WorldWideScience

Sample records for single n-body simulations

  1. N-body plasma simulation

    International Nuclear Information System (INIS)

    Beck, A.

    2008-11-01

    The N-Body plasma simulation consists in calculating the Coulomb interaction between N charged particles. We adapted an N-Body 'tree code' algorithm, successfully used in the gravitational case, for the simulation of plasma. So far, we have found two main applications which suits this technique particularly well. First, the expansion of a plasma into vacuum. In this kind of simulations, densities of very different order of magnitude have to interact. Some areas can have an hydrodynamic behavior whereas some others are filled by energetic particles following ballistic trajectories. Problems which take into account plasma-vacuum interface are almost impossible to study with common simulation techniques ( Vlasov, Fokker-Planck). The other application consists in simulating moderately or strongly coupled plasma. It deals with many laboratory plasmas as well as astrophysical plasmas such as the convective zone of the sun. In coupled plasmas, close collisions between charges can not be neglected as it is done in most of the other simulation techniques. The N-Body technique allows the accurate description of the trajectory of each single particle and thus to take into account the strong deviations due to the close collisions. (author)

  2. Dissipative N-body simulations of the formation of single galaxies in a cold dark-matter cosmology

    International Nuclear Information System (INIS)

    Ewell, M.W. Jr.

    1988-01-01

    The details of an N-body code designed specifically to study the collapse of a single protogalaxy are presented. This code uses a spherical harmonic expansion to model the gravity and a sticky-particle algorithm to model the gas physics. It includes external tides and cosmologically realistic boundary conditions. The results of twelve simulations using this code are given. The initial conditions for these runs use mean-density profiles and r.m.s. quadrupoles and tides taken from the CDM power spectrum. The simulations start when the center of the perturbation first goes nonlinear, and continue until a redshift Z ∼ 1-2. The resulting rotation curves are approximately flat out to 100 kpc, but do show some structure. The circular velocity is 200 km/sec around a 3σ peak. The final systems have λ approx-equal .03. The angular momentum per unit mass of the baryons implies disk scale lengths of 1-3 kpc. The tidal forces are strong enough to profoundly influence the collapse geometry. In particular, the usual assumption, that tidal torques produce a system approximately in solid-body rotation, is shown to be seriously in error

  3. Parallel halo finding in N-body cosmology simulations

    International Nuclear Information System (INIS)

    Pfitzner, D.W.; Salmon, J.K.

    1996-01-01

    Cosmological N-body simulations on parallel computers produce large datasets - about five hundred Megabytes at a single output time, or tens of Gigabytes over the course of a simulation. These large datasets require further analysis before they can be compared to astronomical observations. We have implemented two methods for performing halo finding, a key part of the knowledge discovery process, on parallel machines. One of these is a parallel implementation of the friends of friends (FOF) algorithm, widely used in the field of N-body cosmology. The new isodensity (ID) method has been developed to overcome some of the shortcomings of FOR Both have been implemented on a variety of computer systems, and successfully used to extract halos from simulations with up to 256 3 (or about 16.8 million) particles, which axe among the largest N-body cosmology simulations in existence

  4. N-body simulations of planetary formation

    Science.gov (United States)

    Beauge, C.; Aarseth, S. J.

    1990-07-01

    Numerical simulations of the last stage of terrestrial planetary formation are performed using an N-body code similar to that of Lecar and Aarseth (1986). An improved treatment of collisions has been applied, which allows fragmentation and cratering, as well as accretion. Initial models consist of 200 bodies of total mass 2.3 x 10 to the 28th g, distributed in a two-dimensional ring of size 1 AU with initial circular orbits about the sun. Planetary embryos begin to form by accretion in the early stages when the relative velocities are small. Eventually, a small number of massive embryos emerge, and subsequently accrete nearly all the fragments. Final configurations of three different models yield four principal bodies with moderate eccentricities on a time-scale of 500,000 yr.

  5. Cosmological N-body simulations with generic hot dark matter

    DEFF Research Database (Denmark)

    Brandbyge, Jacob; Hannestad, Steen

    2017-01-01

    We have calculated the non-linear effects of generic fermionic and bosonic hot dark matter components in cosmological N-body simulations. For sub-eV masses, the non-linear power spectrum suppression caused by thermal free-streaming resembles the one seen for massive neutrinos, whereas for masses...

  6. ZENO: N-body and SPH Simulation Codes

    Science.gov (United States)

    Barnes, Joshua E.

    2011-02-01

    The ZENO software package integrates N-body and SPH simulation codes with a large array of programs to generate initial conditions and analyze numerical simulations. Written in C, the ZENO system is portable between Mac, Linux, and Unix platforms. It is in active use at the Institute for Astronomy (IfA), at NRAO, and possibly elsewhere. Zeno programs can perform a wide range of simulation and analysis tasks. While many of these programs were first created for specific projects, they embody algorithms of general applicability and embrace a modular design strategy, so existing code is easily applied to new tasks. Major elements of the system include: Structured data file utilities facilitate basic operations on binary data, including import/export of ZENO data to other systems.Snapshot generation routines create particle distributions with various properties. Systems with user-specified density profiles can be realized in collisionless or gaseous form; multiple spherical and disk components may be set up in mutual equilibrium.Snapshot manipulation routines permit the user to sift, sort, and combine particle arrays, translate and rotate particle configurations, and assign new values to data fields associated with each particle.Simulation codes include both pure N-body and combined N-body/SPH programs: Pure N-body codes are available in both uniprocessor and parallel versions.SPH codes offer a wide range of options for gas physics, including isothermal, adiabatic, and radiating models. Snapshot analysis programs calculate temporal averages, evaluate particle statistics, measure shapes and density profiles, compute kinematic properties, and identify and track objects in particle distributions.Visualization programs generate interactive displays and produce still images and videos of particle distributions; the user may specify arbitrary color schemes and viewing transformations.

  7. Improving initial conditions for cosmological N-body simulations

    Science.gov (United States)

    Garrison, Lehman H.; Eisenstein, Daniel J.; Ferrer, Douglas; Metchnik, Marc V.; Pinto, Philip A.

    2016-10-01

    In cosmological N-body simulations, the representation of dark matter as discrete `macroparticles' suppresses the growth of structure, such that simulations no longer reproduce linear theory on small scales near kNyquist. Marcos et al. demonstrate that this is due to sparse sampling of modes near kNyquist and that the often-assumed continuum growing modes are not proper growing modes of the particle system. We develop initial conditions (ICs) that respect the particle linear theory growing modes and then rescale the mode amplitudes to account for growth suppression. These ICs also allow us to take advantage of our very accurate N-body code ABACUS to implement second-order Lagrangian perturbation theory (2LPT) in configuration space. The combination of 2LPT and rescaling improves the accuracy of the late-time power spectra, halo mass functions, and halo clustering. In particular, we achieve 1 per cent accuracy in the power spectrum down to kNyquist, versus kNyquist/4 without rescaling or kNyquist/13 without 2LPT, relative to an oversampled reference simulation. We anticipate that our 2LPT will be useful for large simulations where fast Fourier transforms are expensive and that rescaling will be useful for suites of medium-resolution simulations used in cosmic emulators and galaxy survey mock catalogues. Code to generate ICs is available at https://github.com/lgarrison/zeldovich-PLT.

  8. Cosmological N -body simulations with generic hot dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Brandbyge, Jacob; Hannestad, Steen, E-mail: jacobb@phys.au.dk, E-mail: sth@phys.au.dk [Department of Physics and Astronomy, University of Aarhus, Ny Munkegade 120, DK–8000 Aarhus C (Denmark)

    2017-10-01

    We have calculated the non-linear effects of generic fermionic and bosonic hot dark matter components in cosmological N -body simulations. For sub-eV masses, the non-linear power spectrum suppression caused by thermal free-streaming resembles the one seen for massive neutrinos, whereas for masses larger than 1 eV, the non-linear relative suppression of power is smaller than in linear theory. We furthermore find that in the non-linear regime, one can map fermionic to bosonic models by performing a simple transformation.

  9. N-Body simulations of tidal encounters between stellar systems

    International Nuclear Information System (INIS)

    Rao, P.D.; Ramamani, N.; Alladin, S.M.

    1985-10-01

    N-Body simulations have been performed to study the tidal effects of a primary stellar system on a secondary stellar system of density close to the Roche density. Two hyperbolic, one parabolic and one elliptic encounters have been simulated. The changes in energy, angular momentum, mass distribution, and shape of the secondary system have been determined in each case. The inner region containing about 40% of the mass was found to be practically unchanged and the mass exterior to the tidal radius was found to escape. The intermediate region showed tidal distension. The thickness of this region decreased as we went from hyperbolic encounters to the elliptic encounter keeping the distance of closest approach constant. The numerical results for the fractional change in energy have been compared with the predictions of the available analytic formulae and the usefulness and limitations of the formulae have been discussed. (author)

  10. nbody6tt: Tidal tensors in N-body simulations

    Science.gov (United States)

    Renaud, Florent

    2015-02-01

    nbody6tt, based on Aarseth's nbody6 (ascl:1102.006) code, includes the treatment of complex galactic tides in a direct N-body simulation of a star cluster through the use of tidal tensors (tt) and offers two complementary methods. The first allows consideration of any kind of galaxy and orbit, thus offering versatility; this method cannot be used to study tidal debris, as it relies on the tidal approximation (linearization of the tidal force). The second method is not limited by this and does not require a galaxy simulation; the user defines a numerical function which takes position and time as arguments, and the galactic potential is returned. The space and time derivatives of the potential are used to (i) integrate the motion of the cluster on its orbit in the galaxy (starting from user-defined initial position and velocity vector), and (ii) compute the tidal acceleration on the stars.

  11. N-Body Simulations of Galaxies in the Cluster Environment

    Science.gov (United States)

    Humphrey, Nicholas; Berrington, R. C.

    2010-01-01

    We present numerous N-body simulations of galaxy clusters consisting of up to 600,000 total particles and 50 galaxies each to characterize the evolution of galaxies in the cluster environment. These simulations were run on the Ball State University (BSU) College of Science and Humanities (CSH) 64-node Beowulf Cluster. Because the velocity dispersion (σ) is a tracer of a galaxies’ potential well and therefore its mass, we will use it to examine the mass evolution of the galaxies in the simulations by fitting a function to the σ of the galaxies. The strength of this function is its direct comparison to observational data. We further investigate the evolution of the galaxy structure parameters through the use of projected mass radii and line-of-sight (LOS) σ. Additionally, we discuss the use of alternate orbital parameters such as Vesc to investigate the potential wells of the galaxies. Our goal is to isolate the mass and luminosity evolution from the environmental effects on the evolution of elliptical galaxies. This project is a subset of a continuing study whose intent is to combine observational data with numerical techniques to study the effects of a galaxies’ environment on its mass evolution and internal dynamics.

  12. Cosmological N-body simulations of galaxy merging

    Energy Technology Data Exchange (ETDEWEB)

    Aarseth, S.J.; Fall, S.M.

    1980-02-15

    We report here on a series of N-body experiments designed to simulate galaxy merging in a cosmological setting and test the hypothesis that bright elliptical galaxies are merger remnants. In the simulations, merging occurs hierarchically and mainly from marginally bound two-body orbits of low angular momentum. This results in a radius-mass relation of the form r/sub h/proportionalm/sup 0.85/ and a low value lambdaapprox. =0.07 for the characteristic spin of merger remnants. The fraction of remnants is higher in groups than it is in the field, and their mass function progressively flattens as the result of a runaway effect. The number and distribution of merger remnants, however, depend somewhat on the initial conditions. Large-scale clustering is not affected by merging, but small-scale clustering depends sensitively on the merging process. In particular, groups are often dominated by a few massive members, but their growth is expected to depend on the nature of an inferred dark component of clustered material. The results agree qualitatively and, in some cases, quantitatively with a large body of observational material on the structure and clustering properties of bright elliptical galaxies. Although the simulations are idealized in several respects and cover a limited range of initial conditions, they do support the idea that many bright elliptical galaxies are merger remnants.

  13. Evaluation of clustering statistics with N-body simulations

    International Nuclear Information System (INIS)

    Quinn, T.R.

    1986-01-01

    Two series of N-body simulations are used to determine the effectiveness of various clustering statistics in revealing initial conditions from evolved models. All the simulations contained 16384 particles and were integrated with the PPPM code. One series is a family of models with power at only one wavelength. The family contains five models with the wavelength of the power separated by factors of √2. The second series is a family of all equal power combinations of two wavelengths taken from the first series. The clustering statistics examined are the two point correlation function, the multiplicity function, the nearest neighbor distribution, the void probability distribution, the distribution of counts in cells, and the peculiar velocity distribution. It is found that the covariance function, the nearest neighbor distribution, and the void probability distribution are relatively insensitive to the initial conditions. The distribution of counts in cells show a little more sensitivity, but the multiplicity function is the best of the statistics considered for revealing the initial conditions

  14. High Resolution N-Body Simulations of Terrestrial Planet Growth

    Science.gov (United States)

    Clark Wallace, Spencer; Quinn, Thomas R.

    2018-04-01

    We investigate planetesimal accretion with a direct N-body simulation of an annulus at 1 AU around a 1 M_sun star. The planetesimal ring, which initially contains N = 106 bodies is evolved through the runaway growth stage into the phase of oligarchic growth. We find that the mass distribution of planetesimals develops a bump around 1022 g shortly after the oligarchs form. This feature is absent in previous lower resolution studies. We find that this bump marks a boundary between growth modes. Below the bump mass, planetesimals are packed tightly enough together to populate first order mean motion resonances with the oligarchs. These resonances act to heat the tightly packed, low mass planetesimals, inhibiting their growth. We examine the eccentricity evolution of a dynamically hot planetary embryo embedded in an annulus of planetesimals and find that dynamical friction acts more strongly on the embryo when the planetesimals are finely resolved. This effect disappears when the annulus is made narrow enough to exclude most of the mean motion resonances. Additionally, we find that the 1022 g bump is significantly less prominent when we follow planetesimal growth with a skinny annulus.This feature, which is reminiscent of the power law break seen in the size distribution of asteroid belt objects may be an important clue for constraining the initial size of planetesimals in planet formation models.

  15. ``Exact''-N-body simulations for star clusters and galaxies, GRAPE, and future plans

    Science.gov (United States)

    Spurzem, R.

    1998-07-01

    The subjects and key questions faced by computational astrophysics using N-body simulations are discussed in the fields of globular star cluster dynamics and galactic nuclei, with the focus of interest centered to the so-called ``exact'' or Aarseth-type collisional N-body simulations. Various algorithms are briefly described. A new concept for a more flexible customized special purpose computer based on a combination of GRAPE and FPGA special-purpose hardware is proposed. It is an ideal machine for all kinds of N-body simulations using neighbour schemes, as the Ahmad-Cohen direct N-body codes and smoothed particle hydrodynamics for systems including gas.

  16. Effects of the initial conditions on cosmological $N$-body simulations

    OpenAIRE

    L'Huillier, Benjamin; Park, Changbom; Kim, Juhan

    2014-01-01

    Cosmology is entering an era of percent level precision due to current large observational surveys. This precision in observation is now demanding more accuracy from numerical methods and cosmological simulations. In this paper, we study the accuracy of $N$-body numerical simulations and their dependence on changes in the initial conditions and in the simulation algorithms. For this purpose, we use a series of cosmological $N$-body simulations with varying initial conditions. We test the infl...

  17. HNBody: A Simulation Package for Hierarchical N-Body Systems

    Science.gov (United States)

    Rauch, Kevin P.

    2018-04-01

    HNBody (http://www.hnbody.org/) is an extensible software package forintegrating the dynamics of N-body systems. Although general purpose, itincorporates several features and algorithms particularly well-suited tosystems containing a hierarchy (wide dynamic range) of masses. HNBodyversion 1 focused heavily on symplectic integration of nearly-Kepleriansystems. Here I describe the capabilities of the redesigned and expandedpackage version 2, which includes: symplectic integrators up to eighth order(both leap frog and Wisdom-Holman type methods), with symplectic corrector andclose encounter support; variable-order, variable-timestep Bulirsch-Stoer andStörmer integrators; post-Newtonian and multipole physics options; advancedround-off control for improved long-term stability; multi-threading and SIMDvectorization enhancements; seamless availability of extended precisionarithmetic for all calculations; extremely flexible configuration andoutput. Tests of the physical correctness of the algorithms are presentedusing JPL Horizons ephemerides (https://ssd.jpl.nasa.gov/?horizons) andpreviously published results for reference. The features and performanceof HNBody are also compared to several other freely available N-body codes,including MERCURY (Chambers), SWIFT (Levison & Duncan) and WHFAST (Rein &Tamayo).

  18. A classical N-Body simulation of groups of galaxies

    International Nuclear Information System (INIS)

    Pech, G.; Chung, K.C.

    1990-01-01

    Groups of galaxies are simulated by Monte Carlo technique. The mass distribution of the groups is assumed to follow a power-law. A linear relationship between mass and luminosity is considered. (A.C.A.S.) [pt

  19. TreePM: A Code for Cosmological N-Body Simulations

    Indian Academy of Sciences (India)

    We describe the TreePM method for carrying out large N-Body simulations to study formation and evolution of the large scale structure in the Universe. This method is a combination of Barnes and Hut tree code and Particle-Mesh code. It combines the automatic inclusion of periodic boundary conditions of PM simulations ...

  20. Halo Models of Large Scale Structure and Reliability of Cosmological N-Body Simulations

    Directory of Open Access Journals (Sweden)

    José Gaite

    2013-05-01

    Full Text Available Halo models of the large scale structure of the Universe are critically examined, focusing on the definition of halos as smooth distributions of cold dark matter. This definition is essentially based on the results of cosmological N-body simulations. By a careful analysis of the standard assumptions of halo models and N-body simulations and by taking into account previous studies of self-similarity of the cosmic web structure, we conclude that N-body cosmological simulations are not fully reliable in the range of scales where halos appear. Therefore, to have a consistent definition of halos is necessary either to define them as entities of arbitrary size with a grainy rather than smooth structure or to define their size in terms of small-scale baryonic physics.

  1. Effects of the Size of Cosmological N-body Simulations on Physical ...

    Indian Academy of Sciences (India)

    Abstract. In this study we show how errors due to finite box size affect formation and the destruction rate for haloes in cosmological N-body simulations. In an earlier study we gave an analytic prescription of finding the corrections in the mass function. Following the same approach, in this paper we give analytical expressions ...

  2. Effects of the Size of Cosmological N-body Simulations on Physical ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... In this study we show how errors due to finite box size affect formation and the destruction rate for haloes in cosmological N-body simulations. In an earlier study we gave an analytic prescription of finding the corrections in the mass function. Following the same approach, in this paper we give analytical ...

  3. Simulating Molecular Clouds in Dwarf Spheroidal Galaxies: Simplified Aarseth N body Code with Super Storage

    Science.gov (United States)

    Brecht, J.; Byrd, G.

    1996-12-01

    Variations have been implemented on the standard Aarseth individual time step n body code for future use in simulations of the dynamical effects of molecular clouds in dwarf spheriodal galaxies. The clouds will be many times more massive than a typical star so that various simplifying approximations can be made to speed up the code. One variation has been to assume that large variations from sphericity will not occur so that only the first (m=0) multipole approximation will be needed i.e. particles interior to the clould act as a common mass at the center and particles exterior have no effect. Only the cloud is felt as a single particle by the stars in the galaxy. We will describe various strategies which are used to speed operation of the code under these assumptions in terms of tabulating interior and exterior particles. We also discuss how the individual time step nature of the Aarseth code can be used to greatly save on storage space required to record the positions and velocities of stars and clouds at different times during the simulations. This work was supported by NSF REU grant AST-9424226

  4. Fast Generation of Ensembles of Cosmological N-Body Simulations via Mode-Resampling

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, M D; Cole, S; Frenk, C S; Szapudi, I

    2011-02-14

    We present an algorithm for quickly generating multiple realizations of N-body simulations to be used, for example, for cosmological parameter estimation from surveys of large-scale structure. Our algorithm uses a new method to resample the large-scale (Gaussian-distributed) Fourier modes in a periodic N-body simulation box in a manner that properly accounts for the nonlinear mode-coupling between large and small scales. We find that our method for adding new large-scale mode realizations recovers the nonlinear power spectrum to sub-percent accuracy on scales larger than about half the Nyquist frequency of the simulation box. Using 20 N-body simulations, we obtain a power spectrum covariance matrix estimate that matches the estimator from Takahashi et al. (from 5000 simulations) with < 20% errors in all matrix elements. Comparing the rates of convergence, we determine that our algorithm requires {approx}8 times fewer simulations to achieve a given error tolerance in estimates of the power spectrum covariance matrix. The degree of success of our algorithm indicates that we understand the main physical processes that give rise to the correlations in the matter power spectrum. Namely, the large-scale Fourier modes modulate both the degree of structure growth through the variation in the effective local matter density and also the spatial frequency of small-scale perturbations through large-scale displacements. We expect our algorithm to be useful for noise modeling when constraining cosmological parameters from weak lensing (cosmic shear) and galaxy surveys, rescaling summary statistics of N-body simulations for new cosmological parameter values, and any applications where the influence of Fourier modes larger than the simulation size must be accounted for.

  5. Stellar Streams in the Solar Neighbourhood from High Resolution N-Body Simulations

    Science.gov (United States)

    Fux, R.

    A high-resolution N-body simulation suggests that stellar streams in the discs of barred galaxies are common and strongly time-dependent. The velocity distribution of stars in the Solar neighbourhood betray many such streams, including a stream of outward moving stars with low angular momentum. This stream is interpreted as a signature of the Galactic bar, in the sense that its stars have just enough energy (Jacobi's integral) to cross the corotation resonance.

  6. The Matter Bispectrum in N-body Simulations with non-Gaussian Initial Conditions

    OpenAIRE

    Sefusatti, Emiliano; Crocce, Martin; Desjacques, Vincent

    2010-01-01

    We present measurements of the dark matter bispectrum in N-body simulations with non-Gaussian initial conditions of the local kind for a large variety of triangular configurations and compare them with predictions from Eulerian perturbation theory up to one-loop corrections. We find that the effects of primordial non-Gaussianity at large scales, when compared to perturbation theory, are well described by the initial component of the matter bispectrum, linearly extrapolated at the redshift of ...

  7. On the evolution of galaxy clustering and cosmological N-body simulations

    International Nuclear Information System (INIS)

    Fall, S.M.

    1978-01-01

    Some aspects of the problem of simulating the evolution of galaxy clustering by N-body computer experiments are discussed. The results of four 1000-body experiments are presented and interpreted on the basis of simple scaling arguments for the gravitational condensation of bound aggregates. They indicate that the internal dynamics of condensed aggregates are negligible in determining the form of the pair-correlation function xi. On small scales the form of xi is determined by discreteness effects in the initial N-body distribution and is not sensitive to this distribution. The experiments discussed here test the simple scaling arguments effectively for only one value of the cosmological density parameter (Ω = 1) and one form of the initial fluctuation spectrum (n = 0). (author)

  8. Studying Tidal Effects In Planetary Systems With Posidonius. A N-Body Simulator Written In Rust.

    Science.gov (United States)

    Blanco-Cuaresma, Sergi; Bolmont, Emeline

    2017-10-01

    Planetary systems with several planets in compact orbital configurations such as TRAPPIST-1 are surely affected by tidal effects. Its study provides us with important insight about its evolution. We developed a second generation of a N-body code based on the tidal model used in Mercury-T, re-implementing and improving its functionalities using Rust as programming language (including a Python interface for easy use) and the WHFAST integrator. The new open source code ensures memory safety, reproducibility of numerical N-body experiments, it improves the spin integration compared to Mercury-T and allows to take into account a new prescription for the dissipation of tidal inertial waves in the convective envelope of stars. Posidonius is also suitable for binary system simulations with evolving stars.

  9. High performance direct gravitational N-body simulations on graphics processing units II: An implementation in CUDA

    NARCIS (Netherlands)

    Belleman, R.G.; Bédorf, J.; Portegies Zwart, S.F.

    2008-01-01

    We present the results of gravitational direct N-body simulations using the graphics processing unit (GPU) on a commercial NVIDIA GeForce 8800GTX designed for gaming computers. The force evaluation of the N-body problem is implemented in "Compute Unified Device Architecture" (CUDA) using the GPU to

  10. N-Body Galaxy Dynamics Simulations on a Homogeneous Beowulf Cluster

    Science.gov (United States)

    Gipson, B.; McBride, W. R.; Kornreich, D. A.

    2004-12-01

    The galactic distribution of dark matter in disk galaxies remains an important problem in astrophysics. Modern methods in determining this distribution rely heavily on N--Body simulations. To this end we have developed a variable time step Piet Hut N--Body simulator, run using MPICH on a homogeneous 12 processor (x86) Beowulf cluster. The Hut Algorithm allows for the efficient, accurate calculation of forces between millions of points in a reasonable time. Additionally, subdividing the space into octants allows for the efficient creation O(N log (N)) of mutual nearest-neighbor data for all points. Such data are necessary for the inclusion of smoothed particle hydrodynamics (gas clouds, etc) as well as for merging the frequent, tightly bound, rapidly rotating, binary systems that decrease performance in this type of simulation. Initial tests have shown strong agreement with exhaustive O(N2) calculation results. Simulating 10,000 points yielded a total relative error of 0.32% with the exhaustive case, executing in 3.3 seconds on the cluster. General system-level tests have also been performed, including determining collapse times for cold and isothermal spherical distributions; all resulting in good agreement with analytical results. Tests on the Kuz'min galactic distribution have also resulted in expected rotational rates. We discuss the oscillatory behavior of such distributions within several constant potentials with the intention of further eliciting the distribution of dark matter within our own galaxy.

  11. N-body simulations of galaxy clustering. I. Initial conditions and galaxy collapse times

    Energy Technology Data Exchange (ETDEWEB)

    Aarseth, S.J.; Gott, J.R. III; Turner, E.L.

    1979-03-15

    N-body simulations are used to model galaxy clustering in an expanding universe. The starting point of an N-body simulation corresponds to the epoch of protogalaxy formation when the protogalaxies become density enhancements of order unity and begin to behave like point masses. This typically occurs at a redshift of 10--30. As the models expand, the galaxies cluster; the result is remarkably similar to the observed clustering. In addition to having reasonable covariance functions the models show large empty regions containing no bright galaxies similar to those observed by Gregory and Thompson. By comparing the amplitudes of the covariance functions in the models with the observed value, we estimate the redshift of protogalaxy formation and therefore the typical galaxy collapse time T/sub c/. For H/sub 0/=50 km s/sup -1/ Mpc/sup -1/, T/sub c/approx. =2 x 10/sup 9/ yr for ..cap omega..=1, and T/sub c/approx. =3 x 10/sup 9/ yr for ..cap omega..=0.1, each estimate being uncertain by a factor of about 2.

  12. GLOBAL HIGH-RESOLUTION N-BODY SIMULATION OF PLANET FORMATION. I. PLANETESIMAL-DRIVEN MIGRATION

    Energy Technology Data Exchange (ETDEWEB)

    Kominami, J. D. [Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-Ku, Tokyo (Japan); Daisaka, H. [Hitotsubashi University, Kunitachi-shi, Tokyo (Japan); Makino, J. [RIKEN Advanced Institute for Computational Science, Chuo-ku, Kobe, Hyogo (Japan); Fujimoto, M., E-mail: kominami@mail.jmlab.jp, E-mail: daisaka@phys.science.hit-u.ac.jp, E-mail: makino@mail.jmlab.jp, E-mail: fujimoto.masaki@jaxa.jp [Japan Aerospace Exploration Agency, Sagamihara-shi, Kanagawa (Japan)

    2016-03-01

    We investigated whether outward planetesimal-driven migration (PDM) takes place or not in simulations when the self-gravity of planetesimals is included. We performed N-body simulations of planetesimal disks with a large width (0.7–4 au) that ranges over the ice line. The simulations consisted of two stages. The first-stage simulations were carried out to see the runaway growth phase using the planetesimals of initially the same mass. The runaway growth took place both at the inner edge of the disk and at the region just outside the ice line. This result was utilized for the initial setup of the second-stage simulations, in which the runaway bodies just outside the ice line were replaced by the protoplanets with about the isolation mass. In the second-stage simulations, the outward migration of the protoplanet was followed by the stopping of the migration due to the increase of the random velocity of the planetesimals. Owing to this increase of random velocities, one of the PDM criteria derived in Minton and Levison was broken. In the current simulations, the effect of the gas disk is not considered. It is likely that the gas disk plays an important role in PDM, and we plan to study its effect in future papers.

  13. Ultralight Axion Dark Matter and Its Impact on Dark Halo Structure in N-body Simulations

    Science.gov (United States)

    Zhang, Jiajun; Sming Tsai, Yue-Lin; Kuo, Jui-Lin; Cheung, Kingman; Chu, Ming-Chung

    2018-01-01

    Ultralight axion is a dark matter candidate with mass { O }({10}-22){eV} and de Broglie wavelength of order kiloparsec. Such an axion, also called fuzzy dark matter (FDM), thermalizes via gravitational force and forms a Bose–Einstein condensate. Recent studies suggested that the quantum pressure from FDM can significantly affect structure formation in small scales, thus alleviating the so-called “small-scale crisis.” In this paper, we develop a new technique to discretize the quantum pressure and illustrate the interactions among FDM particles in an N-body simulation that accurately simulates the formation of the dark matter halo and its inner structure in the region outside the softening length. In a self-gravitationally bound virialized halo, we find a constant density solitonic core, which is consistent with theoretical prediction. The existence of the solitonic core reveals the nonlinear effect of quantum pressure and impacts structure formation in the FDM model.

  14. N-body simulations of galaxy clustering. II. Groups of galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Turner, E.L.; Aarseth, S.J.; Gott, J.R. III; Blanchard, N.T.; Mathieu, R.D.

    1979-03-15

    Two of the previously presented N-body simulations of galaxy clustering are analyzed in terms of the detailed dynamical and morphological properties of their binaries, groups, and clusters. The analysis is closely analogous to the studies of groups among bright Zwicky catalog galaxies by Turner and Gott. The simulated groups, particularly those in the ..cap omega../sub 0/=0.1 and n= -1 model, resemble the observed groups. The models provide complete (position, velocity, mass) information on group and field ''galaxies'' identified using the Turner and Gott surface density enhancement procedure. These data are used to assess the validity of the membership assignments, the influence of non-Hubble motions on descriptions of the clustering, the accuracy and stability of various M/L estimators, the significance of field galaxies, and the statistical properties of binary systems.

  15. Hyades dynamics from N-body simulations: Accuracy of astrometric radial velocities from Hipparcos

    Science.gov (United States)

    Madsen, Søren

    2003-04-01

    The internal velocity structure in the Hyades cluster as seen by Hipparcos is compared with realistic N-body simulations using the NBODY6 code, which includes binary interaction, stellar evolution and the Galactic tidal field. The model allows to estimate reliably the accuracy of astrometric radial velocities in the Hyades as derived by Lindegren et al. (\\cite{lindegren00}) and Madsen et al. (\\cite{madsen02}) from Hipparcos data, by applying the same estimation procedure on the simulated data. The simulations indicate that the current cluster velocity dispersion decreases from 0.35 km s-1 at the cluster centre to a minimum of 0.20 km s-1 at 8 pc radius (2-3 core radii), from where it slightly increases outwards. A clear negative correlation between dispersion and stellar mass is seen in the central part of the cluster but is almost absent beyond a radius of 3 pc. It follows that the (internal) standard error of the astrometric radial velocities relative to the cluster centroid may be as small as 0.2 km s-1 for a suitable selection of stars, while a total (external) standard error of 0.6 km s-1 is found when the uncertainty of the bulk motion of the cluster is included. Attempts to see structure in the velocity dispersion using observational data from Hipparcos and Tycho-2 are inconclusive. Based on observations by the ESA Hipparcos satellite, and on the N-body code NBODY6 by Sverre Aarseth, publicly available at ftp://ftp.ast.cam.ac.uk/pub/sverre/

  16. REBOUNDx: A library for adding additional effects to N-body simulations

    Science.gov (United States)

    Tamayo, Daniel; Rein, Hanno; Shi, Pengshuai

    2016-05-01

    Many astrophysical applications involve additional perturbations beyond point-source gravity. We have recently developed REBOUNDx, a library for adding such effects in numerical simulations with the open-source N-body package REBOUND. Various implementations have different numerical properties that in general depend on the underlying integrator employed. In particular, I will discuss adding velocity-dependent/dissipative effects to widely used symplectic integrators, and how one can estimate the introduced numerical errors using the operator-splitting formalism traditionally applied to symplectic integrators. Finally, I will demonstrate how to use the code, and how the Python wrapper we have developed for REBOUND/REBOUNDx makes it easy to interactively leverage powerful analysis, visualization and parallelization libraries.

  17. Stable clustering and the resolution of dissipationless cosmological N-body simulations

    Science.gov (United States)

    Benhaiem, David; Joyce, Michael; Sylos Labini, Francesco

    2017-10-01

    The determination of the resolution of cosmological N-body simulations, I.e. the range of scales in which quantities measured in them represent accurately the continuum limit, is an important open question. We address it here using scale-free models, for which self-similarity provides a powerful tool to control resolution. Such models also provide a robust testing ground for the so-called stable clustering approximation, which gives simple predictions for them. Studying large N-body simulations of such models with different force smoothing, we find that these two issues are in fact very closely related: our conclusion is that the accuracy of two-point statistics in the non-linear regime starts to degrade strongly around the scale at which their behaviour deviates from that predicted by the stable clustering hypothesis. Physically the association of the two scales is in fact simple to understand: stable clustering fails to be a good approximation when there are strong interactions of structures (in particular merging) and it is precisely such non-linear processes which are sensitive to fluctuations at the smaller scales affected by discretization. Resolution may be further degraded if the short distance gravitational smoothing scale is larger than the scale to which stable clustering can propagate. We examine in detail the very different conclusions of studies by Smith et al. and Widrow et al. and find that the strong deviations from stable clustering reported by these works are the results of over-optimistic assumptions about scales resolved accurately by the measured power spectra, and the reliance on Fourier space analysis. We emphasize the much poorer resolution obtained with the power spectrum compared to the two-point correlation function.

  18. Singularity free N-body simulations called 'Dynamic Universe Model' don't require dark matter

    Science.gov (United States)

    Naga Parameswara Gupta, Satyavarapu

    For finding trajectories of Pioneer satellite (Anomaly), New Horizons satellite going to Pluto, the Calculations of Dynamic Universe model can be successfully applied. No dark matter is assumed within solar system radius. The effect on the masses around SUN shows as though there is extra gravitation pull toward SUN. It solves the Dynamics of Extra-solar planets like Planet X, satellite like Pioneer and NH for 3-Position, 3-velocity 3-accelaration for their masses, considering the complex situation of Multiple planets, Stars, Galaxy parts and Galaxy centre and other Galaxies Using simple Newtonian Physics. It already solved problems Missing mass in Galaxies observed by galaxy circular velocity curves successfully. Singularity free Newtonian N-body simulations Historically, King Oscar II of Sweden an-nounced a prize to a solution of N-body problem with advice given by Güsta Mittag-Leffler in 1887. He announced `Given a system of arbitrarily many mass points that attract each according to Newton's law, under the assumption that no two points ever collide, try to find a representation of the coordinates of each point as a series in a variable that is some known function of time and for all of whose values the series converges uniformly.'[This is taken from Wikipedia]. The announced dead line that time was1st June 1888. And after that dead line, on 21st January 1889, Great mathematician Poincaré claimed that prize. Later he himself sent a telegram to journal Acta Mathematica to stop printing the special issue after finding the error in his solution. Yet for such a man of science reputation is important than money. [ Ref Book `Celestial mechanics: the waltz of the planets' By Alessandra Celletti, Ettore Perozzi, page 27]. He realized that he has been wrong in his general stability result! But till now nobody could solve that problem or claimed that prize. Later all solutions resulted in singularities and collisions of masses, given by many people

  19. A New Signal Model for Axion Cavity Searches from N -body Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Lentz, Erik W.; Rosenberg, Leslie J. [Physics Department, University of Washington, Seattle, WA 98195-1580 (United States); Quinn, Thomas R.; Tremmel, Michael J., E-mail: lentze@phys.washington.edu, E-mail: ljrosenberg@phys.washington.edu, E-mail: trq@astro.washington.edu, E-mail: mjt29@astro.washington.edu [Astronomy Department, University of Washington, Seattle, WA 98195-1580 (United States)

    2017-08-20

    Signal estimates for direct axion dark matter (DM) searches have used the isothermal sphere halo model for the last several decades. While insightful, the isothermal model does not capture effects from a halo’s infall history nor the influence of baryonic matter, which has been shown to significantly influence a halo’s inner structure. The high resolution of cavity axion detectors can make use of modern cosmological structure-formation simulations, which begin from realistic initial conditions, incorporate a wide range of baryonic physics, and are capable of resolving detailed structure. This work uses a state-of-the-art cosmological N -body+Smoothed-Particle Hydrodynamics simulation to develop an improved signal model for axion cavity searches. Signal shapes from a class of galaxies encompassing the Milky Way are found to depart significantly from the isothermal sphere. A new signal model for axion detectors is proposed and projected sensitivity bounds on the Axion DM eXperiment (ADMX) data are presented.

  20. A New Signal Model for Axion Cavity Searches from N-body Simulations

    Science.gov (United States)

    Lentz, Erik W.; Quinn, Thomas R.; Rosenberg, Leslie J.; Tremmel, Michael J.

    2017-08-01

    Signal estimates for direct axion dark matter (DM) searches have used the isothermal sphere halo model for the last several decades. While insightful, the isothermal model does not capture effects from a halo’s infall history nor the influence of baryonic matter, which has been shown to significantly influence a halo’s inner structure. The high resolution of cavity axion detectors can make use of modern cosmological structure-formation simulations, which begin from realistic initial conditions, incorporate a wide range of baryonic physics, and are capable of resolving detailed structure. This work uses a state-of-the-art cosmological N-body+Smoothed-Particle Hydrodynamics simulation to develop an improved signal model for axion cavity searches. Signal shapes from a class of galaxies encompassing the Milky Way are found to depart significantly from the isothermal sphere. A new signal model for axion detectors is proposed and projected sensitivity bounds on the Axion DM eXperiment (ADMX) data are presented.

  1. Constraints on dark matter particles from theory, galaxy observations, and N-body simulations

    International Nuclear Information System (INIS)

    Boyanovsky, D.; Vega, H. J. de; Sanchez, N. G.

    2008-01-01

    Mass bounds on dark matter (DM) candidates are obtained for particles that decouple in or out of equilibrium while ultrarelativistic with arbitrary isotropic and homogeneous distribution functions. A coarse grained Liouville invariant primordial phase-space density D is introduced which depends solely on the distribution function at decoupling. The density D is explicitly computed and combined with recent photometric and kinematic data on dwarf spheroidal satellite galaxies in the Milky Way (dShps) and the observed DM density today yielding upper and lower bounds on the mass, primordial phase-space densities, and velocity dispersion of the DM candidates. Combining these constraints with recent results from N-body simulations yields estimates for the mass of the DM particles in the range of a few keV. We establish in this way a direct connection between the microphysics of decoupling in or out of equilibrium and the constraints that the particles must fulfill to be suitable DM candidates. If chemical freeze-out occurs before thermal decoupling, light bosonic particles can Bose condense. We study such Bose-Einstein condensate (BEC) as a dark matter candidate. It is shown that, depending on the relation between the critical (T c ) and decoupling (T d ) temperatures, a BEC light relic could act as cold DM but the decoupling scale must be higher than the electroweak scale. The condensate hastens the onset of the nonrelativistic regime and tightens the upper bound on the particle's mass. A nonequilibrium scenario which describes particle production and partial thermalization, sterile neutrinos produced out of equilibrium, and other DM models is analyzed in detail and the respective bounds on mass, primordial phase-space density, and velocity dispersion are obtained. Thermal relics with m∼few keV that decouple when ultrarelativistic and sterile neutrinos produced resonantly or nonresonantly lead to a primordial phase-space density compatible with cored dShps and

  2. Constraining the origin of multiple stellar populations in globular clusters with N-body simulations

    Science.gov (United States)

    Mastrobuono-Battisti, A.; Perets, H. B.

    2017-12-01

    Globular Clusters (GCs) are composed by multiple stellar populations whose origin is still unknown. Second population (SP) stars are currently thought to arise from gas ejected by first population (FP) stars, which is then accreted into the primordial GC core. Such gas forms a stellar disk whose long-term evolution and effects on the embedding cluster can be followed by means of N-body simulations. Here, we find that as the SP disk relaxes, the old, first stellar population flattens and develops a significant radial anisotropy, making the GC structure become more elliptical. The second stellar population is characterized by a lower velocity dispersion, and a higher rotational velocity, compared with the primordial population. The strength of these signatures increases with the relaxation time of the cluster and with the mass ratio between the SP and FP mass stars. We conclude that GC ellipticities and rotation constitute fossil records that can be used as observational proxies to unveil the origin of multiple stellar populations.

  3. The GENGA code: gravitational encounters in N-body simulations with GPU acceleration

    International Nuclear Information System (INIS)

    Grimm, Simon L.; Stadel, Joachim G.

    2014-01-01

    We describe an open source GPU implementation of a hybrid symplectic N-body integrator, GENGA (Gravitational ENcounters with Gpu Acceleration), designed to integrate planet and planetesimal dynamics in the late stage of planet formation and stability analyses of planetary systems. GENGA uses a hybrid symplectic integrator to handle close encounters with very good energy conservation, which is essential in long-term planetary system integration. We extended the second-order hybrid integration scheme to higher orders. The GENGA code supports three simulation modes: integration of up to 2048 massive bodies, integration with up to a million test particles, or parallel integration of a large number of individual planetary systems. We compare the results of GENGA to Mercury and pkdgrav2 in terms of energy conservation and performance and find that the energy conservation of GENGA is comparable to Mercury and around two orders of magnitude better than pkdgrav2. GENGA runs up to 30 times faster than Mercury and up to 8 times faster than pkdgrav2. GENGA is written in CUDA C and runs on all NVIDIA GPUs with a computing capability of at least 2.0.

  4. The GENGA code: gravitational encounters in N-body simulations with GPU acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Grimm, Simon L.; Stadel, Joachim G., E-mail: sigrimm@physik.uzh.ch [Institute for Computational Science, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich (Switzerland)

    2014-11-20

    We describe an open source GPU implementation of a hybrid symplectic N-body integrator, GENGA (Gravitational ENcounters with Gpu Acceleration), designed to integrate planet and planetesimal dynamics in the late stage of planet formation and stability analyses of planetary systems. GENGA uses a hybrid symplectic integrator to handle close encounters with very good energy conservation, which is essential in long-term planetary system integration. We extended the second-order hybrid integration scheme to higher orders. The GENGA code supports three simulation modes: integration of up to 2048 massive bodies, integration with up to a million test particles, or parallel integration of a large number of individual planetary systems. We compare the results of GENGA to Mercury and pkdgrav2 in terms of energy conservation and performance and find that the energy conservation of GENGA is comparable to Mercury and around two orders of magnitude better than pkdgrav2. GENGA runs up to 30 times faster than Mercury and up to 8 times faster than pkdgrav2. GENGA is written in CUDA C and runs on all NVIDIA GPUs with a computing capability of at least 2.0.

  5. N-body simulations of planet formation: understanding exoplanet system architectures

    Science.gov (United States)

    Coleman, Gavin; Nelson, Richard

    2015-12-01

    Observations have demonstrated the existence of a significant population of compact systems comprised of super-Earths and Neptune-mass planets, and a population of gas giants that appear to occur primarily in either short-period (100 days) orbits. The broad diversity of system architectures raises the question of whether or not the same formation processes operating in standard disc models can explain these planets, or if different scenarios are required instead to explain the widely differing architectures. To explore this issue, we present the results from a comprehensive suite of N-body simulations of planetary system formation that include the following physical processes: gravitational interactions and collisions between planetary embryos and planetesimals; type I and II migration; gas accretion onto planetary cores; self-consistent viscous disc evolution and disc removal through photo-evaporation. Our results indicate that the formation and survival of compact systems of super-Earths and Neptune-mass planets occur commonly in disc models where a simple prescription for the disc viscosity is assumed, but such models never lead to the formation and survival of gas giant planets due to migration into the star. Inspired in part by the ALMA observations of HL Tau, and by MHD simulations that display the formation of long-lived zonal flows, we have explored the consequences of assuming that the disc viscosity varies in both time and space. We find that the radial structuring of the disc leads to conditions in which systems of giant planets are able to form and survive. Furthermore, these giants generally occupy those regions of the mass-period diagram that are densely populated by the observed gas giants, suggesting that the planet traps generated by radial structuring of protoplanetary discs may be a necessary ingredient for forming giant planets.

  6. Clusters of galaxies compared with N-body simulations: masses and mass segregation

    International Nuclear Information System (INIS)

    Struble, M.F.; Bludman, S.A.

    1979-01-01

    With three virially stable N-body simulations of Wielen, it is shown that use of the expression for the total mass derived from averaged quantities (velocity dispersion and mean harmonic radius) yields an overestimate of the mass by as much as a factor of 2-3, and use of the heaviest mass sample gives an underestimate by a factor of 2-3. The estimate of the mass using mass weighted quantities (i.e., derived from the customary definition of kinetic and potential energies) yields a better value irrespectively of mass sample as applied to late time intervals of the models (>= three two-body relaxation times). The uncertainty is at most approximately 50%. This suggests that it is better to employ the mass weighted expression for the mass when determining cluster masses. The virial ratio, which is a ratio of the mass weighted/averaged expression for the potential energy, is found to vary between 1 and 2. It is concluded that ratios for observed clusters approximately 4-10 cannot be explained even by the imprecision of the expression for the mass using averaged quantities, and certainly implies the presence of unseen matter. Total masses via customary application of the virial theorem are calculated for 39 clusters, and total masses for 12 clusters are calculated by a variant of the usual application. The distribution of cluster masses is also presented and briefly discussed. Mass segregation in Wielen's models is studied in terms of the binding energy per unit mass of the 'heavy' sample compared with the 'light' sample. The general absence of mass segregation in relaxaed clusters and the large virial discrepancies are attributed to a population of many low-mass objects that may constitute the bulk mass of clusters of galaxies. (Auth.)

  7. Structure formation by a fifth force: N-body versus linear simulations

    International Nuclear Information System (INIS)

    Li Baojiu; Zhao Hongsheng

    2009-01-01

    We lay out the frameworks to numerically study the structure formation in both linear and nonlinear regimes in general dark-matter-coupled scalar field models, and give an explicit example where the scalar field serves as a dynamical dark energy. Adopting parameters of the scalar field which yield a realistic cosmic microwave background (CMB) spectrum, we generate the initial conditions for our N-body simulations, which follow the spatial distributions of the dark matter and the scalar field by solving their equations of motion using the multilevel adaptive grid technique. We show that the spatial configuration of the scalar field tracks well the voids and clusters of dark matter. Indeed, the propagation of scalar degree of freedom effectively acts as a fifth force on dark matter particles, whose range and magnitude are determined by the two model parameters (μ,γ), local dark matter density as well as the background value for the scalar field. The model behaves like the ΛCDM paradigm on scales relevant to the CMB spectrum, which are well beyond the probe of the local fifth force and thus not significantly affected by the matter-scalar coupling. On scales comparable or shorter than the range of the local fifth force, the fifth force is perfectly parallel to gravity and their strengths have a fixed ratio 2γ 2 determined by the matter-scalar coupling, provided that the chameleon effect is weak; if on the other hand there is a strong chameleon effect (i.e., the scalar field almost resides at its effective potential minimum everywhere in the space), the fifth force indeed has suppressed effects in high density regions and shows no obvious correlation with gravity, which means that the dark-matter-scalar-field coupling is not simply equivalent to a rescaling of the gravitational constant or the mass of the dark matter particles. We show these spatial distributions and (lack of) correlations at typical redshifts (z=0,1,5.5) in our multigrid million

  8. The gravitational interaction between N-body (star clusters) and hydrodynamic (ISM) codes in disk galaxy simulations

    International Nuclear Information System (INIS)

    Schroeder, M.C.; Comins, N.F.

    1986-01-01

    During the past twenty years, three approaches to numerical simulations of the evolution of galaxies have been developed. The first approach, N-body programs, models the motion of clusters of stars as point particles which interact via their gravitational potentials to determine the system dynamics. Some N-body codes model molecular clouds as colliding, inelastic particles. The second approach, hydrodynamic models of galactic dynamics, simulates the activity of the interstellar medium as a compressible gas. These models presently do not include stars, the effect of gravitational fields, or allow for stellar evolution and exchange of mass or angular momentum between stars and the interstellar medium. The third approach, stochastic star formation simulations of disk galaxies, allows for the interaction between stars and interstellar gas, but does not allow the star particles to move under the influence of gravity

  9. Using Perturbative Least Action to Run N Body Simulations Back in Time

    OpenAIRE

    Goldberg, D. M.; Spergel, D. N.

    1999-01-01

    In this report, we present a new method for reconstructing N body initial conditions from a proscribed final density field. This method, Perturbative Least Action (PLA) is similar to traditional least action approaches, except that orbits of particles are found as expansions around previously determined and physically motivated orbits.

  10. Testing lowered isothermal models with direct N-body simulations of globular clusters - II. Multimass models

    Science.gov (United States)

    Peuten, M.; Zocchi, A.; Gieles, M.; Hénault-Brunet, V.

    2017-09-01

    Lowered isothermal models, such as the multimass Michie-King models, have been successful in describing observational data of globular clusters. In this study, we assess whether such models are able to describe the phase space properties of evolutionary N-body models. We compare the multimass models as implemented in limepy (Gieles & Zocchi) to N-body models of star clusters with different retention fractions for the black holes and neutron stars evolving in a tidal field. We find that multimass models successfully reproduce the density and velocity dispersion profiles of the different mass components in all evolutionary phases and for different remnants retention. We further use these results to study the evolution of global model parameters. We find that over the lifetime of clusters, radial anisotropy gradually evolves from the low- to the high-mass components and we identify features in the properties of observable stars that are indicative of the presence of stellar-mass black holes. We find that the model velocity scale depends on mass as m-δ, with δ ≃ 0.5 for almost all models, but the dependence of central velocity dispersion on m can be shallower, depending on the dark remnant content, and agrees well with that of the N-body models. The reported model parameters, and correlations amongst them, can be used as theoretical priors when fitting these types of mass models to observational data.

  11. Application of the Ewald method to cosmological N-body simulations

    International Nuclear Information System (INIS)

    Hernquist, L.; Suto, Yasushi; Bouchet, F.R.

    1990-03-01

    Fully periodic boundary conditions are incorporated into a gridless cosmological N-body code using the Ewald method. It is shown that the linear evolution of density fluctuations agrees well with analytic calculations, contrary to the case of quasi-periodic boundary conditions where the fundamental mode grows too rapidly. The implementation of fully periodic boundaries is of particular importance to relative comparisons of methods based on hierarchical tree algorithms and more traditional schemes using Fourier techniques such as PM and P 3 M codes. (author)

  12. K-means clustering for optimal partitioning and dynamic load balancing of parallel hierarchical N-body simulations

    International Nuclear Information System (INIS)

    Marzouk, Youssef M.; Ghoniem, Ahmed F.

    2005-01-01

    A number of complex physical problems can be approached through N-body simulation, from fluid flow at high Reynolds number to gravitational astrophysics and molecular dynamics. In all these applications, direct summation is prohibitively expensive for large N and thus hierarchical methods are employed for fast summation. This work introduces new algorithms, based on k-means clustering, for partitioning parallel hierarchical N-body interactions. We demonstrate that the number of particle-cluster interactions and the order at which they are performed are directly affected by partition geometry. Weighted k-means partitions minimize the sum of clusters' second moments and create well-localized domains, and thus reduce the computational cost of N-body approximations by enabling the use of lower-order approximations and fewer cells. We also introduce compatible techniques for dynamic load balancing, including adaptive scaling of cluster volumes and adaptive redistribution of cluster centroids. We demonstrate the performance of these algorithms by constructing a parallel treecode for vortex particle simulations, based on the serial variable-order Cartesian code developed by Lindsay and Krasny [Journal of Computational Physics 172 (2) (2001) 879-907]. The method is applied to vortex simulations of a transverse jet. Results show outstanding parallel efficiencies even at high concurrencies, with velocity evaluation errors maintained at or below their serial values; on a realistic distribution of 1.2 million vortex particles, we observe a parallel efficiency of 98% on 1024 processors. Excellent load balance is achieved even in the face of several obstacles, such as an irregular, time-evolving particle distribution containing a range of length scales and the continual introduction of new vortex particles throughout the domain. Moreover, results suggest that k-means yields a more efficient partition of the domain than a global oct-tree

  13. N-body simulations for f(R) gravity using a self-adaptive particle-mesh code

    International Nuclear Information System (INIS)

    Zhao Gongbo; Koyama, Kazuya; Li Baojiu

    2011-01-01

    We perform high-resolution N-body simulations for f(R) gravity based on a self-adaptive particle-mesh code MLAPM. The chameleon mechanism that recovers general relativity on small scales is fully taken into account by self-consistently solving the nonlinear equation for the scalar field. We independently confirm the previous simulation results, including the matter power spectrum, halo mass function, and density profiles, obtained by Oyaizu et al.[Phys. Rev. D 78, 123524 (2008)] and Schmidt et al.[Phys. Rev. D 79, 083518 (2009)], and extend the resolution up to k∼20 h/Mpc for the measurement of the matter power spectrum. Based on our simulation results, we discuss how the chameleon mechanism affects the clustering of dark matter and halos on full nonlinear scales.

  14. THE HORIZON RUN N-BODY SIMULATION: BARYON ACOUSTIC OSCILLATIONS AND TOPOLOGY OF LARGE-SCALE STRUCTURE OF THE UNIVERSE

    International Nuclear Information System (INIS)

    Kim, Juhan; Park, Changbom; Gott, J. Richard; Dubinski, John

    2009-01-01

    In support of the new III survey, which will measure the baryon oscillation scale using the luminous red galaxies (LRGs), we have run the largest N-body simulation to date using 4120 3 = 69.9 billion particles, and covering a volume of (6.592 h -1 Gpc) 3 . This is over 2000 times the volume of the Millennium Run, and corner-to-corner stretches all the way to the horizon of the visible universe. LRGs are selected by finding the most massive gravitationally bound, cold dark matter subhalos, not subject to tidal disruption, a technique that correctly reproduces the three-dimensional topology of the LRGs in the Sloan Survey. We have measured the covariance function, power spectrum, and the three-dimensional topology of the LRG distribution in our simulation and made 32 mock surveys along the past light cone to simulate the Sloan III survey. Our large N-body simulation is used to accurately measure the nonlinear systematic effects such as gravitational evolution, redshift space distortion, past light cone space gradient, and galaxy biasing, and to calibrate the baryon oscillation scale and the genus topology. For example, we predict from our mock surveys that the baryon acoustic oscillation peak scale can be measured with the cosmic variance-dominated uncertainty of about 5% when the SDSS-III sample is divided into three equal volume shells, or about 2.6% when a thicker shell with 0.4 -1 Mpc scale. We are making the simulation and mock surveys publicly available.

  15. Speeding up N -body simulations of modified gravity: chameleon screening models

    Energy Technology Data Exchange (ETDEWEB)

    Bose, Sownak; Li, Baojiu; He, Jian-hua; Llinares, Claudio [Institute for Computational Cosmology, Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Barreira, Alexandre [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching (Germany); Hellwing, Wojciech A.; Koyama, Kazuya [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX (United Kingdom); Zhao, Gong-Bo, E-mail: sownak.bose@durham.ac.uk, E-mail: baojiu.li@durham.ac.uk, E-mail: barreira@mpa-garching.mpg.de, E-mail: jianhua.he@durham.ac.uk, E-mail: wojciech.hellwing@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk, E-mail: claudio.llinares@durham.ac.uk, E-mail: gbzhao@nao.cas.cn [National Astronomy Observatories, Chinese Academy of Science, Beijing, 100012 (China)

    2017-02-01

    We describe and demonstrate the potential of a new and very efficient method for simulating certain classes of modified gravity theories, such as the widely studied f ( R ) gravity models. High resolution simulations for such models are currently very slow due to the highly nonlinear partial differential equation that needs to be solved exactly to predict the modified gravitational force. This nonlinearity is partly inherent, but is also exacerbated by the specific numerical algorithm used, which employs a variable redefinition to prevent numerical instabilities. The standard Newton-Gauss-Seidel iterative method used to tackle this problem has a poor convergence rate. Our new method not only avoids this, but also allows the discretised equation to be written in a form that is analytically solvable. We show that this new method greatly improves the performance and efficiency of f ( R ) simulations. For example, a test simulation with 512{sup 3} particles in a box of size 512 Mpc/ h is now 5 times faster than before, while a Millennium-resolution simulation for f ( R ) gravity is estimated to be more than 20 times faster than with the old method. Our new implementation will be particularly useful for running very high resolution, large-sized simulations which, to date, are only possible for the standard model, and also makes it feasible to run large numbers of lower resolution simulations for covariance analyses. We hope that the method will bring us to a new era for precision cosmological tests of gravity.

  16. Tidal disruption rate of stars by supermassive black holes obtained by direct N-body simulations

    Science.gov (United States)

    Brockamp, M.; Baumgardt, H.; Kroupa, P.

    2011-12-01

    The disruption rate of stars by supermassive black holes (SMBHs) is calculated numerically with a modified version of Aarseth's NBODY6 code. Equal-mass systems without primordial binaries are treated. The initial stellar distribution around the SMBH follows a Sérsic n= 4 profile representing bulges of late-type galaxies as well of early-type galaxies without central light deficits, i.e. without cores. In order to infer relaxation-driven effects and to increase the statistical significance, a very large set of N-body integrations with different particle numbers N, ranging from 103 to 0.5 × 106 particles, is performed. Three different black hole capture radii are taken into account, enabling us to scale these results to a broad range of astrophysical systems with relaxation times shorter than one Hubble time, i.e. for SMBHs up to M•≈ 107 M⊙. The computed number of disrupted stars is driven by diffusion in angular momentum space into the loss cone of the black hole and the rate scales with the total number of particles as (dN/dt) ∝Nb, where b is as large as 0.83. This is significantly steeper than the expected scaling (d N/dt) ∝ ln (N) derived from simplest energy relaxation arguments. Only a relatively modest dependence of the tidal disruption rate on the mass of the SMBH is found and we discuss our results in the context of the M•-σ relation. The number of disrupted stars contributes a significant part to the mass growth of black holes in the lower mass range as long as a significant part of the stellar mass becomes swallowed by the SMBH. This also bears direct consequences for the search and existence of intermediate-mass black holes in globular clusters. For SMBHs similar to the galactic centre black hole Sgr A★, a tidal disruption rate of 55 ± 27 events Myr-1 is deduced. Finally relaxation-driven stellar feeding cannot account for the masses of massive black holes M•≥ 107 M⊙ in complete agreement with conventional gas accretion and

  17. Satellite alignment. I. Distribution of substructures and their dependence on assembly history from n-body simulations

    International Nuclear Information System (INIS)

    Wang, Yang Ocean; Lin, W. P.; Yu, Yu; Kang, X.; Dutton, Aaron; Macciò, Andrea V.

    2014-01-01

    Observations have shown that the spatial distribution of satellite galaxies is not random, but aligned with the major axes of central galaxies. This alignment is dependent on galaxy properties, such that red satellites are more strongly aligned than blue satellites. Theoretical work conducted to interpret this phenomenon has found that it is due to the non-spherical nature of dark matter halos. However, most studies overpredict the alignment signal under the assumption that the central galaxy shape follows the shape of the host halo. It is also not clear whether the color dependence of alignment is due to an assembly bias or an evolution effect. In this paper we study these problems using a cosmological N-body simulation. Subhalos are used to trace the positions of satellite galaxies. It is found that the shapes of dark matter halos are mis-aligned at different radii. If the central galaxy shares the same shape as the inner host halo, then the alignment effect is weaker and agrees with observational data. However, it predicts almost no dependence of alignment on the color of satellite galaxies, though the late accreted subhalos show stronger alignment with the outer layer of the host halo than their early accreted counterparts. We find that this is due to the limitation of pure N-body simulations where satellite galaxies without associated subhalos ('orphan galaxies') are not resolved. These orphan (mostly red) satellites often reside in the inner region of host halos and should follow the shape of the host halo in the inner region.

  18. GRAPE-5: A Special-Purpose Computer for N-body Simulation

    OpenAIRE

    Kawai, Atsushi; Fukushige, Toshiyuki; Makino, Junichiro; Taiji, Makoto

    1999-01-01

    We have developed a special-purpose computer for gravitational many-body simulations, GRAPE-5. GRAPE-5 is the successor of GRAPE-3. Both consist of eight custom pipeline chips (G5 chip and GRAPE chip). The difference between GRAPE-5 and GRAPE-3 are: (1) The G5 chip contains two pipelines operating at 80 MHz, while the GRAPE chip had one at 20 MHz. Thus, the calculation speed of the G5 chip and that of GRAPE-5 board are 8 times faster than that of GRAPE chip and GRAPE-3 board. (2) The GRAPE-5 ...

  19. The halo bispectrum in N-body simulations with non-Gaussian initial conditions

    Science.gov (United States)

    Sefusatti, E.; Crocce, M.; Desjacques, V.

    2012-10-01

    We present measurements of the bispectrum of dark matter haloes in numerical simulations with non-Gaussian initial conditions of local type. We show, in the first place, that the overall effect of primordial non-Gaussianity on the halo bispectrum is larger than on the halo power spectrum when all measurable configurations are taken into account. We then compare our measurements with a tree-level perturbative prediction, finding good agreement at large scales when the constant Gaussian bias parameter, both linear and quadratic, and their constant non-Gaussian corrections are fitted for. The best-fitting values of the Gaussian bias factors and their non-Gaussian, scale-independent corrections are in qualitative agreement with the peak-background split expectations. In particular, we show that the effect of non-Gaussian initial conditions on squeezed configurations is fairly large (up to 30 per cent for fNL = 100 at redshift z = 0.5) and results from contributions of similar amplitude induced by the initial matter bispectrum, scale-dependent bias corrections as well as from non-linear matter bispectrum corrections. We show, in addition, that effects at second order in fNL are irrelevant for the range of values allowed by cosmic microwave background and galaxy power spectrum measurements, at least on the scales probed by our simulations (k > 0.01 h Mpc-1). Finally, we present a Fisher matrix analysis to assess the possibility of constraining primordial non-Gaussianity with future measurements of the galaxy bispectrum. We find that a survey with a volume of about 10 h-3 Gpc3 at mean redshift z ≃ 1 could provide an error on fNL of the order of a few. This shows the relevance of a joint analysis of galaxy power spectrum and bispectrum in future redshift surveys.

  20. N-body simulations of galaxy clustering. III. The covariance function

    Energy Technology Data Exchange (ETDEWEB)

    Gott, J.R. III; Turner, E.L.; Aarseth, S.J.

    1979-11-15

    The covariance functions of N=1000--4000 body simulations of galaxy clustering, started with a variety of initial conditions, are power laws in the nonlinear regime with slopes ..gamma.. centered on 1.9 and a range of +- 0.15. These results are in agreement with the observed power-law form which has ..gamma..=1.8. This result strongly supports the gravitational instability picture in which galaxies form first and then cluster via mutual gravitational interactions. Our models show strong evidence of two-body relaxation on small scales. In models with two mass groups, the galaxies with twice the mass have covariance functions with approximately twice the amplitude. This effect can be understood in terms of cosmological infall, as can the covariance functions of binary galaxies, early-type galaxies, and clusters. Similar infall arguments may explain the form of the three- and four-point correlation functions. The slope of the covariance function appears to depend both on ..cap omega.. and n (the index of the initial density fluctuation spectrum). Models with (..cap omega..=1, n=-1) and (..cap omega..=0.1, n=0) appear to be ruled out at the 2 sigma level. Models with (..cap omega..=1, n=0) and (..cap omega..=0.1, n=-1) have covariance functions which are indistinguishable from one another and consistent with the observations. Thus it appears that the value of ..cap omega.. cannot be determined solely from the observed covariance function, contrary to some earlier suggestions.

  1. Transients from initial conditions based on Lagrangian perturbation theory in N-body simulations II: the effect of the transverse mode

    International Nuclear Information System (INIS)

    Tatekawa, Takayuki

    2014-01-01

    We study the initial conditions for cosmological N-body simulations for precision cosmology. In general, Zel'dovich approximation has been applied for the initial conditions of N-body simulations for a long time. These initial conditions provide incorrect higher-order growth. These error caused by setting up the initial conditions by perturbation theory is called transients. We investigated the impact of transient on non-Gaussianity of density field by performing cosmological N-body simulations with initial conditions based on first-, second-, and third-order Lagrangian perturbation theory in previous paper. In this paper, we evaluates the effect of the transverse mode in the third-order Lagrangian perturbation theory for several statistical quantities such as power spectrum and non-Gaussianty. Then we clarified that the effect of the transverse mode in the third-order Lagrangian perturbation theory is quite small

  2. Simulating the formation and evolution of galaxies with EvoL, the Padova N-body Tree-SPH code

    International Nuclear Information System (INIS)

    Merlin, E.; Chiosi, C.; Grassi, T.; Buonomo, U.; Chinellato, S.

    2009-01-01

    The importance of numerical simulations in astrophysics is constantly growing, because of the complexity, the multi-scaling properties and the non-linearity of many physical phenomena. In particular, cosmological and galaxy-sized simulations of structure formation have cast light on different aspects, giving answers to many questions, but raising a number of new issues to be investigated. Over the last decade, great effort has been devoted in Padova to develop a tool explicitly designed to study the problem of galaxy formation and evolution, with particular attention to the early-type ones. To this aim, many simulations have been run on CINECA supercomputers (see publications list below). The next step is the new release of EvoL, a Fortran N-body code capable to follow in great detail many different aspects of stellar, interstellar and cosmological physics. In particular, special care has been paid to the properties of stars and their interplay with the surrounding interstellar medium (ISM), as well as to the multiphase nature of the ISM, to the setting of the initial and boundary conditions, and to the correct description of gas physics via modern formulations of the classical Smoothed Particle Hydrodynamics algorithms. Moreover, a powerful tool to compare numerical predictions with observables has been developed, self-consistently closing the whole package. A library of new simulations, run with EvoL on CINECA supercomputers, is to be built in the next years, while new physics, including magnetic properties of matter and more exotic energy feedback effects, is to be added.

  3. Faster, Better, Cheaper N-Body with Abacus

    Science.gov (United States)

    Ferrer, Douglas; Eisenstein, D.; Metchnik, M. V.; Pinto, P. A.

    2014-01-01

    We introduce Abacus, a cosmological N-body code based on a novel gravity solver. Abacus can obtain machine precision force accuracy at significantly greater speeds than any other currently available N-body code. This speed lets us run large-scale cosmological simulations on a single $8000 workstation built with commodity hardware. We present the results of a 40963 particle cosmological simulation, and examine the shift of the BAO acoustic scale bias as a first science application.

  4. Adding disk effects to N-body simulations with REBOUNDx: Application to overstability of resonances in exoplanet pairs

    Science.gov (United States)

    Tamayo, Daniel; Rein, Hanno; Chen, Alice; bennett, morgan

    2015-12-01

    Mean-motion resonances (MMRs) are typically stable configurations for pairs of planets. Given that planets should migrate relative to one another in their natal disk, one might expect to have found most planets locked in such MMRs. The fact that most Kepler planets are not observed in MMRs therefore requires an explanation. Goldreich and Schlichting (2014) recently argued that, in fact, due to interactions with the protoplanetary disk, planets below a threshold mass should break out of the strongest MMRs, i.e., the MMRs become overstable.While follow-up work has studied the robustness of this result to varying orbital architectures, we focus on the specific numerical implementation of the disk effects, which translates into differing physical interpretations of the planet-disk interactions. We will present how these physical choices affect the parameter space in which overstability sets in, and how certain choices can generate spurious results. We will then extend our results to general cases of broad applicability, and summarize the merits and pitfalls of these different numerical implementations of perturbations from the protoplanetary disk, particularly in tightly packed systems.We have packaged these numerical implementations into REBOUNDx, an open-source C and Python package for incorporating planet-disk interactions, as well as additional effects (like post-newtonian corrections), into N-body simulations using REBOUND. We will give a brief demo that highlights its ease of installation and use, as well as its synergy with Python's powerful plotting and scientific analysis libraries.

  5. SPH/N-Body simulations of small (D = 10km) asteroidal breakups and improved parametric relations for Monte-Carlo collisional models

    Science.gov (United States)

    Ševeček, P.; Brož, M.; Nesvorný, D.; Enke, B.; Durda, D.; Walsh, K.; Richardson, D. C.

    2017-11-01

    We report on our study of asteroidal breakups, i.e. fragmentations of targets, subsequent gravitational reaccumulation and formation of small asteroid families. We focused on parent bodies with diameters Dpb = 10km . Simulations were performed with a smoothed-particle hydrodynamics (SPH) code combined with an efficient N-body integrator. We assumed various projectile sizes, impact velocities and impact angles (125 runs in total). Resulting size-frequency distributions are significantly different from scaled-down simulations with Dpb = 100km targets (Durda et al., 2007). We derive new parametric relations describing fragment distributions, suitable for Monte-Carlo collisional models. We also characterize velocity fields and angular distributions of fragments, which can be used as initial conditions for N-body simulations of small asteroid families. Finally, we discuss a number of uncertainties related to SPH simulations.

  6. Dynamical evolution of a young stellar aggregate in the presence of a massive shell of gas using N-body simulations

    Science.gov (United States)

    Hasan, Priya; Hasan, S. N.

    We study secondary star formation in an expanding shell about a stellar agregate using n-body simulations. We use the (Ahmad-Cohen) Aarseth code for the n-body simulations to study the dynamical effects of interactions of an older generation of stars with a randomly forming second generation of stars in a aggregate. The observational effects of these interactions will be described in detail and discussed. We also show that the dynamics of the young stellar aggregate depends upon the local star formation efficiency(SFE). The young stellar aggregate can produce a gravitationally bound cluster if the expansion velocity of the shell is slow enough even when the local value of the SFE is as low as 10%. This occurs as a result of dynamical cooling effect which forces some of the newborn stars to form an open cluster.

  7. Parallel N-Body Simulation Based on the PM and P3M Methods Using Multigrid Schemes in conjunction with Generic Approximate Sparse Inverses

    Directory of Open Access Journals (Sweden)

    P. E. Kyziropoulos

    2015-01-01

    Full Text Available During the last decades, Multigrid methods have been extensively used for solving large sparse linear systems. Considering their efficiency and the convergence behavior, Multigrid methods are used in many scientific fields as solvers or preconditioners. Herewith, we propose two hybrid parallel algorithms for N-Body simulations using the Particle Mesh method and the Particle Particle Particle Mesh method, respectively, based on the V-Cycle Multigrid method in conjunction with Generic Approximate Sparse Inverses. The N-Body problem resides in a three-dimensional torus space, and the bodies are subject only to gravitational forces. In each time step of the above methods, a large sparse linear system is solved to compute the gravity potential at each nodal point in order to interpolate the solution to each body. Then the Velocity Verlet method is used to compute the new position and velocity from the acceleration of each respective body. Moreover, a parallel Multigrid algorithm, with a truncated approach in the levels computed in parallel, is proposed for solving large linear systems. Furthermore, parallel results are provided indicating the efficiency of the proposed Multigrid N-Body scheme. Theoretical estimates for the complexity of the proposed simulation schemes are provided.

  8. Simulations of collisions between N-body classical systems in interaction; Simulations de collisions entre systemes classiques a n-corps en interaction

    Energy Technology Data Exchange (ETDEWEB)

    Morisseau, Francois [Laboratoire de Physique Corpusculaire de CAEN, ENSICAEN, Universite de Caen Basse-Normandie, UFR des Sciences, 6 bd Marechal Juin, 14050 Caen Cedex (France)

    2006-05-15

    The Classical N-body Dynamics (CNBD) is dedicated to the simulation of collisions between classical systems. The 2-body interaction used here has the properties of the Van der Waals potential and depends on just a few parameters. This work has two main goals. First, some theoretical approaches assume that the dynamical stage of the collisions plays an important role. Moreover, colliding nuclei are supposed to present a 1. order liquid-gas phase transition. Several signals have been introduced to show this transition. We have searched for two of them: the bimodality of the mass asymmetry and negative heat capacity. We have found them and we give an explanation of their presence in our calculations. Second, we have improved the interaction by adding a Coulomb like potential and by taking into account the stronger proton-neutron interaction in nuclei. Then we have figured out the relations that exist between the parameters of the 2-body interaction and the properties of the systems. These studies allow us to fit the properties of the classical systems to those of the nuclei. In this manuscript the first results of this fit are shown. (author)

  9. Phantom-GRAPE: Numerical software library to accelerate collisionless N-body simulation with SIMD instruction set on x86 architecture

    Science.gov (United States)

    Tanikawa, Ataru; Yoshikawa, Kohji; Nitadori, Keigo; Okamoto, Takashi

    2013-02-01

    We have developed a numerical software library for collisionless N-body simulations named "Phantom-GRAPE" which highly accelerates force calculations among particles by use of a new SIMD instruction set extension to the x86 architecture, Advanced Vector eXtensions (AVX), an enhanced version of the Streaming SIMD Extensions (SSE). In our library, not only the Newton's forces, but also central forces with an arbitrary shape f(r), which has a finite cutoff radius rcut (i.e. f(r)=0 at r>rcut), can be quickly computed. In computing such central forces with an arbitrary force shape f(r), we refer to a pre-calculated look-up table. We also present a new scheme to create the look-up table whose binning is optimal to keep good accuracy in computing forces and whose size is small enough to avoid cache misses. Using an Intel Core i7-2600 processor, we measure the performance of our library for both of the Newton's forces and the arbitrarily shaped central forces. In the case of Newton's forces, we achieve 2×109 interactions per second with one processor core (or 75 GFLOPS if we count 38 operations per interaction), which is 20 times higher than the performance of an implementation without any explicit use of SIMD instructions, and 2 times than that with the SSE instructions. With four processor cores, we obtain the performance of 8×109 interactions per second (or 300 GFLOPS). In the case of the arbitrarily shaped central forces, we can calculate 1×109 and 4×109 interactions per second with one and four processor cores, respectively. The performance with one processor core is 6 times and 2 times higher than those of the implementations without any use of SIMD instructions and with the SSE instructions. These performances depend only weakly on the number of particles, irrespective of the force shape. It is good contrast with the fact that the performance of force calculations accelerated by graphics processing units (GPUs) depends strongly on the number of particles

  10. Star formation in N-body simulations .1. The impact of the stellar ultraviolet radiation on star formation

    NARCIS (Netherlands)

    Gerritsen, JPE; Icke, [No Value

    We present numerical simulations of isolated disk galaxies including gas dynamics and star formation. The gas is allowed to cool to 10 K, while heating of the gas is provided by the far-ultraviolet flux of all stars. Stars are allowed to form from the gas according to a Jeans instability criterion:

  11. N-body simulations on the numerical determination of the dissolution times of open star clusters in the Galactic tidal field.

    Science.gov (United States)

    Krämer, G.

    1992-11-01

    The dissolution times of open star clusters with N = 100 to 1000 members with and without a mass-spectrum have been determined by direct N-body simulations, following the evolution of the cluster until total dissolution, using Aarseth's NBODY5 code. Initial conditions were Plummer models with different initial radii. The models were either isolated or embedded into the Galactic tidal field. The results show a good agreement with the prediction for the dissolution time by Wielen (AAA 45.151.072) for medium and large clusters in the tidal field. Clusters with small initial radii or isolated models do not agree with the prediction. The number of stars remaining in an isolated model decreases exponentially with time. In the isolated case the formation of hard binaries absorbs energy from the cluster. The dynamical evolution slows down because the half mass radius and the crossing time of the cluster are increasing.

  12. N-body simulation for self-gravitating collisional systems with a new SIMD instruction set extension to the x86 architecture, Advanced Vector eXtensions

    Science.gov (United States)

    Tanikawa, Ataru; Yoshikawa, Kohji; Okamoto, Takashi; Nitadori, Keigo

    2012-02-01

    We present a high-performance N-body code for self-gravitating collisional systems accelerated with the aid of a new SIMD instruction set extension of the x86 architecture: Advanced Vector eXtensions (AVX), an enhanced version of the Streaming SIMD Extensions (SSE). With one processor core of Intel Core i7-2600 processor (8 MB cache and 3.40 GHz) based on Sandy Bridge micro-architecture, we implemented a fourth-order Hermite scheme with individual timestep scheme ( Makino and Aarseth, 1992), and achieved the performance of ˜20 giga floating point number operations per second (GFLOPS) for double-precision accuracy, which is two times and five times higher than that of the previously developed code implemented with the SSE instructions ( Nitadori et al., 2006b), and that of a code implemented without any explicit use of SIMD instructions with the same processor core, respectively. We have parallelized the code by using so-called NINJA scheme ( Nitadori et al., 2006a), and achieved ˜90 GFLOPS for a system containing more than N = 8192 particles with 8 MPI processes on four cores. We expect to achieve about 10 tera FLOPS (TFLOPS) for a self-gravitating collisional system with N ˜ 10 5 on massively parallel systems with at most 800 cores with Sandy Bridge micro-architecture. This performance will be comparable to that of Graphic Processing Unit (GPU) cluster systems, such as the one with about 200 Tesla C1070 GPUs ( Spurzem et al., 2010). This paper offers an alternative to collisional N-body simulations with GRAPEs and GPUs.

  13. Long-term evolution of isolated N-body sytems

    OpenAIRE

    Baumgardt, Holger; Hut, Piet; Heggie, Douglas C.

    2002-01-01

    We report results of N-body simulations of isolated star clusters, performed up to the point where the clusters are nearly completely dissolved. Our main focus is on the post-collapse evolution of these clusters. We find that after core collapse, isolated clusters evolve along nearly a single sequence of models whose properties are independent of the initial density profile and particle number. Due to the slower expansion of high-N clusters, relaxation times become almost independent of the p...

  14. The morphological evolution and internal convection of ExB-drifting plasma clouds: Theory, dielectric-in-cell simulations, and N-body dielectric simulations

    International Nuclear Information System (INIS)

    Borovsky, J.E.; Hansen, P.J.

    1998-01-01

    The evolution of ExB-drifting plasma clouds is investigated with the aid of a computational technique denoted here as open-quotes dielectric-in-cell.close quotes Many of the familiar phenomena associated with clouds of collisionless plasma are seen and explained and less-well-known phenomena associated with convection patterns, with the stripping of cloud material, and with the evolution of plasma clouds composed of differing ion species are investigated. The effects of spatially uniform diffusion are studied with the dielectric-in-cell technique and with another computational technique denoted as open-quotes N-body dielectric;close quotes the suppression of convection, the suppression of structure growth, the increase in material stripping, and the evolution of cloud anisotropy are examined. copyright 1998 American Institute of Physics

  15. A parallel gravitational N-body kernel

    NARCIS (Netherlands)

    Portegies Zwart, S.; McMillan, S.; Groen, D.; Gualandris, A.; Sipior, M.; Vermin, W.

    2008-01-01

    We describe source code level parallelization for the kira direct gravitational N-body integrator, the workhorse of the starlab production environment for simulating dense stellar systems. The parallelization strategy, called "j-parallelization", involves the partition of the computational domain by

  16. KiDS-450: cosmological constraints from weak-lensing peak statistics - II: Inference from shear peaks using N-body simulations

    Science.gov (United States)

    Martinet, Nicolas; Schneider, Peter; Hildebrandt, Hendrik; Shan, HuanYuan; Asgari, Marika; Dietrich, Jörg P.; Harnois-Déraps, Joachim; Erben, Thomas; Grado, Aniello; Heymans, Catherine; Hoekstra, Henk; Klaes, Dominik; Kuijken, Konrad; Merten, Julian; Nakajima, Reiko

    2018-02-01

    We study the statistics of peaks in a weak-lensing reconstructed mass map of the first 450 deg2 of the Kilo Degree Survey (KiDS-450). The map is computed with aperture masses directly applied to the shear field with an NFW-like compensated filter. We compare the peak statistics in the observations with that of simulations for various cosmologies to constrain the cosmological parameter S_8 = σ _8 √{Ω _m/0.3}, which probes the (Ωm, σ8) plane perpendicularly to its main degeneracy. We estimate S8 = 0.750 ± 0.059, using peaks in the signal-to-noise range 0 ≤ S/N ≤ 4, and accounting for various systematics, such as multiplicative shear bias, mean redshift bias, baryon feedback, intrinsic alignment, and shear-position coupling. These constraints are ˜ 25 per cent tighter than the constraints from the high significance peaks alone (3 ≤ S/N ≤ 4) which typically trace single-massive haloes. This demonstrates the gain of information from low-S/N peaks. However, we find that including S/N S8 compared to the shear two-point correlation functions alone, highlighting the great potential of peaks as a cosmological probe.

  17. Towards time symmetric N-body integration

    Science.gov (United States)

    Dehnen, Walter

    2017-11-01

    Computational efficiency demands discretized, hierarchically organized and individually adaptive time-step sizes (known as the block-step scheme) for the time integration of N-body models. However, most existing N-body codes adapt individual step sizes in a way that violates time symmetry (and symplecticity), resulting in artificial secular dissipation (and often secular growth of energy errors). Using single-orbit integrations, I investigate various possibilities to reduce or eliminate irreversibility from the time-stepping scheme. Significant improvements over the standard approach are possible at little extra effort. However, in order to reduce irreversible step-size changes to negligible amounts, such as suitable for long-term integrations of planetary systems, more computational effort is needed, while exact time reversibility appears elusive for discretized individual step sizes.

  18. Shocks and Tides Quantified in the “Sausage” Cluster, CIZA J2242.8+5301 Using N-body/Hydrodynamical Simulations

    Science.gov (United States)

    Molnar, S. M.; Broadhurst, T.

    2017-05-01

    The colliding cluster, CIZA J2242.8+5301, displays a spectacular, almost 2 Mpc long shock front with a radio based Mach number M≃ 5, that is puzzlingly large compared to the X-ray estimate of M≃ 2.5. The extent to which the X-ray temperature jump is diluted by cooler unshocked gas projected through the cluster currently lacks quantification. Here we apply our self-consistent N-body/hydrodynamical code (based on FLASH) to model this binary cluster encounter. We can account for the location of the shock front and also the elongated X-ray emission by tidal stretching of the gas and dark matter between the two cluster centers. The required total mass is 8.9× {10}14 {M}⊙ with a 1.3:1 mass ratio favoring the southern cluster component. The relative velocity we derive is ≃ 2500 {km} {{{s}}}-1 initially between the two main cluster components, with an impact parameter of 120 kpc. This solution implies that the shock temperature jump derived from the low angular resolution X-ray satellite Suzaku is underestimated by a factor of two, due to cool gas in projection, bringing the observed X-ray and radio estimates into agreement. Finally, we use our model to generate Compton-y maps to estimate the thermal Sunyaev-Zel’dovich (SZ) effect. At 30 GHz, this amounts to {{Δ }}{S}n=-0.072 mJy/arcmin2 and {{Δ }}{S}s=-0.075 mJy/arcmin2 at the locations of the northern and southern shock fronts respectively. Our model estimate agrees with previous empirical estimates that have inferred the measured radio spectra of the radio relics can be significantly affected by the SZ effect, with implications for charged particle acceleration models.

  19. Application of a parallel hybrid N--body SCF code

    Science.gov (United States)

    Hemsendorf, M.

    The implementation of a hybrid ``self consistent field'' (SCF) (Hernquist & Ostriker 1992) and direct Aarseth N--body integrator (NBODY6) (Aarseth 1993) which synthesises the advantages of the direct force calculation with the efficiency of the field method is described. The resulting code is aimed for use on parallel architectures and is therefore applicable for collisional N--body integrations with extraordinary large particle numbers. It opens a perspective to simulate the dynamics of globular clusters with realistic relaxation as well as stellar systems around a supermassive black hole in galactic nuclei.

  20. Applications of a Parallel Hybrid N-BODY Scf Code

    Science.gov (United States)

    Hemsendorf, Marc

    The implementation of a hybrid "self consistent field" (SCF)1 and direct Aarseth N-body integrator (NBODY6)2 which synthesises the advantages of the direct force calculation with the efficiency of the field method is described. The resulting code is aimed for use on parallel architectures and is therefore applicable for collisional N-body integrations with extraordinarily large particle numbers. It opens the perspective to simulate the dynamics of globular clusters with realistic relaxation as well as stellar systems surrounding a supermassive black hole in galactic nuclei.

  1. Implementing a hybrid N-body SCF code

    Science.gov (United States)

    Hemsendorf, M.

    1998-07-01

    The implementation of a hybrid ``self consistent field'' (SCF) (Hernquist and Ostriker 1992) and direct Aarseth N-body integrator (NBODY6) (Aarseth 1993) which synthesises the advantages of the direct force calculation with the efficiency of the field method. The resulting code is aimed for use on parallel architectures and is therefore applicable for collisional N-body integrations with extraordinary large particle numbers. It opens a perspective to simulate the dynamics of globular clusters with realistic relaxation as well as stellar systems around a supermassive black hole in galactic nuclei.

  2. Single-sector thermophysiological human simulator

    International Nuclear Information System (INIS)

    Psikuta, Agnieszka; Richards, Mark; Fiala, Dusan

    2008-01-01

    Thermal sweating manikins are used to analyse the heat and mass transfer phenomena in the skin–clothing–environment system. However, the limiting factor of present thermal manikins is their inability to simulate adequately the human thermal behaviour, which has a significant effect on the clothing microenvironment. A mathematical model of the human physiology was, therefore, incorporated into the system control to simulate human thermoregulatory responses and the perception of thermal comfort over a wide range of environmental and personal conditions. Thereby, the computer model provides the physiological intelligence, while the hardware is used to measure the required calorimetric states relevant to the human heat exchange with the environment. This paper describes the development of a single-sector thermophysiological human simulator, which consists of a sweating heated cylinder 'Torso' coupled with the iesd-Fiala multi-node model of human physiology and thermal comfort. Validation tests conducted for steady-state and, to some extent, transient conditions ranging from cold to hot revealed good agreement with the corresponding experimental results obtained for semi-nude subjects. The new coupled system enables overall physiological and comfort responses, health risk and survival conditions to be predicted for adult humans for various scenarios

  3. Constructing high-quality bounding volume hierarchies for N-body computation using the acceptance volume heuristic

    Science.gov (United States)

    Olsson, O.

    2018-01-01

    We present a novel heuristic derived from a probabilistic cost model for approximate N-body simulations. We show that this new heuristic can be used to guide tree construction towards higher quality trees with improved performance over current N-body codes. This represents an important step beyond the current practice of using spatial partitioning for N-body simulations, and enables adoption of a range of state-of-the-art algorithms developed for computer graphics applications to yield further improvements in N-body simulation performance. We outline directions for further developments and review the most promising such algorithms.

  4. Chaotic dynamics in N-body systems

    NARCIS (Netherlands)

    Boekholt, Tjarda Coenraad Nico

    2015-01-01

    Ever since Isaac Newton in 1687 posed the N-body problem, astronomers have been looking for its solutions in order to understand the evolution of dynamical systems, such as our own solar system, star clusters and galaxies. The main difficulty is that small errors grow exponentially, so that

  5. An Advanced N -body Model for Interacting Multiple Stellar Systems

    Energy Technology Data Exchange (ETDEWEB)

    Brož, Miroslav [Astronomical Institute of the Charles University, Faculty of Mathematics and Physics, V Holešovičkách 2, CZ-18000 Praha 8 (Czech Republic)

    2017-06-01

    We construct an advanced model for interacting multiple stellar systems in which we compute all trajectories with a numerical N -body integrator, namely the Bulirsch–Stoer from the SWIFT package. We can then derive various observables: astrometric positions, radial velocities, minima timings (TTVs), eclipse durations, interferometric visibilities, closure phases, synthetic spectra, spectral energy distribution, and even complete light curves. We use a modified version of the Wilson–Devinney code for the latter, in which the instantaneous true phase and inclination of the eclipsing binary are governed by the N -body integration. If all of these types of observations are at one’s disposal, a joint χ {sup 2} metric and an optimization algorithm (a simplex or simulated annealing) allow one to search for a global minimum and construct very robust models of stellar systems. At the same time, our N -body model is free from artifacts that may arise if mutual gravitational interactions among all components are not self-consistently accounted for. Finally, we present a number of examples showing dynamical effects that can be studied with our code and we discuss how systematic errors may affect the results (and how to prevent this from happening).

  6. A unified N-body method

    International Nuclear Information System (INIS)

    Aarseth, S.J.; Bettwieser, E.

    1986-01-01

    The dynamics of globular clusters from pre- to post-collapse stages of evolution can be modelled by combining direct orbit integration with a statistical description. In the present method, the authors divide the cluster into two parts. The central subregion of high density contains particles whose orbits are integrated by the regularized Ahmad-Cohen method. The outer parts are described by a fluid dynamical model. Particles which hit the membrane between the N-body and fluid part are absorbed by the fluid. Emission of particles from the fluid into the N-body region is considered as an effusion process. This yields the velocity distribution of the incoming particles and the emission rate. The two phases should maintain mechanical and thermal equilibrium. Care is taken to make the mean field consistent when the fluid is advanced. The size of the spherical membrane is adjusted continually throughout the evolution. The correlation energy is calculated from the N-body configuration and used as an energy source in the fluid treatment

  7. Sampling general N-body interactions with auxiliary fields

    Science.gov (United States)

    Körber, C.; Berkowitz, E.; Luu, T.

    2017-09-01

    We present a general auxiliary field transformation which generates effective interactions containing all possible N-body contact terms. The strength of the induced terms can analytically be described in terms of general coefficients associated with the transformation and thus are controllable. This transformation provides a novel way for sampling 3- and 4-body (and higher) contact interactions non-perturbatively in lattice quantum Monte Carlo simulations. As a proof of principle, we show that our method reproduces the exact solution for a two-site quantum mechanical problem.

  8. Numerical simulation of single bubble boiling behavior

    Directory of Open Access Journals (Sweden)

    Junjie Liu

    2017-06-01

    Full Text Available The phenomena of a single bubble boiling process are studied with numerical modeling. The mass, momentum, energy and level set equations are solved using COMSOL multi-physics software. The bubble boiling dynamics, the transient pressure field, velocity field and temperature field in time are analyzed, and reasonable results are obtained. The numeral model is validated by the empirical equation of Fritz and could be used for various applications.

  9. OSL sensitivity changes during single aliquot procedures: Computer simulations

    DEFF Research Database (Denmark)

    McKeever, S.W.S.; Agersnap Larsen, N.; Bøtter-Jensen, L.

    1997-01-01

    We present computer simulations of sensitivity changes obtained during single aliquot, regeneration procedures. The simulations indicate that the sensitivity changes are the combined result of shallow trap and deep trap effects. Four separate processes have been identified. Although procedures can...... dose used and the natural dose. However, the sensitivity changes appear only weakly dependent upon added dose, suggesting that the SARA single aliquot technique may be a suitable method to overcome the sensitivity changes. (C) 1997 Elsevier Science Ltd....

  10. N-Body Evolution of Dense Clusters of Compact Stars

    Science.gov (United States)

    Lee, Man Hoi

    1993-11-01

    The dynamical evolution of dense clusters of compact stars is studied using direct N-body simulations. The formation of binaries and their subsequent merging by gravitational radiation emission is important to the evolution of such clusters. Aarseth's NBODY5 N-body simulation code is modified to include the lowest order gravitational radiation force during two-body encounters and to handle the decay and merger of radiating binaries. It is used to study the evolution of small-N (= 1000) clusters with different initial velocity dispersions. The initial evolution is similar to that obtained by Quinlan & Shapiro (1989) using a multimass Fokker-Planck code and shows orderly formation of heavy objects. However, the late evolution differs qualitatively from previous results. In particular, we find runaway growth for the most massive object in the cluster: it acquires a mass much larger than that of the other objects and is detached from the smooth mass spectrum of the rest of the objects. We discuss why the Fokker-Planck equation with a mean-rate approach to the merger process cannot model runaway growth, and we present arguments to show that merger by gravitational radiation is expected to be unstable to runaway growth. The results suggest that a seed massive black hole can be formed by runaway growth in a dense cluster of compact stars. The possibility of runaway growth in dense clusters of normal stars is also discussed.

  11. Monte Carlo simulated dynamical magnetization of single-chain magnets

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jun; Liu, Bang-Gui, E-mail: bgliu@iphy.ac.cn

    2015-03-15

    Here, a dynamical Monte-Carlo (DMC) method is used to study temperature-dependent dynamical magnetization of famous Mn{sub 2}Ni system as typical example of single-chain magnets with strong magnetic anisotropy. Simulated magnetization curves are in good agreement with experimental results under typical temperatures and sweeping rates, and simulated coercive fields as functions of temperature are also consistent with experimental curves. Further analysis indicates that the magnetization reversal is determined by both thermal-activated effects and quantum spin tunnelings. These can help explore basic properties and applications of such important magnetic systems. - Highlights: • Monte Carlo simulated magnetization curves are in good agreement with experimental results. • Simulated coercive fields as functions of temperature are consistent with experimental results. • The magnetization reversal is understood in terms of the Monte Carlo simulations.

  12. Performance analysis of direct N-body calculations

    Energy Technology Data Exchange (ETDEWEB)

    Makino, J.; Hut, P.

    1988-12-01

    A theoretical framework for analyzing the computational cost of gravitational N-body codes is introduced and applied to three different types of direct-summation codes, including the type of Aarseth code which has found most general use. The method of analysis, based on the probability distribution of nearest-neighbor distances, is described. The number of time steps required for a variety of different versions of the Aarseth scheme and a variety of physical models of spherical star clusters is estimated in order to measure the effects of different degrees of central concentration. Analytical estimates of computer time required are compared with actual measurements, and the validity of the scaling outside the range actually tested is discussed. A practical result for planning star cluster simulations on the next generation of supercomputers is derived. It is found that the consumption of computer time can be very centrally concentrated. 15 references.

  13. Numerical simulations of seepage flow in rough single rock fractures

    Directory of Open Access Journals (Sweden)

    Qingang Zhang

    2015-09-01

    Full Text Available To investigate the relationship between the structural characteristics and seepage flow behavior of rough single rock fractures, a set of single fracture physical models were produced using the Weierstrass–Mandelbrot functions to test the seepage flow performance. Six single fractures, with various surface roughnesses characterized by fractal dimensions, were built using COMSOL multiphysics software. The fluid flow behavior through the rough fractures and the influences of the rough surfaces on the fluid flow behavior was then monitored. The numerical simulation indicates that there is a linear relationship between the average flow velocity over the entire flow path and the fractal dimension of the rough surface. It is shown that there is good a agreement between the numerical results and the experimental data in terms of the properties of the fluid flowing through the rough single rock fractures.

  14. Markov chain analysis of single spin flip Ising simulations

    International Nuclear Information System (INIS)

    Hennecke, M.

    1997-01-01

    The Markov processes defined by random and loop-based schemes for single spin flip attempts in Monte Carlo simulations of the 2D Ising model are investigated, by explicitly constructing their transition matrices. Their analysis reveals that loops over all lattice sites using a Metropolis-type single spin flip probability often do not define ergodic Markov chains, and have distorted dynamical properties even if they are ergodic. The transition matrices also enable a comparison of the dynamics of random versus loop spin selection and Glauber versus Metropolis probabilities

  15. Distribution-independent hierarchicald N-body methods

    International Nuclear Information System (INIS)

    Aluru, S.

    1994-01-01

    The N-body problem is to simulate the motion of N particles under the influence of mutual force fields based on an inverse square law. The problem has applications in several domains including astrophysics, molecular dynamics, fluid dynamics, radiosity methods in computer graphics and numerical complex analysis. Research efforts have focused on reducing the O(N 2 ) time per iteration required by the naive algorithm of computing each pairwise interaction. Widely respected among these are the Barnes-Hut and Greengard methods. Greengard claims his algorithm reduces the complexity to O(N) time per iteration. Throughout this thesis, we concentrate on rigorous, distribution-independent, worst-case analysis of the N-body methods. We show that Greengard's algorithm is not O(N), as claimed. Both Barnes-Hut and Greengard's methods depend on the same data structure, which we show is distribution-dependent. For the distribution that results in the smallest running time, we show that Greengard's algorithm is Ω(N log 2 N) in two dimensions and Ω(N log 4 N) in three dimensions. We have designed a hierarchical data structure whose size depends entirely upon the number of particles and is independent of the distribution of the particles. We show that both Greengard's and Barnes-Hut algorithms can be used in conjunction with this data structure to reduce their complexity. Apart from reducing the complexity of the Barnes-Hut algorithm, the data structure also permits more accurate error estimation. We present two- and three-dimensional algorithms for creating the data structure. The multipole method designed using this data structure has a complexity of O(N log N) in two dimensions and O(N log 2 N) in three dimensions

  16. Distribution-independent hierarchicald N-body methods

    Energy Technology Data Exchange (ETDEWEB)

    Aluru, Srinivas [Iowa State Univ., Ames, IA (United States)

    1994-07-27

    The N-body problem is to simulate the motion of N particles under the influence of mutual force fields based on an inverse square law. The problem has applications in several domains including astrophysics, molecular dynamics, fluid dynamics, radiosity methods in computer graphics and numerical complex analysis. Research efforts have focused on reducing the O(N2) time per iteration required by the naive algorithm of computing each pairwise interaction. Widely respected among these are the Barnes-Hut and Greengard methods. Greengard claims his algorithm reduces the complexity to O(N) time per iteration. Throughout this thesis, we concentrate on rigorous, distribution-independent, worst-case analysis of the N-body methods. We show that Greengard`s algorithm is not O(N), as claimed. Both Barnes-Hut and Greengard`s methods depend on the same data structure, which we show is distribution-dependent. For the distribution that results in the smallest running time, we show that Greengard`s algorithm is Ω(N log2 N) in two dimensions and Ω(N log4 N) in three dimensions. We have designed a hierarchical data structure whose size depends entirely upon the number of particles and is independent of the distribution of the particles. We show that both Greengard`s and Barnes-Hut algorithms can be used in conjunction with this data structure to reduce their complexity. Apart from reducing the complexity of the Barnes-Hut algorithm, the data structure also permits more accurate error estimation. We present two- and three-dimensional algorithms for creating the data structure. The multipole method designed using this data structure has a complexity of O(N log N) in two dimensions and O(N log2 N) in three dimensions.

  17. Lattice location of dopant atoms: An N-body model calculation

    Indian Academy of Sciences (India)

    Abstract. The channelling and scattering yields of 1 MeV α-particles in the (100),. (110) and (111) directions of silicon implanted with bismuth and ytterbium have been simulated using N-body model. The close encounter yield from dopant atoms in silicon is determined from the flux density, using the Bontemps and ...

  18. A hybrid N-body code incorporating algorithmic regularization and post-Newtonian forces

    NARCIS (Netherlands)

    Harfst, S.; Gualandris, A.; Merritt, D.; Mikkola, S.

    2008-01-01

    We describe a novel N-body code designed for simulations of the central regions of galaxies containing massive black holes. The code incorporates Mikkola's 'algorithmic' chain regularization scheme including post-Newtonian terms up to PN2.5 order. Stars moving beyond the chain are advanced using a

  19. SPH Simulation of single grain action in grinding

    Directory of Open Access Journals (Sweden)

    Julean Dănuţ

    2017-01-01

    Full Text Available The paper presents a study of chip formation in single grain grinding using a convenient FEM formulation, the Smooth Particle Hydrodynamics (SPH method. The chip formation process was geometrically idealized. It was simulated as an inclined linear scratching of a cuboid part. After a systematic study, the results prove that this approach is useful to study the influence of grinding speed, friction conditions and uncut chip thickness on grinding forces, stresses and strains occurring during the grain action.

  20. Simulation and analysis of single-ribosome translation

    International Nuclear Information System (INIS)

    Tinoco, Ignacio Jr; Wen, Jin-Der

    2009-01-01

    In the cell, proteins are synthesized by ribosomes in a multi-step process called translation. The ribosome translocates along the messenger RNA to read the codons that encode the amino acid sequence of a protein. Elongation factors, including EF-G and EF-Tu, are used to catalyze the process. Recently, we have shown that translation can be followed at the single-molecule level using optical tweezers; this technique allows us to study the kinetics of translation by measuring the lifetime the ribosome spends at each codon. Here, we analyze the data from single-molecule experiments and fit the data with simple kinetic models. We also simulate the translation kinetics based on a multi-step mechanism from ensemble kinetic measurements. The mean lifetimes from the simulation were consistent with our experimental single-molecule measurements. We found that the calculated lifetime distributions were fit in general by equations with up to five rate-determining steps. Two rate-determining steps were only obtained at low concentrations of elongation factors. These analyses can be used to design new single-molecule experiments to better understand the kinetics and mechanism of translation

  1. JANUS: a bit-wise reversible integrator for N-body dynamics

    Science.gov (United States)

    Rein, Hanno; Tamayo, Daniel

    2018-01-01

    Hamiltonian systems such as the gravitational N-body problem have time-reversal symmetry. However, all numerical N-body integration schemes, including symplectic ones, respect this property only approximately. In this paper, we present the new N-body integrator JANUS , for which we achieve exact time-reversal symmetry by combining integer and floating point arithmetic. JANUS is explicit, formally symplectic and satisfies Liouville's theorem exactly. Its order is even and can be adjusted between two and ten. We discuss the implementation of JANUS and present tests of its accuracy and speed by performing and analysing long-term integrations of the Solar system. We show that JANUS is fast and accurate enough to tackle a broad class of dynamical problems. We also discuss the practical and philosophical implications of running exactly time-reversible simulations.

  2. N-Body Growth of a Bahcall-Wolf Cusp around a Black Hole

    Science.gov (United States)

    Preto, Miguel; Merritt, David; Spurzem, Rainer

    2004-10-01

    We present a clear N-body realization of the growth of a Bahcall-Wolf f~E1/4 (ρ~r-7/4) density cusp around a massive object (``black hole'') at the center of a stellar system. Our N-body algorithm incorporates a novel implementation of the Mikkola-Aarseth chain regularization to handle close interactions between star and black hole particles. Forces outside the chain were integrated on a GRAPE-6A/8 special-purpose computer with particle numbers up to N=0.25×106. We compare our N-body results with predictions of the isotropic Fokker-Planck equation and verify that the time dependence of the density (both configuration and phase-space) predicted by the Fokker-Planck equation is well reproduced by the N-body algorithm. Our results highlight the usefulness of direct N-body techniques for simulating the dynamical evolution of galactic nuclei containing supermassive black holes.

  3. FRIGA, a new approach to identify isotopes and hypernuclei in n -body transport models

    Science.gov (United States)

    Le Fèvre, A.; Leifels, Y.; Aichelin, J.; Hartnack, Ch.; Kireyev, V.; Bratkovskaya, E.

    2017-11-01

    We present a new algorithm to identify fragments in computer simulations of relativistic heavy-ion collisions. It is based on the simulated annealing technique and can be applied to n -body transport models like the Quantum Molecular Dynamics. This new approach is able to predict isotope yields as well as hypernucleus production. In order to illustrate its predicting power, we confront this new method to experimental data, and show the sensitivity on the parameters which govern the cluster formation.

  4. Numerical Simulations of the Flame of a Single Coaxial Injector

    Directory of Open Access Journals (Sweden)

    Victor P. Zhukov

    2017-01-01

    Full Text Available The processes of mixing and combustion in the jet of a shear-coaxial injector are investigated. Two test cases (nonreacting and reacting are simulated using the commercial computational fluid dynamics code ANSYS CFX. The first test case is an experiment on the mixing in a nonreacting coaxial jet carried out with the use of planar laser induced fluorescence (PLIF. The second test case is an experiment on the visualization of hydrogen-oxygen flame using PLIF of OH in a single injector combustion chamber at pressure of 53 bar. In the first test case, the two-dimensional axisymmetric simulations are performed using the shear-stress turbulence (SST model. Due to the dominant flow unsteadiness in the second test case, the turbulence is modeled using transient SAS (Scale-Adaptive Simulation model. The combustion is modeled using the burning velocity model (BVM while both two- and three-dimensional simulations are carried out. The numerical model agrees with the experimental data very well in the first test case and adequately in the second test case.

  5. The single-beam funnel demonstration: Experiment and simulation

    International Nuclear Information System (INIS)

    Johnson, K.F.; Sander, O.R.; Bolme, G.O.; Gilpatrick, J.D.; Guy, F.W.; Marquardt, J.H.; Sandoval, D.; Yuan, V.; Saadatmand, K.

    1991-01-01

    Accelerator concepts for heavy-ion fusion and for the transmutation of nuclear waste require small-emittance, high-current beams. Such applications include funnels in which high-current, like-charged particle beams are interlaced to double the beam current. The first experimental demonstration confirming the beam dynamics of the funnel principle (with contained emittance growth) was recently completed at Los Alamos National Laboratory. A single leg of a prototype 5-MeV, H - funnel was successfully tested. This single-beam demonstration explored physics issues of a two-beam funnel. The experiment contained elements for emittance control, position control, and rf-deflection. Diagnostics allowed measurement of beam intensity, position and angle centroids, energy and phase centroids, transverse and longitudinal phase-space distributions. Results of the experiment will be presented along with comparisons to simulations

  6. Simulations of surface stress effects in nanoscale single crystals

    Science.gov (United States)

    Zadin, V.; Veske, M.; Vigonski, S.; Jansson, V.; Muszinsky, J.; Parviainen, S.; Aabloo, A.; Djurabekova, F.

    2018-04-01

    Onset of vacuum arcing near a metal surface is often associated with nanoscale asperities, which may dynamically appear due to different processes ongoing in the surface and subsurface layers in the presence of high electric fields. Thermally activated processes, as well as plastic deformation caused by tensile stress due to an applied electric field, are usually not accessible by atomistic simulations because of the long time needed for these processes to occur. On the other hand, finite element methods, able to describe the process of plastic deformations in materials at realistic stresses, do not include surface properties. The latter are particularly important for the problems where the surface plays crucial role in the studied process, as for instance, in the case of plastic deformations at a nanovoid. In the current study by means of molecular dynamics (MD) and finite element simulations we analyse the stress distribution in single crystal copper containing a nanovoid buried deep under the surface. We have developed a methodology to incorporate the surface effects into the solid mechanics framework by utilizing elastic properties of crystals, pre-calculated using MD simulations. The method leads to computationally efficient stress calculations and can be easily implemented in commercially available finite element software, making it an attractive analysis tool.

  7. Simulating Biomass Fast Pyrolysis at the Single Particle Scale

    Energy Technology Data Exchange (ETDEWEB)

    Ciesielski, Peter [National Renewable Energy Laboratory (NREL); Wiggins, Gavin [ORNL; Daw, C Stuart [ORNL; Jakes, Joseph E. [U.S. Forest Service, Forest Products Laboratory, Madison, Wisconsin, USA

    2017-07-01

    Simulating fast pyrolysis at the scale of single particles allows for the investigation of the impacts of feedstock-specific parameters such as particle size, shape, and species of origin. For this reason particle-scale modeling has emerged as an important tool for understanding how variations in feedstock properties affect the outcomes of pyrolysis processes. The origins of feedstock properties are largely dictated by the composition and hierarchical structure of biomass, from the microstructural porosity to the external morphology of milled particles. These properties may be accounted for in simulations of fast pyrolysis by several different computational approaches depending on the level of structural and chemical complexity included in the model. The predictive utility of particle-scale simulations of fast pyrolysis can still be enhanced substantially by advancements in several areas. Most notably, considerable progress would be facilitated by the development of pyrolysis kinetic schemes that are decoupled from transport phenomena, predict product evolution from whole-biomass with increased chemical speciation, and are still tractable with present-day computational resources.

  8. Performance analysis of parallel gravitational N-body codes on large GPU clusters

    International Nuclear Information System (INIS)

    Huang, Si-Yi; Spurzem, Rainer; Berczik, Peter

    2016-01-01

    We compare the performance of two very different parallel gravitational N-body codes for astrophysical simulations on large Graphics Processing Unit (GPU) clusters, both of which are pioneers in their own fields as well as on certain mutual scales - NBODY6++ and Bonsai. We carry out benchmarks of the two codes by analyzing their performance, accuracy and efficiency through the modeling of structure decomposition and timing measurements. We find that both codes are heavily optimized to leverage the computational potential of GPUs as their performance has approached half of the maximum single precision performance of the underlying GPU cards. With such performance we predict that a speed-up of 200 – 300 can be achieved when up to 1k processors and GPUs are employed simultaneously. We discuss the quantitative information about comparisons of the two codes, finding that in the same cases Bonsai adopts larger time steps as well as larger relative energy errors than NBODY6++, typically ranging from 10 – 50 times larger, depending on the chosen parameters of the codes. Although the two codes are built for different astrophysical applications, in specified conditions they may overlap in performance at certain physical scales, thus allowing the user to choose either one by fine-tuning parameters accordingly. (paper)

  9. Performance analysis of parallel gravitational N-body codes on large GPU clusters

    Science.gov (United States)

    Huang, Si-Yi; Spurzem, Rainer; Berczik, Peter

    2016-01-01

    We compare the performance of two very different parallel gravitational N-body codes for astrophysical simulations on large Graphics Processing Unit (GPU) clusters, both of which are pioneers in their own fields as well as on certain mutual scales - NBODY6++ and Bonsai. We carry out benchmarks of the two codes by analyzing their performance, accuracy and efficiency through the modeling of structure decomposition and timing measurements. We find that both codes are heavily optimized to leverage the computational potential of GPUs as their performance has approached half of the maximum single precision performance of the underlying GPU cards. With such performance we predict that a speed-up of 200 - 300 can be achieved when up to 1k processors and GPUs are employed simultaneously. We discuss the quantitative information about comparisons of the two codes, finding that in the same cases Bonsai adopts larger time steps as well as larger relative energy errors than NBODY6++, typically ranging from 10 - 50 times larger, depending on the chosen parameters of the codes. Although the two codes are built for different astrophysical applications, in specified conditions they may overlap in performance at certain physical scales, thus allowing the user to choose either one by fine-tuning parameters accordingly.

  10. Single seed precise sowing of maize using computer simulation.

    Science.gov (United States)

    Zhao, Longgang; Han, Zhongzhi; Yang, Jinzhong; Qi, Hua

    2018-01-01

    In order to test the feasibility of computer simulation in field maize planting, the selection of the method of single seed precise sowing in maize is studied based on the quadratic function model Y = A×(D-Dm)2+Ym, which depicts the relationship between maize yield and planting density. And the advantages and disadvantages of the two planting methods under the condition of single seed sowing are also compared: Method 1 is optimum density planting, while Method 2 is the ideal seedling emergence number planting. It is found that the yield reduction rate and yield fluctuation of Method 2 are all lower than those of Method 1. The yield of Method 2 increased by at least 0.043 t/hm2, and showed more advantages over Method 1 with higher yield level. Further study made on the influence of seedling emergence rate on the yield of maize finds that the yields of the two methods are both highly positively correlated with the seedling emergence rate and the standard deviations of their yields are both highly negatively correlated with the seedling emergence rate. For the study of the break-up problem of sparse caused by the method of single seed precise sowing, the definition of seedling missing spots is put forward. The study found that the relationship between number of hundred-dot spot and field seedling emergence rate is as the parabola function y = -189.32x2 + 309.55x - 118.95 and the relationship between number of spot missing seedling and field seedling emergence rate is as the negative exponent function y = 395.69e-6.144x. The results may help to guide the maize seeds production and single seed precise sowing to some extent.

  11. TCAD simulations for a novel single-photon avalanche diode

    Science.gov (United States)

    Jin, Xiangliang; Yang, Jia; Yang, Hongjiao; Tang, Lizhen; Liu, Weihui

    2015-03-01

    A single-photon avalanche diode (SPAD) device with P+-SEN junction, and a low concentration of N-type doping circular virtual guard-ring was presented in this paper. SEN layer of the proposed SPAD has high concentration of N-type doping, causing the SPAD low breakdown voltage (~14.26 V). What's more, an efficient and narrow (about 2μm) guard-ring of the proposed SPAD not only can withstand considerably higher electric fields for preventing edge breakdown, but also offers a little increment in fill factor compared with existing SPADs due to its small area. In addition, some Silvaco TCAD simulations have been done and verify characteristics and performance of the design in this work.

  12. A combined N-body and hydrodynamic code for modeling disk galaxies

    International Nuclear Information System (INIS)

    Schroeder, M.C.

    1989-01-01

    A combined N-body and hydrodynamic computer code for the modeling of two dimensional galaxies is described. The N-body portion of the code is used to calculate the motion of the particle component of a galaxy, while the hydrodynamics portion of the code is used to follow the motion and evolution of the fluid component. A complete description of the numerical methods used for each portion of the code is given. Additionally, the proof tests of the separate and combined portions of the code are presented and discussed. Finally, a discussion of the topics researched with the code and results obtained is presented. These include: the measurement of stellar relaxation times in disk galaxy simulations; the effects of two-armed spiral perturbations on stable axisymmetric disks; the effects of the inclusion of an instellar medium (ISM) on the stability of disk galaxies; and the effect of the inclusion of stellar evolution on disk galaxy simulations

  13. Monte Carlo simulations of lattice models for single polymer systems

    International Nuclear Information System (INIS)

    Hsu, Hsiao-Ping

    2014-01-01

    Single linear polymer chains in dilute solutions under good solvent conditions are studied by Monte Carlo simulations with the pruned-enriched Rosenbluth method up to the chain length N∼O(10 4 ). Based on the standard simple cubic lattice model (SCLM) with fixed bond length and the bond fluctuation model (BFM) with bond lengths in a range between 2 and √(10), we investigate the conformations of polymer chains described by self-avoiding walks on the simple cubic lattice, and by random walks and non-reversible random walks in the absence of excluded volume interactions. In addition to flexible chains, we also extend our study to semiflexible chains for different stiffness controlled by a bending potential. The persistence lengths of chains extracted from the orientational correlations are estimated for all cases. We show that chains based on the BFM are more flexible than those based on the SCLM for a fixed bending energy. The microscopic differences between these two lattice models are discussed and the theoretical predictions of scaling laws given in the literature are checked and verified. Our simulations clarify that a different mapping ratio between the coarse-grained models and the atomistically realistic description of polymers is required in a coarse-graining approach due to the different crossovers to the asymptotic behavior

  14. Non-instantaneous gas recycling and chemical evolution in N-body disk galaxies

    Czech Academy of Sciences Publication Activity Database

    Jungwiert, Bruno; Carraro, G.; Dalla Vecchia, C.

    2004-01-01

    Roč. 289, 3-4 (2004), s. 441-444 ISSN 0004-640X. [From observations to self-consistent modelling of the ISM in galaxies. Porto, 03.09.2002-05.09.2002] R&D Projects: GA ČR GP202/01/D075 Institutional research plan: CEZ:AV0Z1003909 Keywords : N-body simulations * galaxy evolution * gas recycling Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.597, year: 2004

  15. Numerical solutions of the N-body problem

    International Nuclear Information System (INIS)

    Marciniak, A.

    1985-01-01

    Devoted to the study of numerical methods for solving the general N-body problem and related problems, this volume starts with an overview of the conventional numerical methods for solving the initial value problem. The major part of the book contains original work and features a presentation of special numerical methods conserving the constants of motion in the general N-body problem and methods conserving the Jacobi constant in the problem of motion of N bodies in a rotating frame, as well as an analysis of the applications of both (conventional and special) kinds of methods for solving these problems. For all the methods considered, the author presents algorithms which are easily programmable in any computer language. Moreover, the author compares various methods and presents adequate numerical results. The appendix contains PL/I procedures for all the special methods conserving the constants of motion. 91 refs.; 35 figs.; 41 tabs

  16. A Pipeline for Constructing Optimized N-Body Models of Interacting Galaxies

    Science.gov (United States)

    Harvey, Allen S., Jr.

    Galaxies form the building blocks of our understanding of a hierarchical evolution of the universe. Galaxies interact with other galaxies by impacting each other's gravitational fields, exchanging mass, spurring star formation, and even by merging. As sky surveys continue to capture images of interacting galaxies as they were in a snapshot of time so long ago, simulations of their evolution are needed to understand how they have arrived at their observed state. Restricted three-body simulations have advanced to produce realistic gravitational potentials to rapidly model interacting galaxies. Much research has been conducted to advance the creation and convergence of these models to obtain good matches to observed galaxies. Unfortunately, these models lack the physics for rich and realistic tidal features, gas dynamics, stellar black holes, and star formation, among others, that necessitate the use of higher fidelity models, such as N-Body gravity methods. The parameters describing the interacting galaxies from a restricted three-body simulation can be backwards integrated to estimate reasonable initial parameters for the galaxies well before their observed state. However, the backwards and forward integration in time of these simulations must be tuned by carefully choosing a tuning scalar to capture the dynamical friction of the interacting galaxies. This dissertation presents a prototype pipeline to link computationally efficient restricted three-body simulations of galaxy interactions to full, high resolution N-Body simulations. The software iterates between both classes of simulations to converge on the best match to an observed galaxy merger state. The system begins with a state vector from a merger at its peri-center as determined by the restricted three-body simulation code, SPAM, with an uncertain value for a dynamical friction scalar. The pipeline uses this vector to backwards integrate another SPAMmodel that systematically varies a scalar for dynamical

  17. SIMIND Monte Carlo simulation of a single photon emission CT

    International Nuclear Information System (INIS)

    Bahreyni Toossi, M.T.; Pirayesh Islamian, J.; Naseri, S.H.; Momennezhad, M.; Ljungberg, M.

    2010-01-01

    In this study, we simulated a Siemens E.CAM SPECT system using SIMIND Monte Carlo program to acquire its experimental characterization in terms of energy resolution, sensitivity, spatial resolution and imaging of phantoms using 99m Tc. The experimental and simulation data for SPECT imaging was acquired from a point source and Jaszczak phantom. Verification of the simulation was done by comparing two sets of images and related data obtained from the actual and simulated systems. Image quality was assessed by comparing image contrast and resolution. Simulated and measured energy spectra (with or without a collimator) and spatial resolution from point sources in air were compared. The resulted energy spectra present similar peaks for the gamma energy of 99m Tc at 140 KeV. FWHM for the simulation calculated to 14.01 KeV and 13.80 KeV for experimental data, corresponding to energy resolution of 10.01 and 9.86% compared to defined 9.9% for both systems, respectively. Sensitivities of the real and virtual gamma cameras were calculated to 85.11 and 85.39 cps/MBq, respectively. The energy spectra of both simulated and real gamma cameras were matched. Images obtained from Jaszczak phantom, experimentally and by simulation, showed similarly in contrast and resolution. SIMIND Monte Carlo could successfully simulate the Siemens E.CAM gamma camera. The results validate the use of the simulated system for further investigation, including modification, planning, and developing a SPECT system to improve the quality of images. (author)

  18. Periodic solutions of the N-body problem

    CERN Document Server

    Meyer, Kenneth R

    1999-01-01

    The N-body problem is the classical prototype of a Hamiltonian system with a large symmetry group and many first integrals. These lecture notes are an introduction to the theory of periodic solutions of such Hamiltonian systems. From a generic point of view the N-body problem is highly degenerate. It is invariant under the symmetry group of Euclidean motions and admits linear momentum, angular momentum and energy as integrals. Therefore, the integrals and symmetries must be confronted head on, which leads to the definition of the reduced space where all the known integrals and symmetries have been eliminated. It is on the reduced space that one can hope for a nonsingular Jacobian without imposing extra symmetries. These lecture notes are intended for graduate students and researchers in mathematics or celestial mechanics with some knowledge of the theory of ODE or dynamical system theory. The first six chapters develops the theory of Hamiltonian systems, symplectic transformations and coordinates, periodic so...

  19. An implementation of N-body chain regularization

    Science.gov (United States)

    Mikkola, Seppo; Aarseth, Sverre J.

    1993-11-01

    The chain regularization method (Mikkola and Aarseth 1990) for high accuracy computation of particle motions in small N-body systems has been reformulated. We discuss the transformation formulas, equations of motion and selection of a chain of interparticle vectors such that the critical interactions requiring regularization are included in the chain. The Kustaaheimo-Stiefel (KS) coordinate transformation and a time transformation is used to regularize the dominant terms of the equations of motion. The method has been implemented for an arbitrary number of bodies, with the option of external perturbations. This formulation has been succesfully tested in a general N-body program for strongly interacting subsystems. An easy to use computer program, written in FORTRAN, is available on request.

  20. Bonsai: N-body GPU tree-code

    Science.gov (United States)

    Bédorf, Jeroen; Gaburov, Evghenii; Portegies Zwart, Simon

    2012-12-01

    Bonsai is a gravitational N-body tree-code that runs completely on the GPU. This reduces the amount of time spent on communication with the CPU. The code runs on NVIDIA GPUs and on a GTX480 it is able to integrate 2.8M particles per second. The tree construction and traverse algorithms are portable to many-core devices which have support for CUDA or OpenCL programming languages.

  1. Accelerator-feasible N-body nonlinear integrable system

    Directory of Open Access Journals (Sweden)

    V. Danilov

    2014-12-01

    Full Text Available Nonlinear N-body integrable Hamiltonian systems, where N is an arbitrary number, have attracted the attention of mathematical physicists for the last several decades, following the discovery of some number of these systems. This paper presents a new integrable system, which can be realized in facilities such as particle accelerators. This feature makes it more attractive than many of the previous such systems with singular or unphysical forces.

  2. Equivalence of two models in single-phase multicomponent flow simulations

    KAUST Repository

    Wu, Yuanqing

    2016-02-28

    In this work, two models to simulate the single-phase multicomponent flow in reservoirs are introduced: single-phase multicomponent flow model and two-phase compositional flow model. Because the single-phase multicomponent flow is a special case of the two-phase compositional flow, the two-phase compositional flow model can also simulate the case. We compare and analyze the two models when simulating the single-phase multicomponent flow, and then demonstrate the equivalence of the two models mathematically. An experiment is also carried out to verify the equivalence of the two models.

  3. Quantum N-body problem with a minimal length

    International Nuclear Information System (INIS)

    Buisseret, Fabien

    2010-01-01

    The quantum N-body problem is studied in the context of nonrelativistic quantum mechanics with a one-dimensional deformed Heisenberg algebra of the form [x,p]=i(1+βp 2 ), leading to the existence of a minimal observable length √(β). For a generic pairwise interaction potential, analytical formulas are obtained that allow estimation of the ground-state energy of the N-body system by finding the ground-state energy of a corresponding two-body problem. It is first shown that in the harmonic oscillator case, the β-dependent term grows faster with increasing N than the β-independent term. Then, it is argued that such a behavior should also be observed with generic potentials and for D-dimensional systems. Consequently, quantum N-body bound states might be interesting places to look at nontrivial manifestations of a minimal length, since the more particles that are present, the more the system deviates from standard quantum-mechanical predictions.

  4. Pulsed laser simulation of VLSI single-event effect testing study

    International Nuclear Information System (INIS)

    Xue Yuxiong; Cao Zhou Yang Shiyu; Tian Kai; Liu Shufen; Chu Nan; Cao Haining; Shang Zhi

    2008-01-01

    This paper describes a study aimed at investigating the pulsed laser simulation of Single-Event Effect (SEE) testing for VLSI Intel386EX CPU, using our laboratory LSS (laser simulation system). We have detailed SEE testing principle, testing method, testing system constituting, testing result. It validates that our laser pulses simulate may use SEE testing in VLSI, and Intel 386Ex have a large locking resistance to single event. (authors)

  5. Cloud Service Solving N-Body Problem Based on Windows Azure Platform

    Science.gov (United States)

    Augustyn, Dariusz Rafał; Warchał, Łukasz

    This paper shows how to use cloud computing to solve N-body problem. It presents an idea and implementation of cloud service based on Windows Azure Platform. Clients can access cloud service via Internet over HTTP protocol. They create computation tasks supplying simulation parameters such as number of steps, time step and XML file with body definitions (initial position, mass and velocity). Presented solution uses Barnes-Hut Algorithm (based on adaptive oct tree) to reduce computation complexity form N ×N to N logN. All body interactions are computed in parallel, on worker nodes in cloud.

  6. A spectral geometric model for Compton single scatter in PET based on the single scatter simulation approximation

    Science.gov (United States)

    Kazantsev, I. G.; Olsen, U. L.; Poulsen, H. F.; Hansen, P. C.

    2018-02-01

    We investigate the idealized mathematical model of single scatter in PET for a detector system possessing excellent energy resolution. The model has the form of integral transforms estimating the distribution of photons undergoing a single Compton scattering with a certain angle. The total single scatter is interpreted as the volume integral over scatter points that constitute a rotation body with a football shape, while single scattering with a certain angle is evaluated as the surface integral over the boundary of the rotation body. The equations for total and sample single scatter calculations are derived using a single scatter simulation approximation. We show that the three-dimensional slice-by-slice filtered backprojection algorithm is applicable for scatter data inversion provided that the attenuation map is assumed to be constant. The results of the numerical experiments are presented.

  7. The quantum N-body problem in the mean-field and semiclassical regime.

    Science.gov (United States)

    Golse, François

    2018-04-28

    The present work discusses the mean-field limit for the quantum N -body problem in the semiclassical regime. More precisely, we establish a convergence rate for the mean-field limit which is uniform as the ratio of Planck constant to the action of the typical single particle tends to zero. This convergence rate is formulated in terms of a quantum analogue of the quadratic Monge-Kantorovich or Wasserstein distance. This paper is an account of some recent collaboration with C. Mouhot, T. Paul and M. Pulvirenti.This article is part of the themed issue 'Hilbert's sixth problem'. © 2018 The Author(s).

  8. Dynamical Studies of N-Body Gravity and Tidal Dissipation in the TRAPPIST-1 Star System

    Science.gov (United States)

    Nayak, Michael; Kuettel, Donald H.; Stebler, Shane T.; Udrea, Bogdan

    2018-01-01

    To date, we have discovered a total of 2,729 planetary systems that contain more than 3,639 known exoplanets [1]. A majority of these are defined as compact systems, containing multiple exoplanets within 0.25 AU of the central star. It has been shown that tightly packed exoplanets avoid colliding due to long-term resonance-induced orbit stability [2]. However, due to extreme proximity, these planets experience intense gravitational forces from each other that are unprecedented within our own solar system, which makes the existence of exomoons doubtful. We present the results of an initial study evaluating dynamical stability of potential exomoons within such highly compact systems.This work is baselined around TRAPPIST-1, an ultra-cool dwarf star that hosts seven temperate terrestrial planets, three of which are in the habitable zone, orbiting within 0.06 AU [3]. N-body simulations place a grid of test particles varying semi-major axis, eccentricity, and inclination around the three habitable zone planets. We find that most exomoons with semi-major axes less than half the Hill sphere of their respective planet are stable over 10 kyrs, with several stable over 300 kyrs.However, in compact systems, tidal influences from other planets can compete with tidal effects from the primary planet, resulting in possible instabilities and massive amounts of tidal dissipation. We investigate these effects with a large grid search that incorporates exomoon radius, tidal quality factor and a range of planet rigidities. Results of simulations that combine n-body gravity effects with both planetary and satellite tides are presented and contrasted with n-body results. Finally, we examine long-term stability (> 1Myrs) of the stable subset of test particles from the n-body simulation with the addition of tidal dissipation, to determine if exomoons can survive around planets e, f, and g in the TRAPPIST-1 system.[1] Schneider (2017). The Extrasolar Planets Encyclopedia. http

  9. Design and simulations of highly efficient single-photon sources

    DEFF Research Database (Denmark)

    Gregersen, Niels; de Lasson, Jakob Rosenkrantz; Mørk, Jesper

    The realization of the highly-efficient single-photon source represents not only an experimental, but also a numerical challenge. We will present the theory of the waveguide QED approach, the design challenges and the current limitations. Additionally, the important numerical challenges in the si......The realization of the highly-efficient single-photon source represents not only an experimental, but also a numerical challenge. We will present the theory of the waveguide QED approach, the design challenges and the current limitations. Additionally, the important numerical challenges...

  10. A spectral geometric model for Compton single scatter in PET based on the single scatter simulation approximation

    DEFF Research Database (Denmark)

    Kazantsev, I.G.; Olsen, Ulrik Lund; Poulsen, Henning Friis

    2018-01-01

    scatter is interpreted as the volume integral over scatter points that constitute a rotation body with a football shape, while single scattering with a certain angle is evaluated as the surface integral over the boundary of the rotation body. The equations for total and sample single scatter calculations...... are derived using a single scatter simulation approximation. We show that the three-dimensional slice-by-slice filtered backprojection algorithm is applicable for scatter data inversion provided that the attenuation map is assumed to be constant. The results of the numerical experiments are presented....

  11. Simulation of single-electron tunnelling circuits using SPICE

    NARCIS (Netherlands)

    Van de Haar, R.

    2004-01-01

    Single-electron tunnelling (SET) devices have very promising properties, like their extremely low power consumption, their extremely high switching speeds and their extremely small physical dimensions. Since the field of SET devices is far from being fully exploited, and their device properties seem

  12. Computational Structure of the N-Body Problem

    Science.gov (United States)

    1988-04-01

    14 I MONITORING AGENCY N4AME A AOORESS(II dhifeent Orson Conrolln Office) it. SECU ITY CLASS. tot #his report) Office of Naval Research UCASFE...is called the "many- body" or the "N-body" problem. Such studies are conducted in celestial mechanics, plasma physics, fluid mechanics as well as in...the source of the message). Since messages are function descriptions, all mes- sages are of equal length and the concept of message time is well

  13. Polygonal rotopulsators of the curved n-body problem

    Science.gov (United States)

    Tibboel, Pieter

    2018-02-01

    We revisit polygonal positive elliptic rotopulsator solutions and polygonal negative elliptic rotopulsator solutions of the n-body problem in H3 and S3 and prove the existence of these solutions and prove that the masses of these rotopulsators have to be equal if the rotopulsators are of nonconstant size and show that the number of negative elliptic relative equilibria of this type is finite, as is the number of positive elliptic relative equilibria if an upper bound on the size of the relative equilibrium is imposed. Additionally, we prove that a class of negative hyperbolic rotopulsators is in fact a subclass of the class of polygonal negative elliptic rotopulsators.

  14. Hierarchical N-body methods on shared address space multiprocessors.

    Science.gov (United States)

    Holt, C.; Singh, J. P.

    The authors examine the parallelization issues in and architectural implications of the two dominant adaptive hierarchical N-body methods: the Barnes-Hut method and the Fast Multipole Method. They show that excellent parallel performance can be obtained on cache-coherent shared address space multiprocessors, by demonstrating performance on three cache-coherent machines: the Stanford DASH, the Kendall Square Research KSR-1, and the Silicon Graphics Challenge. Even on machines that have their main memory physically distributed among processing nodes and highly nonuniform memory access costs, the speedups are obtained without any attention to where memory is allocated on the machine. The authors show that the reason for good performance is the high degree of temporal locality afforded by the applications, and the fact that working sets are small (and scale slowly) so that caching shared data automatically in hardware exploits this locality very effectively. Even if data distribution in main memory is assumed to be free, it does not help very much. Finally, they address a potential bottleneck in scaling the parallelism to large machines, namely the fraction of time spent in building the tree used by hierarchical N-body methods.

  15. Computerized simulation of sintering process through single geometric arrangements utilization

    International Nuclear Information System (INIS)

    Vasconcelos, Vanderley de; Lameiras, Fernando Soares; Vasconcelos, Wander L.

    1995-01-01

    In materials science and engineering, microstructure is of crucial importance in determining the properties and therefore the performance of the designed products. However, the parameters and processes which control microstructural evolution in multi-phase polycrystalline systems have not been systematically examined yet. This is specially true in the case of powder processing of ceramics, where the final microstructure is related not only to the densification process, but also to the characteristics of the green compact, such as particle size distribution and packing density. One way to carry out the study of this problem with the of a computer is to consider the green compact as a periodic arrangement of mono-sized hard spheres, e.g., the simple cubic, the body-centered cubic (b.c.) and the face-centered cubic (f.c.c.) arrays. That simplification allows to foresee the resultant morphology when the array is sintered to full density through a simulation algorithm that allows the spheres to penetrate one another and conserve their mass. Typical powder compacts have a random, rather than regular, structures. An element of randomness is introduced and various parameters for this case (e.g. density, coordination number, morphology) are compared with the simple ones. Thermodynamic features of the simulated microstructures which may reveal which one resembles a more realistic equilibrium configuration are also included. (author). 8 refs., 2 figs

  16. DS-a 3D graphics simulation program for single-crystal diffractometry

    International Nuclear Information System (INIS)

    Zheng Chaode; Min Yao; Tanaka, I.

    1995-01-01

    A brief description of a 3D graphics simulation program for single-crystal diffractometry is presented. The program displays both χ- and κ-type diffractometers with a zero-dimensional (conventional) counter or a two-dimensional area detector and simulates the process of data collection. This program has been designed for assisting actual data collection using these devices, but it could also be useful as a tutorial aid for those starting to learn single-crystal diffractometry. (orig.)

  17. Single-sided sheet-to-tube spot welding investigated by 3D numerical simulations

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Chergui, Azeddine; Zhang, Wenqi

    The single-sided resistance spot welding process is analyzed by a 3D numerical study of sheet-to-tube joining. Finite element simulations are carried out in SORPAS® 3D. Two levels of electrode force and five levels of welding current are simulated. The overall effects of changing current and force...

  18. Simulation aided hardening of N-channel power MOSFETs to prevent single event burnout

    International Nuclear Information System (INIS)

    Dachs, C.; Palau, J.M.; Bruguier, G.; Gasiot, J.; Roubaud, F.; Tastet, P.; Calvet, M.C.; Calvel, P.

    1995-01-01

    2D MEDICI simulator is used to investigate hardening solutions to single-event burnout (SEB). SEB parametric dependencies such as carrier lifetime reduction, base enlargement, and emitter doping decrease have been verified and a p + plug modification approach for SEB hardening of power MOSFETs is validated with simulations on actual device structures

  19. Modeling and simulation of the zinc-nickel single flow batteries based on MATLAB/Simulink

    Directory of Open Access Journals (Sweden)

    Shouguang Yao

    2016-12-01

    Full Text Available Based on the working principle of the zinc-nickel single flow batteries (ZNBs, this paper builds the electrochemical model and mechanical model, analyzes the effect of electrolyte flux on the battery performance and obtains a single cell with a 216 Ah charge-discharge capacity as an example, and thereafter conducts a simulation to obtain several results under the condition of constant current charge and discharge. The simulation results are well matched in comparison with the experimental results. An optimal flux exists during the charge and discharge, which indicates that the model can well simulate the charge and discharge characteristics of the ZNBs under the condition of constant current.

  20. On the n-body problem on surfaces of revolution

    Science.gov (United States)

    Stoica, Cristina

    2018-05-01

    We explore the n-body problem, n ≥ 3, on a surface of revolution with a general interaction depending on the pairwise geodesic distance. Using the geometric methods of classical mechanics we determine a large set of properties. In particular, we show that Saari's conjecture fails on surfaces of revolution admitting a geodesic circle. We define homographic motions and, using the discrete symmetries, prove that when the masses are equal, they form an invariant manifold. On this manifold the dynamics are reducible to a one-degree of freedom system. We also find that for attractive interactions, regular n-gon shaped relative equilibria with trajectories located on geodesic circles typically experience a pitchfork bifurcation. Some applications are included.

  1. Integral bounds for N-body total cross sections

    International Nuclear Information System (INIS)

    Osborn, T.A.; Bolle, D.

    1979-01-01

    We study the behavior of the total cross sections in the three- and N-body scattering problem. Working within the framework of the time-dependent two-Hilbert space scattering theory, we give a simple derivation of integral bounds for the total cross section for all processes initiated by the collision of two clusters. By combining the optical theorem with a trace identity derived by Jauch, Sinha, and Misra, we find, roughly speaking, that if the local pairwise interaction falls off faster than r -3 , then sigma/sub tot/(E) must decrease faster than E/sup -1/2/ at high energy. This conclusion is unchanged if one introduces a class of well-behaved three-body interactions

  2. Particle number dependence in the non-linear evolution of N-body self-gravitating systems

    Science.gov (United States)

    Benhaiem, D.; Joyce, M.; Sylos Labini, F.; Worrakitpoonpon, T.

    2018-01-01

    Simulations of purely self-gravitating N-body systems are often used in astrophysics and cosmology to study the collisionless limit of such systems. Their results for macroscopic quantities should then converge well for sufficiently large N. Using a study of the evolution from a simple space of spherical initial conditions - including a region characterized by so-called 'radial orbit instability' - we illustrate that the values of N at which such convergence is obtained can vary enormously. In the family of initial conditions we study, good convergence can be obtained up to a few dynamical times with N ∼ 103 - just large enough to suppress two body relaxation - for certain initial conditions, while in other cases such convergence is not attained at this time even in our largest simulations with N ∼ 105. The qualitative difference is due to the stability properties of fluctuations introduced by the N-body discretisation, of which the initial amplitude depends on N. We discuss briefly why the crucial role which such fluctuations can potentially play in the evolution of the N body system could, in particular, constitute a serious problem in cosmological simulations of dark matter.

  3. Simulating colonic survival of probiotics in single-strain products compared to multi-strain products.

    Science.gov (United States)

    Forssten, S D; Ouwehand, A C

    2017-01-01

    Background : Probiotic formulations can be single- or multi-strain. Commercially, multi-strain preparations have been suggested to have improved functionality over single-strain cultures. Probiotics are often tested as single-strain preparations but may subsequently be commercially formulated as multi-strain products. Objective : The aim of this study was to determine what happens at the site of action, the intestine, with probiotics as single- compared to multi-strain preparations. The human gastrointestinal tract contains a broad mixture of different microbes which may affect the survival of different probiotics in different ways. Design : The current study was performed to evaluate, in an in vitro colon simulation, whether probiotics influence each other's survival when they are taken as a combination of several strains (HOWARU Restore; Lactobacillus acidophilus NCFM, Lactobacillus paracasei Lpc-37, Bifidobacterium lactis Bl-04 and B. lactis Bi-07) compared to the strains as single preparations. Results : All strains could be detected after the colon simulations and there were no substantial differences in levels of the same strain when comparing single- and multi-strain products. Conclusions : It can be concluded that probiotics do not have an antagonistic effect on each other's survival when used in a multi-strain product compared to a single-strain product, at least within a microbiota in a simulated colonic environment.

  4. A work- and data-sharing parallel tree N-body code

    Science.gov (United States)

    Becciani, U.; Antonuccio-Delogu, V.; Pagliaro, A.

    1996-12-01

    We describe a new parallel N -body code for simulations of the formation and evolution of the large-scale structure of the Universe. The code is based on a work- and data-sharing scheme, and is implemented within the Cray Research Corporation's CRAFT (c) programming environment. Different data distribution schemes have been adopted for bodies' and tree's structures. Tests performed for two different types of initial distributions show that the performance scales almost ideally as a function of the size of the system and of the number of processors. We discuss the factors affecting the absolute speed-up and how it can be increased with a better tree's data distribution scheme.

  5. Geometrical themes inspired by the n-body problem

    CERN Document Server

    Herrera, Haydeé; Herrera, Rafael

    2018-01-01

    Presenting a selection of recent developments in geometrical problems inspired by the N-body problem, these lecture notes offer a variety of approaches to study them, ranging from variational to dynamical, while developing new insights, making geometrical and topological detours, and providing historical references. A. Guillot’s notes aim to describe differential equations in the complex domain, motivated by the evolution of N particles moving on the plane subject to the influence of a magnetic field. Guillot studies such differential equations using different geometric structures on complex curves (in the sense of W. Thurston) in order to find isochronicity conditions.   R. Montgomery’s notes deal with a version of the planar Newtonian three-body equation. Namely, he investigates the problem of whether every free homotopy class is realized by a periodic geodesic. The solution involves geometry, dynamical systems, and the McGehee blow-up. A novelty of the approach is the use of energy-balance in order t...

  6. Near transferable phenomenological n-body potentials for noble metals

    Science.gov (United States)

    Pontikis, Vassilis; Baldinozzi, Gianguido; Luneville, Laurence; Simeone, David

    2017-09-01

    We present a semi-empirical model of cohesion in noble metals with suitable parameters reproducing a selected set of experimental properties of perfect and defective lattices in noble metals. It consists of two short-range, n-body terms accounting respectively for attractive and repulsive interactions, the former deriving from the second moment approximation of the tight-binding scheme and the latter from the gas approximation of the kinetic energy of electrons. The stability of the face centred cubic versus the hexagonal compact stacking is obtained via a long-range, pairwise function of customary use with ionic pseudo-potentials. Lattice dynamics, molecular statics, molecular dynamics and nudged elastic band calculations show that, unlike previous potentials, this cohesion model reproduces and predicts quite accurately thermodynamic properties in noble metals. In particular, computed surface energies, largely underestimated by existing empirical cohesion models, compare favourably with measured values, whereas predicted unstable stacking-fault energy profiles fit almost perfectly ab initio evaluations from the literature. All together the results suggest that this semi-empirical model is nearly transferable.

  7. Short-range energy budget simulator of single photon lidar demonstrator

    Science.gov (United States)

    Murtazin, Mark V.; Prochazka, Ivan; Blazej, Josef; Pershin, Sergey M.; Lednev, Vasily N.

    2017-05-01

    The compact single photon lidar demonstrator dedicated for asteroid rendezvous missions has been designed and realized in our laboratory two years ago. The instrument provides crucial data on altitude and terrain profile for altitudes exceeding 5 km with a precision of less than 10 cm fulfilling the Rayleigh criterion. One of the calibration procedure of demonstrator is the positioning of receiver and transmitter optics related to detector and laser and the aligning of transmitter and receiver optical common paths. To improve this particular indoor calibration procedure the new simulator of single photon energy budget during short range operation has been created. The comparison of simulated and experimental data will be presented and discussed.

  8. Ramifications of single-port laparoscopic surgery: measuring differences in task performance using simulation.

    Science.gov (United States)

    Conway, Nathan E; Romanelli, John R; Bush, Ron W; Seymour, Neal E

    2014-02-01

    Single-port laparoscopic surgery imposes unique psychomotor challenges. We used surgical simulation to define performance differences between surgeons with and without single-port clinical experience and examined whether a short course of training resulted in improved performance. Study participants were assigned to 3 groups: resident group (RES), experienced laparoscopic surgeons with (SP) and without (LAP) prior single-port laparoscopic experience. Participants performed the Fundamentals of Laparoscopic Surgery precision cutting task on a ProMIS trainer through conventional ports or with articulating instruments via a SILS Port (Covidien, Inc). Two iterations of each method were performed. Then, 6 residents performed 10 successive single-port iterations to assess the effect of practice on task performance. The SP group had faster task times for both laparoscopic (P = .0486) and single-port (P = .0238) methods. The LAP group had longer path lengths for the single-port task than for the laparoscopic task (P = .03). The RES group was slower (P = .0019), with longer path length (P = .0010) but with greater smoothness (P = .0186) on the single-port task than the conventional laparoscopic task. Resident performance task time (P = .005) and smoothness (P = .045) improved with successive iterations. Our data show that surgeons with clinical single-port surgery experience perform a simulated single-port surgical task better than inexperienced single-port surgeons. Furthermore, this performance is comparable to that achieved with conventional laparoscopic techniques. Performance of residents declined dramatically when confronted with the challenges of the single-port task but improved with practice. These results suggest a role for lab-based single-port training.

  9. High Resolution Numerical Simulations of Primary Atomization in Diesel Sprays with Single Component Reference Fuels

    Science.gov (United States)

    2015-09-01

    facility utilized a common rail fuel injection system with a Bosch CRIN3 fuel injector Table1. Conditions for non-evaporating single-hole spray...not selected because they were welded shut in our injector. Figure 1b shows the rendered image used in the simulation with a description of the

  10. Detection of a single synthetic antiferromagnetic nanoparticle with an AMR nanostructure: Comparison between simulations and experiments

    DEFF Research Database (Denmark)

    Donolato, M.; Gobbi, M.; Cantoni, M.

    2010-01-01

    magnetoresistance effect and hence an electrical signal. In this paper we use micromagnetic simulations to calculate the output signal of a particularly shaped device in the presence of a single synthetic antiferromagnetic nanoparticle. The calculated magnetoresistive signal is in good agreement with corresponding...

  11. Using gaps in N-body tidal streams to probe missing satellites

    International Nuclear Information System (INIS)

    Ngan, W. H. W.; Carlberg, R. G.

    2014-01-01

    We use N-body simulations to model the tidal disruption of a star cluster in a Milky-Way-sized dark matter halo, which results in a narrow stream comparable to (but slightly wider than) Pal-5 or GD-1. The mean Galactic dark matter halo is modeled by a spherical Navarro-Frenk-White potential with subhalos predicted by the ΛCDM cosmological model. The distribution and mass function of the subhalos follow the results from the Aquarius simulation. We use a matched filter approach to look for 'gaps' in tidal streams at 12 length scales from 0.1 kpc to 5 kpc, which appear as characteristic dips in the linear densities along the streams. We find that, in addition to the subhalos' perturbations, the epicyclic overdensities (EOs) due to the coherent epicyclic motions of particles in a stream also produce gap-like signals near the progenitor. We measure the gap spectra—the gap formation rates as functions of gap length—due to both subhalo perturbations and EOs, which have not been accounted for together by previous studies. Finally, we project the simulated streams onto the sky to investigate issues when interpreting gap spectra in observations. In particular, we find that gap spectra from low signal-to-noise observations can be biased by the orbital phase of the stream. This indicates that the study of stream gaps will benefit greatly from high-quality data from future missions.

  12. Numerical Simulation of single-stage axial fan operation under dusty flow conditions

    Science.gov (United States)

    Minkov, L. L.; Pikushchak, E. V.

    2017-11-01

    Assessment of the aerodynamic efficiency of the single-stage axial flow fan under dusty flow conditions based on a numerical simulation using the computational package Ansys-Fluent is proposed. The influence of dust volume fraction on the dependences of the air volume flow rate and the pressure drop on the rotational speed of rotor is demonstrated. Matching functions for formulas describing a pressure drop and volume flow rate in dependence on the rotor speed and dust content are obtained by numerical simulation for the single-stage axial fan. It is shown that the aerodynamic efficiency of the single-stage axial flow fan decreases exponentially with increasing volume content of dust in the air.

  13. Comparative Performance of Four Single Extreme Outlier Discordancy Tests from Monte Carlo Simulations

    Directory of Open Access Journals (Sweden)

    Surendra P. Verma

    2014-01-01

    Full Text Available Using highly precise and accurate Monte Carlo simulations of 20,000,000 replications and 102 independent simulation experiments with extremely low simulation errors and total uncertainties, we evaluated the performance of four single outlier discordancy tests (Grubbs test N2, Dixon test N8, skewness test N14, and kurtosis test N15 for normal samples of sizes 5 to 20. Statistical contaminations of a single observation resulting from parameters called δ from ±0.1 up to ±20 for modeling the slippage of central tendency or ε from ±1.1 up to ±200 for slippage of dispersion, as well as no contamination (δ=0 and ε=±1, were simulated. Because of the use of precise and accurate random and normally distributed simulated data, very large replications, and a large number of independent experiments, this paper presents a novel approach for precise and accurate estimations of power functions of four popular discordancy tests and, therefore, should not be considered as a simple simulation exercise unrelated to probability and statistics. From both criteria of the Power of Test proposed by Hayes and Kinsella and the Test Performance Criterion of Barnett and Lewis, Dixon test N8 performs less well than the other three tests. The overall performance of these four tests could be summarized as N2≅N15>N14>N8.

  14. An accurate behavioral model for single-photon avalanche diode statistical performance simulation

    Science.gov (United States)

    Xu, Yue; Zhao, Tingchen; Li, Ding

    2018-01-01

    An accurate behavioral model is presented to simulate important statistical performance of single-photon avalanche diodes (SPADs), such as dark count and after-pulsing noise. The derived simulation model takes into account all important generation mechanisms of the two kinds of noise. For the first time, thermal agitation, trap-assisted tunneling and band-to-band tunneling mechanisms are simultaneously incorporated in the simulation model to evaluate dark count behavior of SPADs fabricated in deep sub-micron CMOS technology. Meanwhile, a complete carrier trapping and de-trapping process is considered in afterpulsing model and a simple analytical expression is derived to estimate after-pulsing probability. In particular, the key model parameters of avalanche triggering probability and electric field dependence of excess bias voltage are extracted from Geiger-mode TCAD simulation and this behavioral simulation model doesn't include any empirical parameters. The developed SPAD model is implemented in Verilog-A behavioral hardware description language and successfully operated on commercial Cadence Spectre simulator, showing good universality and compatibility. The model simulation results are in a good accordance with the test data, validating high simulation accuracy.

  15. Conditioning geostatistical simulations of a bedrock fluvial aquifer using single well pumping tests

    Science.gov (United States)

    Niazi, A.; Bentley, L. R.; Hayashi, M.

    2015-12-01

    Geostatistical simulation is a powerful tool to explore the uncertainty associated with heterogeneity in groundwater and reservoir studies. Nonetheless, conditioning simulations merely with lithological information does not utilize all of the available information and so some workers additionally condition simulations with flow data. In this study, we introduce an approach to condition geostatistical simulations of the Paskapoo Formation, which is a paleo-fluvial system consisting of sandstone channels embedded in mudstone. The conditioning data consist of two-hour single well pumping tests extracted from the public water well database in Alberta, Canada. In this approach, lithologic models of an entire watershed are simulated and conditioned with hard lithological data using transition probability geostatistics (TPROGS). Then, a segment of the simulation around a pumping well was used to populate a flow model (FEFLOW) with either sand or mudstone. The values of the hydraulic conductivity and specific storage of sand and mudstone were then adjusted to minimize the difference between simulated and actual pumping test data using the parameter estimation program PEST. If the simulated data do not adequately match the measured data, the lithologic model is updated by locally deforming the lithology distribution using the probability perturbation method (PPM) and the model parameters are again updated with PEST. This procedure is repeated until the simulated and measured data agree within a pre-determined tolerance. The procedure is repeated for each pumping well that has pumping test data. The method constrains the lithological simulations and provides estimates of hydraulic conductivity and specific storage that are consistent with the pumping test data. Eventually, the simulations will be combined in watershed scale groundwater models.

  16. Exact tensor hypercontraction: a universal technique for the resolution of matrix elements of local finite-range N-body potentials in many-body quantum problems.

    Science.gov (United States)

    Parrish, Robert M; Hohenstein, Edward G; Schunck, Nicolas F; Sherrill, C David; Martínez, Todd J

    2013-09-27

    Configuration-space matrix elements of N-body potentials arise naturally and ubiquitously in the Ritz-Galerkin solution of many-body quantum problems. For the common specialization of local, finite-range potentials, we develop the exact tensor hypercontraction method, which provides a quantized renormalization of the coordinate-space form of the N-body potential, allowing for a highly separable tensor factorization of the configuration-space matrix elements. This representation allows for substantial computational savings in chemical, atomic, and nuclear physics simulations, particularly with respect to difficult "exchangelike" contractions.

  17. Multi-scale Modeling of Compressible Single-phase Flow in Porous Media using Molecular Simulation

    KAUST Repository

    Saad, Ahmed Mohamed

    2016-05-01

    In this study, an efficient coupling between Monte Carlo (MC) molecular simulation and Darcy-scale flow in porous media is presented. The cell-centered finite difference method with a non-uniform rectangular mesh were used to discretize the simulation domain and solve the governing equations. To speed up the MC simulations, we implemented a recently developed scheme that quickly generates MC Markov chains out of pre-computed ones, based on the reweighting and reconstruction algorithm. This method astonishingly reduces the required computational time by MC simulations from hours to seconds. In addition, the reweighting and reconstruction scheme, which was originally designed to work with the LJ potential model, is extended to work with a potential model that accounts for the molecular quadrupole moment of fluids with non-spherical molecules such as CO2. The potential model was used to simulate the thermodynamic equilibrium properties for single-phase and two-phase systems using the canonical ensemble and the Gibbs ensemble, respectively. Comparing the simulation results with the experimental data showed that the implemented model has an excellent fit outperforming the standard LJ model. To demonstrate the strength of the proposed coupling in terms of computational time efficiency and numerical accuracy in fluid properties, various numerical experiments covering different compressible single-phase flow scenarios were conducted. The novelty in the introduced scheme is in allowing an efficient coupling of the molecular scale and Darcy scale in reservoir simulators. This leads to an accurate description of the thermodynamic behavior of the simulated reservoir fluids; consequently enhancing the confidence in the flow predictions in porous media.

  18. Simulation of single grid-based phase-contrast x-ray imaging (g-PCXI)

    Energy Technology Data Exchange (ETDEWEB)

    Lim, H.W.; Lee, H.W. [Department of Radiation Convergence Engineering, iTOMO Group, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 26493 (Korea, Republic of); Cho, H.S., E-mail: hscho1@yonsei.ac.kr [Department of Radiation Convergence Engineering, iTOMO Group, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 26493 (Korea, Republic of); Je, U.K.; Park, C.K.; Kim, K.S.; Kim, G.A.; Park, S.Y.; Lee, D.Y.; Park, Y.O.; Woo, T.H. [Department of Radiation Convergence Engineering, iTOMO Group, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 26493 (Korea, Republic of); Lee, S.H.; Chung, W.H.; Kim, J.W.; Kim, J.G. [R& D Center, JPI Healthcare Co., Ltd., Ansan 425-833 (Korea, Republic of)

    2017-04-01

    Single grid-based phase-contrast x-ray imaging (g-PCXI) technique, which was recently proposed by Wen et al. to retrieve absorption, scattering, and phase-gradient images from the raw image of the examined object, seems a practical method for phase-contrast imaging with great simplicity and minimal requirements on the setup alignment. In this work, we developed a useful simulation platform for g-PCXI and performed a simulation to demonstrate its viability. We also established a table-top setup for g-PCXI which consists of a focused-linear grid (200-lines/in strip density), an x-ray tube (100-μm focal spot size), and a flat-panel detector (48-μm pixel size) and performed a preliminary experiment with some samples to show the performance of the simulation platform. We successfully obtained phase-contrast x-ray images of much enhanced contrast from both the simulation and experiment and the simulated contract seemed similar to the experimental contrast, which shows the performance of the developed simulation platform. We expect that the simulation platform will be useful for designing an optimal g-PCXI system. - Highlights: • It is proposed for the single grid-based phase-contrast x-ray imaging (g-PCXI) technique. • We implemented for a numerical simulation code. • The preliminary experiment with several samples to compare is performed. • It is expected to be useful to design an optimal g-PCXI system.

  19. Multi-scale simulation of single crystal hollow turbine blade manufactured by liquid metal cooling process

    Directory of Open Access Journals (Sweden)

    Xuewei Yan

    2018-02-01

    Full Text Available Liquid metal cooling (LMC process as a powerful directional solidification (DS technique is prospectively used to manufacture single crystal (SC turbine blades. An understanding of the temperature distribution and microstructure evolution in LMC process is required in order to improve the properties of the blades. For this reason, a multi-scale model coupling with the temperature field, grain growth and solute diffusion was established. The temperature distribution and mushy zone evolution of the hollow blade was simulated and discussed. According to the simulation results, the mushy zone might be convex and ahead of the ceramic beads at a lower withdrawal rate, while it will be concave and laggard at a higher withdrawal rate, and a uniform and horizontal mushy zone will be formed at a medium withdrawal rate. Grain growth of the blade at different withdrawal rates was also investigated. Single crystal structures were all selected out at three different withdrawal rates. Moreover, mis-orientation of the grains at 8 mm/min reached ~30°, while it was ~5° and ~15° at 10 mm/min and 12 mm/min, respectively. The model for predicting dendritic morphology was verified by corresponding experiment. Large scale for 2D dendritic distribution in the whole sections was investigated by experiment and simulation, and they presented a well agreement with each other. Keywords: Hollow blade, Single crystal, Multi-scale simulation, Liquid metal cooling

  20. Monte Carlo simulation of a single detector unit for the neutron detector array NEDA

    Energy Technology Data Exchange (ETDEWEB)

    Jaworski, G. [Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa (Poland); Heavy Ion Laboratory, University of Warsaw, ul. Pasteura 5A, PL 02-093 Warszawa (Poland); Palacz, M., E-mail: palacz@slcj.uw.edu.pl [Heavy Ion Laboratory, University of Warsaw, ul. Pasteura 5A, PL 02-093 Warszawa (Poland); Nyberg, J. [Department of Physics and Astronomy, Uppsala University, Uppsala (Sweden); Angelis, G. de [INFN, Laboratori Nazionali di Legnaro, Legnaro (Italy); France, G. de [GANIL, Caen (France); Di Nitto, A. [INFN Sezione di Napoli, Napoli (Italy); Egea, J. [Department of Electronic Engineering, University of Valencia, Burjassot (Valencia) (Spain); IFIC-CSIC, University of Valencia, Valencia (Spain); Erduran, M.N. [Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University Istanbul (Turkey); Ertuerk, S. [Nigde Universitesi, Fen-Edebiyat Falkueltesi, Fizik Boeluemue, Nigde (Turkey); Farnea, E. [INFN Sezione di Padova, Padua (Italy); Gadea, A. [IFIC-CSIC, University of Valencia, Valencia (Spain); Gonzalez, V. [Department of Electronic Engineering, University of Valencia, Burjassot (Valencia) (Spain); Gottardo, A. [Padova University, Padua (Italy); Hueyuek, T. [IFIC-CSIC, University of Valencia, Valencia (Spain); Kownacki, J. [Heavy Ion Laboratory, University of Warsaw, ul. Pasteura 5A, PL 02-093 Warszawa (Poland); Pipidis, A. [INFN, Laboratori Nazionali di Legnaro, Legnaro (Italy); Roeder, B. [LPC-Caen, ENSICAEN, IN2P3/CNRS et Universite de Caen, Caen (France); Soederstroem, P.-A. [Department of Physics and Astronomy, Uppsala University, Uppsala (Sweden); Sanchis, E. [Department of Electronic Engineering, University of Valencia, Burjassot (Valencia) (Spain); Tarnowski, R. [Heavy Ion Laboratory, University of Warsaw, ul. Pasteura 5A, PL 02-093 Warszawa (Poland); and others

    2012-05-01

    A study of the dimensions and performance of a single detector of the future neutron detector array NEDA was performed by means of Monte Carlo simulations, using GEANT4. Two different liquid scintillators were evaluated: the hydrogen based BC501A and the deuterated BC537. The efficiency and the probability that one neutron will trigger a signal in more than one detector were investigated as a function of the detector size. The simulations were validated comparing the results to experimental measurements performed with two existing neutron detectors, with different geometries, based on the liquid scintillator BC501.

  1. Molecular dynamic simulation for nanometric cutting of single-crystal face-centered cubic metals.

    Science.gov (United States)

    Huang, Yanhua; Zong, Wenjun

    2014-01-01

    In this work, molecular dynamics simulations are performed to investigate the influence of material properties on the nanometric cutting of single crystal copper and aluminum with a diamond cutting tool. The atomic interactions in the two metallic materials are modeled by two sets of embedded atom method (EAM) potential parameters. Simulation results show that although the plastic deformation of the two materials is achieved by dislocation activities, the deformation behavior and related physical phenomena, such as the machining forces, machined surface quality, and chip morphology, are significantly different for different materials. Furthermore, the influence of material properties on the nanometric cutting has a strong dependence on the operating temperature.

  2. Improved single particle potential for transport model simulations of nuclear reactions induced by rare isotope beams

    International Nuclear Information System (INIS)

    Xu Chang; Li Baoan

    2010-01-01

    Taking into account more accurately the isospin dependence of nucleon-nucleon interactions in the in-medium many-body force term of the Gogny effective interaction, new expressions for the single-nucleon potential and the symmetry energy are derived. Effects of both the spin (isospin) and the density dependence of nuclear effective interactions on the symmetry potential and the symmetry energy are examined. It is shown that they both play a crucial role in determining the symmetry potential and the symmetry energy at suprasaturation densities. The improved single-nucleon potential will be useful for more accurate simulation of nuclear reactions induced by rare-isotope beams within transport models.

  3. Carter constant induced mechanism for generation of anisotropic kinetic equilibria in collisionless N-body systems

    Science.gov (United States)

    Cremaschini, Claudio; Stuchlík, Zdeněk

    A new intrinsically-relativistic kinetic mechanism for generation of nonisotropic relativistic kinetic equilibria in collisionless N-body systems is pointed out. The theory is developed in the framework of the covariant Vlasov statistical description. The new effect is based on the constraints placed by the conservation laws of neutral single-particle dynamics in prescribed background curved-spacetimes demonstrating existence of Killing tensors. As an illustration, the particular case of the Kerr spacetime admitting the so-called Carter constant for the particle geodesic motion is considered. The general functional form of the equilibrium kinetic distribution function (KDF) is determined and an explicit realization in terms of Gaussian-like distributions is provided. It is shown that, due to the Carter constant, these equilibrium KDFs exhibit an anisotropic phase-space functional dependence in terms of the single-particle 4-velocity components, giving rise to corresponding nonisotropic continuum fluid fields. The qualitative properties of the equilibrium stress-energy tensor associated with these systems are discussed, with a particular emphasis on the related occurrence of temperature anisotropy effects. The theory is susceptible of astrophysical applications, including in particular the statistical properties of dark matter (DM) halos around stellar-mass or galactic-center black holes.

  4. A design of calibration single star simulator with adjustable magnitude and optical spectrum output system

    Science.gov (United States)

    Hu, Guansheng; Zhang, Tao; Zhang, Xuan; Shi, Gentai; Bai, Haojie

    2018-03-01

    In order to achieve multi-color temperature and multi-magnitude output, magnitude and temperature can real-time adjust, a new type of calibration single star simulator was designed with adjustable magnitude and optical spectrum output in this article. xenon lamp and halogen tungsten lamp were used as light source. The control of spectrum band and temperature of star was realized with different multi-beam narrow band spectrum with light of varying intensity. When light source with different spectral characteristics and color temperature go into the magnitude regulator, the light energy attenuation were under control by adjusting the light luminosity. This method can completely satisfy the requirements of calibration single star simulator with adjustable magnitude and optical spectrum output in order to achieve the adjustable purpose of magnitude and spectrum.

  5. N-body modeling of barlens galaxies: Boxy/Peanut/X observed at different viewing geometries

    Science.gov (United States)

    Salo, Heikki; Laurikainen, Eija

    2017-06-01

    We use stellar dynamical N-body simulations to explore barlens galaxies, i.e. galaxies with lens-like central structures embedded in their bars, with a size about one-half of the narrow bar component. Because of their roundish isophotes, barlenses are often confused with classical bulges. However, growing evidence indicates that barlenses form a part of the bar, corresponding to the face-on projection of the vertically extended Boxy/Peanut/X central structures seen in edge-on barred galaxies (see Laurikainen et al. 2014, 2016, Athanassoula et al. 2015). B/P/X/barlens structures appear mostly in galaxies with stellar masses above 1010 solar masses. It has been suggested by Bland-Hawthorn & Gerhard (2016) that in face-on view also our Milky Way is likely to be a barlens galaxy.Here we review the morphological appearance of B/P/X/barlens galaxies (aspect ratio, size compared to the narrow bar) as a function of viewing inclination, by comparing synthetic images from simulations with the 3.6 micron data from S4G (Spitzer Survey of Stellar Structure in Galaxies). We demonstrate how the X/barlens morphology depends on the central mass concentration in galaxies; the pure barlens morphology requires steep inner rotation curves, while for shallower slopes the central structure still resembles a barlens, but shows boxy isophotes or X-signature even at low inclinations. This simulated behavior is confirmed with S4G data (Salo & Laurikainen 2017). We also use broadband SDSS colors and CALIFA DR3 data from literature, to analyze the ages and metallicities of the barlens components with respect to the narrow bar and the centralpeak of the galaxies. Finally, kinematic maps of the simulated galaxies are presented, illustrating the expected signatures of barlens component on the H3 and H4 Hermite-moments.

  6. MODELLING AND SIMULATION OF A SINGLE-ZONE HEATING AND VENTILATION SYSTEM

    Directory of Open Access Journals (Sweden)

    Mesut ŞENGİRGİN

    2005-03-01

    Full Text Available In this study, modelling and simulation results of a single-zone heating and ventilation system of a large office room are introduced. Heating system is controlled by an on-off controller. By considering the sinusoidal outdoor air tempareture variation and various outdoor/return air ratios as input parameters, dynamic behaviour of room air tempereture are investigated. For this purpose, MATLAB/Simulink code is used.

  7. Three-dimensional simulation of the motion of a single particle under a simulated turbulent velocity field

    Science.gov (United States)

    Moreno-Casas, P. A.; Bombardelli, F. A.

    2015-12-01

    A 3D Lagrangian particle tracking model is coupled to a 3D channel velocity field to simulate the saltation motion of a single sediment particle moving in saltation mode. The turbulent field is a high-resolution three dimensional velocity field that reproduces a by-pass transition to turbulence on a flat plate due to free-stream turbulence passing above de plate. In order to reduce computational costs, a decoupled approached is used, i.e., the turbulent flow is simulated independently from the tracking model, and then used to feed the 3D Lagrangian particle model. The simulations are carried using the point-particle approach. The particle tracking model contains three sub-models, namely, particle free-flight, a post-collision velocity and bed representation sub-models. The free-flight sub-model considers the action of the following forces: submerged weight, non-linear drag, lift, virtual mass, Magnus and Basset forces. The model also includes the effect of particle angular velocity. The post-collision velocities are obtained by applying conservation of angular and linear momentum. The complete model was validated with experimental results from literature within the sand range. Results for particle velocity time series and distribution of particle turbulent intensities are presented.

  8. Single and Multiple UAV Cyber-Attack Simulation and Performance Evaluation

    Directory of Open Access Journals (Sweden)

    Ahmad Y. Javaid

    2015-02-01

    Full Text Available Usage of ground, air and underwater unmanned vehicles (UGV, UAV and UUV has increased exponentially in the recent past with industries producing thousands of these unmanned vehicles every year.With the ongoing discussion of integration of UAVs in the US National Airspace, the need of a cost-effective way to verify the security and resilience of a group of communicating UAVs under attack has become very important. The answer to this need is a simulation testbed which can be used to simulate the UAV Network (UAVNet. One of these attempts is - UAVSim (Unmanned Aerial Vehicle Simulation testbed developed at the University of Toledo. It has the capability of simulating large UAV networks as well as small UAV networks with large number of attack nodes. In this paper, we analyse the performance of the simulation testbed for two attacks, targeting single and multiple UAVs. Traditional and generic computing resource available in a regular computer laboratory was used. Various evaluation results have been presented and analysed which suggest the suitability of UAVSim for UAVNet attack and swarm simulation applications.

  9. Explicit Singly Diagonally Implicit Runge-Kutta Methods and Adaptive Stepsize Control for Reservoir Simulation

    DEFF Research Database (Denmark)

    Völcker, Carsten; Jørgensen, John Bagterp; Thomsen, Per Grove

    2010-01-01

    The implicit Euler method, normally refered to as the fully implicit (FIM) method, and the implicit pressure explicit saturation (IMPES) method are the traditional choices for temporal discretization in reservoir simulation. The FIM method offers unconditionally stability in the sense of discrete....... Current reservoir simulators apply timestepping algorithms that are based on safeguarded heuristics, and can neither guarantee convergence in the underlying equation solver, nor provide estimates of the relations between convergence, integration error and stepsizes. We establish predictive stepsize...... control applied to high order methods for temporal discretization in reservoir simulation. The family of Runge-Kutta methods is presented and in particular the explicit singly diagonally implicit Runge-Kutta (ESDIRK) method with an embedded error estimate is described. A predictive stepsize adjustment...

  10. A numerical model for the dynamic simulation of a recirculation single-effect absorption chiller

    International Nuclear Information System (INIS)

    Zinet, Matthieu; Rulliere, Romuald; Haberschill, Philippe

    2012-01-01

    Highlights: ► Dynamic simulation of a new recirculation single-effect H 2 O/LiBr absorption chiller is developed. ► The chiller is driven by two heat sources and exclusively cooled by the ambient air. ► Heat and mass transfer in the absorber and the desorber are described according to a detailed physical model. ► Analyse of the dynamic behaviour of the chiller after sudden changes in operation. - Abstract: A dynamic model for the simulation of a new single-effect water/lithium bromide absorption chiller is developed. The chiller is driven by two distinct heat sources, includes a custom integrated falling film evaporator–absorber, uses mixed recirculation and is exclusively cooled by the ambient air. Heat and mass transfer in the evaporator–absorber and in the desorber are described according to a physical model for vapour absorption based on Nusselt’s film theory. The other heat exchangers are handled using a simplified approach based on the NTU-effectiveness method. The model is then used to analyze the chiller response to a step drop of the heat recovery circuit flow rate, and to a sudden reduction of the cooling need in the conditioned space. In the latter case, a basic temperature regulation system is simulated. In both simulations, the performance of the chiller is well represented and consistent with expectations.

  11. Numerical simulation study into the effect of a single heavy ion on a sub-micron CMOS device

    International Nuclear Information System (INIS)

    Detcheverry, C.; Lorfevre, E.; Bruguier, G.; Palau, J.M.; Gasiot, J.; Ecoffet, R.

    1997-01-01

    This article discusses coupling between the MEDICI component simulator and the SPICE circuit simulator to study single-event-upset phenomena caused by a single ion on a 0.6 μm CMOS device. Results conforming closely to experimental values were obtained by adopting an appropriate mesh size, a hydrodynamic charge transport model (rather than a diffusion-conduction model), and realistic simulation of photon-induced carrier generation, to accurately model the ion passage and trajectory. (authors)

  12. Thermal-Hydraulic Simulations of Single Pin and Assembly Sector for IVG- 1M Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Garner, P. [Argonne National Lab. (ANL), Argonne, IL (United States); Hanan, N. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-01-15

    Thermal-hydraulic simulations have been performed using computational fluid dynamics (CFD) for the highly-enriched uranium (HEU) design of the IVG.1M reactor at the Institute of Atomic Energy (IAE) at the National Nuclear Center (NNC) in the Republic of Kazakhstan. Steady-state simulations were performed for both types of fuel assembly (FA), i.e. the FA in rows 1 & 2 and the FA in row 3, as well as for single pins in those FA (600 mm and 800 mm pins). Both single pin calculations and bundle sectors have been simulated for the most conservative operating conditions corresponding to the 10 MW output power, which corresponds to a pin unit cell Reynolds number of only about 7500. Simulations were performed using the commercial code STAR-CCM+ for the actual twisted pin geometry as well as a straight-pin approximation. Various Reynolds-Averaged Navier-Stokes (RANS) turbulence models gave different results, and so some validation runs with a higher-fidelity Large Eddy Simulation (LES) code were performed given the lack of experimental data. These singled out the Realizable Two-Layer k-ε as the most accurate turbulence model for estimating surface temperature. Single-pin results for the twisted case, based on the average flow rate per pin and peak pin power, were conservative for peak clad surface temperature compared to the bundle results. Also the straight-pin calculations were conservative as compared to the twisted pin simulations, as expected, but the single-pin straight case was not always conservative with regard to the straight-pin bundle. This was due to the straight-pin temperature distribution being strongly influenced by the pin orientation, particularly near the outer boundary. The straight-pin case also predicted the peak temperature to be in a different location than the twisted-pin case. This is a limitation of the straight-pin approach. The peak temperature pin was in a different location from the peak power pin in every case simulated, and occurred at an

  13. Multiscale modelling and simulation of single crystal superalloy turbine blade casting during directional solidification process

    Directory of Open Access Journals (Sweden)

    Xu Qingyan

    2014-07-01

    Full Text Available As the key parts of an aero-engine, single crystal (SX superalloy turbine blades have been the focus of much attention. However, casting defects often occur during the manufacturing process of the SX turbine blades. Modeling and simulation technology can help to optimize the manufacturing process of SX blades. Multiscale coupled models were proposed and used to simulate the physical phenomena occurring during the directional solidification (DS process. Coupled with heat transfer (macroscale and grain growth (meso-scale, 3D dendritic grain growth was calculated to show the competitive grain growth at micro-scale. SX grain selection behavior was studied by the simulation and experiments. The results show that the geometrical structure and technical parameters had strong influences on the grain selection effectiveness. Based on the coupled models, heat transfer, grain growth and microstructure evolution of a complex hollow SX blade were simulated. Both the simulated and experimental results show that the stray grain occurred at the platform of the SX blade when a constant withdrawal rate was used in manufacturing process. In order to avoid the formation of the stray crystal, the multi-scale coupled models and the withdrawal rate optimized technique were applied to the same SX turbine blade. The modeling results indicated that the optimized variable withdrawal rate can achieve SX blade castings with no stray grains, which was also proved by the experiments.

  14. AUTOMATIC INTERPRETATION OF HIGH RESOLUTION SAR IMAGES: FIRST RESULTS OF SAR IMAGE SIMULATION FOR SINGLE BUILDINGS

    Directory of Open Access Journals (Sweden)

    J. Tao

    2012-09-01

    Full Text Available Due to the all-weather data acquisition capabilities, high resolution space borne Synthetic Aperture Radar (SAR plays an important role in remote sensing applications like change detection. However, because of the complex geometric mapping of buildings in urban areas, SAR images are often hard to interpret. SAR simulation techniques ease the visual interpretation of SAR images, while fully automatic interpretation is still a challenge. This paper presents a method for supporting the interpretation of high resolution SAR images with simulated radar images using a LiDAR digital surface model (DSM. Line features are extracted from the simulated and real SAR images and used for matching. A single building model is generated from the DSM and used for building recognition in the SAR image. An application for the concept is presented for the city centre of Munich where the comparison of the simulation to the TerraSAR-X data shows a good similarity. Based on the result of simulation and matching, special features (e.g. like double bounce lines, shadow areas etc. can be automatically indicated in SAR image.

  15. Initial data for the relativistic gravitational N-body problem

    International Nuclear Information System (INIS)

    Chrusciel, Piotr T; Corvino, Justin; Isenberg, James

    2010-01-01

    In general relativity, an initial data set for an isolated gravitational system takes the form of a solution of the Einstein constraint equations which is asymptotically Euclidean on a specified end. Given a collection of N such data sets with a subregion of interest (bounded away from the specified end) chosen in each, we show that there exists a family of new initial data sets, each of which contains exact copies of each of the N chosen subregions, positioned in a chosen array in a single asymptotic end. These composite initial data sets model isolated, relativistic gravitational systems containing N chosen bodies in specified initial configurations. (fast track communication)

  16. N-Body Nuclear Forces at Short Distances in Holographic QCD

    CERN Document Server

    Hashimoto, Koji; Nakatsukasa, Takashi

    2010-01-01

    We provide a calculation of N-body (N>2) nucleon interactions at short distances in holographic QCD. In the Sakai-Sugimoto model of large N_c massless QCD, N baryons are described by N Yang-Mills instantons in 5 spacetime dimensions. We compute a classical short distance interaction hamiltonian for N 'tHooft instantons. This corresponds to N baryons sharing identical classical spins and isospins. We find that genuine N-body nuclear forces turn out to vanish for N>2, at the leading order. This suggests that classical N-body forces are always suppressed compared with 2-body forces.

  17. Thermodynamic simulation of condensation heat recovery characteristics of a single stage centrifugal chiller in a hotel

    International Nuclear Information System (INIS)

    Gong, Guangcai; Chen, Feihu; Su, Huan; Zhou, Jianyong

    2012-01-01

    Highlights: ► Thermodynamic model of a two-condenser condensation system has been carried out. ► Dynamic simulation method has been presented. ► COP and g of the refrigerating system is better than the single condensation system. ► The optimal parameters for the two-condenser condensation system have been studied. -- Abstract: A thermodynamic simulation study has been carried out for a single stage centrifugal chiller in this paper. The cooling capacity of the chiller unit is about 1750 kW. The chiller unit has been set and tested, and the work refrigerant is R22. A heat exchanger has been set between outlet of the compressor and the condenser for sanitary hot water supplying. Then the chiller unit is a kind of combined system that can provide sanitary hot water supplying and air conditioning simultaneously. A thermodynamic simulation model of the combined system has been established with the system simulation toolbox Simulink. Performance of the components and the combined system of the chiller unit has been studied over a wide range of operating conditions. The potential energy and fuel cost saving associated with the use of the proposed combined system for a typical hotel in south China has been estimated. It is showed that the combined system of the chiller unit is very useful in hotel buildings. And the thermodynamic simulation model of the combined system is significance for the optimization of parameters of the chiller unit such as condensation and evaporation temperature, mass flow of the sanitary hot water and size of hot water storage tank.

  18. GRAVIDY, a GPU modular, parallel direct-summation N-body integrator: dynamics with softening

    Science.gov (United States)

    Maureira-Fredes, Cristián; Amaro-Seoane, Pau

    2018-01-01

    A wide variety of outstanding problems in astrophysics involve the motion of a large number of particles under the force of gravity. These include the global evolution of globular clusters, tidal disruptions of stars by a massive black hole, the formation of protoplanets and sources of gravitational radiation. The direct-summation of N gravitational forces is a complex problem with no analytical solution and can only be tackled with approximations and numerical methods. To this end, the Hermite scheme is a widely used integration method. With different numerical techniques and special-purpose hardware, it can be used to speed up the calculations. But these methods tend to be computationally slow and cumbersome to work with. We present a new graphics processing unit (GPU), direct-summation N-body integrator written from scratch and based on this scheme, which includes relativistic corrections for sources of gravitational radiation. GRAVIDY has high modularity, allowing users to readily introduce new physics, it exploits available computational resources and will be maintained by regular updates. GRAVIDY can be used in parallel on multiple CPUs and GPUs, with a considerable speed-up benefit. The single-GPU version is between one and two orders of magnitude faster than the single-CPU version. A test run using four GPUs in parallel shows a speed-up factor of about 3 as compared to the single-GPU version. The conception and design of this first release is aimed at users with access to traditional parallel CPU clusters or computational nodes with one or a few GPU cards.

  19. Galactic scale gas flows in colliding galaxies: 3-dimensional, N-body/hydrodynamics experiments

    Science.gov (United States)

    Lamb, Susan A.; Gerber, Richard A.; Balsara, Dinshaw S.

    1994-01-01

    We present some results from three dimensional computer simulations of collisions between models of equal mass galaxies, one of which is a rotating, disk galaxy containing both gas and stars and the other is an elliptical containing stars only. We use fully self consistent models in which the halo mass is 2.5 times that of the disk. In the experiments we have varied the impact parameter between zero (head on) and 0.9R (where R is the radius of the disk), for impacts perpendicular to the disk plane. The calculations were performed on a Cray 2 computer using a combined N-body/smooth particle hydrodynamics (SPH) program. The results show the development of complicated flows and shock structures in the direction perpendicular to the plane of the disk and the propagation outwards of a density wave in both the stars and the gas. The collisional nature of the gas results in a sharper ring than obtained for the star particles, and the development of high volume densities and shocks.

  20. Diffusion of Supercritical Fluids through Single-Layer Nanoporous Solids: Theory and Molecular Simulations.

    Science.gov (United States)

    Oulebsir, Fouad; Vermorel, Romain; Galliero, Guillaume

    2018-01-16

    With the advent of graphene material, membranes based on single-layer nanoporous solids appear as promising devices for fluid separation, be it liquid or gaseous mixtures. The design of such architectured porous materials would greatly benefit from accurate models that can predict their transport and separation properties. More specifically, there is no universal understanding of how parameters such as temperature, fluid loading conditions, or the ratio of the pore size to the fluid molecular diameter influence the permeation process. In this study, we address the problem of pure supercritical fluids diffusing through simplified models of single-layer porous materials. Basically, we investigate a toy model that consists of a single-layer lattice of Lennard-Jones interaction sites with a slit gap of controllable width. We performed extensive equilibrium and biased molecular dynamics simulations to document the physical mechanisms involved at the molecular scale. We propose a general constitutive equation for the diffusional transport coefficient derived from classical statistical mechanics and kinetic theory, which can be further simplified in the ideal gas limit. This transport coefficient relates the molecular flux to the fluid density jump across the single-layer membrane. It is found to be proportional to the accessible surface porosity of the single-layer porous solid and to a thermodynamic factor accounting for the inhomogeneity of the fluid close to the pore entrance. Both quantities directly depend on the potential of mean force that results from molecular interactions between solid and fluid atoms. Comparisons with the simulations data show that the kinetic model captures how narrowing the pore size below the fluid molecular diameter lowers dramatically the value of the transport coefficient. Furthermore, we demonstrate that our general constitutive equation allows for a consistent interpretation of the intricate effects of temperature and fluid loading

  1. Single-site Lennard-Jones models via polynomial chaos surrogates of Monte Carlo molecular simulation

    KAUST Repository

    Kadoura, Ahmad Salim

    2016-06-01

    In this work, two Polynomial Chaos (PC) surrogates were generated to reproduce Monte Carlo (MC) molecular simulation results of the canonical (single-phase) and the NVT-Gibbs (two-phase) ensembles for a system of normalized structureless Lennard-Jones (LJ) particles. The main advantage of such surrogates, once generated, is the capability of accurately computing the needed thermodynamic quantities in a few seconds, thus efficiently replacing the computationally expensive MC molecular simulations. Benefiting from the tremendous computational time reduction, the PC surrogates were used to conduct large-scale optimization in order to propose single-site LJ models for several simple molecules. Experimental data, a set of supercritical isotherms, and part of the two-phase envelope, of several pure components were used for tuning the LJ parameters (ε, σ). Based on the conducted optimization, excellent fit was obtained for different noble gases (Ar, Kr, and Xe) and other small molecules (CH4, N2, and CO). On the other hand, due to the simplicity of the LJ model used, dramatic deviations between simulation and experimental data were observed, especially in the two-phase region, for more complex molecules such as CO2 and C2 H6.

  2. Numerical Simulation on Single Bubble Pool Boiling with Influence of Heater Thermal Capacity

    Science.gov (United States)

    Zhao, Jian-Fu; Zhang, Liang; Li, Zhen-Dong

    The model of single bubble pool boiling is used to simulate nucleate pool boiling phenomenon in the present paper. Local convection and heat transfer around a single vapour bubble which is growing from a nucleus bubble planted artificially on the surface of heaters with different thicknesses, as well as transient heat conduction inside the heater’s wall, are simulated numerically with sharp interface representation. Multi-cycle simulation is adopted to eliminate the effect of un-physical initial conditions. It’s found that the thermal response of wall is found to affect the bubble growth and boiling heat transfer. During the process of bubble growth, a sharp temperature drop inside the solid wall is evident near the contact line underneath the growing bubble because of the strong evaporation in micro-region. The temperature and heat flux profiles change with the move of the contact line, and twice sharp temperature drops at a certain location are observed, which correspond to the expanding and recoiling processes, respectively. During the waiting period after the bubble detached from the wall, the temperature field is recovered by heat conduction inside the solid wall. As a part of preparation of the SOBER project onboard the Chinese recoverable satellite SJ-10, which will be launched in the end of 2015, the gravity influence is also studied.

  3. Simulating the 2012 High Plains drought using three single column versions (SCM) of BUGS5

    Science.gov (United States)

    Medina, I. D.; Denning, S.

    2013-12-01

    The impact of changes in the frequency and severity of drought on fresh water sustainability is a great concern for many regions of the world. One such location is the High Plains, where the local economy is primarily driven by fresh water withdrawals from the Ogallala Aquifer, which accounts for approximately 30% of total irrigation withdrawals from all U.S. aquifers combined. Modeling studies that focus on the feedback mechanisms that control the climate and eco-hydrology during times of drought are limited, and have used conventional General Circulation Models (GCMs) with grid length scales ranging from one hundred to several hundred kilometers. Additionally, these models utilize crude statistical parameterizations of cloud processes for estimating sub-grid fluxes of heat and moisture and have a poor representation of land surface heterogeneity. For this research, we will focus on the 2012 High Plains drought and will perform numerical simulations using three single column versions (SCM) of BUGS5 (Colorado State University (CSU) GCM coupled to the Simple Biosphere Model (SiB3)) at multiple sites overlying the Ogallala Aquifer for the 2011-2012 periods. In the first version of BUGS5, the model will be used in its standard bulk setting (single atmospheric column coupled to a single instance of SiB3), secondly, the Super-Parameterized Community Atmospheric Model (SP-CAM), a cloud resolving model (CRM consists of 64 atmospheric columns), will replace the single CSU GCM atmospheric parameterization and will be coupled to a single instance of SiB3, and for the third version of BUGS5, an instance of SiB3 will be coupled to each CRM column of the SP-CAM (64 CRM columns coupled to 64 instances of SiB3). To assess the physical realism of the land-atmosphere feedbacks simulated at each site by all versions of BUGS5, differences in simulated energy and moisture fluxes will be computed between the 2011 and 2012 period and will be compared to differences calculated using

  4. Capsule-like voids in SiC single crystal: Phase contrast imaging and computer simulations

    Directory of Open Access Journals (Sweden)

    V. G. Kohn

    2014-09-01

    Full Text Available The results of observation of capsule-like voids in silicon carbide (6H-SiC single crystal by means of a phase contrast imaging technique with synchrotron radiation at the Pohang Light Source as well as computer simulations of such images are presented. A pink beam and a monochromated beam were used. The latter gives more pronounced images but they still are smoothed due to a finite detector resolution and the spatial coherence of the beam. Sizes and a structure of far field images are different from these of the objects. The computer simulations allow us to reproduce a shape and a size of the capsule-like void.

  5. A simulation study on the dose distribution for a single beam of the gamma knife

    International Nuclear Information System (INIS)

    Chen, Chin-cheng; Jiang, Shiang-Huei; Lee, Chung-chi; Shiau, Cheng-Ying

    2000-01-01

    The purpose of this study is to evaluate the impact of the tissue heterogeneity on the dose distribution for a single beam of the gamma knife. The EGS4 Monte Carlo code was used to simulate both depth and radial profiles of the radiation dose in homogeneous and heterogeneous phantoms, respectively. The results are compared with the dose distribution calculated using the mathematical model of Gamma Plan, the treatment planning system of the gamma knife. The skull and sinus heterogeneity were simulated by a Teflon shell and an air shell, respectively. It was found that the tissue heterogeneity caused significant perturbation on the absolute depth dose at the focus as well as on the depth-dose distribution near the phantom surface and/or at the interface but little effect on the radial dose distribution. The effect of the beam aperture on the depth-dose distribution was also investigated in this study. (author)

  6. Simulation study on single event burnout in linear doping buffer layer engineered power VDMOSFET

    International Nuclear Information System (INIS)

    Jia Yunpeng; Su Hongyuan; Hu Dongqing; Wu Yu; Jin Rui

    2016-01-01

    The addition of a buffer layer can improve the device's secondary breakdown voltage, thus, improving the single event burnout (SEB) threshold voltage. In this paper, an N type linear doping buffer layer is proposed. According to quasi-stationary avalanche simulation and heavy ion beam simulation, the results show that an optimized linear doping buffer layer is critical. As SEB is induced by heavy ions impacting, the electric field of an optimized linear doping buffer device is much lower than that with an optimized constant doping buffer layer at a given buffer layer thickness and the same biasing voltages. Secondary breakdown voltage and the parasitic bipolar turn-on current are much higher than those with the optimized constant doping buffer layer. So the linear buffer layer is more advantageous to improving the device's SEB performance. (paper)

  7. Molecular dynamics simulations on aqueous two-phase systems - Single PEG-molecules in solution

    Directory of Open Access Journals (Sweden)

    Oelmeier Stefan A

    2012-08-01

    Full Text Available Abstract Background Molecular Dynamics (MD simulations are a promising tool to generate molecular understanding of processes related to the purification of proteins. Polyethylene glycols (PEG of various length are commonly used in the production and purification of proteins. The molecular mechanisms behind PEG driven precipitation, aqueous two-phase formation or the effects of PEGylation are however still poorly understood. Results In this paper, we ran MD simulations of single PEG molecules of variable length in explicitly simulated water. The resulting structures are in good agreement with experimentally determined 3D structures of PEG. The increase in surface hydrophobicity of PEG of longer chain length could be explained on an atomic scale. PEG-water interactions as well as aqueous two-phase formation in the presence of PO4 were found to be correlated to PEG surface hydrophobicity. Conclusions We were able to show that the taken MD simulation approach is capable of generating both structural data as well as molecule descriptors in agreement with experimental data. Thus, we are confident of having a good in silico representation of PEG.

  8. Numerical Simulations of Calcium Ions Spiral Wave in Single Cardiac Myocyte

    Science.gov (United States)

    Bai, Yong-Qiang; Zhu, Xing

    2010-04-01

    The calcium ions (Ca2+) spark is an elementary Ca2+ release event in cardiac myocytes. It is believed to buildup cell-wide Ca2+ signals, such as Ca2+ transient and Ca2+ wave, through a Ca2+-induced Ca2+ release (CICR) mechanism. Here the excitability of the Ca2+ wave in a single cardiac myocyte is simulated by employing the fire-diffuse-fire model. By modulating the dynamic parameters of Ca2+ release and re-uptake channels, we find three Ca2+ signaling states in a single cardiac myocyte: no wave, plane wave, and spiral wave. The period of a spiral wave is variable in the different regimes. This study indicates that the spiral wave or the excitability of the system can be controlled through micro-modulation in a living excitable medium.

  9. [Compared Markov with fractal models by using single-channel experimental and simulation data].

    Science.gov (United States)

    Lan, Tonghan; Wu, Hongxiu; Lin, Jiarui

    2006-10-01

    The gating mechanical kinetical of ion channels has been modeled as a Markov process. In these models it is assumed that the channel protein has a small number of discrete conformational states and kinetic rate constants connecting these states are constant, the transition rate constants among the states is independent both of time and of the previous channel activity. It is assumed in Liebovitch's fractal model that the channel exists in an infinite number of energy states, consequently, transitions from one conductance state to another would be governed by a continuum of rate constants. In this paper, a statistical comparison is presented of Markov and fractal models of ion channel gating, the analysis is based on single-channel data from ion channel voltage-dependence K+ single channel of neuron cell and simulation data from three-states Markov model.

  10. Simulating single-event burnout of n-channel power MOSFET's

    International Nuclear Information System (INIS)

    Johnson, G.H.; Hohl, J.H.; Schrimpf, R.D.; Galloway, K.F.

    1993-01-01

    Heavy ions are ubiquitous in a space environment. Single-event burnout of power MOSFET's is a sudden catastrophic failure mechanism that is initiated by the passage of a heavy ion through the device structure. The passage of the heavy ion generates a current filament that locally turns on a parasitic n-p-n transistor inherent to the power MOSFET. Subsequent high currents and high voltage in the device induce second breakdown of the parasitic bipolar transistor and hence meltdown of the device. This paper presents a model that can be used for simulating the burnout mechanism in order to gain insight into the significant device parameters that most influence the single-event burnout susceptibility of n-channel power MOSFET's

  11. Binary Factorization in Hopfield-Like Neural Networks: Single-Step Approximation and Computer Simulations

    Czech Academy of Sciences Publication Activity Database

    Frolov, A. A.; Sirota, A.M.; Húsek, Dušan; Muraviev, I. P.

    2004-01-01

    Roč. 14, č. 2 (2004), s. 139-152 ISSN 1210-0552 R&D Projects: GA ČR GA201/01/1192 Grant - others:BARRANDE(EU) 99010-2/99053; Intellectual computer Systems(EU) Grant 2.45 Institutional research plan: CEZ:AV0Z1030915 Keywords : nonlinear binary factor analysis * feature extraction * recurrent neural network * Single-Step approximation * neurodynamics simulation * attraction basins * Hebbian learning * unsupervised learning * neuroscience * brain function modeling Subject RIV: BA - General Mathematics

  12. Simulation model of a single-stage lithium bromide-water absorption cooling unit

    Science.gov (United States)

    Miao, D.

    1978-01-01

    A computer model of a LiBr-H2O single-stage absorption machine was developed. The model, utilizing a given set of design data such as water-flow rates and inlet or outlet temperatures of these flow rates but without knowing the interior characteristics of the machine (heat transfer rates and surface areas), can be used to predict or simulate off-design performance. Results from 130 off-design cases for a given commercial machine agree with the published data within 2 percent.

  13. Tight binding simulation study on zigzag single-walled carbon nanotubes

    Science.gov (United States)

    Sharma, Deepa; Jaggi, Neena; Gupta, Vishu

    2018-01-01

    Tight binding simulation studies using the density functional tight binding (DFTB) model have been performed on various zigzag single-walled carbon-nanotubes (SWCNTs) to investigate their electronic properties using DFTB module of the Material Studio Software version 7.0. Various combinations of different eigen-solvers and charge mixing schemes available in the DFTB Module have been tried to chalk out the electronic structure. The analytically deduced values of the bandgap of (9, 0) SWCNT were compared with the experimentally determined value reported in the literature. On comparison, it was found that the tight binding approximations tend to drastically underestimate the bandgap values. However, the combination of Anderson charge mixing method with standard eigensolver when implemented using the smart algorithm was found to produce fairly close results. These optimized model parameters were then used to determine the band structures of various zigzag SWCNTs. (9, 0) Single-walled Nanotube which is extensively being used for sensing NH3, CH4 and NO2 has been picked up as a reference material since its experimental bandgap value has been reported in the literature. It has been found to exhibit a finite energy bandgap in contrast to its expected metallic nature. The study is of utmost significance as it not only probes and validates the simulation route for predicting suitable properties of nanomaterials but also throws light on the comparative efficacy of the different approximation and rationalization quantum mechanical techniques used in simulation studies. Such simulation studies if used intelligently prove to be immensely useful to the material scientists as they not only save time and effort but also pave the way to new experiments by making valuable predictions.

  14. Volume dependence of N-body bound states

    Science.gov (United States)

    König, Sebastian; Lee, Dean

    2018-04-01

    We derive the finite-volume correction to the binding energy of an N-particle quantum bound state in a cubic periodic volume. Our results are applicable to bound states with arbitrary composition and total angular momentum, and in any number of spatial dimensions. The only assumptions are that the interactions have finite range. The finite-volume correction is a sum of contributions from all possible breakup channels. In the case where the separation is into two bound clusters, our result gives the leading volume dependence up to exponentially small corrections. If the separation is into three or more clusters, there is a power-law factor that is beyond the scope of this work, however our result again determines the leading exponential dependence. We also present two independent methods that use finite-volume data to determine asymptotic normalization coefficients. The coefficients are useful to determine low-energy capture reactions into weakly bound states relevant for nuclear astrophysics. Using the techniques introduced here, one can even extract the infinite-volume energy limit using data from a single-volume calculation. The derived relations are tested using several exactly solvable systems and numerical examples. We anticipate immediate applications to lattice calculations of hadronic, nuclear, and cold atomic systems.

  15. Numerical Simulation of Hydraulic Fracture Propagation Guided by Single Radial Boreholes

    Directory of Open Access Journals (Sweden)

    Tiankui Guo

    2017-10-01

    Full Text Available Conventional hydraulic fracturing is not effective in target oil development zones with available wellbores located in the azimuth of the non-maximum horizontal in-situ stress. To some extent, we think that the radial hydraulic jet drilling has the function of guiding hydraulic fracture propagation direction and promoting deep penetration, but this notion currently lacks an effective theoretical support for fracture propagation. In order to verify the technology, a 3D extended finite element numerical model of hydraulic fracturing promoted by the single radial borehole was established, and the influences of nine factors on propagation of hydraulic fracture guided by the single radial borehole were comprehensively analyzed. Moreover, the term ‘Guidance factor (Gf’ was introduced for the first time to effectively quantify the radial borehole guidance. The guidance of nine factors was evaluated through gray correlation analysis. The experimental results were consistent with the numerical simulation results to a certain extent. The study provides theoretical evidence for the artificial control technology of directional propagation of hydraulic fracture promoted by the single radial borehole, and it predicts the guidance effect of a single radial borehole on hydraulic fracture to a certain extent, which is helpful for planning well-completion and fracturing operation parameters in radial borehole-promoted hydraulic fracturing technology.

  16. Nonequilibrium Chemical Effects in Single-Molecule SERS Revealed by Ab Initio Molecular Dynamics Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Sean A.; Apra, Edoardo; Govind, Niranjan; Hess, Wayne P.; El-Khoury, Patrick Z.

    2017-02-03

    Recent developments in nanophotonics have paved the way for achieving significant advances in the realm of single molecule chemical detection, imaging, and dynamics. In particular, surface-enhanced Raman scattering (SERS) is a powerful analytical technique that is now routinely used to identify the chemical identity of single molecules. Understanding how nanoscale physical and chemical processes affect single molecule SERS spectra and selection rules is a challenging task, and is still actively debated. Herein, we explore underappreciated chemical phenomena in ultrasensitive SERS. We observe a fluctuating excited electronic state manifold, governed by the conformational dynamics of a molecule (4,4’-dimercaptostilbene, DMS) interacting with a metallic cluster (Ag20). This affects our simulated single molecule SERS spectra; the time trajectories of a molecule interacting with its unique local environment dictates the relative intensities of the observable Raman-active vibrational states. Ab initio molecular dynamics of a model Ag20-DMS system are used to illustrate both concepts in light of recent experimental results.

  17. Simulation of the phenomenon of single-phase and two-phase natural circulation

    International Nuclear Information System (INIS)

    Castrillo, Lazara Silveira

    1998-02-01

    Natural convection phenomenon is often used to remove the residual heat from the surfaces of bodies where the heat is generated e.g. during accidents or transients of nuclear power plants. Experimental study of natural circulation can be done in small scale experimental circuits and the results can be extrapolated for larger operational facilities. The numerical analysis of transients can be carried out by using large computational codes that simulate the thermohydraulic behavior in such facilities. The computational code RELAP5/MOD2, (Reactor Excursion and Leak Analysis Program) was developed by U.S. Nuclear Regulatory Commissions's. Division of Reactor Safety Research with the objective of analysis of transients and postulated accidents in the light water reactor (LWR) systems, including small and large ruptures with loss of coolant accidents (LOCA's). The results obtained by the simulation of single-phase and two-phase natural circulation, using the RELAP5/MOD2, are presented in this work. The study was carried out using the experimental circuit built at the 'Departamento de Engenharia Quimica da Escola Politecnica da Universidade de Sao Paulo'. In the circuit, two experiments were carried out with different conditions of power and mass flow, obtaining a single-phase regime with a level of power of 4706 W and flow of 5.10 -5 m 3 /s (3 l/min) and a two-phase regime with a level of power of 6536 W and secondary flow 2,33.10 -5 m 3 /s (1,4 l/min). The study allowed tio evaluate the capacity of the code for representing such phenomena as well as comparing the transients obtained theoretically with the experimental results. The comparative analysis shows that the code represents fairly well the single-phase transient, but the results for two-phase transients, starting from the nodalization and calibration used for the case single-phase transient, did not reproduce faithfully some experimental results. (author)

  18. Simulating the 2012 High Plains Drought Using Three Single Column Models (SCM)

    Science.gov (United States)

    Medina, I. D.; Baker, I. T.; Denning, S.; Dazlich, D. A.

    2015-12-01

    The impact of changes in the frequency and severity of drought on fresh water sustainability is a great concern for many regions of the world. One such location is the High Plains, where the local economy is primarily driven by fresh water withdrawals from the Ogallala Aquifer, which accounts for approximately 30% of total irrigation withdrawals from all U.S. aquifers combined. Modeling studies that focus on the feedback mechanisms that control the climate and eco-hydrology during times of drought are limited, and have used conventional General Circulation Models (GCMs) with grid length scales ranging from one hundred to several hundred kilometers. Additionally, these models utilize crude statistical parameterizations of cloud processes for estimating sub-grid fluxes of heat and moisture and have a poor representation of land surface heterogeneity. For this research, we focus on the 2012 High Plains drought and perform numerical simulations using three single column model (SCM) versions of BUGS5 (Colorado State University (CSU) GCM coupled to the Simple Biosphere Model (SiB3)). In the first version of BUGS5, the model is used in its standard bulk setting (single atmospheric column coupled to a single instance of SiB3), secondly, the Super-Parameterized Community Atmospheric Model (SP-CAM), a cloud resolving model (CRM) (CRM consists of 32 atmospheric columns), replaces the single CSU GCM atmospheric parameterization and is coupled to a single instance of SiB3, and for the third version of BUGS5, an instance of SiB3 is coupled to each CRM column of the SP-CAM (32 CRM columns coupled to 32 instances of SiB3). To assess the physical realism of the land-atmosphere feedbacks simulated by all three versions of BUGS5, differences in simulated energy and moisture fluxes are computed between the 2011 and 2012 period and are compared to those calculated using observational data from the AmeriFlux Tower Network for the same period at the ARM Site in Lamont, OK. This research

  19. Are you real? Visual simulation of social housing by mirror image stimulation in single housed mice.

    Science.gov (United States)

    Fuss, Johannes; Richter, S Helene; Steinle, Jörg; Deubert, Gerald; Hellweg, Rainer; Gass, Peter

    2013-04-15

    Individual housing of social species is a common phenomenon in laboratory animal facilities. Single housing, however, is known to inflict social deprivation with a number of detrimental consequences. Aiming to improve housing conditions of single housed rodents, we investigated the simulation of social housing by mirrors in a series of behavioural experiments and biochemical parameters in mice. We found that chronic mirror-image stimulation increased exploratory behaviours in the holeboard and novel cage tests, but did not alter anxiety, locomotor, or depression-like behaviours. Moreover, no influence on visual recognition memory was observed. Hippocampal brain-derived neurotrophic factor (BDNF) levels, a biomarker for enrichment effects, were unaltered. In line, mirror-image stimulation did not alter home cage behaviour in mice housed with and without mirrors when left undisturbed. Thus, though we found subtle behavioural effects after long-term mirror exposure, we conclude that the simulation of social housing by mirrors is not sufficient to gain the presumably beneficial outcomes induced by social housing. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Computational fluid dynamics simulation of a single cylinder research engine working with biodiesel

    Directory of Open Access Journals (Sweden)

    Moldovanu Dan

    2013-01-01

    Full Text Available The main objective of the paper is to present the results of the CFD simulation of a DI single cylinder engine using diesel, biodiesel, or different mixture proportions of diesel and biodiesel and compare the results to a test bed measurement in the same functioning point. The engine used for verifying the results of the simulation is a single cylinder research engine from AVL with an open ECU, so that the injection timings and quantities can be controlled and analyzed. In Romania, until the year 2020 all the fuel stations are obliged to have mixtures of at least 10% biodiesel in diesel [14]. The main advantages using mixtures of biofuels in diesel are: the fact that biodiesel is not harmful to the environment; in order to use biodiesel in your engine no modifications are required; the price of biodiesel is smaller than diesel and also if we compare biodiesel production to the classic petroleum based diesel production, it is more energy efficient; biodiesel assures more lubrication to the engine so the life of the engine is increased; biodiesel is a sustainable fuel; using biodiesel helps maintain the environment and it keeps the people more healthy [1-3].

  1. Characterization of Plastic Deformation Evolution in Single Crystal and Nanocrystalline Cu During Shock by Atomistic Simulations

    Science.gov (United States)

    Mirzaei Sichani, Mehrdad

    The objective of this dissertation is to characterize the evolution of plastic deformation mechanisms in single crystal and nanocrystalline Cu models during shock by atomistic simulations. Molecular dynamics (MD) simulations are performed for a range of particle velocities from 0.5 to 1.7 km/s and initial temperatures of 5, 300 and 600 K for single crystal models as well as particle velocities from 1.5 to 3.4 km/s for nanocrystalline models with grain diameters of 6, 11, 16 and 26 nm. For single crystal models, four different shock directions are selected, , , and , and dislocation density behind the shock wave front generally increases with increasing particle velocity for all shock orientations. Plastic relaxation for shock in the , and directions is primarily due to a reduction in the Shockley partial dislocation density. In contrast, plastic relaxation is limited for shock in the orientation. This is partially due to the emergence of sessile stair-rod dislocations with Burgers vectors of 1/3 and 1/6 due to the reaction of Shockley partial dislocations with twin boundaries and stacking fault intersections. For shock, FCC Cu is uniaxially compressed towards the BCC structure behind the shock wave front; this process is more favorable at higher shock pressures and temperatures. For particle velocities above 0.9 km/s, regions of HCP crystal structure nucleate from uniaxially compressed Cu. Free energy calculations proves that the nucleation and growth of these HCP clusters are an artifact of the embedded-atom interatomic potential. In addition, simulated x-ray diffraction line profiles are created for shock models of single crystal Cu at the Hugoniot state. Generally, peak broadening in the x-ray diffraction line profiles increases with increasing particle velocity. For nanocrystalline models, the compression of the FCC lattice towards the BCC structure is more apparent at particle velocity of 2.4 km/s, and at this particle velocity, the atomic percentage of BCC

  2. On Parallelizing Single Dynamic Simulation Using HPC Techniques and APIs of Commercial Software

    Energy Technology Data Exchange (ETDEWEB)

    Diao, Ruisheng; Jin, Shuangshuang; Howell, Frederic; Huang, Zhenyu; Wang, Lei; Wu, Di; Chen, Yousu

    2017-05-01

    Time-domain simulations are heavily used in today’s planning and operation practices to assess power system transient stability and post-transient voltage/frequency profiles following severe contingencies to comply with industry standards. Because of the increased modeling complexity, it is several times slower than real time for state-of-the-art commercial packages to complete a dynamic simulation for a large-scale model. With the growing stochastic behavior introduced by emerging technologies, power industry has seen a growing need for performing security assessment in real time. This paper presents a parallel implementation framework to speed up a single dynamic simulation by leveraging the existing stability model library in commercial tools through their application programming interfaces (APIs). Several high performance computing (HPC) techniques are explored such as parallelizing the calculation of generator current injection, identifying fast linear solvers for network solution, and parallelizing data outputs when interacting with APIs in the commercial package, TSAT. The proposed method has been tested on a WECC planning base case with detailed synchronous generator models and exhibits outstanding scalable performance with sufficient accuracy.

  3. TOUGH2 simulations of the TEVES Project including the behavior of a single-component NAPL

    Energy Technology Data Exchange (ETDEWEB)

    Webb, S.W. [Sandia National Labs., Albuquerque, NM (United States). Geohydrology Dept.

    1996-05-01

    The TEVES (Thermal Enhanced Vapor Extraction System) Project is a demonstration of a process designed to extract solvents and chemicals contained in the Chemical Waste Landfill at Sandia National Laboratories. In this process, the ground is electrically heated, and borehole(s) within the heated zone are maintained at a vacuum to draw air and evaporated contaminants into the borehole and a subsequent treatment facility. TOUGH2 simulations have been performed to evaluate the fluid flow and heat transfer behavior of the system. The TOUGH2 version used in this study includes air, water, and a single-component non-aqueous phase liquid (NAPL). In the present simulations, an initial o-xylene inventory is assumed in the heated zone for illustration purposes. Variation in borehole (vapor extraction) vacuum, borehole location, and soil permeability were investigated. Simulations indicate that the temperatures in the soil are relatively insensitive to the magnitude of the borehole vacuum or the borehole locations. In contrast, however, the NAPL and liquid water saturation distributions are sensitive to these borehole parameters. As the borehole vacuum and air flow rate through the soil decrease, the possibility of contaminant (NAPL) migration from the heated zone into the surrounding unheated soil increases. The borehole location can also affect the likelihood of contaminant movement into the unheated soil.

  4. Computer simulations of a single-laser double-gas-jet wakefield accelerator concept

    Directory of Open Access Journals (Sweden)

    R. G. Hemker

    2002-04-01

    Full Text Available We report in this paper on full scale 2D particle-in-cell simulations investigating laser wakefield acceleration. First we describe our findings of electron beam generation by a laser propagating through a single gas jet. Using realistic parameters which are relevant for the experimental setup in our laboratory we find that the electron beam resulting after the propagation of a 0.8 μm, 50 fs laser through a 1.5 mm gas jet has properties that would make it useful for further acceleration. Our simulations show that the electron beam is generated when the laser exits the gas jet, and the properties of the generated beam, especially its energy, depend only weakly on most properties of the gas jet. We therefore propose to use the first gas jet as a plasma cathode and then use a second gas jet placed immediately behind the first to provide additional acceleration. Our simulations of this proposed setup indicate the feasibility of this idea and also suggest ways to optimize the quality of the resulting beam.

  5. Shape-designed single-polymer micelles: a proof-of-concept simulation

    Science.gov (United States)

    Moths, Brian; Witten, Thomas A.

    Much effort has been directed towards self-assembling nanostructures. Strong, local interactions between specific building blocks often determine these structures (e.g., globular proteins). We seek to produce designed structures that are instead determined by collective effects of weak interactions (e.g., surfactant self-assembly). Such structures may reversibly change conformation or disassemble in response to changing solvent conditions, and, being soft, have potential to adapt to fluctuating or unknown application-imposed shape requirements. Concretely, we aim to realize such a structure in the form of a single polymer micelle--an amphiphilic polymer exhibiting a condensed, phase-segregated conformation when immersed in solvent. Connecting all amphiphiles into a single chain provides geometric constraints controlling the surface curvature profile, thus dictating a non-trivial shape. We present 2D Monte Carlo simulation results demonstrating the feasibility of such soft, shape-designed micelles. Preliminary results demonstrate a stable concave ``dimple'' in a micelle composed of a single A-B multiblock linear copolymer. We discuss both current limitations on shape robustness and effects of block asymmetry, block molecular weights and overall chain length on micelle shape. This work was supported in part by the National Science Foundation's MRSEC Program under Award Number DMR-1420709.

  6. Equivalent circuit modeling and simulation of the zinc nickel single flow battery

    Directory of Open Access Journals (Sweden)

    Shouguang Yao

    2017-05-01

    Full Text Available This paper builds the equivalent circuit model for a single cell of zinc nickel single flow battery (ZNB with 300 Ah. According to the experimental data of the single cell under 100 A pulse discharge conditions, the model parameters can be obtained by parameter identification, and the analytical expressions for each model parameter can be obtained by using the method of high degree polynomial fitting and exponential function fitting, then the mathematical model of the stack voltage can be built. The relative error of the simulation results for stack voltage is controlled within 3.2% by experimental comparison, which verifies the accuracy of the model and model parameters. The parameter formulas obtained by fitting method can effectively solve calculation problem of the battery parameters. And under 100 A constant-current discharge condition, the stack voltage of the battery is dropping relatively flat over about 110 minutes after loading current, and dropping dramatically within about 50 minutes at the end of discharge due to the increasing polarization.

  7. SINGLE-PHASE AND TWO-PHASE SECONDARY COOLANTS: SIMULATION AND EVALUATION OF THEIR THERMOPHYSICAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Pedro Samuel Gomes Medeiros

    2011-09-01

    Full Text Available This paper makes a comparative analysis of the thermophysical properties of ice slurry with conventional single-phase secondary fluids used in thermal storage cooling systems. The ice slurry is a two-phase fluid consisting of water, antifreeze and ice crystals. It is a new technology that has shown great energy potential. In addition to transporting energy as a heat transfer fluid, it has thermal storage properties due to the presence of ice, storing coolness by latent heat of fusion. The single-phase fluids analyzed are water-NaCl and water-propylene glycol solutions, which also operate as carrier fluids in ice slurry. The presence of ice changes the thermophysical properties of aqueous solutions and a number of these properties were determined: density, thermal conductivity and dynamic viscosity. Data were obtained by software simulation. The results show that the presence of 10% by weight of ice provides a significant increase in thermal conductivity and dynamic viscosity, without causing changes in density. The rheological behavior of ice slurries, associated with its high viscosity, requires higher pumping power; however, this was not significant because higher thermal conductivity allows a lower mass flow rate without the use of larger pumps. Thus, the ice slurry ensures its high potential as a secondary fluid in thermal storage cooling systems, proving to be more efficient than single-phase secondary fluids.

  8. Optically stimulated luminescence sensitivity changes in quartz due to repeated use in single aliquot readout: Experiments and computer simulations

    DEFF Research Database (Denmark)

    McKeever, S.W.S.; Bøtter-Jensen, L.; Agersnap Larsen, N.

    1996-01-01

    As part of a study to examine sensitivity changes in single aliquot techniques using optically stimulated luminescence (OSL) a series of experiments has been conducted with single aliquots of natural quartz, and the data compared with the results of computer simulations of the type of processes...

  9. SU-F-J-110: MRI-Guided Single-Session Simulation, Online Adaptation, and Treatment

    International Nuclear Information System (INIS)

    Hill, P; Geurts, M; Mittauer, K; Bayouth, J

    2016-01-01

    Purpose: To develop a combined simulation and treatment workflow for MRI-guided radiation therapy using the ViewRay treatment planning and delivery system. Methods: Several features of the ViewRay MRIdian planning and treatment workflows are used to simulate and treat patients that require emergent radiotherapy. A simple “pre-plan” is created on diagnostic imaging retrieved from radiology PACS, where conformal fields are created to target a volume defined by a physician based on review of the diagnostic images and chart notes. After initial consult in radiation oncology, the patient is brought to the treatment room, immobilized, and imaged in treatment position with a volumetric MR. While the patient rests on the table, the pre-plan is applied to the treatment planning MR and dose is calculated in the treatment geometry. After physician review, modification of the plan may include updating the target definition, redefining fields, or re-balancing beam weights. Once an acceptable treatment plan is finalized and approved, the patient is treated. Results: Careful preparation and judicious choices in the online planning process allow conformal treatment plans to be created and delivered in a single, thirty-minute session. Several advantages have been identified using this process as compared to conventional urgent CT simulation and delivery. Efficiency gains are notable, as physicians appreciate the predictable time commitment and patient waiting time for treatment is decreased. MR guidance in a treatment position offers both enhanced contrast for target delineation and reduction of setup uncertainties. The MRIdian system tools designed for adaptive radiotherapy are particularly useful, enabling plan changes to be made in minutes. Finally, the resulting plans, typically 6 conformal beams, are delivered as quickly as more conventional AP/PA beam arrangements with comparatively superior dose distributions. Conclusion: The ViewRay treatment planning software and

  10. Monte Carlo simulations of temperature-programmed and isothermal desorption from single-crystal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lombardo, S.J. (California Inst. of Tech., Pasadena, CA (USA). Dept. of Chemical Engineering Lawrence Berkeley Lab., CA (USA))

    1990-08-01

    The kinetics of temperature-programmed and isothermal desorption have been simulated with a Monte Carlo model. Included in the model are the elementary steps of adsorption, surface diffusion, and desorption. Interactions between adsorbates and the metal as well as interactions between the adsorbates are taken into account with the Bond-Order-Conservation-Morse-Potential method. The shape, number, and location of the TPD peaks predicted by the simulations is shown to be sensitive to the binding energy, coverage, and coordination of the adsorbates. In addition, the occurrence of lateral interactions between adsorbates is seen to strongly effect the distribution of adsorbates is seen to strongly effect the distribution of adsorbates on the surface. Temperature-programmed desorption spectra of a single type of adsorbate have been simulated for the following adsorbate-metal systems: CO on Pd(100); H{sub 2} on Mo(100); and H{sub 2} on Ni(111). The model predictions are in good agreement with experimental observation. TPD spectra have also been simulated for two species coadsorbed on a surface; the model predictions are in qualitative agreement with the experimental results for H{sub 2} coadsorbed with strongly bound atomic species on Mo(100) and Fe(100) surfaces as well as for CO and H{sub 2} coadsorbed on Ni(100) and Rh(100) surfaces. Finally, the desorption kinetics of CO from Pd(100) and Ni(100) in the presence of gas-phase CO have been examined. The effect of pressure is seen to lead to an increase in the rate of desorption relative to the rate observed in the absence of gas-phase CO. This increase arises as a consequence of higher coverages and therefore stronger lateral interactions between the adsorbed CO molecules.

  11. Counts-in-Cylinders in the Sloan Digital Sky Survey with Comparisons to N-Body

    Energy Technology Data Exchange (ETDEWEB)

    Berrier, Heather D.; Barton, Elizabeth J.; /UC, Irvine; Berrier, Joel C.; /Arkansas U.; Bullock, James S.; /UC, Irvine; Zentner, Andrew R.; /Pittsburgh U.; Wechsler, Risa H. /KIPAC, Menlo Park /SLAC

    2010-12-16

    Environmental statistics provide a necessary means of comparing the properties of galaxies in different environments and a vital test of models of galaxy formation within the prevailing, hierarchical cosmological model. We explore counts-in-cylinders, a common statistic defined as the number of companions of a particular galaxy found within a given projected radius and redshift interval. Galaxy distributions with the same two-point correlation functions do not necessarily have the same companion count distributions. We use this statistic to examine the environments of galaxies in the Sloan Digital Sky Survey, Data Release 4. We also make preliminary comparisons to four models for the spatial distributions of galaxies, based on N-body simulations, and data from SDSS DR4 to study the utility of the counts-in-cylinders statistic. There is a very large scatter between the number of companions a galaxy has and the mass of its parent dark matter halo and the halo occupation, limiting the utility of this statistic for certain kinds of environmental studies. We also show that prevalent, empirical models of galaxy clustering that match observed two- and three-point clustering statistics well fail to reproduce some aspects of the observed distribution of counts-in-cylinders on 1, 3 and 6-h{sup -1}Mpc scales. All models that we explore underpredict the fraction of galaxies with few or no companions in 3 and 6-h{sup -1} Mpc cylinders. Roughly 7% of galaxies in the real universe are significantly more isolated within a 6 h{sup -1} Mpc cylinder than the galaxies in any of the models we use. Simple, phenomenological models that map galaxies to dark matter halos fail to reproduce high-order clustering statistics in low-density environments.

  12. N-body simulations of a universe dominated by dark matter

    International Nuclear Information System (INIS)

    Davis, M.; Efstathiou, G.

    1988-01-01

    An account is given of how the standard cold dark matter (CDM) model compares with other observational constraints that can be used to test theories of large-scale universal structure. The CDM theory is parameterized by two free parameters: the initial perturbation spectrum amplitude, and the horizon scale at the epoch of equality between radiation and matter density. With judicious choice of these parameters, the CDM theory matches an impressive array of observations but is inconsistent with reports of clustering on scales greater than 5000 km/sec. 35 refs

  13. TreePM: A Code for Cosmological N-Body Simulations

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    is in the realisation that the Poisson equation is an algebraic equation in Fourier space, hence if we have a tool for switching to Fourier space and back, we can calculate the gravitational potential and the force with very little effort. It has two elegant features in that it provides periodic boundary conditions by default, and the ...

  14. Single-stage quintuplet for upgrading triplet based lens system: Simulation for Atomki microprobe

    Science.gov (United States)

    Ponomarov, Artem; Rajta, Istvan; Nagy, Gyula; Romanenko, Oleksandr V.

    2017-08-01

    Among different configurations of lens systems for nuclear microprobes, the most common one is a triplet of magnetic quadrupole lenses. Nowadays, microanalysis and material modification will undoubtedly benefit from an improvement in spatial resolution. This work presents the results of simulations for improvement of the Oxford Triplet lens system at the Atomki microprobe with consideration of its system parameters and measured beam brightness distribution. For this purpose, an additional single-unit doublet of lenses with two power supplies was introduced. Using earlier developed methods, such a quintuplet system was optimized in order to determine the parameters which provided the highest resolution for different current operational modes with the same microprobe geometry. The tolerances for lens positioning accuracy were also calculated. The obtained quintuplet parameters indicate a resolution improvement for the Atomki microprobe compared to the Oxford Triplet system and these results validate further experimental testing of the proposed quintuplet.

  15. Experimental and simulation studies on a single pass, double duct solar air heater

    Energy Technology Data Exchange (ETDEWEB)

    Forson, F.K. [Kwame Nkrumah Univ. of Science and Technology, Dept. of Mechanical Engineering, Kumasi (Ghana); Rajakaruna, H. [De Montfort Univ., School of Engineering and Technology, Leicester (United Kingdom)

    2003-05-01

    A mathematical model of a single pass, double duct solar air heater (SPDDSAH) is described. The model provides a design tool capable of predicting: incident solar radiation, heat transfer coefficients, mean air flow rates, mean air temperature and relative humidity at the exit. Results from the simulation are presented and compared with experimental ones obtained on a full scale air heater and a small scale laboratory one. Reasonable agreement between the predicted and measured values is demonstrated. Predicted results from a parametric study are also presented. It is shown that significant improvement in the SPDDSAH performance can be obtained with an appropriate choice of the collector parameters and the top to bottom channel depth ratio of the two ducts. The air mass flow rate is shown to be the dominant factor in determining the overall efficiency of the heater. (Author)

  16. Simulation study based on the single-point temperature monitoring system of LabVIEW

    Science.gov (United States)

    Wu, Yongling; Yang, Na; Liu, Shuping; Pan, Xiaohui; Wang, Wenjiang

    2014-12-01

    This paper takes LabVIEW2012 as a development platform, creating a J-type thermocouple sensor and the NI USB-6229 data acquisition card and other hardware emulation circuitry which combined with the PC designed a single-point temperature monitoring system. Through simulation experiments, the system has a collection interval, the sampling rate per channel sampling on the temperature limit set by the user function and it also has the function of real-time display the current temperature, the temperature limit alarm, maximum temperature, minimum temperature display and a temperature history data query. This system can be used for temperature monitoring of life, research, industrial control, environmental monitoring, biomedical, tobacco processing, greenhouse cultivation, livestock breeding and other fields, which has important significance and practical value.

  17. Simulation, Control and Optimization of Single Cell Protein Production in a U-Loop Reactor

    DEFF Research Database (Denmark)

    Engoulevent, Franck Guillaume; Jørgensen, John Bagterp

    2012-01-01

    In 2011, the world population passed 7 billions inhabitants. While this number witnesses the success of humankind on earth, it also rises among other things questions about food supply. Declining live stock in the wild, rising price of energy combined with climatic change give a new economic...... potential for alternative sources of protein production. Single cell protein (SCP) is protein produced by growth of micro organisms. Among these micro organisms, Methylococcus Capsulatus is particular interesting as it can grow on either methane or methanol and contains 70% protein. The U-Loop reactor...... report simulation results. In addition we design and compare dierent regulatory control systems for regulation of SCP production in the U-Loop reactor. The purpose of the regulatory control systems is to keep the process at a steady state and to reject disturbances. We design and implement such control...

  18. Numeric Simulation of Heat Transfer from a Single Round Tube Shielded with Wire Mesh

    Directory of Open Access Journals (Sweden)

    Dymo B.V.

    2015-08-01

    Full Text Available This paper presents the results of development and investigation of heat transfer at transverse flow of round tube with wire screen using the software ANSYS Fluent 3D-model. Selection of optimal parameters of the finite element model, in particular, transition shear stress transport model as well and boundary conditions are realized. Instructed and combined net is used at numerical calculations. This net is built with the help of generators grid-torus ANSYS CFX Mesh 14.0. The problem of verification of conformity of the numerical model of the heat transfer of a single screen-covered round tubes according to physical experiment for the same tubes in the range of Reynolds numbers Re = (5000...35000 was studied. We established that discrepancy between physical experiments and numerical simulation results not exceeds 5% with respect to the data of physical experiment.

  19. Evaluation of single and stack membraneless enzymatic fuel cells based on ethanol in simulated body fluids.

    Science.gov (United States)

    Galindo-de-la-Rosa, J; Arjona, N; Moreno-Zuria, A; Ortiz-Ortega, E; Guerra-Balcázar, M; Ledesma-García, J; Arriaga, L G

    2017-06-15

    The purpose of this work is to evaluate single and double-cell membraneless microfluidic fuel cells (MMFCs) that operate in the presence of simulated body fluids SBF, human serum and blood enriched with ethanol as fuels. The study was performed using the alcohol dehydrogenase enzyme immobilised by covalent binding through an array composed of carbon Toray paper as support and a layer of poly(methylene blue)/tetrabutylammonium bromide/Nafion and glutaraldehyde (3D bioanode electrode). The single MMFC was tested in a hybrid microfluidic fuel cell using Pt/C as the cathode. A cell voltage of 1.035V and power density of 3.154mWcm -2 were observed, which is the highest performance reported to date. The stability and durability were tested through chronoamperometry and polarisation/performance curves obtained at different days, which demonstrated a slow decrease in the power density on day 10 (14%) and day 20 (26%). Additionally, the cell was tested for ethanol oxidation in simulated body fluid (SBF) with ionic composition similar to human blood plasma. Those tests resulted in 0.93V of cell voltage and a power density close to 1.237mWcm -2 . The double cell MMFC (Stack) was tested using serum and human blood enriched with ethanol. The stack operated with blood in a serial connection showed an excellent cell performance (0.716mWcm -2 ), demonstrating the feasibility of employing human blood as energy source. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Phase transitions of single polymer chains and of polymer solutions: insights from Monte Carlo simulations

    International Nuclear Information System (INIS)

    Binder, K; Paul, W; Strauch, T; Rampf, F; Ivanov, V; Luettmer-Strathmann, J

    2008-01-01

    The statistical mechanics of flexible and semiflexible macromolecules is distinct from that of small molecule systems, since the thermodynamic limit can also be approached when the number of (effective) monomers of a single chain (realizable by a polymer solution in the dilute limit) is approaching infinity. One can introduce effective attractive interactions into a simulation model for a single chain such that a swollen coil contracts when the temperature is reduced, until excluded volume interactions are effectively canceled by attractive forces, and the chain conformation becomes almost Gaussian at the theta point. This state corresponds to a tricritical point, as the renormalization group theory shows. Below the theta temperature a fluid globule is predicted (at nonzero concentration then phase separation between dilute and semidilute solutions occurs), while at still lower temperature a transition to a solid phase (crystal or glass) occurs. Monte Carlo simulations have shown, however, that the fluid globule phase may become suppressed, when the range of the effective attractive forces becomes too short, with the result that a direct (ultimately first-order) transition from the swollen coil to the solid occurs. This behavior is analogous to the behavior of colloidal particles with a very short range of attractive forces, where liquid-vapor-type phase separation may be suppressed. Analogous first-order transitions from swollen coils to dense rodlike or toroidal structures occur for semiflexible polymers. Finally, the modifications of the behavior discussed when the polymers are adsorbed at surfaces are also mentioned, and possible relations to wetting behavior of polymer solutions are addressed.

  1. Numerical Simulations of Fluid Flow in a Single Fracture under Loading and Unloading Conditions

    Science.gov (United States)

    Kling, T.; Huo, D.; Schwarz, J. O.; Enzmann, F.; Blum, P.; Benson, S. M.

    2014-12-01

    Hydraulic aperture is one of the most important parameters to describe fluid flow in fractured rocks. Hydraulic apertures are typically determined indirectly by fluid flow experiments or hydraulic field tests based on the cubic law. Alternatively, there are different equations approximating an empirical relation between mechanical and hydraulic aperture. However, these methods most widely neglect mechanisms such as stress changes, where increasing stresses decrease the mechanical aperture and, therefore, also the effective hydraulic aperture. Hence, the objective of the present study is to simulate fluid flow in a single fracture under loading/unloading conditions and validate the results with core flooding experiments. Core flooding data and X-ray CT scans (voxel size 0.5 x 0.5 x 1 mm) of a sandstone sample with a single fracture (measured mean aperture of around 0.1 mm) were obtained by laboratory experiments. The fluid flow simulations are performed by solving the incompressible Navier-Stokes equation by using a finite volume method. Input data are given by experimental flow rates, pressures, applied stress levels and CT images of the fracture. In addition, an error analysis is performed to establish confidence in results. Results of the validation exhibit significant effects of stress on aperture distribution such as channeling and stress-dependent fracture permeability. A significant stress sensitivity of hydraulic aperture compared to the mechanical aperture was found, which can be explained by roughness changes resulting from loading. Observations indicate that with increasing stress, changes in mechanical aperture are small, while changes in hydraulic aperture can be very large. Since previous equations for hydraulic aperture do not consider changes in normal stress, a modification of these equations is proposed, including the stress-dependency of mechanical apertures to provide a better approximation to the observed hydraulic apertures.

  2. Single bioreactor gastrointestinal tract simulator for study of survival of probiotic bacteria.

    Science.gov (United States)

    Sumeri, Ingrid; Arike, Liisa; Adamberg, Kaarel; Paalme, Toomas

    2008-08-01

    The aim of the present study was to design an in vitro model system to evaluate the probiotic potential of food. A single bioreactor system-gastrointestinal tract simulator (GITS) was chosen for process simulation on account of its considerable simplicity compared to multi-vessel systems used in previous studies. The bioreactor was evaluated by studying the viability of four known probiotic bacteria (Lactobacillus acidophilus La-5, Lactobacillus johnsonii NCC 533, Lactobacillus casei strain Shirota, and Lactobacillus rhamnosus GG) as a function of their physiological state. L. acidophilus and L. johnsonii survived in GITS better when introduced at an early stationary or exponential phase compared to being previously stored for 2 weeks at 4 degrees C. These two species were more resistant to bile salts and survived better than L. casei and L. rhamnosus GG. The latter two species gave large losses (up to 6 log) in plate counts independent of growth state due to the bile. However, experiments with some commercial probiotic products containing Lb. GG bacteria showed much better survival compared with model food (modified deMan-Rogosa-Sharpe growth medium), thus demonstrating the influence of the food matrix on the viability of bacteria. The study demonstrated that GITS can be successfully used for evaluation of viability of probiotic bacteria and functionality of probiotic food.

  3. Accelerated rescaling of single Monte Carlo simulation runs with the Graphics Processing Unit (GPU).

    Science.gov (United States)

    Yang, Owen; Choi, Bernard

    2013-01-01

    To interpret fiber-based and camera-based measurements of remitted light from biological tissues, researchers typically use analytical models, such as the diffusion approximation to light transport theory, or stochastic models, such as Monte Carlo modeling. To achieve rapid (ideally real-time) measurement of tissue optical properties, especially in clinical situations, there is a critical need to accelerate Monte Carlo simulation runs. In this manuscript, we report on our approach using the Graphics Processing Unit (GPU) to accelerate rescaling of single Monte Carlo runs to calculate rapidly diffuse reflectance values for different sets of tissue optical properties. We selected MATLAB to enable non-specialists in C and CUDA-based programming to use the generated open-source code. We developed a software package with four abstraction layers. To calculate a set of diffuse reflectance values from a simulated tissue with homogeneous optical properties, our rescaling GPU-based approach achieves a reduction in computation time of several orders of magnitude as compared to other GPU-based approaches. Specifically, our GPU-based approach generated a diffuse reflectance value in 0.08ms. The transfer time from CPU to GPU memory currently is a limiting factor with GPU-based calculations. However, for calculation of multiple diffuse reflectance values, our GPU-based approach still can lead to processing that is ~3400 times faster than other GPU-based approaches.

  4. A structural mechanics study of single-walled carbon nanotubes generalized from atomistic simulation.

    Science.gov (United States)

    Chen, Xi; Cao, Guoxin

    2006-02-28

    A new structural mechanics model is developed to closely duplicate the atomic configuration and behaviours of single-walled carbon nanotubes (SWCNTs). The SWCNTs are effectively represented by a space frame, where primary and secondary beams are used to bridge the nearest and next-nearest carbon atoms, to mimic energies associated with bond stretching and angle variation, respectively. The elastic properties of the frame components are generalized from molecular dynamics (MD) simulation based on an accurate ab initio force field, and numerical analyses of tension, bending, and torsion are carried out on nine different SWCNTs. The space-frame model also closely duplicates the buckling behaviours of SWCNTs in torsion and bending. In addition, by repeating the same process with continuum shell and beam models, new elastic and section parameters are fitted from the MD benchmark experiments. As an application, all three models are employed to study the thermal vibration behaviours of SWCNTs, and excellent agreements with MD analyses are found. The present analysis is a systematic structural mechanics attempt to fit SWCNT properties for several basic deformation modes and applicable to a variety of SWCNTs. The continuum models and fitted parameters may be used to effectively simulate the overall deformation behaviours of SWCNTs at much larger length- and timescales than pure MD analysis.

  5. Benchmarking Further Single Board Computers for Building a Mini Supercomputer for Simulation of Telecommunication Systems

    Directory of Open Access Journals (Sweden)

    Gábor Lencse

    2016-01-01

    Full Text Available Parallel Discrete Event Simulation (PDES with the conservative synchronization method can be efficiently used for the performance analysis of telecommunication systems because of their good lookahead properties. For PDES, a cost effective execution platform may be built by using single board computers (SBCs, which offer relatively high computation capacity compared to their price or power consumption and especially to the space they take up. A benchmarking method is proposed and its operation is demonstrated by benchmarking ten different SBCs, namely Banana Pi, Beaglebone Black, Cubieboard2, Odroid-C1+, Odroid-U3+, Odroid-XU3 Lite, Orange Pi Plus, Radxa Rock Lite, Raspberry Pi Model B+, and Raspberry Pi 2 Model B+. Their benchmarking results are compared to find out which one should be used for building a mini supercomputer for parallel discrete-event simulation of telecommunication systems. The SBCs are also used to build a heterogeneous cluster and the performance of the cluster is tested, too.

  6. Two-dimensional numerical simulation of the effect of single event burnout for n-channel VDMOSFET

    International Nuclear Information System (INIS)

    Guo Hongxia; Chen Yusheng; Wang Wei; Zhao Jinlong; Zhang Yimen; Zhou Hui

    2004-01-01

    2D MEDICI simulator is used to investigate the effect of Single Event Burnout (SEB) for n-channel power VDMOSFETs. The simulation results are consistent with experimental results which have been published. The simulation results are of great interest for a better understanding of the occurrence of events. The effects of the minority carrier lifetime in the base region, the base width and the emitter doping density on SEB susceptibility are verified. Some hardening solutions to SEB are provided. The work shows that the 2D simulator MEDICI is an useful tool for burnout prediction and for the evaluation of hardening solutions. (authors)

  7. Numerical simulation and analysis of single grain YBCO processed from graded precursor powders

    Science.gov (United States)

    Zou, J.; Ainslie, M. D.; Hu, D.; Zhai, W.; Devendra Kumar, N.; Durrell, J. H.; Shi, Y.-H.; Cardwell, D. A.

    2015-03-01

    Large single-grain bulk high-temperature superconducting materials can trap high magnetic fields in comparison with conventional permanent magnets, making them ideal candidates to develop more compact and efficient devices, such as actuators, magnetic levitation systems, flywheel energy storage systems and electric machines. However, macro-segregation of Y-211 inclusions in melt processed Y-Ba-Cu-O (YBCO) limits the macroscopic critical current density Jc of such bulk superconductors, and hence, the potential trapped field. Recently, a new fabrication technique with graded precursor powders has been developed, which results in a more uniform distribution of Y-211 particles, in order to further improve the superconducting properties of such materials. In order to develop this graded fabrication technique further, a 3D finite-element numerical simulation based on the H-formulation is performed in this paper. The trapped field characteristics of a graded YBCO sample magnetized by the field cooling method are simulated to validate the model, and the simulation results are consistent with the experimental measurements. In addition, the influence of the graded technique and various graded Jc distributions for pulsed field magnetization, recognized widely as a practical route for magnetizing samples in bulk superconductor applications, is also investigated, with respect to the trapped field and temperature profiles of graded samples. This modelling framework provides a new technique for assessing the performance of various sizes and geometries of graded bulk superconductors, and by adjusting the Y-211, and hence Jc, distribution, samples can be fabricated based on this concept to provide application-specific trapped field profiles, such as the generation of either a high magnetic field gradient or a high level of uniformity for the traditionally conical, trapped field profile.

  8. Process simulation of single-step dimethyl ether production via biomass gasification.

    Science.gov (United States)

    Ju, Fudong; Chen, Hanping; Ding, Xuejun; Yang, Haiping; Wang, Xianhua; Zhang, Shihong; Dai, Zhenghua

    2009-01-01

    In this study, we simulated the single-step process of dimethyl ether (DME) synthesis via biomass gasification using ASPEN Plus. The whole process comprised four parts: gasification, water gas shift reaction, gas purification, and single-step DME synthesis. We analyzed the influence of the oxygen/biomass and steam/biomass ratios on biomass gasification and synthesis performance. The syngas H(2)/CO ratio after water gas shift process was modulated to 1, and the syngas was then purified to remove H(2)S and CO(2), using the Rectisol process. Syngas still contained trace amounts of H(2)S and about 3% CO(2) after purification, which satisfied the synthesis demands. However, the high level of cold energy consumption was a problem during the purification process. The DME yield in this study was 0.37, assuming that the DME selectivity was 0.91 and that CO was totally converted. We performed environmental and economic analyses, and propose the development of a poly-generation process based on economic considerations.

  9. Kinetic Monte Carlo simulation of single-electron multiple-trapping transport in disordered media

    Science.gov (United States)

    Javadi, Mohammad; Abdi, Yaser

    2017-12-01

    The conventional single-particle Monte Carlo simulation of charge transport in disordered media is based on the truncated density of localized states (DOLS) which benefits from very short time execution. Although this model successfully clarifies the properties of electron transport in moderately disordered media, it overestimates the electron diffusion coefficient for strongly disordered media. The origin of this deviation is discussed in terms of zero-temperature approximation in the truncated DOLS and the ignorance of spatial occupation of localized states. Here, based on the multiple-trapping regime we introduce a modified single-particle kinetic Monte Carlo model that can be used to investigate the electron transport in any disordered media independent from the value of disorder parameter. In the proposed model, instead of using a truncated DOLS we imply the raw DOLS. In addition, we have introduced an occupation index for localized states to consider the effect of spatial occupation of trap sites. The proposed model is justified in a simple cubic lattice of trap sites for broad interval of disorder parameters, Fermi levels, and temperatures.

  10. The Seepage Simulation of Single Hole and Composite Gas Drainage Based on LB Method

    Science.gov (United States)

    Chen, Yanhao; Zhong, Qiu; Gong, Zhenzhao

    2018-01-01

    Gas drainage is the most effective method to prevent and solve coal mine gas power disasters. It is very important to study the seepage flow law of gas in fissure coal gas. The LB method is a simplified computational model based on micro-scale, especially for the study of seepage problem. Based on fracture seepage mathematical model on the basis of single coal gas drainage, using the LB method during coal gas drainage of gas flow numerical simulation, this paper maps the single-hole drainage gas, symmetric slot and asymmetric slot, the different width of the slot combined drainage area gas flow under working condition of gas cloud of gas pressure, flow path diagram and flow velocity vector diagram, and analyses the influence on gas seepage field under various working conditions, and also discusses effective drainage method of the center hole slot on both sides, and preliminary exploration that is related to the combination of gas drainage has been carried on as well.

  11. Estimation of Compton Imager Using Single 3D Position-Sensitive LYSO Scintillator: Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Taewoong; Lee, Hyounggun; Kim, Younghak; Lee, Wonho [Korea University, Seoul (Korea, Republic of)

    2017-07-15

    The performance of a Compton imager using a single three-dimensional position-sensitive LYSO scintillator detector was estimated using a Monte Carlo simulation. The Compton imager consisted of a single LYSO scintillator with a pixelized structure. The size of the scintillator and each pixel were 1.3 × 1.3 × 1.3 cm{sup 3} and 0.3 × 0.3 × 0.3 cm{sup 3}, respectively. The order of γ-ray interactions was determined based on the deposited energies in each detector. After the determination of the interaction sequence, various types of reconstruction algorithms such as simple back-projection, filtered back-projection, and list-mode maximum-likelihood expectation maximization (LM-MLEM) were applied and compared with each other in terms of their angular resolution and signal-tonoise ratio (SNR) for several γ-ray energies. The LM-MLEM reconstruction algorithm exhibited the best performance for Compton imaging in maintaining high angular resolution and SNR. The two sources of {sup 137}Cs (662 keV) could be distinguishable if they were more than 17 ◦ apart. The reconstructed Compton images showed the precise position and distribution of various radiation isotopes, which demonstrated the feasibility of the monitoring of nuclear materials in homeland security and radioactive waste management applications.

  12. Plastic forming simulation analysis of marine engine crankshaft single-throw

    Directory of Open Access Journals (Sweden)

    LIU Peipei

    2016-08-01

    Full Text Available The research object is for marine engine crankshaft single-throw.A 3D model of the crankshaft single-throw blank and die in forging process is established by SolidWorks software,then the 3D model is imported into metal plastic forming CAE software DEFROM-3D to carry on the plastic forming simulation,to verify the relationship between the internal flow stress and the external deformation conditions in the process of metal plastic deformation under different strain rate and temperature,and to carry on the scientific analysis based on the obtained data.The result shows that the preset temperature is higher,the stress-strain curve is relatively lower when the strain rate is constant.Sample internal flow stress will be greater and the resistance to fatigue strength will be poorer at a higher strain rate when the temperature of the blank is constant.The result also provides a theoretical basis for further optimization design.

  13. Three-dimensional statistical reduction of the N -body Schrödinger equation for electrons with pairwise Coulomb interactions

    Science.gov (United States)

    Obreshkov, Boyan D.

    2008-09-01

    Based on a second-quantized representation of the nonrelativistic Hamiltonian of a system of N electrons with pairwise Coulomb interactions, we demonstrate the exact statistical reduction of the N -body problem to a three-dimensional Schrödinger equation for the motion of a single active electron with all other N-1 electrons acting as spectators. As a by-product, three-dimensional Schrödinger equations for the ground and excited states of two-electron atoms and ions are derived and the dynamical role of Pauli’s exclusion principle is established. The classical limit ℏ→0 of the quantal all-electron equations is examined, and the Thomas-Fermi equation including the Amaldi correction is obtained.

  14. Numerical simulation of single bubbles rising through subchannels with interface tracking method

    International Nuclear Information System (INIS)

    Hiroyuki Yoshida; Takuji Nagayoshi; Hidesada Tamai; Tazuyuki Takase; Hajime Akimoto

    2005-01-01

    Full text of publication follows: Although the sub-channel codes are used for the thermal-hydraulic analysis of fuel bundles in nuclear reactors from the former, many compositions and empirical equations based on experimental results are needed to predict the two-phase flow behavior in details. When there are no experimental data such as the reduced-moderation light water reactor (RMWR) which is studied by the Japan Atomic Energy Research Institute (JAERI), therefore, it is very difficult to obtain highly precise predictions. The RMWR core has remarkably narrow gap spacing between fuel rods (i.e., around 1 mm) which are arranged at a triangular tight-lattice configuration. To evaluate the feasibility and to optimize the thermal design of the RMWR core, a full-scale bundle test is required. However, several systematic full-scale tests are difficult to perform during an initial design phase from economic and temporal reason. Thus, we made a plan to develop a mechanistic BT model to evaluate the effects of the geometry configuration by a two-phase flow numerical simulation. In the plan of the mechanistic BT model development, three dimensional two-phase flow simulation codes with the interface tracking method, the moving particle semi-implicit method and the advanced two-fluid model are developed. In this study, as a part of this model development, detailed two-phase flow simulation code using interface tracking method (named TPFIT) is developed. In this paper, the results of TPFIT code with the advanced interface tracking method applied to single bubbles behavior through subchannels) to verify TPFIT code performance in complicated flow channel as rod bundles. In the simulation, the flow channel is composed of a square duct and four tubes with outside diameters D = 12 mm. The width and height of the duct are 27.2 mm and 192 mm, respectively. In the flow channel, the tubes are used to simulate fuel rods. One center subchannel and four periphery subchannels exist in the

  15. On the discrete spectrum of the N-body quantum mechanical Hamiltonian. Pt. 2

    International Nuclear Information System (INIS)

    Iorio, R.J. Jr.

    1981-01-01

    Using the Weinberg-van Winter equations we prove finiteness of the discrete spectrum of the N-body quantum mechanical Hamiltonian with pair potentials satisfying vertical stroke V(x) vertical stroke 2 ) - sup(rho), rho > 1 increase the threshold of the continuous spectrum is negative and determined exclusively by eigenvalues of two-cluster Hamiltonians. (orig.)

  16. Lattice location of dopant atoms: An N-body model calculation

    Indian Academy of Sciences (India)

    from the concerned channelling direction. Here we applied the superior N-body model to study the yield from bismuth in silicon. The finding that bismuth atom occupies a position close to the silicon substitutional site is new. The transverse displacement of the suggested lattice site from the channelling direction is consistent ...

  17. Scattering-equivalent multichannel systems and n-body (n>=3) nuclear forces

    International Nuclear Information System (INIS)

    Saenz, A.W.; Zachary, W.W.

    1975-01-01

    Rigorous conditions are given for two nonrelativistic N-particle (N>=2) systems with unitarily equivalent Hamiltonians to yield the same scattering amplitudes. This allows the phenomenological investigation of n-body (n>=3) nuclear forces by varying nuclear bound-state wave-functions while leaving unaltered the pertinent scattering predictions. (Auth.)

  18. Evaporation of freely suspended single droplets: experimental, theoretical and computational simulations

    International Nuclear Information System (INIS)

    Hołyst, R; Litniewski, M; Jakubczyk, D; Kolwas, K; Kolwas, M; Kowalski, K; Migacz, S; Palesa, S; Zientara, M

    2013-01-01

    Evaporation is ubiquitous in nature. This process influences the climate, the formation of clouds, transpiration in plants, the survival of arctic organisms, the efficiency of car engines, the structure of dried materials and many other phenomena. Recent experiments discovered two novel mechanisms accompanying evaporation: temperature discontinuity at the liquid–vapour interface during evaporation and equilibration of pressures in the whole system during evaporation. None of these effects has been predicted previously by existing theories despite the fact that after 130 years of investigation the theory of evaporation was believed to be mature. These two effects call for reanalysis of existing experimental data and such is the goal of this review. In this article we analyse the experimental and the computational simulation data on the droplet evaporation of several different systems: water into its own vapour, water into the air, diethylene glycol into nitrogen and argon into its own vapour. We show that the temperature discontinuity at the liquid–vapour interface discovered by Fang and Ward (1999 Phys. Rev. E 59 417–28) is a rule rather than an exception. We show in computer simulations for a single-component system (argon) that this discontinuity is due to the constraint of momentum/pressure equilibrium during evaporation. For high vapour pressure the temperature is continuous across the liquid–vapour interface, while for small vapour pressures the temperature is discontinuous. The temperature jump at the interface is inversely proportional to the vapour density close to the interface. We have also found that all analysed data are described by the following equation: da/dt = P 1 /(a + P 2 ), where a is the radius of the evaporating droplet, t is time and P 1 and P 2 are two parameters. P 1 = −λΔT/(q eff ρ L ), where λ is the thermal conductivity coefficient in the vapour at the interface, ΔT is the temperature difference between the liquid droplet

  19. Atomistic simulations of displacement cascades in Y2O3 single crystal

    International Nuclear Information System (INIS)

    Dholakia, Manan; Chandra, Sharat; Valsakumar, M.C.; Mathi Jaya, S.

    2014-01-01

    Graphical abstract: (a) The averaged distortion index and the Y–O bond length of the Y 2 O 3 octahedra as a function of the simulation time for 5 keV PKA. (b) Shows the nearest neighbourhood of one of the Y ions as a function of simulation time, showing the destruction and the recovery of the YO 6 octahedron during the cascade corresponding to 5 keV Y PKA. - Highlights: • Qualitative difference in displacement cascades exists for Y and O PKA. • Nearest neighbour correlation between Y and O ions exists even at cascade peak. • Cascade core in Y 2 O 3 does not undergo melting. • Topological connectivity of YO 6 polyhedra plays important role in stability of Y 2 O 3 . - Abstract: We study the characteristics of displacement cascades in single crystal Y 2 O 3 using classical molecular dynamics. There are two possible ways to generate the cascades in yttria, using either the Y or the O atoms as the primary knock-on (PKA) atom. It is shown that there is a qualitative difference in the characteristics of the cascades obtained in these two cases. Even though the crystal is seen to be in a highly disordered state in the cascade volume, as seen from the plots of radial distribution function, the correlation between the Y and O atoms is not completely lost. This facilitates a quick recovery of the system during the annealing phase. Topological connectivity of the YO 6 polyhedral units plays an important role in imparting stability to the Y 2 O 3 crystal. These characteristics of the cascades can help explain the stability of the yttria nanoparticles when they are dispersed in oxide dispersion strengthened steels

  20. Monte Carlo Simulations for the Detection of Buried Objects Using Single Sided Backscattered Radiation.

    Directory of Open Access Journals (Sweden)

    Mary Yip

    Full Text Available Detection of buried improvised explosive devices (IEDs is a delicate task, leading to a need to develop sensitive stand-off detection technology. The shape, composition and size of the IEDs can be expected to be revised over time in an effort to overcome increasingly sophisticated detection methods. As an example, for the most part, landmines are found through metal detection which has led to increasing use of non-ferrous materials such as wood or plastic containers for chemical based explosives being developed.Monte Carlo simulations have been undertaken considering three different commercially available detector materials (hyperpure-Ge (HPGe, lanthanum(III bromide (LaBr and thallium activated sodium iodide (NaI(Tl, applied at a stand-off distance of 50 cm from the surface and burial depths of 0, 5 and 10 cm, with sand as the obfuscating medium. Target materials representing medium density wood and mild steel have been considered. Each detector has been modelled as a 10 cm thick cylinder with a 20 cm diameter.It appears that HPGe represents the most promising detector for this application. Although it was not the highest density material studied, its excellent energy resolving capability leads to the highest quality spectra from which detection decisions can be inferred.The simulation work undertaken here suggests that a vehicle-born threat detection system could be envisaged using a single betatron and a series of detectors operating in parallel observing the space directly in front of the vehicle path. Furthermore, results show that non-ferrous materials such as wood can be effectively discerned in such remote-operated detection system, with the potential to apply a signature analysis template matching technique for real-time analysis of such data.

  1. Joint Center Estimation Using Single-Frame Optimization: Part 1: Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Eric Frick

    2018-04-01

    Full Text Available The biomechanical models used to refine and stabilize motion capture processes are almost invariably driven by joint center estimates, and any errors in joint center calculation carry over and can be compounded when calculating joint kinematics. Unfortunately, accurate determination of joint centers is a complex task, primarily due to measurements being contaminated by soft-tissue artifact (STA. This paper proposes a novel approach to joint center estimation implemented via sequential application of single-frame optimization (SFO. First, the method minimizes the variance of individual time frames’ joint center estimations via the developed variance minimization method to obtain accurate overall initial conditions. These initial conditions are used to stabilize an optimization-based linearization of human motion that determines a time-varying joint center estimation. In this manner, the complex and nonlinear behavior of human motion contaminated by STA can be captured as a continuous series of unique rigid-body realizations without requiring a complex analytical model to describe the behavior of STA. This article intends to offer proof of concept, and the presented method must be further developed before it can be reasonably applied to human motion. Numerical simulations were introduced to verify and substantiate the efficacy of the proposed methodology. When directly compared with a state-of-the-art inertial method, SFO reduced the error due to soft-tissue artifact in all cases by more than 45%. Instead of producing a single vector value to describe the joint center location during a motion capture trial as existing methods often do, the proposed method produced time-varying solutions that were highly correlated (r > 0.82 with the true, time-varying joint center solution.

  2. Molecular-dynamic simulations of the thermophysical properties of hexanitrohexaazaisowurtzitane single crystal at high pressures and temperatures

    Science.gov (United States)

    Kozlova, S. A.; Gubin, S. A.; Maklashova, I. V.; Selezenev, A. A.

    2017-11-01

    Molecular dynamic simulations of isothermal compression parameters are performed for a hexanitrohexaazaisowurtzitane single crystal (C6H6O12N12) using a modified ReaxFF-log reactive force field. It is shown that the pressure-compression ratio curve for a single C6H6O12N12 crystal at constant temperature T = 300 K in pressure range P = 0.05-40 GPa is in satisfactory agreement with experimental compression isotherms obtained for a single C6H6O12N12 crystal. Hugoniot molecular-dynamic simulations of the shock-wave hydrostatic compression of a single C6H6O12N12 crystal are performed. Along with Hugoniot temperature-pressure curves, calculated shock-wave pressure-compression ratios for a single C6H6O12N12 crystal are obtained for a wide pressure range of P = 1-40 GPa. It is established that the percussive adiabat obtained for a single C6H6O12N12 crystal is in a good agreement with the experimental data. All calculations are performed using a LAMMPS molecular dynamics simulation software package that provides a ReaxFF-lg reactive force field to support the approach.

  3. Two-dimensional single fluid MHD simulations of plasma opening switches

    International Nuclear Information System (INIS)

    Roderick, N.F.; Payne, S.S.; Peterkin, R.E. Jr.; Frese, M.H.; Hussey, T.W.

    1989-01-01

    Simulations of plasma opening switch have been made using two-dimensional, single fluid, magnetohydrodynamic codes HAM and MACH2. A variety of mechanisms for magnetic field penetration have been investigated. These include plasma convection, classical and microturbulent resistive diffusion, and Hall effect transport. We find that plasma microturbulent models are necessary to explain the broad current channels observed in experiments. Both heuristic and consistent microturbulent models are able to explain observed channel widths and penetration features. The best results are obtained for a consistent model that includes the Buneman, ion acoustic, and lower hybrid microturbulent collision frequencies and threshold conditions. Maximum microturbulent collision frequencies of 5 ω p , are typical. Field transport and current channel profiles are in excellent agreement with experimental observations for GAMBLE I, GAMBLE II, and SUPERMITE experiments. Dominant field penetration mechanisms and center of mass plasma motion are current and density dependent. Including the Hall effect enhanced field penetration. Center of mass motion is negligible for the GAMBLE I experiments but significant for the GAMBLE II conditions. Scaling of plasma opening time with switch length and density can be fit by linear representations for lengths from 0.03 m to 0.24 m and ion densities from 10 18 m -3 to 1.5 times 10 19 m -3 . 15 refs., 7 figs., 1 tab

  4. Numerical simulation of liquefaction susceptibility of soil interacting by single pile

    Directory of Open Access Journals (Sweden)

    Ahmad Asaadi

    2015-06-01

    Full Text Available Previous case histories have shown that soil liquefaction severely damaged many structures supported on pile foundations during earthquakes. As a result, evaluating the potential for instability is an important consideration for the safe and resistant design of deep foundation against earthquakes. In this study, the liquefaction susceptibility of saturated sand interacting by single concrete pile was simulated by means of finite difference method. A nonlinear effective stress analysis was used to evaluate soil liquefaction, and the soil-pile interaction was considered using interface elements. The parameter Ru was defined as the pore water pressure ratio to investigate liquefaction in the soil mass during time. A set of numerical models were carried out by three types of soil mass with various condensation (loose, semi-dense and dense under three ground motion with different predominant frequencies and peak accelerations. The effect of these parameters was studied using excess pore pressure, lateral movement and settlement time histories. It was found that the pile can affect the liquefaction susceptibility of soil by comparing the near pile and free field responses. However, for various soil and earthquake characteristics, it was found that the depth of soil liquefaction and triggering, varies.

  5. Single Qubit Spin Readout and Initialization in a Quantum Dot Quantum Computer: Design and Simulation

    Science.gov (United States)

    Tahan, Charles; Friesen, Mark; Joynt, Robert; Eriksson, M. A.

    2003-03-01

    Although electron spin qubits in semiconductors are attractive from the viewpoint of low environmental coupling and long coherence times, spin readout remains a challenge for quantum dot quantum computing. Unfortunately, promising schemes based on spin-charge transduction introduce external couplings in the form of reference qubits or Coulomb blockade leads. Here, we propose a twist on the spin-charge transduction scheme, converting spin information to orbital information within a single quantum dot (QD). The same QD can be used for initialization, gating, and readout, without unnecessary external couplings. We present detailed investigations into such a scheme in both SiGe and GaAs systems: simulations, including capacitive coupling to a RF-SET, calculations of coherent oscillation times which determine the read-out speed, and calculations of electron spin relaxation times which determine the initialization speed. We find that both initialization and readout can be performed within the same architecture. Work supported by NSF-QuBIC and MRSEC programs, ARDA, and NSA.

  6. Simulation of the single-vibronic-level emission spectrum of HPS.

    Science.gov (United States)

    Mok, Daniel K W; Lee, Edmond P F; Chau, Foo-tim; Dyke, John M

    2014-05-21

    We have computed the potential energy surfaces of the X¹A' and ùA" states of HPS using the explicitly correlated multi-reference configuration interaction (MRCI-F12) method, and Franck-Condon factors between the two states, which include anharmonicity and Duschinsky rotation, with the aim of testing the assignment of the recently reported single-vibronic-level (SVL) emission spectrum of HPS [R. Grimminger, D. J. Clouthier, R. Tarroni, Z. Wang, and T. J. Sears, J. Chem. Phys. 139, 174306 (2013)]. These are the highest level calculations on these states yet reported. It is concluded that our spectral simulation supports the assignments of the molecular carrier, the electronic states involved and the vibrational structure of the experimental laser induced fluorescence, and SVL emission spectra proposed by Grimminger et al. [J. Chem. Phys. 139, 174306 (2013)]. However, there remain questions unanswered regarding the relative electronic energies of the two states and the geometry of the excited state of HPS.

  7. Including Memory Friction in Single- and Two-State Quantum Dynamics Simulations.

    Science.gov (United States)

    Brown, Paul A; Messina, Michael

    2016-03-03

    We present a simple computational algorithm that allows for the inclusion of memory friction in a quantum dynamics simulation of a small, quantum, primary system coupled to many atoms in the surroundings. We show how including a memory friction operator, F̂, in the primary quantum system's Hamiltonian operator builds memory friction into the dynamics of the primary quantum system. We show that, in the harmonic, semi-classical limit, this friction operator causes the classical phase-space centers of a wavepacket to evolve exactly as if it were a classical particle experiencing memory friction. We also show that this friction operator can be used to include memory friction in the quantum dynamics of an anharmonic primary system. We then generalize the algorithm so that it can be used to treat a primary quantum system that is evolving, non-adiabatically on two coupled potential energy surfaces, i.e., a model that can be used to model H atom transfer, for example. We demonstrate this approach's computational ease and flexibility by showing numerical results for both harmonic and anharmonic primary quantum systems in the single surface case. Finally, we present numerical results for a model of non-adiabatic H atom transfer between a reactant and product state that includes memory friction on one or both of the non-adiabatic potential energy surfaces and uncover some interesting dynamical effects of non-memory friction on the H atom transfer process.

  8. Modelling and numerical simulation of vortex induced vibrations of single cylinder or cylinder arrays

    International Nuclear Information System (INIS)

    Jus, Y.

    2011-01-01

    This research thesis fits into the frame of researches achieved in the nuclear field in order to optimize the predictive abilities of sizing models of nuclear plant components. It more precisely addresses the modelling of the action exerted by the flowing fluid and the induced feedback by the structure dynamics. The objective is herein to investigate the interaction between the turbulence at the wall vicinity and the effects of non-conservative and potentially destabilizing unsteady coupling. The peculiar case of a single cylinder in infinite environment, and submitted to a transverse flow, is studied statically and then dynamically. The influence of flow regimes on dynamic response is characterized, and the quantification of fluid-structure interaction energy is assessed. The author then addresses the case of an array of cylinders, and highlights the contribution of three-dimensional macro-simulations for the analysis of flow-induced structure vibrations in subcritical regime within a High Performance Calculation (HPC) framework, and the interest of a CFD/CSM (computational fluid dynamics/computational structure mechanics) coupling in the case of turbulent flows in an industrial environment

  9. The Schroedinger-Poisson equations as the large-N limit of the Newtonian N-body system. Applications to the large scale dark matter dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Briscese, Fabio [Northumbria University, Department of Mathematics, Physics and Electrical Engineering, Newcastle upon Tyne (United Kingdom); Citta Universitaria, Istituto Nazionale di Alta Matematica Francesco Severi, Gruppo Nazionale di Fisica Matematica, Rome (Italy)

    2017-09-15

    In this paper it is argued how the dynamics of the classical Newtonian N-body system can be described in terms of the Schroedinger-Poisson equations in the large N limit. This result is based on the stochastic quantization introduced by Nelson, and on the Calogero conjecture. According to the Calogero conjecture, the emerging effective Planck constant is computed in terms of the parameters of the N-body system as ℎ ∝ M{sup 5/3}G{sup 1/2}(N/ left angle ρ right angle){sup 1/6}, where is G the gravitational constant, N and M are the number and the mass of the bodies, and left angle ρ right angle is their average density. The relevance of this result in the context of large scale structure formation is discussed. In particular, this finding gives a further argument in support of the validity of the Schroedinger method as numerical double of the N-body simulations of dark matter dynamics at large cosmological scales. (orig.)

  10. Numerical Simulations of Two-Phase Reacting Flow in a Single-Element Lean Direct Injection (LDI) Combustor Using NCC

    Science.gov (United States)

    Liu, Nan-Suey; Shih, Tsan-Hsing; Wey, C. Thomas

    2011-01-01

    A series of numerical simulations of Jet-A spray reacting flow in a single-element lean direct injection (LDI) combustor have been conducted by using the National Combustion Code (NCC). The simulations have been carried out using the time filtered Navier-Stokes (TFNS) approach ranging from the steady Reynolds-averaged Navier-Stokes (RANS), unsteady RANS (URANS), to the dynamic flow structure simulation (DFS). The sub-grid model employed for turbulent mixing and combustion includes the well-mixed model, the linear eddy mixing (LEM) model, and the filtered mass density function (FDF/PDF) model. The starting condition of the injected liquid spray is specified via empirical droplet size correlation, and a five-species single-step global reduced mechanism is employed for fuel chemistry. All the calculations use the same grid whose resolution is of the RANS type. Comparisons of results from various models are presented.

  11. Solidification of a binary alloy: Finite-element, single-domain simulation and new benchmark solutions

    Science.gov (United States)

    Le Bars, Michael; Worster, M. Grae

    2006-07-01

    A finite-element simulation of binary alloy solidification based on a single-domain formulation is presented and tested. Resolution of phase change is first checked by comparison with the analytical results of Worster [M.G. Worster, Solidification of an alloy from a cooled boundary, J. Fluid Mech. 167 (1986) 481-501] for purely diffusive solidification. Fluid dynamical processes without phase change are then tested by comparison with previous numerical studies of thermal convection in a pure fluid [G. de Vahl Davis, Natural convection of air in a square cavity: a bench mark numerical solution, Int. J. Numer. Meth. Fluids 3 (1983) 249-264; D.A. Mayne, A.S. Usmani, M. Crapper, h-adaptive finite element solution of high Rayleigh number thermally driven cavity problem, Int. J. Numer. Meth. Heat Fluid Flow 10 (2000) 598-615; D.C. Wan, B.S.V. Patnaik, G.W. Wei, A new benchmark quality solution for the buoyancy driven cavity by discrete singular convolution, Numer. Heat Transf. 40 (2001) 199-228], in a porous medium with a constant porosity [G. Lauriat, V. Prasad, Non-darcian effects on natural convection in a vertical porous enclosure, Int. J. Heat Mass Transf. 32 (1989) 2135-2148; P. Nithiarasu, K.N. Seetharamu, T. Sundararajan, Natural convective heat transfer in an enclosure filled with fluid saturated variable porosity medium, Int. J. Heat Mass Transf. 40 (1997) 3955-3967] and in a mixed liquid-porous medium with a spatially variable porosity [P. Nithiarasu, K.N. Seetharamu, T. Sundararajan, Natural convective heat transfer in an enclosure filled with fluid saturated variable porosity medium, Int. J. Heat Mass Transf. 40 (1997) 3955-3967; N. Zabaras, D. Samanta, A stabilized volume-averaging finite element method for flow in porous media and binary alloy solidification processes, Int. J. Numer. Meth. Eng. 60 (2004) 1103-1138]. Finally, new benchmark solutions for simultaneous flow through both fluid and porous domains and for convective solidification processes are

  12. Femtosecond laser irradiation of olivine single crystals: Experimental simulation of space weathering

    Science.gov (United States)

    Fazio, A.; Harries, D.; Matthäus, G.; Mutschke, H.; Nolte, S.; Langenhorst, F.

    2018-01-01

    Space weathering is one of the most common surface process occurring on atmosphere-free bodies such as asteroids and the Moon. It is caused mainly by solar wind irradiation and the impact of micrometeoroids. In order to simulate space weathering effects, in particular those produced by hypervelocity impacts, we produced microcraters via ultra-short (∼100 fs) laser irradiation of crystallographically oriented slices of forsterite-rich (Fo94.7) olivine. The main advantages of the application of a femtosecond laser radiation to reproduce the space weathering effects are (1) the high peak irradiance (1015 W cm-2), which generates the propagation of the shock wave at the nanosecond timescale (i.e., timescale of the micrometeoroid impacts); (2) the rapid transfer of energy to the target material, which avoids the interaction of laser light with the developing vapor plume; (3) a small laser beam, which allows the effects of a single impact to be simulated. The results of our spectroscopic and electron microscopic investigation validate this approach: the samples show strong darkening and reddening of the reflectance spectra and structural damages similar to the natural microcraters found on regolith grains of the Moon and asteroid 25143 Itokawa. Detailed investigations of several microcrater cross-sections by transmission electron microscopy allowed the detection of shock-induced defect microstructures. From the top to the bottom of the grain, the shock wave causes evaporation, melting, solid-state recrystallization, misorientation, fracturing, and the propagation of dislocations with Burgers vectors parallel to [001]. The formation of a short-lived vapor plume causes the kinetic fractionation of the gas and the preferential loss of lighter elements, mostly magnesium and oxygen. The high temperatures within the melt layer and the kinetic loss of oxygen promote the thermal reduction of iron and nickel, which leads to the formation of metallic nanoparticles (npFe0). The

  13. GANDALF - Graphical Astrophysics code for N-body Dynamics And Lagrangian Fluids

    Science.gov (United States)

    Hubber, D. A.; Rosotti, G. P.; Booth, R. A.

    2018-01-01

    GANDALF is a new hydrodynamics and N-body dynamics code designed for investigating planet formation, star formation and star cluster problems. GANDALF is written in C++, parallelized with both OPENMP and MPI and contains a PYTHON library for analysis and visualization. The code has been written with a fully object-oriented approach to easily allow user-defined implementations of physics modules or other algorithms. The code currently contains implementations of smoothed particle hydrodynamics, meshless finite-volume and collisional N-body schemes, but can easily be adapted to include additional particle schemes. We present in this paper the details of its implementation, results from the test suite, serial and parallel performance results and discuss the planned future development. The code is freely available as an open source project on the code-hosting website github at https://github.com/gandalfcode/gandalf and is available under the GPLv2 license.

  14. Highly eccentric hip-hop solutions of the 2 N-body problem

    Science.gov (United States)

    Barrabés, Esther; Cors, Josep M.; Pinyol, Conxita; Soler, Jaume

    2010-02-01

    We show the existence of families of hip-hop solutions in the equal-mass 2 N-body problem which are close to highly eccentric planar elliptic homographic motions of 2 N bodies plus small perpendicular non-harmonic oscillations. By introducing a parameter ɛ, the homographic motion and the small amplitude oscillations can be uncoupled into a purely Keplerian homographic motion of fixed period and a vertical oscillation described by a Hill type equation. Small changes in the eccentricity induce large variations in the period of the perpendicular oscillation and give rise, via a Bolzano argument, to resonant periodic solutions of the uncoupled system in a rotating frame. For small ɛ≠0, the topological transversality persists and Brouwer’s fixed point theorem shows the existence of this kind of solutions in the full system.

  15. Explicit treatment of N-body correlations within a density-matrix formalism

    International Nuclear Information System (INIS)

    Shun-Jin, W.; Cassing, W.

    1985-01-01

    The nuclear many-body problem is reformulated in the density-matrix approach such that n-body correlations are separated out from the reduced density matrix rho/sub n/. A set of equations for the time evolution of the n-body correlations c/sub n/ is derived which allows for physically transparent truncations with respect to the order of correlations. In the stationary limit (c/sub n/ = 0) a restriction to two-body correlations yields a generalized Bethe-Goldstone equation a restriction to body correlations yields generalized Faddeev equations in the density-matrix formulation. Furthermore it can be shown that any truncation of the set of equations (c/sub n/ = 0, n>m) is compatible with conservation laws, a quality which in general is not fulfilled if higher order correlations are treated perturbatively

  16. Single-Column Model Simulations of Subtropical Marine Boundary-Layer Cloud Transitions Under Weakening Inversions

    Science.gov (United States)

    Neggers, R. A. J.; Ackerman, A. S.; Angevine, W. M.; Bazile, E.; Beau, I.; Blossey, P. N.; Boutle, I. A.; de Bruijn, C.; Cheng, A.; van der Dussen, J.; Fletcher, J.; Dal Gesso, S.; Jam, A.; Kawai, H.; Cheedela, S. K.; Larson, V. E.; Lefebvre, M.-P.; Lock, A. P.; Meyer, N. R.; de Roode, S. R.; de Rooy, W.; Sandu, I.; Xiao, H.; Xu, K.-M.

    2017-10-01

    Results are presented of the GASS/EUCLIPSE single-column model intercomparison study on the subtropical marine low-level cloud transition. A central goal is to establish the performance of state-of-the-art boundary-layer schemes for weather and climate models for this cloud regime, using large-eddy simulations of the same scenes as a reference. A novelty is that the comparison covers four different cases instead of one, in order to broaden the covered parameter space. Three cases are situated in the North-Eastern Pacific, while one reflects conditions in the North-Eastern Atlantic. A set of variables is considered that reflects key aspects of the transition process, making use of simple metrics to establish the model performance. Using this method, some longstanding problems in low-level cloud representation are identified. Considerable spread exists among models concerning the cloud amount, its vertical structure, and the associated impact on radiative transfer. The sign and amplitude of these biases differ somewhat per case, depending on how far the transition has progressed. After cloud breakup the ensemble median exhibits the well-known "too few too bright" problem. The boundary-layer deepening rate and its state of decoupling are both underestimated, while the representation of the thin capping cloud layer appears complicated by a lack of vertical resolution. Encouragingly, some models are successful in representing the full set of variables, in particular, the vertical structure and diurnal cycle of the cloud layer in transition. An intriguing result is that the median of the model ensemble performs best, inspiring a new approach in subgrid parameterization.

  17. Hip-hop solutions of the 2N-body problem

    Science.gov (United States)

    Barrabés, Esther; Cors, Josep Maria; Pinyol, Conxita; Soler, Jaume

    2006-05-01

    Hip-hop solutions of the 2N-body problem with equal masses are shown to exist using an analytic continuation argument. These solutions are close to planar regular 2N-gon relative equilibria with small vertical oscillations. For fixed N, an infinity of these solutions are three-dimensional choreographies, with all the bodies moving along the same closed curve in the inertial frame.

  18. Application of single step genomic BLUP under different uncertain paternity scenarios using simulated data.

    Directory of Open Access Journals (Sweden)

    Rafael Lara Tonussi

    Full Text Available The objective of this study was to investigate the application of BLUP and single step genomic BLUP (ssGBLUP models in different scenarios of paternity uncertainty with different strategies of scaling the G matrix to match the A22 matrix, using simulated data for beef cattle. Genotypes, pedigree, and phenotypes for age at first calving (AFC and weight at 550 days (W550 were simulated using heritabilities based on real data (0.12 for AFC and 0.34 for W550. Paternity uncertainty scenarios using 0, 25, 50, 75, and 100% of multiple sires (MS were studied. The simulated genome had a total length of 2,333 cM, containing 735,293 biallelic markers and 7,000 QTLs randomly distributed over the 29 BTA. It was assumed that QTLs explained 100% of the genetic variance. For QTL, the amount of alleles per loci randomly ranged from two to four. The BLUP model that considers phenotypic and pedigree data, and the ssGBLUP model that combines phenotypic, pedigree and genomic information were used for genetic evaluations. Four ways of scaling the mean of the genomic matrix (G to match to the mean of the pedigree relationship matrix among genotyped animals (A22 were tested. Accuracy, bias, and inflation were investigated for five groups of animals: ALL = all animals; BULL = only bulls; GEN = genotyped animals; FEM = females; and YOUNG = young males. With the BLUP model, the accuracies of genetic evaluations decreased for both traits as the proportion of unknown sires in the population increased. The EBV accuracy reduction was higher for GEN and YOUNG groups. By analyzing the scenarios for YOUNG (from 0 to 100% of MS, the decrease was 87.8 and 86% for AFC and W550, respectively. When applying the ssGBLUP model, the accuracies of genetic evaluation also decreased as the MS in the pedigree for both traits increased. However, the accuracy reduction was less than those observed for BLUP model. Using the same comparison (scenario 0 to 100% of MS, the accuracies reductions

  19. A NEW HYBRID N-BODY-COAGULATION CODE FOR THE FORMATION OF GAS GIANT PLANETS

    International Nuclear Information System (INIS)

    Bromley, Benjamin C.; Kenyon, Scott J.

    2011-01-01

    We describe an updated version of our hybrid N-body-coagulation code for planet formation. In addition to the features of our 2006-2008 code, our treatment now includes algorithms for the one-dimensional evolution of the viscous disk, the accretion of small particles in planetary atmospheres, gas accretion onto massive cores, and the response of N-bodies to the gravitational potential of the gaseous disk and the swarm of planetesimals. To validate the N-body portion of the algorithm, we use a battery of tests in planetary dynamics. As a first application of the complete code, we consider the evolution of Pluto-mass planetesimals in a swarm of 0.1-1 cm pebbles. In a typical evolution time of 1-3 Myr, our calculations transform 0.01-0.1 M sun disks of gas and dust into planetary systems containing super-Earths, Saturns, and Jupiters. Low-mass planets form more often than massive planets; disks with smaller α form more massive planets than disks with larger α. For Jupiter-mass planets, masses of solid cores are 10-100 M + .

  20. Experimental and 2D simulation study of the single-event burnout in n-channel power MOSFETs

    International Nuclear Information System (INIS)

    Roubaud, F.; Dachs, C.; Palau, J.M.; Gasiot, J.

    1993-01-01

    The use of the 2D simulator MEDICI as a tool for Single Event Burnout (SEB) comprehension is investigated. Simulation results are compared to experimental currents induced in an N channel power MOSFET by the ions from a 252 Cf source. Current measurements have been carried out with a specially designed circuit. Simulations allow to analyze separately the effects of the ion impact and of the electrical environment parameters on the SEB phenomenon. Burnout sensitivity is found to be increased by increasing supply voltage, ion's LET and by decreasing load charge. These electrical tendencies are validated by experiments. Burnout sensitivity is also found to be sensitive to the ion impact position. The current shapes variations for given electrical parameters can be related to LET or ion impact position changes. However, some experimental current shapes are not reproduced by simulations

  1. Using Simulation-Based Medical Education to Meet the Competency Requirements for the Single Accreditation System.

    Science.gov (United States)

    Riley, Bernadette

    2015-08-01

    Simulation-based medical education can provide medical training in a nonjudgmental, patient-safe, and effective environment. Although simulation has been a relatively new addition to medical education, the aeronautical, judicial, and military fields have used simulation training for hundreds of years, with positive outcomes. Simulation-based medical education can be used in a variety of settings, such as hospitals, outpatient clinics, medical schools, and simulation training centers. As the author describes in the present article, residencies currently accredited by the American Osteopathic Association can use a simulation-based medical education curriculum to meet training requirements of the 6 competencies identified by the Accreditation Council for Graduate Medical Education. The author also provides specific guidance on providing training and assessment in the professionalism competency.

  2. Using sea surface temperatures to improve performance of single dynamical downscaling model in flood simulation under climate change

    Science.gov (United States)

    Chao, Y.; Cheng, C. T.; Hsiao, Y. H.; Hsu, C. T.; Yeh, K. C.; Liu, P. L.

    2017-12-01

    There are 5.3 typhoons hit Taiwan per year on average in last decade. Typhoon Morakot in 2009, the most severe typhoon, causes huge damage in Taiwan, including 677 casualties and roughly NT 110 billion (3.3 billion USD) in economic loss. Some researches documented that typhoon frequency will decrease but increase in intensity in western North Pacific region. It is usually preferred to use high resolution dynamical model to get better projection of extreme events; because coarse resolution models cannot simulate intense extreme events. Under that consideration, dynamical downscaling climate data was chosen to describe typhoon satisfactorily, this research used the simulation data from AGCM of Meteorological Research Institute (MRI-AGCM). Considering dynamical downscaling methods consume massive computing power, and typhoon number is very limited in a single model simulation, using dynamical downscaling data could cause uncertainty in disaster risk assessment. In order to improve the problem, this research used four sea surfaces temperatures (SSTs) to increase the climate change scenarios under RCP 8.5. In this way, MRI-AGCMs project 191 extreme typhoons in Taiwan (when typhoon center touches 300 km sea area of Taiwan) in late 21th century. SOBEK, a two dimensions flood simulation model, was used to assess the flood risk under four SSTs climate change scenarios in Tainan, Taiwan. The results show the uncertainty of future flood risk assessment is significantly decreased in Tainan, Taiwan in late 21th century. Four SSTs could efficiently improve the problems of limited typhoon numbers in single model simulation.

  3. Two-dimensional numerical simulation of the effect of single event upset for SRAM

    International Nuclear Information System (INIS)

    Guo Hongxia; Chen Yusheng; Zhou Hui; He Chaohui; Li Yonghong

    2003-01-01

    In the paper, SEU for SRAM is simulated using the software of MEDICI two-dimensional device simulator. From the theory, a reliable approach is set up for analyzing device's SEU. Collective charge depending on LET for specific device structure is calculated for different particles LET and critical charge is provided. The results of simulation are consistent with the model of charging funnel. It has been proven that the models presented in the paper are correct. There are some improvements to be discussed

  4. Quasi-Static Single-Component Hybrid Simulation of a Composite Structure with Multi-Axis Control

    DEFF Research Database (Denmark)

    Høgh, J.; Waldbjørn, J.; Wittrup-Schmidt, J.

    2015-01-01

    This paper presents a quasi-static hybrid simulation performed on a single component structure. Hybrid simulation is a substructural technique, where a structure is divided into two sections: a numerical section of the main structure and a physical experiment of the remainder. In previous cases...... to evaluate the validity of the method, the results are compared to a test of the emulated structure – referred to here as the reference test. It was found that the error introduced by compliance in the load train was significant. Digital image correlation was for this reason implemented in the hybrid...

  5. Single Top quark production via W-gluon fusion at LHC.Simulation with PYTHIA 5.7 Event Generator

    CERN Document Server

    Ahmedov, A; Kukhtin, V V; Mehdiyev, R; Metreveli, Z V; Salihagic, D

    1999-01-01

    The electroweak production of single top quarks via so-called W-gluon fusion in proton-proton interactions at sqrt(s)=14 TeV has been studied. Single Top quark production cross sections have been calculated. Simulations of the top quark production in W-gluon fusion process with further decay to Wb -> l nu b final state and of the corresponding backgrounds have been performed. The use of several kinematical distributions allowed to suppress backgrounds and to perform the reconstruction of the mass of the e - nu - jet system.

  6. Double-bootstrap methods that use a single double-bootstrap simulation

    OpenAIRE

    Chang, Jinyuan; Hall, Peter

    2014-01-01

    We show that, when the double bootstrap is used to improve performance of bootstrap methods for bias correction, techniques based on using a single double-bootstrap sample for each single-bootstrap sample can be particularly effective. In particular, they produce third-order accuracy for much less computational expense than is required by conventional double-bootstrap methods. However, this improved level of performance is not available for the single double-bootstrap methods that have been s...

  7. Modeling and CFD Simulation of nutrient Distribution in picoliter bioreactors for bacterial growth studies on single-cell level

    OpenAIRE

    Westerwalbesloh, Christoph; Grünberger, Alexander; Stute, Birgit; Weber, Sophie; Wiechert, Wolfgang; Kohlheyer, Dietrich; von Lieres, Eric

    2015-01-01

    A microfluidic device for microbial single-cell cultivation of bacteria was modeled and simulated using COMSOL Multiphysics. The liquid velocity field and the mass transfer within the supply channels and cultivation chambers were calculated to gain insight in the distribution of supplied nutrients and metabolic products secreted by the cultivated bacteria. The goal was to identify potential substrate limitations or product accumulations within the cultivation device. The metabolic uptake and ...

  8. Extended Algorithm for Simulation of Light Transport in Single Crystal Scintillation Detectors for S(T)EM

    Czech Academy of Sciences Publication Activity Database

    Schauer, Petr

    2007-01-01

    Roč. 29, č. 6 (2007), s. 249-253 ISSN 0161-0457 R&D Projects: GA ČR GA102/04/2144 Institutional research plan: CEZ:AV0Z20650511 Keywords : Monte Carlo simulation * photon transport * scintillation detector * single crystal scintillator * lightguides * signal processing * SEM * S(T)EM Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.324, year: 2007

  9. Influence of temperature on the anisotropic cutting behaviour of single crystal silicon: A molecular dynamics simulation investigation

    OpenAIRE

    Chavoshi, Saeed Zare; Goel, Saurav; Luo, Xichun

    2016-01-01

    Using molecular dynamics (MD) simulation, this paper investigates anisotropic cutting behaviour of single crystal silicon in vacuum under a wide range of substrate temperatures (300 K, 500 K, 750 K, 850 K, 1173 K and 1500 K). Specific cutting energy, force ratio, stress in the cutting zone and cutting temperature were the indicators used to quantify the differences in the cutting behaviour of silicon. A key observation was that the specific cutting energy required to cut the (1 1 1) surface o...

  10. Single Wake Meandering, Advection and Expansion - An analysis using an adapted Pulsed Lidar and CFD LES-ACL simulations

    DEFF Research Database (Denmark)

    Machefaux, Ewan; Larsen, Gunner Chr.; Troldborg, Niels

    2013-01-01

    In this paper, single wake characteristics have been studied both experimentally and numerically. Firstly, the wake is studied experimentally using full-scale measurements from an adapted focused pulsed lidar system, which potentially gives more insight into the wake dynamics as compared to class...... using the EllipSys3D flow solver using Large Eddy Simulation (LES) and Actuator Line Technique (ACL) to model the rotor. Discrepancies due to the uncertainties on the wake advection velocity are observed and discussed....

  11. Single Wake Meandering, Advection and Expansion - An analysis using an adapted Pulsed Lidar and CFD LES-ACL simulations

    DEFF Research Database (Denmark)

    In this paper, single wake characteristics have been studied both experimentally and numerically. Firstly, the wake is studied experimentally using full-scale measurements from an adapted focused pulsed lidar system, which potentially gives more insight into the wake dynamics as compared to class...... using the EllipSys3D flow solver using Large Eddy Simulation (LES) and Actuator Line Technique (ACL) to model the rotor. Discrepancies due to the uncertainties on the wake advection velocity are observed and discussed....

  12. A development of simulation and analytical program for through-diffusion experiments for a single layer of diffusion media

    International Nuclear Information System (INIS)

    Sato, Haruo

    2001-01-01

    A program (TDROCK1. FOR) for simulation and analysis of through-diffusion experiments for a single layer of diffusion media was developed. This program was made by Pro-Fortran language, which was suitable for scientific and technical calculations, and relatively easy explicit difference method was adopted for an analysis. In the analysis, solute concentration in the tracer cell as a function of time that we could not treat to date can be input and the decrease in the solute concentration as a function of time by diffusion from the tracer cell to the measurement cell, the solute concentration distribution in the porewater of diffusion media and the solute concentration in the measurement cell as a function of time can be calculated. In addition, solution volume in both cells and diameter and thickness of the diffusion media are also variable as an input condition. This simulation program could well explain measured result by simulating solute concentration in the measurement cell as a function of time for case which apparent and effective diffusion coefficients were already known. Based on this, the availability and applicability of this program to actual analysis and simulation were confirmed. This report describes the theoretical treatment for the through-diffusion experiments for a single layer of diffusion media, analytical model, an example of source program and the manual. (author)

  13. Precise predictions of H2O line shapes over a wide pressure range using simulations corrected by a single measurement

    Science.gov (United States)

    Ngo, N. H.; Nguyen, H. T.; Tran, H.

    2018-03-01

    In this work, we show that precise predictions of the shapes of H2O rovibrational lines broadened by N2, over a wide pressure range, can be made using simulations corrected by a single measurement. For that, we use the partially-correlated speed-dependent Keilson-Storer (pcsdKS) model whose parameters are deduced from molecular dynamics simulations and semi-classical calculations. This model takes into account the collision-induced velocity-changes effects, the speed dependences of the collisional line width and shift as well as the correlation between velocity and internal-state changes. For each considered transition, the model is corrected by using a parameter deduced from its broadening coefficient measured for a single pressure. The corrected-pcsdKS model is then used to simulate spectra for a wide pressure range. Direct comparisons of the corrected-pcsdKS calculated and measured spectra of 5 rovibrational lines of H2O for various pressures, from 0.1 to 1.2 atm, show very good agreements. Their maximum differences are in most cases well below 1%, much smaller than residuals obtained when fitting the measurements with the Voigt line shape. This shows that the present procedure can be used to predict H2O line shapes for various pressure conditions and thus the simulated spectra can be used to deduce the refined line-shape parameters to complete spectroscopic databases, in the absence of relevant experimental values.

  14. Stable Operation and Electricity Generating Characteristics of a Single-Cylinder Free Piston Engine Linear Generator: Simulation and Experiments

    Directory of Open Access Journals (Sweden)

    Huihua Feng

    2015-01-01

    Full Text Available We present a novel design of a single-cylinder free piston engine linear generator (FPELG incorporating a linear motor as a rebound device. A systematic simulation model of this FPELG system was built containing a kinematic and dynamic model of the piston and mover, a magneto-electric model of the linear generator, a thermodynamic model of the single-cylinder engine, and a friction model between the piston ring and cylinder liner. Simulations were performed to understand the relationships between pre-set motor parameters and the running performance of the FPELG. From the simulation results, it was found that a motor rebound force with a parabolic profile had clear advantages over a force with a triangular profile, such as a higher running frequency and peak cylinder pressure, faster piston motion, etc. The rebound position and the amplitude of rebound force were also determined by simulations. The energy conversion characteristics of the generator were obtained from our FPELG test rig. The parameters of intake pressure, motor frequency, and load resistance were varied over certain ranges, and relationships among these three parameters were obtained. The electricity-generating characteristic parameters include output power and system efficiency, which can measure the quality of matching the controllable parameters. The output power can reach 25.9 W and the system efficiency can reach 13.7%. The results in terms of matching parameters and electricity-generating characteristics should be useful to future research in adapting these engines to various operating modes.

  15. Absence of positive eigenvalues for hard-core N-body systems

    DEFF Research Database (Denmark)

    Ito, K.; Skibsted, Erik

    We show absence of positive eigenvalues for generalized 2-body hard-core Schrödinger operators under the condition of bounded strictly convex obstacles. A scheme for showing absence of positive eigenvalues for generalized N-body hard-core Schrödinger operators, N≥ 2, is presented. This scheme...... involves high energy resolvent estimates, and for N=2 it is implemented by a Mourre commutator type method. A particular example is the Helium atom with the assumption of infinite mass and finite extent nucleus....

  16. S-matrix formulation of thermodynamics with N-body scatterings

    Science.gov (United States)

    Lo, Pok Man

    2017-08-01

    We apply a phase space expansion scheme to incorporate the N-body scattering processes in the S-matrix formulation of statistical mechanics. A generalized phase shift function suitable for studying the thermal contribution of N → N processes is motivated and examined in various models. Using the expansion scheme, we revisit how the hadron resonance gas model emerges from the S-matrix framework, and consider an example of structureless scattering in which the phase shift function can be exactly worked out. Finally we analyze the influence of dynamics on the phase shift function in a simple example of 3- and 4-body scattering.

  17. S-matrix formulation of thermodynamics with N-body scatterings

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Pok Man [University of Wroclaw, Institute of Theoretical Physics, Wroclaw (Poland); Extreme Matter Institute EMMI, GSI, Darmstadt (Germany)

    2017-08-15

    We apply a phase space expansion scheme to incorporate the N-body scattering processes in the S-matrix formulation of statistical mechanics. A generalized phase shift function suitable for studying the thermal contribution of N → N processes is motivated and examined in various models. Using the expansion scheme, we revisit how the hadron resonance gas model emerges from the S-matrix framework, and consider an example of structureless scattering in which the phase shift function can be exactly worked out. Finally we analyze the influence of dynamics on the phase shift function in a simple example of 3- and 4-body scattering. (orig.)

  18. Communication: An N-body solution to the problem of Fock exchange.

    Science.gov (United States)

    Challacombe, Matt; Bock, Nicolas

    2014-03-21

    We report an N-Body approach to computing the Fock exchange matrix with and without permutational symmetry. The method achieves an O(NlgN) computational complexity through an embedded metric-query, allowing hierarchical application of direct SCF criteria. The advantages of permutational symmetry are found to be 4-fold for small systems, but decreasing with increasing system size and/or more permissive neglect criteria. This work sets the stage for: (1) the introduction of range queries in multi-level multipole schemes for rank reduction, and (2) recursive task parallelism.

  19. Single asperity nanocontacts: Comparison between molecular dynamics simulations and continuum mechanics models

    NARCIS (Netherlands)

    Solhjoo, Soheil; Vakis, Antonis I.

    Abstract Using classical molecular dynamics, atomic scale simulations of normal contact between a nominally flat substrate and different atomistic and non-atomistic spherical particles were performed to investigate the applicability of classical contact theories at the nanoscale, and further

  20. On the elastic properties of single-walled carbon nanotubes/poly(ethylene oxide) nanocomposites using molecular dynamics simulations.

    Science.gov (United States)

    Rouhi, S; Alizadeh, Y; Ansari, R

    2016-01-01

    Molecular dynamics simulations are used to study the physical and mechanical properties of single-walled carbon nanotubes/poly(ethylene oxide) nanocomposites. The effects of nanotube atomic structure, diameter, and volume fraction on the polymer density distribution, polymer atom distribution, stress-strain curves of nanocomposites and Young's, and shear moduli of single-walled carbon nanotubes/poly(ethylene oxide) nanocomposites are explored. It is shown that the density of polymer, surrounding the nanotube surface, has a peak near the nanotube surface. However, increasing distance leads to dropping it to the value near the density of pure polymer. It is seen that for armchair nanotubes, the average polymer atoms distances from the single-walled carbon nanotubes are larger than the polymer atom distance from zigzag nanotubes. It further is shown that zigzag nanotubes are better candidates to reinforce poly (ethylene oxide) than their armchair counterparts.

  1. Experimental study and numerical simulation of the plastic deformation of zirconium single crystals

    International Nuclear Information System (INIS)

    Lebon, C.

    2011-01-01

    There is only few experimental data in the literature on the zirconium single crystals and no constitutive laws for this single crystal material are provided. The goal of this work is then to create an experimental database like the Critical Resolved Shear Stress (CRSS) for the prismatic slip, the strain-hardening, the activation of the prismatic glide system and the activation volumes. We determine theses parameters from image correlation method. Then, we develop a new multi-scale approach using dislocations dynamics concept and finite element computations. Finally, a first single crystal constitutive law for the zirconium is proposed and a good agreement with the experimental data is obtained. (author) [fr

  2. A Simulated Single-Item Aggregate Inventory Model for U.S. Navy Repairable Items

    Science.gov (United States)

    1993-09-01

    carcass will be either lost or determined to be uneconomical to repair. 1. Definition of termo Define Q. as the procurement quantity of new material...the simulation clock reaches a user designated time, or after a user designated event occurs a given number of times. This parameter is established...relationships, is discussed in section D below. 4. Output Obtaining data from a SIGMA simulation is not a difficult task. The user simply designates the state

  3. Case study of low-temperature heating in an existing single-family house-A test of methods for simulation of heating system temperatures

    DEFF Research Database (Denmark)

    Østergaard, Dorte Skaarup; Svendsen, Svend

    2016-01-01

    of heat emissions from existing hydraulic radiators affects the heating system return temperatures calculated in a building simulation model. An existing single family house with hydraulic radiators was modelled in the simulation program IDA-ICE. Simulations were performed with various levels of detail...

  4. An Evaluation of the Use of Simulated Annealing to Optimize Thinning Rates for Single Even-Aged Stands

    Directory of Open Access Journals (Sweden)

    Kai Moriguchi

    2015-01-01

    Full Text Available We evaluated the potential of simulated annealing as a reliable method for optimizing thinning rates for single even-aged stands. Four types of yield models were used as benchmark models to examine the algorithm’s versatility. Thinning rate, which was constrained to 0–50% every 5 years at stand ages of 10–45 years, was optimized to maximize the net present value for one fixed rotation term (50 years. The best parameters for the simulated annealing were chosen from 113 patterns, using the mean of the net present value from 39 runs to ensure the best performance. We compared the solutions with those from coarse full enumeration to evaluate the method’s reliability and with 39 runs of random search to evaluate its efficiency. In contrast to random search, the best run of simulated annealing for each of the four yield models resulted in a better solution than coarse full enumeration. However, variations in the objective function for two yield models obtained with simulated annealing were significantly larger than those of random search. In conclusion, simulated annealing with optimized parameters is more efficient for optimizing thinning rates than random search. However, it is necessary to execute multiple runs to obtain reliable solutions.

  5. Dissecting jets and missing energy searches using n-body extended simplified models

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Timothy [Institute of Theoretical Science, University of Oregon, Eugene, OR 97403 (United States); Dolan, Matthew J. [ARC Centre of Excellence for Particle Physics at the Terascale,School of Physics, University of Melbourne, 3010 (Australia); Hedri, Sonia El [Institut fur Physik (THEP) Johannes Gutenberg-Universitat,D-55099, Mainz (Germany); Hirschauer, James; Tran, Nhan; Whitbeck, Andrew [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States)

    2016-08-04

    Simplified Models are a useful way to characterize new physics scenarios for the LHC. Particle decays are often represented using non-renormalizable operators that involve the minimal number of fields required by symmetries. Generalizing to a wider class of decay operators allows one to model a variety of final states. This approach, which we dub the n-body extension of Simplified Models, provides a unifying treatment of the signal phase space resulting from a variety of signals. In this paper, we present the first application of this framework in the context of multijet plus missing energy searches. The main result of this work is a global performance study with the goal of identifying which set of observables yields the best discriminating power against the largest Standard Model backgrounds for a wide range of signal jet multiplicities. Our analysis compares combinations of one, two and three variables, placing emphasis on the enhanced sensitivity gain resulting from non-trivial correlations. Utilizing boosted decision trees, we compare and classify the performance of missing energy, energy scale and energy structure observables. We demonstrate that including an observable from each of these three classes is required to achieve optimal performance. This work additionally serves to establish the utility of n-body extended Simplified Models as a diagnostic for unpacking the relative merits of different search strategies, thereby motivating their application to new physics signatures beyond jets and missing energy.

  6. The Lie–Poisson structure of the reduced n-body problem

    International Nuclear Information System (INIS)

    Dullin, Holger R

    2013-01-01

    The classical n-body problem in d-dimensional space is invariant under the Galilean symmetry group. We reduce by this symmetry group using the method of polynomial invariants. One novelty of our approach is that we do not fix the centre of mass but rather use a momentum shifting trick to change the kinetic part of the Hamiltonian to arrive at a new, dynamically equivalent Hamiltonian which is easier to reduce. As a result we obtain a reduced system with a Lie–Poisson structure which is isomorphic to sp(2n-2), independently of d. The reduction preserves the natural form of the Hamiltonian as a sum of kinetic energy that depends on velocities only and a potential that depends on positions only. This splitting allows us to construct a Poisson integrator for the reduced n-body problem which is efficient away from collisions for n = 3. In particular, we could integrate the figure eight orbit in 18 time steps. (paper)

  7. Choice of order and extrapolation method in Aarseth-type N-body algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Press, W.H.; Spergel, D.N.

    1988-02-01

    The force-versus-time history of a typical particle in a 50-body King model is taken as input data, and its extrapolatability is measured. Extrapolatability means how far the force can be extrapolated, measured in units of a locally defined rate-of-change time scale, and still be within a specified fractional accuracy of the true values. Greater extrapolatability means larger step size, hence greater efficiency, in an Aarseth-type N-body code. Extrapolatability is found to depend systematically on the order of the extrapolation method, but it goes to a finite limit in the limit of large order. A formula for choosing the optimal (most efficient) order for any desired accuracy is given; higher orders than are presently in use are indicated. Neither rational function extrapolation nor a somewhat vector-regularized polynomial method is found to be systematically better than component-wise polynomial extrapolation, indicating that extrapolatability can be viewed as an intrinsic property of the underlying N-body forces, independent of the extrapolation method. 13 references.

  8. Simulations

    CERN Document Server

    Ngada, Narcisse

    2015-06-15

    The complexity and cost of building and running high-power electrical systems make the use of simulations unavoidable. The simulations available today provide great understanding about how systems really operate. This paper helps the reader to gain an insight into simulation in the field of power converters for particle accelerators. Starting with the definition and basic principles of simulation, two simulation types, as well as their leading tools, are presented: analog and numerical simulations. Some practical applications of each simulation type are also considered. The final conclusion then summarizes the main important items to keep in mind before opting for a simulation tool or before performing a simulation.

  9. Single-asperity contributions to multi-asperity wear simulated with molecular dynamics

    International Nuclear Information System (INIS)

    Eder, S J; Cihak-Bayr, U; Bianchi, D

    2016-01-01

    We use a molecular dynamics approach to simulate the wear of a rough ferrite surface due to multiple hard, abrasive particles under variation of normal pressure, grinding direction, and particle geometry. By employing a clustering algorithm that incorporates some knowledge about the grinding process such as the main grinding direction, we can break down the total wear volume into contributions from the individual abrasive particles in a time-resolved fashion. The resulting analysis of the simulated grinding process allows statements on wear particle generation, distribution, and stability depending on the initial topography, the grinding angle, the normal pressure, as well as the abrasive shape and orientation with respect to the surface. (paper)

  10. Phase-coexistence simulations of fluid mixtures by the Markov Chain Monte Carlo method using single-particle models

    KAUST Repository

    Li, Jun

    2013-09-01

    We present a single-particle Lennard-Jones (L-J) model for CO2 and N2. Simplified L-J models for other small polyatomic molecules can be obtained following the methodology described herein. The phase-coexistence diagrams of single-component systems computed using the proposed single-particle models for CO2 and N2 agree well with experimental data over a wide range of temperatures. These diagrams are computed using the Markov Chain Monte Carlo method based on the Gibbs-NVT ensemble. This good agreement validates the proposed simplified models. That is, with properly selected parameters, the single-particle models have similar accuracy in predicting gas-phase properties as more complex, state-of-the-art molecular models. To further test these single-particle models, three binary mixtures of CH4, CO2 and N2 are studied using a Gibbs-NPT ensemble. These results are compared against experimental data over a wide range of pressures. The single-particle model has similar accuracy in the gas phase as traditional models although its deviation in the liquid phase is greater. Since the single-particle model reduces the particle number and avoids the time-consuming Ewald summation used to evaluate Coulomb interactions, the proposed model improves the computational efficiency significantly, particularly in the case of high liquid density where the acceptance rate of the particle-swap trial move increases. We compare, at constant temperature and pressure, the Gibbs-NPT and Gibbs-NVT ensembles to analyze their performance differences and results consistency. As theoretically predicted, the agreement between the simulations implies that Gibbs-NVT can be used to validate Gibbs-NPT predictions when experimental data is not available. © 2013 Elsevier Inc.

  11. Numerical simulations of single and multi-staged injection of H2 in a supersonic scramjet combustor

    Directory of Open Access Journals (Sweden)

    L. Abu-Farah

    2014-12-01

    Full Text Available Computational fluid dynamics (CFD simulations of a single staged injection of H2 through a central wedge shaped strut and a multi-staged injection through wall injectors are carried out by using Ansys CFX-12 code. Unstructured tetrahedral grids for narrow channel and quarter geometries of the combustor are generated by using ICEM CFD. Steady three-dimensional (3D Reynolds-averaged Navier-stokes (RANS simulations are carried out in the case of no H2 injection and compared with the simulations of single staged pilot and/or main H2 injections and multistage injection. Shear stress transport (SST based on k-ω turbulent model is adopted. Flow field visualization (complex shock waves interactions and static pressure distribution along the wall of the combustor are predicted and compared with the experimental schlieren images and measured wall static pressures for validation. A good agreement is found between the CFD predicted results and the measured data. The narrow and quarter geometries of the combustor give similar results with very small differences. Multi-staged injections of H2 enhance the turbulent H2/air mixing by forming vortices and additional shock waves (bow shocks.

  12. Evaluation of bone remodeling around single dental implants of different lengths: a mechanobiological numerical simulation and validation using clinical data.

    Science.gov (United States)

    Sotto-Maior, Bruno Salles; Mercuri, Emílio Graciliano Ferreira; Senna, Plinio Mendes; Assis, Neuza Maria Souza Picorelli; Francischone, Carlos Eduardo; Del Bel Cury, Altair Antoninha

    2016-01-01

    Algorithmic models have been proposed to explain adaptive behavior of bone to loading; however, these models have not been applied to explain the biomechanics of short dental implants. Purpose of present study was to simulate bone remodeling around single implants of different lengths using mechanoregulatory tissue differentiation model derived from the Stanford theory, using finite elements analysis (FEA) and to validate the theoretical prediction with the clinical findings of crestal bone loss. Loading cycles were applied on 7-, 10-, or 13-mm-long dental implants to simulate daily mastication and bone remodeling was assessed by changes in the strain energy density of bone after a 3, 6, and 12 months of function. Moreover, clinical findings of marginal bone loss in 45 patients rehabilitated with same implant designs used in the simulation (n = 15) were computed to validate the theoretical results. FEA analysis showed that although the bone density values reduced over time in the cortical bone for all groups, bone remodeling was independent of implant length. Clinical data showed a similar pattern of bone resorption compared with the data generated from mathematical analyses, independent of implant length. The results of this study showed that the mechanoregulatory tissue model could be employed in monitoring the morphological changes in bone that is subjected to biomechanical loads. In addition, the implant length did not influence the bone remodeling around single dental implants during the first year of loading.

  13. Explicit Singly Diagonally Implicit Runge-Kutta Methods and Adaptive Stepsize Control for Reservoir Simulation

    DEFF Research Database (Denmark)

    Völcker, Carsten; Jørgensen, John Bagterp; Thomsen, Per Grove

    2010-01-01

    The implicit Euler method, normally refered to as the fully implicit (FIM) method, and the implicit pressure explicit saturation (IMPES) method are the traditional choices for temporal discretization in reservoir simulation. The FIM method offers unconditionally stability in the sense of discrete...

  14. Simulation of a quantum NOT gate for a single qutrit system

    Indian Academy of Sciences (India)

    level system; qutrit; three-level transitions; one-qutrit quantum gate. ... Because of the fact that the three-level atom defines a total normalized state composed of superposition of three different single-level states, it is assumed that such a system ...

  15. Simulation study on single family house with solar floor and domestic hot water heating system by EESLISM; EESLISM ni yoru taiyonetsu danbo kyuto jutaku no simulation

    Energy Technology Data Exchange (ETDEWEB)

    Roh, H.; Udagawa, M. [Kogakuin University, Tokyo (Japan)

    1997-11-25

    Indoor thermal conditions and energy performance were simulated, by the aid of EESLISM as a common simulation program for indoor thermal conditions and energy systems, for an actual two-storied single family house equipped with solar-heated floors and a domestic hot water (DHW) heating system, in order to investigate applicability of the simulation program. The house, built in Shibuya Ward in Tokyo, has a total floor area of 164m{sup 2}, with a living room, dining room and study heated by the solar system for a total floor area of 35m{sup 2}. A heat-storage tank is provided, dedicated to the DHW system. The solar collector is of flat type, with selectively light-absorbing planes, having a total collector area of 11.46m{sup 2}. The operating conditions of the floor-heating and DHW systems are almost reproduced. It is necessary to take surrounding conditions into consideration; solar radiation in daytime will be overestimated if adjacent buildings are neglected to give higher temperature in the space and on the wall on the south than the observed level. 6 refs., 5 figs., 1 tab.

  16. Modeling and CFD simulation of nutrient distribution in picoliter bioreactors for bacterial growth studies on single-cell level.

    Science.gov (United States)

    Westerwalbesloh, Christoph; Grünberger, Alexander; Stute, Birgit; Weber, Sophie; Wiechert, Wolfgang; Kohlheyer, Dietrich; von Lieres, Eric

    2015-11-07

    A microfluidic device for microbial single-cell cultivation of bacteria was modeled and simulated using COMSOL Multiphysics. The liquid velocity field and the mass transfer within the supply channels and cultivation chambers were calculated to gain insight in the distribution of supplied nutrients and metabolic products secreted by the cultivated bacteria. The goal was to identify potential substrate limitations or product accumulations within the cultivation device. The metabolic uptake and production rates, colony size, and growth medium composition were varied covering a wide range of operating conditions. Simulations with glucose as substrate did not show limitations within the typically used concentration range, but for alternative substrates limitations could not be ruled out. This lays the foundation for further studies and the optimization of existing picoliter bioreactor systems.

  17. Sputtering of lunar regolith simulant by protons and singly and multicharged Ar ions at solar wind energies

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, F.W., E-mail: meyerfw@ornl.gov [Physics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Harris, P.R.; Taylor, C.N. [Physics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Meyer III, H.M. [MST Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Barghouty, A.F.; Adams, J.H. [NASA-Marshall Space Flight Center, Huntsville, AL 35812 (United States)

    2011-06-01

    We report preliminary results on sputtering of a lunar regolith simulant at room temperature by singly and multiply charged solar wind ions using quadrupole and time-of-flight (TOF) mass spectrometry approaches. Sputtering of the lunar regolith by solar-wind heavy ions may be an important particle source that contributes to the composition of the lunar exosphere, and is a possible mechanism for lunar surface ageing and compositional modification. The measurements were performed in order to assess the relative sputtering efficiency of protons, which are the dominant constituent of the solar wind, and less abundant heavier multicharged solar wind constituents, which have higher physical sputtering yields than same-velocity protons, and whose sputtering yields may be further enhanced due to potential sputtering. Two different target preparation approaches using JSC-1A AGGL lunar regolith simulant are described and compared using SEM and XPS surface analysis.

  18. Nuclear data relevant to single-event upsets (SEU) in microelectronics and their application to SEU simulation

    International Nuclear Information System (INIS)

    Watanabe, Yukinobu; Tukamoto, Yasuyuki; Kodama, Akihiro; Nakashima, Hideki

    2004-01-01

    A cross-section database for neutron-induced reactions on 28 Si was developed in the energy range between 2 MeV and 3 GeV in order to analyze single-event upsets (SEUs) phenomena induced by cosmic-ray neutrons in microelectronic devices. A simplified spherical device model was proposed for simulation of the initial process of SEUs. The model was applied to SEU cross-section calculations for semiconductor memory devices. The calculated results were compared with measured SEU cross-sections and the other simulation result. The dependence of SEU cross-sections on incident neutron energy and secondary ions having the most important effects on SEUs are discussed. (author)

  19. Simulations of single-particle imaging of hydrated proteins with x-ray free-electron lasers

    Science.gov (United States)

    Fortmann-Grote, C.; Bielecki, J.; Jurek, Z.; Santra, R.; Ziaja-Motyka, B.; Mancuso, A. P.

    2017-08-01

    We employ start-to-end simulations to model coherent diffractive imaging of single biomolecules using x-ray free electron lasers. This technique is expected to yield new structural information about biologically relevant macromolecules thanks to the ability to study the isolated sample in its natural environment as opposed to crystallized or cryogenic samples. The effect of the solvent on the diffraction pattern and interpretability of the data is an open question. We present first results of calculations where the solvent is taken into account explicitly. They were performed with a molecular dynamics scheme for a sample consisting of a protein and a hydration layer of varying thickness. Through R-factor analysis of the simulated diffraction patterns from hydrated samples, we show that the scattering background from realistic hydration layers of up to 3 Å thickness presents no obstacle for the resolution of molecular structures at the sub-nm level.

  20. Quantifying the number of color centers in single fluorescent nanodiamonds by photon correlation spectroscopy and Monte Carlo simulation

    International Nuclear Information System (INIS)

    Hui, Y.Y.; Chang, Y.-R.; Lee, H.-Y.; Chang, H.-C.; Lim, T.-S.; Fann Wunshain

    2009-01-01

    The number of negatively charged nitrogen-vacancy centers (N-V) - in fluorescent nanodiamond (FND) has been determined by photon correlation spectroscopy and Monte Carlo simulations at the single particle level. By taking account of the random dipole orientation of the multiple (N-V) - fluorophores and simulating the probability distribution of their effective numbers (N e ), we found that the actual number (N a ) of the fluorophores is in linear correlation with N e , with correction factors of 1.8 and 1.2 in measurements using linearly and circularly polarized lights, respectively. We determined N a =8±1 for 28 nm FND particles prepared by 3 MeV proton irradiation

  1. Numerical simulation on flow field of nuclear safety grade 2 single-seat pneumatic diaphragm control valve

    International Nuclear Information System (INIS)

    Zhong Yun; Zhang Jige; Wang Dezhong; Shi Jianzhong

    2010-01-01

    The Computational Fluid Dynamics (CFD) method is employed to simulate numerically the steady flow and transient flow under variable openings of the nuclear safety grade 2 single-seat pneumatic diaphragm control valve, which is a sleeve valve. The steady simulations under rated condition tells that there is a large amount of vortex in the valve seat necking and around the valve cone, which leads to a much greater flow impact on the head of the valve cone and uneven pressure distribution on spool face. More consideration should be taken on the characteristics of the valve cone accordingly, when designing a valve of this kind. Then the transient flow under 100% and 40% openings is simulated numerically on the basis of steady simulations. The pulsation of the pressure magnitude at the points with large vorticity, in the valve seat necking and around the valve cone, is monitored. The main pulsation frequencies differ from the low natural frequencies of the model, which means that it is safe from leading to structural resonance. (authors)

  2. Experiment and Simulation Study of Single Cylinder Diesel Engine Performance, Using Soybean Oil Biodiesel

    Directory of Open Access Journals (Sweden)

    Muhammad Rizqi Ariefianto

    2017-01-01

    Full Text Available Abstract— The most common fuel uses in the world is made from fossil. Fossil fuel is categorized as a non-renewable energy source. For that reason, there should be an alternative fuel to replace fossil fuel by using biodiesel and one of the stock comes from soybean bean. Before using the biodiesel made from soybean bean oil, there should be a research to find out the properties and the effect of biodiesel from soybean bean oil regarding the performance of the engine. The research can be conducted in experiment and simulation. The properties result of soybean oil biodiesel should be tested to confirm whether this biodiesel have meet the standard requirement of biodieselor not. This biodiesel sproperties are Flash Point value is 182 o C , Pour Point value is -7 o C, Density at 15 o C is 890 Kg/m3, Kinematic Viscosity at 40 o C is 5.58 (cSt, and Lower Heating Value is 42.27686 MJ/kg. The result from this research is the highest power from simulation is 9% higher than the experiment. The highest torque from the experiment is 37% lower than the simulation’s torque. Lowest SFOC from experiment is  28% lower than the simulation’s SFOC. Highest BMEP from simulation is 20% higher than the highest BMEP from experiment. The  highest thermal efficiency from experiment is 6% higher than the highest thermal efficiency from simulation. The engine performance result using soybean oil biodiesel is not better than the Pertamina Dex. For that reason, the use of this biodiesel is not suggested to substitute Pertamina Dex.

  3. THE POLISH SEJM ELECTIONS OF 2015: SPACE VARIABILITY OF THE RESULTS BASED ON SINGLE-MEMBER CONSTITUENCIES SIMULATION

    Directory of Open Access Journals (Sweden)

    Oskar SKOMSKI

    2017-11-01

    Full Text Available The main assumption of this paper is to analyse the Sejm elections of 2015 results. The authors conducted a simulation study regarding the single-member constituencies in the election to the Polish Parliament, basing the research on the election results facilitated by National Electoral Commission as well as the specific data provided by Central Statistical Office. The division of Poland into 460 single-member constituencies was mapped by the authors (those maps do not include the district divisions in the cities, as the agglomerations’ division is problematic. Obtained results indicate to the marginalization of the Polish political scene – plural voting would preclude the election victories of the secondary political parties and civil rights movements.

  4. Coal gasification by indirect heating in a single moving bed reactor: Process development & simulation

    Directory of Open Access Journals (Sweden)

    Junaid Akhlas

    2015-10-01

    Full Text Available In this work, the development and simulation of a new coal gasification process with indirect heat supply is performed. In this way, the need of pure oxygen production as in a conventional gasification process is avoided. The feasibility and energetic self-sufficiency of the proposed processes are addressed. To avoid the need of Air Separation Unit, the heat required by gasification reactions is supplied by the combustion flue gases, and transferred to the reacting mixture through a bayonet heat exchanger installed inside the gasifier. Two alternatives for the flue gas generation have been investigated and compared. The proposed processes are modeled using chemical kinetics validated on experimental gasification data by means of a standard process simulator (Aspen PlusTM, integrated with a spreadsheet for the modeling of a special type of heat exchanger. Simulation results are presented and discussed for proposed integrated process schemes. It is shown that they do not need external energy supply and ensure overall efficiencies comparable to conventional processes while producing syngas with lower content of carbon dioxide.

  5. Mechanical behavior of ultra-fine grained and nanocrystalline metals and single crystals: Experiments, modeling and simulations

    Science.gov (United States)

    Liu, Jian

    Ultra-fine grained (ufg, 100 nm viscoplastic phenomenological Khan--Liang--Farrokh (KLF) model is used to correlate the experimental results of the ufg/nc Ti. Crystal Plasticity Finite Element Method (CPFEM) with three different single crystal plasticity constitutive models is used for the purpose of incorporating strain rate and temperature effects into CPFEM. The classical and two newly developed single crystal plasticity models are used to simulate the deformation responses of single crystal aluminum. A constitutive model based on intragranular dislocation slip is shown to correlate closely to the stain rate effect and latent hardening behavior of single crystal Al. For ufg/nc face-centered cubic (FCC) material, we assume that dislocation slip is still the most important deformation mechanism while there is no interaction between dislocations within grains. We develop a constitutive model based on dislocation glide within ufg/nc grains and include all stages of dislocation activities especially their interactions with GB. An Arrhenius type rate is established based on the thermal activated depinning of dislocations from GB obstacles. The thermal strength is obtained as a function of the activation energy of the GB obstacles and the activation length. The athermal part includes the strength due to the grain size dependence and the strength due to the dislocation density. The model parameters for two ufg/nc materials are determined by comparing experimental results to the one dimensional (1D) flow stress model using a Taylor's factor. The new constitutive model is incorporated into three dimensional crystal plasticity and the crystal plasticity model is implemented into a UMAT subroutine of ABAQUS finite element program. The uniaxial deformation responses of two ufg/nc materials are simulated using the previously determined model parameters. CPFEM simulations give flow stress predictions that are very close to 1D model correlations/predictions. It is a clear

  6. A Monte Carlo Simulation of Ultra-Cold Neutron Production by Bragg Reflection from a Moving Single Crystal

    DEFF Research Database (Denmark)

    Steenstrup, S.

    1978-01-01

    A Monte Carlo simulation was performed of a “Gedanken Experiment” where ultra-cold neutrons are produced by Bragg reflection from a moving mosaic single crystal. It is shown that ultra-cold neutrons can be obtained by using thermal or cold neutrons (in practice only the latter). The space...... of the major axis increases with the ratio of the velocity of the incident neutrons to the velocity of the reflected neutrons. The proposed method of production of ultra-cold neutrons might be useful in cases where a beam of ultra-cold quasi-monochromatic neutrons is required....

  7. A DANREF certified reference plastic for measurement of overall migration into the food simulant olive oil by single sided testing

    DEFF Research Database (Denmark)

    Lund, K. H.; Lillemark, L.; Petersen, Jens Højslev

    2000-01-01

    A reference material for the determination of overall migration from a plastic coextrudate into the fatty food simulant olive oil was produced and certified in an interlaboratory study. The analyses were carried out according to the ENV 1186 standard from the European Committee for Standardization...... (CEN) [1, 2, 3] with exposure of the coextrudate to olive oil for 10 days at 40 degrees C. After an initial preliminary interlaboratory study eight laboratories participated in the certification round, and two different methods were used to obtain single sided exposure of the plastic to the oil...

  8. Single-step reinitialization and extending algorithms for level-set based multi-phase flow simulations

    Science.gov (United States)

    Fu, Lin; Hu, Xiangyu Y.; Adams, Nikolaus A.

    2017-12-01

    We propose efficient single-step formulations for reinitialization and extending algorithms, which are critical components of level-set based interface-tracking methods. The level-set field is reinitialized with a single-step (non iterative) "forward tracing" algorithm. A minimum set of cells is defined that describes the interface, and reinitialization employs only data from these cells. Fluid states are extrapolated or extended across the interface by a single-step "backward tracing" algorithm. Both algorithms, which are motivated by analogy to ray-tracing, avoid multiple block-boundary data exchanges that are inevitable for iterative reinitialization and extending approaches within a parallel-computing environment. The single-step algorithms are combined with a multi-resolution conservative sharp-interface method and validated by a wide range of benchmark test cases. We demonstrate that the proposed reinitialization method achieves second-order accuracy in conserving the volume of each phase. The interface location is invariant to reapplication of the single-step reinitialization. Generally, we observe smaller absolute errors than for standard iterative reinitialization on the same grid. The computational efficiency is higher than for the standard and typical high-order iterative reinitialization methods. We observe a 2- to 6-times efficiency improvement over the standard method for serial execution. The proposed single-step extending algorithm, which is commonly employed for assigning data to ghost cells with ghost-fluid or conservative interface interaction methods, shows about 10-times efficiency improvement over the standard method while maintaining same accuracy. Despite their simplicity, the proposed algorithms offer an efficient and robust alternative to iterative reinitialization and extending methods for level-set based multi-phase simulations.

  9. Equilibrium Solutions of the Logarithmic Hamiltonian Leapfrog for the N-body Problem

    Science.gov (United States)

    Minesaki, Yukitaka

    2018-04-01

    We prove that a second-order logarithmic Hamiltonian leapfrog for the classical general N-body problem (CGNBP) designed by Mikkola and Tanikawa and some higher-order logarithmic Hamiltonian methods based on symmetric multicompositions of the logarithmic algorithm exactly reproduce the orbits of elliptic relative equilibrium solutions in the original CGNBP. These methods are explicit symplectic methods. Before this proof, only some implicit discrete-time CGNBPs proposed by Minesaki had been analytically shown to trace the orbits of elliptic relative equilibrium solutions. The proof is therefore the first existence proof for explicit symplectic methods. Such logarithmic Hamiltonian methods with a variable time step can also precisely retain periodic orbits in the classical general three-body problem, which generic numerical methods with a constant time step cannot do.

  10. Introduction to Hamiltonian dynamical systems and the N-body problem

    CERN Document Server

    Meyer, Kenneth R

    2017-01-01

    This third edition text provides expanded material on the restricted three body problem and celestial mechanics. With each chapter containing new content, readers are provided with new material on reduction, orbifolds, and the regularization of the Kepler problem, all of which are provided with applications. The previous editions grew out of graduate level courses in mathematics, engineering, and physics given at several different universities. The courses took students who had some background in differential equations and lead them through a systematic grounding in the theory of Hamiltonian mechanics from a dynamical systems point of view. This text provides a mathematical structure of celestial mechanics ideal for beginners, and will be useful to graduate students and researchers alike. Reviews of the second edition: "The primary subject here is the basic theory of Hamiltonian differential equations studied from the perspective of differential dynamical systems. The N-body problem is used as the primary exa...

  11. Unified connected theory of few-body reaction mechanisms in N-body scattering theory

    Science.gov (United States)

    Polyzou, W. N.; Redish, E. F.

    1978-01-01

    A unified treatment of different reaction mechanisms in nonrelativistic N-body scattering is presented. The theory is based on connected kernel integral equations that are expected to become compact for reasonable constraints on the potentials. The operators T/sub +-//sup ab/(A) are approximate transition operators that describe the scattering proceeding through an arbitrary reaction mechanism A. These operators are uniquely determined by a connected kernel equation and satisfy an optical theorem consistent with the choice of reaction mechanism. Connected kernel equations relating T/sub +-//sup ab/(A) to the full T/sub +-//sup ab/ allow correction of the approximate solutions for any ignored process to any order. This theory gives a unified treatment of all few-body reaction mechanisms with the same dynamic simplicity of a model calculation, but can include complicated reaction mechanisms involving overlapping configurations where it is difficult to formulate models.

  12. Spatial Double Choreographies of the Newtonian 2n-Body Problem

    Science.gov (United States)

    Yu, Guowei

    2018-01-01

    In this paper, for the spatial Newtonian 2n-body problem with equal masses, by proving that the minimizers of the action functional under certain symmetric, topological and monotone constraints are collision-free, we found a family of spatial double choreographies, which have the common feature that half of the masses are circling around the z-axis clockwise along a spatial loop, while the motions of the other half of the masses are given by a rotation of the first half around the x-axis by π. Both loops are simple, without any self-intersection, and symmetric with respect to the xz-plane and yz-plane. The set of intersection points between the two loops is non-empty and contained in the xy-plane. The number of such double choreographies grows exponentially as n goes to infinity.

  13. Parallel implementation of an adaptive and parameter-free N-body integrator

    Science.gov (United States)

    Pruett, C. David; Ingham, William H.; Herman, Ralph D.

    2011-05-01

    Previously, Pruett et al. (2003) [3] described an N-body integrator of arbitrarily high order M with an asymptotic operation count of O(MN). The algorithm's structure lends itself readily to data parallelization, which we document and demonstrate here in the integration of point-mass systems subject to Newtonian gravitation. High order is shown to benefit parallel efficiency. The resulting N-body integrator is robust, parameter-free, highly accurate, and adaptive in both time-step and order. Moreover, it exhibits linear speedup on distributed parallel processors, provided that each processor is assigned at least a handful of bodies. Program summaryProgram title: PNB.f90 Catalogue identifier: AEIK_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIK_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3052 No. of bytes in distributed program, including test data, etc.: 68 600 Distribution format: tar.gz Programming language: Fortran 90 and OpenMPI Computer: All shared or distributed memory parallel processors Operating system: Unix/Linux Has the code been vectorized or parallelized?: The code has been parallelized but has not been explicitly vectorized. RAM: Dependent upon N Classification: 4.3, 4.12, 6.5 Nature of problem: High accuracy numerical evaluation of trajectories of N point masses each subject to Newtonian gravitation. Solution method: Parallel and adaptive extrapolation in time via power series of arbitrary degree. Running time: 5.1 s for the demo program supplied with the package.

  14. Parabolic Flights with Single-Engine Aerobatic Aircraft: Flight Profile and a Computer Simulator for its Optimization

    Science.gov (United States)

    Brigos, Miguel; Perez-Poch, Antoni; Alpiste, Francesc; Torner, Jordi; González Alonso, Daniel Ventura

    2014-11-01

    We report the results of residual acceleration obtained from initial tests of parabolic flights (more than 100 hours) performed with a small single-engine aerobatic aircraft (CAP10B), and propose a method that improves these figures. Such aircraft have proved capable of providing researchers with periods of up to 8 seconds of reduced gravity in the cockpit, with a gravity quality in the range of 0.1 g 0, where g 0 is the gravitational acceleration of the Earth. Such parabolas may be of interest to experimenters in the reduced gravity field, when this range of reduced gravity is acceptable for the experiment undertaken. They have also proven to be useful for motivational and educational campaigns. Furthermore, these flights may be of interest to researchers as a test-bed for obtaining a proof-of-concept for subsequent access to parabolic flights with larger aircraft or other microgravity platforms. The limited cost of the operations with these small aircraft allows us to perform them as part of a non-commercial joint venture between the Universitat Politècnica de Catalunya - BarcelonaTech (UPC), the Barcelona cluster BAIE and the Aeroclub Barcelona-Sabadell. Any improvements in the length and quality of reduced gravity would increase the capabilities of these small aircraft. To that end, we have developed a method based on a simulator for training aerobatic pilots. The simulation is performed with the CAD software for mechanical design Solidworks Motion{circledR }, which is widely distributed in industry and in universities. It specifically simulates the parabolic flight manoeuvre for our small aircraft and enables us to improve different aspects of the manoeuvre. The simulator is first validated with experimental data from the test flights. We have conducted an initial intensive period of specific pilot training with the aid of the simulator output. After such initial simulation-aided training, results show that the reduced gravity quality has significantly

  15. CT-QMC-simulations on the single impurity Anderson model with a superconducting bath

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Florian; Pruschke, Thomas [Institut fuer theoretische Physik, Universitaet Goettingen, Friedrich-Hund-Platz 1, 37077 Goettingen (Germany)

    2016-07-01

    Coupling a heavy fermion impurity to a superconducting lead induces a competition between the Kondo effect and superconductivity in the low temperature regime. This situation has been modeled with a single impurity Anderson model, where the normal state bath is replaced by a BCS-type superconducting bath in mean field approximation. We study this model using a continuous-time quantum Monte Carlo hybridization expansion algorithm. Results include the impurity Green's functions as well as the corresponding spectral functions obtained from analytic continuation. Two side bands are observed which we discuss in the light of Yu-Shiba-Rusinov states.

  16. Numerical Simulations of Single and Multiple Scattering by Fractal Ice Clusters

    Science.gov (United States)

    Dlugach, Janna M.; Mishchenko, Michael I.; Mackowski, Daniel W.

    2011-01-01

    We consider the scattering model in the form of a vertically and horizontally homogeneous particulate slab of an arbitrary optical thickness composed of widely separated fractal aggregates built of small spherical ice monomers. The aggregates are generated by applying three different approaches, including simulated cluster-cluster aggregation (CCA) and diffusion-limited aggregation (DLA) procedures. Having in mind radar remote-sensing applications, we report and analyze the results of computations of the backscattering circular polarization ratio obtained using efficient superposition T-matrix and vector radiative-transfer codes. The computations have been performed at a wavelength of 12.6 cm for fractal aggregates with the following characteristics: monomer refractive index m=1.78+i0.003, monomer radius r=1 cm, monomer packing density p=0.2, overall aggregate radii R in the range 4fractal dimensions D(sub f) 2.5 and 3. We show that for aggregates generated with simulated CCA and DLA procedures, the respective values of the backscattering circular polarization ratio differ weakly for D(sub f) 2.5, but the differences can increase somewhat for D(sub f)3, especially in case of an optically semi-infinite medium. For aggregates with a spheroidal overall shape, the dependence of the circular polarization ratio on the cluster morphology can be quite significant and increases with increasing the aspect ratio of the circumscribing spheroid.

  17. Analysis of polytype stability in PVT grown silicon carbide single crystal using competitive lattice model Monte Carlo simulations

    Directory of Open Access Journals (Sweden)

    Hui-Jun Guo

    2014-09-01

    Full Text Available Polytype stability is very important for high quality SiC single crystal growth. However, the growth conditions for the 4H, 6H and 15R polytypes are similar, and the mechanism of polytype stability is not clear. The kinetics aspects, such as surface-step nucleation, are important. The kinetic Monte Carlo method is a common tool to study surface kinetics in crystal growth. However, the present lattice models for kinetic Monte Carlo simulations cannot solve the problem of the competitive growth of two or more lattice structures. In this study, a competitive lattice model was developed for kinetic Monte Carlo simulation of the competition growth of the 4H and 6H polytypes of SiC. The site positions are fixed at the perfect crystal lattice positions without any adjustment of the site positions. Surface steps on seeds and large ratios of diffusion/deposition have positive effects on the 4H polytype stability. The 3D polytype distribution in a physical vapor transport method grown SiC ingot showed that the facet preserved the 4H polytype even if the 6H polytype dominated the growth surface. The theoretical and experimental results of polytype growth in SiC suggest that retaining the step growth mode is an important factor to maintain a stable single 4H polytype during SiC growth.

  18. CFD simulation on use of polyethylene single bubble to reduce radiant heat on lecture hall

    International Nuclear Information System (INIS)

    Muhieldeen, M.W.; Adam, N.M.; Elias Salleh; Tang, S.H.; Ghezavati, H.

    2009-01-01

    Full text: In recent years, Malaysia energy consumption has increased and become comparable to larger consumers worldwide. The increased demand for artificial cooling through the use of air conditioning units in other to provide comfort would also mean increased energy usage and increased electricity cost to the occupants. This paper reviews the results from a field survey of saving energy within one type of buildings lecture theater, in Universiti Putra Malaysia. The thermal insulation material established (polyethylene single bubble) and putting on the wall which separate between the lecture theater and the exterior. The survey was undertaken at January until April in 2008. In a 3D occupant Lecture hall (L: 15 m, W: 12 m, and H: 6.6 m). In addition the environmental parameters were measured in class room to calculate the boundary condition for using CFD to compare saving energy. The results show that by using polyethylene single bubble insulation in each condition, a reduction of 2.2 degree Celsius was achieved. (author)

  19. Modelling of single walled carbon nanotube cylindrical structures with finite element method simulations

    Energy Technology Data Exchange (ETDEWEB)

    Günay, E. [Gazi University, Mechanical Engineering Department, 06570, Ankara (Turkey)

    2016-04-21

    In this study, the modulus of elasticity and shear modulus values of single-walled carbon nanotubes SWCNTs were modelled by using both finite element method and the Matlab code. Initially, cylindrical armchair and zigzag single walled 3D space frames were demonstrated as carbon nanostructures. Thereafter, macro programs were written by the Matlab code producing the space truss for zigzag and armchair models. 3D space frames were introduced to the ANSYS software and then tension, compression and additionally torsion tests were performed on zigzag and armchair carbon nanotubes with BEAM4 element in obtaining the exact values of elastic and shear modulus values. In this study, two different boundary conditions were tested and especially used in torsion loading. The equivalent shear modulus data was found by averaging the corresponding values obtained from ten different nodal points on the nanotube path. Finally, in this study it was determined that the elastic constant values showed proportional changes by increasing the carbon nanotube diameters up to a certain level but beyond this level these values remained stable.

  20. Modelling of single walled carbon nanotube cylindrical structures with finite element method simulations

    Science.gov (United States)

    Günay, E.

    2016-04-01

    In this study, the modulus of elasticity and shear modulus values of single-walled carbon nanotubes SWCNTs were modelled by using both finite element method and the Matlab code. Initially, cylindrical armchair and zigzag single walled 3D space frames were demonstrated as carbon nanostructures. Thereafter, macro programs were written by the Matlab code producing the space truss for zigzag and armchair models. 3D space frames were introduced to the ANSYS software and then tension, compression and additionally torsion tests were performed on zigzag and armchair carbon nanotubes with BEAM4 element in obtaining the exact values of elastic and shear modulus values. In this study, two different boundary conditions were tested and especially used in torsion loading. The equivalent shear modulus data was found by averaging the corresponding values obtained from ten different nodal points on the nanotube path. Finally, in this study it was determined that the elastic constant values showed proportional changes by increasing the carbon nanotube diameters up to a certain level but beyond this level these values remained stable.

  1. Modelling of single walled carbon nanotube cylindrical structures with finite element method simulations

    International Nuclear Information System (INIS)

    Günay, E.

    2016-01-01

    In this study, the modulus of elasticity and shear modulus values of single-walled carbon nanotubes SWCNTs were modelled by using both finite element method and the Matlab code. Initially, cylindrical armchair and zigzag single walled 3D space frames were demonstrated as carbon nanostructures. Thereafter, macro programs were written by the Matlab code producing the space truss for zigzag and armchair models. 3D space frames were introduced to the ANSYS software and then tension, compression and additionally torsion tests were performed on zigzag and armchair carbon nanotubes with BEAM4 element in obtaining the exact values of elastic and shear modulus values. In this study, two different boundary conditions were tested and especially used in torsion loading. The equivalent shear modulus data was found by averaging the corresponding values obtained from ten different nodal points on the nanotube path. Finally, in this study it was determined that the elastic constant values showed proportional changes by increasing the carbon nanotube diameters up to a certain level but beyond this level these values remained stable.

  2. Numerical Simulation of Directional Solidification Process of Single Crystal Ni- Based Superalloy Casting

    Directory of Open Access Journals (Sweden)

    Szeliga D.

    2017-06-01

    Full Text Available The analysis of influence of mould withdrawal rate on the solidification process of CMSX-4 single crystal castings produced by Bridgman method was presented in this paper. The predicted values of temperature gradient, solidification and cooling rate, were determined at the longitudinal section of casting blade withdrawn at rate from 1 to 6mm/min using ProCAST software. It was found that the increase of withdrawal rate of ceramic mould results in the decrease of temperature gradient and the growth of cooling rate, along blade height. Based on results of solidification parameter G/R (temperature gradient/solidification rate, maximum withdrawal rate of ceramic mould (3.5 mm/min, which ensures lower susceptibility to formation process of new grain defects in single crystal, was established. It was proved that these defects can be formed in the bottom part of casting at withdrawal rate of 4 mm/min. The increase of withdrawal rate to 5 and 6 mm/min results in additional growth of susceptibility of defects formation along the whole height of airfoil.

  3. Blocking low-eccentricity EMRIs: a statistical direct-summation N-body study of the Schwarzschild barrier

    Science.gov (United States)

    Brem, Patrick; Amaro-Seoane, Pau; Sopuerta, Carlos F.

    2014-01-01

    The capture of a compact object in a galactic nucleus by a massive black hole (MBH), an extreme-mass ratio inspiral (EMRI), is the best way to map space and time around it. Recent work on stellar dynamics has demonstrated that there seems to be a complot in phase space acting on low-eccentricity captures, since their rates decrease significantly by the presence of a blockade in the rate at which orbital angular momenta change takes place. This so-called `Schwarzschild barrier' is a result of the impact of relativistic precession on to the stellar potential torques, and thus it affects the enhancement on lower eccentricity EMRIs that one would expect from resonant relaxation. We confirm and quantify the existence of this barrier using a large number of direct-summation N-body simulations with both a post-Newtonian and also, for the first time in a direct-summation code, a geodesic approximation for the relativistic orbits. The existence of the barrier prevents low-eccentricity EMRIs from approaching the central MBH via resonant relaxation. We confirm that the event rates for capture thus increase with the square of the distributed mass, in agreement with two-body relaxation. However, for nuclei with more than a few thousand M⊙ in the inner 10 mpc, two-body relaxation is so efficient that compact objects do not decouple into gravitational wave-driven inspirals but are mostly driven into direct plunges, if the central MBH is not spinning. This leads to an apparent maximum event rate of about 1 Myr-1 for EMRIs originating from the inner 10 mpc.

  4. The performance simulation of single cylinder electric power confined piston engine

    Science.gov (United States)

    Gou, Yanan

    2017-04-01

    A new type of power plant. i.e, Electric Power Confined Piston Engine, is invented by combining the free piston engine and the crank connecting rod mechanism of the traditional internal combustion engine. Directly using the reciprocating movement of the piston, this new engine converts the heat energy produced by fuel to electrical energy and output it. The paper expounds the working mechanism of ECPE and establishes the kinematics and dynamics equations. Furthermore, by using the analytic method, the ECPE electromagnetic force is solved at load cases. Finally, in the simulation environment of MARLAB, the universal characteristic curve is obtained in the condition of rotational speed n between 1000 r/min and 2400 r/min, throttle opening α between 30% and 100%.

  5. Molecular simulation of flavin adenine dinucleotide immobilized on charged single-walled carbon nanotubes for biosensor applications.

    Science.gov (United States)

    Yang, Guang; Kang, Zhengzhong; Ye, Xuesong; Wu, Tao; Zhu, Qin

    2012-12-01

    The reconstitution of apo-glucose oxidase (apo-GOx) on single-walled carbon nanotubes (SWNTs) functionalized with the cofactor, flavin adenine dinucleotide (FAD), greatly improved electron transfer turnover rate of the redox reactions in glucose sensing with glucose sensors. The research reported here is aimed to better understand molecular details of affection of the charging SWNT to the conformational changes of FAD, in order to find a rational design and selection scheme of SWNT which is suitable for the FAD and apo-GOx to perform their reconstitution. In this report, molecular simulations of FAD functionalized differently charged SWNTs were carried outin an aqueous environment, with counterions to maintain total charge neutrality. The conformation and orientation changes were observed by both trajectory and quantitative analyses. The simulation results showed that in both uncharged and positively charged SWNT situations, FAD adsorbed onto SWNT at the end of the simulations, which increased the steric resistance of molecules and hindered the reconstitution of apo-GOx and FAD to some degree. By contrast, FAD functionalized negatively charged SWNT maintained its original conformation largely. In addition, negatively charged SWNT may be the best choice for electron transfer mediator for the reconstitution of apo-GOx on relay-cofactor units associated with electrodes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Cosmological neutrino simulations at extreme scale

    Science.gov (United States)

    Emberson, J. D.; Yu, Hao-Ran; Inman, Derek; Zhang, Tong-Jie; Pen, Ue-Li; Harnois-Déraps, Joachim; Yuan, Shuo; Teng, Huan-Yu; Zhu, Hong-Ming; Chen, Xuelei; Xing, Zhi-Zhong

    2017-08-01

    Constraining neutrino mass remains an elusive challenge in modern physics. Precision measurements are expected from several upcoming cosmological probes of large-scale structure. Achieving this goal relies on an equal level of precision from theoretical predictions of neutrino clustering. Numerical simulations of the non-linear evolution of cold dark matter and neutrinos play a pivotal role in this process. We incorporate neutrinos into the cosmological N-body code CUBEP3M and discuss the challenges associated with pushing to the extreme scales demanded by the neutrino problem. We highlight code optimizations made to exploit modern high performance computing architectures and present a novel method of data compression that reduces the phase-space particle footprint from 24 bytes in single precision to roughly 9 bytes. We scale the neutrino problem to the Tianhe-2 supercomputer and provide details of our production run, named TianNu, which uses 86% of the machine (13 824 compute nodes). With a total of 2.97 trillion particles, TianNu is currently the world’s largest cosmological N-body simulation and improves upon previous neutrino simulations by two orders of magnitude in scale. We finish with a discussion of the unanticipated computational challenges that were encountered during the TianNu runtime.

  7. Modelling and Simulation of Single-Phase Series Active Compensator for Power Quality Improvement

    Science.gov (United States)

    Verma, Arun Kumar; Mathuria, Kirti; Singh, Bhim; Bhuvaneshwari, G.

    2017-10-01

    A single-phase active series compensator is proposed in this work to reduce harmonic currents at the ac mains and to regulate the dc link voltage of a diode bridge rectifier (DBR) that acts as the front end converter for a voltage source inverter feeding an ac motor. This ac motor drive is used in any of the domestic, commercial or industrial appliances. Under fluctuating ac mains voltages, the dc link voltage of the DBR depicts wide variations and hence the ac motor is used at reduced rating as compared to its name-plate rating. The active series compensator proposed here provides dual functions of improving the power quality at the ac mains and regulating the dc link voltage thus averting the need for derating of the ac motor.

  8. Simulation of the remanence influence on the transient states in a single-phase multiwinding transformer

    Directory of Open Access Journals (Sweden)

    Wilk Andrzej

    2017-03-01

    Full Text Available This paper presents the mathematical model of a single-phase multi-winding core type transformer taking into account magnetic hysteresis phenomenon based on the feedback Preisach model (FPM. The set of loop differential equations was developed for a K-th winding transformer model where the flux linkages of each winding includes flux Φ common to all windings as a function of magneto motive force Θ of all windings. The first purpose of this paper is to implement a hysteresis nonlinearity involved in the Φ(Θ function which also accounts residual magnetic flux. The second purpose of this paper is experimental validation of the developed transformer model in a capacitor discharge test and several different values of residual magnetic flux.

  9. Simulating the Effects of Surface Roughness on Reinforced Concrete T Beam Bridge under Single and Multiple Vehicles

    Directory of Open Access Journals (Sweden)

    Rahul Kalyankar

    2016-01-01

    Full Text Available This research focuses on the application of the spatial system of finite element modeling for the vehicle-bridge interaction on reinforced concrete US Girder Bridge in order to obtain the effect of surface roughness. Single vehicle and multiple vehicles on reinforced concrete T beam bridge were studied with variable surface roughness profiles. The effects of six different surface roughness profiles (very good, good, measured, average, poor, and very poor were investigated for vehicle-bridge interaction. The values of the Dynamic Amplification Factor (DAF were obtained for single and multiple vehicles on T Beam Bridge for different surface roughness profiles, along with the distances between the axles of heavy vehicle. It was observed that when the bridge has very good, good, measured, and average surface roughness, the DAF values for the single vehicle over the bridge were observed to be within acceptable limits specified by AASHTO. However, for the bridge with multiple vehicles only very good and measured surface roughness profiles showed a DAF and vehicle axle distances within the acceptable limits. From the current studies, it was observed that the spatial system showed reliable responses for predicting the behavior of the bridge under variable road surface roughness conditions and was reliable in vehicle axle detection, and therefore, it has a potential to be use for realistic simulations.

  10. Insight into a Novel p53 Single Point Mutation (G389E by Molecular Dynamics Simulations

    Directory of Open Access Journals (Sweden)

    Maria Cristina De Rosa

    2010-12-01

    Full Text Available The majority of inactivating mutations of p53 reside in the central core DNA binding domain of the protein. In this computational study, we investigated the structural effects of a novel p53 mutation (G389E, identified in a patient with congenital adrenal hyperplasia, which is located within the extreme C-terminal domain (CTD of p53, an unstructured, flexible region (residues 367–393 of major importance for the regulation of the protein. Based on the three-dimensional structure of a carboxyl-terminal peptide of p53 in complex with the S100B protein, which is involved in regulation of the tumor suppressor activity, a model of wild type (WT and mutant extreme CTD was developed by molecular modeling and molecular dynamics simulation. It was found that the G389E amino acid replacement has negligible effects on free p53 in solution whereas it significantly affects the interactions of p53 with the S100B protein. The results suggest that the observed mutation may interfere with p53 transcription activation and provide useful information for site-directed mutagenesis experiments.

  11. Single Phase Natural Circulation Behaviors of the Integral Type Marine Reactor Simulator under Rolling Motion Condition

    Directory of Open Access Journals (Sweden)

    Hou-jun Gong

    2015-01-01

    Full Text Available During operation in the sea the reactor natural circulation behaviors are affected by ship rolling motion. The development of an analysis code and the natural circulation behaviors of a reactor simulator under rolling motion are described in this paper. In the case of rolling motion, the primary coolant flow rates in the hot legs and heating channels oscillated periodically, and the amplitude of flow rate oscillation was in direct proportion to rolling amplitude, but in inverse proportion to rolling period. The total mass flow rate also oscillated with half the rolling period, and the average total mass flow rate was less than that in steady state. In the natural circulation under a rolling motion, the flow rate oscillations in the hot legs were controlled by the tangential force; however, the mass flow rate oscillations in the total natural circulation and the heating channels were a result of the combined action of the change of inclination angle, flow resistance, and the extra force arising from the rolling motion. The extra tangential force brought about intense flow rate oscillations in the hot legs, which resulted in increasing total flow resistance; however the extra centrifugal force played a role in increasing thermal driving head.

  12. Optimal piezoelectric beam shape for single and broadband vibration energy harvesting: Modeling, simulation and experimental results

    Science.gov (United States)

    Muthalif, Asan G. A.; Nordin, N. H. Diyana

    2015-03-01

    Harvesting energy from the surroundings has become a new trend in saving our environment. Among the established ones are solar panels, wind turbines and hydroelectric generators which have successfully grown in meeting the world's energy demand. However, for low powered electronic devices; especially when being placed in a remote area, micro scale energy harvesting is preferable. One of the popular methods is via vibration energy scavenging which converts mechanical energy (from vibration) to electrical energy by the effect of coupling between mechanical variables and electric or magnetic fields. As the voltage generated greatly depends on the geometry and size of the piezoelectric material, there is a need to define an optimum shape and configuration of the piezoelectric energy scavenger. In this research, mathematical derivations for unimorph piezoelectric energy harvester are presented. Simulation is done using MATLAB and COMSOL Multiphysics software to study the effect of varying the length and shape of the beam to the generated voltage. Experimental results comparing triangular and rectangular shaped piezoelectric beam are also presented.

  13. Gothic simulation of single-channel fuel heatup following a loss of forced flow

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X-Q; Tahir, A. [NSS, Dept. of Thermal Hydraulics Analysis, Toronto, Ontario (Canada); Parlatan, Y. [Ontario Power Generation, NSATD, Pickering, Ontario (Canada); Kwee, M. [Bruce Power, NSASD, Toronto, Ontario (Canada)

    2011-07-01

    GOTHIC v7.2 was used to develop a computer model for the simulation of 28- and 37-element fuel heat-up at a loss of forced flow. The model has accounted for the non-uniformity of both axial and radial power distributions along the fuel channel for a typical CANDU reactor. In addition, the model has also accounted for the fuel rods, end-fittings, feeders and headers. Experimental test conditions for both 28- and 37-element bundles at either low or high powers were used for model validation. GOTHIC predictions of the rod and/or pressure-tube temperatures at a variety of test locations were compared with the corresponding experimental measurements. It is found that the numerical results agree well with the experimental measurements for most of the test locations. Results have also shown that the channel venting time is sensitive to the initial temperature distribution in the feeders and headers. An imposed temperature asymmetry at the beginning will cause the channel flow to vent earlier. (author)

  14. Single-molecule measurements and dynamical simulations of protein molecules near silicon substrates

    International Nuclear Information System (INIS)

    Hanasaki, Itsuo; Kawano, Satoyuki; Takahashi, Hiroto; Sazaki, Gen; Nakajima, Kazuo

    2008-01-01

    Interactions between protein molecules and inorganic substrates were studied both experimentally and numerically to obtain fundamental insight into the assembly of biomacromolecules for engineering applications. We experimentally traced individual fluorescent-labelled lysozyme (F-lysozyme) molecules, diffusing in the vicinity of interfaces between a protein solution and oxidized Si(1 0 0) and glass plates. The results indicate that diffusion coefficients of F-lysozyme molecules on both substrates are more than three orders of magnitude smaller than those in a bulk solution. The molecular dynamics simulations reveal a drastically diminished diffusion coefficient of lysozyme on the substrates of pure Si(1 1 1) and oxidized Si(1 0 0) with a hydroxy-terminated surface compared with that in bulk solution due to molecular adsorption behaviour on the substrate, which is in good agreement with experimental results. Furthermore, full atomistic description of the behaviour provides detailed information of deformation due to the adsorption process. Lysozyme on pure Si(1 1 1) undergoes substantial deformation whereas that on oxidized Si(1 0 0) does not, which indicates the importance of substrate surface condition to preserve the structure, i.e. functionality of adsorbed biomolecules

  15. Prediction and control of pillow defect in single point incremental forming using numerical simulations

    Energy Technology Data Exchange (ETDEWEB)

    Isidore, B. B. Lemopi [Eastern Mediterranean University, Gazimagusa (Turkmenistan); Hussain, G.; Khan, Wasim A. [GIK Institute of Engineering, Swabi (Pakistan); Shamachi, S. Pourhassan [University of Minho, Guimaraes (Portugal)

    2016-05-15

    Pillows formed at the center of sheets in Single point incremental forming (SPIF) are fabrication defects which adversely affect the geometrical accuracy and formability of manufactured parts. This study is focused on using FEA as a tool to predict and control pillowing in SPIF by varying tool size and shape. 3D Finite element analysis (FEA) and experiments are carried out using annealed Aluminum 1050. From FEA, it is found out that the stress/strain state in the immediate vicinity of the forming tool in the transverse direction plays a determinant role on sheet pillowing. Furthermore, pillow height increases as compression in the sheet-plane increases. The nature of in-plane stresses in the transverse direction varies from compressive to tensile as the tool-end geometry is changed from spherical to flat. Additionally, the magnitude of corresponding in-plane stresses decreases as the tool radius increases. According to measurements from the FEA model, flat end tools and large radii both retard pillow formation. However, the influence of changing tool end shape from hemispherical to flat is observed to be more important than the effect of varying tool radius, because the deformation zone remains in tension in the transverse direction while forming with flat end tools. These findings are verified by conducting a set of experiments. A fair agreement between the FEM and empirical results show that FEM can be employed as a tool to predict and control the pillow defect in SPIF.

  16. 3D-CFD Simulation of Confined Cross-Flow Injection Process Using Single Piston Pump

    Directory of Open Access Journals (Sweden)

    M. Elashmawy

    2017-12-01

    Full Text Available Injection process into a confined cross flow is quite important for many applications including chemical engineering and water desalination technology. The aim of this study is to investigate the performance of the injection process into a confined cross-flow of a round pipe using a single piston injection pump. A computational fluid dynamics (CFD analysis has been carried out to investigate the effect of the locations of the maximum velocity and minimum pressure on the confined cross-flow process. The jet trajectory is analyzed and related to the injection pump shaft angle of rotation during the injection duty cycle by focusing on the maximum instant injection flow of the piston action. Results indicate a low effect of the jet trajectory within the range related to the injection pump operational conditions. Constant cross-flow was used and injection flow is altered to vary the jet to line flow ratio (QR. The maximum jet trajectory exhibits low penetration inside the cross-flow. The results showed three regions of the flow ratio effect zones with different behaviors. Results also showed that getting closer to the injection port causes a significant decrease on the locations of the maximum velocity and minimum pressure.

  17. Computer Simulation of Single-Well Steam Assisted Gravity Drainage (SW-SAGD), SUPRI TR-119

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Keith T.; Kovscek, Anthony R.

    1999-08-09

    Steam assisted gravity drainage (SAGD) is an effective method of producing heavy oil and bitumen. In a typical SAGD approach, steam is injected into a horizontal well located directly above a horizontal producer. A steam chamber grows around the injection well and helps displace heated oil toward the production well. Single-well (SW) SAGD attempts to create a similar process using only one horizontal well. This may include steam injection from the toe of the horizontal well with production at the heel. Obvious advantages of SW-SAGD include cost savings and utility in relatively thin reservoirs. However, the process is technically challenging. To improve early-time response of SW-SAGD, it is necessary to heat the near-wellbore area to reduce oil viscosity and allow gravity drainage to take place. Ideally heating should occur with minimal circulation or bypassing of stream. Since project economics are sensitive to early production response, we are interested in optimizing the start -up procedure.

  18. Prediction and control of pillow defect in single point incremental forming using numerical simulations

    International Nuclear Information System (INIS)

    Isidore, B. B. Lemopi; Hussain, G.; Khan, Wasim A.; Shamachi, S. Pourhassan

    2016-01-01

    Pillows formed at the center of sheets in Single point incremental forming (SPIF) are fabrication defects which adversely affect the geometrical accuracy and formability of manufactured parts. This study is focused on using FEA as a tool to predict and control pillowing in SPIF by varying tool size and shape. 3D Finite element analysis (FEA) and experiments are carried out using annealed Aluminum 1050. From FEA, it is found out that the stress/strain state in the immediate vicinity of the forming tool in the transverse direction plays a determinant role on sheet pillowing. Furthermore, pillow height increases as compression in the sheet-plane increases. The nature of in-plane stresses in the transverse direction varies from compressive to tensile as the tool-end geometry is changed from spherical to flat. Additionally, the magnitude of corresponding in-plane stresses decreases as the tool radius increases. According to measurements from the FEA model, flat end tools and large radii both retard pillow formation. However, the influence of changing tool end shape from hemispherical to flat is observed to be more important than the effect of varying tool radius, because the deformation zone remains in tension in the transverse direction while forming with flat end tools. These findings are verified by conducting a set of experiments. A fair agreement between the FEM and empirical results show that FEM can be employed as a tool to predict and control the pillow defect in SPIF.

  19. Horizontal single-trip gravel pack and selective simulation system for deep water extended reach wells

    Energy Technology Data Exchange (ETDEWEB)

    Pineda, Francisco [BJ Services Company, Houston, TX (United States); Vilela, Alvaro; Montanha, Roberto; Acosta, Marco; Farias, Rodrigo [BJ Services do Brasil Ltda., Rio de Janeiro, RJ (Brazil)

    2004-07-01

    Most of the reservoirs located in the deep water and ultra-deep water offshore South America are described as unconsolidated sandstone that require sand control on both producers and water injection wells. Horizontal Open Hole Gravel Pack completions are the preferred method of development. If completing heavy oil reservoirs, there is a necessity of longer horizontal open hole sections. Low fracture gradients may limit the length of gravel pack in the open hole section because of the pressure increase during the Beta wave proppant deposition phase. This system allows the gravel pack assembly to be installed and the gravel pack to be pumped during the alpha and beta wave deposition phases without the limitation of high pressures that could fracture the well. The benefits of the Horizontal Single-Trip Gravel Pack and Selective Stimulation System (HSTSSS) using the differential valve include the ability to complete longer horizontal intervals, valuable rig-time savings and, efficient mechanical diversion of the stimulation fluid. This paper outlines the application of the HSTSSS system using a differential valve to complete a horizontal well in offshore deep waters. The need for a differential valve is primarily in horizontal gravel packing operations when normal circulating rates and pressures around the open hole would exceed formation break down pressure. The valve is intended to be easily spaced out and run in the wash pipe. At a predetermined differential pressure the valve opens and the return flow path distance around the bottom of the tailpipe is shortened, thus reducing back pressure preventing filter cake damage without slowing the pump rate. In addition the said valve has to close to allow the selective stimulation to take place. Economic considerations along with completion efficiencies are especially important on deep water, subsea completions. The utilization of differential valves allows completion of extended-reach open hole wells and/or low fracture

  20. Single-chain-in-mean-field simulations of weak polyelectrolyte brushes

    Science.gov (United States)

    Léonforte, F.; Welling, U.; Müller, M.

    2016-12-01

    Structural properties of brushes which are composed of weak acidic and basic polyelectrolytes are studied in the framework of a particle-based approach that implicitly accounts for the solvent quality. Using a semi-grandcanonical partition function in the framework of the Single-Chain-in-Mean-Field (SCMF) algorithm, the weak polyelectrolyte is conceived as a supramolecular mixture of polymers in different dissociation states, which are explicitly treated in the partition function and sampled by the SCMF procedure. One obtains a local expression for the equilibrium acid-base reaction responsible for the regulation of the charged groups that is also incorporated to the SCMF sampling. Coupled to a simultaneous treatment of the electrostatics, the approach is shown to capture the main features of weak polyelectrolyte brushes as a function of the bulk pH in the solution, the salt concentration, and the grafting density. Results are compared to experimental and theoretical works from the literature using coarse-grained representations of poly(acrylic acid) (PAA) and poly(2-vinyl pyridine) (P2VP) polymer-based brushes. As the Born self-energy of ions can be straightforwardly included in the numerical approach, we also study its effect on the local charge regulation mechanism of the brush. We find that its effect becomes significant when the brush is dense and exposed to high salt concentrations. The numerical methodology is then applied (1) to the study of the kinetics of collapse/swelling of a P2VP brush and (2) to the ability of an applied voltage to induce collapse/swelling of a PAA brush in a pH range close to the pKa value of the polymer.

  1. Gauge fields in the separation of rotations and internal motions in the n-body problem

    International Nuclear Information System (INIS)

    Littlejohn, R.G.; Reinsch, M.

    1997-01-01

    The problem of separating rotations from internal motions in systems such as macroscopic flexible bodies, atoms, molecules, nuclei, and solar systems is an old one, with many applications in physics, chemistry, and engineering. A new element, however, which has not been appreciated until fairly recently, is the existence of certain gauge fields on the reduced configuration space for such systems. These (non-Abelian) gauge fields arise in the open-quotes falling catclose quotes problem, in which changes in shape induce changes in external orientation; but they also have a dynamical significance, and enter as gauge potentials in the Lagrangian or Hamiltonian describing the internal or reduced dynamics. Physically these gauge fields represent Coriolis effects. This review concentrates on the case of nonrelativistic, n-body systems not subject to external torques, and develops the gauge theory of rotations and internal motions in detail. Both classical and quantum treatments are given. The gauge theory is developed from the standpoint of classical, coordinate-based tensor analysis; more abstract mathematical notation is generally not used, although the basic geometrical ideas of fiber-bundle theory are developed as needed. Certain old results, such as the Wilson-Howard-Watson Hamiltonian of molecular physics, are examined from a gauge-theoretical standpoint; and several new results are presented, including field equations of the Kaluza-Klein type satisfied by the gauge fields, and geometrical interpretations of the Eckart frame. copyright 1997 The American Physical Society

  2. Optimal order and time-step criterion for Aarseth-type N-body integrators

    International Nuclear Information System (INIS)

    Makino, Junichiro

    1991-01-01

    How the selection of the time-step criterion and the order of the integrator change the efficiency of Aarseth-type N-body integrators is discussed. An alternative to Aarseth's scheme based on the direct calculation of the time derivative of the force using the Hermite interpolation is compared to Aarseth's scheme, which uses the Newton interpolation to construct the predictor and corrector. How the number of particles in the system changes the behavior of integrators is examined. The Hermite scheme allows a time step twice as large as that for the standard Aarseth scheme for the same accuracy. The calculation cost of the Hermite scheme per time step is roughly twice as much as that of the standard Aarseth scheme. The optimal order of the integrators depends on both the particle number and the accuracy required. The time-step criterion of the standard Aarseth scheme is found to be inapplicable to higher-order integrators, and a more uniformly reliable criterion is proposed. 18 refs

  3. Communication Reducing Algorithms for Distributed Hierarchical N-Body Problems with Boundary Distributions

    KAUST Repository

    AbdulJabbar, Mustafa Abdulmajeed

    2017-05-11

    Reduction of communication and efficient partitioning are key issues for achieving scalability in hierarchical N-Body algorithms like Fast Multipole Method (FMM). In the present work, we propose three independent strategies to improve partitioning and reduce communication. First, we show that the conventional wisdom of using space-filling curve partitioning may not work well for boundary integral problems, which constitute a significant portion of FMM’s application user base. We propose an alternative method that modifies orthogonal recursive bisection to relieve the cell-partition misalignment that has kept it from scaling previously. Secondly, we optimize the granularity of communication to find the optimal balance between a bulk-synchronous collective communication of the local essential tree and an RDMA per task per cell. Finally, we take the dynamic sparse data exchange proposed by Hoefler et al. [1] and extend it to a hierarchical sparse data exchange, which is demonstrated at scale to be faster than the MPI library’s MPI_Alltoallv that is commonly used.

  4. N-body quantum scattering theory in two Hilbert spaces. VII. Real-energy limits

    International Nuclear Information System (INIS)

    Chandler, C.; Gibson, A.G.

    1994-01-01

    A study is made of the real-energy limits of approximate solutions of the Chandler--Gibson equations, as well as the real-energy limits of the approximate equations themselves. It is proved that (1) the approximate time-independent transition operator T π (z) and an auxiliary operator M π (z), when restricted to finite energy intervals, are trace class operators and have limits in trace norm for almost all values of the real energy; (2) the basic dynamical equation that determines the operator M π (z), when restricted to the space of trace class operators, has a real-energy limit in trace norm for almost all values of the real energy; (3) the real-energy limit of M π (z) is a solution of the real-energy limit equation; (4) the diagonal (on-shell) elements of the kernels of the real-energy limit of T π (z) and of all solutions of the real-energy limit equation exactly equal the on-shell transition operator, implying that the real-energy limit equation uniquely determines the physical transition amplitude; and (5) a sequence of approximate on-shell transition operators converges strongly to the exact on-shell transition operator. These mathematically rigorous results are believed to be the most general of their type for nonrelativistic N-body quantum scattering theories

  5. Optimal order and time-step criterion for Aarseth-type N-body integrators

    Science.gov (United States)

    Makino, Junichiro

    1991-03-01

    How the selection of the time-step criterion and the order of the integrator change the efficiency of Aarseth-type N-body integrators is discussed. An alternative to Aarseth's scheme based on the direct calculation of the time derivative of the force using the Hermite interpolation is compared to Aarseth's scheme, which uses the Newton interpolation to construct the predictor and corrector. How the number of particles in the system changes the behavior of integrators is examined. The Hermite scheme allows a time step twice as large as that for the standard Aarseth scheme for the same accuracy. The calculation cost of the Hermite scheme per time step is roughly twice as much as that of the standard Aarseth scheme. The optimal order of the integrators depends on both the particle number and the accuracy required. The time-step criterion of the standard Aarseth scheme is found to be inapplicable to higher-order integrators, and a more uniformly reliable criterion is proposed.

  6. Optimal order and time-step criterion for Aarseth-type N-body integrators

    Energy Technology Data Exchange (ETDEWEB)

    Makino, Junichiro (Tokyo Univ. (Japan))

    1991-03-01

    How the selection of the time-step criterion and the order of the integrator change the efficiency of Aarseth-type N-body integrators is discussed. An alternative to Aarseth's scheme based on the direct calculation of the time derivative of the force using the Hermite interpolation is compared to Aarseth's scheme, which uses the Newton interpolation to construct the predictor and corrector. How the number of particles in the system changes the behavior of integrators is examined. The Hermite scheme allows a time step twice as large as that for the standard Aarseth scheme for the same accuracy. The calculation cost of the Hermite scheme per time step is roughly twice as much as that of the standard Aarseth scheme. The optimal order of the integrators depends on both the particle number and the accuracy required. The time-step criterion of the standard Aarseth scheme is found to be inapplicable to higher-order integrators, and a more uniformly reliable criterion is proposed. 18 refs.

  7. Studies of Planet Formation using a Hybrid N-body + Planetesimal Code

    Science.gov (United States)

    Kenyon, Scott J.; Bromley, Benjamin C.; Salamon, Michael (Technical Monitor)

    2005-01-01

    The goal of our proposal was to use a hybrid multi-annulus planetesimal/n-body code to examine the planetesimal theory, one of the two main theories of planet formation. We developed this code to follow the evolution of numerous 1 m to 1 km planetesimals as they collide, merge, and grow into full-fledged planets. Our goal was to apply the code to several well-posed, topical problems in planet formation and to derive observational consequences of the models. We planned to construct detailed models to address two fundamental issues: 1) icy planets - models for icy planet formation will demonstrate how the physical properties of debris disks, including the Kuiper Belt in our solar system, depend on initial conditions and input physics; and 2) terrestrial planets - calculations following the evolution of 1-10 km planetesimals into Earth-mass planets and rings of dust will provide a better understanding of how terrestrial planets form and interact with their environment. During the past year, we made progress on each issue. Papers published in 2004 are summarized. Summaries of work to be completed during the first half of 2005 and work planned for the second half of 2005 are included.

  8. Theoretical analysis and numerical simulation of electromagnetic parameters of Fe-C coaxial single fiber

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Wei, E-mail: cslggncl@163.com [Key Laboratory of Safety Design and Reliability Technology for Engineering Vehicle, Hunan Province, Changsha University of Science and Technology, Changsha 410114 (China); Hunan Province Higher Education Key Laboratory of Modeling and Monitoring on the Near-Earth Electromagnetic Environments, Changsha University of Science & Technology, Changsha 410114 (China); College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073 (China); Chemical and Biomolecular Engineering Department, University of Tennessee, Knoxville, TN 37996 (United States); Zhu, Xukun; Kuang, Jiacai [Key Laboratory of Safety Design and Reliability Technology for Engineering Vehicle, Hunan Province, Changsha University of Science and Technology, Changsha 410114 (China); Hunan Province Higher Education Key Laboratory of Modeling and Monitoring on the Near-Earth Electromagnetic Environments, Changsha University of Science & Technology, Changsha 410114 (China); Yi, Shihe; Cheng, Haifeng [College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073 (China); Guo, Zhanhu; He, Qingliang [Chemical and Biomolecular Engineering Department, University of Tennessee, Knoxville, TN 37996 (United States)

    2017-06-15

    Highlights: • Theoretical formula and calculation results of effective permeability and effective permittivity of the Fe-C coaxial fiber are obtained based on the Maxwell equation. • The coaxial fiber has stronger anisotropy and better electromagnetic dissipation performance than the hollow carbon fiber and solid iron fiber with the same volume content. • Greater conductivity, larger aspect ratio, thin iron shell play important roles to improve the electromagnetic matching ability and microwave attenuation for the Fe-C coaxial fibers. - Abstract: Based on the Maxwell equation, the electromagnetic model in the coaxial fiber was described. The interaction with electromagnetic wave was analysed and the theoretical formula of axial permeability (μ{sub ∥}), axial permittivity (ε{sub ∥}), radial permeability (μ{sub ⊥}) and radial permittivity (ε{sub ⊥}) of Fe-C coaxial fiber were derived, and the demagnetization factor (N) of fibrous material was revised. Calculation results indicate that the composite fiber has stronger anisotropy and better EM dissipation performance than the hollow carbon fiber and solid iron fiber with the same volume content. These properties can be enhanced through increasing aspect ratio and carbon content. The μ{sub ‖} is 5.18-4.46i, μ{sub ⊥} is 2.58-0.50i, ε{sub ∥} is 7.63-6.97i, and ε{sub ⊥} is 1.98-0.15i when the electromagnetic wave frequency is 5 GHz with the outer diameter of 0.866 μm, inner diameter of 0.500 μm, and length of 20 μm. The maximum of the imaginary part of μ{sub ∥} and ε{sub ∥} are much larger than that of μ{sub ⊥} and ε{sub ⊥} when the structural parameters change, and the maximum of μ{sub ∥} and ε{sub ∥} can reach 6.429 and 23.59. Simulation results show that greater conductivity, larger aspect ratio, thin iron shell play important roles to improve the electromagnetic matching ability and microwave attenuation for the Fe-C coaxial fibers.

  9. Shock-induced plasticity in tantalum single crystals: Interatomic potentials and large-scale molecular-dynamics simulations

    Science.gov (United States)

    Ravelo, R.; Germann, T. C.; Guerrero, O.; An, Q.; Holian, B. L.

    2013-10-01

    We report on large-scale nonequilibrium molecular dynamics simulations of shock wave compression in tantalum single crystals. Two new embedded atom method interatomic potentials of Ta have been developed and optimized by fitting to experimental and density functional theory data. The potentials reproduce the isothermal equation of state of Ta up to 300 GPa. We examined the nature of the plastic deformation and elastic limits as functions of crystal orientation. Shock waves along (100), (110), and (111) exhibit elastic-plastic two-wave structures. Plastic deformation in shock compression along (110) is due primarily to the formation of twins that nucleate at the shock front. The strain-rate dependence of the flow stress is found to be orientation dependent, with (110) shocks exhibiting the weaker dependence. Premelting at a temperature much below that of thermodynamic melting at the shock front is observed in all three directions for shock pressures above about 180 GPa.

  10. A Single-Machine Two-Agent Scheduling Problem by a Branch-and-Bound and Three Simulated Annealing Algorithms

    Directory of Open Access Journals (Sweden)

    Shangchia Liu

    2015-01-01

    Full Text Available In the field of distributed decision making, different agents share a common processing resource, and each agent wants to minimize a cost function depending on its jobs only. These issues arise in different application contexts, including real-time systems, integrated service networks, industrial districts, and telecommunication systems. Motivated by its importance on practical applications, we consider two-agent scheduling on a single machine where the objective is to minimize the total completion time of the jobs of the first agent with the restriction that an upper bound is allowed the total completion time of the jobs for the second agent. For solving the proposed problem, a branch-and-bound and three simulated annealing algorithms are developed for the optimal solution, respectively. In addition, the extensive computational experiments are also conducted to test the performance of the algorithms.

  11. Investigating interfacial contact configuration and behavior of single-walled carbon nanotube-based nanodevice with atomistic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Jianlei, E-mail: cjlxjtu@mail.xjtu.edu.cn; Zhang, Jianwei [Xi’an Jiaotong University, State Key Laboratory for Manufacturing Systems Engineering (China); He, Xiaoqiao, E-mail: bcxqhe@cityu.edu.hk [City University of Hong Kong, Department of Architecture and Civil Engineering (Hong Kong); Mei, Xuesong; Wang, Wenjun [Xi’an Jiaotong University, State Key Laboratory for Manufacturing Systems Engineering (China); Yang, Xinju [Fudan University, State Key Laboratory of Surface Physics and Department of Physics (China); Xie, Hui; Yang, Lijun; Wang, Yang [Harbin Institute of Technology, State Key Laboratory of Robotics and Systems (China)

    2017-03-15

    Carbon nanotubes (CNTs), including single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs), are considered to be the promising candidates for next-generation interconnects with excellent physical and chemical properties ranging from ultrahigh mechanical strength, to electrical properties, to thermal conductivity, to optical properties, etc. To further study the interfacial contact configurations of SWNT-based nanodevice with a 13.56-Å diameter, the corresponding simulations are carried out with the molecular dynamic method. The nanotube collapses dramatically into the surface with the complete collapse on the Au/Ag/graphite electrode surface and slight distortion on the Si/SiO{sub 2} substrate surface, respectively. The related dominant mechanism is studied and explained. Meanwhile, the interfacial contact configuration and behavior, depended on other factors, are also analyzed in this article.

  12. Numerical Simulation of Inter-Flat Air Cross-Contamination under the Condition of Single-Sided Natural Ventilation

    DEFF Research Database (Denmark)

    Liu, Xiaoping; Niu, Jianlei; Perino, Marco

    2008-01-01

    ventilated room, the renormalization group based k-ε model, together with carbon dioxide used as a tracer, is chosen to reveal this air cross-contamination. The simulation results are in agreement with our prior on-site tracer-gas measurements, revealing that the windows flush with a flat fa ade can...... be a major route of the air cross-contamination in high-rise residential buildings. Finally, an assessment index is proposed to evaluate the potential infection risks associated with this inter-flat air flow occurring in high-rise residential buildings....... the two sides, each of which has a flat fa ade with openable windows. When the wind speed is extremely low, with doors closed and windows opened, the flats become single-sided naturally ventilated driven by buoyancy effects. The air pollutants can travel from a lower flat to a vertically adjacent upper...

  13. Lucretia A Matlab-Based Toolbox for the Modeling and Simulation of Single-Pass Electron Beam Transport Systems

    CERN Document Server

    Tenenbaum, P G

    2005-01-01

    We report on Lucretia, a new simulation tool for the study of single-pass electron beam transport systems. Lucretia supports a combination of analytic and tracking techniques to model the tuning and operation of bunch compressors, linear accelerators, and beam delivery systems of linear colliders and linac-driven Free Electron Laser (FEL) facilities. Extensive use of Matlab scripting, graphics, and numerical capabilities maximize the flexibility of the system, and emphasis has been placed on representing and preserving the fixed relationships between elements (common girders, power supplies, etc.) which must be respected in the design of tuning algorithms. An overview of the code organization, some simple examples, and plans for future development are discussed.

  14. Process design and simulation for optimizing the oxygen concentration in Czochralski-grown single-crystal silicon

    International Nuclear Information System (INIS)

    Jung, Y. J.; Kim, W. K.; Jung, J. H.

    2014-01-01

    The highest-concentration impurity in a single-crystal silicon ingot is oxygen, which infiltrates the ingot during growth stage. This oxygen adversely affects the wafer is quality. This study was aimed at finding an optimal design for the Czochralski (Cz) process to enable high-quality and low cost (by reducing power consumption) wafer production by controlling the oxygen concentration in the silicon ingots. In the Cz process, the characteristics of silicon ingots during crystallization are greatly influenced by the design and the configuration of the hot zone, and by crystallization rate. In order to identify process conditions for obtaining an optimal oxygen concentration of 11 - 13 ppma (required for industrial-grade ingots), designed two shield shapes for the hot zone. Furthermore, oxygen concentrations corresponding to these two shapes were compared by evaluating each shape at five different production speeds. In addition, simulations were performed to identify the optimal shield design for industrial applications.

  15. Process design and simulation for optimizing the oxygen concentration in Czochralski-grown single-crystal silicon

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Y. J.; Kim, W. K.; Jung, J. H. [Yeungnam University, Gyeongsan (Korea, Republic of)

    2014-08-15

    The highest-concentration impurity in a single-crystal silicon ingot is oxygen, which infiltrates the ingot during growth stage. This oxygen adversely affects the wafer is quality. This study was aimed at finding an optimal design for the Czochralski (Cz) process to enable high-quality and low cost (by reducing power consumption) wafer production by controlling the oxygen concentration in the silicon ingots. In the Cz process, the characteristics of silicon ingots during crystallization are greatly influenced by the design and the configuration of the hot zone, and by crystallization rate. In order to identify process conditions for obtaining an optimal oxygen concentration of 11 - 13 ppma (required for industrial-grade ingots), designed two shield shapes for the hot zone. Furthermore, oxygen concentrations corresponding to these two shapes were compared by evaluating each shape at five different production speeds. In addition, simulations were performed to identify the optimal shield design for industrial applications.

  16. Numerical Simulation of a Single-Phase Flow Through Fractures with Permeable, Porous and Non-Ductile Walls

    Directory of Open Access Journals (Sweden)

    N. Pour Mahmoud

    2017-10-01

    Full Text Available This paper attempts to study flows within fractures through a set of numerical simulations. In addition, a special care is given to hydraulic features and characteristics of fractures. The research is performed through the application of calculative fluid dynamics and a finite volume discrete schema. The investigated flows are laminar, single-phase and stable flows of water and air through fractures with penetrable walls. The selected fracture geometry is inspired from the tomographic scan of a stone fracture. Water and air are modeled in fractures with permeable walls and different permeability levels. It has been observed that in case of permeable matrixes, the friction coefficient is lower compared to impermeable matrixes. In fact permeability reduced friction. In addition, highest pressure drops were observed in areas with smaller fracture diaphragms. Nonetheless, the surrounding area of the fracture is analyzed with the consideration of Darcy's rule.

  17. Structure-based molecular simulations reveal the enhancement of biased Brownian motions in single-headed kinesin.

    Science.gov (United States)

    Kanada, Ryo; Kuwata, Takeshi; Kenzaki, Hiroo; Takada, Shoji

    2013-01-01

    Kinesin is a family of molecular motors that move unidirectionally along microtubules (MT) using ATP hydrolysis free energy. In the family, the conventional two-headed kinesin was experimentally characterized to move unidirectionally through "walking" in a hand-over-hand fashion by coordinated motions of the two heads. Interestingly a single-headed kinesin, a truncated KIF1A, still can generate a biased Brownian movement along MT, as observed by in vitro single molecule experiments. Thus, KIF1A must use a different mechanism from the conventional kinesin to achieve the unidirectional motions. Based on the energy landscape view of proteins, for the first time, we conducted a set of molecular simulations of the truncated KIF1A movements over an ATP hydrolysis cycle and found a mechanism exhibiting and enhancing stochastic forward-biased movements in a similar way to those in experiments. First, simulating stand-alone KIF1A, we did not find any biased movements, while we found that KIF1A with a large friction cargo-analog attached to the C-terminus can generate clearly biased Brownian movements upon an ATP hydrolysis cycle. The linked cargo-analog enhanced the detachment of the KIF1A from MT. Once detached, diffusion of the KIF1A head was restricted around the large cargo which was located in front of the head at the time of detachment, thus generating a forward bias of the diffusion. The cargo plays the role of a diffusional anchor, or cane, in KIF1A "walking."

  18. Structure-based molecular simulations reveal the enhancement of biased Brownian motions in single-headed kinesin.

    Directory of Open Access Journals (Sweden)

    Ryo Kanada

    Full Text Available Kinesin is a family of molecular motors that move unidirectionally along microtubules (MT using ATP hydrolysis free energy. In the family, the conventional two-headed kinesin was experimentally characterized to move unidirectionally through "walking" in a hand-over-hand fashion by coordinated motions of the two heads. Interestingly a single-headed kinesin, a truncated KIF1A, still can generate a biased Brownian movement along MT, as observed by in vitro single molecule experiments. Thus, KIF1A must use a different mechanism from the conventional kinesin to achieve the unidirectional motions. Based on the energy landscape view of proteins, for the first time, we conducted a set of molecular simulations of the truncated KIF1A movements over an ATP hydrolysis cycle and found a mechanism exhibiting and enhancing stochastic forward-biased movements in a similar way to those in experiments. First, simulating stand-alone KIF1A, we did not find any biased movements, while we found that KIF1A with a large friction cargo-analog attached to the C-terminus can generate clearly biased Brownian movements upon an ATP hydrolysis cycle. The linked cargo-analog enhanced the detachment of the KIF1A from MT. Once detached, diffusion of the KIF1A head was restricted around the large cargo which was located in front of the head at the time of detachment, thus generating a forward bias of the diffusion. The cargo plays the role of a diffusional anchor, or cane, in KIF1A "walking."

  19. Single-column model and large eddy simulation of the evening transition in the planetary boundary layer

    Science.gov (United States)

    Cuchiara, Gustavo; Rappenglück, Bernhard

    2016-04-01

    The transition from the convective boundary layer during the daytime to the stable stratified boundary layer during nighttime after sunset plays an important role in the transport and dispersion of atmospheric pollutants. However, our knowledge regarding this transition and its feedback on the structure of the subsequent nocturnal boundary layer is still restricted. This also prevents forecast models from accurate prediction of the onset and development of the nighttime boundary layer, which determines the redistribution of pollutants within the nocturnal surface layer and the residual layer aloft. In the present study, the well-known case of day 33 of the Wangara experiment is resimulated using the Weather Research and Forecasting (WRF) model in an idealized single-column mode to assess the performance of a frequently used planetary boundary layer (PBL) scheme, the Yonsei University (YSU) PBL scheme. These results are compared with two large eddy simulations (LES) for the same case study imposing different surface fluxes: one using previous surface fluxes calculated for the Wangara experiment and a second one using output from the WRF model. The results show a reasonable agreement of the PBL scheme in WRF with the LES. Overall, all the simulations presented a cold bias of ~3 Kelvin for the potential temperature and underestimation of the wind speed, especially after the transition to nighttime conditions (biases were up to 4 ms-1). Finally, an alternative set of eddy diffusivity equations was tested to represent the transition characteristics of a sunset period, with a stable layer below and a new parameterization for the convective decay regime typically observed in the RL aloft. This set of equations led to a gradual decrease of the eddy diffusivity, which replaces the instantaneous collapse of traditional diagnostics for eddy diffusivities. More appreciable changes were observed in air temperature, wind speed and specific humidity (up to 0.5 K, 0.6 ms-1, and 0

  20. A Single-Batch Fermentation System to Simulate Human Colonic Microbiota for High-Throughput Evaluation of Prebiotics

    Science.gov (United States)

    Sasaki, Daisuke; Fukuda, Itsuko; Tanaka, Kosei; Yoshida, Ken-ichi; Kondo, Akihiko; Osawa, Ro

    2016-01-01

    We devised a single-batch fermentation system to simulate human colonic microbiota from fecal samples, enabling the complex mixture of microorganisms to achieve densities of up to 1011 cells/mL in 24 h. 16S rRNA gene sequence analysis of bacteria grown in the system revealed that representatives of the major phyla, including Bacteroidetes, Firmicutes, and Actinobacteria, as well as overall species diversity, were consistent with those of the original feces. On the earlier stages of fermentation (up to 9 h), trace mixtures of acetate, lactate, and succinate were detectable; on the later stages (after 24 h), larger amounts of acetate accumulated along with some of propionate and butyrate. These patterns were similar to those observed in the original feces. Thus, this system could serve as a simple model to simulate the diversity as well as the metabolism of human colonic microbiota. Supplementation of the system with several prebiotic oligosaccharides (including fructo-, galacto-, isomalto-, and xylo-oligosaccharides; lactulose; and lactosucrose) resulted in an increased population in genus Bifidobacterium, concomitant with significant increases in acetate production. The results suggested that this fermentation system may be useful for in vitro, pre-clinical evaluation of the effects of prebiotics prior to testing in humans. PMID:27483470

  1. Monte-Carlo-calculations for the simulation of channelling-experiments with V3Si-single-crystals

    International Nuclear Information System (INIS)

    Kaufmann, R.

    1978-05-01

    The results of channelling-investigations on single-crystals of A15-type structure, like e.g. V 3 Si, are not directly comparable to analytical model-calculations. Therefore the channelling-process was simulated in a Monte-Carlo-program on the basis of the binary-collision-model. The calculated values for the minimum yield, Chisub(min), and the critical angle, Psisub(1/2), were in good agreement with the results of experiments with 2 MeV- 4 He + -particles. The lattice damage in the range of 2,000 Angstroem at the surface after an irradiation with a fluence of 6 x 10 16 - 4 He + /cm 2 at 300 KeV could be explained by normally distributed static displacements of the V-atoms with a mean value of 0.05 A. The transverse damage structure after an irradiation with a fluence of 1.5 x 10 16 - 4 He + /cm 2 at 50 KeV could be simulated by a step profile of 50% displacements of the V-atoms with a maximum value of 0.5 Angstroem at the depth of the projected range. (orig./HPOE) [de

  2. Three-dimensional numerical simulation of the exhaust stroke of a single-cylinder four-stroke ICE

    Energy Technology Data Exchange (ETDEWEB)

    Ogorevc, T.; Sekavcnik, M. [Ljubljana Univ. (Slovenia). Lab. for Heat and Power; Katrasnik, T. [Ljubljana Univ. (Slovenia). Lab. for Internal Combustion Engines; Zun, I. [Ljubljana Univ. (Slovenia). Lab. for Fluid Dynamics and Thermodynamics

    2009-09-15

    In this paper an extensive CFD simulation of the exhaust stroke of a single-cylinder fourstroke ICE, including the entire exhaust manifold is described. Guidelines for the implementation of the full threedimensional model of the discussed process are included. The simulation involves the time-dependent flow of exhaust gases through the exhaust valve and the flow dynamics within the 2.2-m-long, straight exhaust pipe during the period when the valve is closed. Also the intake port with the intake valve is being coupled during the valves' overlap period. The model geometry corresponds exactly to the actual engine geometry. The movement of the mesh follows the measured kinematics of the piston and the valves. The data obtained from the experimental environment was used for both the initialization and the validation of the computations. It was found that the phenomena affecting the dynamics of the exhaust flow are extremely three-dimensional and should be treated as such. In particular, the flow through the exhaust valve and the heat transfer along the exhaust pipe were influenced greatly by the effects of cold, fresh air breaking into the exhaust pipe in the period after the EVC. The presented study is the basis for future three-dimensional investigations of the entropy-generation rate along the exhaust system, including the exhaust valve. (orig.)

  3. Adhesion of single- and multi-walled carbon nanotubes to silicon substrate: atomistic simulations and continuum analysis

    Science.gov (United States)

    Yuan, Xuebo; Wang, Youshan

    2017-10-01

    The radial deformation of carbon nanotubes (CNTs) adhering to a substrate may prominently affect their mechanical and physical properties. In this study, both classical atomistic simulations and continuum analysis are carried out, to investigate the lateral adhesion of single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs) to a silicon substrate. A linear elastic model for analyzing the adhesion of 2D shells to a rigid semi-infinite substrate is constructed in the framework of continuum mechanics. Good agreement is achieved between the cross-section profiles of adhesive CNTs obtained by the continuum model and by the atomistic simulation approach. It is found that the adhesion of a CNT to the silicon substrate is significantly influenced by its initial diameter and the number of walls. CNTs with radius larger than a certain critical radius are deformed radially on the silicon substrate with flat contact regions. With increasing number of walls, the extent of radial deformation of a MWCNT on the substrate decreases dramatically, and the flat contact area reduces—and eventually vanishes—due to increasing equivalent bending stiffness. It is analytically predicted that large-diameter MWCNTs with a large number of walls are likely to ‘stand’ on the silicon substrate. The present work can be useful for understanding the radial deformation of CNTs adhering to a solid planar substrate.

  4. Simulation of stray grain formation in Ni-base single crystal turbine blades fabricated by HRS and LMC techniques

    Directory of Open Access Journals (Sweden)

    Ya-feng Li

    2017-03-01

    Full Text Available The simulation models of the thermal and macrostructural evolutions during directional solidification of Ni-base single crystal (SX turbine blades under high rate solidification (HRS and liquid metal cooling (LMC have been constructed using ProCAST software, coupled with a 3D Cellular Automaton Finite Element (CAFE model. The models were used to investigate the tendencies of stray grain (SG formation in the platform region of turbine blades fabricated by HRS and LMC techniques. The results reveal that the LMC technique can prohibit SG formation by smoothing the concaved isotherm and in turn alleviating the undercooling in the platform ends to let the dendrites fill up the undercooled zone before SG nucleation. The simulation results agreed well with the experimental results, indicating that these models could be used to analyze the macrostructural evolution or to optimize process parameters to suppress SG formation. Using these models, the critical withdrawal rate for casting SX turbine blades without SG formation were determined to be around 75 μm·s-1 and 100 μm·s-1 for HRS and LMC respectively, suggesting that LMC can be used as an efficient technique in fabricating SX turbine blades without any SG defect formation.

  5. Primitive-path statistics of entangled polymers: mapping multi-chain simulations onto single-chain mean-field models

    International Nuclear Information System (INIS)

    Steenbakkers, Rudi J A; Schieber, Jay D; Tzoumanekas, Christos; Li, Ying; Liu, Wing Kam; Kröger, Martin

    2014-01-01

    We present a method to map the full equilibrium distribution of the primitive-path (PP) length, obtained from multi-chain simulations of polymer melts, onto a single-chain mean-field ‘target’ model. Most previous works used the Doi–Edwards tube model as a target. However, the average number of monomers per PP segment, obtained from multi-chain PP networks, has consistently shown a discrepancy of a factor of two with respect to tube-model estimates. Part of the problem is that the tube model neglects fluctuations in the lengths of PP segments, the number of entanglements per chain and the distribution of monomers among PP segments, while all these fluctuations are observed in multi-chain simulations. Here we use a recently proposed slip-link model, which includes fluctuations in all these variables as well as in the spatial positions of the entanglements. This turns out to be essential to obtain qualitative and quantitative agreement with the equilibrium PP-length distribution obtained from multi-chain simulations. By fitting this distribution, we are able to determine two of the three parameters of the model, which govern its equilibrium properties. This mapping is executed for four different linear polymers and for different molecular weights. The two parameters are found to depend on chemistry, but not on molecular weight. The model predicts a constant plateau modulus minus a correction inversely proportional to molecular weight. The value for well-entangled chains, with the parameters determined ab initio, lies in the range of experimental data for the materials investigated. (paper)

  6. Primitive-path statistics of entangled polymers: mapping multi-chain simulations onto single-chain mean-field models

    Science.gov (United States)

    Steenbakkers, Rudi J. A.; Tzoumanekas, Christos; Li, Ying; Liu, Wing Kam; Kröger, Martin; Schieber, Jay D.

    2014-01-01

    We present a method to map the full equilibrium distribution of the primitive-path (PP) length, obtained from multi-chain simulations of polymer melts, onto a single-chain mean-field ‘target’ model. Most previous works used the Doi-Edwards tube model as a target. However, the average number of monomers per PP segment, obtained from multi-chain PP networks, has consistently shown a discrepancy of a factor of two with respect to tube-model estimates. Part of the problem is that the tube model neglects fluctuations in the lengths of PP segments, the number of entanglements per chain and the distribution of monomers among PP segments, while all these fluctuations are observed in multi-chain simulations. Here we use a recently proposed slip-link model, which includes fluctuations in all these variables as well as in the spatial positions of the entanglements. This turns out to be essential to obtain qualitative and quantitative agreement with the equilibrium PP-length distribution obtained from multi-chain simulations. By fitting this distribution, we are able to determine two of the three parameters of the model, which govern its equilibrium properties. This mapping is executed for four different linear polymers and for different molecular weights. The two parameters are found to depend on chemistry, but not on molecular weight. The model predicts a constant plateau modulus minus a correction inversely proportional to molecular weight. The value for well-entangled chains, with the parameters determined ab initio, lies in the range of experimental data for the materials investigated.

  7. Computer simulations of close encounters between binary and single stars: the effect of the impact velocity and the stellar masses

    International Nuclear Information System (INIS)

    Fullerton, L.W.; Hills, J.G.

    1982-01-01

    A total of 45 760 simulated encounters between binary and single stars were run to study the effect of impact velocity and the masses of the three stars on the outcome of the collisions. Letting α be the kinetic energy of impact in units of the minimum kinetic energy required to break up the binary, we find that the crossover point between hard binaries (tightly bound binaries which increase their binding energies in the collisions) and soft binaries (more loosely bound binaries which decrease their binding energies in collisions) occurs at αapprox. =0.5 if the impacting single star is equal to or less massive than the binary components and occurs at αapprox. =10 if its mass is three or more times that of the binary components. This bimodal behavior of the crossover point is even more clearly defined when we find its location in terms of the impact velocity V/sub f/ , expressed in units of the original mean orbital speed V/sub o/ of the binary. We find that the crossover point occurs at V/sub f//V/sub o/ approx. =0.6 when the mass of the impacting star is equal to or less than that of the more massive binary component, and it occurs at V/sub f//V/sub o/ approx. =1.9 when its mass is three or more times greater than that of this binary component. The probability that the binary will be broken up in the encounter depends greatly on the mass of the impacting single star relative to that of the binary components, as well as on the impact velocity. If the single-star mass equals or exceeds that of the individual binary components, there is an interval of impact velocity over which all the binaries are broken up in encounters at the zero-impact parameter. This interval grows as the mass of the impacting single star increases. If the impacting star is less massive than the binary components, then the maximum probability of dissociation drops dramatically

  8. Measurement, modeling, and simulation of cryogenic SiGe HBT amplifier circuits for fast single spin readout

    Science.gov (United States)

    England, Troy; Curry, Matthew; Carr, Steve; Swartzentruber, Brian; Lilly, Michael; Bishop, Nathan; Carrol, Malcolm

    2015-03-01

    Fast, low-power quantum state readout is one of many challenges facing quantum information processing. Single electron transistors (SETs) are potentially fast, sensitive detectors for performing spin readout of electrons bound to Si:P donors. From a circuit perspective, however, their output impedance and nonlinear conductance are ill suited to drive the parasitic capacitance typical of coaxial conductors used in cryogenic environments, necessitating a cryogenic amplification stage. We will discuss calibration data, as well as modeling and simulation of cryogenic silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) circuits connected to a silicon SET and operating at 4 K. We find a continuum of solutions from simple, single-HBT amplifiers to more complex, multi-HBT circuits suitable for integration, with varying noise levels and power vs. bandwidth tradeoffs. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  9. Optimal Continuous-Monitoring Design of Single-arm Phase II Trial Based on the Simulated Annealing Method

    Science.gov (United States)

    Chen, Nan; Lee, J. Jack

    2013-01-01

    Simon’s two-stage design is commonly used in phase II single-arm clinical trials because of its simplicity and smaller sample size under the null hypothesis compared to the one-stage design. Some studies extend this design to accommodate more interim analyses (i.e., three-stage or four-stage designs). However, most of these studies, together with the original Simon’s two-stage design, are based on the exhaustive search method, which is difficult to extend to high-dimensional, general multi-stage designs. In this study, we propose a simulated annealing (SA)-based design to optimize the early stopping boundaries and minimize the expected sample size for multi-stage or continuous monitoring single-arm trials. We compare the results of the SA method, the decision-theoretic method, the predictive probability method, and the posterior probability method. The SA method can reach the smallest expected sample sizes in all scenarios under the constraints of the same type I and type II errors. The expected sample sizes from the SA method are generally 10–20% smaller than those from the posterior probability method or the predictive probability method, and are slightly smaller than those from the decision-theoretic method in almost all scenarios. The SA method offers an excellent alternative in designing phase II trials with continuous monitoring. PMID:23545075

  10. Comparison between high-resolution climate simulations using single- and double-nesting approaches within the Big-Brother experimental protocol

    Science.gov (United States)

    Matte, Dominic; Laprise, René; Thériault, Julie Mireille

    2016-12-01

    Regional climate models (RCM) are widely used to downscale global climate models' (GCMs) simulations. As the resolution of RCM increases faster than that of GCM used for climate-change projections till the end of this century, the resolution jump will become an issue. Cascade with multiple nesting offers an approach to reach high resolution while keeping reasonable computational cost. Few studies have addressed whether the best results are obtained with the single- or multiple-nesting approaches. In this study the results obtained with single and double nesting are compared within the idealised "perfect model" framework of the Big-Brother Experiment. This method consists in first realizing a simulation, nicknamed the Big-Brother (BB) simulation, on a relatively large domain at the desired resolution, to serve as reference dataset. The BB results are then processed by a low-pass filter to emulate a coarse-resolution dataset to be used as LBC to drive further simulations, nicknamed the Little-Brother (LB) simulations, using an identical model formulation and resolution as the BB simulation. For the single nesting, the LB simulations are directly simulated, while for the double nesting a surrogate intermediate-resolution simulation is used. The study of the time-mean (stationary) component shows that little difference is noted between the single- and double-nesting approaches. The time-deviation (transient-eddy) component, however, shows important differences. The double-nesting approach weakly degrades the large scales but allows a significant reduction of the required domain size to allow adequate spin-up of fine-scale features. This results in an important saving in the computational cost.

  11. Simulation

    DEFF Research Database (Denmark)

    Gould, Derek A; Chalmers, Nicholas; Johnson, Sheena J

    2012-01-01

    Recognition of the many limitations of traditional apprenticeship training is driving new approaches to learning medical procedural skills. Among simulation technologies and methods available today, computer-based systems are topical and bring the benefits of automated, repeatable, and reliable...... performance assessments. Human factors research is central to simulator model development that is relevant to real-world imaging-guided interventional tasks and to the credentialing programs in which it would be used....

  12. Classification of Single-Trial Auditory Events Using Dry-Wireless EEG During Real and Motion Simulated Flight

    Directory of Open Access Journals (Sweden)

    Daniel eCallan

    2015-02-01

    Full Text Available Application of neuro-augmentation technology based on dry-wireless EEG may be considerably beneficial for aviation and space operations because of the inherent dangers involved. In this study we evaluate classification performance of perceptual events using a dry-wireless EEG system during motion platform based flight simulation and actual flight in an open cockpit biplane to determine if the system can be used in the presence of considerable environmental and physiological artifacts. A passive task involving 200 random auditory presentations of a chirp sound was used for evaluation. The advantage of this auditory task is that it does not interfere with the perceptual motor processes involved with piloting the plane. Classification was based on identifying the presentation of a chirp sound versus silent periods. Evaluation of Independent component analysis and Kalman filtering to enhance classification performance by extracting brain activity related to the auditory event from other non-task related brain activity and artifacts was assessed. The results of permutation testing revealed that single trial classification of presence or absence of an auditory event was significantly above chance for all conditions on a novel test set. The best performance could be achieved with both ICA and Kalman filtering relative to no processing: Platform Off (83.4% vs 78.3%, Platform On (73.1% vs 71.6%, Biplane Engine Off (81.1% vs 77.4%, and Biplane Engine On (79.2% vs 66.1%. This experiment demonstrates that dry-wireless EEG can be used in environments with considerable vibration, wind, acoustic noise, and physiological artifacts and achieve good single trial classification performance that is necessary for future successful application of neuro-augmentation technology based on brain-machine interfaces.

  13. Intramolecular structures in a single copolymer chain consisting of flexible and semiflexible blocks: Monte Carlo simulation of a lattice model

    International Nuclear Information System (INIS)

    Martemyanova, Julia A; Ivanov, Victor A; Paul, Wolfgang

    2014-01-01

    We study conformational properties of a single multiblock copolymer chain consisting of flexible and semiflexible blocks. Monomer units of different blocks are equivalent in the sense of the volume interaction potential, but the intramolecular bending potential between successive bonds along the chain is different. We consider a single flexible-semiflexible regular multiblock copolymer chain with equal content of flexible and semiflexible units and vary the length of the blocks and the stiffness parameter. We perform flat histogram type Monte Carlo simulations based on the Wang-Landau approach and employ the bond fluctuation lattice model. We present here our data on different non-trivial globular morphologies which we have obtained in our model for different values of the block length and the stiffness parameter. We demonstrate that the collapse can occur in one or in two stages depending on the values of both these parameters and discuss the role of the inhomogeneity of intraglobular distributions of monomer units of both flexible and semiflexible blocks. For short block length and/or large stiffness the collapse occurs in two stages, because it goes through intermediate (meta-)stable structures, like a dumbbell shaped conformation. In such conformations the semiflexible blocks form a cylinder-like core, and the flexible blocks form two domains at both ends of such a cylinder. For long block length and/or small stiffness the collapse occurs in one stage, and in typical conformations the flexible blocks form a spherical core of a globule while the semiflexible blocks are located on the surface and wrap around this core.

  14. Classification of single-trial auditory events using dry-wireless EEG during real and motion simulated flight.

    Science.gov (United States)

    Callan, Daniel E; Durantin, Gautier; Terzibas, Cengiz

    2015-01-01

    Application of neuro-augmentation technology based on dry-wireless EEG may be considerably beneficial for aviation and space operations because of the inherent dangers involved. In this study we evaluate classification performance of perceptual events using a dry-wireless EEG system during motion platform based flight simulation and actual flight in an open cockpit biplane to determine if the system can be used in the presence of considerable environmental and physiological artifacts. A passive task involving 200 random auditory presentations of a chirp sound was used for evaluation. The advantage of this auditory task is that it does not interfere with the perceptual motor processes involved with piloting the plane. Classification was based on identifying the presentation of a chirp sound vs. silent periods. Evaluation of Independent component analysis (ICA) and Kalman filtering to enhance classification performance by extracting brain activity related to the auditory event from other non-task related brain activity and artifacts was assessed. The results of permutation testing revealed that single trial classification of presence or absence of an auditory event was significantly above chance for all conditions on a novel test set. The best performance could be achieved with both ICA and Kalman filtering relative to no processing: Platform Off (83.4% vs. 78.3%), Platform On (73.1% vs. 71.6%), Biplane Engine Off (81.1% vs. 77.4%), and Biplane Engine On (79.2% vs. 66.1%). This experiment demonstrates that dry-wireless EEG can be used in environments with considerable vibration, wind, acoustic noise, and physiological artifacts and achieve good single trial classification performance that is necessary for future successful application of neuro-augmentation technology based on brain-machine interfaces.

  15. Single-Column Model Simulations of Subtropical Marine Boundary-Layer Cloud Transitions Under Weakening Inversions: SCM SIMULATIONS OF CLOUD TRANSITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Neggers, R. A. J. [Institute for Geophysics and Meteorology, Department of Geosciences, University of Cologne, Cologne Germany; Royal Netherlands Meteorological Institute, De Bilt The Netherlands; Ackerman, A. S. [NASA Goddard Institute for Space Studies, New York NY USA; Angevine, W. M. [CIRES, University of Colorado, Boulder CO USA; NOAA Earth System Research Laboratory, Boulder CO USA; Bazile, E. [Météo France/CNRM, Toulouse France; Beau, I. [Météo France/ENM, Toulouse France; Blossey, P. N. [Department of Atmospheric Sciences, University of Washington, Seattle WA USA; Boutle, I. A. [Met Office, Exeter UK; de Bruijn, C. [Royal Netherlands Meteorological Institute, De Bilt The Netherlands; Cheng, A. [NOAA Center for Weather and Climate Prediction, Environmental Modeling Center, College Park MD USA; van der Dussen, J. [Department of Geoscience and Remote Sensing, Delft University of Technology, Delft The Netherlands; Fletcher, J. [Department of Atmospheric Sciences, University of Washington, Seattle WA USA; University of Leeds, Leeds UK; Dal Gesso, S. [Institute for Geophysics and Meteorology, Department of Geosciences, University of Cologne, Cologne Germany; Royal Netherlands Meteorological Institute, De Bilt The Netherlands; Jam, A. [Météo-France/CNRM & CNRS/IPSL/LMD, Toulouse France; Kawai, H. [Meteorological Research Institute, Climate Research Department, Japan Meteorological Agency, Tsukuba Japan; Cheedela, S. K. [Department of Atmosphere in the Earth System, Max-Planck Institut für Meteorologie, Hamburg Germany; Larson, V. E. [Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee WI USA; Lefebvre, M. -P. [Météo-France/CNRM & CNRS/IPSL/LMD, Toulouse France; Lock, A. P. [Met Office, Exeter UK; Meyer, N. R. [Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee WI USA; de Roode, S. R. [Department of Geoscience and Remote Sensing, Delft University of Technology, Delft The Netherlands; de Rooy, W. [Royal Netherlands Meteorological Institute, De Bilt The Netherlands; Sandu, I. [Section of Physical Aspects, European Centre for Medium-Range Weather Forecasts, Reading UK; Xiao, H. [University of California at Los Angeles, Los Angeles CA USA; Pacific Northwest National Laboratory, Richland WA USA; Xu, K. -M. [NASA Langley Research Centre, Hampton VI USA

    2017-10-01

    Results are presented of the GASS/EUCLIPSE single-column model inter-comparison study on the subtropical marine low-level cloud transition. A central goal is to establish the performance of state-of-the-art boundary-layer schemes for weather and climate mod- els for this cloud regime, using large-eddy simulations of the same scenes as a reference. A novelty is that the comparison covers four different cases instead of one, in order to broaden the covered parameter space. Three cases are situated in the North-Eastern Pa- cific, while one reflects conditions in the North-Eastern Atlantic. A set of variables is considered that reflects key aspects of the transition process, making use of simple met- rics to establish the model performance. Using this method some longstanding problems in low level cloud representation are identified. Considerable spread exists among models concerning the cloud amount, its vertical structure and the associated impact on radia- tive transfer. The sign and amplitude of these biases differ somewhat per case, depending on how far the transition has progressed. After cloud breakup the ensemble median ex- hibits the well-known “too few too bright” problem. The boundary layer deepening rate and its state of decoupling are both underestimated, while the representation of the thin capping cloud layer appears complicated by a lack of vertical resolution. Encouragingly, some models are successful in representing the full set of variables, in particular the verti- cal structure and diurnal cycle of the cloud layer in transition. An intriguing result is that the median of the model ensemble performs best, inspiring a new approach in subgrid pa- rameterization.

  16. Simulation of the single-vibronic-level emission spectra of HAsO and DAsO.

    Science.gov (United States)

    Mok, Daniel K W; Lee, Edmond P F; Dyke, John M

    2016-05-14

    The single-vibronic-level (SVL) emission spectra of HAsO and DAsO have been simulated by electronic structure/Franck-Condon factor calculations to confirm the spectral molecular carrier and to investigate the electronic states involved. Various multi-reference (MR) methods, namely, NEVPT2 (n-electron valence state second order perturbation theory), RSPT2-F12 (explicitly correlated Rayleigh-Schrodinger second order perturbation theory), and MRCI-F12 (explicitly correlated multi-reference configuration interaction) were employed to compute the geometries and relative electronic energies for the X̃(1)A(') and Ã(1)A(″) states of HAsO. These are the highest level calculations on these states yet reported. The MRCI-F12 method gives computed T0 (adiabatic transition energy including zero-point energy correction) values, which agree well with the available experimental T0 value much better than previously computed values and values computed with other MR methods in this work. In addition, the potential energy surfaces of the X̃(1)A(') and Ã(1)A(″) states of HAsO were computed using the MRCI-F12 method. Franck-Condon factors between the two states, which include anharmonicity and Duschinsky rotation, were then computed and used to simulate the recently reported SVL emission spectra of HAsO and DAsO [R. Grimminger and D. J. Clouthier, J. Chem. Phys. 135, 184308 (2011)]. Our simulated SVL emission spectra confirm the assignments of the molecular carrier, the electronic states involved, and the vibrational structures observed in the SVL emission spectra but suggest a loss of intensity in the reported experimental spectra at the low emission energy region almost certainly due to a loss of responsivity near the cutoff region (∼800 nm) of the detector used. Computed and experimentally derived re (equilibrium) and/or r0 {the (0,0,0) vibrational level} geometries of the two states of HAsO are discussed.

  17. Simulation

    CERN Document Server

    Ross, Sheldon

    2006-01-01

    Ross's Simulation, Fourth Edition introduces aspiring and practicing actuaries, engineers, computer scientists and others to the practical aspects of constructing computerized simulation studies to analyze and interpret real phenomena. Readers learn to apply results of these analyses to problems in a wide variety of fields to obtain effective, accurate solutions and make predictions about future outcomes. This text explains how a computer can be used to generate random numbers, and how to use these random numbers to generate the behavior of a stochastic model over time. It presents the statist

  18. Atomistic simulations on the axial nanowelding configuration and contact behavior between Ag nanowire and single-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Jianlei, E-mail: cjlxjtu@mail.xjtu.edu.cn; Zhang, Jianwei [Xi’an Jiaotong University, State Key Laboratory for Manufacturing Systems Engineering (China); He, Xiaoqiao, E-mail: bcxqhe@cityu.edu.hk [City University of Hong Kong, Department of Architecture and Civil Engineering (Hong Kong); Yang, Xinjun [Fudan University, State Key Laboratory of Surface Physics and Department of Physics (China); Mei, Xuesong; Wang, Wenjun; Jiang, Gedong; Wang, Kedian [Xi’an Jiaotong University, State Key Laboratory for Manufacturing Systems Engineering (China); Yang, Lijun; Xie, Hui [Harbin Institute of Technology, State Key Laboratory of Robotics and Systems (China)

    2017-03-15

    As for the interesting new building blocks, the Ag nanowires (AgNWs) and single-walled carbon nanotubes (SWNTs) as the interesting new building blocks are viewed as the promising candidates for the next-generation interconnects due to their most remarkable electrical, thermal, optical, mechanical, and other properties. The axial nanowelding of head-to-head style and side-to-side style is relatively simulated with the molecular dynamics method. As for the head-to-head structural style, SWNTs will move toward the AgNWs and contact with the head of AgNWs. And, the part of the Ag nanowire may be subsequently encapsulated in SWNT with the core-filling Ag atom chain as the final atomic contact configuration during nanowelding, which is related to the nanowelding temperature. When the SWNTs and AgNWs are arranged by the side-to-side contact style, the SWNTs will move along the SWNT surface and may eventually catch up with the AgNW being neck and neck. Aiming at the final axial atomic configurations and the contact behavior during nanowelding process, the related dominant mechanism is revealed in this paper.

  19. A simulator investigation of the use of digital data link for pilot/ATC communications in a single pilot operation

    Science.gov (United States)

    Hinton, David A.; Lohr, Gary W.

    1988-01-01

    Studies have shown that radio communications between pilots and air traffic control contribute to high pilot workload and are subject to various errors. These errors result from congestion on the voice radio channel, and missed and misunderstood messages. The use of digital data link has been proposed as a means of reducing this workload and error rate. A critical factor, however, in determining the potential benefit of data link will be the interface between future data link systems and the operator of those systems, both in the air and on the ground. The purpose of this effort was to evaluate the pilot interface with various levels of data link capability, in simulated general aviation, single-pilot instrument flight rule operations. Results show that the data link reduced demands on pilots' short-term memory, reduced the number of communication transmissions, and permitted the pilots to more easily allocate time to critical cockpit tasks while receiving air traffic control messages. The pilots who participated unanimously indicated a preference for data link communications over voice-only communications. There were, however, situations in which the pilot preferred the use of voice communications, and the ability for pilots to delay processing the data link messages, during high workload events, caused delays in the acknowledgement of messages to air traffic control.

  20. International interlaboratory study for sizing and quantification of Ag nanoparticles in food simulants by single-particle ICPMS.

    Science.gov (United States)

    Linsinger, Thomas P J; Peters, Ruud; Weigel, Stefan

    2014-06-01

    This publication describes the first international intercomparison of particle-size determination by single-particle inductively coupled plasma mass spectrometry (sp-ICPMS). Concentrated monodisperse silver nanoparticle suspensions with particle diameters of 20, 40 and 100 nm and a blank solution were sent to 23 laboratories in Europe, the USA and Canada. Laboratories prepared eight nanoparticle preparations in two food simulants (distilled water; 10% ethanol) and reported median particle size, Ag particle mass concentration and Ag particle number concentrations. Average repeatability and reproducibility standard deviation (sr and sR) for the median particle diameter were 1 and 14 nm, respectively. Relative precision was worse for Ag particle number concentrations (RSD r = 11%; RSD R = 78%). While further improvements of the method, especially with respect to software tools for evaluation, hardware options for shorter dwell times, calibration standards for determining nebuliser efficiency and further experience by laboratories are certainly desirable, the results of this study demonstrate the suitability of sp-ICPMS for the detection and quantification of certain kinds of nanoparticles.

  1. Atomistic simulations on the axial nanowelding configuration and contact behavior between Ag nanowire and single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Cui, Jianlei; Zhang, Jianwei; He, Xiaoqiao; Yang, Xinjun; Mei, Xuesong; Wang, Wenjun; Jiang, Gedong; Wang, Kedian; Yang, Lijun; Xie, Hui

    2017-01-01

    As for the interesting new building blocks, the Ag nanowires (AgNWs) and single-walled carbon nanotubes (SWNTs) as the interesting new building blocks are viewed as the promising candidates for the next-generation interconnects due to their most remarkable electrical, thermal, optical, mechanical, and other properties. The axial nanowelding of head-to-head style and side-to-side style is relatively simulated with the molecular dynamics method. As for the head-to-head structural style, SWNTs will move toward the AgNWs and contact with the head of AgNWs. And, the part of the Ag nanowire may be subsequently encapsulated in SWNT with the core-filling Ag atom chain as the final atomic contact configuration during nanowelding, which is related to the nanowelding temperature. When the SWNTs and AgNWs are arranged by the side-to-side contact style, the SWNTs will move along the SWNT surface and may eventually catch up with the AgNW being neck and neck. Aiming at the final axial atomic configurations and the contact behavior during nanowelding process, the related dominant mechanism is revealed in this paper.

  2. Replica exchange enveloping distribution sampling (RE-EDS): A robust method to estimate multiple free-energy differences from a single simulation.

    Science.gov (United States)

    Sidler, Dominik; Schwaninger, Arthur; Riniker, Sereina

    2016-10-21

    In molecular dynamics (MD) simulations, free-energy differences are often calculated using free energy perturbation or thermodynamic integration (TI) methods. However, both techniques are only suited to calculate free-energy differences between two end states. Enveloping distribution sampling (EDS) presents an attractive alternative that allows to calculate multiple free-energy differences in a single simulation. In EDS, a reference state is simulated which "envelopes" the end states. The challenge of this methodology is the determination of optimal reference-state parameters to ensure equal sampling of all end states. Currently, the automatic determination of the reference-state parameters for multiple end states is an unsolved issue that limits the application of the methodology. To resolve this, we have generalised the replica-exchange EDS (RE-EDS) approach, introduced by Lee et al. [J. Chem. Theory Comput. 10, 2738 (2014)] for constant-pH MD simulations. By exchanging configurations between replicas with different reference-state parameters, the complexity of the parameter-choice problem can be substantially reduced. A new robust scheme to estimate the reference-state parameters from a short initial RE-EDS simulation with default parameters was developed, which allowed the calculation of 36 free-energy differences between nine small-molecule inhibitors of phenylethanolamine N-methyltransferase from a single simulation. The resulting free-energy differences were in excellent agreement with values obtained previously by TI and two-state EDS simulations.

  3. Time evolution and use of multiple times in the N-body problem

    International Nuclear Information System (INIS)

    McGuire, J.H.; Godunov, A.L.

    2003-01-01

    Under certain conditions it is possible to describe time evolution using different times for different particles. Use of multiple times is optional in the independent particle approximation, where interparticle interactions are removed, and the N-particle evolution operator factors into N single-particle evolution operators. In this limit one may use either a single time, with a single energy-time Fourier transform, or N different times with a different energy-time transform for each particle. The use of different times for different particles is fully justified when coherence between single-particle amplitudes is lost, e.g., if relatively strong randomly fluctuating residual fields influence each particle independently. However, when spatial correlation is present the use of multiple times is not feasible, even when the evolution of the particles is uncorrelated in time. Some calculations in simple atomic systems with and without spatial and temporal correlation between different electrons are included

  4. Simulation investigation of thermal phase transformation and residual stress in single pulse EDM of Ti-6Al-4V

    Science.gov (United States)

    Tang, Jiajing; Yang, Xiaodong

    2018-04-01

    The thermal phase transformation and residual stress are ineluctable in the electrical discharge machining (EDM) process, and they will greatly affect the working performances of the machined surface. This paper presents a simulation study on the thermal phase transformation and residual stress in single-pulse EDM of Ti-6Al-4V, which is the most popular titanium alloy in fields such as aircraft engine and some other leading industries. A multi-physics model including thermal, hydraulic, metallography and structural mechanics was developed. Based on the proposed model, the thickness and metallographic structure of the recast layer and heat affected layer (HAZ) were investigated. The distribution and characteristics of residual stress around the discharge crater were obtained. The recast layer and HAZ at the center of crater are found to be the thinnest, and their thicknesses gradually increase approaching the periphery of the crater. The recast layer undergoes a complete α‧ (martensitic) transformation, while the HAZ is mainly composed by the α  +  β  +  α‧ three-phase microstructure. Along the depth direction of crater, the Von Mises stress increases first and then decreases, reaching its maximal value near the interface of recast layer and HAZ. In the recast layer, both compressive stress component and tensile stress component are observed. ANOVA results showed that the influence of discharge current on maximal tensile stress is more significant than that of pulse duration, while the pulse duration has more significant influence on average thickness of the recast layer and the depth location of the maximal tensile stress. The works conducted in this study will help to evaluate the quality and integrity of EDMed surface, especially when the non-destructive testing is difficult to achieve.

  5. Comparing three CPR feedback devices and standard BLS in a single rescuer scenario: a randomised simulation study.

    Science.gov (United States)

    Zapletal, Bernhard; Greif, Robert; Stumpf, Dominik; Nierscher, Franz Josef; Frantal, Sophie; Haugk, Moritz; Ruetzler, Kurt; Schlimp, Christoph; Fischer, Henrik

    2014-04-01

    Efficiently performed basic life support (BLS) after cardiac arrest is proven to be effective. However, cardiopulmonary resuscitation (CPR) is strenuous and rescuers' performance declines rapidly over time. Audio-visual feedback devices reporting CPR quality may prevent this decline. We aimed to investigate the effect of various CPR feedback devices on CPR quality. In this open, prospective, randomised, controlled trial we compared three CPR feedback devices (PocketCPR, CPRmeter, iPhone app PocketCPR) with standard BLS without feedback in a simulated scenario. 240 trained medical students performed single rescuer BLS on a manikin for 8min. Effective compression (compressions with correct depth, pressure point and sufficient decompression) as well as compression rate, flow time fraction and ventilation parameters were compared between the four groups. Study participants using the PocketCPR performed 17±19% effective compressions compared to 32±28% with CPRmeter, 25±27% with the iPhone app PocketCPR, and 35±30% applying standard BLS (PocketCPR vs. CPRmeter p=0.007, PocketCPR vs. standard BLS p=0.001, others: ns). PocketCPR and CPRmeter prevented a decline in effective compression over time, but overall performance in the PocketCPR group was considerably inferior to standard BLS. Compression depth and rate were within the range recommended in the guidelines in all groups. While we found differences between the investigated CPR feedback devices, overall BLS quality was suboptimal in all groups. Surprisingly, effective compression was not improved by any CPR feedback device compared to standard BLS. All feedback devices caused substantial delay in starting CPR, which may worsen outcome. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. The conditional power of randomization tests for single-case effect sizes in designs with randomized treatment order: A Monte Carlo simulation study.

    Science.gov (United States)

    Michiels, Bart; Heyvaert, Mieke; Onghena, Patrick

    2017-04-07

    The conditional power (CP) of the randomization test (RT) was investigated in a simulation study in which three different single-case effect size (ES) measures were used as the test statistics: the mean difference (MD), the percentage of nonoverlapping data (PND), and the nonoverlap of all pairs (NAP). Furthermore, we studied the effect of the experimental design on the RT's CP for three different single-case designs with rapid treatment alternation: the completely randomized design (CRD), the randomized block design (RBD), and the restricted randomized alternation design (RRAD). As a third goal, we evaluated the CP of the RT for three types of simulated data: data generated from a standard normal distribution, data generated from a uniform distribution, and data generated from a first-order autoregressive Gaussian process. The results showed that the MD and NAP perform very similarly in terms of CP, whereas the PND performs substantially worse. Furthermore, the RRAD yielded marginally higher power in the RT, followed by the CRD and then the RBD. Finally, the power of the RT was almost unaffected by the type of the simulated data. On the basis of the results of the simulation study, we recommend at least 20 measurement occasions for single-case designs with a randomized treatment order that are to be evaluated with an RT using a 5% significance level. Furthermore, we do not recommend use of the PND, because of its low power in the RT.

  7. Unit-cell design for two-dimensional phase-field simulation of microstructure evolution in single-crystal Ni-based superalloys during solidification

    Directory of Open Access Journals (Sweden)

    Dongjia Cao

    2017-12-01

    Full Text Available Phase-field simulation serves as an effective tool for quantitative characterization of microstructure evolution in single-crystal Ni-based superalloys during solidification nowadays. The classic unit cell is either limited to γ dendrites along crystal orientation or too ideal to cover complex morphologies for γ dendrites. An attempt to design the unit cell for two-dimensional (2-D phase-field simulations of microstructure evolution in single-crystal Ni-based superalloys during solidification was thus performed by using the MICRESS (MICRostructure Evolution Simulation Software in the framework of the multi-phase-field (MPF model, and demonstrated in a commercial TMS-113 superalloy. The coupling to CALPHAD (CALculation of PHAse Diagram thermodynamic database was realized via the TQ interface and the experimental diffusion coefficients were utilized in the simulation. Firstly, the classic unit cell with a single γ dendrite along crystal orientation was employed for the phase-field simulation in order to reproduce the microstructure features. Then, such simple unit cell was extended into the cases with two other different crystal orientations, i.e., and . Thirdly, for crystal orientations, the effect of γ dendritic orientations and unit cell sizes on microstructure and microsegregation was comprehensively studied, from which a new unit cell with multiple γ dendrites was proposed. The phase-field simulation with the newly proposed unit cell was further performed in the TMS-113 superalloy, and the microstructure features including the competitive growth of γ dendrites, microsegregation of different solutes and distribution of γ′ grains, can be nicely reproduced.

  8. Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part I: Single layer cloud

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Stephen A.; McCoy, Renata B.; Morrison, Hugh; Ackerman, Andrew S.; Avramov, Alexander; de Boer, Gijs; Chen, Mingxuan; Cole, Jason N.S.; Del Genio, Anthony D.; Falk, Michael; Foster, Michael J.; Fridlind, Ann; Golaz, Jean-Christophe; Hashino, Tempei; Harrington, Jerry Y.; Hoose, Corinna; Khairoutdinov, Marat F.; Larson, Vincent E.; Liu, Xiaohong; Luo, Yali; McFarquhar, Greg M.; Menon, Surabi; Neggers, Roel A. J.; Park, Sungsu; Poellot, Michael R.; Schmidt, Jerome M.; Sednev, Igor; Shipway, Ben J.; Shupe, Matthew D.; Spangenberg, Douglas A.; Sud, Yogesh C.; Turner, David D.; Veron, Dana E.; von Salzen, Knut; Walker, Gregory K.; Wang, Zhien; Wolf, Audrey B.; Xie, Shaocheng; Xu, Kuan-Man; Yang, Fanglin; Zhang, Gong

    2009-02-02

    Results are presented from an intercomparison of single-column and cloud-resolving model simulations of a cold-air outbreak mixed-phase stratocumulus cloud observed during the Atmospheric Radiation Measurement (ARM) program's Mixed-Phase Arctic Cloud Experiment. The observed cloud occurred in a well-mixed boundary layer with a cloud top temperature of -15 C. The observed average liquid water path of around 160 g m{sup -2} was about two-thirds of the adiabatic value and much greater than the average mass of ice crystal precipitation which when integrated from the surface to cloud top was around 15 g m{sup -2}. The simulations were performed by seventeen single-column models (SCMs) and nine cloud-resolving models (CRMs). While the simulated ice water path is generally consistent with the observed values, the median SCM and CRM liquid water path is a factor of three smaller than observed. Results from a sensitivity study in which models removed ice microphysics suggest that in many models the interaction between liquid and ice-phase microphysics is responsible for the large model underestimate of liquid water path. Despite this general underestimate, the simulated liquid and ice water paths of several models are consistent with the observed values. Furthermore, there is evidence that models with more sophisticated microphysics simulate liquid and ice water paths that are in better agreement with the observed values, although considerable scatter is also present. Although no single factor guarantees a good simulation, these results emphasize the need for improvement in the model representation of mixed-phase microphysics.

  9. Simulation of Single Particle Displacement Damage in Silicon – Part II: Generation and Long-Time Relaxation of Damage Structure

    OpenAIRE

    Jay , Antoine; Raine , Melanie; Richard , Nicolas; Mousseau , Normand; Goiffon , Vincent; Hémeryck , Anne; Magnan , Pierre

    2017-01-01

    International audience; A statistical study of displacement cascades induced by silicon Primary Knock-on Atoms (PKA) in bulk silicon is performed by running a large number of molecular dynamics (MD) simulations. The choice of the PKA species and energy varying from 1 to 100 keV comes from a previous particle-matter simulation [1]. The electronic stopping power missing in standard MD simulations is here taken into account using the Two Temperature Model (TTM). This prevents from overestimating...

  10. Longitudinal effects of single-dose simulation education with structured debriefing and verbal feedback on endotracheal suctioning knowledge and skills: A randomized controlled trial.

    Science.gov (United States)

    Jansson, Miia M; Syrjälä, Hannu P; Ohtonen, Pasi P; Meriläinen, Merja H; Kyngäs, Helvi A; Ala-Kokko, Tero I

    2017-01-01

    We evaluated the longitudinal effects of single-dose simulation education with structured debriefing and verbal feedback on critical care nurses' endotracheal suctioning knowledge and skills. To do this we used an experimental design without other competing intervention. Twenty-four months after simulation education, no significant time and group differences or time × group interactions were identified between the study groups. The need for regularly repeated educational interventions with audiovisual or individualized performance feedback and repeated bedside demonstrations is evident. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  11. Effects of single nucleotide polymorphisms on human N-acetyltransferase 2 structure and dynamics by molecular dynamics simulation.

    Directory of Open Access Journals (Sweden)

    M Rajasekaran

    Full Text Available BACKGROUND: Arylamine N-acetyltransferase 2 (NAT2 is an important catalytic enzyme that metabolizes the carcinogenic arylamines, hydrazine drugs and chemicals. This enzyme is highly polymorphic in different human populations. Several polymorphisms of NAT2, including the single amino acid substitutions R64Q, I114T, D122N, L137F, Q145P, R197Q, and G286E, are classified as slow acetylators, whereas the wild-type NAT2 is classified as a fast acetylator. The slow acetylators are often associated with drug toxicity and efficacy as well as cancer susceptibility. The biological functions of these 7 mutations have previously been characterized, but the structural basis behind the reduced catalytic activity and reduced protein level is not clear. METHODOLOGY/PRINCIPAL FINDINGS: We performed multiple molecular dynamics simulations of these mutants as well as NAT2 to investigate the structural and dynamical effects throughout the protein structure, specifically the catalytic triad, cofactor binding site, and the substrate binding pocket. None of these mutations induced unfolding; instead, their effects were confined to the inter-domain, domain 3 and 17-residue insert region, where the flexibility was significantly reduced relative to the wild-type. Structural effects of these mutations propagate through space and cause a change in catalytic triad conformation, cofactor binding site, substrate binding pocket size/shape and electrostatic potential. CONCLUSIONS/SIGNIFICANCE: Our results showed that the dynamical properties of all the mutant structures, especially in inter-domain, domain 3 and 17-residue insert region were affected in the same manner. Similarly, the electrostatic potential of all the mutants were altered and also the functionally important regions such as catalytic triad, cofactor binding site, and substrate binding pocket adopted different orientation and/or conformation relative to the wild-type that may affect the functions of the mutants

  12. REBOUND-ing Off Asteroids: An N-body Particle Model for Ejecta Dynamics on Small Bodies

    Science.gov (United States)

    Larson, Jennifer; Sarid, Gal

    2017-10-01

    Here we describe our numerical approach to model the evolution of ejecta clouds. Modeling with an N-body particle method enables us to study the micro-dynamics while varying the particle size distribution. A hydrodynamic approach loses many of the fine particle-particle interactions included in the N-body particle approach (Artemieva 2008).We use REBOUND, an N-body integration package (Rein et al. 2012) developed to model various dynamical systems (planetary orbits, ring systems, etc.) with high resolution calculations at a lower performance cost than other N-body integrators (Rein & Tamayo 2017). It offers both symplectic (WHFast) and non-symplectic (IAS15) methods (Rein & Spiegel 2014, Rein & Tamayo 2015). We primarily use the IAS15 integrator due to its robustness and accuracy with short interaction distances and non-conservative forces. We implemented a wrapper (developed in Python) to handle changes in time step and integrator at different stages of ejecta particle evolution.To set up the system, each particle is given a velocity away from the target body’s surface at a given angle within a defined ejecta cone. We study the ejecta cloud evolution beginning immediately after an impact rather than the actual impact itself. This model considers effects such as varying particle size distribution, radiation pressure, perturbations from a binary component, particle-particle collisions and non-axisymmetric gravity of the target body. Restrictions on the boundaries of the target body’s surface define the physical shape and help count the number of particles that land on the target body. Later, we will build the central body from individual particles to allow for a wider variety of target body shapes and topographies.With our particle modeling approach, individual particle trajectories are tracked and predicted on short, medium and long timescales. Our approach will be applied to modeling of the ejecta cloud produced during the Double Asteroid Redirection Test

  13. MOCCA-SURVEY Database. I. Eccentric Black Hole Mergers during Binary–Single Interactions in Globular Clusters

    Science.gov (United States)

    Samsing, Johan; Askar, Abbas; Giersz, Mirek

    2018-03-01

    We estimate the population of eccentric gravitational wave (GW) binary black hole (BBH) mergers forming during binary–single interactions in globular clusters (GCs), using ∼800 GC models that were evolved using the MOCCA code for star cluster simulations as part of the MOCCA-Survey Database I project. By re-simulating BH binary–single interactions extracted from this set of GC models using an N-body code that includes GW emission at the 2.5 post-Newtonian level, we find that ∼10% of all the BBHs assembled in our GC models that merge at present time form during chaotic binary–single interactions, and that about half of this sample have an eccentricity >0.1 at 10 Hz. We explicitly show that this derived rate of eccentric mergers is ∼100 times higher than one would find with a purely Newtonian N-body code. Furthermore, we demonstrate that the eccentric fraction can be accurately estimated using a simple analytical formalism when the interacting BHs are of similar mass, a result that serves as the first successful analytical description of eccentric GW mergers forming during three-body interactions in realistic GCs.

  14. Evaluation of a multiple-encounter in situ simulation for orientation of staff to a new paediatric emergency service: a single-group pretest/post-test study.

    Science.gov (United States)

    Davison, Michelle; Kinnear, Frances B; Fulbrook, Paul

    2017-10-01

    To assess the utility of a multiple-encounter in-situ (MEIS) simulation as an orientation tool for multidisciplinary staff prior to opening a new paediatric emergency service. A single-group pretest/post-test study was conducted. During the MEIS simulation, multidisciplinary staff with participant or observer roles managed eight children (mannequins) who attended triage with their parent/guardians (clinical facilitators) for a range of emergency presentations (structured scenarios designed to represent the expected range of presentations plus test various clinical pathways/systems). Participants were debriefed to explore clinical, systems and crisis-resource management issues. Participants also completed a pre-intervention and post-intervention questionnaire comprising statements about role confidence and orientation adequacy. Pre-test and post-test results were analysed using t-test and Wilcoxon signed rank test. Eighty-nine staff participated in the MEIS simulation, with the majority completing the pre-simulation and post-simulation questionnaire. There was a significant improvement in post-intervention versus pre-intervention Likert scores for role confidence and orientation adequacy (p=0.001 and simulation was of utility in orientation of staff, at least with respect to self-reported role confidence and orientation adequacy. Its effectiveness in practice or compared with other orientation techniques was not assessed, but it did identify several flaws in planned systems allowing remediation prior to opening.

  15. Numerical investigation of Marine Hydrokinetic Turbines: methodology development for single turbine and small array simulation, and application to flume and full-scale reference models

    Science.gov (United States)

    Javaherchi Mozafari, Amir Teymour

    A hierarchy of numerical models, Single Rotating Reference Frame (SRF) and Blade Element Model (BEM), were used for numerical investigation of horizontal axis Marine Hydrokinetic (MHK) Turbines. In the initial stage the SRF and BEM were used to simulate the performance and turbulent wake of a flume- and a full-scale MHK turbine reference model. A significant level of understanding and confidence was developed in the implementation of numerical models for simulation of a MHK turbine. This was achieved by simulation of the flume-scale turbine experiments and comparison between numerical and experimental results. Then the developed numerical methodology was applied to simulate the performance and wake of the full-scale MHK reference model (DOE Reference Model 1). In the second stage the BEM was used to simulate the experimental study of two different MHK turbine array configurations (i.e. two and three coaxial turbines). After developing a numerical methodology using the experimental comparison to simulate the flow field of a turbine array, this methodology was applied toward array optimization study of a full-scale model with the goal of proposing an optimized MHK turbine configuration with minimal computational cost and time. In the last stage the BEM was used to investigate one of the potential environmental effects of MHK turbine. A general methodological approach was developed and experimentally validated to investigate the effect of MHK turbine wake on the sedimentation process of suspended particles in a tidal channel.

  16. Assessment of long-term knowledge retention following single-day simulation training for uncommon but critical obstetrical events.

    Science.gov (United States)

    Vadnais, Mary A; Dodge, Laura E; Awtrey, Christopher S; Ricciotti, Hope A; Golen, Toni H; Hacker, Michele R

    2012-09-01

    The objectives were to determine (i) whether simulation training results in short-term and long-term improvement in the management of uncommon but critical obstetrical events and (ii) to determine whether there was additional benefit from annual exposure to the workshop. Physicians completed a pretest to measure knowledge and confidence in the management of eclampsia, shoulder dystocia, postpartum hemorrhage and vacuum-assisted vaginal delivery. They then attended a simulation workshop and immediately completed a posttest. Residents completed the same posttests 4 and 12 months later, and attending physicians completed the posttest at 12 months. Physicians participated in the same simulation workshop 1 year later and then completed a final posttest. Scores were compared using paired t-tests. Physicians demonstrated improved knowledge and comfort immediately after simulation. Residents maintained this improvement at 1 year. Attending physicians remained more comfortable managing these scenarios up to 1 year later; however, knowledge retention diminished with time. Repeating the simulation after 1 year brought additional improvement to physicians. Simulation training can result in short-term and contribute to long-term improvement in objective measures of knowledge and comfort level in managing uncommon but critical obstetrical events. Repeat exposure to simulation training after 1 year can yield additional benefits.

  17. Simulation and Experimental Studies on Grain Selection and Structure Design of the Spiral Selector for Casting Single Crystal Ni-Based Superalloy

    Directory of Open Access Journals (Sweden)

    Hang Zhang

    2017-10-01

    Full Text Available Grain selection is an important process in single crystal turbine blades manufacturing. Selector structure is a control factor of grain selection, as well as directional solidification (DS. In this study, the grain selection and structure design of the spiral selector were investigated through experimentation and simulation. A heat transfer model and a 3D microstructure growth model were established based on the Cellular automaton-Finite difference (CA-FD method for the grain selector. Consequently, the temperature field, the microstructure and the grain orientation distribution were simulated and further verified. The average error of the temperature result was less than 1.5%. The grain selection mechanisms were further analyzed and validated through simulations. The structural design specifications of the selector were suggested based on the two grain selection effects. The structural parameters of the spiral selector, namely, the spiral tunnel diameter (dw, the spiral pitch (hb and the spiral diameter (hs, were studied and the design criteria of these parameters were proposed. The experimental and simulation results demonstrated that the improved selector could accurately and efficiently produce a single crystal structure.

  18. Simulation and Experimental Studies on Grain Selection and Structure Design of the Spiral Selector for Casting Single Crystal Ni-Based Superalloy.

    Science.gov (United States)

    Zhang, Hang; Xu, Qingyan

    2017-10-27

    Grain selection is an important process in single crystal turbine blades manufacturing. Selector structure is a control factor of grain selection, as well as directional solidification (DS). In this study, the grain selection and structure design of the spiral selector were investigated through experimentation and simulation. A heat transfer model and a 3D microstructure growth model were established based on the Cellular automaton-Finite difference (CA-FD) method for the grain selector. Consequently, the temperature field, the microstructure and the grain orientation distribution were simulated and further verified. The average error of the temperature result was less than 1.5%. The grain selection mechanisms were further analyzed and validated through simulations. The structural design specifications of the selector were suggested based on the two grain selection effects. The structural parameters of the spiral selector, namely, the spiral tunnel diameter ( d w ), the spiral pitch ( h b ) and the spiral diameter ( h s ), were studied and the design criteria of these parameters were proposed. The experimental and simulation results demonstrated that the improved selector could accurately and efficiently produce a single crystal structure.

  19. Systems with N correlated fermions. Mean-field models for nuclear structures and other N-body systems

    International Nuclear Information System (INIS)

    Grasso, M.

    2009-10-01

    This document is a summary of the author's research activities whose common topic is the N-body problem. The first chapter introduces the N-body issue through models based on the mean-field theory and on the Hartree-Fock-Bogoliubov equations. The second chapter presents the understanding of exotic nuclei features within the mean-field approach. Exotic phenomena like nuclear bubble structure, pairing correlations and pairing violations, giant neutron halos, non-standard terms in the Skyrme interactions are reviewed. The chapter 3 is dedicated to some extensions of the RPA (random phase approximation). For instance the computation of the shell structure far from the stability valley requires a more accurate assessment of the energy of the individual states through the introduction of a particle-vibration coupling. Different RPA extensions are described: first the self-consistent extension enlarged beyond particle-hole configurations, then the boson-mapping-based extension in a 3-level Lipkin model and also the second random-phase approximation. The chapter 4 gathers some studies concerning ultra-cold gases of trapped atoms. These systems are the only structures that allow the study of the correlations associated to superfluidity in terms of interaction intensity, temperature or system size. The mean-field approach is adequate for these studies. The last chapter draws a perspective for the mean-field-based models, their limits are assessed and ways of improvement are proposed. (A.C.)

  20. Assessment of the scatter correction procedures in single photon emission computed tomography imaging using simulation and clinical study

    Directory of Open Access Journals (Sweden)

    Mehravar Rafati

    2017-01-01

    Conclusion: The simulation and the clinical studies showed that the new approach could be better performance than DEW, TEW methods, according to values of the contrast, and the SNR for scatter correction.

  1. Large Eddy Simulation of Air Escape through a Hospital Isolation Room Single Hinged Doorway--Validation by Using Tracer Gases and Simulated Smoke Videos.

    Directory of Open Access Journals (Sweden)

    Pekka E Saarinen

    Full Text Available The use of hospital isolation rooms has increased considerably in recent years due to the worldwide outbreaks of various emerging infectious diseases. However, the passage of staff through isolation room doors is suspected to be a cause of containment failure, especially in case of hinged doors. It is therefore important to minimize inadvertent contaminant airflow leakage across the doorway during such movements. To this end, it is essential to investigate the behavior of such airflows, especially the overall volume of air that can potentially leak across the doorway during door-opening and human passage. Experimental measurements using full-scale mock-ups are expensive and labour intensive. A useful alternative approach is the application of Computational Fluid Dynamics (CFD modelling using a time-resolved Large Eddy Simulation (LES method. In this study simulated air flow patterns are qualitatively compared with experimental ones, and the simulated total volume of air that escapes is compared with the experimentally measured volume. It is shown that the LES method is able to reproduce, at room scale, the complex transient airflows generated during door-opening/closing motions and the passage of a human figure through the doorway between two rooms. This was a basic test case that was performed in an isothermal environment without ventilation. However, the advantage of the CFD approach is that the addition of ventilation airflows and a temperature difference between the rooms is, in principle, a relatively simple task. A standard method to observe flow structures is dosing smoke into the flow. In this paper we introduce graphical methods to simulate smoke experiments by LES, making it very easy to compare the CFD simulation to the experiments. The results demonstrate that the transient CFD simulation is a promising tool to compare different isolation room scenarios without the need to construct full-scale experimental models. The CFD model is

  2. Heaters to simulate fuel pins for heat transfer tests in single-phase liquid-metal-flow

    International Nuclear Information System (INIS)

    Casal, V.; Graf, E.; Hartmann, W.

    1976-09-01

    The development of heaters for thermal simulation of the fuel elements of liquid metal cooled fast breeder reactors (SNR) is reported. Beginning with the experimental demands various heating methods are discussed for thermodynamic investigations of the heat transfer in liquid metals. Then a preferred heater rod is derived to simulate the fuel pins of a SNR. Finally it is reported on the fabrication and the operation practice. (orig.) [de

  3. GRACOS: Scalable and Load Balanced P3M Cosmological N-body Code

    Science.gov (United States)

    Shirokov, Alexander; Bertschinger, Edmund

    2010-10-01

    The GRACOS (GRAvitational COSmology) code, a parallel implementation of the particle-particle/particle-mesh (P3M) algorithm for distributed memory clusters, uses a hybrid method for both computation and domain decomposition. Long-range forces are computed using a Fourier transform gravity solver on a regular mesh; the mesh is distributed across parallel processes using a static one-dimensional slab domain decomposition. Short-range forces are computed by direct summation of close pairs; particles are distributed using a dynamic domain decomposition based on a space-filling Hilbert curve. A nearly-optimal method was devised to dynamically repartition the particle distribution so as to maintain load balance even for extremely inhomogeneous mass distributions. Tests using 800(3) simulations on a 40-processor beowulf cluster showed good load balance and scalability up to 80 processes. There are limits on scalability imposed by communication and extreme clustering which may be removed by extending the algorithm to include adaptive mesh refinement.

  4. Simulation Performance of Multiple-Input Multiple-Output Systems Employing Single-Carrier Modulation and Orthogonal Frequency Division Multiplexing

    National Research Council Canada - National Science Library

    Saglam, Halil D

    2004-01-01

    ...) systems utilizing Alamouti-based space-time block coding (STBC) technique. The MIMO communication systems using STBC technique employing both single-carrier modulation and orthogonal frequency division multiplexing (OFDM...

  5. Computational fluid dynamics simulations of single-phase flow in a filter-press flow reactor having a stack of three cells

    International Nuclear Information System (INIS)

    Sandoval, Miguel A.; Fuentes, Rosalba; Walsh, Frank C.; Nava, José L.; Ponce de León, Carlos

    2016-01-01

    Highlights: • Computational fluid dynamic simulations in a filter-press stack of three cells. • The fluid velocity was different in each cell due to local turbulence. • The upper cell link pipe of the filter press cell acts as a fluid mixer. • The fluid behaviour tends towards a continuous mixing flow pattern. • Close agreement between simulations and experimental data was achieved. - Abstract: Computational fluid dynamics (CFD) simulations were carried out for single-phase flow in a pre-pilot filter press flow reactor with a stack of three cells. Velocity profiles and streamlines were obtained by solving the Reynolds-Averaged Navier-Stokes (RANS) equations with a standard k − ε turbulence model. The flow behaviour shows the appearance of jet flow at the entrance to each cell. At lengths from 12 to 15 cm along the cells channels, a plug flow pattern is developed at all mean linear flow rates studied here, 1.2 ≤ u ≤ 2.1 cm s −1 . The magnitude of the velocity profiles in each cell was different, due to the turbulence generated by the change of flow direction in the last fluid manifold. Residence time distribution (RTD) simulations indicated that the fluid behaviour tends towards a continuous mixing flow pattern, owing to flow at the output of each cell across the upper cell link pipe, which acts as a mixer. Close agreement between simulations and experimental RTD was obtained.

  6. Simulating single-phase and two-phase non-Newtonian fluid flow of a digital rock scanned at high resolution

    Science.gov (United States)

    Tembely, Moussa; Alsumaiti, Ali M.; Jouini, Mohamed S.; Rahimov, Khurshed; Dolatabadi, Ali

    2017-11-01

    Most of the digital rock physics (DRP) simulations focus on Newtonian fluids and overlook the detailed description of rock-fluid interaction. A better understanding of multiphase non-Newtonian fluid flow at pore-scale is crucial for optimizing enhanced oil recovery (EOR). The Darcy scale properties of reservoir rocks such as the capillary pressure curves and the relative permeability are controlled by the pore-scale behavior of the multiphase flow. In the present work, a volume of fluid (VOF) method coupled with an adaptive meshing technique is used to perform the pore-scale simulation on a 3D X-ray micro-tomography (CT) images of rock samples. The numerical model is based on the resolution of the Navier-Stokes equations along with a phase fraction equation incorporating the dynamics contact model. The simulations of a single phase flow for the absolute permeability showed a good agreement with the literature benchmark. Subsequently, the code is used to simulate a two-phase flow consisting of a polymer solution, displaying a shear-thinning power law viscosity. The simulations enable to access the impact of the consistency factor (K), the behavior index (n), along with the two contact angles (advancing and receding) on the relative permeability.

  7. COCOA: Simulating Observations of Star Cluster Simulations

    Science.gov (United States)

    Askar, Abbas; Giersz, Mirek; Pych, Wojciech; Dalessandro, Emanuele

    2017-03-01

    COCOA (Cluster simulatiOn Comparison with ObservAtions) creates idealized mock photometric observations using results from numerical simulations of star cluster evolution. COCOA is able to present the output of realistic numerical simulations of star clusters carried out using Monte Carlo or N-body codes in a way that is useful for direct comparison with photometric observations. The code can simulate optical observations from simulation snapshots in which positions and magnitudes of objects are known. The parameters for simulating the observations can be adjusted to mimic telescopes of various sizes. COCOA also has a photometry pipeline that can use standalone versions of DAOPHOT (ascl:1104.011) and ALLSTAR to produce photometric catalogs for all observed stars.

  8. Reliable lateral and vertical manipulations of a single Cu adatom on a Cu(111) surface with multi-atom apex tip: semiempirical and first-principles simulations

    International Nuclear Information System (INIS)

    Xie Yiqun; Liu Qingwei; Zhang Peng; Wang Songyou; Li Yufen; Gan Fuxi; Zhuang Jun; Zhang Wenqing; Zhuang Min

    2008-01-01

    We study the reliability of the lateral manipulation of a single Cu adatom on a Cu(111) surface with single-atom, dimer and trimer apex tips using both semiempirical and first-principles simulations. The dependence of the manipulation reliability on tip height is investigated. For the single-atom apex tip the manipulation reliability increases monotonically with decreasing tip height. For the dimer and trimer apex tips the manipulation reliability is greatly improved compared to that for the single-atom apex tip over a certain tip-height range. Two kinds of mechanism are found responsible for this improvement. One is the so-called enhanced interaction mechanism in which the lateral tip-adatom interaction in the manipulation direction is improved. The other is the suspended atom mechanism in which the relative lateral trapping ability of the tip is improved due to the strong vertical attraction of the tip on the adatom. Both mechanisms occur in the manipulations with the trimer apex tip, while in those with the dimer apex tip only the former is effective. Moreover, we present a method to realize reversible vertical manipulation of a single atom on a Cu(111) surface with the trimer apex tip, based on its strong vertical and lateral attraction on the adatom

  9. Accurate single-scattering simulation of ice cloud using the invariant-imbedding T-matrix method and the physical-geometric optics method

    Science.gov (United States)

    Sun, B.; Yang, P.; Kattawar, G. W.; Zhang, X.

    2017-12-01

    The ice cloud single-scattering properties can be accurately simulated using the invariant-imbedding T-matrix method (IITM) and the physical-geometric optics method (PGOM). The IITM has been parallelized using the Message Passing Interface (MPI) method to remove the memory limitation so that the IITM can be used to obtain the single-scattering properties of ice clouds for sizes in the geometric optics regime. Furthermore, the results associated with random orientations can be analytically achieved once the T-matrix is given. The PGOM is also parallelized in conjunction with random orientations. The single-scattering properties of a hexagonal prism with height 400 (in units of lambda/2*pi, where lambda is the incident wavelength) and an aspect ratio of 1 (defined as the height over two times of bottom side length) are given by using the parallelized IITM and compared to the counterparts using the parallelized PGOM. The two results are in close agreement. Furthermore, the integrated single-scattering properties, including the asymmetry factor, the extinction cross-section, and the scattering cross-section, are given in a completed size range. The present results show a smooth transition from the exact IITM solution to the approximate PGOM result. Because the calculation of the IITM method has reached the geometric regime, the IITM and the PGOM can be efficiently employed to accurately compute the single-scattering properties of ice cloud in a wide spectral range.

  10. Computational screening and molecular dynamic simulation of breast cancer associated deleterious non-synonymous single nucleotide polymorphisms in TP53 gene.

    Directory of Open Access Journals (Sweden)

    Kumaraswamy Naidu Chitrala

    Full Text Available Breast cancer is one of the most common cancers among the women around the world. Several genes are known to be responsible for conferring the susceptibility to breast cancer. Among them, TP53 is one of the major genetic risk factor which is known to be mutated in many of the breast tumor types. TP53 mutations in breast cancer are known to be related to a poor prognosis and chemo resistance. This renders them as a promising molecular target for the treatment of breast cancer. In this study, we present a computational based screening and molecular dynamic simulation of breast cancer associated deleterious non-synonymous single nucleotide polymorphisms in TP53. We have predicted three deleterious coding non-synonymous single nucleotide polymorphisms rs11540654 (R110P, rs17849781 (P278A and rs28934874 (P151T in TP53 with a phenotype in breast tumors using computational tools SIFT, Polyphen-2 and MutDB. We have performed molecular dynamics simulations to study the structural and dynamic effects of these TP53 mutations in comparison to the wild-type protein. Results from our simulations revealed a detailed consequence of the mutations on the p53 DNA-binding core domain that may provide insight for therapeutic approaches in breast cancer.

  11. Spectral trends in the fluorescence of single bacterial light-harvesting complexes: Experiments and modified redfield simulations

    NARCIS (Netherlands)

    Rutkauskas, D.; Novoderezhkin, V.; Gall, A.; Olsen, J.; Cogdell, R.J.; Hunter, C.N.; van Grondelle, R.

    2006-01-01

    In this work we present and discuss the single-molecule fluorescence spectra of a variety of species of light-harvesting complexes: LH2 of Rhodopseudomonas acidophila, Rhodobacter sphaeroides, and Rhodospirillum molischianum and LH1 of Rhodobacter sphaeroides. The emission spectrum of these

  12. What determines drivers’ speed? : A replication of three behavioural adaptation experiments in a single driving simulator study

    NARCIS (Netherlands)

    Melman, T.; Abbink, D.A.; van Paassen, M.M.; Boer, E.R.; de Winter, J.C.F.

    We conceptually replicated three highly cited experiments on speed adaptation, by measuring drivers’ experienced risk (galvanic skin response; GSR), experienced task difficulty (self-reported task effort; SRTE), and safety margins (time-to-line-crossing; TLC) in a single experiment. The three

  13. Evaluation of Single or Double Hurdle Sanitizer Applications in Simulated Field or Packing Shed Operations for Cantaloupes Contaminated with Listeria monocytogenes

    Directory of Open Access Journals (Sweden)

    Cathy C. Webb

    2015-04-01

    Full Text Available Listeria monocytogenes contamination of cantaloupes has become a serious concern as contaminated cantaloupes led to a deadly outbreak in the United States in 2011. To reduce cross-contamination between cantaloupes and to reduce resident populations on contaminated melons, application of sanitizers in packing shed wash water is recommended. The sanitizing agent of 5% levulinic acid and 2% sodium dodecyl sulfate (SDS applied as a single hurdle in either a simulated dump or dip treatment significantly reduced L. monocytogenes to lower levels at the stem scar compared to a simulated dump treatment employing 200 ppm chlorine; however pathogen reductions on the rind tissue were not significantly different. Double hurdle approaches employing two sequential packing plant treatments with different sanitizers revealed decreased reduction of L. monocytogenes at the stem scar. In contrast, application of sanitizers both in the field and at the packing plant led to greater L. monocytogenes population reductions than if sanitizers were only applied at the packing plant.

  14. A Generic Simulation Approach for the Fast and Accurate Estimation of the Outage Probability of Single Hop and Multihop FSO Links Subject to Generalized Pointing Errors

    KAUST Repository

    Ben Issaid, Chaouki

    2017-07-28

    When assessing the performance of the free space optical (FSO) communication systems, the outage probability encountered is generally very small, and thereby the use of nave Monte Carlo simulations becomes prohibitively expensive. To estimate these rare event probabilities, we propose in this work an importance sampling approach which is based on the exponential twisting technique to offer fast and accurate results. In fact, we consider a variety of turbulence regimes, and we investigate the outage probability of FSO communication systems, under a generalized pointing error model based on the Beckmann distribution, for both single and multihop scenarios. Selected numerical simulations are presented to show the accuracy and the efficiency of our approach compared to naive Monte Carlo.

  15. Study of the therapeutic effects of a hippotherapy simulator in children with cerebral palsy: a stratified single-blind randomized controlled trial.

    Science.gov (United States)

    Herrero, Pablo; Gómez-Trullén, Eva M; Asensio, Angel; García, Elena; Casas, Roberto; Monserrat, Esther; Pandyan, Anand

    2012-12-01

    To investigate whether hippotherapy (when applied by a simulator) improves postural control and balance in children with cerebral palsy. Stratified single-blind randomized controlled trial with an independent assessor. Stratification was made by gross motor function classification system levels, and allocation was concealed. Children between 4 and 18 years old with cerebral palsy. Participants were randomized to an intervention (simulator ON) or control (simulator OFF) group after getting informed consent. Treatment was provided once a week (15 minutes) for 10 weeks. Gross Motor Function Measure (dimension B for balance and the Total Score) and Sitting Assessment Scale were carried out at baseline (prior to randomization), end of intervention and 12 weeks after completing the intervention. Thirty-eight children participated. The groups were balanced at baseline. Sitting balance (measured by dimension B of the Gross Motor Function Measure) improved significantly in the treatment group (effect size = 0.36; 95% CI 0.01-0.71) and the effect size was greater in the severely disabled group (effect size = 0.80; 95% CI 0.13-1.47). The improvements in sitting balance were not maintained over the follow-up period. Changes in the total score of the Gross Motor Function Measure and the Sitting Assessment Scale were not significant. Hippotherapy with a simulator can improve sitting balance in cerebral palsy children who have higher levels of disability. However, this did not lead to a change in the overall function of these children (Gross Motor Function Classification System level V).

  16. Training With Curved Laparoscopic Instruments in Single-Port Setting Improves Performance Using Straight Instruments: A Prospective Randomized Simulation Study.

    Science.gov (United States)

    Lukovich, Peter; Sionov, Valery Ben; Kakucs, Timea

    2016-01-01

    Lately single-port surgery is becoming a widespread procedure, but it is more difficult than conventional laparoscopy owing to the lack of triangulation. Although, these operations are also possible with standard laparoscopic instruments, curved instruments are being developed. The aims of the study were to identify the effect of training on a box trainer in single-port setting on the quality of acquired skills, and transferred with the straight and curved instruments for the basic laparoscopic tasks, and highlight the importance of a special laparoscopic training curriculum. A prospective study on a box trainer in single-port setting was conducted using 2 groups. Each group performed 2 tasks on the box trainer in single-port setting. Group-S used conventional straight laparoscopic instruments, and Group-C used curved laparoscopic instruments. Learning curves were obtained by daily measurements recorded in 7-day sessions. On the last day, the 2 groups changed instruments between each other. 1st Department of Surgery, Semmelweis University of Medicine from Budapest, Hungary, a university teaching hospital. In all, 20 fifth-year medical students were randomized into 2 groups. None of them had any laparoscopic or endoscopic experience. Participation was voluntary. Although Group-S performed all tasks significantly faster than Group-C on the first day, the difference proved to be nonsignificant on the last day. All participants achieved significantly shorter task completion time on the last day than on the first day, regardless of the instrument they used. Group-S showed improvement of 63.5%, and Group-C 69.0% improvement by the end of the session. After swapping the instruments, Group-S reached significantly higher task completion time with curved instruments, whereas Group-C showed further progression of 8.9% with straight instruments. Training with curved instruments in a single-port setting allows for a better acquisition of skills in a shorter period. For this

  17. 3D atomistic simulation of fatigue behaviour of cracked single crystal of bcc iron loaded in mode III

    Czech Academy of Sciences Publication Activity Database

    Uhnáková, Alena; Pokluda, J.; Machová, Anna; Hora, Petr

    2011-01-01

    Roč. 33, č. 12 (2011), s. 1564-1573 ISSN 0142-1123 R&D Projects: GA ČR(CZ) GAP108/10/0698 Institutional research plan: CEZ:AV0Z20760514 Keywords : fatigue * mode III * bcc iron * molecular dynamic simulations Subject RIV: JG - Metallurgy Impact factor: 1.546, year: 2011 http://www.sciencedirect.com/science/article/pii/S0142112311001708

  18. Converting Simulated Sodium-bearing Waste into a Single Solid Waste Form by Evaporation: Laboratory- and Pilot-Scale Test Results on Recycling Evaporator Overheads

    International Nuclear Information System (INIS)

    Griffith, D.; D. L. Griffith; R. J. Kirkham; L. G. Olson; S. J. Losinski

    2004-01-01

    Conversion of Idaho National Engineering and Environmental Laboratory radioactive sodium-bearing waste into a single solid waste form by evaporation was demonstrated in both flask-scale and pilot-scale agitated thin film evaporator tests. A sodium-bearing waste simulant was adjusted to represent an evaporator feed in which the acid from the distillate is concentrated, neutralized, and recycled back through the evaporator. The advantage to this flow sheet is that a single remote-handled transuranic waste form is produced in the evaporator bottoms without the generation of any low-level mixed secondary waste. However, use of a recycle flow sheet in sodium-bearing waste evaporation results in a 50% increase in remote-handled transuranic volume in comparison to a non-recycle flow sheet

  19. On the Wrapping of Polyglycolide, Poly(Ethylene Oxide), and Polyketone Polymer Chains Around Single-Walled Carbon Nanotubes Using Molecular Dynamics Simulations

    Science.gov (United States)

    Rouhi, S.; Alizadeh, Y.; Ansari, R.

    2015-02-01

    By using molecular dynamics simulations, the interaction between a single-walled carbon nanotube and three different polymers has been studied in this work. The effects of various parameters such as the nanotube geometry and temperature on the interaction energy and radius of gyration of polymers have been explored. By studying the snapshots of polymers along the single-walled carbon nanotube, it has been shown that 50 ps can be considered as a suitable time after which the shape of polymer chains around the nanotube remains almost unchanged. It is revealed that the effect of temperature on the interaction energy and radius of gyration of polymers in the range of 250 to 500 K is not significant Also, it is shown that the interaction energy depends on the nanotube diameter.

  20. Temperature measurement of cold atoms using single-atom transits and Monte Carlo simulation in a strongly coupled atom-cavity system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wenfang; Du, Jinjin; Wen, Ruijuan; Yang, Pengfei; Li, Gang; Zhang, Tiancai, E-mail: tczhang@sxu.edu.cn [State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006 (China); Liang, Junjun [Department of Physics, Shanxi University, Taiyuan 030006 (China)

    2014-03-17

    We investigate the transmission of single-atom transits based on a strongly coupled cavity quantum electrodynamics system. By superposing the transit transmissions of a considerable number of atoms, we obtain the absorption spectra of the cavity induced by single atoms and obtain the temperature of the cold atom. The number of atoms passing through the microcavity for each release is also counted, and this number changes exponentially along with the atom temperature. Monte Carlo simulations agree closely with the experimental results, and the initial temperature of the cold atom is determined. Compared with the conventional time-of-flight (TOF) method, this approach avoids some uncertainties in the standard TOF and sheds new light on determining temperature of cold atoms by counting atoms individually in a confined space.

  1. Evaluation of a BGO-Based PET System for Single-Cell Tracking Performance by Simulation and Phantom Studies

    Directory of Open Access Journals (Sweden)

    Yu Ouyang PhD

    2016-05-01

    Full Text Available A recent method based on positron emission was reported for tracking moving point sources using the Inveon PET system. However, the effect of scanner background noise was not further explored. Here, we evaluate tracking with the Genisys4, a bismuth germanate-based PET system, which has no significant intrinsic background and may be better suited to tracking lower and/or faster activity sources. Position-dependent sensitivity of the Genisys4 was simulated in Geant4 Application for Tomographic Emission (GATE using a static 18F point source. Trajectories of helically moving point sources with varying activity and rotation speed were reconstructed from list-mode data as described previously. Simulations showed that the Inveon’s ability to track sources within 2 mm of localization error is limited to objects with a velocity-to-activity ratio < 0.13 mm/decay, compared to < 0.29 mm/decay for the Genisys4. Tracking with the Genisys4 was then validated using a physical phantom of helically moving [18F] fluorodeoxyglucose-in-oil droplets (< 0.24 mm diameter, 139-296 Bq, yielding < 1 mm localization error under the tested conditions, with good agreement between simulated sensitivity and measured activity (Pearson correlation R = .64, P << .05 in a representative example. We have investigated the tracking performance with the Genisys4, and results suggest the feasibility of tracking low activity, point source-like objects with this system.

  2. Design and simulations of a spectral efficient optical code division multiple access scheme using alternated energy differentiation and single-user soft-decision demodulation

    Science.gov (United States)

    A. Garba, Aminata

    2017-01-01

    This paper presents a new approach to optical Code Division Multiple Access (CDMA) network transmission scheme using alternated amplitude sequences and energy differentiation at the transmitters to allow concurrent and secure transmission of several signals. The proposed system uses error control encoding and soft-decision demodulation to reduce the multi-user interference at the receivers. The design of the proposed alternated amplitude sequences, the OCDMA energy modulators and the soft decision, single-user demodulators are also presented. Simulation results show that the proposed scheme allows achieving spectral efficiencies higher than several reported results for optical CDMA and much higher than the Gaussian CDMA capacity limit.

  3. Cloud Properties Simulated by a Single-Column Model. Part II: Evaluation of Cumulus Detrainment and Ice-phase Microphysics Using a Cloud Resolving Model

    Science.gov (United States)

    Luo, Yali; Krueger, Steven K.; Xu, Kuan-Man

    2005-01-01

    This paper is the second in a series in which kilometer-scale-resolving observations from the Atmospheric Radiation Measurement program and a cloud-resolving model (CRM) are used to evaluate the single-column model (SCM) version of the National Centers for Environmental Prediction Global Forecast System model. Part I demonstrated that kilometer-scale cirrus properties simulated by the SCM significantly differ from the cloud radar observations while the CRM simulation reproduced most of the cirrus properties as revealed by the observations. The present study describes an evaluation, through a comparison with the CRM, of the SCM's representation of detrainment from deep cumulus and ice-phase microphysics in an effort to better understand the findings of Part I. It is found that detrainment occurs too infrequently at a single level at a time in the SCM, although the detrainment rate averaged over the entire simulation period is somewhat comparable to that of the CRM simulation. Relatively too much detrained ice is sublimated when first detrained. Snow falls over too deep of a layer due to the assumption that snow source and sink terms exactly balance within one time step in the SCM. These characteristics in the SCM parameterizations may explain many of the differences in the cirrus properties between the SCM and the observations (or between the SCM and the CRM). A possible improvement for the SCM consists of the inclusion of multiple cumulus cloud types as in the original Arakawa-Schubert scheme, prognostically determining the stratiform cloud fraction and snow mixing ratio. This would allow better representation of the detrainment from deep convection, better coupling of the volume of detrained air with cloud fraction, and better representation of snow field.

  4. Simulation of Containment Pressurization in a Large Break-Loss of Coolant Accident Using Single-Cell and Multicell Models and CONTAIN Code

    Directory of Open Access Journals (Sweden)

    Omid Noori-Kalkhoran

    2016-10-01

    Full Text Available Since the inception of nuclear power as a commercial energy source, safety has been recognized as a prime consideration in the design, construction, operation, maintenance, and decommissioning of nuclear power plants. The release of radioactivity to the environment requires the failure of multiple safety systems and the breach of three physical barriers: fuel cladding, the reactor cooling system, and containment. In this study, nuclear reactor containment pressurization has been modeled in a large break-loss of coolant accident (LB-LOCA by programming single-cell and multicell models in MATLAB. First, containment has been considered as a control volume (single-cell model. In addition, spray operation has been added to this model. In the second step, the single-cell model has been developed into a multicell model to consider the effects of the nodalization and spatial location of cells in the containment pressurization in comparison with the single-cell model. In the third step, the accident has been simulated using the CONTAIN 2.0 code. Finally, Bushehr nuclear power plant (BNPP containment has been considered as a case study. The results of BNPP containment pressurization due to LB-LOCA have been compared between models, final safety analysis report, and CONTAIN code’s results.

  5. N-body modeling of globular clusters: detecting intermediate-mass black holes by non-equipartition in HST proper motions

    Science.gov (United States)

    Trenti, Michele

    2010-09-01

    Intermediate Mass Black Holes {IMBHs} are objects of considerable astrophysical significance. They have been invoked as possible remnants of Population III stars, precursors of supermassive black holes, sources of ultra-luminous X-ray emission, and emitters of gravitational waves. The centers of globular clusters, where they may have formed through runaway collapse of massive stars, may be our best chance of detecting them. HST studies of velocity dispersions have provided tentative evidence, but the measurements are difficult and the results have been disputed. It is thus important to explore and develop additional indicators of the presence of an IMBH in these systems. In a Cycle 16 theory project we focused on the fingerprints of an IMBH derived from HST photometry. We showed that an IMBH leads to a detectable quenching of mass segregation. Analysis of HST-ACS data for NGC 2298 validated the method, and ruled out an IMBH of more than 300 solar masses. We propose here to extend the search for IMBH signatures from photometry to kinematics. The velocity dispersion of stars in collisionally relaxed stellar systems such as globular clusters scales with main sequence mass as sigma m^alpha. A value alpha = -0.5 corresponds to equipartition. Mass-dependent kinematics can now be measured from HST proper motion studies {e.g., alpha = -0.21 for Omega Cen}. Preliminary analysis shows that the value of alpha can be used as indicator of the presence of an IMBH. In fact, the quenching of mass segregation is a result of the degree of equipartition that the system attains. However, detailed numerical simulations are required to quantify this. Therefore we propose {a} to carry out a new, larger set of realistic N-body simulations of star clusters with IMBHs, primordial binaries and stellar evolution to predict in detail the expected kinematic signatures and {b} to compare these predictions to datasets that are {becoming} available. Considerable HST resources have been invested in

  6. Effects of simulated microgravity on gene expression and biological phenotypes of a single generation Caenorhabditis elegans cultured on 2 different media

    Science.gov (United States)

    Tee, Ling Fei; Neoh, Hui-min; Then, Sue Mian; Murad, Nor Azian; Asillam, Mohd Fairos; Hashim, Mohd Helmy; Nathan, Sheila; Jamal, Rahman

    2017-11-01

    Studies of multigenerational Caenorhabditis elegans exposed to long-term spaceflight have revealed expression changes of genes involved in longevity, DNA repair, and locomotion. However, results from spaceflight experiments are difficult to reproduce as space missions are costly and opportunities are rather limited for researchers. In addition, multigenerational cultures of C. elegans used in previous studies contribute to mixture of gene expression profiles from both larvae and adult worms, which were recently reported to be different. Usage of different culture media during microgravity simulation experiments might also give rise to differences in the gene expression and biological phenotypes of the worms. In this study, we investigated the effects of simulated microgravity on the gene expression and biological phenotype profiles of a single generation of C. elegans worms cultured on 2 different culture media. A desktop Random Positioning Machine (RPM) was used to simulate microgravity on the worms for approximately 52 to 54 h. Gene expression profile was analysed using the Affymetrix GeneChip® C. elegans 1.0 ST Array. Only one gene (R01H2.2) was found to be downregulated in nematode growth medium (NGM)-cultured worms exposed to simulated microgravity. On the other hand, eight genes were differentially expressed for C. elegans Maintenance Medium (CeMM)-cultured worms in microgravity; six were upregulated, while two were downregulated. Five of the upregulated genes (C07E3.15, C34H3.21, C32D5.16, F35H8.9 and C34F11.17) encode non-coding RNAs. In terms of biological phenotype, we observed that microgravity-simulated worms experienced minimal changes in terms of lifespan, locomotion and reproductive capabilities in comparison with the ground controls. Taking it all together, simulated microgravity on a single generation of C. elegans did not confer major changes to their gene expression and biological phenotype. Nevertheless, exposure of the worms to microgravity

  7. Effects of simulated microgravity on gene expression and biological phenotypes of a single generation Caenorhabditis elegans cultured on 2 different media.

    Science.gov (United States)

    Tee, Ling Fei; Neoh, Hui-Min; Then, Sue Mian; Murad, Nor Azian; Asillam, Mohd Fairos; Hashim, Mohd Helmy; Nathan, Sheila; Jamal, Rahman

    2017-11-01

    Studies of multigenerational Caenorhabditis elegans exposed to long-term spaceflight have revealed expression changes of genes involved in longevity, DNA repair, and locomotion. However, results from spaceflight experiments are difficult to reproduce as space missions are costly and opportunities are rather limited for researchers. In addition, multigenerational cultures of C. elegans used in previous studies contribute to mixture of gene expression profiles from both larvae and adult worms, which were recently reported to be different. Usage of different culture media during microgravity simulation experiments might also give rise to differences in the gene expression and biological phenotypes of the worms. In this study, we investigated the effects of simulated microgravity on the gene expression and biological phenotype profiles of a single generation of C. elegans worms cultured on 2 different culture media. A desktop Random Positioning Machine (RPM) was used to simulate microgravity on the worms for approximately 52 to 54 h. Gene expression profile was analysed using the Affymetrix GeneChip® C. elegans 1.0 ST Array. Only one gene (R01H2.2) was found to be downregulated in nematode growth medium (NGM)-cultured worms exposed to simulated microgravity. On the other hand, eight genes were differentially expressed for C. elegans Maintenance Medium (CeMM)-cultured worms in microgravity; six were upregulated, while two were downregulated. Five of the upregulated genes (C07E3.15, C34H3.21, C32D5.16, F35H8.9 and C34F11.17) encode non-coding RNAs. In terms of biological phenotype, we observed that microgravity-simulated worms experienced minimal changes in terms of lifespan, locomotion and reproductive capabilities in comparison with the ground controls. Taking it all together, simulated microgravity on a single generation of C. elegans did not confer major changes to their gene expression and biological phenotype. Nevertheless, exposure of the worms to microgravity

  8. Design and Simulation of Scanner Wrapped by Flexible Microcoil Embedded in Polymer Film for Single-Optical Endoscope Application

    Science.gov (United States)

    Zhao, Mengyuan; Yang, Zhuoqing; Xiang, Xiaojian; Sun, Bin; Ding, Guifu; Zhao, Xiaolin

    2018-03-01

    A single optic fiber scanner with large scanning angle, based on novel electromagnetic driven, is presented. The cylinder magnet and weight are fixed on the fiber, and vibrate under its second-order frequency by driving racetrack coils on the tube. The flexible driving coil is fabricated by uncomplicated planar MEMS technology on polyimide film, and wrapped on the tube. The electromagnetic and mechanical properties of the endoscope system are studied. Experimental results show that the maximum of the second resonant scanning angle is 9.47°.

  9. Simulation of stray grain formation at the platform during Ni-base single crystal superalloy DD403 casting

    Directory of Open Access Journals (Sweden)

    Si-feng Gao

    2015-03-01

    Full Text Available The mechanism of stray grain formation at the platform of turbine blade simulator and the effect of withdrawal rate (V on the stray grain phenomenon have been investigated using a macro-scale ProCAST coupled with a 3D Cellular Automaton Finite Element (CAFE model. The results indicate that the stray grains nucleate at the edges of platform at V =150 μm·s-1 and 200 μm·s-1. Using ProCAST computer simulation software, it was proven that the stray grain formation is significantly dependent on the undercooling and the temperature field distribution in the platform. The macroscopic curvature of the liquidus isotherm becomes markedly concave with an increase in the withdrawal rate. The probability of stray grain formation at the edges of platform can be increased by increasing the withdrawal rate in the range of 70 μm·s-1 to 200 μm·s-1.

  10. Highly optimized simulations on single- and multi-GPU systems of the 3D Ising spin glass model

    Science.gov (United States)

    Lulli, M.; Bernaschi, M.; Parisi, G.

    2015-11-01

    We present a highly optimized implementation of a Monte Carlo (MC) simulator for the three-dimensional Ising spin-glass model with bimodal disorder, i.e., the 3D Edwards-Anderson model running on CUDA enabled GPUs. Multi-GPU systems exchange data by means of the Message Passing Interface (MPI). The chosen MC dynamics is the classic Metropolis one, which is purely dissipative, since the aim was the study of the critical off-equilibrium relaxation of the system. We focused on the following issues: (i) the implementation of efficient memory access patterns for nearest neighbours in a cubic stencil and for lagged-Fibonacci-like pseudo-Random Numbers Generators (PRNGs); (ii) a novel implementation of the asynchronous multispin-coding Metropolis MC step allowing to store one spin per bit and (iii) a multi-GPU version based on a combination of MPI and CUDA streams. Cubic stencils and PRNGs are two subjects of very general interest because of their widespread use in many simulation codes.

  11. Simulating real world functioning in schizophrenia using a naturalistic city environment and single-trial, goal-directed navigation.

    Science.gov (United States)

    Zawadzki, John A; Girard, Todd A; Foussias, George; Rodrigues, Alicia; Siddiqui, Ishraq; Lerch, Jason P; Grady, Cheryl; Remington, Gary; Wong, Albert H C

    2013-01-01

    To develop a virtual reality platform that would serve as a functionally meaningful measure of cognition in schizophrenia and that would also complement standard batteries of cognitive tests during clinical trials for cognitive treatments in schizophrenia, be amenable to human neuroimaging research, yet lend itself to neurobiological comparison with rodent analogs. Thirty-three patients with schizophrenia and 33 healthy controls matched for age, sex, video gaming experience, and education completed eight rapid, single-trial virtual navigation tasks within a naturalistic virtual city. Four trials tested their ability to find different targets seen during the passive viewing of a closed path that led them around different city blocks. Four subsequent trials tested their ability to return to four different starting points after viewing a path that took them several blocks away from the starting position. Individuals with schizophrenia had difficulties in way-finding, measured as distance travelled to find targets previously encountered within the virtual city. They were also more likely not to notice the target during passive viewing, less likely to find novel shortcuts to targets, and more likely to become lost and fail completely in finding the target. Total travel distances across all eight trials strongly correlated (negatively) with neurocognitive measures and, for 49 participants who completed the Quality of Life Scale, psychosocial functioning. Single-trial, goal-directed navigation in a naturalistic virtual environment is a functionally meaningful measure of cognitive functioning in schizophrenia.

  12. Simulating real world functioning in schizophrenia using a naturalistic city environment and single-trial, goal-directed navigation

    Directory of Open Access Journals (Sweden)

    John A Zawadzki

    2013-11-01

    Full Text Available Objective: To develop a virtual reality platform that would serve as a functionally meaningful measure of cognition in schizophrenia that would complement standard batteries of cognitive tests during clinical trials for cognitive treatments in schizophrenia, be amenable to human neuroimaging research, yet lend itself to neurobiological comparison with rodent analogues.Method: Thirty-three patients with schizophrenia and 33 healthy controls matched for age, sex, video gaming experience and education completed eight rapid, single-trial virtual navigation tasks within a naturalistic virtual city. Four trials tested their ability to find different targets seen during the passive viewing of a closed path that led them around different city blocks. Four subsequent trials tested their ability to return to four different starting points after viewing a path that took them several blocks away from the starting position. Results: Individuals with schizophrenia had difficulties in way-finding, measured as distance travelled to find targets previously encountered within the virtual city. They were also more likely not to notice the target during passive viewing, less likely to find novel shortcuts to targets and more likely to become lost and fail completely in finding the target. Total travel distances across all eight trials strongly correlated (negatively with neurocognitive measures and, for 49 participants who completed the Quality of Life Scale, psychosocial functioning. Conclusion: Single-trial, goal-directed navigation in a naturalistic virtual environment is a functionally meaningful measure of cognitive functioning in schizophrenia.

  13. In vitro comparison rate of dental root canal transportation using two single file systems on the simulated resin blocks

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Etesami

    2016-07-01

    Full Text Available Background and Aims: Cleaning and shaping is one of the most important stages in endodontic treatment. Single-file systems save time and reduce the risk of transmission of pathogens. This in vitro study was aimed to compare the rate of canal transportation after the preparation of the stimulated resin root canal with two single-file systems, namely Waveone and Reciproc. Materials and Methods: Thirty stimulated resin root canal blocks with size 8/0. 02 K file were randomly divided into two study groups. The preparation in Group A and Group B was performed using Reciproc and Waveone files, respectively. Pre and post- preparation photographs were taken and the images were superimposed to evaluate the inner and outer wall’s curvature tendency at three points (apical, middle and coronal using AutoCad pragram. Data were analyzed using T-test. Results: Based on the results, the degree of transportation in the inner and outer walls of the canal was less at the level of 3 millimeters (P0.05. Conclusion: Waveone showed better performance in the middle third of canal and this system maybe recommended.

  14. Simulating the 2012 High Plains Drought Using Three Single Column Model Versions of the Community Earth System Model (SCM-CESM)

    Science.gov (United States)

    Medina, I. D.; Denning, S.

    2014-12-01

    The impact of changes in the frequency and severity of drought on fresh water sustainability is a great concern for many regions of the world. One such location is the High Plains, where the local economy is primarily driven by fresh water withdrawals from the Ogallala Aquifer, which accounts for approximately 30% of total irrigation withdrawals from all U.S. aquifers combined. Modeling studies that focus on the feedback mechanisms that control the climate and eco-hydrology during times of drought are limited in the sense that they use conventional General Circulation Models (GCMs) with grid length scales ranging from one hundred to several hundred kilometers. Additionally, these models utilize crude statistical parameterizations of cloud processes for estimating sub-grid fluxes of heat and moisture and have a poor representation of land surface heterogeneity. For this research, we focus on the 2012 High Plains drought, and will perform numerical simulations using three single column model versions of the Community Earth System Model (SCM-CESM) at multiple sites overlying the Ogallala Aquifer for the 2010-2012 period. In the first version of SCM-CESM, CESM will be used in standard mode (Community Atmospheric Model (CAM) coupled to a single instance of the Community Land Model (CLM)), secondly, CESM will be used in Super-Parameterized mode (SP-CESM), where a cloud resolving model (CRM consists of 32 atmospheric columns) replaces the standard CAM atmospheric parameterization and is coupled to a single instance of CLM, and thirdly, CESM is used in "Multi Instance" SP-CESM mode, where an instance of CLM is coupled to each CRM column of SP-CESM (32 CRM columns coupled to 32 instances of CLM). To assess the physical realism of the land-atmosphere feedbacks simulated at each site by all versions of SCM-CESM, differences in simulated energy and moisture fluxes will be computed between years for the 2010-2012 period, and will be compared to differences calculated using

  15. Interpretation of Flow Logs from Nevada Test Site Boreholes to Estimate Hydraulic Conductivity Using Numerical Simulations Constrained by Single-Well Aquifer Tests

    Science.gov (United States)

    Garcia, C. Amanda; Halford, Keith J.; Laczniak, Randell J.

    2010-01-01

    Hydraulic conductivities of volcanic and carbonate lithologic units at the Nevada Test Site were estimated from flow logs and aquifer-test data. Borehole flow and drawdown were integrated and interpreted using a radial, axisymmetric flow model, AnalyzeHOLE. This integrated approach is used because complex well completions and heterogeneous aquifers and confining units produce vertical flow in the annular space and aquifers adjacent to the wellbore. AnalyzeHOLE simulates vertical flow, in addition to horizontal flow, which accounts for converging flow toward screen ends and diverging flow toward transmissive intervals. Simulated aquifers and confining units uniformly are subdivided by depth into intervals in which the hydraulic conductivity is estimated with the Parameter ESTimation (PEST) software. Between 50 and 150 hydraulic-conductivity parameters were estimated by minimizing weighted differences between simulated and measured flow and drawdown. Transmissivity estimates from single-well or multiple-well aquifer tests were used to constrain estimates of hydraulic conductivity. The distribution of hydraulic conductivity within each lithology had a minimum variance because estimates were constrained with Tikhonov regularization. AnalyzeHOLE simulated hydraulic-conductivity estimates for lithologic units across screened and cased intervals are as much as 100 times less than those estimated using proportional flow-log analyses applied across screened intervals only. Smaller estimates of hydraulic conductivity for individual lithologic units are simulated because sections of the unit behind cased intervals of the wellbore are not assumed to be impermeable, and therefore, can contribute flow to the wellbore. Simulated hydraulic-conductivity estimates vary by more than three orders of magnitude across a lithologic unit, indicating a high degree of heterogeneity in volcanic and carbonate-rock units. The higher water transmitting potential of carbonate-rock units relative

  16. Interpretation of Flow Logs from Nevada Test Site Boreholes to Estimate Hydraulic conductivity Using Numerical Simulations Constrained by Single-Well Aquifer Tests

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, C. Amanda; Halford, Keith J.; Laczniak, Randell J.

    2010-02-12

    Hydraulic conductivities of volcanic and carbonate lithologic units at the Nevada Test Site were estimated from flow logs and aquifer-test data. Borehole flow and drawdown were integrated and interpreted using a radial, axisymmetric flow model, AnalyzeHOLE. This integrated approach is used because complex well completions and heterogeneous aquifers and confining units produce vertical flow in the annular space and aquifers adjacent to the wellbore. AnalyzeHOLE simulates vertical flow, in addition to horizontal flow, which accounts for converging flow toward screen ends and diverging flow toward transmissive intervals. Simulated aquifers and confining units uniformly are subdivided by depth into intervals in which the hydraulic conductivity is estimated with the Parameter ESTimation (PEST) software. Between 50 and 150 hydraulic-conductivity parameters were estimated by minimizing weighted differences between simulated and measured flow and drawdown. Transmissivity estimates from single-well or multiple-well aquifer tests were used to constrain estimates of hydraulic conductivity. The distribution of hydraulic conductivity within each lithology had a minimum variance because estimates were constrained with Tikhonov regularization. AnalyzeHOLE simulated hydraulic-conductivity estimates for lithologic units across screened and cased intervals are as much as 100 times less than those estimated using proportional flow-log analyses applied across screened intervals only. Smaller estimates of hydraulic conductivity for individual lithologic units are simulated because sections of the unit behind cased intervals of the wellbore are not assumed to be impermeable, and therefore, can contribute flow to the wellbore. Simulated hydraulic-conductivity estimates vary by more than three orders of magnitude across a lithologic unit, indicating a high degree of heterogeneity in volcanic and carbonate-rock units. The higher water transmitting potential of carbonate-rock units relative

  17. Why seek fusion from cavitation: Molecular dynamic simulations and a detector capable of time correlated single neutron counting

    Science.gov (United States)

    Camara, Carlos; Cousins, Robert; Naranjo, Brian; Putterman, Seth; Merriman, Barry; Ruuth, Steven

    2003-04-01

    The blackbody spectra, and similar sonoluminescence intensities of He and Xe bubbles suggest that the interior of a sonoluminescing bubble is highly stressed and dense. Molecular dynamic simulations indicate interior temperatures which are enhanced by thermal conduction and can approach 1 MK. Furthermore the gas passes through states where the mean free path is larger than the distance over which temperature varies and so calls into question the value of theories based on hydrodynamics. To search for rare fusion events a neutron detector with 25% total discriminated quantum efficiency has been built. It can time stamp neutron arrival and sonoluminescence to better than 1 ns and record tracks on the fly. [Work supported by DARPA.

  18. Pharmacokinetic/pharmacodynamic evaluation of marbofloxacin as a single injection for Pasteurellaceae respiratory infections in cattle using population pharmacokinetics and Monte Carlo simulations.

    Science.gov (United States)

    Paulin, A; Schneider, M; Dron, F; Woehrle, F

    2018-02-01

    Population pharmacokinetic of marbofloxacin was investigated with 52 plasma concentration-time profiles obtained after intramuscular administration of Forcyl® in cattle. Animal's status, pre-ruminant, ruminant, or dairy cow, was retained as a relevant covariate for clearance. Monte Carlo simulations were performed using a stratification by status, and 1000 virtual disposition curves were generated in each bovine subpopulation for the recommended dosage regimen of 10 mg/kg as a single injection. The probability of target attainment (PTA) of pharmacokinetic/pharmacodynamic (PK/PD) ratios associated with clinical efficacy and prevention of resistance was determined in each simulated subpopulation. The cumulative fraction of response (CFR) of animals achieving a PK/PD ratio predictive of positive clinical outcome was then calculated for the simulated dosage regimen, taking into account the minimum inhibitory concentration (MIC) distribution of Pasteurella multocida, Mannheimia haemolytica, and Histophilus somni. When considering a ratio of AUC 0-24 hr /MIC (area under the curve/minimum inhibitory concentration) greater than 125 hr, CFRs ranging from 85% to 100% against the three Pasteurellaceae in each bovine subpopulation were achieved. The PTA of the PK/PD threshold reflecting the prevention of resistances was greater than 90% up to MPC (mutant prevention concentration) values of 1 μg/ml in pre-ruminants and ruminants and 0.5 μg/ml in dairy cows. © 2017 The Authors. Journal of Veterinary Pharmacology and Therapeutics Published by John Wiley & Sons Ltd.

  19. An Optimized Design of Single-Channel Beta-Gamma Coincidence Phoswich Detector by Geant4 Monte Carlo Simulations

    Directory of Open Access Journals (Sweden)

    Weihua Zhang

    2011-01-01

    Full Text Available An optimized single-channel phoswich well detector design has been proposed and assessed in order to improve beta-gamma coincidence measurement sensitivity of xenon radioisotopes. This newly designed phoswich well detector consists of a plastic beta counting cell (BC404 embedded in a CsI(Tl crystal coupled to a photomultiplier tube. The BC404 is configured in a cylindrical pipe shape to minimise light collection deterioration. The CsI(Tl crystal consists of a rectangular part and a semicylindrical scintillation part as a light reflector to increase light gathering. Compared with a PhosWatch detector, the final optimized detector geometry showed 15% improvement in the energy resolution of a 131mXe 129.4 keV conversion electron peak. The predicted beta-gamma coincidence efficiencies of xenon radioisotopes have also been improved accordingly.

  20. Parametrized post-Newtonian theory of reference frames, multipolar expansions and equations of motion in the N-body problem

    International Nuclear Information System (INIS)

    Kopeikin, Sergei; Vlasov, Igor

    2004-01-01

    Post-Newtonian relativistic theory of astronomical reference frames based on Einstein's general theory of relativity was adopted by General Assembly of the International Astronomical Union in 2000. This theory is extended in the present paper by taking into account all relativistic effects caused by the presumable existence of a scalar field and parametrized by two parameters, β and γ, of the parametrized post-Newtonian (PPN) formalism. We use a general class of the scalar-tensor (Brans-Dicke type) theories of gravitation to work out PPN concepts of global and local reference frames for an astronomical N-body system. The global reference frame is a standard PPN coordinate system. A local reference frame is constructed in the vicinity of a weakly self-gravitating body (a sub-system of the bodies) that is a member of the astronomical N-body system. Such local inertial frame is required for unambiguous derivation of the equations of motion of the body in the field of other members of the N-body system and for construction of adequate algorithms for data analysis of various gravitational experiments conducted in ground-based laboratories and/or on board of spacecrafts in the solar system.We assume that the bodies comprising the N-body system have weak gravitational field and move slowly. At the same time we do not impose any specific limitations on the distribution of density, velocity and the equation of state of the body's matter. Scalar-tensor equations of the gravitational field are solved by making use of the post-Newtonian approximations so that the metric tensor and the scalar field are obtained as functions of the global and local coordinates. A correspondence between the local and global coordinate frames is found by making use of asymptotic expansion matching technique. This technique allows us to find a class of the post-Newtonian coordinate transformations between the frames as well as equations of translational motion of the origin of the local frame

  1. Molecular dynamics simulations of the structure and single-particle dynamics of mixtures of divalent salts and ionic liquids

    Science.gov (United States)

    Gómez-González, Víctor; Docampo-Álvarez, Borja; Cabeza, Oscar; Fedorov, Maxim; Lynden-Bell, Ruth M.; Gallego, Luis J.; Varela, Luis M.

    2015-09-01

    We report a molecular dynamics study of the structure and single-particle dynamics of mixtures of a protic (ethylammonium nitrate) and an aprotic (1-butyl-3-methylimidazolium hexaflurophosphate [BMIM][PF6]) room-temperature ionic liquids doped with magnesium and calcium salts with a common anion at 298.15 K and 1 atm. The solvation of these divalent cations in dense ionic environments is analyzed by means of apparent molar volumes of the mixtures, radial distribution functions, and coordination numbers. For the protic mixtures, the effect of salt concentration on the network of hydrogen bonds is also considered. Moreover, single-particle dynamics of the salt cations is studied by means of their velocity autocorrelation functions and vibrational densities of states, explicitly analyzing the influence of salt concentration, and cation charge and mass on these magnitudes. The effect of the valency of the salt cation on these properties is considered comparing the results with those for the corresponding mixtures with lithium salts. We found that the main structural and dynamic features of the local solvation of divalent cations in ionic liquids are similar to those of monovalent salts, with cations being localized in the polar nanoregions of the bulk mixture coordinated in monodentate and bidentate coordination modes by the [NO3]- and [PF6]- anions. However, stronger electrostatic correlations of these polar nanoregions than in mixtures with salts with monovalent cations are found. The vibrational modes of the ionic liquid (IL) are seen to be scarcely affected by the addition of the salt, and the effect of mass and charge on the vibrational densities of states of the dissolved cations is reported. Cation mass is seen to exert a deeper influence than charge on the low-frequency vibrational spectra, giving a red shift of the vibrational modes and a virtual suppression of the higher energy vibrational modes for the heavier Ca2+ cations. No qualitative difference with

  2. Keep focussing: striatal dopamine multiple functions resolved in a single mechanism tested in a simulated humanoid robot

    Directory of Open Access Journals (Sweden)

    Vincenzo G. Fiore

    2014-02-01

    Full Text Available The effects of striatal dopamine (DA on behavior have been widely investigated over the past decades, with ``phasic'' burst firings considered as the key expression of a reward prediction error responsible for reinforcement learning. Less well studied is tonic DA, where putative functions include the idea that it is a regulator of vigor, incentive salience, disposition to exert an effort and a modulator of approach strategies. We present a preliminary model combining tonic and phasic DA to show how different outflows triggered by either intrinsically or extrinsically motivating stimuli dynamically affect the basal ganglia by impacting on a selection process that this system performs on the inputs provided by the targeted cortex.The model, which has been tested on the simulated humanoid robot iCub in the interaction with a mechatronic board, shows the putative functions ascribed to DA emerging from the combination of a standard computational mechanism coupled to a differential sensitivity to the presence of DA across the striatum.

  3. Detection of a nerve agent simulant using single-walled carbon nanotube networks: dimethyl-methyl-phosphonate

    International Nuclear Information System (INIS)

    Kim, Yeonju; Lee, Seunghyun; Choi, Hyang Hee; Noh, Jin-Seo; Lee, Wooyoung

    2010-01-01

    Single-walled carbon nanotube (SWNT) networks were used to detect hazardous dimethyl-methyl-phosphonate (DMMP) gas in real time, employing two different metals as electrodes. Random networks of SWNTs were simply obtained by drop-casting a SWNT-containing solution onto a surface-oxidized Si substrate. Although the electrical responses to DMMP at room temperature were reversible for both metals, the Pd-contacting SWNT network sensors exhibited a higher response and a shorter response time than those of the Au-contacting SWNT network sensors at the same DMMP concentration, due to the stronger interactions between the SWNTs and Pd surface atoms. In Pd-contacting SWNT network sensors, the response increased linearly with increasing DMMP concentration and reproducible response curves were obtained for DMMP levels as low as 1 ppm. These results indicate that SWNT networks in contact with Pd electrodes can function as good DMMP sensors at room temperature with scalable and fast response and excellent recovery.

  4. Detection of a nerve agent simulant using single-walled carbon nanotube networks: dimethyl-methyl-phosphonate

    Science.gov (United States)

    Kim, Yeonju; Lee, Seunghyun; Choi, Hyang Hee; Noh, Jin-Seo; Lee, Wooyoung

    2010-12-01

    Single-walled carbon nanotube (SWNT) networks were used to detect hazardous dimethyl-methyl-phosphonate (DMMP) gas in real time, employing two different metals as electrodes. Random networks of SWNTs were simply obtained by drop-casting a SWNT-containing solution onto a surface-oxidized Si substrate. Although the electrical responses to DMMP at room temperature were reversible for both metals, the Pd-contacting SWNT network sensors exhibited a higher response and a shorter response time than those of the Au-contacting SWNT network sensors at the same DMMP concentration, due to the stronger interactions between the SWNTs and Pd surface atoms. In Pd-contacting SWNT network sensors, the response increased linearly with increasing DMMP concentration and reproducible response curves were obtained for DMMP levels as low as 1 ppm. These results indicate that SWNT networks in contact with Pd electrodes can function as good DMMP sensors at room temperature with scalable and fast response and excellent recovery.

  5. Numerical simulation on vacuum solution heat treatment and gas quenching process of a low rhenium-containing Ni-based single crystal turbine blade

    Directory of Open Access Journals (Sweden)

    Zhe-xin Xu

    2016-11-01

    Full Text Available Numerical heat-transfer and turbulent flow model for an industrial high-pressure gas quenching vacuum furnace was established to simulate the heating, holding and gas fan quenching of a low rhenium-bearing Ni-based single crystal turbine blade. The mesh of simplified furnace model was built using finite volume method and the boundary conditions were set up according to the practical process. Simulation results show that the turbine blade geometry and the mutual shielding among blades have significant influence on the uniformity of the temperature distribution. The temperature distribution at sharp corner, thin wall and corner part is higher than that at thick wall part of blade during heating, and the isotherms show a toroidal line to the center of thick wall. The temperature of sheltered units is lower than that of the remaining part of blade. When there is no shelteration among multiple blades, the temperature distribution for all blades is almost identical. The fluid velocity field, temperature field and cooling curves of the single and multiple turbine blades during gas fan quenching were also simulated. Modeling results indicate that the loading tray, free outlet and the location of turbine blades have important influences on the flow field. The high-speed gas flows out from the nozzle is divided by loading tray, and the free outlet enhanced the two vortex flow at the end of the furnace door. The closer the blade is to the exhaust outlet and the nozzle, the greater the flow velocity is and the more adequate the flow is. The blade geometry has an effect on the cooling for single blade and multiple blades during gas fan quenching, and the effects in double layers differs from that in single layer. For single blade, the cooing rate at thin-walled part is lower than that at thick-walled part, the cooling rate at sharp corner is greater than that at tenon and blade platform, and the temperature at regions close to the internal position is

  6. Simulation study of light transport in laser-processed LYSO:Ce detectors with single-side readout.

    Science.gov (United States)

    Bläckberg, L; El Fakhri, G; Sabet, H

    2017-10-19

    A tightly focused pulsed laser beam can locally modify the crystal structure inside the bulk of a scintillator. The result is incorporation of so-called optical barriers with a refractive index different from that of the crystal bulk, that can be used to redirect the scintillation light and control the light spread in the detector. We here systematically study the scintillation light transport in detectors fabricated using the laser induced optical barrier technique, and objectively compare their potential performance characteristics with those of the two mainstream detector types: monolithic and mechanically pixelated arrays. Among countless optical barrier patterns, we explore barriers arranged in a pixel-like pattern extending all-the-way or half-way through a 20 mm thick LYSO:Ce crystal. We analyze the performance of the detectors coupled to MPPC arrays, in terms of light response functions, flood maps, line profiles, and light collection efficiency. Our results show that laser-processed detectors with both barrier patterns constitute a new detector category with a behavior between that of the two standard detector types. Results show that when the barrier-crystal interface is smooth, no DOI information can be obtained regardless of barrier refractive index (RI). However, with a rough barrier-crystal interface we can extract multiple levels of DOI. Lower barrier RI results in larger light confinement, leading to better transverse resolution. Furthermore we see that the laser-processed crystals have the potential to increase the light collection efficiency, which could lead to improved energy resolution and potentially better timing resolution due to higher signals. For a laser-processed detector with smooth barrier-crystal interfaces the light collection efficiency is simulated to  >42%, and for rough interfaces  >73%. The corresponding numbers for a monolithic crystal is 39% with polished surfaces, and 71% with rough surfaces, and for a mechanically

  7. CFD simulation of flow through single and multi vane spiral pump for low pressure application using moving node unsteady computation

    International Nuclear Information System (INIS)

    Banerjee, I.; Mahendra, A.K.; Chandresh, B.G.; Srikanthan, M.R.; Bera, T.K.

    2010-01-01

    A spiral pump uses two interleaved spirals (it can be involutes of a circle, involutes of a square, hybrid wraps, Archimedean spiral, logarithmic spirals and so on). Interleaved spiral orbits eccentrically without rotation around a fixed scroll, thereby trapping and compressing pockets of fluids between the spirals. Another method of providing the compression motion is by virtue of co-rotating the spirals synchronously with an offset in centers of rotation thereby providing relative motion similar to orbiting. Recently spiral pumps for low-pressure application have become popular. Since spiral pumps contain gas volumes, whose shapes and size change continuously, the flow fields inside the pumps is time dependent. The unsteadiness controls the mechanisms responsible for the behavior of the spiral pump components. To improve the spiral pump design for better performance as per our process requirement and reliability, information is required to understand the detailed physics of the unsteady flows inside the spiral pumps. The unsteady flows in a pump are studied numerically. The system simulated includes one side gap between fixed and moving spirals as the other side lies just in the reverse symmetry of the one side. Heavy molecular weight, condensable gas is used as the moving fluid. The mesh free Least Square Kinetic Upwind Method (LSKUM) for moving node is applied for numerical analysis of wobbling spiral. Nodes and boundaries change their positions, for every real time step hence at every iteration nodes take new coordinates. Our work consists of identifying various spiral dimensions and geometry, geometric modeling of suction process, identifying the eccentric orbiting motion of the moving spiral, formation of variable velocity moving nodes. Flow analysis of the spiral pump is done with a view to design and develop new pump as per our requirement. Experimental data from an existing spiral pump is used to carryout validation of the code. (author)

  8. Simulation of the phenomenon of single-phase and two-phase natural circulation; Simulacao do fenomeno de circulacao natural mono e bifasica

    Energy Technology Data Exchange (ETDEWEB)

    Castrillo, Lazara Silveira

    1998-02-01

    Natural convection phenomenon is often used to remove the residual heat from the surfaces of bodies where the heat is generated e.g. during accidents or transients of nuclear power plants. Experimental study of natural circulation can be done in small scale experimental circuits and the results can be extrapolated for larger operational facilities. The numerical analysis of transients can be carried out by using large computational codes that simulate the thermohydraulic behavior in such facilities. The computational code RELAP5/MOD2, (Reactor Excursion and Leak Analysis Program) was developed by U.S. Nuclear Regulatory Commissions's. Division of Reactor Safety Research with the objective of analysis of transients and postulated accidents in the light water reactor (LWR) systems, including small and large ruptures with loss of coolant accidents (LOCA's). The results obtained by the simulation of single-phase and two-phase natural circulation, using the RELAP5/MOD2, are presented in this work. The study was carried out using the experimental circuit built at the 'Departamento de Engenharia Quimica da Escola Politecnica da Universidade de Sao Paulo'. In the circuit, two experiments were carried out with different conditions of power and mass flow, obtaining a single-phase regime with a level of power of 4706 W and flow of 5.10{sup -5} m{sup 3}/s (3 l/min) and a two-phase regime with a level of power of 6536 W and secondary flow 2,33.10{sup -5} m{sup 3}/s (1,4 l/min). The study allowed tio evaluate the capacity of the code for representing such phenomena as well as comparing the transients obtained theoretically with the experimental results. The comparative analysis shows that the code represents fairly well the single-phase transient, but the results for two-phase transients, starting from the nodalization and calibration used for the case single-phase transient, did not reproduce faithfully some experimental results. (author)

  9. Fractional Models Simulating Non-Fickian Behavior in Four-Stage Single-Well Push-Pull Tests

    Science.gov (United States)

    Chen, Kewei; Zhan, Hongbin; Yang, Qiang

    2017-11-01

    Four-stage single-well push-pull (SWPP) tracer tests, including injection, chasing, resting, and pumping, were conducted in a fractured aquifer at Newark basin. An anomalous transport phenomenon observed in the SWPP tests is the linear decline of breakthrough curves (BTCs) at late time with slope of -1.8 in log-log plots. A time-dependent fractional model is developed to interpret the anomalous transport behavior. This model considers a time-dependent power law memory function and a time-dependent fractional advection-dispersion operator. The fractional advection-dispersion equations (fADE) are solved in a radial coordinate system using the implicit Euler method. A semi-analytical solution of the first-order rate-limited mobile-immobile model (FORMIM) is derived for comparison. It is found that both the nonlocal transport in time and space can produce the long-tailed BTC. A smaller time-fractional or space-fractional index leads to a lower peak concentration and a larger late-time slope. The mass distribution of the fractional-in-space (FS) model exhibits power law decline at the leading plume edge. Early breakthrough during pumping is not observed because the mobile mass at the start of pumping is nonzero and more concentrated near the wellbore. The capacity ratio is an important factor that affects the peak concentration. A larger capacity ratio leads to greater peak concentration. A smaller time-fractional index in the injection, chasing, or resting stage will move the BTC downward and the slope of the late time BTC is determined by the space-fractional index over all stages and the time-fractional index in the pumping stage. The capability of the existing models to recover the BTC of the SWPP test is discussed and some guidelines for how to choose the appropriate model to interpret the SWPP test data are proposed.

  10. SaC/C formulations of the all-pairs N-body problem and their performance on SMPs and GPGPUs

    NARCIS (Netherlands)

    Šinkarovs, A.; Scholz, S.-B.; Bernecky, R.; Douma, R.; Grelck, C.

    2014-01-01

    This paper describes our experience in implementing the classical N-body algorithm in SaC and analysing the runtime performance achieved on three different machines: a dual-processor 8-core Dell PowerEdge 2950 (a Beowulf cluster node, the reference machine), a quad-core hyper-threaded Intel Core-i7

  11. A Proposal Of Simulation Model Of A Wind-Steering System For Sailing Yachts, Based On Single-Stage Servo-Pendulum Coupled With Main Rudder

    Directory of Open Access Journals (Sweden)

    Piętak Andrzej

    2015-04-01

    Full Text Available The aim of this study was to investigate possible application of fast design prototyping methods for wind-steering systems used in offshore sailing yachts. The development of such methods would help to speed up the construction work and reduce the scope of necessary experimental research, prior to implementation of the system. In the present work, based on an analysis of existing designs of windvane systems, a preliminary selection of the system configuration has been undertaken, in terms of a compromise between efficiency, performance, and design complexity. Construction design of a single-stage, servo – pendulum system, has been developed by using the Autodesk Inventor design package. Next, based on the design data, a simulation model of the system, has been produced by using Matlab - Simulink software and SimMechanics library. The model was further verified in terms of kinematics mapping with the use of Matlab visualization tools.

  12. Three-dimensional simulation of fabrication process-dependent effects on single event effects of SiGe heterojunction bipolar transistor

    International Nuclear Information System (INIS)

    Zhang Jin-Xin; Guo Bao-Long; Wu Xian-Xiang; He Chao-Hui; Li Pei; Guo Hong-Xia

    2017-01-01

    The fabrication process dependent effects on single event effects (SEEs) are investigated in a commercial silicon–germanium heterojunction bipolar transistor (SiGe HBT) using three-dimensional (3D) TCAD simulations. The influences of device structure and doping concentration on SEEs are discussed via analysis of current transient and charge collection induced by ions strike. The results show that the SEEs representation of current transient is different from representation of the charge collection for the same process parameters. To be specific, the area of C/S junction is the key parameter that affects charge collection of SEE. Both current transient and charge collection are dependent on the doping of collector and substrate. The base doping slightly influences transient currents of base, emitter, and collector terminals. However, the SEEs of SiGe HBT are hardly affected by the doping of epitaxial base and the content of Ge. (paper)

  13. Simulation of V/G During Φ450 mm Czochralski Grown Silicon Single Crystal Growth Under the Different Crystal and Crucible Rotation Rates

    Directory of Open Access Journals (Sweden)

    Guan X J

    2016-01-01

    Full Text Available For discovering the principle of processing parameter combination for the stable growth and better wafer quality of Φ450 mm Czochralski grown silicon single crystal (shortly called Cz silicon crystal, the effects of crystal rotation rate and crucible one on the V/G ratio were simulated by using CGSim software. The results show that their effect laws on the V/G ratio for Φ450 mm Cz silicon crystal growth are some different from that for Φ200 mm Cz silicon one, and the effects of crucible rotation rate are relatively smaller than that of crystal one and its increasing only makes the demarcation point between two regions with different V/G ratio variations outward move along radial direction, and it promotes the wafer quality to weaken crystal rotation rate and strengthen crucible one.

  14. Measurements and simulations on position dependencies in the response of single PWO crystals and a prototype for the $\\overline{P}ANDA$ EMC

    CERN Document Server

    Bremer, Daniel Andreas

    The PANDA experiment, which will be located at the future Facility for Antiproton and Ion Research, aims at the study of strong interaction within the charm sector via antiproton- proton collisions. An essential component of the PANDA detector to achieve the ambitious physics goals is the Electromagnetic Calorimeter (EMC). Reason for this is particularly its high detection efficiency for photons and electrons over a large dynamic range, since most of the expected physics channels are accompanied by secondary photons. The EMC is based on second generation lead tungstate scintillator crystals and thus features a very compact design and improved performance. To guarantee a homogeneous and precise energy and momentum response, an exact knowledge on the incident particle position is mandatory. In the scope of this work, non-uniformities in the light yield of single lead tungstate crystals with tapered geometry are investigated. This effect was studied with the SLitrani simulation package in comparison to a series ...

  15. Single- and two-phase flow simulation based on equivalent pore network extracted from micro-CT images of sandstone core.

    Science.gov (United States)

    Song, Rui; Liu, Jianjun; Cui, Mengmeng

    2016-01-01

    Due to the intricate structure of porous rocks, relationships between porosity or saturation and petrophysical transport properties classically used for reservoir evaluation and recovery strategies are either very complex or nonexistent. Thus, the pore network model extracted from the natural porous media is emphasized as a breakthrough to predict the fluid transport properties in the complex micro pore structure. This paper presents a modified method of extracting the equivalent pore network model from the three-dimensional micro computed tomography images based on the maximum ball algorithm. The partition of pore and throat are improved to avoid tremendous memory usage when extracting the equivalent pore network model. The porosity calculated by the extracted pore network model agrees well with the original sandstone sample. Instead of the Poiseuille's law used in the original work, the Lattice-Boltzmann method is employed to simulate the single- and two- phase flow in the extracted pore network. Good agreements are acquired on relative permeability saturation curves of the simulation against the experiment results.

  16. Molecular dynamics simulations to examine structure, energetics, and evaporation/condensation dynamics in small charged clusters of water or methanol containing a single monatomic ion.

    Science.gov (United States)

    Daub, Christopher D; Cann, Natalie M

    2012-11-01

    We study small clusters of water or methanol containing a single Ca(2+), Na(+), or Cl(-) ion with classical molecular dynamics simulations, using models that incorporate polarizability via the Drude oscillator framework. Evaporation and condensation of solvent from these clusters is examined in two systems, (1) for isolated clusters initially prepared at different temperatures and (2) those with a surrounding inert (Ar) gas of varying temperature. We examine these clusters over a range of sizes, from almost bare ions up to 40 solvent molecules. We report data on the evaporation and condensation of solvent from the clusters and argue that the observed temperature dependence of evaporation in the smallest clusters demonstrates that the presence of heated gas alone cannot, in most cases, solely account for bare ion production in electrospray ionization (ESI), neglecting the key contribution of the electric field. We also present our findings on the structure and energetics of the clusters as a function of size. Our data agree well with the abundant literature on hydrated ion clusters and offer some novel insight into the structure of methanol and ion clusters, especially those with a Cl(-) anion, where we observe the presence of chain-like structures of methanol molecules. Finally, we provide some data on the reparameterizations necessary to simulate ions in methanol using the separately developed Drude oscillator models for methanol and for ions in water.

  17. Sensitivity of Cirrus and Mixed-phase Clouds to the Ice Nuclei Spectra in McRAS-AC: Single Column Model Simulations

    Science.gov (United States)

    Betancourt, R. Morales; Lee, D.; Oreopoulos, L.; Sud, Y. C.; Barahona, D.; Nenes, A.

    2012-01-01

    The salient features of mixed-phase and ice clouds in a GCM cloud scheme are examined using the ice formation parameterizations of Liu and Penner (LP) and Barahona and Nenes (BN). The performance of LP and BN ice nucleation parameterizations were assessed in the GEOS-5 AGCM using the McRAS-AC cloud microphysics framework in single column mode. Four dimensional assimilated data from the intensive observation period of ARM TWP-ICE campaign was used to drive the fluxes and lateral forcing. Simulation experiments where established to test the impact of each parameterization in the resulting cloud fields. Three commonly used IN spectra were utilized in the BN parameterization to described the availability of IN for heterogeneous ice nucleation. The results show large similarities in the cirrus cloud regime between all the schemes tested, in which ice crystal concentrations were within a factor of 10 regardless of the parameterization used. In mixed-phase clouds there are some persistent differences in cloud particle number concentration and size, as well as in cloud fraction, ice water mixing ratio, and ice water path. Contact freezing in the simulated mixed-phase clouds contributed to transfer liquid to ice efficiently, so that on average, the clouds were fully glaciated at T approximately 260K, irrespective of the ice nucleation parameterization used. Comparison of simulated ice water path to available satellite derived observations were also performed, finding that all the schemes tested with the BN parameterization predicted 20 average values of IWP within plus or minus 15% of the observations.

  18. Interaction of single-walled carbon nanotubes and saxitoxin: Ab initio simulations and biological responses in hippocampal cell line HT-22.

    Science.gov (United States)

    Ramos, Patrícia; Schmitz, Marcos; Filgueira, Daza; Votto, Ana Paula; Durruthy, Michael; Gelesky, Marcos; Ruas, Caroline; Yunes, João; Tonel, Mariana; Fagan, Solange; Monserrat, José

    2017-07-01

    Saxitoxins (STXs) are potent neurotoxins that also induce cytotoxicity through the generation of reactive oxygen species. Carbon nanotubes (CNTs) are nanomaterials that can promote a Trojan horse effect, facilitating the entry of toxic molecules to cells when adsorbed to nanomaterials. The interaction of pristine single-walled (SW)CNTs and carboxylated (SWCNT-COOH) nanotubes with STX was evaluated by ab initio simulation and bioassays using the cell line HT-22. Cells (5 × 10 4  cells/mL) were exposed to SWCNT and SWCNT-COOH (5 μg mL -1 ), STX (200 μg L -1 ), SWCNT+STX, and SWCNT-COOH+STX for 30 min or 24 h. Results of ab initio simulation showed that the interaction between SWCNT and SWCNT-COOH with STX occurs in a physisorption. The interaction of SWCNT+STX induced a decrease in cell viability. Cell proliferation was not affected in any treatment after 30 min or 24 h of exposure (p > 0.05). Treatment with SWCNT-COOH induced high reactive oxygen species levels, an effect attenuated in SWCNT-COOH+STX treatment. In terms of cellular oxygen consumption, both CNTs when coexposed with STX antagonize the toxin effect. Based on these results, it can be concluded that the results obtained in vitro corroborate the semiempirical evidence found using density functional theory ab initio simulation. Environ Toxicol Chem 2017;36:1728-1737. © 2016 SETAC. © 2016 SETAC.

  19. A simulation study on performance evaluation of single-stage LiBr–H2O vapor absorption heat pump for chip cooling

    Directory of Open Access Journals (Sweden)

    Manu S.

    2016-12-01

    Full Text Available The growth of Lithium Bromide–Water (LiBr–H2O absorption based heat pump is encouraged for the necessity of extracting high heat from the electronic chips. This paper presents a simulation study of single-stage LiBr–H2O vapor absorption heat pump for chip cooling. In this study, a detailed thermodynamic analysis of the single-stage LiBr–H2O vapor absorption heat pump for chip cooling in the nonexistence of solution heat exchanger was performed and a user-friendly graphical user interface (GUI package including visual components was developed by using MATlab (2008b. The influence of chip temperature on COP (Coefficient of Performance, flow rates and conductance was examined by using the developed package. The model is validated by using the values available in the literature and indicates that there is a greater reduction in the absorber load. The influence of chip temperature on the performance and thermal loads of individual components was studied and it was concluded that, COP increases from 0.7145 to 0.8421 with an increase in chip temperature.

  20. Simulated performance of a single pixel PIN spectrometer SCXM equipped with a concentrator optics in Solar coronal X-ray observations

    Science.gov (United States)

    Alha, L.; Huovelin, J.; Nevalainen, J.

    2012-02-01

    In this paper we present simulated solar coronal X-ray observations to verify the sensitivity of a new hypothetical instrument design. These simulations are folded through this X-ray spectrometer having a moderate size circular field of view (FoV) of 1.6°. This SCXM (Solar Coronal X-ray Mapper) is designed to compose of a single pixel silicon PIN detector equipped with a single reflection double frustum X-ray optics. A moderate FoV would enable a morphological study of the expanded X-ray emission from the solar corona during a high activity of the Sun. The main scientific task of SCXM would be the mapping of the coronal X-ray emission, i.e. to resolve the radial distribution of the X-ray surface brightness around the Sun. These kinds of off-limb observations would help to interpret the coronal plasma diagnostics as a function of the elongation angle.Direct solar full disc observations could be also performed with SCXM. In this work we have applied real solar coronal X-ray data obtained by the SMART-1 XSM (X-ray Solar Monitor) [3] to simulate on-solar observations at different flux levels to derive full disc sensitivity and performance of SCXM.A challenging attempt for SCXM would also be to distinguish the X-ray spectrum of the decaying axions around the Sun. These axions are assumed to be created as side products of fusion reactions in the core of the Sun. These axions are predicted to be gravitationally trapped to orbit the Sun forming a halo-like X-ray emitting object. No signature of an axion X-ray emission around the Sun has been observed to this day.This simple X-ray spectrometer with an optical concentrator would be an inexpensive instrument with low mass and telemetry budgets compared with more accurate X-ray instruments of imaging capability. Hence SCXM would be an advanced choice as an auxiliary instrument for solar coronal X-ray observations.

  1. TreePM Method for Two-Dimensional Cosmological Simulations ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    paper. The 2d TreePM code is an accurate and efficient technique to carry out large two-dimensional N-body simulations in cosmology. This hybrid code combines the 2d Barnes and Hut Tree method and the 2d Particle– ..... ment, we need less than 75 MB of RAM for a simulation with 10242 particles on a. 10242 grid.

  2. Scatter Correction with Combined Single-Scatter Simulation and Monte Carlo Simulation Scaling Improved the Visual Artifacts and Quantification in 3-Dimensional Brain PET/CT Imaging with15O-Gas Inhalation.

    Science.gov (United States)

    Magota, Keiichi; Shiga, Tohru; Asano, Yukari; Shinyama, Daiki; Ye, Jinghan; Perkins, Amy E; Maniawski, Piotr J; Toyonaga, Takuya; Kobayashi, Kentaro; Hirata, Kenji; Katoh, Chietsugu; Hattori, Naoya; Tamaki, Nagara

    2017-12-01

    In 3-dimensional PET/CT imaging of the brain with 15 O-gas inhalation, high radioactivity in the face mask creates cold artifacts and affects the quantitative accuracy when scatter is corrected by conventional methods (e.g., single-scatter simulation [SSS] with tail-fitting scaling [TFS-SSS]). Here we examined the validity of a newly developed scatter-correction method that combines SSS with a scaling factor calculated by Monte Carlo simulation (MCS-SSS). Methods: We performed phantom experiments and patient studies. In the phantom experiments, a plastic bottle simulating a face mask was attached to a cylindric phantom simulating the brain. The cylindric phantom was filled with 18 F-FDG solution (3.8-7.0 kBq/mL). The bottle was filled with nonradioactive air or various levels of 18 F-FDG (0-170 kBq/mL). Images were corrected either by TFS-SSS or MCS-SSS using the CT data of the bottle filled with nonradioactive air. We compared the image activity concentration in the cylindric phantom with the true activity concentration. We also performed 15 O-gas brain PET based on the steady-state method on patients with cerebrovascular disease to obtain quantitative images of cerebral blood flow and oxygen metabolism. Results: In the phantom experiments, a cold artifact was observed immediately next to the bottle on TFS-SSS images, where the image activity concentrations in the cylindric phantom were underestimated by 18%, 36%, and 70% at the bottle radioactivity levels of 2.4, 5.1, and 9.7 kBq/mL, respectively. At higher bottle radioactivity, the image activity concentrations in the cylindric phantom were greater than 98% underestimated. For the MCS-SSS, in contrast, the error was within 5% at each bottle radioactivity level, although the image generated slight high-activity artifacts around the bottle when the bottle contained significantly high radioactivity. In the patient imaging with 15 O 2 and C 15 O 2 inhalation, cold artifacts were observed on TFS-SSS images, whereas

  3. Evaluation on numerical simulation accuracy of the commercial CFD program for FBR thermal-hydraulic conditions and applications. Single phase multi-dimensional thermal-hydraulic evaluation problems

    International Nuclear Information System (INIS)

    Okano, Yasushi

    2003-03-01

    Commercial computational fluid dynamic program is taken up to be employed for nuclear thermal-hydraulic applications due to the advantages in high-speed solution and easy-to-use operation. The principal objective of this report is evaluating the numerical simulation accuracy of the Fluent, on single-phase multi-dimensional thermal hydraulic problems. The evaluation problems are: 1) Laminar flow over a backward-facing step, 2) Turbulent flow over a backward-facing step, 3) Temperature of a inner rectangular rotating flow, 4) Thermal-driven natural convection flow in a square cavity, and 5) Turbulent flow in a cubic cavity, those were selected in supposing nuclear reactor thermal-hydraulic conditions by the technical committee of the Japan atomic energy society. The features on numerical method and accuracy of the Fluent being identified are: 1) Spatial differential schemes for convection term: 1st upwind, power-law, 2nd upwind, and Quick, upgrade the numerical accuracy in this order. Each scheme has the same accuracy as of the existing referenced numerical results. Quick scheme employs numerical stability oriented filtering so that no over- or under-shoots are observed. Yet, 2nd central differential scheme -used in large eddy simulation (LES)- leads numerical instability (i.e. temporal oscillation in pressure, and spatial wavering in velocity) typically when we deal with in low-resolution domains. 2) Turbulent models: (Standard, RNG, Realizable) k-ε, (Standard, SST) k-ω, and, (Standard, Quadratic) RST, necessitate to involve non-equilibrium wall function to take numerical accuracy and stability. The Fluent evaluations on re-attaching points and velocity distributions show nearly the same as -and on several counts more accurate than- those of the existing reference results. The LES turbulent model can be used only for 3-D simulations. 3) The evaluations of thermal-driven natural convection flow, which is one of the heat transfer and fluidics coupling problem, show

  4. A High Throughput Workflow Environment for Cosmological Simulations

    Science.gov (United States)

    Brandon, Erickson; Evrard, A. E.; Singh, R.; Marru, S.; Pierce, M.; Becker, M. R.; Kravtsov, A.; Busha, M. T.; Wechsler, R. H.; Ricker, P. M.; DES Simulations Working Group

    2013-01-01

    The Simulation Working Group (SimWG) of the Dark Energy Survey (DES) is collaborating with an XSEDE science gateway team to develop a distributed workflow management layer for the production of wide-area synthetic galaxy catalogs from large N-body simulations. We use the suite of tools in Airavata, an Apache Incubator project, to generate and archive multiple 10^10-particle N-body simulations of nested volumes on XSEDE supercomputers. Lightcone outputs are moved via Globus Online to SLAC, where they are transformed into multi-band, catalog-level descriptions of gravitationally lensed galaxies covering 10,000 sq deg to high redshift. We outline the method and discuss efficiency and provenance improvements brought about in N-body production. Plans to automate data movement and post-processing within the workflow are sketched, as are risks associated with working in an environment of constantly evolving services.

  5. Evaluation of the Microbiological Efficacy of a Single 2-Gram Dose of Extended-Release Azithromycin by Population Pharmacokinetics and Simulation in Japanese Patients with Gonococcal Urethritis.

    Science.gov (United States)

    Soda, Midori; Ito, Shin; Matsumaru, Naoki; Nakamura, Sakiko; Nagase, Izumi; Takahashi, Hikari; Ohno, Yuta; Yasuda, Mitsuru; Yamamoto, Miho; Tsukamoto, Katsura; Itoh, Yoshinori; Deguchi, Takashi; Kitaichi, Kiyoyuki

    2018-01-01

    The objective of this study was to analyze the relationship between the pharmacokinetic (PK)/pharmacodynamic (PD) parameters of a single 2-g dose of extended-release formulation of azithromycin (AZM-SR) and its microbiological efficacy against gonococcal urethritis. Fifty male patients with gonococcal urethritis were enrolled in this study. In 36 patients, the plasma AZM concentrations were measured using liquid chromatography-tandem mass spectrometry, the AZM MIC values for the Neisseria gonorrhoeae isolates were determined, and the microbiological outcomes were assessed. AZM-SR monotherapy eradicated N. gonorrhoeae in 30 (83%) of the 36 patients. AZM MICs ranged from 0.03 to 2 mg/liter. The mean value of the area under the concentration-time curve (AUC), estimated by population PK analysis using a two-compartment model, was 20.8 mg · h/liter. Logistic regression analysis showed that the PK/PD target value required to predict an N. gonorrhoeae eradication rate of ≥95% was a calculated AUC/MIC of ≥59.5. The AUC/MIC value was significantly higher in patients who achieved microbiological cure than in patients who achieved microbiological failure. Monte Carlo simulation using this MIC distribution revealed that the probability that AZM-SR monotherapy would produce an AUC/MIC exceeding the AUC/MIC target of 59.5 was 47%. Furthermore, the MIC distribution for strains isolated in this study was mostly consistent with that for strains currently circulating in Japan. In conclusion, in Japan, AZM-SR monotherapy may not be effective against gonococcal urethritis. Therefore, use of a single 2-g dose of AZM-SR either with or without other antibiotics could be an option to treat gonococcal urethritis if patients are allergic to ceftriaxone and spectinomycin or are diagnosed to be infected with an AZM-sensitive strain. Copyright © 2017 American Society for Microbiology.

  6. Computational simulation of flow and heat transfer in single-phase natural circulation loops; Simulacao computacional de escoamento e transferencia de calor em circuitos de circulacao natural monofasica

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, Larissa Cunha

    2017-07-01

    Passive decay heat removal systems based on natural circulation are essential assets for the new Gen III+ nuclear power reactors and nuclear spent fuel pools. The aim of the present work is to study both laminar and turbulent flow and heat transfer in single-phase natural circulation systems through computational fluid dynamics simulations. The working fluid is considered to be incompressible with constant properties. In the way, the Boussinesq Natural Convection Hypothesis was applied. The model chosen for the turbulence closure problem was the k -- εThe commercial computational fluid dynamics code ANSYS CFX 15.0 was used to obtain the numerical solution of the governing equations. Two single-phase natural circulation circuits were studied, a 2D toroidal loop and a 3D rectangular loop, both with the same boundary conditions of: prescribed heat flux at the heater and fixed wall temperature at the cooler. The validation and verification was performed with the numerical data provided by DESRAYAUD et al. [1] and the experimental data provided by MISALE et al. [2] and KUMAR et al. [3]. An excellent agreement between the Reynolds number (Re) and the modified Grashof number (Gr{sub m}), independently of Prandtl Pr number was observed. However, the convergence interval was observed to be variable with Pr, thus indicating that Pr is a stability governing parameter for natural circulation. Multiple steady states was obtained for Pr = 0,7. Finally, the effect of inclination was studied for the 3D circuit, both in-plane and out-of-plane inclinations were verified for the steady state laminar regime. As a conclusion, the Re for the out-of-plane inclination was in perfect agreement with the correlation found for the zero inclination system, while for the in-plane inclined system the results differ from that of the corresponding vertical loop. (author)

  7. Monte Carlo simulation of second-generation open-type PET ''single-ring OpenPET'' implemented with DOI detectors

    International Nuclear Information System (INIS)

    Tashima, Hideaki; Yamaya, Taiga; Hirano, Yoshiyuki; Yoshida, Eiji; Kinouch, Shoko; Watanabe, Mitsuo; Tanaka, Eiichi

    2013-01-01

    At the National Institute of Radiological Sciences, we are developing OpenPET, an open-type positron emission tomography (PET) geometry with a physically open space, which allows easy access to the patient during PET studies. Our first-generation OpenPET system, dual-ring OpenPET, which consisted of two detector rings, could provide an extended axial field of view (FOV) including the open space. However, for applications such as in-beam PET to monitor the dose distribution in situ during particle therapy, higher sensitivity concentrated on the irradiation field is required rather than a wide FOV. In this report, we propose a second-generation OpenPET geometry, single-ring OpenPET, which can efficiently improve sensitivity while providing the required open space. When the proposed geometry was realized with block detectors, position-dependent degradation of the spatial resolution was expected because it was necessary to arrange the detector blocks in ellipsoidal rings stacked and shifted relative to one another. However, we found by Monte Carlo simulation that the use of depth-of-interaction (DOI) detectors made it feasible to achieve uniform spatial resolution in the FOV. (author)

  8. Effect of Casting Parameters on the Microstructural and Mechanical Behavior of Magnesium AZ31-B Alloy Strips Cast on a Single Belt Casting Simulator

    Directory of Open Access Journals (Sweden)

    Ahmad Changizi

    2014-01-01

    Full Text Available Strips of magnesium alloy AZ31-B were cast on a simulator of a horizontal single belt caster incorporating a moving mold system. Mixtures of CO2 and sulfur hexafluoride (SF6 gases were used as protective atmosphere during melting and casting. The castability of the AZ31-B strips was investigated for a smooth, low carbon steel substrate, and six copper substrates with various textures and roughnesses. Graphite powder was used to coat the substrates. The correlation between strip thickness and heat flux was investigated. It was found that the heat flux from the forming strip to the copper substrate was higher than that to the steel substrate, while coated substrates registered lower heat fluxes than uncoated substrates. The highest heat flux from the strip was recorded for casting on macrotextured copper substrates with 0.15 mm grooves. As the thickness of the strip decreased, the net heat flux decreased. As the heat flux increased, the grain sizes of the strips were reduced, and the SDAS decreased. The mechanical properties were improved when the heat flux increased. The black layers which formed on the strips’ surfaces were analyzed and identified as nanoscale MgO particles. Nano-Scale particles act as light traps and appeared black.

  9. Correlation effects beyond coupled cluster singles and doubles approximation through Fock matrix dressing.

    Science.gov (United States)

    Maitra, Rahul; Nakajima, Takahito

    2017-11-28

    We present an accurate single reference coupled cluster theory in which the conventional Fock operator matrix is suitably dressed to simulate the effect of triple and higher excitations within a singles and doubles framework. The dressing thus invoked originates from a second-order perturbative approximation of a similarity transformed Hamiltonian and induces higher rank excitations through local renormalization of individual occupied and unoccupied orbital lines. Such a dressing is able to recover a significant amount of correlation effects beyond singles and doubles approximation, but only with an economic n 5 additional cost. Due to the inclusion of higher rank excitations via the Fock matrix dressing, this method is a natural improvement over conventional coupled cluster theory with singles and doubles approximation, and this method would be demonstrated via applications on some challenging systems. This highly promising scheme has a conceptually simple structure which is also easily generalizable to a multi-reference coupled cluster scheme for treating strong degeneracy. We shall demonstrate that this method is a natural lowest order perturbative approximation to the recently developed iterative n-body excitation inclusive coupled cluster singles and doubles scheme [R. Maitra et al., J. Chem. Phys. 147, 074103 (2017)].

  10. Correlation effects beyond coupled cluster singles and doubles approximation through Fock matrix dressing

    Science.gov (United States)

    Maitra, Rahul; Nakajima, Takahito

    2017-11-01

    We present an accurate single reference coupled cluster theory in which the conventional Fock operator matrix is suitably dressed to simulate the effect of triple and higher excitations within a singles and doubles framework. The dressing thus invoked originates from a second-order perturbative approximation of a similarity transformed Hamiltonian and induces higher rank excitations through local renormalization of individual occupied and unoccupied orbital lines. Such a dressing is able to recover a significant amount of correlation effects beyond singles and doubles approximation, but only with an economic n5 additional cost. Due to the inclusion of higher rank excitations via the Fock matrix dressing, this method is a natural improvement over conventional coupled cluster theory with singles and doubles approximation, and this method would be demonstrated via applications on some challenging systems. This highly promising scheme has a conceptually simple structure which is also easily generalizable to a multi-reference coupled cluster scheme for treating strong degeneracy. We shall demonstrate that this method is a natural lowest order perturbative approximation to the recently developed iterative n-body excitation inclusive coupled cluster singles and doubles scheme [R. Maitra et al., J. Chem. Phys. 147, 074103 (2017)].

  11. Use of genomic recursions and algorithm for proven and young animals for single-step genomic BLUP analyses--a simulation study.

    Science.gov (United States)

    Fragomeni, B O; Lourenco, D A L; Tsuruta, S; Masuda, Y; Aguilar, I; Misztal, I

    2015-10-01

    The purpose of this study was to examine accuracy of genomic selection via single-step genomic BLUP (ssGBLUP) when the direct inverse of the genomic relationship matrix (G) is replaced by an approximation of G(-1) based on recursions for young genotyped animals conditioned on a subset of proven animals, termed algorithm for proven and young animals (APY). With the efficient implementation, this algorithm has a cubic cost with proven animals and linear with young animals. Ten duplicate data sets mimicking a dairy cattle population were simulated. In a first scenario, genomic information for 20k genotyped bulls, divided in 7k proven and 13k young bulls, was generated for each replicate. In a second scenario, 5k genotyped cows with phenotypes were included in the analysis as young animals. Accuracies (average for the 10 replicates) in regular EBV were 0.72 and 0.34 for proven and young animals, respectively. When genomic information was included, they increased to 0.75 and 0.50. No differences between genomic EBV (GEBV) obtained with the regular G(-1) and the approximated G(-1) via the recursive method were observed. In the second scenario, accuracies in GEBV (0.76, 0.51 and 0.59 for proven bulls, young males and young females, respectively) were also higher than those in EBV (0.72, 0.35 and 0.49). Again, no differences between GEBV with regular G(-1) and with recursions were observed. With the recursive algorithm, the number of iterations to achieve convergence was reduced from 227 to 206 in the first scenario and from 232 to 209 in the second scenario. Cows can be treated as young animals in APY without reducing the accuracy. The proposed algorithm can be implemented to reduce computing costs and to overcome current limitations on the number of genotyped animals in the ssGBLUP method. © 2015 Blackwell Verlag GmbH.

  12. Gauging the Nanotoxicity of h2D-C2N toward Single-Stranded DNA: An in Silico Molecular Simulation Approach.

    Science.gov (United States)

    Mukhopadhyay, Titas Kumar; Bhattacharyya, Kalishankar; Datta, Ayan

    2018-04-12

    Recent toxicological assessments of graphene, graphene oxides, and some other two-dimensional (2D) materials have shown them to be substantially toxic at the nanoscale, where they inhibit and eventually disrupt biological processes. These shortfalls of graphene and analogs have resulted in a quest for novel biocompatible 2D materials with minimum cytotoxicity. In this article, we demonstrate C 2 N (h2D-C 2 N), a newly synthesized 2D porous graphene analog, to be non-nanotoxic toward genetic materials from an "in-silico" point of view through sequence-dependent binding of different polynucleotide single-stranded DNA (ssDNA) onto it. The calculated binding energy of nucleobases and the free energy of binding of polynucleotides follow the common trait, cytosine > guanine > adenine > thymine, and are well within the limits of physisorption. Ab-initio simulations completely exclude the possibility of any chemical reaction, demonstrating purely noncovalent binding of nucleobases with C 2 N through a crucial interplay between hydrogen bonding and π-stacking interactions with the surface. Further, we show that the extent of distortion inflicted upon ssDNA by C 2 N is negligible. Analysis of the density of states of the nucleobase-C 2 N hybrids confirms minimum electronic perturbation of the bases after adsorption. Most importantly, we demonstrate the potency of C 2 N in nucleic acid transportation via reversible binding of ssDNA. The plausible use of C 2 N as a template for DNA repair is illustrated through an example of C 2 N-assisted complementary ssDNA winding.

  13. Detection of explosives and other illicit materials by a single nanosecond neutron pulses - Monte-Carlo simulations of the detection process

    International Nuclear Information System (INIS)

    Miklaszewski, R.; Drozdowicz, K.; Wiacek, U.; Dworak, D.; Gribkov, V.

    2011-01-01

    Recent progress in the development of a single-pulse Nanosecond Impulse Neutron Investigation System (NINIS) intended for interrogation of hidden objects (explosives and other illicit materials) by means of measuring elastically scattered neutrons is presented in this paper. The method is based on the well know fact that nuclide-specific information is present in the scattered neutron field. The method uses very bright neutron pulses having duration of the order of few nanoseconds, generated by a dense plasma focus (DPF) devices filled with a pure deuterium or deuterium-tritium mixture as a working gas. Very short duration of the neutron pulse, its high brightness and mono-chromaticity allow to use the time-of-flight method with bases of about few meters to distinguish signals from neutrons scattered by different elements. Results of the Monte Carlo simulations of the scattered neutron field from several compounds (explosives and everyday use materials) are presented in the paper. The MCNP5 code has been used to get information on the angular and energy distributions of the neutrons scattered by the above mentioned compounds assuming the initial neutron energy equal to 2.45 MeV (D-D). A new input has been elaborated that allows the modelling of not only a spectrum of the neutrons scattered at different angles but also their time history from the moment of generation up to detection. Such an approach allows getting approximate signals as registered by scintillator + photomultiplier probes placed at various distances from the scattering object, demonstrating a principal capability of the method to identify an elemental content of the inspected objects. Preliminary results of the MCNP modelling of the interrogation process of the airport luggage containing several illicit objects are presented as well. (authors)

  14. Simulating of single phase flow in typical centrifugal pumps oil industry; Simulacao do escoamento monofasico em bombas centrifugas tipicas da industria do petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Ana Carla Costa; Silva, Aldrey Luis Morais da; Maitelli, Carla Wilza Souza de Paula [Universidade Federal do Rio Grande do Norte (UFRN), RN (Brazil)

    2012-07-01

    With the various techniques applied in production processes and oil exploration, has been using the artificial lift equipment with the aim of promoting an increase in flow in oil wells and gas. Choosing the most appropriate method of elevation depends on certain factors, among them the initial costs of installation, maintenance and conditions in the producing field, resulting in a more precise analysis of the project. Although there are other methods that represent a low cost and easy maintenance, the BCS method (Electrical Submersible Pumping), appears to be quite effective when it is intended to pump more flow of liquids from both terrestrial and marine environments, in conditions adverse temperature, presence of free gas in the mixture and viscous fluids. This method is based in most cases where the vessel pressure was low, and the fluid does not reach the surface without intervention of an artificial means which can lift them. Similar happens at the end of productive life of a resurgence for the well, or even when the flow of it is far below what is expected to produce, requiring a complement of natural energy through artificial lift. By definition, the BCS is a method of artificial lift in which a subsurface electric motor turns electrical energy into mechanical centrifugal pump and a multistage overlapping converts mechanical energy into kinetic energy of the engine bringing the fluid surface. In this study we performed computer simulations using a commercial program ANSYS #Registered Sign# CFX #Registered Sign# dimensions previously obtained by the 3D geometry in CAD format, with the objective of evaluating the single-phase flow inside typical centrifugal pump submerged in the oil industry. The variable measured was the height of elevation and drilling fluids are oil and water.(author)

  15. [Simulation-based training and OR apprenticeship for medical students : A prospective, randomized, single-blind study of clinical skills].

    Science.gov (United States)

    Ott, T; Schmidtmann, I; Limbach, T; Gottschling, P F; Buggenhagen, H; Kurz, S; Pestel, G

    2016-11-01

    Simulation-based training (SBT) has developed into an established method of medical training. Studies focusing on the education of medical students have used simulation as an evaluation tool for defined skills. A small number of studies provide evidence that SBT improves medical students' skills in the clinical setting. Moreover, they were strictly limited to a few areas, such as the diagnosis of heart murmurs or the correct application of cricoid pressure. Other studies could not prove adequate transferability from the skills gained in SBT to the patient site. Whether SBT has an effect on medical students' skills in anesthesiology in the clinical setting is controversial. To explore this issue, we designed a prospective, randomized, single-blind trial that was integrated into the undergraduate anesthesiology curriculum of our department during the second year of the clinical phase of medical school. This study intended to explore the effect of SBT on medical students within the mandatory undergraduate anesthesiology curriculum of our department in the operating room with respect to basic skills in anesthesiology. After obtaining ethical approval, the participating students of the third clinical semester were randomized into two groups: the SIM-OR group was trained by a 225 min long SBT in basic skills in anesthesiology before attending the operating room (OR) apprenticeship. The OR-SIM group was trained after the operating room apprenticeship by SBT. During SBT the students were trained in five clinical skills detailed below. Further, two clinical scenarios were simulated using a full-scale simulator. The students had to prepare the patient and perform induction of anesthesia, including bag-mask ventilation after induction in scenario 1 and rapid sequence induction in scenario 2. Using the five-point Likert scale, five defined skills were evaluated at defined time points during the study period. 1) application of the safety checklist, 2) application of

  16. Cusps in the center of galaxies: a real conflict with observations or a numerical artefact of cosmological simulations?

    Energy Technology Data Exchange (ETDEWEB)

    Baushev, A.N.; Valle, L. del; Campusano, L.E.; Escala, A.; Muñoz, R.R. [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Correo Central, Santiago (Chile); Palma, G.A., E-mail: baushev@gmail.com, E-mail: ldelvalleb@gmail.com, E-mail: luis@das.uchile.cl, E-mail: aescala@das.uchile.cl, E-mail: rmunoz@das.uchile.cl, E-mail: gpalmaquilod@ing.uchile.cl [Departamento de Física, FCFM, Universidad de Chile, Blanco Encalada 2008, Santiago (Chile)

    2017-05-01

    Galaxy observations and N-body cosmological simulations produce conflicting dark matter halo density profiles for galaxy central regions. While simulations suggest a cuspy and universal density profile (UDP) of this region, the majority of observations favor variable profiles with a core in the center. In this paper, we investigate the convergency of standard N-body simulations, especially in the cusp region, following the approach proposed by [1]. We simulate the well known Hernquist model using the SPH code Gadget-3 and consider the full array of dynamical parameters of the particles. We find that, although the cuspy profile is stable, all integrals of motion characterizing individual particles suffer strong unphysical variations along the whole halo, revealing an effective interaction between the test bodies. This result casts doubts on the reliability of the velocity distribution function obtained in the simulations. Moreover, we find unphysical Fokker-Planck streams of particles in the cusp region. The same streams should appear in cosmological N-body simulations, being strong enough to change the shape of the cusp or even to create it. Our analysis, based on the Hernquist model and the standard SPH code, strongly suggests that the UDPs generally found by the cosmological N-body simulations may be a consequence of numerical effects. A much better understanding of the N-body simulation convergency is necessary before a 'core-cusp problem' can properly be used to question the validity of the CDM model.

  17. Feedback and the structure of simulated galaxies at redshift z=2

    NARCIS (Netherlands)

    Sales, Laura V.; Navarro, Julio F.; Schaye, Joop; Dalla Vecchia, Claudio; Springel, Volker; Booth, C. M.

    2010-01-01

    We study the properties of simulated high-redshift galaxies using cosmological N-body/gasdynamical runs from the OverWhelmingly Large Simulations (OWLS) project. The runs contrast several feedback implementations of varying effectiveness: from no feedback, to supernova-driven winds to powerful

  18. Do cost savings from reductions in nosocomial infections justify additional costs of single-bed rooms in intensive care units? A simulation case study.

    Science.gov (United States)

    Sadatsafavi, Hessam; Niknejad, Bahar; Zadeh, Rana; Sadatsafavi, Mohsen

    2016-02-01

    Evidence shows that single-patient rooms can play an important role in preventing cross-transmission and reducing nosocomial infections in intensive care units (ICUs). This case study investigated whether cost savings from reductions in nosocomial infections justify the additional construction and operation costs of single-bed rooms in ICUs. We conducted deterministic and probabilistic return-on-investment analyses of converting the space occupied by open-bay rooms to single-bed rooms in an exemplary ICU. We used the findings of a study of an actual ICU in which the association between the locations of patients in single-bed vs open-bay rooms with infection risk was evaluated. Despite uncertainty in the estimates of costs, infection risks, and length of stay, the cost savings from the reduction of nosocomial infections in single-bed rooms in this case substantially outweighed additional construction and operation expenses. The mean value of internal rate of return over a 5-year analysis period was 56.18% (95% credible interval, 55.34%-57.02%). This case study shows that although single-patient rooms are more costly to build and operate, they can result in substantial savings compared with open-bay rooms by avoiding costs associated with nosocomial infections. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Simulation of single-phase rod bundle flow. Comparison between CFD-code ESTET, PWR core code THYC and experimental results

    International Nuclear Information System (INIS)

    Mur, J.; Larrauri, D.

    1998-07-01

    Computer simulation of flow in configurations close to pressurized water reactor (PWR) geometry is of great interest for Electricite de France (EDF). Although simulation of the flow through a whole PWR core with an all purpose CFD-code is not yet achievable, such a tool cna be quite useful to perform numerical experiments in order to try and improve the modeling introduced in computer codes devoted to reactor core thermal-hydraulic analysis. Further to simulation in small bare rod bundle configurations, the present study is focused on the simulation, with CFD-code ESTET and PWR core code THYC, of the flow in the experimental configuration VATICAN-1. ESTET simulation results are compared on the one hand to local velocity and concentration measurements, on the other hand with subchannel averaged values calculated by THYC. As far as the comparison with measurements is concerned, ESTET results are quite satisfactory relatively to available experimental data and their uncertainties. The effect of spacer grids and the prediction of the evolution of an unbalanced velocity profile seem to be correctly treated. As far as the comparison with THYC subchannel averaged values is concerned, the difficulty of a direct comparison between subchannel averaged and local values is pointed out. ESTET calculated local values are close to experimental local values. ESTET subchannel averaged values are also close to THYC calculation results. Thus, THYC results are satisfactory whereas their direct comparison to local measurements could show some disagreement. (author)

  20. Improved single- and multi-contact life-time testing of dental restorative materials using key characteristics of the human masticatory system and a force/position-controlled robotic dental wear simulator

    International Nuclear Information System (INIS)

    Raabe, D; Dogramadzi, S; Melhuish, C; Harrison, A; Alemzadeh, K; Burgess, S; Ireland, A; Sandy, J

    2012-01-01

    This paper presents a new in vitro wear simulator based on spatial parallel kinematics and a biologically inspired implicit force/position hybrid controller to replicate chewing movements and dental wear formations on dental components, such as crowns, bridges or a full set of teeth. The human mandible, guided by passive structures such as posterior teeth and the two temporomandibular joints, moves with up to 6 degrees of freedom (DOF) in Cartesian space. The currently available wear simulators lack the ability to perform these chewing movements. In many cases, their lack of sufficient DOF enables them only to replicate the sliding motion of a single occlusal contact point by neglecting rotational movements and the motion along one Cartesian axis. The motion and forces of more than one occlusal contact points cannot accurately be replicated by these instruments. Furthermore, the majority of wear simulators are unable to control simultaneously the main wear-affecting parameters, considering abrasive mechanical wear, which are the occlusal sliding motion and bite forces in the constraint contact phase of the human chewing cycle. It has been shown that such discrepancies between the true in vivo and the simulated in vitro condition influence the outcome and the quality of wear studies. This can be improved by implementing biological features of the human masticatory system such as tooth compliance realized through the passive action of the periodontal ligament and active bite force control realized though the central nervous system using feedback from periodontal preceptors. The simulator described in this paper can be used for single- and multi-occlusal contact testing due to its kinematics and ability to exactly replicate human translational and rotational mandibular movements with up to 6 DOF without neglecting movements along or around the three Cartesian axes. Recorded human mandibular motion and occlusal force data are the reference inputs of the simulator

  1. MODELING THE Ly α FOREST IN COLLISIONLESS SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Sorini, Daniele; Oñorbe, José; Hennawi, Joseph F. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Lukić, Zarija, E-mail: sorini@mpia-hd.mpg.de [Lawrence Berkeley National Laboratory, CA 94720-8139 (United States)

    2016-08-20

    Cosmological hydrodynamic simulations can accurately predict the properties of the intergalactic medium (IGM), but only under the condition of retaining the high spatial resolution necessary to resolve density fluctuations in the IGM. This resolution constraint prohibits simulating large volumes, such as those probed by BOSS and future surveys, like DESI and 4MOST. To overcome this limitation, we present “Iteratively Matched Statistics” (IMS), a novel method to accurately model the Ly α forest with collisionless N -body simulations, where the relevant density fluctuations are unresolved. We use a small-box, high-resolution hydrodynamic simulation to obtain the probability distribution function (PDF) and the power spectrum of the real-space Ly α forest flux. These two statistics are iteratively mapped onto a pseudo-flux field of an N -body simulation, which we construct from the matter density. We demonstrate that our method can reproduce the PDF, line of sight and 3D power spectra of the Ly α forest with good accuracy (7%, 4%, and 7% respectively). We quantify the performance of the commonly used Gaussian smoothing technique and show that it has significantly lower accuracy (20%–80%), especially for N -body simulations with achievable mean inter-particle separations in large-volume simulations. In addition, we show that IMS produces reasonable and smooth spectra, making it a powerful tool for modeling the IGM in large cosmological volumes and for producing realistic “mock” skies for Ly α forest surveys.

  2. Modeling and simulation of the main metabolism in Escherichia coli and its several single-gene knockout mutants with experimental verification

    Directory of Open Access Journals (Sweden)

    McFadden Johnjoe

    2010-11-01

    Full Text Available Abstract Background It is quite important to simulate the metabolic changes of a cell in response to the change in culture environment and/or specific gene knockouts particularly for the purpose of application in industry. If this could be done, the cell design can be made without conducting exhaustive experiments, and one can screen out the promising candidates, proceeded by experimental verification of a select few of particular interest. Although several models have so far been proposed, most of them focus on the specific metabolic pathways. It is preferred to model the whole of the main metabolic pathways in Escherichia coli, allowing for the estimation of energy generation and cell synthesis, based on intracellular fluxes and that may be used to characterize phenotypic growth. Results In the present study, we considered the simulation of the main metabolic pathways such as glycolysis, TCA cycle, pentose phosphate (PP pathway, and the anapleorotic pathways using enzymatic reaction models of E. coli. Once intracellular fluxes were computed by this model, the specific ATP production rate, the specific CO2 production rate, and the specific NADPH production rate could be estimated. The specific ATP production rate thus computed was used for the estimation of the specific growth rate. The CO2 production rate could be used to estimate cell yield, and the specific NADPH production rate could be used to determine the flux of the oxidative PP pathway. The batch and continuous cultivations were simulated where the changing patterns of extracellular and intra-cellular metabolite concentrations were compared with experimental data. Moreover, the effects of the knockout of such pathways as Ppc, Pck and Pyk on the metabolism were simulated. It was shown to be difficult for the cell to grow in Ppc mutant due to low concentration of OAA, while Pck mutant does not necessarily show this phenomenon. The slower growth rate of the Ppc mutant was properly

  3. Optimisation and validation of a 3D reconstruction algorithm for single photon emission computed tomography by means of GATE simulation platform

    International Nuclear Information System (INIS)

    El Bitar, Ziad

    2006-12-01

    Although time consuming, Monte-Carlo simulations remain an efficient tool enabling to assess correction methods for degrading physical effects in medical imaging. We have optimized and validated a reconstruction method baptized F3DMC (Fully 3D Monte Carlo) in which the physical effects degrading the image formation process were modelled using Monte-Carlo methods and integrated within the system matrix. We used the Monte-Carlo simulation toolbox GATE. We validated GATE in SPECT by modelling the gamma-camera (Philips AXIS) used in clinical routine. Techniques of threshold, filtering by a principal component analysis and targeted reconstruction (functional regions, hybrid regions) were used in order to improve the precision of the system matrix and to reduce the number of simulated photons as well as the time consumption required. The EGEE Grid infrastructures were used to deploy the GATE simulations in order to reduce their computation time. Results obtained with F3DMC were compared with the reconstruction methods (FBP, ML-EM, MLEMC) for a simulated phantom and with the OSEM-C method for the real phantom. Results have shown that the F3DMC method and its variants improve the restoration of activity ratios and the signal to noise ratio. By the use of the grid EGEE, a significant speed-up factor of about 300 was obtained. These results should be confirmed by performing studies on complex phantoms and patients and open the door to a unified reconstruction method, which could be used in SPECT and also in PET. (author)

  4. Comparison of three FE-FV numerical schemes for single-and two-phase flow simulation of fractured porous media

    NARCIS (Netherlands)

    Nick, H.M.; Matthäi, S.K.

    2011-01-01

    We benchmark a family of hybrid finite element–node-centered finite volume discretization methods (FEFV) for single- and two-phase flow/transport through porous media with discrete fracture representations. Special emphasis is placed on a new method we call DFEFVM in which the mesh is split along

  5. An Efficient Algorithm for Simulating the Real-Time Quantum Dynamics of a Single Spin-1/2 Coupled to Specific Spin-1/2 Baths

    NARCIS (Netherlands)

    Novotny, M.A.; Guerra, M.; Raedt, H. De; Michielsen, K.; Jin, F.

    2012-01-01

    An efficient algorithm for the computation of the real-time dependence of a single quantum spin-1/2 coupled to a specific set of quantum spin-1/2 baths is presented. The specific spin baths have couplings only with the spin operators Sx between bath spins and the central spin. We calculate spin

  6. Dependence of stratocumulus-topped boundary-layer entrainment on cloud-water sedimentation: Impact on global aerosol indirect effect in GISS ModelE3 single column model and global simulations

    Science.gov (United States)

    Ackerman, A. S.; Kelley, M.; Cheng, Y.; Fridlind, A. M.; Del Genio, A. D.; Bauer, S.

    2017-12-01

    Reduction in cloud-water sedimentation induced by increasing droplet concentrations has been shown in large-eddy simulations (LES) and direct numerical simulation (DNS) to enhance boundary-layer entrainment, thereby reducing cloud liquid water path and offsetting the Twomey effect when the overlying air is sufficiently dry, which is typical. Among recent upgrades to ModelE3, the latest version of the NASA Goddard Institute for Space Studies (GISS) general circulation model (GCM), are a two-moment stratiform cloud microphysics treatment with prognostic precipitation and a moist turbulence scheme that includes an option in its entrainment closure of a simple parameterization for the effect of cloud-water sedimentation. Single column model (SCM) simulations are compared to LES results for a stratocumulus case study and show that invoking the sedimentation-entrainment parameterization option indeed reduces the dependence of cloud liquid water path on increasing aerosol concentrations. Impacts of variations of the SCM configuration and the sedimentation-entrainment parameterization will be explored. Its impact on global aerosol indirect forcing in the framework of idealized atmospheric GCM simulations will also be assessed.

  7. Simulations of galaxy mergers

    International Nuclear Information System (INIS)

    Villumsen, J.V.

    1982-01-01

    This work is a theoretical investigation of the mechanisms and results of mergers of elliptical galaxies. An N-body code is developed to simulate the dynamics of centrally concentrated collisionless systems. It is used for N-body simulations of the mergers of galaxies with mass ratios of 1:1, 2:1 and 3:1 with a total of 1200 or 2400 particles. The initial galaxies are spherical and non-rotating with Hubble type profiles and isotropic velocity distributions. The remnants are flattened (up to E4) and are oblate, triaxial or prolate depending on the impact parameter. Equal mass mergers are more flattened than unequal mass mergers and have significant velocity anisotropies. The remnants have Hubble type profiles with decreased central surface brightness and increased core radii and tidal radii. In some unequal mass mergers ''isothermal'' haloes tend to form. The density profiles are inconsistent with De Vaucouleurs profiles even though the initial profiles were not. The central velocity dispersion increases in 1:1 and 2:1 mass mergers but decreases in 3:1 mass mergers. Near head-on mergers lead to prolate systems with little rotation while high angular momentum mergers lead to oblate systems with strong rotation. The rotation curves show solid body rotation out to the half mass radius followed by a slow decline. Radial mixing is strong in equal mass mergers where it will weaken radial gradients. In unequal mass mergers there is little radial mixing but matter from the smaller galaxy ends up in the outer parts of the system where it can give rise to colour gradient

  8. Nonorthogonal orbital based N-body reduced density matrices and their applications to valence bond theory. I. Hamiltonian matrix elements between internally contracted excited valence bond wave functions

    Science.gov (United States)

    Chen, Zhenhua; Chen, Xun; Wu, Wei

    2013-04-01

    In this series, the n-body reduced density matrix (n-RDM) approach for nonorthogonal orbitals and their applications to ab initio valence bond (VB) methods are presented. As the first paper of this series, Hamiltonian matrix elements between internally contracted VB wave functions are explicitly provided by means of nonorthogonal orbital based RDM approach. To this end, a more generalized Wick's theorem, called enhanced Wick's theorem, is presented both in arithmetical and in graphical forms, by which the deduction of expressions for the matrix elements between internally contracted VB wave functions is dramatically simplified, and the matrix elements are finally expressed in terms of tensor contractions of electronic integrals and n-RDMs of the reference VB self-consistent field wave function. A string-based algorithm is developed for the purpose of evaluating n-RDMs in an efficient way. Using the techniques presented in this paper, one is able to develop new methods and efficient algorithms for nonorthogonal orbital based many-electron theory much easier than by use of the first quantized formulism.

  9. Detection of simulated pulmonary nodules by single-exposure dual-energy computed radiography of the chest: effect of a computer-aided diagnosis system (Part 2)

    International Nuclear Information System (INIS)

    Kido, Shoji; Kuriyama, Keiko; Kuroda, Chikazumi; Nakamura, Hironobu; Ito, Wataru; Shimura, Kazuo; Kato, Hisatoyo

    2002-01-01

    Objective: To evaluate the performance of the computer-aided diagnosis (CAD) scheme on the detection of pulmonary nodules (PNs) in single-exposure dual-energy subtraction computed radiography (CR) images of the chest, and to evaluate the effect of this CAD scheme on radiologists' detectabilities. Methods and material: We compared the detectability by the CAD scheme with the detectability by 12 observers by using conventional CR (C-CR) and bone-subtracted CR (BS-CR) images of 25 chest phantoms with a low-contrast nylon nodule. Results: Both in the CAD scheme and for the observers, the detectability of BS-CR images was superior to that of C-CR images (P<0.005). The detection performance of the CAD scheme was equal to that of the observers. The nodules detected by the CAD did not necessarily coincide with those by the observers. Thus, if observers can use the results of the CAD system as a 'second opinion', their detectabilities increase. Conclusion: The CAD system for detection of PNs in the single-exposure dual-energy subtraction method is promising for improving radiologists' detectabilities of PNs

  10. Effects of Vacancy Concentration and Temperature on Mechanical Properties of Single-Crystal γ-TiAl Based on Molecular Dynamics Simulation

    Science.gov (United States)

    Ruicheng, Feng; Hui, Cao; Haiyan, Li; Zhiyuan, Rui; Changfeng, Yan

    2018-01-01

    Molecular dynamics simulation is used to analyze tensile strength and elastic modulus under different temperatures and vacancy concentrations. The effects of temperature and vacancy concentration on the mechanical properties of γ-TiAl alloy are investigated. The results show that the ultimate stress, ultimate strain and elastic modulus decrease nonlinearly with increasing temperature and vacancy concentration. As the temperature increases, the plastic of material is reinforced. The influence of temperature on strength and elastic modulus is larger than that of vacancy concentration. The evolution process of vacancy could be observed clearly. Furthermore, vacancies with different concentrations develop into voids first as a function of external forces or other factors, micro cracks evolve from those voids, those micro cracks then converge to a macro crack, and fracture will finally occur. The vacancy evolution process cannot be observed clearly owing to the thermal motion of atoms at high temperature. In addition, potential energy is affected by both temperature and vacancy concentration.

  11. A single-column particle-resolved model for simulating the vertical distribution of aerosol mixing state: WRF-PartMC-MOSAIC-SCM v1.0

    Science.gov (United States)

    Curtis, Jeffrey H.; Riemer, Nicole; West, Matthew

    2017-11-01

    The PartMC-MOSAIC particle-resolved aerosol model was previously developed to predict the aerosol mixing state as it evolves in the atmosphere. However, the modeling framework was limited to a zero-dimensional box model approach without resolving spatial gradients in aerosol concentrations. This paper presents the development of stochastic particle methods to simulate turbulent diffusion and dry deposition of aerosol particles in a vertical column within the planetary boundary layer. The new model, WRF-PartMC-MOSAIC-SCM, resolves the vertical distribution of aerosol mixing state. We verified the new algorithms with analytical solutions for idealized test cases and illustrate the capabilities with results from a 2-day urban scenario that shows the evolution of black carbon mixing state in a vertical column.

  12. Shaping Ability of Reciproc, WaveOne GOLD, and HyFlex EDM Single-file Systems in Simulated S-shaped Canals.

    Science.gov (United States)

    Özyürek, Taha; Yılmaz, Koray; Uslu, Gülşah

    2017-05-01

    The aim of the present study was to compare the shaping ability of Reciproc (RPC; VDW, Munich, Germany), HyFlex EDM (HEDM; Coltene/Whaledent AG, Altstätten, Switzerland), and WaveOne GOLD (WOG; Dentsply Maillefer, Ballaigues, Switzerland) nickel-titanium (NiTi) files made of different NiTi alloys in S-shaped simulated canals. Sixty S-shaped canals in resin blocks were prepared to an apical size of 0.25 mm using RPC R25, WOG Primary, and HEDM OneFile (n = 20 canal/per group) systems. Composite images were made from the superimposition of pre- and postinstrumentation images. The amount of resin removed by each system was measured using a digital template and image analysis software in 22 different points. Canal aberrations were also recorded. Data were statistically analyzed using the Kruskal-Wallis and post hoc Dunn tests at the 5% level. NiTi file fracture was not observed during shaping of the simulated canals although a danger zone formation in 1 sample and a ledge in 1 sample were observed in the RPC group. There was no statistically significant difference between the WOG and HEDM groups' apical, medial, and coronal regions (P > .05). However, it was determined that the RPC group removed a statistically significantly higher amount of resin from all the canal regions when compared with the WOG and HEDM groups (P < .05). Within the limitation of the present study, it was determined that all of the tested NiTi files caused various levels of resin removal. However, WOG and HEDM NiTi files were found to cause a lower level of resin removal than RPC NiTi files. Copyright © 2017 American Association of Endodontists. All rights reserved.

  13. Acetone-butanol-ethanol competitive sorption simulation from single, binary, and ternary systems in a fixed-bed of KA-I resin.

    Science.gov (United States)

    Wu, Jinglan; Zhuang, Wei; Ying, Hanjie; Jiao, Pengfei; Li, Renjie; Wen, Qingshi; Wang, Lili; Zhou, Jingwei; Yang, Pengpeng

    2015-01-01

    Separation of butanol based on sorption methodology from acetone-butanol-ethanol (ABE) fermentation broth has advantages in terms of biocompatibility and stability, as well as economy, and therefore gains much attention. In this work a chromatographic column model based on the solid film linear driving force approach and the competitive Langmuir isotherm equations was used to predict the competitive sorption behaviors of ABE single, binary, and ternary mixture. It was observed that the outlet concentration of weaker retained components exceeded the inlet concentration, which is an evidence of competitive adsorption. Butanol, the strongest retained component, could replace ethanol almost completely and also most of acetone. In the end of this work, the proposed model was validated by comparison of the experimental and predicted ABE ternary breakthrough curves using the real ABE fermentation broth as a feed solution. © 2014 American Institute of Chemical Engineers.

  14. Simulation and optimization study on a solar space heating system combined with a low temperature ASHP for single family rural residential houses in Beijing

    DEFF Research Database (Denmark)

    Deng, Jie; Tian, Zhiyong; Fan, Jianhua

    2016-01-01

    A pilot project of the solar water heating system combined with a low temperature air source heat pump (ASHP) unit was established in 2014 in a detached residential house in the rural region of Beijing, in order to investigate the system application prospect for single family houses via system op...... the integrated solar space heating for reducing carbon emission, it is suggested that the Beijing municipal government should offer some financial subsidy to compensate the equivalent solar heat price per kWh....... pilot household on the current electricity price level of 0.5 RMB/kWh, comparing with the reference condition of the fully ASHP space heating. It is further found that the equivalent solar heat price per kWh is too high under the current solar market cost price and collector technology. To put forward...

  15. Effect of using a laryngeal tube on the no-flow time in a simulated, single-rescuer, basic life support setting with inexperienced users.

    Science.gov (United States)

    Meyer, O; Bucher, M; Schröder, J

    2016-03-01

    The laryngeal tube (LT) is a recommended alternative to endotracheal intubation during advanced life support (ALS). Its insertion is relatively simple; therefore, it may also serve as an alternative to bag mask ventilation (BMV) for untrained personnel performing basic life support (BLS). Data support the influence of LT on the no-flow time (NFT) compared with BMV during ALS in manikin studies. We performed a manikin study to investigate the effect of using the LT for ventilation instead of BMV on the NFT during BLS in a prospective, randomized, single-rescuer study. All 209 participants were trained in BMV, but were inexperienced in using LT; each participant performed BLS during a 4-min time period. No significant difference in total NFT (LT: mean 81.1 ± 22.7 s; BMV: mean 83.2 ± 13.1 s, p = 0.414) was found; however, significant differences in the later periods of the scenario were identified. While ventilating with the LT, the proportion of chest compressions increased significantly from 67.2 to 73.2%, whereas the proportion of chest compressions increased only marginally when performing BMV. The quality of the chest compressions and the associated ventilation rate did not differ significantly. The mean tidal volume and mean minute volume were significantly lower when performing BMV. The NFT was significantly shorter in the later periods in a single-rescuer, cardiac arrest scenario when using an LT without previous training compared with BMV with previous training. A possible explanation for this result may be the complexity and workload of alternating tasks (e.g., time loss when reclining the head and positioning the mask for each ventilation during BMV).

  16. First characterization and comparison of TEB model simulations with in situ measurements regarding radiation balance in a single urban canyon at the BOKU site (Vienna)

    Science.gov (United States)

    Oswald, Sandro; Trimmel, Heidelinde; Revesz, Michael; Nadeem, Imran; Masson, Valéry; Weihs, Philipp

    2017-04-01

    According to the World Health Organization more than half of the world population lives in a city since 2010. Predictions foresee that by 2030 six out of ten people will live in an urban area. As a result, many cities are expanding in size. Almost 10% of all urban dwellers live in megacities (defined according to UN HABITAT as a city with a population of more than 10 million). There are several effects in cities which strongly influence human health. Visible influences like the severe emissions of air pollutants by industry and traffic (e.g. Mayer H., 1999, Grimmond et al., 2010) are obvious to people but thermal stress in urban areas is only recently recognized for its strong devastating effect on human health. As a consequence, the urban environment virtually influences all weather parameters that have an impact on human comfort and thermal stress. Within this study, we investigate effects of city growth and the development of outlying districts on the local climate of Vienna. We focus particularly on the influence of urban heat island and consequent the risk for heat related illnesses or thermal stress for people. To quantify radiation balance and other important meteorological factors, we performed an extensive field campaign with three types of net radiometer in three different heights at BOKU site in August 2016. The first results indicated a strong correlation (ρ=0.96) between the Town Energy Balance (TEB) model and the measurements of the top net radiometer regarding radiation balance at roof level, meanwhile the TEB results are slightly underestimated. Further check if the measurements are reasonable, a comparison of the input values (global and direct solar radiation) for the TEB simulation with Secondary Standard measurements of ARAD site Wien Hohe Warte shows a deviation under 2% concerning interquartile range on clear sky days. The next steps will enclose TEB simulations, coupled with the mesoscale Weather Research and Forecasting (WRF) model, for

  17. Comparison of Image Uniformity with Photon Counting and Conventional Scintillation Single-Photon Emission Computed Tomography System: A Monte Carlo Simulation Study

    Directory of Open Access Journals (Sweden)

    Ho Chul Kim

    2017-06-01

    Full Text Available To avoid imaging artifacts and interpretation mistakes, an improvement of the uniformity in gamma camera systems is a very important point. We can expect excellent uniformity using cadmium zinc telluride (CZT photon counting detector (PCD because of the direct conversion of the gamma rays energy into electrons. In addition, the uniformity performance such as integral uniformity (IU, differential uniformity (DU, scatter fraction (SF, and contrast-to-noise ratio (CNR varies according to the energy window setting. In this study, we compared a PCD and conventional scintillation detector with respect to the energy windows (5%, 10%, 15%, and 20% using a 99mTc gamma source with a Geant4 Application for Tomography Emission simulation tool. The gamma camera systems used in this work are a CZT PCD and NaI(Tl conventional scintillation detector with a 1-mm thickness. According to the results, although the IU and DU results were improved with the energy window, the SF and CNR results deteriorated with the energy window. In particular, the uniformity for the PCD was higher than that of the conventional scintillation detector in all cases. In conclusion, our results demonstrated that the uniformity of the CZT PCD was higher than that of the conventional scintillation detector.

  18. Buckling analysis of defective cross-linked functionalized single- and double-walled carbon nanotubes with polyethylene chains using molecular dynamics simulations.

    Science.gov (United States)

    Ajori, S; Ansari, R; Parsapour, H

    2016-12-01

    Functionalized carbon nanotubes (CNTs) can be used for improving the mechanical properties and load transfer in nanocomposites. In this research, the buckling behavior of perfect and defective cross-linked functionalized CNTs with polyethylene (PE) chains is studied employing molecular dynamics (MD) simulations. Two different configurations with the consideration of vacancy defects, namely mapped and wrapped, are selected. According to the results, critical buckling force of cross-linked functionalized CNTs with PE chains increases as compared to pure CNTs, especially in the case of double-walled carbon nanotubes (DWCNTs). By contrast, it is demonstrated that critical strain of cross-linked functionalized CNTs decreases as compared to that of pristine CNTs. Also, it is observed that increasing the weight percentage leads to the higher increase and the decrease in critical buckling force and strain of cross-linked functionalized CNTs, respectively. Moreover, the presence of defect considerably reduces both critical buckling force and strain of cross-linked functionalized CNTs. Finally, it is shown that the critical buckling strain is more sensitive to the presence of defects as compared to critical buckling force.

  19. Analysis by Monte Carlo simulations of the sensitivity to single event upset of SRAM memories under spatial proton or terrestrial neutron environment

    International Nuclear Information System (INIS)

    Lambert, D.

    2006-07-01

    Electronic systems in space and terrestrial environments are subjected to a flow of particles of natural origin, which can induce dysfunctions. These particles can cause Single Event Upsets (SEU) in SRAM memories. Although non-destructive, the SEU can have consequences on the equipment functioning in applications requiring a great reliability (airplane, satellite, launcher, medical, etc). Thus, an evaluation of the sensitivity of the component technology is necessary to predict the reliability of a system. In atmospheric environment, the SEU sensitivity is mainly caused by the secondary ions resulting from the nuclear reactions between the neutrons and the atoms of the component. In space environment, the protons with strong energies induce the same effects as the atmospheric neutrons. In our work, a new code of prediction of the rate of SEU has been developed (MC-DASIE) in order to quantify the sensitivity for a given environment and to explore the mechanisms of failures according to technology. This code makes it possible to study various technologies of memories SRAM (Bulk and SOI) in neutron and proton environment between 1 MeV and 1 GeV. Thus, MC-DASIE was used with experiment data to study the effect of integration on the sensitivity of the memories in terrestrial environment, a comparison between the neutron and proton irradiations and the influence of the modeling of the target component on the calculation of the rate of SEU. (author)

  20. Stress Analysis on Single Cobalt/Chrome Prosthesis With a 15-mm Cantilever Placed Over 10/13/15-mm-length Implants: A Simulated Photoelastic Model Study.

    Science.gov (United States)

    Gastaldo, José Fábio Guastelli; Pimentel, Angélica Castro; Gomes, Maria Helena; Sendyk, Wilson Roberto; Laganá, Dalva Cruz

    2015-12-01

    The aim of study was to assess the stress around 10/13/15-mm implants in the mandibular area with a 15-mm cantilevered acrylic-resin-coated prostheses following the application force, using the photoelasticity method. Three photoelastic mandibular models were created containing 10-, 13-, and 15-mm implants in length and 3.75 mm in diameter. The implants had bore internal hex connections and were placed parallel to the intermental region. Abutments with 1-mm high cuffs were placed over the implants, and a single cobalt/chrome metallic prosthesis with a 15-mm cantilever, coated with thermoplastic acrylic resin, was placed on top. Loads of 1.0 and 3.0 bars were applied, and the images were photographed and assessed by photoelasticity method. The greatest stress levels were observed for the 10-mm implants. The stress pattern was the same regardless of implant length; only the magnitude of the stress along the implant body revealed changes. Increased implant length played a role in reducing stress on the investigated area of the model, and the 15-mm implants exhibited the best performance in regard to stress distribution. The highest stress levels were found in the implants closest to the cantilever and the central implant. The longest implants were more favorable in regard to the stress distribution on the peri-implant support structures in the 15-mm cantilevered prosthesis under loads.