WorldWideScience

Sample records for single nanowires reveal

  1. High magnetic field reveals the nature of excitons in a single GaAs/AlAs core/shell nanowire.

    Science.gov (United States)

    Plochocka, P; Mitioglu, A A; Maude, D K; Rikken, G L J A; del Águila, A Granados; Christianen, P C M; Kacman, P; Shtrikman, Hadas

    2013-06-12

    Magneto-photoluminescence measurements of individual zinc-blende GaAs/AlAs core/shell nanowires are reported. At low temperature, a strong emission line at 1.507 eV is observed under low power (nW) excitation. Measurements performed in high magnetic field allowed us to detect in this emission several lines associated with excitons bound to defect pairs. Such lines were observed before in epitaxial GaAs of very high quality, as reported by Kunzel and Ploog. This demonstrates that the optical quality of our GaAs/AlAs core/shell nanowires is comparable to the best GaAs layers grown by molecular beam epitaxy. Moreover, strong free exciton emission is observed even at room temperature. The bright optical emission of our nanowires in room temperature should open the way for numerous optoelectronic device applications.

  2. High-Performance Single Nanowire Tunnel Diodes

    DEFF Research Database (Denmark)

    Wallentin, Jesper; Persson, Johan Mikael; Wagner, Jakob Birkedal

    2010-01-01

    We demonstrate single nanowire tunnel diodes with room temperature peak current densities of up to 329 A/cm(2). Despite the large surface to volume ratio of the type-II InP-GaAs axial heterostructure nanowires, we measure peak to valley current ratios (PVCR) of up to 8.2 at room temperature and 27...

  3. Microstructural characterization of single-crystalline potassium hollandite nanowires

    International Nuclear Information System (INIS)

    Xu, C.Y.; Zhen, L.; Zhang, Q.; Tang, J.; Qin, L.-C.

    2008-01-01

    Single-crystalline potassium hollandite KTi 8 O 16.5 nanowires were synthesized by the molten salt method at 800 deg. C. Scanning electron microscopy observation shows that the nanowires are with octagonal cross-sections, and combined analyses of transmission electron microscopy and the electron diffraction results show that the terminated planes are angled 90 or 60 degrees to the growth direction, [001] crystallography direction. Ordering of the potassium cations in the tunnels was revealed by electron diffraction. The mechanism of one-dimensional growth of the nanowires was attributed to the oriented attachment mechanism

  4. Optical Spectroscopy of Single Nanowires

    OpenAIRE

    Trägårdh, Johanna

    2008-01-01

    This thesis describes optical spectroscopy on III-V semiconductor nanowires. The nanowires were grown by metal-organic vapor phase epitaxy (MOVPE) and chemical beam epitaxy (CBE). Photoluminescence and photocurrent spectroscopy are used as tools to investigate issues such as the size of the band gap, the effects of surface states, and the charge carrier transport in core-shell nanowires. The band gap of InAs1-xPx nanowires with wurtzite crystal structure is measured as a function of ...

  5. High-performance single nanowire tunnel diodes.

    Science.gov (United States)

    Wallentin, Jesper; Persson, Johan M; Wagner, Jakob B; Samuelson, Lars; Deppert, Knut; Borgström, Magnus T

    2010-03-10

    We demonstrate single nanowire tunnel diodes with room temperature peak current densities of up to 329 A/cm(2). Despite the large surface to volume ratio of the type-II InP-GaAs axial heterostructure nanowires, we measure peak to valley current ratios (PVCR) of up to 8.2 at room temperature and 27.6 at liquid helium temperature. These sub-100-nm-diameter structures are promising components for solar cells as well as electronic applications.

  6. Tracking Ultrafast Carrier Dynamics in Single Semiconductor Nanowire Heterostructures

    Directory of Open Access Journals (Sweden)

    Taylor A.J.

    2013-03-01

    Full Text Available An understanding of non-equilibrium carrier dynamics in silicon (Si nanowires (NWs and NW heterostructures is very important due to their many nanophotonic and nanoelectronics applications. Here, we describe the first measurements of ultrafast carrier dynamics and diffusion in single heterostructured Si nanowires, obtained using ultrafast optical microscopy. By isolating individual nanowires, we avoid complications resulting from the broad size and alignment distribution in nanowire ensembles, allowing us to directly probe ultrafast carrier dynamics in these quasi-one-dimensional systems. Spatially-resolved pump-probe spectroscopy demonstrates the influence of surface-mediated mechanisms on carrier dynamics in a single NW, while polarization-resolved femtosecond pump-probe spectroscopy reveals a clear anisotropy in carrier lifetimes measured parallel and perpendicular to the NW axis, due to density-dependent Auger recombination. Furthermore, separating the pump and probe spots along the NW axis enabled us to track space and time dependent carrier diffusion in radial and axial NW heterostructures. These results enable us to reveal the influence of radial and axial interfaces on carrier dynamics and charge transport in these quasi-one-dimensional nanosystems, which can then be used to tailor carrier relaxation in a single nanowire heterostructure for a given application.

  7. Single Crystalline Cadmium Sulfide Nanowires with Branched Structure

    Directory of Open Access Journals (Sweden)

    Lu Qingyi

    2009-01-01

    Full Text Available Abstract In this article, we report the synthesis of branched single crystal CdS nanowires. This branched CdS nanostructure is prepared by a simple surfactant-directing method, which is of particular interest as it uses readily available reagents and provides a convenient route to high-yield single crystal nanowires but with branched shape. These branched nanowires have an average diameter of about 40 nm and length up to several micrometers. A possible mechanism has been proposed and the addition of surfactant dodecylthiol into the two mixed-solvents would play an importance effect on the structure of the product. Based on the mechanism, by controlling the synthesis conditions, such as the ratios between the surfactant, inorganic solvent, and organic solvent, other kinds of nanostructures based on CdS nanowires were also prepared. Photoluminescence (PL measurement reveals that the branched CdS nanowires have a strong emission at about 700 nm which might be due to its special structure.

  8. Single conducting polymer nanowire based conductometric sensors

    Science.gov (United States)

    Bangar, Mangesh Ashok

    The detection of toxic chemicals, gases or biological agents at very low concentrations with high sensitivity and selectivity has been subject of immense interest. Sensors employing electrical signal readout as transduction mechanism offer easy, label-free detection of target analyte in real-time. Traditional thin film sensors inherently suffered through loss of sensitivity due to current shunting across the charge depleted/added region upon analyte binding to the sensor surface, due to their large cross sectional area. This limitation was overcome by use of nanostructure such as nanowire/tube as transducer where current shunting during sensing was almost eliminated. Due to their benign chemical/electrochemical fabrication route along with excellent electrical properties and biocompatibility, conducting polymers offer cost-effective alternative over other nanostructures. Biggest obstacle in using these nanostructures is lack of easy, scalable and cost-effective way of assembling these nanostructures on prefabricated micropatterns for device fabrication. In this dissertation, three different approaches have been taken to fabricate individual or array of single conducting polymer (and metal) nanowire based devices and using polymer by itself or after functionalization with appropriate recognition molecule they have been applied for gas and biochemical detection. In the first approach electrochemical fabrication of multisegmented nanowires with middle functional Ppy segment along with ferromagnetic nickel (Ni) and end gold segments for better electrical contact was studied. This multi-layered nanowires were used along with ferromagnetic contact electrode for controlled magnetic assembly of nanowires into devices and were used for ammonia gas sensing. The second approach uses conducting polymer, polypyrrole (Ppy) nanowires using simple electrophoretic alignment and maskless electrodeposition to anchor nanowire which were further functionalized with antibodies against

  9. Molecular beam epitaxy of single crystalline GaN nanowires on a flexible Ti foil

    Science.gov (United States)

    Calabrese, Gabriele; Corfdir, Pierre; Gao, Guanhui; Pfüller, Carsten; Trampert, Achim; Brandt, Oliver; Geelhaar, Lutz; Fernández-Garrido, Sergio

    2016-05-01

    We demonstrate the self-assembled growth of vertically aligned GaN nanowire ensembles on a flexible Ti foil by plasma-assisted molecular beam epitaxy. The analysis of single nanowires by transmission electron microscopy reveals that they are single crystalline. Low-temperature photoluminescence spectroscopy demonstrates that in comparison to standard GaN nanowires grown on Si, the nanowires prepared on the Ti foil exhibit an equivalent crystalline perfection, a higher density of basal-plane stacking faults, but a reduced density of inversion domain boundaries. The room-temperature photoluminescence spectrum of the nanowire ensemble is not influenced or degraded by the bending of the substrate. The present results pave the way for the fabrication of flexible optoelectronic devices based on GaN nanowires on metal foils.

  10. Molecular beam epitaxy of single crystalline GaN nanowires on a flexible Ti foil

    International Nuclear Information System (INIS)

    Calabrese, Gabriele; Corfdir, Pierre; Gao, Guanhui; Pfüller, Carsten; Trampert, Achim; Brandt, Oliver; Geelhaar, Lutz; Fernández-Garrido, Sergio

    2016-01-01

    We demonstrate the self-assembled growth of vertically aligned GaN nanowire ensembles on a flexible Ti foil by plasma-assisted molecular beam epitaxy. The analysis of single nanowires by transmission electron microscopy reveals that they are single crystalline. Low-temperature photoluminescence spectroscopy demonstrates that in comparison to standard GaN nanowires grown on Si, the nanowires prepared on the Ti foil exhibit an equivalent crystalline perfection, a higher density of basal-plane stacking faults, but a reduced density of inversion domain boundaries. The room-temperature photoluminescence spectrum of the nanowire ensemble is not influenced or degraded by the bending of the substrate. The present results pave the way for the fabrication of flexible optoelectronic devices based on GaN nanowires on metal foils.

  11. Controlled growth of single nanowires within a supported alumina template

    DEFF Research Database (Denmark)

    Vlad, A.; Mátéfi-Tempfli, M.; Faniel, S.

    2006-01-01

    A simple technique for fabricating single nanowires with well-defined position is presented. The process implies the use of a silicon nitride mask for selective electrochemical growth of the nanowires in a porous alumina template. We show that this method allows the realization of complex nanowire...

  12. Single crystalline PtSi nanowires, PtSi/Si/PtSi nanowire heterostructures, and nanodevices.

    Science.gov (United States)

    Lin, Yung-Chen; Lu, Kuo-Chang; Wu, Wen-Wei; Bai, Jingwei; Chen, Lih J; Tu, K N; Huang, Yu

    2008-03-01

    We report the formation of PtSi nanowires, PtSi/Si/PtSi nanowire heterostructures, and nanodevices from such heterostructures. Scanning electron microscopy studies show that silicon nanowires can be converted into PtSi nanowires through controlled reactions between lithographically defined platinum pads and silicon nanowires. High-resolution transmission electron microscopy studies show that PtSi/Si/PtSi heterostructure has an atomically sharp interface with epitaxial relationships of Si[110]//PtSi[010] and Si(111)//PtSi(101). Electrical measurements show that the pure PtSi nanowires have low resistivities approximately 28.6 microOmega.cm and high breakdown current densities>1x10(8) A/cm2. Furthermore, using single crystal PtSi/Si/PtSi nanowire heterostructures with atomically sharp interfaces, we have fabricated high-performance nanoscale field-effect transistors from intrinsic silicon nanowires, in which the source and drain contacts are defined by the metallic PtSi nanowire regions, and the gate length is defined by the Si nanowire region. Electrical measurements show nearly perfect p-channel enhancement mode transistor behavior with a normalized transconductance of 0.3 mS/microm, field-effect hole mobility of 168 cm2/V.s, and on/off ratio>10(7), demonstrating the best performing device from intrinsic silicon nanowires.

  13. Transient Rayleigh scattering from single semiconductor nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Montazeri, Mohammad; Jackson, Howard E.; Smith, Leigh M. [Department of Physics, University of Cincinnati, Cincinnati, OH 45221-0011 (United States); Yarrison-Rice, Jan M. [Department of Physics, Miami University, Oxford, OH 45056 (United States); Kang, Jung-Hyun; Gao, Qiang; Tan, Hark Hoe; Jagadish, Chennupati [Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia)

    2013-12-04

    Transient Rayleigh scattering spectroscopy is a new pump-probe technique to study the dynamics and cooling of photo-excited carriers in single semiconductor nanowires. By studying the evolution of the transient Rayleigh spectrum in time after excitation, one can measure the time evolution of the density and temperature of photo-excited electron-hole plasma (EHP) as they equilibrate with lattice. This provides detailed information of dynamics and cooling of carriers including linear and bimolecular recombination properties, carrier transport characteristics, and the energy-loss rate of hot electron-hole plasma through the emission of LO and acoustic phonons.

  14. 1D-transport properties of single superconducting lead nanowires

    DEFF Research Database (Denmark)

    Michotte, S.; Mátéfi-Tempfli, Stefan; Piraux, L.

    2003-01-01

    We report on the transport properties of single superconducting lead nanowires grown by an electrodeposition technique, embedded in a nanoporous track-etched polymer membrane. The nanowires are granular, have uniform diameter of ̃40 nm and a very large aspect ratio (̃500). The diameter of the nan......We report on the transport properties of single superconducting lead nanowires grown by an electrodeposition technique, embedded in a nanoporous track-etched polymer membrane. The nanowires are granular, have uniform diameter of ̃40 nm and a very large aspect ratio (̃500). The diameter...

  15. Multispectral absorptance from large-diameter InAsSb nanowire arrays in a single epitaxial growth on silicon

    Science.gov (United States)

    Robson, Mitchell; Azizur-Rahman, Khalifa M.; Parent, Daniel; Wojdylo, Peter; Thompson, David A.; LaPierre, Ray R.

    2017-12-01

    Vertical III-V nanowires are capable of resonant absorption at specific wavelengths by tuning the nanowire diameter, thereby exceeding the absorption of equivalent thin films. These properties may be exploited to fabricate multispectral infrared (IR) photodetectors, directly integrated with Si, without the need for spectral filters or vertical stacking of heterostructures as required in thin film devices. In this study, multiple InAsSb nanowire arrays were grown simultaneously on Si by molecular beam epitaxy with nanowire diameter controlled by the nanowire period (spacing between nanowires). This is the first such study of patterned InAsSb nanowires where control of nanowire diameter and multispectral absorption are demonstrated. The antimony flux was used to control axial and radial growth rates using a selective-area catalyst-free growth method, achieving large diameters, spanning 440–520 nm, which are necessary for optimum IR absorption. Fourier transform IR spectroscopy revealed IR absorptance peaks due to the HE11 resonance of the nanowire arrays in agreement with optical simulations. Due to the dependence of the HE11 resonance absorption on nanowire diameter, multispectral absorption was demonstrated in a single material system and a single epitaxial growth step without the need for bandgap tuning. This work demonstrates the potential of InAsSb nanowires for multispectral photodetectors and sensor arrays in the short-wavelength IR region.

  16. Understanding InP Nanowire Array Solar Cell Performance by Nanoprobe-Enabled Single Nanowire Measurements.

    Science.gov (United States)

    Otnes, Gaute; Barrigón, Enrique; Sundvall, Christian; Svensson, K Erik; Heurlin, Magnus; Siefer, Gerald; Samuelson, Lars; Åberg, Ingvar; Borgström, Magnus T

    2018-04-27

    III-V solar cells in the nanowire geometry might hold significant synthesis-cost and device-design advantages as compared to thin films and have shown impressive performance improvements in recent years. To continue this development there is a need for characterization techniques giving quick and reliable feedback for growth development. Further, characterization techniques which can improve understanding of the link between nanowire growth conditions, subsequent processing, and solar cell performance are desired. Here, we present the use of a nanoprobe system inside a scanning electron microscope to efficiently contact single nanowires and characterize them in terms of key parameters for solar cell performance. Specifically, we study single as-grown InP nanowires and use electron beam induced current characterization to understand the charge carrier collection properties, and dark current-voltage characteristics to understand the diode recombination characteristics. By correlating the single nanowire measurements to performance of fully processed nanowire array solar cells, we identify how the performance limiting parameters are related to growth and/or processing conditions. We use this understanding to achieve a more than 7-fold improvement in efficiency of our InP nanowire solar cells, grown from a different seed particle pattern than previously reported from our group. The best cell shows a certified efficiency of 15.0%; the highest reported value for a bottom-up synthesized InP nanowire solar cell. We believe the presented approach have significant potential to speed-up the development of nanowire solar cells, as well as other nanowire-based electronic/optoelectronic devices.

  17. High Performance Single Nanowire Tunnel Diodes

    DEFF Research Database (Denmark)

    Wallentin, Jesper; Persson, Johan Mikael; Wagner, Jakob Birkedal

    Semiconductor nanowires (NWs) have emerged as a promising technology for future electronic and optoelectronic devices. Epitaxial growth of III-V materials on Si substrates have been demonstrated, allowing for low-cost production. As the lattice matching requirements are much less strict than...... for planar growth, many new materials combinations can be grown in a single NW. This opens up exciting opportunities for NW-based high-performance solar cells, where previously inaccessible materials combinations can now be chosen to match the solar spectrum. A key component of a multi-junction solar cell...... NWs were contacted in a NW-FET setup. Electrical measurements at room temperature display typical tunnel diode behavior, with a Peak-to-Valley Current Ratio (PVCR) as high as 8.2 and a peak current density as high as 329 A/cm2. Low temperature measurements show improved PVCR of up to 27.6....

  18. Single nanowire resistive nano-heater for highly localized thermo-chemical reactions: localized hierarchical heterojunction nanowire growth.

    Science.gov (United States)

    Yeo, Junyeob; Kim, Gunho; Hong, Sukjoon; Lee, Jinhwan; Kwon, Jinhyeong; Lee, Habeom; Park, Heeseung; Manoroktul, Wanit; Lee, Ming-Tsang; Lee, Bong Jae; Grigoropoulos, Costas P; Ko, Seung Hwan

    2014-12-29

    A single nanowire resistive nano-heater (RNH) is fabricated, and it is demonstrated that the RNH can induce highly localized temperature fields, which can trigger highly localized thermo-chemical reactions to grow hierarchical nanowires directly at the desired specific spot such as ZnO nanowire branch growth on a single Ag nanowire. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Modeling and Development of Superconducting Nanowire Single Photon Detectors

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal outlines a research project as the central component of a Ph.D. program focused on the device physics of superconducting nanowire single photon...

  20. Synthesis of uniform CdS nanowires in high yield and its single nanowire electrical property

    International Nuclear Information System (INIS)

    Yan Shancheng; Sun Litao; Qu Peng; Huang Ninping; Song Yinchen; Xiao Zhongdang

    2009-01-01

    Large-scale high quality CdS nanowires with uniform diameter were synthesized by using a rapid and simple solvothermal route. Field emission scan electron microscopy (FESEM) and transmission electron microscopy (TEM) images show that the CdS nanowires have diameter of about 26 nm and length up to several micrometres. High resolution TEM (HRTEM) study indicates the single-crystalline nature of CdS nanowires with an oriented growth along the c-axis direction. The optical properties of the products were characterized by UV-vis absorption spectra, photoluminescence spectra and Raman spectra. The resistivity, electron concentration and electron mobility of single NW are calculated by fitting the symmetric I-V curves measured on single NW by the metal-semiconductor-metal model based on thermionic field emission theory. - Graphical abstract: Large-scale high quality CdS nanowires (NWs) with uniform diameter were synthesized by using a rapid and simple solvothermal route. The reaction time is reduced to 2 h, comparing to other synthesis which needed long reaction time up to 12 h. In addition, the as-prepared CdS nanowires have more uniform diameter and high yield. More importantly, the I-V curve of present single CdS nanowire has a good symmetric characteristic as expected by the theory.

  1. Spatially resolved Hall effect measurement in a single semiconductor nanowire

    Science.gov (United States)

    Storm, Kristian; Halvardsson, Filip; Heurlin, Magnus; Lindgren, David; Gustafsson, Anders; Wu, Phillip M.; Monemar, Bo; Samuelson, Lars

    2012-12-01

    Efficient light-emitting diodes and photovoltaic energy-harvesting devices are expected to play an important role in the continued efforts towards sustainable global power consumption. Semiconductor nanowires are promising candidates as the active components of both light-emitting diodes and photovoltaic cells, primarily due to the added freedom in device design offered by the nanowire geometry. However, for nanowire-based components to move past the proof-of-concept stage and be implemented in production-grade devices, it is necessary to precisely quantify and control fundamental material properties such as doping and carrier mobility. Unfortunately, the nanoscale geometry that makes nanowires interesting for applications also makes them inherently difficult to characterize. Here, we report a method to carry out Hall measurements on single core-shell nanowires. Our technique allows spatially resolved and quantitative determination of the carrier concentration and mobility of the nanowire shell. As Hall measurements have previously been completely unavailable for nanowires, the experimental platform presented here should facilitate the implementation of nanowires in advanced practical devices.

  2. Single cell detection using a magnetic zigzag nanowire biosensor.

    Science.gov (United States)

    Huang, Hao-Ting; Ger, Tzong-Rong; Lin, Ya-Hui; Wei, Zung-Hang

    2013-08-07

    A magnetic zigzag nanowire device was designed for single cell biosensing. Nanowires with widths of 150, 300, 500, and 800 nm were fabricated on silicon trenches by electron beam lithography, electron beam evaporation, and lift-off processes. Magnetoresistance measurements were performed before and after the attachment of a single magnetic cell to the nanowires to characterize the magnetic signal change due to the influence of the magnetic cell. Magnetoresistance responses were measured in different magnetic field directions, and the results showed that this nanowire device can be used for multi-directional detection. It was observed that the highest switching field variation occurred in a 150 nm wide nanowire when the field was perpendicular to the substrate plane. On the other hand, the highest magnetoresistance ratio variation occurred in a 800 nm wide nanowire also when the field was perpendicular to the substrate plane. Besides, the trench-structured substrate proposed in this study can fix the magnetic cell to the sensor in a fluid environment, and the stray field generated by the corners of the magnetic zigzag nanowires has the function of actively attracting the magnetic cells for detection.

  3. Polarized and resonant Raman spectroscopy on single InAs nanowires

    Science.gov (United States)

    Möller, M.; de Lima, M. M., Jr.; Cantarero, A.; Dacal, L. C. O.; Madureira, J. R.; Iikawa, F.; Chiaramonte, T.; Cotta, M. A.

    2011-08-01

    We report polarized Raman scattering and resonant Raman scattering studies on single InAs nanowires. Polarized Raman experiments show that the highest scattering intensity is obtained when both the incident and analyzed light polarizations are perpendicular to the nanowire axis. InAs wurtzite optical modes are observed. The obtained wurtzite modes are consistent with the selection rules and also with the results of calculations using an extended rigid-ion model. Additional resonant Raman scattering experiments reveal a redshifted E1 transition for InAs nanowires compared to the bulk zinc-blende InAs transition due to the dominance of the wurtzite phase in the nanowires. Ab initio calculations of the electronic band structure for wurtzite and zinc-blende InAs phases corroborate the observed values for the E1 transitions.

  4. Temperature gradient-induced magnetization reversal of single ferromagnetic nanowires

    Science.gov (United States)

    Michel, Ann-Kathrin; Corinna Niemann, Anna; Boehnert, Tim; Martens, Stephan; Montero Moreno, Josep M.; Goerlitz, Detlef; Zierold, Robert; Reith, Heiko; Vega, Victor; Prida, Victor M.; Thomas, Andy; Gooth, Johannes; Nielsch, Kornelius

    2017-12-01

    In this study, we investigate the temperature- and temperature gradient-dependent magnetization reversal process of individual, single-domain Co39Ni61 and Fe15Ni85 ferromagnetic nanowires via the magneto-optical Kerr effect and magnetoresistance measurements. While the coercive fields (H C) and therefore the magnetic switching fields (H SW) generally decrease under isothermal conditions at elevated base temperatures (T base), temperature gradients (ΔT) along the nanowires lead to an increased switching field of up to 15% for ΔT  = 300 K in Co39Ni61 nanowires. This enhancement is attributed to a stress-induced, magneto-elastic anisotropy term due to an applied temperature gradient along the nanowire that counteracts the thermally assisted magnetization reversal process. Our results demonstrate that a careful distinction between locally elevated temperatures and temperature gradients has to be made in future heat-assisted magnetic recording devices.

  5. Materialization of single multicomposite nanowire: entrapment of ZnO nanoparticles in polyaniline nanowire

    Directory of Open Access Journals (Sweden)

    Park Seong

    2011-01-01

    Full Text Available Abstract We present materialization of single multicomposite nanowire (SMNW-entrapped ZnO nanoparticles (NPs via an electrochemical growth method, which is a newly developed fabrication method to grow a single nanowire between a pair of pre-patterned electrodes. Entrapment of ZnO NPs was controlled via different conditions of SMNW fabrication such as an applied potential and mixture ratio of NPs and aniline solution. The controlled concentration of ZnO NP results in changes in the physical properties of the SMNWs, as shown in transmission electron microscopy images. Furthermore, the electrical conductivity and elasticity of SMNWs show improvement over those of pure polyaniline nanowire. The new nano-multicomposite material showed synergistic effects on mechanical and electrical properties, with logarithmical change and saturation increasing ZnO NP concentration.

  6. Anomalous high capacitance in a coaxial single nanowire capacitor.

    Science.gov (United States)

    Liu, Zheng; Zhan, Yongjie; Shi, Gang; Moldovan, Simona; Gharbi, Mohamed; Song, Li; Ma, Lulu; Gao, Wei; Huang, Jiaqi; Vajtai, Robert; Banhart, Florian; Sharma, Pradeep; Lou, Jun; Ajayan, Pulickel M

    2012-06-06

    Building entire multiple-component devices on single nanowires is a promising strategy for miniaturizing electronic applications. Here we demonstrate a single nanowire capacitor with a coaxial asymmetric Cu-Cu(2)O-C structure, fabricated using a two-step chemical reaction and vapour deposition method. The capacitance measured from a single nanowire device corresponds to ~140 μF cm(-2), exceeding previous reported values for metal-insulator-metal micro-capacitors and is more than one order of magnitude higher than what is predicted by classical electrostatics. Quantum mechanical calculations indicate that this unusually high capacitance may be attributed to a negative quantum capacitance of the dielectric-metal interface, enhanced significantly at the nanoscale.

  7. Single-crystalline Ni2Ge/Ge/Ni2Ge nanowire heterostructure transistors.

    Science.gov (United States)

    Tang, Jianshi; Wang, Chiu-Yen; Xiu, Faxian; Hong, Augustin J; Chen, Shengyu; Wang, Minsheng; Zeng, Caifu; Yang, Hong-Jie; Tuan, Hsing-Yu; Tsai, Cho-Jen; Chen, Lih Juann; Wang, Kang L

    2010-12-17

    In this study, we report on the formation of a single-crystalline Ni(2)Ge/Ge/Ni(2)Ge nanowire heterostructure and its field effect characteristics by controlled reaction between a supercritical fluid-liquid-solid (SFLS) synthesized Ge nanowire and Ni metal contacts. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies reveal a wide temperature range to convert the Ge nanowire to single-crystalline Ni(2)Ge by a thermal diffusion process. The maximum current density of the fully germanide Ni(2)Ge nanowires exceeds 3.5 × 10(7) A cm(-2), and the resistivity is about 88 μΩ cm. The in situ reaction examined by TEM shows atomically sharp interfaces for the Ni(2)Ge/Ge/Ni(2)Ge heterostructure. The interface epitaxial relationships are determined to be [Formula: see text] and [Formula: see text]. Back-gate field effect transistors (FETs) were also fabricated using this low resistivity Ni(2)Ge as source/drain contacts. Electrical measurements show a good p-type FET behavior with an on/off ratio over 10(3) and a one order of magnitude improvement in hole mobility from that of SFLS-synthesized Ge nanowire.

  8. X-ray diffraction from single GaAs nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Biermanns, Andreas

    2012-11-12

    In recent years, developments in X-ray focussing optics have allowed to produce highly intense, coherent X-ray beams with spot sizes in the range of 100 nm and below. Together with the development of new experimental stations, X-ray diffraction techniques can now be applied to study single nanometer-sized objects. In the present work, X-ray diffraction is applied to study different aspects of the epitaxial growth of GaAs nanowires. Besides conventional diffraction methods, which employ X-ray beams with dimensions of several tens of {mu}m, special emphasis lies on the use of nanodiffraction methods which allow to study single nanowires in their as-grown state without further preparation. In particular, coherent X-ray diffraction is applied to measure simultaneously the 3-dimensional shape and lattice parameters of GaAs nanowires grown by metal-organic vapor phase epitaxy. It is observed that due to a high density of zinc-blende rotational twins within the nanowires, their lattice parameter deviates systematically from the bulk zinc-blende phase. In a second step, the initial stage in the growth of GaAs nanowires on Si (1 1 1) surfaces is studied. This nanowires, obtained by Ga-assisted growth in molecular beam epitaxy, grow predominantly in the cubic zinc-blende structure, but contain inclusions of the hexagonal wurtzite phase close to their bottom interface. Using nanodiffraction methods, the position of the different structural units along the growth axis is determined. Because the GaAs lattice is 4% larger than silicon, these nanowires release their lattice mismatch by the inclusion of dislocations at the interface. Whereas NWs with diameters below 50 nm are free of strain, a rough interface structure in nanowires with diameters above 100 nm prevents a complete plastic relaxation, leading to a residual strain at the interface that decays elastically along the growth direction. Finally, measurements on GaAs-core/InAs-shell nanowire heterostructures are presented

  9. Photon Cascade from a Single Crystal Phase Nanowire Quantum Dot

    DEFF Research Database (Denmark)

    Bouwes Bavinck, Maaike; Jöns, Klaus D; Zieliński, Michal

    2016-01-01

    We report the first comprehensive experimental and theoretical study of the optical properties of single crystal phase quantum dots in InP nanowires. Crystal phase quantum dots are defined by a transition in the crystallographic lattice between zinc blende and wurtzite segments and therefore offe...

  10. Waveguide-Coupled Superconducting Nanowire Single-Photon Detectors

    Science.gov (United States)

    Beyer, Andrew D.; Briggs, Ryan M.; Marsili, Francesco; Cohen, Justin D.; Meenehan, Sean M.; Painter, Oskar J.; Shaw, Matthew D.

    2015-01-01

    We have demonstrated WSi-based superconducting nanowire single-photon detectors coupled to SiNx waveguides with integrated ring resonators. This photonics platform enables the implementation of robust and efficient photon-counting detectors with fine spectral resolution near 1550 nm.

  11. Harmonics Generation by Surface Plasmon Polaritons on Single Nanowires.

    Science.gov (United States)

    de Hoogh, Anouk; Opheij, Aron; Wulf, Matthias; Rotenberg, Nir; Kuipers, L

    2016-08-17

    We present experimental observations of visible wavelength second- and third-harmonic generation on single plasmonic nanowires of variable widths. We identify that near-infrared surface plasmon polaritons, which are guided along the nanowire, act as the source of the harmonics generation. We discuss the underlying mechanism of this nonlinear process, using a combination of spatially resolved measurements and numerical simulations to show that the visible harmonics are generated via a combination of both local and propagating plasmonic modes. Our results provide the first demonstration of nanoscale nonlinear optics with guided, propagating plasmonic modes on a lithographically defined chip, opening up new routes toward integrated optical circuits for information processing.

  12. Direct Photonic-Plasmonic Coupling and Routing in Single Nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Rouxue; Pausauskie, Peter; Huang, Jiaxing; Yang, Piedong

    2009-10-20

    Metallic nanoscale structures are capable of supporting surface plasmon polaritons (SPPs), propagating collective electron oscillations with tight spatial confinement at the metal surface. SPPs represent one of the most promising structures to beat the diffraction limit imposed by conventional dielectric optics. Ag nano wires have drawn increasing research attention due to 2D sub-100 nm mode confinement and lower losses as compared with fabricated metal structures. However, rational and versatile integration of Ag nanowires with other active and passive optical components, as well as Ag nanowire based optical routing networks, has yet to be achieved. Here, we demonstrate that SPPs can be excited simply by contacting a silver nanowire with a SnO2 nanoribbon that serves both as an unpolarized light source and a dielectric waveguide. The efficient coupling makes it possible to measure the propagation-distance-dependent waveguide spectra and frequency-dependent propagation length on a single Ag nanowire. Furthermore, we have demonstrated prototypical photonic-plasmonic routing devices, which are essential for incorporating low-loss Ag nanowire waveguides as practical components into high-capacity photonic circuits.

  13. Unveiling the Formation Pathway of Single Crystalline Porous Silicon Nanowires

    Science.gov (United States)

    Zhong, Xing; Qu, Yongquan; Lin, Yung-Chen; Liao, Lei; Duan, Xiangfeng

    2011-01-01

    Porous silicon nanowire is emerging as an interesting material system due to its unique combination of structural, chemical, electronic, and optical properties. To fully understand their formation mechanism is of great importance for controlling the fundamental physical properties and enabling potential applications. Here we present a systematic study to elucidate the mechanism responsible for the formation of porous silicon nanowires in a two-step silver-assisted electroless chemical etching method. It is shown that silicon nanowire arrays with various porosities can be prepared by varying multiple experimental parameters such as the resistivity of the starting silicon wafer, the concentration of oxidant (H2O2) and the amount of silver catalyst. Our study shows a consistent trend that the porosity increases with the increasing wafer conductivity (dopant concentration) and oxidant (H2O2) concentration. We further demonstrate that silver ions, formed by the oxidation of silver, can diffuse upwards and re-nucleate on the sidewalls of nanowires to initiate new etching pathways to produce porous structure. The elucidation of this fundamental formation mechanism opens a rational pathway to the production of wafer-scale single crystalline porous silicon nanowires with tunable surface areas ranging from 370 m2·g−1 to 30 m2·g−1, and can enable exciting opportunities in catalysis, energy harvesting, conversion, storage, as well as biomedical imaging and therapy. PMID:21244020

  14. Nanowire assembly, e.g. for optical probes, comprises optically trapping high aspect ratio semiconductor nanowire with infrared single-beam optical trap and attaching nanowire to organic or inorganic structure

    OpenAIRE

    Pauzauskie, P.; Radenovic, A.; Trepagnier, E.; Liphardt, J.; Yang, P.

    2007-01-01

    NOVELTY - A nanowire assembly method comprises optically trapping a semiconductor nanowire with an infrared single-beam optical trap and attaching the nanowire to an organic or inorganic structure by laser fusing. The nanowire is further trapped in a fluid environment. The optical trap has a beam wavelength of 1064 nm. The nanowire has an aspect ratio greater than 100 and a diameter less than 100 (preferably less than 80) nm. The nanowire and the organic or inorganic structure form a heterost...

  15. Coupling of a single quantum emitter to end-to-end aligned silver nanowires

    DEFF Research Database (Denmark)

    Kumar, Shailesh; Huck, Alexander; Chen, Yuntian

    2013-01-01

    We report on the observation of coupling a single nitrogen vacancy (NV) center in a nanodiamond crystal to a propagating plasmonic mode of silver nanowires. The nanocrystal is placed either near the apex of a single silver nanowire or in the gap between two end-to-end aligned silver nanowires. We...

  16. Cell membrane conformation at vertical nanowire array interface revealed by fluorescence imaging

    International Nuclear Information System (INIS)

    Berthing, Trine; Bonde, Sara; Rostgaard, Katrine R; Martinez, Karen L; Madsen, Morten Hannibal; Sørensen, Claus B; Nygård, Jesper

    2012-01-01

    The perspectives offered by vertical arrays of nanowires for biosensing applications in living cells depend on the access of individual nanowires to the cell interior. Recent results on electrical access and molecular delivery suggest that direct access is not always obtained. Here, we present a generic approach to directly visualize the membrane conformation of living cells interfaced with nanowire arrays, with single nanowire resolution. The method combines confocal z-stack imaging with an optimized cell membrane labelling strategy which was applied to HEK293 cells interfaced with 2–11 μm long and 3–7 μm spaced nanowires with various surface coatings (bare, aminosilane-coated or polyethyleneimine-coated indium arsenide). We demonstrate that, for all commonly used nanowire lengths, spacings and surface coatings, nanowires generally remain enclosed in a membrane compartment, and are thereby not in direct contact with the cell interior. (paper)

  17. Laser-induced single point nanowelding of silver nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Shuowei; Li, Qiang, E-mail: qiangli@zju.edu.cn; Liu, Guoping; Yang, Hangbo; Yang, Yuanqing; Zhao, Ding; Wang, Wei; Qiu, Min, E-mail: minqiu@zju.edu.cn [State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2016-03-21

    Nanowelding of nanomaterials opens up an emerging set of applications in transparent conductors, thin-film solar cells, nanocatalysis, cancer therapy, and nanoscale patterning. Single point nanowelding (SPNW) is highly demanded for building complex nanostructures. In this letter, the precise control of SPNW of silver nanowires is explored in depth, where the nanowelding is laser-induced through the plasmonic resonance enhanced photothermal effect. It is shown that the illumination position is a critical factor for the nanowelding process. As an example of performance enhancement, output at wire end can be increased by 65% after welding for a plasmonic nanocoupler. Thus, single point nanowelding technique shows great potentials for high-performance electronic and photonic devices based on nanowires, such as nanoelectronic circuits and plasmonic nanodevices.

  18. Laser-induced single point nanowelding of silver nanowires

    International Nuclear Information System (INIS)

    Dai, Shuowei; Li, Qiang; Liu, Guoping; Yang, Hangbo; Yang, Yuanqing; Zhao, Ding; Wang, Wei; Qiu, Min

    2016-01-01

    Nanowelding of nanomaterials opens up an emerging set of applications in transparent conductors, thin-film solar cells, nanocatalysis, cancer therapy, and nanoscale patterning. Single point nanowelding (SPNW) is highly demanded for building complex nanostructures. In this letter, the precise control of SPNW of silver nanowires is explored in depth, where the nanowelding is laser-induced through the plasmonic resonance enhanced photothermal effect. It is shown that the illumination position is a critical factor for the nanowelding process. As an example of performance enhancement, output at wire end can be increased by 65% after welding for a plasmonic nanocoupler. Thus, single point nanowelding technique shows great potentials for high-performance electronic and photonic devices based on nanowires, such as nanoelectronic circuits and plasmonic nanodevices.

  19. Imaging Single ZnO Vertical Nanowire Laser Cavities using UV-Laser Scanning Confocal Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gargas, D.J.; Toimil-Molares, M.E.; Yang, P.

    2008-11-17

    We report the fabrication and optical characterization of individual ZnO vertical nanowire laser cavities. Dilute nanowire arrays with interwire spacing>10 ?m were produced by a modified chemical vapor transport (CVT) method yielding an ideal platform for single nanowire imaging and spectroscopy. Lasing characteristics of a single vertical nanowire are presented, as well as high-resolution photoluminescence imaging by UV-laser scanning confocal microscopy. In addition, three-dimensional (3D) mapping of the photoluminescence emission performed in both planar and vertical dimensions demonstrates height-selective imaging useful for vertical nanowires and heteronanostructures emerging in the field of optoelectronics and nanophotonics.

  20. Coherent interaction of single molecules and plasmonic nanowires

    Science.gov (United States)

    Gerhardt, Ilja; Grotz, Bernhard; Siyushev, Petr; Wrachtrup, Jörg

    2017-09-01

    Quantum plasmonics opens the option to integrate complex quantum optical circuitry onto chip scale devices. In the past, often external light sources were used and nonclassical light was coupled in and out of plasmonic structures, such as hole arrays or waveguide structures. Another option to launch single plasmonic excitations is the coupling of single emitters in the direct proximity of, e.g., a silver or gold nanostructure. Here, we present our attempts to integrate the research of single emitters with wet-chemically grown silver nanowires. The emitters of choice are single organic dye molecules under cryogenic conditions, which are known to act as high-brightness and extremely narrow-band single photon sources. Another advantage is their high optical nonlinearity, such that they might mediate photon-photon interactions on the nanoscale. We report on the coupling of a single molecule fluorescence emission through the wire over the length of several wavelengths. The transmission of coherently emitted photons is proven by an extinction type experiment. As for influencing the spectral properties of a single emitter, we are able to show a remote change of the line-width of a single terrylene molecule, which is in close proximity to the nanowire.

  1. Characterization and Optical Properties of the Single Crystalline SnS Nanowire Arrays

    Directory of Open Access Journals (Sweden)

    Yue GH

    2009-01-01

    Full Text Available Abstract The SnS nanowire arrays have been successfully synthesized by the template-assisted pulsed electrochemical deposition in the porous anodized aluminum oxide template. The investigation results showed that the as-synthesized nanowires are single crystalline structures and they have a highly preferential orientation. The ordered SnS nanowire arrays are uniform with a diameter of 50 nm and a length up to several tens of micrometers. The synthesized SnS nanowires exhibit strong absorption in visible and near-infrared spectral region and the direct energy gapE gof SnS nanowires is 1.59 eV.

  2. Self-diffusion in single crystalline silicon nanowires

    Science.gov (United States)

    Südkamp, T.; Hamdana, G.; Descoins, M.; Mangelinck, D.; Wasisto, H. S.; Peiner, E.; Bracht, H.

    2018-04-01

    Self-diffusion experiments in single crystalline isotopically controlled silicon nanowires with diameters of 70 and 400 nm at 850 and 1000 °C are reported. The isotope structures were first epitaxially grown on top of silicon substrate wafers. Nanowires were subsequently fabricated using a nanosphere lithography process in combination with inductively coupled plasma dry reactive ion etching. Three-dimensional profiling of the nanosized structure before and after diffusion annealing was performed by means of atom probe tomography (APT). Self-diffusion profiles obtained from APT analyses are accurately described by Fick's law for self-diffusion. Data obtained for silicon self-diffusion in nanowires are equal to the results reported for bulk silicon crystals, i.e., finite size effects and high surface-to-volume ratios do not significantly affect silicon self-diffusion. This shows that the properties of native point defects determined from self-diffusion in bulk crystals also hold for nanosized silicon structures with diameters down to 70 nm.

  3. Crosslinked Functional Polymer Nanowire Formation Along Single Particle Tracks

    International Nuclear Information System (INIS)

    Tagawa, S.

    2006-01-01

    The use of high-energy charged particles has extended to many fields in recent years. In medicine, non-homogeneous energy deposition along an ion trajectory (ion track) plays a crucial role in cancer radiotherapy, allowing for high spatial selectivity in the distribution of the radiation dose. The direct observation and application of ion tracks in media have also attracted interest in materials science, where it is known as nuclear track fabrication. Since the discovery that high-energy particle leave latent tracks in inorganic and organic polymer materials, the technique has also been applied to the production of micro- and nano-sized pores in materials through chemical etching of the tracks. The clear correlation between the etched pore and the characteristics of the incident charged particle has been utilized for measurement of the velocity and mass of the incident particles, and such organic film detectors are widely used in dosimetry, and in particular for galactic cosmic rays in space. The scope of the present paper is the direct nano-structure formation based on crosslinking reactions induced in nano-scale ultra-small spaces of single particle tracks. We have developed the simple one-step formation processes of nanowires without using any chemical etching or refilling processes. The present technique is in striking contrast to the previous 'nuclear track' nanofabrication techniques. According to its high feasibility for the preparation of 1-D nanowires based on 'any' kinds of polymeric materials, the present paper demonstrates the formation of not only simple polymer nanowires but also ceramic and/or multi-segment multi-functional nanowires

  4. Method for manufacturing a single crystal nanowire

    NARCIS (Netherlands)

    van den Berg, Albert; Bomer, Johan G.; Carlen, Edwin; Chen, S.; Kraaijenhagen, Roderik Adriaan; Pinedo, Herbert Michael

    2013-01-01

    A method for manufacturing a single crystal nano-structure is provided comprising the steps of providing a device layer with a 100 structure on a substrate; providing a stress layer onto the device layer; patterning the stress layer along the 110 direction of the device layer; selectively removing

  5. Method for manufacturing a single crystal nanowire

    NARCIS (Netherlands)

    van den Berg, Albert; Bomer, Johan G.; Carlen, Edwin; Chen, S.; Kraaijenhagen, R.A.; Pinedo, Herbert Michael

    2010-01-01

    A method for manufacturing a single crystal nano-structure is provided comprising the steps of providing a device layer with a 100 structure on a substrate; providing a stress layer onto the device layer; patterning the stress layer along the 110 direction of the device layer; selectively removing

  6. Electrical properties of single CuO nanowires for device fabrication: Diodes and field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Florica, Camelia; Costas, Andreea; Boni, Andra Georgia; Negrea, Raluca; Preda, Nicoleta, E-mail: nicol@infim.ro, E-mail: encu@infim.ro; Pintilie, Lucian; Enculescu, Ionut, E-mail: nicol@infim.ro, E-mail: encu@infim.ro [National Institute of Materials Physics, P.O. Box MG-7, Bucharest, Magurele 077125 (Romania); Ion, Lucian [Faculty of Physics, University of Bucharest, Atomistilor Street 103, Magurele, Ilfov 77125 (Romania)

    2015-06-01

    High aspect ratio CuO nanowires are synthesized by a simple and scalable method, thermal oxidation in air. The structural, morphological, optical, and electrical properties of the semiconducting nanowires were studied. Au-Ti/CuO nanowire and Pt/CuO nanowire electrical contacts were investigated. A dominant Schottky mechanism was evidenced in the Au-Ti/CuO nanowire junction and an ohmic behavior was observed for the Pt/CuO nanowire junction. The Pt/CuO nanowire/Pt structure allows the measurements of the intrinsic transport properties of the single CuO nanowires. It was found that an activation mechanism describes the behavior at higher temperatures, while a nearest neighbor hopping transport mechanism is characteristic at low temperatures. This was also confirmed by four-probe resistivity measurements on the single CuO nanowires. By changing the metal/semiconductor interface, devices such as Schottky diodes and field effect transistors based on single CuO p-type nanowire semiconductor channel are obtained. These devices are suitable for being used in various electronic circuits where their size related properties can be exploited.

  7. Optimised quantum hacking of superconducting nanowire single-photon detectors.

    Science.gov (United States)

    Tanner, Michael G; Makarov, Vadim; Hadfield, Robert H

    2014-03-24

    We explore bright-light control of superconducting nanowire single-photon detectors (SNSPDs) in the shunted configuration (a practical measure to avoid latching). In an experiment, we simulate an illumination pattern the SNSPD would receive in a typical quantum key distribution system under hacking attack. We show that it effectively blinds and controls the SNSPD. The transient blinding illumination lasts for a fraction of a microsecond and produces several deterministic fake clicks during this time. This attack does not lead to elevated timing jitter in the spoofed output pulse, and hence does not introduce significant errors. Five different SNSPD chip designs were tested. We consider possible countermeasures to this attack.

  8. Characterization of parallel superconducting nanowire single photon detectors

    International Nuclear Information System (INIS)

    Ejrnaes, M; Casaburi, A; Pagano, S; Cristiano, R; Quaranta, O; Marchetti, S; Gaggero, A; Mattioli, F; Leoni, R

    2009-01-01

    Superconducting nanowire single photon detectors (SNSPDs) have been realized using an innovative parallel wire configuration. This configuration allows, at the same time, a large detection area and a fast response, with the additional advantage of large signal amplitudes. The detectors have been thoroughly characterized in terms of signal properties (amplitude, risetime and falltime), detector operation (latching and not latching) and quantum efficiency (at 850 nm). It has been shown that the parallel SNSPD is able to provide significantly higher maximum count rates for large area SNSPDs than meandered SNSPDs. Through a proper parallel wire configuration the increase in maximum count rate can be obtained without latching problems.

  9. Characterization of parallel superconducting nanowire single photon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Ejrnaes, M; Casaburi, A; Pagano, S; Cristiano, R [CNR-Istituto di Cibernetica ' E Caianiello' , 80078 Pozzuoli (Namibia) (Italy); Quaranta, O; Marchetti, S [Dipartimento di Fisica ' E R Caianiello' , Universita di Salerno, 84081 Baronissi (Italy); Gaggero, A; Mattioli, F; Leoni, R [CNR-Istituto di Fotonica e Nanotecnologie, 00156 Roma (Italy)

    2009-05-15

    Superconducting nanowire single photon detectors (SNSPDs) have been realized using an innovative parallel wire configuration. This configuration allows, at the same time, a large detection area and a fast response, with the additional advantage of large signal amplitudes. The detectors have been thoroughly characterized in terms of signal properties (amplitude, risetime and falltime), detector operation (latching and not latching) and quantum efficiency (at 850 nm). It has been shown that the parallel SNSPD is able to provide significantly higher maximum count rates for large area SNSPDs than meandered SNSPDs. Through a proper parallel wire configuration the increase in maximum count rate can be obtained without latching problems.

  10. Optimised quantum hacking of superconducting nanowire single-photon detectors

    Science.gov (United States)

    Tanner, Michael G.; Makarov, Vadim; Hadfield, Robert H.

    2014-03-01

    We explore bright-light control of superconducting nanowire single-photon detectors (SNSPDs) in the shunted configuration (a practical measure to avoid latching). In an experiment, we simulate an illumination pattern the SNSPD would receive in a typical quantum key distribution system under hacking attack. We show that it effectively blinds and controls the SNSPD. The transient blinding illumination lasts for a fraction of a microsecond and produces several deterministic fake clicks during this time. This attack does not lead to elevated timing jitter in the spoofed output pulse, and hence does not introduce significant errors. Five different SNSPD chip designs were tested. We consider possible countermeasures to this attack.

  11. Antibacterial activity of single crystalline silver-doped anatase TiO{sub 2} nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiangyu, E-mail: zhangxiangyu@tyut.edu.cn; Li, Meng; He, Xiaojing; Hang, Ruiqiang; Huang, Xiaobo; Wang, Yueyue; Yao, Xiaohong; Tang, Bin, E-mail: tangbin@tyut.edu.cn

    2016-05-30

    Graphical abstract: The silver-doped TiO{sub 2} nanowire arrays on titanium foil substrate were synthesized via a two-step process. It includes: deposition of AgTi films on titanium foil by magnetron sputtering; preparation of AgNW arrays on AgTi films via alkali (NaOH) hydrothermal treatment and ion-exchange with HCl, followed by calcinations. - Highlights: • Ag-doped TiO{sub 2} nanowire arrays have been prepared by a duplex-treatment. • The duplex-treatment consisted of magnetron sputtering and hydrothermal growth. • Ag-doped nanowire arrays show excellent antibacterial activity against E. coli. - Abstract: Well-ordered, one-dimensional silver-doped anatase TiO{sub 2} nanowire (AgNW) arrays have been prepared through a hydrothermal growth process on the sputtering-deposited AgTi layers. Electron microscope analyses reveal that the as-synthesized AgNW arrays exhibit a single crystalline phase with highly uniform morphologies, diameters ranging from 85 to 95 nm, and lengths of about 11 μm. Silver is found to be doped into TiO{sub 2} nanowire evenly and mainly exists in the zerovalent state. The AgNW arrays show excellent efficient antibacterial activity against Escherichia coli (E. coli), and all of the bacteria can be killed within 1 h. Additionally, the AgNW arrays can still kill E. coli after immersion for 60 days, suggesting the long-term antibacterial property. The technique reported here is environmental friendly for formation of silver-containing nanostructure without using any toxic organic solvents.

  12. Proton irradiation effects on thermal transport in individual single-crystalline Bi nanowires

    International Nuclear Information System (INIS)

    Roh, Jong Wook; Ko, Dai Ho; Lee, Joo Hee; Kang, Joohoon; Lee, Min Kyung; Lee, Wooyoung; Lee, Cheol Woo; Lee, Kyu Hyoung; Noh, Jin-Seo

    2013-01-01

    We investigated the proton irradiation effect of thermal conductivities for individual single-crystalline Bi nanowires grown by the on-film formation of nanowires (ON-OFF). The thermal conductivities of Bi nanowires with diameter of 154 and 112 nm were measured using suspended devices before and after proton irradiation, respectively. It was founded thermal conductivities of Bi nanowires appreciably decrease after proton irradiation, which was caused by the destruction of single-crystallinity due to the high-energy proton impingement. This result indicates the defects of Bi nanowires created by proton drastically limit the mean free paths of phonons, resulting in the change of thermal transport of Bi nanowires. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Light-Induced Charge Transport within a Single Asymmetric Nanowire

    Energy Technology Data Exchange (ETDEWEB)

    LIU, CHONG; HWANG, YUN YEONG; JEONG, HOON EIU; YANG, PEIDONG

    2011-01-21

    Artificial photosynthetic systems using semiconductor materials have been explored for more than three decades in order to store solar energy in chemical fuels such as hydrogen. By mimicking biological photosynthesis with two light-absorbing centers that relay excited electrons in a nanoscopic space, a dual-band gap photoelectrochemical (PEC) system is expected to have higher theoretical energy conversion efficiency than a single band gap system. This work demonstrates the vectorial charge transport of photo-generated electrons and holes within a single asymmetric Si/TiO2 nanowire using Kelvin probe force microscopy (KPFM). Under UV illumination, higher surface potential was observed on the n-TiO₂ side, relative to the potential of the p-Si side, as a result of majority carriers’ recombination at the Si/TiO₂ interface. These results demonstrate a new approach to investigate charge separation and transport in a PEC system. This asymmetric nanowire heterostructure, with a dual band gap configuration and simultaneously exposed anode and cathode surfaces represents an ideal platform for the development of technologies for the generation of solar fuels, although better photoanode materials remain to be discovered.

  14. Doped niobium superconducting nanowire single-photon detectors

    Science.gov (United States)

    Jia, Tao; Kang, Lin; Zhang, Labao; Zhao, Qingyuan; Gu, Min; Qiu, Jian; Chen, Jian; Jin, Biaobing

    2014-09-01

    We designed and fabricated a special doped niobium (Nb*) superconducting nanowire single-photon detector (SNSPD) on MgO substrate. The superconductivity of this ultra-thin Nb* film was further improved by depositing an ultra-thin aluminum nitride protective layer on top. Compared with traditional Nb films, Nb* films present higher T C and J C. We investigated the dependence of the characteristics of devices, such as cut-off wavelength, response bandwidth, and temperature, on their geometrical dimensions. Results indicate that reduction in both the width and thickness of Nb* nanowires extended the cut-off wavelength and improved the sensitivity. The Nb* SNSPD (50 nm width and 4.5 nm thickness) exhibited single-photon sensitivities at 1,310, 1,550, and 2,010 nm. We also demonstrated an enhancement in the detection efficiency by a factor of 10 in its count rate by lowering the working temperature from 2.26 K to 315 mK.

  15. Optical properties of single semiconductor nanowires and nanowire ensembles. Probing surface physics by photoluminescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pfueller, Carsten

    2011-06-27

    This thesis presents a detailed investigation of the optical properties of semiconductor nanowires (NWs) in general and single GaN NWs and GaN NW ensembles in particular by photoluminescence (PL) spectroscopy. NWs are often considered as potential building blocks for future nanometer-scaled devices. This vision is based on several attractive features that are generally ascribed to NWs. For instance, they are expected to grow virtually free of strain and defects even on substrates with a large structural mismatch. In the first part of the thesis, some of these expectations are examined using semiconductor NWs of different materials. On the basis of the temperature-dependent PL of Au- and selfassisted GaAs/(Al,Ga)As core-shell NWs, the influence of foreign catalyst particles on the optical properties of NWs is investigated. For the Au-assisted NWs, we find a thermally activated, nonradiative recombination channel, possibly related to Auatoms incorporated from the catalyst. These results indicate the limited suitability of catalyst-assisted NWs for optoelectronic applications. The effect of the substrate choice is studied by comparing the PL of ZnO NWs grown on Si, Al{sub 2}O{sub 3}, and ZnO substrates. Their virtually identical optical characteristics indicate that the synthesis of NWs may indeed overcome the constraints that limit the heteroepitaxial deposition of thin films. The major part of this thesis discusses the optical properties of GaN NWs grown on Si substrates. The investigation of the PL of single GaN NWs and GaN NW ensembles reveals the significance of their large surface-to-volume ratio. Differences in the recombination behavior of GaNNW ensembles and GaN layers are observed. First, the large surface-to-volume ratio is discussed to be responsible for the different recombination mechanisms apparent in NWs. Second, certain optical features are only found in the PL of GaN NWs, but not in that of GaN layers. An unexpected broadening of the donor

  16. Reliability of Single Crystal Silver Nanowire-Based Systems: Stress Assisted Instabilities.

    Science.gov (United States)

    Ramachandramoorthy, Rajaprakash; Wang, Yanming; Aghaei, Amin; Richter, Gunther; Cai, Wei; Espinosa, Horacio D

    2017-05-23

    Time-dependent mechanical characterization of nanowires is critical to understand their long-term reliability in applications, such as flexible-electronics and touch screens. It is also of great importance to develop a theoretical framework for experimentation and analysis on the mechanics of nanowires under time-dependent loading conditions, such as stress-relaxation and fatigue. Here, we combine in situ scanning electron microscope (SEM)/transmission electron microscope (TEM) tests with atomistic and phase-field simulations to understand the deformation mechanisms of single crystal silver nanowires held under constant strain. We observe that the nanowires initially undergo stress-relaxation, where the stress reduces with time and saturates after some time period. The stress-relaxation process occurs due to the formation of few dislocations and stacking faults. Remarkably, after a few hours the nanowires rupture suddenly. The reason for this abrupt failure of the nanowire was identified as stress-assisted diffusion, using phase-field simulations. Under a large applied strain, diffusion leads to the amplification of nanowire surface perturbation at long wavelengths and the nanowire fails at the stress-concentrated thin cross-sectional regions. An analytical analysis on the competition between the elastic energy and the surface energy predicts a longer time to failure for thicker nanowires than thinner ones, consistent with our experimental observations. The measured time to failure of nanowires under cyclic loading conditions can also be explained in terms of this mechanism.

  17. Controlling growth density and patterning of single crystalline silicon nanowires

    International Nuclear Information System (INIS)

    Chang, Tung-Hao; Chang, Yu-Cheng; Liu, Fu-Ken; Chu, Tieh-Chi

    2010-01-01

    This study examines the usage of well-patterned Au nanoparticles (NPs) as a catalyst for one-dimensional growth of single crystalline Si nanowires (NWs) through the vapor-liquid-solid (VLS) mechanism. The study reports the fabrication of monolayer Au NPs through the self-assembly of Au NPs on a 3-aminopropyltrimethoxysilane (APTMS)-modified silicon substrate. Results indicate that the spin coating time of Au NPs plays a crucial role in determining the density of Au NPs on the surface of the silicon substrate and the later catalysis growth of Si NWs. The experiments in this study employed optical lithography to pattern Au NPs, treating them as a catalyst for Si NW growth. The patterned Si NW structures easily produced and controlled Si NW density. This approach may be useful for further studies on single crystalline Si NW-based nanodevices and their properties.

  18. Radial composition of single InGaN nanowires: a combined study by EDX, Raman spectroscopy, and X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Gomez, M.; Garro, N.; Cantarero, A. [Institut de Ciencia dels Materials, Universitat de Valencia, Paterna (Spain); Segura-Ruiz, J.; Martinez-Criado, G.; Chu, M.H. [European Synchrotron Radiation Facility, Experiments Division, Grenoble (France); Denker, C.; Malindretos, J.; Rizzi, A. [IV. Physikalisches Institut, Georg-August-Universitaet Goettingen (Germany)

    2013-10-15

    The radial alloy distribution of In{sub x} Ga{sub 1-x}N nanowires grown by plasma-assisted molecular beam epitaxy has been investigated by three different techniques with nanometric spatial resolution and capability to study single nanowires. Energy-dispersive X-ray spectroscopy radial line-scans revealed a gradient in the alloy composition of individual nanowires. Resonant Raman scattering and spatially resolved X-ray diffraction showed the existence of three distinctive regions with different alloy composition. The combination of the three techniques provides robust evidence of the spontaneous formation of a core-shell structure with a thin Ga-richer shell wrapping an In-rich core at the bottom part of the nanowires. This composition-modulated nanostructure offers an attractive way to explore new device concepts in fully epitaxial nanowire-based solar cells. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Radial composition of single InGaN nanowires: a combined study by EDX, Raman spectroscopy, and X-ray diffraction

    International Nuclear Information System (INIS)

    Gomez-Gomez, M.; Garro, N.; Cantarero, A.; Segura-Ruiz, J.; Martinez-Criado, G.; Chu, M.H.; Denker, C.; Malindretos, J.; Rizzi, A.

    2013-01-01

    The radial alloy distribution of In x Ga 1-x N nanowires grown by plasma-assisted molecular beam epitaxy has been investigated by three different techniques with nanometric spatial resolution and capability to study single nanowires. Energy-dispersive X-ray spectroscopy radial line-scans revealed a gradient in the alloy composition of individual nanowires. Resonant Raman scattering and spatially resolved X-ray diffraction showed the existence of three distinctive regions with different alloy composition. The combination of the three techniques provides robust evidence of the spontaneous formation of a core-shell structure with a thin Ga-richer shell wrapping an In-rich core at the bottom part of the nanowires. This composition-modulated nanostructure offers an attractive way to explore new device concepts in fully epitaxial nanowire-based solar cells. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Electrical Characterization of Vapor-Deposited Single CdS Nanowire

    Science.gov (United States)

    Fu, X. L.; Tang, W. H.; Li, L. H.

    In this work, we synthesized chromium-doped CdS nanowires by simple vapor deposition. And the current-voltage characteristics of single CdS nanowire have been studied. The results from electrical transport measurements on the field-effect transistors showed that the nanowire was an n-type semiconductor. In addition, the Au/CdS nanowire device exhibited clear diode-like behavior, and a thermally-assisted tunneling mechanism, which dominates the transport of carriers above the metal-semiconductor contact in the diode, was discussed in detail.

  1. A High-Efficiency Photonic Nanowire Single-Photon Source Featuring An Inverted Conical Taper

    DEFF Research Database (Denmark)

    Gregersen, Niels; Nielsen, Torben Roland; Mørk, Jesper

    2011-01-01

    A photonic nanowire single-photon source design incorporating an inverted conical tapering is proposed. The inverted taper allows for easy electrical contacting and a high photon extraction efficiency of 89 %. Unlike cavity-based approaches, the photonic nanowire features broadband spontaneous...... emission control and an improved tolerance towards fabrication imperfections....

  2. A high-efficiency electrically-pumped single-photon source based on a photonics nanowire

    DEFF Research Database (Denmark)

    Gregersen, Niels; Nielsen, Torben Roland; Mørk, Jesper

    An electrically-pumped single-photon source design with a predicted efficiency of 89% is proposed. The design is based on a quantum dot embedded in a photonic nanowire with tailored ends and optimized contact electrodes. Unlike cavity-based approaches, the photonic nanowire features broadband...

  3. Highly sensitive single polyaniline nanowire biosensor for the detection of immunoglobulin G and myoglobin

    Science.gov (United States)

    Lee, Innam; Luo, Xiliang; Cui, Xinyan Tracy; Yun, Minhee

    2011-01-01

    A single polyaniline (PANI) nanowire-based biosensor was established to detect immunoglobulin G (IgG) and myoglobin (Myo), which is one of the cardiac biomarkers. The single PANI nanowires were fabricated via an electrochemical growth method, in which single nanowires were formed between a pair of patterned electrodes. The single PANI nanowires were functionalized with monoclonal antibodies (mAbs) of IgG or Myo via a surface immobilization method, using 1-ethyl-3-(3-dimethyaminopropyl) carbodiimide (EDC), and N-Hydroxysuccinimde (NHS). The functionalization was then verified by Raman spectroscopy and fluorescence microscopy. The target proteins of IgG and Myo were detected by measuring the conductance change of functionalized single PANI nanowires owing to the capturing of target proteins by mAbs. The detection limit was found to be 3 ng/mL for IgG and 1.4 ng/mL for Myo. No response was observed when single nanowires were exposed to a non-specific protein demonstrating excellent specificity to expected target detection. Together with the fast response time (a few seconds), high sensitivity, and good specificity, this single PANI nanowire-based biosensor shows great promise in the detection of cardiac markers and other proteins. PMID:21269820

  4. Superconducting nanowire single-photon detectors: physics and applications

    International Nuclear Information System (INIS)

    Natarajan, Chandra M; Tanner, Michael G; Hadfield, Robert H

    2012-01-01

    Single-photon detectors based on superconducting nanowires (SSPDs or SNSPDs) have rapidly emerged as a highly promising photon-counting technology for infrared wavelengths. These devices offer high efficiency, low dark counts and excellent timing resolution. In this review, we consider the basic SNSPD operating principle and models of device behaviour. We give an overview of the evolution of SNSPD device design and the improvements in performance which have been achieved. We also evaluate device limitations and noise mechanisms. We survey practical refrigeration technologies and optical coupling schemes for SNSPDs. Finally we summarize promising application areas, ranging from quantum cryptography to remote sensing. Our goal is to capture a detailed snapshot of an emerging superconducting detector technology on the threshold of maturity. (topical review)

  5. Nanolithography based contacting method for electrical measurements on single template synthesized nanowires

    DEFF Research Database (Denmark)

    Fusil, S.; Piraux, L.; Mátéfi-Tempfli, Stefan

    2005-01-01

    A reliable method enabling electrical measurements on single nanowires prepared by electrodeposition in an alumina template is described. This technique is based on electrically controlled nanoindentation of a thin insulating resist deposited on the top face of the template filled by the nanowires....... We show that this method is very flexible, allowing us to electrically address single nanowires of controlled length down to 100 nm and of desired composition. Using this approach, current densities as large as 10 A cm were successfully injected through a point contact on a single magnetic...

  6. Synthesis of Single Crystal GaN Nanowires

    Directory of Open Access Journals (Sweden)

    Lining Fang

    2016-05-01

    Full Text Available The straight and curved gallium nitride (GaN nanowires were successfully synthesized by controlling the gallium/ nitrogen reactant ratio via a chemical vapour deposition method. The structure and morphology of nanowires were characterized by X-ray diffraction (XRD, transmission electronic microscopy (TEM, field emission scanning electron microscopy (FESEM, selected area electron diffraction (SAED and high resolution transmission electron microscopy (HRTEM. The straight and curved GaN nanowires are composed of wurtzite and a zinc blende structure, respectively. Photoluminescence (PL spectra of zinc blende GaN nanowires showed a strong UV emission band at 400 nm, indicating potential application in optoe‐ lectronic devices.

  7. An Affordable Wet Chemical Route to Grow Conducting Hybrid Graphite-Diamond Nanowires: Demonstration by A Single Nanowire Device.

    Science.gov (United States)

    Shellaiah, Muthaiah; Chen, Tin Hao; Simon, Turibius; Li, Liang-Chen; Sun, Kien Wen; Ko, Fu-Hsiang

    2017-09-11

    We report an affordable wet chemical route for the reproducible hybrid graphite-diamond nanowires (G-DNWs) growth from cysteamine functionalized diamond nanoparticles (ND-Cys) via pH induced self-assembly, which has been visualized through SEM and TEM images. Interestingly, the mechanistic aspects behind that self-assembly directed G-DNWs formation was discussed in details. Notably, above self-assembly was validated by AFM and TEM data. Further interrogations by XRD and Raman data were revealed the possible graphite sheath wrapping over DNWs. Moreover, the HR-TEM studies also verified the coexistence of less perfect sp 2 graphite layer wrapped over the sp 3 diamond carbon and the impurity channels as well. Very importantly, conductivity of hybrid G-DNWs was verified via fabrication of a single G-DNW. Wherein, the better conductivity of G-DNW portion L2 was found as 2.4 ± 1.92 × 10 -6 mS/cm and revealed its effective applicability in near future. In addition to note, temperature dependent carrier transport mechanisms and activation energy calculations were reported in details in this work. Ultimately, to demonstrate the importance of our conductivity measurements, the possible mechanism behind the electrical transport and the comparative account on electrical resistivities of carbon based materials were provided.

  8. CdS nanowires formed by chemical synthesis using conjugated single-stranded DNA molecules

    Science.gov (United States)

    Sarangi, S. N.; Sahu, S. N.; Nozaki, S.

    2018-03-01

    CdS nanowires were successfully grown by chemical synthesis using two conjugated single-stranded (ss) DNA molecules, poly G (30) and poly C (30), as templates. During the early stage of the synthesis with the DNA molecules, the Cd 2+ interacts with Poly G and Poly C and produces the (Cd 2+)-Poly GC complex. As the growth proceeds, it results in nanowires. The structural analysis by grazing angle x-ray diffraction and transmission electron microscopy confirmed the zinc-blende CdS nanowires with the growth direction of . Although the nanowires are well surface-passivated with the DNA molecules, the photoluminescence quenching was caused by the electron transfer from the nanowires to the DNA molecules. The quenching can be used to detect and label the DNAs.

  9. Fabrication of enzyme-degradable and size-controlled protein nanowires using single particle nano-fabrication technique

    Science.gov (United States)

    Omichi, Masaaki; Asano, Atsushi; Tsukuda, Satoshi; Takano, Katsuyoshi; Sugimoto, Masaki; Saeki, Akinori; Sakamaki, Daisuke; Onoda, Akira; Hayashi, Takashi; Seki, Shu

    2014-04-01

    Protein nanowires exhibiting specific biological activities hold promise for interacting with living cells and controlling and predicting biological responses such as apoptosis, endocytosis and cell adhesion. Here we report the result of the interaction of a single high-energy charged particle with protein molecules, giving size-controlled protein nanowires with an ultra-high aspect ratio of over 1,000. Degradation of the human serum albumin nanowires was examined using trypsin. The biotinylated human serum albumin nanowires bound avidin, demonstrating the high affinity of the nanowires. Human serum albumin-avidin hybrid nanowires were also fabricated from a solid state mixture and exhibited good mechanical strength in phosphate-buffered saline. The biotinylated human serum albumin nanowires can be transformed into nanowires exhibiting a biological function such as avidin-biotinyl interactions and peroxidase activity. The present technique is a versatile platform for functionalizing the surface of any protein molecule with an extremely large surface area.

  10. Spatial mapping of exciton lifetimes in single ZnO nanowires

    Directory of Open Access Journals (Sweden)

    J. S. Reparaz

    2013-07-01

    Full Text Available We investigate the spatial dependence of the exciton lifetimes in single ZnO nanowires. We have found that the free exciton and bound exciton lifetimes exhibit a maximum at the center of nanowires, while they decrease by 30% towards the tips. This dependence is explained by considering the cavity-like properties of the nanowires in combination with the Purcell effect. We show that the lifetime of the bound-excitons scales with the localization energy to the power of 3/2, which validates the model of Rashba and Gurgenishvili at the nanoscale.

  11. Revealing ultralarge and localized elastic lattice strains in Nb nanowires embedded in NiTi matrix.

    Science.gov (United States)

    Zang, Ketao; Mao, Shengcheng; Cai, Jixiang; Liu, Yinong; Li, Haixin; Hao, Shijie; Jiang, Daqiang; Cui, Lishan

    2015-12-02

    Freestanding nanowires have been found to exhibit ultra-large elastic strains (4 to 7%) and ultra-high strengths, but exploiting their intrinsic superior mechanical properties in bulk forms has proven to be difficult. A recent study has demonstrated that ultra-large elastic strains of ~6% can be achieved in Nb nanowires embedded in a NiTi matrix, on the principle of lattice strain matching. To verify this hypothesis, this study investigated the elastic deformation behavior of a Nb nanowire embedded in NiTi matrix by means of in situ transmission electron microscopic measurement during tensile deformation. The experimental work revealed that ultra-large local elastic lattice strains of up to 8% are induced in the Nb nanowire in regions adjacent to stress-induced martensite domains in the NiTi matrix, whilst other parts of the nanowires exhibit much reduced lattice strains when adjacent to the untransformed austenite in the NiTi matrix. These observations provide a direct evidence of the proposed mechanism of lattice strain matching, thus a novel approach to designing nanocomposites of superior mechanical properties.

  12. Electroluminescence from single nanowires by tunnel injection: an experimental study

    OpenAIRE

    Zimmler, Mariano A.; Bao, Jiming; Shalish, Ilan; Yi, Wei; Yoon, Joonah; Narayanamurti, Venkatesh; Capasso, Federico

    2007-01-01

    We present a hybrid light-emitting diode structure composed of an n-type gallium nitride nanowire on a p-type silicon substrate in which current is injected along the length of the nanowire. The device emits ultraviolet light under both bias polarities. Tunnel-injection of holes from the p-type substrate (under forward bias) and from the metal (under reverse bias) through thin native oxide barriers consistently explains the observed electroluminescence behaviour. This work shows that the stan...

  13. The photonic nanowire: A highly efficient single-photon source

    DEFF Research Database (Denmark)

    Gregersen, Niels

    2014-01-01

    The photonic nanowire represents an attractive platform for a quantum light emitter. However, careful optical engineering using the modal method, which elegantly allows access to all relevant physical parameters, is crucial to ensure high efficiency.......The photonic nanowire represents an attractive platform for a quantum light emitter. However, careful optical engineering using the modal method, which elegantly allows access to all relevant physical parameters, is crucial to ensure high efficiency....

  14. A simple and controlled single electron transistor based on doping modulation in silicon nanowires

    OpenAIRE

    Hofheinz, M.; Jehl, X.; Sanquer, M.; Molas, G.; Vinet, M.; Deleonibus, S.

    2006-01-01

    A simple and highly reproducible single electron transistor (SET) has been fabricated using gated silicon nanowires. The structure is a metal-oxide-semiconductor field-effect transistor made on silicon-on-insulator thin films. The channel of the transistor is the Coulomb island at low temperature. Two silicon nitride spacers deposited on each side of the gate create a modulation of doping along the nanowire that creates tunnel barriers. Such barriers are fixed and controlled, like in metallic...

  15. Metal-Catalyst-Free Synthesis and Characterization of Single-Crystalline Silicon Oxynitride Nanowires

    Directory of Open Access Journals (Sweden)

    Shuang Xi

    2012-01-01

    Full Text Available Large quantities of single-crystal silicon oxynitride nanowires with high N concentration have been synthesized directly on silicon substrate at 1200°C without using any metal catalyst. The diameter of these ternary nanowires is ranging from 10 to 180 nm with log-normal distribution, and the length of these nanowires varies from a few hundreds of micrometers to several millimeters. A vapor-solid mechanism was proposed to explain the growth of the nanowires. These nanowires are grown to form a disordered mat with an ultrabright white nonspecular appearance. The mat demonstrates highly diffusive reflectivity with the optical reflectivity of around 80% over the whole visible wavelength, which is comparable to the most brilliant white beetle scales found in nature. The whiteness might be resulted from the strong multiscattering of a large fraction of incident light on the disordered nanowire mat. These ultra-bright white nanowires could form as reflecting surface to meet the stringent requirements of bright-white light-emitting-diode lighting for higher optical efficiency. They can also find applications in diverse fields such as sensors, cosmetics, paints, and tooth whitening.

  16. Electronic transport mechanism and photocurrent generations of single-crystalline InN nanowires

    Science.gov (United States)

    Lee, Sunghun; Lee, Wonjoo; Seo, Kwanyong; Kim, Jinhee; Han, Sung-Hwan; Kim, Bongsoo

    2008-10-01

    Nanodevices using individual indium nitride nanowires are fabricated by e-beam lithography. The nanowires have diameters of 40-80 nm, lengths up to several tens of micrometres and single-crystalline nature. We observed ohmic I-V behaviour of InN nanowires above nearly 100 K, which is consistent with the pinning Fermi level of the metal electrode near the conduction band edge of InN nanowire. At low temperatures, the device shows typical semiconductor behaviour along with a quantum tunnelling effect through the Schottky barrier rather than thermally activated transport. The activation energy calculated above and below 80 K is 28.2 and 5.08 meV, respectively. We have also fabricated a photocurrent generation device using InN nanowires. The photocurrent of an acceptor-sensitizer dyad with di-(3-aminopropyl)-viologen (DAPV) and a Ru complex on an InN nanowires/ITO plate was 8.3 nA cm-2, which increased by 62.7% compared to that without InN nanowire layers.

  17. Direct monolithic integration of vertical single crystalline octahedral molecular sieve nanowires on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Carretero-Genevrier, Adrian [Institut des Nanotechnologies de Lyon (INL), UMR-CNRS 5270, Ecole Central de Lyon, Ecully (France); Institut de Ciencia de Materials de Barcelona ICMAB, Catalonia (Spain); Sorbonne Univ., UPMC Univ. Paris 06, CNRS, College de France, Paris (France); Oro-Sole, Judith [Institut de Ciencia de Materials de Barcelona ICMAB, Catalonia (Spain); Gazquez, Jaume [Institut de Ciencia de Materials de Barcelona ICMAB, Catalonia (Spain); Magen, Cesar [Univ. de Zaragoza, Zaragoza (Spain); Miranda, Laura [Sorbonne Univ., UPMC Univ. Paris 06, CNRS, College de France, Paris (France); Puig, Teresa [Institut de Ciencia de Materials de Barcelona ICMAB, Catalonia (Spain); Obradors, Xavier [Institut de Ciencia de Materials de Barcelona ICMAB, Catalonia (Spain); Ferain, Etienne [Univ. Catholique de Louvain, Louvain-la-Neuve (Belgium); Sanchez, Clement [Sorbonne Univ., UPMC Univ. Paris 06, CNRS, College de France, Paris (France); Rodriguez-Carvajal, Juan [Institut Laue-Langevin, Grenoble Cedex (France); Mestres, Narcis [Institut de Ciencia de Materials de Barcelona ICMAB, Catalonia (Spain)

    2013-12-13

    We developed an original strategy to produce vertical epitaxial single crystalline manganese oxide octahedral molecular sieve (OMS) nanowires with tunable pore sizes and compositions on silicon substrates by using a chemical solution deposition approach. The nanowire growth mechanism involves the use of track-etched nanoporous polymer templates combined with the controlled growth of quartz thin films at the silicon surface, which allowed OMS nanowires to stabilize and crystallize. α-quartz thin films were obtained after thermal activated crystallization of the native amorphous silica surface layer assisted by Sr2+- or Ba2+-mediated heterogeneous catalysis in the air at 800 °C. These α-quartz thin films work as a selective template for the epitaxial growth of randomly oriented vertical OMS nanowires. Furthermore, the combination of soft chemistry and epitaxial growth opens new opportunities for the effective integration of novel technological functional tunneled complex oxides nanomaterials on Si substrates.

  18. Realization of single and double axial InSb-GaSb heterostructure nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Ghalamestani, Sepideh Gorji [Solid State Physics, Lund University, Lund (Sweden); Ek, Martin [Center for Analysis and Synthesis, Lund University, Lund (Sweden); Dick, Kimberly A. [Solid State Physics, Lund University, Lund (Sweden); Center for Analysis and Synthesis, Lund University, Lund (Sweden)

    2014-03-15

    Heteroepitaxial growth of III-Sb nanowires allows for the formation of various interesting complex structures and enables the combination of their remarkable properties. In this Letter, we investigate the heteroepitaxial growth of Au-seeded InSb and GaSb nanowires using metalorganic vapor phase epitaxy. We demonstrate successful single and double axial InSb-GaSb heterostructures in both directions. The formation properties of the grown nanowires including the compositional change of the particle and the interface sharpness are further discussed. In addition, the decomposition of InSb and GaSb segments and their side facet evolution are explained. XEDS compositional line scans overlaid on STEM HAADF image along the InSb-GaSb-InSb nanowire indicating sharp interface from GaSb to InSb segment and graded interface in the opposite direction. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Mapping the "forbidden" transverse-optical phonon in single strained silicon (100) nanowire.

    Science.gov (United States)

    Tarun, Alvarado; Hayazawa, Norihiko; Ishitobi, Hidekazu; Kawata, Satoshi; Reiche, Manfred; Moutanabbir, Oussama

    2011-11-09

    The accurate manipulation of strain in silicon nanowires can unveil new fundamental properties and enable novel or enhanced functionalities. To exploit these potentialities, it is essential to overcome major challenges at the fabrication and characterization levels. With this perspective, we have investigated the strain behavior in nanowires fabricated by patterning and etching of 15 nm thick tensile strained silicon (100) membranes. To this end, we have developed a method to excite the "forbidden" transverse-optical (TO) phonons in single tensile strained silicon nanowires using high-resolution polarized Raman spectroscopy. Detecting this phonon is critical for precise analysis of strain in nanoscale systems. The intensity of the measured Raman spectra is analyzed based on three-dimensional field distribution of radial, azimuthal, and linear polarizations focused by a high numerical aperture lens. The effects of sample geometry on the sensitivity of TO measurement are addressed. A significantly higher sensitivity is demonstrated for nanowires as compared to thin layers. In-plane and out-of-plane strain profiles in single nanowires are obtained through the simultaneous probe of local TO and longitudinal-optical (LO) phonons. New insights into strained nanowires mechanical properties are inferred from the measured strain profiles.

  20. Nonpolar InGaN/GaN Core-Shell Single Nanowire Lasers.

    Science.gov (United States)

    Li, Changyi; Wright, Jeremy B; Liu, Sheng; Lu, Ping; Figiel, Jeffrey J; Leung, Benjamin; Chow, Weng W; Brener, Igal; Koleske, Daniel D; Luk, Ting-Shan; Feezell, Daniel F; Brueck, S R J; Wang, George T

    2017-02-08

    We report lasing from nonpolar p-i-n InGaN/GaN multi-quantum well core-shell single-nanowire lasers by optical pumping at room temperature. The nanowire lasers were fabricated using a hybrid approach consisting of a top-down two-step etch process followed by a bottom-up regrowth process, enabling precise geometrical control and high material gain and optical confinement. The modal gain spectra and the gain curves of the core-shell nanowire lasers were measured using micro-photoluminescence and analyzed using the Hakki-Paoli method. Significantly lower lasing thresholds due to high optical gain were measured compared to previously reported semipolar InGaN/GaN core-shell nanowires, despite significantly shorter cavity lengths and reduced active region volume. Mode simulations show that due to the core-shell architecture, annular-shaped modes have higher optical confinement than solid transverse modes. The results show the viability of this p-i-n nonpolar core-shell nanowire architecture, previously investigated for next-generation light-emitting diodes, as low-threshold, coherent UV-visible nanoscale light emitters, and open a route toward monolithic, integrable, electrically injected single-nanowire lasers operating at room temperature.

  1. Wurtzite ZnSe nanowires: growth, photoluminescence, and single-wire Raman properties

    Energy Technology Data Exchange (ETDEWEB)

    Shan, C X; Liu, Z; Zhang, X T; Wong, C C; Hark, S K [Department of Physics, Chinese University of Hong Kong, Shatin, Hong Kong (China)

    2006-11-28

    Wurtzite ZnSe nanowires were prepared on GaAs substrates in a metal-organic chemical vapour deposition system. Electron microscopy shows that they are smooth and uniform in size. Both transmission electron microscopy and x-ray diffraction reveal the wurtzite structure of the nanowires, which grows along the <0001> direction. Raman scattering studies on individual nanowires were performed in the back-scattering geometry at room temperature. Besides the commonly observed longitudinal and transverse optical phonon modes, a possible surface mode located at 233 cm{sup -1} is also observed in the Raman spectrum. A peak located at 2.841 eV was clearly observed in the photoluminescence spectra of the nanowires, which can be assigned to near band edge emissions of wurtzite ZnSe.

  2. Wurtzite ZnSe nanowires: growth, photoluminescence, and single-wire Raman properties.

    Science.gov (United States)

    Shan, C X; Liu, Z; Zhang, X T; Wong, C C; Hark, S K

    2006-11-28

    Wurtzite ZnSe nanowires were prepared on GaAs substrates in a metal-organic chemical vapour deposition system. Electron microscopy shows that they are smooth and uniform in size. Both transmission electron microscopy and x-ray diffraction reveal the wurtzite structure of the nanowires, which grows along the [Formula: see text] direction. Raman scattering studies on individual nanowires were performed in the back-scattering geometry at room temperature. Besides the commonly observed longitudinal and transverse optical phonon modes, a possible surface mode located at 233 cm(-1) is also observed in the Raman spectrum. A peak located at 2.841 eV was clearly observed in the photoluminescence spectra of the nanowires, which can be assigned to near band edge emissions of wurtzite ZnSe.

  3. Capillarity creates single-crystal calcite nanowires from amorphous calcium carbonate.

    Science.gov (United States)

    Kim, Yi-Yeoun; Hetherington, Nicola B J; Noel, Elizabeth H; Kröger, Roland; Charnock, John M; Christenson, Hugo K; Meldrum, Fiona C

    2011-12-23

    Single-crystal calcite nanowires are formed by crystallization of morphologically equivalent amorphous calcium carbonate (ACC) particles within the pores of track etch membranes. The polyaspartic acid stabilized ACC is drawn into the membrane pores by capillary action, and the single-crystal nature of the nanowires is attributed to the limited contact of the intramembrane ACC particle with the bulk solution. The reaction environment then supports transformation to a single-crystal product. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Angular Magnetoresistance of Nanowires with Alternating Cobalt and Nickel Segments

    KAUST Repository

    Mohammed, Hanan

    2017-06-22

    Magnetization reversal in segmented Co/Ni nanowires with varying number of segments was studied using angular Magnetoresistance (MR) measurements on isolated nanowires. The MR measurements offer an insight into the pinning of domain walls within the nanowires. Angular MR measurements were performed on nanowires with two and multiple segments by varying the angle between the applied magnetic field and nanowire (−90° ≤θ≤90°). The angular MR measurements reveal that at lower values of θ the switching fields are nearly identical for the multisegmented and two-segmented nanowires, whereas at higher values of θ, a decrease in the switching field is observed in the case of two segmented nanowires. The two segmented nanowires generally exhibit a single domain wall pinning event, whereas an increased number of pinning events are characteristic of the multisegmented nanowires at higher values of θ. In-situ magnetic force microscopy substantiates reversal by domain wall nucleation and propagation in multisegmented nanowires.

  5. Electroluminescence from single nanowires by tunnel injection: an experimental study

    Science.gov (United States)

    Zimmler, Mariano A.; Bao, Jiming; Shalish, Ilan; Yi, Wei; Yoon, Joonah; Narayanamurti, Venkatesh; Capasso, Federico

    2007-06-01

    We present a hybrid light-emitting diode structure composed of an n-type gallium nitride nanowire on a p-type silicon substrate in which current is injected along the length of the nanowire. The device emits ultraviolet light under both bias polarities. Tunnel injection of holes from the p-type substrate (under forward bias) and from the metal (under reverse bias) through thin native oxide barriers consistently explains the observed electroluminescence behaviour. This work shows that the standard p-n junction model is generally not applicable to this kind of device structure.

  6. Linearly Polarized, Single-Mode Spontaneous Emission in a Photonic Nanowire

    DEFF Research Database (Denmark)

    Munsch, Mathieu; Claudon, Julien; Bleuse, Joël

    2012-01-01

    We introduce dielectric elliptical photonic nanowires to funnel efficiently the spontaneous emission of an embedded emitter into a single optical mode. Inside a wire with a moderate lateral aspect ratio, the electromagnetic environment is largely dominated by a single guided mode, with a linear...

  7. Controlled Coupling of a Single Nitrogen-Vacancy Center to a Silver Nanowire

    DEFF Research Database (Denmark)

    Huck, Alexander; Kumar, Shailesh; Shakoor, Abdul

    2011-01-01

    We report on the controlled coupling of a single nitrogen-vacancy (NV) center to a surface plasmon mode propagating along a chemically grown silver nanowire (NW). We locate and optically characterize a single NV center in a uniform dielectric environment before we controllably position this emitter...

  8. Bipolar Photothermoelectric Effect Across Energy Filters in Single Nanowires.

    Science.gov (United States)

    Limpert, Steven; Burke, Adam; Chen, I-Ju; Anttu, Nicklas; Lehmann, Sebastian; Fahlvik, Sofia; Bremner, Stephen; Conibeer, Gavin; Thelander, Claes; Pistol, Mats-Erik; Linke, Heiner

    2017-07-12

    The photothermoelectric (PTE) effect uses nonuniform absorption of light to produce a voltage via the Seebeck effect and is of interest for optical sensing and solar-to-electric energy conversion. However, the utility of PTE devices reported to date has been limited by the need to use a tightly focused laser spot to achieve the required, nonuniform illumination and by their dependence upon the Seebeck coefficients of the constituent materials, which exhibit limited tunability and, generally, low values. Here, we use InAs/InP heterostructure nanowires to overcome these limitations: first, we use naturally occurring absorption "hot spots" at wave mode maxima within the nanowire to achieve sharp boundaries between heated and unheated subwavelength regions of high and low absorption, allowing us to use global illumination; second, we employ carrier energy-filtering heterostructures to achieve a high Seebeck coefficient that is tunable by heterostructure design. Using these methods, we demonstrate PTE voltages of hundreds of millivolts at room temperature from a globally illuminated nanowire device. Furthermore, we find PTE currents and voltages that change polarity as a function of the wavelength of illumination due to spatial shifting of subwavelength absorption hot spots. These results indicate the feasibility of designing new types of PTE-based photodetectors, photothermoelectrics, and hot-carrier solar cells using nanowires.

  9. Solvothermal growth of single-crystal CdS nanowires

    Indian Academy of Sciences (India)

    Cadmium sulfide (CdS) nanowires (NWs) were prepared by the solvothermal method using ethylenedi- amine as a solvent. Two sets of ... discovery of new physical and chemical properties (Wang et al 2011). One-dimensional ... mal synthesis is widely used to prepare semiconductor NWs, particularly CdS. This synthesis ...

  10. Stoichiometry controlled, single-crystalline Bi{sub 2}Te{sub 3} nanowires for transport in the basal plane

    Energy Technology Data Exchange (ETDEWEB)

    Peranio, Nicola; Eibl, Oliver [Institut fuer Angewandte Physik, Eberhard Karls Universitaet Tuebingen (Germany); Leister, Eva; Toellner, William; Nielsch, Kornelius [Institut fuer Angewandte Physik, Universitaet Hamburg (Germany)

    2012-01-11

    Thermoelectric Bi{sub 2}Te{sub 3} based bulk materials are widely used for solid-state refrigeration and power-generation at room temperature. For low-dimensional and nanostructured thermoelectric materials an increase of the thermoelectric figure of merit ZT is predicted due to quantum confinement and phonon scattering at interfaces. Therefore, the fabrication of Bi{sub 2}Te{sub 3} nanowires, thin films, and nanostructured bulk materials has become an important and active field of research. Stoichiometric Bi{sub 2}Te{sub 3} nanowires with diameters of 50-80 nm and a length of 56 {mu}m are grown by a potential-pulsed electrochemical deposition in a nanostructured Al{sub 2}O{sub 3} matrix. By transmission electron microscopy (TEM), dark-field images together with electron diffraction reveal single-crystalline wires, no grain boundaries can be detected. The stoichiometry control of the wires by high-accuracy, quantitative energy-dispersive X-ray spectroscopy (EDX) in the TEM instrument is of paramount importance for successfully implementing the growth technology. Combined electron diffraction and EDX spectroscopy in the TEM unambiguously prove the correct crystal structure and stoichiometry of the Bi{sub 2}Te{sub 3} nanowires. X-ray and electron diffraction reveal growth along the [110] and [210] directions and the c axis of the Bi{sub 2}Te{sub 3} structure lies perpendicular to the wire axis. For the first time single crystalline, stoichiometric Bi{sub 2}Te{sub 3} nanowires are grown that allow transport in the basal plane without being affected by grain boundaries. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Fabrication and characterization of single segment CoNiP and multisegment CoNiP/Au nanowires

    International Nuclear Information System (INIS)

    Luu Van Thiem; Le Tuan Tu

    2014-01-01

    This paper presents the fabrication of CoNiP single segment and CoNiP/Au multisegment nanowires. We have fabricated these nanowires by electrodeposition method into polycarbonate templates with a nominal pore diameter about 100 nm. The hysteresis loops were measured with the applied magnetic field parallel and perpendicular to the wire axis using a vibrating sample magnetometer (VSM). The structure morphology was observed by Scanning Electron Microscopy (SEM) and the element composition of CoNiP/Au multisegment nanowires were analyzed by EDS. The results show that nanowires are very uniform with the diameter of 100 nm. The observed coercivity (H C ) and squareness (Mr/Ms) of CoNiP single segment nanowires are larger than the CoNiP/Au multisegment nanowires. (author)

  12. Resonant tunnelling features in a suspended silicon nanowire single-hole transistor

    Energy Technology Data Exchange (ETDEWEB)

    Llobet, Jordi; Pérez-Murano, Francesc, E-mail: francesc.perez@csic.es, E-mail: z.durrani@imperial.ac.uk [Institut de Microelectrònica de Barcelona (IMB-CNM CSIC), Campus UAB, E-08193 Bellaterra, Catalonia (Spain); Krali, Emiljana; Wang, Chen; Jones, Mervyn E.; Durrani, Zahid A. K., E-mail: francesc.perez@csic.es, E-mail: z.durrani@imperial.ac.uk [Department of Electrical and Electronic Engineering, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom); Arbiol, Jordi [Institució Catalana de Recerca i Estudis Avançats (ICREA) and Institut Català de Nanociència i Nanotecnologia (ICN2), Campus UAB, 08193 Bellaterra, Catalonia (Spain); CELLS-ALBA Synchrotron Light Facility, 08290 Cerdanyola, Catalonia (Spain)

    2015-11-30

    Suspended silicon nanowires have significant potential for a broad spectrum of device applications. A suspended p-type Si nanowire incorporating Si nanocrystal quantum dots has been used to form a single-hole transistor. Transistor fabrication uses a novel and rapid process, based on focused gallium ion beam exposure and anisotropic wet etching, generating <10 nm nanocrystals inside suspended Si nanowires. Electrical characteristics at 10 K show Coulomb diamonds with charging energy ∼27 meV, associated with a single dominant nanocrystal. Resonant tunnelling features with energy spacing ∼10 meV are observed, parallel to both diamond edges. These may be associated either with excited states or hole–acoustic phonon interactions, in the nanocrystal. In the latter case, the energy spacing corresponds well with reported Raman spectroscopy results and phonon spectra calculations.

  13. Polytypism and band alignment in ZnSe nanowires revealed by photoluminescence spectroscopy of embedded (Zn,Cd)Se quantum dots

    Science.gov (United States)

    Bieker, S.; Pfeuffer, R.; Kiessling, T.; Tarakina, N.; Schumacher, C.; Ossau, W.; Molenkamp, L. W.; Karczewski, G.

    2015-03-01

    We report on the optical characterization of single (Zn,Cd)Se quantum dots (QDs) embedded in vapor-liquid-solid-grown ZnSe nanowires (NWs). The temperature dependent quenching of the QD luminescence demonstrates that their electronic structure is comparable to that of self-assembled (Zn,Cd)Se QDs in ZnSe matrices. The photoluminescence excitation (PLE) spectrum of single nanowire QDs reveals the presence of both zinc blende (ZB) and wurtzite (WZ) crystal modifications of ZnSe in the NW shafts. PLE provides, therefore, a complementary technique to transmission electron microscopy imaging to reveal polytypism in ZnSe NWs. A transient quenching of the PL emission suggests a type II staggered band alignment at the ZB/WZ interface in our ZnSe NWs.

  14. Chiral transformation: From single nanowire to double helix

    KAUST Repository

    Wang, Yong

    2011-12-21

    We report a new type of water-soluble ultrathin Au-Ag alloy nanowire (NW), which exhibits unprecedented behavior in a colloidal solution. Upon growth of a thin metal (Pd, Pt, or Au) layer, the NW winds around itself to give a metallic double helix. We propose that the winding originates from the chirality within the as-synthesized Au-Ag NWs, which were induced to untwist upon metal deposition. © 2011 American Chemical Society.

  15. Controlling light emission from single-photon sources using photonic nanowires

    DEFF Research Database (Denmark)

    Gregersen, Niels; Chen, Yuntian; Mørk, Jesper

    2012-01-01

    The photonic nanowire has recently emerged as an promising alternative to microcavity-based single-photon source designs. In this simple structure, a geometrical effect ensures a strong coupling between an embedded emitter and the optical mode of interest and a combination of tapers and mirrors a...... designs allowing for electrical contacting, polarization control, improved efficiency and simplified fabrication....

  16. Stress induced growth of Sn nanowires in a single step by sputtering method

    Science.gov (United States)

    Yadav, A.; Patel, N.; Miotello, A.; Kothari, D. C.

    2015-06-01

    Sn nanowires in aluminum film have been synthesized in a single step by co-sputtering of Al and Sn targets. Due to immiscibility of Sn and Al, co-sputtering leads to generation of stress in the composite film. In order to attain thermodynamic equilibrium, Sn separates from Al and diffuses towards the grain boundaries. External perturbation due to ambient atmosphere leads to corrosion at the grain boundaries forming pits which provide path for Sn to evolve. Owing to this, extrusion of Sn nanowires from Al film occurs to release the residual stress in the film.

  17. Photovoltaic device on a single ZnO nanowire p–n homojunction

    International Nuclear Information System (INIS)

    Cho, Hak Dong; Zakirov, Anvar S; Yuldashev, Shavkat U; Kang, Tae Won; Ahn, Chi Won; Yeo, Yung Kee

    2012-01-01

    A photovoltaic device was successfully grown solely based on the single ZnO p–n homojunction nanowire. The ZnO nanowire p–n diode consists of an as-grown n-type segment and an in situ arsenic-doped p-type segment. This p–n homojunction acts as a good photovoltaic cell, producing a photocurrent almost 45 times larger than the dark current under reverse-biased conditions. Our results demonstrate that the present ZnO p–n homojunction nanowire can be used as a self-powered ultraviolet photodetector as well as a photovoltaic cell, which can also be used as an ultralow electrical power source for nanoscale electronic, optoelectronic and medical devices. (paper)

  18. Homojunction p-n photodiodes based on As-doped single ZnO nanowire

    International Nuclear Information System (INIS)

    Cho, H. D.; Zakirov, A. S.; Yuldashev, Sh. U.; Kang, T. W.; Ahn, C. W.; Yeo, Y. K.

    2013-01-01

    Photovoltaic device was successfully grown solely based on the single ZnO p-n homojunction nanowire. The ZnO nanowire p-n diode consists of an as-grown n-type segment and an in-situ arsenic doped p-type segment. This p-n homojunction acts as a good photovoltaic cell, producing a photocurrent almost 45 times larger than the dark current under reverse-biased condition. Our results demonstrate that present ZnO p-n homojunction nanowire can be used as a self-powered ultraviolet photodetector as well as a photovoltaic cell, which can also be used as an ultralow electrical power source for nano-scale electronic, optoelectronic, and medical devices

  19. Monolithic carbon structures including suspended single nanowires and nanomeshes as a sensor platform.

    Science.gov (United States)

    Lim, Yeongjin; Heo, Jeong-Il; Madou, Marc; Shin, Heungjoo

    2013-11-20

    With the development of nanomaterial-based nanodevices, it became inevitable to develop cost-effective and simple nanofabrication technologies enabling the formation of nanomaterial assembly in a controllable manner. Herein, we present suspended monolithic carbon single nanowires and nanomeshes bridging two bulk carbon posts, fabricated in a designed manner using two successive UV exposure steps and a single pyrolysis step. The pyrolysis step is accompanied with a significant volume reduction, resulting in the shrinkage of micro-sized photoresist structures into nanoscale carbon structures. Even with the significant elongation of the suspended carbon nanowire induced by the volume reduction of the bulk carbon posts, the resultant tensional stress along the nanowire is not significant but grows along the wire thickness; this tensional stress gradient and the bent supports of the bridge-like carbon nanowire enhance structural robustness and alleviate the stiction problem that suspended nanostructures frequently experience. The feasibility of the suspended carbon nanostructures as a sensor platform was demonstrated by testing its electrochemical behavior, conductivity-temperature relationship, and hydrogen gas sensing capability.

  20. Fluctuation mechanisms in superconductors nanowire single-photon counters, enabled by effective top-down manufacturing

    CERN Document Server

    Bartolf, Holger

    2016-01-01

    Holger Bartolf discusses state-of-the-art detection concepts based on superconducting nanotechnology as well as sophisticated analytical formulæ that model dissipative fluctuation-phenomena in superconducting nanowire single-photon detectors. Such knowledge is desirable for the development of advanced devices which are designed to possess an intrinsic robustness against vortex-fluctuations and it provides the perspective for honorable fundamental science in condensed matter physics. Especially the nanowire detector allows for ultra-low noise detection of signals with single-photon sensitivity and GHz repetition rates. Such devices have a huge potential for future technological impact and might enable unique applications (e.g. high rate interplanetary deep-space data links from Mars to Earth). Contents Superconducting Single-Photon Detectors Nanotechnological Manufacturing; Scale: 10 Nanometer Berezinskii-Kosterlitz Thouless (BKT) Transition, Edge-Barrier, Phase Slips Target Groups Researchers and students of...

  1. Controlling the Coupling of a Single Nitrogen Vacancy Center to a Silver Nanowire

    DEFF Research Database (Denmark)

    Huck, Alexander; Kumar, Shailesh; Shakoor, Abdul

    2011-01-01

    Dipole emitters are expected to efficiently couple to the plasmonic mode propagating along a cylindrically shaped metallic nano-structure. Such a strongly coupled system could serve as a fundamental building block for a single photon source on demand and a device enabling strong non-linear intera......Dipole emitters are expected to efficiently couple to the plasmonic mode propagating along a cylindrically shaped metallic nano-structure. Such a strongly coupled system could serve as a fundamental building block for a single photon source on demand and a device enabling strong non......-linear interaction at the level of a few photons. In our contribution we demonstrate the controlled coupling of a single nitrogen vacancy (NV) center in a diamond nano crystal to a nanowire made of silver. This is in contrast to previous realizations, where the nanowire dipole system was assembled randomly. Ultimate...

  2. Ensembles of indium phosphide nanowires: physical properties and functional devices integrated on non-single crystal platforms

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Nobuhiko P.; Lohn, Andrew; Onishi, Takehiro [University of California, Santa Cruz (United States). Baskin School of Engineering; NASA Ames Research Center, Nanostructured Energy Conversion Technology and Research (NECTAR), Advanced Studies Laboratories, Univ. of California Santa Cruz, Moffett Field, CA (United States); Mathai, Sagi; Li, Xuema; Straznicky, Joseph; Wang, Shih-Yuan; Williams, R.S. [Hewlett-Packard Laboratories, Information and Quantum Systems Laboratory, Palo Alto, CA (United States); Logeeswaran, V.J.; Islam, M.S. [University of California Davis, Electrical and Computer Engineering, Davis, CA (United States)

    2009-06-15

    A new route to grow an ensemble of indium phosphide single-crystal semiconductor nanowires is described. Unlike conventional epitaxial growth of single-crystal semiconductor films, the proposed route for growing semiconductor nanowires does not require a single-crystal semiconductor substrate. In the proposed route, instead of using single-crystal semiconductor substrates that are characterized by their long-range atomic ordering, a template layer that possesses short-range atomic ordering prepared on a non-single-crystal substrate is employed. On the template layer, epitaxial information associated with its short-range atomic ordering is available within an area that is comparable to that of a nanowire root. Thus the template layer locally provides epitaxial information required for the growth of semiconductor nanowires. In the particular demonstration described in this paper, hydrogenated silicon was used as a template layer for epitaxial growth of indium phosphide nanowires. The indium phosphide nanowires grown on the hydrogenerated silicon template layer were found to be single crystal and optically active. Simple photoconductors and pin-diodes were fabricated and tested with the view towards various optoelectronic device applications where group III-V compound semiconductors are functionally integrated onto non-single-crystal platforms. (orig.)

  3. A highly sensitive, label-free gene sensor based on a single conducting polymer nanowire.

    Science.gov (United States)

    Kannan, Bhuvaneswari; Williams, David E; Laslau, Cosmin; Travas-Sejdic, Jadranka

    2012-05-15

    A prerequisite for exploiting sensing devices based on semiconductor nanowires is ultra-sensitive and selective direct electrical detection of biological and chemical species. Here, we constructed a transducer based on copolymer of poly(3,4,-ethylenedioxythiophene) (PEDOT) and carboxylic group functionalised PEDOT single nanowire in between gold electrodes, followed by covalent attachment of amino-modified probe oligonucleotide. The target ODNs specific to Homo sapiens Breast and ovarian cancer cells were detected at femtomolar concentration and incorporation of negative controls (non-complementary ODN) were clearly discriminated by the sensor. The ex situ measurements were performed by using two terminal device setup and the changes in the interface of the nanowire associated with the association or dissociation of ODNs were measured as change in resistance. In addition, in situ measurements were performed by utilizing scanning ion conductance microscopy to measure the change in resistance of probe modified nanowire upon addition of different concentration of target ODNs in presence of relevant buffer. The constructed, nano sensor showed highly sensitive concentration dependent resistance change. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Control of single photon emitters in semiconductor nanowires by surface acoustic waves

    Science.gov (United States)

    Lazić, S.; Hernández-Mínguez, A.; Santos, P. V.

    2017-08-01

    We report on an experimental study into the effects of surface acoustic waves on the optical emission of dot-in-a-nanowire heterostructures in III-V material systems. Under direct optical excitation, the excitonic energy levels in III-nitride dot-in-a-nanowire heterostructures oscillate at the acoustic frequency, producing a characteristic splitting of the emission lines in the time-integrated photoluminescence spectra. This acoustically induced periodic tuning of the excitonic transition energies is combined with spectral detection filtering and employed as a tool to regulate the temporal output of anti-bunched photons emitted from these nanowire quantum dots. In addition, the acoustic transport of electrons and holes along a III-arsenide nanowire injects the electric charges into an ensemble of quantum dot-like recombination centers that are spatially separated from the optical excitation area. The acoustic population and depopulation mechanism determines the number of carrier recombination events taking place simultaneously in the ensemble, thus allowing control of the anti-bunching degree of the emitted photons. The results presented are relevant for the dynamic control of single photon emission in III-V semiconductor heterostructures.

  5. Structural and electrochemical properties of single crystalline MoV 2O8 nanowires for energy storage devices

    KAUST Repository

    Shahid, Muhammad

    2013-05-01

    We report the synthesis of MoV2O8 nanowires of high quality using spin coating followed by the thermal annealing process. Transmission electron microscopy (TEM) reveals the average diameter of synthesized nanowire about 100 nm, and average length ranges from 1 to 5 μm. The TEM analysis further confirms the <001> growth direction of MoV 2O8 nanowires. The electrochemical properties of synthesized nanowires using cyclic voltammetry show the specific capacitance 56 Fg-1 at the scan rate of 5 mV s-1 that remains 24 Fg -1 at 100 mV s-1. The electrochemical measurements suggest that the MoV2O8 nanowires can be used as a material for the future electrochemical capacitors (energy storage devices). © 2012 Published by Elsevier Inc. All rights reserved.

  6. Fast-Response Single-Nanowire Photodetector Based on ZnO/WS2 Core/Shell Heterostructures.

    Science.gov (United States)

    Butanovs, Edgars; Vlassov, Sergei; Kuzmin, Alexei; Piskunov, Sergei; Butikova, Jelena; Polyakov, Boris

    2018-04-12

    The surface plays an exceptionally important role in nanoscale materials, exerting a strong influence on their properties. Consequently, even a very thin coating can greatly improve the optoelectronic properties of nanostructures by modifying the light absorption and spatial distribution of charge carriers. To use these advantages, 1D/1D heterostructures of ZnO/WS 2 core/shell nanowires with a-few-layers-thick WS 2 shell were fabricated. These heterostructures were thoroughly characterized by scanning and transmission electron microscopy, X-ray diffraction, and Raman spectroscopy. Then, a single-nanowire photoresistive device was assembled by mechanically positioning ZnO/WS 2 core/shell nanowires onto gold electrodes inside a scanning electron microscope. The results show that a few layers of WS 2 significantly enhance the photosensitivity in the short wavelength range and drastically (almost 2 orders of magnitude) improve the photoresponse time of pure ZnO nanowires. The fast response time of ZnO/WS 2 core/shell nanowire was explained by electrons and holes sinking from ZnO nanowire into WS 2 shell, which serves as a charge carrier channel in the ZnO/WS 2 heterostructure. First-principles calculations suggest that the interface layer i-WS 2 , bridging ZnO nanowire surface and WS 2 shell, might play a role of energy barrier, preventing the backward diffusion of charge carriers into ZnO nanowire.

  7. Comprehensive analyses of core-shell InGaN/GaN single nanowire photodiodes

    Science.gov (United States)

    Zhang, H.; Guan, N.; Piazza, V.; Kapoor, A.; Bougerol, C.; Julien, F. H.; Babichev, A. V.; Cavassilas, N.; Bescond, M.; Michelini, F.; Foldyna, M.; Gautier, E.; Durand, C.; Eymery, J.; Tchernycheva, M.

    2017-12-01

    Single nitride nanowire core/shell n-p photodetectors are fabricated and analyzed. Nanowires consisting of an n-doped GaN stem, a radial InGaN/GaN multiple quantum well system and a p-doped GaN external shell were grown by catalyst-free metal-organic vapour phase epitaxy on sapphire substrates. Single nanowires were dispersed and the core and the shell regions were contacted with a metal and an ITO deposition, respectively, defined using electron beam lithography. The single wire photodiodes present a response in the visible to UV spectral range under zero external bias. The detector operation speed has been analyzed under different bias conditions. Under zero bias, the  -3 dB cut-off frequency is ~200 Hz for small light modulations. The current generation was modeled using non-equilibrium Green function formalism, which evidenced the importance of phonon scattering for carrier extraction from the quantum wells.

  8. Non-degenerate pump-probe spectroscopy of single GaN nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Upadhya, Prashanth C [Los Alamos National Laboratory; Taylor, Antoinette J [Los Alamos National Laboratory; Prasankumar, Rohiy P [Los Alamos National Laboratory; Wang, George T [SNL; Martinez, Julio A [SNL; Li, Qiming [SNL; Swartzentruber, Brian S [SNL

    2010-01-01

    Spatially-resolved ultrafast transient absorption measurements on a single GaN nanowire give insight into carrier relaxation dynamics as a function of the probe polarization and position on the nanowire on a femtosecond timescale. The synthesis and optical characterization of semiconductor nanowires (NWs) has gained considerable attention in recent years owing to their unique electronic and optical properties that arise from their anisotropic geometry, large surface to volume ratio and two-dimensional quasiparticle confinement, Post-growth characterization of their properties is crucial in understanding the fundamental physical processes that can lead to enhanced functionality of NW-based devices, In particular, it is important to understand the carrier relaxation pathways in individual NWs, since the geometry of these nanostructures can significantly influence carrier recombination and/or trapping. In this respect, ultrafast optical techniques offer reliable and non-contact spectroscopic tools to study carrier dynamics in semiconductor nanostructures. In summary, time-resolved optical pump-probe spectroscopy was performed on single GaN NWs. These measurements give insight into the different processes that govern carrier capture, particularly at surface states, and relaxation in individual nanostructures. Our experiments thus demonstrate the value of single-particle ultrafast optical spectroscopy in understanding the physical processes that govern the properties of semiconductor NWs, while suggesting approaches to optimize NW-based devices for nanophotonic applications.

  9. Nano-optical observation of cascade switching in a parallel superconducting nanowire single photon detector

    International Nuclear Information System (INIS)

    Heath, Robert M.; Tanner, Michael G.; Casaburi, Alessandro; Hadfield, Robert H.; Webster, Mark G.; San Emeterio Alvarez, Lara; Jiang, Weitao; Barber, Zoe H.; Warburton, Richard J.

    2014-01-01

    The device physics of parallel-wire superconducting nanowire single photon detectors is based on a cascade process. Using nano-optical techniques and a parallel wire device with spatially separate pixels, we explicitly demonstrate the single- and multi-photon triggering regimes. We develop a model for describing efficiency of a detector operating in the arm-trigger regime. We investigate the timing response of the detector when illuminating a single pixel and two pixels. We see a change in the active area of the detector between the two regimes and find the two-pixel trigger regime to have a faster timing response than the one-pixel regime

  10. Low-threshold room-temperature AlGaAs/GaAs nanowire/single-quantum-well heterostructure laser

    OpenAIRE

    Yan, Xin; Wei, Wei; Tang, Fengling; Wang, Xi; Li, Luying

    2017-01-01

    Near-infrared nanowire lasers are promising as ultrasmall, low-consumption light emitters in on-chip optical communications and computing systems. Here, we report on a room-temperature near-infrared nanolaser based on an AlGaAs/GaAs nanowire/single-quantum-well heterostructure grown by Au-catalyzed metal organic chemical vapor deposition. When subjects to pulsed optical excitation, the nanowire exhibits lasing, with a low threshold of 600 W/cm2, a narrow linewidth of 0.39 nm, and a high Q fac...

  11. Opto-electronics on Single Nanowire Quantum Dots

    OpenAIRE

    Van Kouwen, M.P.

    2010-01-01

    An important goal for nanoscale opto-electronics is the transfer of single electron spin states into single photon polarization states (and vice versa), thereby interfacing quantum transport and quantum optics. Such an interface enables new experiments in the field of quantum information processing. Single and entangled photon-pair generation can be used for quantum cryptography. Furthermore, photons can be used in the readout of a quantum computer based on electron spins. Semiconducting nano...

  12. Organic Nanowires

    DEFF Research Database (Denmark)

    Balzer, Frank; Schiek, Manuela; Al-Shamery, Katharina

    Single crystalline nanowires from fluorescing organic molecules like para-phenylenes or thiophenes are supposed to become key elements in future integrated optoelectronic devices [1]. For a sophisticated design of devices based on nanowires the basic principles of the nanowire formation have...... to be well understood [2]. Nanowires from para-phenylenes, from ®-thiophenes, and from phenylene/thiophene co-oligomers, Fig. 1, are investigated exemplarily. Epitaxy and electrostatic interactions determine the microscopic growth mechanism, whereas kinetics ascertains the macroscopic habit. Results from...

  13. Optical properties of photodetectors based on single GaN nanowires with a transparent graphene contact

    Energy Technology Data Exchange (ETDEWEB)

    Babichev, A. V., E-mail: A.Babichev@mail.ioffe.ru [Russian Academy of Sciences, Ioffe Institute (Russian Federation); Zhang, H.; Guan, N. [University Paris Saclay, Institut d’Electronique Fondamentale, UMR 8622 CNRS (France); Egorov, A. Yu. [ITMO University (Russian Federation); Julien, F. H.; Messanvi, A. [University Paris Saclay, Institut d’Electronique Fondamentale, UMR 8622 CNRS (France); Durand, C.; Eymery, J. [University Grenoble Alpes (France); Tchernycheva, M. [University Paris Saclay, Institut d’Electronique Fondamentale, UMR 8622 CNRS (France)

    2016-08-15

    We report the fabrication and optical and electrical characterization of photodetectors for the UV spectral range based on single p–n junction nanowires with a transparent contact of a new type. The contact is based on CVD-grown (chemical-vapor deposition) graphene. The active region of the nitride nanowires contains a set of 30 radial In{sub 0.18}Ga{sub 0.82}N/GaN quantum wells. The structure is grown by metal-organic vaporphase epitaxy. The photodetectors are fabricated using electron-beam lithography. The current–voltage characteristics exhibit a rectifying behavior. The spectral sensitivity of the photodetector is recorded starting from 3 eV and extending far in the UV range. The maximal photoresponse is observed at a wavelength of 367 nm (sensitivity 1.9 mA/W). The response switching time of the photodetector is less than 0.1 s.

  14. Investigation into Photoconductivity in Single CNF/TiO2-Dye Core–Shell Nanowire Devices

    Directory of Open Access Journals (Sweden)

    Rochford Caitlin

    2010-01-01

    Full Text Available Abstract A vertically aligned carbon nanofiber array coated with anatase TiO2 (CNF/TiO2 is an attractive possible replacement for the sintered TiO2 nanoparticle network in the original dye-sensitized solar cell (DSSC design due to the potential for improved charge transport and reduced charge recombination. Although the reported efficiency of 1.1% in these modified DSSC’s is encouraging, the limiting factors must be identified before a higher efficiency can be obtained. This work employs a single nanowire approach to investigate the charge transport in individual CNF/TiO2 core–shell nanowires with adsorbed N719 dye molecules in dark and under illumination. The results shed light on the role of charge traps and dye adsorption on the (photo conductivity of nanocrystalline TiO2 CNF’s as related to dye-sensitized solar cell performance.

  15. Single crystal cupric oxide nanowires: Length- and density-controlled growth and gas-sensing characteristics

    Science.gov (United States)

    Duc, Le Duy; Le, Dang Thi Thanh; Duy, Nguyen Van; Hoa, Nguyen Duc; Hieu, Nguyen Van

    2014-04-01

    Nanowire structured p-type CuO semiconductor is a promising material for gas-sensing applications because of its unique electrical and optical properties. In this study, we demonstrate the length and density controlled synthesis of single crystal CuO nanowires (CuO NWs) by a simple and convenient thermal oxidation of high-purity copper foils in ambient atmosphere. The density and length of the CuO NWs are controlled by varying the oxidation temperature and heating duration to investigate their growth mechanism. As-synthesized materials are characterized by different techniques, such as X-ray diffraction, field emission-scanning electron microscopy, and high-resolution transmission electron microscopy. The gas-sensing characteristics of the CuO NWs are tested using hydrogen and ethanol gases. The results show that the CuO NWs could potentially sense hydrogen and ethanol gases given a working temperature of 400 °C.

  16. Simple and controlled single electron transistor based on doping modulation in silicon nanowires

    Science.gov (United States)

    Hofheinz, M.; Jehl, X.; Sanquer, M.; Molas, G.; Vinet, M.; Deleonibus, S.

    2006-10-01

    A simple and highly reproducible single electron transistor (SET) has been fabricated using gated silicon nanowires. The structure is a metal-oxide-semiconductor field-effect transistor made on silicon-on-insulator thin films. The channel of the transistor is the Coulomb island at low temperature. Two silicon nitride spacers deposited on each side of the gate create a modulation of doping along the nanowire that creates tunnel barriers. Such barriers are fixed and controlled, like in metallic SETs. The period of the Coulomb oscillations is set by the gate capacitance of the transistor and therefore controlled by lithography. The source and drain capacitances have also been characterized. This design could be used to build more complex SET devices.

  17. Opto-electronics on Single Nanowire Quantum Dots

    NARCIS (Netherlands)

    Van Kouwen, M.P.

    2010-01-01

    An important goal for nanoscale opto-electronics is the transfer of single electron spin states into single photon polarization states (and vice versa), thereby interfacing quantum transport and quantum optics. Such an interface enables new experiments in the field of quantum information processing.

  18. Faceting, composition and crystal phase evolution in III-V antimonide nanowire heterostructures revealed by combining microscopy techniques

    Science.gov (United States)

    Xu, Tao; Dick, Kimberly A.; Plissard, Sébastien; Hai Nguyen, Thanh; Makoudi, Younes; Berthe, Maxime; Nys, Jean-Philippe; Wallart, Xavier; Grandidier, Bruno; Caroff, Philippe

    2012-03-01

    III-V antimonide nanowires are among the most interesting semiconductors for transport physics, nanoelectronics and long-wavelength optoelectronic devices due to their optimal material properties. In order to investigate their complex crystal structure evolution, faceting and composition, we report a combined scanning electron microscopy (SEM), transmission electron microscopy (TEM), and scanning tunneling microscopy (STM) study of gold-nucleated ternary InAs/InAs1-xSbx nanowire heterostructures grown by molecular beam epitaxy. SEM showed the general morphology and faceting, TEM revealed the internal crystal structure and ternary compositions, while STM was successfully applied to characterize the oxide-free nanowire sidewalls, in terms of nanofaceting morphology, atomic structure and surface composition. The complementary use of these techniques allows for correlation of the morphological and structural properties of the nanowires with the amount of Sb incorporated during growth. The addition of even a minute amount of Sb to InAs changes the crystal structure from perfect wurtzite to perfect zinc blende, via intermediate stacking fault and pseudo-periodic twinning regimes. Moreover, the addition of Sb during the axial growth of InAs/InAs1-xSbx heterostructure nanowires causes a significant conformal lateral overgrowth on both segments, leading to the spontaneous formation of a core-shell structure, with an Sb-rich shell.

  19. Atomistic simulations on the axial nanowelding configuration and contact behavior between Ag nanowire and single-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Jianlei, E-mail: cjlxjtu@mail.xjtu.edu.cn; Zhang, Jianwei [Xi’an Jiaotong University, State Key Laboratory for Manufacturing Systems Engineering (China); He, Xiaoqiao, E-mail: bcxqhe@cityu.edu.hk [City University of Hong Kong, Department of Architecture and Civil Engineering (Hong Kong); Yang, Xinjun [Fudan University, State Key Laboratory of Surface Physics and Department of Physics (China); Mei, Xuesong; Wang, Wenjun; Jiang, Gedong; Wang, Kedian [Xi’an Jiaotong University, State Key Laboratory for Manufacturing Systems Engineering (China); Yang, Lijun; Xie, Hui [Harbin Institute of Technology, State Key Laboratory of Robotics and Systems (China)

    2017-03-15

    As for the interesting new building blocks, the Ag nanowires (AgNWs) and single-walled carbon nanotubes (SWNTs) as the interesting new building blocks are viewed as the promising candidates for the next-generation interconnects due to their most remarkable electrical, thermal, optical, mechanical, and other properties. The axial nanowelding of head-to-head style and side-to-side style is relatively simulated with the molecular dynamics method. As for the head-to-head structural style, SWNTs will move toward the AgNWs and contact with the head of AgNWs. And, the part of the Ag nanowire may be subsequently encapsulated in SWNT with the core-filling Ag atom chain as the final atomic contact configuration during nanowelding, which is related to the nanowelding temperature. When the SWNTs and AgNWs are arranged by the side-to-side contact style, the SWNTs will move along the SWNT surface and may eventually catch up with the AgNW being neck and neck. Aiming at the final axial atomic configurations and the contact behavior during nanowelding process, the related dominant mechanism is revealed in this paper.

  20. Atomistic simulations on the axial nanowelding configuration and contact behavior between Ag nanowire and single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Cui, Jianlei; Zhang, Jianwei; He, Xiaoqiao; Yang, Xinjun; Mei, Xuesong; Wang, Wenjun; Jiang, Gedong; Wang, Kedian; Yang, Lijun; Xie, Hui

    2017-01-01

    As for the interesting new building blocks, the Ag nanowires (AgNWs) and single-walled carbon nanotubes (SWNTs) as the interesting new building blocks are viewed as the promising candidates for the next-generation interconnects due to their most remarkable electrical, thermal, optical, mechanical, and other properties. The axial nanowelding of head-to-head style and side-to-side style is relatively simulated with the molecular dynamics method. As for the head-to-head structural style, SWNTs will move toward the AgNWs and contact with the head of AgNWs. And, the part of the Ag nanowire may be subsequently encapsulated in SWNT with the core-filling Ag atom chain as the final atomic contact configuration during nanowelding, which is related to the nanowelding temperature. When the SWNTs and AgNWs are arranged by the side-to-side contact style, the SWNTs will move along the SWNT surface and may eventually catch up with the AgNW being neck and neck. Aiming at the final axial atomic configurations and the contact behavior during nanowelding process, the related dominant mechanism is revealed in this paper.

  1. The physics of nanowire superconducting single-photon detectors

    NARCIS (Netherlands)

    Renema, Jelmer Jan

    2015-01-01

    We investigate the detection mechanism in superconducting single photon detectors via quantum detector tomography. We find that the detection event is caused by diffusion of quasiparticles from the absorption spot, combined with entrance of a vortex. Moreover, we investigate the behaviour of

  2. METHOD FOR MANUFACTURING A SINGLE CRYSTAL NANO-WIRE.

    NARCIS (Netherlands)

    Van Den Berg, Albert; Bomer, Johan; Carlen Edwin, Thomas; Chen, Songyue; Kraaijenhagen Roderik, Adriaan; Pinedo Herbert, Michael

    2011-01-01

    A method for manufacturing a single crystal nano-structure is provided comprising the steps of providing a device layer with a 100 structure on a substrate; providing a stress layer onto the device layer; patterning the stress layer along the 110 direction of the device layer; selectively removing

  3. METHOD FOR MANUFACTURING A SINGLE CRYSTAL NANO-WIRE

    NARCIS (Netherlands)

    Van Den Berg, Albert; Bomer, Johan; Carlen Edwin, Thomas; Chen, Songyue; Kraaijenhagen Roderik, Adriaan; Pinedo Herbert, Michael

    2012-01-01

    A method for manufacturing a single crystal nano-structure includes providing a device layer with a 100 structure on a substrate; providing a stress layer onto the device layer; patterning the stress layer along the 110 direction of the device layer; selectively removing parts of the stress layer to

  4. Anisotropic surface strain in single crystalline cobalt nanowires and its impact on the diameter-dependent Young's modulus

    KAUST Repository

    Huang, Xiaohu

    2013-01-01

    Understanding and measuring the size-dependent surface strain of nanowires are essential to their applications in various emerging devices. Here, we report on the diameter-dependent surface strain and Young\\'s modulus of single-crystalline Co nanowires investigated by in situ X-ray diffraction measurements. Diameter-dependent initial longitudinal elongation of the nanowires is observed and ascribed to the anisotropic surface stress due to the Poisson effect, which serves as the basis for mechanical measurements. As the nanowire diameter decreases, a transition from the "smaller is softer" regime to the "smaller is tougher" regime is observed in the Young\\'s modulus of the nanowires, which is attributed to the competition between the elongation softening and the surface stiffening effects. Our work demonstrates a new nondestructive method capable of measuring the initial surface strain and estimating the Young\\'s modulus of single crystalline nanowires, and provides new insights on the size effect. © 2013 The Royal Society of Chemistry.

  5. Growth and Physical Property Study of Single Nanowire (Diameter ~45 nm of Half Doped Manganite

    Directory of Open Access Journals (Sweden)

    Subarna Datta

    2013-01-01

    Full Text Available We report here the growth and characterization of functional oxide nanowire of hole doped manganite of La0.5Sr0.5MnO3 (LSMO. We also report four-probe electrical resistance measurement of a single nanowire of LSMO (diameter ~45 nm using focused ion beam (FIB fabricated electrodes. The wires are fabricated by hydrothermal method using autoclave at a temperature of 270 °C. The elemental analysis and physical property like electrical resistivity are studied at an individual nanowire level. The quantitative determination of Mn valency and elemental mapping of constituent elements are done by using Electron Energy Loss Spectroscopy (EELS in the Transmission Electron Microscopy (TEM mode. We address the important issue of whether as a result of size reduction the nanowires can retain the desired composition, structure, and physical properties. The nanowires used are found to have a ferromagnetic transition (TC at around 325 K which is very close to the bulk value of around 330 K found in single crystal of the same composition. It is confirmed that the functional behavior is likely to be retained even after size reduction of the nanowires to a diameter of 45 nm. The electrical resistivity shows insulating behavior within the measured temperature range which is similar to the bulk system.

  6. Coexistence of optically active radial and axial CdTe insertions in single ZnTe nanowire

    Science.gov (United States)

    Wojnar, P.; Płachta, J.; Zaleszczyk, W.; Kret, S.; Sanchez, Ana M.; Rudniewski, R.; Raczkowska, K.; Szymura, M.; Karczewski, G.; Baczewski, L. T.; Pietruczik, A.; Wojtowicz, T.; Kossut, J.

    2016-03-01

    We report on the growth, cathodoluminescence and micro-photoluminescence of individual radial and axial CdTe insertions in ZnTe nanowires. In particular, the cathodoluminescence technique is used to determine the position of each emitting object inside the nanowire. It is demonstrated that depending on the CdTe deposition temperature, one can obtain an emission either from axial CdTe insertions only, or from both, radial and axial heterostructures, simultaneously. At 350 °C CdTe grows only axially, whereas at 310 °C and 290 °C, there is also significant deposition on the nanowire sidewalls resulting in radial core/shell heterostructures. The presence of Cd atoms on the sidewalls is confirmed by energy dispersive X-ray spectroscopy. Micro-photoluminescence study reveals a strong linear polarization of the emission from both types of heterostructures in the direction along the nanowire axis.We report on the growth, cathodoluminescence and micro-photoluminescence of individual radial and axial CdTe insertions in ZnTe nanowires. In particular, the cathodoluminescence technique is used to determine the position of each emitting object inside the nanowire. It is demonstrated that depending on the CdTe deposition temperature, one can obtain an emission either from axial CdTe insertions only, or from both, radial and axial heterostructures, simultaneously. At 350 °C CdTe grows only axially, whereas at 310 °C and 290 °C, there is also significant deposition on the nanowire sidewalls resulting in radial core/shell heterostructures. The presence of Cd atoms on the sidewalls is confirmed by energy dispersive X-ray spectroscopy. Micro-photoluminescence study reveals a strong linear polarization of the emission from both types of heterostructures in the direction along the nanowire axis. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08806b

  7. Fabrication of double-dot single-electron transistor in silicon nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Mingyu; Kaizawa, Takuya; Arita, Masashi [Graduate School of Information Science and Technology, Hokkaido Univ., Sapporo, 060-0814 (Japan); Fujiwara, Akira; Ono, Yukinori [NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, 243-0198 (Japan); Inokawa, Hiroshi [Research Institute of Electronics, Shizuoka Univ., 3-5-1, Johoku, Hamamatsu, 432-8011 (Japan); Choi, Jung-Bum [Physics and Research Institute of NanoScience and Technology, Chungbuk National Univ., Cheongju, Chungbuk 361-763 (Korea, Republic of); Takahashi, Yasuo, E-mail: y-taka@nano.ist.hokudai.ac.j [Graduate School of Information Science and Technology, Hokkaido Univ., Sapporo, 060-0814 (Japan)

    2010-01-01

    We propose a simple method for fabricating Si single-electron transistors (SET) with coupled dots by means of a pattern-dependent-oxidation (PADOX) method. The PADOX method is known to convert a small one-dimensional Si wire formed on a silicon-on-insulator (SOI) substrate into a SET automatically. We fabricated a double-dot Si SET when we oxidized specially designed Si nanowires formed on SOI substrates. We analyzed the measured electrical characteristics by fitting the measurement and simulation results and confirmed the double-dot formation and the position of the two dots in the Si wire.

  8. Tunable magnetic nanowires for biomedical and harsh environment applications

    KAUST Repository

    Ivanov, Yurii P.

    2016-04-13

    We have synthesized nanowires with an iron core and an iron oxide (magnetite) shell by a facile low-cost fabrication process. The magnetic properties of the nanowires can be tuned by changing shell thicknesses to yield remarkable new properties and multi-functionality. A multi-domain state at remanence can be obtained, which is an attractive feature for biomedical applications, where a low remanence is desirable. The nanowires can also be encoded with different remanence values. Notably, the oxidation process of single-crystal iron nanowires halts at a shell thickness of 10 nm. The oxide shell of these nanowires acts as a passivation layer, retaining the magnetic properties of the iron core even during high-temperature operations. This property renders these core-shell nanowires attractive materials for application to harsh environments. A cell viability study reveals a high degree of biocompatibility of the core-shell nanowires.

  9. Synthesis and measurements of the optical bandgap of single crystalline complex metal oxide BaCuV2O7 nanowires by UV–VIS absorption

    International Nuclear Information System (INIS)

    Shakir, Imran; Shahid, Muhammad; Aboud, Mohamed F.A.

    2015-01-01

    Highlights: • Synthesis of single crystalline complex metal oxides BaCuV 2 O 7 nanowires. • Surfactant free, economically favorable chemical solution deposition method. • Complex metal oxides nanowires with controlled stoichiometry. • Simply controlling the temperature and thickness of the coated film, we can easily obtain high quality BaCuV 2 O 7 nanowires. - Abstract: The synthesis of single crystalline complex metal oxides BaCuV 2 O 7 nanowires were attained by using surfactant free, economically favorable chemical solution deposition method. A thin layer of BaCuV 2 O 7 nanocrystals is formed by the decomposition of complex metal oxide solution at 150 °C to provide nucleation sites for the growth of nanowires. The synthesized nanowires were typically 1–5 μm long with diameter from 50 to 150 nm. We showed that by simply controlling the temperature and thickness of the coated film, we can easily obtain high quality BaCuV 2 O 7 nanowires. The UV–VIS absorption spectra show indirect bandgap of 2.65 ± 0.05 eV of nanowires. The temperature-dependent resistances of BaCuV 2 O 7 nanowires agree with the exponential correlation, supporting that the conducting carriers are the quasi-free electrons. We believe that our methodology will provides a simple and convenient route for the synthesis of variety of complex metal oxides nanowires with controlled stoichiometry

  10. A radio-frequency single-electron transistor based on an InAs/InP heterostructure nanowire

    DEFF Research Database (Denmark)

    Nilsson, Henrik A.; Duty, Tim; Abay, Simon

    2008-01-01

    We demonstrate radio frequency single-electron transistors fabricated from epitaxially grown InAs/InP heterostructure nanowires. Two sets of double-barrier wires with different barrier thicknesses were grown. The wires were suspended 15 nm above a metal gate electrode. Electrical measurements...... on a high-resistance nanowire showed regularly spaced Coulomb oscillations at a gate voltage from −0.5 to at least 1.8 V. The charge sensitivity was measured to 32 µerms Hz−1/2 at 1.5 K. A low-resistance single-electron transistor showed regularly spaced oscillations only in a small gate-voltage region just...

  11. Quantifying the Traction Force of a Single Cell by Aligned Silicon Nanowire Array

    KAUST Repository

    Li, Zhou

    2009-10-14

    The physical behaviors of stationary cells, such as the morphology, motility, adhesion, anchorage, invasion and metastasis, are likely to be important for governing their biological characteristics. A change in the physical properties of mammalian cells could be an indication of disease. In this paper, we present a silicon-nanowire-array based technique for quantifying the mechanical behavior of single cells representing three distinct groups: normal mammalian cells, benign cells (L929), and malignant cells (HeLa). By culturing the cells on top of NW arrays, the maximum traction forces of two different tumor cells (HeLa, L929) have been measured by quantitatively analyzing the bending of the nanowires. The cancer cell exhibits a larger traction force than the normal cell by ∼20% for a HeLa cell and ∼50% for a L929 cell. The traction forces have been measured for the L929 cells and mechanocytes as a function of culture time. The relationship between cells extending area and their traction force has been investigated. Our study is likely important for studying the mechanical properties of single cells and their migration characteristics, possibly providing a new cellular level diagnostic technique. © 2009 American Chemical Society.

  12. Highly efficient electrochemical responses on single crystalline ruthenium-vanadium mixed metal oxide nanowires.

    Science.gov (United States)

    Chun, Sung Hee; Choi, Hyun-A; Kang, Minkyung; Koh, Moonjee; Lee, Nam-Suk; Lee, Sang Cheol; Lee, Minyung; Lee, Youngmi; Lee, Chongmok; Kim, Myung Hwa

    2013-09-11

    Highly efficient single crystalline ruthenium-vanadium mixed metal oxide (Ru1-xVxO2, 0≤x≤1) nanowires were prepared on a SiO2 substrate and a commercial Au microelectrode for the first time through a vapor-phase transport process by adjusting the mixing ratios of RuO2 and VO2 precursors. Single crystalline Ru1-xVxO2 nanowires show homogeneous solid-solution characteristics as well as the distinct feature of having remarkably narrow dimensional distributions. The electrochemical observations of a Ru1-xVxO2 (x=0.28 and 0.66)-decorated Au microelectrode using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) demonstrate favorable charge-transfer kinetics of [Fe(CN)6]3-/4- and Ru(NH3)6(3+/2+) couples compared to that of a bare Au microelectrode. The catalytic activity of Ru1-xVxO2 for oxygen and H2O2 reduction at neutral pH increases as the fraction of vanadium increases within our experimental conditions, which might be useful in the area of biofuel cells and biosensors.

  13. Magnetic and superconducting nanowires

    DEFF Research Database (Denmark)

    Piraux, L.; Encinas, A.; Vila, L.

    2005-01-01

    magnetic and superconducting nanowires. Using different approaches entailing measurements on both single wires and arrays, numerous interesting physical properties have been identified in relation to the nanoscopic dimensions of these materials. Finally, various novel applications of the nanowires are also...

  14. Fabrication of superconducting nanowire single-photon detectors by nonlinear femtosecond optical lithography

    Science.gov (United States)

    Minaev, N. V.; Tarkhov, M. A.; Dudova, D. S.; Timashev, P. S.; Chichkov, B. N.; Bagratashvili, V. N.

    2018-02-01

    This paper describes a new approach to the fabrication of superconducting nanowire single-photon detectors from ultrathin NbN films on SiO2 substrates. The technology is based on nonlinear femtosecond optical lithography and includes direct formation of the sensitive element of the detector (the meander) through femtosecond laser exposure of the polymethyl methacrylate resist at a wavelength of 525 nm and subsequent removal of NbN using plasma-chemical etching. The nonlinear femtosecond optical lithography method allows the formation of planar structures with a spatial resolution of ~50 nm. These structures were used to fabricate single-photon superconducting detectors with quantum efficiency no worse than 8% at a wavelength of 1310 nm and dark count rate of 10 s‑1 at liquid helium temperature.

  15. Epitaxially aligned cuprous oxide nanowires for all-oxide, single-wire solar cells.

    Science.gov (United States)

    Brittman, Sarah; Yoo, Youngdong; Dasgupta, Neil P; Kim, Si-in; Kim, Bongsoo; Yang, Peidong

    2014-08-13

    As a p-type semiconducting oxide that can absorb visible light, cuprous oxide (Cu2O) is an attractive material for solar energy conversion. This work introduces a high-temperature, vapor-phase synthesis that produces faceted Cu2O nanowires that grow epitaxially along the surface of a lattice-matched, single-crystal MgO substrate. Individual wires were then fabricated into single-wire, all-oxide diodes and solar cells using low-temperature atomic layer deposition (ALD) of TiO2 and ZnO films to form the heterojunction. The performance of devices made from pristine Cu2O wires and chlorine-exposed Cu2O wires was investigated under one-sun and laser illumination. These faceted wires allow the fabrication of well-controlled heterojunctions that can be used to investigate the interfacial properties of all-oxide solar cells.

  16. Self-aligned multi-channel superconducting nanowire single-photon detectors.

    Science.gov (United States)

    Cheng, Risheng; Guo, Xiang; Ma, Xiaosong; Fan, Linran; Fong, King Y; Poot, Menno; Tang, Hong X

    2016-11-28

    We describe a micromachining process to allow back-side coupling of an array of single-mode telecommunication fibers to individual superconducting nanowire single photon detectors (SNSPDs). This approach enables a back-illuminated detector structure which separates the optical access and electrical readout on two sides of the chip and thus allows for compact integration of multi-channel detectors. As proof of principle, we show the integration of four detectors on the same silicon chip with two different designs and their performances are compared. In the optimized design, the device shows saturated system detection efficiency of 16% while the dark count rate is less than 20 Hz, all achieved without the use of metal reflectors or distributed Bragg reflectors (DBRs). This back-illumination approach also eliminates the cross-talk between different detection channels.

  17. Multiple Schottky Barrier-Limited Field-Effect Transistors on a Single Silicon Nanowire with an Intrinsic Doping Gradient.

    Science.gov (United States)

    Barreda, Jorge L; Keiper, Timothy D; Zhang, Mei; Xiong, Peng

    2017-04-05

    In comparison to conventional (channel-limited) field-effect transistors (FETs), Schottky barrier-limited FETs possess some unique characteristics which make them attractive candidates for some electronic and sensing applications. Consequently, modulation of the nano Schottky barrier at a metal-semiconductor interface promises higher performance for chemical and biomolecular sensor applications when compared to conventional FETs with ohmic contacts. However, the fabrication and optimization of devices with a combination of ideal ohmic and Schottky contacts as the source and drain, respectively, present many challenges. We address this issue by utilizing Si nanowires (NWs) synthesized by a chemical vapor deposition process which yields a pronounced doping gradient along the length of the NWs. Devices with a series of metal contacts on a single Si NW are fabricated in a single lithography and metallization process. The graded doping profile of the NW is manifested in monotonic increases in the channel and junction resistances and variation of the nature of the contacts from ohmic to Schottky of increasing effective barrier height along the NW. Hence multiple single Schottky junction-limited FETs with extreme asymmetry and high reproducibility are obtained on an individual NW. A definitive correlation between increasing Schottky barrier height and enhanced gate modulation is revealed. Having access to systematically varying Schottky barrier contacts on the same NW device provides an ideal platform for identifying optimal device characteristics for sensing and electronic applications.

  18. Kinetic parameter estimation and fluctuation analysis of CO at SnO2 single nanowires.

    Science.gov (United States)

    Tulzer, Gerhard; Baumgartner, Stefan; Brunet, Elise; Mutinati, Giorgio C; Steinhauer, Stephan; Köck, Anton; Barbano, Paolo E; Heitzinger, Clemens

    2013-08-09

    In this work, we present calculated numerical values for the kinetic parameters governing adsorption/desorption processes of carbon monoxide at tin dioxide single-nanowire gas sensors. The response of such sensors to pulses of 50 ppm carbon monoxide in nitrogen is investigated at different temperatures to extract the desired information. A rate-equation approach is used to model the reaction kinetics, which results in the problem of determining coefficients in a coupled system of nonlinear ordinary differential equations. The numerical values are computed by inverse-modeling techniques and are then used to simulate the sensor response. With our model, the dynamic response of the sensor due to the gas-surface interaction can be studied in order to find the optimal setup for detection, which is an important step towards selectivity of these devices. We additionally investigate the noise in the current through the nanowire and its changes due to the presence of carbon monoxide in the sensor environment. Here, we propose the use of a wavelet transform to decompose the signal and analyze the noise in the experimental data. This method indicates that some fluctuations are specific for the gas species investigated here.

  19. Kinetic parameter estimation and fluctuation analysis of CO at SnO 2 single nanowires

    KAUST Repository

    Tulzer, Gerhard

    2013-07-12

    In this work, we present calculated numerical values for the kinetic parameters governing adsorption/desorption processes of carbon monoxide at tin dioxide single-nanowire gas sensors. The response of such sensors to pulses of 50 ppm carbon monoxide in nitrogen is investigated at different temperatures to extract the desired information. A rate-equation approach is used to model the reaction kinetics, which results in the problem of determining coefficients in a coupled system of nonlinear ordinary differential equations. The numerical values are computed by inverse-modeling techniques and are then used to simulate the sensor response. With our model, the dynamic response of the sensor due to the gas-surface interaction can be studied in order to find the optimal setup for detection, which is an important step towards selectivity of these devices. We additionally investigate the noise in the current through the nanowire and its changes due to the presence of carbon monoxide in the sensor environment. Here, we propose the use of a wavelet transform to decompose the signal and analyze the noise in the experimental data. This method indicates that some fluctuations are specific for the gas species investigated here. © 2013 IOP Publishing Ltd.

  20. Fabry-Perot Microcavity Modes in Single GaP/GaNP Core/Shell Nanowires.

    Science.gov (United States)

    Dobrovolsky, Alexander; Stehr, Jan E; Sukrittanon, Supanee; Kuang, Yanjin; Tu, Charles W; Chen, Weimin M; Buyanova, Irina A

    2015-12-16

    Semiconductor nanowires (NWs) are attracting increasing interest as nanobuilding blocks for optoelectronics and photonics. A novel material system that is highly suitable for these applications are GaNP NWs. In this article, we show that individual GaP/GaNP core/shell nanowires (NWs) grown by molecular beam epitaxy on Si substrates can act as Fabry-Perot (FP) microcavities. This conclusion is based on results of microphotoluminescence (μ-PL) measurements performed on individual NWs, which reveal periodic undulations of the PL intensity that follow an expected pattern of FP cavity modes. The cavity is concluded to be formed along the NW axis with the end facets acting as reflecting mirrors. The formation of the FP modes is shown to be facilitated by an increasing index contrast with the surrounding media. Spectral dependence of the group refractive index is also determined for the studied NWs. The observation of the FP microcavity modes in the GaP/GaNP core/shell NWs can be considered as a first step toward achieving lasing in this quasidirect bandgap semiconductor in the NW geometry. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Controlled synthesis of organic single-crystalline nanowires via the synergy approach of the bottom-up/top-down processes.

    Science.gov (United States)

    Zhuo, Ming-Peng; Zhang, Ye-Xin; Li, Zhi-Zhou; Shi, Ying-Li; Wang, Xue-Dong; Liao, Liang-Sheng

    2018-03-15

    The controlled fabrication of organic single-crystalline nanowires (OSCNWs) with a uniform diameter in the nanoscale via the bottom-up approach, which is just based on weak intermolecular interaction, is a great challenge. Herein, we utilize the synergy approach of the bottom-up and the top-down processes to fabricate OSCNWs with diameters of 120 ± 10 nm through stepwise evolution processes. Specifically, the evolution processes vary from the self-assembled organic micro-rods with a quadrangular pyramid-like end-structure bounded with {111}s and {11-1}s crystal planes to the "top-down" synthesized organic micro-rods with the flat cross-sectional {002}s plane, to the organic micro-tubes with a wall thickness of ∼115 nm, and finally to the organic nanowires. Notably, the anisotropic etching process caused by the protic solvent molecules (such as ethanol) is crucial for the evolution of the morphology throughout the whole top-down process. Therefore, our demonstration opens a new avenue for the controlled-fabrication of organic nanowires, and also contributes to the development of nanowire-based organic optoelectronics such as organic nanowire lasers.

  2. Fabrication of three-dimensional MIS nano-capacitor based on nano-imprinted single crystal silicon nanowire arrays

    KAUST Repository

    Zhai, Yujia

    2012-11-26

    We report fabrication of single crystalline silicon nanowire based-three-dimensional MIS nano-capacitors for potential analog and mixed signal applications. The array of nanowires is patterned by Step and Flash Imprint Lithography (S-FIL). Deep silicon etching (DSE) is used to form the nanowires with high aspect ratio, increase the electrode area and thus significantly enhance the capacitance. High-! dielectric is deposited by highly conformal atomic layer deposition (ALD) Al2O3 over the Si nanowires, and sputtered metal TaN serves as the electrode. Electrical measurements of fabricated capacitors show the expected increase of capacitance with greater nanowire height and decreasing dielectric thickness, consistent with calculations. Leakage current and time-dependent dielectric breakdown (TDDB) are also measured and compared with planar MIS capacitors. In view of greater interest in 3D transistor architectures, such as FinFETs, 3D high density MIS capacitors offer an attractive device technology for analog and mixed signal applications. - See more at: http://www.eurekaselect.com/105099/article#sthash.EzeJxk6j.dpuf

  3. Single nanowire electrode electrochemistry of silicon anode by in situ atomic force microscopy: solid electrolyte interphase growth and mechanical properties.

    Science.gov (United States)

    Liu, Xing-Rui; Deng, Xin; Liu, Ran-Ran; Yan, Hui-Juan; Guo, Yu-Guo; Wang, Dong; Wan, Li-Jun

    2014-11-26

    Silicon nanowires (SiNWs) have attracted great attention as promising anode materials for lithium ion batteries (LIBs) on account of their high capacity and improved cyclability compared with bulk silicon. The interface behavior, especially the solid electrolyte interphase (SEI), plays a significant role in the performance and stability of the electrodes. We report herein an in situ single nanowire atomic force microscopy (AFM) method to investigate the interface electrochemistry of silicon nanowire (SiNW) electrode. The morphology and Young's modulus of the individual SiNW anode surface during the SEI growth were quantitatively tracked. Three distinct stages of the SEI formation on the SiNW anode were observed. On the basis of the potential-dependent morphology and Young's modulus evolution of SEI, a mixture-packing structural model was proposed for the SEI film on SiNW anode.

  4. Low-threshold room-temperature AlGaAs/GaAs nanowire/single-quantum-well heterostructure laser

    Science.gov (United States)

    Yan, Xin; Wei, Wei; Tang, Fengling; Wang, Xi; Li, Luying; Zhang, Xia; Ren, Xiaomin

    2017-02-01

    Near-infrared nanowire lasers are promising as ultrasmall, low-consumption light emitters in on-chip optical communications and computing systems. Here, we report on a room-temperature near-infrared nanolaser based on an AlGaAs/GaAs nanowire/single-quantum-well heterostructure grown by Au-catalyzed metal organic chemical vapor deposition. When subjects to pulsed optical excitation, the nanowire exhibits lasing, with a low threshold of 600 W/cm2, a narrow linewidth of 0.39 nm, and a high Q factor of 2000 at low temperature. Lasing is observed up to 300 K, with an ultrasmall temperature dependent wavelength shift of 0.045 nm/K. This work paves the way towards ultrasmall, low-consumption, and high-temperature-stability near-infrared nanolasers.

  5. Nanotubes and nanowires

    Indian Academy of Sciences (India)

    Unknown

    nanotubes are likely to be useful as nanochips since they exhibit diode properties at the junction. By making use of carbon nanotubes, nanowires of metals, metal oxides and GaN have been obtained. Both the oxide and GaN nanowires are single crystalline. Gold nanowires exhibit plasmon bands varying markedly with.

  6. Polarization Dependence of Surface Enhanced Raman Scattering on a Single Dielectric Nanowire

    Directory of Open Access Journals (Sweden)

    Hua Qi

    2012-01-01

    Full Text Available Our measurements of surface enhanced Raman scattering (SERS on Ga2O3 dielectric nanowires (NWs core/silver composites indicate that the SERS enhancement is highly dependent on the polarization direction of the incident laser light. The polarization dependence of the SERS signal with respect to the direction of a single NW was studied by changing the incident light angle. Further investigations demonstrate that the SERS intensity is not only dependent on the direction and wavelength of the incident light, but also on the species of the SERS active molecule. The largest signals were observed on an NW when the incident 514.5 nm light was polarized perpendicular to the length of the NW, while the opposite phenomenon was observed at the wavelength of 785 nm. Our theoretical simulations of the polarization dependence at 514.5 nm and 785 nm are in good agreement with the experimental results.

  7. Room temperature strong coupling effects from single ZnO nanowire microcavity

    KAUST Repository

    Das, Ayan

    2012-05-01

    Strong coupling effects in a dielectric microcavity with a single ZnO nanowire embedded in it have been investigated at room temperature. A large Rabi splitting of ?100 meV is obtained from the polariton dispersion and a non-linearity in the polariton emission characteristics is observed at room temperature with a low threshold of 1.63 ?J/cm2, which corresponds to a polariton density an order of magnitude smaller than that for the Mott transition. The momentum distribution of the lower polaritons shows evidence of dynamic condensation and the absence of a relaxation bottleneck. The polariton relaxation dynamics were investigated by timeresolved measurements, which showed a progressive decrease in the polariton relaxation time with increase in polariton density. © 2012 Optical Society of America.

  8. Permanent bending and alignment of ZnO nanowires.

    Science.gov (United States)

    Borschel, Christian; Spindler, Susann; Lerose, Damiana; Bochmann, Arne; Christiansen, Silke H; Nietzsche, Sandor; Oertel, Michael; Ronning, Carsten

    2011-05-06

    Ion beams can be used to permanently bend and re-align nanowires after growth. We have irradiated ZnO nanowires with energetic ions, achieving bending and alignment in different directions. Not only the bending of single nanowires is studied in detail, but also the simultaneous alignment of large ensembles of ZnO nanowires. Computer simulations reveal how the bending is initiated by ion beam induced damage. Detailed structural characterization identifies dislocations to relax stresses and make the bending and alignment permanent, even surviving annealing procedures.

  9. Low Temperature Characterization of PMOS-type Gate-all-around Silicon nanowire FETs as single-hole-transistors

    Science.gov (United States)

    Hong, B. H.; Hwang, S. W.; Lee, Y. Y.; Son, M. H.; Ahn, D.; Cho, K. H.; Yeo, K. H.; Kim, D.-W.; Jin, G. Y.; Park, D.

    2011-12-01

    We report the single hole tunneling characteristics observed from a PMOS-type gate-all-around silicon nanowire field-effect-transistor with the radius 5 nm and the length 44 nm. The total capacitance of the quantum dot obtained from the measured Coulomb oscillations and Coulomb diamonds matches with the ideal capacitance of the silicon cylinder. It suggests that the observed single hole tunneling is originated from the fabricated structure.

  10. Single Nanostructure Electrochemical Devices for Studying Electronic Properties and Structural Changes in Lithiated Si Nanowires

    KAUST Repository

    McDowell, Matthew T.

    2011-07-19

    Nanostructured Si is a promising anode material for the next generation of Li-ion batteries, but few studies have focused on the electrical properties of the Li-Si alloy phase, which are important for determining power capabilities and ensuring sufficient electrical conduction in the electrode structure. Here, we demonstrate an electrochemical device framework suitable for testing the electrical properties of single Si nanowires (NWs) at different lithiation states and correlating these properties with structural changes via transmission electron microscopy (TEM). We fi nd that single Si NWs usually exhibit Ohmic I - V response in the lithiated state, with conductivities two to three orders of magnitude higher than in the delithiated state. After a number of sequential lithiation/delithiation cycles, the single NWs show similar conductivity after each lithiation step but show large variations in conductivity in the delithiated state. Finally, devices with groups of NWs in physical contact were fabricated, and structural changes in the NWs were observed after lithiation to investigate how the electrical resistance of NW junctions and the NWs themselves affect the lithiation behavior. The results suggest that electrical resistance of NW junctions can limit lithiation. Overall, this study shows the importance of investigating the electronic properties of individual components of a battery electrode (single nanostructures in this case) along with studying the nature of interactions within a collection of these component structures. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Single trap dynamics in electrolyte-gated Si-nanowire field effect transistors

    Science.gov (United States)

    Pud, S.; Gasparyan, F.; Petrychuk, M.; Li, J.; Offenhäusser, A.; Vitusevich, S. A.

    2014-06-01

    Liquid-gated silicon nanowire (NW) field effect transistors (FETs) are fabricated and their transport and dynamic properties are investigated experimentally and theoretically. Random telegraph signal (RTS) fluctuations were registered in the nanolength channel FETs and used for the experimental and theoretical analysis of transport properties. The drain current and the carrier interaction processes with a single trap are analyzed using a quantum-mechanical evaluation of carrier distribution in the channel and also a classical evaluation. Both approaches are applied to treat the experimental data and to define an appropriate solution for describing the drain current behavior influenced by single trap resulting in RTS fluctuations in the Si NW FETs. It is shown that quantization and tunneling effects explain the behavior of the electron capture time on the single trap. Based on the experimental data, parameters of the single trap were determined. The trap is located at a distance of about 2 nm from the interface Si/SiO2 and has a repulsive character. The theory of dynamic processes in liquid-gated Si NW FET put forward here is in good agreement with experimental observations of transport in the structures and highlights the importance of quantization in carrier distribution for analyzing dynamic processes in the nanostructures.

  12. Molecular Motor Propelled Filaments Reveal Light-Guiding in Nanowire Arrays for Enhanced Biosensing

    Science.gov (United States)

    2013-01-01

    Semiconductor nanowire arrays offer significant potential for biosensing applications with optical read-out due to their high surface area and due to the unique optical properties of one-dimensional materials. A challenge for optical read-out of analyte-binding to the nanowires is the need to efficiently collect and detect light from a three-dimensional volume. Here we show that light from fluorophores attached along several μm long vertical Al2O3 coated gallium phosphide nanowires couples into the wires, is guided along them and emitted at the tip. This enables effective collection of light emitted by fluorescent analytes located at different focal planes along the nanowire. We unequivocally demonstrate the light-guiding effect using a novel method whereby the changes in emitted fluorescence intensity are observed when fluorescent cytoskeletal filaments are propelled by molecular motors along the wires. The findings are discussed in relation to nanobiosensor developments, other nanotechnological applications, and fundamental studies of motor function. PMID:24367994

  13. Electro-optic single-crystalline organic waveguides and nanowires grown from the melt.

    Science.gov (United States)

    Figi, Harry; Jazbinsek, Mojca; Hunziker, Christoph; Koechlin, Manuel; Günter, Peter

    2008-07-21

    Organic nonlinear optical materials have proven to possess high and extremely fast nonlinearities compared to conventional inorganic crystals, allowing for sub-1-V driving voltages and modulation bandwidths of over 100 GHz. Compared to more widely studied poled electro-optic polymers, organic electro-optic crystals exhibit orders of magnitude better thermal and photochemical stability. The lack of available structuring techniques for organic crystals has been the major drawback for exploring their potential for photonic structures. Here we present a new approach to fabricate high-quality electro-optic single crystal waveguides and nanowires of configurationally locked polyene DAT2 (2-(3-(2-(4-dimethylaminophenyl)vinyl)-5,5-dimethylcyclohex-2-enylidene)malononitrile). The high-index-contrast waveguides (delta(n) = 0.54 +/- 0.04) are grown from the melt between two anodically bonded borosilicate glass wafers, which are structured and equipped with electrodes prior to bonding. Electro-optic phase modulation is demonstrated for the first time in the non-centrosymmetric DAT2 single crystalline channel waveguides at a wavelength of 1.55 microm. We also show that this technique in combination with DAT2 material allows for the fabrication of single-crystalline nanostructures inside large-area devices with crystal thicknesses below 30 nm and lengths of above 7 mm.

  14. Optical absorption of silicon nanowires

    International Nuclear Information System (INIS)

    Xu, T.; Lambert, Y.; Krzeminski, C.; Grandidier, B.; Stiévenard, D.; Lévêque, G.; Akjouj, A.; Pennec, Y.; Djafari-Rouhani, B.

    2012-01-01

    We report on simulations and measurements of the optical absorption of silicon nanowires (NWs) versus their diameter. We first address the simulation of the optical absorption based on two different theoretical methods: the first one, based on the Green function formalism, is useful to calculate the scattering and absorption properties of a single or a finite set of NWs. The second one, based on the finite difference time domain (FDTD) method, is well-adapted to deal with a periodic set of NWs. In both cases, an increase of the onset energy for the absorption is found with increasing diameter. Such effect is experimentally illustrated, when photoconductivity measurements are performed on single tapered Si nanowires connected between a set of several electrodes. An increase of the nanowire diameter reveals a spectral shift of the photocurrent intensity peak towards lower photon energies that allow to tune the absorption onset from the ultraviolet radiations to the visible light spectrum.

  15. Nanoampere charge pump by single-electron ratchet using silicon nanowire metal-oxide-semiconductor field-effect transistor

    Science.gov (United States)

    Fujiwara, Akira; Nishiguchi, Katsuhiko; Ono, Yukinori

    2008-01-01

    Nanoampere single-electron pumping is presented at 20K using a single-electron ratchet comprising silicon nanowire metal-oxide-semiconductor field-effect transistors. The ratchet features an asymmetric potential with a pocket that captures single electrons from the source and ejects them to the drain. Directional single-electron transfer is achieved by applying one ac signal with the frequency up to 2.3GHz. We find anomalous shapes of current steps which can be ascribed to nonadiabatic electron capture.

  16. A radio frequency single-electron transistor based on an InAs/InP heterostructure nanowire.

    Science.gov (United States)

    Nilsson, Henrik A; Duty, Tim; Abay, Simon; Wilson, Chris; Wagner, Jakob B; Thelander, Claes; Delsing, Per; Samuelson, Lars

    2008-03-01

    We demonstrate radio frequency single-electron transistors fabricated from epitaxially grown InAs/InP heterostructure nanowires. Two sets of double-barrier wires with different barrier thicknesses were grown. The wires were suspended 15 nm above a metal gate electrode. Electrical measurements on a high-resistance nanowire showed regularly spaced Coulomb oscillations at a gate voltage from -0.5 to at least 1.8 V. The charge sensitivity was measured to 32 microe rms Hz(-1/2) at 1.5 K. A low-resistance single-electron transistor showed regularly spaced oscillations only in a small gate-voltage region just before carrier depletion. This device had a charge sensitivity of 2.5 microe rms Hz(-1/2). At low frequencies this device showed a typical 1/f noise behavior, with a level extrapolated to 300 microe rms Hz(-1/2) at 10 Hz.

  17. Single trap in liquid gated nanowire FETs: Capture time behavior as a function of current

    Science.gov (United States)

    Gasparyan, F.; Zadorozhnyi, I.; Vitusevich, S.

    2015-05-01

    The basic reason for enhanced electron capture time, τ c , of the oxide single trap dependence on drain current in the linear operation regime of p+-p-p+ silicon field effect transistors (FETs) was established, using a quantum-mechanical approach. A strong increase of τ c slope dependence on channel current is explained using quantization and tunneling concepts in terms of strong field dependence of the oxide layer single trap effective cross-section, which can be described by an amplification factor. Physical interpretation of this parameter deals with the amplification of the electron cross-section determined by both decreasing the critical field influence as a result of the minority carrier depletion and the potential barrier growth for electron capture. For the NW channel of n+-p-n+ FETs, the experimentally observed slope of τ c equals (-1). On the contrary, for the case of p+-p-p+ Si FETs in the accumulation regime, the experimentally observed slope of τ c equals (-2.8). It can be achieved when the amplification factor is about 12. Extraordinary high capture time slope values versus current are explained by the effective capture cross-section growth with decreasing electron concentration close to the nanowire-oxide interface.

  18. Study of the magnetization behavior of ferromagnetic nanowire array: Existence of growth defects revealed by micromagnetic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Vien, G., E-mail: gilles.nguyen@univ-brest.fr [Laboratoire de Magnétisme de Bretagne, EA 4522, Université de Bretagne Occidentale, CS 93837, 29238 Brest-Cedex 3 (France); Rioual, S. [Laboratoire de Magnétisme de Bretagne, EA 4522, Université de Bretagne Occidentale, CS 93837, 29238 Brest-Cedex 3 (France); Gloaguen, F. [Chimie, Electrochimie Moléculaires et Chimie Analytique, UMR CNRS 6521, Université de Bretagne Occidentale, CS 93837, 29238 Brest-Cedex 3 (France); Rouvellou, B.; Lescop, B. [Laboratoire de Magnétisme de Bretagne, EA 4522, Université de Bretagne Occidentale, CS 93837, 29238 Brest-Cedex 3 (France)

    2016-03-01

    High aspect ratio nanowires were electrodeposited in nanoporous anodic alumina template by a potentiostatic method. The angular dependence of the coercive field and remanence magnetization extracted from magnetometry measurements are compared with micromagnetic simulations. Inclusion of magnetostatic interactions between Ni nanowires in simulations is required to explain some of the properties of the magnetization reversal. However, it is not sufficient to reproduce fully the angular dependence of the coercive field. Due to the polycrystalline nature of nanowires and thus to the presence of grain boundaries, defects are included in simulations. A good agreement between theory and experiment is then clearly highlighted, in particular in the nanowire easy axis direction. The achieved results allow a description of several experimental data published in the literature and consequently to get a better understanding of reversal mechanisms that operate in such nanowire arrays. A complementary study of composite nanowire array is successfully performed to prove the adequacy of the simulations method to describe the magnetic properties of nanowire array. - Highlights: • High axial squareness nanowire array are synthetized by a potentiostatic method. • Nanowires are modeled as non-ideal magnetic particles. • Segmentation of nanowire is required to describe the angular dependence of coercivity. • Respective role of magnetostatic coupling and nanowire segmentation in nanowire array are studied. • Micromagnetic simulations lead to quantitative agreement for well-defined composite nanowire array.

  19. Blue single photon emission up to 200 K from an InGaN quantum dot in AlGaN nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, Saniya; Das, Ayan; Bhattacharya, Pallab [Center for Photonics and Multiscale Nanomaterials, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109-2122 (United States)

    2013-04-22

    We demonstrate polarized blue single photon emission up to 200 K from an In{sub 0.2}Ga{sub 0.8}N quantum dot in a single Al{sub 0.1}Ga{sub 0.9}N nanowire. The InGaN/AlGaN dot-in-nanowire heterostructure was grown on (111) silicon by plasma assisted molecular beam epitaxy. Nanowires dispersed on a silicon substrate show sharp exciton and biexciton transitions in the micro-photoluminescence spectra. Second-order correlation measurements performed under pulsed excitation at the biexciton wavelength confirm single photon emission, with a g{sup (2)}(0) of 0.43 at 200 K. The emitted photons have a short radiative lifetime of 0.7 ns and are linearly polarized along the c-axis of the nanowire with a degree of polarization of 78%.

  20. Synthesis and magnetotransport studies of single nickel-rich NiFe nanowire

    International Nuclear Information System (INIS)

    Rheem, Y; Yoo, B-Y; Koo, B K; Beyermann, W P; Myung, N V

    2007-01-01

    One of the main concerns in the preparation of alloy nanowires is the ability to synthesize compositionally uniform nanowires along the axis. Since most of the conventional mild acidic permalloy (Ni 80 Fe 20 ) electroplating baths consist of an extremely low concentration of Fe ions compared with Ni ions, the electrodeposition of iron is controlled by mass transfer, which leads to a significant change in the composition along the axis of the nanowire. To overcome this obstacle, we developed a new acidic chloride electrolyte with a high concentration of Fe and Ni ions to electrodeposit homogeneous nanowires. After synthesizing nanowires, the temperature dependent magneto- and electro-transport properties of individual nanowires were investigated. The temperature coefficient of resistance of a nanowire is much lower than the bulk counterpart, which might be attributed to a higher residual resistivity. The magnetoresistance shows a typical anisotropic magnetoresistance behaviour where the maximum anisotropic magnetoresistance ratio decreased with increasing temperature. The angular dependence of the magnetization switching field indicated that curling is the magnetization reversal mode at all temperatures

  1. E1 Gap of Wurtzite InAs Single Nanowires Measured by Means of Resonant Raman Spectroscopy

    International Nuclear Information System (INIS)

    Moeller, M.; Lima, M. M. Jr. de; Cantarero, A.; Dacal, L. C. O.; Iikawa, F.; Chiaramonte, T.; Cotta, M. A.

    2011-01-01

    Indium arsenide nanowires were synthesized with an intermixing of wurtzite and zincblende structure by chemical beam epitaxy with the vapor-liquid-solid mechanism. Resonant Raman spectroscopy of the transverse optical phonon mode at 215 cm -1 reveals an E 1 gap of 2.47 eV which is assigned to the electronic band gap at the A point in the indium arsenide wurtzite phase.

  2. E1 Gap of Wurtzite InAs Single Nanowires Measured by Means of Resonant Raman Spectroscopy

    Science.gov (United States)

    Möller, M.; Dacal, L. C. O.; de Lima, M. M.; Iikawa, F.; Chiaramonte, T.; Cotta, M. A.; Cantarero, A.

    2011-12-01

    Indium arsenide nanowires were synthesized with an intermixing of wurtzite and zincblende structure by chemical beam epitaxy with the vapor-liquid-solid mechanism. Resonant Raman spectroscopy of the transverse optical phonon mode at 215 cm-1 reveals an E1 gap of 2.47 eV which is assigned to the electronic band gap at the A point in the indium arsenide wurtzite phase.

  3. Optoelectronics: Continuously Spatial-Wavelength-Tunable Nanowire Lasers on a Single Chip

    Science.gov (United States)

    2014-01-28

    journals (N/A for none) 1. P. L. Nichols, Z. Liu, L. Yin, and C. Z. Ning, CdxPb1-xS Alloy Nanowires and Heterostructures with Simultaneous Emission in Mid...K. Ding, M. T. Hill, and C.Z. Ning, A Top-down Approach to Fabrication of High Quality Vertical Heterostructure Nanowire Arrays, Nano Lett., 11, 1646...2010 Paper submitted: 1. P. L. Nichols, Z. Liu, L. Yin, and C. Z. Ning, CdxPb1-xS Alloy Nanowires and Heterostructures with Simultaneous Emission

  4. Al-doped single-crystalline SiC nanowires synthesized by pyrolysis of polymer precursors.

    Science.gov (United States)

    Yang, Weiyou; Gao, Fengmei; Fan, Yi; An, Linan

    2010-07-01

    Al-doped 6H-SiC nanowires are synthesized by catalyst-assisted pyrolysis of polymer precursors. The obtained nanowires were characterized using scanning electron microscopy, X-ray diffraction, transmission electron microscopy and selective area electron diffraction. We demonstrate that doping concentrations can be controlled by tailoring the Al concentrations in the precursors. We also find that Al-doping has a profound effect on the morphology and emission behavior of the SiC nanowires. The current results suggest a simple technique for synthesizing Al-doped SiC nanomaterials in a controlled manner, which are promising for applications in optical and electronic nanodevices.

  5. Single InAs/GaSb nanowire low-power CMOS inverter.

    Science.gov (United States)

    Dey, Anil W; Svensson, Johannes; Borg, B Mattias; Ek, Martin; Wernersson, Lars-Erik

    2012-11-14

    III-V semiconductors have so far predominately been employed for n-type transistors in high-frequency applications. This development is based on the advantageous transport properties and the large variety of heterostructure combinations in the family of III-V semiconductors. In contrast, reports on p-type devices with high hole mobility suitable for complementary metal-oxide-semiconductor (CMOS) circuits for low-power operation are scarce. In addition, the difficulty to integrate both n- and p-type devices on the same substrate without the use of complex buffer layers has hampered the development of III-V based digital logic. Here, inverters fabricated from single n-InAs/p-GaSb heterostructure nanowires are demonstrated in a simple processing scheme. Using undoped segments and aggressively scaled high-κ dielectric, enhancement mode operation suitable for digital logic is obtained for both types of transistors. State-of-the-art on- and off-state characteristics are obtained and the individual long-channel n- and p-type transistors exhibit minimum subthreshold swings of SS = 98 mV/dec and SS = 400 mV/dec, respectively, at V(ds) = 0.5 V. Inverter characteristics display a full signal swing and maximum gain of 10.5 with a small device-to-device variability. Complete inversion is measured at low frequencies although large parasitic capacitances deform the waveform at higher frequencies.

  6. Nanowire decorated, ultra-thin, single crystalline silicon for photovoltaic devices

    Science.gov (United States)

    Aurang, Pantea; Turan, Rasit; Emrah Unalan, Husnu

    2017-10-01

    Reducing silicon (Si) wafer thickness in the photovoltaic industry has always been demanded for lowering the overall cost. Further benefits such as short collection lengths and improved open circuit voltages can also be achieved by Si thickness reduction. However, the problem with thin films is poor light absorption. One way to decrease optical losses in photovoltaic devices is to minimize the front side reflection. This approach can be applied to front contacted ultra-thin crystalline Si solar cells to increase the light absorption. In this work, homojunction solar cells were fabricated using ultra-thin and flexible single crystal Si wafers. A metal assisted chemical etching method was used for the nanowire (NW) texturization of ultra-thin Si wafers to compensate weak light absorption. A relative improvement of 56% in the reflectivity was observed for ultra-thin Si wafers with the thickness of 20 ± 0.2 μm upon NW texturization. NW length and top contact optimization resulted in a relative enhancement of 23% ± 5% in photovoltaic conversion efficiency.

  7. Nanowire decorated, ultra-thin, single crystalline silicon for photovoltaic devices.

    Science.gov (United States)

    Aurang, Pantea; Turan, Rasit; Unalan, Husnu Emrah

    2017-10-06

    Reducing silicon (Si) wafer thickness in the photovoltaic industry has always been demanded for lowering the overall cost. Further benefits such as short collection lengths and improved open circuit voltages can also be achieved by Si thickness reduction. However, the problem with thin films is poor light absorption. One way to decrease optical losses in photovoltaic devices is to minimize the front side reflection. This approach can be applied to front contacted ultra-thin crystalline Si solar cells to increase the light absorption. In this work, homojunction solar cells were fabricated using ultra-thin and flexible single crystal Si wafers. A metal assisted chemical etching method was used for the nanowire (NW) texturization of ultra-thin Si wafers to compensate weak light absorption. A relative improvement of 56% in the reflectivity was observed for ultra-thin Si wafers with the thickness of 20 ± 0.2 μm upon NW texturization. NW length and top contact optimization resulted in a relative enhancement of 23% ± 5% in photovoltaic conversion efficiency.

  8. 1.55 µm emission from a single III-nitride top-down and site-controlled nanowire quantum disk

    Science.gov (United States)

    Chen, Qiming; Yan, Changling; Qu, Yi

    2017-07-01

    InN/InGaN single quantum well (SQW) was fabricated on 100 nm GaN buffer layer which was deposited on GaN template by plasma assisted molecular beam epitaxy (PA-MBE). The In composition and the surface morphology were measured by x-ray diffusion (XRD) and atom force microscope (AFM), respectively. Afterwards, the sample was fabricated into site-controlled nanowires arrays by hot-embossing nano-imprint lithography (HE-NIL) and ultraviolet nanoimprint lithography (UV-NIL). The nanowires were uniform along the c-axis and aligned periodically as presented by scanning electron microscope (SEM). The single nanowire showed disk-in-a-wire structure by high angle annular dark field (HAADF) and an In-rich or Ga deficient region was observed by energy dispersive x-ray spectrum (EDXS). The optical properties of the SQW film and single nanowire were measured using micro photoluminescence (µ-PL) spectroscopy. The stimulating light wavelength was 632.8 nm which was emitted from a He-Ne laser and the detector was a liquid nitrogen cooled InGaAs detector. A blue peak shift from the film material to the nanowire was observed. This was due to the quantum confinement Stark Effect. More importantly, the 1.55 µm emission was given from the single disk-in-a-wire structure at room temperature. We believe the arrays of such nanowires may be useful for quantum communication in the future.

  9. Decoupling single nanowire mobilities limited by surface scattering and bulk impurity scattering

    International Nuclear Information System (INIS)

    Khanal, D. R.; Levander, A. X.; Wu, J.; Yu, K. M.; Liliental-Weber, Z.; Walukiewicz, W.; Grandal, J.; Sanchez-Garcia, M. A.; Calleja, E.

    2011-01-01

    We demonstrate the isolation of two free carrier scattering mechanisms as a function of radial band bending in InN nanowires via universal mobility analysis, where effective carrier mobility is measured as a function of effective electric field in a nanowire field-effect transistor. Our results show that Coulomb scattering limits effective mobility at most effective fields, while surface roughness scattering only limits mobility under very high internal electric fields. High-energy α particle irradiation is used to vary the ionized donor concentration, and the observed decrease in mobility and increase in donor concentration are compared to Hall effect results of high-quality InN thin films. Our results show that for nanowires with relatively high doping and large diameters, controlling Coulomb scattering from ionized dopants should be given precedence over surface engineering when seeking to maximize nanowire mobility.

  10. A new approach to fabricating magnetic multilayer nanowires by modifying the ac pulse electrodeposition in a single bath

    Science.gov (United States)

    Ramazani, A.; Ghaffari, M.; Almasi Kashi, M.; Kheiry, F.; Eghbal, F.

    2014-09-01

    This work focused on the development of a new single bath technique to fabricate compositionally modulated Co/Cu, CoFe/Cu and Fe/Cu multilayer nanowires in nanoporous alumina templates prepared by the hard and mild anodization methods. The approach was based on ac pulse electrodeposition, employing successive cycles of alternating continuous and pulsed sine waves with designated off-time between pulses and reduction/oxidation voltages. The substantial control over the composition of each segment was achieved by simultaneous change in the off-time between pulses and the ac deposition voltage. The multilayered nature of the nanostructures was substantiated by transmission electron microscopy. Each layer thickness was also nearly uniform, and could be readily adjusted by the number of pulses. The proposed method facilitates the fabrication of various multilayer nanowires in a single bath, which speeds up the fabrication process and is desirable for their application in nanodevices and nanoelectronics. The effect of magnetic layer thickness on the magnetic behaviour was also studied. Decreasing the magnetic layer thickness caused the parallel coercivity and squareness values to approach those measured in the perpendicular direction. The magnetic easy axis changed from parallel to nearly perpendicular to the nanowire axis, depending on the magnetic layers' aspect ratio and shape anisotropies.

  11. Seed-mediated shape evolution of gold nanomaterials: from spherical nanoparticles to polycrystalline nanochains and single-crystalline nanowires

    International Nuclear Information System (INIS)

    Qiu Penghe; Mao Chuanbin

    2009-01-01

    We studied the kinetics of the reduction of a gold precursor (HAuCl 4 ) and the effect of the molar ratio (R) of sodium citrate, which was introduced from a seed solution, and the gold precursor on the shape evolution of gold nanomaterials in the presence of preformed 13 nm gold nanoparticles as seeds. The reduction of the gold precursor by sodium citrate was accelerated due to the presence of gold seeds. Nearly single-crystalline gold nanowires were formed at a very low R value (R = 0.16) in the presence of the seeds as a result of the oriented attachment of the growing gold nanoparticles. At a higher R value (R = 0.33), gold nanochains were formed due to the non-oriented attachment of gold nanoparticles. At a much higher R value (R = 1.32), only larger spherical gold nanoparticles grown from the seeds were found. In the absence of gold seeds, no single-crystalline nanowires were formed at the same R value. Our results indicate that the formation of the 1D nanostructures (nanochains and nanowires) at low R values is due to the attachment of gold nanoparticles along one direction, which is driven by the surface energy reduction, nanoparticle attraction, and dipole-dipole interaction between adjacent nanoparticles.

  12. Strain distribution in single, suspended germanium nanowires studied using nanofocused x-rays

    DEFF Research Database (Denmark)

    Keplinger, Mario; Grifone, Raphael; Greil, Johannes

    2016-01-01

    illumination positions along the nanowire length results in corresponding strain components as well as the nanowire's tilting and bending. By using these findings we determined the complete strain state with the help of finite element modelling. The resulting information provides us with the possibility...... of evaluating the validity of the strain investigations following from Raman scattering experiments which are based on the assumption of purely uniaxial strain....

  13. Performance and Characterization of a Modular Superconducting Nanowire Single Photon Detector System for Space-to-Earth Optical Communications Links

    Science.gov (United States)

    Vyhnalek, Brian E.; Tedder, Sarah A.; Nappier, Jennifer M.

    2018-01-01

    Space-to-ground photon-counting optical communication links supporting high data rates over large distances require enhanced ground receiver sensitivity in order to reduce the mass and power burden on the spacecraft transmitter. Superconducting nanowire single-photon detectors (SNSPDs) have been demonstrated to offer superior performance in detection efficiency, timing resolution, and count rates over semiconductor photodetectors, and are a suitable technology for high photon efficiency links. Recently photon detectors based on superconducting nanowires have become commercially available, and we have assessed the characteristics and performance of one such commercial system as a candidate for potential utilization in ground receiver designs. The SNSPD system features independent channels which can be added modularly, and we analyze the scalability of the system to support different data rates, as well as consider coupling concepts and issues as the number of channels increases.

  14. Quantum Transport and Nano Angle-resolved Photoemission Spectroscopy on the Topological Surface States of Single Sb2Te3 Nanowires

    Science.gov (United States)

    Arango, Yulieth C.; Huang, Liubing; Chen, Chaoyu; Avila, Jose; Asensio, Maria C.; Grützmacher, Detlev; Lüth, Hans; Lu, Jia Grace; Schäpers, Thomas

    2016-01-01

    We report on low-temperature transport and electronic band structure of p-type Sb2Te3 nanowires, grown by chemical vapor deposition. Magnetoresistance measurements unravel quantum interference phenomena, which depend on the cross-sectional dimensions of the nanowires. The observation of periodic Aharonov-Bohm-type oscillations is attributed to transport in topologically protected surface states in the Sb2Te3 nanowires. The study of universal conductance fluctuations demonstrates coherent transport along the Aharonov-Bohm paths encircling the rectangular cross-section of the nanowires. We use nanoscale angle-resolved photoemission spectroscopy on single nanowires (nano-ARPES) to provide direct experimental evidence on the nontrivial topological character of those surface states. The compiled study of the bandstructure and the magnetotransport response unambiguosly points out the presence of topologically protected surface states in the nanowires and their substantial contribution to the quantum transport effects, as well as the hole doping and Fermi velocity among other key issues. The results are consistent with the theoretical description of quantum transport in intrinsically doped quasi-one-dimensional topological insulator nanowires. PMID:27581169

  15. Title: Using Alignment and 2D Network Simulations to Study Charge Transport Through Doped ZnO Nanowire Thin Film Electrodes

    KAUST Repository

    Phadke, Sujay

    2011-09-30

    Factors affecting charge transport through ZnO nanowire mat films were studied by aligning ZnO nanowires on substrates and coupling experimental measurements with 2D nanowire network simulations. Gallium doped ZnO nanowires were aligned on thermally oxidized silicon wafer by shearing a nanowire dispersion in ethanol. Sheet resistances of nanowire thin films that had current flowing parallel to nanowire alignment direction were compared to thin films that had current flowing perpendicular to nanowire alignment direction. Perpendicular devices showed ∼5 fold greater sheet resistance than parallel devices supporting the hypothesis that aligning nanowires would increase conductivity of ZnO nanowire electrodes. 2-D nanowire network simulations of thin films showed that the device sheet resistance was dominated by inter-wire contact resistance. For a given resistivity of ZnO nanowires, the thin film electrodes would have the lowest possible sheet resistance if the inter-wire contact resistance was one order of magnitude lower than the single nanowire resistance. Simulations suggest that the conductivity of such thin film devices could be further enhanced by using longer nanowires. Solution processed Gallium doped ZnO nanowires are aligned on substrates using an innovative shear coating technique. Nanowire alignment has shown improvement in ZnO nanowire transparent electrode conductivity. 2D network simulations in conjunction with electrical measurements have revealed different regimes of operation of nanowire thin films and provided a guideline for improving electrical performance of nanowire electrodes. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Diagnostics and Degradation Investigations of Li-Ion Battery Electrodes using Single Nanowire Electrochemical Cells

    Science.gov (United States)

    Palapati, Naveen Kumar Reddy

    Portable energy storage devices, which drive advanced technological devices, are improving the productivity and quality of our everyday lives. In order to meet the growing needs for energy storage in transportation applications, the current lithium-ion (Li-ion) battery technology requires new electrode materials with performance improvements in multiple aspects: (1) energy and power densities, (2) safety, and (3) performance lifetime. While a number of interesting nanomaterials have been synthesized in recent years with promising performance, accurate capabilities to probe the intrinsic performance of these high-performance materials within a battery environment are lacking. Most studies on electrode nanomaterials have so far used traditional, bulk-scale techniques such as cyclic voltammetry, electrochemical impedance spectroscopy, and Raman spectroscopy. These approaches give an ensemble-average estimation of the electrochemical properties of a battery electrode and does not provide a true indication of the performance that is intrinsic to its material system. Thus, new techniques are essential to understand the changes happening at a single particle level during the operation of a battery. The results from this thesis solve this need and study the electrical, mechanical and size changes that take place in a battery electrode at a single particle level. Single nanowire lithium cells are built by depositing nanowires in carefully designed device regions of a silicon chip using Dielectrophoresis (DEP). This work has demonstrated the assembly of several NW cathode materials like LiFePO 4, pristine and acid-leached alpha-MnO2, todorokite - MnO2, acid and nonacid-leached Na0.44MnO2. Within these materials, alpha-MnO2 was chosen as the model material system for electrochemical experiments. Electrochemical lithiation of pristine alpha-MnO 2 was performed inside a glove box. The volume, elasticity and conductivity changes were measured at each state-of-charge (SOC) to

  17. Enhanced Electrochemical Oxidation of p-Nitrophenol Using Single-Walled Carbon Nanotubes/Silver Nanowires Hybrids Modified Electrodes.

    Science.gov (United States)

    Jiang, Yunfang; Liu, Xinghua; Li, Jing; Zhou, Lei; Yang, Xiaoying; Huang, Yi

    2015-08-01

    The electrochemical oxidation of p-nitrophenol (p-Np) has been studied on glassy carbon electrode modified with the single-walled carbon nanotubes/silver nanowires hybrids (SWNTs-Ag) by using cyclic and differential pulse voltammetry. p-Np is irreversibly oxidized at +0.88 V (vs. the Ag/AgCl) in PBS solutions of pH 7.4. The modified electrodes display the detection sensitivity of 0.0212 µA/µM with an unusually wide linear response of 5-1700 µM (R2 = 0.998) and the detection limit of 1 µM. The current response of SWNTs-Ag modified electrode to p-Np is better than that of SWNTs or Ag nanowires modified electrode under the same concentration. Combining the adsorption ability of SWNTs and the conductivity of SWNTs and Ag nanowires, the detection performance of SWNTs-Ag modified electrode to p-Np was greatly improved.

  18. Atomic Migration Induced Crystal Structure Transformation and Core-Centered Phase Transition in Single Crystal Ge2Sb2Te5Nanowires.

    Science.gov (United States)

    Lee, Jun-Young; Kim, Jeong-Hyeon; Jeon, Deok-Jin; Han, Jaehyun; Yeo, Jong-Souk

    2016-10-12

    A phase change nanowire holds a promise for nonvolatile memory applications, but its transition mechanism has remained unclear due to the analytical difficulties at atomic resolution. Here we obtain a deeper understanding on the phase transition of a single crystalline Ge 2 Sb 2 Te 5 nanowire (GST NW) using atomic scale imaging, diffraction, and chemical analysis. Our cross-sectional analysis has shown that the as-grown hexagonal close-packed structure of the single crystal GST NW transforms to a metastable face-centered cubic structure due to the atomic migration to the pre-existing vacancy layers in the hcp structure going through iterative electrical switching. We call this crystal structure transformation "metastabilization", which is also confirmed by the increase of set-resistance during the switching operation. For the set to reset transition between crystalline and amorphous phases, high-resolution imaging indicates that the longitudinal center of the nanowire mainly undergoes phase transition. According to the atomic scale analysis of the GST NW after repeated electrical switching, partial crystallites are distributed around the core-centered amorphous region of the nanowire where atomic migration is mainly induced, thus potentially leading to low power electrical switching. These results provide a novel understanding of phase change nanowires, and can be applied to enhance the design of nanowire phase change memory devices for improved electrical performance.

  19. A highly efficient single-photon source based on a quantum dot in a photonic nanowire

    DEFF Research Database (Denmark)

    Claudon, Julien; Bleuse, Joel; Malik, Nitin Singh

    2010-01-01

    –4 or a semiconductor quantum dot5–7. Achieving a high extraction efficiency has long been recognized as a major issue, and both classical solutions8 and cavity quantum electrodynamics effects have been applied1,9–12. We adopt a different approach, based on an InAs quantum dot embedded in a GaAs photonic nanowire...

  20. Electrically pumped photonic nanowire single-photon source with an efficienty of 89%

    DEFF Research Database (Denmark)

    Gregersen, Niels; Nielsen, Torben Roland; Mørk, Jesper

    2011-01-01

    control and has high tolerance towards surface roughness. In the nanowire, a geometrical effect ensures good coupling between the quantum dot and the optical mode, and an inverted tapering section is introduced to adiabatically expand the mode waist and control the far field emission profile while...

  1. Synthesis and magneto-transport properties of single PEDOT/Ni and PEDOT/Ni30Fe70 core/shell nanowires

    International Nuclear Information System (INIS)

    Hangarter, Carlos M.; Rheem, Youngwoo; Stahovich, Thomas; Myung, Nosang V.

    2011-01-01

    Single polyethylenedioxythiophene (PEDOT) nanowires bridging pairs of electrodes were utilized as positive templates to create PEDOT/Ni and PEDOT/Ni 30 Fe 70 core/shell nanowires by electrodepositing ferromagnetic material (i.e., Ni and Ni 30 Fe 70 ) on the entire assembly, including both the electrodes and nanowire. The temperature dependence of the electrical resistance indicated that electrons are transported predominately through the ferromagnetic shell. The magnetoresistive (MR) behavior of the core/shell nanowires was investigated as a function of temperature, magnetic field orientation, shell thickness, and composition. The MR behavior of the PEDOT/Ni core/shell nanowires was anomalous for low applied magnetic fields, deviating from expected anisotropic magnetoresistance, with positive ΔR/R O values for all field orientations. PEDOT/Ni 30 Fe 70 core/shell nanowires displayed the opposite behavior, with negative ΔR/R O for both longitudinal and transverse field orientations. The origin of this magnetoresistive behavior is postulated to be a geometry induced domain wall effect.

  2. Intense intrashell luminescence of Eu-doped single ZnO nanowires at room temperature by implantation created Eu-Oi complexes.

    Science.gov (United States)

    Geburt, Sebastian; Lorke, Michael; da Rosa, Andreia L; Frauenheim, Thomas; Röder, Robert; Voss, Tobias; Kaiser, Uwe; Heimbrodt, Wolfram; Ronning, Carsten

    2014-08-13

    Successful doping and excellent optical activation of Eu(3+) ions in ZnO nanowires were achieved by ion implantation. We identified and assigned the origin of the intra-4f luminescence of Eu(3+) ions in ZnO by first-principles calculations to Eu-Oi complexes, which are formed during the nonequilibrium ion implantation process and subsequent annealing at 700 °C in air. Our targeted defect engineering resulted in intense intrashell luminescence of single ZnO:Eu nanowires dominating the photoluminescence spectrum even at room temperature. The high intensity enabled us to study the luminescence of single ZnO nanowires in detail, their behavior as a function of excitation power, waveguiding properties, and the decay time of the transition.

  3. Molecular Beam Epitaxy of GaN Nanowires on Epitaxial Graphene.

    Science.gov (United States)

    Fernández-Garrido, Sergio; Ramsteiner, Manfred; Gao, Guanhui; Galves, Lauren A; Sharma, Bharat; Corfdir, Pierre; Calabrese, Gabriele; de Souza Schiaber, Ziani; Pfüller, Carsten; Trampert, Achim; Lopes, João Marcelo J; Brandt, Oliver; Geelhaar, Lutz

    2017-09-13

    We demonstrate an all-epitaxial and scalable growth approach to fabricate single-crystalline GaN nanowires on graphene by plasma-assisted molecular beam epitaxy. As substrate, we explore several types of epitaxial graphene layer structures synthesized on SiC. The different structures differ mainly in their total number of graphene layers. Because graphene is found to be etched under active N exposure, the direct growth of GaN nanowires on graphene is only achieved on multilayer graphene structures. The analysis of the nanowire ensembles prepared on multilayer graphene by Raman spectroscopy and transmission electron microscopy reveals the presence of graphene underneath as well as in between nanowires, as desired for the use of this material as contact layer in nanowire-based devices. The nanowires nucleate preferentially at step edges, are vertical, well aligned, epitaxial, and of comparable structural quality as similar structures fabricated on conventional substrates.

  4. Coupling of a single nitrogen vacancy center to the gap modes of a dual silver nanowire system

    DEFF Research Database (Denmark)

    Kumar, Shailesh; Huck, A.; Andersen, U. L.

    2012-01-01

    We couple a nitrogen vacancy center in a diamond nano-crystal to a dual silver nanowire system by positioning the crystal in the gap between the two nanowires, and demonstrate a lifetime decrease of 8.3.......We couple a nitrogen vacancy center in a diamond nano-crystal to a dual silver nanowire system by positioning the crystal in the gap between the two nanowires, and demonstrate a lifetime decrease of 8.3....

  5. Luminescence and electrical properties of single ZnO/MgO core/shell nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Grinblat, Gustavo; Comedi, David [Laboratorio de Física del Sólido, Dep. de Física, FACET, Universidad Nacional de Tucumán, Tucumán, and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); Bern, Francis; Barzola-Quiquia, José; Esquinazi, Pablo, E-mail: esquin@physik.uni-leipzig.de [Division of Superconductivity and Magnetism, Institute for Experimental Physics II, University of Leipzig, D-04103 Leipzig (Germany); Tirado, Mónica [Laboratorio de Nanomateriales y Propiedades Dieléctricas, Dep. de Física, FACET, Universidad Nacional de Tucumán, Tucumán (Argentina)

    2014-03-10

    To neutralise the influence of the surface of ZnO nanowires for photonics and optoelectronic applications, we have covered them with insulating MgO film and individually contacted them for electrical characterisation. We show that such a metal-insulator-semiconductor-type nanodevice exhibits a high diode ideality factor of 3.4 below 1 V. MgO shell passivates ZnO surface states and provides confining barriers to electrons and holes within the ZnO core, favouring excitonic ultraviolet radiative recombination, while suppressing defect-related luminescence in the visible and improving electrical conductivity. The results indicate the potential use of ZnO/MgO nanowires as a convenient building block for nano-optoelectronic devices.

  6. Single crystalline cylindrical nanowires – toward dense 3D arrays of magnetic vortices

    KAUST Repository

    Ivanov, Yurii P.

    2016-03-31

    Magnetic vortex-based media have recently been proposed for several applications of nanotechnology; however, because lithography is typically used for their preparation, their low-cost, large-scale fabrication is a challenge. One solution may be to use arrays of densely packed cobalt nanowires that have been efficiently fabricated by electrodeposition. In this work, we present this type of nanoscale magnetic structures that can hold multiple stable magnetic vortex domains at remanence with different chiralities. The stable vortex state is observed in arrays of monocrystalline cobalt nanowires with diameters as small as 45 nm and lengths longer than 200 nm with vanishing magnetic cross talk between closely packed neighboring wires in the array. Lorentz microscopy, electron holography and magnetic force microscopy, supported by micromagnetic simulations, show that the structure of the vortex state can be adjusted by varying the aspect ratio of the nanowires. The data we present here introduce a route toward the concept of 3-dimensional vortex-based magnetic memories.

  7. CdSe quantum dot in vertical ZnSe nanowire and photonic wire for efficient single-photon emission

    DEFF Research Database (Denmark)

    Cremel, Thibault; Bellet-Amalric, Edith; Cagnon, Laurent

    We’ve recently demonstrated that a CdSe quantum dot (QD) in a ZnSe nanowire (NW) can emit triggered single photons up to room temperature [1]. In this contribution, we present the possibilities of enhancing the photon emission and collection in such NW-QDs structures for a realistic application...... as a single photon source. We have grown vertically oriented ZnSe NWs (with typical diameter of 10 nm) by molecular beam epitaxy on a ZnSe(111)B buffer layer. The growth of a ZnMgSe passivating shell increases the (otherwise weak) ZnSe near-band-edge luminescence by two orders of magnitude. This has allowed...

  8. Nanowire Growth for Photovoltaics

    DEFF Research Database (Denmark)

    Holm, Jeppe Vilstrup

    consisting of a single, vertical, gallium arsenide(GaAs) nanowire grown on silicon with a radial p-i-n-junction. The average concentration was ~8, and the peak concentration was ~12. By increasing the number of junctions in solar cells, they can extract more energy per absorbed photon. In ideal multi...... of the nanowires, some of which were removed from their growth substrate and turned into single nanowire solar cells (SNWSC). The best device showed a conversion efficiency of 6.8% under 1.5AMG 1-sun illumination. In order to improve the efficiency a surface passivating shell consisting of highly doped, wide......Solar cells commercial success is based on an efficiency/cost calculation. Nanowire solar cells is one of the foremost candidates to implement third generation photo voltaics, which are both very efficient and cheap to produce. This thesis is about our progress towards commercial nanowire solar...

  9. Highly Ordered Single Crystalline Nanowire Array Assembled Three-Dimensional Nb3O7(OH) and Nb2O5 Superstructures for Energy Storage and Conversion Applications.

    Science.gov (United States)

    Zhang, Haimin; Wang, Yun; Liu, Porun; Chou, Shu Lei; Wang, Jia Zhao; Liu, Hongwei; Wang, Guozhong; Zhao, Huijun

    2016-01-26

    Three-dimensional (3D) metal oxide superstructures have demonstrated great potentials for structure-dependent energy storage and conversion applications. Here, we reported a facile hydrothermal method for direct growth of highly ordered single crystalline nanowire array assembled 3D orthorhombic Nb3O7(OH) superstructures and their subsequent thermal transformation into monoclinic Nb2O5 with well preserved 3D nanowire superstructures. The performance of resultant 3D Nb3O7(OH) and Nb2O5 superstructures differed remarkably when used for energy conversion and storage applications. The thermally converted Nb2O5 superstructures as anode material of lithium-ion batteries (LiBs) showed higher capacity and excellent cycling stability compared to the Nb3O7(OH) superstructures, while directly hydrothermal grown Nb3O7(OH) nanowire superstructure film on FTO substrate as photoanode of dye-sensitized solar cells (DSSCs) without the need for further calcination exhibited an overall light conversion efficiency of 6.38%, higher than that (5.87%) of DSSCs made from the thermally converted Nb2O5 film. The high energy application performance of the niobium-based nanowire superstructures with different chemical compositions can be attributed to their large surface area, superior electron transport property, and high light utilization efficiency resulting from a 3D superstructure, high crystallinity, and large sizes. The formation process of 3D nanowire superstructures before and after thermal treatment was investigated and discussed based on our theoretical and experimental results.

  10. Direct synthesis of pure single-crystalline Magnéli phase Ti8O15 nanowires as conductive carbon-free materials for electrocatalysis

    Science.gov (United States)

    He, Chunyong; Chang, Shiyong; Huang, Xiangdong; Wang, Qingquan; Mei, Ao; Shen, Pei Kang

    2015-02-01

    The Magnéli phase Ti8O15 nanowires (NWs) have been grown directly on a Ti substrate by a facile one-step evaporation-deposition synthesis method under a hydrogen atmosphere. The Ti8O15 NWs exhibit an outstanding electrical conductivity at room temperature. The electrical conductivity of a single Ti8O15 nanowire is 20.6 S cm-1 at 300 K. Theoretical calculations manifest that the existence of a large number of oxygen vacancies changes the band structure, resulting in the reduction of the electronic resistance. The Magnéli phase Ti8O15 nanowires have been used as conductive carbon-free supports to load Pt nanoparticles for direct methanol oxidation reaction (MOR). The Pt/Ti8O15 NWs show an enhanced activity and extremely high durability compared with commercial Pt/C catalysts.The Magnéli phase Ti8O15 nanowires (NWs) have been grown directly on a Ti substrate by a facile one-step evaporation-deposition synthesis method under a hydrogen atmosphere. The Ti8O15 NWs exhibit an outstanding electrical conductivity at room temperature. The electrical conductivity of a single Ti8O15 nanowire is 20.6 S cm-1 at 300 K. Theoretical calculations manifest that the existence of a large number of oxygen vacancies changes the band structure, resulting in the reduction of the electronic resistance. The Magnéli phase Ti8O15 nanowires have been used as conductive carbon-free supports to load Pt nanoparticles for direct methanol oxidation reaction (MOR). The Pt/Ti8O15 NWs show an enhanced activity and extremely high durability compared with commercial Pt/C catalysts. Electronic supplementary information (ESI) available: Additional data for the characterization and experimental details see DOI: 10.1039/c4nr05806b

  11. Single-InN-Nanowire Nanogenerator with Upto 1 V Output Voltage

    KAUST Repository

    Huang, Chi-Te

    2010-07-30

    Piezoelectric potential of a InN nanowire (NW) growing along [011̄0] can be positive, negative, and zero depending on the direction of the applied transverse force. By measuring the output voltage of a InN-NW-based nanogenerator, about 40% to 55% of output voltages are within the range of ?1 and ?20 mV, and 25% to 30% of output voltages would exceed ?100 mV. Some output voltages could reach the magnitude of ?1000 mV, showing its great potential for fabricating high-output nanogenerators. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Controlling charges distribution at the surface of a single GaN nanowire by in-situ strain

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2017-08-01

    Full Text Available Effect of the strain on the charge distribution at the surface of a GaN semiconductor nanowire (NW has been investigated inside transmission electron microscope (TEM by in-situ off-axis electron holography. The outer and inner surfaces of the NW bent axially under compression of two Au electrodes were differently strained, resulting in difference of their Fermi levels. Consequently, the free electrons flow from the high Fermi level to the low level until the two Fermi levels aligned in a line. The potential distributions induced by charge redistribution in the two vacuum sides of the bent NW were examined respectively, and the opposite nature of the bounded charges on the outer and inner surfaces of the bent NW was identified. The results provide experimental evidence that the charge distribution at the surfaces of a single GaN NW can be controlled by different strains created along the NW.

  13. Boron carbide nanowires: Synthesis and characterization

    Science.gov (United States)

    Guan, Zhe

    Bulk boron carbide has been widely used in ballistic armored vest and the property characterization has been heavily focused on mechanical properties. Even though boron carbides have also been projected as a promising class of high temperature thermoelectric materials for energy harvesting, the research has been limited in this field. Since the thermal conductivity of bulk boron carbide is still relatively high, there is a great opportunity to take advantage of the nano effect to further reduce it for better thermoelectric performance. This dissertation work aims to explore whether improved thermoelectric performance can be found in boron carbide nanowires compared with their bulk counterparts. This dissertation work consists of four main parts. (1) Synthesis of boron carbide nanowires. Boron carbide nanowires were synthesized by co-pyrolysis of diborane and methane at low temperatures (with 879 °C as the lowest) in a home-built low pressure chemical vapor deposition (LPCVD) system. The CVD-based method is energy efficient and cost effective. The as-synthesized nanowires were characterized by electron microscopy extensively. The transmission electron microscopy (TEM) results show the nanowires are single crystalline with planar defects. Depending on the geometrical relationship between the preferred growth direction of the nanowire and the orientation of the defects, the as-synthesized nanowires could be further divided into two categories: transverse fault (TF) nanowires grow normal to the defect plane, while axial fault (AF) ones grow within the defect plane. (2) Understanding the growth mechanism of as-synthesized boron carbide nanowires. The growth mechanism can be generally considered as the famous vapor-liquid-solid (VLS) mechanism. TF and AF nanowires were found to be guided by Ni-B catalysts of two phases. A TF nanowire is lead by a hexagonal phase catalyst, which was proved to be in a liquid state during reaction. While an AF nanowires is catalyzed by a

  14. Morphology and optical properties of ternary Zn-Sn-O semiconductor nanowires with catalyst-free growth

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Yuan-Chang, E-mail: yuanvictory@gmail.com [Institute of Materials Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan (China); Huang, Chiem-Lum; Hu, Chia-Yen; Deng, Xian-Shi; Zhong, Hua [Institute of Materials Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan (China)

    2012-10-05

    Highlights: Black-Right-Pointing-Pointer Zn{sub 2}SnO{sub 4} nanowires with various morphologies were successfully synthesized by thermal evaporation. Black-Right-Pointing-Pointer The as-synthesized Zn{sub 2}SnO{sub 4} nanowires have a face-centered cubic crystal structure. Black-Right-Pointing-Pointer Thermal annealing of Zn{sub 2}SnO{sub 4} nanowires changes the properties of the visible emission band. - Abstract: This study reports the synthesis of Zn{sub 2}SnO{sub 4} (ZTO) nanowires with various morphologies using thermal evaporation without a metal catalyst. X-ray diffraction patterns show that the structure of the as-synthesized ZTO nanowires is a face-centered cubic spinel phase. Scanning electron microscopy images exhibit that the as-synthesized nanowires have various morphologies, and homogeneously cover the area of interest. High-resolution transmittance electron microscopy reveals that these ZTO nanowires have single crystalline microstructures with four morphologies. The results of low-temperature cathodoluminescence (CL) measurements show the crystal defects of oxygen vacancies and interstitials may contribute to blue-green and yellow-orange emissions, respectively, for the as-synthesized single nanowire. This study also discusses the effects of thermal annealing under oxygen-rich and reducing ambient on the CL properties of the single ZTO nanowire.

  15. Photocatalytic segmented nanowires and single-step iron oxide nanotube synthesis: Templated electrodeposition as all-round tool

    NARCIS (Netherlands)

    Maas, M.G.; Rodijk, E.J.B.; Maijenburg, A.W.; ten Elshof, Johan E.; Blank, David H.A.; Nielsch, K.; Fontcuberta i Morral, A.; Holt, J.K.; Thomson, C.V.

    2010-01-01

    Templated electrodeposition was used to synthesize silver-zinc oxide nanowires and iron oxide (Fe2O3) nanotubes in polycarbonate track etched (PCTE) membranes. Metal/oxide segmented nanowires were made to produce hydrogen gas from a water/methanol mixture under ultraviolet irradiation. It was

  16. An ultrasensitive electrochemical DNA biosensor based on a copper oxide nanowires/single-walled carbon nanotubes nanocomposite

    International Nuclear Information System (INIS)

    Chen, Mei; Hou, Changjun; Huo, Danqun; Yang, Mei; Fa, Huanbao

    2016-01-01

    Graphical abstract: A novel and sensitive electrochemical biosensor based on hybrid nanocomposite consisting of copper oxide nanowires (CuO NWs) and carboxyl-functionalized single-walled carbon nanotubes (SWCNTs-COOH) was first developed for the detection of the specific-sequence target DNA. This schematic represents the fabrication procedure of our DNA biosensor. - Highlights: • An ultrasensitive DNA electrochemical biosensor was developed. • CuO NWs entangled with the SWCNTs formed a mesh structure with good conductivity. • It is the first time use of CuONWs-SWCNTs hybrid nanocomposite for DNA detection. • The biosensor is simple, selective, stable, and sensitive. • The biosensor has great potential for use in analysis of real samples. - Abstract: Here, we developed a novel and sensitive electrochemical biosensor to detect specific-sequence target DNA. The biosensor was based on a hybrid nanocomposite consisting of copper oxide nanowires (CuO NWs) and carboxyl-functionalized single-walled carbon nanotubes (SWCNTs-COOH). The resulting CuO NWs/SWCNTs layers exhibited a good differential pulse voltammetry (DPV) current response for the target DNA sequences, which we attributed to the properties of CuO NWs and SWCNTs. CuO NWs and SWCNTs hybrid composites with highly conductive and biocompatible nanostructure were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and cyclic voltammetry (CV). Immobilization of the probe DNA on the electrode surface was largely improved due to the unique synergetic effect of CuO NWs and SWCNTs. DPV was applied to monitor the DNA hybridization event, using adriamycin as an electrochemical indicator. Under optimal conditions, the peak currents of adriamycin were linear with the logarithm of target DNA concentrations (ranging from 1.0 × 10 −14 to 1.0 × 10 −8 M), with a detection limit of 3.5 × 10 −15 M (signal/noise ratio of 3). The biosensor also showed high selectivity to

  17. An ultrasensitive electrochemical DNA biosensor based on a copper oxide nanowires/single-walled carbon nanotubes nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Mei [Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Hou, Changjun, E-mail: houcj@cqu.edu.cn [Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); National Key Laboratory of Fundamental Science of Micro/Nano-Device and System Technology, Chongqing University, Chongqing 400044 (China); Huo, Danqun [Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); National Key Laboratory of Fundamental Science of Micro/Nano-Device and System Technology, Chongqing University, Chongqing 400044 (China); Yang, Mei [Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Fa, Huanbao [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China)

    2016-02-28

    Graphical abstract: A novel and sensitive electrochemical biosensor based on hybrid nanocomposite consisting of copper oxide nanowires (CuO NWs) and carboxyl-functionalized single-walled carbon nanotubes (SWCNTs-COOH) was first developed for the detection of the specific-sequence target DNA. This schematic represents the fabrication procedure of our DNA biosensor. - Highlights: • An ultrasensitive DNA electrochemical biosensor was developed. • CuO NWs entangled with the SWCNTs formed a mesh structure with good conductivity. • It is the first time use of CuONWs-SWCNTs hybrid nanocomposite for DNA detection. • The biosensor is simple, selective, stable, and sensitive. • The biosensor has great potential for use in analysis of real samples. - Abstract: Here, we developed a novel and sensitive electrochemical biosensor to detect specific-sequence target DNA. The biosensor was based on a hybrid nanocomposite consisting of copper oxide nanowires (CuO NWs) and carboxyl-functionalized single-walled carbon nanotubes (SWCNTs-COOH). The resulting CuO NWs/SWCNTs layers exhibited a good differential pulse voltammetry (DPV) current response for the target DNA sequences, which we attributed to the properties of CuO NWs and SWCNTs. CuO NWs and SWCNTs hybrid composites with highly conductive and biocompatible nanostructure were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and cyclic voltammetry (CV). Immobilization of the probe DNA on the electrode surface was largely improved due to the unique synergetic effect of CuO NWs and SWCNTs. DPV was applied to monitor the DNA hybridization event, using adriamycin as an electrochemical indicator. Under optimal conditions, the peak currents of adriamycin were linear with the logarithm of target DNA concentrations (ranging from 1.0 × 10{sup −14} to 1.0 × 10{sup −8} M), with a detection limit of 3.5 × 10{sup −15} M (signal/noise ratio of 3). The biosensor also showed high

  18. Single-crystalline In2S3 nanowire-based flexible visible-light photodetectors with an ultra-high photoresponse

    Science.gov (United States)

    Xie, Xuming; Shen, Guozhen

    2015-03-01

    With a band gap of 2.28 eV, In2S3 is an excellent candidate for visible-light sensitive photodetectors. By growing single-crystalline In2S3 nanowires via a simple CVD method, we report the fabrication of high-performance single-crystal In2S3 nanowire-based flexible photodetectors. The as-fabricated flexible photodetectors exhibited an ultra-high Ion/Ioff ratio up to 106 and a high sensitivity to visible incident light with responsivity and quantum efficiency as high as 7.35 × 104 A W-1 and 2.28 × 107%, respectively. Besides, the flexible photodetectors were demonstrated to possess a robust flexibility and excellent stability. With these favorable merits, In2S3 nanowires are believed to have a promising future in the application of high performance and flexible integrated optoelectronic devices.With a band gap of 2.28 eV, In2S3 is an excellent candidate for visible-light sensitive photodetectors. By growing single-crystalline In2S3 nanowires via a simple CVD method, we report the fabrication of high-performance single-crystal In2S3 nanowire-based flexible photodetectors. The as-fabricated flexible photodetectors exhibited an ultra-high Ion/Ioff ratio up to 106 and a high sensitivity to visible incident light with responsivity and quantum efficiency as high as 7.35 × 104 A W-1 and 2.28 × 107%, respectively. Besides, the flexible photodetectors were demonstrated to possess a robust flexibility and excellent stability. With these favorable merits, In2S3 nanowires are believed to have a promising future in the application of high performance and flexible integrated optoelectronic devices. Electronic supplementary information (ESI) available: XRD pattern, SEM image of the back gate FETs, Electronic transport properties, and I-V curves of the device in dark. See DOI: 10.1039/c5nr00410a

  19. Single-nanowire, low-bandgap hot carrier solar cells with tunable open-circuit voltage

    Science.gov (United States)

    Limpert, Steven; Burke, Adam; Chen, I.-Ju; Anttu, Nicklas; Lehmann, Sebastian; Fahlvik, Sofia; Bremner, Stephen; Conibeer, Gavin; Thelander, Claes; Pistol, Mats-Erik; Linke, Heiner

    2017-10-01

    Compared to traditional pn-junction photovoltaics, hot carrier solar cells offer potentially higher efficiency by extracting work from the kinetic energy of photogenerated ‘hot carriers’ before they cool to the lattice temperature. Hot carrier solar cells have been demonstrated in high-bandgap ferroelectric insulators and GaAs/AlGaAs heterostructures, but so far not in low-bandgap materials, where the potential efficiency gain is highest. Recently, a high open-circuit voltage was demonstrated in an illuminated wurtzite InAs nanowire with a low bandgap of 0.39 eV, and was interpreted in terms of a photothermoelectric effect. Here, we point out that this device is a hot carrier solar cell and discuss its performance in those terms. In the demonstrated devices, InP heterostructures are used as energy filters in order to thermoelectrically harvest the energy of hot electrons photogenerated in InAs absorber segments. The obtained photovoltage depends on the heterostructure design of the energy filter and is therefore tunable. By using a high-resistance, thermionic barrier, an open-circuit voltage is obtained that is in excess of the Shockley-Queisser limit. These results provide generalizable insight into how to realize high voltage hot carrier solar cells in low-bandgap materials, and therefore are a step towards the demonstration of higher efficiency hot carrier solar cells.

  20. Synthesis and Fluorescence Property of Mn-Doped ZnSe Nanowires

    Directory of Open Access Journals (Sweden)

    Dongmei Han

    2010-01-01

    Full Text Available Water-soluble Mn-doped ZnSe luminescent nanowires were successfully prepared by hydrothermal method without any heavy metal ions and toxic reagents. The morphology, composition, and property of the products were investigated. The experimental results showed that the Mn-doped ZnSe nanowires were single well crystallized and had a zinc blende structure. The average length of the nanowires was about 2-3 μm, and the diameter was 80 nm. With the increase of Mn2+-doped concentration, the absorbance peak showed large difference. The UV-vis absorbance spectrum showed that the Mn-doped ZnSe nanowires had a sharp absorption band appearing at 360 nm. The PL spectrum revealed that the nanowires had two distinct emission bands centered at 432 and 580 nm.

  1. Pervasive within-Mitochondrion Single-Nucleotide Variant Heteroplasmy as Revealed by Single-Mitochondrion Sequencing

    Directory of Open Access Journals (Sweden)

    Jacqueline Morris

    2017-12-01

    Full Text Available Summary: A number of mitochondrial diseases arise from single-nucleotide variant (SNV accumulation in multiple mitochondria. Here, we present a method for identification of variants present at the single-mitochondrion level in individual mouse and human neuronal cells, allowing for extremely high-resolution study of mitochondrial mutation dynamics. We identified extensive heteroplasmy between individual mitochondrion, along with three high-confidence variants in mouse and one in human that were present in multiple mitochondria across cells. The pattern of variation revealed by single-mitochondrion data shows surprisingly pervasive levels of heteroplasmy in inbred mice. Distribution of SNV loci suggests inheritance of variants across generations, resulting in Poisson jackpot lines with large SNV load. Comparison of human and mouse variants suggests that the two species might employ distinct modes of somatic segregation. Single-mitochondrion resolution revealed mitochondria mutational dynamics that we hypothesize to affect risk probabilities for mutations reaching disease thresholds. : Morris et al. use independent sequencing of multiple individual mitochondria from mouse and human brain cells to show high pervasiveness of mutations. The mutations are heteroplasmic within single mitochondria and within and between cells. These findings suggest mechanisms by which mutations accumulate over time, resulting in mitochondrial dysfunction and disease. Keywords: single mitochondrion, single cell, human neuron, mouse neuron, single-nucleotide variation

  2. Effects of interfacial transition layers on the electrical properties of individual Fe 30 Co 61 Cu 9 /Cu multilayer nanowires

    KAUST Repository

    Ma, Hongbin

    2016-01-01

    In this work, we accurately measure the electrical properties of individual Fe30Co61Cu9/Cu multilayered nanowires using nanomanipulators in in situ scanning electron microscopy to reveal that interfacial transition layers are influential in determining their transport behaviors. We investigate the morphology, crystal structure and chemistry of the Fe30Co61Cu9/Cu multilayered nanowires to characterize them at the nanoscale. We also compare the transport properties of these multilayered nanowires to those of individual pure Cu nanowires and to those of alloy Fe30Co61Cu9 nanowires. The multilayered nanowires with a 50 nm diameter had a remarkable resistivity of approximately 5.41 × 10-7 Ω m and a failure current density of 1.54 × 1011 A m-2. Detailed analysis of the electrical data reveals that interfacial transition layers influence the electrical properties of multilayered nanowires and are likely to have a strong impact on the life of nanodevices. This work contributes to a basic understanding of the electrical parameters of individual magnetic multilayered nanowires for their application as functional building blocks and interconnecting leads in nanodevices and nanoelectronics, and also provides a clear physical picture of a single multilayered nanowire which explains its electrical resistance and its source of giant magnetoresistance. © The Royal Society of Chemistry 2016.

  3. Single cell transcriptional analysis reveals novel innate immune cell types

    Directory of Open Access Journals (Sweden)

    Linda E. Kippner

    2014-06-01

    Full Text Available Single-cell analysis has the potential to provide us with a host of new knowledge about biological systems, but it comes with the challenge of correctly interpreting the biological information. While emerging techniques have made it possible to measure inter-cellular variability at the transcriptome level, no consensus yet exists on the most appropriate method of data analysis of such single cell data. Methods for analysis of transcriptional data at the population level are well established but are not well suited to single cell analysis due to their dependence on population averages. In order to address this question, we have systematically tested combinations of methods for primary data analysis on single cell transcription data generated from two types of primary immune cells, neutrophils and T lymphocytes. Cells were obtained from healthy individuals, and single cell transcript expression data was obtained by a combination of single cell sorting and nanoscale quantitative real time PCR (qRT-PCR for markers of cell type, intracellular signaling, and immune functionality. Gene expression analysis was focused on hierarchical clustering to determine the existence of cellular subgroups within the populations. Nine combinations of criteria for data exclusion and normalization were tested and evaluated. Bimodality in gene expression indicated the presence of cellular subgroups which were also revealed by data clustering. We observed evidence for two clearly defined cellular subtypes in the neutrophil populations and at least two in the T lymphocyte populations. When normalizing the data by different methods, we observed varying outcomes with corresponding interpretations of the biological characteristics of the cell populations. Normalization of the data by linear standardization taking into account technical effects such as plate effects, resulted in interpretations that most closely matched biological expectations. Single cell transcription

  4. Micro-pulse polarization lidar at 1.5  μm using a single superconducting nanowire single-photon detector.

    Science.gov (United States)

    Qiu, Jiawei; Xia, Haiyun; Shangguan, Mingjia; Dou, Xiankang; Li, Manyi; Wang, Chong; Shang, Xiang; Lin, Shengfu; Liu, Jianjiang

    2017-11-01

    An all-fiber, eye-safe and micro-pulse polarization lidar is demonstrated with a polarization-maintaining structure, incorporating a single superconducting nanowire single-photon detector (SNSPD) at 1.5 μm. The time-division multiplexing technique is used to achieve a calibration-free optical layout. A single piece of detector is used to detect the backscatter signals at two orthogonal states in an alternative sequence. Thus, regular calibration of the two detectors in traditional polarization lidars is avoided. The signal-to-noise ratio of the lidar is guaranteed by using an SNSPD, providing high detection efficiency and low dark count noise. The linear depolarization ratio (LDR) of the urban aerosol is observed horizontally over 48 h in Hefei [N31°50'37'', E117°15'54''], when a heavy air pollution is spreading from the north to the central east of China. Phenomena of LDR bursts are detected at a location where a building is under construction. The lidar results show good agreement with the data detected from a sun photometer, a 532 nm visibility lidar, and the weather forecast information.

  5. Horizontal Assembly of Single Nanowire Diode Fabricated by p-n Junction GaN NW Grown by MOCVD

    Directory of Open Access Journals (Sweden)

    Ji-Hyeon Park

    2014-01-01

    Full Text Available Uniaxially p-n junction gallium nitride nanowires have been synthesized via metal-organic chemical vapor deposition method. Nanowires prepared on Si(111 substrates were found to grow perpendicular to the substrate, and the transmission electron microscopy studies demonstrated that the nanowires had singlecrystalline structures with a growth axis. The parallel assembly of the p-n junction nanowire was prepared on a Si substrate with a thermally grown SiO2 layer. The transport studies of horizontal gallium nitride nanowire structures assembled from p- and n-type materials show that these junctions correspond to well-defined p-n junction diodes. The p-n junction devices based on GaN nanowires suspended over the electrodes were fabricated and their electrical properties were investigated. The horizontally assembled gallium nitride nanowire diodes suspended over the electrodes exhibited a substantial increase in conductance under UV light exposure. Apart from the selectivity to different light wavelengths, high responsivity and extremely short response time have also been obtained.

  6. Tuning the electrocrystallization parameters of semiconducting Co[TCNQ]2-based materials to yield either single nanowires or crystalline thin films.

    Science.gov (United States)

    Nafady, Ayman; Bond, Alan M; Bilyk, Alexander; Harris, Alexander R; Bhatt, Anand I; O'Mullane, Anthony P; De Marco, Roland

    2007-02-28

    Electrocrystallization of single nanowires and/or crystalline thin films of the semiconducting and magnetic Co[TCNQ]2(H2O)2 (TCNQ=tetracyanoquinodimethane) charge-transfer complex onto glassy carbon, indium tin oxide, or metallic electrodes occurs when TCNQ is reduced in acetonitrile (0.1 M [NBu4][ClO4]) in the presence of hydrated cobalt(II) salts. The morphology of the deposited solid is potential dependent. Other factors influencing the electrocrystallization process include deposition time, concentration, and identity of the Co2+(MeCN) counteranion. Mechanistic details have been elucidated by use of cyclic voltammetry, chronoamperometry, electrochemical quartz crystal microbalance, and galvanostatic methods together with spectroscopic and microscopic techniques. The results provide direct evidence that electrocrystallization takes place through two distinctly different, potential-dependent mechanisms, with progressive nucleation and 3-D growth being controlled by the generation of [TCNQ]*- at the electrode and the diffusion of Co2+(MeCN) from the bulk solution. Images obtained by scanning electron microscopy reveal that electrocrystallization of Co[TCNQ]2(H2O)2 at potentials in the range of 0.1-0 V vs Ag/AgCl, corresponding to the [TCNQ]0/*- diffusion-controlled regime, gives rise to arrays of well-separated, needle-shaped nanowires via the overall reaction 2[TCNQ]*-(MeCN)+Co2+(MeCN)+2H2O right harpoon over left harpoon {Co[TCNQ]2(H2O)2}(s). In this potential region, nucleation and growth occur at randomly separated defect sites on the electrode surface. In contrast, at more negative potentials, a compact film of densely packed, uniformly oriented, hexagonal-shaped nanorods is formed. This is achieved at a substantially increased number of nucleation sites created by direct reduction of a thin film of what is proposed to be cobalt-stabilized {(Co2+)([TCNQ2]*-)2} dimeric anion. Despite the potential-dependent morphology of the electrocrystallized Co[TCNQ]2(H2O)2

  7. Porous Silicon Nanowires

    Science.gov (United States)

    Qu, Yongquan; Zhou, Hailong; Duan, Xiangfeng

    2011-01-01

    In this minreview, we summarize recent progress in the synthesis, properties and applications of a new type of one-dimensional nanostructures — single crystalline porous silicon nanowires. The growth of porous silicon nanowires starting from both p- and n-type Si wafers with a variety of dopant concentrations can be achieved through either one-step or two-step reactions. The mechanistic studies indicate the dopant concentration of Si wafers, oxidizer concentration, etching time and temperature can affect the morphology of the as-etched silicon nanowires. The porous silicon nanowires are both optically and electronically active and have been explored for potential applications in diverse areas including photocatalysis, lithium ion battery, gas sensor and drug delivery. PMID:21869999

  8. Special structures and properties of hydrogen nanowire confined in a single walled carbon nanotube at extreme high pressure

    Directory of Open Access Journals (Sweden)

    Yueyuan Xia

    2012-06-01

    Full Text Available Extensive ab initio molecular dynamics simulations indicate that hydrogen can be confined in single walled carbon nanotubes to form high density and high pressure H2 molecular lattice, which has peculiar shell and axial structures depending on the density or pressure. The band gap of the confined H2 lattice is sensitive to the pressure. Heating the system at 2000K, the H2 lattice is firstly melted to form H2 molecular liquid, and then some of the H2 molecules dissociate accompanied by drastic molecular and atomic reactions, which have essential effect on the electronic structure of the hydrogen system. The liquid hydrogen system at 2000K is found to be a particular mixed liquid, which consists of H2 molecules, H atoms, and H-H-H trimers. The dissociated H atoms and the trimers in the liquid contribute resonance electron states at the Fermi energy to change the material properties substantially. Rapidly cooling the system from 2000K to 0.01 K, the mixed liquid is frozen to form a mixed solid melt with a clear trend of band gap closure. It indicates that this solid melt may become a superconducting nanowire when it is further compressed.

  9. Spectroscopic characterizations of individual single-crystalline GaN nanowires in visible/ultra-violet regime.

    Science.gov (United States)

    Wu, Chien-Ting; Chu, Ming-Wen; Chen, Li-Chyong; Chen, Kuei-Hsien; Chen, Chun-Wei; Chen, Cheng Hsuan

    2010-10-01

    Spectroscopic investigations of individual single-crystalline GaN nanowires with a lateral dimensions of approximately 30-90nm were performed using the spatially resolved technique of electron energy-loss spectroscopy in conjunction with scanning transmission electron microscope showing a 2-A electron probe. Positioning the electron probe upon transmission impact and at aloof setup with respect to the nanomaterials, we explored two types of surface modes intrinsic to GaN, surface exciton polaritons at approximately 8.3eV (approximately 150nm) and surface guided modes at 3.88eV (approximately 320nm), which are in visible/ultra-violet spectral regime above GaN bandgap of approximately 3.3eV (approximately 375nm) and difficult to access by conventional optical spectroscopies. The explorations of these electromagnetic resonances might expand the current technical interests in GaN nanomaterials from the visible/UV range below approximately 3.5eV to the spectral regime further beyond.

  10. Single In x Ga1-x As nanowire/p-Si heterojunction based nano-rectifier diode

    Science.gov (United States)

    Sarkar, K.; Palit, M.; Guhathakurata, S.; Chattopadhyay, S.; Banerji, P.

    2017-09-01

    Nanoscale power supply units will be indispensable for fabricating next generation smart nanoelectronic integrated circuits. Fabrication of nanoscale rectifier circuits on a Si platform is required for integrating nanoelectronic devices with on-chip power supply units. In the present study, a nanorectifier diode based on a single standalone In x Ga1-x As nanowire/p-Si (111) heterojunction fabricated by metal organic chemical vapor deposition technique has been studied. The nanoheterojunction diodes have shown good rectification and fast switching characteristics. The rectification characteristics of the nanoheterojunction have been demonstrated by different standard waveforms of sinusoidal, square, sawtooth and triangular for two different frequencies of 1 and 0.1 Hz. Reverse recovery time of around 150 ms has been observed in all wave response. A half wave rectifier circuit with a simple capacitor filter has been assembled with this nanoheterojunction diode which provides 12% output efficiency. The transport of carriers through the heterojunction is investigated. The interface states density of the nanoheterojunction has also been determined. Occurrence of output waveforms incommensurate with the input is attributed to higher series resistance of the diode which is further explained considering the dimension of p-side and n-side of the junction. The sudden change of ideality factor after 1.7 V bias is attributed to recombination through interface states in space charge region. Low interface states density as well as high rectification ratio makes this heterojunction diode a promising candidate for future nanoscale electronics.

  11. A molecular dynamics study on the thermal conductivity of endohedrally functionalized single-walled carbon nanotubes with gold nanowires

    Science.gov (United States)

    Ajori, Shahram; Haghighi, Samieh; Ansari, Reza

    2018-02-01

    The thermal conductivity of endohedrally functionalized single-walled carbon nanotubes (SWCNTs) with gold nanowires (GNWs) is studied by using a series of molecular dynamics (MD) simulations. The effect of geometrical parameters, i.e. length and radius of pure SWCNTs/GNWs/SWCNTs filled with GNWs on the thermal conductivity are investigated. Also, the influence of various structures of GNWs such as pentagonal and multishell-GNWs on the thermal conductivity of the system is explored. The results indicate that as the length of the system rises, the thermal conductivity increases. It is also found that the thermal conductivity of GNWs is considerably lower than that of pure SWCNTs and GNWs@SWCNTs at a constant length of SWCNT or GNWs. For long pure SWCNTs, by increasing the radii of nanotubes, the thermal conductivity increases. Moreover, the thermal conductivity of the multishell-GNWs@SWCNTs is obtained higher than that of pentagonal configurations for the same lengths of SWCNTs. Through inserting the GNWs inside the SWCNTs, by maintaining the natural properties of NWs due to endohedral functionalization, the thermal conductivity is increased. This finding can be used as a benchmark for more efficient design of NEMS based on metallic NWs.

  12. Hierarchical Cd4SiS6/SiO2 Heterostructure Nanowire Arrays

    OpenAIRE

    Liu, Jian; Wang, Chunrui; Xie, Qingqing; Cai, Junsheng; Zhang, Jing

    2009-01-01

    Abstract Novel hierarchical Cd4SiS6/SiO2 based heterostructure nanowire arrays were fabricated on silicon substrates by a one-step thermal evaporation of CdS powder. The as-grown products were characterized using scanning electron microscopy, X-ray diffraction, and transmission electron microscopy. Studies reveal that a typical hierarchical Cd4SiS6/SiO2 heterostructure nanowire is composed of a single crystalline Cd4SiS6 nanowire core sheathed with amorphous SiO2 sheath. Furthermore, secondar...

  13. Gate-Tunable Spin Exchange Interactions and Inversion of Magnetoresistance in Single Ferromagnetic ZnO Nanowires.

    Science.gov (United States)

    Modepalli, Vijayakumar; Jin, Mi-Jin; Park, Jungmin; Jo, Junhyeon; Kim, Ji-Hyun; Baik, Jeong Min; Seo, Changwon; Kim, Jeongyong; Yoo, Jung-Woo

    2016-04-26

    Electrical control of ferromagnetism in semiconductor nanostructures offers the promise of nonvolatile functionality in future semiconductor spintronics. Here, we demonstrate a dramatic gate-induced change of ferromagnetism in ZnO nanowire (NW) field-effect transistors (FETs). Ferromagnetism in our ZnO NWs arose from oxygen vacancies, which constitute deep levels hosting unpaired electron spins. The magnetic transition temperature of the studied ZnO NWs was estimated to be well above room temperature. The in situ UV confocal photoluminescence (PL) study confirmed oxygen vacancy mediated ferromagnetism in the studied ZnO NW FET devices. Both the estimated carrier concentration and temperature-dependent conductivity reveal the studied ZnO NWs are at the crossover of the metal-insulator transition. In particular, gate-induced modulation of the carrier concentration in the ZnO NW FET significantly alters carrier-mediated exchange interactions, which causes even inversion of magnetoresistance (MR) from negative to positive values. Upon sweeping the gate bias from -40 to +50 V, the MRs estimated at 2 K and 2 T were changed from -11.3% to +4.1%. Detailed analysis on the gate-dependent MR behavior clearly showed enhanced spin splitting energy with increasing carrier concentration. Gate-voltage-dependent PL spectra of an individual NW device confirmed the localization of oxygen vacancy-induced spins, indicating that gate-tunable indirect exchange coupling between localized magnetic moments played an important role in the remarkable change of the MR.

  14. Mitochondrial specialization revealed by single muscle fiber proteomics

    DEFF Research Database (Denmark)

    Schiaffino, S; Reggiani, C; Kostrominova, T Y

    2015-01-01

    that in skeletal muscle, IDH2 functions in the forward direction of the Krebs cycle and that substrate flux along the cycle occurs predominantly via IDH2 in type 1 fibers and via IDH3 in 2X and 2B fibers. IDH2-mediated conversion of isocitrate to α-ketoglutarate leads to the generation of NADPH, which is critical......We have developed a highly sensitive mass spectrometry-based proteomic workflow to examine the proteome of single muscle fibers. This study revealed significant differences in the mitochondrial proteome of the four major fiber types present in mouse skeletal muscle. Here, we focus on Krebs cycle...... enzymes and in particular on the differential distribution of the two mitochondrial isocitrate dehydrogenases, IDH2 and IDH3. Type 1/slow fibers contain high levels of IDH2 and relatively low levels of IDH3, whereas fast 2X and 2B fibers show an opposite expression pattern. The findings suggest...

  15. Hierarchical Cd4SiS6/SiO2 Heterostructure Nanowire Arrays.

    Science.gov (United States)

    Liu, Jian; Wang, Chunrui; Xie, Qingqing; Cai, Junsheng; Zhang, Jing

    2009-10-29

    Novel hierarchical Cd4SiS6/SiO2 based heterostructure nanowire arrays were fabricated on silicon substrates by a one-step thermal evaporation of CdS powder. The as-grown products were characterized using scanning electron microscopy, X-ray diffraction, and transmission electron microscopy. Studies reveal that a typical hierarchical Cd4SiS6/SiO2 heterostructure nanowire is composed of a single crystalline Cd4SiS6 nanowire core sheathed with amorphous SiO2 sheath. Furthermore, secondary nanostructures of SiO2 nanowires are highly dense grown on the primary Cd4SiS6 core-SiO2 sheath nanowires and formed hierarchical Cd4SiS6/SiO2 based heterostructure nanowire arrays which stand vertically on silicon substrates. The possible growth mechanism of hierarchical Cd4SiS6/SiO2 heterostructure nanowire arrays is proposed. The optical properties of hierarchical Cd4SiS6/SiO2 heterostructure nanowire arrays are investigated using Raman and Photoluminescence spectroscopy.

  16. Hierarchical Cd4SiS6/SiO2 Heterostructure Nanowire Arrays

    Directory of Open Access Journals (Sweden)

    Liu Jian

    2009-01-01

    Full Text Available Abstract Novel hierarchical Cd4SiS6/SiO2 based heterostructure nanowire arrays were fabricated on silicon substrates by a one-step thermal evaporation of CdS powder. The as-grown products were characterized using scanning electron microscopy, X-ray diffraction, and transmission electron microscopy. Studies reveal that a typical hierarchical Cd4SiS6/SiO2 heterostructure nanowire is composed of a single crystalline Cd4SiS6 nanowire core sheathed with amorphous SiO2 sheath. Furthermore, secondary nanostructures of SiO2 nanowires are highly dense grown on the primary Cd4SiS6 core-SiO2 sheath nanowires and formed hierarchical Cd4SiS6/SiO2 based heterostructure nanowire arrays which stand vertically on silicon substrates. The possible growth mechanism of hierarchical Cd4SiS6/SiO2 heterostructure nanowire arrays is proposed. The optical properties of hierarchical Cd4SiS6/SiO2 heterostructure nanowire arrays are investigated using Raman and Photoluminescence spectroscopy.

  17. Mapping the local structure of nanowires

    DEFF Research Database (Denmark)

    Persson, Johan Mikael; Wagner, Jakob Birkedal

    2013-01-01

    The crystallographic and compositional structure of heterostructured semiconductor nanowires has been studied by means of transmission electron microscopy. The native geometry of the studied InP-GaAs nanowires (80-100 nm in diameter) is in general too thick for reliable high-resolution TEM imaging....... Nano Beam Electron Diffraction (NBED) is shown to be a powerful technique to reveal strain near the interface of compositional change in heterostructured semiconductor nanowires. Furthermore, the relative orientation of the nanowires is studied by means of NBED revealing the nanowires to be very...

  18. Silver nanowires - unique templates for functional nanostructures

    Science.gov (United States)

    Sun, Yugang

    2010-09-01

    This feature article reviews the synthesis and application of silver nanowires with the focus on a polyol process that is capable of producing high quality silver nanowires with high yield. The as-synthesized silver nanowires can be used as both physical templates for the synthesis of metal/dielectric core/shell nanowires and chemical templates for the synthesis of metal nanotubes as well as semiconductor nanowires. Typical examples including Ag/SiO2 coaxial nanocables, single- and multiple-walled nanotubes made of Au-Ag alloy, AgCl nanowires and AgCl/Au core/shell nanowires are discussed in detail to illustrate the versatility of nanostructures derived from silver nanowire templates. Novel properties associated with these one-dimensional nanostructures are also briefly discussed to shed the light on their potential applications in electronics, photonics, optoelectronics, catalysis, and medicine.

  19. Exploring the Electronic Structure and Chemical Homogeneity of Individual Bi2Te3 Nanowires by Nano-Angle-Resolved Photoemission Spectroscopy.

    Science.gov (United States)

    Krieg, Janina; Chen, Chaoyu; Avila, José; Zhang, Zeying; Sigle, Wilfried; Zhang, Hongbin; Trautmann, Christina; Asensio, Maria Carmen; Toimil-Molares, Maria Eugenia

    2016-07-13

    Due to their high surface-to-volume ratio, cylindrical Bi2Te3 nanowires are employed as model systems to investigate the chemistry and the unique conductive surface states of topological insulator nanomaterials. We report on nanoangle-resolved photoemission spectroscopy (nano-ARPES) characterization of individual cylindrical Bi2Te3 nanowires with a diameter of 100 nm. The nanowires are synthesized by electrochemical deposition inside channels of ion-track etched polymer membranes. Core level spectra recorded with submicron resolution indicate a homogeneous chemical composition along individual nanowires, while nano-ARPES intensity maps reveal the valence band structure at the single nanowire level. First-principles electronic structure calculations for chosen crystallographic orientations are in good agreement with those revealed by nano-ARPES. The successful application of nano-ARPES on single one-dimensional nanostructures constitutes a new avenue to achieve a better understanding of the electronic structure of topological insulator nanomaterials.

  20. Experimental Observation of Quantum Confinement Effect in and Silicon Nanowire Field-Effect Transistors and Single-Electron/Hole Transistors Operating at Room Temperature

    Science.gov (United States)

    Suzuki, Ryota; Nozue, Motoki; Saraya, Takuya; Hiramoto, Toshiro

    2013-10-01

    The quantum confinement effect (QCE) in ultranarrow silicon nanowire channel field-effect transistors (FETs) as well as single-electron/hole transistors (SET/SHTs) operating at room temperature is intensively investigated for the optimization of device design and fabrication. By adopting a “shared channel” structure with the directions of and , a carrier-dependent QCE is systematically examined. It is found that nanowire pFETs exhibit a smaller threshold voltage (Vth) variability due to a weaker QCE, while nFETs and n/pFETs show comparable Vth variabilities coming from the QCE. It is also found that only SETs exhibit clear Coulomb oscillations in the case of the channel, suggesting the formation of higher tunnel barriers than SHTs. On the other hand, SHTs show undesirable multidot behavior in spite of their comparable QCEs for electrons and holes. It is concluded that -directed nanowire channel SETs and n/pFETs are suitable for the integration of CMOS and SETs.

  1. Near-unity efficiency, single-photon sources based on tapered photonic nanowires

    DEFF Research Database (Denmark)

    Bleuse, Joël; Munsch, Mathieu; Claudon, Julien

    2012-01-01

    Single-photon emission from excitons in InAs Quantum Dots (QD) embedded in GaAs Tapered Photonic Wires (TPW) already demonstrated a 0.72 collection efficiency, with TPWs were the apex is the sharp end of the cone. Going to alternate designs, still based on the idea of the adiabatic deconfinement...

  2. Opto-acoustic microscopy reveals adhesion mechanics of single cells

    Science.gov (United States)

    Abi Ghanem, Maroun; Dehoux, Thomas; Liu, Liwang; Le Saux, Guillaume; Plawinski, Laurent; Durrieu, Marie-Christine; Audoin, Bertrand

    2018-01-01

    Laser-generated GHz-ultrasonic-based technologies have shown the ability to image single cell adhesion and stiffness simultaneously. Using this new modality, we here demonstrate quantitative indicators to investigate contact mechanics and adhesion processes of the cell. We cultured human cells on a rigid substrate, and we used an inverted pulsed opto-acoustic microscope to generate acoustic pulses containing frequencies up to 100 GHz in the substrate. We map the reflection of the acoustic pulses at the cell-substrate interface to obtain images of the acoustic impedance of the cell, Zc, as well as of the stiffness of the interface, K, with 1 μm lateral resolution. Our results show that the standard deviation ΔZc reveals differences between different cell types arising from the multiplicity of local conformations within the nucleus. From the distribution of K-values within the nuclear region, we extract a mean interfacial stiffness, Km, that quantifies the average contact force in areas of the cell displaying weak bonding. By analogy with classical contact mechanics, we also define the ratio of the real to nominal contact areas, Sr/St. We show that Km can be interpreted as a quantitative indicator of passive contact at metal-cell interfaces, while Sr/St is sensitive to active adhesive processes in the nuclear region. The ability to separate the contributions of passive and active adhesion processes should allow gaining insight into cell-substrate interactions, with important applications in tissue engineering.

  3. Highly efficient photonic nanowire single-photon sources for quantum information applications

    DEFF Research Database (Denmark)

    Gregersen, Niels; Claudon, J.; Munsch, M.

    2013-01-01

    must feature near-unity efficiency, where the efficiency is defined as the number of detected photons per trigger, the probability g(2)(τ=0) of multi-photon emission events should be 0 and the emitted photons are required to be indistinguishable. An optically or electrically triggered quantum light......Within the emerging field of optical quantum information processing, the current challenge is to construct the basic building blocks for the quantum computing and communication systems. A key component is the singlephoton source (SPS) capable of emitting single photons on demand. Ideally, the SPS...... emitter, e.g. a nitrogen-vacancy center or a semiconductor quantum dot (QD), embedded in a solid-state semiconductor host material appears as an attractive platform for generating such single photons. However, for a QD in bulk material, the large index contrast at the semiconductor-air interface leads...

  4. Topological Insulator Nanowires and Nanoribbons

    KAUST Repository

    Kong, Desheng

    2010-01-13

    Recent theoretical calculations and photoemission spectroscopy measurements on the bulk Bi2Se3 material show that it is a three-dimensional topological insulator possessing conductive surface states with nondegenerate spins, attractive for dissipationless electronics and spintronics applications. Nanoscale topological insulator materials have a large surface-to-volume ratio that can manifest the conductive surface states and are promising candidates for devices. Here we report the synthesis and characterization of high quality single crystalline Bi2Se5 nanomaterials with a variety of morphologies. The synthesis of Bi 2Se5 nanowires and nanoribbons employs Au-catalyzed vapor-liquid-solid (VLS) mechanism. Nanowires, which exhibit rough surfaces, are formed by stacking nanoplatelets along the axial direction of the wires. Nanoribbons are grown along [1120] direction with a rectangular cross-section and have diverse morphologies, including quasi-one-dimensional, sheetlike, zigzag and sawtooth shapes. Scanning tunneling microscopy (STM) studies on nanoribbons show atomically smooth surfaces with ∼ 1 nm step edges, indicating single Se-Bi-Se-Bi-Se quintuple layers. STM measurements reveal a honeycomb atomic lattice, suggesting that the STM tip couples not only to the top Se atomic layer, but also to the Bi atomic layer underneath, which opens up the possibility to investigate the contribution of different atomic orbitais to the topological surface states. Transport measurements of a single nanoribbon device (four terminal resistance and Hall resistance) show great promise for nanoribbons as candidates to study topological surface states. © 2010 American Chemical Society.

  5. Semiconductor nanowires and templates for electronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Ying, Xiang

    2009-07-15

    This thesis starts by developing a platform for the organized growth of nanowires directly on a planar substrate. For this, a method to fabricate horizontal porous alumina membranes is studied. The second part of the thesis focuses on the study of nanowires. It starts by the understanding of the growth mechanisms of germanium nanowires and follows by the structural and electrical properties at the single nanowire level. Horizontally aligned porous anodic alumina (PAA) was used as a template for the nanowire synthesis. Three PAA arrangements were studied: - high density membranes - micron-sized fingers - multi-contacts Membranes formed by a high density of nanopores were obtained by anodizing aluminum thin films. Metallic and semiconducting nanowires were synthesized into the PAA structures via DC deposition, pulsed electro-depostion and CVD growth. The presence of gold, copper, indium, nickel, tellurium, and silicon nanowires inside PAA templates was verified by SEM and EDX analysis. Further, room-temperature transport measurements showed that the pores are completely filled till the bottom of the pores. In this dissertation, single crystalline and core-shell germanium nanowires are synthesized using indium and bismuth as catalyst in a chemical vapor deposition procedure with germane (GeH{sub 4}) as growth precursor. A systematic growth study has been performed to obtain high aspect-ratio germanium nanowires. The influence of the growth conditions on the final morphology and the crystalline structure has been determined via scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). In the case of indium catalyzed germanium nanowires, two different structures were identified: single crystalline and crystalline core-amorphous shell. The preferential growth axis of both kinds of nanowires is along the [110] direction. The occurrence of the two morphologies was found to only depend on the nanowire dimension. In the case of bismuth

  6. Precise Placement of Metallic Nanowires on a Substrate by Localized Electric Fields and Inter-Nanowire Electrostatic Interaction

    Directory of Open Access Journals (Sweden)

    U Hyeok Choi

    2017-10-01

    Full Text Available Placing nanowires at the predetermined locations on a substrate represents one of the significant hurdles to be tackled for realization of heterogeneous nanowire systems. Here, we demonstrate spatially-controlled assembly of a single nanowire at the photolithographically recessed region at the electrode gap with high integration yield (~90%. Two popular routes, such as protruding electrode tips and recessed wells, for spatially-controlled nanowire alignment, are compared to investigate long-range dielectrophoretic nanowire attraction and short-range nanowire-nanowire electrostatic interaction for determining the final alignment of attracted nanowires. Furthermore, the post-assembly process has been developed and tested to make a robust electrical contact to the assembled nanowires, which removes any misaligned ones and connects the nanowires to the underlying electrodes of circuit.

  7. Strong visible and near infrared photoluminescence from ZnO nanorods/nanowires grown on single layer graphene studied using sub-band gap excitation

    Science.gov (United States)

    Biroju, Ravi K.; Giri, P. K.

    2017-07-01

    Fabrication and optoelectronic applications of graphene based hybrid 2D-1D semiconductor nanostructures have gained tremendous research interest in recent times. Herein, we present a systematic study on the origin and evolution of strong broad band visible and near infrared (NIR) photoluminescence (PL) from vertical ZnO nanorods (NRs) and nanowires (NWs) grown on single layer graphene using both above band gap and sub-band gap optical excitations. High resolution field emission scanning electron microscopy and X-ray diffraction studies are carried out to reveal the morphology and crystalline quality of as-grown and annealed ZnO NRs/NWs on graphene. Room temperature PL studies reveal that besides the UV and visible PL bands, a new near-infrared (NIR) PL emission band appears in the range between 815 nm and 886 nm (1.40-1.52 eV). X-ray photoelectron spectroscopy studies revealed excess oxygen content and unreacted metallic Zn in the as-grown ZnO nanostructures, owing to the low temperature growth by a physical vapor deposition method. Post-growth annealing at 700 °C in the Ar gas ambient results in the enhanced intensity of both visible and NIR PL bands. On the other hand, subsequent high vacuum annealing at 700 °C results in a drastic reduction in the visible PL band and complete suppression of the NIR PL band. PL decay dynamics of green emission in Ar annealed samples show tri-exponential decay on the nanosecond timescale including a very slow decay component (time constant ˜604.5 ns). Based on these results, the NIR PL band comprising two peaks centered at ˜820 nm and ˜860 nm is tentatively assigned to neutral and negatively charged oxygen interstitial (Oi) defects in ZnO, detected experimentally for the first time. The evidence for oxygen induced trap states on the ZnO NW surface is further substantiated by the slow photocurrent response of graphene-ZnO NRs/NWs. These results are important for tunable light emission, photodetection, and other cutting edge

  8. Phonon Confinement Induced Non-Concomitant Near-Infrared Emission along a Single ZnO Nanowire: Spatial Evolution Study of Phononic and Photonic Properties

    Directory of Open Access Journals (Sweden)

    Po-Hsun Shih

    2017-10-01

    Full Text Available The impact of mixed defects on ZnO phononic and photonic properties at the nanoscale is only now being investigated. Here we report an effective strategy to study the distribution of defects along the growth direction of a single ZnO nanowire (NW, performed qualitatively as well as quantitatively using energy dispersive spectroscopy (EDS, confocal Raman-, and photoluminescence (PL-mapping technique. A non-concomitant near-infrared (NIR emission of 1.53 ± 0.01 eV was observed near the bottom region of 2.05 ± 0.05 μm along a single ZnO NW and could be successfully explained by the radiative recombination of shallowly trapped electrons V_O^(** with deeply trapped holes at V_Zn^''. A linear chain model modified from a phonon confinement model was used to describe the growth of short-range correlations between the mean distance of defects and its evolution with spatial position along the axial growth direction by fitting the E2H mode. Our results are expected to provide new insights into improving the study of the photonic and photonic properties of a single nanowire.

  9. Electrically Injected UV-Visible Nanowire Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, George T.; Li, Changyi; Li, Qiming; Liu, Sheng; Wright, Jeremy Benjamin; Brener, Igal; Luk, Ting -Shan; Chow, Weng W.; Leung, Benjamin; Figiel, Jeffrey J.; Koleske, Daniel D.; Lu, Tzu-Ming

    2015-09-01

    There is strong interest in minimizing the volume of lasers to enable ultracompact, low-power, coherent light sources. Nanowires represent an ideal candidate for such nanolasers as stand-alone optical cavities and gain media, and optically pumped nanowire lasing has been demonstrated in several semiconductor systems. Electrically injected nanowire lasers are needed to realize actual working devices but have been elusive due to limitations of current methods to address the requirement for nanowire device heterostructures with high material quality, controlled doping and geometry, low optical loss, and efficient carrier injection. In this project we proposed to demonstrate electrically injected single nanowire lasers emitting in the important UV to visible wavelengths. Our approach to simultaneously address these challenges is based on high quality III-nitride nanowire device heterostructures with precisely controlled geometries and strong gain and mode confinement to minimize lasing thresholds, enabled by a unique top-down nanowire fabrication technique.

  10. Orientation symmetry breaking in self-assembled Ce1-xGdxO2-y nanowires derived from chemical solutions

    OpenAIRE

    Queraltó, Albert; Mata, Maria de la; Martínez, L.; Magén, César; Gibert, M; Arbiol, Jordi; Hühne, R; Obradors Berenguer, Xavier; Puig Molina, Teresa

    2016-01-01

    Understanding the growth mechanisms of nanostructures obtained from chemical solutions, a high-throughput production methodology, is essential to correlate precisely the growth conditions with the nanostructures' morphology, dimensions and orientation. It is shown that self-organized (011)-oriented CeGdO (CGO) nanowires having a single in-plane orientation are achieved when an anisotropic (011)-LaAlO (LAO) substrate is chosen. STEM and AFM images of the epitaxial nanowires reveal the (001)CGO...

  11. Novel low-temperature growth of SnO2 nanowires and their gas-sensing properties

    International Nuclear Information System (INIS)

    Kumar, R. Rakesh; Parmar, Mitesh; Narasimha Rao, K.; Rajanna, K.; Phani, A.R.

    2013-01-01

    Graphical abstract: -- A simple thermal evaporation method is presented for the growth of crystalline SnO 2 nanowires at a low substrate temperature of 450 °C via an gold-assisted vapor–liquid–solid mechanism. The as-grown nanowires were characterized by scanning electron microscopy, transmission electron microscopy and X-ray diffraction, and were also tested for methanol vapor sensing. Transmission electron microscopy studies revealed the single-crystalline nature of the each nanowire. The fabricated sensor shows good response to methanol vapor at an operating temperature of 450 °C.

  12. Vertically aligned GaAs nanowires on graphite and few-layer graphene: generic model and epitaxial growth.

    Science.gov (United States)

    Munshi, A Mazid; Dheeraj, Dasa L; Fauske, Vidar T; Kim, Dong-Chul; van Helvoort, Antonius T J; Fimland, Bjørn-Ove; Weman, Helge

    2012-09-12

    By utilizing the reduced contact area of nanowires, we show that epitaxial growth of a broad range of semiconductors on graphene can in principle be achieved. A generic atomic model is presented which describes the epitaxial growth configurations applicable to all conventional semiconductor materials. The model is experimentally verified by demonstrating the growth of vertically aligned GaAs nanowires on graphite and few-layer graphene by the self-catalyzed vapor-liquid-solid technique using molecular beam epitaxy. A two-temperature growth strategy was used to increase the nanowire density. Due to the self-catalyzed growth technique used, the nanowires were found to have a regular hexagonal cross-sectional shape, and are uniform in length and diameter. Electron microscopy studies reveal an epitaxial relationship of the grown nanowires with the underlying graphitic substrates. Two relative orientations of the nanowire side-facets were observed, which is well explained by the proposed atomic model. A prototype of a single GaAs nanowire photodetector demonstrates a high-quality material. With GaAs being a model system, as well as a very useful material for various optoelectronic applications, we anticipate this particular GaAs nanowire/graphene hybrid to be promising for flexible and low-cost solar cells.

  13. Characterization of GaN nanowires grown on PSi, PZnO and PGaN on Si (111) substrates by thermal evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Shekari, Leila; Hassan, Haslan Abu; Thahab, Sabah M.; Hassan, Zainuriah [Nano-Optoelectronics Research and Technology Laboratory School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Materials Engineering Department, College of Engineering, University of Kufa, Najaf (Iraq); Nano-Optoelectronics Research and Technology Laboratory School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia)

    2012-06-20

    In this research, we used an easy and inexpensive method to synthesize highly crystalline GaN nanowires (NWs); on different substrates such as porous silicon (PSi), porous zinc oxide (PZnO) and porous gallium nitride (PGaN) on Si (111) wafer by thermal evaporation using commercial GaN powder without any catalyst. Micro structural studies by scanning electron microscopy and transmission electron microscope measurements reveal the role of different substrates in the morphology, nucleation and alignment of the GaN nanowires. The degree of alignment of the synthesized nanowires does not depend on the lattice mismatch between wires and their substrates. Further structural and optical characterizations were performed using high resolution X-ray diffraction and energy-dispersive X-ray spectroscopy. Results indicate that the nanowires are of single-crystal hexagonal GaN. The quality and density of grown GaN nanowires for different substrates are highly dependent on the lattice mismatch between the nanowires and their substrates and also on the size of the porosity of the substrates. Nanowires grown on PGaN have the best quality and highest density as compared to nanowires on other substrates. By using three kinds of porous substrates, we are able to study the increase in the alignment and density of the nanowires.

  14. Asymmetric contacts on a single SnO₂ nanowire device: an investigation using an equivalent circuit model.

    Science.gov (United States)

    Huh, Junghwan; Na, Junhong; Ha, Jeong Sook; Kim, Sangtae; Kim, Gyu Tae

    2011-08-01

    Electrical contacts between the nanomaterial and metal electrodes are of crucial importance both from fundamental and practical points of view. We have systematically compared the influence of contact properties by dc and EIS (Electrochemical impedance spectroscopy) techniques at various temperatures and environmental atmospheres (N(2) and 1% O(2)). Electrical behaviors are sensitive to the variation of Schottky barriers, while the activation energy (E(a)) depends on the donor states in the nanowire rather than on the Schottky contact. Equivalent circuits in terms of dc and EIS analyses could be modeled by Schottky diodes connected with a series resistance and parallel RC circuits, respectively. These results can facilitate the electrical analysis for evaluating the nanowire electronic devices with Schottky contacts.

  15. Germanium nanowires grown using different catalyst metals

    Energy Technology Data Exchange (ETDEWEB)

    Gouveia, R.C., E-mail: riama@ifsp.edu.br [Departamento de Física – NanO Lab, Universidade Federal de São Carlos, Rod. Washington Luís, Km 235 – SP 310, São Carlos, CEP 13565-905 (Brazil); Área de Ciências, Instituto Federal de Educação Ciência e Tecnologia de São Paulo, Rua Américo Ambrósio, 269, Jd. Canaã, Sertãozinho, CEP 14169-263 (Brazil); Kamimura, H.; Munhoz, R.; Rodrigues, A.D. [Departamento de Física – NanO Lab, Universidade Federal de São Carlos, Rod. Washington Luís, Km 235 – SP 310, São Carlos, CEP 13565-905 (Brazil); Leite, E.R. [Departamento de Química – LIEC, Universidade Federal de São Carlos, São Carlos, CEP 13565-905 (Brazil); Chiquito, A.J. [Departamento de Física – NanO Lab, Universidade Federal de São Carlos, Rod. Washington Luís, Km 235 – SP 310, São Carlos, CEP 13565-905 (Brazil)

    2016-11-01

    Germanium nanowires have been synthesized by the well known vapor-liquid-solid growth mechanism using gold, silver, cooper, indium and nickel as catalyst metals. The influence of metal seeds on nanowires structural and electronic transport properties was also investigated. Electron microscopy images demonstrated that, despite differences in diameters, all nanowires obtained presented single crystalline structures. X-ray patterns showed that all nanowires were composed by germanium with a small amount of germanium oxide, and the catalyst metal was restricted at the nanowires' tips. Raman spectroscopy evidenced the long range order in the crystalline structure of each sample. Electrical measurements indicated that variable range hopping was the dominant mechanism in carrier transport for all devices, with similar hopping distance, regardless the material used as catalyst. Then, in spite of the differences in synthesis temperatures and nanowires diameters, the catalyst metals have not affected the composition and crystalline quality of the germanium nanowires nor the carrier transport in the germanium nanowire network devices. - Highlights: • Ge nanowires were grown by VLS method using Au, Ag, Cu, In and Ni as catalysts. • All nanowires presented high single crystalline quality and long range order. • Devices showed semiconducting behavior having VRH as dominant transport mechanism. • The metal catalyst did not influence structural properties or the transport mechanism.

  16. Fivefold twinned boron carbide nanowires.

    Science.gov (United States)

    Fu, Xin; Jiang, Jun; Liu, Chao; Yuan, Jun

    2009-09-09

    Chemical composition and crystal structure of fivefold twinned boron carbide nanowires have been determined by electron energy-loss spectroscopy and electron diffraction. The fivefold cyclic twinning relationship is confirmed by systematic axial rotation electron diffraction. Detailed chemical analysis reveals a carbon-rich boron carbide phase. Such boron carbide nanowires are potentially interesting because of their intrinsic hardness and high temperature thermoelectric property. Together with other boron-rich compounds, they may form a set of multiply twinned nanowire systems where the misfit strain could be continuously tuned to influence their mechanical properties.

  17. Single muscle fiber proteomics reveals unexpected mitochondrial specialization

    DEFF Research Database (Denmark)

    Murgia, Marta; Nagaraj, Nagarjuna; Deshmukh, Atul S

    2015-01-01

    Mammalian skeletal muscles are composed of multinucleated cells termed slow or fast fibers according to their contractile and metabolic properties. Here, we developed a high-sensitivity workflow to characterize the proteome of single fibers. Analysis of segments of the same fiber by traditional...... and unbiased proteomics methods yielded the same subtype assignment. We discovered novel subtype-specific features, most prominently mitochondrial specialization of fiber types in substrate utilization. The fiber type-resolved proteomes can be applied to a variety of physiological and pathological conditions...

  18. Nanowire Optoelectronics

    OpenAIRE

    Wang Zhihuan; Nabet Bahram

    2015-01-01

    Semiconductor nanowires have been used in a variety of passive and active optoelectronic devices including waveguides, photodetectors, solar cells, light-emitting diodes (LEDs), lasers, sensors, and optical antennas. We review the optical properties of these nanowires in terms of absorption, guiding, and radiation of light, which may be termed light management. Analysis of the interaction of light with long cylindrical/hexagonal structures with ...

  19. Nanowire Lasers

    Directory of Open Access Journals (Sweden)

    Couteau C.

    2015-05-01

    Full Text Available We review principles and trends in the use of semiconductor nanowires as gain media for stimulated emission and lasing. Semiconductor nanowires have recently been widely studied for use in integrated optoelectronic devices, such as light-emitting diodes (LEDs, solar cells, and transistors. Intensive research has also been conducted in the use of nanowires for subwavelength laser systems that take advantage of their quasione- dimensional (1D nature, flexibility in material choice and combination, and intrinsic optoelectronic properties. First, we provide an overview on using quasi-1D nanowire systems to realize subwavelength lasers with efficient, directional, and low-threshold emission. We then describe the state of the art for nanowire lasers in terms of materials, geometry, andwavelength tunability.Next,we present the basics of lasing in semiconductor nanowires, define the key parameters for stimulated emission, and introduce the properties of nanowires. We then review advanced nanowire laser designs from the literature. Finally, we present interesting perspectives for low-threshold nanoscale light sources and optical interconnects. We intend to illustrate the potential of nanolasers inmany applications, such as nanophotonic devices that integrate electronics and photonics for next-generation optoelectronic devices. For instance, these building blocks for nanoscale photonics can be used for data storage and biomedical applications when coupled to on-chip characterization tools. These nanoscale monochromatic laser light sources promise breakthroughs in nanophotonics, as they can operate at room temperature, can potentially be electrically driven, and can yield a better understanding of intrinsic nanomaterial properties and surface-state effects in lowdimensional semiconductor systems.

  20. Nanowires, nanostructures and devices fabricated therefrom

    Science.gov (United States)

    Majumdar, Arun; Shakouri, Ali; Sands, Timothy D.; Yang, Peidong; Mao, Samuel S.; Russo, Richard E.; Feick, Henning; Weber, Eicke R.; Kind, Hannes; Huang, Michael; Yan, Haoquan; Wu, Yiying; Fan, Rong

    2005-04-19

    One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as "nanowires", include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).

  1. Optical polarization properties of a nanowire quantum dot probed along perpendicular orientations

    NARCIS (Netherlands)

    Bugarini, G.; Reimer, M.E.; Zwiller, V.

    2012-01-01

    We report on the optical properties of single quantum dots in nanowires probed along orthogonal directions. We address the same quantum dot from either the nanowire side or along the nanowire axis via reflection on a micro-prism. The collected photoluminescence intensity from nanowires lying on a

  2. Diluted magnetic semiconductor nanowires exhibiting magnetoresistance

    Science.gov (United States)

    Yang, Peidong [El Cerrito, CA; Choi, Heonjin [Seoul, KR; Lee, Sangkwon [Daejeon, KR; He, Rongrui [Albany, CA; Zhang, Yanfeng [El Cerrito, CA; Kuykendal, Tevye [Berkeley, CA; Pauzauskie, Peter [Berkeley, CA

    2011-08-23

    A method for is disclosed for fabricating diluted magnetic semiconductor (DMS) nanowires by providing a catalyst-coated substrate and subjecting at least a portion of the substrate to a semiconductor, and dopant via chloride-based vapor transport to synthesize the nanowires. Using this novel chloride-based chemical vapor transport process, single crystalline diluted magnetic semiconductor nanowires Ga.sub.1-xMn.sub.xN (x=0.07) were synthesized. The nanowires, which have diameters of .about.10 nm to 100 nm and lengths of up to tens of micrometers, show ferromagnetism with Curie temperature above room temperature, and magnetoresistance up to 250 Kelvin.

  3. Semiconductor nanowires: optics and optoelectronics

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, R. [University of Pennsylvania, Department of Materials Science and Engineering, Philadelphia, PA (United States); Lieber, C.M. [Harvard University, Department of Chemistry and Chemical Biology, and Division of Engineering Applied Sciences, Cambridge, MA (United States)

    2006-11-15

    Single crystalline semiconductor nanowires are being extensively investigated due to their unique electronic and optical properties and their potential use in novel electronic and photonic devices. The unique properties of nanowires arise owing to their anisotropic geometry, large surface to volume ratio, and carrier and photon confinement in two dimensions (1D system). Currently, tremendous efforts are being devoted to rational synthesis of nanowire structures with control over their composition, structure, dopant concentration, characterization, fundamental properties, and assembly into functional devices. In this article we will review the progress made in the area of nanowire optics and optoelectronic devices, including diodes, lasers, detectors, and waveguides, and will outline the general challenges that must be overcome and some potential solutions in order to continue the exponential progress in this exciting area of research. (orig.)

  4. Signal from a single neutron by using current-biased kinetic inductance detector made of superconducting Nb nanowire

    International Nuclear Information System (INIS)

    Narukami, Yoshito; Miyajima, Shigeyuki; Shishido, Hiroaki; Ishida, Takekazu; Fujimaki, Akira; Hidaka, Mutsuo; Oikawa, Kenichi; Harada, Masahide; Oku, Takayuki; Arai, Masatoshi

    2015-01-01

    We propose a current-biased kinetic inductance detector (CB-KID), as a different type of superconducting neutron detector, which senses a change in kinetic inductance in the superconducting Nb nanowire biased by dc current I b . Kinetic inductance depends on the density of Cooper pairs. Therefore, when Cooper pairs are broken by energy of nuclear reaction between neutron and 10 B near the Nb nanowire, a change in kinetic inductance ΔL k can be detected by monitoring a voltage V across the sensor. We irradiated 20 ps pulsed laser to our CB-KID and confirmed 4-K operation and the possibility of attaining 0.6-μm positional resolution. Furthermore, we succeeded in detecting a neutron by using CB-KID for the first time. It is important to note that the signal from neutron irradiation was similar to that from pulsed laser irradiation. It indicates that pulsed laser irradiation is a good simulation instead of neutron irradiation. (author)

  5. Electric Conductivity of Phosphorus Nanowires

    International Nuclear Information System (INIS)

    Jing-Xiang, Zhang; Hui, Li; Xue-Qing, Zhang; Kim-Meow, Liew

    2009-01-01

    We present the structures and electrical transport properties of nanowires made from different strands of phosphorus chains encapsulated in carbon nanotubes. Optimized by density function theory, our results indicate that the conductance spectra reveal an oscillation dependence on the size of wires. It can be seen from the density of states and current-voltage curves that the structure of nanowires affects their properties greatly. Among them, the DNA-like double-helical phosphorus nanowire exhibits the distinct characteristic of an approximately linear I – V relationship and has a higher conductance than others. The transport properties of phosphorus nanowires are highly correlated with their microstructures. (condensed matter: structure, mechanical and thermal properties)

  6. Pulsed laser deposition of aluminum nitride nanowires

    Science.gov (United States)

    Yunusova, N. R.; Kargin, N. I.; Ryndya, S. M.; Gusev, A. S.; Antonenko, S. V.; Timofeev, A. A.

    2018-01-01

    The possibility of AlN nanowires deposition on single-crystal silicon substrates by pulsed laser deposition in vacuum is shown in this work. Experimental samples were investigated by scanning electron microscopy and infrared Fourier spectroscopy. It is shown that the possible mechanism for the AlN nanowires formation is the "vapor-liquid-crystal" mechanism.

  7. Silicon nanowire transistors

    CERN Document Server

    Bindal, Ahmet

    2016-01-01

    This book describes the n and p-channel Silicon Nanowire Transistor (SNT) designs with single and dual-work functions, emphasizing low static and dynamic power consumption. The authors describe a process flow for fabrication and generate SPICE models for building various digital and analog circuits. These include an SRAM, a baseband spread spectrum transmitter, a neuron cell and a Field Programmable Gate Array (FPGA) platform in the digital domain, as well as high bandwidth single-stage and operational amplifiers, RF communication circuits in the analog domain, in order to show this technology’s true potential for the next generation VLSI. Describes Silicon Nanowire (SNW) Transistors, as vertically constructed MOS n and p-channel transistors, with low static and dynamic power consumption and small layout footprint; Targets System-on-Chip (SoC) design, supporting very high transistor count (ULSI), minimal power consumption requiring inexpensive substrates for packaging; Enables fabrication of different types...

  8. Optical properties of heavily doped GaAs nanowires and electroluminescent nanowire structures.

    Science.gov (United States)

    Lysov, A; Offer, M; Gutsche, C; Regolin, I; Topaloglu, S; Geller, M; Prost, W; Tegude, F-J

    2011-02-25

    We present GaAs electroluminescent nanowire structures fabricated by metal organic vapor phase epitaxy. Electroluminescent structures were realized in both axial pn-junctions in single GaAs nanowires and free-standing nanowire arrays with a pn-junction formed between nanowires and substrate, respectively. The electroluminescence emission peak from single nanowire pn-junctions at 10 K was registered at an energy of around 1.32 eV and shifted to 1.4 eV with an increasing current. The line is attributed to the recombination in the compensated region present in the nanowire due to the memory effect of the vapor-liquid-solid growth mechanism. Arrayed nanowire electroluminescent structures with a pn-junction formed between nanowires and substrate demonstrated at 5 K a strong electroluminescence peak at 1.488 eV and two shoulder peaks at 1.455 and 1.519 eV. The main emission line was attributed to the recombination in the p-doped GaAs. The other two lines correspond to the tunneling-assisted photon emission and band-edge recombination in the abrupt junction, respectively. Electroluminescence spectra are compared with the micro-photoluminescence spectra taken along the single p-, n- and single nanowire pn-junctions to find the origin of the electroluminescence peaks, the distribution of doping species and the sharpness of the junctions.

  9. Growth control, structure, chemical state, and photoresponse of CuO-CdS core-shell heterostructure nanowires.

    Science.gov (United States)

    El Mel, A A; Buffière, M; Bouts, N; Gautron, E; Tessier, P Y; Henzler, K; Guttmann, P; Konstantinidis, S; Bittencourt, C; Snyders, R

    2013-07-05

    The growth of single-crystal CuO nanowires by thermal annealing of copper thin films in air is studied. We show that the density, length, and diameter of the nanowires can be controlled by tuning the morphology and structure of the copper thin films deposited by DC magnetron sputtering. After identifying the optimal conditions for the growth of CuO nanowires, chemical bath deposition is employed to coat the CuO nanowires with CdS in order to form p-n nanojunction arrays. As revealed by high-resolution TEM analysis, the thickness of the polycrystalline CdS shell increases when decreasing the diameter of the CuO core for a given time of CdS deposition. Near-edge x-ray absorption fine-structure spectroscopy combined with transmission x-ray microscopy allows the chemical analysis of isolated nanowires. The absence of modification in the spectra at the Cu L and O K edges after the deposition of CdS on the CuO nanowires indicates that neither Cd nor S diffuse into the CuO phase. We further demonstrate that the core-shell nanowires exhibit the I-V characteristic of a resistor instead of a diode. The electrical behavior of the device was found to be photosensitive, since increasing the incident light intensity induces an increase in the collected electrical current.

  10. Synthesis and magnetic properties of cobalt-iron/cobalt-ferrite soft/hard magnetic core/shell nanowires.

    Science.gov (United States)

    Londoño-Calderón, César Leandro; Moscoso-Londoño, Oscar; Muraca, Diego; Arzuza, Luis; Carvalho, Peterson; Pirota, Kleber Roberto; Knobel, Marcelo; Pampillo, Laura Gabriela; Martínez-García, Ricardo

    2017-06-16

    A straightforward method for the synthesis of CoFe 2.7 /CoFe 2 O 4 core/shell nanowires is described. The proposed method starts with a conventional pulsed electrodeposition procedure on alumina nanoporous template. The obtained CoFe 2.7 nanowires are released from the template and allowed to oxidize at room conditions over several weeks. The effects of partial oxidation on the structural and magnetic properties were studied by x-ray spectrometry, magnetometry, and scanning and transmission electron microscopy. The results indicate that the final nanowires are composed of 5 nm iron-cobalt alloy nanoparticles. Releasing the nanowires at room conditions promoted surface oxidation of the nanoparticles and created a CoFe 2 O 4 shell spinel-like structure. The shell avoids internal oxidation and promotes the formation of bi-magnetic soft/hard magnetic core/shell nanowires. The magnetic properties of both the initial single-phase CoFe 2.7 nanowires and the final core/shell nanowires, reveal that the changes in the properties from the array are due to the oxidation more than effects associated with released processes (disorder and agglomeration).

  11. Field effect transistors and phototransistors based upon p-type solution-processed PbS nanowires

    Science.gov (United States)

    Giraud, Paul; Hou, Bo; Pak, Sangyeon; Inn Sohn, Jung; Morris, Stephen; Cha, SeungNam; Kim, Jong Min

    2018-02-01

    We demonstrate the fabrication of solution processed highly crystalline p-type PbS nanowires via the oriented attachment of nanoparticles. The analysis of single nanowire field effect transistor (FET) devices revealed a hole conduction behaviour with average mobilities greater than 30 cm2 V-1 s-1, which is an order of magnitude higher than that reported to date for p-type PbS colloidal nanowires. We have investigated the response of the FETs to near-infrared light excitation and show herein that the nanowires exhibited gate-dependent photo-conductivities, enabling us to tune the device performances. The responsivity was found to be greater than 104 A W-1 together with a detectivity of 1013 Jones, which benefits from a photogating effect occurring at negative gate voltages. These encouraging detection parameters are accompanied by relatively short switching times of 15 ms at positive gate voltages, resulting from a combination of the standard photoconduction and the high crystallinity of the nanowires. Collectively, these results indicate that solution-processed PbS nanowires are promising nanomaterials for infrared photodetectors as well as p-type nanowire FETs.

  12. Homogeneous vs heterogeneous polymerization catalysis revealed by single-particle fluorescence microscopy.

    Science.gov (United States)

    Esfandiari, N Melody; Blum, Suzanne A

    2011-11-16

    A high-sensitivity and high-resolution single-particle fluorescence microscopy technique differentiated between homogeneous and heterogeneous metathesis polymerization catalysis by imaging the location of the early stages of polymerization. By imaging single polymers and single crystals of Grubbs II, polymerization catalysis was revealed to be solely homogeneous rather than heterogeneous or both.

  13. Topological Insulator Nanowires and Nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Kong, D.S.

    2010-06-02

    Recent theoretical calculations and photoemission spectroscopy measurements on the bulk Bi{sub 2}Se{sub 3} material show that it is a three-dimensional topological insulator possessing conductive surface states with nondegenerate spins, attractive for dissipationless electronics and spintronics applications. Nanoscale topological insulator materials have a large surface-to-volume ratio that can manifest the conductive surface states and are promising candidates for devices. Here we report the synthesis and characterization of high quality single crystalline Bi{sub 2}Se{sub 3} nanomaterials with a variety of morphologies. The synthesis of Bi{sub 2}Se{sub 3} nanowires and nanoribbons employs Au-catalyzed vapor-liquid-solid (VLS) mechanism. Nanowires, which exhibit rough surfaces, are formed by stacking nanoplatelets along the axial direction of the wires. Nanoribbons are grown along [11-20] direction with a rectangular crosssection and have diverse morphologies, including quasi-one-dimensional, sheetlike, zigzag and sawtooth shapes. Scanning tunneling microscopy (STM) studies on nanoribbons show atomically smooth surfaces with {approx}1 nm step edges, indicating single Se-Bi-Se-Bi-Se quintuple layers. STM measurements reveal a honeycomb atomic lattice, suggesting that the STM tip couples not only to the top Se atomic layer, but also to the Bi atomic layer underneath, which opens up the possibility to investigate the contribution of different atomic orbitals to the topological surface states. Transport measurements of a single nanoribbon device (four terminal resistance and Hall resistance) show great promise for nanoribbons as candidates to study topological surface states.

  14. n-Type Doping of Vapor–Liquid–Solid Grown GaAs Nanowires

    Directory of Open Access Journals (Sweden)

    Gutsche Christoph

    2011-01-01

    Full Text Available Abstract In this letter, n-type doping of GaAs nanowires grown by metal–organic vapor phase epitaxy in the vapor–liquid–solid growth mode on (111B GaAs substrates is reported. A low growth temperature of 400°C is adjusted in order to exclude shell growth. The impact of doping precursors on the morphology of GaAs nanowires was investigated. Tetraethyl tin as doping precursor enables heavily n-type doped GaAs nanowires in a relatively small process window while no doping effect could be found for ditertiarybutylsilane. Electrical measurements carried out on single nanowires reveal an axially non-uniform doping profile. Within a number of wires from the same run, the donor concentrations ND of GaAs nanowires are found to vary from 7 × 1017 cm-3 to 2 × 1018 cm-3. The n-type conductivity is proven by the transfer characteristics of fabricated nanowire metal–insulator-semiconductor field-effect transistor devices.

  15. Single nanowire OPV properties of a fullerene-capped P3HT dyad investigated using conductive and photoconductive AFM.

    Science.gov (United States)

    Kamkar, Daniel A; Wang, Mingfeng; Wudl, Fred; Nguyen, Thuc-Quyen

    2012-02-28

    The effect of molecular self-assembly on nanoscale photoinduced charge generation of fullerene-capped poly(3-hexylthiophene) (PCB-c-P3HT) films and its effectiveness as a molecular additive in bulk heterojunction P3HT:[6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM) is investigated through photoconductive atomic force microscopy. ortho-Dichlorobenzene-cast films of PCB-c-P3HT are found to form interconnected fibrous networks that show high photocurrent generation, while tetrahydrofuran-cast films show nanospheres with relatively low photocurrent generation. The nanofiber size and current generated from these nanowires are shown to vary with additions of PCBM. The PCB-c-P3HT amphiphile is shown to be a successful molecular additive in P3HT:PCBM films. These observations demonstrate how the self-assembly of PCB-c-P3HT into specific nanostructures is crucial to charge generation and transport.

  16. Ivestigation of an InGaN - GaN nanowire heterstructure

    Energy Technology Data Exchange (ETDEWEB)

    Limbach, Friederich; Gotschke, Tobias; Stoica, Toma; Calarco, Raffaella; Gruetzmacher, Detlev [Institute of Bio- and Nanosystems (IBN-1), Research Center Juelich GmbH, Juelich (Germany); JARA-Fundamentals of Future Information Technology, Juelich (Germany); Sutter, Eli; Ciston, Jim [Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY (United States); Cusco, Ramon; Artus, Luis [Institut Jaume Almera, Consell Superior d' Investigacions Cientifiques (CSIC), Barcelona, Catalonia (Spain); Kremling, Stefan; Hoefling, Sven; Worschech, Lukas [University Wurzburg, Wilhelm Conrad Rontgen Research Centre Complex Matter Systems, Wuerzburg (Germany)

    2011-07-01

    InGaN/GaN nanowire (NW) heterostructures grown by molecular beam epitaxy were studied in comparison to their GaN and InGaN counterparts. The InGaN/GaN heterostructure NWs are composed of a GaN NW, a thin InGaN shell, and a multi-faceted InGaN cap wrapping the top part of the GaN NW. Transmission electron microscopy images taken from different parts of a InGaN/GaN nanowire show a wurtzite structure of the GaN core and the epitaxial InGaN shell around it. Photoluminescence spectra of these heterostructure NW ensembles show an emission peak at 2.1 eV. However, {mu}-PL spectra measured on single nanowires reveal much sharper luminescence peaks. A Raman analysis reveals a variation of the In content between 20 % and 30 %, in agreement with PL and TEM investigations.

  17. A Heterojunction Design of Single Layer Hole Tunneling ZnO Passivation Wrapping around TiO2Nanowires for Superior Photocatalytic Performance

    Science.gov (United States)

    Ghobadi, Amir; Ulusoy, T. Gamze; Garifullin, Ruslan; Guler, Mustafa O.; Okyay, Ali K.

    2016-01-01

    Nanostructured hybrid heterojunctions have been studied widely for photocatalytic applications due to their superior optical and structural properties. In this work, the impact of angstrom thick atomic layer deposited (ALD) ZnO shell layer on photocatalytic activity (PCA) of hydrothermal grown single crystalline TiO2 nanowires (NWs) is systematically explored. We showed that a single cycle of ALD ZnO layer wrapped around TiO2 NWs, considerably boosts the PCA of the heterostructure. Subsequent cycles, however, gradually hinder the photocatalytic activity (PCA) of the TiO2 NWs. Various structural, optical, and transient characterizations are employed to scrutinize this unprecedented change. We show that a single atomic layer of ZnO shell not only increases light harvesting capability of the heterostructure via extension of the absorption toward visible wavelengths, but also mitigates recombination probability of carriers through reduction of surface defects density and introduction of proper charge separation along the core-shell interface. Furthermore, the ultrathin ZnO shell layer allows a strong contribution of the core (TiO2) valence band holes through tunneling across the ultrathin interface. All mechanisms responsible for this enhanced PCA of heterostructure are elucidated and corresponding models are proposed. PMID:27464476

  18. Failure mechanisms and electromechanical coupling in semiconducting nanowires

    Directory of Open Access Journals (Sweden)

    Peng B.

    2010-06-01

    Full Text Available One dimensional nanostructures, like nanowires and nanotubes, are increasingly being researched for the development of next generation devices like logic gates, transistors, and solar cells. In particular, semiconducting nanowires with a nonsymmetric wurtzitic crystal structure, such as zinc oxide (ZnO and gallium nitride (GaN, have drawn immense research interests due to their electromechanical coupling. The designing of the future nanowire-based devices requires component-level characterization of individual nanowires. In this paper, we present a unique experimental set-up to characterize the mechanical and electromechanical behaviour of individual nanowires. Using this set-up and complementary atomistic simulations, mechanical properties of ZnO nanowires and electromechanical properties of GaN nanowires were investigated. In ZnO nanowires, elastic modulus was found to depend on nanowire diameter decreasing from 190 GPa to 140 GPa as the wire diameter increased from 5 nm to 80 nm. Inconsistent failure mechanisms were observed in ZnO nanowires. Experiments revealed a brittle fracture, whereas simulations using a pairwise potential predicted a phase transformation prior to failure. This inconsistency is addressed in detail from an experimental as well as computational perspective. Lastly, in addition to mechanical properties, preliminary results on the electromechanical properties of gallium nitride nanowires are also reported. Initial investigations reveal that the piezoresistive and piezoelectric behaviour of nanowires is different from bulk gallium nitride.

  19. Optical properties of indium phosphide nanowire ensembles at various temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Lohn, Andrew J; Onishi, Takehiro; Kobayashi, Nobuhiko P [Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064 (United States); Nanostructured Energy Conversion Technology and Research (NECTAR), Advanced Studies Laboratories, University of California Santa Cruz-NASA Ames Research Center, Moffett Field, CA 94035 (United States)

    2010-09-03

    Ensembles that contain two types (zincblende and wurtzite) of indium phosphide nanowires grown on non-single crystalline surfaces were studied by micro-photoluminescence and micro-Raman spectroscopy at various low temperatures. The obtained spectra are discussed with the emphasis on the effects of differing lattice types, geometries, and crystallographic orientations present within an ensemble of nanowires grown on non-single crystalline surfaces. In the photoluminescence spectra, a typical Varshni dependence of band gap energy on temperature was observed for emissions from zincblende nanowires and in the high temperature regime energy transfer from excitonic transitions and band-edge transitions was identified. In contrast, the photoluminescence emissions associated with wurtzite nanowires were rather insensitive to temperature. Raman spectra were collected simultaneously from zincblende and wurtzite nanowires coexisting in an ensemble. Raman peaks of the wurtzite nanowires are interpreted as those related to the zincblende nanowires by a folding of the phonon dispersion.

  20. Role of surface on the size-dependent mechanical properties of copper nanowire under tensile load: A molecular dynamics simulation

    International Nuclear Information System (INIS)

    Liu, Wei-Ting; Hsiao, Chun-I.; Hsu, Wen-Dung

    2014-01-01

    In this study we have used atomistic simulations to investigate the role of surface on the size-dependent mechanical properties of nanowires. In particular, we have performed computational investigation on single crystal face-centered cubic copper nano-wires with diameters ranging from 2 to 20 nm. The wire axis for all the nanowires are considered along the [0 0 1] direction. Characterization of the initial optimized structures revealed clear differences in interatomic spacing, stress, and potential energy in all the nanowires. The mechanical properties with respect to wire diameter are evaluated by applying tension along the [0 0 1] direction until yielding. We have discussed the stress–strain relationships, Young's modulus, and the variation in potential energy from surface to the center of the wire for all the cases. Our results indicate that the mechanical response (including yield strain, Young's modulus, and resilience) is directly related to the proportion of surface to bulk type atoms present in each nanowire. Thus the size-dependent mechanical properties of single crystal copper nanowire within elastic region are attributed to the surface to volume ratio (surface effect). Using the calculated response, we have formulated a mathematical relationship, which predicts the nonlinear correlation between the mechanical properties and the diameter of the wire.

  1. Angle dependence on the anisotropic magnetoresistance amplitude of a single-contacted Ni nanowire subjected to a thermo-mechanical strain

    Energy Technology Data Exchange (ETDEWEB)

    Melilli, G.; Madon, B.; Wegrowe, J.-E., E-mail: jean-eric.wegrowe@polytechnique.edu; Clochard, M.-C., E-mail: clochard@cea.fr

    2015-12-15

    The effects of thermoelastic and piezoelectric strain of an active track-etched β-PVDF polymer matrix on an electrodeposited single-contacted Ni nanowire (NW) are investigated at the nanoscale by measuring the change of magnetization (i.e. using the inverse magnetostriction effect). The magnetization state is measured locally by anisotropic magnetoresistance (AMR). The ferromagnetic NW plays thus the role of a mechanical probe that allows the effects of mechanical strain to be characterized and described qualitatively and quantitatively. The inverse magnetostriction was found to be responsible for a quasi-disappearance of the AMR signal for a variation of the order of ΔT ≈ 10 K. In other terms, the variation of the magnetization due to the stress compensates the effect of external magnetic field applied on the NW resistance. The induced stress field in a single Ni NW was found 1000 time higher than the bulk stress field (due to thermal expansion measured on the PVDF). This amplification could be attributed to three nanoscopic effects: (1) a stress mismatch between the Ni NW and the membrane, (2) a non-negligible role of the surface tension on Ni NW Young modulus, and (3) the possibility of non-linear stress–strain law. We investigate here the role of these different contributions using track-etched polymer membranes irradiated at various angles (α{sub irrad}) leading to, after electrodeposition, embedded Ni NWs of different orientations.

  2. Angle dependence on the anisotropic magnetoresistance amplitude of a single-contacted Ni nanowire subjected to a thermo-mechanical strain

    Science.gov (United States)

    Melilli, G.; Madon, B.; Wegrowe, J.-E.; Clochard, M.-C.

    2015-12-01

    The effects of thermoelastic and piezoelectric strain of an active track-etched β-PVDF polymer matrix on an electrodeposited single-contacted Ni nanowire (NW) are investigated at the nanoscale by measuring the change of magnetization (i.e. using the inverse magnetostriction effect). The magnetization state is measured locally by anisotropic magnetoresistance (AMR). The ferromagnetic NW plays thus the role of a mechanical probe that allows the effects of mechanical strain to be characterized and described qualitatively and quantitatively. The inverse magnetostriction was found to be responsible for a quasi-disappearance of the AMR signal for a variation of the order of ΔT ≈ 10 K. In other terms, the variation of the magnetization due to the stress compensates the effect of external magnetic field applied on the NW resistance. The induced stress field in a single Ni NW was found 1000 time higher than the bulk stress field (due to thermal expansion measured on the PVDF). This amplification could be attributed to three nanoscopic effects: (1) a stress mismatch between the Ni NW and the membrane, (2) a non-negligible role of the surface tension on Ni NW Young modulus, and (3) the possibility of non-linear stress-strain law. We investigate here the role of these different contributions using track-etched polymer membranes irradiated at various angles (αirrad) leading to, after electrodeposition, embedded Ni NWs of different orientations.

  3. Angle dependence on the anisotropic magnetoresistance amplitude of a single-contacted Ni nanowire subjected to a thermo-mechanical strain

    International Nuclear Information System (INIS)

    Melilli, G.; Madon, B.; Wegrowe, J.-E.; Clochard, M.-C.

    2015-01-01

    The effects of thermoelastic and piezoelectric strain of an active track-etched β-PVDF polymer matrix on an electrodeposited single-contacted Ni nanowire (NW) are investigated at the nanoscale by measuring the change of magnetization (i.e. using the inverse magnetostriction effect). The magnetization state is measured locally by anisotropic magnetoresistance (AMR). The ferromagnetic NW plays thus the role of a mechanical probe that allows the effects of mechanical strain to be characterized and described qualitatively and quantitatively. The inverse magnetostriction was found to be responsible for a quasi-disappearance of the AMR signal for a variation of the order of ΔT ≈ 10 K. In other terms, the variation of the magnetization due to the stress compensates the effect of external magnetic field applied on the NW resistance. The induced stress field in a single Ni NW was found 1000 time higher than the bulk stress field (due to thermal expansion measured on the PVDF). This amplification could be attributed to three nanoscopic effects: (1) a stress mismatch between the Ni NW and the membrane, (2) a non-negligible role of the surface tension on Ni NW Young modulus, and (3) the possibility of non-linear stress–strain law. We investigate here the role of these different contributions using track-etched polymer membranes irradiated at various angles (α irrad ) leading to, after electrodeposition, embedded Ni NWs of different orientations.

  4. Iridium-Based Nanowires as Highly Active, Oxygen Evolution Reaction Electrocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Alia, Shaun M. [Chemistry; Shulda, Sarah [Department; Ngo, Chilan [Department; Pylypenko, Svitlana [Department; Pivovar, Bryan S. [Chemistry

    2018-01-30

    Iridium-nickel (Ir-Ni) and iridium-cobalt (Ir-Co) nanowires have been synthesized by galvanic displacement and studied for their potential to increase the performance and durability of electrolysis systems. Performances of Ir-Ni and Ir-Co nanowires for the oxygen evolution reaction (OER) have been measured in rotating disk electrode half-cells and single-cell electrolyzers and compared with commercial baselines and literature references. The nanowire catalysts showed improved mass activity, by more than an order of magnitude compared with commercial Ir nanoparticles in half-cell tests. The nanowire catalysts also showed greatly improved durability, when acid-leached to remove excess Ni and Co. Both Ni and Co templates were found to have similarly positive impacts, although specific differences between the two systems are revealed. In single-cell electrolysis testing, nanowires exceeded the performance of Ir nanoparticles by 4-5 times, suggesting that significant reductions in catalyst loading are possible without compromising performance.

  5. A review of the electrical properties of semiconductor nanowires: insights gained from terahertz conductivity spectroscopy

    Science.gov (United States)

    Joyce, Hannah J.; Boland, Jessica L.; Davies, Christopher L.; Baig, Sarwat A.; Johnston, Michael B.

    2016-10-01

    Accurately measuring and controlling the electrical properties of semiconductor nanowires is of paramount importance in the development of novel nanowire-based devices. In light of this, terahertz (THz) conductivity spectroscopy has emerged as an ideal non-contact technique for probing nanowire electrical conductivity and is showing tremendous value in the targeted development of nanowire devices. THz spectroscopic measurements of nanowires enable charge carrier lifetimes, mobilities, dopant concentrations and surface recombination velocities to be measured with high accuracy and high throughput in a contact-free fashion. This review spans seminal and recent studies of the electronic properties of nanowires using THz spectroscopy. A didactic description of THz time-domain spectroscopy, optical pump-THz probe spectroscopy, and their application to nanowires is included. We review a variety of technologically important nanowire materials, including GaAs, InAs, InP, GaN and InN nanowires, Si and Ge nanowires, ZnO nanowires, nanowire heterostructures, doped nanowires and modulation-doped nanowires. Finally, we discuss how THz measurements are guiding the development of nanowire-based devices, with the example of single-nanowire photoconductive THz receivers.

  6. Gas sensing properties of zinc stannate (Zn{sub 2}SnO{sub 4}) nanowires prepared by carbon assisted thermal evaporation process

    Energy Technology Data Exchange (ETDEWEB)

    Tharsika, T., E-mail: tharsika@siswa.um.edu.my [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Haseeb, A.S.M.A., E-mail: haseeb@um.edu.my [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Akbar, S.A., E-mail: akbar.1@osu.edu [Center for Industrial Sensors and Measurements (CISM), Department of Materials Science and Engineering, Ohio State University, 2041 College Road, Columbus, OH 43210 (United States); Sabri, M.F.M., E-mail: faizul@um.edu.my [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Wong, Y.H., E-mail: yhwong@um.edu.my [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-01-05

    Highlights: • Zn{sub 2}SnO{sub 4} nanowires are grown on Au/alumina substrate by a carbon assisted thermal evaporation process. • Optimum growth conditions for Zn{sub 2}SnO{sub 4} nanowires are determined. • Ethanol gas is selectively sensed with high sensitivity. - Abstract: Zn{sub 2}SnO{sub 4} nanowires are successfully synthesized by a carbon assisted thermal evaporation process with the help of a gold catalyst under ambient pressure. The as-synthesized nanowires are characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) equipped with an energy dispersive X-ray spectroscopy (EDS). The XRD patterns and elemental mapping via TEM–EDS clearly indicate that the nanowires are Zn{sub 2}SnO{sub 4} with face centered spinel structure. HRTEM image confirms that Zn{sub 2}SnO{sub 4} nanowires are single crystalline with an interplanar spacing of 0.26 nm, which is ascribed to the d-spacing of (3 1 1) planes of Zn{sub 2}SnO{sub 4}. The optimum processing condition and a possible formation mechanism of these Zn{sub 2}SnO{sub 4} nanowires are discussed. Additionally, sensor performance of Zn{sub 2}SnO{sub 4} nanowires based sensor is studied for various test gases such as ethanol, methane and hydrogen. The results reveal that Zn{sub 2}SnO{sub 4} nanowires exhibit excellent sensitivity and selectivity toward ethanol with quick response and recovery times. The response of the Zn{sub 2}SnO{sub 4} nanowires based sensors to 50 ppm ethanol at an optimum operating temperature of 500 °C is about 21.6 with response and recovery times of about 116 s and 182 s, respectively.

  7. Synthesis of nanostructures in nanowires using sequential catalyst reactions

    Science.gov (United States)

    Panciera, F.; Chou, Y.-C.; Reuter, M.C.; Zakharov, D.; Stach, E.A.; Hofmann, S.; Ross, F.M.

    2016-01-01

    Nanowire growth by the vapor-liquid-solid process enables a high level of control over nanowire composition, diameter, growth direction, branching and kinking, periodic twinning, and crystal structure. The tremendous impact of VLS-grown nanowires is due to this structural versatility, generating applications ranging from solid state lighting and single photon sources to thermoelectric devices. Here we show that the morphology of these nanostructures can be further tailored by using the liquid droplets that catalyze nanowire growth as a “mixing bowl”, in which growth materials are sequentially supplied to nucleate new phases. Growing within the liquid, these phases adopt the shape of faceted nanocrystals that are then incorporated into the nanowires by further growth. We demonstrate this concept by epitaxially incorporating metal silicide nanocrystals into Si nanowires with defect-free interfaces, and discuss how this process can be generalized to create complex nanowire-based heterostructures. PMID:26168344

  8. Individually grown cobalt nanowires as magnetic force microscopy probes.

    Science.gov (United States)

    Alotaibi, Shuaa; Samba, Joshua; Pokharel, Sabin; Lan, Yucheng; Uradu, Kelechi; Afolabi, Ayodeji; Unlu, Ilyas; Basnet, Gobind; Aslan, Kadir; Flanders, Bret N; Lisfi, Abdellah; Ozturk, Birol

    2018-02-26

    AC electric fields were utilized in the growth of individual high-aspect ratio cobalt nanowires from simple salt solutions using the Directed Electrochemical Nanowire Assembly method. Nanowire diameters were tuned from the submicron scale to 40 nm by adjusting the AC voltage frequency and the growth solution concentration. The structural properties of the nanowires, including shape and crystallinity, were identified using electron microscopy. Hysteresis loops obtained along different directions of an individual nanowire using vibrating sample magnetometry showed that the magnetocrystalline anisotropy energy has the same order of magnitude as the shape anisotropy energy. Additionally, the saturation magnetization of an individual cobalt nanowire was estimated to be close to the bulk single crystal value. A small cobalt nanowire segment was grown from a conductive atomic force microscope cantilever tip that was utilized in magnetic force microscopy (MFM) imaging. The fabricated MFM tip provided moderate quality magnetic images of an iron-cobalt thin-film sample.

  9. Silicon nanowire circuits fabricated by AFM oxidation nanolithography

    Energy Technology Data Exchange (ETDEWEB)

    MartInez, Ramses V; MartInez, Javier; Garcia, Ricardo, E-mail: rgarcia@imm.cnm.csic.es [Instituto de Microelectronica de Madrid, CSIC, Isaac Newton 8, 28760 Tres Cantos, Madrid (Spain)

    2010-06-18

    We report a top-down process for the fabrication of single-crystalline silicon nanowire circuits and devices. Local oxidation nanolithography is applied to define very narrow oxide masks on top of a silicon-on-insulator substrate. In a plasma etching, the nano-oxide mask generates a nanowire with a rectangular section. The nanowire width coincides with the lateral size of the mask. In this way, uniform and well-defined transistors with channel widths in the 10-20 nm range have been fabricated. The nanowires can be positioned with sub-100 nm lateral accuracy. The transistors exhibit an on/off current ratio of 10{sup 5}. The atomic force microscope nanolithography offers full control of the nanowire's shape from straight to circular or a combination of them. It also enables the integration of several nanowires within the same circuit. The nanowire transistors have been applied to detect immunological processes.

  10. A detailed study of magnetization reversal in individual Ni nanowires

    KAUST Repository

    Vidal, Enrique Vilanova

    2015-01-19

    Magnetic nanowires have emerged as essential components for a broad range of applications. In many cases, a key property of these components is the switching field, which is studied as a function of the angle between the field and the nanowire. We found remarkable differences of up to 100% between the switching fields of different nanowires from the same fabrication batch. Our experimental results and micromagnetic simulations indicate that the nanowires exhibit a single domain behavior and that the switching mechanism includes vortex domain wall motion across the nanowire. The differences between the switching fields are attributed to different cross-sections of the nanowires, as found by electron microscopy. While a circular cross-section yields the smallest switching field values, any deviation from this shape results in an increase of the switching field. The shape of the nanowires\\' cross-sections is thus a critical parameter that has not been previously taken into account.

  11. Photonic nanowires for quantum optics

    DEFF Research Database (Denmark)

    Munsch, M.; Claudon, J.; Bleuse, J.

    Photonic nanowires (PWs) are simple dielectric structures for which a very efficient and broadband spontaneous emission (SE) control has been predicted [1]. Recently, a single photon source featuring a record high efficiency was demonstrated using this geometry [2]. Using time-resolved micro-phot...

  12. Spin configuration in isolated FeCoCu nanowires modulated in diameter

    International Nuclear Information System (INIS)

    Iglesias-Freire, Óscar; Bran, Cristina; Berganza, Eider; Mínguez-Bacho, Ignacio; Vázquez, Manuel; Asenjo, Agustina; Magén, César

    2015-01-01

    Cylindrical Fe 28 Co 67 Cu 5 nanowires modulated in diameter between 22 and 35 nm are synthesized by electroplating into the nanopores of alumina membranes. High-sensitivity MFM imaging (with a detection noise of 1 μN m −1 ) reveals the presence of single-domain structures in remanence with strong contrast at the ends of the nanowires, as well as at the transition regions where the diameter is modulated. Micromagnetic simulations suggest that curling of the magnetization takes place at these transition sites, extending over 10–20 nm and giving rise to stray fields measurable with our MFM. An additional weaker contrast is imaged, which is interpreted to arise from inhomogeneities in the nanowire diameter. (paper)

  13. Manganese oxide nanowires, films, and membranes and methods of making

    Science.gov (United States)

    Suib, Steven Lawrence [Storrs, CT; Yuan, Jikang [Storrs, CT

    2008-10-21

    Nanowires, films, and membranes comprising ordered porous manganese oxide-based octahedral molecular sieves, and methods of making, are disclosed. A single crystal ultra-long nanowire includes an ordered porous manganese oxide-based octahedral molecular sieve, and has an average length greater than about 10 micrometers and an average diameter of about 5 nanometers to about 100 nanometers. A film comprises a microporous network comprising a plurality of single crystal nanowires in the form of a layer, wherein a plurality of layers is stacked on a surface of a substrate, wherein the nanowires of each layer are substantially axially aligned. A free standing membrane comprises a microporous network comprising a plurality of single crystal nanowires in the form of a layer, wherein a plurality of layers is aggregately stacked, and wherein the nanowires of each layer are substantially axially aligned.

  14. Single-Crystalline Gold Nanowires Synthesized from Light-Driven Oriented Attachment and Plasmon-Mediated Self-Assembly of Gold Nanorods or Nanoparticles

    Science.gov (United States)

    Yu, Shang-Yang; Gunawan, Hariyanto; Tsai, Shiao-Wen; Chen, Yun-Ju; Yen, Tzu-Chen; Liaw, Jiunn-Woei

    2017-03-01

    Through the light-driven geometrically oriented attachment (OA) and self-assembly of Au nanorods (NRs) or nanoparticles (NPs), single-crystalline Au nanowires (NWs) were synthesized by the irradiation of a linearly-polarized (LP) laser. The process was conducted in a droplet of Au colloid on a glass irradiated by LP near-infrared (e.g. 1064 nm and 785 nm) laser beam of low power at room temperature and atmospheric pressure, without any additive. The FE-SEM images show that the cross sections of NWs are various: tetragonal, pentagonal or hexagonal. The EDS spectrum verifies the composition is Au, and the pattern of X-ray diffraction identifies the crystallinity of NWs with the facets of {111}, {200}, {220} and {311}. We proposed a hypothesis for the mechanism that the primary building units are aligned and coalesced by the plasmon-mediated optical torque and force to form the secondary building units. Subsequently, the secondary building units undergo the next self-assembly, and so forth the tertiary ones. The LP light guides the translational and rotational motions of these building units to perform geometrically OA in the side-by-side, end-to-end and T-shaped manners. Consequently, micron-sized ordered mesocrystals are produced. Additionally, the concomitant plasmonic heating causes the annealing for recrystallizing the mesocrystals in water.

  15. Fabry-Pérot microcavity modes observed in the micro-photoluminescence spectra of the single nanowire with InGaAs/GaAs heterostructure.

    Science.gov (United States)

    Yang, Lin; Motohisa, Junichi; Fukui, Takashi; Jia, Lian Xi; Zhang, Lei; Geng, Ming Min; Chen, Pin; Liu, Yu Liang

    2009-05-25

    We report on the fabrication of the nanowires with InGaAs/GaAs heterostructures on the GaAs(111)B substrate using selective-area metal organic vapor phase epitaxy. Fabry-Pérot microcavity modes were observed in the nanowires with perfect end facets dispersed onto the silicon substrate and not observed in the free-standing nanowires. We find that the calculated group refractive indices only considering the material dispersion do not agree with the experimentally determined values although this method was used by some researchers. The calculated group refractive indices considering both the material dispersion and the waveguide dispersion agree with the experimentally determined values well. We also find that Fabry-Pérot microcavity modes are not observable in the nanowires with the width less than about 180 nm, which is mainly caused by their poor reflectivity at the end facets due to their weak confinement to the optical field.

  16. Heterojunction nanowires having high activity and stability for the reduction of oxygen: Formation by self-assembly of iron phthalocyanine with single walled carbon nanotubes (FePc/SWNTs)

    KAUST Repository

    Zhu, Jia

    2014-04-01

    A self-assembly approach to preparing iron phthalocyanine/single-walled carbon nanotube (FePc/SWNT) heterojunction nanowires as a new oxygen reduction reaction (ORR) electrocatalyst has been developed by virtue of water-adjusted dispersing in 1-cyclohexyl-pyrrolidone (CHP) of the two components. The FePc/SWNT nanowires have a higher Fermi level compared to pure FePc (d-band center, DFT. =. -0.69. eV versus -0.87. eV, respectively). Consequently, an efficient channel for transferring electron to the FePc surface is readily created, facilitating the interaction between FePc and oxygen, so enhancing the ORR kinetics. This heterojunction-determined activity in ORR illustrates a new stratagem to preparing non-noble ORR electrocatalysts of significant importance in constructing real-world fuel cells. © 2013 Elsevier Inc.

  17. Formation and Device Application of Ge Nanowire Heterostructures via Rapid Thermal Annealing

    OpenAIRE

    Tang, Jianshi; Wang, Chiu-Yen; Xiu, Faxian; Zhou, Yi; Chen, Lih-Juann; Wang, Kang L.

    2011-01-01

    We reviewed the formation of Ge nanowire heterostructure and its field-effect characteristics by a controlled reaction between a single-crystalline Ge nanowire and Ni contact pads using a facile rapid thermal annealing process. Scanning electron microscopy and transmission electron microscopy demonstrated a wide temperature range of 400~500°C to convert the Ge nanowire to a single-crystalline Ni2Ge/Ge/Ni2Ge nanowire heterostructure with atomically sharp interfaces. More importantly, we studie...

  18. Rapid Hydrothermal Synthesis of Zinc Oxide Nanowires by Annealing Methods on Seed Layers

    Directory of Open Access Journals (Sweden)

    Jang Bo Shim

    2011-01-01

    Full Text Available Well-aligned zinc oxide (ZnO nanowire arrays were successfully synthesized on a glass substrate using the rapid microwave heating process. The ZnO seed layers were produced by spinning the precursor solutions onto the substrate. Among coatings, the ZnO seed layers were annealed at 100°C for 5 minutes to ensure particle adhesion to the glass surface in air, nitrogen, and vacuum atmospheres. The annealing treatment of the ZnO seed layer was most important for achieving the high quality of ZnO nanowire arrays as ZnO seed nanoparticles of larger than 30 nm in diameter evolve into ZnO nanowire arrays. Transmission electron microscopy analysis revealed a single-crystalline lattice of the ZnO nanowires. Because of their low power (140 W, low operating temperatures (90°C, easy fabrication (variable microwave sintering system, and low cost (90% cost reduction compared with gas condensation methods, high quality ZnO nanowires created with the rapid microwave heating process show great promise for use in flexible solar cells and flexible display devices.

  19. Nanowire Optoelectronics

    Directory of Open Access Journals (Sweden)

    Wang Zhihuan

    2015-12-01

    Full Text Available Semiconductor nanowires have been used in a variety of passive and active optoelectronic devices including waveguides, photodetectors, solar cells, light-emitting diodes (LEDs, lasers, sensors, and optical antennas. We review the optical properties of these nanowires in terms of absorption, guiding, and radiation of light, which may be termed light management. Analysis of the interaction of light with long cylindrical/hexagonal structures with subwavelength diameters identifies radial resonant modes, such as Leaky Mode Resonances, or Whispering Gallery modes. The two-dimensional treatment should incorporate axial variations in “volumetric modes,”which have so far been presented in terms of Fabry–Perot (FP, and helical resonance modes. We report on finite-difference timedomain (FDTD simulations with the aim of identifying the dependence of these modes on geometry (length, width, tapering, shape (cylindrical, hexagonal, core–shell versus core-only, and dielectric cores with semiconductor shells. This demonstrates how nanowires (NWs form excellent optical cavities without the need for top and bottommirrors. However, optically equivalent structures such as hexagonal and cylindrical wires can have very different optoelectronic properties meaning that light management alone does not sufficiently describe the observed enhancement in upward (absorption and downward transitions (emission of light inNWs; rather, the electronic transition rates should be considered. We discuss this “rate management” scheme showing its strong dimensional dependence, making a case for photonic integrated circuits (PICs that can take advantage of the confluence of the desirable optical and electronic properties of these nanostructures.

  20. Growth and applicability of radiation-responsive silica nanowires

    Science.gov (United States)

    Bettge, Martin

    Surface energetics play an important role in processes on the nanoscale. Nanowire growth via vapor-liquid-solid (VLS) mechanism is no exception in this regard. Interfacial and line energies are found to impose some fundamental limits during three-phase nanowire growth and lead to formation of stranded nanowires with fascinating characteristics such as high responsiveness towards ion irradiation. By using two materials with a relatively low surface energy (indium and silicon oxide) this is experimentally and theoretically demonstrated in this doctoral thesis. The augmentation of VLS nanowire growth with ion bombardment enables fabrication of vertically aligned silica nanowires over large areas. Synthesis of their arrays begins with a thin indium film deposited on a Si or SiO 2 surface. At temperatures below 200ºC, the indium film becomes a self-organized seed layer of molten droplets, receiving a flux of atomic silicon by DC magnetron sputtering. Simultaneous vigorous ion bombardment through substrate biasing aligns the growing nanowires vertically and expedites mixing of oxygen and silicon into the indium. The vertical growth rate can reach up to 1000 nm-min-1 in an environment containing only argon and traces of water vapor. Silicon oxide precipitates from each indium seed in the form of multiple thin strands having diameters less than 9 nm and practically independent of droplet size. The strands form a single loose bundle, eventually consolidating to form one vertically aligned nanowire. These observations are in stark contrast to conventional VLS growth in which one liquid droplet precipitates a single solid nanowire and in which the precipitated wire diameter is directly proportional to the droplet diameter. The origin of these differences is revealed through a detailed force balance analysis, analogous to Young's relation, at the three-phase line. The liquid-solid interfacial energy of indium/silica is found to be the largest energy contribution at the three

  1. Scalable Top-Down Approach Tailored by Interferometric Lithography to Achieve Large-Area Single-Mode GaN Nanowire Laser Arrays on Sapphire Substrate.

    Science.gov (United States)

    Behzadirad, Mahmoud; Nami, Mohsen; Wostbrock, Neal; Zamani Kouhpanji, Mohammad Reza; Feezell, Daniel F; Brueck, Steven R J; Busani, Tito

    2018-03-27

    GaN nanowires are promising for optical and optoelectronic applications because of their waveguiding properties and large optical band gap. However, developing a precise, scalable, and cost-effective fabrication method with a high degree of controllability to obtain high-aspect-ratio nanowires with high optical properties and minimum crystal defects remains a challenge. Here, we present a scalable two-step top-down approach using interferometric lithography, for which parameters can be controlled precisely to achieve highly ordered arrays of nanowires with excellent quality and desired aspect ratios. The wet-etch mechanism is investigated, and the etch rates of m-planes {11̅00} (sidewalls) were measured to be 2.5 to 70 nm/h depending on the Si doping concentration. Using this method, uniform nanowire arrays were achieved over a large area (>10 5 μm 2 ) with an spect ratio as large as 50, a radius as small as 17 nm, and atomic-scale sidewall roughness (vertical cavity nanowire arrays with different doping concentrations on a sapphire substrate was interestingly observed in photoluminescence measurements. High Q-factors of ∼1139-2443 were obtained in nanowire array lasers with a radius and length of 65 nm and 2 μm, respectively, corresponding to a line width of 0.32-0.15 nm (minimum threshold of 3.31 MW/cm 2 ). Our results show that fabrication of high-quality GaN nanowire arrays with adaptable aspect ratio and large-area uniformity is feasible through a top-down approach using interferometric lithography and is promising for fabrication of III-nitride-based nanophotonic devices (radial/axial) on the original substrate.

  2. Synthesis and characterization of straight and stacked-sheet AlN nanowires with high purity

    International Nuclear Information System (INIS)

    Lei, M.; Yang, H.; Li, P.G.; Tang, W.H.

    2008-01-01

    Large-scale AlN nanowires with hexagonal crystal structure were synthesized by the direct nitridation method at high temperatures. The experimental results indicate that these single-crystalline AlN nanowires have high purity and consist of straight and stacked-sheet nanowires. It is found that straight AlN nanowire grows along [1, 1, -2, 0] direction, whereas the stacked-sheet nanowire with hexagonal cross section is along [0 0 0 1] direction. It is thought that vapor-solid (VS) mechanism should be responsible for the growth of AlN nanowires

  3. Study of the effect of varying core diameter, shell thickness and strain velocity on the tensile properties of single crystals of Cu-Ag core-shell nanowire using molecular dynamics simulations

    Science.gov (United States)

    Sarkar, Jit; Das, D. K.

    2018-01-01

    Core-shell type nanostructures show exceptional properties due to their unique structure having a central solid core of one type and an outer thin shell of another type which draw immense attention among researchers. In this study, molecular dynamics simulations are carried out on single crystals of copper-silver core-shell nanowires having wire diameter ranging from 9 to 30 nm with varying core diameter, shell thickness, and strain velocity. The tensile properties like yield strength, ultimate tensile strength, and Young's modulus are studied and correlated by varying one parameter at a time and keeping the other two parameters constant. The results obtained for a fixed wire size and different strain velocities were extrapolated to calculate the tensile properties like yield strength and Young's modulus at standard strain rate of 1 mm/min. The results show ultra-high tensile properties of copper-silver core-shell nanowires, several times than that of bulk copper and silver. These copper-silver core-shell nanowires can be used as a reinforcing agent in bulk metal matrix for developing ultra-high strength nanocomposites.

  4. Designing and building nanowires: directed nanocrystal self-assembly into radically branched and zigzag PbS nanowires

    International Nuclear Information System (INIS)

    Xu Fan; Ma Xin; Gerlein, L Felipe; Cloutier, Sylvain G

    2011-01-01

    Lead sulfide nanowires with controllable optoelectronic properties would be promising building blocks for various applications. Here, we report the hot colloidal synthesis of radically branched and zigzag nanowires through self-attachment of star-shaped and octahedral nanocrystals in the presence of multiple surfactants. We obtained high-quality single-crystal nanowires with uniform diameter along the entire length, and the size of the nanowire can be tuned by tailoring the reaction parameters. This slow oriented attachment provides a better understanding of the intricacies of this complex nanocrystal assembly process. Meanwhile, these self-assembled nanowire structures have appealing lateral conformations with narrow side arms or highly faceted edges, where strong quantum confinement can occur. Consequently, the single-crystal nanowire structures exhibit strong photoluminescence in the near-infrared region with a large blue-shift compared to the bulk material.

  5. Molecular Beam Epitaxy-Grown InGaN Nanowires and Nanomushrooms for Solid State Lighting

    KAUST Repository

    Gasim, Anwar A.

    2012-05-01

    InGaN is a promising semiconductor for solid state lighting thanks to its bandgap which spans the entire visible regime of the electromagnetic spectrum. InGaN is grown heteroepitaxially due to the absence of a native substrate; however, this results in a strained film and a high dislocation density—two effects that have been associated with efficiency droop, which is the disastrous drop in efficiency of a light-emitting diode (LED) as the input current increases. Heteroepitaxially grown nanowires have recently attracted great interest due to their property of eliminating the detrimental effects of the lattice mismatch and the corollary efficiency droop. In this study, InGaN nanowires were grown on a low-cost Si (111) substrate via molecular beam epitaxy. Unique nanostructures, taking the form of mushrooms, have been observed in localized regions on the samples. These nanomushrooms consist of a nanowire body with a wide cap on top. Photoluminescence characterization revealed that the nanowires emit violet-blue, whilst the nanomushrooms emit a broad yellow-orange-red luminescence. The simultaneous emission from the nanowires and nanomushrooms forms white light. Structural characterization of a single nanomushroom via transmission electron microscopy revealed a simultaneous increase in indium and decrease in gallium at the interface between the body and the cap. Furthermore, the cap itself was found to be indium-rich, confirming it as the source of the longer wavelength yellow-orange-red luminescence. It is believed that the nanomushroom cap formed as a consequence of the saturation of growth on the c-plane of the nanowire. It is proposed that the formation of an indium droplet on the tip of the nanowire saturated growth on the c-plane, forcing the indium and gallium adatoms to incorporate on the sidewall m-planes instead, but only at the nanowire tip. This resulted in the formation of a mushroom-like cap on the tip. How and why the indium droplets formed is not

  6. Role of surface on the size-dependent mechanical properties of copper nano-wire under tensile load: A molecular dynamics simulation

    Science.gov (United States)

    Liu, Wei-Ting; Hsiao, Chun-I.; Hsu, Wen-Dung

    2014-01-01

    In this study we have used atomistic simulations to investigate the role of surface on the size-dependent mechanical properties of nano-wires. In particular, we have performed computational investigation on single crystal face-centered cubic copper nano-wires with diameters ranging from 2 to 20 nm. The wire axis for all the nano-wires are considered along the [0 0 1] direction. Characterization of the initial optimized structures revealed clear differences in interatomic spacing, stress, and potential energy in all the nano-wires. The mechanical properties with respect to wire diameter are evaluated by applying tension along the [0 0 1] direction until yielding. We have discussed the stress-strain relationships, Young's modulus, and the variation in potential energy from surface to the center of the wire for all the cases. Our results indicate that the mechanical response (including yield strain, Young's modulus, and resilience) is directly related to the proportion of surface to bulk type atoms present in each nano-wire. Thus the size-dependent mechanical properties of single crystal copper nano-wire within elastic region are attributed to the surface to volume ratio (surface effect). Using the calculated response, we have formulated a mathematical relationship, which predicts the nonlinear correlation between the mechanical properties and the diameter of the wire.

  7. Spontaneous core–shell elemental distribution in In-rich InxGa1−xN nanowires grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Gómez-Gómez, M; Garro, N; Cantarero, A; Mengistu, H T; García-Cristóbal, A; Murcia-Mascarós, S; Segura-Ruiz, J; Martinez-Criado, G; Denker, C; Malindretos, J; Rizzi, A

    2014-01-01

    The elemental distribution of self-organized In-rich In x Ga 1−x N nanowires grown by plasma-assisted molecular beam epitaxy has been investigated using three different techniques with spatial resolution on the nanoscale. Two-dimensional images and elemental profiles of single nanowires obtained by x-ray fluorescence and energy-dispersive x-ray spectroscopy, respectively, have revealed a radial gradient in the alloy composition of each individual nanowire. The spectral selectivity of resonant Raman scattering has been used to enhance the signal from very small volumes with different elemental composition within single nanowires. The combination of the three techniques has provided sufficient sensitivity and spatial resolution to prove the spontaneous formation of a core–shell nanowire and to quantify the thicknesses and alloy compositions of the core and shell regions. A theoretical model based on continuum elastic theory has been used to estimate the strain fields present in such inhomogeneous nanowires. These results suggest new strategies for achieving high quality non-polar heterostructures. (paper)

  8. Spontaneous core-shell elemental distribution in In-rich InxGa1-xN nanowires grown by molecular beam epitaxy

    Science.gov (United States)

    Gómez-Gómez, M.; Garro, N.; Segura-Ruiz, J.; Martinez-Criado, G.; Cantarero, A.; Mengistu, H. T.; García-Cristóbal, A.; Murcia-Mascarós, S.; Denker, C.; Malindretos, J.; Rizzi, A.

    2014-02-01

    The elemental distribution of self-organized In-rich InxGa1-xN nanowires grown by plasma-assisted molecular beam epitaxy has been investigated using three different techniques with spatial resolution on the nanoscale. Two-dimensional images and elemental profiles of single nanowires obtained by x-ray fluorescence and energy-dispersive x-ray spectroscopy, respectively, have revealed a radial gradient in the alloy composition of each individual nanowire. The spectral selectivity of resonant Raman scattering has been used to enhance the signal from very small volumes with different elemental composition within single nanowires. The combination of the three techniques has provided sufficient sensitivity and spatial resolution to prove the spontaneous formation of a core-shell nanowire and to quantify the thicknesses and alloy compositions of the core and shell regions. A theoretical model based on continuum elastic theory has been used to estimate the strain fields present in such inhomogeneous nanowires. These results suggest new strategies for achieving high quality non-polar heterostructures.

  9. Spontaneous core–shell elemental distribution in In-rich In(x)Ga1-xN nanowires grown by molecular beam epitaxy.

    Science.gov (United States)

    Gómez-Gómez, M; Garro, N; Segura-Ruiz, J; Martinez-Criado, G; Cantarero, A; Mengistu, H T; García-Cristóbal, A; Murcia-Mascarós, S; Denker, C; Malindretos, J; Rizzi, A

    2014-02-21

    The elemental distribution of self-organized In-rich In(x)Ga1-xN nanowires grown by plasma-assisted molecular beam epitaxy has been investigated using three different techniques with spatial resolution on the nanoscale. Two-dimensional images and elemental profiles of single nanowires obtained by x-ray fluorescence and energy-dispersive x-ray spectroscopy, respectively, have revealed a radial gradient in the alloy composition of each individual nanowire. The spectral selectivity of resonant Raman scattering has been used to enhance the signal from very small volumes with different elemental composition within single nanowires. The combination of the three techniques has provided sufficient sensitivity and spatial resolution to prove the spontaneous formation of a core–shell nanowire and to quantify the thicknesses and alloy compositions of the core and shell regions. A theoretical model based on continuum elastic theory has been used to estimate the strain fields present in such inhomogeneous nanowires. These results suggest new strategies for achieving high quality nonpolar heterostructures.

  10. Methods of fabricating nanostructures and nanowires and devices fabricated therefrom

    Science.gov (United States)

    Majumdar,; Arun, [Orinda, CA; Shakouri, Ali [Santa Cruz, CA; Sands, Timothy D [Moraga, CA; Yang, Peidong [Berkeley, CA; Mao, Samuel S [Berkeley, CA; Russo, Richard E [Walnut Creek, CA; Feick, Henning [Kensington, CA; Weber, Eicke R [Oakland, CA; Kind, Hannes [Schaffhausen, CH; Huang, Michael [Los Angeles, CA; Yan, Haoquan [Albany, CA; Wu, Yiying [Albany, CA; Fan, Rong [El Cerrito, CA

    2009-08-04

    One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as "nanowires", include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).

  11. Methods of fabricating nanostructures and nanowires and devices fabricated therefrom

    Energy Technology Data Exchange (ETDEWEB)

    Majumdar, Arun; Shakouri, Ali; Sands, Timothy D.; Yang, Peidong; Mao, Samuel S.; Russo, Richard E.; Feick, Henning; Weber, Eicke R.; Kind, Hannes; Huang, Michael; Yan, Haoquan; Wu, Yiying; Fan, Rong

    2018-01-30

    One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as "nanowires", include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).

  12. Methods Of Fabricating Nanosturctures And Nanowires And Devices Fabricated Therefrom

    Science.gov (United States)

    Majumdar, Arun; Shakouri, Ali; Sands, Timothy D.; Yang, Peidong; Mao, Samuel S.; Russo, Richard E.; Feick, Henning; Weber, Eicke R.; Kind, Hannes; Huang, Michael; Yan, Haoquan; Wu, Yiying; Fan, Rong

    2006-02-07

    One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as "nanowires", include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).

  13. Stability of Organic Nanowires

    DEFF Research Database (Denmark)

    Balzer, F.; Schiek, M.; Wallmann, I.

    2011-01-01

    atomic force microscopy (AFM). Aging experiments under ambient conditions already show substantial morphological changes. Nanoscopic organic clusters, which initially coexist with the nanowires, vanish within hours. Thermal annealing of nanowire samples leads to even more pronounced morphology changes...

  14. Semiconductor Nanowires for Photoelectrochemical Water Splitting

    Science.gov (United States)

    Hwang, Yun Jeong

    Photolysis of water with semiconductor materials has been investigated intensely as a clean and renewable energy resource by storing solar energy in chemical bonds such as hydrogen. One-dimensional (1D) nanostructures such as nanowires can provide several advantages for photoelectrochemical (PEC) water splitting due to their high surface areas and excellent charge transport and collection efficiency. This dissertation discusses various nanowire photoelectrodes for single or dual semiconductor systems, and their linked PEC cells for self-driven water splitting. After an introduction of solar water splitting in the first chapter, the second chapter demonstrates water oxidative activities of hydrothermally grown TiO2 nanowire arrays depending on their length and surface properties. The photocurrents with TiO2 nanowire arrays approach saturation due to their poor charge collection efficiency with longer nanowires despite increased photon absorption efficiency. Epitaxial grains of rutile atomic layer deposition (ALD) shell on TiO2 nanowire increase the photocurrent density by 1.5 times due to improved charge collection efficiency especially in the short wavelength region. Chapter three compares the photocurrent density of the planar Si and Si nanowire arrays coated by anatase ALD TiO 2 thin film as a model system of a dual bandgap system. The electroless etched Si nanowire coated by ALD TiO2 (Si EENW/TiO2) shows 2.5 times higher photocurrent density due to lower reflectance and higher surface area. Also, this chapter illustrates that n-Si/n-TiO2 heterojunction is a promising structure for the photoanode application of a dual semiconductor system, since it can enhance the photocurrent density compared to p-Si/n-TiO 2 junction with the assistance of bend banding at the interface. Chapter four demonstrates the charge separation and transport of photogenerated electrons and holes within a single asymmetric Si/TiO2 nanowire. Kelvin probe force microscopy measurements show

  15. Coherent Anti-Stokes and Coherent Stokes in Raman Scattering by Superconducting Nanowire Single-Photon Detector for Temperature Measurement

    Directory of Open Access Journals (Sweden)

    Annepu Venkata Naga Vamsi

    2016-01-01

    Full Text Available We have reported the measurement of temperature by using coherent anti-Stroke and coherent Stroke Raman scattering using superconducting nano wire single-photon detector. The measured temperatures by both methods (Coherent Anti-Raman scattering & Coherent Stroke Raman scattering and TC 340 are in good accuracy of ± 5 K temperature range. The length of the pipe line under test can be increased by increasing the power of the pump laser. This methodology can be widely used to measure temperatures at instantaneous positions in test pipe line or the entire temperature of the pipe line under test.

  16. Multi-channeled NbN superconducting single photon detectors (SSPDs) system with NbN meander nanowires

    International Nuclear Information System (INIS)

    Fujiwara, Mikio; Sasaki, Masahide; Miki, Shigehito; Wang Zhen

    2009-01-01

    A superconducting single photon detector (SSPD) is promising candidate of the detector in a quantum key distribution (QKD) system, because of its low dark count and high speed repetition rate. We have developed the SSPD system cooled by a GM cryocooler. In this system, and the work surface can be cooled 2.95 K and up to 6 SSPDs can be installed. The active areas of SSPDs are 10x10 μm 2 or 20x20 μm 2 , and the system detection efficiency at dark count rate of 100 Hz reached 2.6% at a wavelength of 1550 nm.

  17. Theoretical studies of the stretching behavior of carbon nanowires and their superplasticity

    Energy Technology Data Exchange (ETDEWEB)

    Li, H. [Physics Department, Ocean University of China, Qingdao (China); Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, School of Material Science and Engineering, Shandong University (China)], E-mail: lihuilmy@hotmail.com; Sun, F.W.; Li, Y.F. [Physics Department, Ocean University of China, Qingdao (China); Liu, X.F. [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, School of Material Science and Engineering, Shandong University (China); Liew, K.M. [Department of Building and Construction, City University of Hong Kong, Kowloon (Hong Kong)

    2008-09-15

    The tensile deformation of carbon nanowire (CNW) is examined by molecular dynamics method. Results indicate that the carbon nanowire undergoes superplastic deformation. The maximum tensile strain of the carbon nanowire could increase to nearly 245% before tensile failure. The maximum stress for a CNW is 16.65 GPa which is lower than carbon nanotube. During the deformation, the carbon nanowire is found to be drawn a single atomic chain.

  18. Electrochemical fabrication of ultralow noise metallic nanowires with hcp crystalline lattice

    OpenAIRE

    Singh, Amrita; Sai, T. Phanindra; Ghosh, Arindam

    2008-01-01

    We experimentally demonstrate that low-frequency electrical noise in silver nanowires is heavily suppressed when the crystal structure of the nanowires is hexagonal closed pack (hcp) rather than face centered cubic (fcc). Using a low-potential electrochemical method we have grown single crystalline silver nanowires with hcp crystal structure, in which the noise at room temperature is two to six orders of magnitude lower than that in the conventional fcc nanowires of the same diameter. We sugg...

  19. Electronic homogeneity of nanowire heterostructure Light Emitting Diodes (LEDs)

    Science.gov (United States)

    Selcu, Camelia; May, Brelon J.; Sarwar, A. T. M. Golam; Myers, Roberto C.

    In addition to low defect densities and great tunability bandgap within a single heterostructure, the possibility of growing (Al, In,_) GaN nanowire heterostructure LEDs on different substrates while maintaining their high electronic and optical properties makes them very attractive. We investigated the electronic homogeneity of the (Al, In,_) GaN nanowire ensemble by acquiring current maps at certain applied biases using conductive AFM. By taken IVs on individual nanowires, we found that different wires have different turn on voltages and that some of the nanowires degrade due to the applied bias.

  20. Permanent bending and alignment of ZnO nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Borschel, Christian; Spindler, Susann; Oertel, Michael; Ronning, Carsten [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Lerose, Damiana [MPI fuer Mikrostrukturphysik, Weinberg 2, 06120 Halle/Saale (Germany); Institut fuer Photonische Technologien, Albert-Einstein-Strasse 9, 07745 Jena (Germany); Bochmann, Arne [Institut fuer Photonische Technologien, Albert-Einstein-Strasse 9, 07745 Jena (Germany); Christiansen, Silke H. [Institut fuer Photonische Technologien, Albert-Einstein-Strasse 9, 07745 Jena (Germany); MPI fuer die Physik des Lichts, Guenther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Nietzsche, Sandor [Zentrum fuer Elektronenmikroskopie, Friedrich-Schiller-Universitaet Jena, Ziegelmuehlenweg 1, 07743 Jena (Germany)

    2011-07-01

    Ion beams can be used to bend or re-align nanowires permanently, after they have been grown. We have irradiated ZnO nanowires with ions of different species and energy, achieving bending and alignment in various directions. We study the bending of single nanowires as well as the simultaneous alignment of large ensembles of ZnO nanowires in detail. Computer simulations show that the bending is initiated by ion beam induced damage. Dislocations are identified to relax stresses and make the bending and alignment permanent and resistant against annealing procedures.

  1. Three-fold Symmetric Doping Mechanism in GaAs Nanowires

    DEFF Research Database (Denmark)

    Dastjerdi, M.H.T.; Fiordaliso, Elisabetta Maria; Leshchenko, E.D.

    2017-01-01

    A new dopant incorporation mechanism in Ga-assisted GaAs nanowires grown by molecular beam epitaxy is reported. Off-axis electron holography revealed that p-type Be dopants introduced in situ during molecular beam epitaxy growth of the nanowires were distributed inhomogeneously in the nanowire cr...

  2. Electrochemical synthesis of CORE-shell magnetic nanowires

    KAUST Repository

    Ovejero, Jesús G.

    2015-04-16

    (Fe, Ni, CoFe) @ Au core-shell magnetic nanowires have been synthesized by optimized two-step potentiostatic electrodeposition inside self-assembled nanopores of anodic aluminium templates. The optimal electrochemical parameters (e.g., potential) have been firstly determined for the growth of continuous Au nanotubes at the inner wall of pores. Then, a magnetic core was synthesized inside the Au shells under suitable electrochemical conditions for a wide spectrum of single elements and alloy compositions (e.g., Fe, Ni and CoFe alloys). Novel opportunities offered by such nanowires are discussed particularly the magnetic behavior of (Fe, Ni, CoFe) @ Au core-shell nanowires was tested and compared with that of bare TM nanowires. These core-shell nanowires can be released from the template so, opening novel opportunities for biofunctionalization of individual nanowires.

  3. Multi-region and single-cell sequencing reveal variable genomic heterogeneity in rectal cancer.

    Science.gov (United States)

    Liu, Mingshan; Liu, Yang; Di, Jiabo; Su, Zhe; Yang, Hong; Jiang, Beihai; Wang, Zaozao; Zhuang, Meng; Bai, Fan; Su, Xiangqian

    2017-11-23

    Colorectal cancer is a heterogeneous group of malignancies with complex molecular subtypes. While colon cancer has been widely investigated, studies on rectal cancer are very limited. Here, we performed multi-region whole-exome sequencing and single-cell whole-genome sequencing to examine the genomic intratumor heterogeneity (ITH) of rectal tumors. We sequenced nine tumor regions and 88 single cells from two rectal cancer patients with tumors of the same molecular classification and characterized their mutation profiles and somatic copy number alterations (SCNAs) at the multi-region and the single-cell levels. A variable extent of genomic heterogeneity was observed between the two patients, and the degree of ITH increased when analyzed on the single-cell level. We found that major SCNAs were early events in cancer development and inherited steadily. Single-cell sequencing revealed mutations and SCNAs which were hidden in bulk sequencing. In summary, we studied the ITH of rectal cancer at regional and single-cell resolution and demonstrated that variable heterogeneity existed in two patients. The mutational scenarios and SCNA profiles of two patients with treatment naïve from the same molecular subtype are quite different. Our results suggest each tumor possesses its own architecture, which may result in different diagnosis, prognosis, and drug responses. Remarkable ITH exists in the two patients we have studied, providing a preliminary impression of ITH in rectal cancer.

  4. Tunneling and Transport in Nanowires

    International Nuclear Information System (INIS)

    Goldman, Allen M.

    2016-01-01

    The goal of this program was to study new physical phenomena that might be relevant to the performance of conductive devices and circuits of the smallest realizable feature sizes possible using physical rather than biological techniques. Although the initial scientific work supported involved the use of scanning tunneling microscopy and spectroscopy to ascertain the statistics of the energy level distribution of randomly sized and randomly shaped quantum dots, or nano-crystals, the main focus was on the investigation of selected properties, including superconductivity, of conducting and superconducting nanowires prepared using electron-beam-lithography. We discovered a magnetic-field-restoration of superconductivity in out-of-equilibrium nanowires driven resistive by current. This phenomenon was explained by the existence of a state in which dissipation coexisted with nonvanishing superconducting order. We also produced ultra-small superconducting loops to study a predicted anomalous fluxoid quantization, but instead, found a magnetic-field-dependent, high-resistance state, rather than superconductivity. Finally, we developed a simple and controllable nanowire in an induced charged layer near the surface of a masked single-crystal insulator, SrTiO 3 . The layer was induced using an electric double layer transistor employing an ionic liquid (IL). The transport properties of the induced nanowire resembled those of collective electronic transport through an array of quantum dots.

  5. Tunneling and Transport in Nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, Allen M. [Univ. of Minnesota, Minneapolis, MN (United States)

    2016-08-16

    The goal of this program was to study new physical phenomena that might be relevant to the performance of conductive devices and circuits of the smallest realizable feature sizes possible using physical rather than biological techniques. Although the initial scientific work supported involved the use of scanning tunneling microscopy and spectroscopy to ascertain the statistics of the energy level distribution of randomly sized and randomly shaped quantum dots, or nano-crystals, the main focus was on the investigation of selected properties, including superconductivity, of conducting and superconducting nanowires prepared using electron-beam-lithography. We discovered a magnetic-field-restoration of superconductivity in out-of-equilibrium nanowires driven resistive by current. This phenomenon was explained by the existence of a state in which dissipation coexisted with nonvanishing superconducting order. We also produced ultra-small superconducting loops to study a predicted anomalous fluxoid quantization, but instead, found a magnetic-field-dependent, high-resistance state, rather than superconductivity. Finally, we developed a simple and controllable nanowire in an induced charged layer near the surface of a masked single-crystal insulator, SrTiO3. The layer was induced using an electric double layer transistor employing an ionic liquid (IL). The transport properties of the induced nanowire resembled those of collective electronic transport through an array of quantum dots.

  6. Single-molecule chemical reaction reveals molecular reaction kinetics and dynamics.

    Science.gov (United States)

    Zhang, Yuwei; Song, Ping; Fu, Qiang; Ruan, Mingbo; Xu, Weilin

    2014-06-25

    Understanding the microscopic elementary process of chemical reactions, especially in condensed phase, is highly desirable for improvement of efficiencies in industrial chemical processes. Here we show an approach to gaining new insights into elementary reactions in condensed phase by combining quantum chemical calculations with a single-molecule analysis. Elementary chemical reactions in liquid-phase, revealed from quantum chemical calculations, are studied by tracking the fluorescence of single dye molecules undergoing a reversible redox process. Statistical analyses of single-molecule trajectories reveal molecular reaction kinetics and dynamics of elementary reactions. The reactivity dynamic fluctuations of single molecules are evidenced and probably arise from either or both of the low-frequency approach of the molecule to the internal surface of the SiO2 nanosphere or the molecule diffusion-induced memory effect. This new approach could be applied to other chemical reactions in liquid phase to gain more insight into their molecular reaction kinetics and the dynamics of elementary steps.

  7. Remarkable effect of halogenation of aromatic compounds on efficiency of nanowire formation through polymerization/crosslinking by high-energy single particle irradiation

    Science.gov (United States)

    Horio, Akifumi; Sakurai, Tsuneaki; Kayama, Kazuto; Lakshmi, G. B. V. S.; Kumar Avasthi, Devesh; Sugimoto, Masaki; Yamaki, Tetsuya; Chiba, Atsuya; Saito, Yuichi; Seki, Shu

    2018-01-01

    Irradiation of high-energy ion particles on organic films induced solid-state polymerization and crosslinking reactions of the materials along the ion trajectories, resulting in the formation of insoluble uniform nanowires with a precise diameter. The nanowires were isolated by the development process i.e. the irradiated film was immersed in organic solvents, and their morphology was visualized by atomic force microscopy. The target organic materials are 4-vinyltriphenylamine, poly(4-vinyltriphenylamine), and polystyrene derivatives with/without the partial substitutions by halogen atoms. It was found that 4-vinyltriphenylamines, in spite of their small molecular sizes, afforded nanowires more clearly than poly(4-vinyltriphenylamine)s. Moreover, the efficiency of demonstrated polymerization/crosslinking reactions obviously depends on the substituted halogen atom species. The averaged diameters of nanowires from bromo- or iodo- substituted 4-vinyltriphenylamine (9.3 and 9.4 nm, respectively) were larger than that obtained from simple 4-vinyltriphenylamine (6.8 nm). The remarkable effect of halogenation of aromatic compounds on the efficiency of the radiation-induced reactions was also observed for polystyrene derivatives. This contrast was considered to originate from the sum of the efficiency of elementary reactions including dissociative electron attachment.

  8. Effect of Crystallographic Texture on Magnetic Characteristics of Cobalt Nanowires

    Directory of Open Access Journals (Sweden)

    Usman M

    2010-01-01

    Full Text Available Abstract Cobalt nanowires with controlled diameters have been synthesized using electrochemical deposition in etched ion-track polycarbonate membranes. Structural characterization of these nanowires with diameter 70, 90, 120 nm and length 30 μm was performed by scanning electron microscopy, high-resolution transmission electron microscopy, and X-ray diffraction techniques. The as-prepared wires show uniform diameter along the whole length and X-ray diffraction analysis reveals that [002] texture of these wires become more pronounced as diameter is reduced. Magnetic characterization of the nanowires shows a clear difference of squareness and coercivity between parallel and perpendicular orientations of the wires with respect to the applied field direction. In case of parallel applied field, the coercivity has been found to be decreasing with increasing diameter of the wires while in perpendicular case; the coercivity observes lower values for larger diameter. The results are explained by taking into account the magnetocrystalline and shape anisotropies with respect to the applied field and domain transformation mechanism when single domain limit is surpassed.

  9. Effect of Crystallographic Texture on Magnetic Characteristics of Cobalt Nanowires

    Science.gov (United States)

    Maaz, K.; Karim, S.; Usman, M.; Mumtaz, A.; Liu, J.; Duan, J. L.; Maqbool, M.

    2010-07-01

    Cobalt nanowires with controlled diameters have been synthesized using electrochemical deposition in etched ion-track polycarbonate membranes. Structural characterization of these nanowires with diameter 70, 90, 120 nm and length 30 μm was performed by scanning electron microscopy, high-resolution transmission electron microscopy, and X-ray diffraction techniques. The as-prepared wires show uniform diameter along the whole length and X-ray diffraction analysis reveals that [002] texture of these wires become more pronounced as diameter is reduced. Magnetic characterization of the nanowires shows a clear difference of squareness and coercivity between parallel and perpendicular orientations of the wires with respect to the applied field direction. In case of parallel applied field, the coercivity has been found to be decreasing with increasing diameter of the wires while in perpendicular case; the coercivity observes lower values for larger diameter. The results are explained by taking into account the magnetocrystalline and shape anisotropies with respect to the applied field and domain transformation mechanism when single domain limit is surpassed.

  10. Single-cell sequencing reveals karyotype heterogeneity in murine and human malignancies.

    Science.gov (United States)

    Bakker, Bjorn; Taudt, Aaron; Belderbos, Mirjam E; Porubsky, David; Spierings, Diana C J; de Jong, Tristan V; Halsema, Nancy; Kazemier, Hinke G; Hoekstra-Wakker, Karina; Bradley, Allan; de Bont, Eveline S J M; van den Berg, Anke; Guryev, Victor; Lansdorp, Peter M; Colomé-Tatché, Maria; Foijer, Floris

    2016-05-31

    Chromosome instability leads to aneuploidy, a state in which cells have abnormal numbers of chromosomes, and is found in two out of three cancers. In a chromosomal instable p53 deficient mouse model with accelerated lymphomagenesis, we previously observed whole chromosome copy number changes affecting all lymphoma cells. This suggests that chromosome instability is somehow suppressed in the aneuploid lymphomas or that selection for frequently lost/gained chromosomes out-competes the CIN-imposed mis-segregation. To distinguish between these explanations and to examine karyotype dynamics in chromosome instable lymphoma, we use a newly developed single-cell whole genome sequencing (scWGS) platform that provides a complete and unbiased overview of copy number variations (CNV) in individual cells. To analyse these scWGS data, we develop AneuFinder, which allows annotation of copy number changes in a fully automated fashion and quantification of CNV heterogeneity between cells. Single-cell sequencing and AneuFinder analysis reveals high levels of copy number heterogeneity in chromosome instability-driven murine T-cell lymphoma samples, indicating ongoing chromosome instability. Application of this technology to human B cell leukaemias reveals different levels of karyotype heterogeneity in these cancers. Our data show that even though aneuploid tumours select for particular and recurring chromosome combinations, single-cell analysis using AneuFinder reveals copy number heterogeneity. This suggests ongoing chromosome instability that other platforms fail to detect. As chromosome instability might drive tumour evolution, karyotype analysis using single-cell sequencing technology could become an essential tool for cancer treatment stratification.

  11. Catalyst-free fabrication of novel ZnO/CuO core-Shell nanowires heterojunction: Controlled growth, structural and optoelectronic properties

    Science.gov (United States)

    Khan, Muhammad Arif; Wahab, Yussof; Muhammad, Rosnita; Tahir, Muhammad; Sakrani, Samsudi

    2018-03-01

    Development of controlled growth and vertically aligned ZnO/CuO core-shell heterojunction nanowires (NWs) with large area by a catalyst free vapor deposition and oxidation approach has been investigated. Structural characterization reveals successful fabrication of a core ZnO nanowire having single crystalline hexagonal wurtzite structure along [002] direction and CuO nanostructure shell with thickness (8-10 nm) having polycrystalline monoclinic structure. The optical property analysis suggests that the reflectance spectrum of ZnO/CuO heterostructure nanowires is decreased by 18% in the visible range, which correspondingly shows high absorption in this region as compared to pristine ZnO nanowires. The current-voltage (I-V) characteristics of core-shell heterojunction nanowires measured by conductive atomic force microscopy (C-AFM) shows excellent rectifying behavior, which indicates the characteristics of a good p-n junction. The high-resolution transmission electron microscopy (HRTEM) has confirmed the sharp junction interface between the core-shell heterojunction nanowire arrays. The valence band offset and conduction band offset at ZnO/CuO heterointerfaces are measured to be 2.4 ± 0.05 and 0.23 ± 0.005 eV respectively, using X-ray photoelectron spectroscopy (XPS) and a type-II band alignment structure is found. The results of this study contribute to the development of new advanced device heterostructures for solar energy conversion and optoelectronics applications.

  12. Impact of nanowire geometry on the carrier transport in GaN/InGaN axial nanowire light-emitting diodes

    Directory of Open Access Journals (Sweden)

    Shaofei Zhang

    2015-10-01

    Full Text Available The authors have investigated the impact of nanowire geometry on the carrier transport in axial indium gallium nitride and gallium nitride (InGaN/GaN nanowire light-emitting diodes (LEDs. The results reveal that hole transport depends critically on the nanowire geometry. With identical material parameters, the carrier transport process can be varied with different nanowire geometry designs, which lead to different overall device performance. This study offers important insight into the design and epitaxial growth of high-performance nanowire LEDs.

  13. Fabrication and properties of silicon carbide nanowires

    Science.gov (United States)

    Shim, Hyun Woo

    2008-12-01

    Silicon carbide (SiC), with excellent electrical, thermal, and mechanical properties, is a promising material candidate for future devices such as high-temperature electronics and super-strong lightweight structures. Combined with superior intrinsic properties, the nanomaterials of SiC show further advantages thanks to nanoscale effects. This thesis reports the growth mechanism, the self-integration, and the friction of SiC nanowires. The study involves nanowires fabrication using thermal evaporation, structure characterization using electron microscopy, friction measurement, and theoretical modeling. The study on nanowire growth mechanism requires understanding of the surfaces and interfaces of nanowire crystal. The catalyzed growth of SiC nanowires involves interfaces between source vapor, catalytic liquid, and nanowire solid. Our experimental observation includes the periodical twinning in a faceted SiC nanowire and three stage structure transitions during the growth. The proposed theoretical model shows that such phenomenon is the result of surface energy minimization process during the catalytic growth. Surface interactions also exist between nanowires, leading to their self-integration. Our parametric growth study reveals novel self-integration of SiC-SiO 2 core-shell nanowires as a result of SiO2 joining. Attraction between nanowires through van der Waals force and enhanced SiO2 diffusion at high temperature transform individual nanowires to the integrated nanojunctions, nanocables, and finally nanowebs. We also show that such joining process becomes effective either during growth or by annealing. The solid friction is a result of the interaction between two solid surfaces, and it depends on the adhesion and the deformation of two contacting solids among other factors. Having strong adhesion as shown from gecko foot-hairs, nanostructured materials should also have strong friction; this study is the first to investigate friction of nanostructures under

  14. New route for cadmium sulfide nanowires synthesis via pulsed laser ablation of cadmium in thiourea solution

    Science.gov (United States)

    Ismail, Raid A.; Hamoudi, Walid K.; Abbas, Hadeel F.

    2018-02-01

    The synthesis of cadmium sulfide CdS nanowires NWs by laser ablation of cadmium target in thiourea solution is demonstrated for the first time. The effect of laser fluence on the structural, morphological and optical properties of CdS nanoparticles was investigated. The synthesized CdS nanowires were polycrystalline with pure hexagonal wurtzite phase; as confirmed by x-ray powder diffraction results. The 3.18–3.26 eV direct optical energy gap of CdS and the increase of CdS optical absorption were noticed to be function of laser fluence. The results revealed a blue shift of 0.86 eV in the absorption edge of CdS nanowires when prepared at 2.65 J cm‑2. The infrared absorption spectra revealed the presence of Cd-S stretching vibration peak located at (525–700) cm‑1. Raman spectra confirmed the presence of a sharp peak at 304 cm‑1 with intensity increased at higher values of laser fluence. Photoluminescence at room temperature indicated an emission peak of CdS at 471 nm. The scanning electron microscopy SEM investigation of the synthesized CdS showed a mixture of hexagonal nanoparticles and nanowires arrays. Transmission electron microscopy TEM investigation revealed the formation of well-dispersed single CdS nanowires with diameter in the range (18–27) and tens of micrometers long. The effect of laser fluence on the performance of n-CdS NWs/p-Si heterojunction was investigated.

  15. Vibrio cholerae biofilm growth program and architecture revealed by single-cell live imaging.

    Science.gov (United States)

    Yan, Jing; Sharo, Andrew G; Stone, Howard A; Wingreen, Ned S; Bassler, Bonnie L

    2016-09-06

    Biofilms are surface-associated bacterial communities that are crucial in nature and during infection. Despite extensive work to identify biofilm components and to discover how they are regulated, little is known about biofilm structure at the level of individual cells. Here, we use state-of-the-art microscopy techniques to enable live single-cell resolution imaging of a Vibrio cholerae biofilm as it develops from one single founder cell to a mature biofilm of 10,000 cells, and to discover the forces underpinning the architectural evolution. Mutagenesis, matrix labeling, and simulations demonstrate that surface adhesion-mediated compression causes V. cholerae biofilms to transition from a 2D branched morphology to a dense, ordered 3D cluster. We discover that directional proliferation of rod-shaped bacteria plays a dominant role in shaping the biofilm architecture in V. cholerae biofilms, and this growth pattern is controlled by a single gene, rbmA Competition analyses reveal that the dense growth mode has the advantage of providing the biofilm with superior mechanical properties. Our single-cell technology can broadly link genes to biofilm fine structure and provides a route to assessing cell-to-cell heterogeneity in response to external stimuli.

  16. Single exosome study reveals subpopulations distributed among cell lines with variability related to membrane content

    Directory of Open Access Journals (Sweden)

    Zachary J. Smith

    2015-12-01

    Full Text Available Current analysis of exosomes focuses primarily on bulk analysis, where exosome-to-exosome variability cannot be assessed. In this study, we used Raman spectroscopy to study the chemical composition of single exosomes. We measured spectra of individual exosomes from 8 cell lines. Cell-line-averaged spectra varied considerably, reflecting the variation in total exosomal protein, lipid, genetic, and cytosolic content. Unexpectedly, single exosomes isolated from the same cell type also exhibited high spectral variability. Subsequent spectral analysis revealed clustering of single exosomes into 4 distinct groups that were not cell-line specific. Each group contained exosomes from multiple cell lines, and most cell lines had exosomes in multiple groups. The differences between these groups are related to chemical differences primarily due to differing membrane composition. Through a principal components analysis, we identified that the major sources of spectral variation among the exosomes were in cholesterol content, relative expression of phospholipids to cholesterol, and surface protein expression. For example, exosomes derived from cancerous versus non-cancerous cell lines can be largely separated based on their relative expression of cholesterol and phospholipids. We are the first to indicate that exosome subpopulations are shared among cell types, suggesting distributed exosome functionality. The origins of these differences are likely related to the specific role of extracellular vesicle subpopulations in both normal cell function and carcinogenesis, and they may provide diagnostic potential at the single exosome level.

  17. Robust Epitaxial Al Coating of Reclined InAs Nanowires.

    Science.gov (United States)

    Kang, Jung-Hyun; Grivnin, Anna; Bor, Ella; Reiner, Jonathan; Avraham, Nurit; Ronen, Yuval; Cohen, Yonatan; Kacman, Perla; Shtrikman, Hadas; Beidenkopf, Haim

    2017-12-13

    It was recently shown that in situ epitaxial aluminum coating of indium arsenide nanowires is possible and yields superior properties relative to ex-situ evaporation of aluminum ( Nat. Mater. 2015 , 14 , 400 - 406 ). We demonstrate a robust and adaptive epitaxial growth protocol satisfying the need for producing an intimate contact between the aluminum superconductor and the indium arsenide nanowire. We show that the (001) indium arsenide substrate allows successful aluminum side-coating of reclined indium arsenide nanowires that emerge from (111)B microfacets. A robust, induced hard superconducting gap in the obtained indium arsenide/aluminum core/partial shell nanowires is clearly demonstrated. We compare epitaxial side-coating of round and hexagonal cross-section nanowires and find the surface roughness of the round nanowires to induce a more uniform aluminum profile. Consequently, the extended aluminum grains result in increased strain at the interface with the indium arsenide nanowire, which is found to induce dislocations penetrating into round nanowires only. A unique feature of proposed growth protocol is that it supports in situ epitaxial deposition of aluminum on all three arms of indium arsenide nanowire intersections in a single growth step. Such aluminum coated intersections play a key role in engineering topologically superconducting networks required for Majorana based quantum computation schemes.

  18. Single-molecule FRET reveals multiscale chromatin dynamics modulated by HP1α.

    Science.gov (United States)

    Kilic, Sinan; Felekyan, Suren; Doroshenko, Olga; Boichenko, Iuliia; Dimura, Mykola; Vardanyan, Hayk; Bryan, Louise C; Arya, Gaurav; Seidel, Claus A M; Fierz, Beat

    2018-01-16

    The dynamic architecture of chromatin fibers, a key determinant of genome regulation, is poorly understood. Here, we employ multimodal single-molecule Förster resonance energy transfer studies to reveal structural states and their interconversion kinetics in chromatin fibers. We show that nucleosomes engage in short-lived (micro- to milliseconds) stacking interactions with one of their neighbors. This results in discrete tetranucleosome units with distinct interaction registers that interconvert within hundreds of milliseconds. Additionally, we find that dynamic chromatin architecture is modulated by the multivalent architectural protein heterochromatin protein 1α (HP1α), which engages methylated histone tails and thereby transiently stabilizes stacked nucleosomes. This compacted state nevertheless remains dynamic, exhibiting fluctuations on the timescale of HP1α residence times. Overall, this study reveals that exposure of internal DNA sites and nucleosome surfaces in chromatin fibers is governed by an intrinsic dynamic hierarchy from micro- to milliseconds, allowing the gene regulation machinery to access compact chromatin.

  19. Crystal structure redetermination of ε-Ni.sub.3./sub.Si.sub.2./sub. from a single nanowire by dynamical refinement of precession electron diffraction data

    Czech Academy of Sciences Publication Activity Database

    Correa, Cinthia Antunes; Klementová, Mariana; Dřínek, Vladislav; Kopeček, Jaromír; Palatinus, Lukáš

    2016-01-01

    Roč. 672, Jul (2016), s. 505-509 ISSN 0925-8388 R&D Projects: GA ČR GA13-25747S Institutional support: RVO:68378271 ; RVO:67985858 Keywords : precession electron diffraction tomography * structure determination * nanowire * dynamical refinement Subject RIV: BM - Solid Matter Physics ; Magnetism; CA - Inorganic Chemistry (UCHP-M) OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.); Inorganic and nuclear chemistry (UCHP-M) Impact factor: 3.133, year: 2016

  20. Fabrication of gallium nitride nanowires by metal-assisted photochemical etching

    Science.gov (United States)

    Zhang, Miao-Rong; Jiang, Qing-Mei; Zhang, Shao-Hui; Wang, Zu-Gang; Hou, Fei; Pan, Ge-Bo

    2017-11-01

    Gallium nitride (GaN) nanowires (NWs) were fabricated by metal-assisted photochemical etching (MaPEtch). Gold nanoparticles (AuNPs) as metal catalyst were electrodeposited on the GaN substrate. SEM and HRTEM images show the surface of GaN NWs is smooth and clean without any impurity. SAED and FFT patterns demonstrate GaN NWs have single crystal structure, and the crystallographic orientation of GaN NWs is (0002) face. On the basis of the assumption of localized galvanic cells, combined with the energy levels and electrochemical potentials of reactants in this etching system, the generation, transfer and consumption of electron-hole pairs reveal the whole MaPEtch reaction process. Such easily fabricated GaN NWs have great potential for the assembly of GaN-based single-nanowire nanodevices.

  1. Advances in nanowire bioelectronics

    Science.gov (United States)

    Zhou, Wei; Dai, Xiaochuan; Lieber, Charles M.

    2017-01-01

    Semiconductor nanowires represent powerful building blocks for next generation bioelectronics given their attractive properties, including nanometer-scale footprint comparable to subcellular structures and bio-molecules, configurable in nonstandard device geometries readily interfaced with biological systems, high surface-to-volume ratios, fast signal responses, and minimum consumption of energy. In this review article, we summarize recent progress in the field of nanowire bioelectronics with a focus primarily on silicon nanowire field-effect transistor biosensors. First, the synthesis and assembly of semiconductor nanowires will be described, including the basics of nanowire FETs crucial to their configuration as biosensors. Second, we will introduce and review recent results in nanowire bioelectronics for biomedical applications ranging from label-free sensing of biomolecules, to extracellular and intracellular electrophysiological recording.

  2. From nanodiamond to nanowires.

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, A.; Materials Science Division

    2005-01-01

    Recent advances in the fabrication and characterization of semiconductor and metallic nanowires are proving very successful in meeting the high expectations of nanotechnologists. Although the nanoscience surrounding sp{sup 3} bonded carbon nanotubes has continued to flourish over recent years the successful synthesis of the sp{sup 3} analogue, diamond nanowires, has been limited. This prompts questions as to whether diamond nanowires are fundamentally unstable. By applying knowledge obtained from examining the structural transformations in nanodiamond, a framework for analyzing the structure and stability of diamond nanowires may be established. One possible framework will be discussed here, supported by results of ab initio density functional theory calculations used to study the structural relaxation of nanodiamond and diamond nanowires. The results show that the structural stability and electronic properties of diamond nanowires are dependent on the surface morphology, crystallographic direction of the principal axis, and the degree of surface hydrogenation.

  3. Syntheses of Nd2O3 nanowires through sol-gel process assisted with porous anodic aluminum oxide (AAO) template

    International Nuclear Information System (INIS)

    Qu Xiaofei; Dai Jinhui; Tian Jintao; Huang Xiang; Liu Zhongfang; Shen Zhenlei; Wang Peipei

    2009-01-01

    The syntheses of Nd 2 O 3 nanowires were performed through sol-gel process assisted with porous anodic aluminum oxide (AAO) as a template. The morphology and the phase composition of the prepared nanowires were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and energy disperse spectroscopy (EDS). The results showed that the Nd 2 O 3 nanowires could be successfully synthesized by using this method. The nanowires had successfully grown into the nanochannels of the AAO template. The prepared nanowires were quite uniform. Both the XRD and EDS examinations revealed that the obtained nanowires were not others but Nd 2 O 3

  4. The Conformational Dynamics of Cas9 Governing DNA Cleavage Are Revealed by Single-Molecule FRET

    Directory of Open Access Journals (Sweden)

    Mengyi Yang

    2018-01-01

    Full Text Available Summary: Off-target binding and cleavage by Cas9 pose major challenges in its application. How the conformational dynamics of Cas9 govern its nuclease activity under on- and off-target conditions remains largely unknown. Here, using intra-molecular single-molecule fluorescence resonance energy transfer measurements, we revealed that Cas9 in apo, sgRNA-bound, and dsDNA/sgRNA-bound forms spontaneously transits among three major conformational states, mainly reflecting significant conformational mobility of the catalytic HNH domain. We also uncovered surprising long-range allosteric communication between the HNH domain and the RNA/DNA heteroduplex at the PAM-distal end to ensure correct positioning of the catalytic site, which demonstrated that a unique proofreading mechanism served as the last checkpoint before DNA cleavage. Several Cas9 residues were likely to mediate the allosteric communication and proofreading step. Modulating interactions between Cas9 and heteroduplex at the PAM-distal end by introducing mutations on these sites provides an alternative route to improve and optimize the CRISPR/Cas9 toolbox. : Yang et al. revealed significant conformational dynamics of Cas9 at global and local scales using single-molecule FRET. They uncovered surprising long-range allosteric communication between the HNH nuclease domain and the RNA/DNA heteroduplex at the PAM-distal end that serves as a proofreading checkpoint to govern the nuclease activity and specificity of Cas9. Keywords: CRISPR, Cas9, single-molecule, FRET, conformational dynamics, proofreading, off-target, allosteric communication, genome editing

  5. Metagenomics, metatranscriptomics and single cell genomics reveal functional response of active Oceanospirillales to Gulf oil spill

    Energy Technology Data Exchange (ETDEWEB)

    Mason, Olivia U.; Hazen, Terry C.; Borglin, Sharon; Chain, Patrick S. G.; Dubinsky, Eric A.; Fortney, Julian L.; Han, James; Holman, Hoi-Ying N.; Hultman, Jenni; Lamendella, Regina; Mackelprang, Rachel; Malfatti, Stephanie; Tom, Lauren M.; Tringe, Susannah G.; Woyke, Tanja; Zhou, Jizhong; Rubin, Edward M.; Jansson, Janet K.

    2012-06-12

    The Deepwater Horizon oil spill in the Gulf of Mexico resulted in a deep-sea hydrocarbon plume that caused a shift in the indigenous microbial community composition with unknown ecological consequences. Early in the spill history, a bloom of uncultured, thus uncharacterized, members of the Oceanospirillales was previously detected, but their role in oil disposition was unknown. Here our aim was to determine the functional role of the Oceanospirillales and other active members of the indigenous microbial community using deep sequencing of community DNA and RNA, as well as single-cell genomics. Shotgun metagenomic and metatranscriptomic sequencing revealed that genes for motility, chemotaxis and aliphatic hydrocarbon degradation were significantly enriched and expressed in the hydrocarbon plume samples compared with uncontaminated seawater collected from plume depth. In contrast, although genes coding for degradation of more recalcitrant compounds, such as benzene, toluene, ethylbenzene, total xylenes and polycyclic aromatic hydrocarbons, were identified in the metagenomes, they were expressed at low levels, or not at all based on analysis of the metatranscriptomes. Isolation and sequencing of two Oceanospirillales single cells revealed that both cells possessed genes coding for n-alkane and cycloalkane degradation. Specifically, the near-complete pathway for cyclohexane oxidation in the Oceanospirillales single cells was elucidated and supported by both metagenome and metatranscriptome data. The draft genome also included genes for chemotaxis, motility and nutrient acquisition strategies that were also identified in the metagenomes and metatranscriptomes. These data point towards a rapid response of members of the Oceanospirillales to aliphatic hydrocarbons in the deep sea.

  6. In vivo single cell analysis reveals Gata2 dynamics in cells transitioning to hematopoietic fate.

    Science.gov (United States)

    Eich, Christina; Arlt, Jochen; Vink, Chris S; Solaimani Kartalaei, Parham; Kaimakis, Polynikis; Mariani, Samanta A; van der Linden, Reinier; van Cappellen, Wiggert A; Dzierzak, Elaine

    2018-01-02

    Cell fate is established through coordinated gene expression programs in individual cells. Regulatory networks that include the Gata2 transcription factor play central roles in hematopoietic fate establishment. Although Gata2 is essential to the embryonic development and function of hematopoietic stem cells that form the adult hierarchy, little is known about the in vivo expression dynamics of Gata2 in single cells. Here, we examine Gata2 expression in single aortic cells as they establish hematopoietic fate in Gata2Venus mouse embryos. Time-lapse imaging reveals rapid pulsatile level changes in Gata2 reporter expression in cells undergoing endothelial-to-hematopoietic transition. Moreover, Gata2 reporter pulsatile expression is dramatically altered in Gata2 +/- aortic cells, which undergo fewer transitions and are reduced in hematopoietic potential. Our novel finding of dynamic pulsatile expression of Gata2 suggests a highly unstable genetic state in single cells concomitant with their transition to hematopoietic fate. This reinforces the notion that threshold levels of Gata2 influence fate establishment and has implications for transcription factor-related hematologic dysfunctions. © 2018 Eich et al.

  7. Model of Fabry-Pérot-type electromagnetic modes of a cylindrical nanowire

    DEFF Research Database (Denmark)

    Bordo, Vladimir

    2010-01-01

    The rigorous theory of normal electromagnetic modes of a cylindrical nanowire of finite length is developed. The exact integral equation which determines the solution of Maxwell's equations obeying the boundary conditions at the whole nanowire surface is derived. The nanowire normal (Fabry......-Pérot) modes are defined as non-trivial solutions of the source-free equation. The approach is considered in more detail for elongated nanowires whose length is much larger than their diameter. The resonance condition obtained for a single-mode nanowire resembles the formula for the Fabry-Pérot resonator...

  8. Thermoelectric properties of semiconductor nanowire networks

    Science.gov (United States)

    Roslyak, Oleksiy; Piryatinski, Andrei

    2016-03-01

    To examine the thermoelectric (TE) properties of a semiconductor nanowire (NW) network, we propose a theoretical approach mapping the TE network on a two-port network. In contrast to a conventional single-port (i.e., resistor) network model, our model allows for large scale calculations showing convergence of TE figure of merit, ZT, with an increasing number of junctions. Using this model, numerical simulations are performed for the Bi2Te3 branched nanowire (BNW) and Cayley tree NW (CTNW) network. We find that the phonon scattering at the network junctions plays a dominant role in enhancing the network ZT. Specifically, disordered BNW and CTNW demonstrate an order of magnitude higher ZT enhancement compared to their ordered counterparts. Formation of preferential TE pathways in CTNW makes the network effectively behave as its BNW counterpart. We provide formalism for simulating large scale nanowire networks hinged upon experimentally measurable TE parameters of a single T-junction.

  9. Nanofabrication of structures for the study of nanowire doping

    Science.gov (United States)

    Eichfeld, Chad

    characterized by electron microscopy and found to be single crystal and to grow oriented to the growth substrate. 4-pt electrical resistivity measurements of the silicon nanowires were made. The resistivity measured ranged from of 0.005-0.017 O-cm, corresponding to an impurity concentration 7 x 1018 to 2 x 1019 cm-3 assuming bulk mobility. Calculations show that possible error from depletion at the surface has only a small effect on the calculated resistivity for a 100 nm diameter nanowire at this high of a doping concentration. The results of LEAP metrology analysis of the Al catalyzed nanowires show an estimated Al concentration of 0.4 atomic percent or 2 x 1020 cm-3 about 200 nm from the nanowire tip, where the concentration appears to have leveled out. This value is higher than would be expected from the solubility published for Al.

  10. Nanowire Electrodes for Advanced Lithium Batteries

    International Nuclear Information System (INIS)

    Huang, Lei; Wei, Qiulong; Sun, Ruimin; Mai, Liqiang

    2014-01-01

    Since the commercialization of lithium ion batteries (LIBs) in the past two decades, rechargeable LIBs have become widespread power sources for portable devices used in daily life. However, current demands require higher energy density and power density of batteries. The electrochemical energy storage performance of LIBs could be improved by applying nanomaterial electrodes, but their fast capacity fading is still one of the key limitations and the mechanism need to be clearly understood. Single nanowire electrode devices are considered as a versatile platform for in situ probing the direct relationship between electrical transport, structure change, and other properties of the single nanowire electrode along with the charge/discharge process. The results indicate that the conductivity decrease of the nanowire electrode and the structural disorder/destruction during electrochemical reaction limit the cycling performance of LIBs. Based on the in situ observations, some feasible optimization strategies, including prelithiation, coaxial structure, nanowire arrays, and hierarchical structure architecture, are proposed and utilized to restrain the conductivity decrease and structural disorder/destruction. Further, the applications of nanowire electrodes in some “beyond Li-ion” batteries, such as Li-S and Li-air batteries are also described.

  11. Enhancement in the photodetection of ZnO nanowires by introducing surface-roughness-induced traps

    International Nuclear Information System (INIS)

    Park, Woojin; Jo, Gunho; Hong, Woong-Ki; Yoon, Jongwon; Choe, Minhyeok; Ji, Yongsung; Kim, Geunjin; Kahng, Yung Ho; Lee, Kwanghee; Lee, Takhee; Lee, Sangchul; Wang, Deli

    2011-01-01

    We investigated the enhanced photoresponse of ZnO nanowire transistors that was introduced with surface-roughness-induced traps by a simple chemical treatment with isopropyl alcohol (IPA). The enhanced photoresponse of IPA-treated ZnO nanowire devices is attributed to an increase in adsorbed oxygen on IPA-induced surface traps. The results of this study revealed that IPA-treated ZnO nanowire devices displayed higher photocurrent gains and faster photoswitching speed than transistors containing unmodified ZnO nanowires. Thus, chemical treatment with IPA can be a useful method for improving the photoresponse of ZnO nanowire devices.

  12. Growth of Gold-assisted Gallium Arsenide Nanowires on Silicon Substrates via Molecular Beam Epitaxy

    Directory of Open Access Journals (Sweden)

    Ramon M. delos Santos

    2008-06-01

    Full Text Available Gallium arsenide nanowires were grown on silicon (100 substrates by what is called the vapor-liquid-solid (VLS growth mechanism using a molecular beam epitaxy (MBE system. Good quality nanowires with surface density of approximately 108 nanowires per square centimeter were produced by utilizing gold nanoparticles, with density of 1011 nanoparticles per square centimeter, as catalysts for nanowire growth. X-ray diffraction measurements, scanning electron microscopy, transmission electron microscopy and Raman spectroscopy revealed that the nanowires are epitaxially grown on the silicon substrates, are oriented along the [111] direction and have cubic zincblende structure.

  13. Electromagnetic field enhancement effects in group IV semiconductor nanowires. A Raman spectroscopy approach

    Science.gov (United States)

    Pura, J. L.; Anaya, J.; Souto, J.; Prieto, A. C.; Rodríguez, A.; Rodríguez, T.; Periwal, P.; Baron, T.; Jiménez, J.

    2018-03-01

    Semiconductor nanowires (NWs) are the building blocks of future nanoelectronic devices. Furthermore, their large refractive index and reduced dimension make them suitable for nanophotonics. The study of the interaction between nanowires and visible light reveals resonances that promise light absorption/scattering engineering for photonic applications. Micro-Raman spectroscopy has been used as a characterization tool for semiconductor nanowires. The light/nanowire interaction can be experimentally assessed through the micro-Raman spectra of individual nanowires. As compared to both metallic and dielectric nanowires, semiconductor nanowires add additional tools for photon engineering. In particular, one can grow heterostructured nanowires, both axial and radial, and also one could modulate the doping level and the surface condition among other factors than can affect the light/NW interaction. We present herein a study of the optical response of group IV semiconductor nanowires to visible photons. The study is experimentally carried out through micro-Raman spectroscopy of different group IV nanowires, both homogeneous and axially heterostructured (SiGe/Si). The results are analyzed in terms of the electromagnetic modelling of the light/nanowire interaction using finite element methods. The presence of axial heterostructures is shown to produce electromagnetic resonances promising new photon engineering capabilities of semiconductor nanowires.

  14. A simple route to porous ZnO and ZnCdO nanowires.

    Science.gov (United States)

    Shan, C X; Liu, Z; Zhang, Z Z; Shen, D Z; Hark, S K

    2006-06-15

    Porous ZnO nanowires were obtained in an inexpensive and simple way by thermally oxidizing ZnSe nanowires in air. The morphologies of the precursor and resulted nanowires are almost identical. X-ray diffraction and energy-dispersive X-ray spectroscopy reveal that the zinc blende ZnSe nanowires were transformed into wurtzite ZnO nanowires after oxidation. Transmission electron microscope measurements indicate that the ZnO nanowires are polycrystalline and are composed of nanoparticles and nanopores. ZnCdO nanowires, which were seldom reported previously, have also been prepared in this way. Just like the ZnO nanowires, the ZnCdO nanowires also show the porous structure. Photoluminescence studies on both ZnO and ZnCdO nanowires show intense near-band edge emissions at room temperature. The transition from one kind of nanowires to another by simple thermal oxidization described in this paper may be applicable to some other compound semiconductors and may open a practical route to yield nanowires.

  15. GaN Nanowires Synthesized by Electroless Etching Method

    KAUST Repository

    Najar, Adel

    2012-01-01

    Ultra-long Gallium Nitride Nanowires is synthesized via metal-electroless etching method. The morphologies and optical properties of GaN NWs show a single crystal GaN with hexagonal Wurtzite structure and high luminescence properties.

  16. Revealing crystalline domains in a mollusc shell single-crystalline prism

    Science.gov (United States)

    Mastropietro, F.; Godard, P.; Burghammer, M.; Chevallard, C.; Daillant, J.; Duboisset, J.; Allain, M.; Guenoun, P.; Nouet, J.; Chamard, V.

    2017-09-01

    Biomineralization integrates complex processes leading to an extraordinary diversity of calcareous biomineral crystalline architectures, in intriguing contrast with the consistent presence of a sub-micrometric granular structure. Hence, gaining access to the crystalline architecture at the mesoscale, that is, over a few granules, is key to building realistic biomineralization scenarios. Here we provide the nanoscale spatial arrangement of the crystalline structure within the `single-crystalline' prisms of the prismatic layer of a Pinctada margaritifera shell, exploiting three-dimensional X-ray Bragg ptychography microscopy. We reveal the details of the mesocrystalline organization, evidencing a crystalline coherence extending over a few granules. We additionally prove the existence of larger iso-oriented crystalline domains, slightly misoriented with respect to each other, around one unique rotation axis, and whose shapes are correlated with iso-strain domains. The highlighted mesocrystalline properties support recent biomineralization models involving partial fusion of oriented nanoparticle assembly and/or liquid droplet precursors.

  17. Cellular Taxonomy of the Mouse Striatum as Revealed by Single-Cell RNA-Seq

    Directory of Open Access Journals (Sweden)

    Ozgun Gokce

    2016-07-01

    Full Text Available The striatum contributes to many cognitive processes and disorders, but its cell types are incompletely characterized. We show that microfluidic and FACS-based single-cell RNA sequencing of mouse striatum provides a well-resolved classification of striatal cell type diversity. Transcriptome analysis revealed ten differentiated, distinct cell types, including neurons, astrocytes, oligodendrocytes, ependymal, immune, and vascular cells, and enabled the discovery of numerous marker genes. Furthermore, we identified two discrete subtypes of medium spiny neurons (MSNs that have specific markers and that overexpress genes linked to cognitive disorders and addiction. We also describe continuous cellular identities, which increase heterogeneity within discrete cell types. Finally, we identified cell type-specific transcription and splicing factors that shape cellular identities by regulating splicing and expression patterns. Our findings suggest that functional diversity within a complex tissue arises from a small number of discrete cell types, which can exist in a continuous spectrum of functional states.

  18. Conserved properties of dentate gyrus neurogenesis across postnatal development revealed by single-cell RNA sequencing.

    Science.gov (United States)

    Hochgerner, Hannah; Zeisel, Amit; Lönnerberg, Peter; Linnarsson, Sten

    2018-02-01

    The dentate gyrus of the hippocampus is a brain region in which neurogenesis persists into adulthood; however, the relationship between developmental and adult dentate gyrus neurogenesis has not been examined in detail. Here we used single-cell RNA sequencing to reveal the molecular dynamics and diversity of dentate gyrus cell types in perinatal, juvenile, and adult mice. We found distinct quiescent and proliferating progenitor cell types, linked by transient intermediate states to neuroblast stages and fully mature granule cells. We observed shifts in the molecular identity of quiescent and proliferating radial glia and granule cells during the postnatal period that were then maintained through adult stages. In contrast, intermediate progenitor cells, neuroblasts, and immature granule cells were nearly indistinguishable at all ages. These findings demonstrate the fundamental similarity of postnatal and adult neurogenesis in the hippocampus and pinpoint the early postnatal transformation of radial glia from embryonic progenitors to adult quiescent stem cells.

  19. Super-Joule heating in graphene and silver nanowire network

    International Nuclear Information System (INIS)

    Maize, Kerry; Das, Suprem R.; Sadeque, Sajia; Mohammed, Amr M. S.; Shakouri, Ali; Janes, David B.; Alam, Muhammad A.

    2015-01-01

    Transistors, sensors, and transparent conductors based on randomly assembled nanowire networks rely on multi-component percolation for unique and distinctive applications in flexible electronics, biochemical sensing, and solar cells. While conduction models for 1-D and 1-D/2-D networks have been developed, typically assuming linear electronic transport and self-heating, the model has not been validated by direct high-resolution characterization of coupled electronic pathways and thermal response. In this letter, we show the occurrence of nonlinear “super-Joule” self-heating at the transport bottlenecks in networks of silver nanowires and silver nanowire/single layer graphene hybrid using high resolution thermoreflectance (TR) imaging. TR images at the microscopic self-heating hotspots within nanowire network and nanowire/graphene hybrid network devices with submicron spatial resolution are used to infer electrical current pathways. The results encourage a fundamental reevaluation of transport models for network-based percolating conductors

  20. Self-Assembled PbSe Nanowire:Perovskite Hybrids

    KAUST Repository

    Yang, Zhenyu

    2015-12-02

    © 2015 American Chemical Society. Inorganic semiconductor nanowires are of interest in nano- and microscale photonic and electronic applications. Here we report the formation of PbSe nanowires based on directional quantum dot alignment and fusion regulated by hybrid organic-inorganic perovskite surface ligands. All material synthesis is carried out at mild temperatures. Passivation of PbSe quantum dots was achieved via a new perovskite ligand exchange. Subsequent in situ ammonium/amine substitution by butylamine enables quantum dots to be capped by butylammonium lead iodide, and this further drives the formation of a PbSe nanowire superlattice in a two-dimensional (2D) perovskite matrix. The average spacing between two adjacent nanowires agrees well with the thickness of single atomic layer of 2D perovskite, consistent with the formation of a new self-assembled semiconductor nanowire:perovskite heterocrystal hybrid.

  1. Optoelectronic properties of individually positioned InAs nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Overbeck, Jan; Brenneis, Andreas; Treu, Julian; Hertenberger, Simon; Abstreiter, Gerhard; Koblmueller, Gregor; Holleitner, Alexander [Walter Schottky Institut and Physik-Department, TU Muenchen, 85748 Garching (Germany)

    2013-07-01

    Small bandgap semiconducting nanowires offer a promising approach to fabricating nanoscale light-sensitive devices like broadband solar cells or mid-infrared photodetectors. We discuss the optoelectronic properties of individually positioned InAs nanowires on p-Si(111) substrates. The substrates exhibit a top layer of SiO{sub 2} which is structured via e-beam lithography creating holes in the oxide with a diameter of ∝80 nm. The nanowires are then grown vertically on the patterned substrates by solid-source molecular beam epitaxy. To fabricate optoelectronic devices, the nanowires are subsequently contacted via a thin, semitransparent metal film evaporated on top of an insulating layer (BCB). The p-Si substrate forms the second contact of the optoelectronic two-terminal devices. We discuss spatially resolved photocurrent measurements which give insights into the interplay of optoelectronic dynamics in single nanowires and in the Si-substrates.

  2. Seedless Growth of Bismuth Nanowire Array via Vacuum Thermal Evaporation

    Science.gov (United States)

    Liu, Mingzhao; Nam, Chang-Yong; Zhang, Lihua

    2015-01-01

    Here a seedless and template-free technique is demonstrated to scalably grow bismuth nanowires, through thermal evaporation in high vacuum at RT. Conventionally reserved for the fabrication of metal thin films, thermal evaporation deposits bismuth into an array of vertical single crystalline nanowires over a flat thin film of vanadium held at RT, which is freshly deposited by magnetron sputtering or thermal evaporation. By controlling the temperature of the growth substrate the length and width of the nanowires can be tuned over a wide range. Responsible for this novel technique is a previously unknown nanowire growth mechanism that roots in the mild porosity of the vanadium thin film. Infiltrated into the vanadium pores, the bismuth domains (~ 1 nm) carry excessive surface energy that suppresses their melting point and continuously expels them out of the vanadium matrix to form nanowires. This discovery demonstrates the feasibility of scalable vapor phase synthesis of high purity nanomaterials without using any catalysts. PMID:26709727

  3. Global optimization of silicon nanowires for efficient parametric processes

    DEFF Research Database (Denmark)

    Vukovic, Dragana; Xu, Jing; Mørk, Jesper

    2013-01-01

    We present a global optimization of silicon nanowires for parametric single-pump mixing. For the first time, the effect of surface roughness-induced loss is included in the analysis, significantly influencing the optimum waveguide dimensions.......We present a global optimization of silicon nanowires for parametric single-pump mixing. For the first time, the effect of surface roughness-induced loss is included in the analysis, significantly influencing the optimum waveguide dimensions....

  4. Genome-wide Single-Molecule Footprinting Reveals High RNA Polymerase II Turnover at Paused Promoters.

    Science.gov (United States)

    Krebs, Arnaud R; Imanci, Dilek; Hoerner, Leslie; Gaidatzis, Dimos; Burger, Lukas; Schübeler, Dirk

    2017-08-03

    Transcription initiation entails chromatin opening followed by pre-initiation complex formation and RNA polymerase II recruitment. Subsequent polymerase elongation requires additional signals, resulting in increased residence time downstream of the start site, a phenomenon referred to as pausing. Here, we harnessed single-molecule footprinting to quantify distinct steps of initiation in vivo throughout the Drosophila genome. This identifies the impact of promoter structure on initiation dynamics in relation to nucleosomal occupancy. Additionally, perturbation of transcriptional initiation reveals an unexpectedly high turnover of polymerases at paused promoters-an observation confirmed at the level of nascent RNAs. These observations argue that absence of elongation is largely caused by premature termination rather than by stable polymerase stalling. In support of this non-processive model, we observe that induction of the paused heat shock promoter depends on continuous initiation. Our study provides a framework to quantify protein binding at single-molecule resolution and refines concepts of transcriptional pausing. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Single-cell genomics reveal metabolic strategies for microbial growth and survival in an oligotrophic aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Wilkins, Michael J.; Kennedy, David W.; Castelle, Cindy; Field, Erin; Stepanauskas, Ramunas; Fredrickson, Jim K.; Konopka, Allan

    2014-02-09

    Bacteria from the genus Pedobacter are a major component of microbial assemblages at Hanford Site and have been shown to significantly change in abundance in response to the subsurface intrusion of Columbia River water. Here we employed single cell genomics techniques to shed light on the physiological niche of these microorganisms. Analysis of four Pedobacter single amplified genomes (SAGs) from Hanford Site sediments revealed a chemoheterotrophic lifestyle, with the potential to exist under both aerobic and microaerophilic conditions via expression of both aa3­-type and cbb3-type cytochrome c oxidases. These SAGs encoded a wide-range of both intra-and extra­-cellular carbohydrate-active enzymes, potentially enabling the degradation of recalcitrant substrates such as xylan and chitin, and the utilization of more labile sugars such as mannose and fucose. Coupled to these enzymes, a diversity of transporters and sugar-binding molecules were involved in the uptake of carbon from the extracellular local environment. The SAGs were enriched in TonB-dependent receptors (TBDRs), which play a key role in uptake of substrates resulting from degradation of recalcitrant carbon. CRISPR-Cas mechanisms for resisting viral infections were identified in all SAGs. These data demonstrate the potential mechanisms utilized for persistence by heterotrophic microorganisms in a carbon-limited aquifer, and hint at potential linkages between observed Pedobacter abundance shifts within the 300 Area subsurface and biogeochemical shifts associated with Columbia River water intrusion.

  6. DNA hybridization on silicon nanowires

    International Nuclear Information System (INIS)

    Singh, Shalini; Zack, Jyoti; Kumar, Dinesh; Srivastava, S.K.; Govind; Saluja, Daman; Khan, M.A.; Singh, P.K.

    2010-01-01

    Nanowire-based detection strategies provide promising new routes to bioanalysis and indeed are attractive to conventional systems because of their small size, high surface-to-volume ratios, electronic, and optical properties. A sequence-specific detection of single-stranded oligonucleotides using silicon nanowires (SiNWs) is demonstrated. The surface of the SiNWs is functionalized with densely packed organic monolayer via hydrosilylation for covalent attachment. Subsequently, deoxyribonucleic acid (DNA) is immobilized to recognize the complementary target DNA. The biomolecular recognition properties of the nanowires are tested via hybridization with γ P 32 tagged complementary and non-complementary DNA oligonucleotides, showing good selectivity and reversibility. No significant non-specific binding to the incorrect sequences is observed. X-ray photoelectron spectroscopy, fluorescence imaging, and nanodrop techniques are used to characterize the modified SiNWs and covalent attachment with DNA. The results show that SiNWs are excellent substrates for the absorption, stabilization and detection of DNA sequences and could be used for DNA microarrays and micro fabricated SiNWs DNA sensors.

  7. Whole-body single-cell sequencing reveals transcriptional domains in the annelid larval body.

    Science.gov (United States)

    Achim, Kaia; Eling, Nils; Vergara, Hernando Martinez; Bertucci, Paola Yanina; Musser, Jacob; Vopalensky, Pavel; Brunet, Thibaut; Collier, Paul; Benes, Vladimir; Marioni, John C; Arendt, Detlev

    2018-01-24

    Animal bodies comprise diverse arrays of cells. To characterise cellular identities across an entire body, we have compared the transcriptomes of single cells randomly picked from dissociated whole larvae of the marine annelid Platynereis dumerilii. We identify five transcriptionally distinct groups of differentiated cells, each expressing a unique set of transcription factors and effector genes that implement cellular phenotypes. Spatial mapping of cells into a cellular expression atlas, and wholemount in situ hybridisation of group-specific genes reveals spatially coherent transcriptional domains in the larval body, comprising e.g. apical sensory-neurosecretory cells vs. neural/epidermal surface cells. These domains represent new, basic subdivisions of the annelid body based entirely on differential gene expression, and are composed of multiple, transcriptionally similar cell types. They do not represent clonal domains, as revealed by developmental lineage analysis. We propose that the transcriptional domains that subdivide the annelid larval body represent families of related cell types that have arisen by evolutionary diversification. Their possible evolutionary conservation makes them a promising tool for evo-devo research. (167/250). © The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  8. Abrupt Schottky Junctions in Al/Ge Nanowire Heterostructures.

    Science.gov (United States)

    Kral, S; Zeiner, C; Stöger-Pollach, M; Bertagnolli, E; den Hertog, M I; Lopez-Haro, M; Robin, E; El Hajraoui, K; Lugstein, A

    2015-07-08

    In this Letter we report on the exploration of axial metal/semiconductor (Al/Ge) nanowire heterostructures with abrupt interfaces. The formation process is enabled by a thermal induced exchange reaction between the vapor-liquid-solid grown Ge nanowire and Al contact pads due to the substantially different diffusion behavior of Ge in Al and vice versa. Temperature-dependent I-V measurements revealed the metallic properties of the crystalline Al nanowire segments with a maximum current carrying capacity of about 0.8 MA/cm(2). Transmission electron microscopy (TEM) characterization has confirmed both the composition and crystalline nature of the pure Al nanowire segments. A very sharp interface between the ⟨111⟩ oriented Ge nanowire and the reacted Al part was observed with a Schottky barrier height of 361 meV. To demonstrate the potential of this approach, a monolithic Al/Ge/Al heterostructure was used to fabricate a novel impact ionization device.

  9. Nanowire Growth for Photovoltaics

    DEFF Research Database (Denmark)

    Holm, Jeppe Vilstrup

    Solar cells commercial success is based on an efficiency/cost calculation. Nanowire solar cells is one of the foremost candidates to implement third generation photo voltaics, which are both very efficient and cheap to produce. This thesis is about our progress towards commercial nanowire solar c...

  10. Nanowire Photovoltaic Devices

    Science.gov (United States)

    Forbes, David

    2015-01-01

    Firefly Technologies, in collaboration with the Rochester Institute of Technology and the University of Wisconsin-Madison, developed synthesis methods for highly strained nanowires. Two synthesis routes resulted in successful nanowire epitaxy: direct nucleation and growth on the substrate and a novel selective-epitaxy route based on nanolithography using diblock copolymers. The indium-arsenide (InAs) nanowires are implemented in situ within the epitaxy environment-a significant innovation relative to conventional semiconductor nanowire generation using ex situ gold nanoparticles. The introduction of these nanoscale features may enable an intermediate band solar cell while simultaneously increasing the effective absorption volume that can otherwise limit short-circuit current generated by thin quantized layers. The use of nanowires for photovoltaics decouples the absorption process from the current extraction process by virtue of the high aspect ratio. While no functional solar cells resulted from this effort, considerable fundamental understanding of the nanowire epitaxy kinetics and nanopatterning process was developed. This approach could, in principle, be an enabling technology for heterointegration of dissimilar materials. The technology also is applicable to virtual substrates. Incorporating nanowires onto a recrystallized germanium/metal foil substrate would potentially solve the problem of grain boundary shunting of generated carriers by restricting the cross-sectional area of the nanowire (tens of nanometers in diameter) to sizes smaller than the recrystallized grains (0.5 to 1 micron(exp 2).

  11. Semiconductor Nanowires: Defects Update

    Science.gov (United States)

    Kavanagh, Karen L.

    2008-05-01

    Structural defects commonly observed in semiconducting nanowires by electron microscopy will be reviewed and their origins discussed. Their effects on electrical and optical properties will be illustrated with examples from GaSb, InAs, and ZnSe nanowires grown by MOCVD and MBE.

  12. Quantum transport in nanowire-based hybrid devices

    Energy Technology Data Exchange (ETDEWEB)

    Guenel, Haci Yusuf

    2013-05-08

    the Andreev reflection of quasiparticles at single interface, by suppressing the superconductivity of Al with small magnetic fields, as well as at double interface for zero magnetic field. The junction geometry was further changed by replacing the InAs nanowire with the InAs tube. In this case the GaAs/InAs core/shell tubular nanowires were contacted by two superconducting Nb electrodes. For this junction geometry we have demonstrated the interference of phase conjugated electron-hole pairs in the presence of coaxial magnetic. The effect of temperature, constant dc bias current and gate voltage on the magnetoresistance oscillations were examined. In the last part of this thesis, we have fabricated and characterized the single crystal Au nanowire-based proximity superconducting quantum interference device (SQUID).

  13. Quantum Dots in Vertical Nanowire Devices

    NARCIS (Netherlands)

    Van Weert, M.

    2010-01-01

    The research described in this thesis is aimed at constructing a quantum interface between a single electron spin and a photon, using a nanowire quantum dot. Such a quantum interface enables information transfer from a local electron spin to the polarization of a photon for long distance readout.

  14. Single-cell tracking reveals antibiotic-induced changes in mycobacterial energy metabolism.

    Science.gov (United States)

    Maglica, Željka; Özdemir, Emre; McKinney, John D

    2015-02-17

    ATP is a key molecule of cell physiology, but despite its importance, there are currently no methods for monitoring single-cell ATP fluctuations in live bacteria. This is a major obstacle in studies of bacterial energy metabolism, because there is a growing awareness that bacteria respond to stressors such as antibiotics in a highly individualistic manner. Here, we present a method for long-term single-cell tracking of ATP levels in Mycobacterium smegmatis based on a combination of microfluidics, time-lapse microscopy, and Förster resonance energy transfer (FRET)-based ATP biosensors. Upon treating cells with antibiotics, we observed that individual cells undergo an abrupt and irreversible switch from high to low intracellular ATP levels. The kinetics and extent of ATP switching clearly discriminate between an inhibitor of ATP synthesis and other classes of antibiotics. Cells that resume growth after 24 h of antibiotic treatment maintain high ATP levels throughout the exposure period. In contrast, antibiotic-treated cells that switch from ATP-high to ATP-low states never resume growth after antibiotic washout. Surprisingly, only a subset of these nongrowing ATP-low cells stains with propidium iodide (PI), a widely used live/dead cell marker. These experiments also reveal a cryptic subset of cells that do not resume growth after antibiotic washout despite remaining ATP high and PI negative. We conclude that ATP tracking is a more dynamic, sensitive, reliable, and discriminating marker of cell viability than staining with PI. This method could be used in studies to evaluate antimicrobial effectiveness and mechanism of action, as well as for high-throughput screening. New antimicrobials are urgently needed to stem the rising tide of antibiotic-resistant bacteria. All antibiotics are expected to affect bacterial energy metabolism, directly or indirectly, yet tools to assess the impact of antibiotics on the ATP content of individual bacterial cells are lacking. The

  15. Hydrogen gas sensing with networks of ultra-small palladium nanowires formed on filtration membranes.

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, X. Q.; Latimer, M. L.; Xiao, Z. L.; Panuganti, S.; Welp, U.; Kwok, W. K.; Xu, T. (Materials Science Division); (Northern Illinois Univ.)

    2010-11-29

    Hydrogen sensors based on single Pd nanowires show promising results in speed, sensitivity, and ultralow power consumption. The utilization of single Pd nanowires, however, face challenges in nanofabrication, manipulation, and achieving ultrasmall transverse dimensions. We report on hydrogen sensors that take advantage of single palladium nanowires in high speed and sensitivity and that can be fabricated conveniently. The sensors are based on networks of ultrasmall (<10 nm) palladium nanowires deposited onto commercially available filtration membranes. We investigated the sensitivities and response times of these sensors as a function of the thickness of the nanowires and also compared them with a continuous reference film. The superior performance of the ultrasmall Pd nanowire network based sensors demonstrates the novelty of our fabrication approach, which can be directly applied to palladium alloy and other hydrogen sensing materials.

  16. Enhanced magnetotransport in nanopatterned manganite nanowires.

    Science.gov (United States)

    Marín, Lorena; Morellón, Luis; Algarabel, Pedro A; Rodríguez, Luis A; Magén, César; De Teresa, José M; Ibarra, Manuel R

    2014-02-12

    We have combined optical and focused ion beam lithographies to produce large aspect-ratio (length-to-width >300) single-crystal nanowires of La2/3Ca1/3MnO3 that preserve their functional properties. Remarkably, an enhanced magnetoresistance value of 34% in an applied magnetic field of 0.1 T in the narrowest 150 nm nanowire is obtained. The strain release at the edges together with a destabilization of the insulating regions is proposed to account for this behavior. This opens new strategies to implement these structures in functional spintronic devices.

  17. Synthesis, magnetic anisotropy and optical properties of preferred oriented zinc ferrite nanowire arrays.

    Science.gov (United States)

    Gao, Daqiang; Shi, Zhenhua; Xu, Yan; Zhang, Jing; Yang, Guijin; Zhang, Jinlin; Wang, Xinhua; Xue, Desheng

    2010-05-22

    Preferred oriented ZnFe2O4 nanowire arrays with an average diameter of 16 nm were fabricated by post-annealing of ZnFe2 nanowires within anodic aluminum oxide templates in atmosphere. Selected area electron diffraction and X-ray diffraction exhibit that the nanowires are in cubic spinel-type structure with a [110] preferred crystallite orientation. Magnetic measurement indicates that the as-prepared ZnFe2O4 nanowire arrays reveal uniaxial magnetic anisotropy, and the easy magnetization direction is parallel to the axis of nanowire. The optical properties show the ZnFe2O4 nanowire arrays give out 370-520 nm blue-violet light, and their UV absorption edge is around 700 nm. The estimated values of direct and indirect band gaps for the nanowires are 2.23 and 1.73 eV, respectively.

  18. Synthesis, Magnetic Anisotropy and Optical Properties of Preferred Oriented Zinc Ferrite Nanowire Arrays

    Directory of Open Access Journals (Sweden)

    Xu Yan

    2010-01-01

    Full Text Available Abstract Preferred oriented ZnFe2O4 nanowire arrays with an average diameter of 16 nm were fabricated by post-annealing of ZnFe2 nanowires within anodic aluminum oxide templates in atmosphere. Selected area electron diffraction and X-ray diffraction exhibit that the nanowires are in cubic spinel-type structure with a [110] preferred crystallite orientation. Magnetic measurement indicates that the as-prepared ZnFe2O4 nanowire arrays reveal uniaxial magnetic anisotropy, and the easy magnetization direction is parallel to the axis of nanowire. The optical properties show the ZnFe2O4 nanowire arrays give out 370–520 nm blue-violet light, and their UV absorption edge is around 700 nm. The estimated values of direct and indirect band gaps for the nanowires are 2.23 and 1.73 eV, respectively.

  19. Synthesis and characterization of silver molybdate nanowires ...

    Indian Academy of Sciences (India)

    Wintec

    Abstract. Silver molybdate nanowires, nanorods and multipods like structures have been prepared by an organic free hydrothermal process using ammonium molybdate and silver nitrate solutions. The powder X-ray diffraction (PXRD) patterns reveal that the silver molybdate belongs to anorthic structure. The thickness,.

  20. Vesicle Encapsulation Studies Reveal that Single Molecule Ribozyme Heterogeneities Are Intrinsic

    Science.gov (United States)

    Okumus, Burak; Wilson, Timothy J.; Lilley, David M. J.; Ha, Taekjip

    2004-01-01

    Single-molecule measurements have revealed that what were assumed to be identical molecules can differ significantly in their static and dynamic properties. One of the most striking examples is the hairpin ribozyme, which was shown to exhibit two to three orders of magnitude variation in folding kinetics between molecules. Although averaged behavior of single molecules matched the bulk solution data, it was not possible to exclude rigorously the possibility that the variations around the mean values arose from different ways of interacting with the surface environment. To test this, we minimized the molecules' interaction with the surface by encapsulating DNA or RNA molecules inside 100- to 200-nm diameter unilamellar vesicles, following the procedures described by Haran and coworkers. Vesicles were immobilized on a supported lipid bilayer via biotin-streptavidin linkages. We observed no direct binding of DNA or RNA on the supported bilayer even at concentrations exceeding 100 nM, indicating that these molecules do not bind stably on the membrane. Since the vesicle diameter is smaller than the resolution of optical microscopy, the lateral mobility of the molecules is severely constrained, allowing long observation periods. We used fluorescence correlation spectroscopy, nuclease digestion, and external buffer exchange to show that the molecules were indeed encapsulated within the vesicles. When contained within vesicles, the natural form of the hairpin ribozyme exhibited 50-fold variation in both folding and unfolding rates in 0.5 mM Mg2+, which is identical to what was observed from the molecules tethered directly on the surface. This strongly indicates that the observed heterogeneity in dynamic properties does not arise as an artifact of surface attachment, but is intrinsic to the nature of the molecules. PMID:15454471

  1. Ultrafast carrier dynamics in band edge and broad deep defect emission ZnSe nanowires

    Science.gov (United States)

    Othonos, Andreas; Lioudakis, Emmanouil; Philipose, U.; Ruda, Harry E.

    2007-12-01

    Ultrafast carrier dynamics of ZnSe nanowires grown under different growth conditions have been studied. Transient absorption measurements reveal the dependence of the competing effects of state filling and photoinduced absorption on the probed energy states. The relaxation of the photogenerated carriers occupying defect states in the stoichiometric and Se-rich samples are single exponentials with time constants of 3-4ps. State filling is the main contribution for probe energies below 1.85eV in the Zn-rich grown sample. This ultrafast carrier dynamics study provides an important insight into the role that intrinsic point defects play in the observed photoluminescence from ZnSe nanowires.

  2. Single-base methylome analysis reveals dynamic epigenomic differences associated with water deficit in apple.

    Science.gov (United States)

    Xu, Jidi; Zhou, Shasha; Gong, Xiaoqing; Song, Yi; van Nocker, Steve; Ma, Fengwang; Guan, Qingmei

    2018-02-01

    Cytosine methylation is an essential feature of epigenetic regulation and is involved in various biological processes. Although cytosine methylation has been analysed at the genomic scale for several plant species, there is a general lack of understanding of the dynamics of global and genic DNA methylation in plants growing in environments challenged with biotic and abiotic stresses. In this study, we mapped cytosine methylation at single-base resolution in the genome of commercial apple (Malus x domestica), and analysed changes in methylation patterns associated with water deficit in representative drought-sensitive and drought-tolerant cultivars. We found that the apple genome exhibits ~54%, ~38% and ~8.5% methylation at CG, CHG and CHH sequence contexts, respectively. We additionally documented changes in gene expression associated with water deficit in an attempt to link methylation and gene expression changes. Global methylation and transcription analysis revealed that promoter-unmethylated genes showed higher expression levels than promoter-methylated genes. Gene body methylation appears to be positively correlated with gene expression. Water deficit stress was associated with changes in methylation at a multitude of genes, including those encoding transcription factors (TFs) and transposable elements (TEs). These results present a methylome map of the apple genome and reveal widespread DNA methylation alterations in response to water deficit stress. These data will be helpful for understanding potential linkages between DNA methylation and gene expression in plants growing in natural environments and challenged with abiotic and biotic stresses. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  3. Embedding Ba Monolayers and Bilayers in Boron Carbide Nanowires.

    Science.gov (United States)

    Yu, Zhiyang; Luo, Jian; Shi, Baiou; Zhao, Jiong; Harmer, Martin P; Zhu, Jing

    2015-11-26

    Aberration corrected high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) was employed to study the distribution of barium atoms on the surfaces and in the interiors of boron carbide based nanowires. Barium based dopants, which were used to control the crystal growth, adsorbed to the surfaces of the boron-rich crystals in the form of nanometer-thick surficial films (a type of surface complexion). During the crystal growth, these dopant-based surface complexions became embedded inside the single crystalline segments of fivefold boron-rich nanowires collectively, where they were converted to more ordered monolayer and bilayer modified complexions. Another form of bilayer complexion stabilized at stacking faults has also been identified. Numerous previous works suggested that dopants/impurities tended to segregate at the stacking faults or twinned boundaries. In contrast, our study revealed the previously-unrecognized possibility of incorporating dopants and impurities inside an otherwise perfect crystal without the association to any twin boundary or stacking fault. Moreover, we revealed the amount of barium dopants incorporated was non-equilibrium and far beyond the bulk solubility, which might lead to unique properties.

  4. The Conformational Dynamics of Cas9 Governing DNA Cleavage Are Revealed by Single-Molecule FRET.

    Science.gov (United States)

    Yang, Mengyi; Peng, Sijia; Sun, Ruirui; Lin, Jingdi; Wang, Nan; Chen, Chunlai

    2018-01-09

    Off-target binding and cleavage by Cas9 pose major challenges in its application. How the conformational dynamics of Cas9 govern its nuclease activity under on- and off-target conditions remains largely unknown. Here, using intra-molecular single-molecule fluorescence resonance energy transfer measurements, we revealed that Cas9 in apo, sgRNA-bound, and dsDNA/sgRNA-bound forms spontaneously transits among three major conformational states, mainly reflecting significant conformational mobility of the catalytic HNH domain. We also uncovered surprising long-range allosteric communication between the HNH domain and the RNA/DNA heteroduplex at the PAM-distal end to ensure correct positioning of the catalytic site, which demonstrated that a unique proofreading mechanism served as the last checkpoint before DNA cleavage. Several Cas9 residues were likely to mediate the allosteric communication and proofreading step. Modulating interactions between Cas9 and heteroduplex at the PAM-distal end by introducing mutations on these sites provides an alternative route to improve and optimize the CRISPR/Cas9 toolbox. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Mitochondrial specialization revealed by single muscle fiber proteomics: focus on the Krebs cycle.

    Science.gov (United States)

    Schiaffino, S; Reggiani, C; Kostrominova, T Y; Mann, M; Murgia, M

    2015-12-01

    We have developed a highly sensitive mass spectrometry-based proteomic workflow to examine the proteome of single muscle fibers. This study revealed significant differences in the mitochondrial proteome of the four major fiber types present in mouse skeletal muscle. Here, we focus on Krebs cycle enzymes and in particular on the differential distribution of the two mitochondrial isocitrate dehydrogenases, IDH2 and IDH3. Type 1/slow fibers contain high levels of IDH2 and relatively low levels of IDH3, whereas fast 2X and 2B fibers show an opposite expression pattern. The findings suggest that in skeletal muscle, IDH2 functions in the forward direction of the Krebs cycle and that substrate flux along the cycle occurs predominantly via IDH2 in type 1 fibers and via IDH3 in 2X and 2B fibers. IDH2-mediated conversion of isocitrate to α-ketoglutarate leads to the generation of NADPH, which is critical to buffering the H2O2 produced by the respiratory chain. Nicotinamide nucleotide transhydrogenase (NNT), the other major mitochondrial enzyme involved in NADPH generation, is also more abundant in type 1 fibers. We suggest that the continuously active type 1 fibers are endowed with a more efficient H2O2 scavenging capacity to cope with the higher levels of reactive oxygen species production. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Phylogenomics Controlling for Base Compositional Bias Reveals a Single Origin of Eusociality in Corbiculate Bees.

    Science.gov (United States)

    Romiguier, Jonathan; Cameron, Sydney A; Woodard, S Hollis; Fischman, Brielle J; Keller, Laurent; Praz, Christophe J

    2016-03-01

    As increasingly large molecular data sets are collected for phylogenomics, the conflicting phylogenetic signal among gene trees poses challenges to resolve some difficult nodes of the Tree of Life. Among these nodes, the phylogenetic position of the honey bees (Apini) within the corbiculate bee group remains controversial, despite its considerable importance for understanding the emergence and maintenance of eusociality. Here, we show that this controversy stems in part from pervasive phylogenetic conflicts among GC-rich gene trees. GC-rich genes typically have a high nucleotidic heterogeneity among species, which can induce topological conflicts among gene trees. When retaining only the most GC-homogeneous genes or using a nonhomogeneous model of sequence evolution, our analyses reveal a monophyletic group of the three lineages with a eusocial lifestyle (honey bees, bumble bees, and stingless bees). These phylogenetic relationships strongly suggest a single origin of eusociality in the corbiculate bees, with no reversal to solitary living in this group. To accurately reconstruct other important evolutionary steps across the Tree of Life, we suggest removing GC-rich and GC-heterogeneous genes from large phylogenomic data sets. Interpreted as a consequence of genome-wide variations in recombination rates, this GC effect can affect all taxa featuring GC-biased gene conversion, which is common in eukaryotes. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Integrative Single-Cell Transcriptomics Reveals Molecular Networks Defining Neuronal Maturation During Postnatal Neurogenesis.

    Science.gov (United States)

    Gao, Yu; Wang, Feifei; Eisinger, Brian E; Kelnhofer, Laurel E; Jobe, Emily M; Zhao, Xinyu

    2017-03-01

    In mammalian hippocampus, new neurons are continuously produced from neural stem cells throughout life. This postnatal neurogenesis may contribute to information processing critical for cognition, adaptation, learning, and memory, and is implicated in numerous neurological disorders. During neurogenesis, the immature neuron stage defined by doublecortin (DCX) expression is the most sensitive to regulation by extrinsic factors. However, little is known about the dynamic biology within this critical interval that drives maturation and confers susceptibility to regulatory signals. This study aims to test the hypothesis that DCX-expressing immature neurons progress through developmental stages via activity of specific transcriptional networks. Using single-cell RNA-seq combined with a novel integrative bioinformatics approach, we discovered that individual immature neurons can be classified into distinct developmental subgroups based on characteristic gene expression profiles and subgroup-specific markers. Comparisons between immature and more mature subgroups revealed novel pathways involved in neuronal maturation. Genes enriched in less mature cells shared significant overlap with genes implicated in neurodegenerative diseases, while genes positively associated with neuronal maturation were enriched for autism-related gene sets. Our study thus discovers molecular signatures of individual immature neurons and unveils potential novel targets for therapeutic approaches to treat neurodevelopmental and neurological diseases. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Revealing Two-State Protein-Protein Interaction of Calmodulin by Single-Molecule Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ruchuan; Hu, Dehong; Tan, Xin; Lu, H PETER.

    2006-08-09

    We report a single-molecule fluorescence resonance energy transfer (FRET) and polarization study of conformational dynamics of calmodulin (CaM) interacting with a target peptide, C28W of 28 amino-acid oligomer. The C28W peptide represents the essential binding sequence domain of the Ca-ATPase protein interacting with CaM, which is important in cellular signaling for the regulation of energy in metabolism. However, the mechanism of the CaM-C28W recognition complex formation is still unclear. The amino-terminal (N-terminal) domain of the CaM was labeled with a fluorescein-based arsenical hairpin binder (F1AsH) that enables our unambiguously probing the CaM N-terminal target-binding domain motions at a millisecond timescale without convolution of the probe-dye random motions. By analyzing the distribution of FRET efficiency between F1AsH labeled CaM and Texas Red labeled C28W and the polarization fluctuation dynamics and distributions of the CaM N-terminal domain, we reveal slow (at sub-second time scale) binding-unbinding motions of the N-terminal domain of the CaM in CaM-C28W complexes, which is a strong evidence of a two-state binding interaction of CaM-mediated cell signaling.

  9. Transcriptional profiling at whole population and single cell levels reveals somatosensory neuron molecular diversity

    Science.gov (United States)

    Chiu, Isaac M; Barrett, Lee B; Williams, Erika K; Strochlic, David E; Lee, Seungkyu; Weyer, Andy D; Lou, Shan; Bryman, Gregory S; Roberson, David P; Ghasemlou, Nader; Piccoli, Cara; Ahat, Ezgi; Wang, Victor; Cobos, Enrique J; Stucky, Cheryl L; Ma, Qiufu; Liberles, Stephen D; Woolf, Clifford J

    2014-01-01

    The somatosensory nervous system is critical for the organism's ability to respond to mechanical, thermal, and nociceptive stimuli. Somatosensory neurons are functionally and anatomically diverse but their molecular profiles are not well-defined. Here, we used transcriptional profiling to analyze the detailed molecular signatures of dorsal root ganglion (DRG) sensory neurons. We used two mouse reporter lines and surface IB4 labeling to purify three major non-overlapping classes of neurons: 1) IB4+SNS-Cre/TdTomato+, 2) IB4−SNS-Cre/TdTomato+, and 3) Parv-Cre/TdTomato+ cells, encompassing the majority of nociceptive, pruriceptive, and proprioceptive neurons. These neurons displayed distinct expression patterns of ion channels, transcription factors, and GPCRs. Highly parallel qRT-PCR analysis of 334 single neurons selected by membership of the three populations demonstrated further diversity, with unbiased clustering analysis identifying six distinct subgroups. These data significantly increase our knowledge of the molecular identities of known DRG populations and uncover potentially novel subsets, revealing the complexity and diversity of those neurons underlying somatosensation. DOI: http://dx.doi.org/10.7554/eLife.04660.001 PMID:25525749

  10. Single nucleus genome sequencing reveals high similarity among nuclei of an endomycorrhizal fungus.

    Directory of Open Access Journals (Sweden)

    Kui Lin

    2014-01-01

    Full Text Available Nuclei of arbuscular endomycorrhizal fungi have been described as highly diverse due to their asexual nature and absence of a single cell stage with only one nucleus. This has raised fundamental questions concerning speciation, selection and transmission of the genetic make-up to next generations. Although this concept has become textbook knowledge, it is only based on studying a few loci, including 45S rDNA. To provide a more comprehensive insight into the genetic makeup of arbuscular endomycorrhizal fungi, we applied de novo genome sequencing of individual nuclei of Rhizophagus irregularis. This revealed a surprisingly low level of polymorphism between nuclei. In contrast, within a nucleus, the 45S rDNA repeat unit turned out to be highly diverged. This finding demystifies a long-lasting hypothesis on the complex genetic makeup of arbuscular endomycorrhizal fungi. Subsequent genome assembly resulted in the first draft reference genome sequence of an arbuscular endomycorrhizal fungus. Its length is 141 Mbps, representing over 27,000 protein-coding gene models. We used the genomic sequence to reinvestigate the phylogenetic relationships of Rhizophagus irregularis with other fungal phyla. This unambiguously demonstrated that Glomeromycota are more closely related to Mucoromycotina than to its postulated sister Dikarya.

  11. Pseudotemporal Ordering of Single Cells Reveals Metabolic Control of Postnatal β Cell Proliferation.

    Science.gov (United States)

    Zeng, Chun; Mulas, Francesca; Sui, Yinghui; Guan, Tiffany; Miller, Nathanael; Tan, Yuliang; Liu, Fenfen; Jin, Wen; Carrano, Andrea C; Huising, Mark O; Shirihai, Orian S; Yeo, Gene W; Sander, Maike

    2017-05-02

    Pancreatic β cell mass for appropriate blood glucose control is established during early postnatal life. β cell proliferative capacity declines postnatally, but the extrinsic cues and intracellular signals that cause this decline remain unknown. To obtain a high-resolution map of β cell transcriptome dynamics after birth, we generated single-cell RNA-seq data of β cells from multiple postnatal time points and ordered cells based on transcriptional similarity using a new analytical tool. This analysis captured signatures of immature, proliferative β cells and established high expression of amino acid metabolic, mitochondrial, and Srf/Jun/Fos transcription factor genes as their hallmark feature. Experimental validation revealed high metabolic activity in immature β cells and a role for reactive oxygen species and Srf/Jun/Fos transcription factors in driving postnatal β cell proliferation and mass expansion. Our work provides the first high-resolution molecular characterization of state changes in postnatal β cells and paves the way for the identification of novel therapeutic targets to stimulate β cell regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Gibbs–Thomson Effect in Planar Nanowires: Orientation and Doping Modulated Growth

    KAUST Repository

    Shen, Youde

    2016-06-02

    Epitaxy-enabled bottom-up synthesis of self-assembled planar nanowires via the vapor-liquid-solid mechanism is an emerging and promising approach toward large-scale direct integration of nanowire-based devices without postgrowth alignment. Here, by examining large assemblies of indium tin oxide nanowires on yttria-stabilized zirconia substrate, we demonstrate for the first time that the growth dynamics of planar nanowires follows a modified version of the Gibbs-Thomson mechanism, which has been known for the past decades to govern the correlations between thermodynamic supersaturation, growth speed, and nanowire morphology. Furthermore, the substrate orientation strongly influences the growth characteristics of epitaxial planar nanowires as opposed to impact at only the initial nucleation stage in the growth of vertical nanowires. The rich nanowire morphology can be described by a surface-energy-dependent growth model within the Gibbs-Thomson framework, which is further modulated by the tin doping concentration. Our experiments also reveal that the cutoff nanowire diameter depends on the substrate orientation and decreases with increasing tin doping concentration. These results enable a deeper understanding and control over the growth of planar nanowires, and the insights will help advance the fabrication of self-assembled nanowire devices. © 2016 American Chemical Society.

  13. Quenching of Single-Walled Carbon Nanotube Fluorescence by Dissolved Oxygen Reveals Selective Single-Stranded DNA Affinities.

    Science.gov (United States)

    Zheng, Yu; Bachilo, Sergei M; Weisman, R Bruce

    2017-05-04

    The selective interactions between short oligomers of single-stranded DNA (ssDNA) and specific structures of single-walled carbon nanotubes have been exploited in powerful methods for nanotube sorting. We report here that nanotubes coated with ssDNA also display selective interactions through the selective quenching of nanotube fluorescence by dissolved oxygen. In aqueous solutions equilibrated under 1 atm of O 2 , emission intensity from semiconducting nanotubes is reduced by between 9 and 40%, varying with the combination of ssDNA sequence and nanotube structure. This quenching reverses promptly and completely on the removal of dissolved O 2 and may be due to physisorption on nanotube surfaces. Fluorescence quenching offers a simple, nondestructive approach for studying the structure-selective interactions of ssDNA with single-walled carbon nanotubes and identifying recognition sequences.

  14. Size-controlled growth of ZnO nanowires by catalyst-free high-pressure pulsed laser deposition and their optical properties

    Directory of Open Access Journals (Sweden)

    W. Z. Liu

    2011-06-01

    Full Text Available Single crystalline ZnO nanowires were fabricated on Si (100 substrates by catalyst-free high-pressure pulsed laser deposition. It is found that the nanowires start to form when the substrate temperature and growth pressure exceed the critical values of 700 oC and 700 Pa, and their size strongly depends on these growth conditions. That is, the aspect ratio of the nanowires decreases with increasing temperature or decreasing pressure. Such a size dependence on growth conditions was discussed in terms of surface migration and scattering of ablated atoms. Room-temperature photoluminescence spectrum of ZnO nanowires shows a dominant near-band-edge emission peak at 3.28 eV and a visible emission band centered at 2.39 eV. Temperature-dependent photoluminescence studies reveal that the former consists of the acceptor-bound exciton and free exciton emissions; while the latter varies in intensity with the aspect ratio of the nanowires and is attributed to the surface-mediated deep level emission.

  15. UV-enhanced room-temperature gas sensing of ZnGa2O4 nanowires functionalized with Au catalyst nanoparticles

    Science.gov (United States)

    Park, Sunghoon; An, Soyeon; Mun, Youngho; Lee, Chongmu

    2014-03-01

    ZnGa2O4 nanowires were synthesized using a thermal evaporation technique. Scanning electron microscopy, transmission electron microscopy, and X-ray diffraction revealed that the nanowires were single crystals 30-200 nm in diameter and ranged up to ˜100 μm in length. The sensing properties of multiple networked ZnGa2O4 nanowire sensors functionalized with Au catalyst nanoparticles with diameters of a few nanometers toward NO2 gas at room temperature under UV irradiation were examined. The sensors showed a remarkably enhanced response and far reduced response and recovery times toward NO2 gas at room temperature under 254 nm-ultraviolet (UV) illumination. The response of ZnGa2O4 nanowires to NO2 gas at room temperature increased from ˜100 to ˜861 % with increasing the UV intensity from 0 to 1.2 mW/cm2. The significant improvement in the response of ZnGa2O4 nanowires to NO2 gas by UV irradiation is attributed to the increased change in resistance due to the increase in the number of electrons participating in the reactions with NO2 molecules by photo-generation of electron-hole pairs.

  16. Investigation of superconducting properties of nanowires prepared by template synthesis

    DEFF Research Database (Denmark)

    Michotte, S.; Mátéfi-Tempfli, Stefan; Piraux, L.

    2003-01-01

    of the nanowires is small enough to ensure a one-dimensional superconducting regime in a wide temperature range below T. The non-zero resistance in the superconducting state and its variation caused by fluctuations of the superconducting order parameter were measured versus temperature, magnetic field, and applied......We report on the transport properties of single superconducting lead nanowires grown by an electrodeposition technique, embedded in a nanoporous track-etched polymer membrane. The nanowires are granular, have a uniform diameter of ∼40 nm and a very large aspect ratio (∼500). The diameter...

  17. Fabrication of reliable semiconductor nanowires by controlling crystalline structure.

    Science.gov (United States)

    Kim, Sangdan; Lim, Taekyung; Ju, Sanghyun

    2011-07-29

    One-dimensional SnO(2) nanomaterials with wide bandgap characteristics are attractive for flexible and/or transparent displays and high-performance nano-electronics. In this study, the crystallinity of SnO(2) nanowires was regulated by controlling their growth temperatures. Moreover, the correlation of the crystallinity of nanowires with optical and electrical characteristics was analyzed. When SnO(2) nanowires were grown at temperatures below 900 °C, they showed various growth directions and abnormal discontinuity in their crystal structures. On the other hand, most nanowires grown at 950 °C exhibited a regular growth trend in the direction of [100]. In addition, the low temperature photoluminescence measurement revealed that the higher growth temperatures of nanowires gradually decreased the 500 nm peak rather than the 620 nm peak. The former peak is derived from the surface defect related to the shallow energy level and affects nanowire surface states. Owing to crystallinity and defects, the threshold voltage range (maximum-minimum) of SnO(2) nanowire transistors was 1.5 V at 850 °C, 1.1 V at 900 °C, and 0.5 V at 950 °C, with dispersion characteristics dramatically decreased. This study successfully demonstrated the effects of nanowire crystallinity on optical and electrical characteristics. It also suggested that the optical and electrical characteristics of nanowire transistors could be regulated by controlling their growth temperatures in the course of producing SnO(2) nanowires.

  18. Formation and Device Application of Ge Nanowire Heterostructures via Rapid Thermal Annealing

    Directory of Open Access Journals (Sweden)

    Jianshi Tang

    2011-01-01

    Full Text Available We reviewed the formation of Ge nanowire heterostructure and its field-effect characteristics by a controlled reaction between a single-crystalline Ge nanowire and Ni contact pads using a facile rapid thermal annealing process. Scanning electron microscopy and transmission electron microscopy demonstrated a wide temperature range of 400~500°C to convert the Ge nanowire to a single-crystalline Ni2Ge/Ge/Ni2Ge nanowire heterostructure with atomically sharp interfaces. More importantly, we studied the effect of oxide confinement during the formation of nickel germanides in a Ge nanowire. In contrast to the formation of Ni2Ge/Ge/Ni2Ge nanowire heterostructures, a segment of high-quality epitaxial NiGe was formed between Ni2Ge with the confinement of Al2O3 during annealing. A twisted epitaxial growth mode was observed in both two Ge nanowire heterostructures to accommodate the large lattice mismatch in the NixGe/Ge interface. Moreover, we have demonstrated field-effect transistors using the nickel germanide regions as source/drain contacts to the Ge nanowire channel. Our Ge nanowire transistors have shown a high-performance p-type behavior with a high on/off ratio of 105 and a field-effect hole mobility of 210 cm2/Vs, which showed a significant improvement compared with that from unreacted Ge nanowire transistors.

  19. Silicon nanowire hybrid photovoltaics

    KAUST Repository

    Garnett, Erik C.

    2010-06-01

    Silicon nanowire Schottky junction solar cells have been fabricated using n-type silicon nanowire arrays and a spin-coated conductive polymer (PEDOT). The polymer Schottky junction cells show superior surface passivation and open-circuit voltages compared to standard diffused junction cells with native oxide surfaces. External quantum efficiencies up to 88% were measured for these silicon nanowire/PEDOT solar cells further demonstrating excellent surface passivation. This process avoids high temperature processes which allows for low-cost substrates to be used. © 2010 IEEE.

  20. Autoclave growth, magnetic, and optical properties of GdB6 nanowires

    Science.gov (United States)

    Han, Wei; Wang, Zhen; Li, Qidong; Liu, Huatao; Fan, Qinghua; Dong, Youzhong; Kuang, Quan; Zhao, Yanming

    2017-12-01

    High-quality single crystalline gadolinium hexaboride (GdB6) nanowires have been successfully prepared at very low temperatures of 200-240 °C by a high pressure solid state (HPSS) method in an autoclave with a new chemical reaction route, where Gd, H3BO3, Mg and I2 were used as raw materials. The crystal structure, morphology, valence, magnetic and optical absorption properties were investigated using XRD, FESEM, HRTEM, XPS, SQUID magnetometry and optical measurements. HRTEM images and SAED patterns reveal that the GdB6 nanowires are single crystalline with a preferred growth direction along [001]. The XPS spectrum suggests that the valence of Gd ion in GdB6 is trivalent. The effective magnetic momentum per Gd3+ in GdB6 is about 6.26 μB. The optical properties exhibit weak absorption in the visible light range, but relatively strong absorbance in the NIR and UV range. Low work function and high NIR absorption can make GdB6 nanowires a potential solar radiation shielding material for solar cells or other NIR blocking applications.

  1. Vertical Ge/Si Core/Shell Nanowire Junctionless Transistor.

    Science.gov (United States)

    Chen, Lin; Cai, Fuxi; Otuonye, Ugo; Lu, Wei D

    2016-01-13

    Vertical junctionless transistors with a gate-all-around (GAA) structure based on Ge/Si core/shell nanowires epitaxially grown and integrated on a ⟨111⟩ Si substrate were fabricated and analyzed. Because of efficient gate coupling in the nanowire-GAA transistor structure and the high density one-dimensional hole gas formed in the Ge nanowire core, excellent P-type transistor behaviors with Ion of 750 μA/μm were obtained at a moderate gate length of 544 nm with minimal short-channel effects. The experimental data can be quantitatively modeled by a GAA junctionless transistor model with few fitting parameters, suggesting the nanowire transistors can be fabricated reliably without introducing additional factors that can degrade device performance. Devices with different gate lengths were readily obtained by tuning the thickness of an etching mask film. Analysis of the histogram of different devices yielded a single dominate peak in device parameter distribution, indicating excellent uniformity and high confidence of single nanowire operation. Using two vertical nanowire junctionless transistors, a PMOS-logic inverter with near rail-to-rail output voltage was demonstrated, and device matching in the logic can be conveniently obtained by controlling the number of nanowires employed in different devices rather than modifying device geometry. These studies show that junctionless transistors based on vertical Ge/Si core/shell nanowires can be fabricated in a controlled fashion with excellent performance and may be used in future hybrid, high-performance circuits where bottom-up grown nanowire devices with different functionalities can be directly integrated with an existing Si platform.

  2. Structural Architecture of Prothrombin in Solution Revealed by Single Molecule Spectroscopy.

    Science.gov (United States)

    Pozzi, Nicola; Bystranowska, Dominika; Zuo, Xiaobing; Di Cera, Enrico

    2016-08-26

    The coagulation factor prothrombin has a complex spatial organization of its modular assembly that comprises the N-terminal Gla domain, kringle-1, kringle-2, and the C-terminal protease domain connected by three intervening linkers. Here we use single molecule Förster resonance energy transfer to access the conformational landscape of prothrombin in solution and uncover structural features of functional significance that extend recent x-ray crystallographic analysis. Prothrombin exists in equilibrium between two alternative conformations, open and closed. The closed conformation predominates (70%) and features an unanticipated intramolecular collapse of Tyr(93) in kringle-1 onto Trp(547) in the protease domain that obliterates access to the active site and protects the zymogen from autoproteolytic conversion to thrombin. The open conformation (30%) is more susceptible to chymotrypsin digestion and autoactivation, and features a shape consistent with recent x-ray crystal structures. Small angle x-ray scattering measurements of prothrombin wild type stabilized 70% in the closed conformation and of the mutant Y93A stabilized 80% in the open conformation directly document two envelopes that differ 50 Å in length. These findings reveal important new details on the conformational plasticity of prothrombin in solution and the drastic structural difference between its alternative conformations. Prothrombin uses the intramolecular collapse of kringle-1 onto the active site in the closed form to prevent autoactivation. The open-closed equilibrium also defines a new structural framework for the mechanism of activation of prothrombin by prothrombinase. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Rectification of radio frequency current in ferromagnetic nanowire

    OpenAIRE

    Yamaguchi, A.; Miyajima, H.; Ono, T.; Suzuki, Y.; Yuasa, S.; Tulapurkar, A.; Nakatani, Y.

    2006-01-01

    We report the rectification of a constant wave radio frequency (RF) current by using a single-layer magnetic nanowire; a direct-current voltage is resonantly generated when the RF current flows through the nanowire. The mechanism of the rectification is discussed in terms of the spin torque diode effect reported for magnetic tunnel junction devices and the rectification is shown to be direct attributable to resonant spin wave excitation by the RF current.

  4. Biofunctionalized Magnetic Nanowires

    KAUST Repository

    Kosel, Jurgen

    2013-12-19

    Magnetic nanowires can be used as an alternative method overcoming the limitations of current cancer treatments that lack specificity and are highly cytotoxic. Nanowires are developed so that they selectively attach to cancer cells via antibodies, potentially destroying them when a magnetic field induces their vibration. This will transmit a mechanical force to the targeted cells, which is expected to induce apoptosis on the cancer cells.

  5. Optical properties of nanocomposites: Percolation films, nanowires, and nanoholes

    Science.gov (United States)

    Podolskiy, Viktor Anatolyevich

    The optical properties of percolation films, nanowires, nanowire composites, and nanoholes composites were studied theoretically. Developed theory predicts the existence of localized plasmon modes in metal-dielectric percolation films when the metal concentration is close to the percolation threshold. Due to the plasmon localization local fields, local field fluctuations are extremely enhanced on the surface of percolation composite. This explains enormous enhancement of the nonlinear diffuse scattering by the percolation film. Also, localization of the plasmon modes and their coupling to optical phonon modes leads to the enhanced absorption by thick percolation composites. Our simulations show that spatial plasmon modes localization and unique local spectral characteristics of these modes make it possible to produce extremely sharp responses using the percolation composites. The developed technique suggests the existence of propagating polariton modes in the metal nanowire, which explains the unique spatial distribution of the electromagnetic field around the metal nanowire. Our simulations show the existence of sharp plasmon resonance in single nanowire and localized plasmon modes in nanowire percolation composite. The specific nanowire composite, which has negative refractive index is suggested. Development of recent Generalized Ohm's Law (GOL) approach allows us to explain extraordinary light transmittance by metal-nanoholes composite. The theory predicts large local field enhancement in such composite close to the transmittance resonance. The theory also predicts the plausibility of light nano-management using metal-holes composites.

  6. Manipulating connectivity and electrical conductivity in metallic nanowire networks.

    Science.gov (United States)

    Nirmalraj, Peter N; Bellew, Allen T; Bell, Alan P; Fairfield, Jessamyn A; McCarthy, Eoin K; O'Kelly, Curtis; Pereira, Luiz F C; Sorel, Sophie; Morosan, Diana; Coleman, Jonathan N; Ferreira, Mauro S; Boland, John J

    2012-11-14

    Connectivity in metallic nanowire networks with resistive junctions is manipulated by applying an electric field to create materials with tunable electrical conductivity. In situ electron microscope and electrical measurements visualize the activation and evolution of connectivity within these networks. Modeling nanowire networks, having a distribution of junction breakdown voltages, reveals universal scaling behavior applicable to all network materials. We demonstrate how local connectivity within these networks can be programmed and discuss material and device applications.

  7. Ultrashort pulse manipulation of ZnO nanowire growth.

    Science.gov (United States)

    Lee, Eric Tong Yih; Shimotsuma, Yasuhiko; Sakakura, Masaaki; Nishi, Masayuki; Miura, Kiyotaka; Hirao, Kazuyuki

    2009-01-01

    A procedure of femtosecond pulse laser irradiation was incorporated into the synthesis of zinc oxide (ZnO) nanowires in aqueous solutions to investigate the photo-initiated heterogeneous nucleation induced by the irradiation and the associated nanowire growth. Elongated ZnO nanowires with smooth planes and end tips were successfully grown following the irradiation process and subsequent hydrothermal treatments in a catalyst-free environment, compared to aggregated flower-like nanostructures with porous and rough surfaces, grown from homogeneous nucleation without laser irradiation. Studies using femtosecond laser systems at 1 kHz and 250 kHz repetition rates show that the pulse energy is critical in the heterogeneous nucleation process for the growth of ZnO nanowires. A minimum threshold pulse energy, 200 microJ/pulse for the 1 kHz system and 2.4 microJ/pulse for 250 kHz, is observed beyond which well-defined and individually separated nanowires were grown. Thermal effect caused by the 250 kHz repetition rate provides a counter-balance to the low pulse energy required for the growth process. XRD analysis of the nanowires reveals a hexagonal structure while photoluminescence shows emission at about 385 nm. The overall results show that the pulse energy is critical for heterogeneous nucleation while the irradiation duration affects the density of nucleation, which together with the hydrothermal treatment temperature influence the growth rate and thus the morphology of the nanowires.

  8. Domain wall propagation tuning in magnetic nanowires through geometric modulation

    Energy Technology Data Exchange (ETDEWEB)

    Arzuza, L.C.C., E-mail: luisarzuza179@gmail.com [Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, 13083-859 Campinas (SP) (Brazil); Universidad de la Costa, Departamento de Ciencias Naturales y Exactas, Calle 58 No. 55-66, Barranquilla (Colombia); López-Ruiz, R. [Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, 13083-859 Campinas (SP) (Brazil); Salazar-Aravena, D. [Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, 13083-859 Campinas (SP) (Brazil); Departamento de Física, Facultad de Ciencias, Universidad de Tarapacá, 1000007 Arica (Chile); Knobel, M. [Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, 13083-859 Campinas (SP) (Brazil); Brazilian Nanotechnology National Laboratory, Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), 13083-970 Campinas (SP) (Brazil); Béron, F.; Pirota, K.R. [Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, 13083-859 Campinas (SP) (Brazil)

    2017-06-15

    Highlights: • The modulated nanowires dynamics occurs through two reversal modes. • Modulated nanowires show a change in the χ in contrast to homogeneous ones. • The FORC method reveals a non-uniform stray field due to shape modulation. - Abstract: The magnetic behavior of nickel modulated nanowires embedded in porous alumina membranes is investigated. Their diameters exhibit a sharp transition between below (35 nm) and above (52 nm) the theoretical limit for transverse and vortex domain walls. Magnetic hysteresis loops and first-order reversal curves (FORCs) were measured on several ordered nanowire arrays with different wide-narrow segment lengths ratio and compared with those from homogenous nanowires. The experimental magnetic response evidences a rather complex susceptibility behavior for nanowires with modulated diameter. Micromagnetic simulations on isolated and first-neighbors arrays of nanowires show that the domain wall structure, which depends on the segment diameter, suffers a transformation while crossing the diameter modulation, but without any pinning. The experimental array magnetic behavior can be ascribed to a heterogeneous stray field induced by the diameter modulation, yielding a stronger interaction field at the wide extremity than at the narrow one. The results evidence the possibility to control the domain wall propagation and morphology by modulating the lateral aspect of the magnetic entity.

  9. Promoting cell proliferation using water dispersible germanium nanowires.

    Directory of Open Access Journals (Sweden)

    Michael Bezuidenhout

    Full Text Available Group IV Nanowires have strong potential for several biomedical applications. However, to date their use remains limited because many are synthesised using heavy metal seeds and functionalised using organic ligands to make the materials water dispersible. This can result in unpredicted toxic side effects for mammalian cells cultured on the wires. Here, we describe an approach to make seedless and ligand free Germanium nanowires water dispersible using glutamic acid, a natural occurring amino acid that alleviates the environmental and health hazards associated with traditional functionalisation materials. We analysed the treated material extensively using Transmission electron microscopy (TEM, High resolution-TEM, and scanning electron microscope (SEM. Using a series of state of the art biochemical and morphological assays, together with a series of complimentary and synergistic cellular and molecular approaches, we show that the water dispersible germanium nanowires are non-toxic and are biocompatible. We monitored the behaviour of the cells growing on the treated germanium nanowires using a real time impedance based platform (xCELLigence which revealed that the treated germanium nanowires promote cell adhesion and cell proliferation which we believe is as a result of the presence of an etched surface giving rise to a collagen like structure and an oxide layer. Furthermore this study is the first to evaluate the associated effect of Germanium nanowires on mammalian cells. Our studies highlight the potential use of water dispersible Germanium Nanowires in biological platforms that encourage anchorage-dependent cell growth.

  10. Single-Cell (Meta-Genomics of a Dimorphic Candidatus Thiomargarita nelsonii Reveals Genomic Plasticity

    Directory of Open Access Journals (Sweden)

    Beverly E. Flood

    2016-05-01

    Full Text Available The genus Thiomargarita includes the world’s largest bacteria. But as uncultured organisms, their physiology, metabolism, and basis for their gigantism are not well understood. Thus a genomics approach, applied to a single Candidatus Thiomargarita nelsonii cell was employed to explore the genetic potential of one of these enigmatic giant bacteria. The Thiomargarita cell was obtained from an assemblage of budding Ca. T. nelsonii attached to a provannid gastropod shell from Hydrate Ridge, a methane seep offshore of Oregon, USA. Here we present a manually curated genome of Bud S10 resulting from a hybrid assembly of long Pacific Biosciences and short Illumina sequencing reads. With respect to inorganic carbon fixation and sulfur oxidation pathways, the Ca. T. nelsonii Hydrate Ridge Bud S10 genome was similar to marine sister taxa within the family Beggiatoaceae. However, the Bud S10 genome contains genes suggestive of the genetic potential for lithotrophic growth on arsenite and perhaps hydrogen. The genome also revealed that Bud S10 likely respires nitrate via two pathways: a complete denitrification pathway and a dissimilatory nitrate reduction to ammonia pathway. Both pathways have been predicted, but not previously fully elucidated, in the genomes of other large, vacuolated, sulfur-oxidizing bacteria.Surprisingly, the genome also had a high number of unusual features for a bacterium to include the largest number of metacaspases and introns ever reported in a bacterium. Also present, are a large number of other mobile genetic elements, such as insertion sequence transposable elements and miniature inverted-repeat transposable elements (MITEs. In some cases, mobile genetic elements disrupted key genes in metabolic pathways. For example, a MITE interrupts hupL, which encodes the large subunit of the hydrogenase in hydrogen oxidation. Moreover, we detected a group I intron in one of the most critical genes in the sulfur oxidation pathway, dsr

  11. Semiconductor Nanowires from Materials Science and Device Physics Perspectives

    Science.gov (United States)

    Samuelson, Lars

    2005-03-01

    Realization of extremely down-scaled devices gives tough challenges related to technology and materials science. One reason for the concern is that top-down fabricated nano-devices tend to have their properties dominated by process-induced damage, rendering ultra-small devices not so useful. Alternatively, bottom-up fabrication methods may allow dimensions on the scale even below 10 nm, still with superb device properties. I will in this talk describe our research on catalytically induced growth of semiconductor nanowires. Our method uses catalytic gold nanoparticles, allowing tight control of diameter as well as position of where the nanowire grows, with our work completely focused on epitaxially nucleated nanowires in which the nanowire structure can be seen as a coherent, monolithic extension of the crystalline substrate material. One of the most important achievements in this field of research is the realization of atomically abrupt heterostructures within nanowires, in which the material composition can be altered within only one or a few monolayers, thus allowing 1D heterostructure devices to be realized. This has allowed a variety of quantum devices to be realized, such as single-electron transistors, resonant tunneling devices as well as memory storage devices. A related recent field of progress has been the realization of ideally nucleated III-V nanowires on Si substrates, cases where we have also reported functioning III-V heterostructure device structures on Si. All of these device related challenges evolve from an improved understanding of the materials science involved in nucleation of nanowires, in altering of composition of the growing nanowire, in control of the growth direction etc. I will give examples of these materials science issues and will especially dwell on the opportunities to form new kinds of materials, e.g. as 3D complex nanowire structures, resembling nanotrees or nanoforests.

  12. A comparative study of absorption in vertically and laterally oriented InP core-shell nanowire photovoltaic devices.

    Science.gov (United States)

    Nowzari, Ali; Heurlin, Magnus; Jain, Vishal; Storm, Kristian; Hosseinnia, Ali; Anttu, Nicklas; Borgström, Magnus T; Pettersson, Håkan; Samuelson, Lars

    2015-03-11

    We have compared the absorption in InP core-shell nanowire p-i-n junctions in lateral and vertical orientation. Arrays of vertical core-shell nanowires with 400 nm pitch and 280 nm diameter, as well as corresponding lateral single core-shell nanowires, were configured as photovoltaic devices. The photovoltaic characteristics of the samples, measured under 1 sun illumination, showed a higher absorption in lateral single nanowires compared to that in individual vertical nanowires, arranged in arrays with 400 nm pitch. Electromagnetic modeling of the structures confirmed the experimental observations and showed that the absorption in a vertical nanowire in an array depends strongly on the array pitch. The modeling demonstrated that, depending on the array pitch, absorption in a vertical nanowire can be lower or higher than that in a lateral nanowire with equal absorption predicted at a pitch of 510 nm for our nanowire geometry. The technology described in this Letter facilitates quantitative comparison of absorption in laterally and vertically oriented core-shell nanowire p-i-n junctions and can aid in the design, optimization, and performance evaluation of nanowire-based core-shell photovoltaic devices.

  13. B-doping of vapour-liquid-solid grown Au-catalysed and Al-catalysed Si nanowires: effects of B2H6 gas during Si nanowire growth and B-doping by a post-synthesis in situ plasma process

    International Nuclear Information System (INIS)

    Whang, S-J; Lee, S; Chi, D-Z; Yang, W-F; Cho, B-J; Liew, Y-F; Kwong, D-L

    2007-01-01

    In this study, B-doping of vapour-liquid-solid (VLS) grown Si nanowires was studied. First, the different effects of B 2 H 6 gas on nanowire structures during VLS growth of both Au-catalysed and Al-catalysed Si nanowires were investigated. While Au-catalysed Si nanowires grown with B 2 H 6 gas reveal significant morphological changes, resulting in cone-shaped nanowires, structures comparable to un-doped nanowires were observed from Al-catalysed Si nanowires, which may be explained by thermodynamic properties of Au and Al catalyst in the presence of boron. In addition, successful incorporation of boron and controllability of its concentration in Si nanowires, maintaining the structural quality of the nanowires, was achieved by a post-synthesis in situ plasma B 2 H 6 doping process

  14. Individual SnO2 nanowire transistors fabricated by the gold microwire mask method

    International Nuclear Information System (INIS)

    Sun Jia; Tang Qingxin; Lu Aixia; Jiang Xuejiao; Wan Qing

    2009-01-01

    A gold microwire mask method is developed for the fabrication of transistors based on single lightly Sb-doped SnO 2 nanowires. Damage of the nanowire's surface can be avoided without any thermal annealing and surface modification, which is very convenient for the fundamental electrical and photoelectric characterization of one-dimensional inorganic nanomaterials. Transport measurements of the individual SnO 2 nanowire devices demonstrate the high-performance n-type field effect transistor characteristics without significant hysteresis in the transfer curves. The current on/off ratio and the subthreshold swing of the nanowire transistors are found to be 10 6 and 240 mV/decade, respectively.

  15. Mechanism of the superior mechanical strength of nanometer-sized metal single crystals revealed

    KAUST Repository

    Afify, N. D.

    2013-10-01

    Clear understanding of the superior mechanical strength of nanometer-sized metal single crystals is required to derive advanced mechanical components retaining such superiority. Although high quality studies have been reported on nano-crystalline metals, the superiority of small single crystals has neither been fundamentally explained nor quantified to this date. Here we present a molecular dynamics study of aluminum single crystals in the size range from 4.1 nm to 40.5 nm. We show that the ultimate mechanical strength deteriorates exponentially as the single crystal size increases. The small crystals superiority is explained by their ability to continuously form vacancies and to recover them. © 2013 Published by Elsevier B.V.

  16. Electrical transport and thermoelectric properties of boron carbide nanowires

    Science.gov (United States)

    Kirihara, Kazuhiro; Mukaida, Masakazu; Shimizu, Yoshiki

    2017-04-01

    The electrical transport and thermoelectric property of boron carbide nanowires synthesized by a carbothermal method are reported. It is demonstrated that the nanowires achieve a higher Seebeck coefficient and power factor than those of the bulk samples. The conduction mechanism of the nanowires at low temperatures below 300 K is different from that of the sintered-polycrystalline and single-crystal bulk samples. In a temperature range of 200-450 K, there is a crossover between electrical conduction by variable-range hopping and phonon-assisted hopping. The inhomogeneous carbon concentration and planar defects, such as twins and stacking faults, in the nanowires are thought to modify the bonding nature and electronic structure of the boron carbide crystal substantially, causing differences in the electrical conductivity and Seebeck coefficient. The effect of boundary scattering of phonon at nanostructured surface on the thermal conductivity reduction is discussed.

  17. Oligo and Poly-thiophene/Zno Hybrid Nanowire Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Briseno, Alejandro L.; Holcombe, Thomas W.; Boukai, Akram I.; Garnett, Erik C.; Shelton, Steve W.; Frechet, Jean J. M.; Yang, Peidong

    2009-11-03

    We demonstrate the basic operation of an organic/inorganic hybrid single nanowire solar cell. End-functionalized oligo- and polythiophenes were grafted onto ZnO nanowires to produce p-n heterojunction nanowires. The hybrid nanostructures were characterized via absorption and electron microscopy to determine the optoelectronic properties and to probe the morphology at the organic/inorganic interface. Individual nanowire solar cell devices exhibited well-resolved characteristics with efficiencies as high as 0.036percent, Jsc = 0.32 mA/cm2, Voc = 0.4 V, and a FF = 0.28 under AM 1.5 illumination with 100 mW/cm2 light intensity. These individual test structures will enable detailed analysis to be carried out in areas that have been difficult to study in bulk heterojunction devices.

  18. Bacterial capture efficiency in fluid bloodstream improved by bendable nanowires.

    Science.gov (United States)

    Liu, Lizhi; Chen, Sheng; Xue, Zhenjie; Zhang, Zhen; Qiao, Xuezhi; Nie, Zongxiu; Han, Dong; Wang, Jianlong; Wang, Tie

    2018-02-06

    Bacterial infectious diseases, such as sepsis, can lead to impaired function in the lungs, kidneys, and other vital organs. Although established technologies have been designed for the extracorporeal removal of bacteria, a high flow velocity of the true bloodstream might result in low capture efficiency and prevent the realization of their full clinical potential. Here, we develop a dialyzer made by three-dimensional carbon foam pre-grafted with nanowires to isolate bacteria from unprocessed blood. The tip region of polycrystalline nanowires is bent readily to form three-dimensional nanoclaws when dragged by the molecular force of ligand-receptor, because of a decreasing Young's moduli from the bottom to the tip. The bacterial capture efficiency was improved from ~10% on carbon foam and ~40% on unbendable single-crystalline nanowires/carbon foam to 97% on bendable polycrystalline nanowires/carbon foam in a fluid bloodstream of 10 cm s -1 velocity.

  19. Nonlinearly Additive Forces in Multivalent Ligand Binding to a Single Protein Revealed with Force Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ratto, T V; Rudd, R E; Langry, K C; Balhorn, R L; McElfresh, M W

    2005-07-15

    We present evidence of multivalent interactions between a single protein molecule and multiple carbohydrates at a pH where the protein can bind four ligands. The evidence is based not only on measurements of the force required to rupture the bonds formed between ConcanavalinA (ConA) and {alpha}-D-mannose, but also on an analysis of the polymer-extension force curves to infer the polymer architecture that binds the protein to the cantilever and the ligands to the substrate. We find that although the rupture forces for multiple carbohydrate connections to a single protein are larger than the rupture force for a single connection, they do not scale additively with increasing number. Specifically, the most common rupture forces are approximately 46, 66, and 85 pN, which we argue corresponds to 1, 2, and 3 ligands being pulled simultaneously from a single protein as corroborated by an analysis of the linkage architecture. As in our previous work polymer tethers allow us to discriminate between specific and non-specific binding. We analyze the binding configuration (i.e. serial versus parallel connections) through fitting the polymer stretching data with modified Worm-Like Chain (WLC) models that predict how the effective stiffness of the tethers is affected by multiple connections. This analysis establishes that the forces we measure are due to single proteins interacting with multiple ligands, the first force spectroscopy study that establishes single-molecule multivalent binding unambiguously.

  20. A Novel Discovery of Growth Process for Ag Nanowires and Plausible Mechanism

    Directory of Open Access Journals (Sweden)

    Jiejun Zhu

    2016-01-01

    Full Text Available A novel growth process of silver nanowires was revealed by tracing the morphology evolution of Ag nanostructures fabricated by an improved polyol process. A mixture of Ag nanowires and nanoparticles was obtained with the usage of PVP-K25 (MW = 38,000. The products sampled at different reaction time were studied in detail using UV-visible absorption spectra and transmission electron microscopy (TEM. An interesting phenomenon unknown in the past was observed where Ag nanoparticles undergo an important dissolution-recrystallization process and Ag nanowires are formed at the expense of the preformed Ag nanoparticles. A plausible novel growth mechanism for the silver nanowires was proposed.

  1. In situ TEM observation of the growth and decomposition of monoclinic W18O49 nanowires

    International Nuclear Information System (INIS)

    Chen, C L; Mori, H

    2009-01-01

    The growth of monoclinic W 18 O 49 nanowires by heat treatment of a tungsten filament at ∼873 K and the decomposition of these nanowires under 200 keV electron irradiation at ∼1023 K have been investigated using in situ transmission electron microscopy (TEM). In situ TEM observation of the growth confirmed the vapor-solid growth mechanism of the monoclinic W 18 O 49 nanowires. In situ irradiation experiments revealed the formation of metallic bcc tungsten from monoclinic W 18 O 49 nanowires under 200 keV electron irradiation.

  2. Single cell amperometry reveals curcuminoids modulate the release of neurotransmitters during exocytosis from PC12 cells

    Science.gov (United States)

    Li, Xianchan; Mohammadi, Amir Saeid; Ewing, Andrew G.

    2016-01-01

    We used single cell amperometry to examine whether curcumin and bisdemethoxycurcumin (BDMC), substances that are suggested to affect learning and memory, can modulate monoamine release from PC12 cells. Our results indicate both curcumin and BDMC need long-term treatment (72 h in this study) to influence exocytosis effectively. By analyzing the parameters calculated from single exocytosis events, it can be concluded that curcumin and BDMC affect exocytosis through different mechanisms. Curcumin accelerates the event dynamics with no significant change of the monoamine amount released from single exocytotic events, whereas BDMC attenuates the amount from single exocytotic event with no significant change of the event dynamics. This comparison of the effect of curcumin and BDMC on exocytosis at the single cell level brings insight into their different mechanisms, which might lead to different biological actions. The effect of curcumin and BDMC on the opening and closing of the exocytotic fusion pore were also investigated. These results might be helpful for understanding the improvement of learning and memory and the anti-depression properties of curcuminoids. PMID:28579928

  3. A novel method for massive synthesis of SnO2 nanowires

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 36; Issue 6 ... This paper reports a simple, inexpensive and fast method to prepare SnO2 nanowires. ... These SnO2 nanowires do not grow in one direction as those synthesized by other methods do, and are perfect single crystals without any dislocation or point defects ...

  4. A novel method for massive synthesis of SnO2 nanowires

    Indian Academy of Sciences (India)

    This paper reports a simple, inexpensive and fast method to prepare SnO2 nanowires. A large amount of ultra-long high purity single-crystalline SnO2 nanowires with rutile structure, that is over hundreds of micrometers in length and 20–100 nm in diameter, have been synthesized through a one-step typical thermite ...

  5. Enhanced Photon Extraction from a Nanowire Quantum Dot Using a Bottom-Up Photonic Shell

    DEFF Research Database (Denmark)

    Jeannin, Mathieu; Cremel, Thibault; Häyrynen, Teppo

    2017-01-01

    Semiconductor nanowires offer the possibility to grow high-quality quantum-dot heterostructures, and, in particular, CdSe quantum dots inserted in ZnSe nanowires have demonstrated the ability to emit single photons up to room temperature. In this paper, we demonstrate a bottom-up approach...

  6. Probing spin helical surface states in topological HgTe nanowires

    Science.gov (United States)

    Ziegler, J.; Kozlovsky, R.; Gorini, C.; Liu, M.-H.; Weishäupl, S.; Maier, H.; Fischer, R.; Kozlov, D. A.; Kvon, Z. D.; Mikhailov, N.; Dvoretsky, S. A.; Richter, K.; Weiss, D.

    2018-01-01

    Nanowires with helical surface states represent key prerequisites for observing and exploiting phase-coherent topological conductance phenomena, such as spin-momentum locked quantum transport or topological superconductivity. We demonstrate in a joint experimental and theoretical study that gated nanowires fabricated from high-mobility strained HgTe, known as a bulk topological insulator, indeed preserve the topological nature of the surface states, that moreover extend phase-coherently across the entire wire geometry. The phase-coherence lengths are enhanced up to 5 μ m when tuning the wires into the bulk gap, so as to single out topological transport. The nanowires exhibit distinct conductance oscillations, both as a function of the flux due to an axial magnetic field and of a gate voltage. The observed h /e -periodic Aharonov-Bohm-type modulations indicate surface-mediated quasiballistic transport. Furthermore, an in-depth analysis of the scaling of the observed gate-dependent conductance oscillations reveals the topological nature of these surface states. To this end we combined numerical tight-binding calculations of the quantum magnetoconductance with simulations of the electrostatics, accounting for the gate-induced inhomogeneous charge carrier densities around the wires. We find that helical transport prevails even for strongly inhomogeneous gating and is governed by flux-sensitive high-angular momentum surface states that extend around the entire wire circumference.

  7. Single cell Hi-C reveals cell-to-cell variability in chromosome structure

    Science.gov (United States)

    Schoenfelder, Stefan; Yaffe, Eitan; Dean, Wendy; Laue, Ernest D.; Tanay, Amos; Fraser, Peter

    2013-01-01

    Large-scale chromosome structure and spatial nuclear arrangement have been linked to control of gene expression and DNA replication and repair. Genomic techniques based on chromosome conformation capture assess contacts for millions of loci simultaneously, but do so by averaging chromosome conformations from millions of nuclei. Here we introduce single cell Hi-C, combined with genome-wide statistical analysis and structural modeling of single copy X chromosomes, to show that individual chromosomes maintain domain organisation at the megabase scale, but show variable cell-to-cell chromosome territory structures at larger scales. Despite this structural stochasticity, localisation of active gene domains to boundaries of territories is a hallmark of chromosomal conformation. Single cell Hi-C data bridge current gaps between genomics and microscopy studies of chromosomes, demonstrating how modular organisation underlies dynamic chromosome structure, and how this structure is probabilistically linked with genome activity patterns. PMID:24067610

  8. Multispectral imaging with vertical silicon nanowires.

    Science.gov (United States)

    Park, Hyunsung; Crozier, Kenneth B

    2013-01-01

    Multispectral imaging is a powerful tool that extends the capabilities of the human eye. However, multispectral imaging systems generally are expensive and bulky, and multiple exposures are needed. Here, we report the demonstration of a compact multispectral imaging system that uses vertical silicon nanowires to realize a filter array. Multiple filter functions covering visible to near-infrared (NIR) wavelengths are simultaneously defined in a single lithography step using a single material (silicon). Nanowires are then etched and embedded into polydimethylsiloxane (PDMS), thereby realizing a device with eight filter functions. By attaching it to a monochrome silicon image sensor, we successfully realize an all-silicon multispectral imaging system. We demonstrate visible and NIR imaging. We show that the latter is highly sensitive to vegetation and furthermore enables imaging through objects opaque to the eye.

  9. Selective formation of tungsten nanowires

    Directory of Open Access Journals (Sweden)

    Bien Daniel

    2011-01-01

    Full Text Available Abstract We report on a process for fabricating self-aligned tungsten (W nanowires with polycrystalline silicon core. Tungsten nanowires as thin as 10 nm were formed by utilizing polysilicon sidewall transfer technology followed by selective deposition of tungsten by chemical vapor deposition (CVD using WF6 as the precursor. With selective CVD, the process is self-limiting whereby the tungsten formation is confined to the polysilicon regions; hence, the nanowires are formed without the need for lithography or for additional processing. The fabricated tungsten nanowires were observed to be perfectly aligned, showing 100% selectivity to polysilicon and can be made to be electrically isolated from one another. The electrical conductivity of the nanowires was characterized to determine the effect of its physical dimensions. The conductivity for the tungsten nanowires were found to be 40% higher when compared to doped polysilicon nanowires of similar dimensions.

  10. Hierarchical magnetic assembly of nanowires

    International Nuclear Information System (INIS)

    Hangarter, Carlos M; Rheem, Youngwoo; Yoo, Bongyoung; Yang, Eui-Hyeok; Myung, Nosang V

    2007-01-01

    Magnetic alignment is reported as a facile technique for assembling nanowires into hierarchical structures. Cross junction and T junction nanowire networks are demonstrated using a sequential alignment technique on unpatterned substrates and predefined lithographically patterned ferromagnetic electrodes. The formation of T junctions prevails as nanowires from the first alignment behave as ferromagnetic electrodes under the external magnetic field of the second alignment. The presence of prefabricated ferromagnetic electrodes dominates dipole interactions of localized nanowires for preferential alignment. Application of a magnetic field from a cylindrical coaxial magnet has also been utilized to form radially aligned nanowires. The magnetic field of the coaxial cylindrical magnet produced a dense, concentric nanowire configuration at the centre of the magnetic field as a consequence of the radial field gradient, and sparse nanowire arrangements in the peripheral field, which were utilized as interconnects with a concentric electrode design

  11. Bright trions in direct-bandgap silicon nanocrystals revealed bylow-temperature single-nanocrystal spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Kůsová, Kateřina; Pelant, Ivan; Valenta, J.

    2015-01-01

    Roč. 4, Oct (2015), e336 ISSN 2047-7538 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA ČR GPP204/12/P235 Institutional support: RVO:68378271 Keywords : silicon nanocrystals * single-nanocrystal spectroscopy * luminescing trions Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 13.600, year: 2015

  12. Dynamics of lineage commitment revealed by single-cell transcriptomics of differentiating embryonic stem cells

    NARCIS (Netherlands)

    Semrau, Stefan; Goldmann, Johanna E; Soumillon, Magali; Mikkelsen, Tarjei S; Jaenisch, Rudolf; van Oudenaarden, Alexander

    2017-01-01

    Gene expression heterogeneity in the pluripotent state of mouse embryonic stem cells (mESCs) has been increasingly well-characterized. In contrast, exit from pluripotency and lineage commitment have not been studied systematically at the single-cell level. Here we measure the gene expression

  13. The volumes and transcript counts of single cells reveal concentration homeostasis and capture biological noise.

    NARCIS (Netherlands)

    Kempe, H.; Schwabe, A.; Crémazy, F.; Verschure, P.J.; Bruggeman, F.J.

    2015-01-01

    Transcriptional stochasticity can be measured by counting the number of mRNA molecules per cell. Cell-to-cell variability is best captured in terms of concentration rather than molecule counts, because reaction rates depend on concentrations. We combined single-molecule mRNA counting with

  14. Deep amplicon sequencing reveals mixed phytoplasma infection within single grapevine plants

    DEFF Research Database (Denmark)

    Nicolaisen, Mogens; Contaldo, Nicoletta; Makarova, Olga

    2011-01-01

    The diversity of phytoplasmas within single plants has not yet been fully investigated. In this project, deep amplicon sequencing was used to generate 50,926 phytoplasma sequences from 11 phytoplasma-infected grapevine samples from a PCR amplicon in the 5' end of the 16S region. After clustering ...

  15. BIOGEOGRAPHY OF CLADOPHOROPSIS-MEMBRANACEA (SIPHONOCLADALES, CHLOROPHYTA) AS REVEALED BY SINGLE COPY DNA DISTANCES

    NARCIS (Netherlands)

    KOOISTRA, WHCF; BOELEBOS, SA; STAM, WT; VANDENHOEK, C

    Single copy DNA measurements were determined among isolates of Cladophoropsis membranacea from the Caribbean, Mauritania, the Canary Islands and the Red Sea using DNA-DNA hybridization. The genotypic relationships found amongst the Atlantic isolates demonstrate that the present day distribution

  16. Nonequilibrium Chemical Effects in Single-Molecule SERS Revealed by Ab Initio Molecular Dynamics Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Sean A.; Apra, Edoardo; Govind, Niranjan; Hess, Wayne P.; El-Khoury, Patrick Z.

    2017-02-03

    Recent developments in nanophotonics have paved the way for achieving significant advances in the realm of single molecule chemical detection, imaging, and dynamics. In particular, surface-enhanced Raman scattering (SERS) is a powerful analytical technique that is now routinely used to identify the chemical identity of single molecules. Understanding how nanoscale physical and chemical processes affect single molecule SERS spectra and selection rules is a challenging task, and is still actively debated. Herein, we explore underappreciated chemical phenomena in ultrasensitive SERS. We observe a fluctuating excited electronic state manifold, governed by the conformational dynamics of a molecule (4,4’-dimercaptostilbene, DMS) interacting with a metallic cluster (Ag20). This affects our simulated single molecule SERS spectra; the time trajectories of a molecule interacting with its unique local environment dictates the relative intensities of the observable Raman-active vibrational states. Ab initio molecular dynamics of a model Ag20-DMS system are used to illustrate both concepts in light of recent experimental results.

  17. Single-molecule FRET reveals structural heterogeneity of SDS-bound alpha-synuclein

    NARCIS (Netherlands)

    Veldhuis, Gertjan; Segers-Nolten, Ine; Ferlemann, Eva; Subramaniam, Vinod

    2009-01-01

    SDS-concentration-dependent alpha-synuclein structure: Upon interaction with SDS, alpha Syn folds into a structure with two antiparallel alpha-helices. We show from single-molecule FRET that alpha Synn adopts this conformation in an all-or-none fashion below the SDS critical micelle concentration.

  18. Stair-rod dislocation cores acting as one-dimensional charge channels in GaAs nanowires

    Science.gov (United States)

    Bologna, Nicolas; Agrawal, Piyush; Campanini, Marco; Knödler, Moritz; Rossell, Marta D.; Erni, Rolf; Passerone, Daniele

    2018-01-01

    Aberration-corrected scanning transmission electron microscopy and density-functional theory calculations have been used to investigate the atomic and electronic structure of stair-rod dislocations connected via stacking faults in GaAs nanowires. At the apexes, two distinct dislocation cores consisting of single-column pairs of either gallium or arsenic were identified. Ab initio calculations reveal an overall reduction in the energy gap with the development of two bands of filled and empty localized states at the edges of valence and conduction bands in the Ga core and in the As core, respectively. Our results suggest the behavior of stair-rod dislocations along the nanowire as one-dimensional charge channels, which could host free carriers upon appropriate doping.

  19. Silicon nanowires for ultra-fast and ultrabroadband optical signal processing

    DEFF Research Database (Denmark)

    Ji, Hua; Hu, Hao; Pu, Minhao

    2015-01-01

    In this paper, we present recent research on silicon nanowires for ultra-fast and ultra-broadband optical signal processing at DTU Fotonik. The advantages and limitations of using silicon nanowires for optical signal processing are revealed through experimental demonstrations of various optical s...

  20. Deep RNA sequencing at single base-pair resolution reveals high complexity of the rice transcriptome

    DEFF Research Database (Denmark)

    Zhang, Guojie; Guo, Guangwu; Hu, Xueda

    2010-01-01

    fusion events are more common than expected. In-depth analysis revealed a multitude of fusion transcripts that might be by-products of alternative splicing. Validation and chimeric transcript structural analysis provided evidence that some of these transcripts are likely to be functional in the cell...

  1. Finding Order in Randomness: Single-Molecule Studies Reveal Stochastic RNA Processing | Center for Cancer Research

    Science.gov (United States)

    Producing a functional eukaryotic messenger RNA (mRNA) requires the coordinated activity of several large protein complexes to initiate transcription, elongate nascent transcripts, splice together exons, and cleave and polyadenylate the 3’ end. Kinetic competition between these various processes has been proposed to regulate mRNA maturation, but this model could lead to multiple, randomly determined, or stochastic, pathways or outcomes. Regulatory checkpoints have been suggested as a means of ensuring quality control. However, current methods have been unable to tease apart the contributions of these processes at a single gene or on a time scale that could provide mechanistic insight. To begin to investigate the kinetic relationship between transcription and splicing, Daniel Larson, Ph.D., of CCR’s Laboratory of Receptor Biology and Gene Expression, and his colleagues employed a single-molecule RNA imaging approach to monitor production and processing of a human β-globin reporter gene in living cells.

  2. Environmental genomics reveals a single species ecosystem deep within the Earth

    Energy Technology Data Exchange (ETDEWEB)

    Chivian, Dylan; Brodie, Eoin L.; Alm, Eric J.; Culley, David E.; Dehal, Paramvir S.; DeSantis, Todd Z.; Gihring, Thomas M.; Lapidus, Alla; Lin, Li-Hung; Lowry, Stephen R.; Moser, Duane P.; Richardson, Paul; Southam, Gordon; Wanger, Greg; Pratt, Lisa M.; Andersen, Gary L.; Hazen, Terry C.; Brockman, Fred J.; Arkin, Adam P.; Onstott, Tullis C.

    2008-09-17

    DNA from low biodiversity fracture water collected at 2.8 km depth in a South African gold mine was sequenced and assembled into a single, complete genome. This bacterium, Candidatus Desulforudis audaxviator, comprises>99.9percent of the microorganisms inhabiting the fluid phase of this particular fracture. Its genome indicates a motile, sporulating, sulfate reducing, chemoautotrophic thermophile that can fix its own nitrogen and carbon using machinery shared with archaea. Candidatus Desulforudis audaxviator is capable of an independent lifestyle well suited to long-term isolation from the photosphere deep within Earth?s crust, and offers the first example of a natural ecosystem that appears to have its biological component entirely encoded within a single genome.

  3. HIGH-SPEED SINGLE QUANTUM DOT IMAGING OF IN LIVE CELLS REVEAL HOP DIFFUSION

    DEFF Research Database (Denmark)

    Lagerholm, B. Christoffer; Clausen, Mathias P.

    2011-01-01

    Ultra high-speed single particle tracking (image frame rates 40-50 kHz) experiments with 40 nm gold particles has indicated that lipids and proteins in the plasma membrane undergo hop-diffusion between nanometer sized compartments (Fujiwara et al. (2002) J Cell Biol. 157:1071-81). These findings...... have yet to be independently confirmed. In this work, we show that high-speed single particle tracking with quantum dots (QDs) and using a standard wide-field fluorescence microscope and an EMCCD is possible at image acquisition rates of up to ~2000 Hz. The spatial precision in these experiments is ~40...... nm (as determined from the standard deviation of repeated position measurements of an immobile QD on a cell). Using this system, we show that membrane proteins and lipids, which have been exogenously labeled with functionalized QDs, show examples of three types of motion in the plasma membrane...

  4. Single Muscle Fiber Proteomics Reveals Fiber-Type-Specific Features of Human Muscle Aging

    Directory of Open Access Journals (Sweden)

    Marta Murgia

    2017-06-01

    Full Text Available Skeletal muscle is a key tissue in human aging, which affects different muscle fiber types unequally. We developed a highly sensitive single muscle fiber proteomics workflow to study human aging and show that the senescence of slow and fast muscle fibers is characterized by diverging metabolic and protein quality control adaptations. Whereas mitochondrial content declines with aging in both fiber types, glycolysis and glycogen metabolism are upregulated in slow but downregulated in fast muscle fibers. Aging mitochondria decrease expression of the redox enzyme monoamine oxidase A. Slow fibers upregulate a subset of actin and myosin chaperones, whereas an opposite change happens in fast fibers. These changes in metabolism and sarcomere quality control may be related to the ability of slow, but not fast, muscle fibers to maintain their mass during aging. We conclude that single muscle fiber analysis by proteomics can elucidate pathophysiology in a sub-type-specific manner.

  5. Electrodeposition of Cobalt Nanowires

    International Nuclear Information System (INIS)

    Ahn, Sungbok; Hong, Kimin

    2013-01-01

    We developed an electroplating process of cobalt nanowires of which line-widths were between 70 and 200 nm. The plating electrolyte was made of CoSO 4 and an organic additive, dimethyldithiocarbamic acid ester sodium salt (DAESA). DAESA in plating electrolytes had an accelerating effect and reduced the surface roughness of plated cobalt thin films. We obtained void-free cobalt nanowires when the plating current density was 6.25 mA/cm 2 and DAESA concentration was 1 mL/L

  6. Single-cell paired-end genome sequencing reveals structural variation per cell cycle

    Science.gov (United States)

    Voet, Thierry; Kumar, Parveen; Van Loo, Peter; Cooke, Susanna L.; Marshall, John; Lin, Meng-Lay; Zamani Esteki, Masoud; Van der Aa, Niels; Mateiu, Ligia; McBride, David J.; Bignell, Graham R.; McLaren, Stuart; Teague, Jon; Butler, Adam; Raine, Keiran; Stebbings, Lucy A.; Quail, Michael A.; D’Hooghe, Thomas; Moreau, Yves; Futreal, P. Andrew; Stratton, Michael R.; Vermeesch, Joris R.; Campbell, Peter J.

    2013-01-01

    The nature and pace of genome mutation is largely unknown. Because standard methods sequence DNA from populations of cells, the genetic composition of individual cells is lost, de novo mutations in cells are concealed within the bulk signal and per cell cycle mutation rates and mechanisms remain elusive. Although single-cell genome analyses could resolve these problems, such analyses are error-prone because of whole-genome amplification (WGA) artefacts and are limited in the types of DNA mutation that can be discerned. We developed methods for paired-end sequence analysis of single-cell WGA products that enable (i) detecting multiple classes of DNA mutation, (ii) distinguishing DNA copy number changes from allelic WGA-amplification artefacts by the discovery of matching aberrantly mapping read pairs among the surfeit of paired-end WGA and mapping artefacts and (iii) delineating the break points and architecture of structural variants. By applying the methods, we capture DNA copy number changes acquired over one cell cycle in breast cancer cells and in blastomeres derived from a human zygote after in vitro fertilization. Furthermore, we were able to discover and fine-map a heritable inter-chromosomal rearrangement t(1;16)(p36;p12) by sequencing a single blastomere. The methods will expedite applications in basic genome research and provide a stepping stone to novel approaches for clinical genetic diagnosis. PMID:23630320

  7. The Self- and Directed Assembly of Nanowires

    Science.gov (United States)

    Smith, Benjamin David

    nanowires rapidly sedimented due to gravity onto a glass cover slip to concentrate and form a dense film. Particles and assemblies were imaged using inverted optical microscopy. We quantitatively analyzed the images and movies captured in order to track and classify particles and classify the overall arrays formed. We then correlated how particle characteristics, e.g., materials, size, segmentation, etc. changed the ordering and alignment observed. With that knowledge, we hope to be able to form new and interesting structures. We began our studies by examining the assembly of single component nanowires. Chapter 2 describes this work, in which solid Au nanowires measuring 2-7 mum in length and 290 nm in diameter self-assembled into smectic rows. By both experiment and theory, we determined that these rows formed due to a balance of electrostatic repulsions and van der Waals attractions. Final assemblies were stable for at least several days. Monte Carlo methods were used to simulate assemblies and showed structures that mirrored those experimentally observed. Simulations indicated that the smectic phase was preferred over others, i.e., nematic, when an additional small charge was added to the ends of the nanowires. Our particles have rough tips, which might create these additional electrostatic repulsions. To increase the particle and array complexity, two-component, metallic nanowire assembly was explored in Chapter 3. We examined numerous types of nanowires by changing the segment length, ratio, and material, the nanowire length, the surface coating, and the presence of small third segments. These segmented nanowires were generally Au-Ag and also ordered into smectic rows. Segmented wires arranged in rows, however, can be aligned in two possible ways with respect to a neighboring particle. The Au segments on neighboring particles can be oriented in the same direction or opposed to each other. Orientation was quantified in terms of an order parameter that took into account

  8. Solution-processed core-shell nanowires for efficient photovoltaic cells.

    Science.gov (United States)

    Tang, Jinyao; Huo, Ziyang; Brittman, Sarah; Gao, Hanwei; Yang, Peidong

    2011-08-21

    Semiconductor nanowires are promising for photovoltaic applications, but, so far, nanowire-based solar cells have had lower efficiencies than planar cells made from the same materials, even allowing for the generally lower light absorption of nanowires. It is not clear, therefore, if the benefits of the nanowire structure, including better charge collection and transport and the possibility of enhanced absorption through light trapping, can outweigh the reductions in performance caused by recombination at the surface of the nanowires and at p-n junctions. Here, we fabricate core-shell nanowire solar cells with open-circuit voltage and fill factor values superior to those reported for equivalent planar cells, and an energy conversion efficiency of ∼5.4%, which is comparable to that of equivalent planar cells despite low light absorption levels. The device is made using a low-temperature solution-based cation exchange reaction that creates a heteroepitaxial junction between a single-crystalline CdS core and single-crystalline Cu2S shell. We integrate multiple cells on single nanowires in both series and parallel configurations for high output voltages and currents, respectively. The ability to produce efficient nanowire-based solar cells with a solution-based process and Earth-abundant elements could significantly reduce fabrication costs relative to existing high-temperature bulk material approaches.

  9. Multi-diameter silicon nanowires: Fabrication, characterization, and modeling

    Science.gov (United States)

    Alagoz, Arif Sinan

    Nanotechnology is a rapidly expanding interdisciplinary field offering novel devices for broad range of applications. Quantum effects and surface to volume ratio of nanostructures are strongly size dependent, and redefine material properties at nanoscale. Silicon is one of the most promising materials for next generation nanostructured transistors, photonics devices, Li-ion batteries, photovoltaic solar cells, and thermoelectric energy generators. Since electrical, optical, and mechanical properties of nanostructures strongly depend on their shape, size, periodicity, and crystal structure; it is crucial to control these parameters in order to optimize device performance for targeted applications. This dissertation is intended to develop a low-cost, low-temperature, high-throughput, and large-area nanowire fabrication method that can produce well-ordered arrays of hierarchical single-crystal silicon nanowires at large scale by using nanosphere lithography and metal-assisted chemical etching. Nanowire morphology was characterized by using scanning electron microscope and optical properties of nanowire arrays were modeled with the help of finite-difference-time domain method. These novel multi-diameter silicon nanowire arrays have the potential applications in many fields including but not limited to next generation nanowire solar cells to field ionization gas sensors.

  10. Lasing in robust cesium lead halide perovskite nanowires

    Science.gov (United States)

    Eaton, Samuel W.; Lai, Minliang; Gibson, Natalie A.; Wong, Andrew B.; Dou, Letian; Ma, Jie; Wang, Lin-Wang; Leone, Stephen R.; Yang, Peidong

    2016-01-01

    The rapidly growing field of nanoscale lasers can be advanced through the discovery of new, tunable light sources. The emission wavelength tunability demonstrated in perovskite materials is an attractive property for nanoscale lasers. Whereas organic–inorganic lead halide perovskite materials are known for their instability, cesium lead halides offer a robust alternative without sacrificing emission tunability or ease of synthesis. Here, we report the low-temperature, solution-phase growth of cesium lead halide nanowires exhibiting low-threshold lasing and high stability. The as-grown nanowires are single crystalline with well-formed facets, and act as high-quality laser cavities. The nanowires display excellent stability while stored and handled under ambient conditions over the course of weeks. Upon optical excitation, Fabry–Pérot lasing occurs in CsPbBr3 nanowires with an onset of 5 μJ cm−2 with the nanowire cavity displaying a maximum quality factor of 1,009 ± 5. Lasing under constant, pulsed excitation can be maintained for over 1 h, the equivalent of 109 excitation cycles, and lasing persists upon exposure to ambient atmosphere. Wavelength tunability in the green and blue regions of the spectrum in conjunction with excellent stability makes these nanowire lasers attractive for device fabrication. PMID:26862172

  11. Generation and Controlled Routing of Single Plasmons on a Chip

    DEFF Research Database (Denmark)

    Kumar, Shailesh; Israelsen, Niels Møller; Huck, Alexander

    2014-01-01

    We demonstrate the excitation of single surface plasmon polaritons on a silver nanowire using a nitrogen vacancy center and the subsequent controlled coupling to a second silver nanowire. The coupling efficiency and thus the splitting ratio between the nanowires is controlled by adjusting the gap...

  12. Single base-resolution methylome of the silkworm reveals a sparse epigenomic map

    DEFF Research Database (Denmark)

    Xiang, Hui; Zhu, Jingde; Chen, Quan

    2010-01-01

    Epigenetic regulation in insects may have effects on diverse biological processes. Here we survey the methylome of a model insect, the silkworm Bombyx mori, at single-base resolution using Illumina high-throughput bisulfite sequencing (MethylC-Seq). We conservatively estimate that 0.11% of genomic...... and ribosomal DNAs are hypomethylated, but in contrast, genomic loci matching small RNAs in gene bodies are densely methylated. This work contributes to our understanding of epigenetics in insects, and in contrast to previous studies of the highly methylated genomes of Arabidopsis and human, demonstrates...... a strategy for sequencing the epigenomes of organisms such as insects that have low levels of methylation....

  13. Single-molecule imaging of platinum ligand exchange reaction reveals reactivity distribution.

    Science.gov (United States)

    Esfandiari, N Melody; Wang, Yong; Bass, Jonathan Y; Cornell, Trevor P; Otte, Douglas A L; Cheng, Ming H; Hemminger, John C; McIntire, Theresa M; Mandelshtam, Vladimir A; Blum, Suzanne A

    2010-11-03

    Single-molecule fluorescence microscopy provided information about the real-time distribution of chemical reactivity on silicon oxide supports at the solution-surface interface, at a level of detail which would be unavailable from a traditional ensemble technique or from a technique that imaged the static physical properties of the surface. Chemical reactions on the surface were found to be uncorrelated; that is, the chemical reaction of one metal complex did not influence the location of a future chemical reaction of another metal complex.

  14. Generating electricity from biofluid with a nanowire-based biofuel cell for self-powered nanodevices

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Caofeng; Wu, Hui; Ahmad, Mashkoor; Luo, Zhixiang; Xie, Jianbo; Yan, Xinxu; Wu, Lihua; Zhu, Jing [Beijing National Center for Electron Microscopy, Laboratory of Advanced Materials, State Key Laboratory of New Ceramics and Fine Processing, Department of Material Science and Engineering, Tsinghua University, Beijing 100084 (China); The National Center for Nanoscience and Technology (NCNST) of China, Beijing 100080 (China); Fang, Ying; Li, Qiang [The National Center for Nanoscience and Technology (NCNST) of China, Beijing 100080 (China); Wang, Zhong Lin [School Materials Science and Engineering, Georgia Institute of Technology, Atlanta Georgia 30332-0245 (United States)

    2010-12-14

    We report a nanowire-based biofuel cell based on a single proton conductive polymer nanowire for converting chemical energy from biofluids, such as glucose/blood, into electricity, with glucose oxidase and laccase as catalyst. The glucose is supplied from the biofluid, the nanowire serves as the proton conductor, and the whole cell can be realized at the nano/micrometer scale. The biofuel cell composed of a single nanowire generates an output power as high as 0.5-3 {mu}W, and it has been integrated with a set of nanowire-based sensors for performing self-powered sensing. This study shows the feasibility of building self-powered nanodevices for the biological sciences, environmental monitoring, defense technology, and even personal electronics. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Single-Molecule Imaging Reveals Topology Dependent Mutual Relaxation of Polymer Chains

    KAUST Repository

    Abadi, Maram

    2015-08-24

    The motion and relaxation of linear and cyclic polymers under entangled conditions are investigated by means of a newly developed single-molecule tracking technique, cumulative-area (CA) tracking. CA tracking enables simultaneous quantitative characterization of the diffusion mode, diffusion rate, and relaxation time that have been impossible with a widely used conventional single-molecule localization and tracking method, by analyzing cumulative areas occupied by the moving molecule. Using the novel approach, we investigate the motion and relaxation of entangled cyclic polymers, which have been an important but poorly understood question. Fluorescently labeled 42 kbp linear or cyclic tracer dsDNAs in concentrated solutions of unlabeled linear or cyclic DNAs are used as model systems. We show that CA tracking can explicitly distinguish topology-dependent diffusion mode, rate, and relaxation time, demonstrating that the method provides an invaluable tool for characterizing topological interaction between the entangled chains. We further demonstrate that the current models proposed for the entanglement between cyclic polymers which are based on cyclic chains moving through an array of fixed obstacles cannot correctly describe the motion of the cyclic chain under the entangled conditions. Our results rather suggest the mutual relaxation of the cyclic chains, which underscore the necessity of developing a new model to describe the motion of cyclic polymer under the entangled conditions based on the mutual interaction of the chains.

  16. Single-cell profiling reveals GPCR heterogeneity and functional patterning during neuroinflammation.

    Science.gov (United States)

    Tischner, Denise; Grimm, Myriam; Kaur, Harmandeep; Staudenraus, Daniel; Carvalho, Jorge; Looso, Mario; Günther, Stefan; Wanke, Florian; Moos, Sonja; Siller, Nelly; Breuer, Johanna; Schwab, Nicholas; Zipp, Frauke; Waisman, Ari; Kurschus, Florian C; Offermanns, Stefan; Wettschureck, Nina

    2017-08-03

    GPCR expression was intensively studied in bulk cDNA of leukocyte populations, but limited data are available with respect to expression in individual cells. Here, we show a microfluidic-based single-cell GPCR expression analysis in primary T cells, myeloid cells, and endothelial cells under naive conditions and during experimental autoimmune encephalomyelitis, the mouse model of multiple sclerosis. We found that neuroinflammation induces characteristic changes in GPCR heterogeneity and patterning, and we identify various functionally relevant subgroups with specific GPCR profiles among spinal cord-infiltrating CD4 T cells, macrophages, microglia, or endothelial cells. Using GPCRs CXCR4, S1P1, and LPHN2 as examples, we show how this information can be used to develop new strategies for the functional modulation of Th17 cells and activated endothelial cells. Taken together, single-cell GPCR expression analysis identifies functionally relevant subpopulations with specific GPCR repertoires and provides a basis for the development of new therapeutic strategies in immune disorders.

  17. Single-cell profiling reveals heterogeneity and functional patterning of GPCR expression in the vascular system.

    Science.gov (United States)

    Kaur, H; Carvalho, J; Looso, M; Singh, P; Chennupati, R; Preussner, J; Günther, S; Albarrán-Juárez, J; Tischner, D; Classen, S; Offermanns, S; Wettschureck, N

    2017-06-16

    G-protein-coupled receptor (GPCR) expression is extensively studied in bulk cDNA, but heterogeneity and functional patterning of GPCR expression in individual vascular cells is poorly understood. Here, we perform a microfluidic-based single-cell GPCR expression analysis in primary smooth muscle cells (SMC) and endothelial cells (EC). GPCR expression is highly heterogeneous in all cell types, which is confirmed in reporter mice, on the protein level and in human cells. Inflammatory activation in murine models of sepsis or atherosclerosis results in characteristic changes in the GPCR repertoire, and we identify functionally relevant subgroups of cells that are characterized by specific GPCR patterns. We further show that dedifferentiating SMC upregulate GPCRs such as Gpr39, Gprc5b, Gprc5c or Gpr124, and that selective targeting of Gprc5b modulates their differentiation state. Taken together, single-cell profiling identifies receptors expressed on pathologically relevant subpopulations and provides a basis for the development of new therapeutic strategies in vascular diseases.

  18. Landscape of Infiltrating T Cells in Liver Cancer Revealed by Single-Cell Sequencing.

    Science.gov (United States)

    Zheng, Chunhong; Zheng, Liangtao; Yoo, Jae-Kwang; Guo, Huahu; Zhang, Yuanyuan; Guo, Xinyi; Kang, Boxi; Hu, Ruozhen; Huang, Julie Y; Zhang, Qiming; Liu, Zhouzerui; Dong, Minghui; Hu, Xueda; Ouyang, Wenjun; Peng, Jirun; Zhang, Zemin

    2017-06-15

    Systematic interrogation of tumor-infiltrating lymphocytes is key to the development of immunotherapies and the prediction of their clinical responses in cancers. Here, we perform deep single-cell RNA sequencing on 5,063 single T cells isolated from peripheral blood, tumor, and adjacent normal tissues from six hepatocellular carcinoma patients. The transcriptional profiles of these individual cells, coupled with assembled T cell receptor (TCR) sequences, enable us to identify 11 T cell subsets based on their molecular and functional properties and delineate their developmental trajectory. Specific subsets such as exhausted CD8 + T cells and Tregs are preferentially enriched and potentially clonally expanded in hepatocellular carcinoma (HCC), and we identified signature genes for each subset. One of the genes, layilin, is upregulated on activated CD8 + T cells and Tregs and represses the CD8 + T cell functions in vitro. This compendium of transcriptome data provides valuable insights and a rich resource for understanding the immune landscape in cancers. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Emerging methanol-tolerant AlN nanowire oxygen reduction electrocatalyst for alkaline direct methanol fuel cell.

    Science.gov (United States)

    Lei, M; Wang, J; Li, J R; Wang, Y G; Tang, H L; Wang, W J

    2014-08-11

    Replacing precious and nondurable Pt catalysts with cheap materials is a key issue for commercialization of fuel cells. In the case of oxygen reduction reaction (ORR) catalysts for direct methanol fuel cell (DMFC), the methanol tolerance is also an important concern. Here, we develop AlN nanowires with diameters of about 100-150 nm and the length up to 1 mm through crystal growth method. We find it is electrochemically stable in methanol-contained alkaline electrolyte. This novel material exhibits pronounced electrocatalytic activity with exchange current density of about 6.52 × 10(-8) A/cm(2). The single cell assembled with AlN nanowire cathodic electrode achieves a power density of 18.9 mW cm(-2). After being maintained at 100 mA cm(-2) for 48 h, the AlN nanowire-based single cell keeps 92.1% of the initial performance, which is in comparison with 54.5% for that assembled with Pt/C cathode. This discovery reveals a new type of metal nitride ORR catalyst that can be cheaply produced from crystal growth method.

  20. Three-dimensional bead position histograms reveal single-molecule nanomechanics

    Science.gov (United States)

    Becker, Nils B.; Altmann, Stephan M.; Scholz, Tim; Hörber, J. K. Heinrich; Stelzer, Ernst H. K.; Rohrbach, Alexander

    2005-02-01

    We describe a method to investigate the structure and elasticity of macromolecules by a combination of single molecule experiments and kinematic modeling. With a photonic force microscope, we recorded spatial position histograms of a fluctuating microsphere tethered to full-length myosin-II. Assuming only that the molecule consists of concatenated rigid segments, a model derived from robot kinematics allows us to relate these histograms to the molecule’s segment lengths and bending stiffnesses. Both our calculated position distributions and the experimental data show an asymmetry characteristic of a mixed entropic-enthalpic spring. Our model that fits best to experimental line profiles has two intramolecular hinges, one at the bound head domain, and another about 50 nm down the myosin tail, with a summed bending stiffness of about 3kBT/rad .

  1. Single-molecule microscopy reveals new insights into nucleotide selection by DNA polymerase I

    Science.gov (United States)

    Markiewicz, Radoslaw P.; Vrtis, Kyle B.; Rueda, David; Romano, Louis J.

    2012-01-01

    The mechanism by which DNA polymerases achieve their extraordinary accuracy has been intensely studied because of the linkage between this process and mutagenesis and carcinogenesis. Here, we have used single-molecule fluorescence microscopy to study the process of nucleotide selection and exonuclease action. Our results show that the binding of Escherichia coli DNA polymerase I (Klenow fragment) to a primer-template is stabilized by the presence of the next correct dNTP, even in the presence of a large excess of the other dNTPs and rNTPs. These results are consistent with a model where nucleotide selection occurs in the open complex prior to the formation of a closed ternary complex. Our assay can also distinguish between primer binding to the polymerase or exonuclease domain and, contrary to ensemble-averaged studies, we find that stable exonuclease binding only occurs with a mismatched primer terminus. PMID:22669904

  2. [Ease of access revealed by users of the Single Health System].

    Science.gov (United States)

    Munhen de Pontes, Ana Paula; Cesso, Rachel Garcia Dantas; Cristina de Oliveira, Denize; Gomes, Antonio Marcos Tosoli

    2010-01-01

    This study aimed to examine the perceptions of users about the ease of access to actions and services of the Single Health System (SHS). Qualitative study conducted with 24 users of SHS in a federal hospital in Rio de Janeiro. In collecting data was used the technique of semi-structured, the analysis was performed using the technique of analysis of thematic content. The Subjects recognize the access to various services of the SUS, as well as factors associated with such access, as the referral process, the luck and the belief in God. It was possible to verify the existence of a positive attitude about the health system, as well the identification of a set of its principles.

  3. Structure and luminescence properties of thermally nitrided Ga{sub 2}O{sub 3} nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyunsu; Jin, Changhyun; Park, Sunghoon [Department of Materials Science and Engineering, Inha University, 253 Yonghyun-dong, Incheon 402-751 (Korea, Republic of); Lee, Wan In [Department of Chemitsry, Inha University, 253 Yonghyun-dong, Incheon 402-751 (Korea, Republic of); Lee, Chongmu, E-mail: cmlee@inha.ac.kr [Department of Materials Science and Engineering, Inha University, 253 Yonghyun-dong, Incheon 402-751 (Korea, Republic of)

    2013-02-15

    Graphical abstract: The as-synthesized Ga{sub 2}O{sub 3} nanowires exhibited a broad emission band at approximately 570 nm in the green region. In contrast, the thermally nitrided Ga{sub 2}O{sub 3} nanowires exhibited a much stronger emission band at approximately 455 nm in the blue region. Display Omitted Highlights: ► The structure and luminescence properties of thermally nitrided Ga{sub 2}O{sub 3} nanowires were examined. ► A uniform GaN shell layer was formed on the surface of the nanowires by thermal nitridation. ► The as-synthesized Ga{sub 2}O{sub 3} nanowires exhibited a broad yellow emission. ► The nitrided Ga{sub 2}O{sub 3} nanowires exhibited a much stronger blue emission band due to the GaN shell layer. -- Abstract: The structure and luminescence properties of thermally nitrided Ga{sub 2}O{sub 3} nanowires were examined. Transmission electron microscopy and X-ray diffraction confirmed the formation of a uniform GaN shell layer on the surface of the nanowires by thermal nitridation. The core and shell of the nitrided nanowires were monoclinic-structured single crystal Ga{sub 2}O{sub 3} and wurtzite-type hexagonal close-packed-structured single crystal GaN, respectively. The as-synthesized Ga{sub 2}O{sub 3} nanowires exhibited a broad emission band at approximately 570 nm in the yellow region. In contrast, the nitrided Ga{sub 2}O{sub 3} nanowires exhibited a much stronger emission band at approximately 455 nm in the blue region, which must originate from the newly formed GaN shell layer.

  4. Quantification of a single exploratory trip reveals hippocampal formation mediated dead reckoning.

    Science.gov (United States)

    Wallace, Douglas G; Hines, Dustin J; Whishaw, Ian Q

    2002-01-30

    A rat's proclivity to explore a novel environment presents a behaviorally rich paradigm to investigate the role of the hippocampus in spatial navigation. Here we describe a novel technique of behavioral analysis that is derived from a single exploratory trip. An exploratory trip was defined as a rat's departure from the home base that ended when the rat returned to the home base. The behavior observed on a single exploratory trip by a control animal is highly organized into outward and homeward segments. An outward segment is characterized by a slow circuitous progression from the home base marked by several stops. A homeward segment is characterized by a rapid direct return to the home base. The velocity attribute of the exploratory trip was quantified by estimating the point of inflection associated with the trip's cumulative moment-to-moment velocity distribution. The heading direction and variance of the homeward trip segment was analyzed with circular statistics. A comparison of the exploratory behavior of control animals and animals with damage to the fimbria-fornix indicated that the velocity and heading direction of the homeward portion of the trip depends upon the hippocampal formation. While control and fimbria-fornix rats had similar outward segments, the return paths of the fimbria-fornix rats were significantly slower, more circuitous, and more variable compared with that of the control rats. This result was also independent of testing in light or dark conditions. The lack of dependence on allothetic cues suggests that rats employ dead reckoning navigational strategies to initiate the homeward portion of exploratory movements. Methods to quantify exploratory behavior in terms of velocity and angular components provide an assessment of control behavior and the assessment of the behavior of rats with hippocampal formation damage that is easy to implement.

  5. Single-molecule diffusometry reveals the nucleotide-dependent oligomerization pathways of Nicotiana tabacum Rubisco activase

    Science.gov (United States)

    Wang, Quan; Serban, Andrew J.; Wachter, Rebekka M.; Moerner, W. E.

    2018-03-01

    Oligomerization plays an important role in the function of many proteins, but a quantitative picture of the oligomer distribution has been difficult to obtain using existing techniques. Here we describe a method that combines sub-stoichiometric labeling and recently developed single-molecule diffusometry to measure the size distribution of oligomers under equilibrium conditions in solution, one molecule at a time. We use this technique to characterize the oligomerization behavior of Nicotiana tabacum (Nt) Rubisco activase (Nt-Rca), a chaperone-like AAA-plus ATPase essential in regulating carbon fixation during photosynthesis. We directly observed monomers, dimers, and a tetramer/hexamer mixture and extracted their fractional abundance as a function of protein concentration. We show that the oligomerization pathway of Nt-Rca is nucleotide dependent: ATPγS binding strongly promotes tetramer/hexamer formation from dimers and results in a preferred tetramer/hexamer population for concentrations in the 1-10 μM range. Furthermore, we directly observed dynamic assembly and disassembly processes of single complexes in real time and from there estimated the rate of subunit exchange to be ˜0.1 s-1 with ATPγS. On the other hand, ADP binding destabilizes Rca complexes by enhancing the rate of subunit exchange by >2 fold. These observations provide a quantitative starting point to elucidate the structure-function relations of Nt-Rca complexes. We envision the method to fill a critical gap in defining and quantifying protein assembly pathways in the small-oligomer regime.

  6. Epitaxy of semiconductor-superconductor nanowires

    DEFF Research Database (Denmark)

    Krogstrup, P.; Ziino, N.L.B.; Chang, W.

    2015-01-01

    Controlling the properties of semiconductor/metal interfaces is a powerful method for designing functionality and improving the performance of electrical devices. Recently semiconductor/superconductor hybrids have appeared as an important example where the atomic scale uniformity of the interface...... plays a key role in determining the quality of the induced superconducting gap. Here we present epitaxial growth of semiconductor-metal core-shell nanowires by molecular beam epitaxy, a method that provides a conceptually new route to controlled electrical contacting of nanostructures and the design...... of devices for specialized applications such as topological and gate-controlled superconducting electronics. Our materials of choice, InAs/Al grown with epitaxially matched single-plane interfaces, and alternative semiconductor/metal combinations allowing epitaxial interface matching in nanowires...

  7. Highly Durable Na2V6O16·1.63H2O Nanowire Cathode for Aqueous Zinc-Ion Battery.

    Science.gov (United States)

    Hu, Ping; Zhu, Ting; Wang, Xuanpeng; Wei, Xiujuan; Yan, Mengyu; Li, Jiantao; Luo, Wen; Yang, Wei; Zhang, Wencui; Zhou, Liang; Zhou, Zhiqiang; Mai, Liqiang

    2018-03-14

    Rechargeable aqueous zinc-ion batteries are highly desirable for grid-scale applications due to their low cost and high safety; however, the poor cycling stability hinders their widespread application. Herein, a highly durable zinc-ion battery system with a Na 2 V 6 O 16 ·1.63H 2 O nanowire cathode and an aqueous Zn(CF 3 SO 3 ) 2 electrolyte has been developed. The Na 2 V 6 O 16 ·1.63H 2 O nanowires deliver a high specific capacity of 352 mAh g -1 at 50 mA g -1 and exhibit a capacity retention of 90% over 6000 cycles at 5000 mA g -1 , which represents the best cycling performance compared with all previous reports. In contrast, the NaV 3 O 8 nanowires maintain only 17% of the initial capacity after 4000 cycles at 5000 mA g -1 . A single-nanowire-based zinc-ion battery is assembled, which reveals the intrinsic Zn 2+ storage mechanism at nanoscale. The remarkable electrochemical performance especially the long-term cycling stability makes Na 2 V 6 O 16 ·1.63H 2 O a promising cathode for a low-cost and safe aqueous zinc-ion battery.

  8. Raman spectroscopy of single extracellular vesicles reveals subpopulations with varying membrane content (Conference Presentation)

    Science.gov (United States)

    Smith, Zachary J.; Lee, Changwon; Rojalin, Tatu; Carney, Randy P.; Hazari, Sidhartha; Knudson, Alisha; Lam, Kit S.; Saari, Heikki; Lazaro Ibañez, Elisa; Viitala, Tapani; Laaksonen, Timo; Yliperttula, Marjo; Wachsmann-Hogiu, Sebastian

    2016-03-01

    Exosomes are small (~100nm) membrane bound vesicles excreted by cells as part of their normal biological processes. These extracellular vesicles are currently an area of intense research, since they were recently found to carry functional mRNA that allows transfer of proteins and other cellular instructions between cells. Exosomes have been implicated in a wide range of diseases, including cancer. Cancer cells are known to have increased exosome production, and may use those exosomes to prepare remote environments for metastasis. Therefore, there is a strong need to develop characterization methods to help understand the structure and function of these vesicles. However, current techniques, such as proteomics and genomics technologies, rely on aggregating a large amount of exosome material and reporting on chemical content that is averaged over many millions of exosomes. Here we report on the use of laser-tweezers Raman spectroscopy (LTRS) to probe individual vesicles, discovering distinct heterogeneity among exosomes both within a cell line, as well as between different cell lines. Through principal components analysis followed by hierarchical clustering, we have identified four "subpopulations" of exosomes shared across seven cell lines. The key chemical differences between these subpopulations, as determined by spectral analysis of the principal component loadings, are primarily related to membrane composition. Specifically, the differences can be ascribed to cholesterol content, cholesterol to phospholipid ratio, and surface protein expression. Thus, we have shown LTRS to be a powerful method to probe the chemical content of single extracellular vesicles.

  9. A Single-Granule-Level Approach Reveals Ecological Heterogeneity in an Upflow Anaerobic Sludge Blanket Reactor.

    Directory of Open Access Journals (Sweden)

    Kyohei Kuroda

    Full Text Available Upflow anaerobic sludge blanket (UASB reactor has served as an effective process to treat industrial wastewater such as purified terephthalic acid (PTA wastewater. For optimal UASB performance, balanced ecological interactions between syntrophs, methanogens, and fermenters are critical. However, much of the interactions remain unclear because UASB have been studied at a "macro"-level perspective of the reactor ecosystem. In reality, such reactors are composed of a suite of granules, each forming individual micro-ecosystems treating wastewater. Thus, typical approaches may be oversimplifying the complexity of the microbial ecology and granular development. To identify critical microbial interactions at both macro- and micro- level ecosystem ecology, we perform community and network analyses on 300 PTA-degrading granules from a lab-scale UASB reactor and two full-scale reactors. Based on MiSeq-based 16S rRNA gene sequencing of individual granules, different granule-types co-exist in both full-scale reactors regardless of granule size and reactor sampling depth, suggesting that distinct microbial interactions occur in different granules throughout the reactor. In addition, we identify novel networks of syntrophic metabolic interactions in different granules, perhaps caused by distinct thermodynamic conditions. Moreover, unseen methanogenic relationships (e.g. "Candidatus Aminicenantes" and Methanosaeta are observed in UASB reactors. In total, we discover unexpected microbial interactions in granular micro-ecosystems supporting UASB ecology and treatment through a unique single-granule level approach.

  10. A Single-Granule-Level Approach Reveals Ecological Heterogeneity in an Upflow Anaerobic Sludge Blanket Reactor

    Science.gov (United States)

    Mei, Ran; Narihiro, Takashi; Bocher, Benjamin T. W.; Yamaguchi, Takashi; Liu, Wen-Tso

    2016-01-01

    Upflow anaerobic sludge blanket (UASB) reactor has served as an effective process to treat industrial wastewater such as purified terephthalic acid (PTA) wastewater. For optimal UASB performance, balanced ecological interactions between syntrophs, methanogens, and fermenters are critical. However, much of the interactions remain unclear because UASB have been studied at a “macro”-level perspective of the reactor ecosystem. In reality, such reactors are composed of a suite of granules, each forming individual micro-ecosystems treating wastewater. Thus, typical approaches may be oversimplifying the complexity of the microbial ecology and granular development. To identify critical microbial interactions at both macro- and micro- level ecosystem ecology, we perform community and network analyses on 300 PTA–degrading granules from a lab-scale UASB reactor and two full-scale reactors. Based on MiSeq-based 16S rRNA gene sequencing of individual granules, different granule-types co-exist in both full-scale reactors regardless of granule size and reactor sampling depth, suggesting that distinct microbial interactions occur in different granules throughout the reactor. In addition, we identify novel networks of syntrophic metabolic interactions in different granules, perhaps caused by distinct thermodynamic conditions. Moreover, unseen methanogenic relationships (e.g. “Candidatus Aminicenantes” and Methanosaeta) are observed in UASB reactors. In total, we discover unexpected microbial interactions in granular micro-ecosystems supporting UASB ecology and treatment through a unique single-granule level approach. PMID:27936088

  11. Tribology. Mechanisms of antiwear tribofilm growth revealed in situ by single-asperity sliding contacts.

    Science.gov (United States)

    Gosvami, N N; Bares, J A; Mangolini, F; Konicek, A R; Yablon, D G; Carpick, R W

    2015-04-03

    Zinc dialkyldithiophosphates (ZDDPs) form antiwear tribofilms at sliding interfaces and are widely used as additives in automotive lubricants. The mechanisms governing the tribofilm growth are not well understood, which limits the development of replacements that offer better performance and are less likely to degrade automobile catalytic converters over time. Using atomic force microscopy in ZDDP-containing lubricant base stock at elevated temperatures, we monitored the growth and properties of the tribofilms in situ in well-defined single-asperity sliding nanocontacts. Surface-based nucleation, growth, and thickness saturation of patchy tribofilms were observed. The growth rate increased exponentially with either applied compressive stress or temperature, consistent with a thermally activated, stress-assisted reaction rate model. Although some models rely on the presence of iron to catalyze tribofilm growth, the films grew regardless of the presence of iron on either the tip or substrate, highlighting the critical role of stress and thermal activation. Copyright © 2015, American Association for the Advancement of Science.

  12. Metabolic diversity and ecological niches of Achromatium populations revealed with single-cell genomic sequencing

    Directory of Open Access Journals (Sweden)

    Muammar eMansor

    2015-08-01

    Full Text Available Large, sulfur-cycling, calcite-precipitating bacteria in the genus Achromatium represent a significant proportion of bacterial communities near sediment-water interfaces throughout the world. Our understanding of their potentially crucial roles in calcium, carbon, sulfur, nitrogen, and iron cycling is limited because they have not been cultured or sequenced using environmental genomics approaches to date. We utilized single-cell genomic sequencing to obtain one incomplete and two nearly complete draft genomes for Achromatium collected at Warm Mineral Springs, FL. Based on 16S rRNA gene sequences, the three cells represent distinct and relatively distant Achromatium populations (91-92% identity. The draft genomes encode key genes involved in sulfur and hydrogen oxidation; oxygen, nitrogen and polysulfide respiration; carbon and nitrogen fixation; organic carbon assimilation and storage; chemotaxis; twitching motility; antibiotic resistance; and membrane transport. Known genes for iron and manganese energy metabolism were not detected. The presence of pyrophosphatase and vacuolar (V-type ATPases, which are generally rare in bacterial genomes, suggests a role for these enzymes in calcium transport, proton pumping, and/or energy generation in the membranes of calcite-containing inclusions.

  13. Genetic Diversity Revealed by Single Nucleotide Polymorphism Markers in a Worldwide Germplasm Collection of Durum Wheat

    Directory of Open Access Journals (Sweden)

    Ming-Cheng Luo

    2013-03-01

    Full Text Available Evaluation of genetic diversity and genetic structure in crops has important implications for plant breeding programs and the conservation of genetic resources. Newly developed single nucleotide polymorphism (SNP markers are effective in detecting genetic diversity. In the present study, a worldwide durum wheat collection consisting of 150 accessions was used. Genetic diversity and genetic structure were investigated using 946 polymorphic SNP markers covering the whole genome of tetraploid wheat. Genetic structure was greatly impacted by multiple factors, such as environmental conditions, breeding methods reflected by release periods of varieties, and gene flows via human activities. A loss of genetic diversity was observed from landraces and old cultivars to the modern cultivars released during periods of the Early Green Revolution, but an increase in cultivars released during the Post Green Revolution. Furthermore, a comparative analysis of genetic diversity among the 10 mega ecogeographical regions indicated that South America, North America, and Europe possessed the richest genetic variability, while the Middle East showed moderate levels of genetic diversity.

  14. Indentation Size Effects in Single Crystal Copper as Revealed by Synchrotron X-ray Microdiffraction

    Energy Technology Data Exchange (ETDEWEB)

    Feng, G.; Budiman, A. S.; Nix, W. D.; Tamura, N.; Patel, J. R.

    2007-11-19

    The indentation size effect (ISE) has been observed in numerous nanoindentation studies on crystalline materials; it is found that the hardness increases dramatically with decreasing indentation size - a 'smaller is stronger' phenomenon. Some have attributed the ISE to the existence of strain gradients and the geometrically necessary dislocations (GNDs). Since the GND density is directly related to the local lattice curvature, the Scanning X-ray Microdiffraction ({mu}SXRD) technique, which can quantitatively measure relative lattice rotations through the streaking of Laue diffractions, can used to study the strain gradients. The synchrotron {mu}SXRD technique we use - which was developed at the Advanced Light Source (ALS), Berkeley Lab - allows for probing the local plastic behavior of crystals with sub-micrometer resolution. Using this technique, we studied the local plasticity for indentations of different depths in a Cu single crystal. Broadening of Laue diffractions (streaking) was observed, showing local crystal lattice rotation due to the indentation-induced plastic deformation. A quantitative analysis of the streaking allows us to estimate the average GND density in the indentation plastic zones. The size dependence of the hardness, as found by nanoindentation, will be described, and its correlation to the observed lattice rotations will be discussed.

  15. Coherent energy scale revealed by ultrafast dynamics of UX3 (X = Al, Sn, Ga) single crystals

    Science.gov (United States)

    Nair, Saritha K.; Zhu, J.-X.; Sarrao, J. L.; Taylor, A. J.; Chia, Elbert E. M.

    2012-09-01

    The temperature dependence of relaxation dynamics of UX3 (X = Al, Ga, Sn) compounds is studied using the time-resolved pump-probe technique in reflectance geometry. For UGa3, our data are consistent with the formation of a spin density wave gap as evidenced from the quasidivergence of the relaxation time τ near the Néel temperature TN. For UAl3 and USn3, the relaxation dynamics shows a change from single-exponential to two-exponential behavior below a particular temperature, suggestive of coherence formation of the 5f electrons with the conduction band electrons. This particular temperature can be attributed to the spin fluctuation temperature Tsf, a measure of the strength of Kondo coherence. Our Tsf is consistent with other data such as resistivity and susceptibility measurements. The temperature dependence of the relaxation amplitude and time of UAl3 and USn3 were also fitted by the Rothwarf-Taylor model. Our results show that ultrafast optical spectroscopy is sensitive to c-f Kondo hybridization in the f-electron systems.

  16. Electronic transport in narrow-gap semiconductor nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Bloemers, Christian

    2012-10-19

    Throughout this work the electronic transport properties of InAs, InN, and GaAs/InAs core/shell nanowires have been analyzed. This includes the analysis of specific resistivity at room temperature and low temperatures as well as the breakdown of resistivity by a contribution of mobility and carrier concentration using gate measurements. While the InN nanowires showed homogeneous transport properties, there was a large statistical spread in the properties of InAs nanowires. Differing crystal structures and the surface conditions are identified to be the main reasons for the statistical spread. Both quantities of influence have been pointed out by comparing the transport parameters before and after a surface treatment (electron irradiation and long time ambient air exposure), and by comparing the transport parameters of wires grown by different growth methods which exhibit different kinds of crystal structure. In particular, the temperature dependence of the conductivity revealed different activation energies in nanowires with differing crystal structures. An explanation has been suggested in terms of stacking fault induced potential barriers. A field-effect measurement setup has been utilized to determine the nanowire mobility and carrier concentration. Even though this method is widely used for nanowires, it is subject to a serious disadvantage concerning the influence of surface and interface states on the measurements. As an alternative method which does not suffer from this drawback, Hall measurements have been successfully performed on InAs nanowires for the first time. These measurements became possible because of the utilization of a new electron beam lithographic procedure with an alignment accuracy in the 5 nm range. Carrier concentration values could be determined and compared to the ones obtained from conventional field-effect measurements. The results of the Hall measurements revealed a methodical overestimation of the carrier concentrations obtained

  17. Electronic transport in narrow-gap semiconductor nanowires

    International Nuclear Information System (INIS)

    Bloemers, Christian

    2012-01-01

    Throughout this work the electronic transport properties of InAs, InN, and GaAs/InAs core/shell nanowires have been analyzed. This includes the analysis of specific resistivity at room temperature and low temperatures as well as the breakdown of resistivity by a contribution of mobility and carrier concentration using gate measurements. While the InN nanowires showed homogeneous transport properties, there was a large statistical spread in the properties of InAs nanowires. Differing crystal structures and the surface conditions are identified to be the main reasons for the statistical spread. Both quantities of influence have been pointed out by comparing the transport parameters before and after a surface treatment (electron irradiation and long time ambient air exposure), and by comparing the transport parameters of wires grown by different growth methods which exhibit different kinds of crystal structure. In particular, the temperature dependence of the conductivity revealed different activation energies in nanowires with differing crystal structures. An explanation has been suggested in terms of stacking fault induced potential barriers. A field-effect measurement setup has been utilized to determine the nanowire mobility and carrier concentration. Even though this method is widely used for nanowires, it is subject to a serious disadvantage concerning the influence of surface and interface states on the measurements. As an alternative method which does not suffer from this drawback, Hall measurements have been successfully performed on InAs nanowires for the first time. These measurements became possible because of the utilization of a new electron beam lithographic procedure with an alignment accuracy in the 5 nm range. Carrier concentration values could be determined and compared to the ones obtained from conventional field-effect measurements. The results of the Hall measurements revealed a methodical overestimation of the carrier concentrations obtained

  18. Semiconductor Nanowires: Epitaxy and Applications

    OpenAIRE

    Mårtensson, Thomas

    2008-01-01

    Semiconductor nanowires are nanoscale objects formed by bottom-up synthesis. In recent years their unique properties have been exploited in fields such as electronics, photonics, sensors and the life sciences. In this work, the epitaxial growth of nanowires and their applications were studied. Heteroepitaxial growth of III-V nanowires on silicon substrates was demonstrated. This may enable direct band gap materials for optoelectronic devices, as well as high-mobility, low-contact resis...

  19. Optical transmissivity of metallic nanowires

    Science.gov (United States)

    Nairat, Mazen S.

    2017-08-01

    Optical transmissivity and reflectivity of one dimensional array of metallic nanowires embedded in transparent dielectric is characterized. i employ wave optics simulation to analyze the optical field distribution in both the dielectric and the nanowires. The results indicate that the transmissivity and reflectivity depend on the polarization states of the incident light. The metallic nanowires matrix transmit in-plane polarization but block light out at of-plane polarization.

  20. Widespread Polycistronic Transcripts in Fungi Revealed by Single-Molecule mRNA Sequencing.

    Directory of Open Access Journals (Sweden)

    Sean P Gordon

    Full Text Available Genes in prokaryotic genomes are often arranged into clusters and co-transcribed into polycistronic RNAs. Isolated examples of polycistronic RNAs were also reported in some higher eukaryotes but their presence was generally considered rare. Here we developed a long-read sequencing strategy to identify polycistronic transcripts in several mushroom forming fungal species including Plicaturopsis crispa, Phanerochaete chrysosporium, Trametes versicolor, and Gloeophyllum trabeum. We found genome-wide prevalence of polycistronic transcription in these Agaricomycetes, involving up to 8% of the transcribed genes. Unlike polycistronic mRNAs in prokaryotes, these co-transcribed genes are also independently transcribed. We show that polycistronic transcription may interfere with expression of the downstream tandem gene. Further comparative genomic analysis indicates that polycistronic transcription is conserved among a wide range of mushroom forming fungi. In summary, our study revealed, for the first time, the genome prevalence of polycistronic transcription in a phylogenetic range of higher fungi. Furthermore, we systematically show that our long-read sequencing approach and combined bioinformatics pipeline is a generic powerful tool for precise characterization of complex transcriptomes that enables identification of mRNA isoforms not recovered via short-read assembly.

  1. Plasmonic wave propagation in silver nanowires: guiding modes or not?

    Science.gov (United States)

    Li, Qiang; Qiu, Min

    2013-04-08

    Propagation modes and single-guiding-mode conditions of one-dimensional silver nanowires based surface plasmon polariton (SPP) waveguides versus the operating wavelength (500-2000 nm) are investigated. For silver nanowires immersed in a SiO(2) matrix, both short-range SPP (SRSPP)-like modes and long-range SPP (LRSPP)-like modes can be guided. However, only the LRSPP-like modes have cutoff radii. For silver nanowires on a SiO(2) substrate, the LRSPP-like modes cannot be supported due to asymmetry. While for the SRSPP-like guiding mode, it has a cutoff radius for wavelength longer than 615 nm. For wavelength shorter than 615 nm, there is no cutoff radius for the guiding modes due to the appearance of the interface modes and thus the single-guiding-mode operation is always satisfied.

  2. Single-molecule motions and interactions in live cells reveal target search dynamics in mismatch repair.

    Science.gov (United States)

    Liao, Yi; Schroeder, Jeremy W; Gao, Burke; Simmons, Lyle A; Biteen, Julie S

    2015-12-15

    MutS is responsible for initiating the correction of DNA replication errors. To understand how MutS searches for and identifies rare base-pair mismatches, we characterized the dynamic movement of MutS and the replisome in real time using superresolution microscopy and single-molecule tracking in living cells. We report that MutS dynamics are heterogeneous in cells, with one MutS population exploring the nucleoid rapidly, while another MutS population moves to and transiently dwells at the replisome region, even in the absence of appreciable mismatch formation. Analysis of MutS motion shows that the speed of MutS is correlated with its separation distance from the replisome and that MutS motion slows when it enters the replisome region. We also show that mismatch detection increases MutS speed, supporting the model for MutS sliding clamp formation after mismatch recognition. Using variants of MutS and the replication processivity clamp to impair mismatch repair, we find that MutS dynamically moves to and from the replisome before mismatch binding to scan for errors. Furthermore, a block to DNA synthesis shows that MutS is only capable of binding mismatches near the replisome. It is well-established that MutS engages in an ATPase cycle, which is necessary for signaling downstream events. We show that a variant of MutS with a nucleotide binding defect is no longer capable of dynamic movement to and from the replisome, showing that proper nucleotide binding is critical for MutS to localize to the replisome in vivo. Our results provide mechanistic insight into the trafficking and movement of MutS in live cells as it searches for mismatches.

  3. 2D IR cross peaks reveal hydrogen-deuterium exchange with single residue specificity.

    Science.gov (United States)

    Dunkelberger, Emily B; Woys, Ann Marie; Zanni, Martin T

    2013-12-12

    A form of chemical exchange, hydrogen-deuterium exchange (HDX), has long been used as a method for studying the secondary and tertiary structure of peptides and proteins using mass spectrometry and NMR spectroscopy. Using two-dimensional infrared (2D IR) spectroscopy, we resolve cross peaks between the amide II band and a (13)C(18)O isotope-labeled amide I band, which we show measures HDX with site-specific resolution. By rapidly scanning 2D IR spectra using mid-IR pulse shaping, we monitor the kinetics of HDX exchange on-the-fly. For the antimicrobial peptide ovispirin bound to membrane bilayers, we find that the amide II peak decays with a biexponential with rate constants of 0.54 ± 0.02 and 0.12 ± 0.01 min(-1), which is a measure of the overall HDX in the peptide. The cross peaks between Ile-10-labeled ovispirin and the amide II mode, which specifically monitor HDX kinetics at Ile-10, decay with a single rate constant of 0.36 ± 0.1 min(-1). Comparing this exchange rate to theoretically determined exchange rates of Ile-10 for ovispirin in a solution random coil configuration, the exchange rate at Ile-10 is at least 100 times slower, consistent with the known α-helix structure of ovispirin in bilayers. Because backbone isotope labels produce only a very small shift of the amide II band, site-specific HDX cannot be measured with FTIR spectroscopy, which is why 2D IR spectroscopy is needed for these measurements.

  4. Towards metal chalcogenide nanowire-based colour-sensitive photodetectors

    Science.gov (United States)

    Butanovs, Edgars; Butikova, Jelena; Zolotarjovs, Aleksejs; Polyakov, Boris

    2018-01-01

    In recent years, nanowires have been shown to exhibit high photosensitivities, and, therefore are of interest in a variety of optoelectronic applications, for example, colour-sensitive photodetectors. In this study, we fabricated two-terminal PbS, In2S3, CdS and ZnSe single-nanowire photoresistor devices and tested applicability of these materials under the same conditions for colour-sensitive (405 nm, 532 nm and 660 nm) light detection. Nanowires were grown via atmospheric pressure chemical vapour transport method, their structure and morphology were characterized by scanning and transmission electron microscopy (SEM and TEM), X-ray diffraction (XRD), and optical properties were investigated with photoluminescence (PL) measurements. Single-nanowire photoresistors were fabricated via in situ nanomanipulations inside SEM, using focused ion beam (FIB) cutting and electron-beam-assisted platinum welding; their current-voltage characteristics and photoresponse values were measured. Applicability of the tested nanowire materials for colour-sensitive light detection is discussed.

  5. Single-molecule imaging reveals topological isomer-dependent diffusion by 4-armed star and dicyclic 8-shaped polymers

    KAUST Repository

    Habuchi, Satoshi

    2015-04-21

    Diffusion dynamics of topological isomers of polymer molecules was investigated at the single-molecule level in a melt state by employing the fluorophore-incorporated 4-armed star and the corresponding doubly-cyclized, 8-shaped poly(THF) chains. While the single-molecule fluorescence imaging experiment revealed that the diffusion of the 4-armed star polymer was described by a single Gaussian distribution, the diffusion of the 8-shaped polymer exhibited a double Gaussian distribution behaviour. We reasoned that the two 8-shaped polymeric isomers have distinct diffusion modes in the melt state, although ensemble-averaged experimental methods cannot detect differences in overall conformational state of the isomers. The single-molecule experiments suggested that one of the 8-shaped polymeric isomer, having the horizontally oriented form, causes an efficient threading with the linear matrix chains which leads to the slower diffusion compared with the corresponding 4-armed star polymer, while the other 8-shaped polymeric isomer, having the vertically oriented form, displayed faster diffusion by the suppression of effective threading with the linear matrix chains due to its contracted chain conformation.

  6. Single-cell genomics reveals pyrrolysine-encoding potential in members of uncultivated archaeal candidate division MSBL1

    KAUST Repository

    Guan, Yue

    2017-05-11

    Pyrrolysine (Pyl), the 22nd canonical amino acid, is only decoded and synthesized by a limited number of organisms in the domains Archaea and Bacteria. Pyl is encoded by the amber codon UAG, typically a stop codon. To date, all known Pyl-decoding archaea are able to carry out methylotrophic methanogenesis. The functionality of methylamine methyltransferases, an important component of corrinoid-dependent methyltransfer reactions, depends on the presence of Pyl. Here, we present a putative pyl gene cluster obtained from single-cell genomes of the archaeal Mediterranean Sea Brine Lakes group 1 (MSBL1) from the Red Sea. Functional annotation of the MSBL1 single cell amplified genomes (SAGs) also revealed a complete corrinoid-dependent methyl-transfer pathway suggesting that members of MSBL1 may possibly be capable of synthesizing Pyl and metabolizing methylated amines. This article is protected by copyright. All rights reserved.

  7. Early transcriptional and epigenetic regulation of CD8+ T cell differentiation revealed by single-cell RNA-seq

    Science.gov (United States)

    Kakaradov, Boyko; Arsenio, Janilyn; Widjaja, Christella E.; He, Zhaoren; Aigner, Stefan; Metz, Patrick J.; Yu, Bingfei; Wehrens, Ellen J.; Lopez, Justine; Kim, Stephanie H.; Zuniga, Elina I.; Goldrath, Ananda W.; Chang, John T.; Yeo, Gene W.

    2017-01-01

    SUMMARY During microbial infection, responding CD8+ T lymphocytes differentiate into heterogeneous subsets that together provide immediate and durable protection. To elucidate the dynamic transcriptional changes that underlie this process, we applied a single-cell RNA sequencing approach and analyzed individual CD8+ T lymphocytes sequentially throughout the course of a viral infection in vivo. Our analyses revealed a striking transcriptional divergence among cells that had undergone their first division and identified previously unknown molecular determinants controlling CD8+ T lymphocyte fate specification. These findings suggest a model of terminal effector cell differentiation initiated by an early burst of transcriptional activity and subsequently refined by epigenetic silencing of transcripts associated with memory lymphocytes, highlighting the power and necessity of single-cell approaches. PMID:28218746

  8. Single-Trial EEG-EMG coherence analysis reveals muscle fatigue-related progressive alterations in corticomuscular coupling.

    Science.gov (United States)

    Siemionow, Vlodek; Sahgal, Vinod; Yue, Guang H

    2010-04-01

    Voluntary muscle fatigue is a progressive process. A recent study demonstrated muscle fatigue-induced weakening of functional corticomuscular coupling measured by coherence between the brain [electroencephalogram (EEG)] and muscle [electromyogram (EMG)] signals after a relatively long-duration muscle contraction. Comparing the EEG-EMG coherence before versus after fatigue or between data of two long-duration time blocks is not adequate to reveal the dynamic nature of the fatigue process. The purpose of this study was to address this issue by quantifying single-trial EEG-EMG coherence and EEG, EMG power based on wavelet transform. Eight healthy subjects performed 200 maximal intermittent handgrip contractions in a single session with handgrip force, EEG and EMG signals acquired simultaneously. The EEG and EMG data during each 2-s handgrip was subjected to single trial EEG-EMG wavelet energy spectrum and coherence computation. The EEG-EMG coherence and energy spectrum at beta (15 ~ 35 Hz) and gamma (35-50 Hz) frequency bands were statistically analyzed in 2-block (75 trials per block), 5-block (30 trials/block), and 10-block (15 trials/block) data settings. The energy of both the EEG and EMG signals decreased significantly with muscle fatigue. The EEG-EMG coherence had a significant reduction for the 2-block comparison. More detailed dynamical changing and inter-subject variation of the EEG-EMG coherence and energy were revealed by 5- and 10-block comparisons. These results show feasibility of wavelet transform-based measurement of the EEG-EMG coherence and corresponding energy based on single-trial data, which provides extra information to demonstrate a time course of dynamic adaptations of the functional corticomuscular coupling, as well as brain and muscle signals during muscle fatigue.

  9. Dynamical theory and experiments on GaAs nanowire growth for photovoltaic applications

    DEFF Research Database (Denmark)

    Krogstrup, Peter

    equilibrium are discussed in detail. Self-catalyzed GaAs nanowire growth which will be the main focus for the photovoltaic applications is used as a model system, and examples of in depth dynamical simulations compared with experiments are shown. The work gradually involves more detailed growth experiments...... such as in-situ x-ray characterization of growing nanowires and growth of advanced photovoltaic structures and finally photovoltaic characterization of both lying and standing single nanowire devices are presented. All the different kind of single NW solar cell devices show an enormous potential as light...

  10. Effect of the wire width and magnetic field on the detection efficiency of superconducting nanowire single-photon detectors; Einfluss von Geometrie und magnetischem Feld auf die Effizienz supraleitender Nanodraht-Einzelphotonendetektoren

    Energy Technology Data Exchange (ETDEWEB)

    Lusche, Robert

    2015-06-24

    The aim of this thesis is to a gain deeper understanding of the single photon detection process in superconducting nanowire single-photon detectors (SNSPDs). A detailed knowledge of the physical principles and mechanisms which the detection process is based on helps to improve specific detector parameters and hence the suitability of such detectors for various applications. Several theoretical models of the detection process have been compared to the results of measurements of photon and dark count rates in meander-type TaN- and NbN-SNSPDs with different wire-widths in a broad range of wavelengths, transport currents and magnetic fields. In the first part of the thesis, measurements of the photon and dark count rates of TaN- and NbN-SNSPDs with varying wire width are described. For each meander spectra of the intrinsic detection efficiency (IDE) were derived. The IDE represents the probability that the SNSPD generates a measurable voltage pulse upon absorption of a photon. The recorded IDE spectra have shown a characteristic cut-off wavelength up to which photons were detected with a probability of 100 per cent. Furthermore it was found that the cut-off wavelengths increases linearly with the increase in the inverse wire width. This observation is best explained by the refined hot spot model. The second part of the thesis describes the influence of magnetic field on the photon and dark count rates of NbN-SNSPDs. In order to apply magnetic fields to the meanders a continuous-flow inset for mobile 4He storage dewars was constructed. It was shown for the first time, that the photon count rate exhibits a magnetic field dependence. Furthermore it could be shown that the measured dependence of the photon and dark count rate on the magnetic field is in good agreement with the theoretical model of vortex-assisted photon detection in narrow superconducting lines. Hence, within this thesis it could be confirmed that magnetic vortices are involved in the single photon

  11. Fabrication of vertical GaN/InGaN heterostructure nanowires using Ni-Au bi-metal catalysts.

    Science.gov (United States)

    Ha, Ryong; Kim, Sung-Wook; Choi, Heon-Jin

    2013-06-26

    We have fabricated the vertically aligned coaxial or longitudinal heterostructure GaN/InGaN nanowires. The GaN nanowires are first vertically grown by vapor-liquid-solid mechanism using Au/Ni bi-metal catalysts. The GaN nanowires are single crystal grown in the [0001] direction, with a length and diameter of 1 to 10 μm and 100 nm, respectively. The vertical GaN/InGaN coaxial heterostructure nanowires (COHN) are then fabricated by the subsequent deposition of 2 nm of InxGa1-xN shell on the surface of GaN nanowires. The vertical GaN/InGaN longitudinal heterostructure nanowires (LOHN) are also fabricated by subsequent growth of an InGaN layer on the vertically aligned GaN nanowires using the catalyst. The photoluminescence from the COHN and LOHN indicates that the optical properties of GaN nanowires can be tuned by the formation of a coaxial or longitudinal InGaN layer. Our study demonstrates that the bi-metal catalysts are useful for growing vertical as well as heterostructure GaN nanowires. These vertically aligned GaN/InGaN heterostructure nanowires may be useful for the development of high-performance optoelectronic devices.

  12. Footprints of domestication revealed by RAD-tag resequencing in loquat: SNP data reveals a non-significant domestication bottleneck and a single domestication event.

    Science.gov (United States)

    Wang, Yunsheng; Shahid, Muhammad Qasim; Lin, Shunquan; Chen, Chengjie; Hu, Chen

    2017-05-06

    The process of crop domestication has long been a major area of research to gain insights into the history of human civilization and to understand the process of evolution. Loquat (Eriobotrya japonica Lindl.) is one of the typical subtropical fruit trees, which was domesticated in China at least 2000 years ago. In the present study, we re-sequenced the genome of nine wild loquat accessions collected from wide geographical range and 10 representative cultivated loquat cultivars by using RAD-tag tacit to exploit the molecular footprints of domestication. We obtained 26.4 Gb clean sequencing data from 19 loquat accessions, with an average of 32.64 M reads per genotype. We identified more than 80,000 SNPs distributed throughout the loquat genome. The SNP density and numbers were slightly higher in the wild loquat populations than that in the cultivated populations. All cultivars were clustered together by structure, phylogenetic and PCA analyses. The modern loquat cultivars have experienced a non-significant genetic bottleneck during domestication, and originated from a single domesticated event. Moreover, our study revealed that Hubei province of China is probably the origin center of cultivated loquat.

  13. Bismuth nanowire growth under low deposition rate and its ohmic contact free of interface damage

    Directory of Open Access Journals (Sweden)

    Ye Tian

    2012-03-01

    Full Text Available High quality bismuth (Bi nanowire and its ohmic contact free of interface damage are quite desired for its research and application. In this paper, we propose one new way to prepare high-quality single crystal Bi nanowires at a low deposition rate, by magnetron sputtering method without the assistance of template or catalyst. The slow deposition growth mechanism of Bi nanowire is successfully explained by an anisotropic corner crossing effect, which is very different from existing explanations. A novel approach free of interface damage to ohmic contact of Bi nanowire is proposed and its good electrical conductivity is confirmed by I-V characteristic measurement. Our method provides a quick and convenient way to produce high-quality Bi nanowires and construct ohmic contact for desirable devices.

  14. Rational synthesis of silver vanadium oxides/polyaniline triaxial nanowires with enhanced electrochemical property.

    Science.gov (United States)

    Mai, Liqiang; Xu, Xu; Han, Chunhua; Luo, Yanzhu; Xu, Lin; Wu, Yimin A; Zhao, Yunlong

    2011-11-09

    We designed and successfully synthesized the silver vanadium oxides/polyaniline (SVO/PANI) triaxial nanowires by combining in situ chemical oxidative polymerization and interfacial redox reaction based on β-AgVO(3) nanowires. The β-AgVO(3) core and two distinct layers can be clearly observed in single triaxial nanowire. Fourier transformed infrared spectroscopic and energy dispersive X-ray spectroscopic investigations indicate that the outermost layer is PANI and the middle layer is Ag(x)VO((2.5+0.5x)) (x < 1), which may result from the redox reaction of Ag(+) and aniline monomers at the interface. The presence of the Ag particle in a transmission electron microscopy image confirms the occurrence of the redox reaction. The triaxial nanowires exhibit enhanced electrochemical performance. This method is shown to be an effective and facile technique for improving the electrochemical performance and stability of nanowire electrodes for applications in Li ion batteries.

  15. Methodology exploration of specimen preparation for atom probe tomography from nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Jiangtao [School of Physics, The University of Sydney, New South Wales 2006 (Australia); Wong, Derek [Australian Centre for Microscopy & Microanalysis. The University of Sydney, New South Wales 2006 (Australia); Du, Sichao [School of Physics, The University of Sydney, New South Wales 2006 (Australia); Yang, Limei [Australian Centre for Microscopy & Microanalysis. The University of Sydney, New South Wales 2006 (Australia); Ringer, Simon [Australian Centre for Microscopy & Microanalysis. The University of Sydney, New South Wales 2006 (Australia); School of Aerospace, Mechanical and Mechatronic Engineering. The University of Sydney, New South Wales 2006 (Australia); Zheng, Rongkun, E-mail: rongkun.zheng@sydney.edu.au [School of Physics, The University of Sydney, New South Wales 2006 (Australia)

    2015-12-15

    Semiconductor nanowires have been intensively explored for applications in electronics, photonics, energy conversion and storage. A fundamental and quantitative understanding of growth–structure–property relationships is central to applications where nanowires exhibit clear advantages. Atom Probe Tomography (APT) is able to provide 3 dimensional quantitative elemental distributions at atomic-resolution and is therefore unique in understanding the growth–structure–property relationships. However, the specimen preparation with nanowires is extremely challenging. In this paper, two ion beam free specimen preparation methods for APT are presented which are efficient for various nanowires. - Highlights: • Previous APT specimen Prep methods from nanowires (NWs) were summarized. • Low-density NWs growing on substrates for in-situ APT experiments were presented. • Another unique single NW lift-out method for APT was also proposed.

  16. Ultra-High-Speed Optical Serial-to-Parallel Data Conversion in a Silicon Nanowire

    DEFF Research Database (Denmark)

    Mulvad, Hans Christian Hansen; Palushani, Evarist; Hu, Hao

    2011-01-01

    We demonstrate conversion from 64×10 Gbit/s OTDM to 25 GHz DWDM by time-domain optical Fourier transformation. Using a single silicon nanowire, 40 of 64 OTDM tributaries are simultaneously converted to DWDM channels within FEC limits.......We demonstrate conversion from 64×10 Gbit/s OTDM to 25 GHz DWDM by time-domain optical Fourier transformation. Using a single silicon nanowire, 40 of 64 OTDM tributaries are simultaneously converted to DWDM channels within FEC limits....

  17. Nanowire Field-Effect Transistors : Sensing Simplicity?

    NARCIS (Netherlands)

    Mescher, M.

    2014-01-01

    Silicon nanowires are structures made from silicon with at least one spatial dimension in the nanometer regime (1-100 nm). From these nanowires, silicon nanowire field-effect transistors can be constructed. Since their introduction in 2001 silicon nanowire field-effect transistors have been studied

  18. Long Silver Nanowires Synthesis by Pulsed Electrodeposition

    Directory of Open Access Journals (Sweden)

    M.R. Batevandi

    2015-09-01

    Full Text Available Silver nanowires were pulse electrodeposited into nanopore anodic alumina oxide templates. The effects of continuous and pulse electrodeposition waveform on the microstructure properties of the nanowire arrays were studied. It is seen that the microstructure of nanowire is depend to pulse condition. The off time duration of pulse waveform enables to control the growth direction of Ag nanowires.

  19. Fabrication of vertical GaN/InGaN heterostructure nanowires using Ni-Au bi-metal catalysts

    OpenAIRE

    Ha, Ryong; Kim, Sung-Wook; Choi, Heon-Jin

    2013-01-01

    We have fabricated the vertically aligned coaxial or longitudinal heterostructure GaN/InGaN nanowires. The GaN nanowires are first vertically grown by vapor?liquid-solid mechanism using Au/Ni bi-metal catalysts. The GaN nanowires are single crystal grown in the [0001] direction, with a length and diameter of 1 to 10 ?m and 100 nm, respectively. The vertical GaN/InGaN coaxial heterostructure nanowires (COHN) are then fabricated by the subsequent deposition of 2 nm of InxGa1-xN shell on the sur...

  20. Aging of Organic Nanowires

    DEFF Research Database (Denmark)

    Balzer, Frank; Schiek, Manuela; Osadnik, Andreas

    2012-01-01

    Organic semiconductors formed by epitaxial growth from small molecules such as the para-phenylenes or squaraines promise a vast application potential as the active ingredient in electric and optoelectronic devices. Their self-organization into organic nanowires or "nanofibers" adds a peculiar...... attribute, making them especially interesting for light generation in OLEDs and for light-harvesting devices such as solar cells. Functionalization of the molecules allows the customization of optical and electrical properties. However, aging of the wires might lead to a considerable decrease in device...... performance over time. In this study the morphological stability of organic nanoclusters and nanowires from the methoxy functionalized quaterphenylene, 4,4'''dimethoxy-1,1':4',1''4'',1'''-quaterphenylene (MOP4), is investigated in detail. Aging experiments conducted by atomic force microscopy under ambient...

  1. A universal approach to electrically connecting nanowire arrays using nanoparticles—application to a novel gas sensor architecture

    Science.gov (United States)

    Parthangal, Prahalad M.; Cavicchi, Richard E.; Zachariah, Michael R.

    2006-08-01

    We report on a novel, in situ approach toward connecting and electrically contacting vertically aligned nanowire arrays using conductive nanoparticles. The utility of the approach is demonstrated by development of a gas sensing device employing this nano-architecture. Well-aligned, single-crystalline zinc oxide nanowires were grown through a direct thermal evaporation process at 550 °C on gold catalyst layers. Electrical contact to the top of the nanowire array was established by creating a contiguous nanoparticle film through electrostatic attachment of conductive gold nanoparticles exclusively onto the tips of nanowires. A gas sensing device was constructed using such an arrangement and the nanowire assembly was found to be sensitive to both reducing (methanol) and oxidizing (nitrous oxides) gases. This assembly approach is amenable to any nanowire array for which a top contact electrode is needed.

  2. A universal approach to electrically connecting nanowire arrays using nanoparticles-application to a novel gas sensor architecture

    International Nuclear Information System (INIS)

    Parthangal, Prahalad M; Cavicchi, Richard E; Zachariah, Michael R

    2006-01-01

    We report on a novel, in situ approach toward connecting and electrically contacting vertically aligned nanowire arrays using conductive nanoparticles. The utility of the approach is demonstrated by development of a gas sensing device employing this nano-architecture. Well-aligned, single-crystalline zinc oxide nanowires were grown through a direct thermal evaporation process at 550 deg. C on gold catalyst layers. Electrical contact to the top of the nanowire array was established by creating a contiguous nanoparticle film through electrostatic attachment of conductive gold nanoparticles exclusively onto the tips of nanowires. A gas sensing device was constructed using such an arrangement and the nanowire assembly was found to be sensitive to both reducing (methanol) and oxidizing (nitrous oxides) gases. This assembly approach is amenable to any nanowire array for which a top contact electrode is needed

  3. A deep etching mechanism for trench-bridging silicon nanowires

    International Nuclear Information System (INIS)

    Tasdemir, Zuhal; Alaca, B Erdem; Wollschläger, Nicole; Österle, Werner; Leblebici, Yusuf

    2016-01-01

    Introducing a single silicon nanowire with a known orientation and dimensions to a specific layout location constitutes a major challenge. The challenge becomes even more formidable, if one chooses to realize the task in a monolithic fashion with an extreme topography, a characteristic of microsystems. The need for such a monolithic integration is fueled by the recent surge in the use of silicon nanowires as functional building blocks in various electromechanical and optoelectronic applications. This challenge is addressed in this work by introducing a top-down, silicon-on-insulator technology. The technology provides a pathway for obtaining well-controlled silicon nanowires along with the surrounding microscale features up to a three-order-of-magnitude scale difference. A two-step etching process is developed, where the first shallow etch defines a nanoscale protrusion on the wafer surface. After applying a conformal protection on the protrusion, a deep etch step is carried out forming the surrounding microscale features. A minimum nanowire cross-section of 35 nm by 168 nm is demonstrated in the presence of an etch depth of 10 μm. Nanowire cross-sectional features are characterized via transmission electron microscopy and linked to specific process steps. The technology allows control on all dimensional aspects along with the exact location and orientation of the silicon nanowire. The adoption of the technology in the fabrication of micro and nanosystems can potentially lead to a significant reduction in process complexity by facilitating direct access to the nanowire during surface processes such as contact formation and doping. (paper)

  4. Modulating the Optoelectronic Properties of Silver Nanowires Films: Effect of Capping Agent and Deposition Technique.

    Science.gov (United States)

    Lopez-Diaz, D; Merino, C; Velázquez, M M

    2015-11-11

    Silver nanowires 90 nm in diameter and 9 µm in length have been synthesized using different capping agents: polyvinyl pyrrolidone (PVP) and alkyl thiol of different chain lengths. The nanowire structure is not influenced by the displacement of PVP by alkyl thiols, although alkyl thiols modify the lateral aggregation of nanowires. We examined the effect of the capping agent and the deposition method on the optical and electrical properties of films prepared by Spray and the Langmuir-Schaefer methodologies. Our results revealed that nanowires capped with PVP and C8-thiol present the best optoelectronic properties. By using different deposition techniques and by modifying the nanowire surface density, we can modulate the optoelectronic properties of films. This strategy allows obtaining films with the optoelectronic properties required to manufacture touch screens and electromagnetic shielding.

  5. Modulating the Optoelectronic Properties of Silver Nanowires Films: Effect of Capping Agent and Deposition Technique

    Directory of Open Access Journals (Sweden)

    D. Lopez-Diaz

    2015-11-01

    Full Text Available Silver nanowires 90 nm in diameter and 9 µm in length have been synthesized using different capping agents: polyvinyl pyrrolidone (PVP and alkyl thiol of different chain lengths. The nanowire structure is not influenced by the displacement of PVP by alkyl thiols, although alkyl thiols modify the lateral aggregation of nanowires. We examined the effect of the capping agent and the deposition method on the optical and electrical properties of films prepared by Spray and the Langmuir-Schaefer methodologies. Our results revealed that nanowires capped with PVP and C8-thiol present the best optoelectronic properties. By using different deposition techniques and by modifying the nanowire surface density, we can modulate the optoelectronic properties of films. This strategy allows obtaining films with the optoelectronic properties required to manufacture touch screens and electromagnetic shielding.

  6. Electrochemical fabrication of ordered Bi{sub 2}S{sub 3} nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Peng, X.S. [Institute of Solid State Physics, Chinese Academy of Sciences, Hefei (China)]. E-mail: zyzhao@mail.issp.ac.cn; Meng, G.W.; Zhang, J.; Zhao, L.X.; Wang, X.F.; Wang, Y.W.; Zhang, L.D. [Institute of Solid State Physics, Chinese Academy of Sciences, Hefei (China)

    2001-11-21

    We have successfully fabricated ordered, well-crystallized Bi{sub 2}S{sub 3} nanowire arrays embedded in the nanochannels of porous anodic aluminium oxide templates by direct current electrodeposition from a dimethylsulfoxide solution containing BiCl{sub 3} and elemental sulfur. X-ray diffraction and selected area electron diffraction investigations demonstrate that the Bi{sub 2}S{sub 3} nanowires have an orthorhombic uniform structure. Electromicroscopy results show that the nanowires are quite ordered with diameters of about 40 nm and lengths up to 5 {mu}m. X-ray energy dispersion analysis indicates that the atomic composition of Bi and S is very close to a 2:3 stoichiometry. The optical properties of these nanowires were characterized by optical absorption techniques. These studies reveal that the annealed Bi{sub 2}S{sub 3} nanowires have an optical band edge (direct) of about 1.56 eV. (author)

  7. Improvement of electron transport in a ZnSe nanowire by in situ strain

    International Nuclear Information System (INIS)

    Wang, Y G; Zhang, Q L; Wang, T H; Zhou, S X; Han, W

    2011-01-01

    Strain is introduced in a single ZnSe nanowire by compressive stress in situ applied along the axial direction, which controllably bends the nanowire under transmission electron microscope inspection. Meanwhile, the I-V measurement of a single ZnSe nanowire before and after the strain is carried out in order to investigate the influence of strain on the electrical properties of the individual ZnSe nanowire. A remarkable jump of about 100% in current and a reduction of about 30% in threshold voltage are detected when the stress is applied along the longitudinal direction of the nanowire. The advantage of stress-induced strains is to produce both compression and tension simultaneously in a single nanowire, which enhance the electron and hole mobilities and significantly improve the electron transport as a consequence. Narrowing the band gap due to the tensile strain, confirmed by theoretical calculation, is responsible for the reduction of threshold voltage. The stress-induced strains in the ZnSe nanowire are favourable for optimization of the carrier transport.

  8. Improvement of electron transport in a ZnSe nanowire by in situ strain

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y G; Zhang, Q L; Wang, T H; Zhou, S X [Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, and State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082 (China); Han, W, E-mail: ygwang@blem.ac.cn, E-mail: sxzhou@atmcn.com [National Amorphous and Nanocrystalline Alloy Engineering Research Center, Central Iron and Steel Research Institute, XueYuan Nan Road No. 76, Beijing 100081 (China)

    2011-03-30

    Strain is introduced in a single ZnSe nanowire by compressive stress in situ applied along the axial direction, which controllably bends the nanowire under transmission electron microscope inspection. Meanwhile, the I-V measurement of a single ZnSe nanowire before and after the strain is carried out in order to investigate the influence of strain on the electrical properties of the individual ZnSe nanowire. A remarkable jump of about 100% in current and a reduction of about 30% in threshold voltage are detected when the stress is applied along the longitudinal direction of the nanowire. The advantage of stress-induced strains is to produce both compression and tension simultaneously in a single nanowire, which enhance the electron and hole mobilities and significantly improve the electron transport as a consequence. Narrowing the band gap due to the tensile strain, confirmed by theoretical calculation, is responsible for the reduction of threshold voltage. The stress-induced strains in the ZnSe nanowire are favourable for optimization of the carrier transport.

  9. Generic technique to grow III-V semiconductor nanowires in a closed glass vessel

    Directory of Open Access Journals (Sweden)

    Kan Li

    2016-06-01

    Full Text Available Crystalline III-V semiconductor nanowires have great potential in fabrication of nanodevices for applications in nanoelectronics and optoelectronics, and for studies of novel physical phenomena. Sophisticated epitaxy techniques with precisely controlled growth conditions are often used to prepare high quality III-V nanowires. The growth process and cost of these experiments are therefore dedicated and very high. Here, we report a simple but generic method to synthesize III-V nanowires with high crystal quality. The technique employs a closed evacuated tube vessel with a small tube carrier containing a solid source of materials and another small tube carrier containing a growth substrate inside. The growth of nanowires is achieved after heating the closed vessel in a furnace to a preset high temperature and then cooling it down naturally to room temperature. The technique has been employed to grow InAs, GaAs, and GaSb nanowires on Si/SiO2 substrates. The as-grown nanowires are analyzed by SEM, TEM and Raman spectroscopy and the results show that the nanowires are high quality zincblende single crystals. No particular condition needs to be adjusted and controlled in the experiments. This technique provides a convenient way of synthesis of III-V semiconductor nanowires with high material quality for a wide range of applications.

  10. Conducting polymer nanowires for control of local protein concentration in solution

    Science.gov (United States)

    Morris, Joshua D.; Thourson, Scott B.; Panta, Krishna R.; Flanders, Bret N.; Payne, Christine K.

    2017-05-01

    Interfacing devices with cells and tissues requires new nanoscale tools that are both flexible and electrically active. We demonstrate the use of PEDOT:PSS conducting polymer nanowires for the local control of protein concentration in water and biological media. We use fluorescence microscopy to compare the localization of serum albumin in response to electric fields generated by narrow (760 nm) and wide (1.5 µm) nanowires. We show that proteins in deionized water can be manipulated over a surprisingly large micron length scale and that this distance is a function of nanowire diameter. In addition, white noise can be introduced during the electrochemical synthesis of the nanowire to induce branches into the nanowire allowing a single device to control multiple nanowires. An analysis of growth speed and current density suggests that branching is due to the Mullins-Sekerka instability, ultimately controlled by the roughness of the nanowire surface. These small, flexible, conductive, and biologically compatible PEDOT:PSS nanowires provide a new tool for the electrical control of biological systems.

  11. Nano-welding and junction formation in hydrogen titanate nanowires by low-energy nitrogen ion irradiation

    Science.gov (United States)

    Dhal, Satyanarayan; Chatterjee, Shyamal; Sarkar, Subhrangsu; Tribedi, Lokesh C.; Bapat, Rudheer; Ayyub, Pushan

    2015-06-01

    Crystalline hydrogen titanate (H2Ti3O7) nanowires were irradiated with N+ ions of different energies and fluences. Scanning electron microscopy reveals that at relatively lower fluence the nanowires are bent and start to adhere strongly to one another as well as to the silicon substrate. At higher fluence, the nanowires show large-scale welding and form a network of mainly ‘X’ and ‘Y’ junctions. Transmission electron microscopy and Raman scattering studies confirm a high degree of amorphization of the nanowire surface after irradiation. We suggest that while ion-irradiation induced defect formation and dangling bonds may lead to chemical bonding between nanowires, the large scale nano-welding and junction network formation can be ascribed to localized surface melting due to heat spike. Our results demonstrate that low energy ion irradiation with suitable choice of fluence may provide an attractive route to the formation and manipulation of large-area nanowire-based devices.

  12. The microstructure and magnetic properties of Cu/CuO/Ni core/multi-shell nanowire arrays

    Science.gov (United States)

    Yang, Feng; Shi, Jie; Zhang, Xiaofeng; Hao, Shijie; Liu, Yinong; Feng, Chun; Cui, Lishan

    2018-04-01

    Multifunctional metal/oxide/metal core/multi-shell nanowire arrays were prepared mostly by physical or chemical vapor deposition. In our study, the Cu/CuO/Ni core/multi-shell nanowire arrays were prepared by AAO template-electrodeposition and oxidation processes. The Cu/Ni core/shell nanowire arrays were prepared by AAO template-electrodeposition method. The microstructure and chemical compositions of the core/multi-shell nanowires and core/shell nanowires have been characterized using transmission electron microscopy with HADDF-STEM and X-ray diffraction. Magnetization measurements revealed that the Cu/CuO/Ni and Cu/Ni nanowire arrays have high coercivity and remanence ratio.

  13. Quantum transport in semiconductor nanowires

    NARCIS (Netherlands)

    Van Dam, J.

    2006-01-01

    This thesis describes a series of experiments aimed at understanding the low-temperature electrical transport properties of semiconductor nanowires. The semiconductor nanowires (1-100 nm in diameter) are grown from nanoscale gold particles via a chemical process called vapor-liquid-solid (VLS)

  14. Inhomogeneous Si-doping of gold-seeded InAs nanowires grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Rolland, Chloe; Coinon, Christophe; Wallart, Xavier; Leturcq, Renaud [Institute of Electronics Microelectronics and Nanotechnology, UMR CNRS 8520, ISEN Department, Avenue Poincare, CS60069, 59652 Villeneuve d' Ascq Cedex (France); Caroff, Philippe [Institute of Electronics Microelectronics and Nanotechnology, UMR CNRS 8520, ISEN Department, Avenue Poincare, CS60069, 59652 Villeneuve d' Ascq Cedex (France); Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia)

    2013-06-03

    We have investigated in situ Si doping of InAs nanowires grown by molecular beam epitaxy from gold seeds. The effectiveness of n-type doping is confirmed by electrical measurements showing an increase of the electron density with the Si flux. We also observe an increase of the electron density along the nanowires from the tip to the base, attributed to the dopant incorporation on the nanowire facets whereas no detectable incorporation occurs through the seed. Furthermore, the Si incorporation strongly influences the lateral growth of the nanowires without giving rise to significant tapering, revealing the complex interplay between axial and lateral growth.

  15. Size and environment dependence of surface phonon modes of gallium arsenide nanowires as measured by Raman spectroscopy.

    Science.gov (United States)

    Spirkoska, D; Abstreiter, G; Fontcuberta I Morral, A

    2008-10-29

    Gallium arsenide nanowires were synthesized by gallium-assisted molecular beam epitaxy. By varying the growth time, nanowires with diameters ranging from 30 to 160 nm were obtained. Raman spectra of the nanowire ensembles were measured. The small linewidth of the optical phonon modes agree with an excellent crystalline quality. A surface phonon mode was also revealed, as a shoulder at lower frequencies of the longitudinal optical mode. In agreement with the theory, the surface mode shifts to lower wavenumbers when the diameter of the nanowires is decreased or the environment dielectric constant increased.

  16. Lasing and ion beam doping of semiconductor nanowires

    International Nuclear Information System (INIS)

    Geburt, Sebastian

    2013-01-01

    Semiconductor nanowires exhibit extraordinary optical properties like highly localized light emission, efficient waveguiding and light amplification. Even the stimulation of laser oscillations can be achieved at optical pumping, making nanowires promising for optoelectronic applications. For successful integration into future devices, three major key challenges have to be faced: (1) the understanding of the fundamental properties, (2) the modification of the emission characteristics and (3) the investigation of the efficiency-limiting factors. All key challenges are addressed in this thesis: (1) The fundamental properties of CdS nanowire have been investigated to uncover the size limits for photonic nanowire lasers. Laser oscillations were observed at room temperature and the emission characteristics were correlated to the morphology, which allowed the determination of a minimum diameter and length necessary for lasing. (2) The emission characteristics of ZnO nanowires have been successfully modified by ion beam doping with Co. The structural investigations revealed a good recovery of the ion induced damage in the crystal lattice. Optical activation of the implanted Co ions was achieved and an intense intra-3d-emission confirmed successful modification. (3) The temporal decay of excited luminescence centers strongly depends on the interplay of luminescent ions and defects, thus offering an approach to investigate the efficiency-limiting processes. Mn implanted ZnS nanowires were investigated, as the temporal decay of the incorporated Mn ions can be described by a Foerster energy transfer model modified for nanostructures. The defect concentration was varied systematically by several approaches and the model could successfully fit the transients in all cases. The emission properties of Tb implanted ZnS nanowires were investigated and the temporal decay of the intra-4f-emission could also be fitted by the model, proving its accuracy for an additional element.

  17. Lasing and ion beam doping of semiconductor nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Geburt, Sebastian

    2013-01-31

    Semiconductor nanowires exhibit extraordinary optical properties like highly localized light emission, efficient waveguiding and light amplification. Even the stimulation of laser oscillations can be achieved at optical pumping, making nanowires promising for optoelectronic applications. For successful integration into future devices, three major key challenges have to be faced: (1) the understanding of the fundamental properties, (2) the modification of the emission characteristics and (3) the investigation of the efficiency-limiting factors. All key challenges are addressed in this thesis: (1) The fundamental properties of CdS nanowire have been investigated to uncover the size limits for photonic nanowire lasers. Laser oscillations were observed at room temperature and the emission characteristics were correlated to the morphology, which allowed the determination of a minimum diameter and length necessary for lasing. (2) The emission characteristics of ZnO nanowires have been successfully modified by ion beam doping with Co. The structural investigations revealed a good recovery of the ion induced damage in the crystal lattice. Optical activation of the implanted Co ions was achieved and an intense intra-3d-emission confirmed successful modification. (3) The temporal decay of excited luminescence centers strongly depends on the interplay of luminescent ions and defects, thus offering an approach to investigate the efficiency-limiting processes. Mn implanted ZnS nanowires were investigated, as the temporal decay of the incorporated Mn ions can be described by a Foerster energy transfer model modified for nanostructures. The defect concentration was varied systematically by several approaches and the model could successfully fit the transients in all cases. The emission properties of Tb implanted ZnS nanowires were investigated and the temporal decay of the intra-4f-emission could also be fitted by the model, proving its accuracy for an additional element.

  18. Growth of ZnO nanowires on nonwoven polyethylene fibers

    International Nuclear Information System (INIS)

    Baruah, Sunandan; Dutta, Joydeep; Thanachayanont, Chanchana

    2008-01-01

    We report the growth of ZnO nanowires on nonwoven polyethylene fibers using a simple hydrothermal method at a temperature below the boiling point of water. The ZnO nanowires were grown from seed ZnO nanoparticles affixed onto the fibers. The seed ZnO nanoparticles, with diameters of about 6-7 nm, were synthesized in isopropanol by reducing zinc acetate hydrate with sodium hydroxide. The growth process was carried out in a sealed chemical bath containing an equimolar solution of zinc nitrate hexahydrate and hexamethylene tetramine at a temperature of 95 0 C over a period of up to 20 h. The thickness and length of the nanowires can be controlled by using different concentrations of the starting reactants and growth durations. A 0.5 mM chemical bath yielded nanowires with an average diameter of around 50 nm, while a 25 mM bath resulted in wires with a thickness of up to about 1 μm. The length of the wires depends both on the concentration of the precursor solution as well as the growth duration, and in 20 h, nanowires as long as 10 μm can be grown. The nonwoven mesh of polyethylene fibers covered with ZnO nanowires can be used for novel applications such as water treatment by degrading pollutants by photocatalysis. Photocatalysis tests carried out on standard test contaminants revealed that the polyethylene fibers with ZnO nanowires grown on them could accelerate the photocatalytic degradation process by a factor of 3

  19. Conductance quantization in magnetic nanowires electrodeposited in nanopores

    DEFF Research Database (Denmark)

    Elhoussine, F.; Mátéfi-Tempfli, Stefan; Encinas, A.

    2002-01-01

    Magnetic nanocontacts have been prepared by a templating method that involves the electrodeposition of Ni within the pores of track-etched polymer membranes. The nanocontacts are made at the extremity of a single Ni nanowire either inside or outside the pores. The method is simple, flexible...... degeneracy. Our fabrication method enables future investigation of ballistic spin transport phenomena in electrodeposited magnetic nanocontacts....

  20. Surface functionalization of HF-treated silicon nanowires

    Indian Academy of Sciences (India)

    Administrator

    well as applications. One of the special interests of SiNWs is that their surfaces can be easily modified to act as both elec- ... functionalized the SiNWs via nanoscale Joule heat- ing. 23. Shir et al investigated the oxidation of silicon nanowires. 24 .... cording to Vegard's law. 29. Figure 5b presents a TEM image of one single.