WorldWideScience

Sample records for single nanostructure ssn

  1. Suspended and localized single nanostructure growth across a nanogap by an electric field

    International Nuclear Information System (INIS)

    Lee, Chung-Hoon; Schneider, Susan C; Josse, Fabien; Han, Jun Hyun

    2011-01-01

    Direct growth of a suspended single nanostructure (SSN) at a specific location is presented. The SSN is grown across a metallic nanoscale gap by migration in air at room temperature. The nanogap is fabricated by industrial standard optical lithography and anisotropic wet chemical silicon etching. A DC current bias, 1 nA, is applied across the metallic gap to induce nanoscale migration of Zn or ZnO. The history of the voltage drop across the gap as a function of time clearly indicates the moment when migration begins. The shape of SSNs grown across the nanogap by the migration is asymmetric at each electrode due to the asymmetric electric field distribution within the nanogap. An SSN can be used as the platform for two-terminal active or passive nanoscale electronics in optoelectronics, radio frequency (RF) resonators, and chemical/biological sensors.

  2. SSN Verification Service

    Data.gov (United States)

    Social Security Administration — The SSN Verification Service is used by Java applications to execute the GUVERF02 service using the WebSphere/CICS Interface. It accepts several input data fields...

  3. ANALISIS KUALITAS PENGELOLAAN KELAS PEMBELAJARAN SAINS PADA SMP SSN DI KABUPATEN PATI

    Directory of Open Access Journals (Sweden)

    Prasetyaningsih Prasetyaningsih

    2016-12-01

    Full Text Available Abstract This study aimed at identifying in: (1 planning the classroom management for the SSN classes and (2 managing the classroom, in the teaching and learning process of science in SSN schools.This is a evaluatif study which focuses on the classroom management of science learning in SSN junior high schools. The subjects of the research are SSN Junior High Schools of Pati Regency which focuses on the classroom management of science learning. There are six SSN schools, namely  SMP N 2 Pati, SMP N 4 Pati,  SMP N 1 Wedarijaksa, SMP N 1 Trangkil, SMP N 1 Tlogowungu, and SMP N 1 Gabus. The data were gained through observation, interview, questionnaire, and document study.The result shows that : the classroom management planning  in SSN Junior High Schools in the science learning at Pati Regency are categorizes good: the science teacher  SSN Junior High School the use of ICT in science learning was not taken into account, teaching materials (handouts, worksheets, modules and ICT-based teaching material were not developed yet, the assessment planning did not complete. Process in the science learning at SNN junior High School are as categirizes good.  Keywords: Classroom Management, SSN, Science Learning. Abstrak Penelitian ini bertujuan untuk: (1 mengidentifikasi perencanaan pengelolaan kelas di SMP SSN dalam pembelajaran sains; (2 mengidentifikasi proses pengelolaan kelas di SMP SSN dalam pembelajaran sains. Penelitian ini merupakan penelitian evaluatif, yang memfokuskan pada kualitas pengelolaan kelas pembelajaran sains pada SMP SSN. Subjek penelitian ini SMP SSN Kabupaten Pati yang difokuskan pada perencanaan dan pelaksanaan pengelolaan kelas pembelajaran sains.Data penelitian diperoleh melalui: observasi, wawancara, angket, dan dokumentasi. Data yang diperoleh bersifat subjektif, berupa hasil observasi, wawancara, dan angket.Hasil penelitian menunjukkan: perencanaan pengelolaan kelas di SMP SSN dalam pembelajaran sains berkategori baik

  4. Sound Surfing Network (SSN): Mobile Phone-based Sound Spatialization with Audience Collaboration

    OpenAIRE

    Park, Saebyul; Ban, Seonghoon; Hong, Dae Ryong; Yeo, Woon Seung

    2013-01-01

    SSN (Sound Surfing Network) is a performance system that provides a new musicalexperience by incorporating mobile phone-based spatial sound control tocollaborative music performance. SSN enables both the performer and theaudience to manipulate the spatial distribution of sound using the smartphonesof the audience as distributed speaker system. Proposing a new perspective tothe social aspect music appreciation, SSN will provide a new possibility tomobile music performances in the context of in...

  5. Growth in the Number of SSN Tracked Orbital Objects

    Science.gov (United States)

    Stansbery, Eugene G.

    2004-01-01

    The number of objects in earth orbit tracked by the US Space Surveillance Network (SSN) has experienced unprecedented growth since March, 2003. Approximately 2000 orbiting objects have been added to the "Analyst list" of tracked objects. This growth is primarily due to the resumption of full power/full time operation of the AN/FPS-108 Cobra Dane radar located on Shemya Island, AK. Cobra Dane is an L-band (23-cm wavelength) phased array radar which first became operational in 1977. Cobra Dane was a "Collateral Sensor" in the SSN until 1994 when its communication link with the Space Control Center (SCC) was closed. NASA and the Air Force conducted tests in 1999 using Cobra Dane to detect and track small debris. These tests confirmed that the radar was capable of detecting and maintaining orbits on objects as small as 5-cm diameter. Subsequently, Cobra Dane was reconnected to the SSN and resumed full power/full time space surveillance operations on March 4, 2003. This paper will examine the new data and its implications to the understanding of the orbital debris environment and orbital safety.

  6. A Plan to Optimize the Management of Weld ID SSN Numbering System for Nuclear Power Plants in Korea

    International Nuclear Information System (INIS)

    Yoo, Hyun Ju; Cho, Chan Hee; Kim, Jin Hoi; Park, Dong Min

    2016-01-01

    Summary Sheet Number(SSN) in the current LTP is an ID which means a weldment in a nuclear power plant. However, the SSN ID, which is unique on in a nuclear power plant, is not unique one if the weldments of entire nuclear power plant in Korea are treated in one system. Therefore, it is hard to manage the data during life time using the existing SSN ID system. It is also hard to configure the characteristics of weldment in mind because IDs implying Alloy600 and overlay weld do not exist in the existing SSN ID System. An optimized SSN numbering system managing weldments for the life time is introduced in this paper. Moreover, it is explained how to manage the SSN numbering system in the computer program system, too. The problem, which the weld is not harmoniously managed, would be solved provided adapting the new SSN ID introduced in this paper. A weld is managed during its life time from creation to extinction. The inquiry of inspection history of a concerned weld and the reference of statistics would be performed easily and rightly because the concerned weld can be accessed from anywhere connected to KHNP network such as KHNP headquater, plants and CRI

  7. Improved Space Surveillance Network (SSN) Scheduling using Artificial Intelligence Techniques

    Science.gov (United States)

    Stottler, D.

    There are close to 20,000 cataloged manmade objects in space, the large majority of which are not active, functioning satellites. These are tracked by phased array and mechanical radars and ground and space-based optical telescopes, collectively known as the Space Surveillance Network (SSN). A better SSN schedule of observations could, using exactly the same legacy sensor resources, improve space catalog accuracy through more complementary tracking, provide better responsiveness to real-time changes, better track small debris in low earth orbit (LEO) through efficient use of applicable sensors, efficiently track deep space (DS) frequent revisit objects, handle increased numbers of objects and new types of sensors, and take advantage of future improved communication and control to globally optimize the SSN schedule. We have developed a scheduling algorithm that takes as input the space catalog and the associated covariance matrices and produces a globally optimized schedule for each sensor site as to what objects to observe and when. This algorithm is able to schedule more observations with the same sensor resources and have those observations be more complementary, in terms of the precision with which each orbit metric is known, to produce a satellite observation schedule that, when executed, minimizes the covariances across the entire space object catalog. If used operationally, the results would be significantly increased accuracy of the space catalog with fewer lost objects with the same set of sensor resources. This approach inherently can also trade-off fewer high priority tasks against more lower-priority tasks, when there is benefit in doing so. Currently the project has completed a prototyping and feasibility study, using open source data on the SSN's sensors, that showed significant reduction in orbit metric covariances. The algorithm techniques and results will be discussed along with future directions for the research.

  8. 75 FR 7546 - Foreign Trade Regulations (FTR): Eliminate the Social Security Number (SSN) as an Identification...

    Science.gov (United States)

    2010-02-22

    ... DEPARTMENT OF COMMERCE Census Bureau 15 CFR Part 30 [Docket Number: 090422707-91445-02] RIN 0607-AA48 Foreign Trade Regulations (FTR): Eliminate the Social Security Number (SSN) as an Identification... Trade Regulations (FTR) to eliminate the requirement to report a Social Security Number (SSN) as an...

  9. Analysis of SSN 688 Class Submarine Maintenance Delays

    Science.gov (United States)

    2017-06-01

    Simplified Notional Submarine FRP (Independent Deployer) ..................11  Figure 8.  Evolution of Los Angeles Class Submarine Notional...Number TFP Technical Foundation Paper URO Unrestricted Operations xv ACKNOWLEDGMENTS I would like to thank my lead advisor, Professor Nick Dew...only on Los Angeles (SSN 688)-class submarines. Being the higher quantity and older generation submarine hull type, the Los Angeles class submarine

  10. Probabilistic risk assessment (PRA) on the effectiveness of a core rescue system (SSN) for PWRs

    International Nuclear Information System (INIS)

    Petrangeli, G.; Valeri, A.

    1983-01-01

    Safety systems for the prevention of LWR core severe damage have recently been studied, which are based on automatic primary system depressurization and on borated water injection by low pressure accumulators. These systems have been named Core Rescue System (SSN). The present study evaluates the reduction in core melt probability brought about by the installation of a SSN system on the RSS (WASH 1400) PWR plant (Surry 1). The calculated result is a core melt probability reduction factor of about 250. Taking into account the possible effect of external or internal unknown events of negligible, yet undefined, probability it is concluded that a SSN system can make a plant ten times safer. The first part of a review report by Prof. N.C.Rasmussen, MIT, dealing with general comment, is attached

  11. Evolution between self-assembled single and double ring-like nanostructures

    International Nuclear Information System (INIS)

    Lee, J H; Wang, Zh M; Abuwaar, Z Y; Strom, N W; Salamo, G J

    2006-01-01

    The evolution between lattice-matched GaAs/Al 0.3 Ga 0.7 As single and double ring-like nanostructures is studied, with an emphasis on the construction and destruction of the observed outer ring. Using droplet epitaxy, this was achieved by directly controlling the Ga surface diffusion on GaAs(100). Double ring-like nanostructures were observed at relatively low temperatures under a fixed As 4 flux (beam equivalent pressure (BEP) of 6.4 μTorr) and at a fixed temperature under a high As 4 flux. The construction of the outer ring can be controlled through surface diffusion by varying the substrate temperature or the As 4 flux. Single ring-like nanostructures were realized both at relatively high temperatures under a fixed As 4 flux, and at low temperatures under a relatively low As 4 flux

  12. MINAT SISWA SMP N RSBI DAN SSN DI KOTA SEMARANG DALAM MEMILIH SMK

    Directory of Open Access Journals (Sweden)

    Jarot Tri Bowo Santoso

    2016-01-01

    Full Text Available The objective of this study is to know junior high school students interest in choosing vocational school (SMK. The research took place in 2 RSBI junior high schools and 2 SSN junior high schools in Semarang. The population of this study 854 students and the samples were 120 students.The data were collected by questionnaire and interview. Then, the data were analyzed by percentage description. The results showed that (1 RSBI junior high school students interest in choosing vocational school is very low. (2 SSN junior high school students interest in choosing vocational school is very low.

  13. Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J S; Geisler, P; Bruening, C; Kern, J; Prangsma, J C; Wu, X; Feichtner, Thorsten; Ziegler, J; Weinmann, P; Kamp, M; Forchel, A; Hecht, B [Wilhelm-Conrad-Roentgen-Center for Complex Material Systems, University of Wuerzburg (Germany); Biagioni, P [CNISM, Dipartimento di Fisica, Politecnico di Milano (Italy)

    2011-07-01

    Deep subwavelength integration of high-definition plasmonic nano-structures is of key importance for the development of future optical nanocircuitry. So far the experimental realization of proposed extended plasmonic networks remains challenging, mainly due to the multi-crystallinity of commonly used thermally evaporated gold layers. Resulting structural imperfections in individual circuit elements drastically reduce the yield of functional integrated nanocircuits. Here we demonstrate the use of very large but thin chemically grown single-crystalline gold flakes. After immobilization on any arbitrary surface, they serve as an ideal basis for focused-ion beam milling. We present high-definition ultra-smooth gold nanostructures with reproducible nanosized features over micrometer lengthscales. By comparing multi- and single-crystalline optical antennas we prove that the latter have superior optical properties which are in good agreement with numerical simulations.

  14. Platinum plasmonic nanostructure arrays for massively parallel single-molecule detection based on enhanced fluorescence measurements

    International Nuclear Information System (INIS)

    Saito, Toshiro; Takahashi, Satoshi; Obara, Takayuki; Itabashi, Naoshi; Imai, Kazumichi

    2011-01-01

    We fabricated platinum bowtie nanostructure arrays producing fluorescence enhancement and evaluated their performance using two-photon photoluminescence and single-molecule fluorescence measurements. A comprehensive selection of suitable materials was explored by electromagnetic simulation and Pt was chosen as the plasmonic material for visible light excitation near 500 nm, which is preferable for multicolor dye-labeling applications like DNA sequencing. The observation of bright photoluminescence (λ = 500-600 nm) from each Pt nanostructure, induced by irradiation at 800 nm with a femtosecond laser pulse, clearly indicates that a highly enhanced local field is created near the Pt nanostructure. The attachment of a single dye molecule was attempted between the Pt triangles of each nanostructure by using selective immobilization chemistry. The fluorescence intensities of the single dye molecule localized on the nanostructures were measured. A highly enhanced fluorescence, which was increased by a factor of 30, was observed. The two-photon photoluminescence intensity and fluorescence intensity showed qualitatively consistent gap size dependence. However, the average fluorescence enhancement factor was rather repressed even in the nanostructure with the smallest gap size compared to the large growth of photoluminescence. The variation of the position of the dye molecule attached to the nanostructure may influence the wide distribution of the fluorescence enhancement factor and cause the rather small average value of the fluorescence enhancement factor.

  15. Nanoscale and femtosecond optical autocorrelator based on a single plasmonic nanostructure

    International Nuclear Information System (INIS)

    Melentiev, P N; Afanasiev, A E; Balykin, V I; Tausenev, A V; Konyaschenko, A V; Klimov, V V

    2014-01-01

    We demonstrated a nanoscale size, ultrafast and multiorder optical autocorrelator with a single plasmonic nanostructure for measuring the spatio-temporal dynamics of femtosecond laser light. As a nanostructure, we use a split hole resonator (SHR), which was made in an aluminium nanofilm. The Al material yields the fastest response time (100 as). The SHR nanostructure ensures a high nonlinear optical efficiency of the interaction with laser radiation, which leads to (1) the second, (2) the third harmonics generation and (3) the multiphoton luminescence, which, in turn, are used to perform multi-order autocorrelation measurements. The nano-sized SHR makes it possible to conduct autocorrelation measurements (i) with a subwavelength spatial resolution and (ii) with no significant influence on the duration of the laser pulse. The time response realized by the SHR nanostructure is about 10 fs. (letter)

  16. Propagation of plasmons in designed single crystalline silver nanostructures

    DEFF Research Database (Denmark)

    Kumar, Shailesh; Lu, Ying-Wei; Huck, Alexander

    2012-01-01

    We demonstrate propagation of plasmons in single crystalline silver nanostructures fabricated using a combination of a bottom-up and a top-down approach. Silver nanoplates of thickness around 65 nm and a surface area of about 100 μm2 are made using a wet chemical method. Silver nanotips...

  17. Facile conversion of bulk metal surface to metal oxide single-crystalline nanostructures by microwave irradiation: Formation of pure or Cr-doped hematite nanostructure arrays

    International Nuclear Information System (INIS)

    Cho, Seungho; Jeong, Haeyoon; Lee, Kun-Hong

    2010-01-01

    We report a method for converting the surfaces of bulk metal substrates (pure iron or stainless steel) to metal oxide (hematite or Cr-doped hematite) nanostructures using microwave irradiation. When microwave radiation (2.45 GHz, single-mode) was applied to a metal substrate under the flow of a gas mixture containing O 2 and Ar, metal oxide nanostructures formed and entirely covered the substrate. The nanostructures were single crystalline, and the atomic ratios of the substrate metals were preserved in the nanostructures. When a pure iron sheet was used as a substrate, hematite nanowires (1000 W microwave radiation) or nanosheets (1800 W microwave radiation) formed on the surface of the substrate. When a SUS410 sheet was used as a substrate, slightly curved rod-like nanostructures were synthesized. The oxidation states of Fe and Cr in these nanorods were Fe 3+ and Cr 3+ . Quantitative analyses revealed an average Fe/Cr atomic ratio of 9.2, nearly identical to the ratio of the metals in the SUS410 substrate.

  18. Low-Power Photothermal Probing of Single Plasmonic Nanostructures with Nanomechanical String Resonators

    DEFF Research Database (Denmark)

    Schmid, Silvan; Wu, Kaiyu; Larsen, Peter Emil

    2014-01-01

    We demonstrate the direct photothermal probing and mapping of single plasmonic nanostructures via the temperature-induced detuning of nanomechanical string resonators. Single Au nanoslits and nanorods are illuminated with a partially polarized focused laser beam (λ = 633 nm) with irradiances...... in the range of 0.26–38 μW/μm2. Photothermal heating maps with a resolution of ∼375 nm are obtained by scanning the laser over the nanostructures. Based on the string sensitivities, absorption efficiencies of 2.3 ± 0.3 and 1.1 ± 0.7 are extracted for a single nanoslit (53 nm × 1 μm) and nanorod (75 nm × 185 nm......). Our results show that nanomechanical resonators are a unique and robust analysis tool for the low-power investigation of thermoplasmonic effects in plasmonic hot spots....

  19. Solution growth of single crystal methylammonium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications.

    Science.gov (United States)

    Fu, Yongping; Meng, Fei; Rowley, Matthew B; Thompson, Blaise J; Shearer, Melinda J; Ma, Dewei; Hamers, Robert J; Wright, John C; Jin, Song

    2015-05-06

    Understanding crystal growth and improving material quality is important for improving semiconductors for electronic, optoelectronic, and photovoltaic applications. Amidst the surging interest in solar cells based on hybrid organic-inorganic lead halide perovskites and the exciting progress in device performance, improved understanding and better control of the crystal growth of these perovskites could further boost their optoelectronic and photovoltaic performance. Here, we report new insights on the crystal growth of the perovskite materials, especially crystalline nanostructures. Specifically, single crystal nanowires, nanorods, and nanoplates of methylammonium lead halide perovskites (CH3NH3PbI3 and CH3NH3PbBr3) are successfully grown via a dissolution-recrystallization pathway in a solution synthesis from lead iodide (or lead acetate) films coated on substrates. These single crystal nanostructures display strong room-temperature photoluminescence and long carrier lifetime. We also report that a solid-liquid interfacial conversion reaction can create a highly crystalline, nanostructured MAPbI3 film with micrometer grain size and high surface coverage that enables photovoltaic devices with a power conversion efficiency of 10.6%. These results suggest that single-crystal perovskite nanostructures provide improved photophysical properties that are important for fundamental studies and future applications in nanoscale optoelectronic and photonic devices.

  20. KONTRIBUSI DISIPLIN KERJA, MOTIVASI KERJA, DAN PERSEPSI GURU TENTANG GAYA KEPEMIMPINAN KEPALA SEKOLAH TERHADAP UNJUK KERJA GURU SMP NEGERI SSN DI KABUPATEN SEMARANG

    Directory of Open Access Journals (Sweden)

    Nuk Isdiyati

    2015-07-01

    Full Text Available The purpose of this study is to determine whether there is Contribution of work discipline, work motivation, and teacher perceptions about headmaster leadership style towards teacher performance at SMP N with National Standard School (SSN Semarang. This study includes quantitative expo facto research. The population in this study were teachers at SMP N with National Standard School (SSN Semarang counted 302. The samples in this study are 161 teachers obtained from the table that was developed by Isaac and Michael. The determination of sampling in this study uses with a sample random sampling. The data are collected by survey or questionnaire. Data analysis technique uses multiple linear regression analysis of test preconditions data that is normality test, multicollinearity, heteroscedasticity, autocorrelation test and test. The results showed: (1 there is a contribution to the discipline of work, work motivation and teacher perceptions about headmaster leadership style towards teacher performance at SMP N with National Standard School (SSN Semarang, as shown by the acquisition of the F test with probability value 0.000 <0.05. From the results of data analysis, the R2 value counted 0.429 it means that there are contributions of work discipline, motivation, and teacher perceptions about headmaster leadership style towards teacher performance at SMP N with National Standard School (SSN Semarang counted 42.9%; 2 there is a contribution of work discipline towards teacher performance at SMP N with National Standard School (SSN Semarang, this is indicated with the acquisition probability value <0.05 with the effective contribution counted 12.82%; 3 there is a contribution of work motivation towards teacher performance at SMP N with National Standard School (SSN Semarang, it is shown by the acquisition probability value <0.05 with the effective contribution counted 12.86%; 4 there is contribution of teacher perceptions about headmaster leadership style

  1. Application of a COTS Resource Optimization Framework to the SSN Sensor Tasking Domain - Part I: Problem Definition

    Science.gov (United States)

    Tran, T.

    With the onset of the SmallSat era, the RSO catalog is expected to see continuing growth in the near future. This presents a significant challenge to the current sensor tasking of the SSN. The Air Force is in need of a sensor tasking system that is robust, efficient, scalable, and able to respond in real-time to interruptive events that can change the tracking requirements of the RSOs. Furthermore, the system must be capable of using processed data from heterogeneous sensors to improve tasking efficiency. The SSN sensor tasking can be regarded as an economic problem of supply and demand: the amount of tracking data needed by each RSO represents the demand side while the SSN sensor tasking represents the supply side. As the number of RSOs to be tracked grows, demand exceeds supply. The decision-maker is faced with the problem of how to allocate resources in the most efficient manner. Braxton recently developed a framework called Multi-Objective Resource Optimization using Genetic Algorithm (MOROUGA) as one of its modern COTS software products. This optimization framework took advantage of the maturing technology of evolutionary computation in the last 15 years. This framework was applied successfully to address the resource allocation of an AFSCN-like problem. In any resource allocation problem, there are five key elements: (1) the resource pool, (2) the tasks using the resources, (3) a set of constraints on the tasks and the resources, (4) the objective functions to be optimized, and (5) the demand levied on the resources. In this paper we explain in detail how the design features of this optimization framework are directly applicable to address the SSN sensor tasking domain. We also discuss our validation effort as well as present the result of the AFSCN resource allocation domain using a prototype based on this optimization framework.

  2. Quantitative and Isolated Measurement of Far-Field Light Scattering by a Single Nanostructure

    Science.gov (United States)

    Kim, Donghyeong; Jeong, Kwang-Yong; Kim, Jinhyung; Ee, Ho-Seok; Kang, Ju-Hyung; Park, Hong-Gyu; Seo, Min-Kyo

    2017-11-01

    Light scattering by nanostructures has facilitated research on various optical phenomena and applications by interfacing the near fields and free-propagating radiation. However, direct quantitative measurement of far-field scattering by a single nanostructure on the wavelength scale or less is highly challenging. Conventional back-focal-plane imaging covers only a limited solid angle determined by the numerical aperture of the objectives and suffers from optical aberration and distortion. Here, we present a quantitative measurement of the differential far-field scattering cross section of a single nanostructure over the full hemisphere. In goniometer-based far-field scanning with a high signal-to-noise ratio of approximately 27.4 dB, weak scattering signals are efficiently isolated and detected under total-internal-reflection illumination. Systematic measurements reveal that the total and differential scattering cross sections of a Au nanorod are determined by the plasmonic Fabry-Perot resonances and the phase-matching conditions to the free-propagating radiation, respectively. We believe that our angle-resolved far-field measurement scheme provides a way to investigate and evaluate the physical properties and performance of nano-optical materials and phenomena.

  3. Single-step rapid assembly of DNA origami nanostructures for addressable nanoscale bioreactors

    DEFF Research Database (Denmark)

    Fu, Yanming; Zeng, Dongdong; Chao, Jie

    2013-01-01

    nm resolution and at the single-molecule level. We attach a pair of enzymes (horseradish peroxidase and glucose oxidase) at the inner side of DNA nanotubes and observe high coupling efficiency of enzyme cascade within this confined nanospace. Hence, DNA nanostructures with such unprecedented...

  4. Towards IoT platforms’ integration : Semantic Translations between W3C SSN and ETSI SAREF

    NARCIS (Netherlands)

    Moreira, João Luiz; Daniele, L.M.; Ferreira Pires, Luis; van Sinderen, Marten J.; Wasielewska, Katarzyna; Szmeja, Pawel; Pawlowski, Wieslaw; Ganzha, Maria; Paprzycki, Marcin

    2017-01-01

    Several IoT ontologies have been developed lately to improve the semantic interoperability of IoT solutions. The most popular of these ontologies, the W3C Semantic Sensor Network (SSN), is considered an ontological foundation for diverse IoT initiatives, particularly OpenIoT. With characteristics

  5. Thermal Conductivity in Nanostructured Films: From Single Cellulose Nanocrystals to Bulk Films

    Science.gov (United States)

    Jairo A. Diaz; Zhijiang Ye; Xiawa Wu; Arden L. Moore; Robert J. Moon; Ashlie Martini; Dylan J. Boday; Jeffrey P. Youngblood

    2014-01-01

    We achieved a multiscale description of the thermal conductivity of cellulose nanocrystals (CNCs) from single CNCs (~­0.72−5.7 W m−1 K−1) to their organized nanostructured films (~­0.22−0.53 W m−1 K−1) using...

  6. 78 FR 9765 - Assigning New Social Security Numbers (SSN) for Children Age 13 and Under

    Science.gov (United States)

    2013-02-11

    ..., during regular business hours, by arranging with the contact person identified below. FOR FURTHER...) and private businesses (such as banks and credit reporting companies), when we assign a new SSN, these... an individual with a work history, a driving record, and a credit history. Under the policy we are...

  7. Top-down fabrication of plasmonic nanostructures for deterministic coupling to single quantum emitters

    NARCIS (Netherlands)

    Pfaff, W.; Vos, A.; Hanson, R.

    2013-01-01

    Metal nanostructures can be used to harvest and guide the emission of single photon emitters on-chip via surface plasmon polaritons. In order to develop and characterize photonic devices based on emitter-plasmon hybrid structures, a deterministic and scalable fabrication method for such structures

  8. Digitally encoded DNA nanostructures for multiplexed, single-molecule protein sensing with nanopores

    Science.gov (United States)

    Bell, Nicholas A. W.; Keyser, Ulrich F.

    2016-07-01

    The simultaneous detection of a large number of different analytes is important in bionanotechnology research and in diagnostic applications. Nanopore sensing is an attractive method in this regard as the approach can be integrated into small, portable device architectures, and there is significant potential for detecting multiple sub-populations in a sample. Here, we show that highly multiplexed sensing of single molecules can be achieved with solid-state nanopores by using digitally encoded DNA nanostructures. Based on the principles of DNA origami, we designed a library of DNA nanostructures in which each member contains a unique barcode; each bit in the barcode is signalled by the presence or absence of multiple DNA dumbbell hairpins. We show that a 3-bit barcode can be assigned with 94% accuracy by electrophoretically driving the DNA structures through a solid-state nanopore. Select members of the library were then functionalized to detect a single, specific antibody through antigen presentation at designed positions on the DNA. This allows us to simultaneously detect four different antibodies of the same isotype at nanomolar concentration levels.

  9. Method for making a single-step etch mask for 3D monolithic nanostructures

    International Nuclear Information System (INIS)

    Grishina, D A; Harteveld, C A M; Vos, W L; Woldering, L A

    2015-01-01

    Current nanostructure fabrication by etching is usually limited to planar structures as they are defined by a planar mask. The realization of three-dimensional (3D) nanostructures by etching requires technologies beyond planar masks. We present a method for fabricating a 3D mask that allows one to etch three-dimensional monolithic nanostructures using only CMOS-compatible processes. The mask is written in a hard-mask layer that is deposited on two adjacent inclined surfaces of a Si wafer. By projecting in a single step two different 2D patterns within one 3D mask on the two inclined surfaces, the mutual alignment between the patterns is ensured. Thereby after the mask pattern is defined, the etching of deep pores in two oblique directions yields a three-dimensional structure in Si. As a proof of concept we demonstrate 3D mask fabrication for three-dimensional diamond-like photonic band gap crystals in silicon. The fabricated crystals reveal a broad stop gap in optical reflectivity measurements. We propose how 3D nanostructures with five different Bravais lattices can be realized, namely cubic, tetragonal, orthorhombic, monoclinic and hexagonal, and demonstrate a mask for a 3D hexagonal crystal. We also demonstrate the mask for a diamond-structure crystal with a 3D array of cavities. In general, the 2D patterns on the different surfaces can be completely independently structured and still be in perfect mutual alignment. Indeed, we observe an alignment accuracy of better than 3.0 nm between the 2D mask patterns on the inclined surfaces, which permits one to etch well-defined monolithic 3D nanostructures. (paper)

  10. Single-electron transport in graphene-like nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Kuei-Lin, E-mail: klc43@mit.edu [Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Xu, Yang, E-mail: yangxu-isee@zju.edu.cn [Institute of Microelectronics and Optoelectronics, College of Information Science and Electronic Engineering, Zhejiang University, 310027 (China)

    2017-01-31

    Two-dimensional (2D) materials for their versatile band structures and strictly 2D nature have attracted considerable attention over the past decade. Graphene is a robust material for spintronics owing to its weak spin–orbit and hyperfine interactions, while monolayer transition metal dichalcogenides (TMDs) possess a Zeeman effect-like band splitting in which the spin and valley degrees of freedom are nondegenerate. The surface states of topological insulators (TIs) exhibit a spin–momentum locking that opens up the possibility of controlling the spin degree of freedom in the absence of an external magnetic field. Nanostructures made of these materials are also viable for use in quantum computing applications involving the superposition and entanglement of individual charge and spin quanta. In this article, we review a selection of transport studies addressing the confinement and manipulation of charges in nanostructures fabricated from various 2D materials. We supply the entry-level knowledge for this field by first introducing the fundamental properties of 2D bulk materials followed by the theoretical background relevant to the physics of nanostructures. Subsequently, a historical review of experimental development in this field is presented, from the early demonstration of graphene nanodevices on SiO{sub 2} substrate to more recent progress in utilizing hexagonal boron nitride to reduce substrate disorder. In the second part of this article, we extend our discussion to TMDs and TI nanostructures. We aim to outline the current challenges and suggest how future work will be geared towards developing spin qubits in 2D materials.

  11. Vertically integrated (Ga, In)N nanostructures for future single photon emitters operating in the telecommunication wavelength range

    International Nuclear Information System (INIS)

    Winden, A; Mikulics, M; Grützmacher, D; Hardtdegen, H

    2013-01-01

    Important technological steps are discussed and realized for future room-temperature operation of III-nitride single photon emitters. First, the growth technology of positioned single pyramidal InN nanostructures capped by Mg-doped GaN is presented. The optimization of their optical characteristics towards narrowband emission in the telecommunication wavelength range is demonstrated. In addition, a device concept and technology was developed so that the nanostructures became singularly addressable. It was found that the nanopyramids emit in the telecommunication wavelength range if their size is chosen appropriately. A p-GaN contacting layer was successfully produced as a cap to the InN pyramids and the top p-contact was achievable using an intrinsically conductive polymer PEDOT:PSS, allowing a 25% increase in light transmittance compared to standard Ni/Au contact technology. Single nanopyramids were successfully integrated into a high-frequency device layout. These decisive technology steps provide a promising route to electrically driven and room-temperature operating InN based single photon emitters in the telecommunication wavelength range. (paper)

  12. Assembling three-dimensional nanostructures on metal surfaces with a reversible vertical single-atom manipulation: A theoretical modeling

    International Nuclear Information System (INIS)

    Yang Tianxing; Ye Xiang; Huang Lei; Xie Yiqun; Ke Sanhuang

    2012-01-01

    Highlights: ► We simulate the reversible vertical single-atom manipulations on several metal surfaces. ► We propose a method to predict whether a reversible vertical single-atom manipulation can be successful on several metal surfaces. ► A 3-dimensional Ni nanocluster is assembled on the Ni(1 1 1) surface using a Ni trimer-apex tip. - Abstract: We propose a theoretical model to show that pulling up an adatom from an atomic step requires a weaker force than from the flat surfaces of Al(0 0 1), Ni(1 1 1), Pt(1 1 0) and Au(1 1 0). Single adatom in the atomic step can be extracted vertically by a trimer-apex tip while can be released to the flat surface. This reversible vertical manipulation can then be used to fabricate a supported three-dimensional (3D) nanostructure on the Ni(1 1 1) surface. The present modeling can be used to predict whether the reversible vertical single-atom manipulation and thus the assembling of 3D nanostructures can be achieved on a metal surface.

  13. Electrochemistry of single molecules and biomolecules, molecular scale nanostructures, and low-dimensional systems

    DEFF Research Database (Denmark)

    Nazmutdinov, Renat R.; Zinkicheva, Tamara T.; Zinkicheva, Tamara T.

    2018-01-01

    Electrochemistry at ultra-small scales, where even the single molecule or biomolecule can be characterized and manipulated, is on the way to a consolidated status. At the same time molecular electrochemistry is expanding into other areas of sophisticated nano- and molecular scale systems includin...... molecular scale metal and semiconductor nanoparticles (NPs) and other nanostructures, e.g. nanotubes, “nanoflowers” etc.. The new structures offer both new electronic properties and highly confined novel charge transfer environments....

  14. Fabrication of single-crystalline plasmonic nanostructures on transparent and flexible amorphous substrates

    Science.gov (United States)

    Mori, Tomohiro; Mori, Takeshi; Tanaka, Yasuhiro; Suzaki, Yoshifumi; Yamaguchi, Kenzo

    2017-02-01

    A new experimental technique is developed for producing a high-performance single-crystalline Ag nanostructure on transparent and flexible amorphous substrates for use in plasmonic sensors and circuit components. This technique is based on the epitaxial growth of Ag on a (001)-oriented single-crystalline NaCl substrate, which is subsequently dissolved in ultrapure water to allow the Ag film to be transferred onto a wide range of different substrates. Focused ion beam milling is then used to create an Ag nanoarray structure consisting of 200 cuboid nanoparticles with a side length of 160 nm and sharp, precise edges. This array exhibits a strong signal and a sharp peak in plasmonic properties and Raman intensity when compared with a polycrystalline Ag nanoarray.

  15. Evolution of the zinc compound nanostructures in zinc acetate single-source solution

    International Nuclear Information System (INIS)

    Wang Ying; Li Yinhua; Zhou Zhengzhi; Zu Xihong; Deng Yulin

    2011-01-01

    A series of nanostructured zinc compounds with different nanostructures such as nanobelts, flake-like, flower-like, and twinning crystals was synthesized using zinc acetate (Zn(Ac) 2 ) as a single-source. The evolution of the zinc compounds from layered basic zinc acetate (LBZA) to bilayered basic zinc acetate (BLBZA) and twinned ZnO nano/microcrystal was studied. The low-angle X-ray diffraction spectra indicate the layered spacing is 1.34 and 2.1 nm for LBZA and BLBZA, respectively. The Fourier transform infrared (FTIR) spectra results confirmed that the bonding force of acetate anion with zinc cations decreases with the phase transformation from Zn(Ac) 2 to BLBZA, and finally to LBZA. The OH − groups gradually replaced the acetate groups coordinated to the matrix zinc cation, and the acetate groups were released completely. Finally, the Zn(OH) 2 and ZnO were formed at high temperature. The conversion process from Zn(Ac) 2 to ZnO with release of acetate anions can be described as Zn(Ac) 2 → BLBZA → LBZA → Zn(OH) 2 → ZnO.

  16. Quantum optics with semiconductor nanostructures

    CERN Document Server

    Jahnke, Frank

    2012-01-01

    A guide to the theory, application and potential of semiconductor nanostructures in the exploration of quantum optics. It offers an overview of resonance fluorescence emission.$bAn understanding of the interaction between light and matter on a quantum level is of fundamental interest and has many applications in optical technologies. The quantum nature of the interaction has recently attracted great attention for applications of semiconductor nanostructures in quantum information processing. Quantum optics with semiconductor nanostructures is a key guide to the theory, experimental realisation, and future potential of semiconductor nanostructures in the exploration of quantum optics. Part one provides a comprehensive overview of single quantum dot systems, beginning with a look at resonance fluorescence emission. Quantum optics with single quantum dots in photonic crystal and micro cavities are explored in detail, before part two goes on to review nanolasers with quantum dot emitters. Light-matter interaction...

  17. Single Nanostructure Electrochemical Devices for Studying Electronic Properties and Structural Changes in Lithiated Si Nanowires

    KAUST Repository

    McDowell, Matthew T.

    2011-07-19

    Nanostructured Si is a promising anode material for the next generation of Li-ion batteries, but few studies have focused on the electrical properties of the Li-Si alloy phase, which are important for determining power capabilities and ensuring sufficient electrical conduction in the electrode structure. Here, we demonstrate an electrochemical device framework suitable for testing the electrical properties of single Si nanowires (NWs) at different lithiation states and correlating these properties with structural changes via transmission electron microscopy (TEM). We fi nd that single Si NWs usually exhibit Ohmic I - V response in the lithiated state, with conductivities two to three orders of magnitude higher than in the delithiated state. After a number of sequential lithiation/delithiation cycles, the single NWs show similar conductivity after each lithiation step but show large variations in conductivity in the delithiated state. Finally, devices with groups of NWs in physical contact were fabricated, and structural changes in the NWs were observed after lithiation to investigate how the electrical resistance of NW junctions and the NWs themselves affect the lithiation behavior. The results suggest that electrical resistance of NW junctions can limit lithiation. Overall, this study shows the importance of investigating the electronic properties of individual components of a battery electrode (single nanostructures in this case) along with studying the nature of interactions within a collection of these component structures. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Single Nanostructure Electrochemical Devices for Studying Electronic Properties and Structural Changes in Lithiated Si Nanowires

    KAUST Repository

    McDowell, Matthew T.; Cui, Yi

    2011-01-01

    Nanostructured Si is a promising anode material for the next generation of Li-ion batteries, but few studies have focused on the electrical properties of the Li-Si alloy phase, which are important for determining power capabilities and ensuring sufficient electrical conduction in the electrode structure. Here, we demonstrate an electrochemical device framework suitable for testing the electrical properties of single Si nanowires (NWs) at different lithiation states and correlating these properties with structural changes via transmission electron microscopy (TEM). We fi nd that single Si NWs usually exhibit Ohmic I - V response in the lithiated state, with conductivities two to three orders of magnitude higher than in the delithiated state. After a number of sequential lithiation/delithiation cycles, the single NWs show similar conductivity after each lithiation step but show large variations in conductivity in the delithiated state. Finally, devices with groups of NWs in physical contact were fabricated, and structural changes in the NWs were observed after lithiation to investigate how the electrical resistance of NW junctions and the NWs themselves affect the lithiation behavior. The results suggest that electrical resistance of NW junctions can limit lithiation. Overall, this study shows the importance of investigating the electronic properties of individual components of a battery electrode (single nanostructures in this case) along with studying the nature of interactions within a collection of these component structures. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Characterization of the immune response and evaluation of the protective capacity of rSsnA against Streptococcus suis infection in pigs

    DEFF Research Database (Denmark)

    Gómez-Gascón, Lidia; Cardoso-Toset, Fernando; Tarradas, Carmen

    2016-01-01

    were evaluated. Moreover the composition of peripheral blood leukocyte populations was studied in infected animals. The results show that the immunization of piglets with rSsnA elicits a significant humoral antibody response. However, the antibody response is not reflected in protection of pigs...

  20. Single attosecond pulse generation by using plasmon-driven double optical gating technology in crossed metal nanostructures

    Science.gov (United States)

    Feng, Liqiang; Liu, Katheryn

    2018-05-01

    An effective method to obtain the single attosecond pulses (SAPs) by using the multi-cycle plasmon-driven double optical gating (DOG) technology in the specifically designed metal nanostructures has been proposed and investigated. It is found that with the introduction of the crossed metal nanostructures along the driven and the gating polarization directions, not only the harmonic cutoff can be extended, but also the efficient high-order harmonic generation (HHG) at the very highest orders occurs only at one side of the region inside the nanostructure. As a result, a 93 eV supercontinuum with the near stable phase can be found. Further, by properly introducing an ultraviolet (UV) pulse into the driven laser polarization direction (which is defined as the DOG), the harmonic yield can be enhanced by two orders of magnitude in comparison with the singe polarization gating (PG) technology. However, as the polarized angle or the ellipticity of the UV pulse increase, the enhancement of the harmonic yield is slightly reduced. Finally, by superposing the selected harmonics from the DOG scheme, a 30 as SAP with intensity enhancement of two orders of magnitude can be obtained.

  1. Mechanical design of DNA nanostructures

    Science.gov (United States)

    Castro, Carlos E.; Su, Hai-Jun; Marras, Alexander E.; Zhou, Lifeng; Johnson, Joshua

    2015-03-01

    Structural DNA nanotechnology is a rapidly emerging field that has demonstrated great potential for applications such as single molecule sensing, drug delivery, and templating molecular components. As the applications of DNA nanotechnology expand, a consideration of their mechanical behavior is becoming essential to understand how these structures will respond to physical interactions. This review considers three major avenues of recent progress in this area: (1) measuring and designing mechanical properties of DNA nanostructures, (2) designing complex nanostructures based on imposed mechanical stresses, and (3) designing and controlling structurally dynamic nanostructures. This work has laid the foundation for mechanically active nanomachines that can generate, transmit, and respond to physical cues in molecular systems.Structural DNA nanotechnology is a rapidly emerging field that has demonstrated great potential for applications such as single molecule sensing, drug delivery, and templating molecular components. As the applications of DNA nanotechnology expand, a consideration of their mechanical behavior is becoming essential to understand how these structures will respond to physical interactions. This review considers three major avenues of recent progress in this area: (1) measuring and designing mechanical properties of DNA nanostructures, (2) designing complex nanostructures based on imposed mechanical stresses, and (3) designing and controlling structurally dynamic nanostructures. This work has laid the foundation for mechanically active nanomachines that can generate, transmit, and respond to physical cues in molecular systems. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07153k

  2. Synthesis of ferroelectric nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Roervik, Per Martin

    2008-12-15

    The increasing miniaturization of electric and mechanical components makes the synthesis and assembly of nanoscale structures an important step in modern technology. Functional materials, such as the ferroelectric perovskites, are vital to the integration and utility value of nanotechnology in the future. In the present work, chemical methods to synthesize one-dimensional (1D) nanostructures of ferroelectric perovskites have been studied. To successfully and controllably make 1D nanostructures by chemical methods it is very important to understand the growth mechanism of these nanostructures, in order to design the structures for use in various applications. For the integration of 1D nanostructures into devices it is also very important to be able to make arrays and large-area designed structures from the building blocks that single nanostructures constitute. As functional materials, it is of course also vital to study the properties of the nanostructures. The characterization of properties of single nanostructures is challenging, but essential to the use of such structures. The aim of this work has been to synthesize high quality single-crystalline 1D nanostructures of ferroelectric perovskites with emphasis on PbTiO3 , to make arrays or hierarchical nanostructures of 1D nanostructures on substrates, to understand the growth mechanisms of the 1D nanostructures, and to investigate the ferroelectric and piezoelectric properties of the 1D nanostructures. In Paper I, a molten salt synthesis route, previously reported to yield BaTiO3 , PbTiO3 and Na2Ti6O13 nanorods, was re-examined in order to elucidate the role of volatile chlorides. A precursor mixture containing barium (or lead) and titanium was annealed in the presence of NaCl at 760 degrees Celsius or 820 degrees Celsius. The main products were respectively isometric nanocrystalline BaTiO3 and PbTiO3. Nanorods were also detected, but electron diffraction revealed that the composition of the nanorods was

  3. Assembly of barcode-like nucleic acid nanostructures.

    Science.gov (United States)

    Wang, Pengfei; Tian, Cheng; Li, Xiang; Mao, Chengde

    2014-10-15

    Barcode-like (BC) nanopatterns from programmed self-assembly of nucleic acids (DNA and RNA) are reported. BC nanostructures are generated by the introduction of open spaces at selected sites to an otherwise closely packed, plain, rectangle nucleic acid nanostructure. This strategy is applied to nanostructures assembled from both origami approach and single stranded tile approach. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Molecular Processes Studied at a Single-Molecule Level Using DNA Origami Nanostructures and Atomic Force Microscopy

    Directory of Open Access Journals (Sweden)

    Ilko Bald

    2014-09-01

    Full Text Available DNA origami nanostructures allow for the arrangement of different functionalities such as proteins, specific DNA structures, nanoparticles, and various chemical modifications with unprecedented precision. The arranged functional entities can be visualized by atomic force microscopy (AFM which enables the study of molecular processes at a single-molecular level. Examples comprise the investigation of chemical reactions, electron-induced bond breaking, enzymatic binding and cleavage events, and conformational transitions in DNA. In this paper, we provide an overview of the advances achieved in the field of single-molecule investigations by applying atomic force microscopy to functionalized DNA origami substrates.

  5. Metal-coated semiconductor nanostructures and simulation of photon extraction and coupling to optical fibers for a solid-state single-photon source

    International Nuclear Information System (INIS)

    Suemune, Ikuo; Nakajima, Hideaki; Liu, Xiangming; Odashima, Satoru; Asano, Tomoya; Iijima, Hitoshi; Huh, Jae-Hoon; Idutsu, Yasuhiro; Sasakura, Hirotaka; Kumano, Hidekazu

    2013-01-01

    We have realized metal-coated semiconductor nanostructures for a stable and efficient single-photon source (SPS) and demonstrated improved single-photon extraction efficiency by the selection of metals and nanostructures. We demonstrate with finite-difference time-domain (FDTD) simulations that inclination of a pillar sidewall, which changes the structure to a nanocone, is effective in improving the photon extraction efficiency. We demonstrate how such nanocone structures with inclined sidewalls are fabricated with reactive ion etching. With the optimized design, a photon extraction efficiency to outer airside as high as ∼97% generated from a quantum dot in a nanocone structure is simulated, which is the important step in realizing SPS on-demand operations. We have also examined the direct contact of such a metal-embedded nanocone structure with a single-mode fiber facet as a simple and practical method for preparing fiber-coupled SPS and demonstrated practical coupling efficiencies of ∼16% with FDTD simulation. (paper)

  6. Complex Nanostructures by Pulsed Droplet Epitaxy

    Directory of Open Access Journals (Sweden)

    Noboyuki Koguchi

    2011-06-01

    Full Text Available What makes three dimensional semiconductor quantum nanostructures so attractive is the possibility to tune their electronic properties by careful design of their size and composition. These parameters set the confinement potential of electrons and holes, thus determining the electronic and optical properties of the nanostructure. An often overlooked parameter, which has an even more relevant effect on the electronic properties of the nanostructure, is shape. Gaining a strong control over the electronic properties via shape tuning is the key to access subtle electronic design possibilities. The Pulsed Dropled Epitaxy is an innovative growth method for the fabrication of quantum nanostructures with highly designable shapes and complex morphologies. With Pulsed Dropled Epitaxy it is possible to combine different nanostructures, namely quantum dots, quantum rings and quantum disks, with tunable sizes and densities, into a single multi-function nanostructure, thus allowing an unprecedented control over electronic properties.

  7. Optical trapping and Raman spectroscopy of single nanostructures using standing-wave Raman tweezers

    Science.gov (United States)

    Wu, Mu-ying; He, Lin; Chen, Gui-hua; Yang, Guang; Li, Yong-qing

    2017-08-01

    Optical tweezers integrated with Raman spectroscopy allows analyzing a single trapped micro-particle, but is generally less effective for individual nano-sized objects in the 10-100 nm range. The main challenge is the weak gradient force on nanoparticles that is insufficient to overcome the destabilizing effect of scattering force and Brownian motion. Here, we present standing-wave Raman tweezers for stable trapping and sensitive characterization of single isolated nanostructures with a low laser power by combining a standing-wave optical trap (SWOT) with confocal Raman spectroscopy. This scheme has stronger intensity gradients and balanced scattering forces, and thus is more stable and sensitive in measuring nanoparticles in liquid with 4-8 fold increase in the Raman signals. It can be used to analyze many nanoparticles that cannot be measured with single-beam Raman tweezers, including individual single-walled carbon nanotubes (SWCNT), graphene flakes, biological particles, polystyrene beads (100 nm), SERS-active metal nanoparticles, and high-refractive semiconductor nanoparticles with a low laser power of a few milliwatts. This would enable sorting and characterization of specific SWCNTs and other nanoparticles based on their increased Raman fingerprints.

  8. Morphology-controlled synthesis of ZnS nanostructures via single-source approaches

    International Nuclear Information System (INIS)

    Han, Qiaofeng; Qiang, Fei; Wang, Meijuan; Zhu, Junwu; Lu, Lude; Wang, Xin

    2010-01-01

    ZnS nanoparticles of various morphologies, including hollow or solid spherical, and polyhedral shape, were synthesized from single-source precursor Zn(S 2 COC 2 H 5 ) 2 without using a surfactant or template. The as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy. The results indicate that ZnS hollow and solid spheres assembled by nanoparticles can be easily generated by the solution phase thermalysis of Zn(S 2 COC 2 H 5 ) 2 at 80 o C using N, N-dimethylformamide (DMF) and ethylene glycol (EG) or water as solvents, respectively, whereas solvothermal process of the same precursor led to ZnS nanoparticles of polyhedral shape with an average size of 120 nm. The optical properties of these ZnS nanostructures were investigated by room-temperature luminescence and UV-vis diffuse reflectance spectra.

  9. Precipitation synthesis and magnetic properties of self-assembled magnetite-chitosan nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Bezdorozhev, Oleksii; Kolodiazhnyi, Taras; Vasylkiv, Oleg, E-mail: oleg.vasylkiv@nims.go.jp

    2017-04-15

    This paper reports the synthesis and magnetic properties of unique magnetite-chitosan nanostructures synthesized by the chemical precipitation of magnetite nanoparticles in the presence of chitosan. The influence of varying synthesis parameters on the morphology of the magnetic composites is determined. Depending on the synthesis parameters, magnetite-chitosan nanostructures of spherical (9–18 nm), rice-seed-like (75–290 nm) and lumpy (75–150 nm) shapes were obtained via self-assembly. Spherical nanostructures encapsulated by a 9–15 nm chitosan layer were assembled as well. The prospective morphology of the nanostructures is combined with their excellent magnetic characteristics. It was found that magnetite-chitosan nanostructures are ferromagnetic and pseudo-single domain. Rice-seed-like nanostructures exhibited a coercivity of 140 Oe and saturation magnetization of 56.7 emu/g at 300 K. However, a drop in the magnetic properties was observed for chitosan-coated spherical nanostructures due to the higher volume fraction of chitosan. - Highlights: • Magnetite-chitosan nanostructures are synthesized via self-assembly. • Different morphology can be obtained by adjusting the synthesis parameters. • An attractive combination of magnetic properties and morphology is obtained. • Magnetite-chitosan nanostructures are ferrimagnetic and pseudo-single domain.

  10. Precipitation synthesis and magnetic properties of self-assembled magnetite-chitosan nanostructures

    International Nuclear Information System (INIS)

    Bezdorozhev, Oleksii; Kolodiazhnyi, Taras; Vasylkiv, Oleg

    2017-01-01

    This paper reports the synthesis and magnetic properties of unique magnetite-chitosan nanostructures synthesized by the chemical precipitation of magnetite nanoparticles in the presence of chitosan. The influence of varying synthesis parameters on the morphology of the magnetic composites is determined. Depending on the synthesis parameters, magnetite-chitosan nanostructures of spherical (9–18 nm), rice-seed-like (75–290 nm) and lumpy (75–150 nm) shapes were obtained via self-assembly. Spherical nanostructures encapsulated by a 9–15 nm chitosan layer were assembled as well. The prospective morphology of the nanostructures is combined with their excellent magnetic characteristics. It was found that magnetite-chitosan nanostructures are ferromagnetic and pseudo-single domain. Rice-seed-like nanostructures exhibited a coercivity of 140 Oe and saturation magnetization of 56.7 emu/g at 300 K. However, a drop in the magnetic properties was observed for chitosan-coated spherical nanostructures due to the higher volume fraction of chitosan. - Highlights: • Magnetite-chitosan nanostructures are synthesized via self-assembly. • Different morphology can be obtained by adjusting the synthesis parameters. • An attractive combination of magnetic properties and morphology is obtained. • Magnetite-chitosan nanostructures are ferrimagnetic and pseudo-single domain.

  11. Controlled nanostructure and high loading of single-walled carbon nanotubes reinforced polycarbonate composite

    International Nuclear Information System (INIS)

    Wang Shiren; Liang Zhiyong; Pham, Giang; Park, Young-Bin; Wang, Ben; Zhang, Chuck; Kramer, Leslie; Funchess, Percy

    2007-01-01

    This paper presents an effective technique to fabricate thermoplastic nanocomposites with high loading of well-dispersed single-walled carbon nanotubes (SWNTs). SWNT membranes were made from a multi-step dispersion and filtration method, and then impregnated with polycarbonate solution to make thermoplastic nanocomposites. High loading of nanotubes was achieved by controlling the viscosity of polycarbonate solution. SEM and AFM characterization results revealed the controlled nanostructure in the resultant nanocomposites. Dynamic mechanical property tests indicated that the storage modulus of the resulting nanocomposites at 20 wt% nanotubes loading was improved by a factor of 3.4 compared with neat polycarbonate material. These results suggest the developed approach is an effective way to fabricate thermoplastic nanocomposites with good dispersion and high SWNT loading

  12. Comparison of photobiomodulation therapy and suprascapular nerve-pulsed radiofrequency in chronic shoulder pain: a randomized controlled, single-blind, clinical trial.

    Science.gov (United States)

    Ökmen, Burcu Metin; Ökmen, Korgün

    2017-11-01

    Shoulder pain can be difficult to treat due to its complex anatomic structure, and different treatment methods can be used. We aimed to examine the efficacy of photobiomodulation therapy (PBMT) and suprascapular nerve (SSN)-pulsed radiofrequency (RF) therapy. In this prospective, randomized, controlled, single-blind study, 59 patients with chronic shoulder pain due to impingement syndrome received PBMT (group H) or SSN-pulsed RF therapy (group P) in addition to exercise therapy for 14 sessions over 2 weeks. Records were taken using visual analog scale (VAS), Shoulder Pain and Disability Index (SPADI), and Nottingham Health Profile (NHP) scoring systems for pretreatment (PRT), posttreatment (PST), and PST follow-up at months 1, 3, and 6. There was no statistically significant difference in initial VAS score, SPADI, and NHP values between group H and group P (p > 0.05). Compared to the values of PRT, PST, and PST at months 1, 3, and 6, VAS, SPADI, and NHP values were statistically significantly lower in both groups (p measurement times in VAS, SPADI, and NHP between the two groups. We established that PBMT and SSN-pulsed RF therapy are effective methods, in addition to exercise therapy, in patients with chronic shoulder pain. PBMT seems to be advantageous compared to SSN-pulsed RF therapy, as it is a noninvasive method.

  13. Method to make a single-step etch mask for 3D monolithic nanostructures

    NARCIS (Netherlands)

    Grishina, Diana; Harteveld, Cornelis A.M.; Woldering, L.A.; Vos, Willem L.

    2015-01-01

    Current nanostructure fabrication by etching is usually limited to planar structures as they are defined by a planar mask. The realization of three-dimensional (3D) nanostructures by etching requires technologies beyond planar masks. We present a method for fabricating a 3D mask that allows one to

  14. Terahertz-field-induced photoluminescence of nanostructured gold films

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Malureanu, Radu; Zalkovskij, Maksim

    2013-01-01

    We experimentally demonstrate photoluminescence from nanostructured ultrathin gold films subjected to strong single-cycle terahertz transients with peak electric field over 300 kV/cm. We show that UV-Vis-NIR light is being generated and the efficiency of the process is strongly enhanced at the pe......We experimentally demonstrate photoluminescence from nanostructured ultrathin gold films subjected to strong single-cycle terahertz transients with peak electric field over 300 kV/cm. We show that UV-Vis-NIR light is being generated and the efficiency of the process is strongly enhanced...

  15. Nanostructures for protein drug delivery.

    Science.gov (United States)

    Pachioni-Vasconcelos, Juliana de Almeida; Lopes, André Moreni; Apolinário, Alexsandra Conceição; Valenzuela-Oses, Johanna Karina; Costa, Juliana Souza Ribeiro; Nascimento, Laura de Oliveira; Pessoa, Adalberto; Barbosa, Leandro Ramos Souza; Rangel-Yagui, Carlota de Oliveira

    2016-02-01

    Use of nanoscale devices as carriers for drugs and imaging agents has been extensively investigated and successful examples can already be found in therapy. In parallel, recombinant DNA technology together with molecular biology has opened up numerous possibilities for the large-scale production of many proteins of pharmaceutical interest, reflecting in the exponentially growing number of drugs of biotechnological origin. When we consider protein drugs, however, there are specific criteria to take into account to select adequate nanostructured systems as drug carriers. In this review, we highlight the main features, advantages, drawbacks and recent developments of nanostructures for protein encapsulation, such as nanoemulsions, liposomes, polymersomes, single-protein nanocapsules and hydrogel nanoparticles. We also discuss the importance of nanoparticle stabilization, as well as future opportunities and challenges in nanostructures for protein drug delivery.

  16. Properties of nano-structured Ni/YSZ anodes fabricated from plasma sprayable NiO/YSZ powder prepared by single step solution combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, B. Shri; Balaji, N.; Kumar, S. Senthil; Aruna, S.T., E-mail: staruna194@gmail.com

    2016-12-15

    Highlights: • Preparation of plasma grade NiO/YSZ powder in single step. • Fabrication of nano-structured Ni/YSZ coating. • Conductivity of 600 S/cm at 800 °C. - Abstract: NiO/YSZ anode coatings are fabricated by atmospheric plasma spraying at different plasma powers from plasma grade NiO/YSZ powders that are prepared in a single step by solution combustion method. The process adopted is devoid of multi-steps that are generally involved in conventional spray drying or fusing and crushing methods. Density of the coating increased and porosity decreased with increase in the plasma power of deposition. An ideal nano-structured Ni/YSZ anode encompassing nano YSZ particles, nano Ni particles and nano pores is achieved on reducing the coating deposited at lower plasma powers. The coating exhibit porosities in the range of 27%, sufficient for anode functional layers. Electronic conductivity of the coatings is in the range of 600 S/cm at 800 °C.

  17. Fabrication of shape controlled Fe3O4 nanostructure

    International Nuclear Information System (INIS)

    Zheng, Y.Y.; Wang, X.B.; Shang, L.; Li, C.R.; Cui, C.; Dong, W.J.; Tang, W.H.; Chen, B.Y.

    2010-01-01

    Shape-controlled Fe 3 O 4 nanostructure has been successfully prepared using polyethylene glycol as template in a water system at room temperature. Different morphologies of Fe 3 O 4 nanostructures, including spherical, cubic, rod-like, and dendritic nanostructure, were obtained by carefully controlling the concentration of the Fe 3+ , Fe 2+ , and the molecular weight of the polyethylene glycol. Transmission Electron Microscope images, X-ray powder diffraction patterns and magnetic properties were used to characterize the final product. This easy procedure for Fe 3 O 4 nanostructure fabrication offers the possibility of a generalized approach to the production of single and complex nanocrystalline oxide with tunable morphology.

  18. Biomimetic plasmonic color generated by the single-layer coaxial honeycomb nanostructure arrays

    Science.gov (United States)

    Zhao, Jiancun; Gao, Bo; Li, Haoyong; Yu, Xiaochang; Yang, Xiaoming; Yu, Yiting

    2017-07-01

    We proposed a periodic coaxial honeycomb nanostructure array patterned in a silver film to realize the plasmonic structural color, which was inspired from natural honeybee hives. The spectral characteristics of the structure with variant geometrical parameters are investigated by employing a finite-difference time-domain method, and the corresponding colors are thus derived by calculating XYZ tristimulus values corresponding with the transmission spectra. The study demonstrates that the suggested structure with only a single layer has high transmission, narrow full-width at half-maximum, and wide color tunability by changing geometrical parameters. Therefore, the plasmonic colors realized possess a high color brightness, saturation, as well as a wide color gamut. In addition, the strong polarization independence makes it more attractive for practical applications. These results indicate that the recommended color-generating plasmonic structure has various potential applications in highly integrated optoelectronic devices, such as color filters and high-definition displays.

  19. Systematic Investigation of Controlled Nanostructuring of Mn 12 Single-Molecule Magnets Templated by Metal–Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Aulakh, Darpandeep [Department of Chemistry; amp, Biomolecular Science, Clarkson University, Potsdam, New York 13699, United States; Xie, Haomiao [Department of Chemistry, Texas A& amp,M University, College Station, Texas 77845, United States; Shen, Zhe [Department of Chemistry, Texas A& amp,M University, College Station, Texas 77845, United States; Harley, Alexander [Department of Chemistry; amp, Biomolecular Science, Clarkson University, Potsdam, New York 13699, United States; Zhang, Xuan [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States; Yakovenko, Andrey A. [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States; Dunbar, Kim R. [Department of Chemistry, Texas A& amp,M University, College Station, Texas 77845, United States; Wriedt, Mario [Department of Chemistry; amp, Biomolecular Science, Clarkson University, Potsdam, New York 13699, United States

    2017-05-25

    This is the first systematic study exploring metal–organic frameworks (MOFs) as platforms for the controlled nanostructuring of molecular magnets. We report the incorporation of seven single-molecule magnets (SMMs) of general composition [Mn12O12(O2CR)16(OH2)4], with R = CF3 (1), (CH3)CCH2 (2), CH2Cl (3), CH2Br (4), CHCl2 (5), CH2But (6), and C6H5 (7), into the hexagonal channel pores of a mesoporous MOF host. The resulting nanostructured composites combine the key SMM properties with the functional properties of the MOF. Synchrotron-based powder diffraction with difference envelope density analysis, physisorption analysis (surface area and pore size distribution), and thermal analyses reveal that the well-ordered hexagonal structure of the host framework is preserved, and magnetic measurements indicate that slow relaxation of the magnetization, characteristic of the corresponding Mn12 derivative guests, occurs inside the MOF pores. Structural host–guest correlations including the bulkiness and polarity of peripheral SMM ligands are discussed as fundamental parameters influencing the global SMM@MOF loading capacities. These results demonstrate that employing MOFs as platforms for the nanostructuration of SMMs is not limited to a particular host–guest system but potentially applicable to a multitude of other molecular magnets. Such fundamental findings will assist in paving the way for the development of novel advanced spintronic devices.

  20. Nanostructuring of Solar Cell Surfaces

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Schmidt, Michael Stenbæk

    Solar energy is by far the most abundant renewable energy source available, but the levelized cost of solar energy is still not competitive with that of fossil fuels. Therefore there is a need to improve the power conversion effciency of solar cells without adding to the production cost. The main...... objective of this PhD thesis is to develop nanostructured silicon (Si) solar cells with higher power conversion efficiency using only scalable and cost-efficient production methods. The nanostructures, known as 'black silicon', are fabricated by single-step, maskless reactive ion etching and used as front...... texturing of different Si solar cells. Theoretically the nanostructure topology may be described as a graded refractive index in a mean-field approximation between air and Si. The optical properties of the developed black Si were simulated and experimentally measured. Total AM1.5G-weighted average...

  1. Characterization of Nanostructured Semiconductors by Ultrafast Luminescence Imaging

    Science.gov (United States)

    Blake, Jolie

    Single nanostructures are predicted to be the building blocks of next generation devices and have already been incorporated into prototypes for solar cells, biomedical devices and lasers. Their role in such applications requires a fundamental understanding of their opto-electronic properties and in particular the charge carrier dynamics occurring on an ultrafast timescale. Luminescence detection is a common approach used to investigate electronic properties of nanostructures because of the contact-less nature of these methods. They are, however, often not equipped to efficiently measure multiple single nanostructures nor do they have the temporal resolution necessary for observing femtosecond dynamics. This dissertation intends to address this paucity of techniques available for the contact-less measurement of single nanostructures through the development of an ultrafast wide-field Kerr-gated microscope system and measurement technique. The setup, operational in both the steady state and transient mode and capable of microscopic and spectroscopic measurements, was developed to measure the transient luminescence of single semiconductor nanostructures. With sub micron spatial resolution and the potential to achieve a temporal resolution greater than 90 fs, the system was used to probe the charge carrier dynamics at multiple discrete locations on single nanowires exhibiting amplified spontaneous emission. Using a rate model for amplified spontaneous emission, the transient emission data was fitted to extract the values of the competing Shockley-Read-Hall, non-geminate and Auger recombination constants. The capabilities of the setup were first demonstrated in the visible detection range, where single nanowires of the ternary alloy CdS x Se1-x were measured. The temporal emission dynamics at two separate locations were compared and calculation of the Langevin mobility revealed that the large carrier densities generated in the nanowire allows access to non

  2. Surface nanostructuring by ion-induced localized plasma expansion in zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    El-Said, A. S., E-mail: elsaid@kfupm.edu.sa, E-mail: a.s.el-said@hzdr.de [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden (Germany); Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt); Moslem, W. M. [Department of Physics, Faculty of Science, Port Said University, Port Said 42521 (Egypt); Centre for Theoretical Physics, British University in Egypt (BUE), El-Shorouk City, Cairo (Egypt); Djebli, M. [Theoretical Physics Laboratory, Faculty of Physics USTHB, B.P. 32 Bab Ezzour, 16079 Algiers (Algeria)

    2014-06-09

    Creation of hillock-like nanostructures on the surface of zinc oxide single crystals by irradiation with slow highly charged ions is reported. At constant kinetic energy, the nanostructures were only observed after irradiation with ions of potential energies above a threshold between 19.1 keV and 23.3 keV. The size of the nanostructures increases as a function of potential energy. A plasma expansion approach is used to explain the nanostructures creation. The calculations showed that the surface nanostructures became taller with the increase of ionic temperature. The influence of charged cluster formation and the relevance of their polarity are discussed.

  3. Surface nanostructuring by ion-induced localized plasma expansion in zinc oxide

    International Nuclear Information System (INIS)

    El-Said, A. S.; Moslem, W. M.; Djebli, M.

    2014-01-01

    Creation of hillock-like nanostructures on the surface of zinc oxide single crystals by irradiation with slow highly charged ions is reported. At constant kinetic energy, the nanostructures were only observed after irradiation with ions of potential energies above a threshold between 19.1 keV and 23.3 keV. The size of the nanostructures increases as a function of potential energy. A plasma expansion approach is used to explain the nanostructures creation. The calculations showed that the surface nanostructures became taller with the increase of ionic temperature. The influence of charged cluster formation and the relevance of their polarity are discussed.

  4. Methods of fabricating nanostructures and nanowires and devices fabricated therefrom

    Energy Technology Data Exchange (ETDEWEB)

    Majumdar, Arun; Shakouri, Ali; Sands, Timothy D.; Yang, Peidong; Mao, Samuel S.; Russo, Richard E.; Feick, Henning; Weber, Eicke R.; Kind, Hannes; Huang, Michael; Yan, Haoquan; Wu, Yiying; Fan, Rong

    2018-01-30

    One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as "nanowires", include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).

  5. 3D plasmonic nanostructures as building blocks for ultrasensitive Raman spectroscopy

    KAUST Repository

    Toma, Andrea; Chirumamilla, Manohar; Gopalakrishnan, Anisha; Das, Gobind; Proietti Zaccaria, Remo; Krahne, Roman; Rondanina, Eliana; Leoncini, Marco; Liberale, Carlo; De Angelis, Francesco De; Di Fabrizio, Enzo M.

    2014-01-01

    The fabrication of complex 3D plasmonic nanostructures opens new scenarios towards the realization of high electric field confinement and enhancement. We exploit the unique properties of these nanostructures for performing Raman spectroscopy in the single/few molecules detection limit. © 2014 OSA.

  6. Enhanced structural stability of DNA origami nanostructures by graphene encapsulation

    International Nuclear Information System (INIS)

    Matković, Aleksandar; Vasić, Borislav; Pešić, Jelena; Gajić, Radoš; Prinz, Julia; Bald, Ilko; Milosavljević, Aleksandar R

    2016-01-01

    We demonstrate that a single-layer graphene replicates the shape of DNA origami nanostructures very well. It can be employed as a protective layer for the enhancement of structural stability of DNA origami nanostructures. Using the AFM based manipulation, we show that the normal force required to damage graphene encapsulated DNA origami nanostructures is over an order of magnitude greater than for the unprotected ones. In addition, we show that graphene encapsulation offers protection to the DNA origami nanostructures against prolonged exposure to deionized water, and multiple immersions. Through these results we demonstrate that graphene encapsulated DNA origami nanostructures are strong enough to sustain various solution phase processing, lithography and transfer steps, thus extending the limits of DNA-mediated bottom-up fabrication. (paper)

  7. Freestanding nanostructures via reactive ion beam angled etching

    Directory of Open Access Journals (Sweden)

    Haig A. Atikian

    2017-05-01

    Full Text Available Freestanding nanostructures play an important role in optical and mechanical devices for classical and quantum applications. Here, we use reactive ion beam angled etching to fabricate optical resonators in bulk polycrystalline and single crystal diamond. Reported quality factors are approximately 30 000 and 286 000, respectively. The devices show uniformity across 25 mm samples, a significant improvement over comparable techniques yielding freestanding nanostructures.

  8. A Hydrological Sensor Web Ontology Based on the SSN Ontology: A Case Study for a Flood

    Directory of Open Access Journals (Sweden)

    Chao Wang

    2017-12-01

    Full Text Available Accompanying the continuous development of sensor network technology, sensors worldwide are constantly producing observation data. However, the sensors and their data from different observation platforms are sometimes difficult to use collaboratively in response to natural disasters such as floods for the lack of semantics. In this paper, a hydrological sensor web ontology based on SSN ontology is proposed to describe the heterogeneous hydrological sensor web resources by importing the time and space ontology, instantiating the hydrological classes, and establishing reasoning rules. This work has been validated by semantic querying and knowledge acquiring experiments. The results demonstrate the feasibility and effectiveness of the proposed ontology and its potential to grow into a more comprehensive ontology for hydrological monitoring collaboratively. In addition, this method of ontology modeling is generally applicable to other applications and domains.

  9. Controlled synthesis of 2D Au nanostructure assembly with the assistance of sulfonated polyaniline nanotubes

    International Nuclear Information System (INIS)

    Yuan Junhua; Wang Zhijuan; Zhang Qixian; Han, Dongxue; Zhang Yuanjian; Shen Yanfei; Niu Li

    2006-01-01

    A wet chemical approach is used successfully to produce nanostructured Au material by the reduction of sulfonated polyaniline (SPANI) nanotubes. The Au nanostructures obtained are composed of single crystal Au nanoplates, which are aggregated layer-by-layer into stacks or edge-on-face into clusters at various conditions. The Au nanoplate diameter and thickness can be conveniently controlled in the range of 100 nm to 2 μm and 10 to 30 nm, respectively, with no accompanying single Au nanoparticles being observed. The formation of the Au nanostructures was controlled by the degradation of SPANI. The gradually and slowly released segments of SPANI served as the reductant during the growth of the 2D Au nanostructures

  10. DNA origami compliant nanostructures with tunable mechanical properties.

    Science.gov (United States)

    Zhou, Lifeng; Marras, Alexander E; Su, Hai-Jun; Castro, Carlos E

    2014-01-28

    DNA origami enables fabrication of precise nanostructures by programming the self-assembly of DNA. While this approach has been used to make a variety of complex 2D and 3D objects, the mechanical functionality of these structures is limited due to their rigid nature. We explore the fabrication of deformable, or compliant, objects to establish a framework for mechanically functional nanostructures. This compliant design approach is used in macroscopic engineering to make devices including sensors, actuators, and robots. We build compliant nanostructures by utilizing the entropic elasticity of single-stranded DNA (ssDNA) to locally bend bundles of double-stranded DNA into bent geometries whose curvature and mechanical properties can be tuned by controlling the length of ssDNA strands. We demonstrate an ability to achieve a wide range of geometries by adjusting a few strands in the nanostructure design. We further developed a mechanical model to predict both geometry and mechanical properties of our compliant nanostructures that agrees well with experiments. Our results provide a basis for the design of mechanically functional DNA origami devices and materials.

  11. Behaviour of a PWR with core protection system (SSN) in case of accidents due to power failure, ATWS and steam generator rupture

    International Nuclear Information System (INIS)

    Boncompagni, S.; Fulceri, P.; Oriolo, F.

    1985-01-01

    The results of the analysis of the transient fallowing internal and external power failure, without scram, in the nuclear power plant of the Italian Unified Nuclear Project are examined. The availability of ECCS is excluded while the breakage of a tube in each steam generator is supposed, togheter with the presence of an original safety system known as SSN (core protection system). Computations have been performed by using Mark 6 RELAP4 code. The study of the transient and the physical model used are briefly illustrated. Finally the results achieved are analysed

  12. Facile Synthesis and Tensile Behavior of TiO2 One-Dimensional Nanostructures

    Directory of Open Access Journals (Sweden)

    Li Shu-you

    2009-01-01

    Full Text Available Abstract High-yield synthesis of TiO2 one-dimensional (1D nanostructures was realized by a simple annealing of Ni-coated Ti grids in an argon atmosphere at 950 °C and 760 torr. The as-synthesized 1D nanostructures were single crystalline rutile TiO2 with the preferred growth direction close to [210]. The growth of these nanostructures was enhanced by using catalytic materials, higher reaction temperature, and longer reaction time. Nanoscale tensile testing performed on individual 1D nanostructures showed that the nanostructures appeared to fracture in a brittle manner. The measured Young’s modulus and fracture strength are ~56.3 and 1.4 GPa, respectively.

  13. Hydrogen adsorption in carbon nanostructures compared

    NARCIS (Netherlands)

    Schimmel, H.G.; Nijkamp, M.G.; Kearley, G.J.; Rivera, A.; de Jong, K.P.; Mulder, F.M.

    2004-01-01

    Recent reports continue to suggest high hydrogen storage capacities for some carbon nanostructures due to a stronger interaction between hydrogen and carbon. Here the interaction of hydrogen with activated charcoal, carbon nanofibers, single walled carbon nanotubes (SWNT), and electron beam ‘opened’

  14. Tunable top-down fabrication and functional surface coating of single-crystal titanium dioxide nanostructures and nanoparticles

    Science.gov (United States)

    Ha, Seungkyu; Janissen, Richard; Ussembayev, Yera Ye.; van Oene, Maarten M.; Solano, Belen; Dekker, Nynke H.

    2016-05-01

    Titanium dioxide (TiO2) is a key component of diverse optical and electronic applications that exploit its exceptional material properties. In particular, the use of TiO2 in its single-crystalline phase can offer substantial advantages over its amorphous and polycrystalline phases for existing and yet-to-be-developed applications. However, the implementation of single-crystal TiO2 has been hampered by challenges in its fabrication and subsequent surface functionalization. Here, we introduce a novel top-down approach that allows for batch fabrication of uniform high-aspect-ratio single-crystal TiO2 nanostructures with targeted sidewall profiles. We complement our fabrication approach with a functionalization strategy that achieves dense, uniform, and area-selective coating with a variety of biomolecules. This allows us to fabricate single-crystal rutile TiO2 nanocylinders tethered with individual DNA molecules for use as force- and torque-transducers in an optical torque wrench. These developments provide the means for increased exploitation of the superior material properties of single-crystal TiO2 at the nanoscale.Titanium dioxide (TiO2) is a key component of diverse optical and electronic applications that exploit its exceptional material properties. In particular, the use of TiO2 in its single-crystalline phase can offer substantial advantages over its amorphous and polycrystalline phases for existing and yet-to-be-developed applications. However, the implementation of single-crystal TiO2 has been hampered by challenges in its fabrication and subsequent surface functionalization. Here, we introduce a novel top-down approach that allows for batch fabrication of uniform high-aspect-ratio single-crystal TiO2 nanostructures with targeted sidewall profiles. We complement our fabrication approach with a functionalization strategy that achieves dense, uniform, and area-selective coating with a variety of biomolecules. This allows us to fabricate single-crystal rutile

  15. A four-probe thermal transport measurement method for nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaehyun; Ou, Eric; Sellan, Daniel P.; Shi, Li, E-mail: lishi@mail.utexas.edu [Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States)

    2015-04-15

    Several experimental techniques reported in recent years have enabled the measurement of thermal transport properties of nanostructures. However, eliminating the contact thermal resistance error from the measurement results has remained a critical challenge. Here, we report a different four-probe measurement method that can separately obtain both the intrinsic thermal conductance and the contact thermal resistance of individual nanostructures. The measurement device consists of four microfabricated, suspended metal lines that act as resistive heaters and thermometers, across which the nanostructure sample is assembled. The method takes advantage of the variation in the heat flow along the suspended nanostructure and across its contacts to the four suspended heater and thermometer lines, and uses sixteen sets of temperature and heat flow measurements to obtain nine of the thermal resistances in the measurement device and the nanostructure sample, including the intrinsic thermal resistance and the two contact thermal resistances to the middle suspended segment of the nanostructure. Two single crystalline Si nanowires with different cross sections are measured in this work to demonstrate the effectiveness of the method. This four-probe thermal transport measurement method can lead to future discoveries of unique size-dependent thermal transport phenomena in nanostructures and low-dimensional materials, in addition to providing reliable experimental data for calibrating theoretical models.

  16. A four-probe thermal transport measurement method for nanostructures

    International Nuclear Information System (INIS)

    Kim, Jaehyun; Ou, Eric; Sellan, Daniel P.; Shi, Li

    2015-01-01

    Several experimental techniques reported in recent years have enabled the measurement of thermal transport properties of nanostructures. However, eliminating the contact thermal resistance error from the measurement results has remained a critical challenge. Here, we report a different four-probe measurement method that can separately obtain both the intrinsic thermal conductance and the contact thermal resistance of individual nanostructures. The measurement device consists of four microfabricated, suspended metal lines that act as resistive heaters and thermometers, across which the nanostructure sample is assembled. The method takes advantage of the variation in the heat flow along the suspended nanostructure and across its contacts to the four suspended heater and thermometer lines, and uses sixteen sets of temperature and heat flow measurements to obtain nine of the thermal resistances in the measurement device and the nanostructure sample, including the intrinsic thermal resistance and the two contact thermal resistances to the middle suspended segment of the nanostructure. Two single crystalline Si nanowires with different cross sections are measured in this work to demonstrate the effectiveness of the method. This four-probe thermal transport measurement method can lead to future discoveries of unique size-dependent thermal transport phenomena in nanostructures and low-dimensional materials, in addition to providing reliable experimental data for calibrating theoretical models

  17. Analytic device including nanostructures

    KAUST Repository

    Di Fabrizio, Enzo M.; Fratalocchi, Andrea; Totero Gongora, Juan Sebastian; Coluccio, Maria Laura; Candeloro, Patrizio; Cuda, Gianni

    2015-01-01

    A device for detecting an analyte in a sample comprising: an array including a plurality of pixels, each pixel including a nanochain comprising: a first nanostructure, a second nanostructure, and a third nanostructure, wherein size of the first nanostructure is larger than that of the second nanostructure, and size of the second nanostructure is larger than that of the third nanostructure, and wherein the first nanostructure, the second nanostructure, and the third nanostructure are positioned on a substrate such that when the nanochain is excited by an energy, an optical field between the second nanostructure and the third nanostructure is stronger than an optical field between the first nanostructure and the second nanostructure, wherein the array is configured to receive a sample; and a detector arranged to collect spectral data from a plurality of pixels of the array.

  18. Hydrothermal growth and characterizations of dandelion-like ZnO nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Kale, Rohidas B., E-mail: rb_kale@yahoo.co.in [Department of Physics, The Institute of Science, Madam Cama Road, Mumbai 400 032, (M.S.) (India); Lu, Shih-Yuan, E-mail: sylu@nthu.edu.tw [Department of Chemical Engineering, National Tsing-Hua University, Hsinchu 30013, Taiwan, ROC (China)

    2013-12-05

    Highlights: •The simple, low cost, environmental benign hydrothermal method has been used to synthesize ZnO nanostructure. •The SEM images reveal the interesting 3D dandelion-like morphology of synthesized ZnO nanostructure. The SAED pattern and HRTEM study confirms that the ZnO nanorods are single crystalline. •Change in experimental conditions dramatically changes the morphologies of the synthesized ZnO. •The room temperature PL study reveals strong band edge emission along with much weaker defect related blue emission. •The reaction and growth mechanism of ZnO nanostructure is also discussed. -- Abstract: Three dimensional (3D) ZnO nanostructures have been synthesized by using a facile low-cost hydrothermal method under mild conditions. Aqueous alkaline ammonia solution of Zn(CH{sub 3}COO){sub 2} is used to grow 3D ZnO nanostructures. The X-ray diffraction (XRD) study reveals the well crystallized hexagonal structure of ZnO. SEM observations depict that the ZnO product grows in the form of nanorods united together to form 3D dandelion-like nanostructures. The elemental analysis using EDAX technique confirms the stoichiometry of the ZnO nanorods. The product exhibits special optical properties with red-shifts in optical absorption peak (376 nm) as compared with those of conventional ZnO nanorods. PL spectra show emission peak (396 nm) at the near band-edge and peak (464 nm) originated from defects states that are produced during the hydrothermal growth. TEM and SAED results reveal single crystalline structure of the synthesized product. The reaction and growth mechanisms on the morphological evolution of the ZnO nanostructures are discussed. The morphology of ZnO product is investigated by varying the reaction time, temperature, and type of complexing reagent.

  19. Tailoring the optical constants in single-crystal silicon with embedded silver nanostructures for advanced silicon photonics applications

    International Nuclear Information System (INIS)

    Akhter, Perveen; Huang, Mengbing; Spratt, William; Kadakia, Nirag; Amir, Faisal

    2015-01-01

    Plasmonic effects associated with metal nanostructures are expected to hold the key to tailoring light emission/propagation and harvesting solar energy in materials including single crystal silicon which remains the backbone in the microelectronics and photovoltaics industries but unfortunately, lacks many functionalities needed for construction of advanced photonic and optoelectronics devices. Currently, silicon plasmonic structures are practically possible only in the configuration with metal nanoparticles or thin film arrays on a silicon surface. This does not enable one to exploit the full potential of plasmonics for optical engineering in silicon, because the plasmonic effects are dominant over a length of ∼50 nm, and the active device region typically lies below the surface much beyond this range. Here, we report on a novel method for the formation of silver nanoparticles embedded within a silicon crystal through metal gettering from a silver thin film deposited at the surface to nanocavities within the Si created by hydrogen ion implantation. The refractive index of the Ag-nanostructured layer is found to be 3–10% lower or higher than that of silicon for wavelengths below or beyond ∼815–900 nm, respectively. Around this wavelength range, the optical extinction values increase by a factor of 10–100 as opposed to the pure silicon case. Increasing the amount of gettered silver leads to an increased extinction as well as a redshift in wavelength position for the resonance. This resonance is attributed to the surface plasmon excitation of the resultant silver nanoparticles in silicon. Additionally, we show that the profiles for optical constants in silicon can be tailored by varying the position and number of nanocavity layers. Such silicon crystals with embedded metal nanostructures would offer novel functional base structures for applications in silicon photonics, optoelectronics, photovoltaics, and plasmonics

  20. Mesoscopic quantum emitters coupled to plasmonic nanostructures

    DEFF Research Database (Denmark)

    Andersen, Mads Lykke

    for the spontaneous emission of mesoscopic quantum emitters is developed. The light-matter interaction is in this model modied beyond the dipole expectancy and found to both suppress and enhance the coupling to plasmonic modes in excellent agreement with our measurements. We demonstrate that this mesoscopic effect......This thesis reports research on quantum dots coupled to dielectric and plasmonic nano-structures by way of nano-structure fabrication, optical measurements, and theoretical modeling. To study light-matter interaction, plasmonic gap waveguides with nanometer dimensions as well as samples for studies...... to allow for e- cient plasmon-based single-photon sources. Theoretical studies of coupling and propagation properties of plasmonic waveguides reveal that a high-refractive index of the medium surrounding the emitter, e.g. nGaAs = 3.5, limits the realizability of ecient plasmon-based single-photon sources...

  1. Imaging of buried phosphorus nanostructures in silicon using scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Oberbeck, Lars [Centre for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, New South Wales 2052 (Australia); TOTAL Marketing Services, New Energies, La Défense 10, 92069 Paris La Défense Cedex (France); Reusch, Thilo C. G.; Hallam, Toby; Simmons, Michelle Y., E-mail: n.curson@ucl.ac.uk, E-mail: michelle.simmons@unsw.edu.au [Centre for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, New South Wales 2052 (Australia); Schofield, Steven R. [Centre for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, New South Wales 2052 (Australia); London Centre for Nanotechnology, UCL, London WC1H 0AH (United Kingdom); Department of Physics and Astronomy, UCL, London WC1E 6BT (United Kingdom); Curson, Neil J., E-mail: n.curson@ucl.ac.uk, E-mail: michelle.simmons@unsw.edu.au [Centre for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, New South Wales 2052 (Australia); London Centre for Nanotechnology, UCL, London WC1H 0AH (United Kingdom); Department of Electronic and Electrical Engineering, UCL, London WC1E 7JE (United Kingdom)

    2014-06-23

    We demonstrate the locating and imaging of single phosphorus atoms and phosphorus dopant nanostructures, buried beneath the Si(001) surface using scanning tunneling microscopy. The buried dopant nanostructures have been fabricated in a bottom-up approach using scanning tunneling microscope lithography on Si(001). We find that current imaging tunneling spectroscopy is suited to locate and image buried nanostructures at room temperature and with residual surface roughness present. From these studies, we can place an upper limit on the lateral diffusion during encapsulation with low-temperature Si molecular beam epitaxy.

  2. Imaging of buried phosphorus nanostructures in silicon using scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Oberbeck, Lars; Reusch, Thilo C. G.; Hallam, Toby; Simmons, Michelle Y.; Schofield, Steven R.; Curson, Neil J.

    2014-01-01

    We demonstrate the locating and imaging of single phosphorus atoms and phosphorus dopant nanostructures, buried beneath the Si(001) surface using scanning tunneling microscopy. The buried dopant nanostructures have been fabricated in a bottom-up approach using scanning tunneling microscope lithography on Si(001). We find that current imaging tunneling spectroscopy is suited to locate and image buried nanostructures at room temperature and with residual surface roughness present. From these studies, we can place an upper limit on the lateral diffusion during encapsulation with low-temperature Si molecular beam epitaxy.

  3. Synthesis and characterization of CuO flower-nanostructure processing by a domestic hydrothermal microwave

    International Nuclear Information System (INIS)

    Volanti, D.P.; Keyson, D.; Cavalcante, L.S.; Simoes, A.Z.; Joya, M.R.; Longo, E.; Varela, J.A.; Pizani, P.S.; Souza, A.G.

    2008-01-01

    The synthesis and characterization of CuO flower-nanostructure processed in domestic hydrothermal microwave oven was presented. Phase analysis was carried out using X-ray diffraction (XRD) and micro-Raman scattering (MRS) and the results confirmed the CuO flower-nanostructure as a single-phase. The field-emission scanning electron microscopy (FEG-SEM) was used to estimate the average spheres diameter while transmission electron microscope (TEM) to observe the thorn of the flower-nanostructures. The mechanism of CuO flower-nanostructures formation is proposed and explained

  4. Synthesis and characterization of CuO flower-nanostructure processing by a domestic hydrothermal microwave

    Energy Technology Data Exchange (ETDEWEB)

    Volanti, D.P. [Laboratorio Interdisciplinar em Ceramica, Departamento de Fisico-Quimica, Instituto de Quimica, Universidade Estadual Paulista, P.O. Box 355, 14801-907 Araraquara, SP (Brazil); Keyson, D. [Laboratorio de Ensino de Ciencias e Laboratorio de Combustiveis e Materiais, Departamento de Quimica, Universidade Federal da Paraiba, 58051-900 Joao Pessoa, PB (Brazil); Cavalcante, L.S. [Laboratorio Interdisciplinar de Eletroquimica e Ceramica, Departamento de Quimica, Universidade Federal de Sao Carlos, P.O. Box 676, 13565-905 Sao Carlos, SP (Brazil)], E-mail: laeciosc@bol.com.br; Simoes, A.Z. [Laboratorio Interdisciplinar em Ceramica, Departamento de Fisico-Quimica, Instituto de Quimica, Universidade Estadual Paulista, P.O. Box 355, 14801-907 Araraquara, SP (Brazil); Joya, M.R. [Departamento de Fisica, Universidade Federal de Sao Carlos, P.O. Box 676, 13565-905 Sao Carlos, SP (Brazil); Longo, E.; Varela, J.A. [Laboratorio Interdisciplinar em Ceramica, Departamento de Fisico-Quimica, Instituto de Quimica, Universidade Estadual Paulista, P.O. Box 355, 14801-907 Araraquara, SP (Brazil); Pizani, P.S. [Departamento de Fisica, Universidade Federal de Sao Carlos, P.O. Box 676, 13565-905 Sao Carlos, SP (Brazil); Souza, A.G. [Laboratorio de Ensino de Ciencias e Laboratorio de Combustiveis e Materiais, Departamento de Quimica, Universidade Federal da Paraiba, 58051-900 Joao Pessoa, PB (Brazil)

    2008-07-14

    The synthesis and characterization of CuO flower-nanostructure processed in domestic hydrothermal microwave oven was presented. Phase analysis was carried out using X-ray diffraction (XRD) and micro-Raman scattering (MRS) and the results confirmed the CuO flower-nanostructure as a single-phase. The field-emission scanning electron microscopy (FEG-SEM) was used to estimate the average spheres diameter while transmission electron microscope (TEM) to observe the thorn of the flower-nanostructures. The mechanism of CuO flower-nanostructures formation is proposed and explained.

  5. Self-assembly of subwavelength nanostructures with symmetry breaking in solution

    Science.gov (United States)

    Tian, Xiang-Dong; Chen, Shu; Zhang, Yue-Jiao; Dong, Jin-Chao; Panneerselvam, Rajapandiyan; Zhang, Yun; Yang, Zhi-Lin; Li, Jian-Feng; Tian, Zhong-Qun

    2016-01-01

    Nanostructures with symmetry breaking can allow the coupling between dark and bright plasmon modes to induce strong Fano resonance. However, it is still a daunting challenge to prepare bottom-up self-assembled subwavelength asymmetric nanostructures with appropriate gaps between the nanostructures especially below 5 nm in solution. Here we present a viable self-assembly method to prepare symmetry-breaking nanostructures consisting of Ag nanocubes and Au nanospheres both with tunable size (90-250 nm for Au nanospheres; 100-160 nm for Ag nanocubes) and meanwhile control the nanogaps through ultrathin silica shells of 1-5 nm thickness. The Raman tag of 4-mercaptobenzoic acid (MBA) assists the self-assembly process and endows the subwavelength asymmetric nanostructures with surface-enhanced Raman scattering (SERS) activity. Moreover, thick silica shells (above 50 nm thickness) can be coated on the self-assembled nanostructures in situ to stabilize the whole nanostructures, paving the way toward bioapplications. Single particle scattering spectroscopy with a 360° polarization resolution is performed on individual Ag nanocube and Au nanosphere dimers, correlated with high-resolution TEM characterization. The asymmetric dimers exhibit strong configuration and polarization dependence Fano resonance properties. Overall, the solution-based self-assembly method reported here is opening up new opportunities to prepare diverse multicomponent nanomaterials with optimal performance.Nanostructures with symmetry breaking can allow the coupling between dark and bright plasmon modes to induce strong Fano resonance. However, it is still a daunting challenge to prepare bottom-up self-assembled subwavelength asymmetric nanostructures with appropriate gaps between the nanostructures especially below 5 nm in solution. Here we present a viable self-assembly method to prepare symmetry-breaking nanostructures consisting of Ag nanocubes and Au nanospheres both with tunable size (90-250 nm

  6. Formation mechanism of PbTe dendritic nanostructures grown by electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Sangwoo; Kim, Hyunghoon; Lee, Ho Seong, E-mail: hs.lee@knu.ac.kr

    2017-02-01

    The formation mechanism of PbTe dendritic nanostructures grown at room temperature by electrodeposition in nitric acid electrolytes containing Pb and Te was investigated. Scanning electron microscopy and transmission electron microscopy analyses indicated that the PbTe dendritic nanostructures were composed of triangular-shaped units surrounded by {111} and {110} planes. Because of the interfacial energy anisotropy of the {111} and {110} planes and the difference in the current density gradient, the growth rate in the vertical direction of the (111) basal plane was slower than that in the direction of the tip of the triangular shape, leading to growth in the tip direction. In contrast to the general growth direction of fcc dendrites, namely <100>, the tip direction of the {111} basal plane for our samples was <112>, and the PbTe dendritic nanostructures grew in the tip direction. The angles formed by the main trunk and first branches were regular and approximately 60°, and those between the first and second branches were also approximately 60°. Finally, the nanostructures grew in single-crystalline dendritic form. - Highlights: • PbTe dendrite nanostructures were grown by electrodeposition. • PbTe dendritic nanostructures were composed of triangular-shaped units. • The formation mechanism of PbTe dendrite nanostructures was characterized.

  7. Single-molecule chemical reactions on DNA origami

    DEFF Research Database (Denmark)

    Voigt, Niels Vinther; Tørring, Thomas; Rotaru, Alexandru

    2010-01-01

    as templates for building materials with new functional properties. Relatively large nanocomponents such as nanoparticles and biomolecules can also be integrated into DNA nanostructures and imaged. Here, we show that chemical reactions with single molecules can be performed and imaged at a local position...... on a DNA origami scaffold by atomic force microscopy. The high yields and chemoselectivities of successive cleavage and bond-forming reactions observed in these experiments demonstrate the feasibility of post-assembly chemical modification of DNA nanostructures and their potential use as locally......DNA nanotechnology and particularly DNA origami, in which long, single-stranded DNA molecules are folded into predetermined shapes, can be used to form complex self-assembled nanostructures. Although DNA itself has limited chemical, optical or electronic functionality, DNA nanostructures can serve...

  8. Manganese Nanostructures and Magnetism

    Science.gov (United States)

    Simov, Kirie Rangelov

    The primary goal of this study is to incorporate adatoms with large magnetic moment, such as Mn, into two technologically significant group IV semiconductor (SC) matrices, e.g. Si and Ge. For the first time in the world, we experimentally demonstrate Mn doping by embedding nanostructured thin layers, i.e. delta-doping. The growth is observed by in-situ scanning tunneling microscopy (STM), which combines topographic and electronic information in a single image. We investigate the initial stages of Mn monolayer growth on a Si(100)(2x1) surface reconstruction, develop methods for classification of nanostructure types for a range of surface defect concentrations (1.0 to 18.2%), and subsequently encapsulate the thin Mn layer in a SC matrix. These experiments are instrumental in generating a surface processing diagram for self-assembly of monoatomic Mn-wires. The role of surface vacancies has also been studied by kinetic Monte Carlo modeling and the experimental observations are compared with the simulation results, leading to the conclusion that Si(100)(2x1) vacancies serve as nucleation centers in the Mn-Si system. Oxide formation, which happens readily in air, is detrimental to ferromagnetism and lessens the magnetic properties of the nanostructures. Therefore, the protective SC cap, composed of either Si or Ge, serves a dual purpose: it is both the embedding matrix for the Mn nanostructured thin film and a protective agent for oxidation. STM observations of partially deposited caps ensure that the nanostructures remain intact during growth. Lastly, the relationship between magnetism and nanostructure types is established by an in-depth study using x-ray magnetic circular dichroism (XMCD). This sensitive method detects signals even at coverages less than one atomic layer of Mn. XMCD is capable of discerning which chemical compounds contribute to the magnetic moment of the system, and provides a ratio between the orbital and spin contributions. Depending on the amount

  9. Anodized ZnO nanostructures for photoelectrochemical water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Mao-Chia [Institute of Materials Science and Engineering, National Central University, Taoyuan 32001, Taiwan (China); Wang, TsingHai [Department of Biomedical Engineering and Environment Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Wu, Bin-Jui [Institute of Materials Science and Engineering, National Central University, Taoyuan 32001, Taiwan (China); Lin, Jing-Chie, E-mail: jclin4046@gmail.com [Institute of Materials Science and Engineering, National Central University, Taoyuan 32001, Taiwan (China); Wu, Ching-Chen [Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan (China)

    2016-01-01

    Highlights: • ZnO nanostructures were synthesized by electrochemical anodic process. • The parameter of ZnO nanostructure was anodic potential. • The model of growth of ZnO nanostructure was investigated. - Abstract: Zinc oxide (ZnO) nanostructures were fabricated on the polished zinc foil by anodic deposition in an alkaline solution containing 1.0 M NaOH and 0.25 M Zn(NO{sub 3}){sub 2}. Potentiostatic anodization was conducted at two potentials (−0.7 V in the passive region and −1.0 V in the active region vs. SCE) which are higher than the open circuit potential (−1.03 V vs. SCE) and as-obtained ZnO nanostrcutures were investigated focusing on their structural, optical, electrical and photoelectrochemical (PEC) characteristics. All samples were confirmed ZnO by X-ray photoelectron spectroscopy and Raman spectra. Observations in the SEM images clearly showed that ZnO nanostructures prepared at −0.7 V vs. SCE were composed of nanowires at while those obtained at −1.0 V vs. SCE possessed nanosheets morphology. Result from transmission electron microscope and X-ray diffraction patterns suggested that the ZnO nanowires belonged to single crystalline with a preferred orientation of (0 0 2) whereas the ZnO nanosheets were polycrystalline. Following PEC experiments indicated that ZnO nanowires had higher photocurrent density of 0.32 mA/cm{sup 2} at 0.5 V vs. SCE under 100 mW/cm{sup 2} illumination. This value was about 1.9 times higher than that of ZnO nanosheets. Observed higher photocurrent was likely due to the single crystalline, preferred (0 0 2) orientation, higher carrier concentration and lower charge transfer resistance.

  10. Vortices and nanostructured superconductors

    CERN Document Server

    2017-01-01

    This book provides expert coverage of modern and novel aspects of the study of vortex matter, dynamics, and pinning in nanostructured and multi-component superconductors. Vortex matter in superconducting materials is a field of enormous beauty and intellectual challenge, which began with the theoretical prediction of vortices by A. Abrikosov (Nobel Laureate). Vortices, vortex dynamics, and pinning are key features in many of today’s human endeavors: from the huge superconducting accelerating magnets and detectors at the Large Hadron Collider at CERN, which opened new windows of knowledge on the universe, to the tiny superconducting transceivers using Rapid Single Flux Quanta, which have opened a revolutionary means of communication. In recent years, two new features have added to the intrinsic beauty and complexity of the subject: nanostructured/nanoengineered superconductors, and the discovery of a range of new materials showing multi-component (multi-gap) superconductivity. In this book, leading researche...

  11. Nanostructured Thin Film Synthesis by Aerosol Chemical Vapor Deposition for Energy Storage Applications

    Science.gov (United States)

    Chadha, Tandeep S.

    Renewable energy sources offer a viable solution to the growing energy demand while mitigating concerns for greenhouse gas emissions and climate change. This has led to a tremendous momentum towards solar and wind-based energy harvesting technologies driving efficiencies higher and costs lower. However, the intermittent nature of these energy sources necessitates energy storage technologies, which remain the Achilles heel in meeting the renewable energy goals. This dissertation focusses on two approaches for addressing the needs of energy storage: first, targeting direct solar to fuel conversion via photoelectrochemical water-splitting and second, improving the performance of current rechargeable batteries by developing new electrode architectures and synthesis processes. The aerosol chemical vapor deposition (ACVD) process has emerged as a promising single-step approach for nanostructured thin film synthesis directly on substrates. The relationship between the morphology and the operating parameters in the process is complex. In this work, a simulation based approach has been developed to understand the relationship and acquire the ability of predicting the morphology. These controlled nanostructured morphologies of TiO2 , compounded with gold nanoparticles of various shapes, are used for solar water-splitting applications. Tuning of light absorption in the visible-light range along with reduced electron-hole recombination in the composite structures has been demonstrated. The ACVD process is further extended to a novel single-step synthesis of nanostructured TiO2 electrodes directly on the current collector for applications as anodes in lithium-ion batteries, mainly for electric vehicles and hybrid electric vehicles. The effect of morphology of the nanostructures has been investigated via experimental studies and electrochemical transport modelling. Results demonstrate the exceptional performance of the single crystal one-dimensional nanostructures over granular

  12. Stability of sp{sup 2}-carbon single layer nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Bourgeois, L N; Bursill, L A [University of Melbourne, Parkville, VIC (Australia). School of Physics

    1997-12-31

    Full text: Sp{sup 2}-hybridised carbon is quite versatile in its ability to build atomic structures. Although graphite is the most common and best known sp{sup 2}-carbon compound, recent discoveries of the C{sub 60} molecule and the related nanotubes have shown that networks of three-fold coordinated carbon atoms may result in a wide range of geometries. This has led to the postulation that structures such as the negatively curved schwarzites and tori may also be synthesized. In particular, theoretical calculations have shown the cohesive energy of schwarzites to be higher than that of C{sub 60}. Presented here is an analytical model describing the energetics of the most common sp{sup 2}-carbon single nanostructures as well as the hypothetical P-schwarzite. An expression for the energy with respect to a flat graphite sheet is written as the sum of a strain energy term (arising from curving of the carbon network) and a dangling bond energy term (not negligible in an inert environment). The relative stability of carbon spheres, tubes, planes and minimal surfaces is then investigated as a function of the dangling bond energy. In an inert atmosphere (large dangling bond energy), the cylinder appears to be the most stable geometry up to a certain size (about 40 atoms only). Above this number of atoms, the sphere is found to be energetically favoured. In a reactive environment, flat sheets are found to have the lowest energy, as expected. The other structures appeared to be always less stable than tubes, spheres and planes. However, small proportions of negatively curved sheets may occur at high temperatures. These results are compared with known experimental facts

  13. Photoluminescence quenching, structures, and photovoltaic properties of ZnO nanostructures decorated plasma grown single walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Aïssa, Brahim, E-mail: brahim.aissa@mpbc.ca [University of Quebec, Centre Énergie, Matériaux et Télécommunications, INRS-EMT (Canada); Nedil, Mourad [Telebec Wireless Underground Communication Laboratory, UQAT (Canada); Belaidi, Abdelhak; Isaifan, Rima J. [Hamad Bin Khalifa University, Qatar Foundation, Qatar Environment and Energy Research Institute (Qatar); Bentouaf, Ali [University Hassiba Ben Bouali, Physics Department, Faculty of Science (Algeria); Fauteux, Christian; Therriault, Daniel [École Polytechnique de Montréal, Laboratory for Multiscale Mechanics (LM2), Mechanical Engineering Department (Canada)

    2017-05-15

    Zinc oxide (ZnO) nanostructures were successfully grown directly on single walled carbon nanotubes (SWCNT) template through the CO{sub 2} laser-induced chemical liquid deposition (LCLD) process. Photoluminescence (PL) of the deposited ZnO/SWCNT hybrid composites exhibits, at room temperature, a narrow near UV band located at 390 nm with no emission bands in the visible region, indicating a high degree of crystalline quality of the ZnO nanostructures. Moreover, when the relative SWCNT loads are varied within the composites, the PL intensity and the diffused optical reflectance diminish in comparison with those of ZnO alone, owing to the transfer of photo-excited electrons from ZnO to the SWCNT, and the enhancement of the optical absorbance, respectively. Finally, these ZnO/SWCNT hybrid composites are integrated into a heterojunction photovoltaic-based device, using PEDOT:PSS on ITO/glass substrate. The devices show an evident p–n junction behavior in the dark, and a clear I–V curve shift downward when illuminated with an open-circuit voltage of 1.1 V, a short circuit current density of 14.05 μA cm{sup −2}, and a fill factor of ∼35%. These results indicate that these composites fabricated via LCLD process could be promising for optoelectronic and energy-harvesting devices.

  14. Generation of single attosecond pulse within one atomic unit by using multi-cycle inhomogeneous polarization gating technology in bowtie-shaped nanostructure

    Science.gov (United States)

    Feng, Liqiang; Liu, Hang

    2018-04-01

    The generations of high-order harmonic spectra and single attosecond pulses (SAPs) driven by the multi-cycle inhomogeneous polarization gating (PG) technology in the bowtie-shaped nanostructure have been theoretically investigated. It is found that by setting the bowtie-shaped nanostructure along the driven laser polarization direction, not only the extension of the harmonic cutoff can be achieved, caused by the surface plasmon polaritons, but also the modulations of the harmonics can be decreased, caused by the PG technology and the inhomogeneous effect. As a result, the contribution of the harmonic plateau is only from one harmonic emission peak with the dominant short quantum path. Further, by properly adding a half-cycle pulse into the driven laser field, the harmonic emission process can be precisely controlled in the half-cycle duration and a supercontinuum with the bandwidth of 263 eV can be obtained. Finally, by directly superposing the harmonics from this supercontinuum, a SAP with the full width at half maximum of 23 as can be obtained, which is shorter than one atomic unit.

  15. Shape control in wafer-based aperiodic 3D nanostructures

    International Nuclear Information System (INIS)

    Jeong, Hyeon-Ho; Mark, Andrew G; Gibbs, John G; Fischer, Peer; Reindl, Thomas; Waizmann, Ulrike; Weis, Jürgen

    2014-01-01

    Controlled local fabrication of three-dimensional (3D) nanostructures is important to explore and enhance the function of single nanodevices, but is experimentally challenging. We present a scheme based on e-beam lithography (EBL) written seeds, and glancing angle deposition (GLAD) grown structures to create nanoscale objects with defined shapes but in aperiodic arrangements. By using a continuous sacrificial corral surrounding the features of interest we grow isolated 3D nanostructures that have complex cross-sections and sidewall morphology that are surrounded by zones of clean substrate. (papers)

  16. A Review on the Low-Dimensional and Hybridized Nanostructured Diamond Films

    Directory of Open Access Journals (Sweden)

    Hongdong Li

    2015-01-01

    Full Text Available In the last decade, besides the breakthrough of high-rate growth of chemical vapor deposited single-crystal diamonds, numerous nanostructured diamond films have been rapidly developed in the research fields of the diamond-based sciences and industrial applications. The low-dimensional diamonds of two-dimensional atomic-thick nanofilms and nanostructural diamond on the surface of bulk diamond films have been theoretically and experimentally investigated. In addition, the diamond-related hybrid nanostructures of n-type oxide/p-type diamond and n-type nitride/p-type diamond, having high performance physical and chemical properties, are proposed for further applications. In this review, we first briefly introduce the three categories of diamond nanostructures and then outline the current advances in these topics, including their design, fabrication, characterization, and properties. Finally, we address the remaining challenges in the research field and the future activities.

  17. Advanced Magnetic Nanostructures

    CERN Document Server

    Sellmyer, David

    2006-01-01

    Advanced Magnetic Nanostructures is devoted to the fabrication, characterization, experimental investigation, theoretical understanding, and utilization of advanced magnetic nanostructures. Focus is on various types of 'bottom-up' and 'top-down' artificial nanostructures, as contrasted to naturally occurring magnetic nanostructures, such as iron-oxide inclusions in magnetic rocks, and to structures such as perfect thin films. Chapter 1 is an introduction into some basic concepts, such as the definitions of basic magnetic quantities. Chapters 2-4 are devoted to the theory of magnetic nanostructures, Chapter 5 deals with the characterization of the structures, and Chapters 6-10 are devoted to specific systems. Applications of advanced magnetic nanostructures are discussed in Chapters11-15 and, finally, the appendix lists and briefly discusses magnetic properties of typical starting materials. Industrial and academic researchers in magnetism and related areas such as nanotechnology, materials science, and theore...

  18. Crystallization of a self-assembled three-dimensional DNA nanostructure

    International Nuclear Information System (INIS)

    Rendek, Kimberly N.; Fromme, Raimund; Grotjohann, Ingo; Fromme, Petra

    2013-01-01

    In this work, the crystallization of a self-assembling three-dimensional B-DNA nanostructure is described. The powerful and specific molecular-recognition system present in the base-pairing of DNA allows for the design of a plethora of nanostructures. In this work, the crystallization of a self-assembling three-dimensional B-DNA nanostructure is described. The DNA nanostructure consists of six single-stranded oligonucleotides that hybridize to form a three-dimensional tetrahedron of 80 kDa in molecular mass and 20 bp on each edge. Crystals of the tetrahedron have been successfully produced and characterized. These crystals may form the basis for an X-ray structure of the tetrahedron in the future. Nucleotide crystallography poses many challenges, leading to the fact that only 1352 X-ray structures of nucleic acids have been solved compared with more than 80 000 protein structures. In this work, the crystallization optimization for three-dimensional tetrahedra is also described, with the eventual goal of producing nanocrystals to overcome the radiation-damage obstacle by the use of free-electron laser technology in the future

  19. Three-Dimensional ZnO Hierarchical Nanostructures: Solution Phase Synthesis and Applications

    Directory of Open Access Journals (Sweden)

    Xiaoliang Wang

    2017-11-01

    Full Text Available Zinc oxide (ZnO nanostructures have been studied extensively in the past 20 years due to their novel electronic, photonic, mechanical and electrochemical properties. Recently, more attention has been paid to assemble nanoscale building blocks into three-dimensional (3D complex hierarchical structures, which not only inherit the excellent properties of the single building blocks but also provide potential applications in the bottom-up fabrication of functional devices. This review article focuses on 3D ZnO hierarchical nanostructures, and summarizes major advances in the solution phase synthesis, applications in environment, and electrical/electrochemical devices. We present the principles and growth mechanisms of ZnO nanostructures via different solution methods, with an emphasis on rational control of the morphology and assembly. We then discuss the applications of 3D ZnO hierarchical nanostructures in photocatalysis, field emission, electrochemical sensor, and lithium ion batteries. Throughout the discussion, the relationship between the device performance and the microstructures of 3D ZnO hierarchical nanostructures will be highlighted. This review concludes with a personal perspective on the current challenges and future research.

  20. Silver nanostructures with well-controlled shapes: synthesis, characterization and growth mechanisms

    International Nuclear Information System (INIS)

    Kan Caixia; Zhu Jiejun; Zhu Xiaoguang

    2008-01-01

    This paper describes a poly(vinylpyrollidone)-directed polyol synthesis method for the fabrication of silver (Ag) nanostructures with well-controlled shapes (such as nanorods and nanocubes) by adjusting the synthesizing parameters. The structure characterizations suggest that the Ag nanorods grow from the five-fold twinned decahedral crystal nuclei. The nature of the {1 1 1} planes of Ag crystal and the highly selective poly(vinylpyrollidone) adsorption on the {100} planes of Ag crystal nuclei are favourable for the formation of Ag nanorods and Ag nanowires. The single crystalline Ag nanocubes obtained at optimum conditions are perfect in shape and are enclosed by the {1 0 0} facets. The optical properties of the Ag nanostructures show an attractive plasma resonance, displaying a considerable dependence on the shape and size. The formation of the Ag nanostructures with well-defined shapes is probably due to the fact that the nanostructures are controlled thermodynamically and kinetically. The ability to generate shape-controlled Ag nanostructures also provides an opportunity to experimentally and systematically study the relationship between their properties and geometric shapes

  1. Silver nanostructures with well-controlled shapes: synthesis, characterization and growth mechanisms

    Science.gov (United States)

    Kan, Cai-Xia; Zhu, Jie-Jun; Zhu, Xiao-Guang

    2008-08-01

    This paper describes a poly(vinylpyrollidone)-directed polyol synthesis method for the fabrication of silver (Ag) nanostructures with well-controlled shapes (such as nanorods and nanocubes) by adjusting the synthesizing parameters. The structure characterizations suggest that the Ag nanorods grow from the five-fold twinned decahedral crystal nuclei. The nature of the {1 1 1} planes of Ag crystal and the highly selective poly(vinylpyrollidone) adsorption on the {100} planes of Ag crystal nuclei are favourable for the formation of Ag nanorods and Ag nanowires. The single crystalline Ag nanocubes obtained at optimum conditions are perfect in shape and are enclosed by the {1 0 0} facets. The optical properties of the Ag nanostructures show an attractive plasma resonance, displaying a considerable dependence on the shape and size. The formation of the Ag nanostructures with well-defined shapes is probably due to the fact that the nanostructures are controlled thermodynamically and kinetically. The ability to generate shape-controlled Ag nanostructures also provides an opportunity to experimentally and systematically study the relationship between their properties and geometric shapes.

  2. Nanostructure Engineered Chemical Sensors for Hazardous Gas and Vapor Detection

    Science.gov (United States)

    Li, Jing; Lu, Yijiang

    2005-01-01

    A nanosensor technology has been developed using nanostructures, such as single walled carbon nanotubes (SWNTs) and metal oxides nanowires or nanobelts, on a pair of interdigitated electrodes (IDE) processed with a silicon based microfabrication and micromachining technique. The IDE fingers were fabricated using thin film metallization techniques. Both in-situ growth of nanostructure materials and casting of the nanostructure dispersions were used to make chemical sensing devices. These sensors have been exposed to hazardous gases and vapors, such as acetone, benzene, chlorine, and ammonia in the concentration range of ppm to ppb at room temperature. The electronic molecular sensing in our sensor platform can be understood by electron modulation between the nanostructure engineered device and gas molecules. As a result of the electron modulation, the conductance of nanodevice will change. Due to the large surface area, low surface energy barrier and high thermal and mechanical stability, nanostructured chemical sensors potentially can offer higher sensitivity, lower power consumption and better robustness than the state-of-the-art systems, which make them more attractive for defense and space applications. Combined with MEMS technology, light weight and compact size sensors can be made in wafer scale with low cost.

  3. Nanostructured layers of thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Urban, Jeffrey J.; Lynch, Jared; Coates, Nelson; Forster, Jason; Sahu, Ayaskanta; Chabinyc, Michael; Russ, Boris

    2018-01-30

    This disclosure provides systems, methods, and apparatus related to thermoelectric materials. In one aspect, a method includes providing a plurality of nanostructures. The plurality of nanostructures comprise a thermoelectric material, with each nanostructure of the plurality of nanostructures having first ligands disposed on a surface of the nanostructure. The plurality of nanostructures is mixed with a solution containing second ligands and a ligand exchange process occurs in which the first ligands disposed on the plurality of nanostructures are replaced with the second ligands. The plurality of nanostructures is deposited on a substrate to form a layer. The layer is thermally annealed.

  4. Formation of vertically aligned carbon nanostructures in plasmas: numerical modelling of growth and energy exchange

    Energy Technology Data Exchange (ETDEWEB)

    Denysenko, I; Azarenkov, N A, E-mail: idenysenko@yahoo.com [School of Physics and Technology, V N Karazin Kharkiv National University, 4 Svobody sq., 61077 Kharkiv (Ukraine)

    2011-05-04

    Results on modelling of the plasma-assisted growth of vertically aligned carbon nanostructures and of the energy exchange between the plasma and the growing nanostructures are reviewed. Growth of carbon nanofibres and single-walled carbon nanotubes is considered. Focus is made on studies that use the models based on mass balance equations for species, which are adsorbed on catalyst nanoparticles or walls of the nanostructures. It is shown that the models can be effectively used for the study and optimization of nanostructure growth in plasma-enhanced chemical vapour deposition. The results from these models are in good agreement with the available experimental data on the growth of nanostructures. It is discussed how input parameters for the models may be obtained.

  5. Irradiation-Induced Nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Birtcher, R.C.; Ewing, R.C.; Matzke, Hj.; Meldrum, A.; Newcomer, P.P.; Wang, L.M.; Wang, S.X.; Weber, W.J.

    1999-08-09

    This paper summarizes the results of the studies of the irradiation-induced formation of nanostructures, where the injected interstitials from the source of irradiation are not major components of the nanophase. This phenomena has been observed by in situ transmission electron microscopy (TEM) in a number of intermetallic compounds and ceramics during high-energy electron or ion irradiations when the ions completely penetrate through the specimen. Beginning with single crystals, electron or ion irradiation in a certain temperature range may result in nanostructures composed of amorphous domains and nanocrystals with either the original composition and crystal structure or new nanophases formed by decomposition of the target material. The phenomenon has also been observed in natural materials which have suffered irradiation from the decay of constituent radioactive elements and in nuclear reactor fuels which have been irradiated by fission neutrons and other fission products. The mechanisms involved in the process of this nanophase formation are discussed in terms of the evolution of displacement cascades, radiation-induced defect accumulation, radiation-induced segregation and phase decomposition, as well as the competition between irradiation-induced amorphization and recrystallization.

  6. Single ion induced surface nanostructures: a comparison between slow highly charged and swift heavy ions.

    Science.gov (United States)

    Aumayr, Friedrich; Facsko, Stefan; El-Said, Ayman S; Trautmann, Christina; Schleberger, Marika

    2011-10-05

    This topical review focuses on recent advances in the understanding of the formation of surface nanostructures, an intriguing phenomenon in ion-surface interaction due to the impact of individual ions. In many solid targets, swift heavy ions produce narrow cylindrical tracks accompanied by the formation of a surface nanostructure. More recently, a similar nanometric surface effect has been revealed for the impact of individual, very slow but highly charged ions. While swift ions transfer their large kinetic energy to the target via ionization and electronic excitation processes (electronic stopping), slow highly charged ions produce surface structures due to potential energy deposited at the top surface layers. Despite the differences in primary excitation, the similarity between the nanostructures is striking and strongly points to a common mechanism related to the energy transfer from the electronic to the lattice system of the target. A comparison of surface structures induced by swift heavy ions and slow highly charged ions provides a valuable insight to better understand the formation mechanisms. © 2011 IOP Publishing Ltd

  7. Plasmonic Nanostructures for Biosensor Applications

    Science.gov (United States)

    Gadde, Akshitha

    Improving the sensitivity of existing biosensors is an active research topic that cuts across several disciplines, including engineering and biology. Optical biosensors are the one of the most diverse class of biosensors which can be broadly categorized into two types based on the detection scheme: label-based and label-free detection. In label-based detection, the target bio-molecules are labeled with dyes or tags that fluoresce upon excitation, indicating the presence of target molecules. Label-based detection is highly-sensitive, capable of single molecule detection depending on the detector type used. One method of improving the sensitivity of label-based fluorescence detection is by enhancement of the emission of the labels by coupling them with metal nanostructures. This approach is referred as plasmon-enhanced fluorescence (PEF). PEF is achieved by increasing the electric field around the nano metal structures through plasmonics. This increased electric field improves the enhancement from the fluorophores which in turn improves the photon emission from the fluorophores which, in turn, improves the limit of detection. Biosensors taking advantage of the plasmonic properties of metal films and nanostructures have emerged an alternative, low-cost, high sensitivity method for detecting labeled DNA. Localized surface plasmon resonance (LSPR) sensors employing noble metal nanostructures have recently attracted considerable attention as a new class of plasmonic nanosensors. In this work, the design, fabrication and characterization of plasmonic nanostructures is carried out. Finite difference time domain (FDTD) simulations were performed using software from Lumerical Inc. to design a novel LSPR structure that exhibit resonance overlapping with the absorption and emission wavelengths of quantum dots (QD). Simulations of a composite Au/SiO2 nanopillars on silicon substrate were performed using FDTD software to show peak plasmonic enhancement at QD emission wavelength

  8. Nanostructured composite reinforced material

    Science.gov (United States)

    Seals, Roland D [Oak Ridge, TN; Ripley, Edward B [Knoxville, TN; Ludtka, Gerard M [Oak Ridge, TN

    2012-07-31

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  9. The generalized Shockley-Queisser limit for nanostructured solar cells

    Science.gov (United States)

    Xu, Yunlu; Gong, Tao; Munday, Jeremy N.

    2015-09-01

    The Shockley-Queisser limit describes the maximum solar energy conversion efficiency achievable for a particular material and is the standard by which new photovoltaic technologies are compared. This limit is based on the principle of detailed balance, which equates the photon flux into a device to the particle flux (photons or electrons) out of that device. Nanostructured solar cells represent a novel class of photovoltaic devices, and questions have been raised about whether or not they can exceed the Shockley-Queisser limit. Here we show that single-junction nanostructured solar cells have a theoretical maximum efficiency of ˜42% under AM 1.5 solar illumination. While this exceeds the efficiency of a non-concentrating planar device, it does not exceed the Shockley-Queisser limit for a planar device with optical concentration. We consider the effect of diffuse illumination and find that with optical concentration from the nanostructures of only × 1,000, an efficiency of 35.5% is achievable even with 25% diffuse illumination. We conclude that nanostructured solar cells offer an important route towards higher efficiency photovoltaic devices through a built-in optical concentration.

  10. Silver nanostructures with well-controlled shapes: synthesis, characterization and growth mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Kan Caixia [College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211100 (China); Zhu Jiejun [Department of Physics, Nanjing University, Nanjing 210093 (China); Zhu Xiaoguang [Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China)], E-mail: cxkan@nuaa.edu.cn

    2008-08-07

    This paper describes a poly(vinylpyrollidone)-directed polyol synthesis method for the fabrication of silver (Ag) nanostructures with well-controlled shapes (such as nanorods and nanocubes) by adjusting the synthesizing parameters. The structure characterizations suggest that the Ag nanorods grow from the five-fold twinned decahedral crystal nuclei. The nature of the {l_brace}1 1 1{r_brace} planes of Ag crystal and the highly selective poly(vinylpyrollidone) adsorption on the {l_brace}100{r_brace} planes of Ag crystal nuclei are favourable for the formation of Ag nanorods and Ag nanowires. The single crystalline Ag nanocubes obtained at optimum conditions are perfect in shape and are enclosed by the {l_brace}1 0 0{r_brace} facets. The optical properties of the Ag nanostructures show an attractive plasma resonance, displaying a considerable dependence on the shape and size. The formation of the Ag nanostructures with well-defined shapes is probably due to the fact that the nanostructures are controlled thermodynamically and kinetically. The ability to generate shape-controlled Ag nanostructures also provides an opportunity to experimentally and systematically study the relationship between their properties and geometric shapes.

  11. PREFACE: Nanostructured surfaces

    Science.gov (United States)

    Palmer, Richard E.

    2003-10-01

    We can define nanostructured surfaces as well-defined surfaces which contain lateral features of size 1-100 nm. This length range lies well below the micron regime but equally above the Ångstrom regime, which corresponds to the interatomic distances on single-crystal surfaces. This special issue of Journal of Physics: Condensed Matter presents a collection of twelve papers which together address the fabrication, characterization, properties and applications of such nanostructured surfaces. Taken together they represent, in effect, a status report on the rapid progress taking place in this burgeoning area. The first four papers in this special issue have been contributed by members of the European Research Training Network ‘NanoCluster’, which is concerned with the deposition, growth and characterization of nanometre-scale clusters on solid surfaces—prototypical examples of nanoscale surface features. The paper by Vandamme is concerned with the fundamentals of the cluster-surface interaction; the papers by Gonzalo and Moisala address, respectively, the optical and catalytic properties of deposited clusters; and the paper by van Tendeloo reports the application of transmission electron microscopy (TEM) to elucidate the surface structure of spherical particles in a catalyst support. The fifth paper, by Mendes, is also the fruit of a European Research Training Network (‘Micro-Nano’) and is jointly contributed by three research groups; it reviews the creation of nanostructured surface architectures from chemically-synthesized nanoparticles. The next five papers in this special issue are all concerned with the characterization of nanostructured surfaces with scanning tunnelling microscopy (STM) and atomic force microscopy (AFM). The papers by Bolotov, Hamilton and Dunstan demonstrate that the STM can be employed for local electrical measurements as well as imaging, as illustrated by the examples of deposited clusters, model semiconductor structures and real

  12. Hot-Spot Engineering in 3D Multi-Branched Nanostructures

    DEFF Research Database (Denmark)

    Chirumamilla, Manohar; Chirumamilla, Anisha; Roberts, Alexander

    2017-01-01

    The detection of probe molecules at ultralow concentrations, even at the single-molecule level, can be addressed with the breakthrough concept of plasmonic hot-spot engineering. In view of that, the fabrication of nanostructures endowed with sub-10 nm gaps and extremely large near-field enhanceme...

  13. Method to deterministically study photonic nanostructures in different experimental instruments

    NARCIS (Netherlands)

    Husken, B.H.; Woldering, L.A.; Blum, Christian; Tjerkstra, R.W.; Vos, Willem L.

    2009-01-01

    We describe an experimental method to recover a single, deterministically fabricated nanostructure in various experimental instruments without the use of artificially fabricated markers, with the aim to study photonic structures. Therefore, a detailed map of the spatial surroundings of the

  14. Natural nanostructure and superlattice nanodomains in AgSbTe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, Christopher E.; De Armas, Ricardo; Shao-Horn, Yang, E-mail: delaireoa@ornl.gov, E-mail: shaohorn@mit.edu [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Ma, Jie [Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); May, Andrew F.; Delaire, Olivier, E-mail: delaireoa@ornl.gov, E-mail: shaohorn@mit.edu [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2014-04-14

    AgSbTe{sub 2} has long been of interest for thermoelectric applications because of its favorable electronic properties and its low lattice thermal conductivity of ∼0.7 W/mK. In this work, we report new findings from a high-resolution transmission electron microscopy study revealing two nanostructures in single crystal Ag{sub 1−x}Sb{sub 1+x}Sb{sub 2+x} (with x = 0, 0.1, 0.2); (i) a rippled natural nanostructure with a period of ∼2.5–5 nm and (ii) superlattice ordered nanodomains consistent with cation ordering predicted in previous density functional theory studies. These nanostructures, combined with point-defects, probably serve as sources of scattering for phonons, thereby yielding a low lattice thermal conductivity over a wide temperature range.

  15. Facile and green fabrication of organic single-crystal hollow micro/nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Yang Jun; Chen Yingzhi; Ou Xuemei; Zhang Xiaohong [Nano-organic Photoelectronic Laboratory and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Zhang Xiujuan, E-mail: xjzhang@suda.edu.cn, E-mail: xhzhang@mail.ipc.ac.cn [Functional Nano and Soft Materials Laboratory (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China)

    2011-07-15

    Under high humidity and appropriate temperature, tris (8-hydroxyquinoline) aluminum (Alq3) solid micro/nanostructures may be etched into hollow structures and still retain their crystalline structures and surface morphologies. The shapes and sizes of the hollow structures are easily adjusted by varying the experimental parameters. Throughout the entire process, water is introduced into the system instead of organic or corrosive solvents, making this method convenient and environmentally friendly; it can also be extended to application in other materials such as TCNQ.

  16. Nanostructured gold microelectrodes for SERS and EIS measurements by incorporating ZnO nanorod growth with electroplating

    Science.gov (United States)

    Zong, Xianli; Zhu, Rong; Guo, Xiaoliang

    2015-01-01

    In this paper, a fine gold nanostructure synthesized on selective planar microelectrodes in micro-chip is realized by using an advanced hybrid fabrication approach incorporating growth of nanorods (NRs) with gold electroplating. By this developed nanostructure, integration of in-situ surface-enhanced Raman spectroscopy (SERS) detection with electrochemical impedance spectroscopy (EIS) measurement for label-free, nondestructive, real-time and rapid monitoring on a single cell has been achieved. Moreover, parameters of Au nanostructures such as size of nanoholes/nanogaps can be controllably adjusted in the fabrication. We have demonstrated a SERS enhancement factor of up to ~2.24 × 106 and double-layer impedance decrease ratio of 90% ~ 95% at low frequency range below 200 kHz by using nanostructured microelectrodes. SERS detection and in-situ EIS measurement of a trapped single cell by using planar microelectrodes are realized to demonstrate the compatibility, multi-functions, high-sensitivity and simplicity of the micro-chip system. This dual function platform integrating SERS and EIS is of great significance in biological, biochemical and biomedical applications. PMID:26558325

  17. Angle resolved characterization of nanostructured and conventionally textured silicon solar cells

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Ormstrup, Jeppe; Ommen, Martin Lind

    2015-01-01

    current, open circuit voltage, fill factor (FF) and power conversion efficiency are each measured as function of the relative incident angle between the solar cell and the light source. The relative incident angle is varied from 0° to 90° in steps of 10° in orthogonal axes, such that each solar cell......We report angle resolved characterization of nanostructured and conventionally textured silicon solar cells. The nanostructured solar cells are realized through a single step, mask-less, scalable reactive ion etching (RIE) texturing of the surface. Photovoltaic properties including short circuit...

  18. Injection moulding antireflective nanostructures

    DEFF Research Database (Denmark)

    Christiansen, Alexander Bruun; Clausen, Jeppe Sandvik; Mortensen, N. Asger

    2014-01-01

    We present a method for injection moulding antireflective nanostructures on large areas, for high volume production. Nanostructured black silicon masters were fabricated by mask-less reactive ion etching, and electroplated with nickel. The nickel shim was antistiction coated and used in an inject......We present a method for injection moulding antireflective nanostructures on large areas, for high volume production. Nanostructured black silicon masters were fabricated by mask-less reactive ion etching, and electroplated with nickel. The nickel shim was antistiction coated and used...

  19. Injection moulding antireflective nanostructures

    DEFF Research Database (Denmark)

    Christiansen, Alexander Bruun; Clausen, Jeppe Sandvik; Mortensen, N. Asger

    We present a method for injection moulding antireflective nanostructures on large areas, for high volume production. Nanostructured black silicon masters were fabricated by mask-less reactive ion etching, and electroplated with nickel. The nickel shim was antistiction coated and used in an inject......We present a method for injection moulding antireflective nanostructures on large areas, for high volume production. Nanostructured black silicon masters were fabricated by mask-less reactive ion etching, and electroplated with nickel. The nickel shim was antistiction coated and used...

  20. Self-assembled nanostructures

    CERN Document Server

    Zhang, Jin Z; Liu, Jun; Chen, Shaowei; Liu, Gang-yu

    2003-01-01

    Nanostructures refer to materials that have relevant dimensions on the nanometer length scales and reside in the mesoscopic regime between isolated atoms and molecules in bulk matter. These materials have unique physical properties that are distinctly different from bulk materials. Self-Assembled Nanostructures provides systematic coverage of basic nanomaterials science including materials assembly and synthesis, characterization, and application. Suitable for both beginners and experts, it balances the chemistry aspects of nanomaterials with physical principles. It also highlights nanomaterial-based architectures including assembled or self-assembled systems. Filled with in-depth discussion of important applications of nano-architectures as well as potential applications ranging from physical to chemical and biological systems, Self-Assembled Nanostructures is the essential reference or text for scientists involved with nanostructures.

  1. Surfactant-assisted synthesis of Ag nanostructures and their self-assembled films on copper and aluminum substrate

    International Nuclear Information System (INIS)

    Zhuo Yujiang; Sun Wendong; Dong Lihong; Chu Ying

    2011-01-01

    In this paper, silver nanostructures with controlled morphologies, such as plates, rods, belts, sheets and their self-assembled films have been prepared on copper and aluminum substrates by a surfactant-assisted colloidal chemical method. The X-ray powder diffraction (XRD) and the selected area electron diffraction (SAED) patterns indicated that the Ag nanostructures grew on the substrates with cubic symmetry and single-crystalline in nature. An oriented attachment with surfactant-assisted mechanism and a cooperative effect of surfactant and chloride ion on the morphology of Ag nanostructures were investigated systematically and synthetically.

  2. Theory of hyperbolic stratified nanostructures for surface-enhanced Raman scattering

    Science.gov (United States)

    Wong, Herman M. K.; Dezfouli, Mohsen Kamandar; Axelrod, Simon; Hughes, Stephen; Helmy, Amr S.

    2017-11-01

    We theoretically investigate the enhancement of surface enhanced Raman spectroscopy (SERS) using hyperbolic stratified nanostructures and compare to metal nanoresonators. The photon Green function of each nanostructure within its environment is first obtained from a semianalytical modal theory, which is used in a quantum optics formalism of the molecule-nanostructure interaction to model the SERS spectrum. An intuitive methodology is presented for calculating the single-molecule enhancement factor (SMEF), which is also able to predict known experimental SERS enhancement factors of a gold nanodimer. We elucidate the important figures-of-merit of the enhancement and explore these for different designs. We find that the use of hyperbolic stratified materials can enhance the photonic local density of states (LDOS) by close to two times in comparison to pure metal nanostructures, when both designed to work at the same operating wavelengths. However, the increased LDOS is accompanied by higher electric field concentration within the lossy hyperbolic material, which leads to increased quenching that serves to reduce the overall detected SERS enhancement in the far field. For nanoresonators with resonant localized surface plasmon wavelengths in the near-infrared, the SMEF for the hyperbolic stratified nanostructure is approximately one order of magnitude lower than the pure metal counterpart. Conversely, we show that by detecting the Raman signal using a near-field probe, hyperbolic materials can provide an improvement in SERS enhancement compared to using pure metal nanostructures when the probe is sufficiently close (<50 nm ) to the Raman active molecule at the plasmonic hotspot.

  3. Development of nanostructured protective "sight glasses" for IR gas sensors

    DEFF Research Database (Denmark)

    Bergmann, René; Davis, Zachary James; Schmidt, Michael Stenbæk

    2011-01-01

    In this work protective "sight glasses" for infrared gas sensors showing a sub-wavelength nanostructure with random patterns have been fabricated by reactive ion etching (RIE) in an easy and comparable cheap single step mask-less process. By an organic coating, the intrinsic water repellent...

  4. Magnetic resonance of semiconductors and their nanostructures basic and advanced applications

    CERN Document Server

    Baranov, Pavel G; Jelezko, Fedor; Wrachtrup, Jörg

    2017-01-01

    This book explains different magnetic resonance (MR) techniques and uses different combinations of these techniques to analyze defects in semiconductors and nanostructures. It also introduces novelties such as single defects MR and electron-paramagnetic-resonance-based methods: electron spin echo, electrically detected magnetic resonance, optically detected magnetic resonance and electron-nuclear double resonance – the designated tools for investigating the structural and spin properties of condensed systems, living matter, nanostructures and nanobiotechnology objects. Further, the authors address problems existing in semiconductor and nanotechnology sciences that can be resolved using MR, and discuss past, current and future applications of MR, with a focus on advances in MR methods. The book is intended for researchers in MR studies of semiconductors and nanostructures wanting a comprehensive review of what has been done in their own and related fields of study, as well as future perspectives.

  5. One-Dimensional Hetero-Nanostructures for Rechargeable Batteries.

    Science.gov (United States)

    Mai, Liqiang; Sheng, Jinzhi; Xu, Lin; Tan, Shuangshuang; Meng, Jiashen

    2018-04-17

    Rechargeable batteries are regarded as one of the most practical electrochemical energy storage devices that are able to convert and store the electrical energy generated from renewable resources, and they function as the key power sources for electric vehicles and portable electronics. The ultimate goals for electrochemical energy storage devices are high power and energy density, long lifetime, and high safety. To achieve the above goals, researchers have tried to apply various morphologies of nanomaterials as the electrodes to enhance the electrochemical performance. Among them, one-dimensional (1D) materials show unique superiorities, such as cross-linked structures for external stress buffering and large draw ratios for internal stress dispersion. However, a homogeneous single-component electrode material can hardly have the characteristics of high electronic/ionic conductivity and high stability in the electrochemical environment simultaneously. Therefore, designing well-defined functional 1D hetero-nanostructures that combine the advantages and overcome the limitations of different electrochemically active materials is of great significance. This Account summarizes fabrication strategies for 1D hetero-nanostructures, including nucleation and growth, deposition, and melt-casting and electrospinning. Besides, the chemical principles for each strategy are discussed. The nucleation and growth strategy is suitable for growing and constructing 1D hetero-nanostructures of partial transition metal compounds, and the experimental conditions for this strategy are relatively accessible. Deposition is a reliable strategy to synthesize 1D hetero-nanostructures by decorating functional layers on 1D substrate materials, on the condition that the preobtained substrate materials must be stable in the following deposition process. The melt-casting strategy, in which 1D hetero-nanostructures are synthesizes via a melting and molding process, is also widely used. Additionally

  6. Epitaxial growth of hybrid nanostructures

    Science.gov (United States)

    Tan, Chaoliang; Chen, Junze; Wu, Xue-Jun; Zhang, Hua

    2018-02-01

    Hybrid nanostructures are a class of materials that are typically composed of two or more different components, in which each component has at least one dimension on the nanoscale. The rational design and controlled synthesis of hybrid nanostructures are of great importance in enabling the fine tuning of their properties and functions. Epitaxial growth is a promising approach to the controlled synthesis of hybrid nanostructures with desired structures, crystal phases, exposed facets and/or interfaces. This Review provides a critical summary of the state of the art in the field of epitaxial growth of hybrid nanostructures. We discuss the historical development, architectures and compositions, epitaxy methods, characterization techniques and advantages of epitaxial hybrid nanostructures. Finally, we provide insight into future research directions in this area, which include the epitaxial growth of hybrid nanostructures from a wider range of materials, the study of the underlying mechanism and determining the role of epitaxial growth in influencing the properties and application performance of hybrid nanostructures.

  7. Contribution of double scattering to structural coloration in quasiordered nanostructures of bird feathers

    Science.gov (United States)

    Noh, Heeso; Liew, Seng Fatt; Saranathan, Vinodkumar; Prum, Richard O.; Mochrie, Simon G. J.; Dufresne, Eric R.; Cao, Hui

    2010-05-01

    We measured the polarization- and angle-resolved optical scattering and reflection spectra of the quasiordered nanostructures in the bird feather barbs. In addition to the primary peak that originates from single scattering, we observed a secondary peak which exhibits depolarization and distinct angular dispersion. We explained the secondary peak in terms of double scattering, i.e., light is scattered successively twice by the structure. The two sequential single-scattering events are considered uncorrelated. Using the Fourier power spectra of the nanostructures obtained from the small-angle x-ray scattering experiment, we calculated the double scattering of light in various directions. The double-scattering spectrum is broader than the single-scattering spectrum, and it splits into two subpeaks at larger scattering angle. The good agreement between the simulation results and the experimental data confirms that double scattering of light makes a significant contribution to the structural color.

  8. Contribution of double scattering to structural coloration in quasiordered nanostructures of bird feathers

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Heeso; Liew, Seng Fatt; Saranathan, Vinodkumar; Prum, Richard O.; Mochrie, Simon G.J.; Dufresne, Eric R.; Cao, Hui (Yale)

    2010-07-28

    We measured the polarization- and angle-resolved optical scattering and reflection spectra of the quasiordered nanostructures in the bird feather barbs. In addition to the primary peak that originates from single scattering, we observed a secondary peak which exhibits depolarization and distinct angular dispersion. We explained the secondary peak in terms of double scattering, i.e., light is scattered successively twice by the structure. The two sequential single-scattering events are considered uncorrelated. Using the Fourier power spectra of the nanostructures obtained from the small-angle x-ray scattering experiment, we calculated the double scattering of light in various directions. The double-scattering spectrum is broader than the single-scattering spectrum, and it splits into two subpeaks at larger scattering angle. The good agreement between the simulation results and the experimental data confirms that double scattering of light makes a significant contribution to the structural color.

  9. Using reflectance anisotropy spectroscopy to characterize capped silver nanostructures grown on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Fleischer, K.; Jacob, J.; McGilp, J.F. [School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Chandola, S. [School of Physics, Trinity College Dublin, Dublin 2 (Ireland); ISAS - Institute for Analytical Sciences, Department Berlin, Albert-Einstein-Strasse 9, 12489 Berlin (Germany); Esser, N. [ISAS - Institute for Analytical Sciences, Department Berlin, Albert-Einstein-Strasse 9, 12489 Berlin (Germany)

    2008-07-01

    Using the single domain Si(111)-3 x 1-Ag surface as a template, room temperature deposition of two or more monolayers of Ag leads to the formation of metallic nanostructures. Reflectance anisotropy spectroscopy (RAS) in the infrared (IR) spectral region is used to analyse the anisotropic conductivity of the structures. The anisotropy is found to be influenced by the offcut angle of the substrate, and hence the terrace width. The Ag nanostructures were capped with Si to form a near-IR transparent protecting layer. The samples are stable to exposure to ambient conditions for significant periods. The RAS spectra are compared to model calculations, which support the conclusion that the buried metallic Ag nanostructures survive the capping process. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Single-step direct fabrication of pillar-on-pore hybrid nanostructures in anodizing aluminum for superior superhydrophobic efficiency.

    Science.gov (United States)

    Jeong, Chanyoung; Choi, Chang-Hwan

    2012-02-01

    Conventional electrochemical anodizing processes of metals such as aluminum typically produce planar and homogeneous nanopore structures. If hydrophobically treated, such 2D planar and interconnected pore structures typically result in lower contact angle and larger contact angle hysteresis than 3D disconnected pillar structures and, hence, exhibit inferior superhydrophobic efficiency. In this study, we demonstrate for the first time that the anodizing parameters can be engineered to design novel pillar-on-pore (POP) hybrid nanostructures directly in a simple one-step fabrication process so that superior surface superhydrophobicity can also be realized effectively from the electrochemical anodization process. On the basis of the characteristic of forming a self-ordered porous morphology in a hexagonal array, the modulation of anodizing voltage and duration enabled the formulation of the hybrid-type nanostructures having controlled pillar morphology on top of a porous layer in both mild and hard anodization modes. The hybrid nanostructures of the anodized metal oxide layer initially enhanced the surface hydrophilicity significantly (i.e., superhydrophilic). However, after a hydrophobic monolayer coating, such hybrid nanostructures then showed superior superhydrophobic nonwetting properties not attainable by the plain nanoporous surfaces produced by conventional anodization conditions. The well-regulated anodization process suggests that electrochemical anodizing can expand its usefulness and efficacy to render various metallic substrates with great superhydrophilicity or -hydrophobicity by directly realizing pillar-like structures on top of a self-ordered nanoporous array through a simple one-step fabrication procedure.

  11. Enhanced absorption of graphene in the visible region by use of plasmonic nanostructures

    DEFF Research Database (Denmark)

    Hashemi, Mahdieh; Farzad, Mahmood Hosseini; Mortensen, N. Asger

    2013-01-01

    Low absorption of graphene in the visible range of the spectrum makes it difficult to uniquely benefit from this material in ultra-fast optoelectronic applications. We numerically propose to utilize patterned metallic nanostructures to increase light absorption in single-layer graphene. Simulation...... results show that excitation of surface plasmon resonances in the metallic nanostructures significantly enhances the local electromagnetic field near the graphene layer, therefore leading to a dramatic enhancement of the absorption in the graphene layer itself. Broadband high optical absorption can...

  12. Hybrid luminescent/magnetic nanostructured porous silicon particles for biomedical applications

    Science.gov (United States)

    Muñoz-Noval, Álvaro; Sánchez-Vaquero, Vanessa; Torres-Costa, Vicente; Gallach, Darío; Ferro-Llanos, Vicente; Javier Serrano, José; Manso-Silván, Miguel; García-Ruiz, Josefa Predestinación; Del Pozo, Francisco; Martín-Palma, Raúl J.

    2011-02-01

    This work describes a novel process for the fabrication of hybrid nanostructured particles showing intense tunable photoluminescence and a simultaneous ferromagnetic behavior. The fabrication process involves the synthesis of nanostructured porous silicon (NPSi) by chemical anodization of crystalline silicon and subsequent in pore growth of Co nanoparticles by electrochemically-assisted infiltration. Final particles are obtained by subsequent sonication of the Co-infiltrated NPSi layers and conjugation with poly(ethylene glycol) aiming at enhancing their hydrophilic character. These particles respond to magnetic fields, emit light in the visible when excited in the UV range, and internalize into human mesenchymal stem cells with no apoptosis induction. Furthermore, cytotoxicity in in-vitro systems confirms their biocompatibility and the viability of the cells after incorporation of the particles. The hybrid nanostructured particles might represent powerful research tools as cellular trackers or in cellular therapy since they allow combining two or more properties into a single particle.

  13. Electrical Modulation of Fano Resonance in Plasmonic Nanostructures Using Graphene

    DEFF Research Database (Denmark)

    Emani, Naresh K.; Chung, Ting-Fung; Kildishev, Alexander V.

    2014-01-01

    Pauli blocking of interband transistions gives rise to tunable optical properties in single layer graphene (SLG). This effect is exploited in a graphene-nanoantenna hybrid device where Fano resonant plasmonic nanostructures are fabricated on top of a graphene sheet. The use of Fano resonant eleme......-element simulations. Our approach can be used for development of next generation of tunable plasmonic and hybrid nanophotonic devices.......Pauli blocking of interband transistions gives rise to tunable optical properties in single layer graphene (SLG). This effect is exploited in a graphene-nanoantenna hybrid device where Fano resonant plasmonic nanostructures are fabricated on top of a graphene sheet. The use of Fano resonant...... elements enhances the interaction of incident radiation with the graphene sheet and enables efficient electrical modulation of the plasmonic resonance. We observe electrically controlled damping in the Fano resonances occurring at approximately 2 μm, and the results are verified by full-wave 3D finite...

  14. Shape evolution of nanostructures by thermal and ion beam processing. Modeling and atomistic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Roentzsch, L.

    2007-07-01

    Single-crystalline nanostructures often exhibit gradients of surface (and/or interface) curvature that emerge from fabrication and growth processes or from thermal fluctuations. Thus, the system-inherent capillary force can initiate morphological transformations during further processing steps or during operation at elevated temperature. Therefore and because of the ongoing miniaturization of functional structures which causes a general rise in surface-to-volume ratios, solid-state capillary phenomena will become increasingly important: On the one hand diffusion-mediated capillary processes can be of practical use in view of non-conventional nanostructure fabrication methods based on self-organization mechanisms, on the other hand they can destroy the integrity of nanostructures which can go along with the failure of functionality. Additionally, capillarity-induced shape transformations are effected and can thereby be controlled by applied fields and forces (guided or driven evolution). With these prospects and challenges at hand, formation and shape transformation of single-crystalline nanostructures due to the system-inherent capillary force in combination with external fields or forces are investigated in the frame of this dissertation by means of atomistic computer simulations. For the exploration (search, description, and prediction) of reaction pathways of nanostructure shape transformations, kinetic Monte Carlo (KMC) simulations are the method of choice. Since the employed KMC code is founded on a cellular automaton principle, the spatio-temporal development of lattice-based N-particle systems (N up to several million) can be followed for time spans of several orders of magnitude, while considering local phenomena due to atomic-scale effects like diffusion, nucleation, dissociation, or ballistic displacements. In this work, the main emphasis is put on nanostructures which have a cylindrical geometry, for example, nanowires (NWs), nanorods, nanotubes etc

  15. Shape evolution of nanostructures by thermal and ion beam processing. Modeling and atomistic simulations

    International Nuclear Information System (INIS)

    Roentzsch, L.

    2007-01-01

    Single-crystalline nanostructures often exhibit gradients of surface (and/or interface) curvature that emerge from fabrication and growth processes or from thermal fluctuations. Thus, the system-inherent capillary force can initiate morphological transformations during further processing steps or during operation at elevated temperature. Therefore and because of the ongoing miniaturization of functional structures which causes a general rise in surface-to-volume ratios, solid-state capillary phenomena will become increasingly important: On the one hand diffusion-mediated capillary processes can be of practical use in view of non-conventional nanostructure fabrication methods based on self-organization mechanisms, on the other hand they can destroy the integrity of nanostructures which can go along with the failure of functionality. Additionally, capillarity-induced shape transformations are effected and can thereby be controlled by applied fields and forces (guided or driven evolution). With these prospects and challenges at hand, formation and shape transformation of single-crystalline nanostructures due to the system-inherent capillary force in combination with external fields or forces are investigated in the frame of this dissertation by means of atomistic computer simulations. For the exploration (search, description, and prediction) of reaction pathways of nanostructure shape transformations, kinetic Monte Carlo (KMC) simulations are the method of choice. Since the employed KMC code is founded on a cellular automaton principle, the spatio-temporal development of lattice-based N-particle systems (N up to several million) can be followed for time spans of several orders of magnitude, while considering local phenomena due to atomic-scale effects like diffusion, nucleation, dissociation, or ballistic displacements. In this work, the main emphasis is put on nanostructures which have a cylindrical geometry, for example, nanowires (NWs), nanorods, nanotubes etc

  16. Ternary oxide nanostructures and methods of making same

    Science.gov (United States)

    Wong, Stanislaus S [Stony Brook, NY; Park, Tae-Jin [Port Jefferson, NY

    2009-09-08

    A single crystalline ternary nanostructure having the formula A.sub.xB.sub.yO.sub.z, wherein x ranges from 0.25 to 24, and y ranges from 1.5 to 40, and wherein A and B are independently selected from the group consisting of Ag, Al, As, Au, B, Ba, Br, Ca, Cd, Ce, Cl, Cm, Co, Cr, Cs, Cu, Dy, Er, Eu, F, Fe, Ga, Gd, Ge, Hf, Ho, I, In, Ir, K, La, Li, Lu, Mg, Mn, Mo, Na, Nb, Nd, Ni, Os, P, Pb, Pd, Pr, Pt, Rb, Re, Rh, Ru, S, Sb, Sc, Se, Si, Sm, Sn, Sr, Ta, Tb, Tc, Te, Ti, Tl, Tm, U, V, W, Y, Yb, and Zn, wherein the nanostructure is at least 95% free of defects and/or dislocations.

  17. Size-Induced Switching of Nanowire Growth Direction: a New Approach Toward Kinked Nanostructures

    KAUST Repository

    Shen, Youde

    2016-04-26

    Exploring self-assembled nanostructures with controllable architectures has been a central theme in nanoscience and nanotechnology because of the tantalizing perspective of directly integrating such bottom-up nanostructures into functional devices. Here, the growth of kinked single-crystal In2O3 nanostructures consisting of a nanocone base and a nanowire tip with an epitaxial and defect-free transition is demonstrated for the first time. By tailoring the growth conditions, a reliable switching of the growth direction from [111] to [110] or [112] is observed when the Au catalyst nanoparticles at the apexes of the nanocones shrink below ≈100 nm. The natural formation of kinked nanoarchitectures at constant growth pressures is related to the size-dependent free energy that changes for different orientations of the nanowires. The results suggest that the mechanism of forming such kinked nanocone-nanowire nanostructures in well-controlled growth environment may be universal for a wide range of functional materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Size-Induced Switching of Nanowire Growth Direction: a New Approach Toward Kinked Nanostructures

    KAUST Repository

    Shen, Youde; Lebedev, Oleg I.; Turner, Stuart; Van Tendeloo, Gustaaf; Song, Xiaohui; Yu, Xuechao; Wang, Qijie; Chen, Hongyu; Dayeh, Shadi A.; Wu, Tao

    2016-01-01

    Exploring self-assembled nanostructures with controllable architectures has been a central theme in nanoscience and nanotechnology because of the tantalizing perspective of directly integrating such bottom-up nanostructures into functional devices. Here, the growth of kinked single-crystal In2O3 nanostructures consisting of a nanocone base and a nanowire tip with an epitaxial and defect-free transition is demonstrated for the first time. By tailoring the growth conditions, a reliable switching of the growth direction from [111] to [110] or [112] is observed when the Au catalyst nanoparticles at the apexes of the nanocones shrink below ≈100 nm. The natural formation of kinked nanoarchitectures at constant growth pressures is related to the size-dependent free energy that changes for different orientations of the nanowires. The results suggest that the mechanism of forming such kinked nanocone-nanowire nanostructures in well-controlled growth environment may be universal for a wide range of functional materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Preparation and characterization of CuO nanostructures on copper substrate as selective solar absorbers

    International Nuclear Information System (INIS)

    Karthick Kumar, S.; Murugesan, S.; Suresh, S.

    2014-01-01

    Selective solar absorber coatings of copper oxide (CuO) on copper substrates are prepared by room temperature oxidation of copper at different alkaline conditions. The surface morphology and structural analyses of the CuO coatings are carried out by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS) and Raman spectroscopy techniques. XRD and Raman studies indicated the single phase nature and high crystallinity of the prepared CuO nanostructures. Different CuO nanostructures, viz., nanoneedles, nanofibers and nanoparticles are formed at different alkaline conditions. The influence of reaction time on morphology of the CuO nanostructures is also studied. The thermal emittance values of these nanostructured CuO samples are found to be in the range of 6–7% and their solar absorptances are ranged between 84 and 90%. The observed high solar selectivity values (>12.7) suggest that these coatings can be used as selective absorbers in solar thermal gadgets. - Highlights: • Nanostructured CuO thin films on Cu substrate have been prepared by a facile method. • Morphology of the CuO nanostructures varies with reaction pH. • The thin films show high absorptance in the visible region and low thermal emittance. • Multiple absorption in the porous structure leads to high solar absorptance. • Nanostructures posses solar selectivity values >12

  20. Nanostructured materials for hydrogen storage

    Science.gov (United States)

    Williamson, Andrew J.; Reboredo, Fernando A.

    2007-12-04

    A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

  1. Towards highly sensitive strain sensing based on nanostructured materials

    International Nuclear Information System (INIS)

    Dao, Dzung Viet; Nakamura, Koichi; Sugiyama, Susumu; Bui, Tung Thanh; Dau, Van Thanh; Yamada, Takeo; Hata, Kenji

    2010-01-01

    This paper presents our recent theoretical and experimental study of piezo-effects in nanostructured materials for highly sensitive, high resolution mechanical sensors. The piezo-effects presented here include the piezoresistive effect in a silicon nanowire (SiNW) and single wall carbon nanotube (SWCNT) thin film, as well as the piezo-optic effect in a Si photonic crystal (PhC) nanocavity. Firstly, the electronic energy band structure of the silicon nanostructure is discussed and simulated by using the First-Principles Calculations method. The result showed a remarkably different energy band structure compared with that of bulk silicon. This difference in the electronic state will result in different physical, chemical, and therefore, sensing properties of silicon nanostructures. The piezoresistive effects of SiNW and SWCNT thin film were investigated experimentally. We found that, when the width of ( 110 ) p-type SiNW decreases from 500 to 35 nm, the piezoresistive effect increases by more than 60%. The longitudinal piezoresistive coefficient of SWCNT thin film was measured to be twice that of bulk p-type silicon. Finally, theoretical investigations of the piezo-optic effect in a PhC nanocavity based on Finite Difference Time Domain (FDTD) showed extremely high resolution strain sensing. These nanostructures were fabricated based on top-down nanofabrication technology. The achievements of this work are significant for highly sensitive, high resolution and miniaturized mechanical sensors

  2. Energy scavenging based on a single-crystal PMN-PT nanobelt

    Science.gov (United States)

    Wu, Fan; Cai, Wei; Yeh, Yao-Wen; Xu, Shiyou; Yao, Nan

    2016-03-01

    Self-powered nanodevices scavenging mechanical energy require piezoelectric nanostructures with high piezoelectric coefficients. Here we report the fabrication of a single-crystal (1 - x)Pb(Mg1/3Nb2/3)O3 - xPbTiO3 (PMN-PT) nanobelt with a superior piezoelectric constant (d33 = ~550 pm/V), which is approximately ~150%, 430%, and 2100% of the largest reported values for previous PMN-PT, PZT and ZnO nanostructures, respectively. The high d33 of the single-crystalline PMN-PT nanobelt results from the precise orientation control during its fabrication. As a demonstration of its application in energy scavenging, a piezoelectric nanogenerator (PNG) is built on the single PMN-PT nanobelt, generating a maximum output voltage of ~1.2 V. This value is ~4 times higher than that of a single-CdTe PNG, ~13 times higher than that of a single-ZnSnO3 PNG, and ~26 times higher than that of a single-ZnO PNG. The profoundly increased output voltage of a lateral PNG built on a single PMN-PT nanobelt demonstrates the potential application of PMN-PT nanostructures in energy harvesting, thus enriching the material choices for PNGs.

  3. Multi-particle assembled porous nanostructured MgO: its application in fluoride removal

    International Nuclear Information System (INIS)

    Gangaiah, Vijayakumar; Chandrappa, Gujjarahalli Thimanna; Siddaramanna, Ashoka

    2014-01-01

    In this article, a simple and economical route based on ethylene glycol mediated process was developed to synthesize one-dimensional (1D) multiparticle assembled nanostructured MgO using magnesium acetate and urea as reactants. Porous multiparticle chain-like MgO has been synthesized by the calcination of a solvothermally derived single nanostructured precursor. The prepared products were characterized by an x-ray diffraction (XRD) pattern, thermogravimetry, scanning/transmission electron microscopy (SEM/TEM) and N 2 adsorption (BET). As a proof of concept, the porous multiparticle chain-like MgO has been applied in a water treatment for isolated and rural communities, and it has exhibited an excellent adsorption capability to remove fluoride in waste water. In addition, this method could be generalized to prepare other 1D nanostructures with great potential for various attractive applications. (paper)

  4. Synthesis of carbon nanostructures from high density polyethylene (HDPE) and polyethylene terephthalate (PET) waste by chemical vapour deposition

    Science.gov (United States)

    Hatta, M. N. M.; Hashim, M. S.; Hussin, R.; Aida, S.; Kamdi, Z.; Ainuddin, AR; Yunos, MZ

    2017-10-01

    In this study, carbon nanostructures were synthesized from High Density Polyethylene (HDPE) and Polyethylene terephthalate (PET) waste by single-stage chemical vapour deposition (CVD) method. In CVD, iron was used as catalyst and pyrolitic of carbon source was conducted at temperature 700, 800 and 900°C for 30 minutes. Argon gas was used as carrier gas with flow at 90 sccm. The synthesized carbon nanostructures were characterized by FESEM, EDS and calculation of carbon yield (%). FESEM micrograph shows that the carbon nanostructures were only grown as nanofilament when synthesized from PET waste. The synthesization of carbon nanostructure at 700°C was produced smooth and the smallest diameter nanofilament compared to others. The carbon yield of synthesized carbon nanostructures from PET was lower from HDPE. Furthermore, the carbon yield is recorded to increase with increasing of reaction temperature for all samples. Elemental study by EDS analysis were carried out and the formation of carbon nanostructures was confirmed after CVD process. Utilization of polymer waste to produce carbon nanostructures is beneficial to ensure that the carbon nanotechnology will be sustained in future.

  5. Synthesis, morphology, optical and photocatalytic performance of nanostructured β-Ga2O3

    International Nuclear Information System (INIS)

    Girija, K.; Thirumalairajan, S.; Avadhani, G.S.; Mangalaraj, D.; Ponpandian, N.; Viswanathan, C.

    2013-01-01

    Highlights: ► Nanostructures of β-Ga 2 O 3 were prepared using facile reflux condensation process. ► The pH of the reaction mixture shows evident influence on the size and shape of the nanostructures formed. ► The nanostructures exhibited good photocatalytic activity toward Rhodamine B and was found to be superior for higher pH value. - Abstract: Fine powders of β-Ga 2 O 3 nanostructures were prepared via low temperature reflux condensation method by varying the pH value without using any surfactant. The pH value of reaction mixture had great influence on the morphology of final products. High crystalline single phase β-Ga 2 O 3 nanostructures were obtained by thermal treatment at 900 °C which was confirmed by X-ray diffraction and Raman spectroscopy. The morphological analysis revealed rod like nanostructures at lower and higher pH values of 6 and 10, while spindle like structures were obtained at pH = 8. The phase purity and presence of vibrational bands were identified using Fourier transform infrared spectroscopy. The optical absorbance spectrum showed intense absorption features in the UV spectral region. A broad blue emission peak centered at 441 nm due to donor–acceptor gallium–oxygen vacancy pair recombination appeared. The photocatalytic activity toward Rhodamine B under visible light irradiation was higher for nanorods at pH 10

  6. Nanostructured Materials for Magnetoelectronics

    CERN Document Server

    Mikailzade, Faik

    2013-01-01

    This book provides an up-to-date review of nanometer-scale magnetism and focuses on the investigation of the basic properties of magnetic nanostructures. It describes a wide range of physical aspects together with theoretical and experimental methods. A broad overview of the latest developments in this emerging and fascinating field of nanostructured materials is given with emphasis on the practical understanding and operation of submicron devices based on nanostructured magnetic materials.

  7. Effects of Irregular Bimetallic Nanostructures on the Optical Properties of Photosystem I from Thermosynechococcus elongatus

    Directory of Open Access Journals (Sweden)

    Imran Ashraf

    2015-07-01

    Full Text Available The fluorescence of photosystem I (PSI trimers in proximity to bimetallic plasmonic nanostructures have been explored by single-molecule spectroscopy (SMS at cryogenic temperature (1.6 K. PSI serves as a model for biological multichromophore-coupled systems with high potential for biotechnological applications. Plasmonic nanostructures are fabricated by thermal annealing of thin metallic films. The fluorescence of PSI has been intensified due to the coupling with plasmonic nanostructures. Enhancement factors up to 22.9 and 5.1 are observed for individual PSI complexes coupled to Au/Au and Ag/Au samples, respectively. Additionally, a wavelength dependence of fluorescence enhancement is observed, which can be explained by the multichromophoric composition of PSI.

  8. Synthesis of vertically aligned metal oxide nanostructures

    KAUST Repository

    Roqan, Iman S.

    2016-03-03

    Metal oxide nanostructure and methods of making metal oxide nanostructures are provided. The metal oxide nanostructures can be 1 -dimensional nanostructures such as nanowires, nanofibers, or nanotubes. The metal oxide nanostructures can be doped or undoped metal oxides. The metal oxide nanostructures can be deposited onto a variety of substrates. The deposition can be performed without high pressures and without the need for seed catalysts on the substrate. The deposition can be performed by laser ablation of a target including a metal oxide and, optionally, a dopant. In some embodiments zinc oxide nanostructures are deposited onto a substrate by pulsed laser deposition of a zinc oxide target using an excimer laser emitting UV radiation. The zinc oxide nanostructure can be doped with a rare earth metal such as gadolinium. The metal oxide nanostructures can be used in many devices including light-emitting diodes and solar cells.

  9. Two-color beam improvement of the colloidal particle lens array assisted surface nanostructuring

    Energy Technology Data Exchange (ETDEWEB)

    Afanasiev, Andrei; Bredikhin, Vladimir; Pikulin, Alexander; Ilyakov, Igor; Shishkin, Boris; Akhmedzhanov, Rinat; Bityurin, Nikita, E-mail: bit@ufp.appl.sci-nnov.ru [Institute of Applied Physics of Russian Academy of Scienses, 46, Ul' yanov St., Nizhniy Novgorod 603950 (Russian Federation)

    2015-05-04

    We consider laser nanostructuring of the material surface by means of a colloidal particle lens array. Here, the monolayer of dielectric micro- or nanospheres placed on the surface acts as an array of near-field lenses that focus the laser radiation into the multitude of distinct spots, allowing the formation of many structures in a single stage. We show that conversion of a small part of the energy of the femtosecond beam into the second harmonic (SH) is an efficient way to increase the surface density of obtained nanostructures. By combining the fundamental frequency and the SH, one benefits both from the power of the former and from the focusing ability of the latter. This combination provides an efficient nanostructuring with sphere diameter close to the wavelength of the second harmonic. The possibility to create arrays of nanostructures with surface density above 5×10{sup 8} cm{sup −2} with femtosecond Ti:sapphire laser operating at 800 nm was demonstrated by employing 0.45 μm spheres.

  10. RHEED transmission mode and pole figures thin film and nanostructure texture analysis

    CERN Document Server

    Wang, Gwo-Ching

    2014-01-01

    This unique book covers the fundamental principle of electron diffraction, basic instrumentation of RHEED, definitions of textures in thin films and nanostructures, mechanisms and control of texture formation, and examples of RHEED transmission mode measurements of texture and texture evolution of thin films and nanostructures. Also presented is a new application of RHEED in the transmission mode called RHEED pole figure technique that can be used to monitor the texture evolution in thin film growth and nanostructures and is not limited to single crystal epitaxial film growth. Details of the construction of RHEED pole figures and the interpretation of observed pole figures are presented.  Materials covered include metals, semiconductors, and thin insulators. This book also: Presents a new application of RHEED in the transmission mode Introduces a variety of textures from metals, semiconductors, compound semiconductors, and their characteristics in RHEED pole figures Provides examples of RHEED measurements o...

  11. Synthesis of In2O3 nanostructures with different morphologies as potential supercapacitor electrode materials

    Science.gov (United States)

    Tuzluca, Fatma Nur; Yesilbag, Yasar Ozkan; Ertugrul, Mehmet

    2018-01-01

    In this study performed using a chemical vapor deposition (CVD) system, one-dimensional (1-D) single crystal indium oxide (In2O3) nanotowers, nanobouqets, nanocones, and nanowires were investigated as a candidate for a supercapacitor electrode material. These nanostructures were grown via Vapor-Liquid-Solid (VLS) and Vapor-Solid (VS) mechanisms according to temperature differences (1000-600 °C). The morphologies, growth mechanisms and crystal structures of these 1-D single crystal In2O3 nanostructures were defined by Field Emission Scanning Electron Microscopy (FESEM), High Resolution Transmission Electron Microscopy (HR-TEM), X-Ray Diffraction (XRD) and Raman Spectroscopy analyses. The elemental analyses of the nanostructures were carried out by energy dispersive X-Ray Spectroscopy (EDS); they gave photoluminescence (PL) spectra with 3.39, 2.65, and 1.95 eV band gap values, corresponding to 365 nm, 467 nm, and 633 wavelengths, respectively. The electrochemical performances of these 1-D single crystal In2O3 nanostructures in an aqueous electrolyte solution (1 M Na2SO4) were determined by Cyclic Voltammetry (CV), Galvanostatic Charge Discharge (GCD) and Electrochemical Impedance Spectroscopy (EIS) analyses. According to GCD measurements at 0.04 mA cm-2 current density, areal capacitance values were 10.1 mF cm-2 and 6.7 mF cm-2 for nanotowers, 12.5 mF cm-2 for nanobouquets, 4.9 mF cm-2 for nanocones, and 16.6 mF cm-2 for nanowires. The highest areal capacitance value was observed in In2O3 nanowires, which retained 66.8% of their initial areal capacitance after a 10000 charge-discharge cycle, indicating excellent cycle stability.

  12. Semi-automated quantification of living cells with internalized nanostructures

    KAUST Repository

    Margineanu, Michael B.

    2016-01-15

    Background Nanostructures fabricated by different methods have become increasingly important for various applications in biology and medicine, such as agents for medical imaging or cancer therapy. In order to understand their interaction with living cells and their internalization kinetics, several attempts have been made in tagging them. Although methods have been developed to measure the number of nanostructures internalized by the cells, there are only few approaches aimed to measure the number of cells that internalize the nanostructures, and they are usually limited to fixed-cell studies. Flow cytometry can be used for live-cell assays on large populations of cells, however it is a single time point measurement, and does not include any information about cell morphology. To date many of the observations made on internalization events are limited to few time points and cells. Results In this study, we present a method for quantifying cells with internalized magnetic nanowires (NWs). A machine learning-based computational framework, CellCognition, is adapted and used to classify cells with internalized and no internalized NWs, labeled with the fluorogenic pH-dependent dye pHrodo™ Red, and subsequently to determine the percentage of cells with internalized NWs at different time points. In a “proof-of-concept”, we performed a study on human colon carcinoma HCT 116 cells and human epithelial cervical cancer HeLa cells interacting with iron (Fe) and nickel (Ni) NWs. Conclusions This study reports a novel method for the quantification of cells that internalize a specific type of nanostructures. This approach is suitable for high-throughput and real-time data analysis and has the potential to be used to study the interaction of different types of nanostructures in live-cell assays.

  13. Synthesis and magnetic properties of superparamagnetic CoAs nanostructures

    Science.gov (United States)

    Desai, P.; Ashokaan, N.; Masud, J.; Pariti, A.; Nath, M.

    2015-03-01

    This article provides a comprehensive guide on the synthesis and characterization of superparamagnetic CoAs nanoparticles and elongated nanostructures with high blocking temperature, (TB), via hot-injection precipitation and solvothermal methods. Cobalt arsenides constitute an important family of magnetically active solids that find a variety of applications ranging from magnetic semiconductors to biomedical imaging. While the higher temperature hot-injection precipitation technique (300 °C) yields pure CoAs nanostructures, the lower temperature solvothermal method (200 °C) yields a mixture of CoAs nanoparticles along with other Co-based impurity phases. The synthesis in all these cases involved usage of triphenylarsine ((C6H5)3As) as the As precursor which reacts with solid Co2(CO)8 by ligand displacement to yield a single source precursor. The surfactant, hexadecylamine (HDA) further assists in controlling the morphology of the nanostructures. HDA also provides a basic medium and molten flux-like conditions for the redox chemistry to occur between Co and As at elevated temperatures. The influence of the length of reaction time was investigated by studying the evolution of product morphology over time. It was observed that while spontaneous nucleation at higher temperature followed by controlled growth led to the predominant formation of short nanorods, with longer reaction time, the nanorods were further converted to nanoparticles. The size of the nanoparticles obtained, was mostly in the range of 10-15 nm. The key finding of this work is exceptionally high coercivity in CoAs nanostructures for the first time. Coercivity observed was as high as 0.1 T (1000 Oe) at 2 K. These kinds of magnetic nanostructures find multiple applications in spintronics, whereas the superparamagnetic nanoparticles are viable for use in magnetic storage, ferrofluids and as contrast enhancing agents in MRI.

  14. Composite materials formed with anchored nanostructures

    Science.gov (United States)

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2015-03-10

    A method of forming nano-structure composite materials that have a binder material and a nanostructure fiber material is described. A precursor material may be formed using a mixture of at least one metal powder and anchored nanostructure materials. The metal powder mixture may be (a) Ni powder and (b) NiAl powder. The anchored nanostructure materials may comprise (i) NiAl powder as a support material and (ii) carbon nanotubes attached to nanoparticles adjacent to a surface of the support material. The process of forming nano-structure composite materials typically involves sintering the mixture under vacuum in a die. When Ni and NiAl are used in the metal powder mixture Ni.sub.3Al may form as the binder material after sintering. The mixture is sintered until it consolidates to form the nano-structure composite material.

  15. Superhydrophobic multi-scale ZnO nanostructures fabricated by chemical vapor deposition method.

    Science.gov (United States)

    Zhou, Ming; Feng, Chengheng; Wu, Chunxia; Ma, Weiwei; Cai, Lan

    2009-07-01

    The ZnO nanostructures were synthesized on Si(100) substrates by chemical vapor deposition (CVD) method. Different Morphologies of ZnO nanostructures, such as nanoparticle film, micro-pillar and micro-nano multi-structure, were obtained with different conditions. The results of XRD and TEM showed the good quality of ZnO crystal growth. Selected area electron diffraction analysis indicates the individual nano-wire is single crystal. The wettability of ZnO was studied by contact angle admeasuring apparatus. We found that the wettability can be changed from hydrophobic to super-hydrophobic when the structure changed from smooth particle film to single micro-pillar, nano-wire and micro-nano multi-scale structure. Compared with the particle film with contact angle (CA) of 90.7 degrees, the CA of single scale microstructure and sparse micro-nano multi-scale structure is 130-140 degrees, 140-150 degrees respectively. But when the surface is dense micro-nano multi-scale structure such as nano-lawn, the CA can reach to 168.2 degrees . The results indicate that microstructure of surface is very important to the surface wettability. The wettability on the micro-nano multi-structure is better than single-scale structure, and that of dense micro-nano multi-structure is better than sparse multi-structure.

  16. Semiconductors and semimetals nanostructured systems

    CERN Document Server

    Willardson, Robert K; Beer, Albert C; Reed, Mark A

    1992-01-01

    This is the first available volume to consolidate prominent topics in the emerging field of nanostructured systems. Recent technological advancements have led to a new era of nanostructure physics, allowing for the fabrication of nanostructures whose behavior is dominated by quantum interference effects. This new capability has enthused the experimentalist and theorist alike. Innumerable possibilities have now opened up for physical exploration and device technology on the nanoscale. This book, with contributions from five pioneering researchers, will allow the expert and novice alike to explore a fascinating new field.Provides a state-of-the-art review of quantum-scale artificially nanostructured electronic systemsIncludes contributions by world-known experts in the fieldOpens the field to the non-expert with a concise introductionFeatures discussions of:Low-dimensional condensed matter physicsProperties of nanostructured, ultrasmall electronic systemsMesoscopic physics and quantum transportPhysics of 2D ele...

  17. Nanostructures from nanoparticles

    International Nuclear Information System (INIS)

    Mendes, Paula M; Chen Yu; Palmer, Richard E; Nikitin, Kirill; Fitzmaurice, Donald; Preece, Jon A

    2003-01-01

    This paper reviews recent experimental approaches to the development of surface nanostructures from nanoparticles. The formation of nanowires by electron beam writing in films of gold nanoparticles passivated with a specially designed class of ligand molecules (dialkyl sulfides) is presented, together with illustrations of practical nanostructures. Potential applications of this methodology are discussed. Another alternative to the controlled fabrication of arrays of nanoparticles, based on nanocrystals which contain molecular recognition elements in the ligand shell, is also surveyed. These particles aggregate in the presence of specifically designed molecular dications which act as a molecular binder. Finally, recent work on the formation of nanoscale surface architectures using x-ray patterning of self-assembled monolayers is introduced. Current and potential future applications of these surface nanostructures are discussed

  18. Nanostructuring on zinc phthalocyanine thin films for single-junction organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhary, Dhirendra K.; Kumar, Lokendra, E-mail: lokendrakr@allduniv.ac.in [Department of Physics, University of Allahabad, Allahabad-211 002 (India)

    2016-05-23

    Vertically aligned and random oriented crystalline molecular nanorods of organic semiconducting Zinc Phthalocyanine (ZnPc) have been grown on ITO coated glass substrate using solvent volatilization method. Interesting changes in surface morphology were observed under different solvent treatment. Vertically aligned nanorods of ZnPc thin film were observed in the films treated with acetone, where as the random oriented nanorods were observed in the films treated with chloroform. The X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) have been used for characterization of nanostructures. The optical properties of the nanorods have been investigated by UV-Vis. absorption spectroscopy.

  19. Modelling nanostructures with vicinal surfaces

    International Nuclear Information System (INIS)

    Mugarza, A; Schiller, F; Kuntze, J; Cordon, J; Ruiz-Oses, M; Ortega, J E

    2006-01-01

    Vicinal surfaces of the (111) plane of noble metals are characterized by free-electron-like surface states that scatter at one-dimensional step edges, making them ideal model systems to test the electronic properties of periodic lateral nanostructures. Here we use high-resolution, angle-resolved photoemission to analyse the evolution of the surface state on a variety of vicinal surface structures where both the step potential barrier and the superlattice periodicity can vary. A transition in the electron dimensionality is found as we vary the terrace size in single-phase step arrays. In double-phase, periodic faceted surfaces, we observe surface states that characterize each of the phases

  20. Magnetization jumps in nanostructured Nd–Fe–B alloy at low temperatures

    International Nuclear Information System (INIS)

    Neznakhin, D.S.; Bolyachkin, A.S.; Volegov, A.S.; Markin, P.E.; Andreev, S.V.; Kudrevatykh, N.V.

    2015-01-01

    Magnetic properties of the nanostructured isotropic alloy on the base of Nd 2 Fe 14 B type phase were investigated at low temperatures. The evaluated average grain size of this phase was much smaller than its critical single domain diameter. Hence the magnetization and demagnetization processes were expected to be performed by coherent magnetization rotation. For such coercivity type system magnetization jumps were revealed on the demagnetization hysteresis loop branch in the vicinity of the coercive force at temperatures below 4 K. It was shown that magnetization jumps have a stochastic behavior and their number strongly depends on the temperature and the mass of measured samples. High temperature spikes corresponding to magnetization discontinuities were observed. All these results allowed to propose that magnetization jumps in nanostructured magnetics with magnetization rotation reversal processes comply with the local heating model. - Highlights: • Magnetization reversals of the nanostructured Nd–Fe–B-type alloy were obtained below 4 K. • Magnetization jumps were first observed for magnetization rotation coercivity type magnets. • Staircase magnetization reversal was explained within the framework of the local heating model

  1. Anion Exchange in II-VI Semiconducting Nanostructures via Atomic Templating.

    Science.gov (United States)

    Agarwal, Rahul; Krook, Nadia M; Ren, Ming-Liang; Tan, Liang Z; Liu, Wenjing; Rappe, Andrew M; Agarwal, Ritesh

    2018-03-14

    Controlled chemical transformation of nanostructures is a promising technique to obtain precisely designed novel materials, which are difficult to synthesize otherwise. We report high-temperature vapor-phase anion-exchange reactions to chemically transform II-VI semiconductor nanostructures (100-300 nm length scale) while retaining the single crystallinity, crystal structure, morphology, and even defect distribution of the parent material via atomic templating. The concept of atomic templating is employed to obtain kinetically controlled, thermodynamically metastable structural phases such as zincblende CdSe and CdS from zincblende CdTe upon complete chemical replacement of Te with Se or S. The underlying transformation mechanisms are explained through first-principles density functional theory calculations. Atomic templating is a unique path to independently tune materials' phase and composition at the nanoscale, allowing the synthesis of novel materials.

  2. Direct writing of metal nanostructures: lithographic tools for nanoplasmonics research.

    Science.gov (United States)

    Leggett, Graham J

    2011-03-22

    Continued progress in the fast-growing field of nanoplasmonics will require the development of new methods for the fabrication of metal nanostructures. Optical lithography provides a continually expanding tool box. Two-photon processes, as demonstrated by Shukla et al. (doi: 10.1021/nn103015g), enable the fabrication of gold nanostructures encapsulated in dielectric material in a simple, direct process and offer the prospect of three-dimensional fabrication. At higher resolution, scanning probe techniques enable nanoparticle particle placement by localized oxidation, and near-field sintering of nanoparticulate films enables direct writing of nanowires. Direct laser "printing" of single gold nanoparticles offers a remarkable capability for the controlled fabrication of model structures for fundamental studies, particle-by-particle. Optical methods continue to provide a powerful support for research into metamaterials.

  3. Development of a spectroscopic Mueller matrix imaging ellipsometer for nanostructure metrology

    International Nuclear Information System (INIS)

    Chen, Xiuguo; Du, Weichao; Yuan, Kui; Chen, Jun; Jiang, Hao; Zhang, Chuanwei; Liu, Shiyuan

    2016-01-01

    In this paper, we describe the development of a spectroscopic Mueller matrix imaging ellipsometer (MMIE), which combines the great power of Mueller matrix ellipsometry with the high spatial resolution of optical microscopy. A dual rotating-compensator configuration is adopted to collect the full 4 × 4 imaging Mueller matrix in a single measurement. The light wavelengths are scanned in the range of 400–700 nm by a monochromator. The instrument has measurement accuracy and precision better than 0.01 for all the Mueller matrix elements in both the whole image and the whole spectral range. The instrument was then applied for the measurement of nanostructures combined with an inverse diffraction problem solving technique. The experiment performed on a photoresist grating sample has demonstrated the great potential of MMIE for accurate grating reconstruction from spectral data collected by a single pixel of the camera and for efficient quantification of geometrical profile of the grating structure over a large area with pixel resolution. It is expected that MMIE will be a powerful tool for nanostructure metrology in future high-volume nanomanufacturing.

  4. Development of a spectroscopic Mueller matrix imaging ellipsometer for nanostructure metrology

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiuguo; Du, Weichao; Yuan, Kui; Chen, Jun; Jiang, Hao, E-mail: hjiang@hust.edu.cn [State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhang, Chuanwei; Liu, Shiyuan, E-mail: hjiang@hust.edu.cn [State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Wuhan Eoptics Technology Co. Ltd., Wuhan 430075 (China)

    2016-05-15

    In this paper, we describe the development of a spectroscopic Mueller matrix imaging ellipsometer (MMIE), which combines the great power of Mueller matrix ellipsometry with the high spatial resolution of optical microscopy. A dual rotating-compensator configuration is adopted to collect the full 4 × 4 imaging Mueller matrix in a single measurement. The light wavelengths are scanned in the range of 400–700 nm by a monochromator. The instrument has measurement accuracy and precision better than 0.01 for all the Mueller matrix elements in both the whole image and the whole spectral range. The instrument was then applied for the measurement of nanostructures combined with an inverse diffraction problem solving technique. The experiment performed on a photoresist grating sample has demonstrated the great potential of MMIE for accurate grating reconstruction from spectral data collected by a single pixel of the camera and for efficient quantification of geometrical profile of the grating structure over a large area with pixel resolution. It is expected that MMIE will be a powerful tool for nanostructure metrology in future high-volume nanomanufacturing.

  5. Engineering Nano-Structured Multiferroic Thin Films

    Science.gov (United States)

    Cheung, Pui Lam

    Multiferroics exhibit remarkable tunabilities in their ferromagnetic, ferroelectric and magnetoelectric properties that provide the potential in enabling the control of magnetizations by electric field for the next generation non-volatile memories, antennas and motors. In recent research and developments in integrating single-phase ferroelectric and ferromagnetic materials, multiferroic composite demonstrated a promising magnetoelectric (ME) coupling for future applications. Atomic layer deposition (ALD) technique, on the other hand, allows fabrications of complex multiferroic nanostructures to investigate interfacial coupling between the two materials. In this work, radical-enhanced ALD of cobalt ferrite (CFO) and thermal ALD of lead zirconate titanate (PZT) were combined in fabricating complex multiferroic architectures in investigating the effect of nanostructuring and magnetic shape anisotropy on improving ME coupling. In particular, 1D CFO nanotubes and nanowires; 0D-3D CFO/PZT mesoporous composite; and 1D-1D CFO/PZT core-shell nanowire composite were studied. The potential implementation of nanostructured multiferroic composites into functioning devices was assessed by quantifying the converse ME coupling coefficient. The synthesis of 1D CFO nanostructures was realized by ALD of CFO in anodic aluminum oxide (AAO) membranes. This work provided a simple and inexpensive route to create parallel and high aspect ratio ( 55) magnetic nanostructures. The change in magnetic easy axis of (partially filled) CFO nanotubes from perpendicular to parallel in (fully-filled) nanowires indicated the significance of the geometric factor in controlling magnetizations and ME coupling. The 0D-3D CFO/PZT mesoporous composite demonstrated the optimizations of the strain transfer could be achieved by precise thickness control. 100 nm of mesoporous PZT was synthesized on Pt/TiOx/SiO2/Si using amphiphilic diblock copolymers as a porous ferroelectric template (10 nm pore diameter) for

  6. Antibacterial efficacy of core-shell nanostructures encapsulating gentamicin against an in vivo intracellular  Salmonella model

    Directory of Open Access Journals (Sweden)

    Ashish Ranjan

    2009-12-01

    Full Text Available Ashish Ranjan1, Nikorn Pothayee2,3, Mohammed N Seleem2, Ronald D Tyler Jr4, Bonnie Brenseke4, Nammalwar Sriranganathan2,4, Judy S Riffle2,3, Ramanathan Kasimanickam11Department of Large Animal Clinical Sciences, 2Institute for Critical Technology and Applied Science, 3Macromolecules and Interfaces Institute, 4Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VAAbstract: Pluronic based core-shell nanostructures encapsulating gentamicin were designed in this study. Block copolymers of (PAA–+Na-b-(PEO-b-PPO-b-PEO-b-PAA– +Na were blended with PAA– Na+ and complexed with the polycationic antibiotic gentamicin to form nanostructures. Synthesized nanostructures had a hydrodynamic diameter of 210 nm, zeta potentials of –0.7 (±0.2, and incorporated ~20% by weight of gentamicin. Nanostructures upon co-incubation with J774A.1 macrophage cells showed no adverse toxicity in vitro. Nanostructures administered in vivo either at multiple dosage of 5 µg g–1 or single dosage of 15 µg g–1 in AJ-646 mice infected with Salmonella resulted in significant reduction of viable bacteria in the liver and spleen. Histopathological evaluation for concentration-dependent toxicity at a dosage of 15 µg g–1 revealed mineralized deposits in 50% kidney tissues of free gentamicin-treated mice which in contrast was absent in nanostructure-treated mice. Thus, encapsulation of gentamicin in nanostructures may reduce toxicity and improve in vivo bacterial clearance.Keywords: gentamicin, core-shell nanostructures, Salmonella

  7. ROS mediated malignancy cure performance of morphological, optical, and electrically tuned Sn doped CeO2 nanostructures

    Science.gov (United States)

    Abbas, Fazal; Iqbal, Javed; Maqbool, Qaisar; Jan, Tariq; Ullah, Muhammad Obaid; Nawaz, Bushra; Nazar, Mudassar; Naqvi, M. S. Hussain; Ahmad, Ishaq

    2017-09-01

    To grapple with cancer, implementation of differentially cytotoxic nanomedicines have gained prime attention of the researchers across the globe. Now, ceria (CeO2) at nanoscale has emerged as a cut out therapeutic agent for malignancy treatment. Keeping this in view, we have fabricated SnxCe1-xO2 nanostructures by facile, eco-friendly, and biocompatible hydrothermal method. Structural examinations via XRD and FT-IR spectroscopy have revealed single phase cubic-fluorite morphology while SEM analysis has depicted particle size ranging 30-50nm for pristine and doped nanostructures. UV-Vis spectroscopy investigation explored that Sn doping significantly tuned the band gap (eV) energies of SnxCe1-xO2 nanostructures which set up the base for tremendous cellular reactive oxygen species (ROS) generations involved in cancer cells' death. To observe cytotoxicity, synthesized nanostructures were found selectively more toxic to neuroblastoma cell lines as compared to HEK-293 healthy cells. This study anticipates that SnxCe1-xO2 nanostructures, in future, might be used as nanomedicine for safer cancer therapy.

  8. ROS mediated malignancy cure performance of morphological, optical, and electrically tuned Sn doped CeO2 nanostructures

    Directory of Open Access Journals (Sweden)

    Fazal Abbas

    2017-09-01

    Full Text Available To grapple with cancer, implementation of differentially cytotoxic nanomedicines have gained prime attention of the researchers across the globe. Now, ceria (CeO2 at nanoscale has emerged as a cut out therapeutic agent for malignancy treatment. Keeping this in view, we have fabricated SnxCe1-xO2 nanostructures by facile, eco-friendly, and biocompatible hydrothermal method. Structural examinations via XRD and FT-IR spectroscopy have revealed single phase cubic-fluorite morphology while SEM analysis has depicted particle size ranging 30-50nm for pristine and doped nanostructures. UV-Vis spectroscopy investigation explored that Sn doping significantly tuned the band gap (eV energies of SnxCe1-xO2 nanostructures which set up the base for tremendous cellular reactive oxygen species (ROS generations involved in cancer cells’ death. To observe cytotoxicity, synthesized nanostructures were found selectively more toxic to neuroblastoma cell lines as compared to HEK-293 healthy cells. This study anticipates that SnxCe1-xO2 nanostructures, in future, might be used as nanomedicine for safer cancer therapy.

  9. Characterization of ion beam induced nanostructures

    International Nuclear Information System (INIS)

    Ghatak, J.; Satpati, B.; Umananda, M.; Kabiraj, D.; Som, T.; Dev, B.N.; Akimoto, K.; Ito, K.; Emoto, T.; Satyam, P.V.

    2006-01-01

    Tailoring of nanostructures with energetic ion beams has become an active area of research leading to the fundamental understanding of ion-solid interactions at nanoscale regime and with possible applications in the near future. Rutherford backscattering spectrometry (RBS), high resolution transmission electron microscopy (HRTEM) and asymmetric X-ray Bragg-rocking curve experimental methods have been used to characterize ion-induced effects in nanostructures. The possibility of surface and sub-surface/interface alloying at nano-scale regime, ion-beam induced embedding, crater formation, sputtering yield variations for systems with isolated nanoislands, semi-continuous and continuous films of noble metals (Au, Ag) deposited on single crystalline silicon will be reviewed. MeV-ion induced changes in specified Au-nanoislands on silicon substrate are tracked as a function of ion fluence using ex situ TEM. Strain induced in the bulk silicon substrate surface due to 1.5 MeV Au 2+ and C 2+ ion beam irradiation is determined by using HRTEM and asymmetric Bragg X-ray rocking curve methods. Preliminary results on 1.5 MeV Au 2+ ion-induced effects in nanoislands of Co deposited on silicon substrate will be discussed

  10. In Vivo Deep Tissue Fluorescence and Magnetic Imaging Employing Hybrid Nanostructures.

    Science.gov (United States)

    Ortgies, Dirk H; de la Cueva, Leonor; Del Rosal, Blanca; Sanz-Rodríguez, Francisco; Fernández, Nuria; Iglesias-de la Cruz, M Carmen; Salas, Gorka; Cabrera, David; Teran, Francisco J; Jaque, Daniel; Martín Rodríguez, Emma

    2016-01-20

    Breakthroughs in nanotechnology have made it possible to integrate different nanoparticles in one single hybrid nanostructure (HNS), constituting multifunctional nanosized sensors, carriers, and probes with great potential in the life sciences. In addition, such nanostructures could also offer therapeutic capabilities to achieve a wider variety of multifunctionalities. In this work, the encapsulation of both magnetic and infrared emitting nanoparticles into a polymeric matrix leads to a magnetic-fluorescent HNS with multimodal magnetic-fluorescent imaging abilities. The magnetic-fluorescent HNS are capable of simultaneous magnetic resonance imaging and deep tissue infrared fluorescence imaging, overcoming the tissue penetration limits of classical visible-light based optical imaging as reported here in living mice. Additionally, their applicability for magnetic heating in potential hyperthermia treatments is assessed.

  11. Metal oxide core shell nanostructures as building blocks for efficient light emission (SISGR)

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jane P [Univ. of California, Los Angeles, CA (United States); Dorman, James [Univ. of California, Los Angeles, CA (United States); Cheung, Cyrus [Univ. of California, Los Angeles, CA (United States)

    2016-01-12

    The objective of this research is to synthesize core-shell nano-structured metal oxide materials and investigate their structural, electronic and optical properties to understand the microscopic pathways governing the energy conversion process, thereby controlling and improving their efficiency. Specifically, the goal is to use a single metal oxide core-shell nanostructure and a single excitation source to generate photons with long emission lifetime over the entire visible spectrum and when controlled at the right ratio, generating white light. In order to achieve this goal, we need to control the energy transfer between light emitting elements, which dictates the control of their interatomic spacing and spatial distribution. We developed an economical wet chemical process to form the nanostructured core and to control the thickness and composition of the shell layers. With the help from using DOE funded synchrotron radiation facility, we delineated the growth mechanism of the nano-structured core and the shell layers, thereby enhancing our understanding of structure-property relation in these materials. Using the upconversion luminescence and the lifetime measurements as effective feedback to materials sysnthes is and integration, we demonstrated improved luminescence lifetimes of the core-shell nano-structures and quantified the optimal core-multi-shell structure with optimum shell thickness and composition. We developed a rare-earths co-doped LaPO4 core-multishell structure in order to produce a single white light source. It was decided that the mutli-shell method would produce the largest increase in luminescence efficiency while limiting any energy transfer that may occur between the dopant ions. All samples resulted in emission spectra within the accepted range of white light generation based on the converted CIE color coordinates. The white light obtained varied between warm and cool white depending on the layering architecture, allowing for the

  12. InTaO4-based nanostructures synthesized by reactive pulsed laser ablation

    International Nuclear Information System (INIS)

    Yoshida, Takehito; Toyoyama, Hirokazu; Umezu, Ikurou; Sugimura, Akira

    2008-01-01

    Nanostructured Ni-doped indium-tantalum-oxides (InTaO 4 ) were synthesized by a reactive pulsed laser ablation process, aiming at the final goal of direct splitting of water under visible sunbeam irradiation. The third harmonics beam of a Nd:YAG laser was focused onto a sintered In 0.9 Ni 0.1 TaO 4-δ target in pure oxygen background gases (0.05-1.00 Torr). Increasing the oxygen gas pressure, via thin films having nanometer-sized strong morphologies, single-crystalline nanoparticles were synthesized in the reactive vapor phases. The nanostructured deposited materials have the monoclinic layered wolframite-type structure of bulk InTaO 4 , without oxygen deficiency. (orig.)

  13. Is there a shift to 'active nanostructures'?

    International Nuclear Information System (INIS)

    Subramanian, Vrishali; Youtie, Jan; Porter, Alan L.; Shapira, Philip

    2010-01-01

    It has been suggested that an important transition in the long-run trajectory of nanotechnology development is a shift from passive to active nanostructures. Such a shift could present different or increased societal impacts and require new approaches for risk assessment. An active nanostructure 'changes or evolves its state during its operation,' according to the National Science Foundation's (2006) Active Nanostructures and Nanosystems grant solicitation. Active nanostructure examples include nanoelectromechanical systems (NEMS), nanomachines, self-healing materials, targeted drugs and chemicals, energy storage devices, and sensors. This article considers two questions: (a) Is there a 'shift' to active nanostructures? (b) How can we characterize the prototypical areas into which active nanostructures may emerge? We build upon the NSF definition of active nanostructures to develop a research publication search strategy, with a particular intent to distinguish between passive and active nanotechnologies. We perform bibliometric analyses and describe the main publication trends from 1995 to 2008. We then describe the prototypes of research that emerge based on reading the abstracts and review papers encountered in our search. Preliminary results suggest that there is a sharp rise in active nanostructures publications in 2006, and this rise is maintained in 2007 and through to early 2008. We present a typology that can be used to describe the kind of active nanostructures that may be commercialized and regulated in the future.

  14. Is there a shift to "active nanostructures"?

    Science.gov (United States)

    Subramanian, Vrishali; Youtie, Jan; Porter, Alan L.; Shapira, Philip

    2010-01-01

    It has been suggested that an important transition in the long-run trajectory of nanotechnology development is a shift from passive to active nanostructures. Such a shift could present different or increased societal impacts and require new approaches for risk assessment. An active nanostructure "changes or evolves its state during its operation," according to the National Science Foundation's (2006) Active Nanostructures and Nanosystems grant solicitation. Active nanostructure examples include nanoelectromechanical systems (NEMS), nanomachines, self-healing materials, targeted drugs and chemicals, energy storage devices, and sensors. This article considers two questions: (a) Is there a "shift" to active nanostructures? (b) How can we characterize the prototypical areas into which active nanostructures may emerge? We build upon the NSF definition of active nanostructures to develop a research publication search strategy, with a particular intent to distinguish between passive and active nanotechnologies. We perform bibliometric analyses and describe the main publication trends from 1995 to 2008. We then describe the prototypes of research that emerge based on reading the abstracts and review papers encountered in our search. Preliminary results suggest that there is a sharp rise in active nanostructures publications in 2006, and this rise is maintained in 2007 and through to early 2008. We present a typology that can be used to describe the kind of active nanostructures that may be commercialized and regulated in the future.

  15. Silicon-embedded copper nanostructure network for high energy storage

    Science.gov (United States)

    Yu, Tianyue

    2016-03-15

    Provided herein are nanostructure networks having high energy storage, electrochemically active electrode materials including nanostructure networks having high energy storage, as well as electrodes and batteries including the nanostructure networks having high energy storage. According to various implementations, the nanostructure networks have high energy density as well as long cycle life. In some implementations, the nanostructure networks include a conductive network embedded with electrochemically active material. In some implementations, silicon is used as the electrochemically active material. The conductive network may be a metal network such as a copper nanostructure network. Methods of manufacturing the nanostructure networks and electrodes are provided. In some implementations, metal nanostructures can be synthesized in a solution that contains silicon powder to make a composite network structure that contains both. The metal nanostructure growth can nucleate in solution and on silicon nanostructure surfaces.

  16. Silicon-embedded copper nanostructure network for high energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Tianyue

    2018-01-23

    Provided herein are nanostructure networks having high energy storage, electrochemically active electrode materials including nanostructure networks having high energy storage, as well as electrodes and batteries including the nanostructure networks having high energy storage. According to various implementations, the nanostructure networks have high energy density as well as long cycle life. In some implementations, the nanostructure networks include a conductive network embedded with electrochemically active material. In some implementations, silicon is used as the electrochemically active material. The conductive network may be a metal network such as a copper nanostructure network. Methods of manufacturing the nanostructure networks and electrodes are provided. In some implementations, metal nanostructures can be synthesized in a solution that contains silicon powder to make a composite network structure that contains both. The metal nanostructure growth can nucleate in solution and on silicon nanostructure surfaces.

  17. Plasmonic nanostructures for surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Jiang, Ruiqian

    In the last three decades, a large number of different plasmonic nanostructures have attracted much attention due to their unique optical properties. Those plasmonic nanostructures include nanoparticles, nanoholes and metal nanovoids. They have been widely utilized in optical devices and sensors. When the plasmonic nanostructures interact with the electromagnetic wave and their surface plasmon frequency match with the light frequency, the electrons in plasmonic nanostructures will resonate with the same oscillation as incident light. In this case, the plasmonic nanostructures can absorb light and enhance the light scattering. Therefore, the plasmonic nanostructures can be used as substrate for surface-enhanced Raman spectroscopy to enhance the Raman signal. Using plasmonic nanostructures can significantly enhance Raman scattering of molecules with very low concentrations. In this thesis, two different plasmonic nanostructures Ag dendrites and Au/Ag core-shell nanoparticles are investigated. Simple methods were used to produce these two plasmonic nanostructures. Then, their applications in surface enhanced Raman scattering have been explored. Ag dendrites were produced by galvanic replacement reaction, which was conducted using Ag nitrate aqueous solution and copper metal. Metal copper layer was deposited at the bottom side of anodic aluminum oxide (AAO) membrane. Silver wires formed inside AAO channels connected Ag nitrate on the top of AAO membrane and copper layer at the bottom side of AAO. Silver dendrites were formed on the top side of AAO. The second plasmonic nanostructure is Au/Ag core-shell nanoparticles. They were fabricated by electroless plating (galvanic replacement) reaction in a silver plating solution. First, electrochemically evolved hydrogen bubbles were used as template through electroless deposition to produce hollow Au nanoparticles. Then, the Au nanoparticles were coated with Cu shells in a Cu plating solution. In the following step, a Ag

  18. Nanostructured gold microelectrodes for extracellular recording

    Energy Technology Data Exchange (ETDEWEB)

    Brueggemann, Dorothea; Wolfrum, Bernhard; Maybeck, Vanessa; Offenhaeusser, Andreas [CNI Center of Nanoelectronic Systems for Information Technology and Institute of Bio- and Nanosystems 2, Forschungszentrum Juelich (Germany)

    2010-07-01

    Electrophysiological activity of electrogenic cells is currently recorded with planar bioelectronic interfaces such as microelectrode arrays (MEAs). In this work, a novel concept of biocompatible nanostructured gold MEAs for extracellular signal recording is presented. MEAs were fabricated using clean room technologies, e.g. photolithography and metallization. Subsequently, they were modified with gold nanopillars of approximately 300 to 400 nm in height and 60 nm width. The nanostructuring process was carried out with a template-assisted approach using nanoporous aluminium oxide. Impedance spectroscopy of the resulting nanostructures showed higher capacitances compared to planar gold. This confirmed the expected increase of the surface area via nanostructuring. We used the nanostructured microelectrodes to record extracellular potentials from heart muscle cells (HL1), which were plated onto the chips. Good coupling between the HL1 cells and the nanostructured electrodes was observed. The resulting signal-to-noise ratio of nanopillar-MEAs was increased by a factor of 2 compared to planar MEAs. In future applications this nanopillar concept can be adopted for distinct interface materials and coupling to cellular and molecular sensing components.

  19. PREFACE: Self-organized nanostructures

    Science.gov (United States)

    Rousset, Sylvie; Ortega, Enrique

    2006-04-01

    In order to fabricate ordered arrays of nanostructures, two different strategies might be considered. The `top-down' approach consists of pushing the limit of lithography techniques down to the nanometre scale. However, beyond 10 nm lithography techniques will inevitably face major intrinsic limitations. An alternative method for elaborating ultimate-size nanostructures is based on the reverse `bottom-up' approach, i.e. building up nanostructures (and eventually assemble them to form functional circuits) from individual atoms or molecules. Scanning probe microscopies, including scanning tunnelling microscopy (STM) invented in 1982, have made it possible to create (and visualize) individual structures atom by atom. However, such individual atomic manipulation is not suitable for industrial applications. Self-assembly or self-organization of nanostructures on solid surfaces is a bottom-up approach that allows one to fabricate and assemble nanostructure arrays in a one-step process. For applications, such as high density magnetic storage, self-assembly appears to be the simplest alternative to lithography for massive, parallel fabrication of nanostructure arrays with regular sizes and spacings. These are also necessary for investigating the physical properties of individual nanostructures by means of averaging techniques, i.e. all those using light or particle beams. The state-of-the-art and the current developments in the field of self-organization and physical properties of assembled nanostructures are reviewed in this issue of Journal of Physics: Condensed Matter. The papers have been selected from among the invited and oral presentations of the recent summer workshop held in Cargese (Corsica, France, 17-23 July 2005). All authors are world-renowned in the field. The workshop has been funded by the Marie Curie Actions: Marie Curie Conferences and Training Courses series named `NanosciencesTech' supported by the VI Framework Programme of the European Community, by

  20. Iron filled carbon nanostructures from different precursors

    International Nuclear Information System (INIS)

    Costa, S.; Borowiak-Palen, E.; Bachmatiuk, A.; Ruemmeli, M.H.; Gemming, T.; Kalenczuk, R.J.

    2008-01-01

    Here, we present a study on the synthesis of different nanostructures with one single-step in situ filling (encapsulation) via carbon vapor deposition (CVD). Ferrocene, acetylferrocene and iron (II) nitrate as iron precursors were explored. The application of each of these compounds resulted in different carbon nanomaterials such as: iron filled multiwalled carbon nanotubes with a low filling ratio (Fe-MWCNT), iron filled nanocapsules and unfilled MWCNT. The as-produced samples were purified by high temperature annealing and acid treatment. The purified materials were characterised using transmission electron microscopy (TEM) and Raman spectroscopy

  1. Invited Article: Autonomous assembly of atomically perfect nanostructures using a scanning tunneling microscope.

    Science.gov (United States)

    Celotta, Robert J; Balakirsky, Stephen B; Fein, Aaron P; Hess, Frank M; Rutter, Gregory M; Stroscio, Joseph A

    2014-12-01

    A major goal of nanotechnology is to develop the capability to arrange matter at will by placing individual atoms at desired locations in a predetermined configuration to build a nanostructure with specific properties or function. The scanning tunneling microscope has demonstrated the ability to arrange the basic building blocks of matter, single atoms, in two-dimensional configurations. An array of various nanostructures has been assembled, which display the quantum mechanics of quantum confined geometries. The level of human interaction needed to physically locate the atom and bring it to the desired location limits this atom assembly technology. Here we report the use of autonomous atom assembly via path planning technology; this allows atomically perfect nanostructures to be assembled without the need for human intervention, resulting in precise constructions in shorter times. We demonstrate autonomous assembly by assembling various quantum confinement geometries using atoms and molecules and describe the benefits of this approach.

  2. Invited Article: Autonomous assembly of atomically perfect nanostructures using a scanning tunneling microscope

    Energy Technology Data Exchange (ETDEWEB)

    Celotta, Robert J., E-mail: robert.celotta@nist.gov, E-mail: joseph.stroscio@nist.gov; Hess, Frank M.; Rutter, Gregory M.; Stroscio, Joseph A., E-mail: robert.celotta@nist.gov, E-mail: joseph.stroscio@nist.gov [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Balakirsky, Stephen B. [Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Georgia Tech Research Institute, Atlanta, Georgia 30332 (United States); Fein, Aaron P. [Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

    2014-12-15

    A major goal of nanotechnology is to develop the capability to arrange matter at will by placing individual atoms at desired locations in a predetermined configuration to build a nanostructure with specific properties or function. The scanning tunneling microscope has demonstrated the ability to arrange the basic building blocks of matter, single atoms, in two-dimensional configurations. An array of various nanostructures has been assembled, which display the quantum mechanics of quantum confined geometries. The level of human interaction needed to physically locate the atom and bring it to the desired location limits this atom assembly technology. Here we report the use of autonomous atom assembly via path planning technology; this allows atomically perfect nanostructures to be assembled without the need for human intervention, resulting in precise constructions in shorter times. We demonstrate autonomous assembly by assembling various quantum confinement geometries using atoms and molecules and describe the benefits of this approach.

  3. Invited Article: Autonomous assembly of atomically perfect nanostructures using a scanning tunneling microscope

    International Nuclear Information System (INIS)

    Celotta, Robert J.; Hess, Frank M.; Rutter, Gregory M.; Stroscio, Joseph A.; Balakirsky, Stephen B.; Fein, Aaron P.

    2014-01-01

    A major goal of nanotechnology is to develop the capability to arrange matter at will by placing individual atoms at desired locations in a predetermined configuration to build a nanostructure with specific properties or function. The scanning tunneling microscope has demonstrated the ability to arrange the basic building blocks of matter, single atoms, in two-dimensional configurations. An array of various nanostructures has been assembled, which display the quantum mechanics of quantum confined geometries. The level of human interaction needed to physically locate the atom and bring it to the desired location limits this atom assembly technology. Here we report the use of autonomous atom assembly via path planning technology; this allows atomically perfect nanostructures to be assembled without the need for human intervention, resulting in precise constructions in shorter times. We demonstrate autonomous assembly by assembling various quantum confinement geometries using atoms and molecules and describe the benefits of this approach

  4. SrZnO nanostructures grown on templated Al2O3 substrates by pulsed laser deposition

    Science.gov (United States)

    Labis, Joselito P.; Alanazi, Anwar Q.; Albrithen, Hamad A.; El-Toni, Ahmed Mohamed; Hezam, Mahmoud; Elafifi, Hussein Elsayed; Abaza, Osama M.

    2017-09-01

    The parameters of pulsed laser deposition (PLD) have been optimized to design different nanostructures of Strontium-alloyed zinc oxide (SrZnO). In this work, SrZnO nanostructures are grown on Al2O3 substrates via two-step templating/seeding approach. In the temperature range between 300 - 750 oC and O2 background pressures between 0.01 and 10 Torr, the growth conditions have been tailored to grow unique pointed leaf-like- and pitted olive-like nanostructures. Prior to the growth of the nanostructures, a thin SrZnO layer that serves as seed layer/template is first deposited on the Al2O3 substrates at ˜300oC and background oxygen pressure of 10 mTorr. The optical properties of the nanostructures were examined by UV/Vis spectroscopy and photoluminescence (PL), while the structures/morphologies were examined by SEM, TEM, and XRD. The alloyed SrZnO nanostructures, grown by ablating ZnO targets with 5, 10, 25% SrO contents, have in common a single-crystal hexagonal nanostructure with (0002) preferential orientation and have shown remarkable changes in the morphological and optical properties of the materials. To date, this is the only reported work on optimization of laser ablation parameters to design novel SrZnO nanostructures in the 5-25% alloying range, as most related Sr-doped ZnO studies were done below 7% doping. Although the physical properties of ZnO are modified via Sr doping, the mechanism remains unclear. The PLD-grown SrZnO nanostructures were directly grown onto the Al2O3 substrates; thus making these nanomaterials very promising for potential applications in biosensors, love-wave filters, solar cells, and ultrasonic oscillators.

  5. SrZnO nanostructures grown on templated Al2O3 substrates by pulsed laser deposition

    Directory of Open Access Journals (Sweden)

    Joselito P. Labis

    2017-09-01

    Full Text Available The parameters of pulsed laser deposition (PLD have been optimized to design different nanostructures of Strontium-alloyed zinc oxide (SrZnO. In this work, SrZnO nanostructures are grown on Al2O3 substrates via two-step templating/seeding approach. In the temperature range between 300 - 750 oC and O2 background pressures between 0.01 and 10 Torr, the growth conditions have been tailored to grow unique pointed leaf-like- and pitted olive-like nanostructures. Prior to the growth of the nanostructures, a thin SrZnO layer that serves as seed layer/template is first deposited on the Al2O3 substrates at ∼300oC and background oxygen pressure of 10 mTorr. The optical properties of the nanostructures were examined by UV/Vis spectroscopy and photoluminescence (PL, while the structures/morphologies were examined by SEM, TEM, and XRD. The alloyed SrZnO nanostructures, grown by ablating ZnO targets with 5, 10, 25% SrO contents, have in common a single-crystal hexagonal nanostructure with (0002 preferential orientation and have shown remarkable changes in the morphological and optical properties of the materials. To date, this is the only reported work on optimization of laser ablation parameters to design novel SrZnO nanostructures in the 5-25% alloying range, as most related Sr-doped ZnO studies were done below 7% doping. Although the physical properties of ZnO are modified via Sr doping, the mechanism remains unclear. The PLD-grown SrZnO nanostructures were directly grown onto the Al2O3 substrates; thus making these nanomaterials very promising for potential applications in biosensors, love-wave filters, solar cells, and ultrasonic oscillators.

  6. Cation-Induced Stabilization and Denaturation of DNA Origami Nanostructures in Urea and Guanidinium Chloride.

    Science.gov (United States)

    Ramakrishnan, Saminathan; Krainer, Georg; Grundmeier, Guido; Schlierf, Michael; Keller, Adrian

    2017-11-01

    The stability of DNA origami nanostructures under various environmental conditions constitutes an important issue in numerous applications, including drug delivery, molecular sensing, and single-molecule biophysics. Here, the effect of Na + and Mg 2+ concentrations on DNA origami stability is investigated in the presence of urea and guanidinium chloride (GdmCl), two strong denaturants commonly employed in protein folding studies. While increasing concentrations of both cations stabilize the DNA origami nanostructures against urea denaturation, they are found to promote DNA origami denaturation by GdmCl. These inverse behaviors are rationalized by a salting-out of Gdm + to the hydrophobic DNA base stack. The effect of cation-induced DNA origami denaturation by GdmCl deserves consideration in the design of single-molecule studies and may potentially be exploited in future applications such as selective denaturation for purification purposes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Nanostructured Tip-Shaped Biosensors: Application of Six Sigma Approach for Enhanced Manufacturing.

    Science.gov (United States)

    Kahng, Seong-Joong; Kim, Jong-Hoon; Chung, Jae-Hyun

    2016-12-23

    Nanostructured tip-shaped biosensors have drawn attention for biomolecule detection as they are promising for highly sensitive and specific detection of a target analyte. Using a nanostructured tip, the sensitivity is increased to identify individual molecules because of the high aspect ratio structure. Various detection methods, such as electrochemistry, fluorescence microcopy, and Raman spectroscopy, have been attempted to enhance the sensitivity and the specificity. Due to the confined path of electrons, electrochemical measurement using a nanotip enables the detection of single molecules. When an electric field is combined with capillary action and fluid flow, target molecules can be effectively concentrated onto a nanotip surface for detection. To enhance the concentration efficacy, a dendritic nanotip rather than a single tip could be used to detect target analytes, such as nanoparticles, cells, and DNA. However, reproducible fabrication with relation to specific detection remains a challenge due to the instability of a manufacturing method, resulting in inconsistent shape. In this paper, nanostructured biosensors are reviewed with our experimental results using dendritic nanotips for sequence specific detection of DNA. By the aid of the Six Sigma approach, the fabrication yield of dendritic nanotips increases from 20.0% to 86.6%. Using the nanotips, DNA is concentrated and detected in a sequence specific way with the detection limit equivalent to 1000 CFU/mL. The pros and cons of a nanotip biosensor are evaluated in conjunction with future prospects.

  8. Understanding the ordering mechanisms of self-assembled nanostructures of block copolymers during zone annealing

    Energy Technology Data Exchange (ETDEWEB)

    Cong, Zhinan; Zhang, Liangshun, E-mail: zhangls@ecust.edu.cn, E-mail: jlin@ecust.edu.cn; Wang, Liquan; Lin, Jiaping, E-mail: zhangls@ecust.edu.cn, E-mail: jlin@ecust.edu.cn [Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2016-03-21

    A theoretical method based on dynamic version of self-consistent field theory is extended to investigate directed self-assembly behaviors of block copolymers subjected to zone annealing. The ordering mechanisms and orientation modulation of microphase-separated nanostructures of block copolymers are discussed in terms of sweep velocity, wall preference, and Flory-Huggins interaction parameter. The simulated results demonstrate that the long-range ordered nanopatterns are achieved by lowering the sweep velocity of zone annealing due to the incorporation of templated ordering of block copolymers. The surface enrichment by one of the two polymer species induces the orientation modulation of defect-free nanostructures through finely tuning the composition of block copolymers and the preference of walls. Additionally, the Flory-Huggins interaction parameters of block copolymers in the distinct regions are main factors to design the zone annealing process for creating the highly ordered nanostructures with single orientation.

  9. Molecular dynamics simulation of carbon nanostructures: The C60 buckminsterfullerene

    International Nuclear Information System (INIS)

    Laszlo, Istvan; Zsoldos, Ibolya

    2012-01-01

    Molecular dynamics calculations can reveal the physical and chemical properties of various carbon nanostructures or can help to devise the possible formation pathways. In our days the most well-known carbon nanostructures are the fullerenes, the nanotubes, and the graphene. The fullerenes and nanotubes can be thought of as being formed from graphene sheets, i.e., single layers of carbon atoms arranged in a honeycomb lattice. Usually the nature does not follow the mathematical constructions. Although the first time the C 60 and the C 70 were produced by laser irradiated graphite, the fullerene formation theories are based on various fragments of carbon chains and networks of pentagonal and hexagonal rings. In the present article various formation pathways for the buckminsterfullerene C 60 molecule will be presented. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Synergistically Enhanced Performance of Ultrathin Nanostructured Silicon Solar Cells Embedded in Plasmonically Assisted, Multispectral Luminescent Waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung-Min; Dhar, Purnim; Chen, Huandong; Montenegro, Angelo; Liaw, Lauren; Kang, Dongseok; Gai, Boju; Benderskii, Alexander V.; Yoon, Jongseung

    2017-04-12

    Ultrathin silicon solar cells fabricated by anisotropic wet chemical etching of single-crystalline wafer materials represent an attractive materials platform that could provide many advantages for realizing high-performance, low-cost photovoltaics. However, their intrinsically limited photovoltaic performance arising from insufficient absorption of low-energy photons demands careful design of light management to maximize the efficiency and preserve the cost-effectiveness of solar cells. Herein we present an integrated flexible solar module of ultrathin, nanostructured silicon solar cells capable of simultaneously exploiting spectral upconversion and downshifting in conjunction with multispectral luminescent waveguides and a nanostructured plasmonic reflector to compensate for their weak optical absorption and enhance their performance. The 8 μm-thick silicon solar cells incorporating a hexagonally periodic nanostructured surface relief are surface-embedded in layered multispectral luminescent media containing organic dyes and NaYF4:Yb3+,Er3+ nanocrystals as downshifting and upconverting luminophores, respectively, via printing-enabled deterministic materials assembly. The ultrathin nanostructured silicon microcells in the composite luminescent waveguide exhibit strongly augmented photocurrent (~40.1 mA/cm2) and energy conversion efficiency (~12.8%) than devices with only a single type of luminescent species, owing to the synergistic contributions from optical downshifting, plasmonically enhanced upconversion, and waveguided photon flux for optical concentration, where the short-circuit current density increased by ~13.6 mA/cm2 compared with microcells in a nonluminescent medium on a plain silver reflector under a confined illumination.

  11. Synthesis, morphology, optical and photocatalytic performance of nanostructured β-Ga{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Girija, K. [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641046 (India); DRDO – BU CLS, Bharathiar University, Coimbatore 641046 (India); Thirumalairajan, S. [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641046 (India); Avadhani, G.S. [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India); Mangalaraj, D., E-mail: dmraj800@yahoo.com [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641046 (India); Ponpandian, N. [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641046 (India); DRDO – BU CLS, Bharathiar University, Coimbatore 641046 (India); Viswanathan, C. [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641046 (India)

    2013-06-01

    Highlights: ► Nanostructures of β-Ga{sub 2}O{sub 3} were prepared using facile reflux condensation process. ► The pH of the reaction mixture shows evident influence on the size and shape of the nanostructures formed. ► The nanostructures exhibited good photocatalytic activity toward Rhodamine B and was found to be superior for higher pH value. - Abstract: Fine powders of β-Ga{sub 2}O{sub 3} nanostructures were prepared via low temperature reflux condensation method by varying the pH value without using any surfactant. The pH value of reaction mixture had great influence on the morphology of final products. High crystalline single phase β-Ga{sub 2}O{sub 3} nanostructures were obtained by thermal treatment at 900 °C which was confirmed by X-ray diffraction and Raman spectroscopy. The morphological analysis revealed rod like nanostructures at lower and higher pH values of 6 and 10, while spindle like structures were obtained at pH = 8. The phase purity and presence of vibrational bands were identified using Fourier transform infrared spectroscopy. The optical absorbance spectrum showed intense absorption features in the UV spectral region. A broad blue emission peak centered at 441 nm due to donor–acceptor gallium–oxygen vacancy pair recombination appeared. The photocatalytic activity toward Rhodamine B under visible light irradiation was higher for nanorods at pH 10.

  12. Self-Consolidation Mechanism of Nanostructured Ti5Si3 Compact Induced by Electrical Discharge

    Directory of Open Access Journals (Sweden)

    W. H. Lee

    2015-01-01

    Full Text Available Electrical discharge using a capacitance of 450 μF at 7.0 and 8.0 kJ input energies was applied to mechanical alloyed Ti5Si3 powder without applying any external pressure. A solid bulk of nanostructured Ti5Si3 with no compositional deviation was obtained in times as short as 159 μsec by the discharge. During an electrical discharge, the heat generated is the required parameter possibly to melt the Ti5Si3 particles and the pinch force can pressurize the melted powder without allowing the formation of pores. Followed rapid cooling preserved the nanostructure of consolidated Ti5Si3 compact. Three stepped processes during an electrical discharge for the formation of nanostructured Ti5Si3 compact are proposed: (a a physical breakdown of the surface oxide of Ti5Si3 powder particles, (b melting and condensation of Ti5Si3 powder by the heat and pinch pressure, respectively, and (c rapid cooling for the preservation of nanostructure. Complete conversion yielding a single phase Ti5Si3 is primarily dominated by the solid-liquid mechanism.

  13. Topotactic reduction yielding black titanium oxide nanostructures as metallic electronic conductors.

    Science.gov (United States)

    Tominaka, Satoshi

    2012-10-01

    Detailed analyses of reduced, single crystal, rutile-type TiO(2) via high-resolution transmission electron microscopy (TEM) are reported which reveal that the reduction proceeds topotactically via interstitial diffusion of Ti ions at low temperature, around 350 °C. This important finding encouraged the production of various nanostructured reduced titanium oxides from TiO(2) precursors with morphology retention, and in the process, the synthesis of black titanium oxide nanorods using TiO(2) nanorods was demonstrated. Interestingly, as opposed to the semiconductive behavior of Ti(2)O(3) synthesized at high temperature, topotactically synthesized Ti(2)O(3) exhibits metallic electrical resistance, and the value at room temperature is quite low (topotactically synthesized Ti(2)O(3). This work shows that topotactically reduced titanium oxides can have fascinating properties as well as nanostructures.

  14. Dimensions and Global Twist of Single-Layer DNA Origami Measured by Small-Angle X-ray Scattering.

    Science.gov (United States)

    Baker, Matthew A B; Tuckwell, Andrew J; Berengut, Jonathan F; Bath, Jonathan; Benn, Florence; Duff, Anthony P; Whitten, Andrew E; Dunn, Katherine E; Hynson, Robert M; Turberfield, Andrew J; Lee, Lawrence K

    2018-06-04

    The rational design of complementary DNA sequences can be used to create nanostructures that self-assemble with nanometer precision. DNA nanostructures have been imaged by atomic force microscopy and electron microscopy. Small-angle X-ray scattering (SAXS) provides complementary structural information on the ensemble-averaged state of DNA nanostructures in solution. Here we demonstrate that SAXS can distinguish between different single-layer DNA origami tiles that look identical when immobilized on a mica surface and imaged with atomic force microscopy. We use SAXS to quantify the magnitude of global twist of DNA origami tiles with different crossover periodicities: these measurements highlight the extreme structural sensitivity of single-layer origami to the location of strand crossovers. We also use SAXS to quantify the distance between pairs of gold nanoparticles tethered to specific locations on a DNA origami tile and use this method to measure the overall dimensions and geometry of the DNA nanostructure in solution. Finally, we use indirect Fourier methods, which have long been used for the interpretation of SAXS data from biomolecules, to measure the distance between DNA helix pairs in a DNA origami nanotube. Together, these results provide important methodological advances in the use of SAXS to analyze DNA nanostructures in solution and insights into the structures of single-layer DNA origami.

  15. Lifetime of Nano-Structured Black Silicon for Photovoltaic Applications

    DEFF Research Database (Denmark)

    Plakhotnyuk, Maksym; Davidsen, Rasmus Schmidt; Schmidt, Michael Stenbæk

    2016-01-01

    In this work, we present recent results of lifetime optimization for nano-structured black silicon and its photovoltaic applications. Black silicon nano-structures provide significant reduction of silicon surface reflection due to highly corrugated nanostructures with excellent light trapping pro......, respectively. This is promising for use of black silicon RIE nano-structuring in a solar cell process flow......In this work, we present recent results of lifetime optimization for nano-structured black silicon and its photovoltaic applications. Black silicon nano-structures provide significant reduction of silicon surface reflection due to highly corrugated nanostructures with excellent light trapping...

  16. Chemical Sensors Based on Metal Oxide Nanostructures

    Science.gov (United States)

    Hunter, Gary W.; Xu, Jennifer C.; Evans, Laura J.; VanderWal, Randy L.; Berger, Gordon M.; Kulis, Mike J.; Liu, Chung-Chiun

    2006-01-01

    This paper is an overview of sensor development based on metal oxide nanostructures. While nanostructures such as nanorods show significan t potential as enabling materials for chemical sensors, a number of s ignificant technical challenges remain. The major issues addressed in this work revolve around the ability to make workable sensors. This paper discusses efforts to address three technical barriers related t o the application of nanostructures into sensor systems: 1) Improving contact of the nanostructured materials with electrodes in a microse nsor structure; 2) Controling nanostructure crystallinity to allow co ntrol of the detection mechanism; and 3) Widening the range of gases that can be detected by using different nanostructured materials. It is concluded that while this work demonstrates useful tools for furt her development, these are just the beginning steps towards realizati on of repeatable, controlled sensor systems using oxide based nanostr uctures.

  17. Fabrication of nanowires and nanostructures

    DEFF Research Database (Denmark)

    Mátéfi-Tempfli, Stefan; Mátéfi-Tempfli, M.; Piraux, L.

    2009-01-01

    We report on different approaches that we have adopted and developed for the fabrication of nanowires and nanostructures. Methods based on template synthesis and on self organization seem to be the most promising for the fabrication of nanomaterials and nanostructures due to their easiness and low...... cost. The development of a supported nanoporous alumina template and the possibility of using this template to combine electrochemical synthesis with lithographic methods open new ways for the fabrication of complex nanostructures. The numerous advantages of the supported template and its compatibility...

  18. Advances in optoplasmonic sensors – combining optical nano/microcavities and photonic crystals with plasmonic nanostructures and nanoparticles

    Directory of Open Access Journals (Sweden)

    Xavier Jolly

    2018-01-01

    Full Text Available Nanophotonic device building blocks, such as optical nano/microcavities and plasmonic nanostructures, lie at the forefront of sensing and spectrometry of trace biological and chemical substances. A new class of nanophotonic architecture has emerged by combining optically resonant dielectric nano/microcavities with plasmonically resonant metal nanostructures to enable detection at the nanoscale with extraordinary sensitivity. Initial demonstrations include single-molecule detection and even single-ion sensing. The coupled photonic-plasmonic resonator system promises a leap forward in the nanoscale analysis of physical, chemical, and biological entities. These optoplasmonic sensor structures could be the centrepiece of miniaturised analytical laboratories, on a chip, with detection capabilities that are beyond the current state of the art. In this paper, we review this burgeoning field of optoplasmonic biosensors. We first focus on the state of the art in nanoplasmonic sensor structures, high quality factor optical microcavities, and photonic crystals separately before proceeding to an outline of the most recent advances in hybrid sensor systems. We discuss the physics of this modality in brief and each of its underlying parts, then the prospects as well as challenges when integrating dielectric nano/microcavities with metal nanostructures. In Section 5, we hint to possible future applications of optoplasmonic sensing platforms which offer many degrees of freedom towards biomedical diagnostics at the level of single molecules.

  19. Design, Fabrication, and Characterization of Hematite (α-Fe2O3) Nanostructures

    Science.gov (United States)

    Jansi Rani, B.; Mageswari, R.; Ravi, G.; Ganesh, V.; Yuvakkumar, R.

    2017-12-01

    The influence of processing parameters on the physicochemical properties of hematite α-Fe2O3 nanostructures was investigated. X-ray diffraction results revealed the hematite phase rhombohedral structure. Scanning electron microscope results explored nanospheres, nanohexagonal platelets, nanoellipsoids, distorted nanocubes, and interconnected platelets nanostructures. Rhombohedral single-phase hematite was confirmed through five Raman active modes. 2 P 3/2 (1) → 2 P 1/2 transition in photoluminescence spectra and Fourier-transform infrared spectroscopy band observed at 555 cm-1 revealed the hematite formation. The highest specific capacitance value of 151.09 F/g for scan rate of 10 mV/s was obtained for the hydrothermal-assisted product using an Fe(NO3)2·9H2O precursor in KOH electrolyte solutions.

  20. Method to deterministically study photonic nanostructures in different experimental instruments.

    Science.gov (United States)

    Husken, B H; Woldering, L A; Blum, C; Vos, W L

    2009-01-01

    We describe an experimental method to recover a single, deterministically fabricated nanostructure in various experimental instruments without the use of artificially fabricated markers, with the aim to study photonic structures. Therefore, a detailed map of the spatial surroundings of the nanostructure is made during the fabrication of the structure. These maps are made using a series of micrographs with successively decreasing magnifications. The graphs reveal intrinsic and characteristic geometric features that can subsequently be used in different setups to act as markers. As an illustration, we probe surface cavities with radii of 65 nm on a silica opal photonic crystal with various setups: a focused ion beam workstation; a scanning electron microscope (SEM); a wide field optical microscope and a confocal microscope. We use cross-correlation techniques to recover a small area imaged with the SEM in a large area photographed with the optical microscope, which provides a possible avenue to automatic searching. We show how both structural and optical reflectivity data can be obtained from one and the same nanostructure. Since our approach does not use artificial grids or markers, it is of particular interest for samples whose structure is not known a priori, like samples created solely by self-assembly. In addition, our method is not restricted to conducting samples.

  1. Plasmonics of magnetic and topological graphene-based nanostructures

    Science.gov (United States)

    Kuzmin, Dmitry A.; Bychkov, Igor V.; Shavrov, Vladimir G.; Temnov, Vasily V.

    2018-02-01

    Graphene is a unique material in the study of the fundamental limits of plasmonics. Apart from the ultimate single-layer thickness, its carrier concentration can be tuned by chemical doping or applying an electric field. In this manner, the electrodynamic properties of graphene can be varied from highly conductive to dielectric. Graphene supports strongly confined, propagating surface plasmon polaritons (SPPs) in a broad spectral range from terahertz to mid-infrared frequencies. It also possesses a strong magneto-optical response and thus provides complimentary architectures to conventional magneto-plasmonics based on magneto-optically active metals or dielectrics. Despite a large number of review articles devoted to plasmonic properties and applications of graphene, little is known about graphene magneto-plasmonics and topological effects in graphene-based nanostructures, which represent the main subject of this review. We discuss several strategies to enhance plasmonic effects in topologically distinct closed surface landscapes, i.e. graphene nanotubes, cylindrical nanocavities and toroidal nanostructures. A novel phenomenon of the strongly asymmetric SPP propagation on chiral meta-structures and the fundamental relations between structural and plasmonic topological indices are reviewed.

  2. Cryptic iridescence in a fossil weevil generated by single diamond photonic crystals.

    Science.gov (United States)

    McNamara, Maria E; Saranathan, Vinod; Locatelli, Emma R; Noh, Heeso; Briggs, Derek E G; Orr, Patrick J; Cao, Hui

    2014-11-06

    Nature's most spectacular colours originate in integumentary tissue architectures that scatter light via nanoscale modulations of the refractive index. The most intricate biophotonic nanostructures are three-dimensional crystals with opal, single diamond or single gyroid lattices. Despite intense interest in their optical and structural properties, the evolution of such nanostructures is poorly understood, due in part to a lack of data from the fossil record. Here, we report preservation of single diamond (Fd-3m) three-dimensional photonic crystals in scales of a 735,000 year old specimen of the brown Nearctic weevil Hypera diversipunctata from Gold Run, Canada, and in extant conspecifics. The preserved red to green structural colours exhibit near-field brilliancy yet are inconspicuous from afar; they most likely had cryptic functions in substrate matching. The discovery of pristine fossil examples indicates that the fossil record is likely to yield further data on the evolution of three-dimensional photonic nanostructures and their biological functions. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  3. Nanostructure Diffraction Gratings for Integrated Spectroscopy and Sensing

    Science.gov (United States)

    Guo, Junpeng (Inventor)

    2016-01-01

    The present disclosure pertains to metal or dielectric nanostructures of the subwavelength scale within the grating lines of optical diffraction gratings. The nanostructures have surface plasmon resonances or non-plasmon optical resonances. A linear photodetector array is used to capture the resonance spectra from one of the diffraction orders. The combined nanostructure super-grating and photodetector array eliminates the use of external optical spectrometers for measuring surface plasmon or optical resonance frequency shift caused by the presence of chemical and biological agents. The nanostructure super-gratings can be used for building integrated surface enhanced Raman scattering (SERS) spectrometers. The nanostructures within the diffraction grating lines enhance Raman scattering signal light while the diffraction grating pattern of the nanostructures diffracts Raman scattering light to different directions of propagation according to their wavelengths. Therefore, the nanostructure super-gratings allows for the use of a photodetector array to capture the surface enhanced Raman scattering spectra.

  4. New nanostructured nickel–polymer nanohybrids with improved surface hydrophobicity and effect on the living cells adhesion

    International Nuclear Information System (INIS)

    Macko, Ján; Oriňak, Andrej; Oriňaková, Renáta; Muhmann, Christian; Petruš, Ondrej; Harvanová, Denisa

    2015-01-01

    Highlights: • Unique nanohybrid formed from nanostructured nickel covered with polymer layer in being introduced. • Polymer is spin-coated on nanostructured nickel surface. • Nanohybrid surface hydrophobicity extension has been observed. • Adhesion of the cells was studied at nanohybrid surface. • The cells growth was differently inhibited at nanohybrid surface. - Abstract: An intensive gain of surface hydrophobicity has been observed on the differently polar polymer layers spin-coated directly on the previously prepared nanostructured nickel surface to form nanohybrids. Nanostructured nickel layer has been prepared by electrochemical deposition to form polyhedral crystalline nanostructure. Surface morphology and homogeneity of a nanohybrid polymer layer have been monitored by TOF-SIMS and SEM methods. Hydrophobicity extension of nanohybrid surfaces increased nearly linearly with decreasing polarity of single polymers applied and maximum increase in hydrophobicity value obtained was 32%. Novel nanohybrid surfaces functionality has been tested on the different cells adhesion. The results showed cell adhesion followed with an inhibition of the living cells spreading and proliferation on declared nanostructured nickel–polymer nanohybrid surfaces. The maximum inhibition activity of nanohybrid surface against cells line has been observed in a case when polydimethylsiloxane was applied as surface polymeric layer. Preparation of this kind of surface is easy and inexpensive, with many proposed applications where hydrophobic surfaces are required. This also can tend as a model for the preparation of the surfaces with cell anti-adhesion and antimicrobial activity.

  5. Bright-field Nanoscopy: Visualizing Nano-structures with Localized Optical Contrast Using a Conventional Microscope.

    Science.gov (United States)

    Suran, Swathi; Bharadwaj, Krishna; Raghavan, Srinivasan; Varma, Manoj M

    2016-04-26

    Most methods for optical visualization beyond the diffraction limit rely on fluorescence emission by molecular tags. Here, we report a method for visualization of nanostructures down to a few nanometers using a conventional bright-field microscope without requiring additional molecular tags such as fluorophores. The technique, Bright-field Nanoscopy, is based on the strong thickness dependent color of ultra-thin germanium on an optically thick gold film. We demonstrate the visualization of grain boundaries in chemical vapour deposited single layer graphene and the detection of single 40 nm Ag nanoparticles. We estimate a size detection limit of about 2 nm using this technique. In addition to visualizing nano-structures, this technique can be used to probe fluid phenomena at the nanoscale, such as transport through 2D membranes. We estimated the water transport rate through a 1 nm thick polymer film using this technique, as an illustration. Further, the technique can also be extended to study the transport of specific ions in the solution. It is anticipated that this technique will find use in applications ranging from single-nanoparticles resolved sensing to studying nanoscale fluid-solid interface phenomena.

  6. Solution precursor plasma deposition of nanostructured ZnO coatings

    International Nuclear Information System (INIS)

    Tummala, Raghavender; Guduru, Ramesh K.; Mohanty, Pravansu S.

    2011-01-01

    Highlights: → The solution precursor route employed is an inexpensive process with capability to produce large scale coatings at fast rates on mass scale production. → It is highly capable of developing tailorable nanostructures. → This technique can be employed to spray the coatings on any kind of substrates including polymers. → The ZnO coatings developed via solution precursor plasma spray process have good electrical conductivity and reflectivity properties in spite of possessing large amount of particulate boundaries, porosity and nanostructured grains. -- Abstract: Zinc oxide (ZnO) is a wide band gap semiconducting material that has various applications including optical, electronic, biomedical and corrosion protection. It is usually synthesized via processing routes, such as vapor deposition techniques, sol-gel, spray pyrolysis and thermal spray of pre-synthesized ZnO powders. Cheaper and faster synthesis techniques are of technological importance due to increased demand in alternative energy applications. Here, we report synthesis of nanostructured ZnO coatings directly from a solution precursor in a single step using plasma spray technique. Nanostructured ZnO coatings were deposited from the solution precursor prepared using zinc acetate and water/isopropanol. An axial liquid atomizer was employed in a DC plasma spray torch to create fine droplets of precursor for faster thermal treatment in the plasma plume to form ZnO. Microstructures of coatings revealed ultrafine particulate agglomerates. X-ray diffraction confirmed polycrystalline nature and hexagonal Wurtzite crystal structure of the coatings. Transmission electron microscopy studies showed fine grains in the range of 10-40 nm. Observed optical transmittance (∼65-80%) and reflectivity (∼65-70%) in the visible spectrum, and electrical resistivity (48.5-50.1 mΩ cm) of ZnO coatings are attributed to ultrafine particulate morphology of the coatings.

  7. Solution precursor plasma deposition of nanostructured ZnO coatings

    Energy Technology Data Exchange (ETDEWEB)

    Tummala, Raghavender [Department of Mechanical Engineering, University of Michigan - Dearborn, MI 48128 (United States); Guduru, Ramesh K., E-mail: rkguduru@umich.edu [Department of Mechanical Engineering, University of Michigan - Dearborn, MI 48128 (United States); Mohanty, Pravansu S. [Department of Mechanical Engineering, University of Michigan - Dearborn, MI 48128 (United States)

    2011-08-15

    Highlights: {yields} The solution precursor route employed is an inexpensive process with capability to produce large scale coatings at fast rates on mass scale production. {yields} It is highly capable of developing tailorable nanostructures. {yields} This technique can be employed to spray the coatings on any kind of substrates including polymers. {yields} The ZnO coatings developed via solution precursor plasma spray process have good electrical conductivity and reflectivity properties in spite of possessing large amount of particulate boundaries, porosity and nanostructured grains. -- Abstract: Zinc oxide (ZnO) is a wide band gap semiconducting material that has various applications including optical, electronic, biomedical and corrosion protection. It is usually synthesized via processing routes, such as vapor deposition techniques, sol-gel, spray pyrolysis and thermal spray of pre-synthesized ZnO powders. Cheaper and faster synthesis techniques are of technological importance due to increased demand in alternative energy applications. Here, we report synthesis of nanostructured ZnO coatings directly from a solution precursor in a single step using plasma spray technique. Nanostructured ZnO coatings were deposited from the solution precursor prepared using zinc acetate and water/isopropanol. An axial liquid atomizer was employed in a DC plasma spray torch to create fine droplets of precursor for faster thermal treatment in the plasma plume to form ZnO. Microstructures of coatings revealed ultrafine particulate agglomerates. X-ray diffraction confirmed polycrystalline nature and hexagonal Wurtzite crystal structure of the coatings. Transmission electron microscopy studies showed fine grains in the range of 10-40 nm. Observed optical transmittance ({approx}65-80%) and reflectivity ({approx}65-70%) in the visible spectrum, and electrical resistivity (48.5-50.1 m{Omega} cm) of ZnO coatings are attributed to ultrafine particulate morphology of the coatings.

  8. Single-mode biological distributed feedback laser

    DEFF Research Database (Denmark)

    Vannahme, Christoph; Maier-Flaig, Florian; Lemmer, Uli

    2013-01-01

    Single-mode second order distributed feedback (DFB) lasers of riboflavin (vitamin B2) doped gelatine films on nanostructured low refractive index material are demonstrated. Manufacturing is based on a simple UV nanoimprint and spin-coating. Emission wavelengths of 543 nm and 562 nm for two...

  9. Optical properties of hybrid quantum-well–dots nanostructures grown by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Mintairov, S. A., E-mail: mintairov@scell.ioffe.ru; Kalyuzhnyy, N. A.; Nadtochiy, A. M.; Maximov, M. V. [St. Petersburg Academic University (Russian Federation); Rouvimov, S. S. [University of Notre Dame (United States); Zhukov, A. E. [St. Petersburg Academic University (Russian Federation)

    2017-03-15

    The deposition of In{sub x}Ga{sub 1–x}As with an indium content of 0.3–0.5 and an average thickness of 3–27 single layers on a GaAs wafer by metalorganic chemical vapor deposition (MOCVD) at low temperatures results in the appearance of thickness and composition modulations in the layers being formed. Such structures can be considered to be intermediate nanostructures between ideal quantum wells and quantum dots. Depending on the average thickness and composition of the layers, the wavelength of the photoluminescence peak for the hybrid InGaAs quantum well–dots nanostructures varies from 950 to 1100 nm. The optimal average In{sub x}Ga{sub 1–x}As thicknesses and compositions at which the emission wavelength is the longest with a high quantum efficiency retained are determined.

  10. Commercial Implementation of Model-Based Manufacturing of Nanostructured Metals

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, Terry C. [Los Alamos National Laboratory

    2012-07-24

    Computational modeling is an essential tool for commercial production of nanostructured metals. Strength is limited by imperfections at the high strength levels that are achievable in nanostructured metals. Processing to achieve homogeneity at the micro- and nano-scales is critical. Manufacturing of nanostructured metals is intrinsically a multi-scale problem. Manufacturing of nanostructured metal products requires computer control, monitoring and modeling. Large scale manufacturing of bulk nanostructured metals by Severe Plastic Deformation is a multi-scale problem. Computational modeling at all scales is essential. Multiple scales of modeling must be integrated to predict and control nanostructural, microstructural, macrostructural product characteristics and production processes.

  11. Highly mesoporous α-Fe2O3 nanostructures: preparation, characterization and improved photocatalytic performance towards Rhodamine B (RhB)

    International Nuclear Information System (INIS)

    Bharathi, S; Nataraj, D; Mangalaraj, D; Masuda, Y; Senthil, K; Yong, K

    2010-01-01

    Single-crystalline porous hematite nanorods and spindle-like nanostructures were successfully synthesized by a low temperature reflux condensation method. Two different iron sources, namely, FeCl 3 ·6H 2 O and Fe(NO 3 ) 3 ·9H 2 O, were hydrolyzed in the presence of urea to selectively prepare nanorods and spindle-like nanostructures. Initially, the akagenite phase was obtained by refluxing the precursor for 12 h and then the as-prepared akagenite nanostructures were transformed to porous hematite nanostructures upon calcination at 300 0 C for 1 h. The shape and the aspect ratio of the 12 h refluxed sample was retained even after calcination and this shows the topotactic transformation of the nanostructure. TEM and HRTEM investigations have shown the porous nature of the prepared sample. Brunauer-Emmett-Teller and Barret-Joyner-Halenda measurements have shown a large surface area and distribution of mesopores in the nanorods sample. The photocatalytic activity of the prepared nanostructures towards RhB has reflected this variation in the pore size distribution and specific surface area, by showing a higher activity for the nanorods sample. Magnetic studies by VSM have shown a weak ferromagnetic behaviour in both the samples due to shape anisotropy.

  12. Inorganic nanostructure-organic polymer heterostructures useful for thermoelectric devices

    Energy Technology Data Exchange (ETDEWEB)

    See, Kevin C.; Urban, Jeffrey J.; Segalman, Rachel A.; Coates, Nelson E.; Yee, Shannon K.

    2017-11-28

    The present invention provides for an inorganic nanostructure-organic polymer heterostructure, useful as a thermoelectric composite material, comprising (a) an inorganic nanostructure, and (b) an electrically conductive organic polymer disposed on the inorganic nanostructure. Both the inorganic nanostructure and the electrically conductive organic polymer are solution-processable.

  13. What makes a feather shine? A nanostructural basis for glossy black colours in feathers.

    Science.gov (United States)

    Maia, Rafael; D'Alba, Liliana; Shawkey, Matthew D

    2011-07-07

    Colours in feathers are produced by pigments or by nanostructurally organized tissues that interact with light. One of the simplest nanostructures is a single layer of keratin overlying a linearly organized layer of melanosomes that create iridescent colours of feather barbules through thin-film interference. Recently, it has been hypothesized that glossy (i.e. high specular reflectance) black feathers may be evolutionarily intermediate between matte black and iridescent feathers, and thus have a smooth keratin layer that produces gloss, but not the layered organization of melanosomes needed for iridescence. However, the morphological bases of glossiness remain unknown. Here, we use a theoretical approach to generate predictions about morphological differences between matte and glossy feathers that we then empirically test. Thin-film models predicted that glossy spectra would result from a keratin layer 110-180 nm thick and a melanin layer greater than 115 nm thick. Transmission electron microscopy data show that nanostructure of glossy barbules falls well within that range, but that of matte barbules does not. Further, glossy barbules had a thinner and more regular keratin cortex, as well as a more continuous underlying melanin layer, than matte barbules. Thus, their quasi-ordered nanostructures are morphologically intermediate between matte black and iridescent feathers, and perceived gloss may be a form of weakly chromatic iridescence.

  14. Spectroscopic investigations of nanostructured LiNbO3 doped with Eu3+

    International Nuclear Information System (INIS)

    Hreniak, D.; Speghini, A.; Bettinelli, M.; Strek, W.

    2006-01-01

    Structural and optical properties of the sol-gel derived nanocrystalline lithium niobate (LiNbO 3 ) powders doped with Eu 3+ ions have been studied. In particular, the influence of the sizes of nanoparticles controlled by temperature on the structural and luminescence properties has been investigated. Emission bands corresponding to 5 D emission became more resolved with increasing nanocrystal size and changed to a typical Eu 3+ :LiNbO 3 single crystal spectrum for nanocrystals having an average size of more than 40 nm. Nonlinear optical properties of nanostructured LiNbO 3 have been confirmed by simple observation of second harmonic generation effect (SHG). The possibility of using nanostructured LiNbO 3 doped with rare-earth ions as self-doubling elements in integrated optoelectronic devices has been discussed

  15. Tip Enhanced Raman Spectroscopy of Rhodamine 6G on nanostructured gold substrate

    KAUST Repository

    Moretti, Manola

    2015-05-01

    A new concept based setup for Tip Enhanced Raman Scattering measurement assisted by gold nanostructure is presented, that can provide a platform for gap-mode enhancement of the signal at the single molecule level conjugated with controlled spatial localization of the molecule under investigation and a method to determine the diffraction limit properties of the tip. In essence, this effect is obtained illuminating a gold coated AFM tip which is raster scanned over a nanostructured gold substrate, after chemisorption of a Raman active molecule. We expect that the near-field Raman enhancement would be given by the gap-mode effect of the two facing nano-features. Thanks to the nanostructured substrate, we verify that the resolution of the Raman mapping signal is well below the diffraction limit given by the combination of the optics geometry and the laser wavelength. We show that the gap-mode TERS can generate an estimated field- enhancement (g) of ~20 in localized areas of the sample and we demonstrate the ability to spatially define the molecule position (by Raman mapping) at the tens of nanometers scale. © 2015 Elsevier Ltd.

  16. Tip Enhanced Raman Spectroscopy of Rhodamine 6G on nanostructured gold substrate

    KAUST Repository

    Moretti, Manola; Das, Gobind; Torre, Bruno; Allione, Marco; Di Fabrizio, Enzo M.

    2015-01-01

    A new concept based setup for Tip Enhanced Raman Scattering measurement assisted by gold nanostructure is presented, that can provide a platform for gap-mode enhancement of the signal at the single molecule level conjugated with controlled spatial localization of the molecule under investigation and a method to determine the diffraction limit properties of the tip. In essence, this effect is obtained illuminating a gold coated AFM tip which is raster scanned over a nanostructured gold substrate, after chemisorption of a Raman active molecule. We expect that the near-field Raman enhancement would be given by the gap-mode effect of the two facing nano-features. Thanks to the nanostructured substrate, we verify that the resolution of the Raman mapping signal is well below the diffraction limit given by the combination of the optics geometry and the laser wavelength. We show that the gap-mode TERS can generate an estimated field- enhancement (g) of ~20 in localized areas of the sample and we demonstrate the ability to spatially define the molecule position (by Raman mapping) at the tens of nanometers scale. © 2015 Elsevier Ltd.

  17. One-step direct-laser metal writing of sub-100 nm 3D silver nanostructures in a gelatin matrix

    International Nuclear Information System (INIS)

    Kang, SeungYeon; Vora, Kevin; Mazur, Eric

    2015-01-01

    Developing an ability to fabricate high-resolution, 3D metal nanostructures in a stretchable 3D matrix is a critical step to realizing novel optoelectronic devices such as tunable bulk metal-dielectric optical devices and THz metamaterial devices that are not feasible with alternative techniques. We report a new chemistry method to fabricate high-resolution, 3D silver nanostructures using a femtosecond-laser direct metal writing technique. Previously, only fabrication of 3D polymeric structures or single-/few-layer metal structures was possible. Our method takes advantage of unique gelatin properties to overcome such previous limitations as limited freedom in 3D material design and short sample lifetime. We fabricate more than 15 layers of 3D silver nanostructures with a resolution of less than 100 nm in a stable dielectric matrix that is flexible and has high large transparency that is well-matched for potential applications in the optical and THz metamaterial regimes. This is a single-step process that does not require any further processing. This work will be of interest to those interested in fabrication methods that utilize nonlinear light–matter interactions and the realization of future metamaterials. (fast track communication)

  18. One-step direct-laser metal writing of sub-100 nm 3D silver nanostructures in a gelatin matrix

    Science.gov (United States)

    Kang, SeungYeon; Vora, Kevin; Mazur, Eric

    2015-03-01

    Developing an ability to fabricate high-resolution, 3D metal nanostructures in a stretchable 3D matrix is a critical step to realizing novel optoelectronic devices such as tunable bulk metal-dielectric optical devices and THz metamaterial devices that are not feasible with alternative techniques. We report a new chemistry method to fabricate high-resolution, 3D silver nanostructures using a femtosecond-laser direct metal writing technique. Previously, only fabrication of 3D polymeric structures or single-/few-layer metal structures was possible. Our method takes advantage of unique gelatin properties to overcome such previous limitations as limited freedom in 3D material design and short sample lifetime. We fabricate more than 15 layers of 3D silver nanostructures with a resolution of less than 100 nm in a stable dielectric matrix that is flexible and has high large transparency that is well-matched for potential applications in the optical and THz metamaterial regimes. This is a single-step process that does not require any further processing. This work will be of interest to those interested in fabrication methods that utilize nonlinear light-matter interactions and the realization of future metamaterials.

  19. Nanodiamond-based nanostructures for coupling nitrogen-vacancy centres to metal nanoparticles and semiconductor quantum dots.

    Science.gov (United States)

    Gong, Jianxiao; Steinsultz, Nat; Ouyang, Min

    2016-06-08

    The ability to control the interaction between nitrogen-vacancy centres in diamond and photonic and/or broadband plasmonic nanostructures is crucial for the development of solid-state quantum devices with optimum performance. However, existing methods typically employ top-down fabrication, which restrict scalable and feasible manipulation of nitrogen-vacancy centres. Here, we develop a general bottom-up approach to fabricate an emerging class of freestanding nanodiamond-based hybrid nanostructures with external functional units of either plasmonic nanoparticles or excitonic quantum dots. Precise control of the structural parameters (including size, composition, coverage and spacing of the external functional units) is achieved, representing a pre-requisite for exploring the underlying physics. Fine tuning of the emission characteristics through structural regulation is demonstrated by performing single-particle optical studies. This study opens a rich toolbox to tailor properties of quantum emitters, which can facilitate design guidelines for devices based on nitrogen-vacancy centres that use these freestanding hybrid nanostructures as building blocks.

  20. Amorphous nanostructuralization in HOPG by 1014 W cm-2 laser

    International Nuclear Information System (INIS)

    NISHIMURA, Yasuhiko; KITAGAWA, Yoneyoshi; MORI, Yoshitaka; ISHII, Katsuhiro; HANAYAMA, Ryohei; AZUMA, Hirozumi; HIOKI, Tatsumi; MOTOHIRO, Tomoyoshi; NISHI, Teppei; KOMEDA, Osamu; SEKINE, Takashi; SATO, Nakahiro; KURITA, Takashi; KAWASHIMA, Toshiyuki; KAN, Hirofumi; SUNAHARA, Atsushi; SENTOKU, Yasuhiko; MIURA, Eisuke

    2016-01-01

    This reports provide an amorphous nanostructuralization technique on the surface modification in Highly Oriented Pyrolytic Graphite (HOPG) by using a femtosecond laser. We showed, for the first time, that the surface of HOPG is changed to the amorphous nanostructuralization graphite by using a femtosecond laser-driven compression technique. Our results also suggest that the HOPG surface is changed until the deeper area from the surface by the laser-driven shock wave. A single shot of a femtosecond laser beam (1.27 ∼ 1.33×10 14 Wcm∼ 2 in intensity, with 2 mm-diameter, and 110 fs in pulse width) is irradiated under the vacuum ambience onto a 2 mm-thick of HOPG. The calculated impact pressures on a sample was 8.3 ∼ 8.7 GPa. Crystal structure in the HOPG were analyzed using a Raman spectroscopy and an X-ray diffraction, those analyzing depth from the surface were 50 nm and 350 μm, respectively. (paper)

  1. Metal nanostructures: from clusters to nanocatalysis and sensors

    Science.gov (United States)

    Smirnov, B. M.

    2017-12-01

    The properties of metal clusters and nanostructures composed of them are reviewed. Various existing methods for the generation of intense beams of metal clusters and their subsequent conversion into nanostructures are compared. Processes of the flow of a buffer gas with active molecules through a nanostructure are analyzed as a basis of using nanostructures for catalytic applications. The propagation of an electric signal through a nanostructure is studied by analogy with a macroscopic metal. An analysis is given of how a nanostructure changes its resistance as active molecules attach to its surface and are converted into negative ions. These negative ions induce the formation of positively charged vacancies inside the metal conductor and attract the vacancies to together change the resistance of the metal nanostructure. The physical basis is considered for using metal clusters and nanostructures composed of them to create new materials in the form of a porous metal film on the surface of an object. The fundamentals of nanocatalysis are reviewed. Semiconductor conductometric sensors consisting of bound nanoscale grains or fibers acting as a conductor are compared with metal sensors conducting via a percolation cluster, a fractal fiber, or a bunch of interwoven nanofibers formed in superfluid helium. It is shown that sensors on the basis of metal nanostructures are characterized by a higher sensitivity than semiconductor ones, but are not selective. Measurements using metal sensors involve two stages, one of which measures to high precision the attachment rate of active molecules to the sensor conductor, and in the other one the surface of metal nanostructures is cleaned from the attached molecules using a gas discharge plasma (in particular, capillary discharge) with a subsequent chromatography analysis for products of cleaning.

  2. Metal nanostructures for non-enzymatic glucose sensing

    International Nuclear Information System (INIS)

    Tee, Si Yin; Teng, Choon Peng; Ye, Enyi

    2017-01-01

    This review covers the recent development of metal nanostructures in electrochemical non-enzymatic glucose sensing. It highlights a variety of nanostructured materials including noble metals, other transition metals, bimetallic systems, and their hybrid with carbon-based nanomaterials. Particularly, attention is devoted to numerous approaches that have been implemented for improving the sensors performance by tailoring size, shape, composition, effective surface area, adsorption capability and electron-transfer properties. The correlation of the metal nanostructures to the glucose sensing performance is addressed with respect to the linear concentration range, sensitivity and detection limit. In overall, this review provides important clues from the recent scientific achievements of glucose sensor nanomaterials which will be essentially useful in designing better and more effective electrocatalysts for future electrochemical sensing industry. - Highlights: • Overview of recent development of metal nanostructures in electrochemical non-enzymatic glucose sensing. • Special attention is focussed on noble metals, other transition metals, bimetallic systems, and their hybrid with carbon-based nanomaterials. • Merits and limitations of various metal nanostructures in electrochemical non-enzymatic glucose sensing. • Strategies to improve the glucose sensing performance of metal nanostructures as electrocatalysts.

  3. Optical switching systems using nanostructures

    DEFF Research Database (Denmark)

    Stubkjær, Kristian

    2004-01-01

    High capacity multiservice optical networks require compact and efficient switches. The potential benefits of optical switch elements based on nanostructured material are reviewed considering various material systems.......High capacity multiservice optical networks require compact and efficient switches. The potential benefits of optical switch elements based on nanostructured material are reviewed considering various material systems....

  4. Laser-assisted nanostructuring of Tungsten in liquid environment

    Energy Technology Data Exchange (ETDEWEB)

    Barmina, E.V., E-mail: barminaev@gmail.com [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); Stratakis, E. [Institute of Electronic Structure and Laser, Foundation for Research and Technology, Hellas (IESL-FORTH), P.O. Box 1527, Heraklion 711 10 (Greece); Materials Science and Technology Department, University of Crete, Heraklion 710 03 (Greece); Barberoglou, M. [Institute of Electronic Structure and Laser, Foundation for Research and Technology, Hellas (IESL-FORTH), P.O. Box 1527, Heraklion 711 10 (Greece); Physics Department, University of Crete, Heraklion 714 09 (Greece); Stolyarov, V.N.; Stolyarov, I.N. [Roentgenprom, 35 Lenin str., Protvino, 1442281 Moscow region (Russian Federation); Fotakis, C. [Institute of Electronic Structure and Laser, Foundation for Research and Technology, Hellas (IESL-FORTH), P.O. Box 1527, Heraklion 711 10 (Greece); Physics Department, University of Crete, Heraklion 714 09 (Greece); Shafeev, G.A. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation)

    2012-05-15

    Formation of surface nanostructures on Tungsten target immersed into liquids is experimentally studied under its exposure to femtosecond laser pulses with different durations. In particular, nanotexturing of Tungsten upon its exposure to delayed femtosecond pulses is investigated. Two different types of morphological features are observed, namely periodic ripples and nanostructures. Field emission scanning electron microscopy shows that the density of nanostructures as well as their morphology depends on the time delay between pulses and reaches its maximum at 1 ps delay. Thermionic emission of nano-structured W cathode is investigated. The work function of nanostructured W surface is measured to be 0.3 eV lower than that of the pristine surface.

  5. Reactor and method for production of nanostructures

    Science.gov (United States)

    Sunkara, Mahendra Kumar; Kim, Jeong H.; Kumar, Vivekanand

    2017-04-25

    A reactor and method for production of nanostructures, including metal oxide nanowires or nanoparticles, are provided. The reactor includes a regulated metal powder delivery system in communication with a dielectric tube; a plasma-forming gas inlet, whereby a plasma-forming gas is delivered substantially longitudinally into the dielectric tube; a sheath gas inlet, whereby a sheath gas is delivered into the dielectric tube; and a microwave energy generator coupled to the dielectric tube, whereby microwave energy is delivered into a plasma-forming gas. The method for producing nanostructures includes providing a reactor to form nanostructures and collecting the formed nanostructures, optionally from a filter located downstream of the dielectric tube.

  6. Quantum Nanostructures by Droplet Epitaxy

    Directory of Open Access Journals (Sweden)

    Somsak Panyakeow

    2009-02-01

    Full Text Available Droplet epitaxy is an alternative growth technique for several quantum nanostructures. Indium droplets are distributed randomly on GaAs substrates at low temperatures (120-350'C. Under background pressure of group V elements, Arsenic and Phosphorous, InAs and InP nanostructures are created. Quantum rings with isotropic shape are obtained at low temperature range. When the growth thickness is increased, quantum rings are transformed to quantum dot rings. At high temperature range, anisotropic strain gives rise to quantum rings with square holes and non-uniform ring stripe. Regrowth of quantum dots on these anisotropic quantum rings, Quadra-Quantum Dots (QQDs could be realized. Potential applications of these quantum nanostructures are also discussed.

  7. Interfacing nanostructures to biological cells

    Science.gov (United States)

    Chen, Xing; Bertozzi, Carolyn R.; Zettl, Alexander K.

    2012-09-04

    Disclosed herein are methods and materials by which nanostructures such as carbon nanotubes, nanorods, etc. are bound to lectins and/or polysaccharides and prepared for administration to cells. Also disclosed are complexes comprising glycosylated nanostructures, which bind selectively to cells expressing glycosylated surface molecules recognized by the lectin. Exemplified is a complex comprising a carbon nanotube functionalized with a lipid-like alkane, linked to a polymer bearing repeated .alpha.-N-acetylgalactosamine sugar groups. This complex is shown to selectively adhere to the surface of living cells, without toxicity. In the exemplified embodiment, adherence is mediated by a multivalent lectin, which binds both to the cells and the .alpha.-N-acetylgalactosamine groups on the nanostructure.

  8. Multi-periodic nanostructures for photon control

    DEFF Research Database (Denmark)

    Kluge, Christian; Adam, Jost; Barié, Nicole

    2014-01-01

    We propose multi-periodic nanostructures yielded by superposition of multiple binary gratings for wide control over photon emission in thin-film devices. We present wavelength- and angle-resolved photoluminescence measurements of multi-periodically nanostructured organic light-emitting layers...

  9. Nanostructuring steel for injection molding tools

    International Nuclear Information System (INIS)

    Al-Azawi, A; Smistrup, K; Kristensen, A

    2014-01-01

    The production of nanostructured plastic items by injection molding with ridges down to 400 nm in width, which is the smallest line width replicated from nanostructured steel shims, is presented. Here we detail a micro-fabrication method where electron beam lithography, nano-imprint lithography and ion beam etching are combined to nanostructure the planar surface of a steel wafer. Injection molded plastic parts with enhanced surface properties, like anti-reflective, superhydrophobic and structural colors can be achieved by micro- and nanostructuring the surface of the steel molds. We investigate the minimum line width that can be realized by our fabrication method and the influence of etching angle on the structure profile during the ion beam etching process. Trenches down to 400 nm in width have been successfully fabricated into a 316 type electro-polished steel wafer. Afterward a plastic replica has been produced by injection molding with good structure transfer fidelity. Thus we have demonstrated that by utilizing well-established fabrication techniques, nanostructured steel shims that are used in injection molding, a technique that allows low cost mass fabrication of plastic items, are produced. (paper)

  10. Antibacterial Au nanostructured surfaces

    Science.gov (United States)

    Wu, Songmei; Zuber, Flavia; Brugger, Juergen; Maniura-Weber, Katharina; Ren, Qun

    2016-01-01

    We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies.We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all

  11. Nanostructuring steel for injection molding tools

    DEFF Research Database (Denmark)

    Al-Azawi, A.; Smistrup, Kristian; Kristensen, Anders

    2014-01-01

    The production of nanostructured plastic items by injection molding with ridges down to 400 nm in width, which is the smallest line width replicated from nanostructured steel shims, is presented. Here we detail a micro-fabrication method where electron beam lithography, nano-imprint lithography...... and ion beam etching are combined to nanostructure the planar surface of a steel wafer. Injection molded plastic parts with enhanced surface properties, like anti-reflective, superhydrophobic and structural colors can be achieved by micro-and nanostructuring the surface of the steel molds. We investigate...... the minimum line width that can be realized by our fabrication method and the influence of etching angle on the structure profile during the ion beam etching process. Trenches down to 400 nm in width have been successfully fabricated into a 316 type electro-polished steel wafer. Afterward a plastic replica...

  12. Ceramic nanostructures and methods of fabrication

    Science.gov (United States)

    Ripley, Edward B [Knoxville, TN; Seals, Roland D [Oak Ridge, TN; Morrell, Jonathan S [Knoxville, TN

    2009-11-24

    Structures and methods for the fabrication of ceramic nanostructures. Structures include metal particles, preferably comprising copper, disposed on a ceramic substrate. The structures are heated, preferably in the presence of microwaves, to a temperature that softens the metal particles and preferably forms a pool of molten ceramic under the softened metal particle. A nano-generator is created wherein ceramic material diffuses through the molten particle and forms ceramic nanostructures on a polar site of the metal particle. The nanostructures may comprise silica, alumina, titania, or compounds or mixtures thereof.

  13. Micro-/nanostructured multicomponent molecular materials: design, assembly, and functionality.

    Science.gov (United States)

    Yan, Dongpeng

    2015-03-23

    Molecule-based micro-/nanomaterials have attracted considerable attention because their properties can vary greatly from the corresponding macro-sized bulk systems. Recently, the construction of multicomponent molecular solids based on crystal engineering principles has emerged as a promising alternative way to develop micro-/nanomaterials. Unlike single-component materials, the resulting multicomponent systems offer the advantages of tunable composition, and adjustable molecular arrangement, and intermolecular interactions within their solid states. The study of these materials also supplies insight into how the crystal structure, molecular components, and micro-/nanoscale effects can influence the performance of molecular materials. In this review, we describe recent advances and current directions in the assembly and applications of crystalline multicomponent micro-/nanostructures. Firstly, the design strategies for multicomponent systems based on molecular recognition and crystal engineering principles are introduced. Attention is then focused on the methods of fabrication of low-dimensional multicomponent micro-/nanostructures. Their new applications are also outlined. Finally, we briefly discuss perspectives for the further development of these molecular crystalline micro-/nanomaterials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Apodized grating coupler using fully-etched nanostructures

    International Nuclear Information System (INIS)

    Wu Hua; Li Chong; Guo Xia; Li Zhi-Yong

    2016-01-01

    A two-dimensional apodized grating coupler for interfacing between single-mode fiber and photonic circuit is demonstrated in order to bridge the mode gap between the grating coupler and optical fiber. The grating grooves of the grating couplers are realized by columns of fully etched nanostructures, which are utilized to digitally tailor the effective refractive index of each groove in order to obtain the Gaussian-like output diffractive mode and then enhance the coupling efficiency. Compared with that of the uniform grating coupler, the coupling efficiency of the apodized grating coupler is increased by 4.3% and 5.7%, respectively, for the nanoholes and nanorectangles as refractive index tunes layer. (paper)

  15. Quantum Phase Extraction in Isospectral Electronic Nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Christopher

    2010-04-28

    Quantum phase is not a direct observable and is usually determined by interferometric methods. We present a method to map complete electron wave functions, including internal quantum phase information, from measured single-state probability densities. We harness the mathematical discovery of drum-like manifolds bearing different shapes but identical resonances, and construct quantum isospectral nanostructures possessing matching electronic structure but divergent physical structure. Quantum measurement (scanning tunneling microscopy) of these 'quantum drums' [degenerate two-dimensional electron states on the Cu(111) surface confined by individually positioned CO molecules] reveals that isospectrality provides an extra topological degree of freedom enabling robust quantum state transplantation and phase extraction.

  16. Silicon-germanium (Sige) nanostructures production, properties and applications in electronics

    CERN Document Server

    Usami, N

    2011-01-01

    Nanostructured silicon-germanium (SiGe) provides the prospect of novel and enhanced electronic device performance. This book reviews the materials science and technology of SiGe nanostructures, including crystal growth, fabrication of nanostructures, material properties and applications in electronics.$bNanostructured silicon-germanium (SiGe) opens up the prospects of novel and enhanced electronic device performance, especially for semiconductor devices. Silicon-germanium (SiGe) nanostructures reviews the materials science of nanostructures and their properties and applications in different electronic devices. The introductory part one covers the structural properties of SiGe nanostructures, with a further chapter discussing electronic band structures of SiGe alloys. Part two concentrates on the formation of SiGe nanostructures, with chapters on different methods of crystal growth such as molecular beam epitaxy and chemical vapour deposition. This part also includes chapters covering strain engineering and mo...

  17. A novel nanostructure of cadmium oxide synthesized by mechanochemical method

    Energy Technology Data Exchange (ETDEWEB)

    Tadjarodi, A., E-mail: tajarodi@iust.ac.ir [Research Laboratory of Inorganic Materials Synthesis, Department of Chemistry, Iran University of Science and Technology, 16846-13114 Tehran (Iran, Islamic Republic of); Imani, M. [Research Laboratory of Inorganic Materials Synthesis, Department of Chemistry, Iran University of Science and Technology, 16846-13114 Tehran (Iran, Islamic Republic of)

    2011-11-15

    Highlights: {yields} A novel nanostructure of CdO was synthesized by mechanochemical reaction followed by calcination. {yields} Mechanochemical method is a simple and low-cost to synthesize nanomaterials. {yields} The obtained precursor was characterized by FT-IR, NMR techniques and elemental analysis. {yields} SEM images showed cauliflower-like shape of sample with components average diameter of 68 nm. {yields} The rods and tubes bundles with single crystalline nature were revealed by ED pattern and TEM images. -- Abstract: Cauliflower-like cadmium oxide (CdO) nanostructure was synthesized by mechanochemical reaction followed calcination procedure. Cadmium acetate dihydrate and acetamide were used as reagents and the resulting precursor was calcinated at 450 {sup o}C for 2 h in air. The structures of the precursor and resultant product of the heating treatment were characterized using Fourier transform infrared (FT-IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy and elemental analysis, X-ray powder diffraction (XRD), energy-dispersive X-ray spectroscopy analysis (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron diffraction pattern (ED). SEM and TEM images revealed the cauliflower-like morphology of the sample. This structure includes the bundles of rods and tubes in nanoscale, which combine with each other and form the resulting morphology with the average diameter, 68 nm of the components. ED pattern indicated the single crystal nature of the formed bundles.

  18. A novel nanostructure of cadmium oxide synthesized by mechanochemical method

    International Nuclear Information System (INIS)

    Tadjarodi, A.; Imani, M.

    2011-01-01

    Highlights: → A novel nanostructure of CdO was synthesized by mechanochemical reaction followed by calcination. → Mechanochemical method is a simple and low-cost to synthesize nanomaterials. → The obtained precursor was characterized by FT-IR, NMR techniques and elemental analysis. → SEM images showed cauliflower-like shape of sample with components average diameter of 68 nm. → The rods and tubes bundles with single crystalline nature were revealed by ED pattern and TEM images. -- Abstract: Cauliflower-like cadmium oxide (CdO) nanostructure was synthesized by mechanochemical reaction followed calcination procedure. Cadmium acetate dihydrate and acetamide were used as reagents and the resulting precursor was calcinated at 450 o C for 2 h in air. The structures of the precursor and resultant product of the heating treatment were characterized using Fourier transform infrared (FT-IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy and elemental analysis, X-ray powder diffraction (XRD), energy-dispersive X-ray spectroscopy analysis (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron diffraction pattern (ED). SEM and TEM images revealed the cauliflower-like morphology of the sample. This structure includes the bundles of rods and tubes in nanoscale, which combine with each other and form the resulting morphology with the average diameter, 68 nm of the components. ED pattern indicated the single crystal nature of the formed bundles.

  19. Device Fabrication and Probing of Discrete Carbon Nanostructures

    KAUST Repository

    Batra, Nitin M

    2015-05-06

    Device fabrication on multi walled carbon nanotubes (MWCNTs) using electrical beam lithography (EBL), electron beam induced deposition (EBID), ion beam induced deposition (IBID) methods was carried out, followed by device electrical characterization using a conventional probe station. A four-probe configuration was utilized to measure accurately the electrical resistivity of MWCNTs with similar results obtained from devices fabricated by different methods. In order to reduce the contact resistance of the beam deposited platinum electrodes, single step vacuum thermal annealing was performed. Microscopy and spectroscopy were carried out on the beam deposited electrodes to follow the structural and chemical changes occurring during the vacuum thermal annealing. For the first time, a core-shell type structure was identified on EBID Pt and IBID Pt annealed electrodes and analogous free standing nanorods previously exposed to high temperature. We believe this observation has important implications for transport properties studies of carbon materials. Apart from that, contamination of carbon nanostructure, originating from the device fabrication methods, was also studied. Finally, based on the observations of faster processing time together with higher yield and flexibility for device preparation, we investigated EBID to fabricate devices for other discrete carbon nanostructures.

  20. Magnetic properties of nickel nanostructures grown in AAO membrane

    International Nuclear Information System (INIS)

    Oh, S.-L.; Kim, Y.-R.; Malkinski, L.; Vovk, A.; Whittenburg, S.L.; Kim, E.-M.; Jung, J.-S.

    2007-01-01

    One-dimensional nanostructures can be built by performing chemical or electrochemical reactions in the pores of a suitable host or matrix material. We have developed a method of electrodeposition of nickel nanostructures inside cylindrical pores of the anodic aluminum oxide (AAO) membranes, which provides precise control of the nanostructure height. We were able to fabricate hexagonal arrays of particles in the form of spheres, rods and long wires. Magnetization measurements of these nanostructures as function of field and temperature were carried out using a superconducting quantum-interference device magnetometer. The shape of nickel nanostructures has been investigated by field emission scanning electron microscope. The coercivity of the nickel nanostructures measured with the field perpendicular to the membrane was increasing with increasing aspect ratio of the nanostructures. These experimental values of the coercivity, varying from 200 Oe for the spherical nanodots to 730 Oe for the nanowires, are in a fair agreement with our micromagnetic modeling calculations

  1. Magnetic properties of nickel nanostructures grown in AAO membrane

    Energy Technology Data Exchange (ETDEWEB)

    Oh, S -L [Department of Chemistry, Yonsei University, Seoul (Korea, Republic of); Kim, Y -R [Department of Chemistry, Yonsei University, Seoul (Korea, Republic of); Malkinski, L [Advanced Material Research Institute, University of New Orleans, New Orleans, LA 70148 (United States); Vovk, A [Advanced Material Research Institute, University of New Orleans, New Orleans, LA 70148 (United States); Whittenburg, S L [Advanced Material Research Institute, University of New Orleans, New Orleans, LA 70148 (United States); Kim, E -M [Korea Basic Science Institute, Kangnung 210-702 (Korea, Republic of); Jung, J -S [Department of Chemistry, Kangnung National University, Kangnung 210-702 (Korea, Republic of)

    2007-03-15

    One-dimensional nanostructures can be built by performing chemical or electrochemical reactions in the pores of a suitable host or matrix material. We have developed a method of electrodeposition of nickel nanostructures inside cylindrical pores of the anodic aluminum oxide (AAO) membranes, which provides precise control of the nanostructure height. We were able to fabricate hexagonal arrays of particles in the form of spheres, rods and long wires. Magnetization measurements of these nanostructures as function of field and temperature were carried out using a superconducting quantum-interference device magnetometer. The shape of nickel nanostructures has been investigated by field emission scanning electron microscope. The coercivity of the nickel nanostructures measured with the field perpendicular to the membrane was increasing with increasing aspect ratio of the nanostructures. These experimental values of the coercivity, varying from 200 Oe for the spherical nanodots to 730 Oe for the nanowires, are in a fair agreement with our micromagnetic modeling calculations.

  2. LDRD final report on synthesis of shape-and size-controlled platinum and platinum alloy nanostructures on carbon with improved durability.

    Energy Technology Data Exchange (ETDEWEB)

    Shelnutt, John Allen; Garcia, Robert M.; Song, Yujiang; Moreno, Andres M.; Stanis, Ronald J.

    2008-10-01

    This project is aimed to gain added durability by supporting ripening-resistant dendritic platinum and/or platinum-based alloy nanostructures on carbon. We have developed a new synthetic approach suitable for directly supporting dendritic nanostructures on VXC-72 carbon black (CB), single-walled carbon nanotubes (SWCNTs), and multi-walled carbon nanotubes (MWCNTs). The key of the synthesis is to creating a unique supporting/confining reaction environment by incorporating carbon within lipid bilayer relying on a hydrophobic-hydrophobic interaction. In order to realize size uniformity control over the supported dendritic nanostructures, a fast photocatalytic seeding method based on tin(IV) porphyrins (SnP) developed at Sandia was applied to the synthesis by using SnP-containing liposomes under tungsten light irradiation. For concept approval, one created dendritic platinum nanostructure supported on CB was fabricated into membrane electrode assemblies (MEAs) for durability examination via potential cycling. It appears that carbon supporting is essentially beneficial to an enhanced durability according to our preliminary results.

  3. Growth and characterization of two-dimensional nanostructures

    International Nuclear Information System (INIS)

    Herrera Sancho, Oscar Andrey

    2008-01-01

    Two dimensional nanostructures of palladium, nickel, silver and gadolinium were grown by means of physical evaporation in atmospheres of high vacuum and ultra high vacuum. The qualitative characterization, in situ, of the nanostructures was carried out with techniques of surface analysis: Auger electron spectroscopy and X-ray photoelectron spectroscopy (XPS). The model for the quantification of contaminants in the nanostructures, was proposed by Seah and Shirley, and was made using the spectra XPS measured in situ in the atmospheres of vacuum. For the two-dimensional nanostructures of gadolinium of thicknesses 8 Å, 16 Å, 24 Å, 32 Å, 36 Å, 44 Å, 50 Å, 61 Å, 77 Å, 81 Å, 92 Å and 101 Å, were obtained optical spectra of transmission measured in situ. An band of absorption centered at approximately 2,40 eV is obtained by an increase in the dynamic conductivity from the optical constants, i.e. refractive index and extinction coefficient, of the nanostructure of gadolinium. In addition, the optical constants for the gadolinium nanostructures have presented a maximum of 80 Å of thickness and then it was continued a decreasing tendency toward the values that were reported in the literature for bulk of gadolinium. (author) [es

  4. Metallic Nanostructures Based on DNA Nanoshapes

    Directory of Open Access Journals (Sweden)

    Boxuan Shen

    2016-08-01

    Full Text Available Metallic nanostructures have inspired extensive research over several decades, particularly within the field of nanoelectronics and increasingly in plasmonics. Due to the limitations of conventional lithography methods, the development of bottom-up fabricated metallic nanostructures has become more and more in demand. The remarkable development of DNA-based nanostructures has provided many successful methods and realizations for these needs, such as chemical DNA metallization via seeding or ionization, as well as DNA-guided lithography and casting of metallic nanoparticles by DNA molds. These methods offer high resolution, versatility and throughput and could enable the fabrication of arbitrarily-shaped structures with a 10-nm feature size, thus bringing novel applications into view. In this review, we cover the evolution of DNA-based metallic nanostructures, starting from the metallized double-stranded DNA for electronics and progress to sophisticated plasmonic structures based on DNA origami objects.

  5. Optical Biosensors Based on Semiconductor Nanostructures

    Directory of Open Access Journals (Sweden)

    Raúl J. Martín-Palma

    2009-06-01

    Full Text Available The increasing availability of semiconductor-based nanostructures with novel and unique properties has sparked widespread interest in their use in the field of biosensing. The precise control over the size, shape and composition of these nanostructures leads to the accurate control of their physico-chemical properties and overall behavior. Furthermore, modifications can be made to the nanostructures to better suit their integration with biological systems, leading to such interesting properties as enhanced aqueous solubility, biocompatibility or bio-recognition. In the present work, the most significant applications of semiconductor nanostructures in the field of optical biosensing will be reviewed. In particular, the use of quantum dots as fluorescent bioprobes, which is the most widely used application, will be discussed. In addition, the use of some other nanometric structures in the field of biosensing, including porous semiconductors and photonic crystals, will be presented.

  6. Plasmon-modulated photoluminescence from gold nanostructures and its dependence on plasmon resonance, excitation energy, and band structure

    NARCIS (Netherlands)

    Le Thi Ngoc, Loan; Wiedemair, Justyna; van den Berg, Albert; Carlen, Edwin

    2015-01-01

    Two distinct single-photon plasmon-modulated photoluminescence processes are generated from nanostructured gold surfaces by tuning the spectral overlap of the incident laser source, localized surface plasmon resonance band, and the interband transitions between the d and sp bands, near the X-and

  7. Plasmonic Switches and Sensors Based on PANI-Coated Gold Nanostructures

    Science.gov (United States)

    Jiang, Nina

    Gold nanostructures have been received intense and growing attention due to their unique properties associated with localized surface plasmon resonance (LSPR). The frequency and strength of the LSPR are highly dependent on the dielectric properties of the surrounding environment around gold nanostructures. Such dependence offers the essential basis for the achievement of plasmonic switching and sensing. While the plasmonic response of gold nanostructures is tuned by changing their dielectric environment, the external stimuli inducing the changes in the dielectric environment will be read out through the plasmonic response of gold nanostructures. As a consequence, plasmonic sensors and switches can be engineered by integrating active media that can respond to external stimuli with gold nanostructures. In this thesis research, I have achieved the coating of polyaniline (PANI) ' a conductive polymer, on gold nanostructures, and exploited the application of the core/shell nanostructures in plasmonic switching and sensing. Large modulation of the longitudinal plasmon resonance of single gold nanorods is achieved by coating PANI shell onto gold nanorods to produce colloidal plasmonic switches. The dielectric properties of PANI shell can be tuned by changing the proton-doping levels, which allows for the modulation of the plasmonic response of gold nanorods. The coated nanorods are sparsely housed in a simple microfluidic chamber. HCl and NaOH solutions are alternately pumped through the chamber for the realization of proton doping and dedoping. The plasmonic switching behavior is examined by monitoring the single-particle scattering spectra under the proton-doped and dedoped state of PANI. The coated nanorods exhibit a remarkable switching performance, with the modulation depth and scattering peak shift reaching 10 dB and 100 nm, respectively. Electrodynamic simulations are employed to confirm the plasmon switching behavior. I have further investigated the modulation of

  8. Nanotechnologies. Properties and applications of nanostructured materials

    International Nuclear Information System (INIS)

    Rempel, A A

    2007-01-01

    The review summarises the main methods for the preparation of nanostructured metals, alloys, semiconductors and ceramics. The formation mechanisms of nanostructures based on two different principles, viz. the assembly principle (bottom-up) and the disintegration principle (top-down), are analysed. Isolated nanoparticles, nanopowders and compact nanomaterials produced by these methods possess different properties. The scope of application of various classes of nanostructured materials is considered and the topicality of the development of nanoindustry is emphasised.

  9. Magnetic anisotropy and order parameter in nanostructured CoPt particles

    Science.gov (United States)

    Komogortsev, S. V.; Iskhakov, R. S.; Zimin, A. A.; Filatov, E. Yu.; Korenev, S. V.; Shubin, Yu. V.; Chizhik, N. A.; Yurkin, G. Yu.; Eremin, E. V.

    2013-10-01

    The correlation of magnetic anisotropy energy with order parameter in the crystallites of CoPt nanostructured particles prepared by thermal decomposition and further annealing has been studied by investigation of the approach magnetization to saturation curves and x-ray powder diffraction pattern profiles. It is shown that magnetic anisotropy energy value in partially ordered CoPt crystallite could be described as an intermediate case between two extremes, corresponding to either single or several c-domains of L10 phase in crystallite.

  10. Characterization of nanostructured CuO-porous silicon matrixformed on copper coated silicon substrate via electrochemical etching

    International Nuclear Information System (INIS)

    Naddaf, M.; Mrad, O.; Al-Zier, A.

    2015-01-01

    A pulsed anodic etching method has been utilized for nanostructuring of a copper-coated p-type (100) silicon substrate, using HF-based solution as electrolyte. Scanning electron microscopy reveals the formation of a nanostructured matrix that consists of island-like textures with nanosize grains grown onto fiber-like columnar structures separated with etch pits of grooved porous structures. Spatial micro-Raman scattering analysis indicates that the island-like texture is composed of single-phase cupric oxide (CuO) nanocrystals, while the grooved porous structure is barely related to formation of porous silicon (PS). X-ray diffraction shows that both the grown CuO nanostructures and the etched silicon layer have the same preferred (220) orientation. Chemical composition obtained by means of X-ray photoelectron spectroscopic (XPS) analysis confirms the presence of the single-phase CuO on the surface of the patterned CuO-PS matrix. As compared to PS formed on the bare silicon substrate, the room-temperature photoluminescence (PL) from the CuO-PS matrix exhibits an additional weak (blue) PL band as well as a blue shift in the PL band of PS (S-band). This has been revealed from XPS analysis to be associated with the enhancement in the SiO2 content as well as formation of the carbonyl group on the surface in the case of the CuO-PS matrix.(author)

  11. The in vitro sub-cellular localization and in vivo efficacy of novel chitosan/GMO nanostructures containing paclitaxel.

    Science.gov (United States)

    Trickler, W J; Nagvekar, A A; Dash, A K

    2009-08-01

    To determine the in vitro sub-cellular localization and in vivo efficacy of chitosan/GMO nanostructures containing paclitaxel (PTX) compared to a conventional PTX treatment (Taxol). The sub-cellular localization of coumarin-6 labeled chitosan/GMO nanostructures was determined by confocal microscopy in MDA-MB-231 cells. The antitumor efficacy was evaluated in two separate studies using FOX-Chase (CB17) SCID Female-Mice MDA-MB-231 xenograph model. Treatments consisted of intravenous Taxol or chitosan/GMO nanostructures with or without PTX, local intra-tumor bolus of Taxol or chitosan/GMO nanostructures with or without PTX. The tumor diameter and animal weight was monitored at various intervals. Histopathological changes were evaluated in end-point tumors. The tumor diameter increased at a constant rate for all the groups between days 7-14. After a single intratumoral bolus dose of chitosan/GMO containing PTX showed significant reduction in tumor diameter on day 15 when compared to control, placebo and intravenous PTX administration. The tumor diameter reached a maximal decrease (4-fold) by day 18, and the difference was reduced to approximately 2-fold by day 21. Qualitatively similar results were observed in a separate study containing PTX when administered intravenously. Chitosan/GMO nanostructures containing PTX are safe and effective administered locally or intravenously. Partially supported by DOD Award BC045664.

  12. Formation of different gold nanostructures by silk nanofibrils

    International Nuclear Information System (INIS)

    Fang, Guangqiang; Yang, Yuhong; Yao, Jinrong; Shao, Zhengzhong; Chen, Xin

    2016-01-01

    Metal nanostructures that have unique size- and shape-dependent electronic, optical and chemical properties gain more and more attention in modern science and technology. In this article, we show the possibility that we are able to obtain different gold nanostructures simply with the help of silk nanofibrils. We demonstrate that only by varying the pH of the reaction solution, we get gold nanoparticles, nano-icosahedrons, nanocubes, and even microplates. Particularly, we develop a practical method for the preparation of gold microplates in acid condition in the presence of silk nanofibrils, which is impossible by using other forms of silk protein. We attribute the role of silk nanofibrils in the formation of gold nanostructure to their reduction ability from several specific amino acid residues, and the suitable structural anisotropic features to sustain the crystal growth after the reduction process. Although the main purpose of this article is to demonstrate that silk nanofibrils are able to mediate the formation of different gold nanostructure, we show the potential applications of these resulting gold nanostructures, such as surface-enhanced Raman scattering (SERS) and photothermal transformation effect, as same as those produced by other methods. In conclusion, we present in this communication a facile and green synthesis route to prepare various gold nanostructures with silk nanofibrils by simply varying pH in the reaction system, which has remarkable advantages in future biomedical applications. - Highlights: • Different Au nanostructures can be obtained by a facile and green protein reduction method. • Silk nanofibrils serve as both reductant and template in the formation of Au nanostructures. • Different Au nanostructures can be obtained simply by regulating the pH in the medium. • Large Au microplates can be obtained with a cheap, abundant, sustainable silk protein. • Silk/Au hybrid nanocomposites show potential application in SERS and

  13. Superhydrophobic SERS substrates based on silicon hierarchical nanostructures

    Science.gov (United States)

    Chen, Xuexian; Wen, Jinxiu; Zhou, Jianhua; Zheng, Zebo; An, Di; Wang, Hao; Xie, Weiguang; Zhan, Runze; Xu, Ningsheng; Chen, Jun; She, Juncong; Chen, Huanjun; Deng, Shaozhi

    2018-02-01

    Silicon nanostructures have been cultivated as promising surface enhanced Raman scattering (SERS) substrates in terms of their low-loss optical resonance modes, facile functionalization, and compatibility with today’s state-of-the-art CMOS techniques. However, unlike their plasmonic counterparts, the electromagnetic field enhancements induced by silicon nanostructures are relatively small, which restrict their SERS sensing limit to around 10-7 M. To tackle this problem, we propose here a strategy for improving the SERS performance of silicon nanostructures by constructing silicon hierarchical nanostructures with a superhydrophobic surface. The hierarchical nanostructures are binary structures consisted of silicon nanowires (NWs) grown on micropyramids (MPs). After being modified with perfluorooctyltriethoxysilane (PFOT), the nanostructure surface shows a stable superhydrophobicity with a high contact angle of ˜160°. The substrate can allow for concentrating diluted analyte solutions into a specific area during the evaporation of the liquid droplet, whereby the analytes are aggregated into a small volume and can be easily detected by the silicon nanostructure SERS substrate. The analyte molecules (methylene blue: MB) enriched from an aqueous solution lower than 10-8 M can be readily detected. Such a detection limit is ˜100-fold lower than the conventional SERS substrates made of silicon nanostructures. Additionally, the detection limit can be further improved by functionalizing gold nanoparticles onto silicon hierarchical nanostructures, whereby the superhydrophobic characteristics and plasmonic field enhancements can be combined synergistically to give a detection limit down to ˜10-11 M. A gold nanoparticle-functionalized superhydrophobic substrate was employed to detect the spiked melamine in liquid milk. The results showed that the detection limit can be as low as 10-5 M, highlighting the potential of the proposed superhydrophobic SERS substrate in

  14. Formation of different gold nanostructures by silk nanofibrils

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Guangqiang [State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433 (China); Yang, Yuhong [Research Centre for Analysis and Measurement, Fudan University, Shanghai 200433 (China); Yao, Jinrong; Shao, Zhengzhong [State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433 (China); Chen, Xin, E-mail: chenx@fudan.edu.cn [State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433 (China)

    2016-07-01

    Metal nanostructures that have unique size- and shape-dependent electronic, optical and chemical properties gain more and more attention in modern science and technology. In this article, we show the possibility that we are able to obtain different gold nanostructures simply with the help of silk nanofibrils. We demonstrate that only by varying the pH of the reaction solution, we get gold nanoparticles, nano-icosahedrons, nanocubes, and even microplates. Particularly, we develop a practical method for the preparation of gold microplates in acid condition in the presence of silk nanofibrils, which is impossible by using other forms of silk protein. We attribute the role of silk nanofibrils in the formation of gold nanostructure to their reduction ability from several specific amino acid residues, and the suitable structural anisotropic features to sustain the crystal growth after the reduction process. Although the main purpose of this article is to demonstrate that silk nanofibrils are able to mediate the formation of different gold nanostructure, we show the potential applications of these resulting gold nanostructures, such as surface-enhanced Raman scattering (SERS) and photothermal transformation effect, as same as those produced by other methods. In conclusion, we present in this communication a facile and green synthesis route to prepare various gold nanostructures with silk nanofibrils by simply varying pH in the reaction system, which has remarkable advantages in future biomedical applications. - Highlights: • Different Au nanostructures can be obtained by a facile and green protein reduction method. • Silk nanofibrils serve as both reductant and template in the formation of Au nanostructures. • Different Au nanostructures can be obtained simply by regulating the pH in the medium. • Large Au microplates can be obtained with a cheap, abundant, sustainable silk protein. • Silk/Au hybrid nanocomposites show potential application in SERS and

  15. Metal films with imprinted nanostructures by template stripping

    DEFF Research Database (Denmark)

    Eriksen, René Lynge; Pors, Anders; Dreier, Jes

    We present a novel template stripping procedure for fabricating metal films with imprinted nanostructures. The basic idea is to deposit a gold film onto a nano-structured substrate and subsequently strip the film from the substrate surface thereby revealing imprinted nanostructures in the film...... result is a thin gold film with imprinted nano-cavities....

  16. Cationic gemini surfactant-assisted synthesis of hollow Au nanostructures by stepwise reductions.

    Science.gov (United States)

    Wang, Wentao; Han, Yuchun; Tian, Maozhang; Fan, Yaxun; Tang, Yongqiang; Gao, Mingyuan; Wang, Yilin

    2013-06-26

    A novel synthetic approach was developed for creating versatile hollow Au nanostructures by stepwise reductions of Au(III) upon the use of cationic gemini surfactant hexamethylene-1,6-bis(dodecyl dimethylammonium bromide) (C12C6C12Br2) as a template agent. It was observed that the Au(I) ions obtained from the reduction of Au(III) by ascorbic acid can assist the gemini surfactant to form vesicles, capsule-like, and tube-like aggregates that subsequently act as soft templates for hollow Au nanostructures upon further reduction of Au(I) to Au(0) by NaBH4. It was demonstrated that the combination of C12C6C12Br2 and Au(I) plays a key role in regulating the structure of the hollow precursors not only because C12C6C12Br2 has a stronger aggregation ability in comparison with its single chain counterpart but also because the electrostatic repulsion between head groups of C12C6C12Br2 is greatly weakened after Au(III) is converted to Au(I), which is in favor of the construction of vesicles, capsule-like, and tube-like aggregates. Compared with solid Au nanospheres, the resultant hollow nanostructures exhibit enhanced electrocatalytic activities in methanol oxidation, following the order of elongated nanocapsule > nanocapsule > nanosphere. Benefiting from balanced interactions between the gemini surfactant and Au(I), this soft-template method may present a facile and versatile approach for the controlled synthesis of Au nanostructures potentially useful for fuel cells and other Au nanodevices.

  17. Prospects of target nanostructuring for laser proton acceleration

    Science.gov (United States)

    Lübcke, Andrea; Andreev, Alexander A.; Höhm, Sandra; Grunwald, Ruediger; Ehrentraut, Lutz; Schnürer, Matthias

    2017-03-01

    In laser-based proton acceleration, nanostructured targets hold the promise to allow for significantly boosted proton energies due to strong increase of laser absorption. We used laser-induced periodic surface structures generated in-situ as a very fast and economic way to produce nanostructured targets capable of high-repetition rate applications. Both in experiment and theory, we investigate the impact of nanostructuring on the proton spectrum for different laser-plasma conditions. Our experimental data show that the nanostructures lead to a significant enhancement of absorption over the entire range of laser plasma conditions investigated. At conditions that do not allow for efficient laser absorption by plane targets, i.e. too steep plasma gradients, nanostructuring is found to significantly enhance the proton cutoff energy and conversion efficiency. In contrast, if the plasma gradient is optimized for laser absorption of the plane target, the nanostructure-induced absorption increase is not reflected in higher cutoff energies. Both, simulation and experiment point towards the energy transfer from the laser to the hot electrons as bottleneck.

  18. Thermal failure of nanostructured thermal barrier coatings with cold sprayed nanostructured NiCrAlY bond coat

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Q.; Li, Y.; Zhang, S.L.; Wang, X.R.; Yang, G.J.; Li, C.X.; Li, C.J. [Xi' an Jiaotong Univ., Xi' an (China)

    2008-07-01

    Nanostructured YSZ is expected to exhibit a high strain tolerability due to its low Young's modulus and consequently high durability. In this study, a porous YSZ as the thermal barrier coating was deposited by plasma spraying using an agglomerated nanostructured YSZ powder on a Ni-based superalloy Inconel 738 substrate with a cold-sprayed nanostructured NiCrAlY as the bond coat. The heat treatment in Ar atmosphere was applied to the cold-sprayed bond coat before deposition of YSZ. The isothermal oxidation and thermal cycling tests were applied to examine failure modes of plasma-sprayed nanostructured YSZ. The results showed that YSZ coating was deposited by partially melted YSZ particles. The nonmelted fraction of spray particles retains the porous nanostructure of the starting powder into the deposit. YSZ coating exhibits a bimodal microstructure consisting of nanosized particles retained from the powder and micro-columnar grains formed through the solidification of the melted fraction in spray particles. The oxidation of the bond coat occurs during the heat treatment in Ar atmosphere. The uniform oxide at the interface between the bond coat and YSZ can be formed during isothermal test. The cracks were observed at the interface between TGO/BC or TGO/YSZ after thermal cyclic test. However, the failure of TBCs mainly occurred through spalling of YSZ within YSZ coating. The failure characteristics of plasma-sprayed nanostructured YSZ are discussed based on the coating microstructure and formation of TGO on the bond coat surface. (orig.)

  19. Highly mesoporous {alpha}-Fe{sub 2}O{sub 3} nanostructures: preparation, characterization and improved photocatalytic performance towards Rhodamine B (RhB)

    Energy Technology Data Exchange (ETDEWEB)

    Bharathi, S; Nataraj, D [Thin Films and Nanomaterials Lab, Department of Physics, Bharathiar University, Coimbatore 641046 (India); Mangalaraj, D [DRDO-BU Centre for Life Sciences, Bharathiar University, Coimbatore 641046 (India); Masuda, Y [National Institute of Advanced Industrial Science and Technology (AIST), Nagoya 463-8560 (Japan); Senthil, K [Centre for Information Materials, Pohang University of Science and Technology, Pohang (Korea, Republic of); Yong, K, E-mail: de.natraj@gmail.co [Department of Chemical Engineering, Pohang University of Science and Technology, Pohang (Korea, Republic of)

    2010-01-13

    Single-crystalline porous hematite nanorods and spindle-like nanostructures were successfully synthesized by a low temperature reflux condensation method. Two different iron sources, namely, FeCl{sub 3{center_dot}}6H{sub 2}O and Fe(NO{sub 3}){sub 3{center_dot}}9H{sub 2}O, were hydrolyzed in the presence of urea to selectively prepare nanorods and spindle-like nanostructures. Initially, the akagenite phase was obtained by refluxing the precursor for 12 h and then the as-prepared akagenite nanostructures were transformed to porous hematite nanostructures upon calcination at 300 {sup 0}C for 1 h. The shape and the aspect ratio of the 12 h refluxed sample was retained even after calcination and this shows the topotactic transformation of the nanostructure. TEM and HRTEM investigations have shown the porous nature of the prepared sample. Brunauer-Emmett-Teller and Barret-Joyner-Halenda measurements have shown a large surface area and distribution of mesopores in the nanorods sample. The photocatalytic activity of the prepared nanostructures towards RhB has reflected this variation in the pore size distribution and specific surface area, by showing a higher activity for the nanorods sample. Magnetic studies by VSM have shown a weak ferromagnetic behaviour in both the samples due to shape anisotropy.

  20. The interplay between nanostructured carbon-grafted chitosan scaffolds and protein adsorption on the cellular response of osteoblasts: structure-function property relationship.

    Science.gov (United States)

    Depan, D; Misra, R D K

    2013-04-01

    The rapid adsorption of proteins occurs during the early stages of biomedical device implantation into physiological systems. In this regard, the adsorption of proteins is a strong function of the nature of a biomedical device, which ultimately governs the biological functions. The objective of this study was to elucidate the interplay between nanostructured carbon-modified (graphene oxide and single-walled carbon nanohorn) chitosan scaffolds and consequent protein adsorption and biological function (osteoblast function). We compare and contrast the footprint of protein adsorption on unmodified chitosan and nanostructured carbon-modified chitosan. A comparative analysis of cell-substrate interactions using an osteoblast cell line (MC3T3-E1) implied that biological functions were significantly enhanced in the presence of nanostructured carbon, compared with unmodified chitosan. The difference in their respective behaviors is related to the degree and topography of protein adsorption on the scaffolds. Furthermore, there was a synergistic effect of nanostructured carbon and protein adsorption in terms of favorably modulating biological functions, including cell attachment, proliferation and viability, with the effect being greater on nanostructured carbon-modified scaffolds. The study also underscores that protein adsorption is favored in nanostructured carbon-modified scaffolds such that bioactivity and biological function are promoted. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Chemical modifications and reactions in DNA nanostructures

    DEFF Research Database (Denmark)

    Gothelf, Kurt Vesterager

    2017-01-01

    such as hydrocarbons or steroids have been introduced to change the surface properties of DNA origami structures, either to protect the DNA nanostructure or to dock it into membranes and other hydrophobic surfaces. DNA nanostructures have also been used to control covalent chemical reactions. This article provides......DNA nanotechnology has the power to form self-assembled and well-defined nanostructures, such as DNA origami, where the relative positions of each atom are known with subnanometer precision. Our ability to synthesize oligonucleotides with chemical modifications in almost any desired position...... provides rich opportunity to incorporate molecules, biomolecules, and a variety of nanomaterials in specific positions on DNA nanostructures. Several standard modifications for oligonucleotides are available commercially, such as dyes, biotin, and chemical handles, and such modified oligonucleotides can...

  2. Metal chalcogenide nanostructures for renewable energy applications

    CERN Document Server

    Qurashi, Ahsanulhaq

    2014-01-01

    This first ever reference book that focuses on metal chalcogenide semiconductor nanostructures for renewable energy applications encapsulates the state-of-the-art in multidisciplinary research on the metal chalcogenide semiconductor nanostructures (nanocrystals, nanoparticles, nanorods, nanowires,  nanobelts, nanoflowers, nanoribbons and more).  The properties and synthesis of a class of nanomaterials is essential to renewable energy manufacturing and this book focuses on the synthesis of metal chalcogendie nanostructures, their growth mechanism, optical, electrical, and other important prop

  3. Metal-organic framework templated electrodeposition of functional gold nanostructures

    International Nuclear Information System (INIS)

    Worrall, Stephen D.; Bissett, Mark A.; Hill, Patrick I.; Rooney, Aidan P.; Haigh, Sarah J.; Attfield, Martin P.; Dryfe, Robert A.W.

    2016-01-01

    Highlights: • Electrodeposition of anisotropic Au nanostructures templated by HKUST-1. • Au nanostructures replicate ∼1.4 nm pore spaces of HKUST-1. • Encapsulated Au nanostructures active as SERS substrate for 4-fluorothiophenol. - Abstract: Utilizing a pair of quick, scalable electrochemical processes, the permanently porous MOF HKUST-1 was electrochemically grown on a copper electrode and this HKUST-1-coated electrode was used to template electrodeposition of a gold nanostructure within the pore network of the MOF. Transmission electron microscopy demonstrates that a proportion of the gold nanostructures exhibit structural features replicating the pore space of this ∼1.4 nm maximum pore diameter MOF, as well as regions that are larger in size. Scanning electron microscopy shows that the electrodeposited gold nanostructure, produced under certain conditions of synthesis and template removal, is sufficiently inter-grown and mechanically robust to retain the octahedral morphology of the HKUST-1 template crystals. The functionality of the gold nanostructure within the crystalline HKUST-1 was demonstrated through the surface enhanced Raman spectroscopic (SERS) detection of 4-fluorothiophenol at concentrations as low as 1 μM. The reported process is confirmed as a viable electrodeposition method for obtaining functional, accessible metal nanostructures encapsulated within MOF crystals.

  4. Study of resonant processes in plasmonic nanostructures for sensor applications (Conference Presentation)

    Science.gov (United States)

    Pirunčík, Jiří; Kwiecien, Pavel; Fiala, Jan; Richter, Ivan

    2017-05-01

    This contribution is focused on the numerical studies of resonant processes in individual plasmonic nanostructures, with the attention particularly given to rectangular nanoparticles and concominant localized surface plasmon resonance processes. Relevant models for the description and anylysis of localized surface plasmon resonance are introduced, in particular: quasistatic approximation, Mie theory and in particular, a generalized (quasi)analytical approach for treating rectangularly shaped nanostructures. The parameters influencing resonant behavior of nanoparticles are analyzed with special interest in morphology and sensor applications. Results acquired with Lumerical FDTD Solutions software, using finite-difference time-domain simulation method, are shown and discussed. Simulations were mostly performed for selected nanostructures composed of finite rectangular nanowires with square cross-sections. Systematic analysis is made for single nanowires with varying length, parallel couple of nanowires with varying gap (cut -wires) and selected dolmen structures with varying gap between one nanowire transversely located with respect to parallel couple of nanowires (in both in-plane and -out-of-plane arrangements). The dependence of resonant peaks of cross-section spectral behavior (absorption, scattering, extinction) and their tunability via suitable structuring and morphology changes are primarily researched. These studies are then followed with an analysis of the effect of periodic arrangements. The results can be usable with respect to possible sensor applications.

  5. Hyperbranched quasi-1D nanostructures for solid-state dye-sensitized solar cells.

    Science.gov (United States)

    Passoni, Luca; Ghods, Farbod; Docampo, Pablo; Abrusci, Agnese; Martí-Rujas, Javier; Ghidelli, Matteo; Divitini, Giorgio; Ducati, Caterina; Binda, Maddalena; Guarnera, Simone; Li Bassi, Andrea; Casari, Carlo Spartaco; Snaith, Henry J; Petrozza, Annamaria; Di Fonzo, Fabio

    2013-11-26

    In this work we demonstrate hyperbranched nanostructures, grown by pulsed laser deposition, composed of one-dimensional anatase single crystals assembled in arrays of high aspect ratio hierarchical mesostructures. The proposed growth mechanism relies on a two-step process: self-assembly from the gas phase of amorphous TiO2 clusters in a forest of tree-shaped hierarchical mesostructures with high aspect ratio; oriented crystallization of the branches upon thermal treatment. Structural and morphological characteristics can be optimized to achieve both high specific surface area for optimal dye uptake and broadband light scattering thanks to the microscopic feature size. Solid-state dye sensitized solar cells fabricated with arrays of hyperbranched TiO2 nanostructures on FTO-glass sensitized with D102 dye showed a significant 66% increase in efficiency with respect to a reference mesoporous photoanode and reached a maximum efficiency of 3.96% (among the highest reported for this system). This result was achieved mainly thanks to an increase in photogenerated current directly resulting from improved light harvesting efficiency of the hierarchical photoanode. The proposed photoanode overcomes typical limitations of 1D TiO2 nanostructures applied to ss-DSC and emerges as a promising foundation for next-generation high-efficiency solid-state devices comprosed of dyes, polymers, or quantum dots as sensitizers.

  6. Temperature-feedback direct laser reshaping of silicon nanostructures

    Science.gov (United States)

    Aouassa, M.; Mitsai, E.; Syubaev, S.; Pavlov, D.; Zhizhchenko, A.; Jadli, I.; Hassayoun, L.; Zograf, G.; Makarov, S.; Kuchmizhak, A.

    2017-12-01

    Direct laser reshaping of nanostructures is a cost-effective and fast approach to create or tune various designs for nanophotonics. However, the narrow range of required laser parameters along with the lack of in-situ temperature control during the nanostructure reshaping process limits its reproducibility and performance. Here, we present an approach for direct laser nanostructure reshaping with simultaneous temperature control. We employ thermally sensitive Raman spectroscopy during local laser melting of silicon pillar arrays prepared by self-assembly microsphere lithography. Our approach allows establishing the reshaping threshold of an individual nanostructure, resulting in clean laser processing without overheating of the surrounding area.

  7. Facile Growth of Multi-twined Au Nanostructures

    Indian Academy of Sciences (India)

    like nanostructures undergo spontaneous transformation into multi-twined nanostructures within 24 h. These nanocrystalline ... reactions,1 and a color indicating reagent for the sensing of biomolecules.2 ... Two-compartment, three electrode ...

  8. Nanostructures for Organic Solar Cells

    DEFF Research Database (Denmark)

    Goszczak, Arkadiusz Jarosław

    2016-01-01

    The experimental work in this thesis is focused on the fabrication of nanostructures that can be implemented in organic solar cell (OSC) architecture for enhancement of the device performance. Solar devices made from organic material are gaining increased attention, compared to their inorganic...... counterparts, due to the promising advantages, such as transparency, flexibility, ease of processing etc. But their efficiencies cannot be compared to the inorganic ones. Boosting the efficiency of OSCs by nanopatterning has thus been puzzling many researchers within the past years. Therefore various methods...... have been proposed to be used for developing efficient nanostructures for OSC devices such as, plasmonic structures, nanowires (NWs), gratings, nanorods etc. The nanostructuring methods applied though, do not offer the possibility of a cheap, rapid, reproducible and scalable fabrication. It is the aim...

  9. Emerging advances in nanomedicine with engineered gold nanostructures.

    Science.gov (United States)

    Webb, Joseph A; Bardhan, Rizia

    2014-03-07

    Gold nanostructures possess unique characteristics that enable their use as contrast agents, as therapeutic entities, and as scaffolds to adhere functional molecules, therapeutic cargo, and targeting ligands. Due to their ease of synthesis, straightforward surface functionalization, and non-toxicity, gold nanostructures have emerged as powerful nanoagents for cancer detection and treatment. This comprehensive review summarizes the progress made in nanomedicine with gold nanostructures (1) as probes for various bioimaging techniques including dark-field, one-photon and two-photon fluorescence, photothermal optical coherence tomography, photoacoustic tomography, positron emission tomography, and surface-enhanced Raman scattering based imaging, (2) as therapeutic components for photothermal therapy, gene and drug delivery, and radiofrequency ablation, and (3) as a theranostic platform to simultaneously achieve both cancer detection and treatment. Distinct from other published reviews, this article also discusses the recent advances of gold nanostructures as contrast agents and therapeutic actuators for inflammatory diseases including atherosclerotic plaque and arthritis. For each of the topics discussed above, the fundamental principles and progress made in the past five years are discussed. The review concludes with a detailed future outlook discussing the challenges in using gold nanostructures, cellular trafficking, and translational considerations that are imperative for rapid clinical viability of plasmonic nanostructures, as well as the significance of emerging technologies such as Fano resonant gold nanostructures in nanomedicine.

  10. Nanostructured thin films and coatings functional properties

    CERN Document Server

    Zhang, Sam

    2010-01-01

    The second volume in ""The Handbook of Nanostructured Thin Films and Coatings"" set, this book focuses on functional properties, including optical, electronic, and electrical properties, as well as related devices and applications. It explores the large-scale fabrication of functional thin films with nanoarchitecture via chemical routes, the fabrication and characterization of SiC nanostructured/nanocomposite films, and low-dimensional nanocomposite fabrication and applications. The book also presents the properties of sol-gel-derived nanostructured thin films as well as silicon nanocrystals e

  11. Nanostructured piezoelectric energy harvesters

    CERN Document Server

    Briscoe, Joe

    2014-01-01

    This book covers a range of devices that use piezoelectricity to convert mechanical deformation into electrical energy and relates their output capabilities to a range of potential applications. Starting with a description of the fundamental principles and properties of piezo- and ferroelectric materials, where applications of bulk materials are well established, the book shows how nanostructures of these materials are being developed for energy harvesting applications. The authors show how a nanostructured device can be produced, and put in context some of the approaches that are being invest

  12. Understanding Soviet Naval Developments

    Science.gov (United States)

    1991-07-01

    submarine noise reduction technology. A single-unit experimental, deep diving SSN. SSBN in a process that converted the unit to dubbed the MIKE class, was...is second only to that of Ja- ties. When the Soviet MIKE SSN suffered a pan in total catch tonnage each year. fire in the Norwegian Sea in April of... sharpl \\ tapered nose providing better o~er-the-nose visibil- ity: this change ’. as miade possible by the absence of’ the MIiG-23’s air intercept radar

  13. Copercolating Networks: An Approach for Realizing High-Performance Transparent Conductors using Multicomponent Nanostructured Networks

    Directory of Open Access Journals (Sweden)

    Das Suprem R.

    2016-06-01

    Full Text Available Although transparent conductive oxides such as indium tin oxide (ITO are widely employed as transparent conducting electrodes (TCEs for applications such as touch screens and displays, new nanostructured TCEs are of interest for future applications, including emerging transparent and flexible electronics. A number of twodimensional networks of nanostructured elements have been reported, including metallic nanowire networks consisting of silver nanowires, metallic carbon nanotubes (m-CNTs, copper nanowires or gold nanowires, and metallic mesh structures. In these single-component systems, it has generally been difficult to achieve sheet resistances that are comparable to ITO at a given broadband optical transparency. A relatively new third category of TCEs consisting of networks of 1D-1D and 1D-2D nanocomposites (such as silver nanowires and CNTs, silver nanowires and polycrystalline graphene, silver nanowires and reduced graphene oxide have demonstrated TCE performance comparable to, or better than, ITO. In such hybrid networks, copercolation between the two components can lead to relatively low sheet resistances at nanowire densities corresponding to high optical transmittance. This review provides an overview of reported hybrid networks, including a comparison of the performance regimes achievable with those of ITO and single-component nanostructured networks. The performance is compared to that expected from bulk thin films and analyzed in terms of the copercolation model. In addition, performance characteristics relevant for flexible and transparent applications are discussed. The new TCEs are promising, but significant work must be done to ensure earth abundance, stability, and reliability so that they can eventually replace traditional ITO-based transparent conductors.

  14. Complex Nanostructures from Materials based on Metal-Organic Frameworks for Electrochemical Energy Storage and Conversion.

    Science.gov (United States)

    Guan, Bu Yuan; Yu, Xin Yao; Wu, Hao Bin; Lou, Xiong Wen David

    2017-12-01

    Metal-organic frameworks (MOFs) have drawn tremendous attention because of their abundant diversity in structure and composition. Recently, there has been growing research interest in deriving advanced nanomaterials with complex architectures and tailored chemical compositions from MOF-based precursors for electrochemical energy storage and conversion. Here, a comprehensive overview of the synthesis and energy-related applications of complex nanostructures derived from MOF-based precursors is provided. After a brief summary of synthetic methods of MOF-based templates and their conversion to desirable nanostructures, delicate designs and preparation of complex architectures from MOFs or their composites are described in detail, including porous structures, single-shelled hollow structures, and multishelled hollow structures, as well as other unusual complex structures. Afterward, their applications are discussed as electrode materials or catalysts for lithium-ion batteries, hybrid supercapacitors, water-splitting devices, and fuel cells. Lastly, the research challenges and possible development directions of complex nanostructures derived from MOF-based-templates for electrochemical energy storage and conversion applications are outlined. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Development of a gold-nanostructured surface for amperometric genosensors

    Energy Technology Data Exchange (ETDEWEB)

    Zanardi, Chiara, E-mail: chiara.zanardi@unimore.it [Universita di Modena e Reggio Emilia, Dipartimento di Chimica (Italy); Baldoli, Clara, E-mail: clara.baldoli@istm.cnr.it [Istituto di Scienze e Tecnologie Molecolari del CNR (Italy); Licandro, Emanuela [Universita degli Studi di Milano, Dipartimento di Chimica Organica ed Industriale (Italy); Terzi, Fabio; Seeber, Renato [Universita di Modena e Reggio Emilia, Dipartimento di Chimica (Italy)

    2012-10-15

    A gold-nanostructured surface has been obtained by stable deposition of chemically synthesized gold nanoparticles (2.1-5.5 nm size range) on a gold substrate through a dithiol linker. The method proposed for the obtainment of the nanostructure is suitable for the further stable anchoring of a peptide nucleic acid oligomer through four amine groups of lysine terminal residues, leading to fairly reproducible systems. The geometric area of the nanostructured surface is compared with those of a smooth and of an electrochemically generated nanostructured surface by depositing a probe bearing an electrochemically active ferrocene residue. Despite the area of the two nanostructures being quite similar, the response toward a 2 nM target oligonucleotide sequence is particularly high when using the surface built up by nanoparticle deposition. This aspect indicates that morphologic details of the nanostructure play a key role in conditioning the performances of the genosensors.

  16. Development of a gold-nanostructured surface for amperometric genosensors

    International Nuclear Information System (INIS)

    Zanardi, Chiara; Baldoli, Clara; Licandro, Emanuela; Terzi, Fabio; Seeber, Renato

    2012-01-01

    A gold-nanostructured surface has been obtained by stable deposition of chemically synthesized gold nanoparticles (2.1–5.5 nm size range) on a gold substrate through a dithiol linker. The method proposed for the obtainment of the nanostructure is suitable for the further stable anchoring of a peptide nucleic acid oligomer through four amine groups of lysine terminal residues, leading to fairly reproducible systems. The geometric area of the nanostructured surface is compared with those of a smooth and of an electrochemically generated nanostructured surface by depositing a probe bearing an electrochemically active ferrocene residue. Despite the area of the two nanostructures being quite similar, the response toward a 2 nM target oligonucleotide sequence is particularly high when using the surface built up by nanoparticle deposition. This aspect indicates that morphologic details of the nanostructure play a key role in conditioning the performances of the genosensors.

  17. Method for manufacturing a single crystal nanowire

    NARCIS (Netherlands)

    van den Berg, Albert; Bomer, Johan G.; Carlen, Edwin; Chen, S.; Kraaijenhagen, Roderik Adriaan; Pinedo, Herbert Michael

    2013-01-01

    A method for manufacturing a single crystal nano-structure is provided comprising the steps of providing a device layer with a 100 structure on a substrate; providing a stress layer onto the device layer; patterning the stress layer along the 110 direction of the device layer; selectively removing

  18. Method for manufacturing a single crystal nanowire

    NARCIS (Netherlands)

    van den Berg, Albert; Bomer, Johan G.; Carlen, Edwin; Chen, S.; Kraaijenhagen, R.A.; Pinedo, Herbert Michael

    2010-01-01

    A method for manufacturing a single crystal nano-structure is provided comprising the steps of providing a device layer with a 100 structure on a substrate; providing a stress layer onto the device layer; patterning the stress layer along the 110 direction of the device layer; selectively removing

  19. Time-resolved terahertz spectroscopy of semiconductor nanostructures

    DEFF Research Database (Denmark)

    Porte, Henrik

    This thesis describes time-resolved terahertz spectroscopy measurements on various semiconductor nanostructures. The aim is to study the carrier dynamics in these nanostructures on a picosecond timescale. In a typical experiment carriers are excited with a visible or near-infrared pulse and by me......This thesis describes time-resolved terahertz spectroscopy measurements on various semiconductor nanostructures. The aim is to study the carrier dynamics in these nanostructures on a picosecond timescale. In a typical experiment carriers are excited with a visible or near-infrared pulse...... and by measuring the transmission of a terahertz probe pulse, the photoconductivity of the excited sample can be obtained. By changing the relative arrival time at the sample between the pump and the probe pulse, the photoconductivity dynamics can be studied on a picosecond timescale. The rst studied semiconductor...

  20. Quantum-corrected transient analysis of plasmonic nanostructures

    KAUST Repository

    Uysal, Ismail Enes

    2017-03-08

    A time domain surface integral equation (TD-SIE) solver is developed for quantum-corrected analysis of transient electromagnetic field interactions on plasmonic nanostructures with sub-nanometer gaps. “Quantum correction” introduces an auxiliary tunnel to support the current path that is generated by electrons tunneled between the nanostructures. The permittivity of the auxiliary tunnel and the nanostructures is obtained from density functional theory (DFT) computations. Electromagnetic field interactions on the combined structure (nanostructures plus auxiliary tunnel connecting them) are computed using a TD-SIE solver. Time domain samples of the permittivity and the Green function required by this solver are obtained from their frequency domain samples (generated from DFT computations) using a semi-analytical method. Accuracy and applicability of the resulting quantum-corrected solver scheme are demonstrated via numerical examples.

  1. Complex Hollow Nanostructures: Synthesis and Energy-Related Applications.

    Science.gov (United States)

    Yu, Le; Hu, Han; Wu, Hao Bin; Lou, Xiong Wen David

    2017-04-01

    Hollow nanostructures offer promising potential for advanced energy storage and conversion applications. In the past decade, considerable research efforts have been devoted to the design and synthesis of hollow nanostructures with high complexity by manipulating their geometric morphology, chemical composition, and building block and interior architecture to boost their electrochemical performance, fulfilling the increasing global demand for renewable and sustainable energy sources. In this Review, we present a comprehensive overview of the synthesis and energy-related applications of complex hollow nanostructures. After a brief classification, the design and synthesis of complex hollow nanostructures are described in detail, which include hierarchical hollow spheres, hierarchical tubular structures, hollow polyhedra, and multi-shelled hollow structures, as well as their hybrids with nanocarbon materials. Thereafter, we discuss their niche applications as electrode materials for lithium-ion batteries and hybrid supercapacitors, sulfur hosts for lithium-sulfur batteries, and electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. The potential superiorities of complex hollow nanostructures for these applications are particularly highlighted. Finally, we conclude this Review with urgent challenges and further research directions of complex hollow nanostructures for energy-related applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Matrix-assisted energy conversion in nanostructured piezoelectric arrays

    Science.gov (United States)

    Sirbuly, Donald J.; Wang, Xianying; Wang, Yinmin

    2013-01-01

    A nanoconverter is capable of directly generating electricity through a nanostructure embedded in a polymer layer experiencing differential thermal expansion in a stress transfer zone. High surface-to-volume ratio semiconductor nanowires or nanotubes (such as ZnO, silicon, carbon, etc.) are grown either aligned or substantially vertically aligned on a substrate. The resulting nanoforest is then embedded with the polymer layer, which transfers stress to the nanostructures in the stress transfer zone, thereby creating a nanostructure voltage output due to the piezoelectric effect acting on the nanostructure. Electrodes attached at both ends of the nanostructures generate output power at densities of .about.20 nW/cm.sup.2 with heating temperatures of .about.65.degree. C. Nanoconverters arrayed in a series parallel arrangement may be constructed in planar, stacked, or rolled arrays to supply power to nano- and micro-devices without use of external batteries.

  3. Structural DNA Nanotechnology: Artificial Nanostructures for Biomedical Research.

    Science.gov (United States)

    Ke, Yonggang; Castro, Carlos; Choi, Jong Hyun

    2018-04-04

    Structural DNA nanotechnology utilizes synthetic or biologic DNA as designer molecules for the self-assembly of artificial nanostructures. The field is founded upon the specific interactions between DNA molecules, known as Watson-Crick base pairing. After decades of active pursuit, DNA has demonstrated unprecedented versatility in constructing artificial nanostructures with significant complexity and programmability. The nanostructures could be either static, with well-controlled physicochemical properties, or dynamic, with the ability to reconfigure upon external stimuli. Researchers have devoted considerable effort to exploring the usability of DNA nanostructures in biomedical research. We review the basic design methods for fabricating both static and dynamic DNA nanostructures, along with their biomedical applications in fields such as biosensing, bioimaging, and drug delivery. Expected final online publication date for the Annual Review of Biomedical Engineering Volume 20 is June 4, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  4. Single Nanoparticle Plasmonic Sensors

    Directory of Open Access Journals (Sweden)

    Manish Sriram

    2015-10-01

    Full Text Available The adoption of plasmonic nanomaterials in optical sensors, coupled with the advances in detection techniques, has opened the way for biosensing with single plasmonic particles. Single nanoparticle sensors offer the potential to analyse biochemical interactions at a single-molecule level, thereby allowing us to capture even more information than ensemble measurements. We introduce the concepts behind single nanoparticle sensing and how the localised surface plasmon resonances of these nanoparticles are dependent upon their materials, shape and size. Then we outline the different synthetic approaches, like citrate reduction, seed-mediated and seedless growth, that enable the synthesis of gold and silver nanospheres, nanorods, nanostars, nanoprisms and other nanostructures with tunable sizes. Further, we go into the aspects related to purification and functionalisation of nanoparticles, prior to the fabrication of sensing surfaces. Finally, the recent developments in single nanoparticle detection, spectroscopy and sensing applications are discussed.

  5. Tin DioxideNanostructure Gas Sensor for Acetone and Methanol Detection

    Directory of Open Access Journals (Sweden)

    Osama Abdul Azeez Dakhil

    2017-02-01

    Full Text Available Simple and efficient technique were successfully used to prepare Tin dioxide (SnO2 nanostructure by simple evaporation method, using single stage horizontal tube furnace under atmosphere pressure and quartz tube with Argon flow without additive. SnO2 thick films were synthesized using simple, homemade, low-cost efficient screen print technique. The thick films were heated at 500 0Cfor one hour to vanish the organic material and any residual impurities. The prepared thick films were investigated using different techniques and apparatus, X-Ray and FESEM to study the structural and morphology of the films, the X-ray results show that the films are polycrystalline with sharp and high intensity peaks indicating high crystalinity of the product. The FESEM Images show homogenous nanostructure with high porosity the dimension range 40-70 nm, optical properties was studied with photoluminescence emission (PL and transmittance in UV-Visible range. SnO2 sensor was built up by electroding the thick films and used for Acetone and methanol detection.

  6. Generation of high-intensity sub-30 as pulses by inhomogeneous polarization gating technology in bowtie-shaped nanostructure

    Science.gov (United States)

    Feng, Liqiang; Feng, A. Yuanzi

    2018-04-01

    The generation of high-order harmonics and single attosecond pulses (SAPs) from He atom driven by the inhomogeneous polarization gating technology in a bowtie-shaped nanostructure is theoretically investigated. The results show that by the proper addition of bowtie-shaped nanostructure along the driven laser polarization direction, the harmonic emission becomes sensitive to the position of the laser field, and the harmonics emitted at the maximum orders that generate SAPs occur only at one side of the region inside the nanostructure. As a result, not only the harmonic cutoff can be extended, but also the modulations of the harmonics can be decreased, showing a carrier envelope phase independent harmonic cutoff with a bandwidth of 310 eV. Further, with the proper introduction of an ultraviolet pulse, the harmonic yield can be enhanced by 2 orders of magnitude. Finally, by the Fourier transformation of the selected harmonics, some SAPs with a full width at half maximum of sub-30 as can be obtained.

  7. Characterization of nanostructured CuO-porous silicon matrix formed on copper-coated silicon substrate via electrochemical etching

    Science.gov (United States)

    Naddaf, M.; Mrad, O.; Al-zier, A.

    2014-06-01

    A pulsed anodic etching method has been utilized for nanostructuring of a copper-coated p-type (100) silicon substrate, using HF-based solution as electrolyte. Scanning electron microscopy reveals the formation of a nanostructured matrix that consists of island-like textures with nanosize grains grown onto fiber-like columnar structures separated with etch pits of grooved porous structures. Spatial micro-Raman scattering analysis indicates that the island-like texture is composed of single-phase cupric oxide (CuO) nanocrystals, while the grooved porous structure is barely related to formation of porous silicon (PS). X-ray diffraction shows that both the grown CuO nanostructures and the etched silicon layer have the same preferred (220) orientation. Chemical composition obtained by means of X-ray photoelectron spectroscopic (XPS) analysis confirms the presence of the single-phase CuO on the surface of the patterned CuO-PS matrix. As compared to PS formed on the bare silicon substrate, the room-temperature photoluminescence (PL) from the CuO-PS matrix exhibits an additional weak `blue' PL band as well as a blue shift in the PL band of PS (S-band). This has been revealed from XPS analysis to be associated with the enhancement in the SiO2 content as well as formation of the carbonyl group on the surface in the case of the CuO-PS matrix.

  8. Nanostructures-History

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Nanostructures-History. Inspiration to Nanotechnology-. The Japanese scientist Norio Taniguchi of the Tokyo University of Science was used the term "nano-technology" in a 1974 conference, to describe semiconductor processes such as thin film His definition was, ...

  9. Antibacterial Au nanostructured surfaces.

    Science.gov (United States)

    Wu, Songmei; Zuber, Flavia; Brugger, Juergen; Maniura-Weber, Katharina; Ren, Qun

    2016-02-07

    We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies.

  10. Femtosecond Snapshots of quantum mechanics at work in plasmonic nano-structures

    Science.gov (United States)

    Carbone, Fabrizio

    Ultrafast Transmission Electron Microscopy enabled a new technique (Photon-Induced Near Field Electron Microscopy, PINEM), capable of controlling electromagnetic fields confined on the surface of nanostructures and image their properties with nm-resolution in direct space and fs resolution in time. In this presentation, we will show some recent results where the standing wave formed by the plasmonic field confined on the surface of one silver nano-wire was imaged together with its energy exchange with the imaging electrons. In these results, both the interference and the quantization of the plasmonic near field could be imaged simultaneously, revealing both a quantum and a classical aspect of the electromagnetic field in one snapshot. The implications of these results will be discussed, and we will also present new ideas and methodologies to go beyond such an experiment and image the interaction between single electrons and single plasmons. We will also show that shaping the electron density in a thin film via light pulses is possible by taking advantage of the plasmon-plasmon interference and the ability of light polarization to control the excitation of different plasmonic field geometries in ad hoc designed nanostructures. Movies of the propagation of plasmons will also be presented, providing insights into their speed, propagation losses and the effect of confinment. This work was supported by an ERC Grant USED.

  11. Quantum Nanostructures by Droplet Epitaxy

    OpenAIRE

    Somsak Panyakeow

    2009-01-01

    Droplet epitaxy is an alternative growth technique for several quantum nanostructures. Indium droplets are distributed randomly on GaAs substrates at low temperatures (120-350'C). Under background pressure of group V elements, Arsenic and Phosphorous, InAs and InP nanostructures are created. Quantum rings with isotropic shape are obtained at low temperature range. When the growth thickness is increased, quantum rings are transformed to quantum dot rings. At high temperature range, anisotropic...

  12. Nano-soldering to single atomic layer

    Science.gov (United States)

    Girit, Caglar O [Berkeley, CA; Zettl, Alexander K [Kensington, CA

    2011-10-11

    A simple technique to solder submicron sized, ohmic contacts to nanostructures has been disclosed. The technique has several advantages over standard electron beam lithography methods, which are complex, costly, and can contaminate samples. To demonstrate the soldering technique graphene, a single atomic layer of carbon, has been contacted, and low- and high-field electronic transport properties have been measured.

  13. Hierarchically Nanostructured Materials for Sustainable Environmental Applications

    Directory of Open Access Journals (Sweden)

    Zheng eRen

    2013-11-01

    Full Text Available This article presents a comprehensive overview of the hierarchical nanostructured materials with either geometry or composition complexity in environmental applications. The hierarchical nanostructures offer advantages of high surface area, synergistic interactions and multiple functionalities towards water remediation, environmental gas sensing and monitoring as well as catalytic gas treatment. Recent advances in synthetic strategies for various hierarchical morphologies such as hollow spheres and urchin-shaped architectures have been reviewed. In addition to the chemical synthesis, the physical mechanisms associated with the materials design and device fabrication have been discussed for each specific application. The development and application of hierarchical complex perovskite oxide nanostructures have also been introduced in photocatalytic water remediation, gas sensing and catalytic converter. Hierarchical nanostructures will open up many possibilities for materials design and device fabrication in environmental chemistry and technology.

  14. Hydrogen accumulation in nanostructured as compared to the coarse-grained tungsten

    International Nuclear Information System (INIS)

    Gonzalez-Arrabal, R.; Panizo-Laiz, M.; Gordillo, N.; Tejado, E.; Munnik, F.; Rivera, A.; Perlado, J.M.

    2014-01-01

    Highlights: • Study of the hydrogen behaviour in nanostructured as compare to coarse grained tungsten samples. • Comparison between single (H), sequentially (C plus H) and simultaneously (C and H) implanted samples. • Study of the stability of the nanostructures after implantation at different temperatures. • Implantation energies for H and C above the displacement damage threshold. • Study of the hydrogen behaviour as a function of the implantation temperature. - Abstract: We report on the influence of sample microstructure and of irradiation conditions on the H behaviour in Tungsten (W). For this purpose, commercial coarse grained (CGW) and nanostructured W (NW) samples were implanted with (i) H at room temperature (RT), (ii) sequentially with C and H at RT, and (iii) simultaneously (co-implanted) with C and H at RT. To study the possible effect of implantation temperature on H behaviour, a CGW sample and a NW sample were sequentially implanted with C at RT and with H at 673 K. The H and C implantation fluence was 5 × 10 20 m −2 and the implantation energies were 160 keV for H and 650 keV for C which are above the displacement damage threshold. Scanning electron microscopy images show that nanostructured samples consist of columns with an average diameter of about 100 nm. These nanocolumns are stable under the studied implantations conditions. Moreover, surface modification is absent in all studied samples. X-ray diffraction data illustrate that all samples are mono-phase (α-W phase) and that none of the implantations led to the appearance of secondary phases. Resonant nuclear reaction analysis data show that the H retention in NW samples is larger than in CGW and that synergistic effect has a significant influence on the H retention in CGW samples but not in NW samples

  15. Nanostructured materials with plasmonic nanobiosensors for early cancer detection: A past and future prospect.

    Science.gov (United States)

    Sugumaran, Sathish; Jamlos, Mohd Faizal; Ahmad, Mohd Noor; Bellan, Chandar Shekar; Schreurs, Dominique

    2018-02-15

    Early cancer detection and treatment is an emerging and fascinating field of plasmonic nanobiosensor research. It paves to enrich a life without affecting living cells leading to a possible survival of the patient. This review describes a past and future prospect of an integrated research field on nanostructured metamaterials, microwave transmission, surface plasmonic resonance, nanoantennas, and their manifested versatile properties with nano-biosensors towards early cancer detection to preserve human health. Interestingly, (i) microwave transmission shows more advantages than other electromagnetic radiation in reacting with biological tissues, (ii) nanostructured metamaterial (Au) with special properties like size and shape can stimulate plasmonic effects, (iii) plasmonic based nanobiosensors are to explore the efficacy for early cancer tumour detection or single molecular detection and (iv) nanoantenna wireless communication by using microwave inverse scattering nanomesh (MISN) technique instead of conventional techniques can be adopted to characterize the microwave scattered signals from the biomarkers. It reveals that the nanostructured material with plasmonic nanobiosensor paves a fascinating platform towards early detection of cancer tumour and is anticipated to be exploited as a magnificent field in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Schottky nanocontact of one-dimensional semiconductor nanostructures probed by using conductive atomic force microscopy

    Science.gov (United States)

    Lee, Jung Ah; Rok Lim, Young; Jung, Chan Su; Choi, Jun Hee; Im, Hyung Soon; Park, Kidong; Park, Jeunghee; Kim, Gyu Tae

    2016-10-01

    To develop the advanced electronic devices, the surface/interface of each component must be carefully considered. Here, we investigate the electrical properties of metal-semiconductor nanoscale junction using conductive atomic force microscopy (C-AFM). Single-crystalline CdS, CdSe, and ZnO one-dimensional nanostructures are synthesized via chemical vapor transport, and individual nanobelts (or nanowires) are used to fabricate nanojunction electrodes. The current-voltage (I -V) curves are obtained by placing a C-AFM metal (PtIr) tip as a movable contact on the nanobelt (or nanowire), and often exhibit a resistive switching behavior that is rationalized by the Schottky (high resistance state) and ohmic (low resistance state) contacts between the metal and semiconductor. We obtain the Schottky barrier height and the ideality factor through fitting analysis of the I-V curves. The present nanojunction devices exhibit a lower Schottky barrier height and a higher ideality factor than those of the bulk materials, which is consistent with the findings of previous works on nanostructures. It is shown that C-AFM is a powerful tool for characterization of the Schottky contact of conducting channels between semiconductor nanostructures and metal electrodes.

  17. Optical and magnetic properties of Co-doped CuO flower/plates/particles-like nanostructures.

    Science.gov (United States)

    Basith, N Mohamed; Vijaya, J Judith; Kennedy, L John; Bououdina, M; Hussain, Shamima

    2014-03-01

    In this study, pure and Co-doped CuO nanostructures (0.5, 1.0, 1.5, and 2.0 at wt% of Co) were synthesized by microwave combustion method. The prepared samples were characterized by X-ray diffraction (XRD), high resolution scanning electron microscopy (HR-SEM), energy dispersive X-ray analysis (EDX), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectroscopy and vibrating sample magnetometry (VSM). Powder X-ray diffraction patterns refined by the Rietveld method indicated the formation of single-phase monoclinic structure. The surface morphology and elemental analysis of Co-doped CuO nanostructures were studied by using HR-SEM and EDX. Interestingly, the morphology was found to change considerably from nanoflowers to nanoplates then to nanoparticles with the variation of Co concentration. The optical band gap calculated using DRS was found to be 2.1 eV for pure CuO and increases up to 3.4 eV with increasing cobalt content. Photoluminescence measurements also confirm these results. The magnetic measurements indicated that the obtained nanostructures were ferromagnetic at room temperature with an optimum value of saturation magnetization at 1.0 wt.% of Co-doped CuO, i.e., 970 micro emu/g.

  18. Nanostructured transparent conducting oxide electrochromic device

    Science.gov (United States)

    Milliron, Delia; Tangirala, Ravisubhash; Llordes, Anna; Buonsanti, Raffaella; Garcia, Guillermo

    2016-05-17

    The embodiments described herein provide an electrochromic device. In an exemplary embodiment, the electrochromic device includes (1) a substrate and (2) a film supported by the substrate, where the film includes transparent conducting oxide (TCO) nanostructures. In a further embodiment, the electrochromic device further includes (a) an electrolyte, where the nanostructures are embedded in the electrolyte, resulting in an electrolyte, nanostructure mixture positioned above the substrate and (b) a counter electrode positioned above the mixture. In a further embodiment, the electrochromic device further includes a conductive coating deposited on the substrate between the substrate and the mixture. In a further embodiment, the electrochromic device further includes a second substrate positioned above the mixture.

  19. Electron Microscopy of Nanostructures in Cells

    DEFF Research Database (Denmark)

    Købler, Carsten

    with cells is therefore increasingly more relevant from both an engineering and a toxicological viewpoint. My work involves developing and exploring electron microscopy (EM) for imaging nanostructures in cells, for the purpose of understanding nanostructure-cell interactions in terms of their possibilities...... in science and concerns in toxicology. In the present work, EM methods for imaging nanostructure-cell interactions have been explored, and the complex interactions documented and ordered. In particular the usability of the focused ion beam scanning electron microscope (FIB-SEM) was explored. Using EM...... in literature. Furthermore, EM proved valuable as it revealed an unnoticed CNT effect. FIB-SEM helped establish that the effect was linked to eosionophilic crystalline pneumonia (ECP)....

  20. Nanostructured sulfur cathodes

    KAUST Repository

    Yang, Yuan

    2013-01-01

    Rechargeable Li/S batteries have attracted significant attention lately due to their high specific energy and low cost. They are promising candidates for applications, including portable electronics, electric vehicles and grid-level energy storage. However, poor cycle life and low power capability are major technical obstacles. Various nanostructured sulfur cathodes have been developed to address these issues, as they provide greater resistance to pulverization, faster reaction kinetics and better trapping of soluble polysulfides. In this review, recent developments on nanostructured sulfur cathodes and mechanisms behind their operation are presented and discussed. Moreover, progress on novel characterization of sulfur cathodes is also summarized, as it has deepened the understanding of sulfur cathodes and will guide further rational design of sulfur electrodes. © 2013 The Royal Society of Chemistry.

  1. Block copolymer systems: from single chain to self-assembled nanostructures.

    Science.gov (United States)

    Giacomelli, Cristiano; Schmidt, Vanessa; Aissou, Karim; Borsali, Redouane

    2010-10-19

    Recent advances in the field of macromolecular engineering applied to the fabrication of nanostructured materials using block copolymer chains as elementary building blocks are described in this feature article. By highlighting some of our work in the area and accounting for the contribution of other groups, we discuss the relationship between the physical-chemical properties of copolymer chains and the characteristics of nano-objects originating from their self-assembly in solution and in bulk, with emphasis on convenient strategies that allow for the control of composition, functionality, and topology at different levels of sophistication. In the case of micellar nanoparticles in solution, in particular, we present approaches leading to morphology selection via macromolecular architectural design, the functionalization of external solvent-philic shells with biomolecules (polysaccharides and proteins), and the maximization of micelle loading capacity by the suitable choice of solvent-phobic polymer segments. The fabrication of nanomaterials mediated by thin block copolymer films is also discussed. In this case, we emphasize the development of novel polymer chain manipulation strategies that ultimately allow for the preparation of precisely positioned nanodomains with a reduced number of defects via block-selective chemical reactivity. The challenges facing the soft matter community, the urgent demand to convert huge public and private investments into consumer products, and future possible directions in the field are also considered herein.

  2. Controlled coupling of NV defect centers to plasmonic and photonic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Michael, E-mail: michael.barth@physik.hu-berlin.d [Institute of Physics, Humboldt-Universitaet zu Berlin, Hausvogteiplatz 5-7, D-10117 Berlin (Germany); Schietinger, Stefan; Schroeder, Tim; Aichele, Thomas; Benson, Oliver [Institute of Physics, Humboldt-Universitaet zu Berlin, Hausvogteiplatz 5-7, D-10117 Berlin (Germany)

    2010-09-15

    Nitrogen-vacancy (NV) defect centers in diamond have recently emerged as promising candidates for a number of applications in the fields of quantum optics and quantum information, such as single photon generation and spin qubit operations. The performance of these defect centers can strongly be enhanced through coupling to plasmonic and photonic nanostructures, such as metal particles and optical microcavities. Here, we demonstrate the controlled assembly of such hybrid structures via manipulation with scanning near-field probes. In particular, we investigate the plasmonic enhancement of the single photon emission through coupling to gold nanospheres as well as the coupling of diamond nanocrystals to the optical modes of microsphere resonators and photonic crystal cavities. These systems represent prototypes of fundamental nanophotonic/plasmonic elements and provide control on the generation and coherent transfer of photons on the level of a single quantum emitter.

  3. Synthesis of dumbbell-like Au nanostructure and its light-absorbance study

    International Nuclear Information System (INIS)

    Shen Jianlei; Xu Yan; Li Kun; Song Shiping; Fan Chunhai

    2013-01-01

    Background: By changing the size or the morphology of Au nanostructure, they can absorb different wavelength light due to the localized surface plasmon resonance (LSPR). Because Au nanorods show good ability to transform light into heat (photothermal effect), they have been wildly used to deliver the drugs and release them controllably. However, when applying such nanostructure for in vivo treatments, Au nanorods must have long aspect ratio which often make it hard to prepare heterogeneous nanostructure. Purpose: A new method to synthesize Au nanostructure with uniform size and to achieve long wavelength light absorbance is needed. This work attempts to synthesize such Au nanostructure by using bio-nano techniques. Methods: New nanostructures are prepared by growing Au nanoparticles on the surface of Au nanorods modified with DNA molecules. Results: Dumbbell-Ikea Au nanostructures were prepared firstly. Its maximum absorbance locates at near ultraviolet region, which means that it can be used as a potential tool for the deep-skin photothermal treatment. Moreover, other two kinds of nanostructures, i.e. Au nanorods with Au splinter at two ends and sea urchin-like nanostructures, are also studied. Conclusions: We successfully fabricated novel Au nanostructures which can be used for drug delivery, surface-enhanced Raman spectroscopy and catalysis. (authors)

  4. Controlling BaZrO3 nanostructure orientation in YBa2Cu3O{}_{7-\\delta } films for a three-dimensional pinning landscape

    Science.gov (United States)

    Wu, J. Z.; Shi, J. J.; Baca, F. J.; Emergo, R.; Wilt, J.; Haugan, T. J.

    2015-12-01

    The orientation phase diagram of self-assembled BaZrO3 (BZO) nanostructures in c-oriented YBa2Cu3O{}7-δ (YBCO) films on flat and vicinal SrTiO3 substrates was studied experimentally with different dopant concentrations and vicinal angles and theoretically using a micromechanical model based on the theory of elasticity. The organized BZO nanostructure configuration was found to be tunable, between c-axis to ab-plane alignment, by the dopant concentration in the YBCO film matrix strained via lattice mismatched substrates. The correlation between the local strain caused by the BZO doping and the global strain on the matrix provides a unique approach for controllable growth of dopant nanostructure landscapes. In particular, a mixed phase of the c-axis-aligned nanorods and the ab-plane-aligned planar nanostructures can be obtained, leading to a three-dimensional pinning landscape with single impurity doping and much improved J c in almost all directions of applied magnetic field.

  5. The Physics and Applications of a 3D Plasmonic Nanostructure

    Science.gov (United States)

    Terranova, Brandon B.

    In this work, the dynamics of electromagnetic field interactions with free electrons in a 3D metallic nanostructure is evaluated theoretically. This dissertation starts by reviewing the relevant fundamentals of plasmonics and modern applications of plasmonic systems. Then, motivated by the need to have a simpler way of understanding the surface charge dynamics on complex plasmonic nanostructures, a new plasmon hybridization tree method is introduced. This method provides the plasmonicist with an intuitive way to determine the response of free electrons to incident light in complex nanostructures within the electrostatic regime. Next, a novel 3D plasmonic nanostructure utilizing reflective plasmonic coupling is designed to perform biosensing and plasmonic tweezing applications. By applying analytical and numerical methods, the effectiveness of this nanostructure at performing these applications is determined from the plasmonic response of the nanostructure to an excitation beam of coherent light. During this analysis, it was discovered that under certain conditions, this 3D nanostructure exhibits a plasmonic Fano resonance resulting from the interference of an in-plane dark mode and an out-of-plane bright mode. In evaluating this nanostructure for sensing changes in the local dielectric environment, a figure of merit of 68 is calculated, which is competitive with current localized surface plasmon resonance refractometric sensors. By evaluating the Maxwell stress tensor on a test particle in the vicinity of the nanostructure, it was found that under the right conditions, this plasmonic nanostructure design is capable of imparting forces greater than 10.5 nN on dielectric objects of nanoscale dimensions. The results obtained in these studies provides new routes to the design and engineering of 3D plasmonic nanostructures and Fano resonances in these systems. In addition, the nanostructure presented in this work and the design principles it utilizes have shown

  6. Microwave-Assisted Green Synthesis of Silver Nanostructures

    Science.gov (United States)

    This account summarizes a microwave (MW)-assisted synthetic approach for producing silver nanostructures. The rapid and in-core MW heating has received considerable attention as a promising new method for the one-pot synthesis of metallic nanostructures in solutions. Conceptually...

  7. Spin tunneling and manipulation in nanostructures.

    Science.gov (United States)

    Sherman, E Ya; Ban, Yue; Gulyaev, L V; Khomitsky, D V

    2012-09-01

    The results for joint effects of tunneling and spin-orbit coupling on spin dynamics in nanostructures are presented for systems with discrete and continuous spectra. We demonstrate that tunneling plays the crucial role in the spin dynamics and the abilities of spin manipulation by external electric field. This result can be important for design of nanostructures-based spintronics devices.

  8. Elucidation of the electrochromic mechanism of nanostructured iron oxides films

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Lobato, M.A.; Martinez, Arturo I.; Castro-Roman, M. [Center for Research and Advanced Studies of the National Polytechnic Institute, Cinvestav Campus Saltillo, Carr. Saltillo-Monterrey Km. 13, Ramos Arizpe, Coah. 25900 (Mexico); Perry, Dale L. [Mail Stop 70A1150, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Zarate, R.A. [Departamento de Fisica, Facultad de Ciencias, Universidad Catolica del Norte, Casilla 1280, Antofagasta (Chile); Escobar-Alarcon, L. (Departamento de Fisica, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico)

    2011-02-15

    Nanostructured hematite thin films were electrochemically cycled in an aqueous solution of LiOH. Through optical, structural, morphological, and magnetic measurements, the coloration mechanism of electrochromic iron oxide thin films was elucidated. The conditions for double or single electrochromic behavior are given in this work. During the electrochemical cycling, it was found that topotactic transformations of hexagonal crystal structures are favored; i.e. {alpha}-Fe{sub 2}O{sub 3} to Fe(OH){sub 2} and subsequently to {delta}-FeOOH. These topotactic redox reactions are responsible for color changes of iron oxide films. (author)

  9. Nanostructures via DNA scaffold metallization

    OpenAIRE

    Ning, C.; Zinchenko, A.; Baigl, D.; Pyshkina, O.; Sergeyev, V.; Endo, Kazunaka; Yoshikawa, K.

    2005-01-01

    The critical role of polymers in process of noble metals nanostructures formation is well known, however, the use of DNA chain template in this process is yet largely unknown. In this study we demonstrate different ways of silver deposition on DNA template and report the influence of silver nanostructures formation on DNA conformational state. Metallization of DNA chain proceeds by two different scenarios depending on DNA conformation. If DNA chain is unfolded (elongated) chain, silver reduct...

  10. Engineered Metallic Nanostructures: Fabrication, Characterization, and Applications

    Science.gov (United States)

    Bohloul, Arash

    Metallic nanostructures have garnered a great deal of attention due to their fascinating optical properties, which differ from the bulk metal. They have been proven to exceed expectations in wide variety of applications including chemical and biological sensing. Nevertheless, high-throughput and low cost nanofabrication techniques are required to implant metallic nanostructures in widespread applications. With that vision, this thesis presents a versatile and reliable method for scalable fabrication of gold nanostructures. In this approach, a plasma-treated ordered array of polystyrene nanospheres acts as an initial mask. The key step in this process is the vapor-deposition of nickel as a sacrificial mask. Thereby, gold nanostructures are directly formed on the substrate through the nickel mask. This is an easy, powerful, and straightforward method that offers several degrees of freedom to precisely control the shape and size of nanostructures. We made a library of nanostructures including gold nanocrescents, double crescents, nanorings, and nanodisks with the ability to tune the size in the range of 150 to 650 nm. The fabricated nanostructures are highly packed and uniformly cover the centimeter scale substrate. The optical properties of metallic nanostructures were extensively studied by a combination of UV-Vis-NIR and Fourier transform infrared (FTIR) spectroscopies, and correlation between optical response and geometrical parameters were investigated. In the next part of this thesis, highly sensitive surface enhanced infrared absorption (SEIRA) analysis was demonstrated on gold nanocrescent arrays. Theoretical modeling was confirmed that these substrates provide highly dense and strong hot-spots over the substrate, which is required for surface enhanced spectroscopic studies. Gold nanocrescent arrays exhibit highly tunable plasmon resonance to cover desired molecular vibrational bands. These substrates experimentally illustrated 3 orders of magnitude

  11. Semiconductor quantum optics with tailored photonic nanostructures

    International Nuclear Information System (INIS)

    Laucht, Arne

    2011-01-01

    This thesis describes detailed investigations of the effects of photonic nanostructures on the light emission properties of self-assembled InGaAs quantum dots. Nanoscale optical cavities and waveguides are employed to enhance the interaction between light and matter, i.e. photons and excitons, up to the point where optical non-linearities appear at the quantum (single photon) level. Such non-linearities are an essential component for the realization of hardware for photon based quantum computing since they can be used for the creation and detection of non-classical states of light and may open the way to new genres of quantum optoelectronic devices such as optical modulators and optical transistors. For single semiconductor quantum dots in photonic crystal nanocavities we investigate the coupling between excitonic transitions and the highly localized mode of the optical cavity. We explore the non-resonant coupling mechanisms which allow excitons to couple to the cavity mode, even when they are not spectrally in resonance. This effect is not observed for atomic cavity quantum electrodynamics experiments and its origin is traced to phonon-assisted scattering for small detunings (ΔE ∝5 meV). For quantum dots in high-Q cavities we observe the coherent coupling between exciton and cavity mode in the strong coupling regime of light-matter interaction, probe the influence of pure dephasing on the coherent interaction at high excitation levels and high lattice temperatures, and examine the coupling of two spatially separated quantum dots via the exchange of real and virtual photons mediated by the cavity mode. Furthermore, we study the spontaneous emission properties of quantum dots in photonic crystal waveguide structures, estimate the fraction of all photons emitted into the propagating waveguide mode, and demonstrate the on-chip generation of single photon emission into the waveguide. The results obtained during the course of this thesis contribute significantly to

  12. Differential Geometry Applied to Rings and Möbius Nanostructures

    DEFF Research Database (Denmark)

    Lassen, Benny; Willatzen, Morten; Gravesen, Jens

    2014-01-01

    Nanostructure shape effects have become a topic of increasing interest due to advancements in fabrication technology. In order to pursue novel physics and better devices by tailoring the shape and size of nanostructures, effective analytical and computational tools are indispensable. In this chap......Nanostructure shape effects have become a topic of increasing interest due to advancements in fabrication technology. In order to pursue novel physics and better devices by tailoring the shape and size of nanostructures, effective analytical and computational tools are indispensable....... In this chapter, we present analytical and computational differential geometry methods to examine particle quantum eigenstates and eigenenergies in curved and strained nanostructures. Example studies are carried out for a set of ring structures with different radii and it is shown that eigenstate and eigenenergy...

  13. Gold/silver/gold trilayer films on nanostructured polycarbonate substrates for direct and label-free nanoplasmonic biosensing.

    Science.gov (United States)

    López-Muñoz, Gerardo A; Estévez, M-Carmen; Vázquez-García, Marc; Berenguel-Alonso, Miguel; Alonso-Chamarro, Julián; Homs-Corbera, Antoni; Lechuga, Laura M

    2018-05-01

    Ultrasmooth gold/silver/gold trilayer nanostructured plasmonic sensors were obtained using commercial Blu-ray optical discs as nanoslits-based flexible polymer substrates. A thin gold film was used as an adhesion and nucleation layer to improve the chemical stability and reduce the surface roughness of the overlying silver film, without increasing ohmic plasmon losses. The structures were physically and optically characterized and compared with nanostructures of single gold layer. Ultrasmooth and chemically stable trilayer nanostructures with a surface roughness <0.5 nm were obtained following a simple and reproducible fabrication process. They showed a figure of merit (FOM) value up to 69.2 RIU -1 which is significantly higher (more than 95%) than the gold monolayer counterpart. Their potential for biosensing was demonstrated by employing the trilayer sensor for the direct and refractometric (label-free) detection of C-reactive protein (CRP) biomarker in undiluted urine achieving a Limit of Detection (LOD) in the pM order. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Synthesis of belt-like BiOBr hierarchical nanostructure with high photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Li, Haiping [National Engineering Technology Research Center for Colloidal Materials, Shandong University, Jinan 250100 (China); Liu, Jingyi; Hu, Tingxia [Environment Research Institute, Shandong University, Jinan 250100 (China); Du, Na; Song, Shue [Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100 (China); Hou, Wanguo, E-mail: wghou@sdu.edu.cn [Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100 (China)

    2016-05-15

    Highlights: • BiOBr hierarchical nanobelts (NBs) were solvothermally prepared. • NBs show higher specific surface area and photoabsorption than BiOBr nanosheets. • NBs exhibit higher photoactivity than the nanosheets. - Abstract: One-dimensional (1D) bismuth oxyhalide (BiOX) hierarchical nanostructures are always difficult to prepare. Herein, we report, for the first time, a simple synthesis of BiOBr nanobelts (NBs) via a facile solvothermal route, using bismuth subsalicylate as the template and bismuth source. The BiOBr nanobelts are composed of irregular single crystal nanoparticles with highly exposed (0 1 0) facets. Compared with the BiOBr nanosheets (NSs) with dominant exposed (0 0 1) facets, they exhibit higher photocatalytic activity toward degradation of Rhodamine B and Methylene Blue under visible light irradiation. The higher photocatalytic performance of BiOBr NBs arises from their larger specific surface area and higher photoabsorption capability. This study provides a simple route for synthesis of belt-like Bi-based hierarchical nanostructures.

  15. Progress and Design Concerns of Nanostructured Solar Energy Harvesting Devices.

    Science.gov (United States)

    Leung, Siu-Fung; Zhang, Qianpeng; Tavakoli, Mohammad Mahdi; He, Jin; Mo, Xiaoliang; Fan, Zhiyong

    2016-05-01

    Integrating devices with nanostructures is considered a promising strategy to improve the performance of solar energy harvesting devices such as photovoltaic (PV) devices and photo-electrochemical (PEC) solar water splitting devices. Extensive efforts have been exerted to improve the power conversion efficiencies (PCE) of such devices by utilizing novel nanostructures to revolutionize device structural designs. The thicknesses of light absorber and material consumption can be substantially reduced because of light trapping with nanostructures. Meanwhile, the utilization of nanostructures can also result in more effective carrier collection by shortening the photogenerated carrier collection path length. Nevertheless, performance optimization of nanostructured solar energy harvesting devices requires a rational design of various aspects of the nanostructures, such as their shape, aspect ratio, periodicity, etc. Without this, the utilization of nanostructures can lead to compromised device performance as the incorporation of these structures can result in defects and additional carrier recombination. The design guidelines of solar energy harvesting devices are summarized, including thin film non-uniformity on nanostructures, surface recombination, parasitic absorption, and the importance of uniform distribution of photo-generated carriers. A systematic view of the design concerns will assist better understanding of device physics and benefit the fabrication of high performance devices in the future. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Computer Code for Nanostructure Simulation

    Science.gov (United States)

    Filikhin, Igor; Vlahovic, Branislav

    2009-01-01

    Due to their small size, nanostructures can have stress and thermal gradients that are larger than any macroscopic analogue. These gradients can lead to specific regions that are susceptible to failure via processes such as plastic deformation by dislocation emission, chemical debonding, and interfacial alloying. A program has been developed that rigorously simulates and predicts optoelectronic properties of nanostructures of virtually any geometrical complexity and material composition. It can be used in simulations of energy level structure, wave functions, density of states of spatially configured phonon-coupled electrons, excitons in quantum dots, quantum rings, quantum ring complexes, and more. The code can be used to calculate stress distributions and thermal transport properties for a variety of nanostructures and interfaces, transport and scattering at nanoscale interfaces and surfaces under various stress states, and alloy compositional gradients. The code allows users to perform modeling of charge transport processes through quantum-dot (QD) arrays as functions of inter-dot distance, array order versus disorder, QD orientation, shape, size, and chemical composition for applications in photovoltaics and physical properties of QD-based biochemical sensors. The code can be used to study the hot exciton formation/relation dynamics in arrays of QDs of different shapes and sizes at different temperatures. It also can be used to understand the relation among the deposition parameters and inherent stresses, strain deformation, heat flow, and failure of nanostructures.

  17. Transport and dynamics of nanostructured graphene

    DEFF Research Database (Denmark)

    Gunst, Tue

    This thesis is concerned with the heating and electronic properties of nanoscale devices based on nanostructured graphene. As electronic devices scale down to nanometer dimensions, the operation depends on the detailed atomic structure. Emerging carbon nano-materials such as graphene, carbon...... nanotubes and graphene nanoribbons, exhibit promising electronic and heat transport properties. Much research addresses the electron mobility of pristine graphene devices. However, the thermal transport properties, as well as the effects of e-ph interaction, in nanoscale devices, based on nanostructured...... graphene, have received much less attention. This thesis contributes to the understanding of the thermal properties of nanostructured graphene. The computational analysis is based on DFT/TB-NEGF. We show how a regular nanoperforation of a graphene layer - a graphene antidot lattice (GAL) - may...

  18. In vitro characterization and in vivo evaluation of nanostructured lipid curcumin carriers for intragastric administration

    Directory of Open Access Journals (Sweden)

    Fang M

    2012-10-01

    Full Text Available Min Fang, Yilin Jin, Wei Bao, Hui Gao, Mengjin Xu, Di Wang, Xia Wang, Ping Yao, Liegang LiuDepartment of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, and Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, People’s Republic of ChinaBackground: Curcumin has a variety of pharmacological effects. However, poor water solubility and low oral bioavailability limit its clinical utility. A delivery system for nanostructured lipid carriers has been reported to be a promising approach to enhancing the oral absorption of curcumin. The aim of the present study was to investigate the pharmacokinetics, tissue distribution, and relative bioavailability of curcumin in rats after a single intragastric dose of a nanostructured lipid curcumin carrier formulation.Methods: Nanostructured lipid curcumin carriers were prepared using the ethanol dripping method and characterized in terms of the particle size, polydispersity index, zeta potential, differential scanning calorimetry, drug-loading capacity, encapsulation efficiency, and in vitro release. The pharmacokinetics and tissue distribution of nanostructured lipid curcumin carriers and curcumin suspension were compared after intragastric administration.Results: Nanostructured lipid curcumin carriers showed a significantly higher peak plasma concentration (564.94 ± 14.98 ng/mL versus 279.43 ± 7.21 ng/mL, P < 0.01, a shorter time taken to reach peak plasma concentration (0.5 ± 0.01 hour versus 1.0 ± 0.12 hour, P < 0.01, and a greater AUC0–∞ (820.36 ± 25.11 mg × hour/L versus 344.11 ± 10.01 mg × hour/L, P < 0.05 compared with curcumin suspension. In the tissue distribution studies, curcumin could be detected in the spleen, heart, liver, kidneys, lungs, and brain. Following intragastric administration of the nanostructured lipid curcumin

  19. Zero-mode waveguide nanophotonic structures for single molecule characterization

    Science.gov (United States)

    Crouch, Garrison M.; Han, Donghoon; Bohn, Paul W.

    2018-05-01

    Single-molecule characterization has become a crucial research tool in the chemical and life sciences, but limitations, such as limited concentration range, inability to control molecular distributions in space, and intrinsic phenomena, such as photobleaching, present significant challenges. Recent developments in non-classical optics and nanophotonics offer promising routes to mitigating these restrictions, such that even low affinity (K D ~ mM) biomolecular interactions can be studied. Here we introduce and review specific nanophotonic devices used to support single molecule studies. Optical nanostructures, such as zero-mode waveguides (ZMWs), are usually fabricated in thin gold or aluminum films and serve to confine the observation volume of optical microspectroscopy to attoliter to zeptoliter volumes. These simple nanostructures allow individual molecules to be isolated for optical and electrochemical analysis, even when the molecules of interest are present at high concentration (µM–mM) in bulk solution. Arrays of ZMWs may be combined with optical probes such as single molecule fluorescence, single molecule fluorescence resonance energy transfer, and fluorescence correlation spectroscopy for distributed analysis of large numbers of single-molecule reactions or binding events in parallel. Furthermore, ZMWs may be used as multifunctional devices, for example by combining optical and electrochemical functions in a single discrete architecture to achieve electrochemical ZMWs. In this review, we will describe the optical properties, fabrication, and applications of ZMWs for single-molecule studies, as well as the integration of ZMWs into systems for chemical and biochemical analysis.

  20. Electron-beam lithography of gold nanostructures for surface-enhanced Raman scattering

    KAUST Repository

    Yue, Weisheng

    2012-10-26

    The fabrication of nanostructured substrates with precisely controlled geometries and arrangements plays an important role in studies of surface-enhanced Raman scattering (SERS). Here, we present two processes based on electron-beam lithography to fabricate gold nanostructures for SERS. One process involves making use of metal lift-off and the other involves the use of the plasma etching. These two processes allow the successful fabrication of gold nanostructures with various kinds of geometrical shapes and different periodic arrangements. 4-mercaptopyridine (4-MPy) and Rhodamine 6G (R6G) molecules are used to probe SERS signals on the nanostructures. The SERS investigations on the nanostructured substrates demonstrate that the gold nanostructured substrates have resulted in large SERS enhancement, which is highly dependent on the geometrical shapes and arrangements of the gold nanostructures. © 2012 IOP Publishing Ltd.

  1. METHOD FOR MANUFACTURING A SINGLE CRYSTAL NANO-WIRE

    NARCIS (Netherlands)

    Van Den Berg, Albert; Bomer, Johan; Carlen Edwin, Thomas; Chen, Songyue; Kraaijenhagen Roderik, Adriaan; Pinedo Herbert, Michael

    2012-01-01

    A method for manufacturing a single crystal nano-structure includes providing a device layer with a 100 structure on a substrate; providing a stress layer onto the device layer; patterning the stress layer along the 110 direction of the device layer; selectively removing parts of the stress layer to

  2. METHOD FOR MANUFACTURING A SINGLE CRYSTAL NANO-WIRE.

    NARCIS (Netherlands)

    Van Den Berg, Albert; Bomer, Johan; Carlen Edwin, Thomas; Chen, Songyue; Kraaijenhagen Roderik, Adriaan; Pinedo Herbert, Michael

    2011-01-01

    A method for manufacturing a single crystal nano-structure is provided comprising the steps of providing a device layer with a 100 structure on a substrate; providing a stress layer onto the device layer; patterning the stress layer along the 110 direction of the device layer; selectively removing

  3. Self-assembled MoS2–carbon nanostructures: influence of nanostructuring and carbon on lithium battery performance

    KAUST Repository

    Das, Shyamal K.

    2012-01-01

    Composites of MoS 2 and amorphous carbon are grown and self-assembled into hierarchical nanostructures via a hydrothermal method. Application of the composites as high-energy electrodes for rechargeable lithium-ion batteries is investigated. The critical roles of nanostructuring of MoS 2 and carbon composition on lithium-ion battery performance are highlighted. © 2012 The Royal Society of Chemistry.

  4. Characterization of ZnO nanostructures: A challenge to positron annihilation spectroscopy and other methods

    Energy Technology Data Exchange (ETDEWEB)

    Brauer, Gerhard; Anwand, Wolfgang; Grambole, Dieter; Skorupa, Wolfgang [Institut fuer Ionenstrahlphysik und Materialforschung, Forschungszentrum Dresden-Rossendorf, Dresden (Germany); Egger, Werner; Sperr, Peter [Institut fuer Angewandte Physik und Messtechnik LRT2, Fakultaet fuer Luft- und Raumfahrttechnik, Werner-Heisenberg-Weg 39, Universitaet der Bundeswehr, Neubiberg (Germany); Beinik, Igor; Wang, Lin; Teichert, Christian [Institut fuer Physik, Montanuniversitaet Leoben (Austria); Kuriplach, Jan; Lang, Jan [Department of Low Temperature Physics, Charles University, Prague (Czech Republic); Zviagin, Sergei; Cizmar, Erik [Institut Hochfeld-Magnetlabor, Forschungszentrum Dresden-Rossendorf, Dresden (Germany); Ling, Chi Chung; Hsu, Yuk Fan; Xi, Yan Yan; Chen, Xinyi; Djurisic, Aleksandra B. [Department of Physics, University of Hong Kong, Hong Kong (China)

    2009-11-15

    ZnO nanostructures are of special interest for device applications. However, their structural characterization remains an ongoing challenge. This paper reviews recent efforts and latest achievements in this direction. Results comprise PAS in the form of Slow Positron Implantation Spectroscopy (SPIS) and Pulsed Low Energy Positron Lifetime Spectroscopy (PLEPS), Nuclear Reaction Analysis (NRA), Atomic Force Microscopy (AFM), conductive AFM (C-AFM), Nuclear Magnetic Resonance (NMR), Electron Spin Resonance (ESR), Photoluminescence (PL) spectroscopy, and latest theoretical investigations of structure-related and positron properties of selected defects. The fundamental importance of a relationship between fabrication conditions, native defect formation, and resulting optical and electronic properties is demonstrated by getting either inferior (nanorods) or significantly improved (tetrapods) optical properties compared to single crystal samples, depending on the nanostructure fabrication method. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Zinc stannate nanostructures: hydrothermal synthesis

    International Nuclear Information System (INIS)

    Baruah, Sunandan; Dutta, Joydeep

    2011-01-01

    Nanostructured binary semiconducting metal oxides have received much attention in the last decade owing to their unique properties rendering them suitable for a wide range of applications. In the quest to further improve the physical and chemical properties, an interest in ternary complex oxides has become noticeable in recent times. Zinc stannate or zinc tin oxide (ZTO) is a class of ternary oxides that are known for their stable properties under extreme conditions, higher electron mobility compared to its binary counterparts and other interesting optical properties. The material is thus ideal for applications from solar cells and sensors to photocatalysts. Among the different methods of synthesizing ZTO nanostructures, the hydrothermal method is an attractive green process that is carried out at low temperatures. In this review, we summarize the conditions leading to the growth of different ZTO nanostructures using the hydrothermal method and delve into a few of its applications reported in the literature. (topical review)

  6. ZnO Nanostructures for Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Marco Laurenti

    2017-11-01

    Full Text Available This review focuses on the most recent applications of zinc oxide (ZnO nanostructures for tissue engineering. ZnO is one of the most investigated metal oxides, thanks to its multifunctional properties coupled with the ease of preparing various morphologies, such as nanowires, nanorods, and nanoparticles. Most ZnO applications are based on its semiconducting, catalytic and piezoelectric properties. However, several works have highlighted that ZnO nanostructures may successfully promote the growth, proliferation and differentiation of several cell lines, in combination with the rise of promising antibacterial activities. In particular, osteogenesis and angiogenesis have been effectively demonstrated in numerous cases. Such peculiarities have been observed both for pure nanostructured ZnO scaffolds as well as for three-dimensional ZnO-based hybrid composite scaffolds, fabricated by additive manufacturing technologies. Therefore, all these findings suggest that ZnO nanostructures represent a powerful tool in promoting the acceleration of diverse biological processes, finally leading to the formation of new living tissue useful for organ repair.

  7. Sulfated glycopeptide nanostructures for multipotent protein activation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sungsoo S.; Fyrner, Timmy; Chen, Feng; Álvarez, Zaida; Sleep, Eduard; Chun, Danielle S.; Weiner, Joseph A.; Cook, Ralph W.; Freshman, Ryan D.; Schallmo, Michael S.; Katchko, Karina M.; Schneider, Andrew D.; Smith, Justin T.; Yun, Chawon; Singh, Gurmit; Hashmi, Sohaib Z.; McClendon, Mark T.; Yu, Zhilin; Stock, Stuart R.; Hsu, Wellington K.; Hsu, Erin L.; Stupp , Samuel I. (NWU)

    2017-06-19

    Biological systems have evolved to utilize numerous proteins with capacity to bind polysaccharides for the purpose of optimizing their function. A well-known subset of these proteins with binding domains for the highly diverse sulfated polysaccharides are important growth factors involved in biological development and tissue repair. We report here on supramolecular sulfated glycopeptide nanostructures, which display a trisulfated monosaccharide on their surfaces and bind five critical proteins with different polysaccharide-binding domains. Binding does not disrupt the filamentous shape of the nanostructures or their internal β-sheet backbone, but must involve accessible adaptive configurations to interact with such different proteins. The glycopeptide nanostructures amplified signalling of bone morphogenetic protein 2 significantly more than the natural sulfated polysaccharide heparin, and promoted regeneration of bone in the spine with a protein dose that is 100-fold lower than that required in the animal model. These highly bioactive nanostructures may enable many therapies in the future involving proteins.

  8. Bias polarity-sensitive electrical failure characteristics of ZnSe nanowire in metal–semiconductor–metal nanostructure

    Directory of Open Access Journals (Sweden)

    Yu Tan

    2014-04-01

    Full Text Available The effect of bias polarity on the electrical breakdown behavior of the single ZnSe nanowire (NW in the metal–semiconductor–metal (M–S–M nanostructure under high current density and high bias conditions has been studied in the present paper. The experimental results show that the failure of the ZnSe NW in M–S–M nanostructure was sensitive to bias polarity since the NW commonly collapsed at the negatively biased Au metal electrode due to high Joule heat produced in NW at the reversely biased Schottky barrier. Thus, the electrical breakdown behavior of the ZnSe NW was highly dominated by the cathode-controlled mode due to the high resistance of the depletion region of ZnSe NW at the reversely biased Schottky contact.

  9. Fabrication of nano-structured UO2 fuel pellets

    International Nuclear Information System (INIS)

    Yang, Jae Ho; Kang, Ki Won; Rhee, Young Woo; Kim, Dong Joo; Kim, Jong Heon; Kim, Keon Sik; Song, Kun Woo

    2007-01-01

    Nano-structured materials have received much attention for their possibility for various functional materials. Ceramics with a nano-structured grain have some special properties such as super plasticity and a low sintering temperature. To reduce the fuel cycle costs and the total mass of spent LWR fuels, it is necessary to extend the fuel discharged burn-up. In order to increase the fuel burn-up, it is important to understand the fuel property of a highly irradiated fuel pellet. Especially, research has focused on the formation of a porous and small grained microstructure in the rim area of the fuel, called High Burn-up Structure (HBS). The average grain size of HBS is about 300nm. This paper deals with the feasibility study on the fabrication of nano-structured UO 2 pellets. The nano sized UO 2 particles are prepared by a combined process of a oxidation-reducing and a mechanical milling of UO 2 powder. Nano-structured UO 2 pellets (∼300nm) with a density of ∼93%TD can be obtained by sintering nano-sized UO 2 compacts. The SEM study reveals that the microstructure of the fabricated nano-structure UO 2 pellet is similar to that of HBS. Therefore, this bulk nano-structured UO 2 pellet can be used as a reference pellet for a measurement of the physical properties of HBS

  10. Biological activity and photostability of biflorin micellar nanostructures.

    Science.gov (United States)

    Santana, Edson R B; Ferreira-Neto, João P; Yara, Ricardo; Sena, Kêsia X F R; Fontes, Adriana; Lima, Cláudia S A

    2015-05-13

    Capraria biflora L. is a shrub from the Scrophulariaceae family which produces in its roots a compound named biflorin, an o-naphthoquinone that shows activity against Gram-positive bacteria and fungi and also presents antitumor and antimetastatic activities. However, biflorin is hydrophobic and photosensitive. These properties make its application difficult. In this work we prepared biflorin micellar nanostructures looking for a more effective vehiculation and better preservation of the biological activity. Biflorin was obtained, purified and characterized by UV-Vis, infrared (IR) and 1H- and 13C-NMR. Micellar nanostructures of biflorin were then assembled with Tween 80®, Tween 20® and saline (0.9%) and characterized by UV-Vis spectroscopy and dynamic light scattering (DLS). The results showed that the micellar nanostructures were stable and presented an average size of 8.3 nm. Biflorin micellar nanostructures' photodegradation was evaluated in comparison with biflorin in ethanol. Results showed that the biflorin in micellar nanostructures was better protected from light than biflorin dissolved in ethanol, and also indicated that biflorin in micelles were efficient against Gram-positive bacteria and yeast species. In conclusion, the results showed that the micellar nanostructures could ensure the maintenance of the biological activity of biflorin, conferring photoprotection. Moreover, biflorin vehiculation in aqueous media was improved, favoring its applicability in biological systems.

  11. Integrated Transmission Electron and Single-Molecule Fluorescence Microscopy Correlates Reactivity with Ultrastructure in a Single Catalyst Particle

    OpenAIRE

    Hendriks, Frank C.; Mohammadian, Sajjad; Ristanovic, Zoran; Kalirai, Samanbir; Meirer, Florian; Vogt, Eelco T. C.; Bruijnincx, Pieter C. A.; Gerritsen, Hans; Weckhuysen, Bert M.

    2018-01-01

    Establishing structure–activity relationships in complex, hierarchically structured nanomaterials, such as fluid catalytic cracking (FCC) catalysts, requires characterization with complementary, correlated analysis techniques. An integrated setup has been developed to perform transmission electron microscopy (TEM) and single-molecule fluorescence (SMF) microscopy on such nanostructured samples. Correlated structure–reactivity information was obtained for 100 nm thin, microtomed sections of a ...

  12. Condensation on Superhydrophobic Copper Oxide Nanostructures

    OpenAIRE

    Enright, Ryan; Miljkovic, Nenad; Dou, Nicholas; Nam, Youngsuk; Wang, Evelyn N.

    2013-01-01

    Condensation is an important process in both emerging and traditional power generation and water desalination technologies. Superhydrophobic nanostructures promise enhanced condensation heat transfer by reducing the characteristic size of departing droplets via a surface-tension-driven mechanism [1]. In this work, we investigated a scalable synthesis technique to produce oxide nanostructures on copper surfaces capable of sustaining superhydrophobic condensation and characterized the growth an...

  13. Gold nanostructures and methods of use

    Science.gov (United States)

    Zhang, Jin Z [Santa Cruz, CA; Schwartzberg, Adam [Santa Cruz, CA; Olson, Tammy Y [Santa Cruz, CA

    2012-03-20

    The invention is drawn to novel nanostructures comprising hollow nanospheres and nanotubes for use as chemical sensors, conduits for fluids, and electronic conductors. The nanostructures can be used in microfluidic devices, for transporting fluids between devices and structures in analytical devices, for conducting electrical currents between devices and structure in analytical devices, and for conducting electrical currents between biological molecules and electronic devices, such as bio-microchips.

  14. Preparation and characterization of GA/RDX nanostructured ...

    Indian Academy of Sciences (India)

    Thenhexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) was added and trapped in the nano-porous three-dimensional networks of GA to obtain a novel GA/RDX nanostructured energetic composite. The composition, morphology andstructure of the obtained GA/RDX nanostructured energetic composite were characterized by ...

  15. Carbon and oxide nanostructures. Synthesis, characterisation and applications

    Energy Technology Data Exchange (ETDEWEB)

    Yahya, Noorhana [Universiti Teknologi PETRONAS, Tronoh, Perak (Malaysia). Dept. of Fundamental and Applied Sciences

    2010-07-01

    This volume covers all aspects of carbon and oxide based nanostructured materials. The topics include synthesis, characterization and application of carbon-based namely carbon nanotubes, carbon nanofibres, fullerenes, carbon filled composites etc. In addition, metal oxides namely, ZnO, TiO2, Fe2O3, ferrites, garnets etc., for various applications like sensors, solar cells, transformers, antennas, catalysts, batteries, lubricants, are presented. The book also includes the modeling of oxide and carbon based nanomaterials. The book covers the topics: - Synthesis, characterization and application of carbon nanotubes, carbon nanofibres, fullerenes - Synthesis, characterization and application of oxide based nanomaterials. - Nanostructured magnetic and electric materials and their applications. - Nanostructured materials for petro-chemical industry. - Oxide and carbon based thin films for electronics and sustainable energy. - Theory, calculations and modeling of nanostructured materials. (orig.)

  16. Electrode Nanostructures in Lithium‐Based Batteries

    Science.gov (United States)

    Mahmood, Nasir

    2014-01-01

    Lithium‐based batteries possessing energy densities much higher than those of the conventional batteries belong to the most promising class of future energy devices. However, there are some fundamental issues related to their electrodes which are big roadblocks in their applications to electric vehicles (EVs). Nanochemistry has advantageous roles to overcome these problems by defining new nanostructures of electrode materials. This review article will highlight the challenges associated with these chemistries both to bring high performance and longevity upon considering the working principles of the various types of lithium‐based (Li‐ion, Li‐air and Li‐S) batteries. Further, the review discusses the advantages and challenges of nanomaterials in nanostructured electrodes of lithium‐based batteries, concerns with lithium metal anode and the recent advancement in electrode nanostructures. PMID:27980896

  17. Nanostructured palladium tailored via carbonyl chemical route towards oxygen reduction reaction

    International Nuclear Information System (INIS)

    Luo, Y.; Mora-Hernández, J.M.; Estudillo-Wong, L.A.; Arce-Estrada, E.M.; Alonso-Vante, N.

    2015-01-01

    Graphical Abstract: Mass-depending morphologies of nanostructured Palladium obtained via the carbonyl chemical route. Display Omitted -- Highlights: •Mass-depending morphology was observed in nanostructured palladium supported on carbon prepared by the carbonyl chemical route. •The Morphological effect of carbon supported Pd was investigated towards ORR. -- Abstract: Carbon supported palladium nanostructures were synthesized via the carbonyl chemical route. Compared with nanostructured platinum, prepared via carbonyl chemical route, Pd nanomaterials showed mass-loading morphology, whereas particle size and morphology of Pt nanostructures was constant. The oxygen reduction reaction (ORR) on nanostructured Pd, with different morphology in both acid and alkaline medium was investigated. A relationship, based on X-ray diffraction structural analysis pattern, transmission electron microscope, with the Pd morphological effect on ORR activity was identified

  18. Diverse Near-Infrared Resonant Gold Nanostructures for Biomedical Applications

    KAUST Repository

    Huang, Jianfeng

    2015-12-08

    The ability of near-infrared (NIR) light to penetrate tissues deeply and to target malignant sites with high specificity via precise temporal and spatial control of light illumination makes it useful for diagnosing and treating diseases. Owing to their unique biocompatibility, surface chemistry and optical properties, gold nanostructures offer advantages as in vivo NIR photosensitizers. This chapter describes the recent progress in the varied use of NIR-resonant gold nanostructures for NIR-light-mediated diagnostic and therapeutic applications. We begin by describing the unique biological, chemical and physical properties of gold nanostructures that make them excellent candidates for biomedical applications. From here, we make an account of the basic principles involved in the diagnostic and therapeutic applications where gold nanostructures have set foot. Finally, we review recent developments in the fabrication and use of diverse NIR-resonant gold nanostructures for cancer imaging and cancer therapy.

  19. Nanostructured magnesium oxide biosensing platform for cholera detection

    Science.gov (United States)

    Patel, Manoj K.; Azahar Ali, Md.; Agrawal, Ved V.; Ansari, Z. A.; Ansari, S. G.; Malhotra, B. D.

    2013-04-01

    We report fabrication of highly crystalline nanostructured magnesium oxide (NanoMgO, size >30 nm) film electrophoretically deposited onto indium-tin-oxide (ITO) glass substrate for Vibrio cholerae detection. The single stranded deoxyribonucleic acid (ssDNA) probe, consisting of 23 bases (O1 gene sequence) immobilized onto NanoMgO/ITO electrode surface, has been characterized using electrochemical, Fourier Transform-Infra Red, and UltraViolet-visible spectroscopic techniques. The hybridization studies of ssDNA/NanoMgO/ITO bioelectrode with fragmented target DNA conducted using differential pulse voltammetry reveal sensitivity as 16.80 nA/ng/cm2, response time of 3 s, linearity as 100-500 ng/μL, and stability of about 120 days.

  20. Probing of O2 vacancy defects and correlated magnetic, electrical and photoresponse properties in indium-tin oxide nanostructures by spectroscopic techniques

    Science.gov (United States)

    Ghosh, Shyamsundar; Dev, Bhupendra Nath

    2018-05-01

    Indium-tin oxide (ITO) 1D nanostructures with tunable morphologies i.e. nanorods, nanocombs and nanowires are grown on c-axis (0 0 0 1) sapphire (Al2O3) substrate in oxygen deficient atmosphere through pulsed laser deposition (PLD) technique and the effect of oxygen vacancies on optical, electrical, magnetic and photoresponse properties is investigated using spectroscopic methods. ITO nanostructures are found to be enriched with significant oxygen vacancy defects as evident from X-ray photoelectron and Raman spectroscopic analysis. Photoluminescence spectra exhibited intense mid-band blue emission at wavelength of region of 400-450 nm due to the electronic transition from conduction band maxima (CBM) to the singly ionized oxygen-vacancy (VO+) defect level within the band-gap. Interestingly, ITO nanostructures exhibited significant room-temperature ferromagnetism (RTFM) and the magnetic moment found proportional to concentration of VO+ defects which indicates VO+ defects are mainly responsible for the observed RTFM in nanostructures. ITO nanowires being enriched with more VO+ defects exhibited strongest RTFM as compared to other morphologies. Current voltage (I-V) characteristics of ITO nanostructures showed an enhancement of current under UV light as compared to dark which indicates such 1D nanostructure can be used as photovoltaic material. Hence, the study shows that there is ample opportunity to tailor the properties of ITOs through proper defect engineering's and such photosensitive ferromagnetic semiconductors might be promising for spintronic and photovoltaic applications.

  1. Mapping of electromagnetic fields enhanced by gold nanostructures

    DEFF Research Database (Denmark)

    Fiutowski, Jacek; Maibohm, Christian; Kostiučenko, Oksana

    2012-01-01

    Laser ablation of an ‘imaging’ polymer layer allows near-field mapping of metal nanostructures with subdiffraction resolution......Laser ablation of an ‘imaging’ polymer layer allows near-field mapping of metal nanostructures with subdiffraction resolution...

  2. Addressing the instability of DNA nanostructures in tissue culture.

    Science.gov (United States)

    Hahn, Jaeseung; Wickham, Shelley F J; Shih, William M; Perrault, Steven D

    2014-09-23

    DNA nanotechnology is an advanced technique that could contribute diagnostic, therapeutic, and biomedical research devices to nanomedicine. Although such devices are often developed and demonstrated using in vitro tissue culture models, these conditions may not be compatible with DNA nanostructure integrity and function. The purpose of this study was to characterize the sensitivity of 3D DNA nanostructures produced via the origami method to the in vitro tissue culture environment and identify solutions to prevent loss of nanostructure integrity. We examined whether the physiological cation concentrations of cell culture medium and the nucleases present in fetal bovine serum (FBS) used as a medium supplement result in denaturation and digestion, respectively. DNA nanostructure denaturation due to cation depletion was design- and time-dependent, with one of four tested designs remaining intact after 24 h at 37 °C. Adjustment of medium by addition of MgSO4 prevented denaturation. Digestion of nanostructures by FBS nucleases in Mg(2+)-adjusted medium did not appear design-dependent and became significant within 24 h and when medium was supplemented with greater than 5% FBS. We estimated that medium supplemented with 10% FBS contains greater than 256 U/L equivalent of DNase I activity in digestion of DNA nanostructures. Heat inactivation at 75 °C and inclusion of actin protein in medium inactivated and inhibited nuclease activity, respectively. We examined the impact of medium adjustments on cell growth, viability, and phenotype. Adjustment of Mg(2+) to 6 mM did not appear to have a detrimental impact on cells. Heat inactivation was found to be incompatible with in vitro tissue culture, whereas inclusion of actin had no observable effect on growth and viability. In two in vitro assays, immune cell activation and nanoparticle endocytosis, we show that using conditions compatible with cell phenotype and nanostructure integrity is critical for obtaining reliable

  3. Growth of metal and semiconductor nanostructures using localized photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Shelnutt, John A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wang, Zhongchun [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Medforth, Craig J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2006-03-08

    Our overall goal has been to understand and develop a light-driven approach to the controlled growth of novel metal and semiconductor nanostructures and nanomaterials. In this photochemical process, bio-inspired porphyrin-based photocatalysts reduce metal salts in aqueous solutions at ambient temperatures when exposed to visible light, providing metal nucleation and growth centers. The photocatalyst molecules are pre-positioned at the nanoscale to control the location of the deposition of metal and therefore the morphology of the nanostructures that are grown. Self-assembly, chemical confinement, and molecular templating are some of the methods we are using for nanoscale positioning of the photocatalyst molecules. When exposed to light, each photocatalyst molecule repeatedly reduces metal ions from solution, leading to deposition near the photocatalyst and ultimately the synthesis of new metallic nanostructures and nanostructured materials. Studies of the photocatalytic growth process and the resulting nanostructures address a number of fundamental biological, chemical, and environmental issues and draw on the combined nanoscience characterization and multi-scale simulation capabilities of the new DOE Center for Integrated Nanotechnologies at Sandia National Laboratories and the University of Georgia. Our main goals are to elucidate the processes involved in the photocatalytic growth of metal nanomaterials and provide the scientific basis for controlled nanosynthesis. The nanomaterials resulting from these studies have applications in nanoelectronics, photonics, sensors, catalysis, and micromechanical systems. Our specific goals for the past three years have been to understand the role of photocatalysis in the synthesis of dendritic metal (Pt, Pd, Au) nanostructures grown from aqueous surfactant solutions under ambient conditions and the synthesis of photocatalytic porphyrin nanostructures (e.g., nanotubes) as templates for fabrication of photo-active metal

  4. Terminating DNA Tile Assembly with Nanostructured Caps.

    Science.gov (United States)

    Agrawal, Deepak K; Jiang, Ruoyu; Reinhart, Seth; Mohammed, Abdul M; Jorgenson, Tyler D; Schulman, Rebecca

    2017-10-24

    Precise control over the nucleation, growth, and termination of self-assembly processes is a fundamental tool for controlling product yield and assembly dynamics. Mechanisms for altering these processes programmatically could allow the use of simple components to self-assemble complex final products or to design processes allowing for dynamic assembly or reconfiguration. Here we use DNA tile self-assembly to develop general design principles for building complexes that can bind to a growing biomolecular assembly and terminate its growth by systematically characterizing how different DNA origami nanostructures interact with the growing ends of DNA tile nanotubes. We find that nanostructures that present binding interfaces for all of the binding sites on a growing facet can bind selectively to growing ends and stop growth when these interfaces are presented on either a rigid or floppy scaffold. In contrast, nucleation of nanotubes requires the presentation of binding sites in an arrangement that matches the shape of the structure's facet. As a result, it is possible to build nanostructures that can terminate the growth of existing nanotubes but cannot nucleate a new structure. The resulting design principles for constructing structures that direct nucleation and termination of the growth of one-dimensional nanostructures can also serve as a starting point for programmatically directing two- and three-dimensional crystallization processes using nanostructure design.

  5. Nanostructured 2D cellular materials in silicon by sidewall transfer lithography NEMS

    Science.gov (United States)

    Syms, Richard R. A.; Liu, Dixi; Ahmad, Munir M.

    2017-07-01

    Sidewall transfer lithography (STL) is demonstrated as a method for parallel fabrication of 2D nanostructured cellular solids in single-crystal silicon. The linear mechanical properties of four lattices (perfect and defected diamond; singly and doubly periodic honeycomb) with low effective Young’s moduli and effective Poisson’s ratio ranging from positive to negative are modelled using analytic theory and the matrix stiffness method with an emphasis on boundary effects. The lattices are fabricated with a minimum feature size of 100 nm and an aspect ratio of 40:1 using single- and double-level STL and deep reactive ion etching of bonded silicon-on-insulator. Nanoelectromechanical systems (NEMS) containing cellular materials are used to demonstrate stretching, bending and brittle fracture. Predicted edge effects are observed, theoretical values of Poisson’s ratio are verified and failure patterns are described.

  6. Phonon engineering for nanostructures.

    Energy Technology Data Exchange (ETDEWEB)

    Aubry, Sylvie (Stanford University); Friedmann, Thomas Aquinas; Sullivan, John Patrick; Peebles, Diane Elaine; Hurley, David H. (Idaho National Laboratory); Shinde, Subhash L.; Piekos, Edward Stanley; Emerson, John Allen

    2010-01-01

    Understanding the physics of phonon transport at small length scales is increasingly important for basic research in nanoelectronics, optoelectronics, nanomechanics, and thermoelectrics. We conducted several studies to develop an understanding of phonon behavior in very small structures. This report describes the modeling, experimental, and fabrication activities used to explore phonon transport across and along material interfaces and through nanopatterned structures. Toward the understanding of phonon transport across interfaces, we computed the Kapitza conductance for {Sigma}29(001) and {Sigma}3(111) interfaces in silicon, fabricated the interfaces in single-crystal silicon substrates, and used picosecond laser pulses to image the thermal waves crossing the interfaces. Toward the understanding of phonon transport along interfaces, we designed and fabricated a unique differential test structure that can measure the proportion of specular to diffuse thermal phonon scattering from silicon surfaces. Phonon-scale simulation of the test ligaments, as well as continuum scale modeling of the complete experiment, confirmed its sensitivity to surface scattering. To further our understanding of phonon transport through nanostructures, we fabricated microscale-patterned structures in diamond thin films.

  7. Nuclear spins in nanostructures

    International Nuclear Information System (INIS)

    Coish, W.A.; Baugh, J.

    2009-01-01

    We review recent theoretical and experimental advances toward understanding the effects of nuclear spins in confined nanostructures. These systems, which include quantum dots, defect centers, and molecular magnets, are particularly interesting for their importance in quantum information processing devices, which aim to coherently manipulate single electron spins with high precision. On one hand, interactions between confined electron spins and a nuclear-spin environment provide a decoherence source for the electron, and on the other, a strong effective magnetic field that can be used to execute local coherent rotations. A great deal of effort has been directed toward understanding the details of the relevant decoherence processes and to find new methods to manipulate the coupled electron-nuclear system. A sequence of spectacular new results have provided understanding of spin-bath decoherence, nuclear spin diffusion, and preparation of the nuclear state through dynamic polarization and more general manipulation of the nuclear-spin density matrix through ''state narrowing.'' These results demonstrate the richness of this physical system and promise many new mysteries for the future. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  8. Formation of superhydrophobic/superhydrophilic patterns by combination of nanostructure-imprinted perfluoropolymer and nanostructured silicon oxide for biological droplet generation

    Science.gov (United States)

    Kobayashi, Taizo; Shimizu, Kazunori; Kaizuma, Yoshihiro; Konishi, Satoshi

    2011-03-01

    In this letter, we report a technology for fabricating superhydrophobic/superhydrophilic patterns using a combination of a nanostructure-imprinted perfluoropolymer and nanostructured silicon oxide. In our previous study, we used a combination of hydrophobic and superhydrophilic materials. However, it was difficult to split low-surface-tension liquids such as biological liquids into droplets solely using hydrophobic/hydrophilic patterns. In this study, the contact angle of the hydrophobic region was enhanced from 109.3° to 155.6° by performing nanostructure imprinting on a damage-reduced perfluoropolymer. The developed superhydrophobic/superhydrophilic patterns allowed the splitting of even those media that contained fetal bovine serum into droplets of a desired shape.

  9. Plasmonic Circuit Theory for Multiresonant Light Funneling to a Single Spatial Hot Spot.

    Science.gov (United States)

    Hughes, Tyler W; Fan, Shanhui

    2016-09-14

    We present a theoretical framework, based on plasmonic circuit models, for generating a multiresonant field intensity enhancement spectrum at a single "hot spot" in a plasmonic device. We introduce a circuit model, consisting of an array of coupled LC resonators, that directs current asymmetrically in the array, and we show that this circuit can funnel energy efficiently from each resonance to a single element. We implement the circuit model in a plasmonic nanostructure consisting of a series of metal bars of differing length, with nearest neighbor metal bars strongly coupled electromagnetically through air gaps. The resulting nanostructure resonantly traps different wavelengths of incident light in separate gap regions, yet it funnels the energy of different resonances to a common location, which is consistent with our circuit model. Our work is important for a number of applications of plasmonic nanoantennas in spectroscopy, such as in single-molecule fluorescence spectroscopy or Raman spectroscopy.

  10. Electrochemical characteristics of nanostructured silicon anodes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Astrova, E. V.; Li, G. V.; Rumyantsev, A. M.; Zhdanov, V. V.

    2016-01-01

    High-aspect periodic structures with thin vertical walls are studied as regards their applicability as negative electrodes of lithium-ion batteries. The nanostructures are fabricated from single-crystal silicon using photolithography, electrochemical anodization, and subsequent anisotropic shaping. The capacity per unit of the visible surface area of the electrode and the specific internal surface area are compared for structures of varied architecture: 1D (wires), 2D (zigzag walls), and 3D structures (walls forming a grid). Main attention is given to testing the endurance of anodes based on zigzag and grid structures, performed by galvanostatic cycling in half-cells with a lithium counter electrode. The influence exerted by the geometric parameters of the structures and by the testing mode on the degradation rate is determined. It is shown that the limiting factor of the lithiation and delithiation processes is diffusion. The endurance of an electrode dramatically increases when the charging capacity is limited to ∼1000 mA h/g. In this case, nanostructures with 300-nm-thick walls, which underwent cyclic testing at a rate of 0.36C, retain a constant discharge capacity and a Coulomb efficiency close to 100% for more than 1000 cycles.

  11. Electrochemical characteristics of nanostructured silicon anodes for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Astrova, E. V., E-mail: east@mail.ioffe.ru; Li, G. V.; Rumyantsev, A. M.; Zhdanov, V. V. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)

    2016-02-15

    High-aspect periodic structures with thin vertical walls are studied as regards their applicability as negative electrodes of lithium-ion batteries. The nanostructures are fabricated from single-crystal silicon using photolithography, electrochemical anodization, and subsequent anisotropic shaping. The capacity per unit of the visible surface area of the electrode and the specific internal surface area are compared for structures of varied architecture: 1D (wires), 2D (zigzag walls), and 3D structures (walls forming a grid). Main attention is given to testing the endurance of anodes based on zigzag and grid structures, performed by galvanostatic cycling in half-cells with a lithium counter electrode. The influence exerted by the geometric parameters of the structures and by the testing mode on the degradation rate is determined. It is shown that the limiting factor of the lithiation and delithiation processes is diffusion. The endurance of an electrode dramatically increases when the charging capacity is limited to ∼1000 mA h/g. In this case, nanostructures with 300-nm-thick walls, which underwent cyclic testing at a rate of 0.36C, retain a constant discharge capacity and a Coulomb efficiency close to 100% for more than 1000 cycles.

  12. Observation of HCI-induced nanostructures with a scanning probe microscope

    International Nuclear Information System (INIS)

    Tona, Masahide; Watanabe, Hirofumi; Takahashi, Satoshi; Fujita, Yuso; Abe, Takashi; Jian, Sun; Nakamura, Nobuyuki; Yoshiyasu, Nobuo; Yamada, Chikashi; Sakurai, Makoto; Ohtani, Shunsuke

    2007-01-01

    We present scanning tunneling microscope (STM) images, atomically resolved, of the nanostructures on various kinds of surfaces bombarded with highly charged ions (HCIs). In the STM image of a highly oriented pyrolytic graphite surface (Xe 29+ -impact), a protrusion structure was observed with √3 x √3 R30 0 surface reconstruction around the impact site. A crater-like structure was formed on a Si(111)-(7x7) surface by an I 50+ -HCI impact. An atomic image of ∼0.1 nm in height was also observed around the missing topmost layers of the crater. In the case of a TiO 2 (110) surface, a typical nanostructure induced by a single I 51+ -HCI impact, relatively larger crater structure than that on the Si surface was observed; the height (∼1 nm) was higher than the atomic step of the TiO 2 (110)-(1x1) surface (∼0.3 nm) and the depth reached at least 1.5 nm. This implies that the degree of the HCI-radiation effect on the TiO 2 surface is higher than that of the Si(111) case

  13. Geometry and magnetism of L10 nanostructures

    International Nuclear Information System (INIS)

    Sorge, K.D.; Skomski, R.; Daniil, M.; Michalski, S.; Gao, L.; Zhou, J.; Yan, M.; Sui, Y.; Kirby, R.D.; Liou, S.H.; Sellmyer, D.J.

    2005-01-01

    The fabrication and magnetism of L1 0 nanostructures with different shapes (such as nanoparticles and nanotubes) is investigated. These nanostructures are produced by hydrogen processing and focused ion beam milling. The structures exhibit interesting reversal modes and are of present or potential interest for sensors and imaging, as well as magnetic recording

  14. Hollow metal nanostructures for enhanced plasmonics (Conference Presentation)

    Science.gov (United States)

    Genç, Aziz; Patarroyo, Javier; Sancho-Parramon, Jordi; Duchamp, Martial; Gonzalez, Edgar; Bastus, Neus G.; Houben, Lothar; Dunin-Borkowski, Rafal; Puntes, Victor F.; Arbiol, Jordi

    2016-03-01

    Complex metal nanoparticles offer a great playground for plasmonic nanoengineering, where it is possible to cover plasmon resonances from ultraviolet to near infrared by modifying the morphologies from solid nanocubes to nanoframes, multiwalled hollow nanoboxes or even nanotubes with hybrid (alternating solid and hollow) structures. We experimentally show that structural modifications, i.e. void size and final morphology, are the dominant determinants for the final plasmonic properties, while compositional variations allow us to get a fine tuning. EELS mappings of localized surface plasmon resonances (LSPRs) reveal an enhanced plasmon field inside the voids of hollow AuAg nanostructures along with a more homogeneous distributions of the plasmon fields around the nanostructures. With the present methodology and the appropriate samples we are able to compare the effects of hybridization at the nanoscale in hollow nanostructures. Boundary element method (BEM) simulations also reveal the effects of structural nanoengineering on plasmonic properties of hollow metal nanostructures. Possibility of tuning the LSPR properties of hollow metal nanostructures in a wide range of energy by modifying the void size/shell thickness is shown by BEM simulations, which reveals that void size is the dominant factor for tuning the LSPRs. As a proof of concept for enhanced plasmonic properties, we show effective label free sensing of bovine serum albumin (BSA) with some of our hollow nanostructures. In addition, the different plasmonic modes observed have also been studied and mapped in 3D.

  15. Science and Technology of Nanostructures in the Department of Defense

    International Nuclear Information System (INIS)

    Murday, James S.

    1999-01-01

    The United States Department of Defense maintains a research and development program in nanostructures with special attention to miniaturization of information technology devices, nanostructured materials, and nanobiotechnology for detection of biological agents. This article provides a brief guide to those DoD funding officers and research scientists actively interested in nanostructures

  16. Cellular processing and destinies of artificial DNA nanostructures.

    Science.gov (United States)

    Lee, Di Sheng; Qian, Hang; Tay, Chor Yong; Leong, David Tai

    2016-08-07

    Since many bionanotechnologies are targeted at cells, understanding how and where their interactions occur and the subsequent results of these interactions is important. Changing the intrinsic properties of DNA nanostructures and linking them with interactions presents a holistic and powerful strategy for understanding dual nanostructure-biological systems. With the recent advances in DNA nanotechnology, DNA nanostructures present a great opportunity to understand the often convoluted mass of information pertaining to nanoparticle-biological interactions due to the more precise control over their chemistry, sizes, and shapes. Coupling just some of these designs with an understanding of biological processes is both a challenge and a source of opportunities. Despite continuous advances in the field of DNA nanotechnology, the intracellular fate of DNA nanostructures has remained unclear and controversial. Because understanding its cellular processing and destiny is a necessary prelude to any rational design of exciting and innovative bionanotechnology, in this review, we will discuss and provide a comprehensive picture relevant to the intracellular processing and the fate of various DNA nanostructures which have been remained elusive for some time. We will also link the unique capabilities of DNA to some novel ideas for developing next-generation bionanotechnologies.

  17. Double scattering of light from Biophotonic Nanostructures with short-range order

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Heeso; Liew, Seng Fatt; Saranathan, Vinodkumar; Prum, Richard O.; Mochrie, Simon G.J.; Dufresne, Eric R.; Cao, Hui (Yale)

    2010-07-28

    We investigate the physical mechanism for color production by isotropic nanostructures with short-range order in bird feather barbs. While the primary peak in optical scattering spectra results from constructive interference of singly-scattered light, many species exhibit secondary peaks with distinct characteristic. Our experimental and numerical studies show that these secondary peaks result from double scattering of light by the correlated structures. Without an analog in periodic or random structures, such a phenomenon is unique for short-range ordered structures, and has been widely used by nature for non-iridescent structural coloration.

  18. Understanding the biological responses of nanostructured metals and surfaces

    Science.gov (United States)

    Lowe, Terry C.; Reiss, Rebecca A.

    2014-08-01

    Metals produced by Severe Plastic Deformation (SPD) offer distinct advantages for medical applications such as orthopedic devices, in part because of their nanostructured surfaces. We examine the current theoretical foundations and state of knowledge for nanostructured biomaterials surface optimization within the contexts that apply to bulk nanostructured metals, differentiating how their microstructures impact osteogenesis, in particular, for Ultrafine Grained (UFG) titanium. Then we identify key gaps in the research to date, pointing out areas which merit additional focus within the scientific community. For example, we highlight the potential of next-generation DNA sequencing techniques (NGS) to reveal gene and non-coding RNA (ncRNA) expression changes induced by nanostructured metals. While our understanding of bio-nano interactions is in its infancy, nanostructured metals are already being marketed or developed for medical devices such as dental implants, spinal devices, and coronary stents. Our ability to characterize and optimize the biological response of cells to SPD metals will have synergistic effects on advances in materials, biological, and medical science.

  19. Understanding the biological responses of nanostructured metals and surfaces

    International Nuclear Information System (INIS)

    Lowe, Terry C; A Reiss, Rebecca

    2014-01-01

    Metals produced by Severe Plastic Deformation (SPD) offer distinct advantages for medical applications such as orthopedic devices, in part because of their nanostructured surfaces. We examine the current theoretical foundations and state of knowledge for nanostructured biomaterials surface optimization within the contexts that apply to bulk nanostructured metals, differentiating how their microstructures impact osteogenesis, in particular, for Ultrafine Grained (UFG) titanium. Then we identify key gaps in the research to date, pointing out areas which merit additional focus within the scientific community. For example, we highlight the potential of next-generation DNA sequencing techniques (NGS) to reveal gene and non-coding RNA (ncRNA) expression changes induced by nanostructured metals. While our understanding of bio-nano interactions is in its infancy, nanostructured metals are already being marketed or developed for medical devices such as dental implants, spinal devices, and coronary stents. Our ability to characterize and optimize the biological response of cells to SPD metals will have synergistic effects on advances in materials, biological, and medical science

  20. Synthesis of PbI(2) single-layered inorganic nanotubes encapsulated within carbon nanotubes.

    Science.gov (United States)

    Cabana, Laura; Ballesteros, Belén; Batista, Eudar; Magén, César; Arenal, Raúl; Oró-Solé, Judith; Rurali, Riccardo; Tobias, Gerard

    2014-04-02

    The template assisted growth of single-layered inorganic nanotubes is reported. Single-crystalline lead iodide single-layered nanotubes have been prepared using the inner cavities of carbon nanotubes as hosting templates. The diameter of the resulting inorganic nanotubes is merely dependent on the diameter of the host. This facile method is highly versatile opening up new horizons in the preparation of single-layered nanostructures. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Templated electrodeposition of functional nanostructures: nanowires, nanotubes and nanocubes

    OpenAIRE

    Maijenburg, A.W.

    2014-01-01

    This thesis is entitled “Templated electrodeposition of functional nanostructures: nanowires, nanotubes and nanocubes”. Templated electrodeposition is the synthesis technique that was used throughout this thesis, and it comprises the use of a template with specific shape and dimensions for the formation of different types of nanostructures. Throughout this thesis, three different nanostructures were made: nanowires (Chapters 2 to 6), nanotubes (Chapters 2 and 5) and nanocubes (Chapters 7 and ...

  2. Supramolecular Rotor and Translator at Work: On-Surface Movement of Single Atoms.

    Science.gov (United States)

    Ohmann, Robin; Meyer, Jörg; Nickel, Anja; Echeverria, Jorge; Grisolia, Maricarmen; Joachim, Christian; Moresco, Francesca; Cuniberti, Gianaurelio

    2015-08-25

    A supramolecular nanostructure composed of four 4-acetylbiphenyl molecules and self-assembled on Au (111) was loaded with single Au adatoms and studied by scanning tunneling microscopy at low temperature. By applying voltage pulses to the supramolecular structure, the loaded Au atoms can be rotated and translated in a controlled manner. The manipulation of the gold adatoms is driven neither by mechanical interaction nor by direct electronic excitation. At the electronic resonance and driven by the tunneling current intensity, the supramolecular nanostructure performs a small amount of work of about 8 × 10(-21) J, while transporting the single Au atom from one adsorption site to the next. Using the measured average excitation time necessary to induce the movement, we determine the mechanical motive power of the device, yielding about 3 × 10(-21) W.

  3. Synthesis and processing of nanostructured materials

    International Nuclear Information System (INIS)

    Siegel, R.W.

    1992-12-01

    Significant and growing interest is being exhibited in the novel and enhanced properties of nanostructured materials. These materials, with their constituent phase or grain structures modulated on a length scale less than 100 nm, are artificially synthesized by a wide variety of physical, chemical, and mechanical methods. In this NATO Advanced Study Institute, where mechanical behavior is emphasized, nanostructured materials with modulation dimensionalities from one (multilayers) to three (nanophase materials) are mainly considered. No attempt is made in this review to cover in detail all of the diverse methods available for the synthesis of nanostructured materials. Rather, the basic principles involved in their synthesis are discussed in terms of the special properties sought using examples of particular synthesis and processing methodologies. Some examples of the property changes that can result from one of these methods, cluster assembly of nanophase materials, are presented

  4. LDRD final report on adaptive-responsive nanostructures for sensing applications.

    Energy Technology Data Exchange (ETDEWEB)

    Shelnutt, John Allen; van Swol, Frank B.; Wang, Zhongchun; Medforth, Craig J.

    2005-11-01

    Functional organic nanostructures such as well-formed tubes or fibers that can easily be fabricated into electronic and photonic devices are needed in many applications. Especially desirable from a national security standpoint are nanostructures that have enhanced sensitivity for the detection of chemicals and biological (CB) agents and other environmental stimuli. We recently discovered the first class of highly responsive and adaptive porphyrin-based nanostructures that may satisfy these requirements. These novel porphyrin nanostructures, which are formed by ionic self-assembly of two oppositely charged porphyrins, may function as conductors, semiconductors, or photoconductors, and they have additional properties that make them suitable for device fabrication (e.g., as ultrasensitive colorimetric CB microsensors). Preliminary studies with porphyrin nanotubes have shown that these nanostructures have novel optical and electronic properties, including strong resonant light scattering, quenched fluorescence, and electrical conductivity. In addition, they are photochemically active and capable of light-harvesting and photosynthesis; they may also have nonlinear optical properties. Remarkably, the nanotubes and potentially other porphyrin nanostructure are mechanically responsive and adaptive (e.g., the rigidity of the micrometers-long nanotubes is altered by light, ultrasound, or chemicals) and they self-heal upon removal the environmental stimulus. Given the tremendous degree of structural variation possible in the porphyrin subunits, additional types of nanostructures and greater control over their morphology can be anticipated. Molecular modification also provides a means of controlling their electronic, photonic, and other functional properties. In this work, we have greatly broadened the range of ionic porphyrin nanostructures that can be made, and determined the optical and responsivity properties of the nanotubes and other porphyrin nanostructures. We have

  5. Dendrimer-magnetic nanostructure: a Monte Carlo simulation

    Science.gov (United States)

    Jabar, A.; Masrour, R.

    2017-11-01

    In this paper, the magnetic properties of ternary mixed spins (σ,S,q) Ising model on a dendrimer nanostructure are studied using Monte Carlo simulations. The ground state phase diagrams of dendrimer nanostructure with ternary mixed spins σ = 1/2, S = 1 and q = 3/2 Ising model are found. The variation of the thermal total and partial magnetizations with the different exchange interactions, the external magnetic fields and the crystal fields have been also studied. The reduced critical temperatures have been deduced. The magnetic hysteresis cycles have been discussed. In particular, the corresponding magnetic coercive filed values have been deduced. The multiples hysteresis cycles are found. The dendrimer nanostructure has several applications in the medicine.

  6. Nanostructures of Boron, Carbon and Magnesium Diboride for High Temperature Superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Pfefferle, Lisa [Yale Univ., New Haven, CT (United States); Fang, Fang [Yale Univ., New Haven, CT (United States); Iyyamperumal, Eswarmoorthi [Yale Univ., New Haven, CT (United States); Keskar, Gayatri [Yale Univ., New Haven, CT (United States)

    2013-12-23

    Direct fabrication of MgxBy nanostructures is achieved by employing metal (Ni,Mg) incorporated MCM-41 in the Hybrid Physical-Chemical Vapor Deposition (HPCVD) reaction. Different reaction conditions are tested to optimize the fabrication process. TEM analysis shows the fabrication of MgxBy nanostructures starting at the reaction temperature of 600oC, with the yield of the nanostructures increasing with increasing reaction temperature. The as-synthesized MgxBy nanostructures have the diameters in the range of 3-5nm, which do not increase with the reaction temperature consistent with templated synthesis. EELS analysis of the template removed nanostructures confirms the existence of B and Mg with possible contamination of Si and O. NEXAFS and Raman spectroscopy analysis suggested a concentric layer-by-layer MgxBy nanowire/nanotube growth model for our as-synthesized nanostructures. Ni k-edge XAS indicates that the formation of MgNi alloy particles is important for the Vapor-Liquid-Solid (VLS) growth of MgxBy nanostructures with fine diameters, and the presence of Mg vapor not just Mg in the catalyst is crucial for the formation of Ni-Mg clusters. Physical templating by the MCM-41 pores was shown to confine the diameter of the nanostructures. DC magnetization measurements indicate possible superconductive behaviors in the as-synthesized samples.

  7. One-dimensional titania nanostructures: Synthesis and applications in dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hao [Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials and Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062 (China); State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Guo, Zhiguang, E-mail: zguo@licp.cas.cn [Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials and Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062 (China); State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Wang, Shimin [Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials and Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062 (China); Liu, Weimin [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2014-05-02

    One-dimensional (1D) titania (TiO{sub 2}) in the form of nanorods, nanowires, nanobelts and nanotubes have attracted much attention due to their unique physical, chemical and optical properties enabling extraordinary performance in biomedicine, sensors, energy storage, solar cells and photocatalysis. In this review, we mainly focus on synthetic methods for 1D TiO{sub 2} nanostructures and the applications of 1D TiO{sub 2} nanostructures in dye-sensitized solar cells (DSCs). Traditional nanoparticle-based DSCs have numerous grain boundaries and surface defects, which increase the charge recombination from photoanode to electrolyte. 1D TiO{sub 2} nanostructures can provide direct and rapid electron transport to the electron collecting electrode, indicating a promising choice for DSCs. We divide the applications of 1D TiO{sub 2} nanostructures in DSCs into four parts, that is, 1D TiO{sub 2} nanostructures only, 1D TiO{sub 2} nanostructure/nanoparticle composites, branched 1D TiO{sub 2} nanostructures, and 1D TiO{sub 2} nanostructures combined with other materials. This work will provide guidance for preparing 1D TiO{sub 2} nanostructures, and using them as photoanodes in efficient DSCs. - Graphical abstract: 1D TiO{sub 2} nanostructures which can provide direct and rapid pathways for electron transport have promising applications in dye-sensitized solar cells (DSCs). The synthetic methods and applications of 1D TiO{sub 2} nanostructures in DSCs are summarized in this review article.

  8. CuO urchin-nanostructures synthesized from a domestic hydrothermal microwave method

    International Nuclear Information System (INIS)

    Keyson, D.; Volanti, D.P.; Cavalcante, L.S.; Simoes, A.Z.; Varela, J.A.; Longo, E.

    2008-01-01

    This letter reports the synthesis of CuO urchin-nanostructures by a simple and novel hydrothermal microwave method. The formation and growth of urchin-nanostructures is mainly affected by the addition of polyethylene glycol (PEG). The hierarchical malachite particles are uniform spheres with a diameter of 0.7-1.9 μm. CuO urchin-nanostructures were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FEG-SEM) and nitrogen adsorption (BET). The specific surface area of the CuO nanostructured microspheres was about 170.5 m 2 /g. A possible mechanism for the formation of such CuO urchin-nanostructures is proposed

  9. Template-free sonochemical synthesis of flower-like ZnO nanostructures

    International Nuclear Information System (INIS)

    Yu, Huawa; Fan, Huiqing; Wang, Xin; Wang, Jing; Cheng, Pengfei; Zhang, Xiaojun

    2014-01-01

    Flower-like ZnO nanostructures have been successfully synthesized via a facile and template-free sonochemical method, using zinc acetate and potassium hydroxide as reactants only. The as-synthesized flower-like ZnO nanostructures were composed of nanorods with the width of ∼300–400 nm and the length of ∼2–3 μm. The structures, morphologies and optical properties of the as-prepared products were characterized by X-ray diffraction, scanning electron microscope, transmission electron microscopy, UV-Vis spectrophotometry and Raman-scattering spectroscopy. A plausible formation mechanism of flower-like ZnO nanostructures was studied by SEM which monitors an intermediate morphology transformation of the product at the different ultrasonic time (t=80,90,95,105, and 120 min). - Highlights: • A facile and template-free sonochemical method to fabricate flower-like ZnO nanostructures was proposed. • The flower-like ZnO nanostructures follow the ingrowth of ZnO from the matrix of Zn(OH) 2 crystals. • The flower-like ZnO nanostructures are also expected to explore their application in the field of nano-electronic devices

  10. Structure and optical function of amorphous photonic nanostructures from avian feather barbs: a comparative small angle X-ray scattering (SAXS) analysis of 230 bird species.

    Science.gov (United States)

    Saranathan, Vinodkumar; Forster, Jason D; Noh, Heeso; Liew, Seng-Fatt; Mochrie, Simon G J; Cao, Hui; Dufresne, Eric R; Prum, Richard O

    2012-10-07

    Non-iridescent structural colours of feathers are a diverse and an important part of the phenotype of many birds. These colours are generally produced by three-dimensional, amorphous (or quasi-ordered) spongy β-keratin and air nanostructures found in the medullary cells of feather barbs. Two main classes of three-dimensional barb nanostructures are known, characterized by a tortuous network of air channels or a close packing of spheroidal air cavities. Using synchrotron small angle X-ray scattering (SAXS) and optical spectrophotometry, we characterized the nanostructure and optical function of 297 distinctly coloured feathers from 230 species belonging to 163 genera in 51 avian families. The SAXS data provided quantitative diagnoses of the channel- and sphere-type nanostructures, and confirmed the presence of a predominant, isotropic length scale of variation in refractive index that produces strong reinforcement of a narrow band of scattered wavelengths. The SAXS structural data identified a new class of rudimentary or weakly nanostructured feathers responsible for slate-grey, and blue-grey structural colours. SAXS structural data provided good predictions of the single-scattering peak of the optical reflectance of the feathers. The SAXS structural measurements of channel- and sphere-type nanostructures are also similar to experimental scattering data from synthetic soft matter systems that self-assemble by phase separation. These results further support the hypothesis that colour-producing protein and air nanostructures in feather barbs are probably self-assembled by arrested phase separation of polymerizing β-keratin from the cytoplasm of medullary cells. Such avian amorphous photonic nanostructures with isotropic optical properties may provide biomimetic inspiration for photonic technology.

  11. Nano-structured Cu(In,Al)Se{sub 2} near-infrared photodetectors

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ruo-Ping [Institute of Microelectronics and Department of Electrical Engineering, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China); Perng, Dung-Ching, E-mail: dcperng@ee.ncku.edu.tw [Institute of Microelectronics and Department of Electrical Engineering, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China)

    2013-02-01

    We have demonstrated nano-structured Cu(In,Al)Se{sub 2} (CIAS) near-infrared (NIR) photodetectors (PDs). The CIAS NIR PDs were fabricated on ZnO nanowires (NWs)/ZnO/Mo/ITO (indium tin oxide) glass substrate. CIAS film acted as a sensing layer and sparse ZnSe NWs, which were converted from ZnO NWs after selenization process, were embedded in the CIAS film to improve the amplification performance of the NIR PDs. X-ray diffraction patterns show that the CIAS film is a single phased polycrystalline film. Scanning electron microscopy was used to examine the morphology of the CIAS film and the growth of NWs. Two detection schemes, plain Al–CIAS–Al metal–semiconductor–metal structure and vertical structure with CIAS/ZnSe NWs annular p–n junctions, were studied. The nano-structured NIR PDs demonstrate two orders of magnitude for the annular p–n junction and one order of magnitude for the MSM structure in photocurrent amplification. The responsivities of the PDs using both sensing structures have the same cut-off frequency near 790 nm. - Highlights: ► We demonstrate nano-structured Cu(In,Al)Se{sub 2} near-infrared photodetectors. ► Photodetectors were fabricated on ZnO nanowires/ZnO/Mo/ITO glass substrate. ► Two detection schemes studied: a plain MSM structure and a vertical structure. ► Photocurrent amplification for the vertical structure is two orders of magnitude. ► Photocurrent amplification for the MSM structure is one order of magnitude.

  12. Optical waveguides with compound multiperiodic grating nanostructures for refractive index sensing

    DEFF Research Database (Denmark)

    Neustock, Lars Thorben; Jahns, Sabrina; Adam, Jost

    2016-01-01

    (Rudin-Shapiro, Fibonacci, Thue-Morse). The refractive index sensitivity of the TE-resonances is similar for all types of investigated nanostructures. For the TM-resonances the compound multiperiodic nanostructures exhibit higher sensitivity values compared to the monoperiodic nanostructure and similar...

  13. Computational modeling of geometry dependent phonon transport in silicon nanostructures

    Science.gov (United States)

    Cheney, Drew A.

    Recent experiments have demonstrated that thermal properties of semiconductor nanostructures depend on nanostructure boundary geometry. Phonons are quantized mechanical vibrations that are the dominant carrier of heat in semiconductor materials and their aggregate behavior determine a nanostructure's thermal performance. Phonon-geometry scattering processes as well as waveguiding effects which result from coherent phonon interference are responsible for the shape dependence of thermal transport in these systems. Nanoscale phonon-geometry interactions provide a mechanism by which nanostructure geometry may be used to create materials with targeted thermal properties. However, the ability to manipulate material thermal properties via controlling nanostructure geometry is contingent upon first obtaining increased theoretical understanding of fundamental geometry induced phonon scattering processes and having robust analytical and computational models capable of exploring the nanostructure design space, simulating the phonon scattering events, and linking the behavior of individual phonon modes to overall thermal behavior. The overall goal of this research is to predict and analyze the effect of nanostructure geometry on thermal transport. To this end, a harmonic lattice-dynamics based atomistic computational modeling tool was created to calculate phonon spectra and modal phonon transmission coefficients in geometrically irregular nanostructures. The computational tool is used to evaluate the accuracy and regimes of applicability of alternative computational techniques based upon continuum elastic wave theory. The model is also used to investigate phonon transmission and thermal conductance in diameter modulated silicon nanowires. Motivated by the complexity of the transmission results, a simplified model based upon long wavelength beam theory was derived and helps explain geometry induced phonon scattering of low frequency nanowire phonon modes.

  14. Synthesis and characterization of flowerlike ZnO nanostructures via an ethylenediamine-meditated solution route

    International Nuclear Information System (INIS)

    Gao Xiangdong; Li Xiaomin; Yu Weidong

    2005-01-01

    Flowerlike ZnO nanostructures were deposited on Si substrate by choosing hexamethylenetetramine as the nucleation control reagent and ethylenediamine as the chelating and capping reagent. Structural and optical measurements reveal that obtained ZnO exhibits well-defined flowerlike morphology, hexagonal wurtzite structure, uniform distribution on substrate, and strong photoluminescence in ultraviolet band. The well-arrayed pedals of each ZnO flower possess the typical tapering feature, and are built up by many well-aligned ZnO nanorods. Moreover, each single nanorod building up the pedal exhibits the single crystal nature and the growth direction along c-axis. Effects of the precursor composition on the morphology of ZnO were discussed

  15. Vortex ice in nanostructured superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Reichhardt, Charles [Los Alamos National Laboratory; Reichhardt, Cynthia J [Los Alamos National Laboratory; Libal, Andras J [Los Alamos National Laboratory

    2008-01-01

    We demonstrate using numerical simulations of nanostructured superconductors that it is possible to realize vortex ice states that are analogous to square and kagome ice. The system can be brought into a state that obeys either global or local ice rules by applying an external current according to an annealing protocol. We explore the breakdown of the ice rules due to disorder in the nanostructure array and show that in square ice, topological defects appear along grain boundaries, while in kagome ice, individual defects appear. We argue that the vortex system offers significant advantages over other artificial ice systems.

  16. Patterning protein complexes on DNA nanostructures using a GFP nanobody.

    Science.gov (United States)

    Sommese, R F; Hariadi, R F; Kim, K; Liu, M; Tyska, M J; Sivaramakrishnan, S

    2016-11-01

    DNA nanostructures have become an important and powerful tool for studying protein function over the last 5 years. One of the challenges, though, has been the development of universal methods for patterning protein complexes on DNA nanostructures. Herein, we present a new approach for labeling DNA nanostructures by functionalizing them with a GFP nanobody. We demonstrate the ability to precisely control protein attachment via our nanobody linker using two enzymatic model systems, namely adenylyl cyclase activity and myosin motility. Finally, we test the power of this attachment method by patterning unpurified, endogenously expressed Arp2/3 protein complex from cell lysate. By bridging DNA nanostructures with a fluorescent protein ubiquitous throughout cell and developmental biology and protein biochemistry, this approach significantly streamlines the application of DNA nanostructures as a programmable scaffold in biological studies. © 2016 The Protein Society.

  17. Microwave plasma-enhanced chemical vapour deposition growth of carbon nanostructures

    Directory of Open Access Journals (Sweden)

    Shivan R. Singh

    2010-05-01

    Full Text Available The effect of various input parameters on the production of carbon nanostructures using a simple microwave plasma-enhanced chemical vapour deposition technique has been investigated. The technique utilises a conventional microwave oven as the microwave energy source. The developed apparatus is inexpensive and easy to install and is suitable for use as a carbon nanostructure source for potential laboratory-based research of the bulk properties of carbon nanostructures. A result of this investigation is the reproducibility of specific nanostructures with the variation of input parameters, such as carbon-containing precursor and support gas flow rate. It was shown that the yield and quality of the carbon products is directly controlled by input parameters. Transmission electron microscopy and scanning electron microscopy were used to analyse the carbon products; these were found to be amorphous, nanotubes and onion-like nanostructures.

  18. Terahertz carrier dynamics in graphene and graphene nanostructures

    DEFF Research Database (Denmark)

    Jensen, Søren A.; Turchinovich, Dmitry; Tielrooij, Klaas Jan

    2014-01-01

    Photoexcited charge carriers in 2D graphene and in 1D graphene nanostructures were studied with optical pump-THz probe spectroscopy. We find efficient hot-carrier multiplication in 2D graphene, and predominantly free carrier early time response in 1D nanostructures. © 2014 OSA....

  19. Self-formation of polymer nanostructures in plasma etching: mechanisms and applications

    Science.gov (United States)

    Du, Ke; Jiang, Youhua; Huang, Po-Shun; Ding, Junjun; Gao, Tongchuan; Choi, Chang-Hwan

    2018-01-01

    In recent years, plasma-induced self-formation of polymer nanostructures has emerged as a simple, scalable and rapid nanomanufacturing technique to pattern sub-100 nm nanostructures. High-aspect-ratio nanostructures (>20:1) are fabricated on a variety of polymer surfaces such as poly(methylmethacrylate) (PMMA), polystyrene (PS), polydimethylsiloxane (PDMS), and fluorinated ethylene propylene (FEP). Sub-100 nm nanostructures (i.e. diameter  ⩽  50 nm) are fabricated in this one-step process without relying on slow and expensive nanolithography techniques. This review starts with discussion of the self-formation mechanisms including surface modulation, random masks, and materials impurities. Emphasis is put on the applications of polymer nanostructures in the fields of hierarchical nanostructures, liquid repellence, adhesion, lab-on-a-chip, surface enhanced Raman scattering (SERS), organic light emitting diode (OLED), and energy harvesting. The unique advantages of this nanomanufacturing technique are illustrated, followed by prospects.

  20. Fabrication of Nanostructures Using Self-Assembled Peptides as Templates

    DEFF Research Database (Denmark)

    Castillo, Jaime

    2015-01-01

    the advantages of diphenylalanine are explained step by step offering new alternatives to fabricate nanostructures in a simple and rapid way. The chapter is complemented with techniques to manipulate the self-assembled diphenylalanine nanostructures without changing its properties during the manipulation process.......This chapter evaluates the use of a short-aromatic dipeptide, diphenylalanine, as a template in the fabrication of new nanostructures (nanowires, coaxial nanocables, nanochannels) using materials such as silicon, conducting and non-conducting polymers. Diphenylalanine self...

  1. (Poly)cation-induced protection of conventional and wireframe DNA origami nanostructures.

    Science.gov (United States)

    Ahmadi, Yasaman; De Llano, Elisa; Barišić, Ivan

    2018-04-26

    DNA nanostructures hold immense potential to be used for biological and medical applications. However, they are extremely vulnerable towards salt depletion and nucleases, which are common under physiological conditions. In this contribution, we used chitosan and linear polyethyleneimine for coating and long-term stabilization of several three-dimensional DNA origami nanostructures. The impact of the degree of polymerization and the charge density of the polymer together with the N/P charge ratio (ratio of the amines in polycations to the phosphates in DNA) on the stability of encapsulated DNA origami nanostructures in the presence of nucleases and in low-salt media was examined. The polycation shells were compatible with enzyme- and aptamer-based functionalization of the DNA nanostructures. Additionally, we showed that despite being highly vulnerable to salt depletion and nucleolytic digestion, self-assembled DNA nanostructures are stable in cell culture media up to a week. This was contrary to unassembled DNA scaffolds that degraded in one hour, showing that placing DNA strands into a spatially designed configuration crucially affect the structural integrity. The stability of naked DNA nanostructures in cell culture was shown to be mediated by growth media. DNA origami nanostructures kept in growth media were significantly more resistant towards low-salt denaturation, DNase I and serum-mediated digestion than when in a conventional buffer. Moreover, we confirmed that DNA origami nanostructures remain not only structurally intact but also fully functional after exposure to cell media. Agarose gel electrophoresis and negative stain transmission electron microscopy analysis revealed the hybridization of DNA origami nanostructures to their targets in the presence of serum proteins and nucleases. The structural integrity and functionality of DNA nanostructures in physiological fluids validate their use particularly for short-time biological applications in which the

  2. Development of colour-producing β-keratin nanostructures in avian feather barbs

    Science.gov (United States)

    Prum, Richard O.; Dufresne, Eric R.; Quinn, Tim; Waters, Karla

    2009-01-01

    The non-iridescent structural colours of avian feather barbs are produced by coherent light scattering from amorphous (i.e. quasi-ordered) nanostructures of β-keratin and air in the medullary cells of feather barb rami. Known barb nanostructures belong to two distinct morphological classes. ‘Channel’ nanostructures consist of β-keratin bars and air channels of elongate, tortuous and twisting forms. ‘Spherical’ nanostructures consist of highly spherical air cavities that are surrounded by thin β-keratin bars and sometimes interconnected by tiny passages. Using transmission electron microscopy, we observe that the colour-producing channel-type nanostructures of medullary β-keratin in feathers of the blue-and-yellow macaw (Ara ararauna, Psittacidae) develop by intracellular self-assembly; the process proceeds in the absence of any biological prepattern created by the cell membrane, endoplasmic reticulum or cellular intermediate filaments. We examine the hypothesis that the shape and size of these self-assembled, intracellular nanostructures are determined by phase separation of β-keratin protein from the cytoplasm of the cell. The shapes of a broad sample of colour-producing channel-type nanostructures from nine avian species are very similar to those self-assembled during the phase separation of an unstable mixture, a process called spinodal decomposition (SD). In contrast, the shapes of a sample of spherical-type nanostructures from feather barbs of six species show a poor match to SD. However, spherical nanostructures show a strong morphological similarity to morphologies produced by phase separation of a metastable mixture, called nucleation and growth. We propose that colour-producing, intracellular, spongy medullary β-keratin nanostructures develop their characteristic sizes and shapes by phase separation during protein polymerization. We discuss the possible role of capillary flow through drying of medullary cells in the development of the hollow

  3. Development of colour-producing beta-keratin nanostructures in avian feather barbs.

    Science.gov (United States)

    Prum, Richard O; Dufresne, Eric R; Quinn, Tim; Waters, Karla

    2009-04-06

    The non-iridescent structural colours of avian feather barbs are produced by coherent light scattering from amorphous (i.e. quasi-ordered) nanostructures of beta-keratin and air in the medullary cells of feather barb rami. Known barb nanostructures belong to two distinct morphological classes. 'Channel' nanostructures consist of beta-keratin bars and air channels of elongate, tortuous and twisting forms. 'Spherical' nanostructures consist of highly spherical air cavities that are surrounded by thin beta-keratin bars and sometimes interconnected by tiny passages. Using transmission electron microscopy, we observe that the colour-producing channel-type nanostructures of medullary beta-keratin in feathers of the blue-and-yellow macaw (Ara ararauna, Psittacidae) develop by intracellular self-assembly; the process proceeds in the absence of any biological prepattern created by the cell membrane, endoplasmic reticulum or cellular intermediate filaments. We examine the hypothesis that the shape and size of these self-assembled, intracellular nanostructures are determined by phase separation of beta-keratin protein from the cytoplasm of the cell. The shapes of a broad sample of colour-producing channel-type nanostructures from nine avian species are very similar to those self-assembled during the phase separation of an unstable mixture, a process called spinodal decomposition (SD). In contrast, the shapes of a sample of spherical-type nanostructures from feather barbs of six species show a poor match to SD. However, spherical nanostructures show a strong morphological similarity to morphologies produced by phase separation of a metastable mixture, called nucleation and growth. We propose that colour-producing, intracellular, spongy medullary beta-keratin nanostructures develop their characteristic sizes and shapes by phase separation during protein polymerization. We discuss the possible role of capillary flow through drying of medullary cells in the development of the

  4. Multifunctional Carbon Nanostructures for Advanced Energy Storage Applications

    Directory of Open Access Journals (Sweden)

    Yiran Wang

    2015-05-01

    Full Text Available Carbon nanostructures—including graphene, fullerenes, etc.—have found applications in a number of areas synergistically with a number of other materials. These multifunctional carbon nanostructures have recently attracted tremendous interest for energy storage applications due to their large aspect ratios, specific surface areas, and electrical conductivity. This succinct review aims to report on the recent advances in energy storage applications involving these multifunctional carbon nanostructures. The advanced design and testing of multifunctional carbon nanostructures for energy storage applications—specifically, electrochemical capacitors, lithium ion batteries, and fuel cells—are emphasized with comprehensive examples.

  5. Shape of Field-Induced Nanostructures Formed by STM

    Directory of Open Access Journals (Sweden)

    Subhashis Gangopadhyay

    2007-01-01

    Full Text Available Creation of controlled and reproducible nanostructures on material surfaces using scanning tunneling microscope is a novel technique, which can be used for a variety of applications. We have examined the shape of the nanostructures so formed on the gold film using tungsten tip and examined the formation parameters, which govern their shape and size. During our investigations it is found that the reproducibility of mound formation can reach up to 90% under optimum operating conditions, whereas the pit formation can be made with almost 100% reproducibility. Formation mechanism of such nanostructures is also discussed.

  6. Optical nano artifact metrics using silicon random nanostructures

    Science.gov (United States)

    Matsumoto, Tsutomu; Yoshida, Naoki; Nishio, Shumpei; Hoga, Morihisa; Ohyagi, Yasuyuki; Tate, Naoya; Naruse, Makoto

    2016-08-01

    Nano-artifact metrics exploit unique physical attributes of nanostructured matter for authentication and clone resistance, which is vitally important in the age of Internet-of-Things where securing identities is critical. However, expensive and huge experimental apparatuses, such as scanning electron microscopy, have been required in the former studies. Herein, we demonstrate an optical approach to characterise the nanoscale-precision signatures of silicon random structures towards realising low-cost and high-value information security technology. Unique and versatile silicon nanostructures are generated via resist collapse phenomena, which contains dimensions that are well below the diffraction limit of light. We exploit the nanoscale precision ability of confocal laser microscopy in the height dimension; our experimental results demonstrate that the vertical precision of measurement is essential in satisfying the performances required for artifact metrics. Furthermore, by using state-of-the-art nanostructuring technology, we experimentally fabricate clones from the genuine devices. We demonstrate that the statistical properties of the genuine and clone devices are successfully exploited, showing that the liveness-detection-type approach, which is widely deployed in biometrics, is valid in artificially-constructed solid-state nanostructures. These findings pave the way for reasonable and yet sufficiently secure novel principles for information security based on silicon random nanostructures and optical technologies.

  7. Sensing properties of pristine boron nitride nanostructures towards alkaloids: A first principles dispersion corrected study

    Science.gov (United States)

    Roondhe, Basant; Dabhi, Shweta D.; Jha, Prafulla K.

    2018-05-01

    To understand the underlying physics behind the interaction of biomolecules with the nanomaterials to use them practically as bio-nanomaterials is very crucial. A first principles calculation under the frame work of density functional theory is executed to investigate the electronic structures and binding properties of alkaloids (Caffeine and Nicotine) over single walled boron nitride nanotube (BNNT) and boron nitride nanoribbon (BNNR) to determine their suitability towards filtration or sensing of these molecules. We have also used GGA-PBE scheme with the inclusion of Van der Waals (vdW) interaction based on DFT-D2. Increase in the accuracy by incorporating the dispersion correction in the calculation is observed for the long range Van der Waals interaction. Binding energy range of BNNT and BNNR with both alkaloids have been found to be -0.35 to -0.76 eV and -0.45 to -0.91 eV respectively which together with the binding distance shows physisorption binding of these molecules to the both nanostructures. The transfer of charge between the BN nanostructures and the adsorbed molecule has also been analysed by using Lowdin charge analysis. The sensitivity of both nanostructures BNNT and BNNR towards both alkaloids is observed through electronic structure calculations, density of states and quantum conductance. The binding of both alkaloids with BNNR is stronger. The analysis of the calculated properties suggests absence of covalent interaction between the considered species (BNNT/BNNR) and alkaloids. The study may be useful in designing the boron nitride nanostructure based sensing device for alkaloids.

  8. Enhanced blue responses in nanostructured Si solar cells by shallow doping

    Science.gov (United States)

    Cheon, Sieun; Jeong, Doo Seok; Park, Jong-Keuk; Kim, Won Mok; Lee, Taek Sung; Lee, Heon; Kim, Inho

    2018-03-01

    Optimally designed Si nanostructures are very effective for light trapping in crystalline silicon (c-Si) solar cells. However, when the lateral feature size of Si nanostructures is comparable to the junction depth of the emitter, dopant diffusion in the lateral direction leads to excessive doping in the nanostructured emitter whereby poor blue responses arise in the external quantum efficiency (EQE). The primary goal of this study is to find the correlation of emitter junction depth and carrier collection efficiency in nanostructured c-Si solar cells in order to enhance the blue responses. We prepared Si nanostructures of nanocone shape by colloidal lithography, with silica beads of 520 nm in diameter, followed by a reactive ion etching process. c-Si solar cells with a standard cell architecture of an Al back surface field were fabricated varying the emitter junction depth. We varied the emitter junction depth by adjusting the doping level from heavy doping to moderate doping to light doping and achieved greatly enhanced blue responses in EQE from 47%-92% at a wavelength of 400 nm. The junction depth analysis by secondary ion mass-spectroscopy profiling and the scanning electron microscopy measurements provided us with the design guide of the doping level depending on the nanostructure feature size for high efficiency nanostructured c-Si solar cells. Optical simulations showed us that Si nanostructures can serve as an optical resonator to amplify the incident light field, which needs to be considered in the design of nanostructured c-Si solar cells.

  9. Nano-modified adhesive by graphene: the single lap-joint case

    Energy Technology Data Exchange (ETDEWEB)

    Silva Neto, Almir; Cruz, Diego Thadeu Lopes da; Avila, Antonio Ferreira, E-mail: aavila@netuno.lcc.ufmg.b [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Mecanica

    2013-11-01

    This paper addresses the performance study on, low viscosity, nano-modified adhesives by graphene. For achieving this goal, single-lap joints following ASTM D 5868-01 were manufactured and tested. X-ray diffraction, scanning electron microscopy and nanoindentation were employed for graphene based nanostructures characterization. The increase on joint strength was around 57% when compared against the control group. Furthermore, all failures for the nano-modified adhesive were cohesive failure for the carbon fibre/epoxy composites indicating that the adhesive was tested. X-ray diffractions signatures indicate formation of nano-structures with 17-19 nm diameters. Moreover, nanoindentation tests revealed a homogeneous dispersion of graphene. (author)

  10. Bottom-Up Synthesis and Sensor Applications of Biomimetic Nanostructures

    Directory of Open Access Journals (Sweden)

    Li Wang

    2016-01-01

    Full Text Available The combination of nanotechnology, biology, and bioengineering greatly improved the developments of nanomaterials with unique functions and properties. Biomolecules as the nanoscale building blocks play very important roles for the final formation of functional nanostructures. Many kinds of novel nanostructures have been created by using the bioinspired self-assembly and subsequent binding with various nanoparticles. In this review, we summarized the studies on the fabrications and sensor applications of biomimetic nanostructures. The strategies for creating different bottom-up nanostructures by using biomolecules like DNA, protein, peptide, and virus, as well as microorganisms like bacteria and plant leaf are introduced. In addition, the potential applications of the synthesized biomimetic nanostructures for colorimetry, fluorescence, surface plasmon resonance, surface-enhanced Raman scattering, electrical resistance, electrochemistry, and quartz crystal microbalance sensors are presented. This review will promote the understanding of relationships between biomolecules/microorganisms and functional nanomaterials in one way, and in another way it will guide the design and synthesis of biomimetic nanomaterials with unique properties in the future.

  11. Structural Diversity of Self-Assembled Iridescent Arthropod Biophotonic Nanostructures

    Science.gov (United States)

    Saranathan, Vinod Kumar; Prum, Richard O.

    2015-03-01

    Many organisms, especially arthropods, produce vivid interference colors using diverse mesoscopic (100-350 nm) integumentary biophotonic nanostructures that are increasingly being investigated for technological applications. Despite a century of interest, we lack precise structural knowledge of many biophotonic nanostructures and mechanisms controlling their development, when such knowledge can open novel biomimetic routes to facilely self-assemble tunable, multi-functional materials. Here, we use synchrotron small angle X-ray scattering and electron microscopy to characterize the photonic nanostructure of 140 iridescent integumentary scales and setae from 127 species of terrestrial arthropods in 85 genera from 5 orders. We report a rich nanostructural diversity, including triply-periodic bicontinuous networks, close-packed spheres, inverse columnar, perforated lamellar, and disordered sponge-like morphologies, commonly observed as stable phases of amphiphilic surfactants, block copolymer, and lyotropic lipid-water systems. Diverse arthropod lineages appear to have independently evolved to utilize the self-assembly of infolding bilayer membranes to develop biophotonic nanostructures that span the phase-space of amphiphilic morphologies, but at optical length scales.

  12. Electrostatic characteristics of nanostructures investigated using electric force microscopy

    International Nuclear Information System (INIS)

    Qiu, X.H.; Qi, G.C.; Yang, Y.L.; Wang, C.

    2008-01-01

    Nanosized materials possess many interesting physical and chemical properties that differ significantly from their macroscopic counterparts. Understanding the size- and shape-dependent properties of nanostructures are of great value to rational design of nanomaterials with desired functionality. Electric force microscopy (EFM) and its variations offer unique opportunities to deepen our insights into the electrical characteristics of nanostructures. In this paper, we review recent progress of this versatile technique and its applications in studying the electrical properties of nanosized materials. A variety of important issues in EFM experimentation and theoretical modeling are discussed, with an emphasis on the ongoing efforts to improve the precision in quantitative measurements of charge density and dielectric properties of nanostructures. - Graphical abstract: We review recent progress of electric force microscopy (EFM) and its applications in studying the electrical properties of nanostructures. A variety of important issues in EFM experimentation and theoretical modeling are discussed, with an emphasis on the ongoing efforts to improve the precision in quantitative measurements of charge density and dielectric properties of nanostructures

  13. Semiconductor quantum optics with tailored photonic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Laucht, Arne

    2011-06-15

    This thesis describes detailed investigations of the effects of photonic nanostructures on the light emission properties of self-assembled InGaAs quantum dots. Nanoscale optical cavities and waveguides are employed to enhance the interaction between light and matter, i.e. photons and excitons, up to the point where optical non-linearities appear at the quantum (single photon) level. Such non-linearities are an essential component for the realization of hardware for photon based quantum computing since they can be used for the creation and detection of non-classical states of light and may open the way to new genres of quantum optoelectronic devices such as optical modulators and optical transistors. For single semiconductor quantum dots in photonic crystal nanocavities we investigate the coupling between excitonic transitions and the highly localized mode of the optical cavity. We explore the non-resonant coupling mechanisms which allow excitons to couple to the cavity mode, even when they are not spectrally in resonance. This effect is not observed for atomic cavity quantum electrodynamics experiments and its origin is traced to phonon-assisted scattering for small detunings ({delta}E<{proportional_to}5 meV) and a multi-exciton-based, Auger-like process for larger detunings ({delta}E >{proportional_to}5 meV). For quantum dots in high-Q cavities we observe the coherent coupling between exciton and cavity mode in the strong coupling regime of light-matter interaction, probe the influence of pure dephasing on the coherent interaction at high excitation levels and high lattice temperatures, and examine the coupling of two spatially separated quantum dots via the exchange of real and virtual photons mediated by the cavity mode. Furthermore, we study the spontaneous emission properties of quantum dots in photonic crystal waveguide structures, estimate the fraction of all photons emitted into the propagating waveguide mode, and demonstrate the on-chip generation of

  14. Synthesis and AFM visualization of DNA nanostructures

    International Nuclear Information System (INIS)

    Mizuno, Rika; Haruta, Hirotaka; Morii, Takashi; Okada, Takao; Asakawa, Takeshi; Hayashi, Kenshi

    2004-01-01

    We propose a novel bottom-up approach for the fabrication of various desired nanostructures, based on self-assembly of oligonucleotides governed by Watson-Crick base pairing. Using this approach, we designed Y-shaped, closed Y-shaped, H-shaped, and hexagonal structures with oligonucleotides. These structures were autonomously fabricated simply by mixing equimolar solutions of oligonucleotides and performing hybridization. After synthesis of the nanostructures, we confirmed their validity by agarose gel electrophoresis and atomic force microscope (AFM) visualization. We detected bands of the desired molecular sizes in the gel electrophoresis and observed the desired structures by AFM analysis. We concluded that the synthesized structures were consistent with our intended design and that AFM visualization is a very useful tool for the observation of nanostructures

  15. Mechanical Researches on Young's Modulus of SCS Nanostructures

    Directory of Open Access Journals (Sweden)

    Qinhua Jin

    2009-01-01

    Full Text Available Nanostructures of SingleCrystalSilicon (SCS with superior electrical, mechanical, thermal, and optical properties are emerging in the development of novel nanodevices. Mechanical properties especially Young's modulus are essential in developing and utilizing such nanodevices. In this paper, experimental researches including bending tests, resonance tests, and tensile tests on Young' s modulus of nanoscaled SCS are reviewed, and their results are compared. It was found that the values of E measured by different testing methods cannot match to each other. As the differences cannot be explained as experimental errors, it should be understood by taking surface effect into account. With a simplified model, we qualitatively explained the difference in E value measured by tensile test and by resonance test for Si nanobeams.

  16. Formation of novel assembled silver nanostructures from polyglycol solution

    International Nuclear Information System (INIS)

    Zhang Jie; Liu Ke; Dai Zhihui; Feng Yuying; Bao Jianchun; Mo Xiangyin

    2006-01-01

    This paper described a simple and mild chemical reduction approach to prepare novel silver nanostructures with different morphologies. Dendritic silver nanostructure was obtained by a fast reduction reaction using hydrazine as a reducing agent in aqueous solution of polyglycol, while both the zigzag and linear Ag nanostructures were slowly assembled using polyglycol as a reducing agent. Powder X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM) and field emission scanning electron microscopy (FE-SEM) were used to characterize the obtained silver nanostructures. Fourier transform infrared absorption (FT-IR) spectra were recorded to show that there exists a certain coordination of the oxygen atoms in the polyglycol with Ag + ions in aqueous solution of the AgNO 3 /polyglycol. Furthermore, the examination of the morphologies of the products obtained at different stages of the reaction of Ag + ions with polyglycol revealed that such a coordination is of utmost importance for the formation of the silver nanostructures, namely polyglycol provided lots of active sites for the coordination, nucleation, growth and serves as backbones for directing the assembly of the metal particles formed. The formation mechanism of the dendritic silver nanostructure was called a coordination-reduction-nucleation-growth-fractal growth process. The strong surface plasmon absorption bands at 470 nm for the zigzag silver and at 405 nm for the dendritic silver were found

  17. A hierarchical nanostructure consisting of amorphous MnO{sub 2}, Mn{sub 3}O{sub 4} nanocrystallites, and single-crystalline MnOOH nanowires for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Chi-Chang; Hung, Ching-Yun [Department of Chemical Engineering, National Tsing Hua University, Hsin-Chu 30013 (China); Chang, Kuo-Hsin [Department of Chemical Engineering, National Tsing Hua University, Hsin-Chu 30013 (China); Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 621 (China); Yang, Yi-Lin [Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 621 (China)

    2011-01-15

    In this communication, a porous hierarchical nanostructure consisting of amorphous MnO{sub 2} (a-MnO{sub 2}), Mn{sub 3}O{sub 4} nanocrystals, and single-crystalline MnOOH nanowires is designed for the supercapacitor application, which is prepared by a simple two-step electrochemical deposition process. Because of the gradual co-transformation of Mn{sub 3}O{sub 4} nanocrystals and a-MnO{sub 2} nanorods into an amorphous manganese oxide, the cycle stability of a-MnO{sub 2} is obviously enhanced by adding Mn{sub 3}O{sub 4}. This unique ternary oxide nanocomposite with 100-cycle CV activation exhibits excellent capacitive performances, i.e., excellent reversibility, high specific capacitances (470 F g{sup -1} in CaCl{sub 2}), high power property, and outstanding cycle stability. The highly porous microstructures of this composite before and after the 10,000-cycle CV test are examined by means of scanning electron microscopy (SEM) and transmission electron microscopy (TEM). (author)

  18. A novel low-temperature chemical solution route for straight and dendrite-like ZnO nanostructures

    International Nuclear Information System (INIS)

    Zhang Hui; Du Ning; Wu Jianbo; Ma, Xiangyang; Yang Deren; Zhang Xiaobin; Yang Zhiqing

    2007-01-01

    The straight and dendrite-like growths of ZnO have been completely and simply controlled by the status of ZnO seed instead of surfactant, template, oriented attachment, and ZnO buffer layer on the substrate in the chemical reaction synthesis of ZnO nanostructures. The monodisperse ZnO seeds, which are prepared by in situ quickly injecting the cool mixed zinc acetate and potassium hydrate ethanol solution into the hot matrix aqueous solution of zinc nitrate hydrate and diethylenetriamine at 95 deg. C, improve the straight growth and lots of uniform, straight, and single-crystalline ZnO nanorods with about 20-30 nm in diameter and 300 nm in length are achieved. While, the aggregated ZnO seeds, which are prepared by dropwise adding potassium hydrate ethanol solution into zinc acetate ethanol solution at 60 deg. C for 3 h, result in the dendrite-like growth and the bur-like ZnO nanostructures consisting of hundreds of nanorods with about 30-50 nm in diameter and several micrometers in length are formed. Furthermore, the approach presented here provides a simple, low-cost, environmental-friendly and high efficiency route to synthesize the high quality ZnO nanorods and bur-like ZnO nanostructures

  19. Rational geometrical engineering of palladium sulfide multi-arm nanostructures as a superior bi-functional electrocatalyst.

    Science.gov (United States)

    Nandan, R; Nanda, K K

    2017-08-31

    Geometrical tunability offers sharp edges and an open-armed structure accompanied with a high electrochemical active surface area to ensure the efficient and effective utilization of materials by exposing the electrochemical active sites for facile accessibility of reactant species. Herein, we report a one-step, single-pot, surfactant-free, electroless, and economic route to synthesize palladium sulfide nanostructures with different geometries at mild temperatures and their catalytic properties towards the oxygen reduction reaction (ORR) and methanol electro-oxidation (MOR). For ORR, the positive on-set, half wave potentials, smaller Tafel slope, high electrochemical active surface area, large roughness factor, and better cyclic stability of the proposed nanostructures as compared to those of the commercial state-of-the-art Pt-C/PdS catalysts suggest their superiority in an alkaline medium. In addition, high mass activity (J f ∼ 715 mA mg -1 ), in comparison with that of the commercial state-of-the-art Pt-C/PdS catalysts (J f ∼ 138/41 mA mg -1 , respectively), and high J f /J b (1.52) along with the superior operational stability of the multi-arm palladium sulfide nanostructures towards MOR advocates the bi-functional behavior of the catalyst and its potential as a promising Pt-free anode/cathode electrocatalyst in fuel cells.

  20. Large-scale synthesis of Tellurium nanostructures via galvanic displacement of metals

    Science.gov (United States)

    Kok, Kuan-Ying; Choo, Thye-Foo; Ubaidah Saidin, Nur; Rahman, Che Zuraini Che Ab

    2018-01-01

    Tellurium (Te) is an attractive semiconductor material for a wide range of applications in various functional devices including, radiation dosimeters, optical storage materials, thermoelectric or piezoelectric generators. In this work, large scale synthesis of tellurium (Te) nanostructures have been successfully carried out in different concentrations of aqueous solutions containing TeO2 and NaOH, by galvanic displacements of Zn and Al which served as the sacrificial materials. Galvanic displacement process is cost-effective and it requires no template or surfactant for the synthesis of nanostructures. By varying the concentrations of TeO2 and NaOH, etching temperatures and etching times, Te nanostructures of various forms of nanostructures were successfully obtained, ranging from one-dimensional needles and rod-like structures to more complex hierarchical structures. Microscopy examinations on the nanostructures obtained have shown that both the diameters and lengths of the Te nanostructures increased with increasing etching temperature and etching time.

  1. Template-free sonochemical synthesis of flower-like ZnO nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Huawa [State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi' an 710072 (China); School of Science, Xi' an Polytechnic University, Xi' an 710048 (China); Fan, Huiqing, E-mail: hqfan3@163.com [State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi' an 710072 (China); Wang, Xin [Shaanxi Province Thin Film Technology and Optical Test Open Key Laboratory, School of Photoelectrical Engineering, Xi' an Technological University, Xi' an 710032 (China); Wang, Jing [State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi' an 710072 (China); Cheng, Pengfei; Zhang, Xiaojun [School of Science, Xi' an Polytechnic University, Xi' an 710048 (China)

    2014-10-03

    Flower-like ZnO nanostructures have been successfully synthesized via a facile and template-free sonochemical method, using zinc acetate and potassium hydroxide as reactants only. The as-synthesized flower-like ZnO nanostructures were composed of nanorods with the width of ∼300–400 nm and the length of ∼2–3 μm. The structures, morphologies and optical properties of the as-prepared products were characterized by X-ray diffraction, scanning electron microscope, transmission electron microscopy, UV-Vis spectrophotometry and Raman-scattering spectroscopy. A plausible formation mechanism of flower-like ZnO nanostructures was studied by SEM which monitors an intermediate morphology transformation of the product at the different ultrasonic time (t=80,90,95,105, and 120 min). - Highlights: • A facile and template-free sonochemical method to fabricate flower-like ZnO nanostructures was proposed. • The flower-like ZnO nanostructures follow the ingrowth of ZnO from the matrix of Zn(OH){sub 2} crystals. • The flower-like ZnO nanostructures are also expected to explore their application in the field of nano-electronic devices.

  2. Electrochemically deposited hybrid nickel-cobalt hexacyanoferrate nanostructures for electrochemical supercapacitors

    International Nuclear Information System (INIS)

    Safavi, A.; Kazemi, S.H.; Kazemi, H.

    2011-01-01

    Highlights: → Nanostructured hybrid nickel-cobalt hexacyanoferrate is used in supercapacitors. → A high capacitance (765 F g -1 ) is obtained at a specific current of 0.2 A g -1 . → Long cycle-life and excellent stability are demonstrated during 1000 cycles. - Abstract: This study describes the use of electrodeposited nanostructured hybrid nickel-cobalt hexacyanoferrate in electrochemical supercapacitors. Herein, various compositions of nickel and cobalt hexacyanoferrates (Ni/CoHCNFe) nanostructures are electrodeposited on an inexpensive stainless steel substrate using cyclic voltammetric (CV) method. The morphology of the electrodeposited nanostructures is studied using scanning electron microscopy, while their electrochemical characterizations are investigated using CV, galvanostatic charge and discharge and electrochemical impedance spectroscopy. The results show that the nanostructures of hybrid metal cyanoferrate, shows a much higher capacitance (765 F g -1 ) than those obtained with just nickel hexacyanoferrate (379 F g -1 ) or cobalt hexacyanoferrate (277 F g -1 ). Electrochemical impedance spectroscopy results confirm the favorable capacitive behavior of the electrodeposited materials. The columbic efficiency is approximately 95% based on the charge and discharge experiments. Long cycle-life and excellent stability of the nanostructured materials are also demonstrated during 1000 cycles.

  3. Electrochemically deposited hybrid nickel-cobalt hexacyanoferrate nanostructures for electrochemical supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Safavi, A., E-mail: safavi@chem.susc.ac.ir [Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of); Nanotechnology Research Institute, Shiraz University, Shiraz (Iran, Islamic Republic of); Kazemi, S.H., E-mail: habibkazemi@iasbs.ac.ir [Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731 (Iran, Islamic Republic of); Kazemi, H. [Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of)

    2011-10-30

    Highlights: > Nanostructured hybrid nickel-cobalt hexacyanoferrate is used in supercapacitors. > A high capacitance (765 F g{sup -1}) is obtained at a specific current of 0.2 A g{sup -1}. > Long cycle-life and excellent stability are demonstrated during 1000 cycles. - Abstract: This study describes the use of electrodeposited nanostructured hybrid nickel-cobalt hexacyanoferrate in electrochemical supercapacitors. Herein, various compositions of nickel and cobalt hexacyanoferrates (Ni/CoHCNFe) nanostructures are electrodeposited on an inexpensive stainless steel substrate using cyclic voltammetric (CV) method. The morphology of the electrodeposited nanostructures is studied using scanning electron microscopy, while their electrochemical characterizations are investigated using CV, galvanostatic charge and discharge and electrochemical impedance spectroscopy. The results show that the nanostructures of hybrid metal cyanoferrate, shows a much higher capacitance (765 F g{sup -1}) than those obtained with just nickel hexacyanoferrate (379 F g{sup -1}) or cobalt hexacyanoferrate (277 F g{sup -1}). Electrochemical impedance spectroscopy results confirm the favorable capacitive behavior of the electrodeposited materials. The columbic efficiency is approximately 95% based on the charge and discharge experiments. Long cycle-life and excellent stability of the nanostructured materials are also demonstrated during 1000 cycles.

  4. On the Adsorption of DNA Origami Nanostructures in Nanohole Arrays.

    Science.gov (United States)

    Brassat, Katharina; Ramakrishnan, Saminathan; Bürger, Julius; Hanke, Marcel; Doostdar, Mahnaz; Lindner, Jörg K N; Grundmeier, Guido; Keller, Adrian

    2018-05-22

    DNA origami nanostructures are versatile substrates for the controlled arrangement of molecular capture sites with nanometer precision and thus have many promising applications in single-molecule bioanalysis. Here, we investigate the adsorption of DNA origami nanostructures in nanohole arrays which represent an important class of biosensors and may benefit from the incorporation of DNA origami-based molecular probes. Nanoholes with well-defined diameter that enable the adsorption of single DNA origami triangles are fabricated in Au films on Si wafers by nanosphere lithography. The efficiency of directed DNA origami adsorption on the exposed SiO 2 areas at the bottoms of the nanoholes is evaluated in dependence of various parameters, i.e., Mg 2+ and DNA origami concentrations, buffer strength, adsorption time, and nanohole diameter. We observe that the buffer strength has a surprisingly strong effect on DNA origami adsorption in the nanoholes and that multiple DNA origami triangles with 120 nm edge length can adsorb in nanoholes as small as 120 nm in diameter. We attribute the latter observation to the low lateral mobility of once adsorbed DNA origami on the SiO 2 surface, in combination with parasitic adsorption to the Au film. Although parasitic adsorption can be suppressed by modifying the Au film with a hydrophobic self-assembled monolayer, the limited surface mobility of the adsorbed DNA origami still leads to poor localization accuracy in the nanoholes and results in many DNA origami crossing the boundary to the Au film even under optimized conditions. We discuss possible ways to minimize this effect by varying the composition of the adsorption buffer, employing different fabrication conditions, or using other substrate materials for nanohole array fabrication.

  5. Nanostructured Materials for Li-Ion Batteries and Beyond

    Directory of Open Access Journals (Sweden)

    Xifei Li

    2016-04-01

    Full Text Available This Special Issue “Nanostructured Materials for Li-Ion Batteries and Beyond” of Nanomaterials is focused on advancements in the synthesis, optimization, and characterization of nanostructured materials, with an emphasis on the application of nanomaterials for building high performance Li-ion batteries (LIBs and future systems.[...

  6. Image charge effects in single-molecule junctions: Breaking of symmetries and negative-differential resistance in a benzene single-electron transistor

    DEFF Research Database (Denmark)

    Kaasbjerg, Kristen; Flensberg, K.

    2011-01-01

    and molecular symmetries remain unclear. Using a theoretical framework developed for semiconductor-nanostructure-based single-electron transistors (SETs), we demonstrate that the image charge interaction breaks the molecular symmetries in a benzene-based single-molecule transistor operating in the Coulomb...... blockade regime. This results in the appearance of a so-called blocking state, which gives rise to negative-differential resistance (NDR). We show that the appearance of NDR and its magnitude in the symmetry-broken benzene SET depends in a complicated way on the interplay between the many-body matrix...

  7. Precipitate strengthening of nanostructured aluminium alloy.

    Science.gov (United States)

    Wawer, Kinga; Lewandowska, Malgorzata; Kurzydlowski, Krzysztof J

    2012-11-01

    Grain boundaries and precipitates are the major microstructural features influencing the mechanical properties of metals and alloys. Refinement of the grain size to the nanometre scale brings about a significant increase in the mechanical strength of the materials because of the increased number of grain boundaries which act as obstacles to sliding dislocations. A similar effect is obtained if nanoscale precipitates are uniformly distributed in coarse grained matrix. The development of nanograin sized alloys raises the important question of whether or not these two mechanisms are "additive" and precipitate strengthening is effective in nanostructured materials. In the reported work, hydrostatic extrusion (HE) was used to obtain nanostructured 7475 aluminium alloy. Nanosized precipitates were obtained by post-HE annealing. It was found that such annealing at the low temperatures (100 degrees C) results in a significant increase in the microhardness (HV0.2) and strength of the nanostructured 7475 aluminium alloy. These results are discussed in terms of the interplay between the precipitation and deformation of nanocrystalline metals.

  8. Practical roadmap and limits to nanostructured photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Lunt, Richard R. [Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824 (United States); Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Osedach, Timothy P. [School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 (United States); Brown, Patrick R. [Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Rowehl, Jill A. [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Bulovic, Vladimir [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2011-12-22

    The significant research interest in the engineering of photovoltaic (PV) structures at the nanoscale is directed toward enabling reductions in PV module fabrication and installation costs as well as improving cell power conversion efficiency (PCE). With the emergence of a multitude of nanostructured photovoltaic (nano-PV) device architectures, the question has arisen of where both the practical and the fundamental limits of performance reside in these new systems. Here, the former is addressed a posteriori. The specific challenges associated with improving the electrical power conversion efficiency of various nano-PV technologies are discussed and several approaches to reduce their thermal losses beyond the single bandgap limit are reviewed. Critical considerations related to the module lifetime and cost that are unique to nano-PV architectures are also addressed. The analysis suggests that a practical single-junction laboratory power conversion efficiency limit of 17% and a two-cell tandem power conversion efficiency limit of 24% are possible for nano-PVs, which, when combined with operating lifetimes of 10 to 15 years, could position them as a transformational technology for solar energy markets. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Localization microscopy of DNA in situ using Vybrant{sup ®} DyeCycle™ Violet fluorescent probe: A new approach to study nuclear nanostructure at single molecule resolution

    Energy Technology Data Exchange (ETDEWEB)

    Żurek-Biesiada, Dominika [Laboratory of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków (Poland); Szczurek, Aleksander T. [Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz (Germany); Prakash, Kirti [Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz (Germany); Institute for Pharmacy and Molecular Biotechnology (IPMB), University of Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg (Germany); Mohana, Giriram K. [Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz (Germany); Lee, Hyun-Keun [Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz (Germany); Department of Physics, University of Mainz (JGU), Staudingerweg 7, 55128 Mainz (Germany); Roignant, Jean-Yves [Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz (Germany); Birk, Udo J. [Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz (Germany); Department of Physics, University of Mainz (JGU), Staudingerweg 7, 55128 Mainz (Germany); Dobrucki, Jurek W., E-mail: jerzy.dobrucki@uj.edu.pl [Laboratory of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków (Poland); Cremer, Christoph, E-mail: c.cremer@imb-mainz.de [Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz (Germany); Institute for Pharmacy and Molecular Biotechnology (IPMB), University of Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg (Germany); Department of Physics, University of Mainz (JGU), Staudingerweg 7, 55128 Mainz (Germany)

    2016-05-01

    Higher order chromatin structure is not only required to compact and spatially arrange long chromatids within a nucleus, but have also important functional roles, including control of gene expression and DNA processing. However, studies of chromatin nanostructures cannot be performed using conventional widefield and confocal microscopy because of the limited optical resolution. Various methods of superresolution microscopy have been described to overcome this difficulty, like structured illumination and single molecule localization microscopy. We report here that the standard DNA dye Vybrant{sup ®} DyeCycle™ Violet can be used to provide single molecule localization microscopy (SMLM) images of DNA in nuclei of fixed mammalian cells. This SMLM method enabled optical isolation and localization of large numbers of DNA-bound molecules, usually in excess of 10{sup 6} signals in one cell nucleus. The technique yielded high-quality images of nuclear DNA density, revealing subdiffraction chromatin structures of the size in the order of 100 nm; the interchromatin compartment was visualized at unprecedented optical resolution. The approach offers several advantages over previously described high resolution DNA imaging methods, including high specificity, an ability to record images using a single wavelength excitation, and a higher density of single molecule signals than reported in previous SMLM studies. The method is compatible with DNA/multicolor SMLM imaging which employs simple staining methods suited also for conventional optical microscopy. - Highlights: • Super-resolution imaging of nuclear DNA with Vybrant Violet and blue excitation. • 90nm resolution images of DNA structures in optically thick eukaryotic nuclei. • Enhanced resolution confirms the existence of DNA-free regions inside the nucleus. • Optimized imaging conditions enable multicolor super-resolution imaging.

  10. Design of a Modular DNA Triangular-Prism Sensor Enabling Ratiometric and Multiplexed Biomolecule Detection on a Single Microbead.

    Science.gov (United States)

    Liu, Yu; Chen, Qiaoshu; Liu, Jianbo; Yang, Xiaohai; Guo, Qiuping; Li, Li; Liu, Wei; Wang, Kemin

    2017-03-21

    DNA nanostructures have emerged as powerful and versatile building blocks for the construction of programmable nanoscale structures and functional sensors for biomarker detection, disease diagnostics, and therapy. Here we integrated multiple sensing modules into a single DNA three-dimensional (3D) nanoarchitecture with a triangular-prism (TP) structure for ratiometric and multiplexed biomolecule detection on a single microbead. In our design, the complementary hybridization of three clip sequences formed TP nanoassemblies in which the six single-strand regions in the top and bottom faces act as binding sites for different sensing modules, including an anchor module, reference sequence module, and capture sequence module. The multifunctional modular TP nanostructures were thus exploited for ratiometric and multiplexed biomolecule detection on microbeads. Microbead imaging demonstrated that, after ratiometric self-calibration analysis, the imaging deviations resulting from uneven fluorescence intensity distribution and differing probe concentrations were greatly reduced. The rigid nanostructure also conferred the TP as a framework for geometric positioning of different capture sequences. The inclusion of multiple targets led to the formation of sandwich hybridization structures that gave a readily detectable optical response at different fluorescence channels and distinct fingerprint-like pattern arrays. This approach allowed us to discriminate multiplexed biomolecule targets in a simple and efficient fashion. In this module-designed strategy, the diversity of the controlled DNA assembly coupled with the geometrically well-defined rigid nanostructures of the TP assembly provides a flexible and reliable biosensing approach that shows great promise for biomedical applications.

  11. Single-photon manipulation in Nanophotonic Circuits

    DEFF Research Database (Denmark)

    Hansen, Sofie Lindskov

    Quantum dots in photonic nanostructures has long been known to be a very powerful and versatile solid-state platform for conducting quantum optics experiments. The present PhD thesis describes experimental demonstrations of single-photon generation and subsequent manipulation all realized...... on a gallium arsenide platform. This platform offers near-unity coupling between embedded single-photon emitters and a photonic mode, as well as the ability to suppress decoherence mechanisms, making it highly suited for quantum information applications. In this thesis we show how a single-photon router can...... be realized on a chip with embedded quantum dots. This allows for on-chip generation and manipulation of single photons. The router consists of an on-chip interferometer where the phase difference between the arms of the interferometer is controlled electrically. The response time of the device...

  12. Coherent excitonic nonlinearity versus inhomogeneous broadening in single quantum wells

    DEFF Research Database (Denmark)

    Langbein, Wolfgang Werner; Borri, Paola; Hvam, Jørn Märcher

    1998-01-01

    The coherent response of excitons in semiconductor nanostructures, as measured in four wave mixing (FWM) experiments, depends strongly on the inhomogeneous broadening of the exciton transition. We investigate GaAs-AlGaAs single quantum wells (SQW) of 4 nm to 25 nm well width. Two main mechanisms...

  13. Research of Self-Formation Nanostructures

    Directory of Open Access Journals (Sweden)

    Romas Petrauskas

    2011-08-01

    Full Text Available Lateral etching processes for the modeling of the geometry of self-formation nanostructures with Silvaco TCAD Athena program are analyzed. Self-formation nanostructures is modeled with different mask selectivity values equal to 2, 10, 40 and 100 with respect to the etching layer, with the etching duration of 0–180 s. The etching rates are constant – 1.33 nm/s. The analysis of the dependence of the etching systematic error on its thickness has been carried out. The computer modeled results are close to the ones produced by means of the application of the analytical calculation models by other authors.Article in Lithuanian

  14. Effect of anchor positioning on binding and diffusion of elongated 3D DNA nanostructures on lipid membranes

    International Nuclear Information System (INIS)

    Khmelinskaia, Alena; Franquelim, Henri G; Petrov, Eugene P; Schwille, Petra

    2016-01-01

    DNA origami is a state-of-the-art technology that enables the fabrication of nano-objects with defined shapes, to which functional moieties, such as lipophilic anchors, can be attached with a nanometre scale precision. Although binding of DNA origami to lipid membranes has been extensively demonstrated, the specific requirements necessary for membrane attachment are greatly overlooked. Here, we designed a set of amphipathic rectangular-shaped DNA origami structures with varying placement and number of chol-TEG anchors used for membrane attachment. Single- and multiple-cholesteryl-modified origami nanostructures were produced and studied in terms of their membrane localization, density and dynamics. We show that the positioning of at least two chol-TEG moieties near the corners is essential to ensure efficient membrane binding of large DNA nanostructures. Quantitative fluorescence correlation spectroscopy data further confirm that increasing the number of corner-positioned chol-TEG anchors lowers the dynamics of flat DNA origami structures on freestanding membranes. Taken together, our approach provides the first evidence of the importance of the location in addition to the number of hydrophobic moieties when rationally designing minimal DNA nanostructures with controlled membrane binding. (paper)

  15. Electrochemical characterization of organosilane-functionalized nanostructured ITO surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Pruna, R., E-mail: rpruna@el.ub.edu; Palacio, F.; López, M. [SIC, Departament d' Enginyeries: Electrònica, Universitat de Barcelona, C/ Martí i Franquès 1, E-08028 Barcelona (Spain); Pérez, J. [Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 15-21, E-08028 Barcelona (Spain); Mir, M. [Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 15-21, E-08028 Barcelona (Spain); Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Monforte de Lemos 3-5 Pabellón 11, E-28029 Madrid (Spain); Blázquez, O.; Hernández, S.; Garrido, B. [MIND-IN" 2UB, Departament d' Enginyeries: Electrònica, Universitat de Barcelona, C/ Martí i Franquès 1, E-08028 Barcelona (Spain)

    2016-08-08

    The electroactivity of nanostructured indium tin oxide (ITO) has been investigated for its further use in applications such as sensing biological compounds by the analysis of redox active molecules. ITO films were fabricated by using electron beam evaporation at different substrate temperatures and subsequently annealed for promoting their crystallization. The morphology of the deposited material was monitored by scanning electron microscopy, confirming the deposition of either thin films or nanowires, depending on the substrate temperature. Electrochemical surface characterization revealed a 45 % increase in the electroactive surface area of nanostructured ITO with respect to thin films, one third lower than the geometrical surface area variation determined by atomic force microscopy. ITO surfaces were functionalized with a model organic molecule known as 6-(ferrocenyl)hexanethiol. The chemical attachment was done by means of a glycidoxy compound containing a reactive epoxy group, the so-called 3-glycidoxypropyltrimethoxy-silane. ITO functionalization was useful for determining the benefits of nanostructuration on the surface coverage of active molecules. Compared to ITO thin films, an increase in the total peak height of 140 % was observed for as-deposited nanostructured electrodes, whereas the same measurement for annealed electrodes resulted in an increase of more than 400 %. These preliminary results demonstrate the ability of nanostructured ITO to increase the surface-to-volume ratio, conductivity and surface area functionalization, features that highly benefit the performance of biosensors.

  16. Biological Activity and Photostability of Biflorin Micellar Nanostructures

    Directory of Open Access Journals (Sweden)

    Edson R. B. Santana

    2015-05-01

    Full Text Available Capraria biflora L. is a shrub from the Scrophulariaceae family which produces in its roots a compound named biflorin, an o-naphthoquinone that shows activity against Gram-positive bacteria and fungi and also presents antitumor and antimetastatic activities. However, biflorin is hydrophobic and photosensitive. These properties make its application difficult. In this work we prepared biflorin micellar nanostructures looking for a more effective vehiculation and better preservation of the biological activity. Biflorin was obtained, purified and characterized by UV-Vis, infrared (IR and 1H- and 13C-NMR. Micellar nanostructures of biflorin were then assembled with Tween 80®, Tween 20® and saline (0.9% and characterized by UV-Vis spectroscopy and dynamic light scattering (DLS. The results showed that the micellar nanostructures were stable and presented an average size of 8.3 nm. Biflorin micellar nanostructures’ photodegradation was evaluated in comparison with biflorin in ethanol. Results showed that the biflorin in micellar nanostructures was better protected from light than biflorin dissolved in ethanol, and also indicated that biflorin in micelles were efficient against Gram-positive bacteria and yeast species. In conclusion, the results showed that the micellar nanostructures could ensure the maintenance of the biological activity of biflorin, conferring photoprotection. Moreover, biflorin vehiculation in aqueous media was improved, favoring its applicability in biological systems.

  17. Electrochemical characterization of organosilane-functionalized nanostructured ITO surfaces

    International Nuclear Information System (INIS)

    Pruna, R.; Palacio, F.; López, M.; Pérez, J.; Mir, M.; 2UB, Departament d'Enginyeries: Electrònica, Universitat de Barcelona, C/ Martí i Franquès 1, E-08028 Barcelona (Spain))" data-affiliation=" (MIND-IN2UB, Departament d'Enginyeries: Electrònica, Universitat de Barcelona, C/ Martí i Franquès 1, E-08028 Barcelona (Spain))" >Blázquez, O.; 2UB, Departament d'Enginyeries: Electrònica, Universitat de Barcelona, C/ Martí i Franquès 1, E-08028 Barcelona (Spain))" data-affiliation=" (MIND-IN2UB, Departament d'Enginyeries: Electrònica, Universitat de Barcelona, C/ Martí i Franquès 1, E-08028 Barcelona (Spain))" >Hernández, S.; 2UB, Departament d'Enginyeries: Electrònica, Universitat de Barcelona, C/ Martí i Franquès 1, E-08028 Barcelona (Spain))" data-affiliation=" (MIND-IN2UB, Departament d'Enginyeries: Electrònica, Universitat de Barcelona, C/ Martí i Franquès 1, E-08028 Barcelona (Spain))" >Garrido, B.

    2016-01-01

    The electroactivity of nanostructured indium tin oxide (ITO) has been investigated for its further use in applications such as sensing biological compounds by the analysis of redox active molecules. ITO films were fabricated by using electron beam evaporation at different substrate temperatures and subsequently annealed for promoting their crystallization. The morphology of the deposited material was monitored by scanning electron microscopy, confirming the deposition of either thin films or nanowires, depending on the substrate temperature. Electrochemical surface characterization revealed a 45 % increase in the electroactive surface area of nanostructured ITO with respect to thin films, one third lower than the geometrical surface area variation determined by atomic force microscopy. ITO surfaces were functionalized with a model organic molecule known as 6-(ferrocenyl)hexanethiol. The chemical attachment was done by means of a glycidoxy compound containing a reactive epoxy group, the so-called 3-glycidoxypropyltrimethoxy-silane. ITO functionalization was useful for determining the benefits of nanostructuration on the surface coverage of active molecules. Compared to ITO thin films, an increase in the total peak height of 140 % was observed for as-deposited nanostructured electrodes, whereas the same measurement for annealed electrodes resulted in an increase of more than 400 %. These preliminary results demonstrate the ability of nanostructured ITO to increase the surface-to-volume ratio, conductivity and surface area functionalization, features that highly benefit the performance of biosensors.

  18. Electrochemical and optical biosensors based on nanomaterials and nanostructures: a review.

    Science.gov (United States)

    Li, Ming; Li, Rui; Li, Chang Ming; Wu, Nianqiang

    2011-06-01

    Nanomaterials and nanostructures exhibit unique size-tunable and shape-dependent physicochemical properties that are different from those of bulk materials. Advances of nanomaterials and nanostructures open a new door to develop various novel biosensors. The present work has reviewed the recent progress in electrochemical, surface plasmon resonance (SPR), surface-enhanced Raman scattering (SERS) and fluorescent biosensors based on nanomaterials and nanostructures. An emphasis is put on the research that demonstrates how the performance of biosensors such as the limit of detection, sensitivity and selectivity is improved by the use of nanomaterials and nanostructures.

  19. Blue-emitting photoluminescence of rod-like and needle-like ZnO nanostructures formed by hot-water treatment of sol–gel derived coatings

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Wai Kian, E-mail: tanwaikian@cie.ignite.tut.ac.jp [Center for International Education, Toyohashi University of Technology, Aichi, Toyohashi 441-8580 (Japan); Kawamura, Go; Muto, Hiroyuki [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Aichi, Toyohashi 441-8580 (Japan); Abdul Razak, Khairunisak; Lockman, Zainovia [School of Materials and Mineral Resources, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal, Pulau Pinang 14300 Malaysia (Malaysia); Matsuda, Atsunori, E-mail: matsuda@tut.ee.ac.jp [Center for International Education, Toyohashi University of Technology, Aichi, Toyohashi 441-8580 (Japan); Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Aichi, Toyohashi 441-8580 (Japan)

    2015-02-15

    The morphological evolution of the zinc oxide (ZnO) nanostructures generated by hot-water treatment (HWT) of sol–gel derived coatings as a function of temperature from 30 to 90 °C was investigated. With increasing HWT temperature, the ZnO crystals evolved from nanoparticles to rod-like and needle-like nanostructures. High-resolution transmission electron microscope observations of rod-like and needle-like nanostructures generated at 60 and 90 °C indicated single crystal ZnO wurtzite structure was obtained. All the hot-water treated samples exhibited blue emission at approximately 440 nm in room temperature. The intensity of blue emission increased with higher HWT temperatures. The unique photoluminescence emission characteristic remained even after heat-treatment at 400 °C for 1 h. As the emission peak obtained in our work is approximately 440 nm (2.82 eV), the emission peak is corresponding to the electron transition from the interstitial Zn to the top of valence band. This facile formation of blue-emitting ZnO nanostructures at low-temperature can be utilized on substrate with low thermal stability for optoelectronic applications such as light emitting devices and biological fluorescence labeling. - Highlights: • Facile and novel formation of ZnO nanostructures by low temperature hot-water treatment. • No catalyst or inhibitor is used. • Evolution of ZnO nanostructures formation as a function of temperature is reported. • Dominant blue emissions are observed from the as-formed and annealed ZnO films. • Ultraviolet and visible emissions are observed for hot-water treated films.

  20. Self-assembly of amorphous biophotonic nanostructures by phase separation

    Energy Technology Data Exchange (ETDEWEB)

    Dufresne, Eric R.; Noh, Heeso; Saranathan, Vinodkumar; Mochrie, Simon G.J.; Cao, Hui; Prum, Richard O.; (Yale)

    2009-04-23

    Some of the most vivid colors in the animal kingdom are created not by pigments, but by wavelength-selective scattering of light from nanostructures. Here we investigate quasi-ordered nanostructures of avian feather barbs which produce vivid non-iridescent colors. These {beta}-keratin and air nanostructures are found in two basic morphologies: tortuous channels and amorphous packings of spheres. Each class of nanostructure is isotropic and has a pronounced characteristic length scale of variation in composition. These local structural correlations lead to strong backscattering over a narrow range of optical frequencies and little variation with angle of incidence. Such optical properties play important roles in social and sexual communication. To be effective, birds need to precisely control the development of these nanoscale structures, yet little is known about how they grow. We hypothesize that multiple lineages of birds have convergently evolved to exploit phase separation and kinetic arrest to self-assemble spongy color-producing nanostructures in feather barbs. Observed avian nanostructures are strikingly similar to those self-assembled during the phase separation of fluid mixtures; the channel and sphere morphologies are characteristic of phase separation by spinodal decomposition and nucleation and growth, respectively. These unstable structures are locked-in by the kinetic arrest of the {beta}-keratin matrix, likely through the entanglement or cross-linking of supermolecular {beta}-keratin fibers. Using the power of self-assembly, birds can robustly realize a diverse range of nanoscopic morphologies with relatively small physical and chemical changes during feather development.

  1. Hybrid Nanostructures Containing Sulfadiazine Modified Chitosan as Antimicrobial Drug Carriers

    Directory of Open Access Journals (Sweden)

    Bogdanel Silvestru Munteanu

    2016-11-01

    Full Text Available Chitosan (CH nanofibrous structures containing sulfadiazine (SDZ or sulfadiazine modified chitosan (SCH in the form of functional nanoparticles attached to nanofibers (hybrid nanostructures were obtained by mono-axial and coaxial electrospinning. The mono-axial design consisted of a SDZ/CH mixture solution fed through a single nozzle while the coaxial design consisted of SCH and CH solutions separately supplied to the inner and outer nozzle (or in reverse order. The CH ability to form nanofibers assured the formation of a nanofiber mesh, while SDZ and SCH, both in form of suspensions in the electrospun solution, assured the formation of active nanoparticles which remained attached to the CH nanofiber mesh after the electrospinning process. The obtained nanostructures were morphologically characterized by scanning electron microscopy (SEM and atomic force microscopy (AFM. The SDZ release profiles and kinetics were analyzed. The SDZ or SCH nanoparticles loosely attached at the surface of the nanofibers, provide a burst release in the first 20 min, which is important to stop the possible initial infection in a wound, while the SDZ and SCH from the nanoparticles which are better confined (or even encapsulated into the CH nanofibers would be slowly released with the erosion/disruption of the CH nanofiber mesh.

  2. DNA nanostructure-based drug delivery nanosystems in cancer therapy.

    Science.gov (United States)

    Wu, Dandan; Wang, Lei; Li, Wei; Xu, Xiaowen; Jiang, Wei

    2017-11-25

    DNA as a novel biomaterial can be used to fabricate different kinds of DNA nanostructures based on its principle of GC/AT complementary base pairing. Studies have shown that DNA nanostructure is a nice drug carrier to overcome big obstacles existing in cancer therapy such as systemic toxicity and unsatisfied drug efficacy. Thus, different types of DNA nanostructure-based drug delivery nanosystems have been designed in cancer therapy. To improve treating efficacy, they are also developed into more functional drug delivery nanosystems. In recent years, some important progresses have been made. The objective of this review is to make a retrospect and summary about these different kinds of DNA nanostructure-based drug delivery nanosystems and their latest progresses: (1) active targeting; (2) mutidrug co-delivery; (3) construction of stimuli-responsive/intelligent nanosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Engineering metallic nanostructures for plasmonics and nanophotonics

    Science.gov (United States)

    Lindquist, Nathan C.; Nagpal, Prashant; McPeak, Kevin M.; Norris, David J.; Oh, Sang-Hyun

    2012-03-01

    Metallic nanostructures now play an important role in many applications. In particular, for the emerging fields of plasmonics and nanophotonics, the ability to engineer metals on nanometric scales allows the development of new devices and the study of exciting physics. This review focuses on top-down nanofabrication techniques for engineering metallic nanostructures, along with computational and experimental characterization techniques. A variety of current and emerging applications are also covered.

  4. Nanostructure symmetry: Relevance for physics and computing

    International Nuclear Information System (INIS)

    Dupertuis, Marc-André; Oberli, D. Y.; Karlsson, K. F.; Dalessi, S.; Gallinet, B.; Svendsen, G.

    2014-01-01

    We review the research done in recent years in our group on the effects of nanostructure symmetry, and outline its relevance both for nanostructure physics and for computations of their electronic and optical properties. The exemples of C3v and C2v quantum dots are used. A number of surprises and non-trivial aspects are outlined, and a few symmetry-based tools for computing and analysis are shortly presented

  5. Nanostructure symmetry: Relevance for physics and computing

    Energy Technology Data Exchange (ETDEWEB)

    Dupertuis, Marc-André; Oberli, D. Y. [Laboratory for Physics of Nanostructure, EPF Lausanne (Switzerland); Karlsson, K. F. [Department of Physics, Chemistry, and Biology (IFM), Linköping University (Sweden); Dalessi, S. [Computational Biology Group, Department of Medical Genetics, University of Lausanne (Switzerland); Gallinet, B. [Nanophotonics and Metrology Laboratory, EPF Lausanne (Switzerland); Svendsen, G. [Dept. of Electronics and Telecom., Norwegian University of Science and Technology, Trondheim (Norway)

    2014-03-31

    We review the research done in recent years in our group on the effects of nanostructure symmetry, and outline its relevance both for nanostructure physics and for computations of their electronic and optical properties. The exemples of C3v and C2v quantum dots are used. A number of surprises and non-trivial aspects are outlined, and a few symmetry-based tools for computing and analysis are shortly presented.

  6. Ag-ZnO nanostructure for ANTA explosive molecule detection

    Energy Technology Data Exchange (ETDEWEB)

    Shaik, Ummar Pasha [Advanced Center of Research in High Energy Materials, University of Hyderabad, Hyderabad 500046 (India); Sangani, L. D. Varma [Centre for Advanced Studies in Electronics Science and Technology, School of Physics, University of Hyderabad (India); Gaur, Anshu [Department of Industrial Engineering, University of Trento, Via Sommarive9, Trento (Italy); Mohiddon, Md. Ahamad, E-mail: ahamed.vza@gmail.com [National Institute of Technology Andhra Pradesh, Tadepalliguem 534101, AP, India Phone : (+) 91-40-23134382, FAX: (+) 91-40-23010227 (India); Krishna, M. Ghanashyam [Advanced Center of Research in High Energy Materials, University of Hyderabad, Hyderabad 500046 (India); Centre for Advanced Studies in Electronics Science and Technology, School of Physics, University of Hyderabad (India); National Institute of Technology Andhra Pradesh, Tadepalliguem 534101, AP, India Phone : (+) 91-40-23134382, FAX: (+) 91-40-23010227 (India)

    2016-05-23

    Ag/ZnO nanostructure for surface enhanced Raman scattering application in the detection of ANTA explosive molecule is demonstrated. A highly rough ZnO microstructure was achieved by rapid thermal annealing of metallic Zn film. Different thickness Ag nanostructures are decorated over these ZnO microstructures by ion beam sputtering technique. Surface enhanced Raman spectroscopic studies carried out over Ag/ZnO substrates have shown three orders higher enhancement compared to bare Ag nanostructure deposited on the same substrate. The reasons behind such huge enhancement are discussed based on the morphology of the sample.

  7. Study of NaCl:Mn2+ nanostructures in the Suzuki phase by optical spectroscopy and atomic force microscopy

    International Nuclear Information System (INIS)

    Mejía-Uriarte, E.V.; Kolokoltsev, O.; Navarrete Montesinos, M.; Camarillo, E.; Hernández A, J.; Murrieta S, H.

    2015-01-01

    NaCl:Mn 2+ nanostructures in the Suzuki phase have been studied by fluorescence (emission and excitation) spectroscopy and atomic force microscopy (AFM) as a function of temperature. The “as-grown” samples give rise to two broad emission bands that peak at 508 (green emission) and 610 nm (red emission). The excitation spectrum shows peaks at 227 nm and 232 nm for emission wavelengths at 508 nm and 610 nm, respectively. When the samples are heated continuously from room temperature up to 220 °C, the green emission (associated to the excitation peak at 227 nm) disappears at a temperature close to 120 °C, whilst only the red emission remains, which is characteristic of manganese ions. AFM images on the (0 0 1) surface (freshly cleaved) show several conformations of nanostructures, such as disks of 20–50 nm in diameter. Particularly, the images also reveal nanostructures with rectangular shape of ~280×160 nm 2 and ~6 nm height; these are present only in samples with green emission associated to the Suzuki phase. Then, the evidence suggests that this topographic configuration might be related to the interaction with the first neighbors and the next neighbors, according to the configuration that has been suggested for the Suzuki phase. - Highlights: • NaCl:Mn 2+ single crystals in the Suzuki phase contain rectangular nanostructures. • Double emission of manganese ions: green (508 nm) and red (610 nm) bands. • The excitation peak at 227 nm is attributed to rectangular nanostructures. • The green emission band associated to Suzuki phase is extinguished at 120 °C

  8. Deep-Subwavelength Resolving and Manipulating of Hidden Chirality in Achiral Nanostructures.

    Science.gov (United States)

    Zu, Shuai; Han, Tianyang; Jiang, Meiling; Lin, Feng; Zhu, Xing; Fang, Zheyu

    2018-04-24

    The chiral state of light plays a vital role in light-matter interactions and the consequent revolution of nanophotonic devices and advanced modern chiroptics. As the light-matter interaction goes into the nano- and quantum world, numerous chiroptical technologies and quantum devices require precise knowledge of chiral electromagnetic modes and chiral radiative local density of states (LDOS) distributions in detail, which directly determine the chiral light-matter interaction for applications such as chiral light detection and emission. With classical optical techniques failing to directly measure the chiral radiative LDOS, deep-subwavelength imaging and control of circular polarization (CP) light associated phenomena are introduced into the agenda. Here, we simultaneously reveal the hidden chiral electromagnetic mode and acquire its chiral radiative LDOS distribution of a single symmetric nanostructure at the deep-subwavelength scale by using CP-resolved cathodoluminescence (CL) microscopy. The chirality of the symmetric nanostructure under normally incident light excitation, resulting from the interference between the symmetric and antisymmetric modes of the V-shaped nanoantenna, is hidden in the near field with a giant chiral distribution (∼99%) at the arm-ends, which enables the circularly polarized CL emission from the radiative LDOS hot-spot and the following active helicity control at the deep-subwavelength scale. The proposed V-shaped nanostructure as a functional unit is further applied to the helicity-dependent binary encoding and the two-dimensional display applications. The proposed physical principle and experimental configuration can promote the future chiral characterization and manipulation at the deep-subwavelength scale and provide direct guidelines for the optimization of chiral light-matter interactions for future quantum studies.

  9. Surface engineering of one-dimensional tin oxide nanostructures for chemical sensors

    International Nuclear Information System (INIS)

    Ma, Yuanyuan; Qu, Yongquan; Zhou, Wei

    2013-01-01

    Nanostructured materials are promising candidates for chemical sensors due to their fascinating physicochemical properties. Among various candidates, tin oxide (SnO 2 ) has been widely explored in gas sensing elements due to its excellent chemical stability, low cost, ease of fabrication and remarkable reproducibility. We are presenting an overview on recent investigations on 1-dimensional (1D) SnO 2 nanostructures for chemical sensing. In particular, we focus on the performance of devices based on surface engineered SnO 2 nanostructures, and on aspects of morphology, size, and functionality. The synthesis and sensing mechanism of highly selective, sensitive and stable 1D nanostructures for use in chemical sensing are discussed first. This is followed by a discussion of the relationship between the surface properties of the SnO 2 layer and the sensor performance from a thermodynamic point of view. Then, the opportunities and recent progress of chemical sensors fabricated from 1D SnO 2 heterogeneous nanostructures are discussed. Finally, we summarize current challenges in terms of improving the performance of chemical (gas) sensors using such nanostructures and suggest potential applications. (author)

  10. Few molecule SERS detection using nanolens based plasmonic nanostructure: application to point mutation detection

    KAUST Repository

    Das, Gobind

    2016-10-27

    Advancements in nanotechnology fabrication techniques allow the possibility to design and fabricate a device with a minimum gap (<10 nm) between the composing nanostructures in order to obtain better control over the creation and spatial definition of plasmonic hot-spots. The present study is intended to show the fabrication of nanolens and their application to single/few molecules detection. Theoretical simulations were performed on different designs of real structures, including comparison of rough and smooth surfaces. Various molecules (rhodamine 6G, benzenethiol and BRCA1/BRCT peptides) were examined in this regard. Single molecule detection was possible for synthetic peptides, with a possible application in early detection of diseases. © The Royal Society of Chemistry.

  11. Few molecule SERS detection using nanolens based plasmonic nanostructure: application to point mutation detection

    KAUST Repository

    Das, Gobind; Alrasheed, Salma; Coluccio, Maria Laura; Gentile, Francesco; Nicastri, Annalisa; Candeloro, Patrizio; Cuda, Giovanni; Perozziello, Gerardo; Di Fabrizio, Enzo M.

    2016-01-01

    Advancements in nanotechnology fabrication techniques allow the possibility to design and fabricate a device with a minimum gap (<10 nm) between the composing nanostructures in order to obtain better control over the creation and spatial definition of plasmonic hot-spots. The present study is intended to show the fabrication of nanolens and their application to single/few molecules detection. Theoretical simulations were performed on different designs of real structures, including comparison of rough and smooth surfaces. Various molecules (rhodamine 6G, benzenethiol and BRCA1/BRCT peptides) were examined in this regard. Single molecule detection was possible for synthetic peptides, with a possible application in early detection of diseases. © The Royal Society of Chemistry.

  12. Nanostructured core-shell electrode materials for electrochemical capacitors

    Science.gov (United States)

    Jiang, Long-bo; Yuan, Xing-zhong; Liang, Jie; Zhang, Jin; Wang, Hou; Zeng, Guang-ming

    2016-11-01

    Core-shell nanostructure represents a unique system for applications in electrochemical energy storage devices. Owing to the unique characteristics featuring high power delivery and long-term cycling stability, electrochemical capacitors (ECs) have emerged as one of the most attractive electrochemical storage systems since they can complement or even replace batteries in the energy storage field, especially when high power delivery or uptake is needed. This review aims to summarize recent progress on core-shell nanostructures for advanced supercapacitor applications in view of their hierarchical architecture which not only create the desired hierarchical porous channels, but also possess higher electrical conductivity and better structural mechanical stability. The core-shell nanostructures include carbon/carbon, carbon/metal oxide, carbon/conducting polymer, metal oxide/metal oxide, metal oxide/conducting polymer, conducting polymer/conducting polymer, and even more complex ternary core-shell nanoparticles. The preparation strategies, electrochemical performances, and structural stabilities of core-shell materials for ECs are summarized. The relationship between core-shell nanostructure and electrochemical performance is discussed in detail. In addition, the challenges and new trends in core-shell nanomaterials development have also been proposed.

  13. A novel technique for synthesizing dense alumina nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Pancholi, A [Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716 (United States); Stoleru, V G [Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716 (United States); Kell, C D [Department of Chemical Engineering, University of Delaware, Newark, DE 19716 (United States)

    2007-05-30

    The formation of highly ordered nanoporous alumina membranes by anodizing high-purity aluminium under optimum conditions (i.e., anodization time, electrolyte temperature, and cell voltage) in various electrolyte solutions is a well established process. In this paper we report on the formation of a wide range of alumina nanostructures, including nanotubes/nanochannels, nanoplates, and nanofibres, by using a technique that involves anodization and etching processing steps similar to the ones that yield nanopores, under slightly modified experimental conditions. The effects of the anodization voltage, time, and temperature, as well as the effects of the etching time, on the formation and the properties of the alumina nanostructures are analysed. We propose a simple analytical model to describe the formation of different types of alumina nanostructures, as a result of irreversible breakage of the pore walls for long etching times. The geometry of the nanostructures and their dimensions, ranging between 10 and 100 nm, were found to be dependent on the pore dimensions and on the location of the cleavage/breakage of the pore walls.

  14. Nanopatterning of magnetic disks by single-step Ar+ Ion projection

    NARCIS (Netherlands)

    Dietzel, A.H.; Berger, R.; Loeschner, H.; Platzgummer, E.; Stengl, G.; Bruenger, W.H.; Letzkus, F.

    2003-01-01

    Large-area Ar+ projection has been used to generate planar magnetic nanostructures on a 1¿-format hard disk in a single step (see Figure). The recording pattern was transferred to a Co/Pt multilayer without resist processes or any other contact to the delicate media surface. It is conceivable that

  15. Polar order in nanostructured organic materials

    Science.gov (United States)

    Sayar, M.; Olvera de la Cruz, M.; Stupp, S. I.

    2003-02-01

    Achiral multi-block liquid crystals are not expected to form polar domains. Recently, however, films of nanoaggregates formed by multi-block rodcoil molecules were identified as the first example of achiral single-component materials with macroscopic polar properties. By solving an Ising-like model with dipolar and asymmetric short-range interactions, we show here that polar domains are stable in films composed of aggregates as opposed to isolated molecules. Unlike classical molecular systems, these nanoaggregates have large intralayer spacings (a approx 8 nm), leading to a reduction in the repulsive dipolar interactions which oppose polar order within layers. In finite-thickness films of nanostructures, this effect enables the formation of polar domains. We compute exactly the energies of the possible structures consistent with the experiments as a function of film thickness at zero temperature (T). We also provide Monte Carlo simulations at non-zero T for a disordered hexagonal lattice that resembles the smectic-like packing in these nanofilms.

  16. Hydrothermal synthetic strategies of inorganic semiconducting nanostructures.

    Science.gov (United States)

    Shi, Weidong; Song, Shuyan; Zhang, Hongjie

    2013-07-07

    Because of their unique chemical and physical properties, inorganic semiconducting nanostructures have gradually played a pivotal role in a variety of research fields, including electronics, chemical reactivity, energy conversion, and optics. A major feature of these nanostructures is the quantum confinement effect, which strongly depends on their size, shape, crystal structure and polydispersity. Among all developed synthetic methods, the hydrothermal method based on a water system has attracted more and more attention because of its outstanding advantages, such as high yield, simple manipulation, easy control, uniform products, lower air pollution, low energy consumption and so on. Precise control over the hydrothermal synthetic conditions is a key to the success of the preparation of high-quality inorganic semiconducting nanostructures. In this review, only the representative hydrothermal synthetic strategies of inorganic semiconducting nanostructures are selected and discussed. We will introduce the four types of strategies based on exterior reaction system adjustment, namely organic additive- and template-free hydrothermal synthesis, organic additive-assisted hydrothermal synthesis, template-assisted hydrothermal synthesis and substrate-assisted hydrothermal synthesis. In addition, the two strategies based on exterior reaction environment adjustment, including microwave-assisted and magnetic field-assisted hydrothermal synthesis, will be also described. Finally, we conclude and give the future prospects of this research area.

  17. Willmore energy for joining of carbon nanostructures

    Science.gov (United States)

    Sripaturad, P.; Alshammari, N. A.; Thamwattana, N.; McCoy, J. A.; Baowan, D.

    2018-06-01

    Numerous types of carbon nanostructure have been found experimentally, including nanotubes, fullerenes and nanocones. These structures have applications in various nanoscale devices and the joining of these structures may lead to further new configurations with more remarkable properties and applications. The join profile between different carbon nanostructures in a symmetric configuration may be modelled using the calculus of variations. In previous studies, carbon nanostructures were assumed to deform according to perfect elasticity, thus the elastic energy, depending only on the axial curvature, was used to determine the join profile consisting of a finite number of discrete bonds. However, one could argue that the relevant energy should also involve the rotational curvature, especially when its size is comparable to the axial curvature. In this paper, we use the Willmore energy, a natural generalisation of the elastic energy that depends on both the axial and rotational curvatures. Catenoids are absolute minimisers of this energy and pieces of these may be used to join various nanostructures. We focus on the cases of joining a fullerene to a nanotube and joining two fullerenes along a common axis. By comparing our results with the earlier work, we find that both energies give similar joining profiles. Further work on other configurations may reveal which energy provides a better model.

  18. Nanostructures for delivery of natural antimicrobials in food.

    Science.gov (United States)

    Lopes, Nathalie Almeida; Brandelli, Adriano

    2017-04-10

    Natural antimicrobial compounds are a topic of utmost interest in food science due to the increased demand for safe and high-quality foods with minimal processing. The use of nanostructures is an interesting alternative to protect and delivery antimicrobials in food, also providing controlled release of natural compounds such as bacteriocins and antimicrobial proteins, and also for delivery of plant derived antimicrobials. A diversity of nanostructures are capable of trapping natural antimicrobials maintaining the stability of substances that are frequently sensitive to food processing and storage conditions. This article provides an overview on natural antimicrobials incorporated in nanostructures, showing an effective antimicrobial activity on a diversity of food spoilage and pathogenic microorganisms.

  19. Dynamic Processes in Nanostructured Crystals Under Ion Irradiation

    Science.gov (United States)

    Uglov, V. V.; Kvasov, N. T.; Shimanski, V. I.; Safronov, I. V.; Komarov, N. D.

    2018-02-01

    The paper presents detailed investigations of dynamic processes occurring in nanostructured Si(Fe) material under the radiation exposure, namely: heating, thermoelastic stress generation, elastic disturbances of the surrounding medium similar to weak shock waves, and dislocation generation. The performance calculations are proposed for elastic properties of the nanostructured material with a glance to size effects in nanoparticles.

  20. Leafy nanostructure PANI for material of supercapacitors

    OpenAIRE

    XI Dong; CHEN Xinman

    2013-01-01

    Nanostructure conducting polyaniline(PANI) has great potential applications in supercapacitor electrode materials.In this paper,we report a template-free approach to synthesize PANI by a galvanostatic current procedure with a three-electrode configuration directly on indium-doped tin-oxide substrates (ITO).The morphology of product was characterized by Hitachi S-4800 field emission scanning electron microscope (FE-SEM).Due to the nanostructure,the specific capacitance of PANI film with the th...

  1. Ductility of Nanostructured Bainite

    Directory of Open Access Journals (Sweden)

    Lucia Morales-Rivas

    2016-12-01

    Full Text Available Nanostructured bainite is a novel ultra-high-strength steel-concept under intensive current research, in which the optimization of its mechanical properties can only come from a clear understanding of the parameters that control its ductility. This work reviews first the nature of this composite-like material as a product of heat treatment conditions. Subsequently, the premises of ductility behavior are presented, taking as a reference related microstructures: conventional bainitic steels, and TRIP-aided steels. The ductility of nanostructured bainite is then discussed in terms of work-hardening and fracture mechanisms, leading to an analysis of the three-fold correlation between ductility, mechanically-induced martensitic transformation, and mechanical partitioning between the phases. Results suggest that a highly stable/hard retained austenite, with mechanical properties close to the matrix of bainitic ferrite, is advantageous in order to enhance ductility.

  2. Potential of AlN nanostructures as hydrogen storage materials.

    Science.gov (United States)

    Wang, Qian; Sun, Qiang; Jena, Puru; Kawazoe, Yoshiyuki

    2009-03-24

    The capability of AlN nanostructures (nanocages, nanocones, nanotubes, and nanowires) to store hydrogen has been studied using gradient-corrected density functional theory. In contrast to bulk AlN, which has the wurtzite structure and four-fold coordination, the Al sites in AlN nanostructures are unsaturated and have two- and three-fold coordination. Each Al atom is capable of binding one H(2) molecule in quasi-molecular form, leading to 4.7 wt % hydrogen, irrespective of the topology of the nanostructures. With the exception of AlN nanotubes, energetics does not support the adsorption of additional hydrogen. The binding energies of hydrogen to these unsaturated metal sites lie in the range of 0.1-0.2 eV/H(2) and are ideal for applications under ambient thermodynamic conditions. Furthermore, these materials do not suffer from the clustering problem that often plagues metal-coated carbon nanostructures.

  3. Conducting polymer nanostructures: template synthesis and applications in energy storage.

    Science.gov (United States)

    Pan, Lijia; Qiu, Hao; Dou, Chunmeng; Li, Yun; Pu, Lin; Xu, Jianbin; Shi, Yi

    2010-07-02

    Conducting polymer nanostructures have received increasing attention in both fundamental research and various application fields in recent decades. Compared with bulk conducting polymers, conducting polymer nanostructures are expected to display improved performance in energy storage because of the unique properties arising from their nanoscaled size: high electrical conductivity, large surface area, short path lengths for the transport of ions, and high electrochemical activity. Template methods are emerging for a sort of facile, efficient, and highly controllable synthesis of conducting polymer nanostructures. This paper reviews template synthesis routes for conducting polymer nanostructures, including soft and hard template methods, as well as its mechanisms. The application of conducting polymer mesostructures in energy storage devices, such as supercapacitors and rechargeable batteries, are discussed.

  4. Conducting Polymer Nanostructures: Template Synthesis and Applications in Energy Storage

    Directory of Open Access Journals (Sweden)

    Lijia Pan

    2010-07-01

    Full Text Available Conducting polymer nanostructures have received increasing attention in both fundamental research and various application fields in recent decades. Compared with bulk conducting polymers, conducting polymer nanostructures are expected to display improved performance in energy storage because of the unique properties arising from their nanoscaled size: high electrical conductivity, large surface area, short path lengths for the transport of ions, and high electrochemical activity. Template methods are emerging for a sort of facile, efficient, and highly controllable synthesis of conducting polymer nanostructures. This paper reviews template synthesis routes for conducting polymer nanostructures, including soft and hard template methods, as well as its mechanisms. The application of conducting polymer mesostructures in energy storage devices, such as supercapacitors and rechargeable batteries, are discussed.

  5. Graphene directed architecture of fine engineered nanostructures with electrochemical applications

    DEFF Research Database (Denmark)

    Hou, Chengyi; Zhang, Minwei; Halder, Arnab

    2017-01-01

    , and polymers has led to the possibility to create new electroactive and multifunctional nanostructures, which can serve as promising material platforms for electrochemical purposes. However, the precise control and fine-tuning of material structures and properties are still challenging and in demand...... classified nanostructures, including metallic nanostructures, self-assembled organic and supramolecular structures, and fine engineered metal oxides. In these cases, graphene templates either sacrificed during templating synthesis or retained as support for final products. We also discuss remained challenges....... In this review, we aim to highlight some recent efforts devoted to rational design, assembly and fine engineering of electrochemically active nanostructures using graphene or/and its derivatives as soft templates for controlled synthesis and directed growth. We organize the contents according to the chemically...

  6. Synthesis of cadmium oxide doped ZnO nanostructures using electrochemical deposition

    International Nuclear Information System (INIS)

    Singh, Trilok; Pandya, D.K.; Singh, R.

    2011-01-01

    Research highlights: → Ternary ZnCdO alloy semiconductor nanostructures were grown using electrochemical deposition. → X-ray diffraction measurements showed that the nanostructures were of wurtzite structure and possessed a compressive stress along the c-axis direction. → The cut-off wavelength shifted from blue to red on account of the Cd incorporation in the ZnO and the average transmittance decreased by ∼31%. → The bandgap tuning for 4-16 at% Cd in the initial solution was achieved in the range of 3.08-3.32 eV (up to 0.24 eV). - Abstract: Ternary ZnCdO alloy semiconductor nanostructures were grown using electrochemical deposition. Crystalline nanostructures/nanorods with cadmium concentration ranging from 4 to 16 at% in the initial solution were electrodeposited on tin doped indium oxide (ITO) conducting glass substrates at a constant cathodic potential -0.9 V and subsequently annealed in air at 300 deg. C. X-ray diffraction measurements showed that the nanostructures were of wurtzite structure and possessed a compressive stress along the c-axis direction. The elemental composition of nanostructures was confirmed by energy dispersive spectroscopy (EDS). ZnO nanostructures were found to be highly transparent and had an average transmittance of 85% in the visible range of the spectrum. After the incorporation of Cd content into ZnO the average transmittance decreased and the bandgap tuning was also achieved.

  7. Single Photon Sources in Silicon Carbide

    International Nuclear Information System (INIS)

    Brett Johnson

    2014-01-01

    Single photon sources in semiconductors are highly sought after as they constitute the building blocks of a diverse range of emerging technologies such as integrated quantum information processing, quantum metrology and quantum photonics. In this presentation, we show the first observation of single photon emission from deep level defects in silicon carbide (SiC). The single photon emission is photo-stable at room temperature and surprisingly bright. This represents an exciting alternative to diamond color centers since SiC possesses well-established growth and device engineering protocols. The defect is assigned to the carbon vacancy-antisite pair which gives rise to the AB photoluminescence lines. We discuss its photo-physical properties and their fabrication via electron irradiation. Preliminary measurements on 3C SiC nano-structures will also be discussed. (author)

  8. Nanostructured silver sulfide: synthesis of various forms and their application

    Science.gov (United States)

    Sadovnikov, S. I.; Rempel, A. A.; Gusev, A. I.

    2018-04-01

    The results of experimental studies on nanostructured silver sulfide are analyzed and generalized. The influence of small particle size on nonstoichiometry of silver sulfide is discussed. Methods for the synthesis of various forms of nanostructured Ag2S including nanopowders, stable colloidal solutions, quantum dots, core–shell nanoparticles and heteronanostructures are described. The advantages and drawbacks of different synthetic procedures are analyzed. Main fields of application of nanostructured silver sulfide are considered. The bibliography includes 184 references.

  9. Heat Transfer from Optically Excited Gold Nanostructures into Water, Sugar, and Salt Solutions

    Science.gov (United States)

    Green, Andrew J.

    Nanotechnology has introduced a wide variety of new behaviors to study and understand. Metal nanostructures are of particular interest due to their ability to generate large amounts of heat when irradiated at the plasmon resonance. Furthermore, heat dissipation at the nanoscale becomes exceedingly more complicated with respect to bulk behavior. What are the credentials for a heat carrier to move across an interface? Is it important for both materials to have similar vibrational density of states? What changes if one material is a liquid? All of these questions have open ended answers, each of which hold potential for new technologies to be exploited once understood. This dissertation will discuss topics exploring the transfer of heat from an optically excited gold nanoparticle into a surrounding liquid. Gold nanostructures are created using conventional electron beam lithography with lift-off. The nanostructures are deposited onto a thin film thermal sensor composed of AlGaN:Er3+. Erbium(III) has two thermally coupled excited states that can be excited with a 532nm laser. The relative photoluminescence from these excited states are related by a Boltzmann factor and are thusly temperature dependent. A scanning optical microscope collects an image of Er3+ photoluminescence while simultaneously exciting the gold nanostructure. The nanostructure temperature is imaged which is directly related to the surrounding's heat dissipation properties. The first of two topics discuss the heat dissipation and phase change properties of water. A gold nanostructure is submersed under water and subsequently heated with a 532 nm laser. The water immediately surrounding the nanodot is can be superheated beyond the boiling point up to the spinodal decomposition temperature at 594 +/- 17 K. The spinodal decomposition has been confirmed with the observation of critical opalescence. We characterize the laser scattering that occurs in unison with spinodal decomposition due to an increased

  10. Enhanced light absorption of silicon solar cells with dielectric nanostructured back reflector

    Science.gov (United States)

    Ren, Rui; Zhong, Zheng

    2018-06-01

    This paper investigates the light absorption property of nanostructured dielectric reflectors in silicon thin film solar cells using numerical simulation. Flat thin film solar cell with ZnO nanostructured back reflector can produce comparable photocurrent to the control model with Ag nanostructured back reflector. Furthermore, when it is integrated with nano-pillar surface decoration, a photocurrent density of 29.5 mA/cm2 can be achieved, demonstrating a photocurrent enhancement of 5% as compared to the model with Ag nanostructured back reflector.

  11. Geometrically induced surface polaritons in planar nanostructured metallic cavities

    Energy Technology Data Exchange (ETDEWEB)

    Davids, P. S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Intravia, F [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalvit, Diego A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-14

    We examine the modal structure and dispersion of periodically nanostructured planar metallic cavities within the scattering matrix formulation. By nanostructuring a metallic grating in a planar cavity, artificial surface excitations or spoof plasmon modes are induced with dispersion determined by the periodicity and geometric characteristics of the grating. These spoof surface plasmon modes are shown to give rise to new cavity polaritonic modes at short mirror separations that modify the density of modes in nanostructured cavities. The increased modal density of states form cavity polarirons have a large impact on the fluctuation induced electromagnetic forces and enhanced hear transfer at short separations.

  12. Novel nanostructures for next generation dye-sensitized solar cells

    KAUST Repository

    Tétreault, Nicolas

    2012-01-01

    Herein, we review our latest advancements in nanostructured photoanodes for next generation photovoltaics in general and dye-sensitized solar cells in particular. Bottom-up self-assembly techniques are developed to fabricate large-area 3D nanostructures that enable enhanced charge extraction and light harvesting through optical scattering or photonic crystal effects to improve photocurrent, photovoltage and fill factor. Using generalized techniques to fabricate specialized nanostructures enables specific optoelectronic and physical characteristics like conduction, charge extraction, injection, recombination and light harvesting but also helps improve mechanical flexibility and long-term stability in low cost materials. © 2012 The Royal Society of Chemistry.

  13. High Sensitivity and High Detection Specificity of Gold-Nanoparticle-Grafted Nanostructured Silicon Mass Spectrometry for Glucose Analysis.

    Science.gov (United States)

    Tsao, Chia-Wen; Yang, Zhi-Jie

    2015-10-14

    Desorption/ionization on silicon (DIOS) is a high-performance matrix-free mass spectrometry (MS) analysis method that involves using silicon nanostructures as a matrix for MS desorption/ionization. In this study, gold nanoparticles grafted onto a nanostructured silicon (AuNPs-nSi) surface were demonstrated as a DIOS-MS analysis approach with high sensitivity and high detection specificity for glucose detection. A glucose sample deposited on the AuNPs-nSi surface was directly catalyzed to negatively charged gluconic acid molecules on a single AuNPs-nSi chip for MS analysis. The AuNPs-nSi surface was fabricated using two electroless deposition steps and one electroless etching step. The effects of the electroless fabrication parameters on the glucose detection efficiency were evaluated. Practical application of AuNPs-nSi MS glucose analysis in urine samples was also demonstrated in this study.

  14. Monitoring the formation of inorganic fullerene-like MoS2 nanostructures by laser ablation in liquid environments

    International Nuclear Information System (INIS)

    Compagnini, Giuseppe; Sinatra, Marco G.; Messina, Gabriele C.; Patanè, Giacomo; Scalese, Silvia; Puglisi, Orazio

    2012-01-01

    Laser ablation of solid targets in liquid media is emerging as a simple, clean and reproducible way to generate a large number of intriguing nanometric structures with peculiar properties. In this work we present some results on the formation of MoS 2 fullerene-like nanoparticles (10-15 nm diameter) obtained by the ablation of crystalline targets in water. Such a top-down approach can be considered greener than standard sulphidization reactions and represents an intriguing single step procedure. The generation of the MoS 2 nanostructures is in competition with that of oxide clusters and strongly depends on the oxidative environment created by the plasma plume. The size, shape and crystalline phase of the obtained nanoparticles are studied by microscopy while X-Ray Photoelectron Spectroscopy is used to investigate the chemical state of produced nanostructures and to propose mechanisms for their growth.

  15. Review of Recent Progress of Plasmonic Materials and Nano-Structures for Surface-Enhanced Raman Scattering

    Directory of Open Access Journals (Sweden)

    Alan X. Wang

    2015-05-01

    Full Text Available Surface-enhanced Raman scattering (SERS has demonstrated single-molecule sensitivity and is becoming intensively investigated due to its significant potential in chemical and biomedical applications. SERS sensing is highly dependent on the substrate, where excitation of the localized surface plasmons (LSPs enhances the Raman scattering signals of proximate analyte molecules. This paper reviews research progress of SERS substrates based on both plasmonic materials and nano-photonic structures. We first discuss basic plasmonic materials, such as metallic nanoparticles and nano-rods prepared by conventional bottom-up chemical synthesis processes. Then, we review rationally-designed plasmonic nano-structures created by top-down approaches or fine-controlled synthesis with high-density hot-spots to provide large SERS enhancement factors (EFs. Finally, we discuss the research progress of hybrid SERS substrates through the integration of plasmonic nano-structures with other nano-photonic devices, such as photonic crystals, bio-enabled nanomaterials, guided-wave systems, micro-fluidics and graphene.

  16. Kinetically controlled synthesis of large-scale morphology-tailored silver nanostructures at low temperature

    Science.gov (United States)

    Zhang, Ling; Zhao, Yuda; Lin, Ziyuan; Gu, Fangyuan; Lau, Shu Ping; Li, Li; Chai, Yang

    2015-08-01

    Ag nanostructures are widely used in catalysis, energy conversion and chemical sensing. Morphology-tailored synthesis of Ag nanostructures is critical to tune physical and chemical properties. In this study, we develop a method for synthesizing the morphology-tailored Ag nanostructures in aqueous solution at a low temperature (45 °C). With the use of AgCl nanoparticles as the precursor, the growth kinetics of Ag nanostructures can be tuned with the pH value of solution and the concentration of Pd cubes which catalyze the reaction. Ascorbic acid and cetylpyridinium chloride are used as the mild reducing agent and capping agent in aqueous solution, respectively. High-yield Ag nanocubes, nanowires, right triangular bipyramids/cubes with twinned boundaries, and decahedra are successfully produced. Our method opens up a new environmentally-friendly and economical route to synthesize large-scale and morphology-tailored Ag nanostructures, which is significant to the controllable fabrication of Ag nanostructures and fundamental understanding of the growth kinetics.Ag nanostructures are widely used in catalysis, energy conversion and chemical sensing. Morphology-tailored synthesis of Ag nanostructures is critical to tune physical and chemical properties. In this study, we develop a method for synthesizing the morphology-tailored Ag nanostructures in aqueous solution at a low temperature (45 °C). With the use of AgCl nanoparticles as the precursor, the growth kinetics of Ag nanostructures can be tuned with the pH value of solution and the concentration of Pd cubes which catalyze the reaction. Ascorbic acid and cetylpyridinium chloride are used as the mild reducing agent and capping agent in aqueous solution, respectively. High-yield Ag nanocubes, nanowires, right triangular bipyramids/cubes with twinned boundaries, and decahedra are successfully produced. Our method opens up a new environmentally-friendly and economical route to synthesize large-scale and morphology

  17. Free-volume characterization of nanostructurized substances by positron annihilation lifetime spectroscopy

    Science.gov (United States)

    Shpotyuk, O.; Ingram, A.; Shpotyuk, Ya.

    2018-02-01

    Methodological possibilities of positron annihilation lifetime (PAL) spectroscopy are examined to parameterize free-volume structural evolution processes in some nanostructurized substances obeying conversion from positronium (Ps) decaying to positron trapping. Unlike conventional x3-term fitting analysis based on admixed positron trapping and Ps decaying, the effect of nanostructurization is considered as occurring due to conversion from preferential Ps decaying in initial host matrix to positron trapping in modified (nanostructurized) host-guest matrix. The developed approach referred to as x3-x2-CDA (coupling decomposition algorithm) allows estimation defect-free bulk and defect-specific positron lifetimes of free-volume elements responsible for nanostructurization. The applicability of this approach is proved for some nanostructurized materials allowing free-volume changes through Ps-to-positron trapping conversion, such as (i) metallic Ag nanoparticles embedded in polymer matrix, (ii) structure-modification processes caused by swift heavy ions irradiation in polystyrene, and (iii) host-guest chemistry problems like water immersion in alumomagnesium spinel ceramics. This approach is considered to be used as test-indicator, separating processes of host-matrix nanostructurization due to embedded nanoparticles from uncorrelated changes in positron-trapping and Ps-decaying channels.

  18. Fabricating ordered functional nanostructures onto polycrystalline substrates from the bottom-up

    International Nuclear Information System (INIS)

    Torres, María; Pardo, Lorena; Ricote, Jesús; Fuentes-Cobas, Luís E.; Rodriguez, Brian J.; Calzada, M. Lourdes

    2012-01-01

    Microemulsion-mediated synthesis has emerged as a powerful bottom-up procedure for the preparation of ferroelectric nanostructures onto substrates. However, periodical order has yet to be achieved onto polycrystalline Pt-coated Si substrates. Here, we report a new methodology that involves microemulsion-mediated synthesis and the controlled modification of the surface of the substrate by coating it with a template-layer of water-micelles. This layer modifies the surface tension of the substrate and yields a periodic arrangement of ferroelectric crystalline nanostructures. The size of the nanostructures is decreased to the sub-50 nm range and they show a hexagonal order up to the third neighbors, which corresponds to a density of 275 Gb in −2 . The structural analysis of the nanostructures by synchrotron X-ray diffraction confirms that the nanostructures have a PbTiO 3 perovskite structure, with lattice parameters of a = b = 3.890(0) Å and c = 4.056(7) Å. Piezoresponse force microscopy confirmed the ferro-piezoelectric character of the nanostructures. This simple methodology is valid for the self-assembly of other functional oxides onto polycrystalline substrates, enabling their reliable integration into micro/nano devices.

  19. Femtosecond laser-induced periodic surface nanostructuring of sputtered platinum thin films

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez, Ainara, E-mail: airodriguez@ceit.es [CIC microGUNE, Goiru Kalea 9 Polo Innovación Garaia, 20500 Arrasate-Mondragón (Spain); CEIT-IK4 & Tecnun (University of Navarra), Paseo Manuel Lardizábal 15, 20018 San Sebastián (Spain); Morant-Miñana, Maria Carmen; Dias-Ponte, Antonio; Martínez-Calderón, Miguel; Gómez-Aranzadi, Mikel; Olaizola, Santiago M. [CIC microGUNE, Goiru Kalea 9 Polo Innovación Garaia, 20500 Arrasate-Mondragón (Spain); CEIT-IK4 & Tecnun (University of Navarra), Paseo Manuel Lardizábal 15, 20018 San Sebastián (Spain)

    2015-10-01

    Highlights: • Femtosecond laser-induced surface nanostructures on sputtered platinum thin films. • Three types of structures obtained: random nanostructures, LSFL and HSFL. • Two different modification regimes have been established based on laser fluence. - Abstract: In this work, submicro and nanostructures self-formed on the surface of Platinum thin films under femtosecond laser-pulse irradiation are investigated. A Ti:Sapphire laser system was used to linearly scan 15 mm lines with 100 fs pulses at a central wavelength of 800 nm with a 1 kHz repetition rate. The resulting structures were characterized by scanning electron microscopy (SEM) and 2D-Fast Fourier Transform (2D-FFT) analysis. This analysis of images revealed different types of structures depending on the laser irradiation parameters: random nanostructures, low spatial frequency LIPSS (LSFL) with a periodicity from about 450 to 600 nm, and high spatial frequency LIPSS (HSFL) with a periodicity from about 80 to 200 nm. Two different modifications regimes have been established for the formation of nanostructures: (a) a high-fluence regime in which random nanostructures and LSFL are obtained and (b) a low-fluence regime in which HSFL and LSFL are obtained.

  20. Single-Molecule Plasmon Sensing: Current Status and Future Prospects.

    Science.gov (United States)

    Taylor, Adam B; Zijlstra, Peter

    2017-08-25

    Single-molecule detection has long relied on fluorescent labeling with high quantum-yield fluorophores. Plasmon-enhanced detection circumvents the need for labeling by allowing direct optical detection of weakly emitting and completely nonfluorescent species. This review focuses on recent advances in single molecule detection using plasmonic metal nanostructures as a sensing platform, particularly using a single particle-single molecule approach. In the past decade two mechanisms for plasmon-enhanced single-molecule detection have been demonstrated: (1) by plasmonically enhancing the emission of weakly fluorescent biomolecules, or (2) by monitoring shifts of the plasmon resonance induced by single-molecule interactions. We begin with a motivation regarding the importance of single molecule detection, and advantages plasmonic detection offers. We describe both detection mechanisms and discuss challenges and potential solutions. We finalize by highlighting the exciting possibilities in analytical chemistry and medical diagnostics.

  1. Fiber-coupled NbN superconducting single-photon detectors for quantum correlation measurements

    NARCIS (Netherlands)

    Slysz, W.; Wegrzecki, M.; Bar, J.; Grabiec, P.; Gorska, M.; Reiger, E.; Dorenbos, S.; Zwiller, V.; Milostnaya, I.; Minaeva, O.

    2007-01-01

    We have fabricated fiber-coupled superconducting single-photon detectors (SSPDs), designed for quantum-correlationtype experiments. The SSPDs are nanostructured (~100-nm wide and 4-nm thick) NbN superconducting meandering stripes, operated in the 2 to 4.2 K temperature range, and known for ultrafast

  2. Investigation of the optoelectronic behavior of Pb-doped CdO nanostructures

    Science.gov (United States)

    Eskandari, Abdollah; Jamali-Sheini, Farid; Cheraghizade, Mohsen; Yousefi, Ramin

    2018-03-01

    Un- and lead (Pb)-doped cadmium oxide (CdO) semiconductor nanostructures were synthesized by a sonochemical method to study their physical properties. The obtained X-ray diffraction (XRD) patterns indicated cubic CdO crystalline structures for all samples and showed that the crystallite size of CdO increases with Pb addition. Scanning electron microscopy (SEM) images of the nanostructures illustrated agglomerated oak-like particles for the Pb-doped CdO nanostructures. Furthermore, optical studies suggested that the emission band gap energy of the CdO nanostructures lies in the range of 2.27-2.38 eV and crystalline defects increase by incorporation of Pb atoms in the CdO crystalline lattice. In addition, electrical experiments declared that the n-type electrical nature of the un- and Pb-doped CdO nanostructures and the minimum of Pb atoms lead to a high carrier concentration.

  3. Enhanced Stability of DNA Nanostructures by Incorporation of Unnatural Base Pairs.

    Science.gov (United States)

    Liu, Qing; Liu, Guocheng; Wang, Ting; Fu, Jing; Li, Rujiao; Song, Linlin; Wang, Zhen-Gang; Ding, Baoquan; Chen, Fei

    2017-11-03

    Self-assembled DNA nanostructures hold great promise in the fields of nanofabrication, biosensing and nanomedicine. However, the inherent low stability of the DNA double helices, formed by weak interactions, largely hinders the assembly and functions of DNA nanostructures. In this study, we redesigned and constructed a six-arm DNA junction by incorporation of the unnatural base pairs 5-Me-isoC/isoG and A/2-thioT into the double helices. They not only retained the structural integrity of the DNA nanostructure, but also showed enhanced thermal stability and resistance to T7 Exonuclease digestion. This research may expand the applications of DNA nanostructures in nanofabrication and biomedical fields, and furthermore, the genetic alphabet expansion with unnatural base pairs may enable us to construct more complicated and diversified self-assembled DNA nanostructures. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Airborne Nanostructured Particles and Occupational Health

    Science.gov (United States)

    Maynard, Andrew D.; Kuempel, Eileen D.

    2005-12-01

    Nanotechnology is leading to the development in many field, of new materials and devices in many fields that demonstrate nanostructure-dependent properties. However, concern has been expressed that these same properties may present unique challenges to addressing potential health impact. Airborne particles associated with engineered nanomaterials are of particular concern, as they can readily enter the body through inhalation. Research into the potential occupational health risks associated with inhaling engineered nanostructured particles is just beginning. However, there is a large body of data on occupational and environmental aerosols, which is applicable to developing an initial assessment of potential risk and risk reduction strategies. Epidemiological and pathological studies of occupational and environmental exposures to airborne particles and fibers provide information on the aerosol-related lung diseases and conditions that have been observed in humans. Toxicological studies provide information on the specific disease mechanisms, dose-response relationships, and the particle characteristics that influence toxicity, including the size, surface area, chemistry or reactivity, solubility, and shape. Potential health risk will depend on the magnitude and nature of exposures to airborne nanostructured particles, and on the release, dispersion, transformation and control of materials in the workplace. Aerosol control methods have not been well-characterized for nanometer diameter particles, although theory and limited experimental data indicate that conventional ventilation, engineering control and filtration approaches should be applicable in many situations. Current information supports the development of preliminary guiding principles on working with engineered nanomaterials. However critical research questions remain to be answered before the potential health risk of airborne nanostructured particles in the workplace can be fully addressed.

  5. Directed spatial organization of zinc oxide nanostructures

    Science.gov (United States)

    Hsu, Julia [Albuquerque, NM; Liu, Jun [Richland, WA

    2009-02-17

    A method for controllably forming zinc oxide nanostructures on a surface via an organic template, which is formed using a stamp prepared from pre-defined relief structures, inking the stamp with a solution comprising self-assembled monolayer (SAM) molecules, contacting the stamp to the surface, such as Ag sputtered on Si, and immersing the surface with the patterned SAM molecules with a zinc-containing solution with pH control to form zinc oxide nanostructures on the bare Ag surface.

  6. Enhancement of Light-Matter Interaction in Semiconductor Nanostructures

    DEFF Research Database (Denmark)

    Stobbe, Søren

    This thesis reports research on enhancement of light-matter interaction in semi- conductor quantum nanostructures by means of nanostructure fabrication, optical measurements, and theoretical modeling. Photonic crystal membranes of very high quality and samples for studies of quantum dots in proxi......-matter interaction is investigated. For the rst time the vacuum Rabi splitting is observed in an electrically tunable device....

  7. The design, fabrication, and photocatalytic utility of nanostructured semiconductors: focus on TiO2-based nanostructures

    Directory of Open Access Journals (Sweden)

    Arghya Narayan Banerjee

    2011-02-01

    Full Text Available Arghya Narayan BanerjeeSchool of Mechanical Engineering, Yeungnam University, Gyeongsan, South KoreaAbstract: Recent advances in basic fabrication techniques of TiO2-based nanomaterials such as nanoparticles, nanowires, nanoplatelets, and both physical- and solution-based techniques have been adopted by various research groups around the world. Our research focus has been mainly on various deposition parameters used for fabricating nanostructured materials, including TiO2-organic/inorganic nanocomposite materials. Technically, TiO2 shows relatively high reactivity under ultraviolet light, the energy of which exceeds the band gap of TiO2. The development of photocatalysts exhibiting high reactivity under visible light allows the main part of the solar spectrum to be used. Visible light-activated TiO2 could be prepared by doping or sensitizing. As far as doping of TiO2 is concerned, in obtaining tailored material with improved properties, metal and nonmetal doping has been performed in the context of improved photoactivity. Nonmetal doping seems to be more promising than metal doping. TiO2 represents an effective photocatalyst for water and air purification and for self-cleaning surfaces. Additionally, it can be used as an antibacterial agent because of its strong oxidation activity and superhydrophilicity. Therefore, applications of TiO2 in terms of photocatalytic activities are discussed here. The basic mechanisms of the photoactivities of TiO2 and nanostructures are considered alongside band structure engineering and surface modification in nanostructured TiO2 in the context of doping. The article reviews the basic structural, optical, and electrical properties of TiO2, followed by detailed fabrication techniques of 0-, 1-, and quasi-2-dimensional TiO2 nanomaterials. Applications and future directions of nanostructured TiO2 are considered in the context of various photoinduced phenomena such as hydrogen production, electricity generation via

  8. Metal oxide nanostructures as gas sensing devices

    CERN Document Server

    Eranna, G

    2016-01-01

    Metal Oxide Nanostructures as Gas Sensing Devices explores the development of an integrated micro gas sensor that is based on advanced metal oxide nanostructures and is compatible with modern semiconductor fabrication technology. This sensor can then be used to create a compact, low-power, handheld device for analyzing air ambience. The book first covers current gas sensing tools and discusses the necessity for miniaturized sensors. It then focuses on the materials, devices, and techniques used for gas sensing applications, such as resistance and capacitance variations. The author addresses the issues of sensitivity, concentration, and temperature dependency as well as the response and recovery times crucial for sensors. He also presents techniques for synthesizing different metal oxides, particularly those with nanodimensional structures. The text goes on to highlight the gas sensing properties of many nanostructured metal oxides, from aluminum and cerium to iron and titanium to zinc and zirconium. The final...

  9. Self-assembled peptide nanostructures for the development of electrochemical biosensors

    DEFF Research Database (Denmark)

    Castillo-León, Jaime; Zor, Kinga; Svendsen, Winnie Edith

    2015-01-01

    . These biological nanostructures have recently been utilized for bionanotechnological applications thanks to their easy and low-cost fabrication, their stability, and their facile functionalization. These features suggest the usage of self-assembled peptide nanostructures in the development of biosensing platforms......Biological building blocks such as peptides or proteins are able to self-organize into nanostructures with particular properties. There are several possibilities for their use in varying applications such as drug delivery, biosensing, clean-room fabrication methods, and tissue engineering...

  10. High-pressure catalytic chemical vapor deposition of ferromagnetic ruthenium-containing carbon nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Khavrus, Vyacheslav O., E-mail: V.Khavrus@ifw-dresden.de; Ibrahim, E. M. M.; Bachmatiuk, Alicja; Ruemmeli, Mark H.; Wolter, A. U. B.; Hampel, Silke; Leonhardt, Albrecht [IFW Dresden (Germany)

    2012-06-15

    We report on the high-pressure catalytic chemical vapor deposition (CCVD) of ruthenium nanoparticles (NPs) and single-walled carbon nanotubes (SWCNTs) by means of gas-phase decomposition of acetonitrile and ruthenocene in a tubular quartz flow reactor at 950 Degree-Sign C and at elevated pressures (between 2 and 8 bar). The deposited material consists of Ru metal cores with sizes ranging between 1 and 3 nm surrounded by a carbon matrix. The high-pressure CCVD seems to be an effective route to obtain composite materials containing metallic NPs, Ru in this work, inside a nanostructured carbon matrix protecting them from oxidation in ambient air. We find that in contradiction to the weak paramagnetic properties characterizing bulk ruthenium, the synthesized samples are ferromagnetic as predicted for nanosized particles of nonmagnetic materials. At low pressure, the very small ruthenium catalyst particles are able to catalyze growth of SWCNTs. Their yield decreases with increasing reaction pressure. Transmission electron microscopy, selected area energy-dispersive X-ray analysis, Raman spectroscopy, and magnetic measurements were used to analyze and confirm properties of the synthesized NPs and nanotubes. A discussion on the growth mechanism of the Ru-containing nanostructures is presented.

  11. Wettability transition induced transformation and entrapment of polymer nanostructures in cylindrical nanopores.

    Science.gov (United States)

    Feng, Xunda; Mei, Shilin; Jin, Zhaoxia

    2011-12-06

    We apply the concept of wettability transition to manipulate the morphology and entrapment of polymer nanostructures inside cylindrical nanopores of anodic aluminum oxide (AAO) membranes. When AAO/polystyrene (PS) hybrids, i.e., AAO/PS nanorods or AAO/PS nanotubes, are immersed into a polyethylene glycol (PEG) reservoir above the glass transition temperature of PS, a wettability transition from wetting to nonwetting of PS can be triggered due to the invasion of the more wettable PEG melt. The wettability transition enables us to develop a nondestructive method to entrap hemispherically capped nanorods inside nanopores. Moreover, we can obtain single nanorods with the desired aspect ratio by further dissolving the AAO template, in contrast to the drawbacks of nonuniformity or destructiveness from the conventional ultrasonication method. In the case of AAO/PS nanotubes, the wettability transition induced dewetting of PS nanotube walls results in the disconnection and entrapment of nonwetting PS domains (i.e., nanospheres, nanocapsules, or capped nanorods). Moreover, PEG is then washed to recover the pristine wettability of PS on the alumina surface; further annealing of the PS nanospheres inside AAO nanopores under vacuum can generate some unique nanostructures, particularly semicylindrical nanorods. © 2011 American Chemical Society

  12. Nanostructured Photovoltaics for Space Power

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA NSTRF proposal entitled Nanostructured Photovoltaics for Space Power is targeted towards research to improve the current state of the art photovoltaic...

  13. Nanostructure sensitization of transition metal oxides for visible-light photocatalysis

    Directory of Open Access Journals (Sweden)

    Hongjun Chen

    2014-05-01

    Full Text Available To better utilize the sunlight for efficient solar energy conversion, the research on visible-light active photocatalysts has recently attracted a lot of interest. The photosensitization of transition metal oxides is a promising approach for achieving effective visible-light photocatalysis. This review article primarily discusses the recent progress in the realm of a variety of nanostructured photosensitizers such as quantum dots, plasmonic metal nanostructures, and carbon nanostructures for coupling with wide-bandgap transition metal oxides to design better visible-light active photocatalysts. The underlying mechanisms of the composite photocatalysts, e.g., the light-induced charge separation and the subsequent visible-light photocatalytic reaction processes in environmental remediation and solar fuel generation fields, are also introduced. A brief outlook on the nanostructure photosensitization is also given.

  14. Nanocoatings size effect in nanostructured films

    CERN Document Server

    Aliofkhazraei, Mahmood

    2014-01-01

    Size effect in structures has been taken into consideration over the last years. In comparison with coatings with micrometer-ranged thickness, nanostructured coatings usually enjoy better and appropriate properties, such as strength and resistance. These coatings enjoy unique magnetic properties and are used with the aim of producing surfaces resistant against erosion, lubricant system, cutting tools, manufacturing hardened sporadic alloys, being resistant against oxidation and corrosion. This book reviews researches on fabrication and classification of nanostructured coatings with focus on size effect in nanometric scale. Size effect on electrochemical, mechanical and physical properties of nanocoatings are presented.

  15. Development of Nanostructured Austempered Ductile Cast Iron

    Science.gov (United States)

    Panneerselvam, Saranya

    Austempered Ductile Cast Iron is emerging as an important engineering materials in recent years because of its excellent combination of mechanical properties such as high strength with good ductility, good fatigue strength and fracture toughness together with excellent wear resistance. These combinations of properties are achieved by the microstructure consisting of acicular ferrite and high carbon austenite. Refining of the ausferritic microstructure will further enhance the mechanical properties of ADI and the presence of proeutectoid ferrite in the microstructure will considerably improve the ductility of the material. Thus, the focus of this investigation was to develop nanostructured austempered ductile cast iron (ADI) consisting of proeutectoid ferrite, bainitic ferrite and high carbon austenite and to determine its microstructure-property relationships. Compact tension and cylindrical tensile test samples were prepared as per ASTM standards, subjected to various heat treatments and the mechanical tests including the tensile tests, plane strain fracture toughness tests, hardness tests were performed as per ASTM standards. Microstructures were characterized by optical metallography, X-ray diffraction, SEM and TEM. Nanostructured ADI was achieved by a unique heat treatment consisting of austenitization at a high temperature and subsequent plastic deformation at the same austenitizing temperature followed by austempering. The investigation also examined the effect of cryogenic treatment, effect of intercritical austenitizing followed by single and two step austempering, effect of high temperature plastic deformation on the microstructure and mechanical properties of the low alloyed ductile cast iron. The mechanical and thermal stability of the austenite was also investigated. An analytical model has been developed to understand the crack growth process associated with the stress induced transformation of retained austenite to martensite.

  16. Vortex configuration and vortex-vortex interaction in nano-structured superconductors

    International Nuclear Information System (INIS)

    Kato, Masaru; Niwa, Yuhei; Suematsu, Hisataka; Ishida, Takekazu

    2012-01-01

    We study the vortex structures and quasi-particle structures in nano-structured superconductors. We used the Bogoliubov-de Gennes equation and the finite element method and obtained stable magnetic flux structures and the quasi-particle states. We found the vortex configurations are affected by the interference of the quasi-particle bound states around the vortices. In order to clarify the interference between the quasi-particle wave-functions around two vortices we have developed a numerical method using the elliptic coordinates and the Mathieu functions. We apply this method to two singly quantized vortex state in a conventional s-wave superconductor and a pair of half-quantum vortices in a chiral p-wave superconductor.

  17. Nanostructuring superconductors by ion beams: A path towards materials engineering

    Energy Technology Data Exchange (ETDEWEB)

    Gerbaldo, Roberto; Ghigo, Gianluca; Gozzelino, Laura; Laviano, Francesco [Department of Applied Science and Technology, Politecnico di Torino c.so Duca degli Abruzzi 24, 10129 Torino, Italy and INFN Sez. Torino, via P. Giuria 1, 10125 Torino (Italy); Amato, Antonino; Rovelli, Alberto [INFN Laboratori Nazionali del Sud, via S. Sofia 62, 95125 Catania (Italy); Cherubini, Roberto [INFN Laboratori Nazionali di Legnaro, viale dell' Universita 2, 35020 Legnaro (Italy)

    2013-07-18

    The paper deals with nanostructuring of superconducting materials by means of swift heavy ion beams. The aim is to modify their structural, optical and electromagnetic properties in a controlled way, to provide possibility of making them functional for specific applications. Results are presented concerning flux pinning effects (implantation of columnar defects with nanosize cross section to enhance critical currents and irreversibility fields), confined flux-flow and vortex guidance, design of devices by locally tailoring the superconducting material properties, analysis of disorder-induced effects in multi-band superconductors. These studies were carried out on different kinds of superconducting samples, from single crystals to thin films, from superconducting oxides to magnesium diboride, to recently discovered iron-based superconductors.

  18. Topography and refractometry of nanostructures using spatial light interference microscopy.

    Science.gov (United States)

    Wang, Zhuo; Chun, Ik Su; Li, Xiuling; Ong, Zhun-Yong; Pop, Eric; Millet, Larry; Gillette, Martha; Popescu, Gabriel

    2010-01-15

    Spatial light interference microscopy (SLIM) is a novel method developed in our laboratory that provides quantitative phase images of transparent structures with a 0.3 nm spatial and 0.03 nm temporal accuracy owing to the white light illumination and its common path interferometric geometry. We exploit these features and demonstrate SLIM's ability to perform topography at a single atomic layer in graphene. Further, using a decoupling procedure that we developed for cylindrical structures, we extract the axially averaged refractive index of semiconductor nanotubes and a neurite of a live hippocampal neuron in culture. We believe that this study will set the basis for novel high-throughput topography and refractometry of man-made and biological nanostructures.

  19. Quasi-monodimensional polyaniline nanostructures for enhanced molecularly imprinted polymer-based sensing.

    Science.gov (United States)

    Berti, Francesca; Todros, Silvia; Lakshmi, Dhana; Whitcombe, Michael J; Chianella, Iva; Ferroni, Matteo; Piletsky, Sergey A; Turner, Anthony P F; Marrazza, Giovanna

    2010-10-15

    Recent advances in nanotechnology have allowed significant progress in utilising cutting-edge techniques associated with nanomaterials and nano-fabrication to expand the scope and capability of biosensors to a new level of novelty and functionality. The aim of this work was the development and characterisation of conductive polyaniline (PANI) nanostructures for applications in electrochemical biosensing. We explore a simple, inexpensive and fast route to grow PANI nanotubes, arranged in an ordered structure directly on an electrode surface, by electrochemical polymerisation using alumina nanoporous membranes as a 'nano-mould'. The deposited nanostructures have been characterised electrochemically and morphologically prior to grafting with a molecularly imprinted polymer (MIP) receptor in order to create a model sensor for catechol detection. In this way, PANI nanostructures resulted in a conductive nanowire system which allowed direct electrical connection between the electrode and the synthetic receptor (MIP). To our knowledge, this is the first example of integration between molecularly imprinted polymers and PANI nanostructured electrodes. The advantages of using nanostructures in this particular biosensing application have been evaluated by comparing the analytical performance of the sensor with an analogous non-nanostructured MIP-sensor for catechol detection that was previously developed. A significantly lower limit of detection for catechol has been obtained (29 nM, one order of magnitude), thus demonstrating that the nanostructures are capable of improving the analytical performance of the sensor. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. DNA-directed self-assembly of gold nanoparticles into binary and ternary nanostructures

    International Nuclear Information System (INIS)

    Yao Hui; Yi Changqing; Tzang Chihung; Zhu Junjie; Yang Mengsu

    2007-01-01

    The assembly and characterization of gold nanoparticle-based binary and ternary structures are reported. Two strategies were used to assemble gold nanoparticles into ordered nanoscale architectures: in strategy 1, gold nanoparticles were functionalized with single-strand DNA (ssDNA) first, and then hybridized with complementary ssDNA-labelled nanoparticles to assemble designed architectures. In strategy 2, the designed architectures were constructed through hybridization between complementary ssDNA first, then by assembling gold nanoparticles to the scaffolding through gold-sulfur bonds. Both TEM measurements and agarose gel electrophoresis confirmed that the latter strategy is more efficient in generating the designed nanostructures

  1. When lithography meets self-assembly: a review of recent advances in the directed assembly of complex metal nanostructures on planar and textured surfaces

    Science.gov (United States)

    Hughes, Robert A.; Menumerov, Eredzhep; Neretina, Svetlana

    2017-07-01

    One of the foremost challenges in nanofabrication is the establishment of a processing science that integrates wafer-based materials, techniques, and devices with the extraordinary physicochemical properties accessible when materials are reduced to nanoscale dimensions. Such a merger would allow for exacting controls on nanostructure positioning, promote cooperative phenomenon between adjacent nanostructures and/or substrate materials, and allow for electrical contact to individual or groups of nanostructures. With neither self-assembly nor top-down lithographic processes being able to adequately meet this challenge, advancements have often relied on a hybrid strategy that utilizes lithographically-defined features to direct the assembly of nanostructures into organized patterns. While these so-called directed assembly techniques have proven viable, much of this effort has focused on the assembly of periodic arrays of spherical or near-spherical nanostructures comprised of a single element. Work directed toward the fabrication of more complex nanostructures, while still at a nascent stage, has nevertheless demonstrated the possibility of forming arrays of nanocubes, nanorods, nanoprisms, nanoshells, nanocages, nanoframes, core-shell structures, Janus structures, and various alloys on the substrate surface. In this topical review, we describe the progress made in the directed assembly of periodic arrays of these complex metal nanostructures on planar and textured substrates. The review is divided into three broad strategies reliant on: (i) the deterministic positioning of colloidal structures, (ii) the reorganization of deposited metal films at elevated temperatures, and (iii) liquid-phase chemistry practiced directly on the substrate surface. These strategies collectively utilize a broad range of techniques including capillary assembly, microcontact printing, chemical surface modulation, templated dewetting, nanoimprint lithography, and dip-pen nanolithography and

  2. Single-electron tunneling in double-barrier nanostructures

    International Nuclear Information System (INIS)

    Goldman, V.J.; Su, B.; Cunningham, J.E.

    1992-01-01

    In this paper, the authors review experimental study of charge transport in nanometer double-barrier resonant tunneling devices. Heterostructure material is asymmetric: one barrier is substantially less transparent than the other. Resonant tunneling through size-quantized well states and single-electron charging of the well are thus largely separated in the two bias polarities. When the emitter barrier is more transparent than the collector barrier, electrons accumulate in the well; incremental electron occupation of the well is accompanied by Coulomb blockade leading to sharp steps of the tunneling current. When the emitter barrier is less transparent, the current reflects resonant tunneling of just one electron at a time through size-quantized well states; the current peaks and/or steps (depending on experimental parameters) appear in current-voltage characteristics. Magnetic field and temperature effects are also reviewed. Good agreement is achieved in comparison of many features of experimental data with simple theoretical models

  3. Field emission from patterned SnO2 nanostructures

    International Nuclear Information System (INIS)

    Zhang Yongsheng; Yu Ke; Li Guodong; Peng Deyan; Zhang Qiuxiang; Hu Hongmei; Xu Feng; Bai Wei; Ouyang Shixi; Zhu Ziqiang

    2006-01-01

    A simple and reliable method has been developed for synthesizing finely patterned tin dioxide (SnO 2 ) nanostructure arrays on silicon substrates. A patterned Au catalyst film was prepared on the silicon wafer by radio frequency (RF) magnetron sputtering and photolithographic patterning processes. The patterned SnO 2 nanostructures arrays, a unit area is of ∼500 μm x 200 μm, were synthesized via vapor phase transport method. The surface morphology and composition of the as-synthesized SnO 2 nanostructures were characterized by means of scanning electron microscopy (SEM) and X-ray diffraction (XRD). The mechanism of formation of SnO 2 nanostructures was also discussed. The measurement of field emission (FE) revealed that the as-synthesized SnO 2 nanorods, nanowires and nanoparticles arrays have a lower turn-on field of 2.6, 3.2 and 3.9 V/μm, respectively, at the current density of 0.1 μA/cm 2 . This approach must have a wide variety of applications such as fabrications of micro-optical components and micropatterned oxide thin films used in FE-based flat panel displays, sensor arrays and so on

  4. Morphological influence of TiO{sub 2} nanostructures (nanozigzag, nanohelics and nanorod) on photocatalytic degradation of organic dyes

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Sadaf Bashir; Hou, Mengjing; Shuang, Shuang; Zhang, Zhengjun, E-mail: zjzhang@tsinghua.edu.cn

    2017-04-01

    Highlights: • Glancing angle deposition technique is used to fabricate various columnar nanostructures in a single step to tune physiochemical properties. • Enhanced surface area induces porosity, with dispersion of active sites at different length scales of pores. • The increase interface between nanostructures and organic dye is promising factor to enhance photocatalytic degradation. • Morphologies having high surface to volume ratio increases the number of catalytic reaction sites to facilitate organic molecules adsorption favorable for reaction kinetics. - Abstract: Hierarchical nanostructures have drawn significant attention and incredible performance in photodriven chemical conversion area due to its unique physicochemical properties. Herein, we study the morphological influence of TiO{sub 2} nanostructures on photocatalytic degradation of different organic dyes methyl blue, methyl violet and methyl orange present in industrial wastewater. Nanorod, nanohelics and nanozigzag TiO{sub 2} nanofilms were fabricated by using galancing angle deposition technique (GLAD). TiO{sub 2} nanofilms were characterized by scanning electron microscope (SEM), X-ray powder diffraction (XRD), and raman analysis. BET surface area analysis were carried out by using nitrogen adsorption desorption curves. The results show that TiO{sub 2} morphology had great influence on photocatalytic degradation of organic dyes due to difference in specific surface area and pore volume of nanostructures. The photocatalytic degradation experiments were carried out for three hours under UV–vis light irradiation. Catalysis recycling and organic dyes concentration influence were also studied. In case of high concentration of organic dyes, negligible degradation rate is observed. TiO{sub 2} nanozigzag films show better degradation performance than nanohelics and nanorod due to presence of large surface area for reaction, higher porosity with dispersion of active sites at different length

  5. Platinum-based electrocatalysts synthesized by depositing contiguous adlayers on carbon nanostructures

    Science.gov (United States)

    Adzic, Radoslav; Harris, Alexander

    2013-03-26

    High-surface-area carbon nanostructures coated with a smooth and conformal submonolayer-to-multilayer thin metal films and their method of manufacture are described. The preferred manufacturing process involves the initial oxidation of the carbon nanostructures followed by immersion in a solution with the desired pH to create negative surface dipoles. The nanostructures are subsequently immersed in an alkaline solution containing non-noble metal ions which adsorb at surface reaction sites. The metal ions are then reduced via chemical or electrical means and the nanostructures are exposed to a solution containing a salt of one or more noble metals which replace adsorbed non-noble surface metal atoms by galvanic displacement. Subsequent film growth may be performed via the initial quasi-underpotential deposition of a non-noble metal followed by immersion in a solution comprising a more noble metal. The resulting coated nanostructures may be used, for example, as high-performance electrodes in supercapacitors, batteries, or other electric storage devices.

  6. Disparities in correlating microstructural to nanostructural preservation of dinosaur femoral bones

    Science.gov (United States)

    Kim, Jung-Kyun; Kwon, Yong-Eun; Lee, Sang-Gil; Lee, Ji-Hyun; Kim, Jin-Gyu; Huh, Min; Lee, Eunji; Kim, Youn-Joong

    2017-03-01

    Osteohistological researches on dinosaurs are well documented, but descriptions of direct correlations between the bone microstructure and corresponding nanostructure are currently lacking. By applying correlative microscopy, we aimed to verify that well-preserved osteohistological features correlate with pristine fossil bone nanostructures from the femoral bones of Koreanosaurus boseongensis. The quality of nanostructural preservation was evaluated based on the preferred orientation level of apatite crystals obtained from selected area electron diffraction (SAED) patterns and by measuring the “arcs” from the {100} and {002} diffraction rings. Unlike our expectations, our results revealed that well-preserved microstructures do not guarantee pristine nanostructures and vice versa. Structural preservation of bone from macro- to nanoscale primarily depends on original bioapatite density, and subsequent taphonomical factors such as effects from burial, pressure, influx of external elements and the rate of diagenetic alteration of apatite crystals. Our findings suggest that the efficient application of SAED analysis opens the opportunity for comprehensive nanostructural investigations of bone.

  7. Piezoelectric ZnO nanostructure for energy harvesting

    CERN Document Server

    Leprince-Wang, Yamin

    2015-01-01

    Over the past decade, ZnO as an important II-VI semiconductor has attracted much attention within the scientific community over the world owing to its numerous unique and prosperous properties. This material, considered as a "future material", especially in nanostructural format, has aroused many interesting research works due to its large range of applications in electronics, photonics, acoustics, energy and sensing. The bio-compatibility, piezoelectricity & low cost fabrication make ZnO nanostructure a very promising material for energy harvesting.

  8. Nanostructured silicon for thermoelectric

    Science.gov (United States)

    Stranz, A.; Kähler, J.; Waag, A.; Peiner, E.

    2011-06-01

    Thermoelectric modules convert thermal energy into electrical energy and vice versa. At present bismuth telluride is the most widely commercial used material for thermoelectric energy conversion. There are many applications where bismuth telluride modules are installed, mainly for refrigeration. However, bismuth telluride as material for energy generation in large scale has some disadvantages. Its availability is limited, it is hot stable at higher temperatures (>250°C) and manufacturing cost is relatively high. An alternative material for energy conversion in the future could be silicon. The technological processing of silicon is well advanced due to the rapid development of microelectronics in recent years. Silicon is largely available and environmentally friendly. The operating temperature of silicon thermoelectric generators can be much higher than of bismuth telluride. Today silicon is rarely used as a thermoelectric material because of its high thermal conductivity. In order to use silicon as an efficient thermoelectric material, it is necessary to reduce its thermal conductivity, while maintaining high electrical conductivity and high Seebeck coefficient. This can be done by nanostructuring into arrays of pillars. Fabrication of silicon pillars using ICP-cryogenic dry etching (Inductive Coupled Plasma) will be described. Their uniform height of the pillars allows simultaneous connecting of all pillars of an array. The pillars have diameters down to 180 nm and their height was selected between 1 micron and 10 microns. Measurement of electrical resistance of single silicon pillars will be presented which is done in a scanning electron microscope (SEM) equipped with nanomanipulators. Furthermore, measurement of thermal conductivity of single pillars with different diameters using the 3ω method will be shown.

  9. Subsurface measurement of nanostructures on GaAs by electrostatic force microscopy

    International Nuclear Information System (INIS)

    Yamada, Fumihiko; Kamiya, Itaru

    2013-01-01

    The size of surface buried oxide nanostructures are measured by electrostatic force microscopy (EFM). In contrast to atomic force microscopy that cannot probe subsurface structures and thickness, we show that EFM data include information about the thickness of individual nanostructures, consequently allowing us to determine the thickness of buried nanostructures on semiconductor substrates. We further show that this measurement can be performed simultaneously with AFM using EFM modulation spectroscopy.

  10. Novel graphene-based nanostructures: physicochemical properties and applications

    International Nuclear Information System (INIS)

    Chernozatonskii, L A; Sorokin, P B; Artukh, A A

    2014-01-01

    The review concerns graphene-based nanostructures including graphene nanoribbons a few nanometres wide, structures functionalized with hydrogen and fluorine atoms as well as pure carbon composites. The physicochemical properties and the chemical engineering methods for their fabrication are considered. Methods for solving problems in modern nanotechnology are discussed. Possible applications of graphene and graphene-based nanostructures in various devices are outlined. The bibliography includes 286 references

  11. Mapping the nanostructures in human adult and baby tooth enamel

    International Nuclear Information System (INIS)

    Low, I.M.; Mahmood, U.; Duraman, N.

    2005-01-01

    This paper investigates and compares the variations in crystal structure, composition, and nanostructures within the human adult and deciduous teeth. The similarities and differences in the nanostructure of both types of teeth are highlighted and discussed. (author)

  12. Nanostructured Surfaces for Drug Delivery and Anti-Fibrosis

    Science.gov (United States)

    Kam, Kimberly Renee

    Effective and cost-efficient healthcare is at the forefront of public discussion; on both personal and policy levels, technologies that improve therapeutic efficacy without the use of painful hypodermic needle injections or the use of harsh chemicals would prove beneficial to patients. Nanostructured surfaces as structure-mediated permeability enhancers introduce a potentially revolutionary approach to the field of drug delivery. Parental administration routes have been the mainstay technologies for delivering biologics because these therapeutics are too large to permeate epithelial barriers. However, there is a significant patient dislike for hypodermic needles resulting in reduced patient compliance and poor therapeutic results. We present an alternative strategy to harness the body's naturally occurring biological processes and transport mechanisms to enhance the drug transport of biologics across the epithelium. Our strategy offers a paradigm shift from traditional biochemical drug delivery vehicles by using nanotopography to loosen the epithelial barrier. Herein, we demonstrate that nanotopographical cues can be used to enable biologics > 66 kDa to be transported across epithelial monolayers by increasing paracellular transport. When placed in contact with epithelial cells, nanostructured films significantly increase the transport of albumin, IgG, and a model therapeutic, etanercept. Our work highlights the potential to use drug delivery systems which incorporate nanotopographical cues to increase the transport of biologics across epithelial tissue. Furthermore, we describe current advancements in nano- and microfabrication for applications in anti-fibrosis and wound healing. Influencing cellular responses to biomaterials is crucial in the field of tissue engineering and regenerative medicine. Since cells are surrounded by extracellular matrix features that are on the nanoscale, identifying nanostructures for imparting desirable cellular function could greatly

  13. Growth of novel ZnO nanostructures by soft chemical routes

    International Nuclear Information System (INIS)

    Saravana Kumar, R.; Sathyamoorthy, R.; Matheswaran, P.; Sudhagar, P.; Kang, Yong Soo

    2010-01-01

    Research highlights: Fabrication of diverse ZnO nanostructures through soft chemical routes is both fundamentally interesting and technologically important. Accordingly, in the present work novel ZnO nanostructures namely nanorods/nanospines were grown on glass substrate by integrating SILAR and CBD techniques. This simple approach not only would lead to the development of an effective and commercial growth process for diverse ZnO nanostructures, but also lead to the large-scale preparation of other nanomaterials for many important applications in nanotechnology. - Abstract: We explore a facile route to prepare one-dimensional (1D) ZnO nanostructures including nanorods/nanospines on glass substrates by integrating inexpensive successive ionic layer adsorption and reaction (SILAR) and chemical bath deposition (CBD) methods. The effect of seed layer on the growth and morphology of the ZnO nanostructures was investigated. Accordingly, the surface modification of the seed layer prepared by SILAR was carried out by employing two different drying processes namely (a) allowing the hot substrate to cool for certain period of time before immersing in the ion-exchange bath, and (b) immediate immersion of the hot substrate into the ion-exchange bath. X-ray diffraction (XRD) analysis of the ZnO films revealed hexagonal wurtzite structure with preferential orientation along c-axis, while the scanning electron microscopy (SEM) revealed the dart-like and spherical shaped ZnO seed particles. ZnO nanostructures grown by CBD over the dart-like and spherical shaped ZnO seed particles resulted in the hierarchical and aligned ZnO nanospines/nanorods respectively. Room temperature photoluminescence (PL) study exhibited highly intense UV emission with weak visible emissions in the visible region. The growth mechanism and the role of seed layer morphology on the formation of ZnO nanostructures were discussed.

  14. Growth of novel ZnO nanostructures by soft chemical routes

    Energy Technology Data Exchange (ETDEWEB)

    Saravana Kumar, R. [PG and Research, Department of Physics, Kongunadu Arts and Science College (Autonomous), Coimbatore 641 029, Tamil Nadu (India); Sathyamoorthy, R., E-mail: rsathya59@gmail.co [PG and Research, Department of Physics, Kongunadu Arts and Science College (Autonomous), Coimbatore 641 029, Tamil Nadu (India); Matheswaran, P. [PG and Research, Department of Physics, Kongunadu Arts and Science College (Autonomous), Coimbatore 641 029, Tamil Nadu (India); Sudhagar, P.; Kang, Yong Soo [Energy Materials Laboratory, WCU Program Department of Energy Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2010-09-10

    Research highlights: Fabrication of diverse ZnO nanostructures through soft chemical routes is both fundamentally interesting and technologically important. Accordingly, in the present work novel ZnO nanostructures namely nanorods/nanospines were grown on glass substrate by integrating SILAR and CBD techniques. This simple approach not only would lead to the development of an effective and commercial growth process for diverse ZnO nanostructures, but also lead to the large-scale preparation of other nanomaterials for many important applications in nanotechnology. - Abstract: We explore a facile route to prepare one-dimensional (1D) ZnO nanostructures including nanorods/nanospines on glass substrates by integrating inexpensive successive ionic layer adsorption and reaction (SILAR) and chemical bath deposition (CBD) methods. The effect of seed layer on the growth and morphology of the ZnO nanostructures was investigated. Accordingly, the surface modification of the seed layer prepared by SILAR was carried out by employing two different drying processes namely (a) allowing the hot substrate to cool for certain period of time before immersing in the ion-exchange bath, and (b) immediate immersion of the hot substrate into the ion-exchange bath. X-ray diffraction (XRD) analysis of the ZnO films revealed hexagonal wurtzite structure with preferential orientation along c-axis, while the scanning electron microscopy (SEM) revealed the dart-like and spherical shaped ZnO seed particles. ZnO nanostructures grown by CBD over the dart-like and spherical shaped ZnO seed particles resulted in the hierarchical and aligned ZnO nanospines/nanorods respectively. Room temperature photoluminescence (PL) study exhibited highly intense UV emission with weak visible emissions in the visible region. The growth mechanism and the role of seed layer morphology on the formation of ZnO nanostructures were discussed.

  15. Nanostructured silicon nitride from wheat and rice husks

    Energy Technology Data Exchange (ETDEWEB)

    Qadri, S. B.; Rath, B. B.; Gorzkowski, E. P.; Wollmershauser, J. A.; Feng, C. R. [Materials Science and Component Technology Directorate, Naval Research Laboratory, Washington, D.C. 20375 (United States)

    2016-04-07

    Nanoparticles, submicron-diameter tubes, and rods of Si{sub 3}N{sub 4} were synthesized from the thermal treatment of wheat and rice husks at temperatures at and above 1300 °C in a nitrogen atmosphere. The whole pattern Rietveld analysis of the observed diffraction data from treatments at 1300 °C showed the formation of only hexagonal α-phase of Si{sub 3}N{sub 4} with an R-factor of 1%, whereas samples treated at 1400 °C and above showed both α- and β-phases with an R-factor of 2%. Transmission electron microscopy showed the presence of tubes, rods, and nanoparticles of Si{sub 3}N{sub 4}. In a two-step process, where pure SiC was produced first from rice or wheat husk in an argon atmosphere and subsequently treated in a nitrogen atmosphere at 1450 °C, a nanostructured composite material having α- and β-phases of Si{sub 3}N{sub 4} combined with cubic phase of SiC was formed. The thermodynamics of the formation of silicon nitride is discussed in terms of the solid state reaction between organic matter (silica content), which is inherently present in the wheat and rice husks, with the nitrogen from the furnace atmosphere. Nanostructures of silicon nitride formed by a single direct reaction or their composites with SiC formed in a two-step process of agricultural byproducts provide an uncomplicated sustainable synthesis route for silicon nitride used in mechanical, biotechnology, and electro-optic nanotechnology applications.

  16. Fractal like charge transport in polyaniline nanostructures

    International Nuclear Information System (INIS)

    Nath, Chandrani; Kumar, A.

    2013-01-01

    The structural and electrical properties of camphorsulfonic acid (CSA) doped nanotubes, and hydrochloric acid (HCl) doped nanofibers and nanoparticles of polyaniline have been studied as a function of doping level. The crystallinity increases with doping for all the nanostructures. Electrical transport measurements in the temperature range of 5–300 K show an increase in conductivity with doping for the nanostructures. All the nanostructures exhibit metal to insulator (MIT) transition below 40 K. The metallic behavior is ascribed to the electron–electron interaction effects. In the insulating regime of the nanotubes conduction follows the Mott quasi-1D variable range hopping model, whereas the conduction in the nanofibers and nanoparticles occur by variable range hopping of charge carriers among superlocalized states without and with Coulomb interaction, respectively. The smaller dopant size in case of HCl makes the polymer fractal resulting in superlocalization of electronic wave-functions. The confined morphology of the nanoparticles results in effective Coulomb interaction dominating the intersite hopping

  17. Matrix coatings based on anodic alumina with carbon nanostructures in the pores

    Science.gov (United States)

    Gorokh, G. G.; Pashechko, M. I.; Borc, J. T.; Lozovenko, A. A.; Kashko, I. A.; Latos, A. I.

    2018-03-01

    The nanoporous anodic alumina matrixes thickness of 1.5 mm and pore sizes of 45, 90 and 145 nm were formed on Si substrates. The tubular carbon nanostructures were synthesized into the matrixes pores by pyrolysis of fluid hydrocarbon xylene with 1% ferrocene. The structure and composition of the matrix coatings were examined by scanning electron microscopy, Auger analysis and Raman spectroscopy. The carbon nanostructures completely filled the pores of templates and uniformly covered the tops. The structure of carbon nanostructures corresponded to the structure of multiwall carbon nanotubes. Investigations of mechanical and tribological properties of nanostructured oxide-carbon composite performed by scratching and nanoindentation showed nonlinear dependencies of the frictional force, penetration depth of the cantilever, hardness and plane strain modulus on the load. It was found that the microhardness of the samples increases with reduced of alumina pore diameter, and the penetration depth of the cantilever into the film grows with carbon nanostructures size. The results showed the high mechanical strength of nanostructured oxide-carbon composite.

  18. Tribocorrosion behaviour of nanostructured titanium substrates processed by high-pressure torsion

    Energy Technology Data Exchange (ETDEWEB)

    Faghihi, S [Tissue Engineering and Biomaterials Division, National Institute of Genetic Engineering and Biotechnology (NIGEB), Room 117, Shahrak-e Pajoohesh, km 15, Tehran-Karaj Highway, Tehran, PO Box 14965/161 (Iran, Islamic Republic of); Li, D [Department of Engineering Physics, Ecole Polytechnique, Montreal, QC, H3C 3A7 (Canada); Szpunar, J A, E-mail: sfaghihi@nigeb.ac.ir [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9 (Canada)

    2010-12-03

    Aseptic loosening induced by wear particles from artificial bearing materials is one of the main causes of malfunctioning in total hip replacements. With the increase in young and active patients, complications in revision surgeries and immense health care costs, there is considerable interest in wear-resistant materials that can endure longer in the harsh and corrosive body environment. Here, the tribological behaviour of nanostructured titanium substrates processed by high-pressure torsion (HPT) is investigated and compared with the coarse-grained samples. The high resolution transmission electron microscopy reveals that a nanostructured sample has a grain size of 5-10 nm compared to that of {approx} 10 {mu}m and {approx} 50 {mu}m for untreated and annealed substrates, respectively. Dry and wet wear tests were performed using a linear reciprocating ball-on-flat tribometer. Nanostructured samples show the best dry wear resistance and the lowest wear rate in the electrolyte. There was significantly lower plastic deformation and no change in preferred orientation of nanostructured samples attributable to the wear process. Electrochemical impedance spectroscopy (EIS) shows lower corrosion resistance for nanostructured samples. However, under the action of both wear and corrosion the nanostructured samples show superior performance and that makes them an attractive candidate for applications in which wear and corrosion act simultaneously.

  19. Tribocorrosion behaviour of nanostructured titanium substrates processed by high-pressure torsion

    International Nuclear Information System (INIS)

    Faghihi, S; Li, D; Szpunar, J A

    2010-01-01

    Aseptic loosening induced by wear particles from artificial bearing materials is one of the main causes of malfunctioning in total hip replacements. With the increase in young and active patients, complications in revision surgeries and immense health care costs, there is considerable interest in wear-resistant materials that can endure longer in the harsh and corrosive body environment. Here, the tribological behaviour of nanostructured titanium substrates processed by high-pressure torsion (HPT) is investigated and compared with the coarse-grained samples. The high resolution transmission electron microscopy reveals that a nanostructured sample has a grain size of 5-10 nm compared to that of ∼ 10 μm and ∼ 50 μm for untreated and annealed substrates, respectively. Dry and wet wear tests were performed using a linear reciprocating ball-on-flat tribometer. Nanostructured samples show the best dry wear resistance and the lowest wear rate in the electrolyte. There was significantly lower plastic deformation and no change in preferred orientation of nanostructured samples attributable to the wear process. Electrochemical impedance spectroscopy (EIS) shows lower corrosion resistance for nanostructured samples. However, under the action of both wear and corrosion the nanostructured samples show superior performance and that makes them an attractive candidate for applications in which wear and corrosion act simultaneously.

  20. Tribocorrosion behaviour of nanostructured titanium substrates processed by high-pressure torsion

    Science.gov (United States)

    Faghihi, S.; Li, D.; Szpunar, J. A.

    2010-12-01

    Aseptic loosening induced by wear particles from artificial bearing materials is one of the main causes of malfunctioning in total hip replacements. With the increase in young and active patients, complications in revision surgeries and immense health care costs, there is considerable interest in wear-resistant materials that can endure longer in the harsh and corrosive body environment. Here, the tribological behaviour of nanostructured titanium substrates processed by high-pressure torsion (HPT) is investigated and compared with the coarse-grained samples. The high resolution transmission electron microscopy reveals that a nanostructured sample has a grain size of 5-10 nm compared to that of ~ 10 µm and ~ 50 µm for untreated and annealed substrates, respectively. Dry and wet wear tests were performed using a linear reciprocating ball-on-flat tribometer. Nanostructured samples show the best dry wear resistance and the lowest wear rate in the electrolyte. There was significantly lower plastic deformation and no change in preferred orientation of nanostructured samples attributable to the wear process. Electrochemical impedance spectroscopy (EIS) shows lower corrosion resistance for nanostructured samples. However, under the action of both wear and corrosion the nanostructured samples show superior performance and that makes them an attractive candidate for applications in which wear and corrosion act simultaneously.