dead ahead during passive presentations of pattern and color stimuli, 92% of the cells showed attenuated responses to the same passive presentation of patterns and colors during fixation when these trials were interleaved with trials which also

  19. Real-time subpixel-accuracy tracking of single mitochondria in neurons reveals heterogeneous mitochondrial motion.

    Science.gov (United States)

    Alsina, Adolfo; Lai, Wu Ming; Wong, Wai Kin; Qin, Xianan; Zhang, Min; Park, Hyokeun

    2017-11-04

    Mitochondria are essential for cellular survival and function. In neurons, mitochondria are transported to various subcellular regions as needed. Thus, defects in the axonal transport of mitochondria are related to the pathogenesis of neurodegenerative diseases, and the movement of mitochondria has been the subject of intense research. However, the inability to accurately track mitochondria with subpixel accuracy has hindered this research. Here, we report an automated method for tracking mitochondria based on the center of fluorescence. This tracking method, which is accurate to approximately one-tenth of a pixel, uses the centroid of an individual mitochondrion and provides information regarding the distance traveled between consecutive imaging frames, instantaneous speed, net distance traveled, and average speed. Importantly, this new tracking method enables researchers to observe both directed motion and undirected movement (i.e., in which the mitochondrion moves randomly within a small region, following a sub-diffusive motion). This method significantly improves our ability to analyze the movement of mitochondria and sheds light on the dynamic features of mitochondrial movement. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Activation of hypothalamic RIP-Cre neurons promotes beiging of WAT via sympathetic nervous system.

    Science.gov (United States)

    Wang, Baile; Li, Ang; Li, Xiaomu; Ho, Philip Wl; Wu, Donghai; Wang, Xiaoqi; Liu, Zhuohao; Wu, Kelvin Kl; Yau, Sonata Sy; Xu, Aimin; Cheng, Kenneth Ky

    2018-04-01

    Activation of brown adipose tissue (BAT) and beige fat by cold increases energy expenditure. Although their activation is known to be differentially regulated in part by hypothalamus, the underlying neural pathways and populations remain poorly characterized. Here, we show that activation of rat-insulin-promoter-Cre (RIP-Cre) neurons in ventromedial hypothalamus (VMH) preferentially promotes recruitment of beige fat via a selective control of sympathetic nervous system (SNS) outflow to subcutaneous white adipose tissue (sWAT), but has no effect on BAT Genetic ablation of APPL2 in RIP-Cre neurons diminishes beiging in sWAT without affecting BAT, leading to cold intolerance and obesity in mice. Such defects are reversed by activation of RIP-Cre neurons, inactivation of VMH AMPK, or treatment with a β3-adrenergic receptor agonist. Hypothalamic APPL2 enhances neuronal activation in VMH RIP-Cre neurons and raphe pallidus, thereby eliciting SNS outflow to sWAT and subsequent beiging. These data suggest that beige fat can be selectively activated by VMH RIP-Cre neurons, in which the APPL2-AMPK signaling axis is crucial for this defending mechanism to cold and obesity. © 2018 The Authors.

  1. The digital bee brain: integrating and managing neurons in a common 3D reference system

    Directory of Open Access Journals (Sweden)

    Jürgen Rybak

    2010-07-01

    Full Text Available The honeybee standard brain (HSB serves as an interactive tool for relating morphologies of bee brain neurons and provides a reference system for functional and bibliographical properties (http://www.neurobiologie.fu-berlin.de/beebrain/. The ultimate goal is to document not only the morphological network properties of neurons collected from separate brains, but also to establish a graphical user interface for a neuron-related data base. Here, we review the current methods and protocols used to incorporate neuronal reconstructions into the HSB. Our registration protocol consists of two separate steps applied to imaging data from two-channel confocal microscopy scans: (1 The reconstruction of the neuron, facilitated by an automatic extraction of the neuron’s skeleton based on threshold segmentation, and (2 the semi-automatic 3D segmentation of the neuropils and their registration with the HSB. The integration of neurons in the HSB is performed by applying the transformation computed in step (2 to the reconstructed neurons of step (1. The most critical issue of this protocol in terms of user interaction time – the segmentation process – is drastically improved by the use of a model-based segmentation process. Furthermore, the underlying statistical shape models (SSM allow the visualization and analysis of characteristic variations in large sets of bee brain data. The anatomy of neural networks composed of multiple neurons that are registered into the HSB are visualized by depicting the 3D reconstructions together with semantic information with the objective to integrate data from multiple sources (electrophysiology, imaging, immunocytochemistry, molecular biology. Ultimately, this will allow the user to specify cell types and retrieve their morphologies along with physiological characterizations.

  2. The anthropomorphic brain : The mirror neuron system responds to human and robotic actions

    NARCIS (Netherlands)

    Gazzola, V.; Rizzolatti, G.; Wicker, B.; Keysers, C.

    2007-01-01

    In humans and monkeys the mirror neuron system transforms seen actions into our inner representation of these actions. Here we asked if this system responds also if we see an industrial robot perform similar actions. We localised the motor areas involved in the execution of hand actions, presented

  3. Single Cell Electroporation Method for Mammalian CNS Neurons in Organotypic Slice Cultures

    Science.gov (United States)

    Uesaka, Naofumi; Hayano, Yasufumi; Yamada, Akito; Yamamoto, Nobuhiko

    Axon tracing is an essential technique to study the projection pattern of neurons in the CNS. Horse radish peroxidase and lectins have contributed to revealing many neural connection patterns in the CNS (Itaya and van Hoesen, 1982; Fabian and Coulter, 1985; Yoshihara, 2002). Moreover, a tracing method with fluorescent dye has enabled the observation of growing axons in living conditions, and demon strated a lot of developmental aspects in axon growth and guidance (Harris et al., 1987; O'Rourke and Fraser, 1990; Kaethner and Stuermer, 1992; Halloran and Kalil, 1994; Yamamoto et al., 1997). More recently, genetically encoded fluores cent proteins can be used as a powerful tool to observe various biological events. Several gene transfer techniques such as microinjection, biolistic gene gun, viral infection, lipofection and transgenic technology have been developed (Feng et al., 2000; Ehrengruber et al., 2001; O'Brien et al., 2001; Ma et al., 2002; Sahly et al., 2003). In particular, the electroporation technique was proved as a valuable tool, since it can be applied to a wide range of tissues and cell types with little toxicity and can be performed with relative technical easiness. Most methods, including a stand ard electroporation technique, are suitable for gene transfer to a large number of cells. However, this is not ideal for axonal tracing, because observation of individ ual axons is occasionally required. To overcome this problem, we have developed an electroporation method using glass micropipettes containing plasmid solutions and small current injection. Here we introduce the method in detail and exemplified results with some example applications and discuss its usefulness.

  4. Effect of Topology Structures on Synchronization Transition in Coupled Neuron Cells System

    International Nuclear Information System (INIS)

    Liang Li-Si; Zhang Ji-Qian; Xu Gui-Xia; Liu Le-Zhu; Huang Shou-Fang

    2013-01-01

    In this paper, by the help of evolutionary algorithm and using Hindmarsh—Rose (HR) neuron model, we investigate the effect of topology structures on synchronization transition between different states in coupled neuron cells system. First, we build different coupling structure with N cells, and found the effect of synchronized transition contact not only closely with the topology of the system, but also with whether there exist the ring structures in the system. In particular, both the size and the number of rings have greater effects on such transition behavior. Secondly, we introduce synchronization error to qualitative analyze the effect of the topology structure. Furthermore, by fitting the simulation results, we find that with the increment of the neurons number, there always exist the optimization structures which have the minimum number of connecting edges in the coupling systems. Above results show that the topology structures have a very crucial role on synchronization transition in coupled neuron system. Biological system may gradually acquire such efficient topology structures through the long-term evolution, thus the systems' information process may be optimized by this scheme. (interdisciplinary physics and related areas of science and technology)

  5. Single-Shell tank system description

    International Nuclear Information System (INIS)

    FIELD, J.G.

    2003-01-01

    The Hanford Site single-shell tank (SST) system consists of 149 underground SSTs and processing equipment designed and constructed between 1940 and 1964 to transport and store radioactive hazardous/dangerous wastes generated from irradiated nuclear fuel processing. The tanks, designed to store waste, vary in size from between 190,000 to 3,800,000 L (50,000 gal to 1,000,000 gal) and contain a variety of solid and liquid waste. The system also includes miscellaneous underground storage tanks (IMUST). In addition to the tanks, there is a large amount of ancillary equipment associated with the system and although not designed to store wastes, the ancillary equipment is contaminated through contact with the waste. Waste was routed to the tanks through a network of underground piping, with interconnections provided in concrete pits that allowed changes to the routing through instrumentation. Processing vaults used during waste handling operations, evaporators used to reduce the waste stored in the system, and other miscellaneous structures used for a variety of waste handling operations are also included in the system. The SST system was taken out of service in 1980 and no additional waste has been added to the tanks. The SSTs and ancillary equipment were designed and constructed before promulgation of Resource Conservation and Recovery Act (RCRA) in 1986. The purpose of this document is to describe the SST system for use in performing an engineering and compliance assessment in support of M-23 milestones (Ecology, et al. 2000). This system description provides estimated locations and volumes of waste within the SST system, including storage tanks, transfer systems, evaporators aid miscellaneous support facilities

  6. Molecular Characterization of Native and Recom­binant Ionotrophic Glutamate Receptors Expressed in Neurons and Heterologous Systems

    DEFF Research Database (Denmark)

    Drasbek, Kim Ryun

    2005-01-01

    trafficking mediating the continuous replacement of synaptic receptors and is important for receptor tetramerization in the endoplasmatic reticulum. Given the many important properties of the GluR2 subunit, it was of great interest to investigate and compare synaptic properties in neuronal populations...... in synaptic currents of receptors from these neuronal preparations, miniature excitatory postsynaptic currents (mEPSCs) were recorded followed by single cell RT-PCR of the same neuron. Unfortunately, no population of GluR2 lacking neurons was detected by single cell RT-PCR, but a higher detection frequency...... expressing AMPARs with or without the GluR2 subunits. Earlier findings suggested that neurons cultured from spinal cord were devoid of GluR2 and expressed high amounts of GluR4. In contrast, GluR2 was detected in almost all cells from cortical cultures (Dai et al., 2001). To investigate differences...

  7. Heterogeneous delay-induced asynchrony and resonance in a small-world neuronal network system

    Science.gov (United States)

    Yu, Wen-Ting; Tang, Jun; Ma, Jun; Yang, Xianqing

    2016-06-01

    A neuronal network often involves time delay caused by the finite signal propagation time in a given biological network. This time delay is not a homogenous fluctuation in a biological system. The heterogeneous delay-induced asynchrony and resonance in a noisy small-world neuronal network system are numerically studied in this work by calculating synchronization measure and spike interval distribution. We focus on three different delay conditions: double-values delay, triple-values delay, and Gaussian-distributed delay. Our results show the following: 1) the heterogeneity in delay results in asynchronous firing in the neuronal network, and 2) maximum synchronization could be achieved through resonance given that the delay values are integer or half-integer times of each other.

  8. Neuronal avalanches and learning

    Energy Technology Data Exchange (ETDEWEB)

    Arcangelis, Lucilla de, E-mail: dearcangelis@na.infn.it [Department of Information Engineering and CNISM, Second University of Naples, 81031 Aversa (Italy)

    2011-05-01

    Networks of living neurons represent one of the most fascinating systems of biology. If the physical and chemical mechanisms at the basis of the functioning of a single neuron are quite well understood, the collective behaviour of a system of many neurons is an extremely intriguing subject. Crucial ingredient of this complex behaviour is the plasticity property of the network, namely the capacity to adapt and evolve depending on the level of activity. This plastic ability is believed, nowadays, to be at the basis of learning and memory in real brains. Spontaneous neuronal activity has recently shown features in common to other complex systems. Experimental data have, in fact, shown that electrical information propagates in a cortex slice via an avalanche mode. These avalanches are characterized by a power law distribution for the size and duration, features found in other problems in the context of the physics of complex systems and successful models have been developed to describe their behaviour. In this contribution we discuss a statistical mechanical model for the complex activity in a neuronal network. The model implements the main physiological properties of living neurons and is able to reproduce recent experimental results. Then, we discuss the learning abilities of this neuronal network. Learning occurs via plastic adaptation of synaptic strengths by a non-uniform negative feedback mechanism. The system is able to learn all the tested rules, in particular the exclusive OR (XOR) and a random rule with three inputs. The learning dynamics exhibits universal features as function of the strength of plastic adaptation. Any rule could be learned provided that the plastic adaptation is sufficiently slow.

  9. Effects of Chronic Hypergravity on the Dopaminergic Neuronal System in Drosophila Melanogaster

    Science.gov (United States)

    Pelos, Andrew; Hosamani, Ravikumar; Bhattacharya, Sharmila

    2017-01-01

    Upon atmospheric exitre-entry and during training, astronauts are subjected to temporary periods of hypergravity, which has been implicated in the activation of oxidative stress pathways contributing to mitochondrial dysfunction and neuronal degeneration. The pathogenesis of Parkinsons disease and other neurodegenerative disorders is associated with oxidative damage to neurons involved in dopamine systems of the brain. Our study aims to examine the effects of a hypergravitational developmental environment on the degeneration of dopaminergic systems in Drosophila melanogaster. Male and female flies (Gal4-UAS transgenic line) were hatched and raised to adulthood in centrifugal hypergravity (97rpm, 3g). The nuclear expression of the reporter, Green Fluorescent Protein (GFP) is driven by the dopaminergic enzyme tyrosine hydroxylase (TH) promoter, allowing for the targeted visualization of dopamine producing neurons. After being raised to adulthood and kept in hypergravity until 18 days of age, flies were dissected and the expression of TH was measured by fluorescence confocal microscopy. TH expression in the fly brains was used to obtain counts of healthy dopaminergic neurons for flies raised in chronic hypergravity and control groups. Dopaminergic neuron expression data were compared with those of previous studies that limited hypergravity exposure to late life in order to determine the flies adaptability to the gravitational environment when raised from hatching through adulthood. Overall, we observed a significant effect of chronic hypergravity exposure contributing to deficits in dopaminergic neuron expression (p 0.003). Flies raised in 3g had on average lower dopaminergic neuron counts (mean 97.7) when compared with flies raised in 1g (mean 122.8). We suspect these lower levels of TH expression are a result of oxidative dopaminergic cell loss in flies raised in hypergravity. In future studies, we hope to further elucidate the mechanism by which hypergravity

  10. Chronic Hypergravity Induces Changes in the Dopaminergic Neuronal System in Drosophila Melanogaster

    Science.gov (United States)

    Pelos, Andrew; Hosamani, Ravikumar; Bhattacharya, Sharmila

    2017-01-01

    Upon atmospheric exitre-entry and during training, astronauts are subjected to temporary periods of hypergravity, which has been implicated in the activation of oxidative stress pathways contributing to mitochondrial dysfunction and neuronal degeneration. The pathogenesis of Parkinsons disease and other neurodegenerative disorders is associated with oxidative damage to neurons involved in dopamine systems of the brain. Our study aims to examine the effects of a hypergravitational developmental environment on the degeneration of dopaminergic systems in Drosophila melanogaster. Male and female flies (Gal4-UAS transgenic line) were hatched and raised to adulthood in centrifugal hypergravity (97rpm, 3g). The nuclear expression of the reporter, Green Fluorescent Protein (GFP) is driven by the dopaminergic enzyme tyrosine hydroxylase (TH) promoter, allowing for the targeted visualization of dopamine producing neurons. After being raised to adulthood and kept in hypergravity until 18 days of age, flies were dissected and the expression of TH was measured by fluorescence confocal microscopy. TH expression in the fly brains was used to obtain counts of healthy dopaminergic neurons for flies raised in chronic hypergravity and control groups. Dopaminergic neuron expression data were compared with those of previous studies that limited hypergravity exposure to late life in order to determine the flies adaptability to the gravitational environment when raised from hatching through adulthood. Overall, we observed a significant effect of chronic hypergravity exposure contributing to deficits in dopaminergic neuron expression (p 0.003). Flies raised in 3g had on average lower dopaminergic neuron counts (mean 97.7) when compared with flies raised in 1g (mean 122.8). We suspect these lower levels of TH expression are a result of oxidative dopaminergic cell loss in flies raised in hypergravity. In future studies, we hope to further elucidate the mechanism by which hypergravity

  11. The VD1/RPD2 neuronal system in the central nervous system of the pond snail Lymnaea stagnalis studied by in situ hybridization and immunocytochemistry.

    Science.gov (United States)

    Kerkhoven, R M; Croll, R P; Ramkema, M D; Van Minnen, J; Bogerd, J; Boer, H H

    1992-03-01

    VD1 and RPD2 are two giant neuropeptidergic neurons in the central nervous system (CNS) of the pond snail Lymnaea stagnalis. We wished to determine whether other central neurons in the CNS of L. stagnalis express the VD1/RPD2 gene. To this end, in situ hybridization with the cDNA probe of the VD1/RPD2 gene and immunocytochemistry with antisera specific to VD1 and RPD2 (the alpha 1-antiserum, Mab4H5 and ALMA 6) and to R15 (the alpha 1 and 16-mer antisera) were performed on alternate tissue sections. A VD1/RPD2 neuronal system comprising three classes of neurons (A1-A3) was found. All neurons of the system express the gene. Division into classes is based on immunocytochemical characteristics. Class A1 neurons (VD1 and RPD2) immunoreact with the alpha 1-antiserum, Mab4H5 and ALMA 6. Class A2 neurons (1-5 small and 1-5 medium sized neurons in the visceral and right parietal ganglion, and two clusters of small neurons and 5 medium-sized neurons in the cerebral ganglia) immunoreact with the alpha 1-antiserum and Mab4H5, but not with ALMA 6. Class A3 neurons (3-4 medium-sized neurons and a cluster of 4-5 small neurons located in the pedal ganglion) immunoreact with the alpha 1-antiserum only. All neurons of the system are immunonegative to the R15 antisera. The observations suggest that the neurons of the VD1/RPD2 system produce different sets of neuropeptides. A group of approximately 15 neurons (class B), scattered in the ganglia, immunostained with one or more of the antisera, but did not react with the cDNA probe in in situ hybridization.

  12. Granularity of the mirror neuron system: A complex endeavor. Comment on "Grasping synergies: A motor-control approach to the mirror neuron mechanism" by A. D'Ausilio et al.

    Science.gov (United States)

    Swinnen, S. P.; Alaerts, K.

    2015-03-01

    learned [8,10]. Additional support for such larger building blocks or basic postures in the upper limbs has also been provided by electrical stimulation of motor cortical areas in nonhuman primates [6]. The important inference made by D'Ausilio et al. [3] is that research inspired by the mirror neuron system, such as noninvasive brain stimulation using TMS, should go beyond the registration of motor evoked potentials in single muscles and instead monitor activity in multiple muscles to reveal the operation of these motor synergies. We fully agree that this is an important methodological recommendation for future work because previous TMS research paradigms may have constrained our view on granularity of the mirror neuron system.

  13. Studies on functional roles of the histaminergic neuron system by using pharmacological agents, knockout mice and positron emission tomography

    International Nuclear Information System (INIS)

    Watanabe, Takehiko; Yanai, Kazuhiko

    2001-01-01

    Since one of us, Takehiko Watanabe (TW), elucidated the location and distribution of the histaminergic neuron system in the brain with antibody raised against L-histidine decarboxylase (a histamine-forming enzyme, HDC) as a marker in 1984 and came to Tohoku University School of Medicine in Sendai, we have been collaborating on the functions of this neuron system by using pharmacological agents, knockout mice of the histamine-related genes, and, in some cases, positron emission tomography (PET). Many of our graduate students and colleagues have been actively involved in histamine research since 1985. Our extensive studies have clarified some of the functions of histamine neurons using methods from molecular techniques to non-invasive human PET imaging. Histamine neurons are involved in many brain functions, such as spontaneous locomotion, arousal in wake-sleep cycle, appetite control, seizures, learning and memory, aggressive behavior and emotion. Particularly, the histaminergic neuron system is one of the most important neuron systems to maintain and stimulate wakefulness. Histamine also functions as a biprotection system against various noxious and unfavorable stimuli (for examples, convulsion, nociception, drug sensitization, ischemic lesions, and stress). Although activators of histamine neurons have not been clinically available until now, we would like to point out that the activation of the histaminergic neuron system is important to maintain mental health. Here, we summarize the newly-discovered functions of histamine neurons mainly on the basis of results from our research groups. (author)

  14. Studies on functional roles of the histaminergic neuron system by using pharmacological agents, knockout mice and positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Takehiko; Yanai, Kazuhiko [Tohoku Univ., Sendai (Japan). Graduate School of Medicine

    2001-12-01

    Since one of us, Takehiko Watanabe (TW), elucidated the location and distribution of the histaminergic neuron system in the brain with antibody raised against L-histidine decarboxylase (a histamine-forming enzyme, HDC) as a marker in 1984 and came to Tohoku University School of Medicine in Sendai, we have been collaborating on the functions of this neuron system by using pharmacological agents, knockout mice of the histamine-related genes, and, in some cases, positron emission tomography (PET). Many of our graduate students and colleagues have been actively involved in histamine research since 1985. Our extensive studies have clarified some of the functions of histamine neurons using methods from molecular techniques to non-invasive human PET imaging. Histamine neurons are involved in many brain functions, such as spontaneous locomotion, arousal in wake-sleep cycle, appetite control, seizures, learning and memory, aggressive behavior and emotion. Particularly, the histaminergic neuron system is one of the most important neuron systems to maintain and stimulate wakefulness. Histamine also functions as a biprotection system against various noxious and unfavorable stimuli (for examples, convulsion, nociception, drug sensitization, ischemic lesions, and stress). Although activators of histamine neurons have not been clinically available until now, we would like to point out that the activation of the histaminergic neuron system is important to maintain mental health. Here, we summarize the newly-discovered functions of histamine neurons mainly on the basis of results from our research groups. (author)

  15. Inhibition of β-amyloid1-42 internalization attenuates neuronal death by stabilizing the endosomal-lysosomal system in rat cortical cultured neurons.

    Science.gov (United States)

    Song, M S; Baker, G B; Todd, K G; Kar, S

    2011-03-31

    A number of recent studies have indicated that accumulation of β amyloid (Aβ) peptides within neurons is an early event which may trigger degeneration of neurons and subsequent development of Alzheimer's disease (AD) pathology. However, very little is known about the internalization and/or subcellular sites involved in trafficking of Aβ peptides into the neurons that are vulnerable in AD pathology. To address this issue we evaluated internalization of fluoroscein conjugated Aβ1-42 (FAβ1-42) and subsequent alteration of endosomal-lysosomal (EL) markers such as cathepsin D, Rab5 and Rab7 in rat cortical cultured neurons. It is evident from our results that internalization of FAβ1-42, which occurred in a dose- and time-dependent manner, triggered degeneration of neurons along with increased levels and/or altered distribution of cathepsin D, Rab5 and Rab7. Our results further revealed that FAβ1-42 internalization was attenuated by phenylarsine oxide (a general inhibitor of endocytosis) and sucrose (an inhibitor of clathrin-mediated endocytosis) but not by antagonists of N-methyl-d-aspartate (NMDA) glutamate receptors. Additionally, inhibition of FAβ1-42 endocytosis not only protected neurons against toxicity but also reversed the altered levels/distributions of EL markers. These results, taken together, suggest that internalization of exogenous Aβ1-42, which is partly mediated via a clathrin-dependent process, can lead to degeneration of neurons, possibly by activating the EL system. Inhibition of FAβ endocytosis attenuated toxicity, thus suggesting a potential strategy for preventing loss of neurons in AD pathology. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Development of a high-affinity GABA uptake system in embryonic amphibian spinal neurons.

    Science.gov (United States)

    Lamborghini, J E; Iles, A

    1985-11-01

    High-affinity uptake systems for amino acid neurotransmitter precursors have been highly correlated with the use of the particular amino acid or its derivative as a transmitter. We have found interneurons in the Xenopus embryo spinal cord which accumulate GABA by a high-affinity uptake system. They originate near the end of gastrulation and their ability to accumulate GABA first appears at the early tail bud stage. By position and appearance they are comparable to some of the embryonic interneurons described by A. Roberts and J. D. W. Clarke (1982, Phil. Trans. R. Soc. London Ser. B 296, 195-212). GABA-accumulating neurons also develop in dissociated cell cultures made from the presumptive spinal cord of neural plate stage Xenopus embryos. GABA accumulation in cultured neurons, as in cells in vivo, occurs via a high-affinity uptake system; GABA-accumulating cells have the same time of origin as the cells in vivo, and the ability to accumulate GABA in the population of cultured neurons appears at a time equivalent to that observed in intact sibling embryos. Thus it seems likely that the population of GABA-accumulating neurons developing in cell culture corresponds to the GABA-accumulating interneurons in vivo. The development of these neurons in dissociated cell cultures permits perturbation experiments that would be difficult to perform in vivo. We have examined the development of high-affinity GABA uptake in conditions that permit no electrical impulse activity in the cultures. The onset and extent of development of GABA accumulation in the neuronal population are normal under these conditions.

  17. Macoilin, a conserved nervous system-specific ER membrane protein that regulates neuronal excitability.

    Directory of Open Access Journals (Sweden)

    Fausto Arellano-Carbajal

    2011-03-01

    Full Text Available Genome sequence comparisons have highlighted many novel gene families that are conserved across animal phyla but whose biological function is unknown. Here, we functionally characterize a member of one such family, the macoilins. Macoilins are characterized by several highly conserved predicted transmembrane domains towards the N-terminus and by coiled-coil regions C-terminally. They are found throughout Eumetazoa but not in other organisms. Mutants for the single Caenorhabditis elegans macoilin, maco-1, exhibit a constellation of behavioral phenotypes, including defects in aggregation, O₂ responses, and swimming. MACO-1 protein is expressed broadly and specifically in the nervous system and localizes to the rough endoplasmic reticulum; it is excluded from dendrites and axons. Apart from subtle synapse defects, nervous system development appears wild-type in maco-1 mutants. However, maco-1 animals are resistant to the cholinesterase inhibitor aldicarb and sensitive to levamisole, suggesting pre-synaptic defects. Using in vivo imaging, we show that macoilin is required to evoke Ca²(+ transients, at least in some neurons: in maco-1 mutants the O₂-sensing neuron PQR is unable to generate a Ca²(+ response to a rise in O₂. By genetically disrupting neurotransmission, we show that pre-synaptic input is not necessary for PQR to respond to O₂, indicating that the response is mediated by cell-intrinsic sensory transduction and amplification. Disrupting the sodium leak channels NCA-1/NCA-2, or the N-,P/Q,R-type voltage-gated Ca²(+ channels, also fails to disrupt Ca²(+ responses in the PQR cell body to O₂ stimuli. By contrast, mutations in egl-19, which encodes the only Caenorhabditis elegans L-type voltage-gated Ca²(+ channel α1 subunit, recapitulate the Ca²(+ response defect we see in maco-1 mutants, although we do not see defects in localization of EGL-19. Together, our data suggest that macoilin acts in the ER to regulate assembly or

  18. The sensory neurone membrane protein SNMP1 contributes to the sensitivity of a pheromone detection system.

    Science.gov (United States)

    Pregitzer, P; Greschista, M; Breer, H; Krieger, J

    2014-12-01

    Male moths detect female-released sex pheromones with extraordinary sensitivity. The remarkable sensory ability is based on a cooperative interplay of pheromone binding proteins in the lymph of hair-like sensilla trichodea and pheromone receptors in the dendrites of sensory neurones. Here we examined whether in Heliothis virescens the so-called 'sensory neurone membrane protein 1' (SNMP1) may contribute to responsiveness to the pheromone component, (Z)-11-hexadecenal (Z11-16:Ald). By means of immunohistochemistry and in situ hybridization we demonstrated that SNMP1 is in fact present in cells expressing the Z11-16:Ald receptor HR13 and the dendrites of sensory neurones. To assess a possible function of SNMP1 we monitored the responsiveness of cell lines that expressed HR13 alone or the combination SNMP1/HR13 to stimulation with Z11-16:Ald by calcium imaging. It was found that SNMP1/HR13 cells were 1000-fold more sensitive to pheromone stimulation compared with HR13 cells. In contrast, cells that expressed HR13 and the non-neuronal SNMP2-type showed no change in pheromone sensitivity. Overall, our reconstitution experiments demonstrate that the presence of SNMP1 significantly increases the HR13-based responsiveness of cells to Z11-16:Ald, suggesting that SNMP1 also contributes to the response of the antennal neurones and thus to the remarkable sensitivity of the pheromone detection system. © 2014 The Royal Entomological Society.

  19. A Human Mirror Neuron System for Language: Perspectives from Signed Languages of the Deaf

    Science.gov (United States)

    Knapp, Heather Patterson; Corina, David P.

    2010-01-01

    Language is proposed to have developed atop the human analog of the macaque mirror neuron system for action perception and production [Arbib M.A. 2005. From monkey-like action recognition to human language: An evolutionary framework for neurolinguistics (with commentaries and author's response). "Behavioral and Brain Sciences, 28", 105-167; Arbib…

  20. Frequent occurrence of nicotinic acetylcholine receptors in GABAergic neurons of the chick visual system

    Directory of Open Access Journals (Sweden)

    A.S. Torrão

    2001-10-01

    Full Text Available Double-labeling immunohistochemical methods were used to investigate the occurrence of the alpha8 and alpha5 nicotinic receptor subunits in presumptive GABAergic neurons of the chick nervous system. Nicotinic receptor immunoreactivity was often found in cells exhibiting GABA-like immunoreactivity, especially in the visual system. The alpha8 subunit appeared to be present in presumptive GABAergic cells of the ventral lateral geniculate nucleus, nucleus of the basal optic root of the accessory optic system, and the optic tectum, among several other structures. The alpha5 subunit was also found in GABA-positive neurons, as observed in the lentiform nucleus of the mesencephalon and other pretectal nuclei. The numbers of alpha8- and alpha5-positive neurons that were also GABA-positive represented high percentages of the total number of neurons containing nicotinic receptor labeling in several brain areas, which indicates that most of the alpha8 and alpha5 nicotinic receptor subunits are present in GABAergic cells. Taken together with data from other studies, our results indicate an important role of the nicotinic acetylcholine receptors in the functional organization of GABAergic circuits in the visual system.

  1. Spatio-temporal dynamics of the mirror neuron system during social intentions.

    Science.gov (United States)

    Cacioppo, Stephanie; Bolmont, Mylene; Monteleone, George

    2017-10-27

    Previous research has shown that specific goals and intentions influence a person's allocation of social attention. From a neural viewpoint, a growing body of evidence suggests that the inferior fronto-parietal network, including the mirror neuron system, plays a role in the planning and the understanding of motor intentions. However, it is unclear whether and when the mirror neuron system plays a role in social intentions. Combining a behavioral task with electrical neuroimaging in 22 healthy male participants, the current study investigates whether the temporal brain dynamic of the mirror neuron system differs during two types of social intentions i.e., lust vs. romantic intentions. Our results showed that 62% of the stimuli evoking lustful intentions also evoked romantic intentions, and both intentions were sustained by similar activations of the inferior frontal gyrus and the inferior parietal lobule/angular gyrus for the first 432 ms after stimulus onset. Intentions to not love or not lust, on the other hand, were characterized by earlier differential activations of the inferior fronto-parietal network i.e., as early as 244 ms after stimulus onset. These results suggest that the mirror neuron system may not only code for the motor correlates of intentions, but also for the social meaning of intentions and its valence at both early/automatic and later/more elaborative stages of information processing.

  2. Inflammatory cells in the peripheral nervous system in motor neuron disease

    NARCIS (Netherlands)

    Kerkhoff, H.; Troost, D.; Louwerse, E. S.; van Dijk, M.; Veldman, H.; Jennekens, F. G.

    1993-01-01

    We examined post-mortem material of the peripheral nervous system of 26 cases of motor neuron disease (MND) for the presence of lymphocyte subsets and macrophages. Findings were quantified and compared with those in control nerves. Lymphocytes in chronic and acute axonal degeneration were studied in

  3. The Mirror Neuron System and Observational Learning: Implications for the Effectiveness of Dynamic Visualizations

    Science.gov (United States)

    van Gog, Tamara; Paas, Fred; Marcus, Nadine; Ayres, Paul; Sweller, John

    2009-01-01

    Learning by observing and imitating others has long been recognized as constituting a powerful learning strategy for humans. Recent findings from neuroscience research, more specifically on the mirror neuron system, begin to provide insight into the neural bases of learning by observation and imitation. These findings are discussed here, along…

  4. Leptin and insulin signaling in dopaminergic neurons: relationship between energy balance and reward system.

    Science.gov (United States)

    Khanh, Doan V; Choi, Yun-Hee; Moh, Sang Hyun; Kinyua, Ann W; Kim, Ki Woo

    2014-01-01

    The central actions of leptin and insulin are essential for the regulation of energy and glucose homeostasis. In addition to the crucial effects on the hypothalamus, emerging evidence suggests that the leptin and insulin signaling can act on other brain regions to mediate the reward value of nutrients. Recent studies have indicated the midbrain dopaminergic neurons as a potential site for leptin' and insulin's actions on mediating the feeding behaviors and therefore affecting the energy balance. Although molecular details about the integrative roles of leptin and insulin in this subset of neurons remain to be investigated, substantial body of evidence by far imply that the signaling pathways regulated by leptin and insulin may play an essential role in the regulation of energy balance through the control of food-associated reward. This review therefore describes the convergence of energy regulation and reward system, particularly focusing on leptin and insulin signaling in the midbrain dopaminergic neurons.

  5. Activation of endogenous arginine vasopressin neurons inhibit food intake: by using a novel transgenic rat line with DREADDs system.

    Science.gov (United States)

    Yoshimura, Mitsuhiro; Nishimura, Kazuaki; Nishimura, Haruki; Sonoda, Satomi; Ueno, Hiromichi; Motojima, Yasuhito; Saito, Reiko; Maruyama, Takashi; Nonaka, Yuki; Ueta, Yoichi

    2017-11-16

    Various studies contributed to discover novel mechanisms of central arginine vasopressin (AVP) system responsible for the behaviour albeit endogenous vasopressin activation. We established a novel transgenic rat line which expresses both human muscarinic acetylcholine receptors (hM3Dq), of which ligand is clozapine-N-oxide (CNO), and mCherry fluorescence specifically in AVP neurons. The mCherry neurons that indicate the expression of the hM3Dq gene were observed in the suprachiasmatic (SCN), supraoptic (SON), and paraventricular nuclei (PVN). hM3Dq-mCherry fluorescence was localized mainly in the membrane of the neurons. The mCherry neurons were co-localized with AVP-like immunoreactive (LI) neurons, but not with oxytocin-LI neurons. The induction of Fos, which is the indicator for neuronal activity, was observed in approximately 90% of the AVP-LI neurons in the SON and PVN 90 min after intraperitoneal (i.p.) administration of CNO. Plasma AVP was significantly increased and food intake, water intake, and urine volume were significantly attenuated after i.p. administration of CNO. Although the detailed mechanism has unveiled, we demonstrated, for the first time, that activation of endogenous AVP neurons decreased food intake. This novel transgenic rat line may provide a revolutionary insight into the neuronal mechanism regarding central AVP system responsible for various kind of behaviours.

  6. Motor-Auditory-Visual Integration: The Role of the Human Mirror Neuron System in Communication and Communication Disorders

    Science.gov (United States)

    Le Bel, Ronald M.; Pineda, Jaime A.; Sharma, Anu

    2009-01-01

    The mirror neuron system (MNS) is a trimodal system composed of neuronal populations that respond to motor, visual, and auditory stimulation, such as when an action is performed, observed, heard or read about. In humans, the MNS has been identified using neuroimaging techniques (such as fMRI and mu suppression in the EEG). It reflects an…

  7. Single-trial lie detection using a combined fNIRS-polygraph system

    Directory of Open Access Journals (Sweden)

    M. Raheel eBhutta

    2015-06-01

    Full Text Available Deception is a human behavior that many people experience in daily life. It involves complex neuronal activities in addition to several physiological changes in the body. A polygraph, which can measure some of the physiological responses from the body, has been widely employed in lie-detection. Many researchers, however, believe that lie detection can become more precise if the neuronal changes that occur in the process of deception can be isolated and measured. In this study, we combine both measures (i.e., physiological and neuronal changes for enhanced lie-detection. Specifically, to investigate the deception-related hemodynamic response, functional near-infrared spectroscopy (fNIRS is applied at the prefrontal cortex besides a commercially available polygraph system. A mock crime scenario with a single-trial stimulus is set up as a deception protocol. The acquired data are classified into true and lie classes based on the fNIRS-based hemoglobin-concentration changes and polygraph-based physiological signal changes. Linear discriminant analysis is utilized as a classifier. The results indicate that the combined fNIRS-polygraph system delivers much higher classification accuracy than that of a singular system. This study demonstrates a plausible solution toward single-trial lie-detection by combining fNIRS and the polygraph.

  8. Single-trial lie detection using a combined fNIRS-polygraph system.

    Science.gov (United States)

    Bhutta, M Raheel; Hong, Melissa J; Kim, Yun-Hee; Hong, Keum-Shik

    2015-01-01

    Deception is a human behavior that many people experience in daily life. It involves complex neuronal activities in addition to several physiological changes in the body. A polygraph, which can measure some of the physiological responses from the body, has been widely employed in lie-detection. Many researchers, however, believe that lie detection can become more precise if the neuronal changes that occur in the process of deception can be isolated and measured. In this study, we combine both measures (i.e., physiological and neuronal changes) for enhanced lie-detection. Specifically, to investigate the deception-related hemodynamic response, functional near-infrared spectroscopy (fNIRS) is applied at the prefrontal cortex besides a commercially available polygraph system. A mock crime scenario with a single-trial stimulus is set up as a deception protocol. The acquired data are classified into "true" and "lie" classes based on the fNIRS-based hemoglobin-concentration changes and polygraph-based physiological signal changes. Linear discriminant analysis is utilized as a classifier. The results indicate that the combined fNIRS-polygraph system delivers much higher classification accuracy than that of a singular system. This study demonstrates a plausible solution toward single-trial lie-detection by combining fNIRS and the polygraph.

  9. What do mirror neurons mirror?

    NARCIS (Netherlands)

    Uithol, S.; Rooij, I.J.E.I. van; Bekkering, H.; Haselager, W.F.G.

    2011-01-01

    Single cell recordings in monkeys provide strong evidence for an important role of the motor system in action understanding. This evidence is backed up by data from studies of the (human) mirror neuron system using neuroimaging or TMS techniques, and behavioral experiments. Although the data

  10. Prefrontal Single-Neuron Responses after Changes in Task Contingencies during Trace Eyeblink Conditioning in Rabbits.

    Science.gov (United States)

    Siegel, Jennifer J

    2016-01-01

    A number of studies indicate that the medial prefrontal cortex (mPFC) plays a role in mediating the expression of behavioral responses during tasks that require flexible changes in behavior. During trace eyeblink conditioning, evidence suggests that the mPFC provides the cerebellum with a persistent input to bridge the temporal gap between conditioned and unconditioned stimuli. Therefore, the mPFC is in a position to directly mediate the expression of trace conditioned responses. However, it is unknown whether persistent neural responses are associated with the flexible expression of behavior when task contingencies are changed during trace eyeblink conditioning. To investigate this, single-unit activity was recorded in the mPFC of rabbits during extinction and reacquisition of trace eyeblink conditioning, and during training to a different conditional stimulus. Persistent responses remained unchanged after full extinction, and also did not change during reacquisition training. During training to a different tone, however, the generalization of persistent responses to the new stimulus was associated with an animal's performance-when persistent responses generalized to the new tone, performance was high (>50% response rate). When persistent responses decreased to baseline rates, performance was poor (<50% response rate). The data suggest that persistent mPFC responses do not appear to mediate flexible changes in the expression of the original learning, but do appear to play a role in the generalization of that learning when the task is modified.

  11. Morphine dependence in single enteric neurons from the mouse colon requires deletion of β‐arrestin2

    OpenAIRE

    Smith, Tricia H.; Ngwainmbi, Joy; Hashimoto, Atsushi; Dewey, William L.; Akbarali, Hamid I.

    2014-01-01

    Abstract Chronic administration of morphine results in the development of tolerance to the analgesic effects and to inhibition of upper gastrointestinal motility but not to colonic motility, resulting in persistent constipation. In this study we examined the effect of chronic morphine in myenteric neurons from the adult mouse colon. Similar to the ileum, distinct neuronal populations exhibiting afterhyperpolarization (AHP)‐positive and AHP‐negative neurons were identified in the colon. Acute ...

  12. View-Invariant Visuomotor Processing in Computational Mirror Neuron System for Humanoid.

    Science.gov (United States)

    Dawood, Farhan; Loo, Chu Kiong

    2016-01-01

    Mirror neurons are visuo-motor neurons found in primates and thought to be significant for imitation learning. The proposition that mirror neurons result from associative learning while the neonate observes his own actions has received noteworthy empirical support. Self-exploration is regarded as a procedure by which infants become perceptually observant to their own body and engage in a perceptual communication with themselves. We assume that crude sense of self is the prerequisite for social interaction. However, the contribution of mirror neurons in encoding the perspective from which the motor acts of others are seen have not been addressed in relation to humanoid robots. In this paper we present a computational model for development of mirror neuron system for humanoid based on the hypothesis that infants acquire MNS by sensorimotor associative learning through self-exploration capable of sustaining early imitation skills. The purpose of our proposed model is to take into account the view-dependency of neurons as a probable outcome of the associative connectivity between motor and visual information. In our experiment, a humanoid robot stands in front of a mirror (represented through self-image using camera) in order to obtain the associative relationship between his own motor generated actions and his own visual body-image. In the learning process the network first forms mapping from each motor representation onto visual representation from the self-exploratory perspective. Afterwards, the representation of the motor commands is learned to be associated with all possible visual perspectives. The complete architecture was evaluated by simulation experiments performed on DARwIn-OP humanoid robot.

  13. View-Invariant Visuomotor Processing in Computational Mirror Neuron System for Humanoid

    Science.gov (United States)

    Dawood, Farhan; Loo, Chu Kiong

    2016-01-01

    Mirror neurons are visuo-motor neurons found in primates and thought to be significant for imitation learning. The proposition that mirror neurons result from associative learning while the neonate observes his own actions has received noteworthy empirical support. Self-exploration is regarded as a procedure by which infants become perceptually observant to their own body and engage in a perceptual communication with themselves. We assume that crude sense of self is the prerequisite for social interaction. However, the contribution of mirror neurons in encoding the perspective from which the motor acts of others are seen have not been addressed in relation to humanoid robots. In this paper we present a computational model for development of mirror neuron system for humanoid based on the hypothesis that infants acquire MNS by sensorimotor associative learning through self-exploration capable of sustaining early imitation skills. The purpose of our proposed model is to take into account the view-dependency of neurons as a probable outcome of the associative connectivity between motor and visual information. In our experiment, a humanoid robot stands in front of a mirror (represented through self-image using camera) in order to obtain the associative relationship between his own motor generated actions and his own visual body-image. In the learning process the network first forms mapping from each motor representation onto visual representation from the self-exploratory perspective. Afterwards, the representation of the motor commands is learned to be associated with all possible visual perspectives. The complete architecture was evaluated by simulation experiments performed on DARwIn-OP humanoid robot. PMID:26998923

  14. View-Invariant Visuomotor Processing in Computational Mirror Neuron System for Humanoid.

    Directory of Open Access Journals (Sweden)

    Farhan Dawood

    Full Text Available Mirror neurons are visuo-motor neurons found in primates and thought to be significant for imitation learning. The proposition that mirror neurons result from associative learning while the neonate observes his own actions has received noteworthy empirical support. Self-exploration is regarded as a procedure by which infants become perceptually observant to their own body and engage in a perceptual communication with themselves. We assume that crude sense of self is the prerequisite for social interaction. However, the contribution of mirror neurons in encoding the perspective from which the motor acts of others are seen have not been addressed in relation to humanoid robots. In this paper we present a computational model for development of mirror neuron system for humanoid based on the hypothesis that infants acquire MNS by sensorimotor associative learning through self-exploration capable of sustaining early imitation skills. The purpose of our proposed model is to take into account the view-dependency of neurons as a probable outcome of the associative connectivity between motor and visual information. In our experiment, a humanoid robot stands in front of a mirror (represented through self-image using camera in order to obtain the associative relationship between his own motor generated actions and his own visual body-image. In the learning process the network first forms mapping from each motor representation onto visual representation from the self-exploratory perspective. Afterwards, the representation of the motor commands is learned to be associated with all possible visual perspectives. The complete architecture was evaluated by simulation experiments performed on DARwIn-OP humanoid robot.

  15. A single cDNA encodes two isoforms of stathmin, a developmentally regulated neuron-enriched phosphoprotein.

    Science.gov (United States)

    Doye, V; Soubrier, F; Bauw, G; Boutterin, M C; Beretta, L; Koppel, J; Vandekerckhove, J; Sobel, A

    1989-07-25

    Stathmin, a 19-kDa neuron-enriched soluble phosphoprotein, has been recently proposed as an ubiquitous intracellular relay for the diverse extracellular signals regulating cell proliferation, differentiation, and functions through various second messenger pathways (Sobel, A., Boutterin, M.C., Beretta, L., Chneiweiss, H., Doye, V., and peyro-Saint-Paul, H. (1989) J. Biol. Chem. 264, 3765-3772). Internal sequences of the protein from rat brain were determined after purification by two-dimensional polyacrylamide gel electrophoresis, electrotransfer onto Immobilon, and in situ proteolysis. Oligonucleotide mixtures based on these sequences were used to clone a cDNA for stathmin from a rat PC12 cell lambda gt 10 library. The deduced amino acid sequence reveals partial homologies with the coiled coil structural regions of several intracellular matrix phosphoproteins. Using this cDNA as a probe, we show that the expression of stathmin mRNA parallels that of the protein during brain ontogenesis, reaching a maximum at the neonatal stage. In vitro translation of the derived cRNA yielded all the known molecular forms of stathmin, namely its alpha and beta isoforms in their unphosphorylated and phosphorylated states. Thus, a single cDNA codes for both biologically relevant isoforms of the protein, indicating that they differ by co- or post-translational modifications.

  16. Dendritic development of Drosophila high order visual system neurons is independent of sensory experience

    Directory of Open Access Journals (Sweden)

    Reuter John E

    2003-06-01

    Full Text Available Abstract Background The complex and characteristic structures of dendrites are a crucial part of the neuronal architecture that underlies brain function, and as such, their development has been a focal point of recent research. It is generally believed that dendritic development is controlled by a combination of endogenous genetic mechanisms and activity-dependent mechanisms. Therefore, it is of interest to test the relative contributions of these two types of mechanisms towards the construction of specific dendritic trees. In this study, we make use of the highly complex Vertical System (VS of motion sensing neurons in the lobula plate of the Drosophila visual system to gauge the importance of visual input and synaptic activity to dendritic development. Results We find that the dendrites of VS1 neurons are unchanged in dark-reared flies as compared to control flies raised on a 12 hour light, 12 hour dark cycle. The dendrites of these flies show no differences from control in dendrite complexity, spine number, spine density, or axon complexity. Flies with genetically ablated eyes show a slight but significant reduction in the complexity and overall length of VS1 dendrites, although this effect may be due to a reduction in the overall size of the dendritic field in these flies. Conclusions Overall, our results indicate no role for visual experience in the development of VS dendrites, while spontaneous activity from photoreceptors may play at most a subtle role in the formation of fully complex dendrites in these high-order visual processing neurons.

  17. Pharmacological activation/inhibition of the cannabinoid system affects alcohol withdrawal-induced neuronal hypersensitivity to excitotoxic insults.

    Directory of Open Access Journals (Sweden)

    Marina Rubio

    Full Text Available Cessation of chronic ethanol consumption can increase the sensitivity of the brain to excitotoxic damages. Cannabinoids have been proposed as neuroprotectants in different models of neuronal injury, but their effect have never been investigated in a context of excitotoxicity after alcohol cessation. Here we examined the effects of the pharmacological activation/inhibition of the endocannabinoid system in an in vitro model of chronic ethanol exposure and withdrawal followed by an excitotoxic challenge. Ethanol withdrawal increased N-methyl-D-aspartate (NMDA-evoked neuronal death, probably by altering the ratio between GluN2A and GluN2B NMDA receptor subunits. The stimulation of the endocannabinoid system with the cannabinoid agonist HU-210 decreased NMDA-induced neuronal death exclusively in ethanol-withdrawn neurons. This neuroprotection could be explained by a decrease in NMDA-stimulated calcium influx after the administration of HU-210, found exclusively in ethanol-withdrawn neurons. By contrast, the inhibition of the cannabinoid system with the CB1 receptor antagonist rimonabant (SR141716 during ethanol withdrawal increased death of ethanol-withdrawn neurons without any modification of NMDA-stimulated calcium influx. Moreover, chronic administration of rimonabant increased NMDA-stimulated toxicity not only in withdrawn neurons, but also in control neurons. In summary, we show for the first time that the stimulation of the endocannabinoid system is protective against the hyperexcitability developed during alcohol withdrawal. By contrast, the blockade of the endocannabinoid system is highly counterproductive during alcohol withdrawal.

  18. From Neurons to Social Beings: Short Review of the Mirror Neuron System Research and Its Socio-Psychological and Psychiatric Implications.

    Science.gov (United States)

    Jeon, Hyeonjin; Lee, Seung-Hwan

    2018-02-28

    The mirror neuron system (MNS) is a brain network activated when we move our body parts and when we observe the actions of other agent. Since the mirror neuron's discovery in research on monkeys, several studies have examined its network and properties in both animals and humans. This review discusses MNS studies of animals and human MNS studies related to high-order social cognitions such as emotion and empathy, as well as relations between MNS dysfunction and mental disorders. Finally, these evidences are understood from an evolutionary perspective.

  19. Gravisensing in single-celled systems

    Science.gov (United States)

    Braun, M.; Limbach, C.

    Single-celled systems are favourable cell types for studying several aspects of gravisensing and gravitropic responses. Whether and how actin is involved in both processes in higher plant statocytes is still a matter of intensive debate. In single-celled and tip-growing characean rhizoids and protonemata, however, there is clear evidence that actin is a central keyplayer controlling polarized growth and the mechanisms of gravity sensing and growth reorientation. Both cell types exhibit a unique actin polymerization in the extending tip, strictly colocalized with the prominent ER-aggregate in the center of the Spitzenkoerper. The local accumulation of ADF and profilin in this central array suggest that actin polymerization is controlled by these actin-binding proteins, which can be regulated by calcium, pH and a variety of other parameters. Distinct actin filaments extend even into the outermost tip and form a dense meshwork in the apical and subapical region, before they become bundled by villin to form two populations of thick actin cables that generate rotational cytoplasmic streaming in the basal region. Actomyosin not only mediates the delivery of secretory vesicles to the growing tip and controls the incorporation pattern of cell wall material, but also coordinates the tip-focused distribution pattern of calcium channels in the apical membrane. They establish the tip-high calcium gradient, a prerequisite for exocytosis. Microgravity experiments have added much to our understanding that both cell types use an efficient actomyosin-based system to control and correct the position of their statoliths and to direct sedimenting statoliths to confined graviperception sites at the plasma membrane. Actin's involvement in the graviresponses is more indirect. The upward growth of negatively gravitropic protonemata was shown to be preceded by a statolith-induced relocalization the Ca2+-calcium gradient to the upper flank that does not occur in positively gravitropic

  20. Neuronal functional connection graphs among multiple areas of the rat somatosensory system during spontaneous and evoked activities.

    Science.gov (United States)

    Zippo, Antonio G; Storchi, Riccardo; Nencini, Sara; Caramenti, Gian Carlo; Valente, Maurizio; Biella, Gabriele Eliseo M

    2013-01-01

    Small-World Networks (SWNs) represent a fundamental model for the comprehension of many complex man-made and biological networks. In the central nervous system, SWN models have been shown to fit well both anatomical and functional maps at the macroscopic level. However, the functional microscopic level, where the nodes of a network are represented by single neurons, is still poorly understood. At this level, although recent evidences suggest that functional connection graphs exhibit small-world organization, it is not known whether and how these maps, potentially distributed in multiple brain regions, change across different conditions, such as spontaneous and stimulus-evoked activities. We addressed these questions by analyzing the data from simultaneous multi-array extracellular recordings in three brain regions of rats, diversely involved in somatosensory information processing: the ventropostero-lateral thalamic nuclei, the primary somatosensory cortex and the centro-median thalamic nuclei. From both spike and Local Field Potential (LFP) recordings, we estimated the functional connection graphs by using the Normalized Compression Similarity for spikes and the Phase Synchrony for LFPs. Then, by using graph-theoretical statistics, we characterized the functional topology both during spontaneous activity and sensory stimulation. Our main results show that: (i) spikes and LFPs show SWN organization during spontaneous activity; (ii) after stimulation onset, while substantial functional graph reconfigurations occur both in spike and LFPs, small-worldness is nonetheless preserved; (iii) the stimulus triggers a significant increase of inter-area LFP connections without modifying the topology of intra-area functional connections. Finally, investigating computationally the functional substrate that supports the observed phenomena, we found that (iv) the fundamental concept of cell assemblies, transient groups of activating neurons, can be described by small

  1. Serum neuron specific enolase - a novel indicator for neuropsychiatric systemic lupus erythematosus?

    Science.gov (United States)

    Hawro, T; Bogucki, A; Krupińska-Kun, M; Maurer, M; Woźniacka, A

    2015-12-01

    Neuropsychiatric (NP) lupus, a common manifestation of systemic lupus erythematosus (SLE), is still insufficiently understood, in part, because of the lack of specific biomarkers. Neuron specific enolase (NSE), an important neuronal glycolytic enzyme, shows increased serum levels following acute brain injury, and decreased serum levels in several chronic disorders of the nervous system, including multi infarct dementia, multiple sclerosis and depression. The aim of the study was to evaluate serum NSE levels in SLE patients with and without nervous system involvement, and in healthy controls, and to assess the correlation of NSE serum levels of patients with neuropsychiatric systemic lupus erythematosus (NPSLE) with clinical parameters. The study comprised 47 SLE patients and 28 controls. SLE activity was assessed using the Systemic Lupus Activity Measure (SLAM). A neurologist and a psychiatrist examined all patients. NP involvement was diagnosed according to strict NPSLE criteria proposed by Ainiala and coworkers, as modification to American College of Rheumatology (ACR) nomenclature and case definitions. NSE serum levels were determined by use of an immunoassay. Mean NSE serum concentrations in patients with NPSLE were significantly lower than in non-NPSLE patients (6.3 ± 2.6 µg/L vs. 9.7 ± 3.3 µg/L, p manifestations diagnosed (-0.37; p = 0.001). Decreased serum concentrations of NSE may reflect chronic neuronal damage with declined metabolism of the nervous tissue in patients with NPSLE. © The Author(s) 2015.

  2. Neuronal classification and distribution in the central nervous system of the female mud crab, Scylla olivacea.

    Science.gov (United States)

    Kornthong, Napamanee; Tinikul, Yotsawan; Khornchatri, Kanjana; Saeton, Jirawat; Magerd, Sirilug; Suwansa-Ard, Saowaros; Kruangkum, Thanapong; Hanna, Peter J; Sobhon, Prasert

    2014-03-01

    The mud crab, Scylla olivacea, is one of the most economically valuable marine species in Southeast Asian countries. However, commercial cultivation is disadvantaged by reduced reproductive capacity in captivity. Therefore, an understanding of the general and detailed anatomy of central nervous system (CNS) is required before investigating the distribution and functions of neurotransmitters, neurohormones, and other biomolecules, involved with reproduction. We found that the anatomical structure of the brain is similar to other crabs. However, the ventral nerve cord (VNC) is unlike other caridian and dendrobrachiate decapods, as the subesophageal (SEG), thoracic and abdominal ganglia are fused, due to the reduction of abdominal segments and the tail. Neurons in clusters within the CNS varied in sizes, and we found that there were five distinct size classes (i.e., very small globuli, small, medium, large, and giant). Clusters in the brain and SEG contained mainly very small globuli and small-sized neurons, whereas, the VNC contained small-, medium-, large-, and giant-sized neurons. We postulate that the different sized neurons are involved in different functions. Copyright © 2013 Wiley Periodicals, Inc.

  3. Radiation Damage to Nervous System: Designing Optimal Models for Realistic Neuron Morphology in Hippocampus

    Science.gov (United States)

    Batmunkh, Munkhbaatar; Bugay, Alexander; Bayarchimeg, Lkhagvaa; Lkhagva, Oidov

    2018-02-01

    The present study is focused on the development of optimal models of neuron morphology for Monte Carlo microdosimetry simulations of initial radiation-induced events of heavy charged particles in the specific types of cells of the hippocampus, which is the most radiation-sensitive structure of the central nervous system. The neuron geometry and particles track structures were simulated by the Geant4/Geant4-DNA Monte Carlo toolkits. The calculations were made for beams of protons and heavy ions with different energies and doses corresponding to real fluxes of galactic cosmic rays. A simple compartmental model and a complex model with realistic morphology extracted from experimental data were constructed and compared. We estimated the distribution of the energy deposition events and the production of reactive chemical species within the developed models of CA3/CA1 pyramidal neurons and DG granule cells of the rat hippocampus under exposure to different particles with the same dose. Similar distributions of the energy deposition events and concentration of some oxidative radical species were obtained in both the simplified and realistic neuron models.

  4. Neurons other than motor neurons in motor neuron disease.

    Science.gov (United States)

    Ruffoli, Riccardo; Biagioni, Francesca; Busceti, Carla L; Gaglione, Anderson; Ryskalin, Larisa; Gambardella, Stefano; Frati, Alessandro; Fornai, Francesco

    2017-11-01

    Amyotrophic lateral sclerosis (ALS) is typically defined by a loss of motor neurons in the central nervous system. Accordingly, morphological analysis for decades considered motor neurons (in the cortex, brainstem and spinal cord) as the neuronal population selectively involved in ALS. Similarly, this was considered the pathological marker to score disease severity ex vivo both in patients and experimental models. However, the concept of non-autonomous motor neuron death was used recently to indicate the need for additional cell types to produce motor neuron death in ALS. This means that motor neuron loss occurs only when they are connected with other cell types. This concept originally emphasized the need for resident glia as well as non-resident inflammatory cells. Nowadays, the additional role of neurons other than motor neurons emerged in the scenario to induce non-autonomous motor neuron death. In fact, in ALS neurons diverse from motor neurons are involved. These cells play multiple roles in ALS: (i) they participate in the chain of events to produce motor neuron loss; (ii) they may even degenerate more than and before motor neurons. In the present manuscript evidence about multi-neuronal involvement in ALS patients and experimental models is discussed. Specific sub-classes of neurons in the whole spinal cord are reported either to degenerate or to trigger neuronal degeneration, thus portraying ALS as a whole spinal cord disorder rather than a disease affecting motor neurons solely. This is associated with a novel concept in motor neuron disease which recruits abnormal mechanisms of cell to cell communication.

  5. Autism and the mirror neuron system: Insights from learning and teaching

    OpenAIRE

    Vivanti, G; Rogers, SJ

    2014-01-01

    Individuals with autism have difficulties in social learning domains which typically involve mirror neuron system (MNS) activation. However, the precise role of the MNS in the development of autism and its relevance to treatment remain unclear. In this paper, we argue that three distinct aspects of social learning are critical for advancing knowledge in this area: (i) the mechanisms that allow for the implicit mapping of and learning from others' behaviour, (ii) the motivation to attend to an...

  6. Influence of different envelope maskers on signal recognition and neuronal representation in the auditory system of a grasshopper.

    Directory of Open Access Journals (Sweden)

    Daniela Neuhofer

    Full Text Available BACKGROUND: Animals that communicate by sound face the problem that the signals arriving at the receiver often are degraded and masked by noise. Frequency filters in the receiver's auditory system may improve the signal-to-noise ratio (SNR by excluding parts of the spectrum which are not occupied by the species-specific signals. This solution, however, is hardly amenable to species that produce broad band signals or have ears with broad frequency tuning. In mammals auditory filters exist that work in the temporal domain of amplitude modulations (AM. Do insects also use this type of filtering? PRINCIPAL FINDINGS: Combining behavioural and neurophysiological experiments we investigated whether AM filters may improve the recognition of masked communication signals in grasshoppers. The AM pattern of the sound, its envelope, is crucial for signal recognition in these animals. We degraded the species-specific song by adding random fluctuations to its envelope. Six noise bands were used that differed in their overlap with the spectral content of the song envelope. If AM filters contribute to reduced masking, signal recognition should depend on the degree of overlap between the song envelope spectrum and the noise spectra. Contrary to this prediction, the resistance against signal degradation was the same for five of six masker bands. Most remarkably, the band with the strongest frequency overlap to the natural song envelope (0-100 Hz impaired acceptance of degraded signals the least. To assess the noise filter capacities of single auditory neurons, the changes of spike trains as a function of the masking level were assessed. Increasing levels of signal degradation in different frequency bands led to similar changes in the spike trains in most neurones. CONCLUSIONS: There is no indication that auditory neurones of grasshoppers are specialized to improve the SNR with respect to the pattern of amplitude modulations.

  7. Model System for Live Imaging of Neuronal Responses to Injury and Repair

    Directory of Open Access Journals (Sweden)

    Mathieu Gravel

    2011-11-01

    Full Text Available Although it has been well established that induction of growth-associated protein-43 (GAP-43 during development coincides with axonal outgrowth and early synapse formation, the existence of neuronal plasticity and neurite outgrowth in the adult central nervous system after injuries is more controversial. To visualize the processes of neuronal injury and repair in living animals, we generated reporter mice for bioluminescence and fluorescence imaging bearing the luc (luciferase and gfp (green fluorescent protein reporter genes under the control of the murine GAP-43 promoter. Reporter functionality was first observed during the development of transgenic embryos. Using in vivo bioluminescence and fluorescence imaging, we visualized induction of the GAP-43 signals from live embryos starting at E10.5, as well as neuronal responses to brain and peripheral nerve injuries (the signals peaked at 14 days postinjury. Moreover, three-dimensional analysis of the GAP-43 bioluminescent signal confirmed that it originated from brain structures affected by ischemic injury. The analysis of fluorescence signal at cellular level revealed colocalization between endogenous protein and the GAP-43-driven gfp transgene. Taken together, our results suggest that the GAP-43-luc/gfp reporter mouse represents a valid model system for real-time analysis of neurite outgrowth and the capacity of the adult nervous system to regenerate after injuries.

  8. The nigrostriatal pathway in the rat: A single-axon study of the relationship between dorsal and ventral tier nigral neurons and the striosome/matrix striatal compartments.

    Science.gov (United States)

    Prensa, L; Parent, A

    2001-09-15

    Axons from dorsal/ventral tiers of substantia nigra pars compacta (SNc), ventral tegmental area (VTA), and retrorubral field (RRF) were traced after injecting their cell body with biotinylated dextran amine. Fifty-three single axons were reconstructed from serial sagittal sections with a camera lucida, and mu-opiate receptor immunostaining served to differentiate the striosome/matrix striatal compartments. Most dorsal tier SNc axons terminate within the matrix of the dorsal striatum, but their patterns of arborization vary markedly; some axons innervate one specific matriceal area, whereas others arborize in multiple discontinuous loci. Some dorsal tier SNc axons also project to both striosomes and matrix. Other dorsal tier SNc axons, as well as VTA axons, innervate the ventral striatum and send collaterals to striosomes lying ventrally in the dorsal striatum or to the ventral sector of the subcallosal streak (SS). Ventral tier SNc axons arborize principally in striosomes, but some ramify in both compartments or in striosomes and the SS. Ventral tier neurons that form deep clusters in substantia nigra pars reticulata innervate principally the matrix and the SS. The amygdala and ventral pallidum receive secondary collaterals from striatal axons of dorsal/ventral tier neurons or RRF neurons. The subthalamic nucleus receives collaterals from striatal axons of SNc clustered neurons, whereas the globus pallidus gets collaterals from striatal axons of dorsal/ventral tier SNc neurons. These findings reveal that the nigrostriatal pathway is composed of several neuronal subsystems, each endowed with a widely distributed axonal arborization that allows them to exert a multifaceted influence on striatal and/or extrastriatal structures.

  9. Dysregulation of the Autophagy-Endolysosomal System in Amyotrophic Lateral Sclerosis and Related Motor Neuron Diseases

    Directory of Open Access Journals (Sweden)

    Asako Otomo

    2012-01-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a heterogeneous group of incurable motor neuron diseases (MNDs characterized by a selective loss of upper and lower motor neurons in the brain and spinal cord. Most cases of ALS are sporadic, while approximately 5–10% cases are familial. More than 16 causative genes for ALS/MNDs have been identified and their underlying pathogenesis, including oxidative stress, endoplasmic reticulum stress, excitotoxicity, mitochondrial dysfunction, neural inflammation, protein misfolding and accumulation, dysfunctional intracellular trafficking, abnormal RNA processing, and noncell-autonomous damage, has begun to emerge. It is currently believed that a complex interplay of multiple toxicity pathways is implicated in disease onset and progression. Among such mechanisms, ones that are associated with disturbances of protein homeostasis, the ubiquitin-proteasome system and autophagy, have recently been highlighted. Although it remains to be determined whether disease-associated protein aggregates have a toxic or protective role in the pathogenesis, the formation of them results from the imbalance between generation and degradation of misfolded proteins within neuronal cells. In this paper, we focus on the autophagy-lysosomal and endocytic degradation systems and implication of their dysfunction to the pathogenesis of ALS/MNDs. The autophagy-endolysosomal pathway could be a major target for the development of therapeutic agents for ALS/MNDs.

  10. Relationship between activity in human primary motor cortex during action observation and the mirror neuron system.

    Directory of Open Access Journals (Sweden)

    James M Kilner

    Full Text Available The attenuation of the beta cortical oscillations during action observation has been interpreted as evidence of a mirror neuron system (MNS in humans. Here we investigated the modulation of beta cortical oscillations with the viewpoint of an observed action. We asked subjects to observe videos of an actor making a variety of arm movements. We show that when subjects were observing arm movements there was a significant modulation of beta oscillations overlying left and right sensorimotor cortices. This pattern of attenuation was driven by the side of the screen on which the observed movement occurred and not by the hand that was observed moving. These results are discussed in terms of the firing patterns of mirror neurons in F5 which have been reported to have similar properties.

  11. The stomatogastric nervous system of the medicinal leech: its anatomy, physiology and associated aminergic neurons.

    Science.gov (United States)

    Mesce, Karen A; Alania, Magda; Gaudry, Quentin; Puhl, Joshua G

    2018-03-29

    Blood feeding is an essential and signature activity of the medicinal leech species H irudo verbana Despite keen interest in understanding the neuronal substrates of this behavior, a major component of the nervous system associated with feeding has remained overlooked. In this study, for the first time, we report on the presence and characteristics of five stomatogastric ganglia (STGs) comprising the visceral stomatogastric nervous system (STN) of the leech. Although a brief report was published by Ruth Hanke in 1948 indicating that a ring of three ganglia (not five) was associated with the cephalic ganglia, this information was never integrated into subsequent neurobiological studies of feeding. Here, the anatomical features of the STGs are described, as are the morphological and electrophysiological characteristics of neurons originating in them. We also determined that two of the five STGs (STG-1 and STG-3) each contained two relatively large (ca. 40 µm diameter) serotonergic neurons. The STN was also enriched with dopaminergic and serotonergic arborizations; however, no intrinsic dopaminergic somata were observed. The trajectory of the serotonergic large lateral (LL) neuron, a command-like cell for feeding, was documented to project directly to the STN and not to the jaw and pharyngeal musculature as previously reported, thus reopening the important question of how the LL cell activates and coordinates biting activity with pharyngeal swallowing. Additional studies revealed that the LL cell is excited by blood serum applied to the lip and is strongly inhibited by dopamine. These findings provide a new foundation for understanding the regulation and modulation of neural networks involved in feeding. © 2018. Published by The Company of Biologists Ltd.

  12. Program computes single-point failures in critical system designs

    Science.gov (United States)

    Brown, W. R.

    1967-01-01

    Computer program analyzes the designs of critical systems that will either prove the design is free of single-point failures or detect each member of the population of single-point failures inherent in a system design. This program should find application in the checkout of redundant circuits and digital systems.

  13. 34 CFR 200.12 - Single State accountability system.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Single State accountability system. 200.12 Section 200... Improving Basic Programs Operated by Local Educational Agencies State Accountability System § 200.12 Single State accountability system. (a)(1) Each State must demonstrate in its State plan that the State has...

  14. Unvented single stack sanitary drainage system I

    DEFF Research Database (Denmark)

    Najman, Z.

    This report forms the basis of the preparation of design recommendations. In the observation tables all single results from 147 tests of charging are dispersed on 53 test set-ups. At test set-ups in 1 till 4 floors height discharge pipes with dimensions of 100, 125, and 150 mm were tested with di...

  15. Motor-auditory-visual integration: The role of the human mirror neuron system in communication and communication disorders

    OpenAIRE

    Le Bel, Ronald M.; Pineda, Jaime A.; Sharma, Anu

    2009-01-01

    The mirror neuron system (MNS) is a trimodal system composed of neuronal populations that respond to motor, visual, and auditory stimulation, such as when an action is performed, observed, heard or read about. In humans, the MNS has been identified using neuro-imaging techniques (such as fMRI and mu suppression in the EEG). It reflects an integration of motor-auditory-visual information processing related to aspects of language learning including action understanding and recognition. Such int...

  16. Optimal size of stochastic Hodgkin-Huxley neuronal systems for maximal energy efficiency in coding pulse signals.

    Science.gov (United States)

    Yu, Lianchun; Liu, Liwei

    2014-03-01

    The generation and conduction of action potentials (APs) represents a fundamental means of communication in the nervous system and is a metabolically expensive process. In this paper, we investigate the energy efficiency of neural systems in transferring pulse signals with APs. By analytically solving a bistable neuron model that mimics the AP generation with a particle crossing the barrier of a double well, we find the optimal number of ion channels that maximizes the energy efficiency of a neuron. We also investigate the energy efficiency of a neuron population in which the input pulse signals are represented with synchronized spikes and read out with a downstream coincidence detector neuron. We find an optimal number of neurons in neuron population, as well as the number of ion channels in each neuron that maximizes the energy efficiency. The energy efficiency also depends on the characters of the input signals, e.g., the pulse strength and the interpulse intervals. These results are confirmed by computer simulation of the stochastic Hodgkin-Huxley model with a detailed description of the ion channel random gating. We argue that the tradeoff between signal transmission reliability and energy cost may influence the size of the neural systems when energy use is constrained.

  17. Initial Single-Shell Tank Retrieval System mission analysis report

    International Nuclear Information System (INIS)

    Hertzel, J.S.

    1996-03-01

    This document provides the mission analysis for the Initial Single-Shell Tank Retrieval System task, which supports the Single-Shell Tank Waste Retrieval Program in its commitment to remove waste from single-shell tanks for treatment and final closure

  18. A single exposure to alcohol during brain development induces microencephaly and neuronal losses in genetically susceptible mice, but not in wild type mice.

    Science.gov (United States)

    de Licona, Hannah Klein; Karacay, Bahri; Mahoney, Jo; McDonald, Elizabeth; Luang, Thirath; Bonthius, Daniel J

    2009-05-01

    Maternal alcohol abuse during pregnancy can damage the fetal brain and lead to fetal alcohol syndrome (FAS). Despite public warnings discouraging alcohol use during pregnancy, many pregnant women continue to drink intermittently because they do not believe that occasional exposures to alcohol can be harmful to a fetus. However, because of genetic differences, some fetuses are much more susceptible than others to alcohol-induced brain injury. Thus, a relatively low quantity of alcohol that may be innocuous to most fetuses could damage a genetically susceptible fetus. Neuronal nitric oxide synthase (nNOS) can protect developing mouse neurons against alcohol toxicity by synthesizing neuroprotective nitric oxide. This study examined whether a single exposure to alcohol, which causes no evident injury in wild type mice, can damage the brains of mice genetically deficient for nNOS (nNOS-/- mice). Wild type and nNOS-/- mice received intraperitoneal injections of alcohol (0.0, 2.2, or 4.4mg/g body weight) either as a single dose on postnatal day (PD) 4 or as repeated daily doses over PD4-9. Brain volumes and neuronal numbers within the hippocampus and cerebral cortex were determined on PD10. Alcohol exposure on PD4-9 restricted brain growth and caused neuronal death in both strains of mice, but the severity of microencephaly and neuronal loss were more severe in the nNOS-/- mice than in wild type. The 4.4 mg/g alcohol dose administered on PD4 alone caused significant neuronal loss and microencephaly in the nNOS-/- mice, while this same dose caused no evident injury in the wild type mice. Thus, during development, a single exposure to alcohol can injure a genetically vulnerable brain, while it leaves a wild type brain unaffected. Since the genes that confer alcohol resistance and vulnerability in developing humans are unknown, any particular human fetus is potentially vulnerable. Thus, women should be counseled to consume no alcohol during pregnancy.

  19. Computer systems for annotation of single molecule fragments

    Science.gov (United States)

    Schwartz, David Charles; Severin, Jessica

    2016-07-19

    There are provided computer systems for visualizing and annotating single molecule images. Annotation systems in accordance with this disclosure allow a user to mark and annotate single molecules of interest and their restriction enzyme cut sites thereby determining the restriction fragments of single nucleic acid molecules. The markings and annotations may be automatically generated by the system in certain embodiments and they may be overlaid translucently onto the single molecule images. An image caching system may be implemented in the computer annotation systems to reduce image processing time. The annotation systems include one or more connectors connecting to one or more databases capable of storing single molecule data as well as other biomedical data. Such diverse array of data can be retrieved and used to validate the markings and annotations. The annotation systems may be implemented and deployed over a computer network. They may be ergonomically optimized to facilitate user interactions.

  20. Neuron Growth on Carbon Nanotube Thread Bio-Scaffolds for Repair of Central Nervous System Damage

    Science.gov (United States)

    Mast, David; Pixley, Sarah; Schulz, Mark; Shanov, Vessilin

    2012-02-01

    Approximately 11,000 new spinal cord injuries occur each year. Repairing such central nervous system (CNS) damage has proven to be very difficult. We report on in vitro experiments using carbon nanotube (CNT) threads as a bio-scaffold for promoting CNS repair via directed neuron regrowth along the CNT material. Mouse brain neurospheres, containing neuronal stem cells, neurons and support glia, were observed to attach to and grow along laminin-coated CNT threads in vitro. However, due to their limited mobility, only neurospheres close to the threads attach. To increase cellular attachment to the threads, we exploit the fact that these cells can exhibit enhanced, directed migration along an externally applied electric field. Recent in vitro cell growth was carried out in chambers containing several parallel CNT threads with electrical connections extending out of the incubator so that a voltage applied across adjacent threads established an appropriate electric field. Electrochemical Impedance Spectroscopy, Cyclic Voltammetry and dc and ac IV measurements were used to monitor cell growth and attachment as a function of applied electric field and time. Cell migration and attachment were also investigated using time lapse photography in a separate growth chamber mounted on the stage of an optical microscope.

  1. Sensitivity to perception level differentiates two subnetworks within the mirror neuron system.

    Science.gov (United States)

    Simon, Shiri; Mukamel, Roy

    2017-05-01

    Mirror neurons are a subset of brain cells that discharge during action execution and passive observation of similar actions. An open question concerns the functional role of their ability to match observed and executed actions. Since understanding of goals requires conscious perception of actions, we expect that mirror neurons potentially involved in action goal coding, will be modulated by changes in action perception level. Here, we manipulated perception level of action videos depicting short hand movements and measured the corresponding fMRI BOLD responses in mirror regions. Our results show that activity levels within a network of regions, including the sensorimotor cortex, primary motor cortex, dorsal premotor cortex and posterior superior temporal sulcus, are sensitive to changes in action perception level, whereas activity levels in the inferior frontal gyrus, ventral premotor cortex, supplementary motor area and superior parietal lobule are invariant to such changes. In addition, this parcellation to two sub-networks manifest as smaller functional distances within each group of regions during task and resting state. Our results point to functional differences between regions within the mirror neurons system which may have implications with respect to their possible role in action understanding. © The Author (2017). Published by Oxford University Press.

  2. Self-repair in a Bidirectionally Coupled Astrocyte-Neuron (AN System based on Retrograde Signaling

    Directory of Open Access Journals (Sweden)

    John eWade

    2012-09-01

    Full Text Available In this paper we demonstrate that retrograde signaling via astrocytes may underpin self-repair in the brain. Faults manifest themselves in silent or near silent neurons caused by low transmission probability synapses; the enhancement of the transmission probability of a healthy neighbouring synapse by retrograde signaling can enhance the transmission probability of the faulty synapse (repair. Our model of self-repair is based on recent research showing that retrograde signaling via astrocytes can increase the probability of neurotransmitter release at damaged or low transmission probability synapses. The model demonstrates that astrocytes are capable of bidirectional communication with neurons which leads to modulation of synaptic activity, and that indirect signaling through retrograde messengers such as endocannabinoids leads to modulation of synaptic transmission probability. Although our model operates at the level of cells, it provides a new research direction on brain-like self-repair which can be extended to networks of astrocytes and neurons. It also provides a biologically inspired basis for developing highly adaptive, distributed computing systems that can, at fine levels of granularity, fault detect, diagnose and self-repair autonomously, without the traditional constraint of a central fault detect/repair unit.

  3. Curcumin protects dopaminergic neurons against inflammation-mediated damage and improves motor dysfunction induced by single intranigral lipopolysaccharide injection.

    Science.gov (United States)

    Sharma, Neha; Sharma, Sheetal; Nehru, Bimla

    2017-06-01

    Various studies have indicated a lower incidence and prevalence of neurological conditions in people consuming curcumin. The ability of curcumin to target multiple cascades, simultaneously, could be held responsible for its neuroprotective effects. The present study was designed to investigate the potential of curcumin in minimizing microglia-mediated damage in lipopolysaccharide (LPS) induced model of PD. Altered microglial functions and increased inflammatory profile of the CNS have severe behavioral consequences. In the current investigation, a single injection of LPS (5 ug/5 µl PBS) was injected into the substantia nigra (SN) of rats, and curcumin [40 mg/kg b.wt (i.p.)] was administered daily for a period of 21 days. LPS triggered an inflammatory response characterized by glial activation [Iba-1 and glial fibrillary acidic protein (GFAP)] and pro-inflammatory cytokine production (TNF-α and IL-1β) leading to extensive dopaminergic loss and behavioral abnormality in rats. The behavioral observations, biochemical markers, quantification of dopamine and its metabolites (DOPAC and HVA) using HPLC followed by IHC of tyrosine hydroxylase (TH) were evaluated after 21 days of LPS injection. Curcumin supplementation prevented dopaminergic degeneration in LPS-treated animals by normalizing the altered levels of biomarkers. Also, a significant improvement in TH levels as well as behavioral parameters (actophotometer, rotarod, beam walking and grid walking tests) were seen in LPS injected rats. Curcumin shielded the dopaminergic neurons against LPS-induced inflammatory response, which was associated with suppression of glial activation (microglia and astrocytes) and transcription factor NF-κB as depicted from RT-PCR and EMSA assay. Curcumin also suppressed microglial NADPH oxidase activation as observed from NADPH oxidase activity. The results suggested that one of the important mechanisms by which curcumin mediates its protective effects in the LPS-induced PD

  4. Visualization Techniques for Single Channel DPF Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, Heather E.; Maupin, Gary D.; Carlson, Shelley J.; Saenz, Natalio T.; Gallant, Thomas R.

    2007-04-01

    New techniques have been developed to visualize soot deposition in both traditional and new diesel particulate filter (DPF) substrate materials using a modified cyanoacrylate fuming technique. Loading experiments have been conducted on a variety of single channel DPF substrates to develop a deeper understanding of soot penetration, soot deposition characteristics, and to confirm modeling results. Early results indicate that stabilizing the soot layer using a vapor adhesive may allow analysis of the layer with new methods.

  5. The Vertebrate Brain, Evidence of Its Modular Organization and Operating System: Insights into the Brain's Basic Units of Structure, Function, and Operation and How They Influence Neuronal Signaling and Behavior.

    Science.gov (United States)

    Baslow, Morris H

    2011-01-01

    The human brain is a complex organ made up of neurons and several other cell types, and whose role is processing information for use in eliciting behaviors. However, the composition of its repeating cellular units for both structure and function are unresolved. Based on recent descriptions of the brain's physiological "operating system", a function of the tri-cellular metabolism of N-acetylaspartate (NAA) and N-acetylaspartylglutamate (NAAG) for supply of energy, and on the nature of "neuronal words and languages" for intercellular communication, insights into the brain's modular structural and functional units have been gained. In this article, it is proposed that the basic structural unit in brain is defined by its physiological operating system, and that it consists of a single neuron, and one or more astrocytes, oligodendrocytes, and vascular system endothelial cells. It is also proposed that the basic functional unit in the brain is defined by how neurons communicate, and consists of two neurons and their interconnecting dendritic-synaptic-dendritic field. Since a functional unit is composed of two neurons, it requires two structural units to form a functional unit. Thus, the brain can be envisioned as being made up of the three-dimensional stacking and intertwining of myriad structural units which results not only in its gross structure, but also in producing a uniform distribution of binary functional units. Since the physiological NAA-NAAG operating system for supply of energy is repeated in every structural unit, it is positioned to control global brain function.

  6. Early-life Social Isolation Impairs the Gonadotropin-Inhibitory Hormone Neuronal Activity and Serotonergic System in Male Rats

    Directory of Open Access Journals (Sweden)

    Tomoko eSoga

    2015-11-01

    Full Text Available Social isolation in early life deregulates the serotonergic system of the brain, compromising reproductive function. Gonadotropin-inhibitory hormone (GnIH neurons in the dorsomedial hypothalamic nucleus are critical to the inhibitory regulation of gonadotropin-releasing hormone neuronal activity in the brain and release of luteinising hormone by the pituitary gland. Although GnIH responds to stress, the role of GnIH in social isolation-induced deregulation of the serotonin system and reproductive function remains unclear. We investigated the effect of social isolation in early life on the serotonergic–GnIH neuronal system using enhanced green fluorescent protein (EGFP-tagged GnIH-transgenic rats. Socially isolated rats were observed for anxious and depressive behaviours. Using immunohistochemistry, we examined c-Fos protein expression in EGFP–GnIH neurons in 9-week-old adult male rats after 6 weeks post-weaning isolation or group -housing. We also inspected serotonergic fibre juxtapositions in EGFP–GnIH neurons in control and socially isolated male rats. Socially isolated rats exhibited anxious and depressive behaviours. The total number of EGFP–GnIH neurons was the same in control and socially isolated rats, but c-Fos expression in GnIH neurons was significantly reduced in socially isolated rats. Serotonin fibre juxtapositions on EGFP–GnIH neurons was also lower in socially isolated rats. In addition, levels of tryptophan hydroxylase mRNA expression in the dorsal raphe nucleus were significantly attenuated in these rats. These results suggest that social isolation in early life results in lower serotonin levels, which reduce GnIH neuronal activity and may lead to reproductive failure.

  7. Morphological and Physiological Interactions Between GnRH3 and Hypocretin/Orexin Neuronal Systems in Zebrafish (Danio rerio).

    Science.gov (United States)

    Zhao, Yali; Singh, Chanpreet; Prober, David A; Wayne, Nancy L

    2016-10-01

    GnRH neurons integrate internal and external cues to control sexual maturation and fertility. Homeostasis of energy balance and food intake correlates strongly with the status of reproduction. Neuropeptides secreted by the hypothalamus involved in modulating energy balance and feeding may play additional roles in the regulation of reproduction. Hypocretin (Hcrt) (also known as orexin) is one such peptide, primarily controlling sleep/wakefulness, food intake, and reward processing. There is a growing body of evidence indicating that Hcrt/orexin (Hcrt) modulates reproduction through interacting with the hypothalamo-pituitary-gonadal axis in mammals. To explore potential morphological and functional interactions between the GnRH and Hcrt neuronal systems, we employed a variety of experimental approaches including confocal imaging, immunohistochemistry, and electrophysiology in transgenic zebrafish, in which fluorescent proteins are genetically expressed in GnRH3 and Hcrt neurons. Our imaging data revealed close apposition and direct connection between GnRH3 and Hcrt neuronal systems in the hypothalamus during larval development through adulthood. Furthermore, the Hcrt receptor (HcrtR) is expressed in GnRH3 neurons. Electrophysiological data revealed a reversible inhibitory effect of Hcrt on GnRH3 neuron electrical activity, which was blocked by the HcrtR antagonist almorexant. In addition, Hcrt had no effect on the electrical activity of GnRH3 neurons in the HcrtR null mutant zebrafish (HcrtR -/- ). Our findings demonstrate a close anatomical and functional relationship between Hcrt and GnRH neuronal systems in zebrafish. It is the first demonstration of a link between neuronal circuits controlling sleeping/arousal/feeding and reproduction in zebrafish, an important animal model for investigating the molecular genetics of development.

  8. Synchronization of biological clock neurons by light and peripheral feedback systems promotes circadian rhythms and health

    Directory of Open Access Journals (Sweden)

    Ashna eRamkisoensing

    2015-06-01

    Full Text Available In mammals, the suprachiasmatic nucleus (SCN functions as a circadian clock that drives 24-hour rhythms in both physiology and behavior. The SCN is a multicellular oscillator in which individual neurons function as cell-autonomous oscillators. The production of a coherent output rhythm is dependent upon mutual synchronization among single cells and requires both synaptic communication and gap junctions. Changes in phase synchronization between individual cells have consequences on the amplitude of the SCN’s electrical activity rhythm, and these changes play a major role in the ability to adapt to seasonal changes. Both aging and sleep deprivation negatively affect the circadian amplitude of the SCN, whereas behavioral activity (i.e., exercise has a positive effect on amplitude. Given that the amplitude of the SCN’s electrical activity rhythm is essential for achieving robust rhythmicity in physiology and behavior, the mechanisms that underlie neuronal synchronization warrant further study. A growing body of evidence suggests that the functional integrity of the SCN contributes to health, well-being, cognitive performance, and alertness; in contrast, deterioration of the 24-hour rhythm is a risk factor for neurodegenerative disease, cancer, depression, and sleep disorders.

  9. Systems interaction and single failure criterion

    International Nuclear Information System (INIS)

    1983-10-01

    This study is a continued assessment of US research. All three of the systems interaction review methodologies which NRC's Systems Interaction Section (SIS) is studying are recommended. They are the Digraph-Matrix Analysis and Interactive Fault Tree/Failure Modes and Effects Analysis methodologies. A third methodology was developed for the Indian Point 3 system interaction review. It is recommended to developing the capability to perform and evaluate systems interaction reviews at Swedish nuclear plants. The Swedish demonstration studies should be performed on BWR's. (G.B.)

  10. No neuronal loss, but alterations of the GDNF system in asymptomatic diverticulosis.

    Science.gov (United States)

    Barrenschee, Martina; Wedel, Thilo; Lange, Christina; Hohmeier, Ines; Cossais, François; Ebsen, Michael; Vogel, Ilka; Böttner, Martina

    2017-01-01

    Glial cell line-derived neurotrophic factor (GDNF) is a potent neurotrophic factor known to promote the survival and maintenance of neurons not only in the developing but also in the adult enteric nervous system. As diverticular disease (DD) is associated with reduced myenteric neurons, alterations of the GDNF system were studied in asymptomatic diverticulosis (diverticulosis) and DD. Morphometric analysis for quantifying myenteric ganglia and neurons were assessed in colonic full-thickness sections of patients with diverticulosis and controls. Samples of tunica muscularis (TM) and laser-microdissected myenteric ganglia from patients with diverticulosis, DD and controls were analyzed for mRNA expression levels of GDNF, GFRA1, and RET by RT-qPCR. Myenteric protein expression of both receptors was quantified by fluorescence-immunohistochemistry of patients with diverticulosis, DD, and controls. Although no myenteric morphometric alterations were found in patients with diverticulosis, GDNF, GFRA1 and RET mRNA expression was down-regulated in the TM of patients with diverticulosis as well as DD. Furthermore GFRA1 and RET myenteric plexus mRNA expression of patients with diverticulosis and DD was down-regulated, whereas GDNF remained unaltered. Myenteric immunoreactivity of the receptors GFRα1 and RET was decreased in both asymptomatic diverticulosis and DD patients. Our data provide evidence for an impaired GDNF system at gene and protein level not only in DD but also during early stages of diverticula formation. Thus, the results strengthen the idea of a disturbed GDNF-responsiveness as contributive factor for a primary enteric neuropathy involved in the pathogenesis and disturbed intestinal motility observed in DD.

  11. Sex Differences in Neuroanatomy of the Human Mirror Neuron System: Impact on Functional Recovery of Ischemic Hemiparetic Patients.

    Science.gov (United States)

    Motaqhey, Monireh; Ghanjal, Ali; Mastri Farahani, Reza; Ghabaee, Mojdeh; Kaka, Gholamreza; Noroziyan, Mohsen; Fadaee Fathabadi, Fatemeh

    2015-08-01

    Considering the higher activity of mirror neuron system in females, they frequently have better performance in empathy, interpersonal sensitivity, and emotional recognition compared to males. The purpose of this study was to assess whether gender difference in neuroanatomy of the human mirror neuron system has any impact on functional recovery of ischemic hemiparetic patients. This single-blind clinical trial was conducted on 24 patients with cerebrovascular accident (CVA) in the age range of 45 - 60 years, referring at a rehabilitation center in Tehran, Iran, during 2013 - 2014. Sampling method was stratified random sampling. The subjects were assigned to 2 groups of 12 males and 12 females. Then, each group was randomly divided into 2 groups (totally 4 groups, n = 6 for each group): women watching functional movies, control women, men watching functional movies, and control men. Movies were shown to patients and then, they were evaluated by Timed Up and Go (TUG), Six-minute walk test (SMW), Barthel index (BI), and Berg balance scale (BBS). Comparison of all variables related to functional activities of all groups before and after watching movies revealed significant differences. The highest percentage of change and improvement was observed in groups 1 and 3 watching the functional movies (P = 0.0001). Percentage of improvement in women of groups 1 and 2 was higher than men in groups 3 and 4 (P = 0.0003). The changes in group of females watching the functional movies (group 1) were significantly greater than in other groups (P women was found to be significantly greater than studied men. The results indicate a higher chance of recovery among hemiparetic women, especially those watching functional movies.

  12. Neuronal background of activation of estivated snails, with special attention to the monoaminergic system: a biochemical, physiological, and neuroanatomical study.

    Science.gov (United States)

    Hernádi, L; Vehovszky, A; Gyori, J; Hiripi, L

    2008-02-01

    Osmotic stimulation activates both estivated and inactivated specimens of Helix pomatia and increases their central arousal. High-pressure liquid chromatography has shown that, during activation, the level of both serotonin and dopamine decreases in the central nervous system (CNS) but increases in the foot and heart, organs that are involved in the eversion of the body. In isolated CNS from activated animals, the firing frequency of the heart-modulator serotonergic (RPas) neurons is significantly higher than that in the CNS of estivated or inactivated animals. These neurons innervate both the heart and the anterior aorta. In semi-intact preparations, distilled water (an osmotic stimulus) applied to the mantle collar increases their firing frequency, whereas tactile stimulation evokes their inhibition. Extracellularly applied monoamines mimic the effect of peripheral stimuli: serotonin (0.1-10 microM) increases the activity of the RPas neurons, whereas dopamine (0.1-10 microM) inhibits their activity. Tyrosine-hydroxylase immunocytochemistry and retrograde neurobiotin tracing have revealed similar bipolar receptor cells in the mantle collar and tail, organs that are exposed to environmental stimuli in estivated animals. Serotonin immunocytochemistry carried out on the same tissues does not visualize receptor cells but labels a dense network of fibers that appear to innervate neurobiotin-labeled receptor cells. The combination of neurobiotin-labeling of RPas neurons and immunolabeling suggests that RPas neurons receive direct dopaminergic inputs from receptor cells and serotonergic inputs from central serotonergic neurons, indicating that central serotonergic neurons are interconnected. Thus, the RPas neurons may belong to neuronal elements of the arousal system.

  13. Patterns of spontaneous activity in single rat olfactory receptor neurons are different in normally breathing and tracheotomized animals

    Czech Academy of Sciences Publication Activity Database

    Duchamp-Viret, P.; Košťál, Lubomír; Chaput, M.; Lánský, Petr; Rospars, J. P.

    2005-01-01

    Roč. 65, č. 2 (2005), s. 97-114 ISSN 0022-3034 R&D Projects: GA AV ČR(CZ) 1ET400110401 Grant - others:Barrande(FR) 9146 QL Institutional research plan: CEZ:AV0Z50110509 Keywords : olfactory neurons * unit activity * receptors Subject RIV: ED - Physiology Impact factor: 4.170, year: 2005

  14. Postirradiation changes in the systems of active ion transport. Na,K-ATPase of neurons in neuroglia

    International Nuclear Information System (INIS)

    Shainskaya, A.M.; Dvoretskij, A.I.; Valetova, Yu.O.

    1989-01-01

    A study was made of the effect of X-radiation (0.31 C/kg and 3.875 C/kg) on Na,K-ATPase in fractions enriched with neurons and neuroglia. The results show the impairment of the neuronal-glial relationship in Na,K-ATPase activity. The most important differences in the pattern of changes in Na,K-ATPase system of brain cells were followed up after irradiaion with lethal and sublethal doses

  15. Neuronal and molecular effects of cannabidiol on the mesolimbic dopamine system: Implications for novel schizophrenia treatments.

    Science.gov (United States)

    Renard, Justine; Norris, Christopher; Rushlow, Walter; Laviolette, Steven R

    2017-04-01

    Growing clinical and pre-clinical evidence points to a critical role for cannabidiol (CBD), the largest phytochemical component of cannabis, as a potential pharmacotherapy for various neuropsychiatric disorders. In contrast to delta-9-tetrahydrocannabinol (THC), which is associated with acute and neurodevelopmental pro-psychotic side-effects, CBD possesses no known psychoactive or dependence-producing properties. However, evidence has demonstrated that CBD strongly modulates the mesolimbic dopamine (DA) system and may possess promising anti-psychotic properties. Despite the psychotropic differences between CBD and THC, little is known regarding their molecular and neuronal effects on the mesolimbic DA system, nor how these differential effects may relate to their potential pro vs. anti-psychotic properties. This review summarizes clinical and pre-clinical evidence demonstrating CBD's modulatory effects on DA activity states within the mesolimbic pathway, functional interactions with the serotonin 5-HT 1A receptor system, and their downstream molecular signaling effects. Together with clinical evidence showing that CBD may normalize affective and cognitive deficits associated with schizophrenia, CBD may represent a promising treatment for schizophrenia, acting through novel molecular and neuronal mesolimbic substrates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Giant neurons and associated synapses in the peripheral nervous system of whip spiders.

    Science.gov (United States)

    Foelix, R F; Troyer, D

    1980-08-01

    Whip spiders (Amblypygi) are arachnids with a specialized first pair of legs. These legs are unusually long (20-25 cm) and are not used for walking. Instead their lengthy tarsi (7-8 cm) are covered with thousands of sensory hairs (mechano- and chemoreceptors). The legs thus resemble antennae of insects. Each sensory hair is associated with 4-40 neurons whose axons are grouped together to form two large tarsal nerves. The nerves contain about 23 000 sensory axons. Whereas most of the axons measure only 0.1-0.2 microns in diameter, a few are exceptionally large (3-20 microns). These are giant fibres. Their large somata are located in specific segments of the tarsi. The branched dendrites of the giant neurons receive hundreds of chemical synapses, presumably from the sensory axons of the hair sensilla. Since stimulation of the tarsal tip elicits fast withdrawal reaction (greater than or equal to 80 ms), it is likely that the giant fibres provide the pathway for the rapid conduction of nerve impulses to the motor centres of the C.N.S. The system is comparable to the giant fibre system of certain insects. In contrast, however, the giant interneurons and associated synapses of whip spiders are not located in the C.N.S., but lie some 20 cm removed in the periphery. Thus, some primary sensory information already becomes processed in the peripheral nervous system, before it reaches the C.N.S.

  17. Melanin-concentrating hormone: unique peptide neuronal systems in the rat brain and pituitary gland

    Energy Technology Data Exchange (ETDEWEB)

    Zamir, N.; Skofitsch, G.; Bannon, M.J.; Jacobowitz, D.M.

    1986-03-01

    A unique neuronal system was detected in the rat central nervous system by immunohistochemistry and radioimmunoassay with antibodies to salmon melanin-concentrating hormone (MCH). MCH-like immunoreactive (MCH-LI) cell bodies were confined to the hypothalamus. MCH-LI fibers were found throughout the brain but were most prevalent in hypothalamus, mesencephalon, and pons-medulla regions. High concentrations of MCH-LI were measured in the hypothalamic medial forebrain bundle (MFB), posterior hypothalamic nucleus, and nucleus of the diagonal band. Reversed-phase high-performance liquid chromatography of MFB extracts from rat brain indicate that MCH-like peptide from the rat has a different retention time than that of the salmon MCH. An osmotic stimuls (2% NaCl as drinking water for 120 hr) caused a marked increase in MCH-LI concentrations in the lateral hypothalamus and neurointermediate lobe. The present studies establish the presence of MCH-like peptide in the rat brain. The MCH-LI neuronal system is well situated to coordinate complex functions such as regulation of water intake.

  18. Long-term neuronal damage and recovery after a single dose of MDMA: expression and distribution of serotonin transporter in the rat brain.

    Science.gov (United States)

    Kirilly, Eszter

    2010-09-01

    "Ecstasy", 3,4-methylenedioxymethamphetamine (MDMA), an amphetamine analogue is one of the most widely used recreational drugs. In spite of the fact that neurotoxic effects of MDMA has been found in several species from rodents to non-human primates, and results increasingly point to damage also in human MDMA users, data about the sensitivity of different brain areas and the recovery after neuronal damage are scarce. Serotonin transporter (5-HTT) mRNA in the raphe nuclei also has not been examined. Humans with genetic predisposition for the slow metabolism of MDMA, the so-called "poor metabolizers" of debrisoquin are at higher risk. Five- 9% of the Caucasian population is considered to carry this phenotype. These studies were carried out in Dark Agouti rats, a special strain that show decreased microsomal CYP2D1 isoenzyme activity, and thus may serve as a model of vulnerable human users. These works were designed to characterize MDMA-induced damage and recovery of the serotonergic system including sleep and morphological changes within 180 days. In our experiments we investigated the 5-HTT mRNA expression in the brainstem and medullary raphe nuclei, 5-HTT immunoreactive (IR) fibre densities in several brain areas, and 16 functional measures of sleep in response to a single dose of +/- MDMA (15mg\\kg). Furthermore, behavioural experiments were performed 21 days after MDMA treatment. We found similar changes in 5-HTT mRNA expression in the examined raphe nuclei, namely transient increases 7 days after MDMA treatment followed by transient decreases at 21 days. Significant (20-40%), widespread reductions in 5-HTT-IR fibre density were detected in most brain areas at 7 and 21 days after MDMA administration. All cortical, but only some brainstem areas were damaged. Parallel to the neuronal damage we observed significant reductions in rapid eye movement (REM) sleep latency, increased fragmentation of sleep and increases in delta power spectra in non-REM sleep. At 180 days

  19. Single board system for fuzzy inference

    Science.gov (United States)

    Symon, James R.; Watanabe, Hiroyuki

    1991-01-01

    The very large scale integration (VLSI) implementation of a fuzzy logic inference mechanism allows the use of rule-based control and decision making in demanding real-time applications. Researchers designed a full custom VLSI inference engine. The chip was fabricated using CMOS technology. The chip consists of 688,000 transistors of which 476,000 are used for RAM memory. The fuzzy logic inference engine board system incorporates the custom designed integrated circuit into a standard VMEbus environment. The Fuzzy Logic system uses Transistor-Transistor Logic (TTL) parts to provide the interface between the Fuzzy chip and a standard, double height VMEbus backplane, allowing the chip to perform application process control through the VMEbus host. High level C language functions hide details of the hardware system interface from the applications level programmer. The first version of the board was installed on a robot at Oak Ridge National Laboratory in January of 1990.

  20. Challenging the neuronal MIBG uptake by pharmacological intervention: effect of a single dose of oral amitriptyline on regional cardiac MIBG uptake

    Energy Technology Data Exchange (ETDEWEB)

    Estorch, Montserrat; Carrio, Ignasi; Mena, Esther; Flotats, Albert; Camacho, Valle; Fuertes, Jordi [Autonomous University of Barcelona, Department of Nuclear Medicine, Hospital Sant Pau, Barcelona (Spain); Kulisewsky, Jaume [Autonomous University of Barcelona, Department of Neurology, Hospital Sant Pau, Barcelona (Spain); Narula, Jagat [Irvine College of Medicine, Division of Cardiology, University of California, Irvine, CA (United States)

    2004-12-01

    Imaging with metaiodobenzylguanidine (MIBG) is used for the assessment of neuronal dysfunction in various cardiovascular disorders. Although valuable information is obtained by resting MIBG imaging, it is conceivable that competitive interference with the re-uptake mechanism would exaggerate MIBG defects and might unmask subclinical neuronal dysfunction. Tricyclic antidepressants, such as amitriptyline, have been reported to significantly increase cardiac MIBG washout and inhibit uptake into presynaptic neurons. This study was undertaken to assess whether a single oral dose of amitriptyline could influence cardiac MIBG distribution. Six patients (aged 62-81 years; four males, two females) who had demonstrated a normal cardiac MIBG scan during work-up for movement disorders were studied. The patients underwent a second {sup 123}I-MIBG study after oral administration of 25 mg amitriptyline within 1 week. Single-photon emission computed tomography images were acquired at 4 h to assess the regional distribution of MIBG, after generation of polar maps and employing a 20-segment model. Mean percentage of peak activity was calculated for each segment at rest and after amitriptyline administration. After amitriptyline administration, there was a decrease in regional MIBG uptake in 10{+-}4 segments per patient [62/120 segments (52%): 37 segments with a 5-10% decrease, 25 segments with a >10% decrease]. This change was statistically significant in lateral (P=0.003), apical (P<0.0001) and inferior (P=0.03) regions. A single oral dose of amitriptyline can induce changes in the uptake and retention of cardiac MIBG, indicating the feasibility of use of pharmacological intervention in cardiac neurotransmission imaging. (orig.)

  1. Family Systems and the Single Client.

    Science.gov (United States)

    Baldwin, Cynthia

    1997-01-01

    Describes how a counselor used a combination of systemic family counseling techniques with a divorced middle-aged male client. The counselor states that it proved to be an efficient and honoring combination that helped the client move differently, with more freedom and self-assurance, toward his goals. (MKA)

  2. [The pathological TDP-43 protein expression in the central nervous system of motor neuron disease].

    Science.gov (United States)

    Zhu, Mingwei; Liu, Jia; Wang, Luning; Gui, Qiuping

    2015-01-01

    To understand pathological TDP-43 features in the central nervous systems of patients with clinically and autopsy confirmed motor neuron disease (MND). The clinical and histopathological features of 4 cases with MND confirmed by autopsy were summarized; anti-ubiquitin (Ub) and anti-TDP-43 immunohistochemical staining were carried out on tissue of brains and spinal cords from 4 cases with MND and 3 control cases without history of neurological disorders. These 4 cases presented with typical clinical and histologic features of MND. Ub-positive inclusions were observed in brain and spinal cord from 3 cases with the Ub-positive inclusions of skein- round- and lewy body- like structures. Strong TDP-43 pathological staining in brain and spinal cord was identified in 2 cases with MND presented as neuronal and glial cytoplasmic inclusions with various shapes. The TDP-43 positive inclusions were widely distributed in the motor cortex of brain and the anterior horn of spinal cord. TDP-43 weak staining in the spinal cord tissue was observed in 1 case with MND. No Ub- and TDP-43 positive inclusions were found in 3 control cases. There is widespread pathological TDP-43 expression in the central nervous system of MND. TDP-43 positive inclusions in MND have relatively high specificity. It is worth further study on their formation mechanism.

  3. Single-molecule folding mechanisms of the apo- and Mg2+-bound states of human neuronal calcium sensor-1

    DEFF Research Database (Denmark)

    Naqvi, Mohsin M; Heiðarsson, Pétur Orri; Otazo, Mariela R

    2015-01-01

    Neuronal calcium sensor-1 (NCS-1) is the primordial member of a family of proteins responsible primarily for sensing changes in neuronal Ca(2+) concentration. NCS-1 is a multispecific protein interacting with a number of binding partners in both calcium-dependent and independent manners, and acting...... in a variety of cellular processes in which it has been linked to a number of disorders such as schizophrenia and autism. Despite extensive studies on the Ca(2+)-activated state of NCS proteins, little is known about the conformational dynamics of the Mg(2+)-bound and apo states, both of which are populated...... by populating one intermediate state consisting of a folded C-domain and an unfolded N-domain. The interconversion at equilibrium between the different molecular states populated by NCS-1 was monitored in real time through constant-force measurements and the energy landscapes underlying the observed transitions...

  4. Transient exposure to ethanol during zebrafish embryogenesis results in defects in neuronal differentiation: an alternative model system to study FASD.

    Science.gov (United States)

    Joya, Xavier; Garcia-Algar, Oscar; Vall, Oriol; Pujades, Cristina

    2014-01-01

    The exposure of the human embryo to ethanol results in a spectrum of disorders involving multiple organ systems, including the impairment of the development of the central nervous system (CNS). In spite of the importance for human health, the molecular basis of prenatal ethanol exposure remains poorly understood, mainly to the difficulty of sample collection. Zebrafish is now emerging as a powerful organism for the modeling and the study of human diseases. In this work, we have assessed the sensitivity of specific subsets of neurons to ethanol exposure during embryogenesis and we have visualized the sensitive embryonic developmental periods for specific neuronal groups by the use of different transgenic zebrafish lines. In order to evaluate the teratogenic effects of acute ethanol exposure, we exposed zebrafish embryos to ethanol in a given time window and analyzed the effects in neurogenesis, neuronal differentiation and brain patterning. Zebrafish larvae exposed to ethanol displayed small eyes and/or a reduction of the body length, phenotypical features similar to the observed in children with prenatal exposure to ethanol. When neuronal populations were analyzed, we observed a clear reduction in the number of differentiated neurons in the spinal cord upon ethanol exposure. There was a decrease in the population of sensory neurons mainly due to a decrease in cell proliferation and subsequent apoptosis during neuronal differentiation, with no effect in motoneuron specification. Our investigation highlights that transient exposure to ethanol during early embryonic development affects neuronal differentiation although does not result in defects in early neurogenesis. These results establish the use of zebrafish embryos as an alternative research model to elucidate the molecular mechanism(s) of ethanol-induced developmental toxicity at very early stages of embryonic development.

  5. Transient exposure to ethanol during zebrafish embryogenesis results in defects in neuronal differentiation: an alternative model system to study FASD.

    Directory of Open Access Journals (Sweden)

    Xavier Joya

    Full Text Available The exposure of the human embryo to ethanol results in a spectrum of disorders involving multiple organ systems, including the impairment of the development of the central nervous system (CNS. In spite of the importance for human health, the molecular basis of prenatal ethanol exposure remains poorly understood, mainly to the difficulty of sample collection. Zebrafish is now emerging as a powerful organism for the modeling and the study of human diseases. In this work, we have assessed the sensitivity of specific subsets of neurons to ethanol exposure during embryogenesis and we have visualized the sensitive embryonic developmental periods for specific neuronal groups by the use of different transgenic zebrafish lines.In order to evaluate the teratogenic effects of acute ethanol exposure, we exposed zebrafish embryos to ethanol in a given time window and analyzed the effects in neurogenesis, neuronal differentiation and brain patterning. Zebrafish larvae exposed to ethanol displayed small eyes and/or a reduction of the body length, phenotypical features similar to the observed in children with prenatal exposure to ethanol. When neuronal populations were analyzed, we observed a clear reduction in the number of differentiated neurons in the spinal cord upon ethanol exposure. There was a decrease in the population of sensory neurons mainly due to a decrease in cell proliferation and subsequent apoptosis during neuronal differentiation, with no effect in motoneuron specification.Our investigation highlights that transient exposure to ethanol during early embryonic development affects neuronal differentiation although does not result in defects in early neurogenesis. These results establish the use of zebrafish embryos as an alternative research model to elucidate the molecular mechanism(s of ethanol-induced developmental toxicity at very early stages of embryonic development.

  6. Learning of Spatial Relationships between Observed and Imitated Actions allows Invariant Inverse Computation in the Frontal Mirror Neuron System

    Science.gov (United States)

    Oh, Hyuk; Gentili, Rodolphe J.; Reggia, James A.; Contreras-Vidal, José L.

    2014-01-01

    It has been suggested that the human mirror neuron system can facilitate learning by imitation through coupling of observation and action execution. During imitation of observed actions, the functional relationship between and within the inferior frontal cortex, the posterior parietal cortex, and the superior temporal sulcus can be modeled within the internal model framework. The proposed biologically plausible mirror neuron system model extends currently available models by explicitly modeling the intraparietal sulcus and the superior parietal lobule in implementing the function of a frame of reference transformation during imitation. Moreover, the model posits the ventral premotor cortex as performing an inverse computation. The simulations reveal that: i) the transformation system can learn and represent the changes in extrinsic to intrinsic coordinates when an imitator observes a demonstrator; ii) the inverse model of the imitator’s frontal mirror neuron system can be trained to provide the motor plans for the imitated actions. PMID:22255261

  7. From Neurons to Social Beings: Short Review of the Mirror Neuron System Research and Its Socio-Psychological and Psychiatric Implications

    Science.gov (United States)

    Jeon, Hyeonjin

    2018-01-01

    The mirror neuron system (MNS) is a brain network activated when we move our body parts and when we observe the actions of other agent. Since the mirror neuron’s discovery in research on monkeys, several studies have examined its network and properties in both animals and humans. This review discusses MNS studies of animals and human MNS studies related to high-order social cognitions such as emotion and empathy, as well as relations between MNS dysfunction and mental disorders. Finally, these evidences are understood from an evolutionary perspective. PMID:29397663

  8. Stability and Hopf Bifurcation of a Reaction-Diffusion Neutral Neuron System with Time Delay

    Science.gov (United States)

    Dong, Tao; Xia, Linmao

    2017-12-01

    In this paper, a type of reaction-diffusion neutral neuron system with time delay under homogeneous Neumann boundary conditions is considered. By constructing a basis of phase space based on the eigenvectors of the corresponding Laplace operator, the characteristic equation of this system is obtained. Then, by selecting time delay and self-feedback strength as the bifurcating parameters respectively, the dynamic behaviors including local stability and Hopf bifurcation near the zero equilibrium point are investigated when the time delay and self-feedback strength vary. Furthermore, the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions are obtained by using the normal form and the center manifold theorem for the corresponding partial differential equation. Finally, two simulation examples are given to verify the theory.

  9. Cellular computational generalized neuron network for frequency situational intelligence in a multi-machine power system.

    Science.gov (United States)

    Wei, Yawei; Venayagamoorthy, Ganesh Kumar

    2017-09-01

    To prevent large interconnected power system from a cascading failure, brownout or even blackout, grid operators require access to faster than real-time information to make appropriate just-in-time control decisions. However, the communication and computational system limitations of currently used supervisory control and data acquisition (SCADA) system can only deliver delayed information. However, the deployment of synchrophasor measurement devices makes it possible to capture and visualize, in near-real-time, grid operational data with extra granularity. In this paper, a cellular computational network (CCN) approach for frequency situational intelligence (FSI) in a power system is presented. The distributed and scalable computing unit of the CCN framework makes it particularly flexible for customization for a particular set of prediction requirements. Two soft-computing algorithms have been implemented in the CCN framework: a cellular generalized neuron network (CCGNN) and a cellular multi-layer perceptron network (CCMLPN), for purposes of providing multi-timescale frequency predictions, ranging from 16.67 ms to 2 s. These two developed CCGNN and CCMLPN systems were then implemented on two different scales of power systems, one of which installed a large photovoltaic plant. A real-time power system simulator at weather station within the Real-Time Power and Intelligent Systems (RTPIS) laboratory at Clemson, SC, was then used to derive typical FSI results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Process tomography via sequential measurements on a single quantum system

    CSIR Research Space (South Africa)

    Bassa, H

    2015-09-01

    Full Text Available The authors utilize a discrete (sequential) measurement protocol to investigate quantum process tomography of a single two-level quantum system, with an unknown initial state, undergoing Rabi oscillations. The ignorance of the dynamical parameters...

  11. Mixing Ventilation System in a Single-Aisle Aircraft Cabin

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm; Zhang, Chen; Wojcik, Kamil

    2014-01-01

    and present a design procedure of the system. Finally, a personalised ventilation system will be described, which can be used together with the mixing ventilation system. The experiments are made in a full-scale, left side mock-up of a single-aisle (Boeing 737) cabin with four seats. The four passengers...

  12. Recurrent Neural Network for Single Machine Power System Stabilizer

    Directory of Open Access Journals (Sweden)

    Widi Aribowo

    2010-04-01

    Full Text Available In this paper, recurrent neural network (RNN is used to design power system stabilizer (PSS due to its advantage on the dependence not only on present input but also on past condition. A RNN-PSS is able to capture the dynamic response of a system without any delays caused by external feedback, primarily by the internal feedback loop in recurrent neuron. In this paper, RNNPSS consists of a RNN-identifier and a RNN-controller. The RNN-Identifier functions as the tracker of dynamics characteristics of the plant, while the RNN-controller is used to damp the system’s low frequency oscillations. Simulation results using MATLAB demonstrate that the RNNPSS can successfully damp out oscillation and improve the performance of the system.

  13. Eff ect of a single asenapine treatment on Fos expression in the brain catecholamine-synthesizing neurons: impact of a chronic mild stress preconditioning

    Directory of Open Access Journals (Sweden)

    Osacka J.

    2017-04-01

    Full Text Available Objective. Fos protein expression in catecholamine-synthesizing neurons of the substantia nigra (SN pars compacta (SNC, A8, pars reticulata (SNR, A9, and pars lateralis (SNL, the ventral tegmental area (VTA, A10, the locus coeruleus (LC, A6 and subcoeruleus (sLC, the ventrolateral pons (PON-A5, the nucleus of the solitary tract (NTS-A2, the area postrema (AP, and the ventrolateral medulla (VLM-A1 was quantitatively evaluated aft er a single administration of asenapine (ASE (designated for schizophrenia treatment in male Wistar rats preconditioned with a chronic unpredictable variable mild stress (CMS for 21 days. Th e aim of the present study was to reveal whether a single ASE treatment may 1 activate Fos expression in the brain areas selected; 2 activate tyrosine hydroxylase (TH-synthesizing cells displaying Fos presence; and 3 be modulated by CMS preconditioning.

  14. Image reconstruction of dynamic infrared single-pixel imaging system

    Science.gov (United States)

    Tong, Qi; Jiang, Yilin; Wang, Haiyan; Guo, Limin

    2018-03-01

    Single-pixel imaging technique has recently received much attention. Most of the current single-pixel imaging is aimed at relatively static targets or the imaging system is fixed, which is limited by the number of measurements received through the single detector. In this paper, we proposed a novel dynamic compressive imaging method to solve the imaging problem, where exists imaging system motion behavior, for the infrared (IR) rosette scanning system. The relationship between adjacent target images and scene is analyzed under different system movement scenarios. These relationships are used to build dynamic compressive imaging models. Simulation results demonstrate that the proposed method can improve the reconstruction quality of IR image and enhance the contrast between the target and the background in the presence of system movement.

  15. Overview of Single-Phase Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede

    2017-01-01

    A continuous booming installation of solar photovoltaic (PV) systems has been witnessed worldwide. It is mainly driven by the imperative demand of “clean” power generation from renewables. Grid-connected PV systems will thus become an even more active player in the future mixed power systems, which...... systems. This chapter thus gives an overview of the advancement of power electronics converters in single-phase grid-connected PV systems, being commonly used in residential applications. Demands to single-phase grid-connected PV systems and the general control strategies are also addressed...... are linked together by a vast of power electronics converters and the power grid. In order to achieve a reliable and efficient power generation from PV systems, more stringent demands have been imposed on the entire PV system. It, in return, advances the development of the power converter technology in PV...

  16. Delivery of circulating lipoproteins to specific neurons in the Drosophila brain regulates systemic insulin signaling.

    Science.gov (United States)

    Brankatschk, Marko; Dunst, Sebastian; Nemetschke, Linda; Eaton, Suzanne

    2014-10-02

    The Insulin signaling pathway couples growth, development and lifespan to nutritional conditions. Here, we demonstrate a function for the Drosophila lipoprotein LTP in conveying information about dietary lipid composition to the brain to regulate Insulin signaling. When yeast lipids are present in the diet, free calcium levels rise in Blood Brain Barrier glial cells. This induces transport of LTP across the Blood Brain Barrier by two LDL receptor-related proteins: LRP1 and Megalin. LTP accumulates on specific neurons that connect to cells that produce Insulin-like peptides, and induces their release into the circulation. This increases systemic Insulin signaling and the rate of larval development on yeast-containing food compared with a plant-based food of similar nutritional content.

  17. Realization of single-phase single-stage grid-connected PV system

    Directory of Open Access Journals (Sweden)

    Osama M. Arafa

    2017-05-01

    Full Text Available This paper presents a single phase single stage grid-tied PV system. Grid angle detection is introduced to allow operation at any arbitrary power factor but unity power factor is chosen to utilize the full inverter capacity. The system ensures MPPT using the incremental conductance method and it can track the changes in insolation level without oscillations. A PI voltage controller and a dead-beat current controller are used to ensure high quality injected current to the grid. The paper investigates the system structure and performance through numerical simulation using Matlab/Simulink. An experimental setup controlled by the MicrolabBox DSP prototyping platform is utilized to realize the system and study its performance. The precautions for smooth and safe system operation including the startup sequence are fully considered in the implementation.

  18. Conditional ablation of orexin/hypocretin neurons: a new mouse model for the study of narcolepsy and orexin system function.

    Science.gov (United States)

    Tabuchi, Sawako; Tsunematsu, Tomomi; Black, Sarah W; Tominaga, Makoto; Maruyama, Megumi; Takagi, Kazuyo; Minokoshi, Yasuhiko; Sakurai, Takeshi; Kilduff, Thomas S; Yamanaka, Akihiro

    2014-05-07

    The sleep disorder narcolepsy results from loss of hypothalamic orexin/hypocretin neurons. Although narcolepsy onset is usually postpubertal, current mouse models involve loss of either orexin peptides or orexin neurons from birth. To create a model of orexin/hypocretin deficiency with closer fidelity to human narcolepsy, diphtheria toxin A (DTA) was expressed in orexin neurons under control of the Tet-off system. Upon doxycycline removal from the diet of postpubertal orexin-tTA;TetO DTA mice, orexin neurodegeneration was rapid, with 80% cell loss within 7 d, and resulted in disrupted sleep architecture. Cataplexy, the pathognomic symptom of narcolepsy, occurred by 14 d when ∼5% of the orexin neurons remained. Cataplexy frequency increased for at least 11 weeks after doxycycline. Temporary doxycycline removal followed by reintroduction after several days enabled partial lesion of orexin neurons. DTA-induced orexin neurodegeneration caused a body weight increase without a change in food consumption, mimicking metabolic aspects of human narcolepsy. Because the orexin/hypocretin system has been implicated in the control of metabolism and addiction as well as sleep/wake regulation, orexin-tTA; TetO DTA mice are a novel model in which to study these functions, for pharmacological studies of cataplexy, and to study network reorganization as orexin input is lost.

  19. Antho-RFamide-containing neurons in the primitive nervous system of the anthozoan Renilla koellikeri

    DEFF Research Database (Denmark)

    Pernet, Vincent; Anctil, Michel; Grimmelikhuijzen, Cornelis J P

    2004-01-01

    neurons were observed in the different compartments of the endoderm: muscular walls of the feeding and water circulation polyps, mesenteric filaments and their derived follicles containing either ovocytes or spermatophores, in the endodermal channels connecting the different compartments of the colony......, and in circular muscle of the peduncle. The distribution of immunostained neurons suggests that they play important roles in feeding, reproduction, neuromuscular transmission, and in neuro-neuronal transmission coordinating the different parts of the colony....

  20. An Information Theoretic Model of Information Processing in the Drosophila Olfactory System: the Role of Inhibitory Neurons for System Efficiency

    Directory of Open Access Journals (Sweden)

    Faramarz eFaghihi

    2013-12-01

    Full Text Available Fruit flies (Drosophila melanogaster rely on their olfactory system to process environmental information. This information has to be transmitted without system-relevant loss by the olfactory system to deeper brain areas for learning. Here we study the role of several parameters of the fly's olfactory system and the environment and how they influence olfactory information transmission. We have designed an abstract model of the antennal lobe, the mushroom body and the inhibitory circuitry. Mutual information between the olfactory environment, simulated in terms of different odor concentrations, and a sub-population of intrinsic mushroom body neurons (Kenyon cells was calculated to quantify the efficiency of information transmission. With this method we study, on the one hand, the effect of different connectivity rates between olfactory projection neurons and firing thresholds of Kenyon cells. On the other hand, we analyze the influence of inhibition on mutual information between environment and mushroom body. Our simulations show an expected linear relation between the connectivity rate between the antennal lobe and the mushroom body and firing threshold of the Kenyon cells to obtain maximum mutual information for both low and high odor concentrations. However, contradicting all-day experiences, high odor concentrations cause a drastic, and unrealistic, decrease in mutual information for all connectivity rates compared to low concentration. But when inhibition on the mushroom body is included, mutual information remains at high levels independent of other system parameters. This finding points to a pivotal role of inhibition in fly information processing without which the system's efficiency will be substantially reduced.

  1. Phospholipase A2 - nexus of aging, oxidative stress, neuronal excitability and functional decline of the aging nervous system? Insights from a snail model system of neuronal aging and age-associated memory impairment.

    Directory of Open Access Journals (Sweden)

    Petra Maria Hermann

    2014-12-01

    Full Text Available TThe aging brain can undergo a range of changes varying from subtle structural and physiological changes causing only minor functional decline under healthy normal aging conditions, to severe cognitive or neurological impairment associated with extensive loss of neurons and circuits due to age-associated neurodegenerative disease conditions. Understanding how biological aging processes affect the brain and how they contribute to the onset and progress of age-associated neurodegenerative diseases is a core research goal in contemporary neuroscience. This review focuses on the idea that changes in intrinsic neuronal electrical excitability associated with (peroxidation of membrane lipids and activation of phospholipase A2 (PLA2 enzymes are an important mechanism of learning and memory failure under normal aging conditions. Specifically, in the context of this special issue on the Biology of cognitive aging we (1 portray the opportunities offered by the identifiable neurons and behaviorally characterized neural circuits of the freshwater snail Lymnaea stagnalis in neuronal aging research and (2 recapitulate recent insights indicating a key role of lipid peroxidation-induced PLA2 as instruments of aging, oxidative stress and inflammation in age-associated neuronal and memory impairment in this model system. The findings are discussed in view of accumulating evidence suggesting involvement of analogous mechanisms in the etiology of age-associated dysfunction and disease of the human and mammalian brain.

  2. Load compensation for single phase system using series active filter ...

    African Journals Online (AJOL)

    In this paper a new control strategy for series active filter has been proposed for improvement of power quality problems in single phase system. Since the non linear loads in the system comprises of both voltage source harmonic and current source harmonic loads and the dominancy of each type of load varies from time to ...

  3. Modulation of the N30 generators of the somatosensory evoked potentials by the mirror neuron system.

    Science.gov (United States)

    Cebolla, A M; Palmero-Soler, E; Dan, B; Cheron, G

    2014-07-15

    The N30 component of the somatosensory evoked potential is known to be modulated by sensory interference, motor action, movement ideation and observation. We introduce a new paradigm in which the observation task of another person's hand movement triggers the somatosensory stimulus, inducing the N30 response in participants. In order to identify the possible contribution of the mirror neuron network (MNN) to this early sensorimotor processing, we analyzed the N30 topography, the event-related spectral perturbation and the inter-trial coherence on single electroencephalogram (EEG) trials, and we applied swLORETA to localize the N30 sources implicated in the time-frequency domain at rest and during observation, as well as the generators differentiating these two contextual brain states. We found that N30 amplitude increase correlated with increased contralateral precentral alpha, frontal beta, and contralateral frontal gamma power spectrum, and with central and precentral alpha and parietal beta phase-locking of ongoing EEG signals. We demonstrate specific activation of the contralateral post-central and parietal cortex where the angular gyrus (BA39), an important MNN node, is implicated in this enhancement during observation. We conclude that this part of the MNN, involved in proprioceptive processing and more complex body-action representations, is already active prior to somatosensory input and may enhance N30. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Mirror Neurons System Engagement in Late Adolescents and Adults While Viewing Emotional Gestures.

    Directory of Open Access Journals (Sweden)

    Emilie Salvia

    2016-07-01

    Full Text Available Observing others’ actions enhances muscle-specific cortico-spinal excitability, reflecting putative mirror neurons activity. The exposure to emotional stimuli also modulates cortico-spinal excitability. We investigated how those two phenomena might interact when they are combined, i.e. while observing a gesture performed with an emotion, and whether they change during the transition between adolescence and adulthood, a period of social and brain maturation.We delivered single-pulse transcranial magnetic stimulation (TMS over the hand area of the left primary motor cortex of 27 healthy adults and adolescents and recorded their right first dorsal interossus (FDI muscle activity (i.e. motor evoked potential – MEP, while they viewed either videos of neutral or angry hand actions and facial expressions, or neutral objects as a control condition. We reproduced the motor resonance and the emotion effects -- hand-actions and emotional stimuli induced greater cortico-spinal excitability than the faces / control condition and neutral videos, respectively. Moreover, the influence of emotion was present for faces but not for hand actions, indicating that the motor resonance and the emotion effect might be non-additive. While motor resonance was observed in both groups, the emotion effect was present only in adults and not in adolescents. We discuss the possible neural bases of these findings.

  5. Mirror Neurons System Engagement in Late Adolescents and Adults While Viewing Emotional Gestures.

    Science.gov (United States)

    Salvia, Emilie; Süß, Moritz; Tivadar, Ruxandra; Harkness, Sarah; Grosbras, Marie-Hélène

    2016-01-01

    Observing others' actions enhances muscle-specific cortico-spinal excitability, reflecting putative mirror neurons activity. The exposure to emotional stimuli also modulates cortico-spinal excitability. We investigated how those two phenomena might interact when they are combined, i.e., while observing a gesture performed with an emotion, and whether they change during the transition between adolescence and adulthood, a period of social and brain maturation. We delivered single-pulse transcranial magnetic stimulation (TMS) over the hand area of the left primary motor cortex of 27 healthy adults and adolescents and recorded their right first dorsal interossus (FDI) muscle activity (i.e., motor evoked potential - MEP), while they viewed either videos of neutral or angry hand actions and facial expressions, or neutral objects as a control condition. We reproduced the motor resonance and the emotion effects - hand-actions and emotional stimuli induced greater cortico-spinal excitability than the faces/control condition and neutral videos, respectively. Moreover, the influence of emotion was present for faces but not for hand actions, indicating that the motor resonance and the emotion effects might be non-additive. While motor resonance was observed in both groups, the emotion effect was present only in adults and not in adolescents. We discuss the possible neural bases of these findings.

  6. An Efficient and Versatile System for Visualization and Genetic Modification of Dopaminergic Neurons in Transgenic Mice.

    Directory of Open Access Journals (Sweden)

    Karsten Tillack

    Full Text Available The brain dopaminergic (DA system is involved in fine tuning many behaviors and several human diseases are associated with pathological alterations of the DA system such as Parkinson's disease (PD and drug addiction. Because of its complex network integration, detailed analyses of physiological and pathophysiological conditions are only possible in a whole organism with a sophisticated tool box for visualization and functional modification.Here, we have generated transgenic mice expressing the tetracycline-regulated transactivator (tTA or the reverse tetracycline-regulated transactivator (rtTA under control of the tyrosine hydroxylase (TH promoter, TH-tTA (tet-OFF and TH-rtTA (tet-ON mice, to visualize and genetically modify DA neurons. We show their tight regulation and efficient use to overexpress proteins under the control of tet-responsive elements or to delete genes of interest with tet-responsive Cre. In combination with mice encoding tet-responsive luciferase, we visualized the DA system in living mice progressively over time.These experiments establish TH-tTA and TH-rtTA mice as a powerful tool to generate and monitor mouse models for DA system diseases.

  7. MPC of Single Phase Inverter for PV System

    OpenAIRE

    Irtaza M. Syed; Kaamran Raahemifar

    2014-01-01

    This paper presents a model predictive control (MPC) of a utility interactive (UI) single phase inverter (SPI) for a photovoltaic (PV) system at residential/distribution level. The proposed model uses single-phase phase locked loop (PLL) to synchronize SPI with the grid and performs MPC control in a dq reference frame. SPI model consists of boost converter (BC), maximum power point tracking (MPPT) control, and a full bridge (FB) voltage source inverter (VSI). No PI regula...

  8. System and method for single-phase, single-stage grid-interactive inverter

    Science.gov (United States)

    Liu, Liming; Li, Hui

    2015-09-01

    The present invention provides for the integration of distributed renewable energy sources/storages utilizing a cascaded DC-AC inverter, thereby eliminating the need for a DC-DC converter. The ability to segment the energy sources and energy storages improves the maintenance capability and system reliability of the distributed generation system, as well as achieve wide range reactive power compensation. In the absence of a DC-DC converter, single stage energy conversion can be achieved to enhance energy conversion efficiency.

  9. Amygdalar glutamatergic neuronal systems play a key role on the hibernating state of hamsters

    Directory of Open Access Journals (Sweden)

    Facciolo Rosa

    2011-01-01

    Full Text Available Abstract Background Excitatory transmitting mechanisms are proving to play a critical role on neuronal homeostasis conditions of facultative hibernators such as the Syrian golden hamster. Indeed works have shown that the glutamatergic system of the main olfactory brain station (amygdala is capable of controlling thermoregulatory responses, which are considered vital for the different hibernating states. In the present study the role of amygdalar glutamatergic circuits on non-hibernating (NHIB and hibernating (HIB hamsters were assessed on drinking stimuli and subsequently compared to expression variations of some glutamatergic subtype mRNA levels in limbic areas. For this study the two major glutamatergic antagonists and namely that of N-methyl-D-aspartate receptor (NMDAR, 3-(+-2-carboxypiperazin-4-yl-propyl-1-phosphonate (CPP plus that of the acid α-amine-3-hydroxy-5-metil-4-isoxazol-propionic receptor (AMPAR site, cyano-7-nitro-quinoxaline-2,3-dione (CNQX were infused into the basolateral amygdala nucleus. Attempts were made to establish the type of effects evoked by amygdalar glutamatergic cross-talking processes during drinking stimuli, a response that may corroborate their major role at least during some stages of this physiological activity in hibernators. Results From the behavioral results it appears that the two glutamatergic compounds exerted distinct effects. In the first case local infusion of basolateral complexes (BLA with NMDAR antagonist caused very great (p Conclusion We conclude that predominant drinking events evoked by glutamatergic mechanisms, in the presence of prevalently down regulated levels of NR1/2A of some telencephalic and hypothalamic areas appear to constitute an important neuronal switch at least during arousal stage of hibernation. The establishment of the type of glutamatergic subtypes that are linked to successful hibernating states, via drinking stimuli, may have useful bearings toward sleeping disorders.

  10. Ontogeny of pioneer neurons in the antennal nervous system of the grasshopper Schistocerca gregaria.

    Science.gov (United States)

    Boyan, George; Ehrhardt, Erica

    2017-01-01

    The nervous system of the antenna of the grasshopper Schistocerca gregaria consists of two nerve tracts in which sensory cells project their axons to the brain. Each tract is pioneered early in embryogenesis by a pair of identified cells located apically in the antennal lumen. The pioneers are thought to originate in the epithelium of the antenna and then delaminate into the lumen where they commence axogenesis. However, unambiguous molecular identification of these cells in the epithelium, of an identifiable precursor, and of their mode of generation has been lacking. In this study, we have used immunolabeling against neuron-specific horseradish peroxidase and against Lachesin, a marker for differentiating epithelial cells, in combination with the nuclear stain DAPI, to identify the pioneers within the epithelium of the early embryonic antenna. We then track their delamination into the lumen as differentiated neurons. The pioneers are not labeled by the mesodermal/mesectodermal marker Mes3, consistent with an epithelial (ectodermal) origin. Intracellular dye injection, as well as labeling against the mitosis marker phospho-histone 3, identifies precursor cells in the epithelium, each associated with a column of cells. Culturing with the S-phase label 5-ethynyl-2'-deoxyuridine (EdU) shows that both a precursor and its column have incorporated the label, confirming a lineage relationship. Each set of pioneers can be shown to belong to a separate lineage of such epithelial cells, and the precursors remain and are proliferative after generating the pioneers. Analyses of mitotic spindle orientation then enable us to propose a model in which a precursor generates its pioneers asymmetrically via self-renewal.

  11. In vitro system using human neurons demonstrates that varicella-zoster vaccine virus is impaired for reactivation, but not latency

    Science.gov (United States)

    Sadaoka, Tomohiko; Depledge, Daniel P.; Rajbhandari, Labchan; Venkatesan, Arun; Breuer, Judith; Cohen, Jeffrey I.

    2016-01-01

    Varicella-zoster virus (VZV) establishes latency in human sensory and cranial nerve ganglia during primary infection (varicella), and the virus can reactivate and cause zoster after primary infection. The mechanism of how the virus establishes and maintains latency and how it reactivates is poorly understood, largely due to the lack of robust models. We found that axonal infection of neurons derived from hESCs in a microfluidic device with cell-free parental Oka (POka) VZV resulted in latent infection with inability to detect several viral mRNAs by reverse transcriptase-quantitative PCR, no production of infectious virus, and maintenance of the viral DNA genome in endless configuration, consistent with an episome configuration. With deep sequencing, however, multiple viral mRNAs were detected. Treatment of the latently infected neurons with Ab to NGF resulted in production of infectious virus in about 25% of the latently infected cultures. Axonal infection of neurons with vaccine Oka (VOka) VZV resulted in a latent infection similar to infection with POka; however, in contrast to POka, VOka-infected neurons were markedly impaired for reactivation after treatment with Ab to NGF. In addition, viral transcription was markedly reduced in neurons latently infected with VOka compared with POka. Our in vitro system recapitulates both VZV latency and reactivation in vivo and may be used to study viral vaccines for their ability to establish latency and reactivate. PMID:27078099

  12. White Matter Microstructure of the Human Mirror Neuron System Is Related to Symptom Severity in Adults with Autism

    Science.gov (United States)

    Fründt, Odette; Schulz, Robert; Schöttle, Daniel; Cheng, Bastian; Thomalla, Götz; Braaß, Hanna; Ganos, Christos; David, Nicole; Peiker, Ina; Engel, Andreas K.; Bäumer, Tobias; Münchau, Alexander

    2018-01-01

    Mirror neuron system (MNS) dysfunctions might underlie deficits in autism spectrum disorders (ASD). Diffusion tensor imaging based probabilistic tractography was conducted in 15 adult ASD patients and 13 matched, healthy controls. Fractional anisotropy (FA) was quantified to assess group differences in tract-related white matter microstructure of…

  13. Cultured neurons as model systems for biochemical and pharmacological studies on receptors for neurotransmitter amino acids

    DEFF Research Database (Denmark)

    Schousboe, A; Drejer, J; Hansen, Gert Helge

    1985-01-01

    , which mediate an L-glutamate-induced transmitter release. The pharmacological properties of these glutamate receptors are, however, distinctly different for the 2 types of neurons. While cerebral cortex neurons express both quisqualate-, N-methyl-D-aspartate- and kainate-receptors, the cerebellar...

  14. Cultured neurons as model systems for biochemical and pharmacological studies on receptors for neurotransmitter amino acids

    DEFF Research Database (Denmark)

    Schousboe, A; Drejer, J; Hansen, Gert Helge

    1985-01-01

    action of GABA on evoked release of glutamate, which is the neurotransmitter in cerebellar granule cells. Also glutamate receptors have been studied with regard to the 2 types of neurons. Both cerebral cortex neurons (GABAergic) and cerebellar granule cells (glutamatergic) possess glutamate receptors...

  15. Combined autoradiographic-immunocytochemical analysis of opioid receptors and opioid peptide neuronal systems in brain

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, M.E.; Khachaturian, H.; Watson, S.J.

    1985-01-01

    Using adjacent section autoradiography-immunocytochemistry, the distribution of (TH)naloxone binding sites was studied in relation to neuronal systems containing (Leu)enkephalin, dynorphin A, or beta-endorphin immunoreactivity in rat brain. Brain sections from formaldehyde-perfused rats show robust specific binding of (TH)naloxone, the pharmacological (mu-like) properties of which appear unaltered. In contrast, specific binding of the delta ligand (TH)D-Ala2,D-Leu5-enkephalin was virtually totally eliminated as a result of formaldehyde perfusion. Using adjacent section analysis, the authors have noted associations between (TH)naloxone binding sites and one, two, or all three opioid systems in different brain regions; however, in some areas, no apparent relationship could be observed. Within regions, the relationship was complex. The complexity of the association between (TH)naloxone binding sites and the multiple opioid systems, and previous reports of co-localization of mu and kappa receptors in rat brain, are inconsistent with a simple-one-to-one relationship between a given opioid precursor and opioid receptor subtype. Instead, since differential processing of the three precursors gives rise to peptides of varying receptor subtype potencies and selectivities, the multiple peptide-receptor relationships may point to a key role of post-translational processing in determining the physiological consequences of opioid neurotransmission.

  16. Imitation and Action Understanding in Autistic Spectrum Disorders: How Valid Is the Hypothesis of a Deficit in the Mirror Neuron System?

    Science.gov (United States)

    Hamilton, Antonia F. de C.; Brindley, Rachel M.; Frith, Uta

    2007-01-01

    The motor mirror neuron system supports imitation and goal understanding in typical adults. Recently, it has been proposed that a deficit in this mirror neuron system might contribute to poor imitation performance in children with autistic spectrum disorders (ASD) and might be a cause of poor social abilities in these children. We aimed to test…

  17. Motor Neurons

    DEFF Research Database (Denmark)

    Hounsgaard, Jorn

    2017-01-01

    Motor neurons translate synaptic input from widely distributed premotor networks into patterns of action potentials that orchestrate motor unit force and motor behavior. Intercalated between the CNS and muscles, motor neurons add to and adjust the final motor command. The identity and functional...... properties of this facility in the path from synaptic sites to the motor axon is reviewed with emphasis on voltage sensitive ion channels and regulatory metabotropic transmitter pathways. The catalog of the intrinsic response properties, their underlying mechanisms, and regulation obtained from motoneurons...... in in vitro preparations is far from complete. Nevertheless, a foundation has been provided for pursuing functional significance of intrinsic response properties in motoneurons in vivo during motor behavior at levels from molecules to systems....

  18. Activation of oxytocin neurones by systemic cholecystokinin is unchanged by morphine dependence or withdrawal excitation in the rat.

    Science.gov (United States)

    Brown, C H; Munro, G; Murphy, N P; Leng, G; Russell, J A

    1996-01-01

    1. Morphine inhibits supraoptic nucleus oxytocin neurones directly and presynaptically via inhibition of afferent noradrenergic endings. 2. We studied whether morphine tolerance/dependence (induced by intracerebroventricular (I.C.V.) morphine infusion) alters the responsiveness of oxytocin neurones to systemic cholecystokinin (CCK), a stimulus which activates oxytocin neurones via the release of noradrenaline. 3. CCK (20 micrograms kg-1, i.v.) increased plasma oxytocin concentrations similarly in urethane-anaesthetized morphine-naive and -dependent rats. In naive rats, I.C.V. (10 micrograms) and i.v. morphine (0.5 mg kg-1) reduced CCK-induced oxytocin secretion by 95 +/- 4 and 49 +/- 10%, respectively. In dependent rats, i.v. morphine reduced CCK-induced release by only 8 +/- 9%, indicating tolerance. 4. In urethane-anaesthetized rats, i.v. CCK increased the firing rates of oxytocin neurones similarly in morphine-naive and -dependent rats (by 1.2 +/- 0.2 and 1.4 +/- 0.3 spikes s-1 maximum, respectively, over 5 min). Naloxone did not alter spontaneous or CCK-induced activity in naive rats but increased activity in dependent rats (by 3.4 +/- 0.5 spikes s-1), indicative of withdrawal excitation; however, the response to CCK remained unchanged after naloxone. 5. Systemic CCK did not trigger withdrawal, nor did it have a greater excitatory effect in dependent rats. Thus, morphine withdrawal excitation of oxytocin neurones does not involve supersensitivity to the noradrenergic input, or hypersensitivity of this input to i.v. CCK. Tolerance apparently occurs both at the cell bodies of oxytocin neurones in the supraoptic nucleus and in their noradrenergic input. However, dependence is apparent only at the cell bodies. PMID:8930844

  19. A single-chip computer analysis system for liquid fluorescence

    International Nuclear Information System (INIS)

    Zhang Yongming; Wu Ruisheng; Li Bin

    1998-01-01

    The single-chip computer analysis system for liquid fluorescence is an intelligent analytic instrument, which is based on the principle that the liquid containing hydrocarbons can give out several characteristic fluorescences when irradiated by strong light. Besides a single-chip computer, the system makes use of the keyboard and the calculation and printing functions of a CASIO printing calculator. It combines optics, mechanism and electronics into one, and is small, light and practical, so it can be used for surface water sample analysis in oil field and impurity analysis of other materials

  20. Profiling neuronal ion channelopathies with non-invasive brain imaging and dynamic causal models: Case studies of single gene mutations.

    Science.gov (United States)

    Gilbert, Jessica R; Symmonds, Mkael; Hanna, Michael G; Dolan, Raymond J; Friston, Karl J; Moran, Rosalyn J

    2016-01-01

    Clinical assessments of brain function rely upon visual inspection of electroencephalographic waveform abnormalities in tandem with functional magnetic resonance imaging. However, no current technology proffers in vivo assessments of activity at synapses, receptors and ion-channels, the basis of neuronal communication. Using dynamic causal modeling we compared electrophysiological responses from two patients with distinct monogenic ion channelopathies and a large cohort of healthy controls to demonstrate the feasibility of assaying synaptic-level channel communication non-invasively. Synaptic channel abnormality was identified in both patients (100% sensitivity) with assay specificity above 89%, furnishing estimates of neurotransmitter and voltage-gated ion throughput of sodium, calcium, chloride and potassium. This performance indicates a potential novel application as an adjunct for clinical assessments in neurological and psychiatric settings. More broadly, these findings indicate that biophysical models of synaptic channels can be estimated non-invasively, having important implications for advancing human neuroimaging to the level of non-invasive ion channel assays. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  1. A Novel Single Phase Hybrid Switched Reluctance Motor Drive System

    DEFF Research Database (Denmark)

    Liang, Jianing; Xu, Guoqing; Jian, Linni

    2011-01-01

    phase boost converter is applied to improve the performance of this motor. It is easy to generate a double dclink voltage and dc-link voltage and switch both of them. The voltage of boost capacitor is self balance, so the protective circuit is not need to consider. The fast excitation mode helps hybrid......In this paper, a novel single phase hybrid switched reluctance motor(SRM) drive system is proposed. It integrated a single phase hybrid SRM and a novel single phase boost converter. This motor can reduce the number of phase switch. And the permanent magnet which is used in the motor can improve...... the performance and efficiency of SR motor. However, the inherent characteristic of this motor is that the negative torque is very sensitive with the excitation current near the turn-on angle. The slow excitation current limits the torque generation region and reduces the average torque. Therefore, a novel single...

  2. Supernova: A Versatile Vector System for Single-Cell Labeling and Gene Function Studies in vivo.

    Science.gov (United States)

    Luo, Wenshu; Mizuno, Hidenobu; Iwata, Ryohei; Nakazawa, Shingo; Yasuda, Kosuke; Itohara, Shigeyoshi; Iwasato, Takuji

    2016-10-24

    Here we describe "Supernova" series of vector systems that enable single-cell labeling and labeled cell-specific gene manipulation, when introduced by in utero electroporation (IUE) or adeno-associated virus (AAV)-mediated gene delivery. In Supernova, sparse labeling relies on low TRE leakage. In a small population of cells with over-threshold leakage, initial tTA-independent weak expression is enhanced by tTA/TRE-positive feedback along with a site-specific recombination system (e.g., Cre/loxP, Flpe/FRT). Sparse and bright labeling by Supernova with little background enables the visualization of the morphological details of individual neurons in densely packed brain areas such as the cortex and hippocampus, both during development and in adulthood. Sparseness levels are adjustable. Labeled cell-specific gene knockout was accomplished by introducing Cre/loxP-based Supernova vectors into floxed mice. Furthermore, by combining with RNAi, TALEN, and CRISPR/Cas9 technologies, IUE-based Supernova achieved labeled cell-specific gene knockdown and editing/knockout without requiring genetically altered mice. Thus, Supernova system is highly extensible and widely applicable for single-cell analyses in complex organs, such as the mammalian brain.

  3. Development of primary sensory neurons in the trigeminal nervous system; dependency on neurotrophins and other substances

    Directory of Open Access Journals (Sweden)

    Hiroyuki Ichikawa

    2012-02-01

    Full Text Available This review presents information about the development of primary sensory neurons in the trigeminal nervous system. The deficiency of high affinity receptors for nerve growth factor (trkA and neurotrophin-3 (trk-C causesa reduction of primary nociceptors in the trigeminal ganglion (TG. The disruption of trkB, a receptor for brain-derived neurotrophic factor and neurotrophin-4, causes a loss of Meissner endings in the palate and Ruffini endings in the periodontal ligament. The number of Merkel cells in palatal rugae is also severely reduced by the absence of trkA, trkB or trkC. In the mesencephalic trigeminal tract nucleus (Mes5, primary proprioceptors are decreased by 50% in trkC null mutant mice. On the other hand, the deficiency of Brn-3a, a member of the POU family of transcription factors, decreases primary nociceptors and low-threshold mechanoreceptors in the TG. In the Mes5 of Brn-3a knockout mice, primary proprioceptors are completely lost. In addition, the disruption of dystonin which is a member of the plakin family of high molecular weight cytoskeletal linker proteins causes a reduction of nociceptors in the TG but not proprioceptors in the Mes5. The dependency of primary nociceptors, low-threshold mechanoreceptors and proprioceptors on neurotrophins, Brn-3a and dystonin in the trigeminal nervous system is discussed.

  4. Single-cell technologies to study the immune system.

    Science.gov (United States)

    Proserpio, Valentina; Mahata, Bidesh

    2016-02-01

    The immune system is composed of a variety of cells that act in a coordinated fashion to protect the organism against a multitude of different pathogens. The great variability of existing pathogens corresponds to a similar high heterogeneity of the immune cells. The study of individual immune cells, the fundamental unit of immunity, has recently transformed from a qualitative microscopic imaging to a nearly complete quantitative transcriptomic analysis. This shift has been driven by the rapid development of multiple single-cell technologies. These new advances are expected to boost the detection of less frequent cell types and transient or intermediate cell states. They will highlight the individuality of each single cell and greatly expand the resolution of current available classifications and differentiation trajectories. In this review we discuss the recent advancement and application of single-cell technologies, their limitations and future applications to study the immune system. © 2015 The Authors. Immunology Published by John Wiley & Sons Ltd.

  5. A performance comparison of single product kanban control systems

    Directory of Open Access Journals (Sweden)

    Alvin Ang

    2015-01-01

    Full Text Available This paper presents a simulation experiment comparing the Single Stage, Single Product Base Stock (BS, Traditional Kanban Control System (TKCS and Extended Kanban Control System (EKCS. The results showed that BS incurs the highest cost in all scenarios; while EKCS is found to be effective only in a very niche scenario. TKCS is still a very powerful factory management system to date; and EKCS did not perform exceptionally well. The only time EKCS did outperform TKCS was during low demand arrival rates and low Backorder (Cb and Shortage costs (Cs. That is because during then, it holds no stock. The most important discovery made here is that EKCS becomes TKCS once it has base stock (or dispatched kanbans. The results have also evinced the strength of the pure kanban system, the TKCS over BS. Hence managers using BS should consider upgrading to TKCS to save cost.

  6. Investigations of Intelligent Solar Heating Systems for Single Family House

    DEFF Research Database (Denmark)

    Andersen, Elsa; Chen, Ziqian; Fan, Jianhua

    2014-01-01

    Three differently designed intelligent solar heating systems are investigated experimentally in a test facility. The systems provide all the needed yearly heating demand in single family houses. The systems are based on highly stratified tanks with variable auxiliary heated volumes. The tank...... is a tank in tank heat storage with domestic hot water in the inner tank and space heating water in the outer tank. The total tank volume is 750 liters and the solar collector area is 9 m2. The auxiliary energy supply system is based on electrical heating element(s)/heat pump and is different for all three...... systems.The system will be equipped with an intelligent control system where the control of the electrical heating element(s)/heat pump is based on forecasts of the variable electricity price, the heating demand and the solar energy production.By means of numerical models of the systems made in Trnsys...

  7. A single phase photovoltaic inverter control for grid connected system

    Indian Academy of Sciences (India)

    Melo G and Canesin C A 2013 Evaluation of the main MPPT techniques for photovoltaic applications. IEEE Trans. Ind. Electron. 60(3): 1156–1167. [7] Jain S and Agarwal V 2007 Comparison of the perfor- mance of maximum power point tracking schemes applied to single-stage grid-connected photovoltaic systems.

  8. Water Flow Experiments: Single and Double Bottle Systems

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 23; Issue 1. Water Flow Experiments: Single and Double Bottle Systems ... Jain International Residential School, Jakkasandra Post, Kanakapura Road, Ramanagara Dist., Karnataka 562 112, India. Room No 425, SH-3 Ashoka University, Near Rai Police ...

  9. Bilateral single system ectopic ureters: Case report with literature ...

    African Journals Online (AJOL)

    Bilateral single system ureteral ectopia (BSSEU) is one of the rarest entities in urology, with less than 80 cases reported so far. Incontinence resulting from the underlying anomaly can be devastating to the child. It is generally agreed that suitable urinary continence and long dry intervals are seldom obtainable because of ...

  10. A single phase photovoltaic inverter control for grid connected system

    Indian Academy of Sciences (India)

    This paper presents a control scheme for single phase grid connected photovoltaic (PV) system operating under both grid connected and isolated grid mode. The control techniques include voltage and current control of grid-tie PV inverter. During grid connected mode, grid controls the amplitude and frequency of the PV ...

  11. A High Density Electrophysiological Data Analysis System for a Peripheral Nerve Interface Communicating with Individual Neurons in the Brain

    Science.gov (United States)

    2016-11-14

    microdevices. Cable to TDT Headplug fixed with dental cement Subcutaneous wires Regenerative microchannel electrode implant Figure 7...s) and should not contrued as an official Department of the Army position, policy or decision, unless so designated by other documentation. 9...nerve interface (μPNI) placed on the peripheral nervous system and custom- designed µCuff/µECoG interfaces on the central nervous system. A neuron

  12. On-demand activation of the endocannabinoid system in the control of neuronal excitability and epileptiform seizures.

    Science.gov (United States)

    Lutz, Beat

    2004-11-01

    Neurons intensively exchange information among each other using both inhibitory and excitatory neurotransmitters. However, if the balance of excitation and inhibition is perturbed, the intensity of excitatory transmission may exceed a certain threshold and epileptic seizures can occur. As the occurrence of epilepsy in the human population is about 1%, the search for therapeutic targets to alleviate seizures is warranted. Extracts of Cannabis sativa have a long history in the treatment of various neurological diseases, including epilepsy. However, cannabinoids have been reported to exert both pro- and anti-convulsive activities. The recent progress in understanding the endogenous cannabinoid system has allowed new insights into these opposing effects of cannabinoids. When excessive neuronal activity occurs, endocannabinoids are generated on demand and activate cannabinoid type 1 (CB1) receptors. Using mice lacking CB1 receptors in principal forebrain neurons in a model of epileptiform seizures, it was shown that CB1 receptors expressed on excitatory glutamatergic neurons mediate the anti-convulsive activity of endocannabinoids. Systemic activation of CB1 receptors by exogenous cannabinoids, however, are anti- or pro-convulsive, depending on the seizure model used. The pro-convulsive activity of exogenous cannabinoids might be explained by the notion that CB1 receptors expressed on inhibitory GABAergic neurons are also activated, leading to a decreased release of GABA, and to a concomitant increase in seizure susceptibility. The concept that the endogenous cannabinoid system is activated on demand suggests that a promising strategy to alleviate seizure frequency is the enhancement of endocannabinoid levels by inhibiting the cellular uptake and the degradation of these endogenous compounds.

  13. Predicting Intentions of a Familiar Significant Other Beyond the Mirror Neuron System

    Directory of Open Access Journals (Sweden)

    Stephanie Cacioppo

    2017-08-01

    Full Text Available Inferring intentions of others is one of the most intriguing issues in interpersonal interaction. Theories of embodied cognition and simulation suggest that this mechanism takes place through a direct and automatic matching process that occurs between an observed action and past actions. This process occurs via the reactivation of past self-related sensorimotor experiences within the inferior frontoparietal network (including the mirror neuron system, MNS. The working model is that the anticipatory representations of others' behaviors require internal predictive models of actions formed from pre-established, shared representations between the observer and the actor. This model suggests that observers should be better at predicting intentions performed by a familiar actor, rather than a stranger. However, little is known about the modulations of the intention brain network as a function of the familiarity between the observer and the actor. Here, we combined functional magnetic resonance imaging (fMRI with a behavioral intention inference task, in which participants were asked to predict intentions from three types of actors: A familiar actor (their significant other, themselves (another familiar actor, and a non-familiar actor (a stranger. Our results showed that the participants were better at inferring intentions performed by familiar actors than non-familiar actors and that this better performance was associated with greater activation within and beyond the inferior frontoparietal network i.e., in brain areas related to familiarity (e.g., precuneus. In addition, and in line with Hebbian principles of neural modulations, the more the participants reported being cognitively close to their partner, the less the brain areas associated with action self-other comparison (e.g., inferior parietal lobule, attention (e.g., superior parietal lobule, recollection (hippocampus, and pair bond (ventral tegmental area, VTA were recruited, suggesting that the

  14. Interaction of basal forebrain cholinergic neurons with the glucocorticoid system in stress regulation and cognitive impairment

    Directory of Open Access Journals (Sweden)

    Saswati ePaul

    2015-04-01

    Full Text Available A substantial number of studies on basal forebrain cholinergic neurons (BFCN have provided compelling evidence for their role in the etiology of stress, cognitive aging, Alzheimer’s disease (AD, and other neurodegenerative diseases. BFCN project to a broad range of cortical sites and limbic structures, including the hippocampus, and are involved in stress and cognition. In particular, the hippocampus, the primary target tissue of the glucocorticoid stress hormones, is associated with cognitive function in tandem with hypothalamic-pituitary-adrenal (HPA axis modulation. The present review summarizes glucocorticoid and HPA axis research to date in an effort to establish the manner in which stress affects the release of acetylcholine, glucocorticoids, and their receptor in the context of cognitive processes. We attempt to provide the molecular interactive link between the glucocorticoids and cholinergic system that contributes to BFCN degeneration in stress-induced acceleration of cognitive decline in aging and AD. We also discuss the importance of animal models in facilitating such studies for pharmacological use, which could help decipher disease states and propose leads for pharmacological intervention.

  15. Mapping the Hypocretin/Orexin Neuronal System: An Unexpectedly Productive Journey.

    Science.gov (United States)

    Peyron, Christelle; Kilduff, Thomas S

    2017-03-01

    Early in 1998, we (de Lecea et al., 1998) and others (Sakurai et al., 1998) described the same hypothalamic neuropeptides, respectively called the hypocretins or orexins, which were discovered using two different approaches. In December of that year, we published the subject of this commentary in the Journal of Neuroscience : a highly detailed anatomical description of the extensive axonal projections of the hypocretin/orexin neurons. Although the function of this system was unknown at the time, a large body of literature today attests that the hypocretin/orexin neuropeptides play important roles in multiple physiological functions, particularly in sleep/wake regulation. Neuroanatomical studies are rarely frontline news, but the citation rate of this paper underscores the critical nature of such basic research. Based in part on this detailed description, the hypocretin/orexin neuropeptides have since been studied in many different areas of neuroscience research, including sleep/wake regulation, feeding, addiction, reward and motivation, anxiety and depression, cardiovascular regulation, pain, migraine, and neuroendocrine regulation, including reproduction. Thus, this paper has had a surprisingly broad impact on neuroscience research, particularly since it was originally rejected by the Journal ! Copyright © 2017 the authors 0270-6474/17/372268-05$15.00/0.

  16. Autism and the mirror neuron system: insights from learning and teaching.

    Science.gov (United States)

    Vivanti, Giacomo; Rogers, Sally J

    2014-01-01

    Individuals with autism have difficulties in social learning domains which typically involve mirror neuron system (MNS) activation. However, the precise role of the MNS in the development of autism and its relevance to treatment remain unclear. In this paper, we argue that three distinct aspects of social learning are critical for advancing knowledge in this area: (i) the mechanisms that allow for the implicit mapping of and learning from others' behaviour, (ii) the motivation to attend to and model conspecifics and (iii) the flexible and selective use of social learning. These factors are key targets of the Early Start Denver Model, an autism treatment approach which emphasizes social imitation, dyadic engagement, verbal and non-verbal communication and affect sharing. Analysis of the developmental processes and treatment-related changes in these different aspects of social learning in autism can shed light on the nature of the neuropsychological mechanisms underlying social learning and positive treatment outcomes in autism. This knowledge in turn may assist in developing more successful pedagogic approaches to autism spectrum disorder. Thus, intervention research can inform the debate on relations among neuropsychology of social learning, the role of the MNS, and educational practice in autism.

  17. Autism and the mirror neuron system: insights from learning and teaching

    Science.gov (United States)

    Vivanti, Giacomo; Rogers, Sally J.

    2014-01-01

    Individuals with autism have difficulties in social learning domains which typically involve mirror neuron system (MNS) activation. However, the precise role of the MNS in the development of autism and its relevance to treatment remain unclear. In this paper, we argue that three distinct aspects of social learning are critical for advancing knowledge in this area: (i) the mechanisms that allow for the implicit mapping of and learning from others' behaviour, (ii) the motivation to attend to and model conspecifics and (iii) the flexible and selective use of social learning. These factors are key targets of the Early Start Denver Model, an autism treatment approach which emphasizes social imitation, dyadic engagement, verbal and non-verbal communication and affect sharing. Analysis of the developmental processes and treatment-related changes in these different aspects of social learning in autism can shed light on the nature of the neuropsychological mechanisms underlying social learning and positive treatment outcomes in autism. This knowledge in turn may assist in developing more successful pedagogic approaches to autism spectrum disorder. Thus, intervention research can inform the debate on relations among neuropsychology of social learning, the role of the MNS, and educational practice in autism. PMID:24778379

  18. High resolution imaging of calcium dynamics in single spines of CA1 pyramidal neurons in the hippocampus

    Science.gov (United States)

    Conti, Rossella

    2001-08-01

    Whole-cell recordings and confocal fluorescence imaging were used to investigate the properties of intracellular Ca2+ dynamics in CA1 hippocampal pyramidal cells in acute slices. We first measured the properties of Ca2+ entry during AP firing of a cell and synaptic stimulation. The back-propagation of a single AP into the dendrites caused [Ca2+]; to rise in dendrites and spines simultaneously and it invaded the whole dendritic tree. The measured synaptically evoked Ca2+ signals in individual spines were different depending on the intracellular solution. In K +-based solution, synaptic stimulation evoked a Ca2+ signal that was restricted to single spines (dendritic spread 4 microns). This suggests an important role for K+ channels in regulating dendritic Ca2+ signals. I also describe a result which gave us the first view of synaptic function at a single connection. In one experiment the recorded electrical responses was demonstrated to arise from a single optically identified synapse. The surprisingly high coefficient of variation of the recorded signals suggests that either vesicles have different neurotransmitter concentration or the synapse generates responses to multiple released vesicles. We then investigated the role of Ca2+ entry during the pairing protocol for UP induction. We found that the post-synaptic depolarization required for LTP induction leads to a large maintained elevation of [Ca 2+]; in all spines due to VDCC activation; the [Ca2+]; elevation was greatly reduced by intracellular application of D890, a VDCC blocker. D890 almost completely blocked LTP, suggesting that Ca2+ entry through VDCC could be essential for LTP induction. The effect of D890 is not due to L-type Ca2+ channels, since a specific blocker of these channels did not affect LTP. When tested by Tom Soderling, high concentrations of D890 (IC-50 = 1mM) inhibited CaMKII, an enzyme whose activity is required for LTP induction. These results leave the role of VDCC in LTP induction

  19. New apparatus of single particle trap system for aerosol visualization

    Science.gov (United States)

    Higashi, Hidenori; Fujioka, Tomomi; Endo, Tetsuo; Kitayama, Chiho; Seto, Takafumi; Otani, Yoshio

    2014-08-01

    Control of transport and deposition of charged aerosol particles is important in various manufacturing processes. Aerosol visualization is an effective method to directly observe light scattering signal from laser-irradiated single aerosol particle trapped in a visualization cell. New single particle trap system triggered by light scattering pulse signal was developed in this study. The performance of the device was evaluated experimentally. Experimental setup consisted of an aerosol generator, a differential mobility analyzer (DMA), an optical particle counter (OPC) and the single particle trap system. Polystylene latex standard (PSL) particles (0.5, 1.0 and 2.0 μm) were generated and classified according to the charge by the DMA. Singly charged 0.5 and 1.0 μm particles and doubly charged 2.0 μm particles were used as test particles. The single particle trap system was composed of a light scattering signal detector and a visualization cell. When the particle passed through the detector, trigger signal with a given delay time sent to the solenoid valves upstream and downstream of the visualization cell for trapping the particle in the visualization cell. The motion of particle in the visualization cell was monitored by CCD camera and the gravitational settling velocity and the electrostatic migration velocity were measured from the video image. The aerodynamic diameter obtained from the settling velocity was in good agreement with Stokes diameter calculated from the electrostatic migration velocity for individual particles. It was also found that the aerodynamic diameter obtained from the settling velocity was a one-to-one function of the scattered light intensity of individual particles. The applicability of this system will be discussed.

  20. Image analysis driven single-cell analytics for systems microbiology.

    Science.gov (United States)

    Balomenos, Athanasios D; Tsakanikas, Panagiotis; Aspridou, Zafiro; Tampakaki, Anastasia P; Koutsoumanis, Konstantinos P; Manolakos, Elias S

    2017-04-04

    Time-lapse microscopy is an essential tool for capturing and correlating bacterial morphology and gene expression dynamics at single-cell resolution. However state-of-the-art computational methods are limited in terms of the complexity of cell movies that they can analyze and lack of automation. The proposed Bacterial image analysis driven Single Cell Analytics (BaSCA) computational pipeline addresses these limitations thus enabling high throughput systems microbiology. BaSCA can segment and track multiple bacterial colonies and single-cells, as they grow and divide over time (cell segmentation and lineage tree construction) to give rise to dense communities with thousands of interacting cells in the field of view. It combines advanced image processing and machine learning methods to deliver very accurate bacterial cell segmentation and tracking (F-measure over 95%) even when processing images of imperfect quality with several overcrowded colonies in the field of view. In addition, BaSCA extracts on the fly a plethora of single-cell properties, which get organized into a database summarizing the analysis of the cell movie. We present alternative ways to analyze and visually explore the spatiotemporal evolution of single-cell properties in order to understand trends and epigenetic effects across cell generations. The robustness of BaSCA is demonstrated across different imaging modalities and microscopy types. BaSCA can be used to analyze accurately and efficiently cell movies both at a high resolution (single-cell level) and at a large scale (communities with many dense colonies) as needed to shed light on e.g. how bacterial community effects and epigenetic information transfer play a role on important phenomena for human health, such as biofilm formation, persisters' emergence etc. Moreover, it enables studying the role of single-cell stochasticity without losing sight of community effects that may drive it.

  1. Expression of non-neuronal cholinergic system in maxilla of rat in vivo

    Directory of Open Access Journals (Sweden)

    Jie Guo

    2014-01-01

    Full Text Available BACKGROUND: Acetylcholine (ACh is known to be a key neurotransmitter in the central and peripheral nervous systems, which is also produced in a variety of non-neuronal tissues and cell. The existence of ACh in maxilla in vivo and potential regulation role for osteogenesis need further study. RESULTS: Components of the cholinergic system (ACh, esterase, choline acetyltransferase, high-affinity choline uptake, n- and mAChRs were determined in maxilla of rat in vivo, by means of Real-Time PCR and immunohistochemistry. Results showed RNA for CarAT, carnitine/acylcarnitine translocase member 20 (Slc25a20, VAChT, OCTN2, OCT1, OCT3, organic cation transporter member 4 (Slc22a4, AChE, BChE, nAChR subunits α1, α2, α3, α5, α7, α10, β1, β2, β4, γ and mAChR subunits M1, M2, M3, M4, M5 were detected in rat's maxilla. RNA of VAChT, AChE, nAChR subunits α2, β1, β4 and mAChR subunits M4 had abundant expression (2-ΔCt > 0.03. Immunohistochemical staining was conducted for ACh, VAChT, nAChRα7 and AChE. ACh was expressed in mesenchymal cells, chondroblast, bone and cartilage matrix and bone marrow cells, The VAChT expression was very extensively while ACh receptor α7 was strongly expressed in newly formed bone matrix of endochondral and bone marrow ossification, AchE was found only in mesenchymal stem cells, cartilage and bone marrow cells. CONCLUSIONS: ACh might exert its effect on the endochondral and bone marrow ossification, and bone matrix mineralization in maxilla.

  2. Single-system ureteroceles in infants and children: imaging features

    Energy Technology Data Exchange (ETDEWEB)

    Zerin, J.M.; Baker, D.R. [Dept. of Radiology, Indiana University Medical Center, James Whitcomb Riley Hospital for Children, Indianapolis, IN (United States); Casale, J.A. [Dept. of Urology, Indiana University Medical Center, James Whitcomb Riley Hospital for Children, Indianapolis, IN (United States)

    2000-03-01

    Purpose. The purpose of this manuscript is to describe the clinical and imaging findings in children who have single-system ureteroceles.Materials and methods. We reviewed the urology records and imaging studies in 32 consecutive infants and children who were diagnosed in our department with single-system ureteroceles.Results. There were 35 ureteroceles in the 32 patients - 29 were unilateral (14 right-sided, 15 left-sided) and 3 were bilateral. Twenty-five patients were boys (78 %) and 7 girls. Mean age at presentation was 0.7 years (0-9.2 years). Prenatally detected hydronephrosis or cystic renal dysplasia was the most common presentation (24 patients). Four presented with urinary infection, 2 with abdominal mass, 1 had myelomeningocele, and 1 had hypospadias. Three patients also had multiple non-urologic, congenital anomalies. Thirty-three ureteroceles were intravesical, and 2 were ectopic to the bladder neck. Twenty-four ureteroceles were associated with ipsilateral hydroureteronephrosis and 10 with ipsilateral multicystic dysplastic kidney. One patient had a normal ipsilateral kidney and a contralateral multicystic dysplastic kidney. The ureterocele was identified on at least one imaging study in each patient. Sixteen ureteroceles (47 %) everted at VCUG, mimicking paraureteral diverticula. Other variations included ureterocele prolapse and inadvertent ureterocele catheterization (1 each).Conclusions. Single-system ureterocele is an important, although uncommon cause of hydronephrosis and renal dysplasia in infants and children. Single-system ureterocele is distinguished clinically from the more common duplex-system ureterocele by its frequent occurrence in boys and its association with multicystic dysplastic kidney. Because these ureteroceles are frequently small and have a propensity to evert at VCUG, they can be mistaken for paraureteral diverticula. (orig.)

  3. Aberrant within- and between-network connectivity of the mirror neuron system network and the mentalizing network in first episode psychosis.

    Science.gov (United States)

    Choe, Eugenie; Lee, Tae Young; Kim, Minah; Hur, Ji-Won; Yoon, Youngwoo Bryan; Cho, Kang-Ik K; Kwon, Jun Soo

    2018-03-26

    It has been suggested that the mentalizing network and the mirror neuron system network support important social cognitive processes that are impaired in schizophrenia. However, the integrity and interaction of these two networks have not been sufficiently studied, and their effects on social cognition in schizophrenia remain unclear. Our study included 26 first-episode psychosis (FEP) patients and 26 healthy controls. We utilized resting-state functional connectivity to examine the a priori-defined mirror neuron system network and the mentalizing network and to assess the within- and between-network connectivities of the networks in FEP patients. We also assessed the correlation between resting-state functional connectivity measures and theory of mind performance. FEP patients showed altered within-network connectivity of the mirror neuron system network, and aberrant between-network connectivity between the mirror neuron system network and the mentalizing network. The within-network connectivity of the mirror neuron system network was noticeably correlated with theory of mind task performance in FEP patients. The integrity and interaction of the mirror neuron system network and the mentalizing network may be altered during the early stages of psychosis. Additionally, this study suggests that alterations in the integrity of the mirror neuron system network are highly related to deficient theory of mind in schizophrenia, and this problem would be present from the early stage of psychosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. PELATIHAN MIRROR NEURON SYSTEM SAMA DENGAN PELATIHAN CONSTRAINT INDUCED MOVEMENT THERAPY DALAM MENINGKATKAN KEMAMPUAN FUNGSIONAL ANGGOTA GERAK ATAS PASIEN STROKE

    Directory of Open Access Journals (Sweden)

    Abdul chalik meidian

    2014-03-01

    Full Text Available Stroke is an interruption of blood vasculature system in the brain that causes suddenly neurological dysfunction, resulted in clinically brain tissue damage in a relatively long time period, decreased physical mobility and functional ability impaired of upper limb. The purpose of this study is to know an increasing in upper limb functional ability among stroke patients after mirror neuron system exercise and constraint induced movement therapy exercise and to know the comparison of both exercise. This study uses an experimental research with pre-test and post-test control group design. Number of samples of the first group is 13 patients given mirror neuron system exercise for 30-60 minutes , while the second group 13 patients were given constraint induced movement therapy exercise for 30-60 minutes. The research was conducted in 2 month period time. Each patient is taught a variety of upper limb functional ability in accordance with the operational concept guidance and patients were asked to repeat the exercise independently at home as directed. Measuring test of upper limb functional ability is using the wolf motor function test instruments. The result is an increase the upper limb functional ability of 21.7% in the mirror neuron system exercise group and proved a significant difference (p<0.05 and an increase in the upper limb functional ability of 17.1% in the constraint induced movement therapy exercise group and proved a significant difference (p<0.05 while the difference of increasing of upper limb functional ability of the two groups showed no significant difference (p>0,05. It was concluded that the mirror neuron system exercise is similar with constraint induced movement therapy exercise in increasing the upper limb functional ability among stroke patients.

  5. EXPERIMETAL MICRONEUROSURGERY OF THE CENTRAL AND PERIPHERAL NERVOUS SYSTEM IN THE STUDY OF THE NEURONAL AND GLIAL TROPHISM AND PLASTICITY

    Directory of Open Access Journals (Sweden)

    Gerson Chadi

    1998-01-01

    Full Text Available Trauma and neurodegenerative diseases commit the nervous system. After an axotomy or nerve injury in the peripheral nervous system the regeneration of the nerve fibers and reinervation of the target are seen. In central nervous system these events are restrictive, however their occurrence are related to the state of glial reaction and the synthesis of neurotrophic factors. Basic fibroblast growth factor (bFGF has been considered an important trophic factor for neurons and astrocytes of many central nervous system regions. In this study rats were submitted to one of following neurosurgery procedures: callosotomy, pyramidectomy or complete transection of hypoglossal nerve (XII. Sham operations were made in control animals. Seven days later animals were sacrificed and their brains processed for immunohistochemistry. Coronal sections were taken from the central nervous system and incubated with antisera against the glial fibrillary acidic protein (GFAP or neurofilament (NF, markers for astrocyte and neuronal cell body and fibers, respectively, as well as with the antiserum against the bFGF. The degree of the labelling was quantified with computer assisted stereological methods. The analysis of the NF immunoreactivity revealed a disappearance of fibers in the white matter distal to the pyramidectomy and callosotomy, however no disappearance of NF immunoreactive neurons was found in the XII nucleus following axotomy. These changes was accompanied by a massive astrocytic reaction. The reactive astrocytes synthesized increased amounts of bFGF. These findings suggest that glial reaction synthesizing neurotrophic factors may influence the wound and repair after mechanical lesions of central nervous and subsequent neuronal trophism and plasticity which may be relevant to the regenerative process of the nervous tissue

  6. Neuronal activation in the central nervous system of rats in the initial stage of chronic kidney disease-modulatory effects of losartan and moxonidine.

    Directory of Open Access Journals (Sweden)

    Miklós Palkovits

    Full Text Available The effect of mild chronic renal failure (CRF induced by 4/6-nephrectomy (4/6NX on central neuronal activations was investigated by c-Fos immunohistochemistry staining and compared to sham-operated rats. In the 4/6 NX rats also the effect of the angiotensin receptor blocker, losartan, and the central sympatholyticum moxonidine was studied for two months. In serial brain sections Fos-immunoreactive neurons were localized and classified semiquantitatively. In 37 brain areas/nuclei several neurons with different functional properties were strongly affected in 4/6NX. It elicited a moderate to high Fos-activity in areas responsible for the monoaminergic innervation of the cerebral cortex, the limbic system, the thalamus and hypothalamus (e.g. noradrenergic neurons of the locus coeruleus, serotonergic neurons in dorsal raphe, histaminergic neurons in the tuberomamillary nucleus. Other monoaminergic cell groups (A5 noradrenaline, C1 adrenaline, medullary raphe serotonin neurons and neurons in the hypothalamic paraventricular nucleus (innervating the sympathetic preganglionic neurons and affecting the peripheral sympathetic outflow did not show Fos-activity. Stress- and pain-sensitive cortical/subcortical areas, neurons in the limbic system, the hypothalamus and the circumventricular organs were also affected by 4/6NX. Administration of losartan and more strongly moxonidine modulated most effects and particularly inhibited Fos-activity in locus coeruleus neurons. In conclusion, 4/6NX elicits high activity in central sympathetic, stress- and pain-related brain areas as well as in the limbic system, which can be ameliorated by losartan and particularly by moxonidine. These changes indicate a high sensitivity of CNS in initial stages of CKD which could be causative in clinical disturbances.

  7. Magnetoencephalography study of right parietal lobe dysfunction of the evoked mirror neuron system in antipsychotic-free schizophrenia.

    Directory of Open Access Journals (Sweden)

    Yutaka Kato

    Full Text Available INTRODUCTION: Patients with schizophrenia commonly exhibit deficits of non-verbal communication in social contexts, which may be related to cognitive dysfunction that impairs recognition of biological motion. Although perception of biological motion is known to be mediated by the mirror neuron system, there have been few empirical studies of this system in patients with schizophrenia. METHODS: Using magnetoencephalography, we examined whether antipsychotic-free schizophrenia patients displayed mirror neuron system dysfunction during observation of biological motion (jaw movement of another individual. RESULTS: Compared with normal controls, the patients with schizophrenia had fewer components of both the waveform and equivalent current dipole, suggesting aberrant brain activity resulting from dysfunction of the right inferior parietal cortex. They also lacked the changes of alpha band and gamma band oscillation seen in normal controls, and had weaker phase-locking factors and gamma-synchronization predominantly in right parietal cortex. CONCLUSIONS: Our findings demonstrate that untreated patients with schizophrenia exhibit aberrant mirror neuron system function based on the right inferior parietal cortex, which is characterized by dysfunction of gamma-synchronization in the right parietal lobe during observation of biological motion.

  8. Model Based Control of Single-Phase Marine Cooling Systems

    DEFF Research Database (Denmark)

    Hansen, Michael

    2014-01-01

    these systems. Traditionally, control for this type of cooling system has been limited to open-loop control of pumps combined with a couple of local PID controllers for bypass valves to keep critical temperatures within design limits. This research considers improvements in a retrofit framework to the control...... linearization, an H∞-control design is applied to the resulting linear system. Disturbance rejection capabilities and robustness of performance for this control design methodology is compared to a baseline design derived from classical control theory. This shows promising results for the nonlinear robust design......This thesis is concerned with the problem of designing model-based control for a class of single-phase marine cooling systems. While this type of cooling system has been in existence for several decades, it is only recently that energy efficiency has become a focus point in the design and operation...

  9. Development of a Single-Axis Edge Detection System

    Energy Technology Data Exchange (ETDEWEB)

    Hanshaw, R.A.

    2000-02-18

    A SIP (Societe Genevoise d'Instruments de Physique) Trioptic coordinate measuring machine was modified for calibration of high quality single-axis glass standards to an uncertainty of {+-}0.000020 inch. The modification was accomplished through the addition of a frame grabber board, vision software, a high-resolution camera, stepper motors, a two-axis motor controller, and an HP-IB interface card. An existing temperature system (hygrometer, barometer, laser interferometer system, and optics) was retained as part of the system. An existing Hewlett Packard computer was replaced with a personal computer to accommodate the frame grabber board. Each component was integrated into the existing system using Visual Basic. The system was automated for unattended measurements by creating a machine programming language, which is recognized within the main program.

  10. Spatiotemporal patterns of secretomotor neuron generation in the parvicellular neuroendocrine system1

    Science.gov (United States)

    Markakis, Eleni A.; Swanson, Larry W.

    2011-01-01

    Spatiotemporal patterns of parvicellular neurosecretory neuron generation (birthdates) were determined in the young adult male rat using a triple fluorescence labeling method. The six classic phenotypes were identified in histological sections with rabbit antisera to neurotransmitters (or related enzymes), nuclear bromodeoxyuridine was detected with a mouse monoclonal antibody, and an axonal projection to the median eminence was determined with the fluorescent retrograde tracer fast blue. The vast majority of triply labeled neurons are generated between embryonic days 12–14, during the time when magnocellular neurosecretory neurons are also generated. This pattern of neurogenesis is distinct from the well-known ‘outside-in’ pattern of hypothalamic neurogenesis, where the peak of lateral zone birthdates occurs on embryonic days 12 and 13, the peak of medial zone birthdates occurs on embryonic days 14 and 15, and the peak of periventricular zone birthdates occurs on embryonic days 16 and 17. Thus, neuroendocrine motoneurons may constitute ‘pioneer neurons’ for the various anatomically distinct regions of the periventricular zone. In addition, many intermixed neurons that express the same neurotransmitters as parvicellular neurosecretory neurons but do not send an axon to the median eminence, also appear to be generated sbetween embryonic days 12 and 14. What these results imply about mechanisms underlying neuroendocrine motor zone differentiation is discussed. PMID:12127306

  11. Genetic marking and characterization of Tac2-expressing neurons in the central and peripheral nervous system

    Directory of Open Access Journals (Sweden)

    Mar Lynn

    2012-01-01

    Full Text Available Abstract Background The neurocircuits that process somatic sensory information in the dorsal horn of the spinal cord are still poorly understood, with one reason being the lack of Cre lines for genetically marking or manipulating selective subpopulations of dorsal horn neurons. Here we describe Tac2-Cre mice that were generated to express the Cre recombinase gene from the Tac2 locus. Tachykinin 2 (Tac2 encodes a neurotransmitter, neurokinin B (NKB. Results By crossing Tac2-Cre mice with ROSA26-tdTomato reporter mice, we directly visualized Tac2 lineage neurons in the dorsal root ganglia, the dorsal horn of the spinal cord, and many parts of the brain including the olfactory bulb, cerebral cortex, amygdala, hippocampus, habenula, hypothalamus, and cerebellum. This Tac2-Cre allele itself was a null allele for the Tac2 gene. Behavioral analyses showed that Tac2 homozygous null mice responded normally to a series of algogenic (pain-inducing and pruritic (itch-inducing stimuli. Conclusions Tac2-Cre mice are a useful tool to mark specific subsets of neurons in the sensory ganglia, the dorsal spinal cord, and the brain. These mice can also be used for future genetic manipulations to study the functions of Tac2-expressing neurons or the functions of genes expressed in these neurons.

  12. Development of an air heating system for single family housing

    DEFF Research Database (Denmark)

    Afshari, Alireza; Gunner, Amalie; Nikolaisen, Christian Grønborg

    2017-01-01

    The initial objective of the project was to break with common thinking about Space heating and to document that air heating can be used as the sole source of heating in a single Family house. The basic idea is that the ventilation must be installed in any case and it may equally well form the heat...... source of the house - Thus the waterborne heating system can be eliminated....

  13. On the origin of nonclassicality in single systems

    International Nuclear Information System (INIS)

    Aravinda, S; Srikanth, R; Pathak, Anirban

    2017-01-01

    In the framework of certain general probability theories of single systems, we identify various nonclassical features such as incompatibility, multiple pure-state decomposability, measurement disturbance, no-cloning and the impossibility of certain universal operations, with the non-simpliciality of the state space. This is shown to naturally suggest an underlying simplex as an ontological model. Contextuality turns out to be an independent nonclassical feature, arising from the intransitivity of compatibility. (paper)

  14. Putative Neurotransmitters in ’Aplysia’: Distribution of Gamma- Aminobutyric Acid, Aspartate and Glutamate in Ganglia and Single Neurons

    Science.gov (United States)

    1975-02-01

    junction. In preliminary electrophysiological investigations, they found that while aspartate is much less effective than glutamate at depolarizing the...been described in other inver- 21 7 tebrate nervous systems. Lewis and Evans note the presence of large amounts of taurine in

  15. Intracisternal delivery of AAV9 results in oligodendrocyte and motor neuron transduction in the whole central nervous system of cats.

    Science.gov (United States)

    Bucher, T; Dubreil, L; Colle, M-A; Maquigneau, M; Deniaud, J; Ledevin, M; Moullier, P; Joussemet, B

    2014-05-01

    Systemic and intracerebrospinal fluid delivery of adeno-associated virus serotype 9 (AAV9) has been shown to achieve widespread gene delivery to the central nervous system (CNS). However, after systemic injection, the neurotropism of the vector has been reported to vary according to age at injection, with greater neuronal transduction in newborns and preferential glial cell tropism in adults. This difference has not yet been reported after cerebrospinal fluid (CSF) delivery. The present study analyzed both neuronal and glial cell transduction in the CNS of cats according to age of AAV9 CSF injection. In both newborns and young cats, administration of AAV9-GFP in the cisterna magna resulted in high levels of motor neurons (MNs) transduction from the cervical (84±5%) to the lumbar (99±1%) spinal cord, demonstrating that the remarkable tropism of AAV9 for MNs is not affected by age at CSF delivery. Surprisingly, numerous oligodendrocytes were also transduced in the brain and in the spinal cord white matter of young cats, but not of neonates, indicating that (i) age of CSF delivery influences the tropism of AAV9 for glial cells and (ii) AAV9 intracisternal delivery could be relevant for both the treatment of MN and demyelinating disorders.

  16. Motor-auditory-visual integration: The role of the human mirror neuron system in communication and communication disorders.

    Science.gov (United States)

    Le Bel, Ronald M; Pineda, Jaime A; Sharma, Anu

    2009-01-01

    The mirror neuron system (MNS) is a trimodal system composed of neuronal populations that respond to motor, visual, and auditory stimulation, such as when an action is performed, observed, heard or read about. In humans, the MNS has been identified using neuroimaging techniques (such as fMRI and mu suppression in the EEG). It reflects an integration of motor-auditory-visual information processing related to aspects of language learning including action understanding and recognition. Such integration may also form the basis for language-related constructs such as theory of mind. In this article, we review the MNS system as it relates to the cognitive development of language in typically developing children and in children at-risk for communication disorders, such as children with autism spectrum disorder (ASD) or hearing impairment. Studying MNS development in these children may help illuminate an important role of the MNS in children with communication disorders. Studies with deaf children are especially important because they offer potential insights into how the MNS is reorganized when one modality, such as audition, is deprived during early cognitive development, and this may have long-term consequences on language maturation and theory of mind abilities. Readers will be able to (1) understand the concept of mirror neurons, (2) identify cortical areas associated with the MNS in animal and human studies, (3) discuss the use of mu suppression in the EEG for measuring the MNS in humans, and (4) discuss MNS dysfunction in children with (ASD).

  17. Introduction of a single chip TLD system for patient dosimetry

    International Nuclear Information System (INIS)

    Hranitzky, C.; Halda, M.; Mueller, G.; Stadtmann, H.; Obryk, B.

    2008-01-01

    A thermoluminescence dosimetry system with single detector chips was developed for patient dosimetry applications. LiF:Mg,Cu,P detector chips, dosimetry protocol, calibration, and dose calculation were prepared for measurements inside phantoms for determining organ and effective doses in medical diagnostic examinations. The first step was optimizing the readout time-temperature-profile for reaching a well resolved dosimetric peak and stability of the glow curves. A number of parameters was varied for the optimization process, e.g. preheating and heating rate. Individual chip sensitivities, residual dose and dose linearity were studied for establishing a reliable and accurate TL dosimetry system. (author)

  18. Synchronization of uncertain chaotic systems using a single transmission channel

    International Nuclear Information System (INIS)

    Feng Yong; Yu Xinghuo; Sun Lixia

    2008-01-01

    This paper proposes a robust sliding mode observer for synchronization of uncertain chaotic systems with multi-nonlinearities. A new control strategy is proposed for the construction of the robust sliding mode observer, which can avoid the strict conditions in the design process of Walcott-Zak observer. A new method of multi-dimensional signal transmission via single transmission channel is proposed and applied to chaos synchronization of uncertain chaotic systems with multi-nonlinearities. The simulation results are presented to validate the method

  19. Subarachnoid hemorrhage and visuospatial and visuoperceptive impairment: disruption of the mirror neuron system.

    Science.gov (United States)

    Plata-Bello, Julio; Modroño, Cristián; Acosta-López, Silvia; Pérez-Martín, Yaiza; Marcano, Francisco; García-Marín, Víctor; González-Mora, José Luis

    2017-10-01

    Nearly 20 % of patients who suffer a subarachnoid hemorrhage (SAH) still display cognitive impairment even a year after follow-up. Visuospatial and visuoperceptive domains may be impaired in this cognitive impairment and may not have been fully studied in these patients. Furthermore, these cognitively impaired domains have been associated with activity in the so-called mirror neuron system (MNS). The aim of the study is to analyze the pattern of brain activity with an MNS task-based functional magnetic resonance imaging (fMRI) study in SAH patients. A complete neuropsychological assessment and fMRI study (with observation and execution conditions) were performed in patients with a history of SAH registered in the database of the Hospital Universitario de Canarias and a healthy control group. The patients had to meet all the following inclusion criteria for the study (less than 50 years old; SAH with a Fisher score 1-3; no vasospasm or ischemia; minimum follow-up of one year). Twelve SAH patients were studied. Three of which displayed visuospatial/visuoperceptive impairment. fMRI study showed the presence of higher activity in MNS regions in these patients than in patients with normal visuospatial/visuoperceptive functions. Furthermore, there was a negative correlation between the test scores and brain activity in premotor regions of the studied patients. SAH patients with visuospatial/visuoperceptive impairment have greater activity in the MNS regions. This finding may be associated with a subcortical dysfunction, leading to a disruption of neural activity and less efficient behavior of this brain network.

  20. L-DOPA modulates cell viability through the ERK-c-Jun system in PC12 and dopaminergic neuronal cells.

    Science.gov (United States)

    Park, Keun Hong; Shin, Keon Sung; Zhao, Ting Ting; Park, Hyun Jin; Lee, Kyung Eun; Lee, Myung Koo

    2016-02-01

    L-DOPA causes neurotoxicity by modulating the Epac-ERK system in PC12 cells. This study investigated the effects of a single treatment with L-DOPA and multiple treatments with L-DOPA (MT-LD) on ERK1/2 and JNK1/2-c-Jun systems. In PC12 cells, a toxic L-DOPA concentration (200 μM) induced sustained ERK1/2 and JNK1/2 phosphorylation that was inhibited by the Epac inhibitor brefeldin A, but not by the PKA inhibitor H89. This ERK1/2 and JNK1/2 phosphorylation was also inhibited by ERK1/2 (U0126) and JNK1/2 (SP600125) inhibitors, respectively, but sustained ERK1/2 phosphorylation was not affected by JNK1/2 phosphorylation. A non-toxic L-DOPA concentration (20 μM) induced c-Jun phosphorylation (Ser73) via transient ERK1/2 phosphorylation, whereas the toxic L-DOPA concentration induced c-Jun phosphorylation (Ser63) and c-Jun expression via Epac-sustained ERK1/2-JNK1/2 phosphorylation, which then enhanced cleaved caspase-3 expression. MT-LD (20 μM) initially enhanced c-Jun phosphorylation (Ser73) (for 1-4 days), but later (5-6 days) induced c-Jun phosphorylation (Ser63) and c-Jun expression. In the 6-hydroxydopamine-lesioned rat model of Parkinson's disease, L-DOPA administration (10 mg/kg) protected against neurotoxicity through c-Jun phosphorylation (Ser73) for 1-2 weeks. However, L-DOPA administration (10 or 30 mg/kg) showed neurotoxicity through c-Jun phosphorylation (Ser63) and c-Jun expression via ERK1/2 phosphorylation for 3-4 weeks. Thus, in PC12 cells, non-toxic L-DOPA treatment maintained cell survival through c-Jun phosphorylation (Ser73). By contrast, toxic L-DOPA treatment or MT-LD (20 μM) induced c-Jun phosphorylation (Ser63) and c-Jun expression via Epac-dependent sustained ERK1/2 and JNK1/2 phosphorylation, which subsequently led to cell death. These results were validated by those obtained after long-term L-DOPA administration in a rat model of Parkinson's disease. Our data indicate that L-DOPA causes neurotoxicity via the ERK1/2-c-Jun system in

  1. Nickel-Titanium Single-file System in Endodontics.

    Science.gov (United States)

    Dagna, Alberto

    2015-10-01

    This work describes clinical cases treated with a innovative single-use and single-file nickel-titanium (NiTi) system used in continuous rotation. Nickel-titanium files are commonly used for root canal treatment but they tend to break because of bending stresses and torsional stresses. Today new instruments used only for one treatment have been introduced. They help the clinician to make the root canal shaping easier and safer because they do not require sterilization and after use have to be discarded. A new sterile instrument is used for each treatment in order to reduce the possibility of fracture inside the canal. The new One Shape NiTi single-file instrument belongs to this group. One Shape is used for complete shaping of root canal after an adequate preflaring. Its protocol is simple and some clinical cases are presented. It is helpful for easy cases and reliable for difficult canals. After 2 years of clinical practice, One Shape seems to be helpful for the treatment of most of the root canals, with low risk of separation. After each treatment, the instrument is discarded and not sterilized in autoclave or re-used. This single-use file simplifies the endodontic therapy, because only one instrument is required for canal shaping of many cases. The respect of clinical protocol guarantees predictable good results.

  2. Using affordable LED arrays for photo-stimulation of neurons.

    Science.gov (United States)

    Valley, Matthew; Wagner, Sebastian; Gallarda, Benjamin W; Lledo, Pierre-Marie

    2011-11-15

    Standard slice electrophysiology has allowed researchers to probe individual components of neural circuitry by recording electrical responses of single cells in response to electrical or pharmacological manipulations(1,2). With the invention of methods to optically control genetically targeted neurons (optogenetics), researchers now have an unprecedented level of control over specific groups of neurons in the standard slice preparation. In particular, photosensitive channel rhodopsin-2 (ChR2) allows researchers to activate neurons with light(3,4). By combining careful calibration of LED-based photostimulation of ChR2 with standard slice electrophysiology, we are able to probe with greater detail the role of adult-born interneurons in the olfactory bulb, the first central relay of the olfactory system. Using viral expression of ChR2-YFP specifically in adult-born neurons, we can selectively control young adult-born neurons in a milieu of older and mature neurons. Our optical control uses a simple and inexpensive LED system, and we show how this system can be calibrated to understand how much light is needed to evoke spiking activity in single neurons. Hence, brief flashes of blue light can remotely control the firing pattern of ChR2-transduced newborn cells.

  3. Imaging of the dopaminergic neurotransmission system using single-photon emission tomography and positron emission tomography in patients with parkinsonism

    International Nuclear Information System (INIS)

    Booij, J.; Tissingh, G.; Winogrodzka, A.; Royen, E.A. van

    1999-01-01

    Parkinsonism is a feature of a number of neurodegenerative diseases, including Parkinson's disease, multiple system atrophy and progressive supranuclear palsy. The results of post-mortem studies point to dysfunction of the dopaminergic neurotransmitter system in patients with parkinsonism. Nowadays, by using single-photon emission tomography (SPET) and positron emission tomography (PET) it is possible to visualise both the nigrostriatal dopaminergic neurons and the striatal dopamine D 2 receptors in vivo. Consequently, SPET and PET imaging of elements of the dopaminergic system can play an important role in the diagnosis of several parkinsonian syndromes. This review concentrates on findings of SPET and PET studies of the dopaminergic neurotransmitter system in various parkinsonian syndromes. (orig.)

  4. Optical Communication among Oscillatory Reactions and Photo-Excitable Systems: UV and Visible Radiation Can Synchronize Artificial Neuron Models.

    Science.gov (United States)

    Gentili, Pier Luigi; Giubila, Maria Sole; Germani, Raimondo; Romani, Aldo; Nicoziani, Andrea; Spalletti, Anna; Heron, B Mark

    2017-06-19

    Neuromorphic engineering promises to have a revolutionary impact in our societies. A strategy to develop artificial neurons (ANs) is to use oscillatory and excitable chemical systems. Herein, we use UV and visible radiation as both excitatory and inhibitory signals for the communication among oscillatory reactions, such as the Belousov-Zhabotinsky and the chemiluminescent Orban transformations, and photo-excitable photochromic and fluorescent species. We present the experimental results and the simulations regarding pairs of ANs communicating by either one or two optical signals, and triads of ANs arranged in both feed-forward and recurrent networks. We find that the ANs, powered chemically and/or by the energy of electromagnetic radiation, can give rise to the emergent properties of in-phase, out-of-phase, anti-phase synchronizations and phase-locking, dynamically mimicking the communication among real neurons. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Colorectal Cancer Cells Adhere to and Migrate Along the Neurons of the Enteric Nervous System

    Directory of Open Access Journals (Sweden)

    Emilie Duchalais

    2018-01-01

    Conclusions: Our data show that the enteric neuronal network guides tumor cell migration, partly via L1CAM and N-cadherin. These results open a new avenue of research on the underlying mechanisms and consequences of perineural invasion in colorectal cancer.

  6. Identification of putative egg-laying hormone containing neuronal systems in gastropod molluscs

    NARCIS (Netherlands)

    van Minnen, J.; Schallig, H. D.; Ramkema, M. D.

    1992-01-01

    Of gastropod molluscs, only in the Aplysiidae and the Lymnaeidae have the genes encoding the respective egg-laying hormones been cloned and the neurons controlling egg laying and egg-laying behavior been identified. Immunocytochemistry, using antibodies raised against alpha-CDCP (one of the

  7. Human stem cell-derived neurons: a system to study human tau function and dysfunction.

    Directory of Open Access Journals (Sweden)

    Mariangela Iovino

    2010-11-01

    Full Text Available Intracellular filamentous deposits containing microtubule-associated protein tau constitute a defining characteristic of many neurodegenerative disorders. Current experimental models to study tau pathology in vitro do not usually recapitulate the tau expression pattern characteristic of adult human brain. In this study, we have investigated whether human embryonic stem cell-derived neurons could be a good model to study human tau distribution, function and dysfunction.Using RT-PCR, immunohistochemistry, western blotting and cell transfections we have investigated whether all 6 adult human brain tau isoforms are expressed in neurons derived from human embryonic and fetal stem cells and whether 4 repeat tau over-expression alone, or with the F3 tau repeat fragment, (amino acid 258-380 of the 2N4R tau isoform with the ΔK280 mutation affects tau distribution. We found that the shortest 3 repeat tau isoform, similarly to human brain, is the first to be expressed during neuronal differentiation while the other 5 tau isoforms are expressed later. Over expression of tau with 4 repeats affects tau cellular distribution and the short tau F3 fragment appears to increase tau phosphorylation but this effect does not appear to be toxic for the cell.Our results indicate that human embryonic stem cell-derived neurons express all 6 tau isoforms and are a good model in which to study tau physiology and pathology.

  8. Transcription factor expression uniquely identifies most postembryonic neuronal lineages in the Drosophila thoracic central nervous system.

    Science.gov (United States)

    Lacin, Haluk; Zhu, Yi; Wilson, Beth A; Skeath, James B

    2014-03-01

    Most neurons of the adult Drosophila ventral nerve cord arise from a burst of neurogenesis during the third larval instar stage. Most of this growth occurs in thoracic neuromeres, which contain 25 individually identifiable postembryonic neuronal lineages. Initially, each lineage consists of two hemilineages--'A' (Notch(On)) and 'B' (Notch(Off))--that exhibit distinct axonal trajectories or fates. No reliable method presently exists to identify these lineages or hemilineages unambiguously other than labor-intensive lineage-tracing methods. By combining mosaic analysis with a repressible cell marker (MARCM) analysis with gene expression studies, we constructed a gene expression map that enables the rapid, unambiguous identification of 23 of the 25 postembryonic lineages based on the expression of 15 transcription factors. Pilot genetic studies reveal that these transcription factors regulate the specification and differentiation of postembryonic neurons: for example, Nkx6 is necessary and sufficient to direct axonal pathway selection in lineage 3. The gene expression map thus provides a descriptive foundation for the genetic and molecular dissection of adult-specific neurogenesis and identifies many transcription factors that are likely to regulate the development and differentiation of discrete subsets of postembryonic neurons.

  9. Neuronal and epithelial cell rescue resolves chronic systemic inflammation in the lipid storage disorder Niemann-Pick C.

    Science.gov (United States)

    Lopez, Manuel E; Klein, Andrés D; Hong, Jennifer; Dimbil, Ubah J; Scott, Matthew P

    2012-07-01

    Chronic systemic inflammation is thought to be a major contributor to metabolic and neurodegenerative diseases. Since inflammatory components are shared among different disorders, targeting inflammation is an attractive option for mitigating disease. To test the significance of inflammation in the lipid storage disorder (LSD) Niemann-Pick C (NPC), we deleted the macrophage inflammatory gene Mip1a/Ccl3 from NPC diseased mice. Deletion of Ccl3 had been reported to delay neuronal loss in Sandhoff LSD mice by inhibiting macrophage infiltration. For NPC mice, in contrast, deleting Ccl3 did not retard neurodegeneration and worsened the clinical outcome. Depletion of visceral tissue macrophages also did not alter central nervous system (CNS) pathology and instead increased liver injury, suggesting a limited macrophage infiltration response into the CNS and a beneficial role of macrophage activity in visceral tissue. Prevention of neuron loss or liver injury, even at late stages in the disease, was achieved through specific rescue of NPC disease in neurons or in liver epithelial cells, respectively. Local epithelial cell correction was also sufficient to reduce the macrophage-associated pathology in lung tissue. These results demonstrate that elevated inflammation and macrophage activity does not necessarily contribute to neurodegeneration and tissue injury, and LSD defects in immune cells may not preclude an appropriate inflammatory response. We conclude that inflammation remains secondary to neuronal and epithelial cell dysfunction and does not irreversibly contribute to the pathogenic cascade in NPC disease. Without further exploration of possible beneficial roles of inflammatory mediators, targeting inflammation may not be therapeutically effective at ameliorating disease severity.

  10. Curcuma treatment prevents cognitive deficit and alteration of neuronal morphology in the limbic system of aging rats.

    Science.gov (United States)

    Vidal, Blanca; Vázquez-Roque, Rubén A; Gnecco, Dino; Enríquez, Raúl G; Floran, Benjamin; Díaz, Alfonso; Flores, Gonzalo

    2017-03-01

    Curcuma is a natural compound that has shown neuroprotective properties, and has been reported to prevent aging and improve memory. While the mechanism(s) underlying these effects are unclear, they may be related to increases in neural plasticity. Morphological changes have been reported in neuronal dendrites in the limbic system in animals and elderly humans with cognitive impairment. In this regard, there is a need to use alternative therapies that delay the onset of morphologies and behavioral characteristics of aging. Therefore, the objective of this study was to evaluate the effect of curcuma on cognitive processes and dendritic morphology of neurons in the prefrontal cortex (PFC), the CA1 and CA3 regions of the dorsal hippocampus, the dentate gyrus, and the basolateral amygdala (BLA) of aged rats. 18-month-old rats were administered curcuma (100 mg/kg) daily for 60 days. After treatment, recognition memory was assessed using the novel object recognition test. Curcuma-treated rats showed a significant increase in the exploration quotient. Dendritic morphology was assessed by Golgi-Cox staining and followed by Sholl analysis. Curcuma-treated rats showed a significant increase in dendritic spine density and dendritic length in pyramidal neurons of the PFC, the CA1 and CA3, and the BLA. The preservation of dendritic morphology was positively correlated with cognitive improvements. Our results suggest that curcuma induces modification of dendritic morphology in the aforementioned regions. These changes may explain how curcuma slows the aging process that has already begun in these animals, preventing deterioration in neuronal morphology of the limbic system and recognition memory. © 2016 Wiley Periodicals, Inc.

  11. Alpha7 neuronal nicotinic receptor: a pluripotent target for diseases of the central nervous system.

    Science.gov (United States)

    Bencherif, Merouane; Narla, Sridhar T; Stachowiak, Michal S

    2014-01-01

    Twenty years ago the alpha7 nicotinic acetylcholine receptor (nAChR) was thought to be vestigial with little biological relevance, but in recent years it has emerged as a functional target with ubiquitous localization and biological roles. In the last decade more than two thousand manuscripts have been published unraveling the multi-dimensional complexity of this target, the heterogeneity of its genetic variants, the spectrum of transducing signals, and the critical roles it plays in pivotal biological functions in the protection and maturation of neurons and stems cells, immune and inflammatory responses, sensory gating, mnemonic and attentional processes. In addition research and development of novel drugs has also promoted an intense debate on the role of activation, desensitization, β -amyloid oligomers, glutamate, and alpha7 nAChR, in cognition, neuronal survival, and neurodegeneration. The initial alpha7 nAChRs transducing enzyme, aptly named after Janus the two-faced roman deity for crossroads and gateways, reflects the dichotomy of reports on alpha7 nAChRs in promoting neuronal survival and cognitive processes, or as the target of β- amyloid oligomers to destabilize neuronal homeostasis leading to an irreversible neurochemical demise and dementia. It is therefore important to understand the functional neural bases of alpha7 nAChRs-mediated improvement of biological functions. The promise of alpha7 nAChR-directed drugs has already recently translated into proof-of-concept in controlled clinical trials but the full promise of this target(s) will be fully unraveled when its impact on neuronal health and survival is tested in controlled long-term clinical trials of disease progression.

  12. Using a single chip FEC for satellite systems

    Science.gov (United States)

    Onotera, L.; Nicholson, R.

    Information transmission over digital satellite communication channels is primarily power-limited, where forward error correction (FEC) codes can significantly improve performance. The use of FEC can reduce the required signal to noise ratio to sustain a given bit error rate. The use of forward error correction has become a standard part of present day digital satellite communication systems. Means of applying a new very large scale integration (VLSI) integrated circuit FEC chip into various kinds of systems is discussed. Specifically, some of the considerations and tradeoffs in continuous single channel per carrier (SCPC), multiple channels per carrier (MCPC), and burst systems are related to the new design. This new chip will provide an effective space and cost advantage by inserting a powerful forward error correction capability into most types of satellite digital communication links.

  13. Urinary bladder extracellular matrix hydrogels and matrix-bound vesicles differentially regulate central nervous system neuron viability and axon growth and branching.

    Science.gov (United States)

    Faust, Anne; Kandakatla, Apoorva; van der Merwe, Yolandi; Ren, Tanchen; Huleihel, Luai; Hussey, George; Naranjo, Juan Diego; Johnson, Scott; Badylak, Stephen; Steketee, Michael

    2017-04-01

    Central nervous system neurons often degenerate after trauma due to the inflammatory innate immune response to injury, which can lead to neuronal cell death, scarring, and permanently lost neurologic function. Extracellular matrix bioscaffolds, derived by decellularizing healthy tissues, have been widely used in both preclinical and clinical studies to promote positive tissue remodeling, including neurogenesis, in numerous tissues, with extracellular matrix from homologous tissues often inducing more positive responses. Extracellular matrix hydrogels are liquid at room temperature and enable minimally invasive extracellular matrix injections into central nervous system tissues, before gelation at 37℃. However, few studies have analyzed how extracellular matrix hydrogels influence primary central nervous system neuron survival and growth, and whether central nervous system and non-central nervous system extracellular matrix specificity is critical to neuronal responses. Urinary bladder extracellular matrix hydrogels increase both primary hippocampal neuron survival and neurite growth to similar or even greater extents, suggesting extracellular matrix from non-homologous tissue sources, such as urinary bladder matrix-extracellular matrix, may be a more economical and safer alternative to developing central nervous system extracellular matrices for central nervous system applications. Additionally, we show matrix-bound vesicles derived from urinary bladder extracellular matrix are endocytosed by hippocampal neurons and positively regulate primary hippocampal neuron neurite growth. Matrix-bound vesicles carry protein and RNA cargos, including noncoding RNAs and miRNAs that map to the human genome and are known to regulate cellular processes. Thus, urinary bladder matrix-bound vesicles provide natural and transfectable cargoes which offer new experimental tools and therapeutic applications to study and treat central nervous system neuron injury.

  14. Simple test system for single molecule recognition force microscopy

    International Nuclear Information System (INIS)

    Riener, Christian K.; Stroh, Cordula M.; Ebner, Andreas; Klampfl, Christian; Gall, Alex A.; Romanin, Christoph; Lyubchenko, Yuri L.; Hinterdorfer, Peter; Gruber, Hermann J.

    2003-01-01

    We have established an easy-to-use test system for detecting receptor-ligand interactions on the single molecule level using atomic force microscopy (AFM). For this, avidin-biotin, probably the best characterized receptor-ligand pair, was chosen. AFM sensors were prepared containing tethered biotin molecules at sufficiently low surface concentrations appropriate for single molecule studies. A biotin tether, consisting of a 6 nm poly(ethylene glycol) (PEG) chain and a functional succinimide group at the other end, was newly synthesized and covalently coupled to amine-functionalized AFM tips. In particular, PEG 800 diamine was glutarylated, the mono-adduct NH 2 -PEG-COOH was isolated by ion exchange chromatography and reacted with biotin succinimidylester to give biotin-PEG-COOH which was then activated as N-hydroxysuccinimide (NHS) ester to give the biotin-PEG-NHS conjugate which was coupled to the aminofunctionalized AFM tip. The motional freedom provided by PEG allows for free rotation of the biotin molecule on the AFM sensor and for specific binding to avidin which had been adsorbed to mica surfaces via electrostatic interactions. Specific avidin-biotin recognition events were discriminated from nonspecific tip-mica adhesion by their typical unbinding force (∼40 pN at 1.4 nN/s loading rate), unbinding length (<13 nm), the characteristic nonlinear force-distance relation of the PEG linker, and by specific block with excess of free d-biotin. The convenience of the test system allowed to evaluate, and compare, different methods and conditions of tip aminofunctionalization with respect to specific binding and nonspecific adhesion. It is concluded that this system is well suited as calibration or start-up kit for single molecule recognition force microscopy

  15. Electron-assisted magnetization tunneling in single spin systems

    Science.gov (United States)

    Balashov, Timofey; Karlewski, Christian; Märkl, Tobias; Schön, Gerd; Wulfhekel, Wulf

    2018-01-01

    Magnetic excitations of single atoms on surfaces have been widely studied experimentally in the past decade. Lately, systems with unprecedented magnetic stability started to emerge. Here, we present a general theoretical investigation of the stability of rare-earth magnetic atoms exposed to crystal or ligand fields of various symmetry and to exchange scattering with an electron bath. By analyzing the properties of the atomic wave function, we show that certain combinations of symmetry and total angular momentum are inherently stable against first or even higher-order interactions with electrons. Further, we investigate the effect of an external magnetic field on the magnetic stability.

  16. A Transformer-less Single Phase Inverter For photovoltaic Systems

    DEFF Research Database (Denmark)

    Mostaan, Ali; Alizadeh, Ebrahim; Qu, Ying

    2017-01-01

    A single phase transformer-less inverter is introduced in this paper. The negative polarities of the input voltage and output terminal have common ground. Therefore, the leakage current problem that is common in PV systems is eliminated naturally. In addition, the proposed inverter has fewer...... components compared with its counterparts and only one switch conducts during the active states which enhance the inverter efficiency. The proposed inverter is analyzed in details and compared with some existing topologies. The performance of the proposed inverter is validated using the simulation results....

  17. Molecular and Cellular Organization of Taste Neurons in Adult Drosophila Pharynx

    Directory of Open Access Journals (Sweden)

    Yu-Chieh David Chen

    2017-12-01

    Full Text Available Summary: The Drosophila pharyngeal taste organs are poorly characterized despite their location at important sites for monitoring food quality. Functional analysis of pharyngeal neurons has been hindered by the paucity of molecular tools to manipulate them, as well as their relative inaccessibility for neurophysiological investigations. Here, we generate receptor-to-neuron maps of all three pharyngeal taste organs by performing a comprehensive chemoreceptor-GAL4/LexA expression analysis. The organization of pharyngeal neurons reveals similarities and distinctions in receptor repertoires and neuronal groupings compared to external taste neurons. We validate the mapping results by pinpointing a single pharyngeal neuron required for feeding avoidance of L-canavanine. Inducible activation of pharyngeal taste neurons reveals functional differences between external and internal taste neurons and functional subdivision within pharyngeal sweet neurons. Our results provide roadmaps of pharyngeal taste organs in an insect model system for probing the role of these understudied neurons in controlling feeding behaviors. : Chen and Dahanukar carry out a large-scale, systematic analysis to understand the molecular organization of pharyngeal taste neurons. Taking advantage of the molecular genetic toolkit that arises from this map, they use genetic dissection strategies to probe the functional roles of selected pharyngeal neurons in food choice. Keywords: Drosophila, taste, pharynx, chemosensory receptors, gustatory receptors, ionotropic receptors, feeding

  18. Cultures of Cerebellar Granule Neurons

    OpenAIRE

    sprotocols

    2014-01-01

    Authors: Parizad M. Bilimoria and Azad Bonni1 Corresponding author ([]()) ### INTRODUCTION Primary cultures of granule neurons from the post-natal rat cerebellum provide an excellent model system for molecular and cell biological studies of neuronal development and function. The cerebellar cortex, with its highly organized structure and few neuronal subtypes, offers a well-characterized neural circuitry. Many fundamental insight...

  19. The influence of single neuron dynamics and network topology on time delay-induced multiple synchronous behaviors in inhibitory coupled network

    International Nuclear Information System (INIS)

    Zhao, Zhiguo; Gu, Huaguang

    2015-01-01

    Highlights: • Time delay-induced multiple synchronous behaviors was simulated in neuronal networks. • Multiple behaviors appear at time delays shorter than a bursting period of neurons. • The more spikes per burst of bursting, the more synchronous regions of time delay. • From regular to random via small-world networks, synchronous degree becomes weak. • An interpretation of the multiple behaviors and the influence of network are provided. - Abstract: Time delay induced-multiple synchronous behaviors are simulated in neuronal network composed of many inhibitory neurons and appear at different time delays shorter than a period of endogenous bursting of individual neurons. It is different from previous investigations wherein only one of multiple synchronous behaviors appears at time delay shorter than a period of endogenous firing and others appear at time delay longer than the period duration. The bursting patterns of the synchronous behaviors are identified based on the dynamics of an individual neuron stimulated by a signal similar to the inhibitory coupling current, which is applied at the decaying branch of a spike and suitable phase within the quiescent state of the endogenous bursting. If a burst of endogenous bursting contains more spikes, the synchronous behaviors appear at more regions of time delay. As the coupling strength increases, the multiple synchronous behaviors appear in a sequence because the different threshold of coupling current or strength is needed to achieve synchronous behaviors. From regular, to small-world, and to random networks, synchronous degree of the multiple synchronous behaviors becomes weak, and synchronous bursting patterns with lower spikes per burst disappear, which is properly interpreted by the difference of coupling current between neurons induced by different degree and the high threshold of coupling current to achieve synchronization for the absent synchronous bursting patterns. The results of the influence of

  20. Highly efficient siRNA delivery system into human and murine cells using single-wall carbon nanotubes

    Science.gov (United States)

    Ladeira, M. S.; Andrade, V. A.; Gomes, E. R. M.; Aguiar, C. J.; Moraes, E. R.; Soares, J. S.; Silva, E. E.; Lacerda, R. G.; Ladeira, L. O.; Jorio, A.; Lima, P.; Leite, M. Fatima; Resende, R. R.; Guatimosim, S.

    2010-09-01

    Development of RNA interference (RNAi) technology utilizing short interfering RNA sequences (siRNA) has focused on creating methods for delivering siRNAs to cells and for enhancing siRNA stability in vitro and in vivo. Here, we describe a novel approach for siRNA cellular delivery using siRNA coiling into carboxyl-functionalized single-wall carbon nanotubes (SWCNTs). The CNT-siRNA delivery system successfully demonstrates nonspecific toxicity and transfection efficiency greater than 95%. This approach offers the potential for siRNA delivery into different types of cells, including hard-to-transfect cells, such as neuronal cells and cardiomyocytes. We also tested the CNT-siRNA system in a non-metastatic human hepatocellular carcinoma cell line (SKHep1). In all types of cells used in this work the CNT-siRNA delivery system showed high efficiency and apparent no side effects for various in vitro applications.

  1. Highly efficient siRNA delivery system into human and murine cells using single-wall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ladeira, M S; Andrade, V A; Gomes, E R M; Aguiar, C J; Moraes, E R; Fatima Leite, M; Guatimosim, S [Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901 (Brazil); Soares, J S; Silva, E E; Lacerda, R G; Ladeira, L O; Jorio, A; Resende, R R [Department of Physics, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901 (Brazil); Lima, P, E-mail: rrresende@hotmail.com, E-mail: guatimosim@icb.ufmg.br [Department of Biosystems Engineering, Federal University of Sao Joao Del Rei, Sao Joao Del Rei, MG, 36307-352 (Brazil)

    2010-09-24

    Development of RNA interference (RNAi) technology utilizing short interfering RNA sequences (siRNA) has focused on creating methods for delivering siRNAs to cells and for enhancing siRNA stability in vitro and in vivo. Here, we describe a novel approach for siRNA cellular delivery using siRNA coiling into carboxyl-functionalized single-wall carbon nanotubes (SWCNTs). The CNT-siRNA delivery system successfully demonstrates nonspecific toxicity and transfection efficiency greater than 95%. This approach offers the potential for siRNA delivery into different types of cells, including hard-to-transfect cells, such as neuronal cells and cardiomyocytes. We also tested the CNT-siRNA system in a non-metastatic human hepatocellular carcinoma cell line (SKHep1). In all types of cells used in this work the CNT-siRNA delivery system showed high efficiency and apparent no side effects for various in vitro applications.

  2. Pure state consciousness and its local reduction to neuronal space

    Science.gov (United States)

    Duggins, A. J.

    2013-01-01

    The single neuronal state can be represented as a vector in a complex space, spanned by an orthonormal basis of integer spike counts. In this model a scalar element of experience is associated with the instantaneous firing rate of a single sensory neuron over repeated stimulus presentations. Here the model is extended to composite neural systems that are tensor products of single neuronal vector spaces. Depiction of the mental state as a vector on this tensor product space is intended to capture the unity of consciousness. The density operator is introduced as its local reduction to the single neuron level, from which the firing rate can again be derived as the objective correlate of a subjective element. However, the relational structure of perceptual experience only emerges when the non-local mental state is considered. A metric of phenomenal proximity between neuronal elements of experience is proposed, based on the cross-correlation function of neurophysiology, but constrained by the association of theoretical extremes of correlation/anticorrelation in inseparable 2-neuron states with identical and opponent elements respectively.

  3. Are mirror neurons the basis of speech perception? Evidence from five cases with damage to the purported human mirror system.

    Science.gov (United States)

    Rogalsky, Corianne; Love, Tracy; Driscoll, David; Anderson, Steven W; Hickok, Gregory

    2011-01-01

    The discovery of mirror neurons in macaque has led to a resurrection of motor theories of speech perception. Although the majority of lesion and functional imaging studies have associated perception with the temporal lobes, it has also been proposed that the 'human mirror system', which prominently includes Broca's area, is the neurophysiological substrate of speech perception. Although numerous studies have demonstrated a tight link between sensory and motor speech processes, few have directly assessed the critical prediction of mirror neuron theories of speech perception, namely that damage to the human mirror system should cause severe deficits in speech perception. The present study measured speech perception abilities of patients with lesions involving motor regions in the left posterior frontal lobe and/or inferior parietal lobule (i.e., the proposed human 'mirror system'). Performance was at or near ceiling in patients with fronto-parietal lesions. It is only when the lesion encroaches on auditory regions in the temporal lobe that perceptual deficits are evident. This suggests that 'mirror system' damage does not disrupt speech perception, but rather that auditory systems are the primary substrate for speech perception.

  4. Single bunch transfer system for the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Sheehan, J.; Singh, O.; Rambo, W.

    1983-01-01

    The accelerator system at the National Synchrotron Light Source consists of an S-band 85 MeV linac and three synchrotron rings. The electron beam from the linac is accelerated by the booster ring to 600 MeV and transferred to one of the two storage rings. The smaller of the two rings operates between 300 and 800 MeV emtting photons in the vacuum ultraviolet (VUV), while the larger storage ring operates up to 2.5 GeV and emits photons in the x-ray spectrum. A system is described for loading the storage rings by filling a single-phase space bunch in the booster ring and transferring it at the end of each booster cycle into a selected bucket in one of the storage rings. By controlling the timing of the transfer on successive transfer cycles, many fill patterns may be obtained

  5. Single Station System and Method of Locating Lightning Strikes

    Science.gov (United States)

    Medelius, Pedro J. (Inventor); Starr, Stanley O. (Inventor)

    2003-01-01

    An embodiment of the present invention uses a single detection system to approximate a location of lightning strikes. This system is triggered by a broadband RF detector and measures a time until the arrival of a leading edge of the thunder acoustic pulse. This time difference is used to determine a slant range R from the detector to the closest approach of the lightning. The azimuth and elevation are determined by an array of acoustic sensors. The leading edge of the thunder waveform is cross-correlated between the various acoustic sensors in the array to determine the difference in time of arrival, AT. A set of AT S is used to determine the direction of arrival, AZ and EL. The three estimated variables (R, AZ, EL) are used to locate a probable point of the lightning strike.

  6. Synchronization of impacting mechanical systems with a single constraint

    Science.gov (United States)

    Baumann, Michael; Biemond, J. J. Benjamin; Leine, Remco I.; van de Wouw, Nathan

    2018-01-01

    This paper addresses the synchronization problem of mechanical systems subjected to a single geometric unilateral constraint. The impacts of the individual systems, induced by the unilateral constraint, generally do not coincide even if the solutions are arbitrarily 'close' to each other. The mismatch in the impact time instants demands a careful choice of the distance function to allow for an intuitively correct comparison of the discontinuous solutions resulting from the impacts. We propose a distance function induced by the quotient metric, which is based on an equivalence relation using the impact map. The distance function obtained in this way is continuous in time when evaluated along jumping solutions. The property of maximal monotonicity, which is fulfilled by most commonly used impact laws, is used to significantly reduce the complexity of the distance function. Based on the simplified distance function, a Lyapunov function is constructed to investigate the synchronization problem for two identical one-dimensional mechanical systems. Sufficient conditions for the uncoupled individual systems are provided under which local synchronization is guaranteed. Furthermore, we present an interaction law which ensures global synchronization, also in the presence of grazing trajectories and accumulation points (Zeno behavior). The results are illustrated using numerical examples of a 1-DOF mechanical impact oscillator which serves as stepping stone in the direction of more general systems.

  7. Development of neuronal and sensorimotor systems in the absence of gravity: Neurobiological research on four soyuz taxi flights to the international space station

    Science.gov (United States)

    Horn, Eberhard R.; Dournon, Christian; Frippiat, Jean-Pol; Marco, Roberto; Böser, Sybille; Kirschnick, Uta

    2007-09-01

    Neurobiological experiments on 4 animal species (Xenopus laevis, Pleurodeles waltl, Drosophila melanogaster, Acheta domesticus) were performed to study effects of microgravity on development and aging of neuronal, sensory and motor systems. Animal models were selected according to their suitability to answer questions concerning μg-effects on neuroanatomy, neuronal activity, and behaviour. The studies were performed on the Soyuz Taxi flights Andromède, Cervantes, Eneide and LDM-TMA8/TMA7. Observations from these flights include: (1) In tadpoles and cricket larvae, morphological features of sensory cells and neurons are rarely affected by microgravity. (2) In crickets, in-flight fertilization was successful; after landing, flight larvae hatched earlier than ground reared siblings. (3) In crickets, proliferation of peptidergic neurons and their projection patterns within the nervous system were not affected by microgravity. (4) During aging, the impact of microgravity on peptidergic neurons of male Drosophila was limited to the size of cell body. (5) In Xenopus, neurophysiological features of the spinal motor system during fictive swimming were partially modified. (6) In Xenopus tadpoles, the vestibuloocular reflex was affected in an age-related manner. Modifications were also related to the occurrence of a tail lordosis induced by microgravity. It is concluded that adaptation to microgravity during development and aging is mainly based on physiological mechanisms within the central nervous system while structural modifications of the sensory and neuronal system contribute less.

  8. The influence of aging on the number of neurons and levels of non-phosporylated neurofilament proteins in the central auditory system of rats

    Directory of Open Access Journals (Sweden)

    Jana eBurianová

    2015-03-01

    Full Text Available In the present study, an unbiased stereological method was used to determine the number of all neurons in Nissl stained sections of the inferior colliculus (IC, medial geniculate body (MGB and auditory cortex (AC in rats (strains Long Evans and Fischer 344 and their changes with aging. In addition, using the optical fractionator and western blot technique, we also evaluated the number of SMI-32-immunoreactive(-ir neurons and levels of non-phosphorylated neurofilament proteins in the IC, MGB, AC, and visual cortex (VC of young and old rats of the two strains. The SMI-32 positive neuronal population comprises about 10% of all neurons in the rat IC, MGB and AC and represents a prevalent population of large neurons with highly myelinated and projecting processes. In both Long Evans and Fischer 344 rats, the total number of neurons in the IC was roughly similar to that in the AC. With aging, we found a rather mild and statistically non-significant decline in the total number of neurons in all three analyzed auditory regions in both rat strains. In contrast to this, the absolute number of SMI-32-ir neurons in both Long Evans and Fischer 344 rats significantly decreased with aging in all the examined structures. The western blot technique also revealed a significant age-related decline in the levels of non-phosphorylated neurofilaments in the auditory brain structures, 30-35%. Our results demonstrate that presbycusis in rats is not likely to be primarily associated with changes in the total number of neurons. On the other hand, the pronounced age-related decline in the number of neurons containing non-phosphorylated neurofilaments as well as their protein levels in the central auditory system may contribute to age-related deterioration of hearing function.

  9. Neuron hemilineages provide the functional ground plan for the Drosophila ventral nervous system

    Science.gov (United States)

    Harris, Robin M; Pfeiffer, Barret D; Rubin, Gerald M; Truman, James W

    2015-01-01

    Drosophila central neurons arise from neuroblasts that generate neurons in a pair-wise fashion, with the two daughters providing the basis for distinct A and B hemilineage groups. 33 postembryonically-born hemilineages contribute over 90% of the neurons in each thoracic hemisegment. We devised genetic approaches to define the anatomy of most of these hemilineages and to assessed their functional roles using the heat-sensitive channel dTRPA1. The simplest hemilineages contained local interneurons and their activation caused tonic or phasic leg movements lacking interlimb coordination. The next level was hemilineages of similar projection cells that drove intersegmentally coordinated behaviors such as walking. The highest level involved hemilineages whose activation elicited complex behaviors such as takeoff. These activation phenotypes indicate that the hemilineages vary in their behavioral roles with some contributing to local networks for sensorimotor processing and others having higher order functions of coordinating these local networks into complex behavior. DOI: http://dx.doi.org/10.7554/eLife.04493.001 PMID:26193122

  10. Nitric oxide regulates neuronal activity via calcium-activated potassium channels.

    Directory of Open Access Journals (Sweden)

    Lei Ray Zhong

    Full Text Available Nitric oxide (NO is an unconventional membrane-permeable messenger molecule that has been shown to play various roles in the nervous system. How NO modulates ion channels to affect neuronal functions is not well understood. In gastropods, NO has been implicated in regulating the feeding motor program. The buccal motoneuron, B19, of the freshwater pond snail Helisoma trivolvis is active during the hyper-retraction phase of the feeding motor program and is located in the vicinity of NO-producing neurons in the buccal ganglion. Here, we asked whether B19 neurons might serve as direct targets of NO signaling. Previous work established NO as a key regulator of growth cone motility and neuronal excitability in another buccal neuron involved in feeding, the B5 neuron. This raised the question whether NO might modulate the electrical activity and neuronal excitability of B19 neurons as well, and if so whether NO acted on the same or a different set of ion channels in both neurons. To study specific responses of NO on B19 neurons and to eliminate indirect effects contributed by other cells, the majority of experiments were performed on single cultured B19 neurons. Addition of NO donors caused a prolonged depolarization of the membrane potential and an increase in neuronal excitability. The effects of NO could mainly be attributed to the inhibition of two types of calcium-activated potassium channels, apamin-sensitive and iberiotoxin-sensitive potassium channels. NO was found to also cause a depolarization in B19 neurons in situ, but only after NO synthase activity in buccal ganglia had been blocked. The results suggest that NO acts as a critical modulator of neuronal excitability in B19 neurons, and that calcium-activated potassium channels may serve as a common target of NO in neurons.

  11. Signals and Circuits in the Purkinje Neuron

    Directory of Open Access Journals (Sweden)

    Ze'ev R Abrams

    2011-09-01

    Full Text Available Purkinje neurons in the cerebellum have over 100,000 inputs organized in an orthogonal geometry, and a single output channel. As the sole output of the cerebellar cortex layer, their complex firing pattern has been associated with motor control and learning. As such they have been extensively modeled and measured using tools ranging from electrophysiology and neuroanatomy, to dynamic systems and artificial intelligence methods. However, there is an alternative approach to analyze and describe the neuronal output of these cells using concepts from Electrical Engineering, particularly signal processing and digital/analog circuits. By viewing the Purkinje neuron as an unknown circuit to be reverse-engineered, we can use the tools that provide the foundations of today’s integrated circuits and communication systems to analyze the Purkinje system at the circuit level. We use Fourier transforms to analyze and isolate the inherent frequency modes in the Purkinje neuron and define 3 unique frequency ranges associated with the cells’ output. Comparing the Purkinje neuron to a signal generator that can be externally modulated adds an entire level of complexity to the functional role of these neurons both in terms of data analysis and information processing, relying on Fourier analysis methods in place of statistical ones. We also re-describe some of the recent literature in the field, using the nomenclature of signal processing. Furthermore, by comparing the experimental data of the past decade with basic electronic circuitry, we can resolve the outstanding controversy in the field, by recognizing that the Purkinje neuron can act as a multivibrator circuit.

  12. A map of octopaminergic neurons in the Drosophila brain.

    Science.gov (United States)

    Busch, Sebastian; Selcho, Mareike; Ito, Kei; Tanimoto, Hiromu

    2009-04-20

    The biogenic amine octopamine modulates diverse behaviors in invertebrates. At the single neuron level, the mode of action is well understood in the peripheral nervous system owing to its simple structure and accessibility. For elucidating the role of individual octopaminergic neurons in the modulation of complex behaviors, a detailed analysis of the connectivity in the central nervous system is required. Here we present a comprehensive anatomical map of candidate octopaminergic neurons in the adult Drosophila brain: including the supra- and subesophageal ganglia. Application of the Flp-out technique enabled visualization of 27 types of individual octopaminergic neurons. Based on their morphology and distribution of genetic markers, we found that most octopaminergic neurons project to multiple brain structures with a clear separation of dendritic and presynaptic regions. Whereas their major dendrites are confined to specific brain regions, each cell type targets different, yet defined, neuropils distributed throughout the central nervous system. This would allow them to constitute combinatorial modules assigned to the modulation of distinct neuronal processes. The map may provide an anatomical framework for the functional constitution of the octopaminergic system. It also serves as a model for the single-cell organization of a particular neurotransmitter in the brain. 2009 Wiley-Liss, Inc.

  13. Corticospinal mirror neurons.

    Science.gov (United States)

    Kraskov, A; Philipp, R; Waldert, S; Vigneswaran, G; Quallo, M M; Lemon, R N

    2014-01-01

    Here, we report the properties of neurons with mirror-like characteristics that were identified as pyramidal tract neurons (PTNs) and recorded in the ventral premotor cortex (area F5) and primary motor cortex (M1) of three macaque monkeys. We analysed the neurons' discharge while the monkeys performed active grasp of either food or an object, and also while they observed an experimenter carrying out a similar range of grasps. A considerable proportion of tested PTNs showed clear mirror-like properties (52% F5 and 58% M1). Some PTNs exhibited 'classical' mirror neuron properties, increasing activity for both execution and observation, while others decreased their discharge during observation ('suppression mirror-neurons'). These experiments not only demonstrate the existence of PTNs as mirror neurons in M1, but also reveal some interesting differences between M1 and F5 mirror PTNs. Although observation-related changes in the discharge of PTNs must reach the spinal cord and will include some direct projections to motoneurons supplying grasping muscles, there was no EMG activity in these muscles during action observation. We suggest that the mirror neuron system is involved in the withholding of unwanted movement during action observation. Mirror neurons are differentially recruited in the behaviour that switches rapidly between making your own movements and observing those of others.

  14. A Single Deformed Bow Shock for Titan-Saturn System

    Science.gov (United States)

    Sulaiman, A. H.; Omidi, N.; Kurth, W. S.; Madanian, H.; Cravens, T.; Sergis, N.; Dougherty, M. K.; Edberg, N. J. T.

    2017-12-01

    During periods of high solar wind pressure, Saturn's bow shock is pushed inside Titan's orbit exposing the moon and its ionosphere to the supersonic solar wind. The Cassini spacecraft's T96 encounter with Titan occurred during such a period and is the subject of this presentation. The observations during this encounter show evidence for the presence of outbound and inbound shock crossings associated with Saturn and Titan. They also reveal the presence of two foreshocks: one between the outbound Kronian and inbound Titan bow shocks (foreshock-1) and the other between the outbound Titan and inbound Kronian bow shocks (foreshock-2). Using electromagnetic hybrid (kinetic ions, fluid electrons) simulations and Cassini observations we show that the origin of foreshock-1 is tied to the formation of a single deformed bow shock for the Titan-Saturn system. We also report for the first time, the observations of spontaneous hot flow anomalies (SHFAs) in foreshock-1 making Saturn the fourth planet this phenomenon has been observed and indicating its universal nature. The results of hybrid simulations also show the generation of oblique fast magnetosonic waves upstream of the outbound Titan bow shock in agreement with the observations of large amplitude magnetosonic pulsations in foreshock-2. The formation of a single deformed bow shock results in unique foreshock-bow shock or foreshock-foreshock geometries. For example, the presence of Saturn's foreshock upstream of Titan's quasi-perpendicular bow shock result in ion acceleration through a combination of shock drift and Fermi processes. We also discuss the implications of a single deformed bow shock for Saturn's magnetopause and magnetosphere.

  15. Memristors Empower Spiking Neurons With Stochasticity

    KAUST Repository

    Al-Shedivat, Maruan

    2015-06-01

    Recent theoretical studies have shown that probabilistic spiking can be interpreted as learning and inference in cortical microcircuits. This interpretation creates new opportunities for building neuromorphic systems driven by probabilistic learning algorithms. However, such systems must have two crucial features: 1) the neurons should follow a specific behavioral model, and 2) stochastic spiking should be implemented efficiently for it to be scalable. This paper proposes a memristor-based stochastically spiking neuron that fulfills these requirements. First, the analytical model of the memristor is enhanced so it can capture the behavioral stochasticity consistent with experimentally observed phenomena. The switching behavior of the memristor model is demonstrated to be akin to the firing of the stochastic spike response neuron model, the primary building block for probabilistic algorithms in spiking neural networks. Furthermore, the paper proposes a neural soma circuit that utilizes the intrinsic nondeterminism of memristive switching for efficient spike generation. The simulations and analysis of the behavior of a single stochastic neuron and a winner-take-all network built of such neurons and trained on handwritten digits confirm that the circuit can be used for building probabilistic sampling and pattern adaptation machinery in spiking networks. The findings constitute an important step towards scalable and efficient probabilistic neuromorphic platforms. © 2011 IEEE.

  16. Binding by asynchrony: the neuronal phase code

    Directory of Open Access Journals (Sweden)

    Zoltan Nadasdy

    2010-09-01

    Full Text Available Neurons display continuous subthreshold oscillations and discrete action potentials. When action potentials are phase-locked to the subthreshold oscillation, we hypothesize they represent two types of information: the presence/absence of a sensory feature and the phase of subthreshold oscillation. If subthreshold oscillation phases are neuron-specific, then the sources of action potentials can be recovered based on the action potential times. If the spatial information about the stimulus is converted to action potential phases, then action potentials from multiple neurons can be combined into a single axon and the spatial configuration reconstructed elsewhere. For the reconstruction to be successful, we introduce two assumptions: that a subthreshold oscillation field has a constant phase gradient and that coincidences between action potentials and intracellular subthreshold oscillations are neuron-specific as defined by the "interference principle." Under these assumptions, a phase coding model enables information transfer between structures and reproduces experimental phenomenons such as phase precession, grid cell architecture, and phase modulation of cortical spikes. This article reviews a recently proposed neuronal algorithm for information encoding and decoding from the phase of action potentials (Nadasdy 2009. The focus is given to the principles common across different systems instead of emphasizing system specific differences.

  17. Performance characterization of pneumatic single pellet injection system

    International Nuclear Information System (INIS)

    Schuresko, D.D.; Milora, S.L.; Hogan, J.T.; Foster, C.A.; Combs, S.K.

    1982-01-01

    The Oak Ridge National Laboratory single-shot pellet injector, which has been used in plasma fueling experiments on ISX and PDX, has been upgraded and extensively instrumented in order to study the gas dynamics of pneumatic pellet injection. An improved pellet transport line was developed which utilizes a 0.3-cm-diam by 100-cm-long guide tube. Pellet gun performance was characterized by measurements of breech and muzzle dynamic pressures and by pellet velocity and mass determinations. Velocities up to 1.4 km/s were achieved for intact hydrogen pellets using hydrogen propellant at 5-MPa breech pressure. These data have been compared with new pellet acceleration calculations which include the effects of propellant friction, heat transfer, time-dependent boundary conditions, and finite gun geometry. These results provide a basis for the extrapolation of present-day pneumatic injection system performance to velocities in excess of 2 km/s

  18. Altered neuronal activity patterns in the visual cortex of the adult rat after partial optic nerve crush--a single-cell resolution metabolic mapping study.

    Science.gov (United States)

    Macharadze, Tamar; Pielot, Rainer; Wanger, Tim; Scheich, Henning; Gundelfinger, Eckart D; Budinger, Eike; Goldschmidt, Jürgen; Kreutz, Michael R

    2012-08-01

    Thallium autometallography (TIAMG) is a novel method for high-resolution mapping of neuronal activity. With this method, we found that a general depression of neuronal activity occurs in response to optic nerve crush (ONC) within the first 2 weeks postinjury in the contralateral dorsal lateral geniculate nucleus (dLGN) as well as in the contralateral primary visual cortex (V1). Interestingly, the neuronal activity recovered thereafter in both brain regions and reached a plateau in the tenth week postinjury in layers IV and V of V1, monocular area (V1m). Several clusters of highly active neurons in V1m were found 6 weeks after ONC in layers IV and V on the side contralateral to the lesion. We reasoned that these clusters appeared due to a reorganization of the corticocolliucular projections. Employing a combination of biotinylated dextran amine retrograde tract tracing from the superior colliculus (SC) with TIAMG in the same animal, we indeed found that the clusters of neurons with high Tl(+) uptake in V1m are spatially in register with those neuronal subpopulations that project to the SC. These data suggest that extensive reorganization plasticity exists in the adult rat visual cortex following ONC.

  19. An improved system of detecting single event effect in SRAM

    International Nuclear Information System (INIS)

    Tong Teng; Wang Xiaohui; Zhang Zhangang; Liu Tianqi; Gu Song; Yang Zhenlei; Su Hong; Liu Jie

    2014-01-01

    The material research center in Institute of Modern Physics, Chinese Academy of Sciences (IMP, CAS) have made a fruitful achievements in the research of single event effects (SEEs) occurring in static random access memory (SRAM). However, there are some drawbacks exist in the two systems of detecting SEE owning by the material research center. Therefore, an improved method of detecting SEE is proposed, and the method functionality is implemented in a circuit. Further, a sequence of experiments are carried out in the beam radiation terminal of the Heavy Ion Facility in Lanzhou (HIRFL), and a bunch of experimental data are collected. The irradiation tests were carried out using 129 Xe for the SEE research of 65 nm SRAMs; Using 12 C for the SEE research of the 65, 130 and 150 nm SRAMs with ECC module; Using 129 Xe for the SEL research of the common commercial SRAMs and so on. These experiments provide a statistical evidence of the effectiveness and robustness of the improved system. It is believed that the proposed system will be beneficial for detecting SEE in diverse settings, and it could be taken advantage of as a platform for future research on SEE tests in more intricate devices. (authors)

  20. Memory under stress: from single systems to network changes.

    Science.gov (United States)

    Schwabe, Lars

    2017-02-01

    Stressful events have profound effects on learning and memory. These effects are mainly mediated by catecholamines and glucocorticoid hormones released from the adrenals during stressful encounters. It has been known for long that both catecholamines and glucocorticoids influence the functioning of the hippocampus, a critical hub for episodic memory. However, areas implicated in other forms of memory, such as the insula or the dorsal striatum, can be affected by stress as well. Beyond changes in single memory systems, acute stress triggers the reconfiguration of large scale neural networks which sets the stage for a shift from thoughtful, 'cognitive' control of learning and memory toward more reflexive, 'habitual' processes. Stress-related alterations in amygdala connectivity with the hippocampus, dorsal striatum, and prefrontal cortex seem to play a key role in this shift. The bias toward systems proficient in threat processing and the implementation of well-established routines may facilitate coping with an acute stressor. Overreliance on these reflexive systems or the inability to shift flexibly between them, however, may represent a risk factor for psychopathology in the long-run. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  1. Fast methods for analysis of neurotransmitters from single cell and monitoring their releases in central nervous system by capillary electrophoresis, fluorescence microscopy and luminescence imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ziqiang [Iowa State Univ., Ames, IA (United States)

    1999-12-10

    Fast methods for separation and detection of important neurotransmitters and the releases in central nervous system (CNS) were developed. Enzyme based immunoassay combined with capillary electrophoresis was used to analyze the contents of amino acid neurotransmitters from single neuron cells. The release of amino acid neurotransmitters from neuron cultures was monitored by laser induced fluorescence imaging method. The release and signal transduction of adenosine triphosphate (ATP) in CNS was studied with sensitive luminescence imaging method. A new dual-enzyme on-column reaction method combined with capillary electrophoresis has been developed for determining the glutamate content in single cells. Detection was based on monitoring the laser-induced fluorescence of the reaction product NADH, and the measured fluorescence intensity was related to the concentration of glutamate in each cell. The detection limit of glutamate is down to 10-8 M level, which is 1 order of magnitude lower than the previously reported detection limit based on similar detection methods. The mass detection limit of a few attomoles is far superior to that of any other reports. Selectivity for glutamate is excellent over most of amino acids. The glutamate content in single human erythrocyte and baby rat brain neurons were determined with this method and results agreed well with literature values.

  2. Noisy Neurons

    Indian Academy of Sciences (India)

    IAS Admin

    Nerves are fibres that conduct electrical signals and hence pass on information from and to the brain. Nerves are made of nerve cells called neurons (Figure 1). Instructions in our body are sent via electrical signals that present themselves as variations in the potential across neuronal membranes. These potential differences ...

  3. β-Arrestin-2 knockout prevents development of cellular μ-opioid receptor tolerance but does not affect opioid-withdrawal-related adaptations in single PAG neurons.

    Science.gov (United States)

    Connor, M; Bagley, E E; Chieng, B C; Christie, M J

    2015-01-01

    Tolerance to the behavioural effects of morphine is blunted in β-arrestin-2 knockout mice, but opioid withdrawal is largely unaffected. The cellular mechanisms of tolerance have been studied in some neurons from β-arrestin-2 knockouts, but tolerance and withdrawal mechanisms have not been examined at the cellular level in periaqueductal grey (PAG) neurons, which are crucial for central tolerance and withdrawal phenomena. μ-Opioid receptor (MOPr) inhibition of voltage-gated calcium channel currents (ICa ) was examined by patch-clamp recordings from acutely dissociated PAG neurons from wild-type and β-arrestin-2 knockout mice treated chronically with morphine (CMT) or vehicle. Opioid withdrawal-induced activation of GABA transporter type 1 (GAT-1) currents was determined using perforated patch recordings from PAG neurons in brain slices. MOPr inhibition of ICa in PAG neurons was unaffected by β-arrestin-2 deletion. CMT impaired coupling of MOPrs to ICa in PAG neurons from wild-type mice, but this cellular tolerance was not observed in neurons from CMT β-arrestin-2 knockouts. However, β-arrestin-2 knockouts displayed similar opioid-withdrawal-induced activation of GAT-1 currents as wild-type PAG neurons. In β-arrestin-2 knockout mice, the central neurons involved in the anti-nociceptive actions of opioids also fail to develop cellular tolerance to opioids following chronic morphine. The results also provide the first cellular physiological evidence that opioid withdrawal is not disrupted by β-arrestin-2 deletion. However, the unaffected basal sensitivity to opioids in PAG neurons provides further evidence that changes in basal MOPr sensitivity cannot account for the enhanced acute nociceptive response to morphine reported in β-arrestin-2 knockouts. This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2. © 2014 The British

  4. Flagellates as model system for gravity detection of single cells

    Science.gov (United States)

    Lebert, Michael; Richter, Peter; Daiker, Viktor; Schuster, Martin; Tebart, Jenny; Strauch, Sebastian M.; Donat-Peter, H.

    Euglena gracilis is a unicellular, photosynthetic organism which uses light and gravity as en-vironmental hints to reach and stay in horizons of the water column which are optimal for growth and reproduction. The orientation in respect to light (so called positive and nega-tive phototaxis, i.e. movement toward or away of a light source) was well known and fairly good understood. In contrast, knowledge about the movement away from the centre of gravity (negative gravitaxis) was rather scarce. Over a century it was unclear whether orientation in respect to the gravity vector is based on a physical or a physiological mechanism. Recent results clearly favour the latter. Knock-down mutants (RNAi) were characterized which define certain key components of the gravitactic signal transduction chain. These key components include a TRP-like channel, a gravitaxis-specific calmodulin and a protein kinase A. The molecular characterization of these components is currently performed and will be presented. Euglena is not only a model system for the close understanding of gravity detection in single cells, but can also be used as photosynthetic component, i.e. oxygen source and carbon dioxide as well as nitrogenic components sink in Closed Environmental Systems (CES). Due CES are systems of choice in times of scarce flight opportunities. They allow a massive sample sharing and combine possibilities to do microgravity research for biologists but also for engineers, physicists and material scientists. Recent attempts include Aquacells and Omegahab. In the near future miniaturized systems (Chinese ShenZhou) as well as advanced CES will be flown or tested, respectively. Current attempts and plans will be presented.

  5. Derivation, Expansion, and Motor Neuron Differentiation of Human-Induced Pluripotent Stem Cells with Non-Integrating Episomal Vectors and a Defined Xenogeneic-free Culture System.

    Science.gov (United States)

    Hu, Wentao; He, Yongpei; Xiong, Yongjie; Lu, Hong; Chen, Hong; Hou, Limin; Qiu, Zhandong; Fang, Yu; Zhang, Suming

    2016-04-01

    Induced pluripotent stem cells (iPSCs) generated from patient-derived somatic cells provides the opportunity for model development in order to study patient-specific disease states with the potential for drug discovery. However, use of lentivirus and exposure of iPSCs to animal-derived products limit their therapeutic utility and affect lineage differentiation and subsequent downstream functionality of iPSC derivatives. Within the context of this study, we describe a simple and practical protocol enabling the efficient reprogramming of terminally differentiated adult fibroblasts into integration-free human iPSCs (hiPSCs) using a combination of episomal plasmids with small molecules (SMs). Using this approach, there was a 10-fold increase in reprogramming efficiency over single plasmid vector-based methods. We obtained approximately 100 iPSCs colonies from 1 × 10(5) human adult dermal fibroblasts (HADFs) and achieved approximately 0.1% reprogramming efficiencies. Concurrently, we developed a highly conducive culture system using xeno-free media and human vitronectin. The resulting hiPSCs were free of DNA integration and had completely lost episomal vectors, maintained long-term self-renewal, featured a normal karyotype, expressed pluripotent stem cell markers, and possessed the capability of differentiating into components of all three germ layers in vivo. Finally, we demonstrate that the integration-free hiPSCs could be differentiated into motor neurons under xeno-free culture conditions. This induction method will promote the derivation of patient-specific integration-free and xeno-free iPSCs and improve the strategy for motor neuron derivation. Our approach provides a useful tool for human disease models, drug screen, and clinical applications.

  6. The leukotriene B4 receptors BLT1 and BLT2 form an antagonistic sensitizing system in peripheral sensory neurons.

    Science.gov (United States)

    Zinn, Sebastian; Sisignano, Marco; Kern, Katharina; Pierre, Sandra; Tunaru, Sorin; Jordan, Holger; Suo, Jing; Treutlein, Elsa-Marie; Angioni, Carlo; Ferreiros, Nerea; Leffler, Andreas; DeBruin, Natasja; Offermanns, Stefan; Geisslinger, Gerd; Scholich, Klaus

    2017-04-14

    Sensitization of the heat-activated ion channel transient receptor potential vanilloid 1 (TRPV1) through lipids is a fundamental mechanism during inflammation-induced peripheral sensitization. Leukotriene B4 is a proinflammatory lipid mediator whose role in peripheral nociceptive sensitization is not well understood to date. Two major G-protein-coupled receptors for leukotriene B4 have been identified: the high-affinity receptor BLT1 and the low-affinity receptor BLT2. Transcriptional screening for the expression G-protein-coupled receptors in murine dorsal root ganglia showed that both receptors were among the highest expressed in dorsal root ganglia. Calcium imaging revealed a sensitization of TRPV1-mediated calcium increases in a relative narrow concentration range for leukotriene B4 (100-200 nm). Selective antagonists and neurons from knock-out mice demonstrated a BLT1-dependent sensitization of TRPV1-mediated calcium increases. Accordingly, leukotriene B4-induced thermal hyperalgesia was mediated through BLT1 and TRPV1 as shown using the respective knock-out mice. Importantly, higher leukotriene B4 concentrations (>0.5 μm) and BLT2 agonists abolished sensitization of the TRPV1-mediated calcium increases. Also, BLT2 activation inhibited protein kinase C- and protein kinase A-mediated sensitization processes through the phosphatase calcineurin. Consequently, a selective BLT2-receptor agonist increased thermal and mechanical withdrawal thresholds during zymosan-induced inflammation. In accordance with these data, immunohistochemical analysis showed that both leukotriene B4 receptors were expressed in peripheral sensory neurons. Thus, the data show that the two leukotriene B4 receptors have opposing roles in the sensitization of peripheral sensory neurons forming a self-restricting system. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Widespread transduction of astrocytes and neurons in the mouse central nervous system after systemic delivery of a self-complementary AAV-PHP.B vector.

    Science.gov (United States)

    Rincon, Melvin Y; de Vin, Filip; Duqué, Sandra I; Fripont, Shelly; Castaldo, Stephanie A; Bouhuijzen-Wenger, Jessica; Holt, Matthew G

    2018-03-09

    Until recently, adeno-associated virus 9 (AAV9) was considered the AAV serotype most effective in crossing the blood-brain barrier (BBB) and transducing cells of the central nervous system (CNS), following systemic injection. However, a newly engineered capsid, AAV-PHP.B, is reported to cross the BBB at even higher efficiency. We investigated how much we could boost CNS transgene expression by using AAV-PHP.B carrying a self-complementary (sc) genome. To allow comparison, 6 weeks old C57BL/6 mice received intravenous injections of scAAV2/9-GFP or scAAV2/PHP.B-GFP at equivalent doses. Three weeks postinjection, transgene expression was assessed in brain and spinal cord. We consistently observed more widespread CNS transduction and higher levels of transgene expression when using the scAAV2/PHP.B-GFP vector. In particular, we observed an unprecedented level of astrocyte transduction in the cortex, when using a ubiquitous CBA promoter. In comparison, neuronal transduction was much lower than previously reported. However, strong neuronal expression (including spinal motor neurons) was observed when the human synapsin promoter was used. These findings constitute the first reported use of an AAV-PHP.B capsid, encapsulating a scAAV genome, for gene transfer in adult mice. Our results underscore the potential of this AAV construct as a platform for safer and more efficacious gene therapy vectors for the CNS.

  8. Novel information on the non-neuronal cholinergic system in orthopedics provides new possible treatment strategies for inflammatory and degenerative diseases

    Directory of Open Access Journals (Sweden)

    Sture Forsgren

    2009-07-01

    Full Text Available Anti-cholinergic agents are used in the treatment of several pathological conditions. Therapy regimens aimed at up-regulating cholinergic functions, such as treatment with acetylcholinesterase inhibitors, are also currently prescribed. It is now known that not only is there a neuronal cholinergic system but also a non-neuronal cholinergic system in various parts of the body. Therefore, interference with the effects of acetylcholine (ACh brought about by the local production and release of ACh should also be considered. Locally produced ACh may have proliferative, angiogenic, wound-healing, and immunomodulatory functions. Interestingly, cholinergic stimulation may lead to anti-inflammatory effects. Within this review, new findings for the locomotor system of a more widespread non-neuronal cholinergic system than previously expected will be discussed in relation to possible new treatment strategies. The conditions discussed are painful and degenerative tendon disease (tendinopathy/tendinosis, rheumatoid arthritis, and osteoarthritis.

  9. Parvalbumin+ Neurons and Npas1+ Neurons Are Distinct Neuron Classes in the Mouse External Globus Pallidus.

    Science.gov (United States)

    Hernández, Vivian M; Hegeman, Daniel J; Cui, Qiaoling; Kelver, Daniel A; Fiske, Michael P; Glajch, Kelly E; Pitt, Jason E; Huang, Tina Y; Justice, Nicholas J; Chan, C Savio

    2015-08-26

    Compelling evidence suggests that pathological activity of the external globus pallidus (GPe), a nucleus in the basal ganglia, contributes to the motor symptoms of a variety of movement disorders such as Parkinson's disease. Recent studies have challenged the idea that the GPe comprises a single, homogenous population of neurons that serves as a simple relay in the indirect pathway. However, we still lack a full understanding of the diversity of the neurons that make up the GPe. Specifically, a more precise classification scheme is needed to better describe the fundamental biology and function of different GPe neuron classes. To this end, we generated a novel multicistronic BAC (bacterial artificial chromosome) transgenic mouse line under the regulatory elements of the Npas1 gene. Using a combinatorial transgenic and immunohistochemical approach, we discovered that parvalbumin-expressing neurons and Npas1-expressing neurons in the GPe represent two nonoverlapping cell classes, amounting to 55% and 27% of the total GPe neuron population, respectively. These two genetically identified cell classes projected primarily to the subthalamic nucleus and to the striatum, respectively. Additionally, parvalbumin-expressing neurons and Npas1-expressing neurons were distinct in their autonomous and driven firing characteristics, their expression of intrinsic ion conductances, and their responsiveness to chronic 6-hydroxydopamine lesion. In summary, our data argue that parvalbumin-expressing neurons and Npas1-expressing neurons are two distinct functional classes of GPe neurons. This work revises our understanding of the GPe, and provides the foundation for future studies of its function and dysfunction. Until recently, the heterogeneity of the constituent neurons within the external globus pallidus (GPe) was not fully appreciated. We addressed this knowledge gap by discovering two principal GPe neuron classes, which were identified by their nonoverlapping expression of the

  10. Role of nitric oxide in neuronal plasticity in the mammal central and peripheral nervous systems

    OpenAIRE

    Rodríguez Sunico, Cármen

    2009-01-01

    La lesión de un nervio periférico induce la sobre-expresión de la enzima óxido nítrico sintasa (Nos) en el nervio afectado. Este tipo de lesión, así como ciertas enfermedades neurodegenerativas, cursan con una disminución de la densidad sínáptica central junto con la expresión de novo y/o sobre-expresión de NOS neuronal (nNOS) en las motoneuronas. Dado que el óxido nítrico (NO) participa en numerosos fenómenos de plasticidad sináptica, se podría sugerir un papel del NO en procesos de El princ...

  11. Analog frontend for multichannel neuronal recording system with spike and LFP separation.

    Science.gov (United States)

    Perelman, Yevgeny; Ginosar, Ran

    2006-05-15

    A 0.35microm CMOS integrated circuit for multi-channel neuronal recording with twelve true-differential channels, band separation and digital offset calibration is presented. The measured signal is separated into a low-frequency local field potential and high-frequency spike data. Digitally programmable gains of up to 60 and 80 dB for the local field potential and spike bands are provided. DC offsets are compensated on both bands by means of digitally programmable DACs. Spike band is limited by a second order low-pass filter with digitally programmable cutoff frequency. The IC has been fabricated and tested. 3microV input referred noise on the spike data band was measured.

  12. Enteric neurons show a primary cilium.

    Science.gov (United States)

    Luesma, Ma José; Cantarero, Irene; Castiella, Tomás; Soriano, Mario; Garcia-Verdugo, José Manuel; Junquera, Concepción

    2013-01-01

    The primary cilium is a non-motile cilium whose structure is 9+0. It is involved in co-ordinating cellular signal transduction pathways, developmental processes and tissue homeostasis. Defects in the structure or function of the primary cilium underlie numerous human diseases, collectively termed ciliopathies. The presence of single cilia in the central nervous system (CNS) is well documented, including some choroid plexus cells, neural stem cells, neurons and astrocytes, but the presence of primary cilia in differentiated neurons of the enteric nervous system (ENS) has not yet been described in mammals to the best of our knowledge. The enteric nervous system closely resembles the central nervous system. In fact, the ultrastructure of the ENS is more similar to the CNS ultrastructure than to the rest of the peripheral nervous system. This research work describes for the first time the ultrastructural characteristics of the single cilium in neurons of rat duodenum myenteric plexus, and reviews the cilium function in the CNS to propose the possible role of cilia in the ENS cells. © 2012 The Authors. Published by Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  13. Direct Signaling from Astrocytes to Neurons in Cultures of Mammalian Brain Cells

    Science.gov (United States)

    Nedergaard, Maiken

    1994-03-01

    Although astrocytes have been considered to be supportive, rather than transmissive, in the adult nervous system, recent studies have challenged this assumption by demonstrating that astrocytes possess functional neurotransmitter receptors. Astrocytes are now shown to directly modulate the free cytosolic calcium, and hence transmission characteristics, of neighboring neurons. When a focal electric field potential was applied to single astrocytes in mixed cultures of rat forebrain astrocytes and neurons, a prompt elevation of calcium occurred in the target cell. This in turn triggered a wave of calcium increase, which propagated from astrocyte to astrocyte. Neurons resting on these astrocytes responded with large increases in their concentration of cytosolic calcium. The gap junction blocker octanol attenuated the neuronal response, which suggests that the astrocytic-neuronal signaling is mediated through intercellular connections rather than synaptically. This neuronal response to local astrocytic stimulation may mediate local intercellular communication within the brain.

  14. Muscle expression of mutant androgen receptor accounts for systemic and motor neuron disease phenotypes in spinal and bulbar muscular atrophy.

    Science.gov (United States)

    Cortes, Constanza J; Ling, Shuo-Chien; Guo, Ling T; Hung, Gene; Tsunemi, Taiji; Ly, Linda; Tokunaga, Seiya; Lopez, Edith; Sopher, Bryce L; Bennett, C Frank; Shelton, G Diane; Cleveland, Don W; La Spada, Albert R

    2014-04-16

    X-linked spinal and bulbar muscular atrophy (SBMA) is characterized by adult-onset muscle weakness and lower motor neuron degeneration. SBMA is caused by CAG-polyglutamine (polyQ) repeat expansions in the androgen receptor (AR) gene. Pathological findings include motor neuron loss, with polyQ-AR accumulation in intranuclear inclusions. SBMA patients exhibit myopathic features, suggesting a role for muscle in disease pathogenesis. To determine the contribution of muscle, we developed a BAC mouse model featuring a floxed first exon to permit cell-type-specific excision of human AR121Q. BAC fxAR121 mice develop systemic and neuromuscular phenotypes, including shortened survival. After validating termination of AR121 expression and full rescue with ubiquitous Cre, we crossed BAC fxAR121 mice with Human Skeletal Actin-Cre mice. Muscle-specific excision prevented weight loss, motor phenotypes, muscle pathology, and motor neuronopathy and dramatically extended survival. Our results reveal a crucial role for muscle expression of polyQ-AR in SBMA and suggest muscle-directed therapies as effective treatments. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Electrical conduction and photoresponses of gamma-ray-irradiated single-stranded DNA/single-walled carbon nanotube composite systems

    Energy Technology Data Exchange (ETDEWEB)

    Hong, W.; Lee, E.M.; Kim, D.W.; Lee, Cheol Eui, E-mail: rscel@korea.ac.kr

    2015-04-15

    Highlights: •Effects of gamma-ray irradiation on single-stranded DNA (ssDNA)/single-walled carbon nanotube (SWNT) composite films. •Barrier for thermally activated conduction in the composite systems modified by the gamma-ray irradiation. •Photoresponses reveal photoexcitation and oxygen photodesorption modified by gamma-ray irradiation. -- Abstract: Effects of gamma-ray irradiation on the electrical conductivity and photoresponse have been studied for single-stranded DNA (ssDNA)/single-walled carbon nanotube (SWNT) composite films. The temperature-dependent electrical conductivity of the ssDNA/SWNT composite films, well described by a fluctuation-induced tunneling model, indicated modification of the barrier for thermally activated conduction by the gamma-ray irradiation. Besides, the photoresponse measurements indicated modified photoexcited charge carrier generation and oxygen photodesorption in the composite systems due to the gamma-ray irradiation.

  16. Delayed Consensus Problem for Single and Double Integrator Systems

    Directory of Open Access Journals (Sweden)

    Martín Velasco-Villa

    2015-01-01

    Full Text Available This work deals with the analysis of the consensus problem for networks of agents constituted by single and double integrator systems. It is assumed that the communication among agents is affected by a constant time-delay. Previous and numerous analysis of the problem shows that the maximum communication time-delay that can be introduced to the network without affecting the consensus of the group of the agents depends on the considered topology. In this work, a control scheme that is based on the estimation of future states of the agents and that allows increasing the magnitude of a possible time-delay affecting the communication channels is proposed. How the proposed delay compensation strategy is independent of the network topology in the sense that the maximum allowable time-delay that could be supported by the network depends on a design parameter and not on the maximum eigenvalue of the corresponding Laplacian matrix is shown. It is formally proven that, under the proposed prediction scheme, the consensus of the group can be achieved by improving the maximum time-delay bounds previously reported in the literature. Numerical simulations show the effectiveness of the proposed solution.

  17. Single vs. dual color fire detection systems: operational tradeoffs

    Science.gov (United States)

    Danino, Meir; Danan, Yossef; Sinvani, Moshe

    2017-10-01

    In attempt to supply a reasonable fire plume detection, multinational cooperation with significant capital is invested in the development of two major Infra-Red (IR) based fire detection alternatives, single-color IR (SCIR) and dual-color IR (DCIR). False alarm rate was expected to be high not only as a result of real heat sources but mainly due to the IR natural clutter especially solar reflections clutter. SCIR uses state-of-the-art technology and sophisticated algorithms to filter out threats from clutter. On the other hand, DCIR are aiming at using additional spectral band measurements (acting as a guard), to allow the implementation of a simpler and more robust approach for performing the same task. In this paper we present the basics of SCIR & DCIR architecture and the main differences between them. In addition, we will present the results from a thorough study conducted for the purpose of learning about the added value of the additional data available from the second spectral band. Here we consider the two CO2 bands of 4-5 micron and of 2.5-3 micron band as well as off peak band (guard). The findings of this study refer also to Missile warning systems (MWS) efficacy, in terms of operational value. We also present a new approach for tunable filter to such sensor.

  18. Implementation of a single sign-on system between practice, research and learning systems.

    Science.gov (United States)

    Purkayastha, Saptarshi; Gichoya, Judy W; Addepally, Siva Abhishek

    2017-03-29

    Multiple specialized electronic medical systems are utilized in the health enterprise. Each of these systems has their own user management, authentication and authorization process, which makes it a complex web for navigation and use without a coherent process workflow. Users often have to remember multiple passwords, login/logout between systems that disrupt their clinical workflow. Challenges exist in managing permissions for various cadres of health care providers. This case report describes our experience of implementing a single sign-on system, used between an electronic medical records system and a learning management system at a large academic institution with an informatics department responsible for student education and a medical school affiliated with a hospital system caring for patients and conducting research. At our institution, we use OpenMRS for research registry tracking of interventional radiology patients as well as to provide access to medical records to students studying health informatics. To provide authentication across different users of the system with different permissions, we developed a Central Authentication Service (CAS) module for OpenMRS, released under the Mozilla Public License and deployed it for single sign-on across the academic enterprise. The module has been in implementation since August 2015 to present, and we assessed usability of the registry and education system before and after implementation of the CAS module. 54 students and 3 researchers were interviewed. The module authenticates users with appropriate privileges in the medical records system, providing secure access with minimal disruption to their workflow. No passwords requests were sent and users reported ease of use, with streamlined workflow. The project demonstrates that enterprise-wide single sign-on systems should be used in healthcare to reduce complexity like "password hell", improve usability and user navigation. We plan to extend this to work with other

  19. Differential actions of dizocilpine (MK-801) on the mesolimbic and mesocortical dopamine systems: role of neuronal activity.

    Science.gov (United States)

    Mathé, J M; Nomikos, G G; Blakeman, K H; Svensson, T H

    1999-01-01

    The significance of impulse activity in the dopamine neurons of the ventral tegmental area for the dopamine release evoked by systemic administration of the psychotomimetic drug dizocilpine (MK-801) was investigated. Dual probe microdialysis was utilized in freely moving rats implanted with one probe in the ventral tegmental area and a second ipsilateral probe in either the nucleus accumbens or the medial prefrontal cortex. Dialysates were analyzed with high-performance liquid chromatography with electrochemical detection for dopamine. The ventral tegmental area was perfused with the sodium channel blocker tetrodotoxin (1 microM) or vehicle (perfusion solution). A total of 2 h after the onset of tetrodotoxin perfusion of the ventral tegmental area, MK-801 (0.1 mg/kg) was injected subcutaneously. Tetrodotoxin perfusion of the ventral tegmental area significantly reduced dialysate levels of dopamine both in the nucleus accumbens and the medial prefrontal cortex to approximately 30% of baseline. When given alone, MK-801 caused a significant, i.e. 50%, increase in extracellular dopamine levels in the nucleus accumbens, and an even larger increase in the medial prefrontal cortex, i.e. 150%. Tetrodotoxin perfusion of the ventral tegmental area completely blocked the systemic MK-801 induced increase in extracellular concentrations of dopamine in the nucleus accumbens. However, the MK-801-evoked increase in dopamine levels in the medial prefrontal cortex was not significantly affected. Thus, the present results allow the conclusion that basal dopamine output in mesolimbic and mesocortical dopamine nerve terminal regions is predominantly dependent on nerve impulses generated in the ventral tegmental area. Moreover, also the MK-801 evoked dopamine release in the mesolimbic projection is almost entirely dependent on the impulse activity of the dopamine neurons, in agreement with our previous results. However, the MK-801 evoked dopamine release in the mesocortical projection

  20. Inhibition of P2Y6 Signaling in AgRP Neurons Reduces Food Intake and Improves Systemic Insulin Sensitivity in Obesity.

    Science.gov (United States)

    Steculorum, Sophie Marie; Timper, Katharina; Engström Ruud, Linda; Evers, Nadine; Paeger, Lars; Bremser, Stephan; Kloppenburg, Peter; Brüning, Jens Claus

    2017-02-14

    Uridine-diphosphate (UDP) and its receptor P2Y6 have recently been identified as regulators of AgRP neurons. UDP promotes feeding via activation of P2Y6 receptors on AgRP neurons, and hypothalamic UDP concentrations are increased in obesity. However, it remained unresolved whether inhibition of P2Y6 signaling pharmacologically, globally, or restricted to AgRP neurons can improve obesity-associated metabolic dysfunctions. Here, we demonstrate that central injection of UDP acutely promotes feeding in diet-induced obese mice and that acute pharmacological blocking of CNS P2Y6 receptors reduces food intake. Importantly, mice with AgRP-neuron-restricted inactivation of P2Y6 exhibit reduced food intake and fat mass as well as improved systemic insulin sensitivity with improved insulin action in liver. Our results reveal that P2Y6 signaling in AgRP neurons is involved in the onset of obesity-associated hyperphagia and systemic insulin resistance. Collectively, these experiments define P2Y6 as a potential target to pharmacologically restrict both feeding and systemic insulin resistance in obesity. Copyright © 2017 Max Planck Institute for Metabolism Research. Published by Elsevier Inc. All rights reserved.

  1. Pioneer neurons of the antennal nervous system project to protocerebral pioneers in the grasshopper Schistocerca gregaria.

    Science.gov (United States)

    Boyan, George; Ehrhardt, Erica

    2015-11-01

    The twin nerve tracts of the antenna of the grasshopper Schistocerca gregaria are established early in embryogenesis by sibling pairs of pioneers which delaminate from the epithelium into the lumen at the antennal tip. These cells can be uniquely identified via their co-expression of the neuronal labels horseradish peroxidase and the lipocalin Lazarillo. The apical pioneers direct axons toward the antennal base where they encounter guidepost-like cells called base pioneers which transiently express the same molecular labels as the apical pioneers. To what extent the pioneer growth cones then progress into the brain neuropil proper, and what their targets there might be, has remained unclear. In this study, we show that the apical antennal pioneers project centrally beyond the antennal base first into the deutocerebral, and then into the protocerebral brain neuropils. In the protocerebrum, we identify their target circuitry as being identified Lazarillo-positive cells which themselves pioneer the primary axon scaffold of the brain. The apical and base antennal pioneers therefore form part of a molecularly contiguous pathway from the periphery to an identified central circuit of the embryonic grasshopper brain.

  2. [The motor organization of cerebral cortex and the role of the mirror neuron system. Clinical impact for rehabilitation].

    Science.gov (United States)

    Sallés, Laia; Gironès, Xavier; Lafuente, José Vicente

    2015-01-06

    The basic characteristics of Penfield homunculus (somatotopy and unique representation) have been questioned. The existence of a defined anatomo-functional organization within different segments of the same region is controversial. The presence of multiple motor representations in the primary motor area and in the parietal lobe interconnected by parieto-frontal circuits, which are widely overlapped, form a complex organization. Both features support the recovery of functions after brain injury. Regarding the movement organization, it is possible to yield a relevant impact through the understanding of actions and intentions of others, which is mediated by the activation of mirror-neuron systems. The implementation of cognitive functions (observation, image of the action and imitation) from the acute treatment phase allows the activation of motor representations without having to perform the action and it plays an important role in learning motor patterns. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.

  3. Why is your spouse so predictable? Connecting mirror neuron system and self-expansion model of love.

    Science.gov (United States)

    Ortigue, Stephanie; Bianchi-Demicheli, Francesco

    2008-12-01

    The simulation theory assumes we understand actions and intentions of others through a direct matching process. This matching process activates a complex brain network involving the mirror neuron system (MNS), which is self-related and active when one does something or observes someone else acting. Because social psychology admits that mutual intention's understanding grows in close relationship as love grows, we hypothesize that mirror mechanisms take place in love relationships. The similarities between the mirror matching process and the mutual intention's understanding that occurs when two persons are in love suggest that exposure to love might affect functional and neural mechanisms, thus facilitating the understanding of the beloved's intentions. Congruent with our hypothesis, our preliminary results from 38 subjects strongly suggest a significant facilitation effect of love on understanding the intentions of the beloved (as opposed to control stimuli). Based on these phenomenological, and neurofunctional findings we suggest that the mirror mechanisms are involved in the facilitation effects of love for understanding intentions, and might further be extended to any types of love (e.g., passionate love, maternal love). Love experiences are important not only to the beloved himself, but also to any societal, cultural, and institutional patterns that relate to love. Yet, concerning its subjective character, love experiences are difficult to access. The modern procedures and techniques of socio-cognitive neuroscience make it possible to understand love and self-related experiences not only by the analysis of subjective self-reported questionnaires, but also by approaching the automatic (non-conscious) mirror experiences of love in healthy subjects, and neurological patients with a brain damage within the mirror neuron system. Although the psychology of love is now well admitted, the systematic study of the automatic facilitation effect of love through mirror

  4. OPE3 : A model system for single-molecule transport

    NARCIS (Netherlands)

    Frisenda, R.

    2016-01-01

    In this dissertation, charge-transport through individual organic molecules is investigated. The single molecules are contacted with two-terminal mechanically controllable break junction gold electrodes and their electrical and mechanical behavior studied at room and low temperature.

  5. Corticospinal mirror neurons

    Science.gov (United States)

    Kraskov, A.; Philipp, R.; Waldert, S.; Vigneswaran, G.; Quallo, M. M.; Lemon, R. N.

    2014-01-01

    Here, we report the properties of neurons with mirror-like characteristics that were identified as pyramidal tract neurons (PTNs) and recorded in the ventral premotor cortex (area F5) and primary motor cortex (M1) of three macaque monkeys. We analysed the neurons’ discharge while the monkeys performed active grasp of either food or an object, and also while they observed an experimenter carrying out a similar range of grasps. A considerable proportion of tested PTNs showed clear mirror-like properties (52% F5 and 58% M1). Some PTNs exhibited ‘classical’ mirror neuron properties, increasing activity for both execution and observation, while others decreased their discharge during observation (‘suppression mirror-neurons’). These experiments not only demonstrate the existence of PTNs as mirror neurons in M1, but also reveal some interesting differences between M1 and F5 mirror PTNs. Although observation-related changes in the discharge of PTNs must reach the spinal cord and will include some direct projections to motoneurons supplying grasping muscles, there was no EMG activity in these muscles during action observation. We suggest that the mirror neuron system is involved in the withholding of unwanted movement during action observation. Mirror neurons are differentially recruited in the behaviour that switches rapidly between making your own movements and observing those of others. PMID:24778371

  6. Vibration isolation systems, considered as systems with single degree of freedom

    Directory of Open Access Journals (Sweden)

    Zebilila Mohammed

    2017-01-01

    Full Text Available The research considers and analyzes vibration isolation systems, whose design schemes are single degree of freedom systems, including nonlinear elements - displacement limiter and viscous damper. Presented are calculation formulas in closed form for linear systems in operational modes (for harmonic and impulse loads, algorithms and examples of calculation of linear and nonlinear systems in operational and transient modes. The calculation method and the above dependences are written using the transfer (TF and impulse response functions (IRF of linear dynamical systems and dependencies that determine the relationship between these functions. The effectiveness of 2 options of vibration isolation systems in transient modes is analyzed. There is significant reduction of load from the equipment to the supporting structures in the starting-stopping modes by the use of displacement limiter.

  7. Proton- and ammonium- sensing by histaminergic neurons controlling wakefulness.

    Directory of Open Access Journals (Sweden)

    Yvgenij eYanovsky

    2012-04-01

    Full Text Available Orexinergic and histaminergic neurons in the posterior hypothalamus are involved in the control of arousal. Extracellular levels of acid /CO2 are fundamental physicochemical signals controlling wakefulness and breathing. Acidification excites orexinergic neurons like the chemosensory neurons in the brain stem. Hypercapnia induces c-Fos expression, a marker for increased neuronal activity, in the rat histaminergic tuberomamillary nucleus (TMN, but the mechanisms of this excitation are unknown. Acid-sensing ion channels (ASICs are gated by protons and also by ammonium. Recordings in rat brain slices revealed now that acidification within the physiological range (pH from 7.3 to 7.0 as well as ammonium chloride (5mM excite histaminergic neurons. We detected variable combinations of 4 known types of ASICs in single TMN neurons, along with the pharmacological properties of pH-induced current. At pH 7.0 however, activation of ASICs in TMN neurons was negligible. Block of type I metabotropic glutamate receptors abolished proton- but not ammonium- induced excitation. Mouse TMN neurons were identified within a novel HDC-Cre transgenic reporter mouse line. In contrast to the rat these lacked pH 7.0-induced excitation and showed only a minimal response to the mGluR I agonist DHPG (0.5µM. Ammonium-induced excitation was similar in mouse and rat. Thus glutamate, which is released by glial cells and orexinergic axons amplifies CO2/acid-induced arousal through the recruitment of the histaminergic system in rat but not in mouse. These results are relevant for the understanding of neuronal mechanisms controlling H+/CO2-induced arousal in hepatic encephalopathy and obstructive sleep apnoea. The new HDC-Cre mouse model will be a useful tool for studying the physiological and pathophysiological roles of the histaminergic system.

  8. BlastNeuron for Automated Comparison, Retrieval and Clustering of 3D Neuron Morphologies.

    Science.gov (United States)

    Wan, Yinan; Long, Fuhui; Qu, Lei; Xiao, Hang; Hawrylycz, Michael; Myers, Eugene W; Peng, Hanchuan

    2015-10-01

    Characterizing the identity and types of neurons in the brain, as well as their associated function, requires a means of quantifying and comparing 3D neuron morphology. Presently, neuron comparison methods are based on statistics from neuronal morphology such as size and number of branches, which are not fully suitable for detecting local similarities and differences in the detailed structure. We developed BlastNeuron to compare neurons in terms of their global appearance, detailed arborization patterns, and topological similarity. BlastNeuron first compares and clusters 3D neuron reconstructions based on global morphology features and moment invariants, independent of their orientations, sizes, level of reconstruction and other variations. Subsequently, BlastNeuron performs local alignment between any pair of retrieved neurons via a tree-topology driven dynamic programming method. A 3D correspondence map can thus be generated at the resolution of single reconstruction nodes. We applied BlastNeuron to three datasets: (1) 10,000+ neuron reconstructions from a public morphology database, (2) 681 newly and manually reconstructed neurons, and (3) neurons reconstructions produced using several independent reconstruction methods. Our approach was able to accurately and efficiently retrieve morphologically and functionally similar neuron structures from large morphology database, identify the local common structures, and find clusters of neurons that share similarities in both morphology and molecular profiles.

  9. Single versus Serial Measurements of Neuron-Specific Enolase and Prediction of Poor Neurological Outcome in Persistently Unconscious Patients after Out-Of-Hospital Cardiac Arrest - A TTM-Trial Substudy

    DEFF Research Database (Denmark)

    Wiberg, Sebastian; Hassager, Christian; Stammet, Pascal

    2017-01-01

    of the biomarker neuron-specific enolase (NSE) in combination with other predictors of outcome in patients admitted after out-of-hospital cardiac arrest (OHCA). This study sought to investigate the ability of NSE to predict poor outcome in patients remaining unconscious at day three after OHCA. In addition......, this study sought to investigate if serial NSE measurements add incremental prognostic information compared to a single NSE measurement at 48 hours in this population. METHODS: This study is a post-hoc sub-study of the TTM trial, randomizing OHCA patients to a course of TTM at either 33°C or 36°C. Patients...

  10. Neuroprotective effects of a novel single compound 1-methoxyoctadecan-1-ol isolated from Uncaria sinensis in primary cortical neurons and a photothrombotic ischemia model.

    Directory of Open Access Journals (Sweden)

    Ji Yeon Jang

    Full Text Available We identified a novel neuroprotective compound, 1-methoxyoctadecan-1-ol, from Uncaria sinensis (Oliv. Havil and investigated its effects and mechanisms in primary cortical neurons and in a photothrombotic ischemic model. In primary rat cortical neurons against glutamate-induced neurotoxicity, pretreatment with 1-methoxyoctadecan-1-ol resulted in significantly reduced neuronal death in a dose-dependent manner. In addition, treatment with 1-methoxyoctadecan-1-ol resulted in decreased neuronal apoptotic death, as assessed by nuclear morphological approaches. To clarify the neuroprotective mechanism of 1-methoxyoctadecan-1-ol, we explored the downstream signaling pathways of N-methyl-D-aspartate receptor (NMDAR with calpain activation. Treatment with glutamate leads to early activation of NMDAR, which in turn leads to calpain-mediated cleavage of striatal-enriched protein tyrosine phosphatase (STEP and subsequent activation of p38 mitogen activated protein kinase (MAPK. However, pretreatment with 1-methoxyoctadecan-1-ol resulted in significantly attenuated activation of GluN2B-NMDAR and a decrease in calpain-mediated STEP cleavage, leading to subsequent attenuation of p38 MAPK activation. We confirmed the critical role of p38 MAPK in neuroprotective effects of 1-methoxyoctadecan-1-ol using specific inhibitor SB203580. In the photothrombotic ischemic injury in mice, treatment with 1-methoxyoctadecan-1-ol resulted in significantly reduced infarct volume, edema size, and improved neurological function. 1-methoxyoctadecan-1-ol effectively prevents cerebral ischemic damage through down-regulation of calpain-mediated STEP cleavage and activation of p38 MAPK. These results suggest that 1-methoxyoctadecan-1-ol showed neuroprotective effects through down-regulation of calpain-mediated STEP cleavage with activation of GluN2B-NMDAR, and subsequent alleviation of p38 MAPK activation. In addition, 1-methoxyoctadecan-1-ol might be a useful therapeutic agent for

  11. Optical measuring system with an interrogator and a polymer-based single-mode fibre optic sensor system

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to an optical measuring system comprising a polymer-based single-mode fibre-optic sensor system (102), an optical interrogator (101), and an optical arrangement (103) interconnecting the optical interrogator (101) and the polymer-based single-mode fibre-optic sensor...... system (102). The invention further relates to an optical interrogator adapted to be connected to a polymer-based single-mode fibre-optic sensor system via an optical arrangement. The interrogator comprises a broadband light source arrangement (104) and a spectrum analysing arrangement which receives...... and analyses light reflected from the polymer-based single- mode fibre-optic sensor system....

  12. The nature of catecholamine-containing neurons in the enteric nervous system in relationship with organogenesis, normal human anatomy and neurodegeneration.

    Science.gov (United States)

    Natale, G; Ryskalin, L; Busceti, C L; Biagioni, F; Fornai, F

    2017-09-01

    The gastrointestinal tract is provided with extrinsic and intrinsic innervation. The extrinsic innervation includes the classic vagal parasympathetic and sympathetic components, with afferent sensitive and efferent secretomotor fibers. The intrinsic innervations is represented by the enteric nervous system (ENS), which is recognized as a complex neural network controlling a variety of cell populations, including smooth muscle cells, mucosal secretory cells, endocrine cells, microvasculature, immune and inflammatory cells. This is finalized to regulate gastrointestinal secretion, absorption and motility. In particular, this network is organized in several plexuses each one providing quite autonomous control of gastrointestinal functions (hence the definition of "second brain"). The similarity between ENS and CNS is further substantiated by the presence of local sensitive pseudo- unipolar ganglionic neurons with both peripheral and central branching which terminate in the enteric wall. A large variety of neurons and neurotransmitters takes part in the ENS. However, the nature of these neurons and their role in the regulation of gastrointestinal functions is debatable. In particular, the available literature reporting the specific nature of catecholamine- containing neurons provides conflicting evidence. This is critical both for understanding the specific role of each catecholamine in the gut and, mostly, to characterize specifically the enteric neuropathology occurring in a variety of diseases. An emphasis is posed on neurodegenerative disorders, such as Parkinson's disease, which is associated with the loss of catecholamine neurons. In this respect, the recognition of the nature of such neurons within the ENS would contribute to elucidate the pathological mechanisms which produce both CNS and ENS degeneration and to achieve more effective therapeutic approaches. Despite a great emphasis is posed on the role of noradrenaline to regulate enteric activities only a few

  13. Noise effects on robust synchronization of a small pacemaker neuronal ensemble via nonlinear controller: electronic circuit design.

    Science.gov (United States)

    Megam Ngouonkadi, Elie Bertrand; Fotsin, Hilaire Bertrand; Kabong Nono, Martial; Louodop Fotso, Patrick Herve

    2016-10-01

    In this paper, we report on the synchronization of a pacemaker neuronal ensemble constituted of an AB neuron electrically coupled to two PD neurons. By the virtue of this electrical coupling, they can fire synchronous bursts of action potential. An external master neuron is used to induce to the whole system the desired dynamics, via a nonlinear controller. Such controller is obtained by a combination of sliding mode and feedback control. The proposed controller is able to offset uncertainties in the synchronized systems. We show how noise affects the synchronization of the pacemaker neuronal ensemble, and briefly discuss its potential benefits in our synchronization scheme. An extended Hindmarsh-Rose neuronal model is used to represent a single cell dynamic of the network. Numerical simulations and Pspice implementation of the synchronization scheme are presented. We found that, the proposed controller reduces the stochastic resonance of the network when its gain increases.

  14. Benefits of a single payment system: case study of Abu Dhabi health system reforms.

    Science.gov (United States)

    Vetter, Philipp; Boecker, Klaus

    2012-12-01

    In 2005 leaders in the wealthy Emirate of Abu Dhabi inherited an health system from their predecessors that was well-intentioned in its historic design, but that did not live up to aspirations in any dimension. First, the Emirate defined a vision to deliver "world-class" quality care in response to citizen's needs. It has since introduced tiered mandatory health insurance for all inhabitants linked to a single standard payment system, which generates accurate data as an invaluable by-product. A newly created independent health system regulator monitors these data and licenses, audits, and inspects all health service professionals, facilities, and insurers accordingly. We analyse these health system reforms using the "Getting Health Reform Right" framework. Our analysis suggests that an integrated set of reforms addressing all reform levers is critical to achieving the outcomes observed. The reform programme has improved access, by giving all residents health cards. The approximate doubling of demand has been matched by flexible supply, with the private sector adding 5 new hospitals and 93 clinics to the health system infrastructure since 2006. The focus on reliable raw-data flows through the single standard payment system functions as a motor for improvement services, innovation, and investment, for instance by allowing payers to 'pay for quality', which may well be applicable in other contexts. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  15. [Mirror neurons].

    Science.gov (United States)

    Rubia Vila, Francisco José

    2011-01-01

    Mirror neurons were recently discovered in frontal brain areas of the monkey. They are activated when the animal makes a specific movement, but also when the animal observes the same movement in another animal. Some of them also respond to the emotional expression of other animals of the same species. These mirror neurons have also been found in humans. They respond to or "reflect" actions of other individuals in the brain and are thought to represent the basis for imitation and empathy and hence the neurobiological substrate for "theory of mind", the potential origin of language and the so-called moral instinct.

  16. ASSESSMENT of POTENTIAL CARBON DIOXIDE-BASED DEMAND CONTROL VENTILATION SYSTEM PERFORMANCE in SINGLE ZONE SYSTEMS

    Science.gov (United States)

    2013-03-21

    requirements of a 400 m3 space in a multiuse facility in South Korea using two types of DCV systems—one CO2-based and the other uses a radio frequency...identification (RFID) device to detect zone occupancy 25 (Jeong et al., 2010). A dedicated outdoor air system supplies ventilation air to the zone...use a known control scheme (ASHRAE, 2010b). Carbon Dioxide Sensor Modeling Case Study 2 While the first case study examines a single multiuse

  17. Integrating Ground System Tools From Multiple Technologies Into a Single System Environment

    Science.gov (United States)

    Ritter, George H.

    2004-01-01

    With rapid technology changes and new and improved development techniques, it becomes extremely difficult to try to add capabilities to existing ground systems without wanting to replace the entire system. Replacing entire systems is not usually cost effective so there is a need to be able to slowly improve systems without long development times that introduce risk due to large amounts of change. The Marshall Space Flight Center s (MSFC) Payload Operations Integration Center (POIC) ground system provides command, telemetry, and payload planning systems in support of the International Space Station. Our systems have continuously evolved with technology changes due to hardware end of life issues, and also due to user requirement changes. As changes have been implemented, we have tried to take advantage of some of the latest technologies while at the same time maintaining certain legacy capabilities that are not cost affective to replace. One of our biggest challenges is to integrate all of these implementations into a single system that is usable, maintainable, and scalable. Another challenge is to provide access to our tools in such a way that users are not aware of all the various implementation methods and tools being used. This approach not only makes our system much more usable, it allows us to continue to migrate capabilities and to add capabilities without impacting system usability. This paper will give an overview of the tools used for MSFC ISS payload operations and show an approach for integrating various technologies into a single environment that is maintainable, flexible, usable, cost effective, and that meets user needs.

  18. Proton- and ammonium-sensing by histaminergic neurons controlling wakefulness.

    Science.gov (United States)

    Yanovsky, Yevgenij; Zigman, Jeffrey M; Kernder, Anna; Bein, Alisa; Sakata, Ichiro; Osborne-Lawrence, Sherri; Haas, Helmut L; Sergeeva, Olga A

    2012-01-01

    The histaminergic neurons in the tuberomamillary nucleus (TMN) of the posterior hypothalamus are involved in the control of arousal. These neurons are sensitive to hypercapnia as has been shown in experiments examining c-Fos expression, a marker for increased neuronal activity. We investigated the mechanisms through which TMN neurons respond to changes in extracellular levels of acid/CO(2). Recordings in rat brain slices revealed that acidification within the physiological range (pH from 7.4 to 7.0), as well as ammonium chloride (5 mM), excite histaminergic neurons. This excitation is significantly reduced by antagonists of type I metabotropic glutamate receptors and abolished by benzamil, an antagonist of acid-sensing ion channels (ASICs) and Na(+)/Ca(2+) exchanger, or by ouabain which blocks Na(+)/K(+) ATPase. We detected variable combinations of 4 known types of ASICs in single TMN neurons, and observed activation of ASICs in single dissociated TMN neurons only at pH lower than 7.0. Thus, glutamate, which is known to be released by glial cells and orexinergic neurons, amplifies the acid/CO(2)-induced activation of TMN neurons. This amplification demands the coordinated function of metabotropic glutamate receptors, Na(+)/Ca(2+) exchanger and Na(+)/K(+) ATPase. We also developed a novel HDC-Cre transgenic reporter mouse line in which histaminergic TMN neurons can be visualized. In contrast to the rat, the mouse histaminergic neurons lacked the pH 7.0-induced excitation and displayed only a minimal response to the mGluR I agonist DHPG (0.5 μM). On the other hand, ammonium-induced excitation was similar in mouse and rat. These results are relevant for the understanding of the neuronal mechanisms controlling acid/CO(2)-induced arousal in hepatic encephalopathy and obstructive sleep apnoea. Moreover, the new HDC-Cre mouse model will be a useful tool for studying the physiological and pathophysiological roles of the histaminergic system.

  19. Central Projection of Antennal Sensory Neurons in the Central Nervous System of the Mirid Bug Apolygus lucorum (Meyer-Dür).

    Science.gov (United States)

    Xie, Gui-Ying; Zhao, Xin-Cheng; Ma, Bai-Wei; Guo, Pei; Li, Guo-Ping; Feng, Hong-Qiang; Wu, Guo-Liang

    2016-01-01

    The mirid bug Apolygus lucorum (Meyer-Dür), a polyphagous pest, is dependent on olfactory cues to locate various host plant species and mates. In this study, we traced the projection pathway of the antennal sensory neurons and visualized their projection patterns in the central nervous system of A. lucorum through confocal microscopy and digital reconstructions. We also examined the glomerular organization of the primary olfactory center of the brain, the antennal lobe, and created a three-dimensional model of the glomeruli. We found that the axons of the sensory neurons project into the brain via the ipsilateral antennal nerve, and descend further into the gnathal ganglion, prothoracic ganglion, mesothoracic ganglion, and metathoracic ganglion, and reach as far as to the abdominal ganglion. Such a projection pattern indicates that antennal sensory neurons of A. lucorum may be potentially directly connected to motor neurons. The antennal lobe, however, is the major target area of antennal sensory neurons. The antennal lobe is composed of a large number of glomeruli, i.e. 70-80 glomeruli in one AL of A. lucorum. The results of this study which provide information about the basic anatomical arrangement of the brain olfactory center of A. lucorum, are important for further investigations of chemosensory encoding mechanisms of the mirid bug.

  20. Central Projection of Antennal Sensory Neurons in the Central Nervous System of the Mirid Bug Apolygus lucorum (Meyer-Dür.

    Directory of Open Access Journals (Sweden)

    Gui-Ying Xie

    Full Text Available The mirid bug Apolygus lucorum (Meyer-Dür, a polyphagous pest, is dependent on olfactory cues to locate various host plant species and mates. In this study, we traced the projection pathway of the antennal sensory neurons and visualized their projection patterns in the central nervous system of A. lucorum through confocal microscopy and digital reconstructions. We also examined the glomerular organization of the primary olfactory center of the brain, the antennal lobe, and created a three-dimensional model of the glomeruli. We found that the axons of the sensory neurons project into the brain via the ipsilateral antennal nerve, and descend further into the gnathal ganglion, prothoracic ganglion, mesothoracic ganglion, and metathoracic ganglion, and reach as far as to the abdominal ganglion. Such a projection pattern indicates that antennal sensory neurons of A. lucorum may be potentially directly connected to motor neurons. The antennal lobe, however, is the major target area of antennal sensory neurons. The antennal lobe is composed of a large number of glomeruli, i.e. 70-80 glomeruli in one AL of A. lucorum. The results of this study which provide information about the basic anatomical arrangement of the brain olfactory center of A. lucorum, are important for further investigations of chemosensory encoding mechanisms of the mirid bug.

  1. Mapping of neurons in the central nervous system of the guinea pig by use of antisera specific to the molluscan neuropeptide FMRFamide

    DEFF Research Database (Denmark)

    Triepel, J; Grimmelikhuijzen, C J

    1984-01-01

    Immunoreactive neurons were mapped in the central nervous system of colchicine-treated and untreated guinea pigs with the use of two antisera to the molluscan neuropeptide FMRFamide. These antisera were especially selected for their incapability to react with peptides of the pancreatic polypeptide...

  2. Estrogen receptor-alpha and -beta immunoreactive neurons in the brainstem and spinal cord of male and female mice : Relationships to monoaminergic, cholinergic, and spinal projection systems

    NARCIS (Netherlands)

    VanderHorst, VGJM; Gustafsson, JA; Ulfhake, B

    2005-01-01

    For many populations of estrogen-sensitive neurons it remains unknown how they are associated with central nervous system circuitries that mediate estrogen-induced modulation of behavioral components. With the use of double-labeling immunohistochemistry and tracing techniques, the relationships of

  3. The influence of aging on the number of neurons and levels of non-phosporylated neurofilament proteins in the central auditory system of rats

    Czech Academy of Sciences Publication Activity Database

    Burianová, Jana; Ouda, Ladislav; Syka, Josef

    2015-01-01

    Roč. 7, Mar 11 (2015), s. 27 ISSN 1663-4365 R&D Projects: GA ČR(CZ) GAP304/12/1342; GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:68378041 Keywords : SMI-32 * neurofilaments * number of neurons * aging * auditory system Subject RIV: FF - HEENT, Dentistry Impact factor: 4.348, year: 2015

  4. The biophysics of neuronal growth

    International Nuclear Information System (INIS)

    Franze, Kristian; Guck, Jochen

    2010-01-01

    For a long time, neuroscience has focused on biochemical, molecular biological and electrophysiological aspects of neuronal physiology and pathology. However, there is a growing body of evidence indicating the importance of physical stimuli for neuronal growth and development. In this review we briefly summarize the historical background of neurobiophysics and give an overview over the current understanding of neuronal growth from a physics perspective. We show how biophysics has so far contributed to a better understanding of neuronal growth and discuss current inconsistencies. Finally, we speculate how biophysics may contribute to the successful treatment of lesions to the central nervous system, which have been considered incurable until very recently.

  5. Shape, connectedness and dynamics in neuronal networks.

    Science.gov (United States)

    Comin, Cesar Henrique; da Fontoura Costa, Luciano

    2013-11-15

    The morphology of neurons is directly related to several aspects of the nervous system, including its connectedness, health, development, evolution, dynamics and, ultimately, behavior. Such interplays of the neuronal morphology can be understood within the more general shape-function paradigm. The current article reviews, in an introductory way, some key issues regarding the role of neuronal morphology in the nervous system, with emphasis on works developed in the authors' group. The following topics are addressed: (a) characterization of neuronal shape; (b) stochastic synthesis of neurons and neuronal systems; (c) characterization of the connectivity of neuronal networks by using complex networks concepts; and (d) investigations of influences of neuronal shape on network dynamics. The presented concepts and methods are useful also for several other multiple object systems, such as protein-protein interaction, tissues, aggregates and polymers. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Substrates for Neuronal Cotransmission With Neuropeptides and Small Molecule Neurotransmitters in Drosophila

    Science.gov (United States)

    Nässel, Dick R.

    2018-01-01

    It has been known for more than 40 years that individual neurons can produce more than one neurotransmitter and that neuropeptides often are colocalized with small molecule neurotransmitters (SMNs). Over the years much progress has been made in understanding the functional consequences of cotransmission in the nervous system of mammals. There are also some excellent invertebrate models that have revealed roles of coexpressed neuropeptides and SMNs in increasing complexity, flexibility, and dynamics in neuronal signaling. However, for the fly Drosophila there are surprisingly few functional studies on cotransmission, although there is ample evidence for colocalization of neuroactive compounds in neurons of the CNS, based both on traditional techniques and novel single cell transcriptome analysis. With the hope to trigger interest in initiating cotransmission studies, this review summarizes what is known about Drosophila neurons and neuronal circuits where different neuropeptides and SMNs are colocalized. Coexistence of neuroactive substances has been recorded in different neuron types such as neuroendocrine cells, interneurons, sensory cells and motor neurons. Some of the circuits highlighted here are well established in the analysis of learning and memory, circadian clock networks regulating rhythmic activity and sleep, as well as neurons and neuroendocrine cells regulating olfaction, nociception, feeding, metabolic homeostasis, diuretic functions, reproduction, and developmental processes. One emerging trait is the broad role of short neuropeptide F in cotransmission and presynaptic facilitation in a number of different neuronal circuits. This review also discusses the functional relevance of coexisting peptides in the intestine. Based on recent single cell transcriptomics data, it is likely that the neuronal systems discussed in this review are just a fraction of the total set of circuits where cotransmission occurs in Drosophila. Thus, a systematic search for

  7. Substrates for Neuronal Cotransmission With Neuropeptides and Small Molecule Neurotransmitters in Drosophila

    Directory of Open Access Journals (Sweden)

    Dick R. Nässel

    2018-03-01

    Full Text Available It has been known for more than 40 years that individual neurons can produce more than one neurotransmitter and that neuropeptides often are colocalized with small molecule neurotransmitters (SMNs. Over the years much progress has been made in understanding the functional consequences of cotransmission in the nervous system of mammals. There are also some excellent invertebrate models that have revealed roles of coexpressed neuropeptides and SMNs in increasing complexity, flexibility, and dynamics in neuronal signaling. However, for the fly Drosophila there are surprisingly few functional studies on cotransmission, although there is ample evidence for colocalization of neuroactive compounds in neurons of the CNS, based both on traditional techniques and novel single cell transcriptome analysis. With the hope to trigger interest in initiating cotransmission studies, this review summarizes what is known about Drosophila neurons and neuronal circuits where different neuropeptides and SMNs are colocalized. Coexistence of neuroactive substances has been recorded in different neuron types such as neuroendocrine cells, interneurons, sensory cells and motor neurons. Some of the circuits highlighted here are well established in the analysis of learning and memory, circadian clock networks regulating rhythmic activity and sleep, as well as neurons and neuroendocrine cells regulating olfaction, nociception, feeding, metabolic homeostasis, diuretic functions, reproduction, and developmental processes. One emerging trait is the broad role of short neuropeptide F in cotransmission and presynaptic facilitation in a number of different neuronal circuits. This review also discusses the functional relevance of coexisting peptides in the intestine. Based on recent single cell transcriptomics data, it is likely that the neuronal systems discussed in this review are just a fraction of the total set of circuits where cotransmission occurs in Drosophila. Thus, a

  8. Load compensation for single phase system using series active filter

    African Journals Online (AJOL)

    user

    Abstract. The exponentially rising application of power electronics based appliances in Domestic Consumer Voltage Distribution. System (DCVDS) has enhanced power quality problems even at the lowest voltage level in distribution system. Starting from transmission system to low voltage distribution system, quite a good ...

  9. Functional roles of rhythmic neuronal activity in the human visual and somatosensory system

    NARCIS (Netherlands)

    Bauer, M.

    2008-01-01

    The main aim of this thesis was to investigate the functional role of synchronised oscillations in sensory systems of the human brain. In the first study we found high-frequency gamma-oscillations in the somatosensory system in response to mechanical tactile stimulation. These stimulus-related

  10. Noisy Neurons

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 1. Noisy Neurons: Hodgkin-Huxley Model and Stochastic Variants. Shurti Paranjape. General Article Volume 20 Issue 1 January 2015 pp 34-43. Fulltext. Click here to view fulltext PDF. Permanent link:

  11. Morphine decreases enteric neuron excitability via inhibition of sodium channels.

    Directory of Open Access Journals (Sweden)

    Tricia H Smith

    Full Text Available Gastrointestinal peristalsis is significantly dependent on the enteric nervous system. Constipation due to reduced peristalsis is a major side-effect of morphine, which limits the chronic usefulness of this excellent pain reliever in man. The ionic basis for the inhibition of enteric neuron excitability by morphine is not well characterized as previous studies have mainly utilized microelectrode recordings from whole mount myenteric plexus preparations in guinea pigs. Here we have developed a Swiss-Webster mouse myenteric neuron culture and examined their electrophysiological properties by patch-clamp techniques and determined the mechanism for morphine-induced decrease in neuronal excitability. Isolated neurons in culture were confirmed by immunostaining with pan-neuronal marker, β-III tubulin and two populations were identified by calbindin and calretinin staining. Distinct neuronal populations were further identified based on the presence and absence of an afterhyperpolarization (AHP. Cells with AHP expressed greater density of sodium currents. Morphine (3 µM significantly reduced the amplitude of the action potential, increased the threshold for spike generation but did not alter the resting membrane potential. The decrease in excitability resulted from inhibition of sodium currents. In the presence of morphine, the steady-state voltage dependence of Na channels was shifted to the left with almost 50% of channels unavailable for activation from hyperpolarized potentials. During prolonged exposure to morphine (two hours, action potentials recovered, indicative of the development of tolerance in single enteric neurons. These results demonstrate the feasibility of isolating mouse myenteric neurons and establish sodium channel inhibition as a mechanism for morphine-induced decrease in neuronal excitability.

  12. Overview of Single-Phase Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede

    2015-01-01

    A still booming installation of solar photovoltaic (PV) systems has been witnessed worldwide. It is mainly driven by the demand of “clean” power generation. Grid-connected PV systems will become an even active player in the future mixed power systems, which are linked by a vast of power electronics...

  13. Overview of Single-Phase Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede

    2017-01-01

    A continuous booming installation of solar photovoltaic (PV) systems has been witnessed worldwide. It is mainly driven by the imperative demand of “clean” power generation from renewables. Grid-connected PV systems will thus become an even more active player in the future mixed power systems, which...

  14. Customized Pull Systems for Single-Product Flow Lines

    NARCIS (Netherlands)

    Gaury, E.G.A.; Kleijnen, J.P.C.; Pierreval, H.

    1998-01-01

    Traditionally pull production systems are managed through classic control systems such as Kanban, Conwip, or Base stock, but this paper proposes ‘customized’ pull control. Customization means that a given production line is managed through a pull control system that in principle connects each stage

  15. Feeding-dependent activation of enteric cells and sensory neurons by lymphatic fluid: evidence for a neurolymphocrine system.

    Science.gov (United States)

    Poole, Daniel P; Lee, Mike; Tso, Patrick; Bunnett, Nigel W; Yo, Sek Jin; Lieu, TinaMarie; Shiu, Amy; Wang, Jen-Chywan; Nomura, Daniel K; Aponte, Gregory W

    2014-04-15

    Lymphatic fluid is a plasma filtrate that can be viewed as having biological activity through the passive accumulation of molecules from the interstitial fluid. The possibility that lymphatic fluid is part of an active self-contained signaling process that parallels the endocrine system, through the activation of G-protein coupled receptors (GPCR), has remained unexplored. We show that the GPCR lysophosphatidic acid 5 (LPA5) is found in sensory nerve fibers expressing calcitonin gene-related peptide (CGRP) that innervate the lumen of lymphatic lacteals and enteric nerves. Using LPA5 as a model for nutrient-responsive GPCRs present on sensory nerves, we demonstrate that dietary protein hydrolysate (peptone) can induce c-Fos expression in enterocytes and nerves that express LPA5. Mesenteric lymphatic fluid (MLF) mobilizes intracellular calcium in cell models expressing LPA5 upon feeding in a time- and dose-dependent manner. Primary cultured neurons of the dorsal root ganglia expressing CGRP are activated by MLF, which is enhanced upon LPA5 overexpression. Activation is independent of the known LPA5 agonists, lysophosphatidic acid and farnesyl pyrophosphate. These data bring forth a pathway for the direct stimulation of sensory nerves by luminal contents and interstitial fluid. Thus, by activating LPA5 on sensory nerves, MLF provides a means for known and yet to be identified constituents of the interstitial fluid to act as signals to comprise a "neurolymphocrine" system.

  16. Improved system identification using artificial neural networks and analysis of individual differences in responses of an identified neuron.

    Science.gov (United States)

    Costalago Meruelo, Alicia; Simpson, David M; Veres, Sandor M; Newland, Philip L

    2016-03-01

    Mathematical modelling is used routinely to understand the coding properties and dynamics of responses of neurons and neural networks. Here we analyse the effectiveness of Artificial Neural Networks (ANNs) as a modelling tool for motor neuron responses. We used ANNs to model the synaptic responses of an identified motor neuron, the fast extensor motor neuron, of the desert locust in response to displacement of a sensory organ, the femoral chordotonal organ, which monitors movements of the tibia relative to the femur of the leg. The aim of the study was threefold: first to determine the potential value of ANNs as tools to model and investigate neural networks, second to understand the generalisation properties of ANNs across individuals and to different input signals and third, to understand individual differences in responses of an identified neuron. A metaheuristic algorithm was developed to design the ANN architectures. The performance of the models generated by the ANNs was compared with those generated through previous mathematical models of the same neuron. The results suggest that ANNs are significantly better than LNL and Wiener models in predicting specific neural responses to Gaussian White Noise, but not significantly different when tested with sinusoidal inputs. They are also able to predict responses of the same neuron in different individuals irrespective of which animal was used to develop the model, although notable differences between some individuals were evident. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. A novel approach to map induced activation of neuronal networks using chemogenetics and functional neuroimaging in rats: A proof-of-concept study on the mesocorticolimbic system.

    Science.gov (United States)

    Roelofs, Theresia J M; Verharen, Jeroen P H; van Tilborg, Geralda A F; Boekhoudt, Linde; van der Toorn, Annette; de Jong, Johannes W; Luijendijk, Mieneke C M; Otte, Willem M; Adan, Roger A H; Dijkhuizen, Rick M

    2017-08-01

    Linking neural circuit activation at whole-brain level to neuronal activity at cellular level remains one of the major challenges in neuroscience research. We set up a novel functional neuroimaging approach to map global effects of locally induced activation of specific midbrain projection neurons using chemogenetics (Designer Receptors Exclusively Activated by Designer Drugs (DREADD)-technology) combined with pharmacological magnetic resonance imaging (phMRI) in the rat mesocorticolimbic system. Chemogenetic activation of DREADD-targeted mesolimbic or mesocortical pathways, i.e. projections from the ventral tegmental area (VTA) to the nucleus accumbens (NAcc) or medial prefrontal cortex (mPFC), respectively, induced significant blood oxygenation level-dependent (BOLD) responses in areas with DREADD expression, but also in remote defined neural circuitry without DREADD expression. The time-course of brain activation corresponded with the behavioral output measure, i.e. locomotor (hyper)activity, in the mesolimbic pathway-targeted group. Chemogenetic activation specifically increased neuronal activity, whereas functional connectivity assessed with resting state functional MRI (rs-fMRI) remained stable. Positive and negative BOLD responses distinctively reflected simultaneous ventral pallidum activation and substantia nigra pars reticulata deactivation, respectively, demonstrating the concept of mesocorticolimbic network activity with concurrent activation of the direct and indirect pathways following stimulation of specific midbrain projection neurons. The presented methodology provides straightforward and widely applicable opportunities to elucidate relationships between local neuronal activity and global network activity in a controllable manner, which will increase our understanding of the functioning and dysfunctioning of large-scale neuronal networks in health and disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Multiple Identified Neurons and Peripheral Nerves Innervating the Prothoracic Defense Glands in Stick Insects Reveal Evolutionary Conserved and Novel Elements of a Chemical Defense System

    Directory of Open Access Journals (Sweden)

    Johannes Strauß

    2017-11-01

    Full Text Available The defense glands in the dorsal prothorax are an important autapomorphic trait of stick insects (Phasmatodea. Here, we study the functional anatomy and neuronal innervation of the defense glands in Anisomorpha paromalus (Westwood, 1859 (Pseudophasmatinae, a species which sprays its defense secretions when disturbed or attacked. We use a neuroanatomical approach to identify the nerves innervating the gland muscles and the motoneurons with axons in the different nerves. The defense gland is innervated by nerves originating from two segments, the subesophageal ganglion (SOG, and the prothoracic ganglion. Axonal tracing confirms the gland innervation via the anterior subesophageal nerve, and two intersegmental nerves, the posterior subesophageal nerve, and the anterior prothoracic nerve. Axonal tracing of individual nerves reveals eight identified neuron types in the subesophageal or prothoracic ganglion. The strongest innervating nerve of the gland is the anterior subesophageal nerve, which also supplies dorsal longitudinal thorax muscles (neck muscles by separate nerve branches. Tracing of individual nerve branches reveals different sets of motoneurons innervating the defense gland (one ipsilateral and one contralateral subesophageal neuron or the neck muscle (ventral median neurons. The ipsilateral and contralateral subesophageal neurons have no homologs in related taxa like locusts and crickets, and thus evolved within stick insects with the differentiation of the defense glands. The overall innervation pattern suggests that the longitudinal gland muscles derived from dorsal longitudinal neck muscles. In sum, the innervating nerves for dorsal longitudinal muscles are conserved in stick insects, while the neuronal control system was specialized with conserved motoneurons for the persisting neck muscles, and evolutionarily novel subesophageal and prothoracic motoneurons innervating the defense gland.

  19. Isolation of specific neurons from C. elegans larvae for gene expression profiling.

    Directory of Open Access Journals (Sweden)

    W Clay Spencer

    Full Text Available The simple and well-described structure of the C. elegans nervous system offers an unprecedented opportunity to identify the genetic programs that define the connectivity and function of individual neurons and their circuits. A correspondingly precise gene expression map of C. elegans neurons would facilitate the application of genetic methods toward this goal. Here we describe a powerful new approach, SeqCeL (RNA-Seq of C. elegans cells for producing gene expression profiles of specific larval C. elegans neurons.We have exploited available GFP reporter lines for FACS isolation of specific larval C. elegans neurons for RNA-Seq analysis. Our analysis showed that diverse classes of neurons are accessible to this approach. To demonstrate the applicability of this strategy to rare neuron types, we generated RNA-Seq profiles of the NSM serotonergic neurons that occur as a single bilateral pair of cells in the C. elegans pharynx. These data detected >1,000 NSM enriched transcripts, including the majority of previously known NSM-expressed genes.This work offers a simple and robust protocol for expression profiling studies of post-embryonic C. elegans neurons and thus provides an important new method for identifying candidate genes for key roles in neuron-specific development and function.

  20. Modeling Spike-Train Processing in the Cerebellum Granular Layer and Changes in Plasticity Reveal Single Neuron Effects in Neural Ensembles

    Directory of Open Access Journals (Sweden)

    Chaitanya Medini

    2012-01-01

    Full Text Available The cerebellum input stage has been known to perform combinatorial operations on input signals. In this paper, two types of mathematical models were used to reproduce the role of feed-forward inhibition and computation in the granular layer microcircuitry to investigate spike train processing. A simple spiking model and a biophysically-detailed model of the network were used to study signal recoding in the granular layer and to test observations like center-surround organization and time-window hypothesis in addition to effects of induced plasticity. Simulations suggest that simple neuron models may be used to abstract timing phenomenon in large networks, however detailed models were needed to reconstruct population coding via evoked local field potentials (LFP and for simulating changes in synaptic plasticity. Our results also indicated that spatio-temporal code of the granular network is mainly controlled by the feed-forward inhibition from the Golgi cell synapses. Spike amplitude and total number of spikes were modulated by LTP and LTD. Reconstructing granular layer evoked-LFP suggests that granular layer propagates the nonlinearities of individual neurons. Simulations indicate that granular layer network operates a robust population code for a wide range of intervals, controlled by the Golgi cell inhibition and is regulated by the post-synaptic excitability.

  1. Micro fluidic System for Culturing and Monitoring of Neuronal Cells and Tissue

    DEFF Research Database (Denmark)

    Bakmand, Tanya; Waagepetersen, Helle S.

    The aim of this Ph.D. project was to combine experience within cell and tissue culturing, electrochemistry and microfabrication in order to develop an in vivo-like fluidic culturing platform, challenging the traditional culturing methods. The first goal was to develope a fluidic system for cultur...

  2. Stochastic neuron models

    CERN Document Server

    Greenwood, Priscilla E

    2016-01-01

    This book describes a large number of open problems in the theory of stochastic neural systems, with the aim of enticing probabilists to work on them. This includes problems arising from stochastic models of individual neurons as well as those arising from stochastic models of the activities of small and large networks of interconnected neurons. The necessary neuroscience background to these problems is outlined within the text, so readers can grasp the context in which they arise. This book will be useful for graduate students and instructors providing material and references for applying probability to stochastic neuron modeling. Methods and results are presented, but the emphasis is on questions where additional stochastic analysis may contribute neuroscience insight. An extensive bibliography is included. Dr. Priscilla E. Greenwood is a Professor Emerita in the Department of Mathematics at the University of British Columbia. Dr. Lawrence M. Ward is a Professor in the Department of Psychology and the Brain...

  3. Self-organization of spiking neurons using action potential timing.

    Science.gov (United States)

    Ruf, B; Schmitt, M

    1998-01-01

    We propose a mechanism for unsupervised learning in networks of spiking neurons which is based on the timing of single firing events. Our results show that a topology preserving behavior quite similar to that of Kohonen's self-organizing map can be achieved using temporal coding. In contrast to previous approaches, which use rate coding, the winner among competing neurons can be determined fast and locally. Our model is a further step toward a more realistic description of unsupervised learning in biological neural systems. Furthermore, it may provide a basis for fast implementations in pulsed VLSI (very large scale integration).

  4. [Responses of bat cochlear nucleus neurons to ultrasonic stimuli].

    Science.gov (United States)

    Vasil'ev, A G; Grigor'eva, T I

    1977-01-01

    The responses of cochlear nuclei single units in Vespertilionidae and Rhinolophidae were studied by means of ultrasound stimuli of different frequencies. Most neurons were found to have one or two complementary response areas with best frequencies equal to 1/2 and 1/3 of the highest one (which we regard as the basic best frequency). In Vespertilionidae which emit frequency-modulated signals some neurons have complementary areas with upper thresholds. The latency of responses do not correlate with the stimulus frequency. This suggests that there is no correlative reception of echosignals at this level of auditory system in bats.

  5. Design of tracking photovoltaic systems with a single vertical axis

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzo, E. [Ciudad Universitaria, Madrid (Spain). Instituto de Energeia Solar; Perez, M. [Pol Industrial La Nava, Naavarrsa (Spain). Alternativas Energeticas Solares; Ezpeleta, A. [Energia Hidroelectrica Navarra, Pamplona (Spain); Acedo, J. [Ingeteam SA, Pamplona (Spain)

    2002-07-01

    Solar tracking is used in large grid-connected photovoltaic plants to maximise solar radiation collection and, hence, to reduce the cost of delivered electricity. In particular, single vertical axis tracking, also called azimuth tracking, allows for energy gains up to 40%, compared with optimally tilted fully static arrays. This paper examines the theoretical aspects associated with the design of azimuth tracking, taking into account shadowing between different trackers and back-tracking features. Then, the practical design of the trackers installed at the 1.4 MW Tudela PV plant is presented and discussed. Finally, this tracking alternative is compared with the more conventional fully stationary approach. (author)

  6. The dopaminergic neurons of the A11 system in RLS autopsy brains appear normal.

    Science.gov (United States)

    Earley, Christopher J; Allen, Richard P; Connor, James R; Ferrucci, Luigi; Troncoso, Juan

    2009-12-01

    Although the positive clinical benefits of levodopa have fostered the concept of an abnormality in the dopaminergic system in Restless Legs Syndrome (RLS), research into the nigro-striatal (PET/SPECT studies) or tubero-infundibular (i.e., prolactin secretion) dopaminergic pathways has shown limited positive results. Some research groups have focused on the A11 dopaminergic system in the hypothalamus as this is the primary source of descending dopaminergic input into the spinal cord, an area of the nervous system believed by some investigators to be involved in RLS symptom development. Some investigators have now proposed lesioning or toxin-inhibiting the A11 system as a model of RLS, even though there has been no clear clinical or autopsy data to suggest that RLS is a neurodegenerative disorder. In this study, the A11 cell bodies were identified in 6 RLS and 6 aged-matched control autopsy cases. Cells were stained for tyrosine hydroxylase (TH), and stereological measure of the individual TH (+) cell volume was made. Regional assessment of gliosis as assessed by immunostaining for glial fibrillary acidic protein (GFAP) was made in the surrounding tissue. General histological staining was also performed on the tissue. This study found no significant difference between RLS or control cases on any measure used: TH (+) cell volume, fractional GFAP staining, or general histological examination. Nor was there histological indication of any significant inflammation or concurrent ongoing pathology in these RLS cases. The findings do not support the concept of dramatic cell loss or of a neurodegenerative process in the A11 hypothalamic region of patients with RLS. However, that does not exclude the possibility that the A11 system is involved in RLS symptoms. Changes at the cellular level in dopaminergic metabolism or at the distal synapse with changes in receptors or transporters were not evaluated in this study.

  7. Neuron-glia crosstalk in the autonomic nervous system and its possible role in the progression of metabolic syndrome: A new hypothesis

    Directory of Open Access Journals (Sweden)

    RODRIGO eDEL RIO

    2015-12-01

    Full Text Available Metabolic syndrome (MS is characterized by the following physiological alterations: increase in abdominal fat, insulin resistance, high concentration of triglycerides, low levels of HDL, high blood pressure and a generalized inflammatory state. One of the pathophysiological hallmarks of this syndrome is the presence of neurohumoral activation, which involve autonomic imbalance associated to hyperactivation of the sympathetic nervous system. Indeed, enhanced sympathetic drive has been linked to the development of endothelial dysfunction, hypertension, stroke, myocardial infarct and obstructive sleep apnea. Glial cells, the most abundant cells in the central nervous system, control synaptic transmission and regulate neuronal function by releasing bioactive molecules called gliotransmitters. Recently, a new family of plasma membrane channels called hemichannels has been described to allow the release of gliotransmitters and modulate neuronal firing rate. Moreover, a growing amount of evidence indicates that uncontrolled hemichannel opening could impair glial cell functions, affecting synaptic transmission and neuronal survival. Given that glial cell functions are disturbed in various metabolic diseases, we hypothesize that progression of MS may relies on hemichannel-dependent impairment of glial-to-neuron communication by a mechanism related to dysfunction of inflammatory response and mitochondrial metabolism of glial cells. In this manuscript, we discuss how glial cells may contribute to the enhanced sympathetic drive observed in MS, and shed light about the possible role of hemichannels in this process.

  8. Neuron-Glia Crosstalk in the Autonomic Nervous System and Its Possible Role in the Progression of Metabolic Syndrome: A New Hypothesis.

    Science.gov (United States)

    Del Rio, Rodrigo; Quintanilla, Rodrigo A; Orellana, Juan A; Retamal, Mauricio A

    2015-01-01

    Metabolic syndrome (MS) is characterized by the following physiological alterations: increase in abdominal fat, insulin resistance, high concentration of triglycerides, low levels of HDL, high blood pressure, and a generalized inflammatory state. One of the pathophysiological hallmarks of this syndrome is the presence of neurohumoral activation, which involve autonomic imbalance associated to hyperactivation of the sympathetic nervous system. Indeed, enhanced sympathetic drive has been linked to the development of endothelial dysfunction, hypertension, stroke, myocardial infarct, and obstructive sleep apnea. Glial cells, the most abundant cells in the central nervous system, control synaptic transmission, and regulate neuronal function by releasing bioactive molecules called gliotransmitters. Recently, a new family of plasma membrane channels called hemichannels has been described to allow the release of gliotransmitters and modulate neuronal firing rate. Moreover, a growing amount of evidence indicates that uncontrolled hemichannel opening could impair glial cell functions, affecting synaptic transmission and neuronal survival. Given that glial cell functions are disturbed in various metabolic diseases, we hypothesize that progression of MS may relies on hemichannel-dependent impairment of glial-to-neuron communication by a mechanism related to dysfunction of inflammatory response and mitochondrial metabolism of glial cells. In this manuscript, we discuss how glial cells may contribute to the enhanced sympathetic drive observed in MS, and shed light about the possible role of hemichannels in this process.

  9. Efficient Integration of Coupled Electrical-chemical Systems in Multiscale Neuronal Simulations

    Directory of Open Access Journals (Sweden)

    Ekaterina Brocke

    2016-09-01

    Full Text Available Multiscale modeling and simulations in neuroscience is gaining scientific attention due to its growing importance and unexplored capabilities. For instance, it can help to acquire better understanding of biological phenomena that have important features at multiple scales of time and space. This includes synaptic plasticity, memory formation and modulation, homeostasis. There are several ways to organize multiscale simulations depending on the scientific problem and the system to be modeled. One of the possibilities is to simulate different components of a multiscale system simultaneously and exchange data when required. The latter may become a challenging task for several reasons. One of them is that the components of a multiscale system usually span different spatial and temporal scales, such that rigorous analysis of possible coupling solutions is required. For certain classes of problems a number of coupling mechanisms have been proposed and successfully used. However, a strict mathematical theory is missing in many cases. Recent work in the field has not so far investigated artifacts that may arise during coupled integration of different approximation methods. Moreover, the coupling of widely used numerical fixed step size solvers may lead to unexpected inefficiency. In this paper we address the question of possible numerical artifacts that can arise during the integration of a coupled system. We develop an efficient strategy to couple the components of a multiscale test system. We introduce an efficient coupling method based on the second-order backward differentiation formula numerical approximation. The method uses an adaptive step size integration with an error estimation proposed by Skelboe (2000. The method shows a significant advantage over conventional fixed step size solvers used for similar problems. We explore different coupling strategies that define the organization of computations between system components. We study the

  10. Analog VLSI Models of Range-Tuned Neurons in the Bat Echolocation System

    Science.gov (United States)

    Cheely, Matthew; Horiuchi, Timothy

    2003-12-01

    Bat echolocation is a fascinating topic of research for both neuroscientists and engineers, due to the complex and extremely time-constrained nature of the problem and its potential for application to engineered systems. In the bat's brainstem and midbrain exist neural circuits that are sensitive to the specific difference in time between the outgoing sonar vocalization and the returning echo. While some of the details of the neural mechanisms are known to be species-specific, a basic model of reafference-triggered, postinhibitory rebound timing is reasonably well supported by available data. We have designed low-power, analog VLSI circuits to mimic this mechanism and have demonstrated range-dependent outputs for use in a real-time sonar system. These circuits are being used to implement range-dependent vocalization amplitude, vocalization rate, and closest target isolation.

  11. Analog VLSI Models of Range-Tuned Neurons in the Bat Echolocation System

    Directory of Open Access Journals (Sweden)

    Horiuchi Timothy

    2003-01-01

    Full Text Available Bat echolocation is a fascinating topic of research for both neuroscientists and engineers, due to the complex and extremely time-constrained nature of the problem and its potential for application to engineered systems. In the bat's brainstem and midbrain exist neural circuits that are sensitive to the specific difference in time between the outgoing sonar vocalization and the returning echo. While some of the details of the neural mechanisms are known to be species-specific, a basic model of reafference-triggered, postinhibitory rebound timing is reasonably well supported by available data. We have designed low-power, analog VLSI circuits to mimic this mechanism and have demonstrated range-dependent outputs for use in a real-time sonar system. These circuits are being used to implement range-dependent vocalization amplitude, vocalization rate, and closest target isolation.

  12. Profilographic detection system for single-track scanning device

    International Nuclear Information System (INIS)

    Silar, J.; Kula, J.

    1988-01-01

    A profilographic detection system is claimed for diagnosing the renal function by isotope nephrography, and the bladder filling in small children and infants. The configuration described guarantees good position resolution and sensitivity of the detection system. (E.J.). 2 figs

  13. Local and global Hopf bifurcation analysis in a neutral-type neuron system with two delays

    Science.gov (United States)

    Lv, Qiuyu; Liao, Xiaofeng

    2018-03-01

    In recent years, neutral-type differential-difference equations have been applied extensively in the field of engineering, and their dynamical behaviors are more complex than that of the delay differential-difference equations. In this paper, the equations used to describe a neutral-type neural network system of differential difference equation with two delays are studied (i.e. neutral-type differential equations). Firstly, by selecting τ1, τ2 respectively as a parameter, we provide an analysis about the local stability of the zero equilibrium point of the equations, and sufficient conditions of asymptotic stability for the system are derived. Secondly, by using the theory of normal form and applying the theorem of center manifold introduced by Hassard et al., the Hopf bifurcation is found and some formulas for deciding the stability of periodic solutions and the direction of Hopf bifurcation are given. Moreover, by applying the theorem of global Hopf bifurcation, the existence of global periodic solution of the system is studied. Finally, an example is given, and some computer numerical simulations are taken to demonstrate and certify the correctness of the presented results.

  14. Generalized synchronization induced by noise and parameter mismatching in Hindmarsh-Rose neurons

    International Nuclear Information System (INIS)

    Wu Ying; Xu Jianxue; He Daihai; Earn, David J.D.

    2005-01-01

    Synchronization of two simple neuron models has been investigated in many studies. Thresholds for complete synchronization (CS) and phase synchronization (PS) have been obtained for coupling by diffusion or noise. In addition, it has been shown that it is possible for directional diffusion to induce generalized synchronization (GS) in a pair of neuron models even if the neurons are not identical (and differ in a single parameter). We study a system of two uncoupled, nonidentical Hindmarsh-Rose (HR) neurons and show that GS can be achieved by a combination of noise and changing the value of a second parameter in one of the neurons (the second parameter mismatch cancels the first). The significance of this approach will be the greatest in situations where the parameter that is originally mismatched cannot be controlled, but a suitable controllable parameter can be identified

  15. Copenhagen's single system premise prevents a unified view of integer and fractional quantum Hall effect

    CERN Document Server

    Post, E J

    1999-01-01

    This essay presents conclusive evidence of the impermissibility of Copenhagen's single system interpretation of the Schroedinger process. The latter needs to be viewed as a tool exclusively describing phase and orientation randomized ensembles and is not be used for isolated single systems. Asymptotic closeness of single system and ensemble behavior and the rare nature of true single system manifestations have prevented a definitive identification of this Copenhagen deficiency over the past three quarter century. Quantum uncertainty so becomes a basic trade mark of phase and orientation disordered ensembles. The ensuing void of usable single system tools opens a new inquiry for tools without statistical connotations. Three, in part already known, period integrals here identified as flux, charge and action counters emerge as diffeo-4 invariant tools fully compatible with the demands of the general theory of relativity. The discovery of the quantum Hall effect has been instrumental in forcing a distinction betw...

  16. A Ground-Based Analog for CNS Exposure to Space Radiation: A System for Integrating Microbeam Technology and Neuronal Culture

    Data.gov (United States)

    National Aeronautics and Space Administration — Problem Statement: The connection between radiation-induced neuronal damage and deficits in behavior and cellular function is still largely unknown. Previous studies...

  17. A transcranial magnetic stimulation study of the effect of visual orientation on the putative human mirror neuron system

    Science.gov (United States)

    Burgess, Jed D.; Arnold, Sara L.; Fitzgibbon, Bernadette M.; Fitzgerald, Paul B.; Enticott, Peter G.

    2013-01-01

    Mirror neurons are a class of motor neuron that are active during both the performance and observation of behavior, and have been implicated in interpersonal understanding. There is evidence to suggest that the mirror response is modulated by the perspective from which an action is presented (e.g., egocentric or allocentric). Most human research, however, has only examined this when presenting intransitive actions. Twenty-three healthy adult participants completed a transcranial magnetic stimulation experiment that assessed corticospinal excitability whilst viewing transitive hand gestures from both egocentric (i.e., self) and allocentric (i.e., other) viewpoints. Although action observation was associated with increases in corticospinal excitability (reflecting putative human mirror neuron activity), there was no effect of visual perspective. These findings are discussed in the context of contemporary theories of mirror neuron ontogeny, including models concerning associative learning and evolutionary adaptation. PMID:24137125

  18. A transcranial magnetic stimulation study of the effect of visual orientation on the putative human mirror neuron system

    Directory of Open Access Journals (Sweden)

    Jed Donald Burgess

    2013-10-01

    Full Text Available Mirror neurons are a class of motor neuron that are active during both the performance and observation of behavior, and have been implicated in interpersonal understanding There is evidence to suggest that the mirror response is modulated by the perspective from which an action is presented (e.g., egocentric or allocentric. Most human research, however, has only examined this when presenting intransitive actions. Twenty-three healthy adult participants completed a transcranial magnetic stimulation (TMS experiment that assessed corticospinal excitability whilst viewing transitive hand gestures from both egocentric (i.e., self and allocentric (i.e., other viewpoints. Although action observation was associated with increases in corticospinal excitability (reflecting putative human mirror neuron activity, there was no effect of visual perspective. These findings are discussed in the context of contemporary theories of mirror neuron ontogeny, including models concerning associative learning and evolutionary adaptation.

  19. Stages of neuronal network formation

    Science.gov (United States)

    Woiterski, Lydia; Claudepierre, Thomas; Luxenhofer, Robert; Jordan, Rainer; Käs, Josef A.

    2013-02-01

    Graph theoretical approaches have become a powerful tool for investigating the architecture and dynamics of complex networks. The topology of network graphs revealed small-world properties for very different real systems among these neuronal networks. In this study, we observed the early development of mouse retinal ganglion cell (RGC) networks in vitro using time-lapse video microscopy. By means of a time-resolved graph theoretical analysis of the connectivity, shortest path length and the edge length, we were able to discover the different stages during the network formation. Starting from single cells, at the first stage neurons connected to each other ending up in a network with maximum complexity. In the further course, we observed a simplification of the network which manifested in a change of relevant network parameters such as the minimization of the path length. Moreover, we found that RGC networks self-organized as small-world networks at both stages; however, the optimization occurred only in the second stage.

  20. Lemon Odor Reduces Stress-induced Neuronal Activation in the Emotion Expression System: An Animal Model Study

    Science.gov (United States)

    Sanada, Kazue; Sugimoto, Koji; Shutoh, Fumihiro; Hisano, Setsuji

    Perception of particular sensory stimuli from the surroundings can influence emotion in individuals. In an uncomfortable situation, humans protect themselves from some aversive stimulus by acutely evoking a stress response. Animal model studies have contributed to an understanding of neuronal mechanisms underlying the stress response in humans. To study a possible anti-stressful effect of lemon odor, an excitation of neurons secreting corticotropin-releasing hormone (CRH) as a primary factor of the hypothalamic-pituitary-adrenal axis (HPA) was analyzed in animal model experiments, in which rats are restrained in the presence or absence of the odor. The effect was evaluated by measuring expression of c-Fos (an excited neuron marker) in the hypothalamic paraventricular nucleus (PVN), a key structure of the HPA in the brain. We prepared 3 animal groups: Groups S, L and I. Groups S and L were restrained for 30 minutes while being blown by air and being exposed to the lemon odor, respectively. Group I was intact without any treatment. Two hours later of the onset of experiments, brains of all groups were sampled and processed for microscopic examination. Brain sections were processed for c-Fos immunostaining and/or in situ hybridization for CRH. In Group S but not in Group I, c-Fos expression was found in the PVN. A combined in situ hybridization-immunohistochemical dual labeling revealed that CRH mRNA-expressing neurons express c-Fos. In computer-assisted automatic counting, the incidence of c-Fos-expressing neurons in the entire PVN was statistically lower in Group L than in Group S. Detailed analysis of PVN subregions demonstrated that c-Fos-expressing neurons are fewer in Group L than in Group S in the dorsal part of the medial parvocellular subregion. These results may suggest that lemon odor attenuates the restraint stress-induced neuronal activation including CRH neurons, presumably mimicking an aspect of stress responses in humans.

  1. Anaplastic Lymphoma Kinase is Dynamically Expressed on Subsets of Motor Neurons and in the Peripheral Nervous System

    OpenAIRE

    Hurley, Shawn P.; Clary, Douglas O.; Copié, Valérie; Lefcort, Frances

    2006-01-01

    During embryonic development, complex events such as cellular proliferation, differentiation, survival, and guidance of axons are orchestrated and regulated by a variety of extracellular signals. Receptor tyrosine kinases mediate many of these events with several playing critical roles in neuronal survival and axonal guidance. It is evident that not all the receptor tyrosine kinases that play key roles in regulating neuronal development have been identified. In this study, we have characteriz...

  2. A transcranial magnetic stimulation study of the effect of visual orientation on the putative human mirror neuron system

    OpenAIRE

    Burgess, Jed D.; Arnold, Sara L.; Fitzgibbon, Bernadette M.; Fitzgerald, Paul B.; Enticott, Peter G.

    2013-01-01

    Mirror neurons are a class of motor neuron that are active during both the performance and observation of behavior, and have been implicated in interpersonal understanding There is evidence to suggest that the mirror response is modulated by the perspective from which an action is presented (e.g., egocentric or allocentric). Most human research, however, has only examined this when presenting intransitive actions. Twenty-three healthy adult participants completed a transcranial magnetic stimu...

  3. Analysis of mirror neuron system activation during action observation alone and action observation with motor imagery tasks.

    Science.gov (United States)

    Cengiz, Bülent; Vurallı, Doğa; Zinnuroğlu, Murat; Bayer, Gözde; Golmohammadzadeh, Hassan; Günendi, Zafer; Turgut, Ali Emre; İrfanoğlu, Bülent; Arıkan, Kutluk Bilge

    2018-02-01

    This study aimed to explore the relationship between action observation (AO)-related corticomotor excitability changes and phases of observed action and to explore the effects of pure AO and concurrent AO and motor imagery (MI) state on corticomotor excitability using TMS. It was also investigated whether the mirror neuron system activity is muscle-specific. Fourteen healthy volunteers were enrolled in the study. EMG recordings were taken from the right first dorsal interosseous and the abductor digiti minimi muscles. There was a significant main effect of TMS timing (after the beginning of the movement, at the beginning of motor output state, and during black screen) on the mean motor evoked potential (MEP) amplitude. Mean MEP amplitudes for AO combined with MI were significantly higher than pure AO session. There was a significant interaction between session and TMS timing. There was no significant main effect of muscle on MEP amplitude. The results indicate that corticomotor excitability is modulated by different phases of the observed motor movement and this modulation is not muscle-specific. Simultaneous MI and AO enhance corticomotor excitability significantly compared to pure AO.

  4. Comparison of a Mirror Neuron System among Elders with Mild Cognitive Impairment, Alzheimer's Disease, and No Disease

    International Nuclear Information System (INIS)

    Rattanachayoto, P.; Tritanon, O.; Laothamatas, J.; Sungkarat, W.

    2012-01-01

    Alzheimer's disease (AD) is the most common cause of dementia. There are lots of old people suffering from the disease. Mild cognitive impairment (MCI) is a transitional state between normal aging and dementia. An individual with MCI has an increased risk of developing AD. The mirror neuron system (MNS), activated during the observation and execution of actions, has been linked with cognitive processes.The objective of this study is to examine the MNS abnormalities in elders with MCI and AD. Ninety-two subjects (5 MCI,7 mild AD, and 80 cognitively normal) were studied by using functional magnetic resonance imaging (fMRI). In the fMRI experiment, subjects were asked to observe a video showing hand movement (tearing a piece of paper) and a control condition (observing a fixation point).The image data were analyzed using SPM2 (Statistical Parametric Mapping).There were significant activations of bilateral inferior frontal lobule and inferior parietal lobule due to the observation of hand movement.The brain activations of the normal group were statistical significant greater than those in the MCI and mild AD groups.There was no significant difference between the MCI and mild AD groups. Elders with MCI and mild AD had fewer MNS activations than the normal controls, suggesting that the dysfunction of MNS may underlie cognitive impairments in MCI and AD patients.These findings imply that fMRI is sufficiently sensitive to detect MNS changes occurring in MCI and AD.

  5. Epistemic planning for single- and multi-agent systems

    DEFF Research Database (Denmark)

    Bolander, Thomas; Andersen, Mikkel Birkegaard

    2011-01-01

    In this paper, we investigate the use of event models for automated planning. Event models are the action defining structures used to define a semantics for dynamic epistemic logic. Using event models, two issues in planning can be addressed: Partial observability of the environment and knowledge...... the specification of a more complex class of planning domains, than those simply concerned with simple facts about the world. We show how to model multi-agent planning problems using Kripke-models for representing world states, and event models for representing actions. Our mechanism makes use of slight....... In planning, partial observability gives rise to an uncertainty about the world. For single-agent domains, this uncertainty can come from incomplete knowledge of the starting situation and from the nondeterminism of actions. In multi-agent domains, an additional uncertainty arises from the fact that other...