WorldWideScience

Sample records for single molecule mechanical

  1. Electrical and mechanical effects in single-molecule junctions

    NARCIS (Netherlands)

    Seldenthuis, J.S.

    2011-01-01

    In single-molecule junctions, the behavior of a device is determined by the properties of an individual molecule. In this thesis we develop several models to describe both electrical and mechanical effects in such devices, which can be used to design molecules with a specific functionality. We show

  2. Single molecule insights on conformational selection and induced fit mechanism

    DEFF Research Database (Denmark)

    Hatzakis, Nikos

    2014-01-01

    of unsynchronized molecules, often masking intrinsic dynamic behavior of proteins and biologically significant transient intermediates. Single molecule measurements are emerging as a powerful tool for characterizing protein function. They offer the direct observation and quantification of the activity, abundance...... and lifetime of multiple states and transient intermediates in the energy landscape, that are typically averaged out in non-synchronized ensemble measurements. Here we survey new insights from single molecule studies that advance our understanding of the molecular mechanisms underlying biomolecular recognition....

  3. Mechanisms of Cellular Proteostasis: Insights from Single-Molecule Approaches

    Science.gov (United States)

    Bustamante, Carlos J.; Kaiser, Christian M.; Maillard, Rodrigo A.; Goldman, Daniel H.; Wilson, Christian A.M.

    2015-01-01

    Cells employ a variety of strategies to maintain proteome homeostasis. Beginning during protein biogenesis, the translation machinery and a number of molecular chaperones promote correct de novo folding of nascent proteins even before synthesis is complete. Another set of molecular chaperones helps to maintain proteins in their functional, native state. Polypeptides that are no longer needed or pose a threat to the cell, such as misfolded proteins and aggregates, are removed in an efficient and timely fashion by ATP-dependent proteases. In this review, we describe how applications of single-molecule manipulation methods, in particular optical tweezers, are shedding new light on the molecular mechanisms of quality control during the life cycles of proteins. PMID:24895851

  4. Dissecting contact mechanics from quantum interference in single-molecule junctions of stilbene derivatives.

    Science.gov (United States)

    Aradhya, Sriharsha V; Meisner, Jeffrey S; Krikorian, Markrete; Ahn, Seokhoon; Parameswaran, Radha; Steigerwald, Michael L; Nuckolls, Colin; Venkataraman, Latha

    2012-03-14

    Electronic factors in molecules such as quantum interference and cross-conjugation can lead to dramatic modulation and suppression of conductance in single-molecule junctions. Probing such effects at the single-molecule level requires simultaneous measurements of independent junction properties, as conductance alone cannot provide conclusive evidence of junction formation for molecules with low conductivity. Here, we compare the mechanics of the conducting para-terminated 4,4'-di(methylthio)stilbene and moderately conducting 1,2-bis(4-(methylthio)phenyl)ethane to that of insulating meta-terminated 3,3'-di(methylthio)stilbene single-molecule junctions. We simultaneously measure force and conductance across single-molecule junctions and use force signatures to obtain independent evidence of junction formation and rupture in the meta-linked cross-conjugated molecule even when no clear low-bias conductance is measured. By separately quantifying conductance and mechanics, we identify the formation of atypical 3,3'-di(methylthio)stilbene molecular junctions that are mechanically stable but electronically decoupled. While theoretical studies have envisaged many plausible systems where quantum interference might be observed, our experiments provide the first direct quantitative study of the interplay between contact mechanics and the distinctively quantum mechanical nature of electronic transport in single-molecule junctions. © 2012 American Chemical Society

  5. Role of Loading Device on Single-Molecule Mechanical Manipulation of Free Energy Landscape

    CERN Document Server

    Yoon, Gwonchan; Eom, Kilho

    2010-01-01

    Single-molecule mechanical manipulation has enabled the quantitative understanding of the kinetics of bond ruptures as well as protein unfolding mechanism. Single-molecule experiments with theoretical models have allowed one to gain insight into free energy landscape for chemical bond and/or protein folding. For mechanically induced bond rupture, the bond-rupture kinetics may be governed by loading device. However, the role of loading device on the kinetics of mechanical rupture has been rarely received much attention until recently. In this work, we have theoretically and/or computationally studied the effect of loading-device stiffness on the kinetics of mechanical unfolding. Specifically, we have considered a one-dimensional model for a bond rupture whose kinetics is depicted by Kramers' theory. It is elucidated that the kinetics of bond rupture is determined by force constant of loading device. The Brownian dynamics simulation of a bond rupture is considered in order to validate our theory. It is illustra...

  6. Single molecule dynamics at a mechanically controllable break junction in solution at room temperature.

    Science.gov (United States)

    Konishi, Tatsuya; Kiguchi, Manabu; Takase, Mai; Nagasawa, Fumika; Nabika, Hideki; Ikeda, Katsuyoshi; Uosaki, Kohei; Ueno, Kosei; Misawa, Hiroaki; Murakoshi, Kei

    2013-01-23

    The in situ observation of geometrical and electronic structural dynamics of a single molecule junction is critically important in order to further progress in molecular electronics. Observations of single molecular junctions are difficult, however, because of sensitivity limits. Here, we report surface-enhanced Raman scattering (SERS) of a single 4,4'-bipyridine molecule under conditions of in situ current flow in a nanogap, by using nano-fabricated, mechanically controllable break junction (MCBJ) electrodes. When adsorbed at room temperature on metal nanoelectrodes in solution to form a single molecule junction, statistical analysis showed that nontotally symmetric b(1) and b(2) modes of 4,4'-bipyridine were strongly enhanced relative to observations of the same modes in solid or aqueous solutions. Significant changes in SERS intensity, energy (wavenumber), and selectivity of Raman vibrational bands that are coincident with current fluctuations provide information on distinct states of electronic and geometrical structure of the single molecule junction, even under large thermal fluctuations occurring at room temperature. We observed the dynamics of 4,4'-bipyridine motion between vertical and tilting configurations in the Au nanogap via b(1) and b(2) mode switching. A slight increase in the tilting angle of the molecule was also observed by noting the increase in the energies of Raman modes and the decrease in conductance of the molecular junction.

  7. Diversity of Chemical Mechanisms in Thioredoxin Catalysis Revealed by Single-Molecule Force Spectroscopy

    Science.gov (United States)

    Perez-Jimenez, Raul; Li, Jingyuan; Kosuri, Pallav; Sanchez-Romero, Inmaculada; Wiita, Arun P.; Rodriguez-Larrea, David; Chueca, Ana; Holmgren, Arne; Miranda-Vizuete, Antonio; Becker, Katja; Cho, Seung-Hyun; Beckwith, Jon; Gelhaye, Eric; Jacquot, Jean P.; Gaucher, Eric; Sanchez-Ruiz, Jose M.; Berne, Bruce J.; Fernandez, Julio M.

    2009-01-01

    Thioredoxins are oxido-reductase enzymes present in all organisms, catalyzing the reduction of disulfide bonds in proteins. By applying a calibrated force to a substrate disulfide, the chemical mechanisms of Trx catalysis can be examined in detail at the single molecule level. Here we use single molecule force-clamp spectroscopy to explore the chemical evolution of Trx catalysis by probing the chemistry of eight different thioredoxin enzymes. While all Trxs show a characteristic Michaelis-Menten mechanism detected when the disulfide bond is stretched at low forces, two different chemical behaviors distinguish bacterial from eukaryotic-origin Trxs at high forces. Eukaryotic-origin Trxs reduce disulfide bonds through a single-electron transfer reaction (SET) whereas bacterial-origin Trxs exhibit both nucleophilic substitution (SN2) and SET reactions. A computational analysis of Trx structures identifies the evolution of the binding groove as an important factor controlling the chemistry of Trx catalysis. PMID:19597482

  8. Revealing −1 Programmed Ribosomal Frameshifting Mechanisms by Single-Molecule Techniques and Computational Methods

    Directory of Open Access Journals (Sweden)

    Kai-Chun Chang

    2012-01-01

    Full Text Available Programmed ribosomal frameshifting (PRF serves as an intrinsic translational regulation mechanism employed by some viruses to control the ratio between structural and enzymatic proteins. Most viral mRNAs which use PRF adapt an H-type pseudoknot to stimulate −1 PRF. The relationship between the thermodynamic stability and the frameshifting efficiency of pseudoknots has not been fully understood. Recently, single-molecule force spectroscopy has revealed that the frequency of −1 PRF correlates with the unwinding forces required for disrupting pseudoknots, and that some of the unwinding work dissipates irreversibly due to the torsional restraint of pseudoknots. Complementary to single-molecule techniques, computational modeling provides insights into global motions of the ribosome, whose structural transitions during frameshifting have not yet been elucidated in atomic detail. Taken together, recent advances in biophysical tools may help to develop antiviral therapies that target the ubiquitous −1 PRF mechanism among viruses.

  9. [Biophysics of single molecules].

    Science.gov (United States)

    Serdiuk, I N; Deriusheva, E I

    2011-01-01

    The modern methods of research of biological molecules whose application led to the development of a new field of science, biophysics of single molecules, are reviewed. The measurement of the characteristics of single molecules enables one to reveal their individual features, and it is just for this reason that much more information can be obtained from one molecule than from the entire ensample of molecules. The high sensitivity of the methods considered in detail makes it possible to come close to the solution of the basic problem of practical importance, namely, the determination of the nucleotide sequence of a single DNA molecule.

  10. Watching single molecules dance

    Science.gov (United States)

    Mehta, Amit Dinesh

    Molecular motors convert chemical energy, from ATP hydrolysis or ion flow, into mechanical motion. A variety of increasingly precise mechanical probes have been developed to monitor and perturb these motors at the single molecule level. Several outstanding questions can be best approached at the single molecule level. These include: how far does a motor progress per energy quanta consumed? how does its reaction cycle respond to load? how many productive catalytic cycles can it undergo per diffusional encounter with its track? and what is the mechanical stiffness of a single molecule connection? A dual beam optical trap, in conjunction with in vitro ensemble motility assays, has been used to characterize two members of the myosin superfamily: muscle myosin II and chick brain myosin V. Both move the helical polymer actin, but myosin II acts in large ensembles to drive muscle contraction or cytokinesis, while myosin V acts in small numbers to transport vesicles. An optical trapping apparatus was rendered sufficiently precise to identify a myosin working stroke with 1nm or so, barring systematic errors such as those perhaps due to random protein orientations. This and other light microscopic motility assays were used to characterize myosin V: unlike myosin II this vesicle transport protein moves through many increments of travel while remaining strongly bound to a single actin filament. The step size, stall force, and travel distance of myosin V reveal a remarkably efficient motor capable of moving along a helical track for over a micrometer without significantly spiraling around it. Such properties are fully consistent with the putative role of an organelle transport motor, present in small numbers to maintain movement over long ranges relative to cellular size scales. The contrast between myosin II and myosin V resembles that between a human running on the moon and one walking on earth, where the former allows for faster motion when in larger ensembles but for less

  11. Single molecule electronics and devices.

    Science.gov (United States)

    Tsutsui, Makusu; Taniguchi, Masateru

    2012-01-01

    The manufacture of integrated circuits with single-molecule building blocks is a goal of molecular electronics. While research in the past has been limited to bulk experiments on self-assembled monolayers, advances in technology have now enabled us to fabricate single-molecule junctions. This has led to significant progress in understanding electron transport in molecular systems at the single-molecule level and the concomitant emergence of new device concepts. Here, we review recent developments in this field. We summarize the methods currently used to form metal-molecule-metal structures and some single-molecule techniques essential for characterizing molecular junctions such as inelastic electron tunnelling spectroscopy. We then highlight several important achievements, including demonstration of single-molecule diodes, transistors, and switches that make use of electrical, photo, and mechanical stimulation to control the electron transport. We also discuss intriguing issues to be addressed further in the future such as heat and thermoelectric transport in an individual molecule.

  12. Fluorescence single-molecule imaging of actin turnover and regulatory mechanisms.

    Science.gov (United States)

    Watanabe, Naoki

    2012-01-01

    Cells must rapidly remodel the actin filament network to achieve various cellular functions. Actin filament turnover is a dynamic process that plays crucial roles in cell adhesion, locomotion, cytokinesis, endocytosis, phagocytosis, tissue remodeling, etc., and is regulated by cell signaling cascades. Success in elucidating dynamic biological processes such as actin-based motility relies on the means enabling real time monitoring of the process. The invention of live-cell fluorescence single-molecule imaging has opened a window for direct viewing of various actin remodeling processes. In general, assembly and dissociation of actin and its regulators turned out to occur at the faster rates than previously estimated by biochemical and structural analyses. Cells undergo such fast continuous exchange of the components perhaps not only to drive actin remodeling but also to facilitate rapid response in many other cell mechanics and signaling cascades. This chapter describes how epifluorescence single-molecule imaging which visualizes deeper area than the TIRF microscopy is achieved in XTC cells, the currently best platform for this approach. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Single Molecule Force Spectroscopy Reveals that Electrostatic Interactions Affect the Mechanical Stability of Proteins

    Science.gov (United States)

    Zheng, Peng; Cao, Yi; Bu, Tianjia; Straus, Suzana K.; Li, Hongbin

    2011-01-01

    It is well known that electrostatic interactions play important roles in determining the thermodynamic stability of proteins. However, the investigation into the role of electrostatic interactions in mechanical unfolding of proteins has just begun. Here we used single molecule atomic force microscopy techniques to directly evaluate the effect of electrostatic interactions on the mechanical stability of a small protein GB1. We engineered a bi-histidine motif into the force-bearing region of GB1. By varying the pH, histidine residues can switch between protonated and deprotonated states, leading to the change of the electrostatic interactions between the two histidine residues. We found that the mechanical unfolding force of the engineered protein decreased by ∼34% (from 115 pN to 76 pN) on changing the pH from 8.5 to 3, due to the increased electrostatic repulsion between the two positively charged histidines at acidic pH. Our results demonstrated that electrostatic interactions can significantly affect the mechanical stability of elastomeric proteins, and modulating the electrostatic interactions of key charged residues can become a promising method for regulating the mechanical stability of elastomeric proteins. PMID:21402036

  14. Single molecule charge transport : From a quantum mechanical to a classical description

    NARCIS (Netherlands)

    Kocherzhenko, A.A.; Grozema, F.C.; Siebbeles, L.D.A.

    2010-01-01

    This paper explores charge transport at the single molecule level. The conductive properties of both small organic molecules and conjugated polymers (molecular wires) are considered. In particular, the reasons for the transition from fully coherent to incoherent charge transport and the approaches

  15. Single molecule electronic devices.

    Science.gov (United States)

    Song, Hyunwook; Reed, Mark A; Lee, Takhee

    2011-04-12

    Single molecule electronic devices in which individual molecules are utilized as active electronic components constitute a promising approach for the ultimate miniaturization and integration of electronic devices in nanotechnology through the bottom-up strategy. Thus, the ability to understand, control, and exploit charge transport at the level of single molecules has become a long-standing desire of scientists and engineers from different disciplines for various potential device applications. Indeed, a study on charge transport through single molecules attached to metallic electrodes is a very challenging task, but rapid advances have been made in recent years. This review article focuses on experimental aspects of electronic devices made with single molecules, with a primary focus on the characterization and manipulation of charge transport in this regime. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Rocket launcher mechanism of collaborative actin assembly defined by single-molecule imaging

    Science.gov (United States)

    Breitsprecher, Dennis; Jaiswal, Richa; Bombardier, Jeffrey P.; Gould, Christopher J.; Gelles, Jeff; Goode, Bruce L.

    2013-01-01

    Interacting sets of actin assembly factors work together in cells, but the underlying mechanisms have remained obscure. We used triple-color single molecule fluorescence microscopy to image the tumor-suppressor Adenomateous polyposis coli (APC) and the formin mDia1 during filament assembly. Complexes consisting of APC, mDia1, and actin monomers intiated actin filament formation, overcoming inhibition by capping protein and profilin. Upon filament polymerization, the complexes separated, with mDia1 moving processively on growing barbed ends while APC remained at the site of nucleation. Thus, the two assembly factors directly interact to initiate filament assembly, and then separate but retain independent associations with either end of the growing filament. PMID:22654058

  17. Single molecules and nanotechnology

    CERN Document Server

    Vogel, Horst

    2007-01-01

    This book focuses on recent advances in the rapidly evolving field of single molecule research. These advances are of importance for the investigation of biopolymers and cellular biochemical reactions, and are essential to the development of quantitative biology. Written by leading experts in the field, the articles cover a broad range of topics, including: quantum photonics of organic dyes and inorganic nanoparticles their use in detecting properties of single molecules the monitoring of single molecule (enzymatic) reactions single protein (un)folding in nanometer-sized confined volumes the dynamics of molecular interactions in biological cells The book is written for advanced students and scientists who wish to survey the concepts, techniques and results of single molecule research and assess them for their own scientific activities.

  18. Quantitatively probing propensity for structural transitions in engineered virus nanoparticles by single-molecule mechanical analysis

    Science.gov (United States)

    Castellanos, Milagros; Carrillo, Pablo J. P.; Mateu, Mauricio G.

    2015-03-01

    Viruses are increasingly being studied from the perspective of fundamental physics at the nanoscale as biologically evolved nanodevices with many technological applications. In viral particles of the minute virus of mice (MVM), folded segments of the single-stranded DNA genome are bound to the capsid inner wall and act as molecular buttresses that increase locally the mechanical stiffness of the particle. We have explored whether a quantitative linkage exists in MVM particles between their DNA-mediated stiffening and impairment of a heat-induced, virus-inactivating structural change. A series of structurally modified virus particles with disrupted capsid-DNA interactions and/or distorted capsid cavities close to the DNA-binding sites were engineered and characterized, both in classic kinetics assays and by single-molecule mechanical analysis using atomic force microscopy. The rate constant of the virus inactivation reaction was found to decrease exponentially with the increase in elastic constant (stiffness) of the regions closer to DNA-binding sites. The application of transition state theory suggests that the height of the free energy barrier of the virus-inactivating structural transition increases linearly with local mechanical stiffness. From a virological perspective, the results indicate that infectious MVM particles may have acquired the biological advantage of increased survival under thermal stress by evolving architectural elements that rigidify the particle and impair non-productive structural changes. From a nanotechnological perspective, this study provides proof of principle that determination of mechanical stiffness and its manipulation by protein engineering may be applied for quantitatively probing and tuning the conformational dynamics of virus-based and other protein-based nanoassemblies.Viruses are increasingly being studied from the perspective of fundamental physics at the nanoscale as biologically evolved nanodevices with many technological

  19. Single-Molecule Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 2. Single-Molecule Spectroscopy: Every Molecule is Different! Kankan Bhattacharyya. General Article Volume 20 Issue 2 February 2015 pp 151-164. Fulltext. Click here to view fulltext PDF. Permanent link:

  20. Mechanical stability of bivalent transition metal complexes analyzed by single-molecule force spectroscopy

    Directory of Open Access Journals (Sweden)

    Manuel Gensler

    2015-05-01

    Full Text Available Multivalent biomolecular interactions allow for a balanced interplay of mechanical stability and malleability, and nature makes widely use of it. For instance, systems of similar thermal stability may have very different rupture forces. Thus it is of paramount interest to study and understand the mechanical properties of multivalent systems through well-characterized model systems. We analyzed the rupture behavior of three different bivalent pyridine coordination complexes with Cu2+ in aqueous environment by single-molecule force spectroscopy. Those complexes share the same supramolecular interaction leading to similar thermal off-rates in the range of 0.09 and 0.36 s−1, compared to 1.7 s−1 for the monovalent complex. On the other hand, the backbones exhibit different flexibility, and we determined a broad range of rupture lengths between 0.3 and 1.1 nm, with higher most-probable rupture forces for the stiffer backbones. Interestingly, the medium-flexible connection has the highest rupture forces, whereas the ligands with highest and lowest rigidity seem to be prone to consecutive bond rupture. The presented approach allows separating bond and backbone effects in multivalent model systems.

  1. Single-molecule FRET unveils induced-fit mechanism for substrate selectivity in flap endonuclease 1

    KAUST Repository

    Rashid, Fahad

    2017-02-23

    Human flap endonuclease 1 (FEN1) and related structure-specific 5\\'nucleases precisely identify and incise aberrant DNA structures during replication, repair and recombination to avoid genomic instability. Yet, it is unclear how the 5\\'nuclease mechanisms of DNA distortion and protein ordering robustly mediate efficient and accurate substrate recognition and catalytic selectivity. Here, single-molecule sub-millisecond and millisecond analyses of FEN1 reveal a protein-DNA induced-fit mechanism that efficiently verifies substrate and suppresses off-target cleavage. FEN1 sculpts DNA with diffusion-limited kinetics to test DNA substrate. This DNA distortion mutually \\'locks\\' protein and DNA conformation and enables substrate verification with extreme precision. Strikingly, FEN1 never misses cleavage of its cognate substrate while blocking probable formation of catalytically competent interactions with noncognate substrates and fostering their pre-incision dissociation. These findings establish FEN1 has practically perfect precision and that separate control of induced-fit substrate recognition sets up the catalytic selectivity of the nuclease active site for genome stability.

  2. Charge transport through single molecules in two- and three-terminal mechanical break junctions

    NARCIS (Netherlands)

    Martin, C.A.

    2010-01-01

    During the past decades the downscaling of integrated circuits has been governed by Moore's law, which predicts device dimensions on the order of 10 nm in 2020. Fundamental research in molecular electronics explores the possibility of fabricating such nanoscale devices from single molecules, which

  3. Single molecule logical devices.

    Science.gov (United States)

    Renaud, Nicolas; Hliwa, Mohamed; Joachim, Christian

    2012-01-01

    After almost 40 years of development, molecular electronics has given birth to many exciting ideas that range from molecular wires to molecular qubit-based quantum computers. This chapter reviews our efforts to answer a simple question: how smart can a single molecule be? In our case a molecule able to perform a simple Boolean function is a child prodigy. Following the Aviram and Ratner approach, these molecules are inserted between several conducting electrodes. The electronic conduction of the resulting molecular junction is extremely sensitive to the chemical nature of the molecule. Therefore designing this latter correctly allows the implementation of a given function inside the molecular junction. Throughout the chapter different approaches are reviewed, from hybrid devices to quantum molecular logic gates. We particularly stress that one can implement an entire logic circuit in a single molecule, using either classical-like intramolecular connections, or a deformation of the molecular orbitals induced by a conformational change of the molecule. These approaches are radically different from the hybrid-device approach, where several molecules are connected together to build the circuit.

  4. Single Molecule Electronics and Devices

    Science.gov (United States)

    Tsutsui, Makusu; Taniguchi, Masateru

    2012-01-01

    The manufacture of integrated circuits with single-molecule building blocks is a goal of molecular electronics. While research in the past has been limited to bulk experiments on self-assembled monolayers, advances in technology have now enabled us to fabricate single-molecule junctions. This has led to significant progress in understanding electron transport in molecular systems at the single-molecule level and the concomitant emergence of new device concepts. Here, we review recent developments in this field. We summarize the methods currently used to form metal-molecule-metal structures and some single-molecule techniques essential for characterizing molecular junctions such as inelastic electron tunnelling spectroscopy. We then highlight several important achievements, including demonstration of single-molecule diodes, transistors, and switches that make use of electrical, photo, and mechanical stimulation to control the electron transport. We also discuss intriguing issues to be addressed further in the future such as heat and thermoelectric transport in an individual molecule. PMID:22969345

  5. Mechanical Response of Single Filamin A (ABP-280) Molecules and Its Role in the Actin/Filamin A Gel

    Science.gov (United States)

    Sano, Ryoko; Furuike, Shou; Ito, Tadanao; Ohashi, Kazuyo; Yamazaki, Masahito

    2004-04-01

    Actin/filamin A gel plays important roles in mechanical response of cells. We found a force (50 to 220 pN)-induced unfolding of single filamin A molecules using AFM, and have proposed a hypothesis on the role of single filamin A in the novel property of viscoelasticity of actin/filamin A gel. We also investigated structure and its dynamics of actin/filamin A gel formed in a giant liposome using fluorescence microscopy.

  6. Studying the mechanism of CD47-SIRPα interactions on red blood cells by single molecule force spectroscopy

    Science.gov (United States)

    Pan, Yangang; Wang, Feng; Liu, Yanhou; Jiang, Junguang; Yang, Yong-Guang; Wang, Hongda

    2014-08-01

    The interaction forces and binding kinetics between SIRPα and CD47 were investigated by single-molecule force spectroscopy (SMFS) on both fresh and experimentally aged human red blood cells (hRBCs). We found that CD47 experienced a conformation change after oxidation, which influenced the interaction force and the position of the energy barrier between SIRPα and CD47. Our results are significant for understanding the mechanism of phagocytosis of red blood cells at the single molecule level.The interaction forces and binding kinetics between SIRPα and CD47 were investigated by single-molecule force spectroscopy (SMFS) on both fresh and experimentally aged human red blood cells (hRBCs). We found that CD47 experienced a conformation change after oxidation, which influenced the interaction force and the position of the energy barrier between SIRPα and CD47. Our results are significant for understanding the mechanism of phagocytosis of red blood cells at the single molecule level. Electronic supplementary information (ESI) available: Experimental section. See DOI: 10.1039/c4nr02889a

  7. A Single-Molecule View of Genome Editing Proteins: Biophysical Mechanisms for TALEs and CRISPR/Cas9.

    Science.gov (United States)

    Cuculis, Luke; Schroeder, Charles M

    2017-06-07

    Exciting new advances in genome engineering have unlocked the potential to radically alter the treatment of human disease. In this review, we discuss the application of single-molecule techniques to uncover the mechanisms behind two premier classes of genome editing proteins: transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system (Cas). These technologies have facilitated a striking number of gene editing applications in a variety of organisms; however, we are only beginning to understand the molecular mechanisms governing the DNA editing properties of these systems. Here, we discuss the DNA search and recognition process for TALEs and Cas9 that have been revealed by recent single-molecule experiments.

  8. Mechanical stability of a microscope setup working at a few kelvins for single-molecule localization

    Energy Technology Data Exchange (ETDEWEB)

    Hinohara, Takuya; Hamada, Yuki I.; Nakamura, Ippei; Matsushita, Michio, E-mail: matsushita@phys.titech.ac.jp; Fujiyoshi, Satoru

    2013-06-20

    Highlights: ► Localization precision of the image of a point source is free from diffraction. ► Prerequisite for the precision is stability of the sample and objective at 1.5 K. ► We developed a rigid imaging unit to make image of scattering of a sample bead. ► The centroid of the scattering image of a bead was determined for 800 images. ► The standard deviation of the 800 centroids measured in 17 min was 0.85 nm. - Abstract: A great advantage of single-molecule fluorescence imaging is the localization precision of molecule beyond the diffraction limit. Although longer signal-acquisition yields higher precision, acquisition time at room temperature is normally limited by photobleaching, thermal diffusion, and so on. At low temperature of a few kelvins, much longer acquisition is possible and will improve precision if the sample and the objective are held stably enough. The present work examined holding stability of the sample and objective at 1.5 K in superfluid helium in the helium bath. The stability was evaluated by localization precision of a point scattering source of a polymer bead. Scattered light was collected by the objective, and imaged by a home-built rigid imaging unit. The standard deviation of the centroid position determined for 800 images taken continuously in 17 min was 0.5 nm in the horizontal and 0.9 nm in the vertical directions.

  9. Mechanism for Si–Si Bond Rupture in Single Molecule Junctions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Haixing; Kim, Nathaniel T.; Su, Timothy A.; Steigerwald, Michael L.; Nuckolls, Colin; Darancet, Pierre; Leighton, James L.; Venkataraman, Latha

    2016-12-14

    The stability of chemical bonds can be studied experimentally by rupturing single molecule junctions under applied voltage. Here, we compare voltage-induced bond rupture in two Si–Si backbones: one has no alternate conductive pathway whereas the other contains an additional naphthyl pathway in parallel to the Si–Si bond. We show that in contrast to the first system, the second can conduct through the naphthyl group when the Si–Si bond is ruptured using an applied voltage. We investigate this voltage induced Si–Si bond rupture by ab initio density functional theory calculations and molecular dynamics simulations that ultimately demonstrate that the excitation of molecular vibrational modes by tunneling electrons leads to homolytic Si–Si bond rupture.

  10. Lanthanide single molecule magnets

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jinkui; Zhang, Peng [Chinese Academy of Sciences, Changchun (China). Changchun Inst. of Applied Chemistry

    2015-10-01

    This book begins by providing basic information on single-molecule magnets (SMMs), covering the magnetism of lanthanide, the characterization and relaxation dynamics of SMMs and advanced means of studying lanthanide SMMs. It then systematically introduces lanthanide SMMs ranging from mononuclear and dinuclear to polynuclear complexes, classifying them and highlighting those SMMs with high barrier and blocking temperatures - an approach that provides some very valuable indicators for the structural features needed to optimize the contribution of an Ising type spin to a molecular magnet. The final chapter presents some of the newest developments in the lanthanide SMM field, such as the design of multifunctional and stimuli-responsive magnetic materials as well as the anchoring and organization of the SMMs on surfaces. In addition, the crystal structure and magnetic data are clearly presented with a wealth of illustrations in each chapter, helping newcomers and experts alike to better grasp ongoing trends and explore new directions.

  11. Lanthanide single molecule magnets

    CERN Document Server

    Tang, Jinkui

    2015-01-01

    This book begins by providing basic information on single-molecule magnets (SMMs), covering the magnetism of lanthanide, the characterization and relaxation dynamics of SMMs, and advanced means of studying lanthanide SMMs. It then systematically introduces lanthanide SMMs ranging from mononuclear and dinuclear to polynuclear complexes, classifying them and highlighting those SMMs with high barrier and blocking temperatures – an approach that provides some very valuable indicators for the structural features needed to optimize the contribution of an Ising type spin to a molecular magnet. The final chapter presents some of the newest developments in the lanthanide SMM field, such as the design of multifunctional and stimuli-responsive magnetic materials as well as the anchoring and organization of the SMMs on surfaces. In addition, the crystal structure and magnetic data are clearly presented with a wealth of illustrations in each chapter, helping newcomers and experts alike to better grasp ongoing trends and...

  12. Extracting physical chemistry from mechanics: a new approach to investigate DNA interactions with drugs and proteins in single molecule experiments.

    Science.gov (United States)

    Rocha, M S

    2015-09-01

    In this review we focus on the idea of establishing connections between the mechanical properties of DNA-ligand complexes and the physical chemistry of DNA-ligand interactions. This type of connection is interesting because it opens the possibility of performing a robust characterization of such interactions by using only one experimental technique: single molecule stretching. Furthermore, it also opens new possibilities in comparing results obtained by very different approaches, in particular when comparing single molecule techniques to ensemble-averaging techniques. We start the manuscript reviewing important concepts of DNA mechanics, from the basic mechanical properties to the Worm-Like Chain model. Next we review the basic concepts of the physical chemistry of DNA-ligand interactions, revisiting the most important models used to analyze the binding data and discussing their binding isotherms. Then, we discuss the basic features of the single molecule techniques most used to stretch DNA-ligand complexes and to obtain "force × extension" data, from which the mechanical properties of the complexes can be determined. We also discuss the characteristics of the main types of interactions that can occur between DNA and ligands, from covalent binding to simple electrostatic driven interactions. Finally, we present a historical survey of the attempts to connect mechanics to physical chemistry for DNA-ligand systems, emphasizing a recently developed fitting approach useful to connect the persistence length of DNA-ligand complexes to the physicochemical properties of the interaction. Such an approach in principle can be used for any type of ligand, from drugs to proteins, even if multiple binding modes are present.

  13. Single molecule detection, thermal fluctuation and life

    Science.gov (United States)

    YANAGIDA, Toshio; ISHII, Yoshiharu

    2017-01-01

    Single molecule detection has contributed to our understanding of the unique mechanisms of life. Unlike artificial man-made machines, biological molecular machines integrate thermal noises rather than avoid them. For example, single molecule detection has demonstrated that myosin motors undergo biased Brownian motion for stepwise movement and that single protein molecules spontaneously change their conformation, for switching to interactions with other proteins, in response to thermal fluctuation. Thus, molecular machines have flexibility and efficiency not seen in artificial machines. PMID:28190869

  14. Single-molecule exploration of photoprotective mechanisms in light-harvesting complexes

    Science.gov (United States)

    Yang, Hsiang-Yu; Schlau-Cohen, Gabriela S.; Gwizdala, Michal; Krüger, Tjaart; Xu, Pengqi; Croce, Roberta; van Grondelle, Rienk; Moerner, W. E.

    2015-03-01

    Plants harvest sunlight by converting light energy to electron flow through the primary events in photosynthesis. One important question is how the light harvesting machinery adapts to fluctuating sunlight intensity. As a result of various regulatory processes, efficient light harvesting and photoprotection are balanced. Some of the biological steps in the photoprotective processes have been extensively studied and physiological regulatory factors have been identified. For example, the effect of lumen pH in changing carotenoid composition has been explored. However, the importance of photophysical dynamics in the initial light-harvesting steps and its relation to photoprotection remain poorly understood. Conformational and excited-state dynamics of multi-chromophore pigment-protein complexes are often difficult to study and limited information can be extracted from ensemble-averaged measurements. To address the problem, we use the Anti-Brownian ELectrokinetic (ABEL) trap to investigate the fluorescence from individual copies of light-harvesting complex II (LHCII), the primary antenna protein in higher plants, in a solution-phase environment. Perturbative surface immobilization or encapsulation schemes are avoided, and therefore the intrinsic dynamics and heterogeneity in the fluorescence of individual proteins are revealed. We perform simultaneous measurements of fluorescence intensity (brightness), excited-state lifetime, and emission spectrum of single trapped proteins. By analyzing the correlated changes between these observables, we identify forms of LHCII with different fluorescence intensities and excited-state lifetimes. The distinct forms may be associated with different energy dissipation mechanisms in the energy transfer chain. Changes of relative populations in response to pH and carotenoid composition are observed, which may extend our understanding of the molecular mechanisms of photoprotection.

  15. Quantum transport through single molecules

    NARCIS (Netherlands)

    Osorio Oliveros, E.A.

    2009-01-01

    This thesis describes three-terminal transport measurements through single molecules. The interest in this field stems from the dream that single molecules will form the building blocks for future nanoscale electronic devices. The advantages are their small size -nanometers-, and their synthetic

  16. Single-Molecule Spectroscopy

    Indian Academy of Sciences (India)

    IAS Admin

    a heterogeneous medium the local environment of each molecule may be different. This gives rise to large vari- ations of those properties which depend on the medium. (e.g., local polarity or viscosity). For instance, in a bio- logical cell the local environment at the membrane may be drastically different from that in the ...

  17. Single molecule force spectroscopy reveals critical roles of hydrophobic core packing in determining the mechanical stability of protein GB1.

    Science.gov (United States)

    Bu, Tianjia; Wang, Hui-Chuan Eileen; Li, Hongbin

    2012-08-21

    Understanding molecular determinants of protein mechanical stability is important not only for elucidating how elastomeric proteins are designed and functioning in biological systems but also for designing protein building blocks with defined nanomechanical properties for constructing novel biomaterials. GB1 is a small α/β protein and exhibits significant mechanical stability. It is thought that the shear topology of GB1 plays an important role in determining its mechanical stability. Here, we combine single molecule atomic force microscopy and protein engineering techniques to investigate the effect of side chain reduction and hydrophobic core packing on the mechanical stability of GB1. We engineered seven point mutants and carried out mechanical φ-value analysis of the mechanical unfolding of GB1. We found that three mutations, which are across the surfaces of two subdomains that are to be sheared by the applied stretching force, in the hydrophobic core (F30L, Y45L, and F52L) result in significant decrease in mechanical unfolding force of GB1. The mechanical unfolding force of these mutants drop by 50-90 pN compared with wild-type GB1, which unfolds at around 180 pN at a pulling speed of 400 nm/s. These results indicate that hydrophobic core packing plays an important role in determining the mechanical stability of GB1 and suggest that optimizing hydrophobic interactions across the surfaces that are to be sheared will likely be an efficient method to enhance the mechanical stability of GB1 and GB1 homologues.

  18. Insulator-protected mechanically controlled break junctions for measuring single-molecule conductance in aqueous environments

    NARCIS (Netherlands)

    Muthusubramanian, N.; Galan, E.; Maity, C.; Eelkema, R.; Grozema, F.C.; van der Zant, H.S.J.

    2016-01-01

    We present a method to fabricate insulated gold mechanically controlled break junctions (MCBJ) by coating the metal with a thin layer of aluminum oxide using plasma enhanced atomic layer deposition. The Al2O3 thickness deposited on the MCBJ devices was varied from 2 to 15 nm

  19. Single-molecule folding mechanism of an EF-hand neuronal calcium sensor

    DEFF Research Database (Denmark)

    Heiðarsson, Pétur Orri; Otazo, Mariela R.; Bellucci, Luca

    2013-01-01

    of the N domain, showing striking interdomain dependence. Molecular dynamics results reveal the atomistic details of the unfolding process and rationalize the different domain stabilities during mechanical unfolding. Through constant-force experiments and hidden Markov model analysis, the free energy...

  20. Theoretical Investigations Regarding Single Molecules

    DEFF Research Database (Denmark)

    Pedersen, Kim Georg Lind

    Neoclassical Valence Bond Theory, Quantum Transport, Quantum Interference, Kondo Effect, and Electron Pumping. Trap a single organic molecule between two electrodes and apply a bias voltage across this "molecular junction". When electrons pass through the molecule, the different electron paths can...... interfere destructively or constructively. Destructive interference effects in electron transport could potentially improve thermo-electrics, organic logic circuits and energy harvesting. We have investigated destructive interference in off-resonant transport through organic molecules, and have found a set...

  1. Single-molecule chemo-mechanical unfolding reveals multiple transition state barriers in a small single-domain protein

    National Research Council Canada - National Science Library

    Guinn, Emily J; Jagannathan, Bharat; Marqusee, Susan

    2015-01-01

    .... Here, we use a combination of chemical denaturant, mechanical force and site-directed mutations to demonstrate the presence of multiple unfolding pathways in a simple, two-state folding protein...

  2. Fluorescence Microscopy of Single Molecules

    Science.gov (United States)

    Zimmermann, Jan; van Dorp, Arthur; Renn, Alois

    2004-01-01

    The investigation of photochemistry and photophysics of individual quantum systems is described with the help of a wide-field fluorescence microscopy approach. The fluorescence single molecules are observed in real time.

  3. Single molecule tracking

    Science.gov (United States)

    Shera, E. Brooks

    1988-01-01

    A detection system is provided for identifying individual particles or molecules having characteristic emission in a flow train of the particles in a flow cell. A position sensitive sensor is located adjacent the flow cell in a position effective to detect the emissions from the particles within the flow cell and to assign spatial and temporal coordinates for the detected emissions. A computer is then enabled to predict spatial and temporal coordinates for the particle in the flow train as a function of a first detected emission. Comparison hardware or software then compares subsequent detected spatial and temporal coordinates with the predicted spatial and temporal coordinates to determine whether subsequently detected emissions originate from a particle in the train of particles. In one embodiment, the particles include fluorescent dyes which are excited to fluoresce a spectrum characteristic of the particular particle. Photones are emitted adjacent at least one microchannel plate sensor to enable spatial and temporal coordinates to be assigned. The effect of comparing detected coordinates with predicted coordinates is to define a moving sample volume which effectively precludes the effects of background emissions.

  4. Special Issue: Single Molecule Techniques

    OpenAIRE

    Hans H. Gorris

    2015-01-01

    Technological advances in the detection and manipulation of single molecules have enabled new insights into the function, structure and interactions of biomolecules. This Special Issue was launched to account for the rapid progress in the field of “Single Molecule Techniques”. Four original research articles and seven review articles provide an introduction, as well as an in-depth discussion, of technical developments that are indispensable for the characterization of individual biomolecules....

  5. Single-Molecule Stochastic Resonance

    Directory of Open Access Journals (Sweden)

    K. Hayashi

    2012-08-01

    Full Text Available Stochastic resonance (SR is a well-known phenomenon in dynamical systems. It consists of the amplification and optimization of the response of a system assisted by stochastic (random or probabilistic noise. Here we carry out the first experimental study of SR in single DNA hairpins which exhibit cooperatively transitions from folded to unfolded configurations under the action of an oscillating mechanical force applied with optical tweezers. By varying the frequency of the force oscillation, we investigate the folding and unfolding kinetics of DNA hairpins in a periodically driven bistable free-energy potential. We measure several SR quantifiers under varied conditions of the experimental setup such as trap stiffness and length of the molecular handles used for single-molecule manipulation. We find that a good quantifier of the SR is the signal-to-noise ratio (SNR of the spectral density of measured fluctuations in molecular extension of the DNA hairpins. The frequency dependence of the SNR exhibits a peak at a frequency value given by the resonance-matching condition. Finally, we carry out experiments on short hairpins that show how SR might be useful for enhancing the detection of conformational molecular transitions of low SNR.

  6. Watching single protein molecules in action

    DEFF Research Database (Denmark)

    Heiðarsson, Pétur Orri

    . This knowledge-gap is partly due to our inability to unveil the details of folding mechanisms that can be buried in the ensemble-averaged output of traditional bulk methods. Single-molecule techniques have provided a perspective beyond the ensemble average and enable studying the folding trajectories of protein...... molecules in unprecedented detail. These methods can, in principle, detect rare folding or misfolding events, and ultimately lead to a reconstruction of the free energy landscape. In this thesis, the folding mechanism of both single- and double-domain proteins is unraveled using single-molecule optical......, with transition states located almost halfway between the native and unfolded states. When pulled from the N- and C-termini, both experiments and simulations suggested that the molecule populates a transition state that resembles that observed during chemical denaturation, with respect to structure and position...

  7. OPE3 : A model system for single-molecule transport

    NARCIS (Netherlands)

    Frisenda, R.

    2016-01-01

    In this dissertation, charge-transport through individual organic molecules is investigated. The single molecules are contacted with two-terminal mechanically controllable break junction gold electrodes and their electrical and mechanical behavior studied at room and low temperature.

  8. Ultrafast dynamics of single molecules.

    Science.gov (United States)

    Brinks, Daan; Hildner, Richard; van Dijk, Erik M H P; Stefani, Fernando D; Nieder, Jana B; Hernando, Jordi; van Hulst, Niek F

    2014-04-21

    The detection of individual molecules has found widespread application in molecular biology, photochemistry, polymer chemistry, quantum optics and super-resolution microscopy. Tracking of an individual molecule in time has allowed identifying discrete molecular photodynamic steps, action of molecular motors, protein folding, diffusion, etc. down to the picosecond level. However, methods to study the ultrafast electronic and vibrational molecular dynamics at the level of individual molecules have emerged only recently. In this review we present several examples of femtosecond single molecule spectroscopy. Starting with basic pump-probe spectroscopy in a confocal detection scheme, we move towards deterministic coherent control approaches using pulse shapers and ultra-broad band laser systems. We present the detection of both electronic and vibrational femtosecond dynamics of individual fluorophores at room temperature, showing electronic (de)coherence, vibrational wavepacket interference and quantum control. Finally, two colour phase shaping applied to photosynthetic light-harvesting complexes is presented, which allows investigation of the persistent coherence in photosynthetic complexes under physiological conditions at the level of individual complexes.

  9. Single-molecule magnet engineering

    DEFF Research Database (Denmark)

    Pedersen, Kasper Steen; Bendix, Jesper; Clérac, Rodolphe

    2014-01-01

    Tailoring the specific magnetic properties of any material relies on the topological control of the constituent metal ion building blocks. Although this general approach does not seem to be easily applied to traditional inorganic bulk magnets, coordination chemistry offers a unique tool...... to delicately tune, for instance, the properties of molecules that behave as "magnets", the so-called single-molecule magnets (SMMs). Although many interesting SMMs have been prepared by a more or less serendipitous approach, the assembly of predesigned, isolatable molecular entities into higher nuclearity...... complexes constitutes an elegant and fascinating strategy. This Feature article focuses on the use of building blocks or modules (both terms being used indiscriminately) to direct the structure, and therefore also the magnetic properties, of metal ion complexes exhibiting SMM behaviour. This journal is...

  10. Handbook of Single-Molecule Biophysics

    CERN Document Server

    Hinterdorfer, Peter

    2009-01-01

    The last decade has seen the development of a number of novel biophysical methods that allow the manipulation and study of individual biomolecules. The ability to monitor biological processes at this fundamental level of sensitivity has given rise to an improved understanding of the underlying molecular mechanisms. Through the removal of ensemble averaging, distributions and fluctuations of molecular properties can be characterized, transient intermediates identified, and catalytic mechanisms elucidated. By applying forces on biomolecules while monitoring their activity, important information can be obtained on how proteins couple function to structure. The Handbook of Single-Molecule Biophysics provides an introduction to these techniques and presents an extensive discussion of the new biological insights obtained from them. Coverage includes: Experimental techniques to monitor and manipulate individual biomolecules The use of single-molecule techniques in super-resolution and functional imaging Single-molec...

  11. Single-Molecule Interfacial Electron Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Lu, H. Peter [Bowling Green State Univ., Bowling Green, OH (United States). Dept. of Chemistry and Center for Photochemical Sciences

    2017-11-28

    This project is focused on the use of single-molecule high spatial and temporal resolved techniques to study molecular dynamics in condensed phase and at interfaces, especially, the complex reaction dynamics associated with electron and energy transfer rate processes. The complexity and inhomogeneity of the interfacial ET dynamics often present a major challenge for a molecular level comprehension of the intrinsically complex systems, which calls for both higher spatial and temporal resolutions at ultimate single-molecule and single-particle sensitivities. Combined single-molecule spectroscopy and electrochemical atomic force microscopy approaches are unique for heterogeneous and complex interfacial electron transfer systems because the static and dynamic inhomogeneities can be identified and characterized by studying one molecule at a specific nanoscale surface site at a time. The goal of our project is to integrate and apply these spectroscopic imaging and topographic scanning techniques to measure the energy flow and electron flow between molecules and substrate surfaces as a function of surface site geometry and molecular structure. We have been primarily focusing on studying interfacial electron transfer under ambient condition and electrolyte solution involving both single crystal and colloidal TiO2 and related substrates. The resulting molecular level understanding of the fundamental interfacial electron transfer processes will be important for developing efficient light harvesting systems and broadly applicable to problems in fundamental chemistry and physics. We have made significant advancement on deciphering the underlying mechanism of the complex and inhomogeneous interfacial electron transfer dynamics in dyesensitized TiO2 nanoparticle systems that strongly involves with and regulated by molecule-surface interactions. We have studied interfacial electron transfer on TiO2 nanoparticle surfaces by using ultrafast single-molecule

  12. Single-Molecule Plasmon Sensing: Current Status and Future Prospects.

    Science.gov (United States)

    Taylor, Adam B; Zijlstra, Peter

    2017-08-25

    Single-molecule detection has long relied on fluorescent labeling with high quantum-yield fluorophores. Plasmon-enhanced detection circumvents the need for labeling by allowing direct optical detection of weakly emitting and completely nonfluorescent species. This review focuses on recent advances in single molecule detection using plasmonic metal nanostructures as a sensing platform, particularly using a single particle-single molecule approach. In the past decade two mechanisms for plasmon-enhanced single-molecule detection have been demonstrated: (1) by plasmonically enhancing the emission of weakly fluorescent biomolecules, or (2) by monitoring shifts of the plasmon resonance induced by single-molecule interactions. We begin with a motivation regarding the importance of single molecule detection, and advantages plasmonic detection offers. We describe both detection mechanisms and discuss challenges and potential solutions. We finalize by highlighting the exciting possibilities in analytical chemistry and medical diagnostics.

  13. Biological mechanisms, one molecule at a time

    Science.gov (United States)

    Tinoco, Ignacio; Gonzalez, Ruben L.

    2011-01-01

    The last 15 years have witnessed the development of tools that allow the observation and manipulation of single molecules. The rapidly expanding application of these technologies for investigating biological systems of ever-increasing complexity is revolutionizing our ability to probe the mechanisms of biological reactions. Here, we compare the mechanistic information available from single-molecule experiments with the information typically obtained from ensemble studies and show how these two experimental approaches interface with each other. We next present a basic overview of the toolkit for observing and manipulating biology one molecule at a time. We close by presenting a case study demonstrating the impact that single-molecule approaches have had on our understanding of one of life's most fundamental biochemical reactions: the translation of a messenger RNA into its encoded protein by the ribosome. PMID:21685361

  14. Single Molecule Nanoelectrochemistry in Electrical Junctions.

    Science.gov (United States)

    Nichols, Richard J; Higgins, Simon J

    2016-11-15

    It is now possible to reliably measure single molecule conductance in a wide variety of environments including organic liquids, ultrahigh vacuum, water, ionic liquids, and electrolytes. The most commonly used methods deploy scanning probe microscopes, mechanically formed break junctions, or lithographically formed nanogap contacts. Molecules are generally captured between a pair of facing electrodes, and the junction current response is measured as a function of bias voltage. Gating electrodes can also be added so that the electrostatic potential at the molecular bridge can be independently controlled by this third noncontacting electrode. This can also be achieved in an electrolytic environment using a four-electrode bipotentiostatic configuration, which allows independent electrode potential control of the two contacting electrodes. This is commonly realized using an electrochemical STM and enables single molecule electrical characterization as a function of electrode potential and redox state of the molecular bridge. This has emerged as a powerful tool in modern interfacial electrochemistry and nanoelectrochemistry for studying charge transport across single molecules as a function of electrode potential and the electrolytic environments. Such measurements are possible in electrolytes ranging from aqueous buffers to nonaqueous ionic liquids. In this Account, we illustrate a number of examples of single molecule electrical measurements under electrode potential control use a scanning tunneling microscope (STM) and demonstrate how these can help in the understanding of charge transport in single molecule junctions. Examples showing charge transport following phase coherent tunneling to incoherent charge hopping across redox active molecular bridges are shown. In the case of bipyridinium (or viologen) molecular wires, it is shown how electrochemical reduction leads to an increase of the single molecule conductance, which is controlled by the liquid electrochemical

  15. Single-molecule Studies of Riboswitch Folding

    Science.gov (United States)

    Savinov, Andrew; Perez, Christian F.; Block, Steven M.

    2014-01-01

    The folding dynamics of riboswitches are central to their ability to modulate gene expression in response to environmental cues. In most cases, a structural competition between the formation of a ligand-binding aptamer and an expression platform (or some other competing off-state) determines the regulatory outcome. Here, we review single-molecule studies of riboswitch folding and function, predominantly carried out using single-molecule FRET or optical trapping approaches. Recent results have supplied new insights into riboswitch folding energy landscapes, the mechanisms of ligand binding, the roles played by divalent ions, the applicability of hierarchical folding models, and kinetic vs. thermodynamic control schemes. We anticipate that future work, based on improved data sets and potentially combining multiple experimental techniques, will enable the development of more complete models for complex RNA folding processes. PMID:24727093

  16. Single-molecule supercoil-relaxation assay as a screening tool to determine the mechanism and efficacy of human topoisomerase IB inhibitors

    Science.gov (United States)

    Seol, Yeonee; Zhang, Hongliang; Agama, Keli; Lorence, Nicholas; Pommier, Yves; Neuman, Keir C.

    2015-01-01

    Human nuclear type IB topoisomerase (Top1) inhibitors are widely used and powerful anti-cancer agents. In this study, we introduce and validate a single-molecule supercoil relaxation assay as a molecular pharmacology tool for characterizing therapeutically relevant Top1 inhibitors. Using this assay, we determined the effects on Top1 supercoil relaxation activity of four Top1 inhibitors; three clinically relevant: camptothecin, LMP-400, LMP-776 (both indenoisoquinoline derivatives), and one natural product in preclinical development, lamellarin-D. Our results demonstrate that Top1 inhibitors have two distinct effects on Top1 activity: a decrease in supercoil relaxation rate and an increase in religation inhibition. The type and magnitude of the inhibition mode depend both on the specific inhibitor and on the topology of the DNA substrate. In general, the efficacy of inhibition is significantly higher with supercoiled than with relaxed DNA substrates. Comparing single-molecule inhibition with cell growth inhibition (IC50) measurements showed a correlation between the binding time of the Top1 inhibitors and their cytotoxic efficacy, independent of the mode of inhibition. This study demonstrates that the single-molecule supercoil relaxation assay is a sensitive method to elucidate the detailed mechanisms of Top1 inhibitors and is relevant for the cellular efficacy of Top1 inhibitors. PMID:26351326

  17. A Single-Molecule Diode

    National Research Council Canada - National Science Library

    Mark Elbing; Rolf Ochs; Max Koentopp; Matthias Fischer; Carsten von Hänisch; Florian Weigend; Ferdinand Evers; Heiko B. Weber; Marcel Mayor; Mark A. Ratner

    2005-01-01

    ...-systems with mutually shifted energy levels. The asymmetry thus implied manifests itself in a current-voltage characteristic with pronounced dependence on the sign of the bias voltage, which makes the molecule a prototype for a molecular diode...

  18. Single Molecule Studies on Dynamics in Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Daniela Täuber

    2013-09-01

    Full Text Available Single molecule (SM methods are able to resolve structure related dynamics of guest molecules in liquid crystals (LC. Highly diluted small dye molecules on the one hand explore structure formation and LC dynamics, on the other hand they report about a distortion caused by the guest molecules. The anisotropic structure of LC materials is used to retrieve specific conformation related properties of larger guest molecules like conjugated polymers. This in particular sheds light on organization mechanisms within biological cells, where large molecules are found in nematic LC surroundings. This review gives a short overview related to the application of highly sensitive SM detection schemes in LC.

  19. Transport mirages in single-molecule devices

    Science.gov (United States)

    Gaudenzi, R.; Misiorny, M.; Burzurí, E.; Wegewijs, M. R.; van der Zant, H. S. J.

    2017-03-01

    Molecular systems can exhibit a complex, chemically tailorable inner structure which allows for targeting of specific mechanical, electronic, and optical properties. At the single-molecule level, two major complementary ways to explore these properties are molecular quantum-dot structures and scanning probes. This article outlines comprehensive principles of electron-transport spectroscopy relevant to both these approaches and presents a new, high-resolution experiment on a high-spin single-molecule junction exemplifying these principles. Such spectroscopy plays a key role in further advancing our understanding of molecular and atomic systems, in particular, the relaxation of their spin. In this joint experimental and theoretical analysis, particular focus is put on the crossover between the resonant regime [single-electron tunneling] and the off-resonant regime [inelastic electron (co)tunneling spectroscopy (IETS)]. We show that the interplay of these two processes leads to unexpected mirages of resonances not captured by either of the two pictures alone. Although this turns out to be important in a large fraction of the possible regimes of level positions and bias voltages, it has been given little attention in molecular transport studies. Combined with nonequilibrium IETS—four-electron pump-probe excitations—these mirages provide crucial information on the relaxation of spin excitations. Our encompassing physical picture is supported by a master-equation approach that goes beyond weak coupling. The present work encourages the development of a broader connection between the fields of molecular quantum-dot and scanning probe spectroscopy.

  20. Understanding Enzyme Activity Using Single Molecule Tracking (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y.-S.; Zeng, Y.; Luo, Y.; Xu, Q.; Himmel, M.; Smith S.; Wei, H.; Ding, S.-Y.

    2009-06-01

    This poster describes single-molecule tracking and total internal reflection fluorescence microscopy. It discusses whether the carbohydrate-binding module (CBM) moves on cellulose, how the CBM binds to cellulose, and the mechanism of cellulosome assembly.

  1. Single-Molecule Interfacial Electron Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Wilson [University of California - Irvine

    2018-02-03

    Interfacial electron transfer (ET) plays an important role in many chemical and biological processes. Specifically, interfacial ET in TiO2-based systems is important to solar energy technology, catalysis, and environmental remediation technology. However, the microscopic mechanism of interfacial ET is not well understood with regard to atomic surface structure, molecular structure, bonding, orientation, and motion. In this project, we used two complementary methodologies; single-molecule fluorescence spectroscopy, and scanning-tunneling microscopy and spectroscopy (STM and STS) to address this scientific need. The goal of this project was to integrate these techniques and measure the molecular dependence of ET between adsorbed molecules and TiO2 semiconductor surfaces and the ET induced reactions such as the splitting of water. The scanning probe techniques, STM and STS, are capable of providing the highest spatial resolution but not easily time-resolved data. Single-molecule fluorescence spectroscopy is capable of good time resolution but requires further development to match the spatial resolution of the STM. The integrated approach involving Peter Lu at Bowling Green State University (BGSU) and Wilson Ho at the University of California, Irvine (UC Irvine) produced methods for time and spatially resolved chemical imaging of interfacial electron transfer dynamics and photocatalytic reactions. An integral aspect of the joint research was a significant exchange of graduate students to work at the two institutions. This project bridged complementary approaches to investigate a set of common problems by working with the same molecules on a variety of solid surfaces, but using appropriate techniques to probe under ambient (BGSU) and ultrahigh vacuum (UCI) conditions. The molecular level understanding of the fundamental interfacial electron transfer processes obtained in this joint project will be important for developing efficient light harvesting, solar energy

  2. Predominant Occupation of the Class I MHC Molecule H-2Kwm7 with a Single Self-peptide Suggests a Mechanism for its Diabetes-protective Effect

    Energy Technology Data Exchange (ETDEWEB)

    Brims, D.; Qian, J; Jarchum, I; Mikesh, L; Palmieri, E; Ramagopal, U; Malashkevich, V; Chaparro, R; Lund, T; et. al.

    2010-01-01

    Type 1 diabetes (T1D) is an autoimmune disease characterized by T cell-mediated destruction of insulin-producing pancreatic {beta} cells. In both humans and the non-obese diabetic (NOD) mouse model of T1D, class II MHC alleles are the primary determinant of disease susceptibility. However, class I MHC genes also influence risk. These findings are consistent with the requirement for both CD{sup 4+} and CD{sup 8+} T cells in the pathogenesis of T1D. Although a large body of work has permitted the identification of multiple mechanisms to explain the diabetes-protective effect of particular class II MHC alleles, studies examining the protective influence of class I alleles are lacking. Here, we explored this question by performing biochemical and structural analyses of the murine class I MHC molecule H-2K{sup wm7}, which exerts a diabetes-protective effect in NOD mice. We have found that H-2K{sup wm7} molecules are predominantly occupied by the single self-peptide VNDIFERI, derived from the ubiquitous protein histone H2B. This unexpected finding suggests that the inability of H-2K{sup wm7} to support T1D development could be due, at least in part, to the failure of peptides from critical {beta}-cell antigens to adequately compete for binding and be presented to T cells. Predominant presentation of a single peptide would also be expected to influence T-cell selection, potentially leading to a reduced ability to select a diabetogenic CD{sup 8+} T-cell repertoire. The report that one of the predominant peptides bound by T1D-protective HLA-A*31 is histone derived suggests the potential translation of our findings to human diabetes-protective class I MHC molecules.

  3. Statistical analysis of single-molecule breaking traces

    NARCIS (Netherlands)

    Frisenda, Riccardo; Perrin, Mickael L.; Valkenier, Hennie; Hummelen, Jan C.; Zant, Herre S.J. van der

    2013-01-01

    We present an experimental study of charge transport through single oligo(phenylene-ethynylene) (OPE3) molecules and anthracene substituted OPE3 (OPE3-AC) contacted with a mechanically controlled break junction. Both molecules are measured using two different methods. In the first approach, we

  4. Probing Polymers with Single Fluorescent Molecules

    NARCIS (Netherlands)

    Tomczak, N.; Vallée, R.A.L.; van Dijk, E.M.H.P.; Garcia Parajo, M.F.; Kuipers, L.; van Hulst, N.F.; Vancso, Gyula J.

    2004-01-01

    The use of single molecules to study local, nanoscale polymer dynamics is presented. Fluorescence lifetime fluctuations were used to extract the number of polymer segments (Ns) taking part in the rearranging volume around the probe molecule below the glass transition temperature. Ns was dependent on

  5. Single Molecule Biophysics Experiments and Theory

    CERN Document Server

    Komatsuzaki, Tamiki; Takahashi, Satoshi; Yang, Haw; Silbey, Robert J; Rice, Stuart A; Dinner, Aaron R

    2011-01-01

    Discover the experimental and theoretical developments in optical single-molecule spectroscopy that are changing the ways we think about molecules and atoms The Advances in Chemical Physics series provides the chemical physics field with a forum for critical, authoritative evaluations of advances in every area of the discipline. This latest volume explores the advent of optical single-molecule spectroscopy, and how atomic force microscopy has empowered novel experiments on individual biomolecules, opening up new frontiers in molecular and cell biology and leading to new theoretical approaches

  6. Single-molecule studies reveal a hidden key step in the activation mechanism of membrane-bound protein kinase C-α.

    Science.gov (United States)

    Ziemba, Brian P; Li, Jianing; Landgraf, Kyle E; Knight, Jefferson D; Voth, Gregory A; Falke, Joseph J

    2014-03-18

    Protein kinase C-α (PKCα) is a member of the conventional family of protein kinase C isoforms (cPKCs) that regulate diverse cellular signaling pathways, share a common activation mechanism, and are linked to multiple pathologies. The cPKC domain structure is modular, consisting of an N-terminal pseudosubstrate peptide, two inhibitory domains (C1A and C1B), a targeting domain (C2), and a kinase domain. Mature, cytoplasmic cPKCs are inactive until they are switched on by a multistep activation reaction that occurs largely on the plasma membrane surface. Often, this activation begins with a cytoplasmic Ca(2+) signal that triggers C2 domain targeting to the plasma membrane where it binds phosphatidylserine (PS) and phosphatidylinositol 4,5-bisphosphate (PIP2). Subsequently, the appearance of the signaling lipid diacylglycerol (DAG) activates the membrane-bound enzyme by recruiting the inhibitory pseudosubstrate and one or both C1 domains away from the kinase domain. To further investigate this mechanism, this study has utilized single-molecule total internal reflection fluorescence microscopy (TIRFM) to quantitate the binding and lateral diffusion of full-length PKCα and fragments missing specific domain(s) on supported lipid bilayers. Lipid binding events, and events during which additional protein is inserted into the bilayer, were detected by their effects on the equilibrium bound particle density and the two-dimensional diffusion rate. In addition to the previously proposed activation steps, the findings reveal a major, undescribed, kinase-inactive intermediate. On bilayers containing PS or PS and PIP2, full-length PKCα first docks to the membrane via its C2 domain, and then its C1A domain embeds itself in the bilayer even before DAG appears. The resulting pre-DAG intermediate with membrane-bound C1A and C2 domains is the predominant state of PKCα while it awaits the DAG signal. The newly detected, membrane-embedded C1A domain of this pre-DAG intermediate

  7. Single-molecule magnets: Iron lines up

    Science.gov (United States)

    Bill, Eckhard

    2013-07-01

    For more than a decade, single-molecule magnets have relied on multinuclear transition metal clusters and lanthanide compounds. Now, a mononuclear, two-coordinate iron(I) complex has shown that single transition metals can compete with the lanthanides when certain design principles from magnetochemistry are borne in mind.

  8. Single molecule genotyping by TIRF microscopy.

    Science.gov (United States)

    Rüttinger, Steffen; Lamarre, Baptiste; Knight, Alex E

    2008-09-01

    As part of a programme to develop a metrological framework for single molecule measurements in biology, we have investigated the applications of single molecule imaging to genomics. Specifically, we have developed a technique for measuring the frequencies of single nucleotide polymorphisms (SNPs) in complex or pooled samples of DNA. We believe that this technique has applications to statistical genotyping-the identification of correlations between SNP frequencies and particular phenotypes-and other areas where it is desirable to track the frequencies of SNPs in complex DNA populations.

  9. Unfolding Dynamics of Single Collapsed DNA Molecules

    Science.gov (United States)

    Murayama, Y.; Wada, H.; Ishida, R.; Sano, M.

    We observed elastic responses of single DNA molecules and visualized them during the collapsing transition induced by trivalent cation, spermidine (SPD). The force-extension curves show worm-like behavior, force plateau, and stick-release responses depending on SPD concentration. The periodic stick-release responses may reflect the unraveling of toroidal condensates. At much higher SPD concentration, we observed re-elongation of a single collapsed DNA. For the visualization, a fluorescent dye, YOYO, was used. We observed bright spots in the fluorescence intensity profile of a collapsed DNA during stretching, which may correspond to the collapsed parts within the single DNA. The decrease of the intensity of the spots in stretching implies the mechanical unfolding of collapsed parts. Towards achieving a microscopic understanding of these experimental results, we also investigate the elastic properties of a highly charged polyelectrolyte (PE) chain by Brownian dynamics simulation method. In our dynamic simulation, a PE has a small intrinsic stiffness (i.e., the PE is semiflexible) to model the stiffness of DNA chain, and added multivalent counterions are explicitly taken into account. As the electrostatic coupling parameter (proportional to counterion valency) is increased, counterion condensation is observed, leading finally to the PE collapse through the discontinuous transition for a sufficiently large coupling parameter. Mechanical unfolding of a PE globule reveals its molecular elasticities including force plateau, in agreement with the experimental observations. A numerically deduced electrostatic condensation energy is compared to the experimental value. Charge ordering in the PE-counterion complex and its deformation by the external forcing are elucidated in conjunction with the PE elastic responses. Other dynamic effects such as the effect of a pulling speed are also discussed.

  10. Single-molecule manipulation and detection.

    Science.gov (United States)

    Zhao, Deyu; Liu, Siyun; Gao, Ying

    2018-01-25

    Compared to conventional ensemble methods, studying macromolecules at single-molecule level can reveal extraordinary clear and even surprising views for a biological reaction. In the past 20 years, single-molecule techniques have been undergoing a very rapid development, and these cutting edge technologies have revolutionized the biological research by facilitating single-molecule manipulation and detection. Here we give a brief review about these advanced techniques, including optical tweezers, magnetic tweezers, atomic force microscopy (AFM), hydrodynamic flow-stretching assay, and single-molecule fluorescence resonance energy transfer (smFRET). We are trying to describe their basic principles and provide a few examples of applications for each technique. This review aims to give a rather introductory survey of single-molecule techniques for audiences with biological or biophysical background. © The Author(s) 2018. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Single-Molecule Electronics: Chemical and Analytical Perspectives.

    Science.gov (United States)

    Nichols, Richard J; Higgins, Simon J

    2015-01-01

    It is now possible to measure the electrical properties of single molecules using a variety of techniques including scanning probe microcopies and mechanically controlled break junctions. Such measurements can be made across a wide range of environments including ambient conditions, organic liquids, ionic liquids, aqueous solutions, electrolytes, and ultra high vacuum. This has given new insights into charge transport across molecule electrical junctions, and these experimental methods have been complemented with increasingly sophisticated theory. This article reviews progress in single-molecule electronics from a chemical perspective and discusses topics such as the molecule-surface coupling in electrical junctions, chemical control, and supramolecular interactions in junctions and gating charge transport. The article concludes with an outlook regarding chemical analysis based on single-molecule conductance.

  12. Single-Molecule Analysis for RISC Assembly and Target Cleavage.

    Science.gov (United States)

    Sasaki, Hiroshi M; Tadakuma, Hisashi; Tomari, Yukihide

    2018-01-01

    RNA-induced silencing complex (RISC) is a small RNA-protein complex that mediates silencing of complementary target RNAs. Biochemistry has been successfully used to characterize the molecular mechanism of RISC assembly and function for nearly two decades. However, further dissection of intermediate states during the reactions has been warranted to fill in the gaps in our understanding of RNA silencing mechanisms. Single-molecule analysis with total internal reflection fluorescence (TIRF) microscopy is a powerful imaging-based approach to interrogate complex formation and dynamics at the individual molecule level with high sensitivity. Combining this technique with our recently established in vitro reconstitution system of fly Ago2-RISC, we have developed a single-molecule observation system for RISC assembly. In this chapter, we summarize the detailed protocol for single-molecule analysis of chaperone-assisted assembly of fly Ago2-RISC as well as its target cleavage reaction.

  13. Light-induced energetic decoupling as a mechanism for phycobilisome-related energy dissipation in red algae: a single molecule study.

    Directory of Open Access Journals (Sweden)

    Lu-Ning Liu

    Full Text Available BACKGROUND: Photosynthetic organisms have developed multiple protective mechanisms to prevent photodamage in vivo under high-light conditions. Cyanobacteria and red algae use phycobilisomes (PBsomes as their major light-harvesting antennae complexes. The orange carotenoid protein in some cyanobacteria has been demonstrated to play roles in the photoprotective mechanism. The PBsome-itself-related energy dissipation mechanism is still unclear. METHODOLOGY/PRINCIPAL FINDINGS: Here, single-molecule spectroscopy is applied for the first time on the PBsomes of red alga Porphyridium cruentum, to detect the fluorescence emissions of phycoerythrins (PE and PBsome core complex simultaneously, and the real-time detection could greatly characterize the fluorescence dynamics of individual PBsomes in response to intense light. CONCLUSIONS/SIGNIFICANCE: Our data revealed that strong green-light can induce the fluorescence decrease of PBsome, as well as the fluorescence increase of PE at the first stage of photobleaching. It strongly indicated an energetic decoupling occurring between PE and its neighbor. The fluorescence of PE was subsequently observed to be decreased, showing that PE was photobleached when energy transfer in the PBsomes was disrupted. In contrast, the energetic decoupling was not observed in either the PBsomes fixed with glutaraldehyde, or the mutant PBsomes lacking B-PE and remaining b-PE. It was concluded that the energetic decoupling of the PBsomes occurs at the specific association between B-PE and b-PE within the PBsome rod. Assuming that the same process occurs also at the much lower physiological light intensities, such a decoupling process is proposed to be a strategy corresponding to PBsomes to prevent photodamage of the photosynthetic reaction centers. Finally, a novel photoprotective role of gamma-subunit-containing PE in red algae was discussed.

  14. Single Molecule Analysis Research Tool (SMART: an integrated approach for analyzing single molecule data.

    Directory of Open Access Journals (Sweden)

    Max Greenfeld

    Full Text Available Single molecule studies have expanded rapidly over the past decade and have the ability to provide an unprecedented level of understanding of biological systems. A common challenge upon introduction of novel, data-rich approaches is the management, processing, and analysis of the complex data sets that are generated. We provide a standardized approach for analyzing these data in the freely available software package SMART: Single Molecule Analysis Research Tool. SMART provides a format for organizing and easily accessing single molecule data, a general hidden Markov modeling algorithm for fitting an array of possible models specified by the user, a standardized data structure and graphical user interfaces to streamline the analysis and visualization of data. This approach guides experimental design, facilitating acquisition of the maximal information from single molecule experiments. SMART also provides a standardized format to allow dissemination of single molecule data and transparency in the analysis of reported data.

  15. Single Molecule Analysis Research Tool (SMART): an integrated approach for analyzing single molecule data.

    Science.gov (United States)

    Greenfeld, Max; Pavlichin, Dmitri S; Mabuchi, Hideo; Herschlag, Daniel

    2012-01-01

    Single molecule studies have expanded rapidly over the past decade and have the ability to provide an unprecedented level of understanding of biological systems. A common challenge upon introduction of novel, data-rich approaches is the management, processing, and analysis of the complex data sets that are generated. We provide a standardized approach for analyzing these data in the freely available software package SMART: Single Molecule Analysis Research Tool. SMART provides a format for organizing and easily accessing single molecule data, a general hidden Markov modeling algorithm for fitting an array of possible models specified by the user, a standardized data structure and graphical user interfaces to streamline the analysis and visualization of data. This approach guides experimental design, facilitating acquisition of the maximal information from single molecule experiments. SMART also provides a standardized format to allow dissemination of single molecule data and transparency in the analysis of reported data.

  16. Single molecule interactions in biological systems

    CERN Document Server

    Tessmer, I

    2002-01-01

    The interactions of biological molecules are traditionally investigated using ensemble techniques. These provide information on the molecular behaviour based on averaged data resulting from collective ensemble properties. While this has enabled the resolution of structure and function of many proteins and other biomolecules, an understanding of how and why the molecules go about structural changes and modulate inter- and intra-molecular interactions is difficult to gain using these approaches. More recently, single molecule techniques have evolved. These allow us to follow the behaviour of the individual molecules over time and/or under changing conditions. From such data, subtle molecular changes can be resolved without the need to synchronise the system. Further, variations within a biological system can be detected which would be lost using the ensemble techniques, due to the concomitant averaging procedures. This is exploited to help understand the molecular procedures involved. In this thesis, the applic...

  17. Single-molecule analysis using DNA origami.

    Science.gov (United States)

    Rajendran, Arivazhagan; Endo, Masayuki; Sugiyama, Hiroshi

    2012-01-23

    During the last two decades, scientists have developed various methods that allow the detection and manipulation of single molecules, which have also been called "in singulo" approaches. Fundamental understanding of biochemical reactions, folding of biomolecules, and the screening of drugs were achieved by using these methods. Single-molecule analysis was also performed in the field of DNA nanotechnology, mainly by using atomic force microscopy. However, until recently, the approaches used commonly in nanotechnology adopted structures with a dimension of 10-20 nm, which is not suitable for many applications. The recent development of scaffolded DNA origami by Rothemund made it possible for the construction of larger defined assemblies. One of the most salient features of the origami method is the precise addressability of the structures formed: Each staple can serve as an attachment point for different kinds of nanoobjects. Thus, the method is suitable for the precise positioning of various functionalities and for the single-molecule analysis of many chemical and biochemical processes. Here we summarize recent progress in the area of single-molecule analysis using DNA origami and discuss the future directions of this research. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Single-molecule sorting of DNA helicases.

    Science.gov (United States)

    Bain, Fletcher E; Wu, Colin G; Spies, Maria

    2016-10-01

    DNA helicases participate in virtually all aspects of cellular DNA metabolism by using ATP-fueled directional translocation along the DNA molecule to unwind DNA duplexes, dismantle nucleoprotein complexes, and remove non-canonical DNA structures. Post-translational modifications and helicase interacting partners are often viewed as determining factors in controlling the switch between bona fide helicase activity and other functions of the enzyme that do not involve duplex separation. The bottleneck in developing a mechanistic understanding of human helicases and their control by post-translational modifications is obtaining sufficient quantities of the modified helicase for traditional structure-functional analyses and biochemical reconstitutions. This limitation can be overcome by single-molecule analysis, where several hundred surface-tethered molecules are sufficient to obtain a complete kinetic and thermodynamic description of the helicase-mediated substrate binding and rearrangement. Synthetic oligonucleotides site-specifically labeled with Cy3 and Cy5 fluorophores can be used to create a variety of DNA substrates that can be used to characterize DNA binding, as well as helicase translocation and duplex unwinding activities. This chapter describes "single-molecule sorting", a robust experimental approach to simultaneously quantify, and distinguish the activities of helicases carrying their native post-translational modifications. Using this technique, a DNA helicase of interest can be produced and biotinylated in human cells to enable surface-tethering for the single-molecule studies by total internal reflection fluorescence microscopy. The pool of helicases extracted from the cells is expected to contain a mixture of post-translationally modified and unmodified enzymes, and the contributions from either population can be monitored separately, but in the same experiment providing a direct route to evaluating the effect of a given modification. Copyright

  19. Automated imaging system for single molecules

    Science.gov (United States)

    Schwartz, David Charles; Runnheim, Rodney; Forrest, Daniel

    2012-09-18

    There is provided a high throughput automated single molecule image collection and processing system that requires minimal initial user input. The unique features embodied in the present disclosure allow automated collection and initial processing of optical images of single molecules and their assemblies. Correct focus may be automatically maintained while images are collected. Uneven illumination in fluorescence microscopy is accounted for, and an overall robust imaging operation is provided yielding individual images prepared for further processing in external systems. Embodiments described herein are useful in studies of any macromolecules such as DNA, RNA, peptides and proteins. The automated image collection and processing system and method of same may be implemented and deployed over a computer network, and may be ergonomically optimized to facilitate user interaction.

  20. Single-Molecule Imaging of GPCR Interactions.

    Science.gov (United States)

    Calebiro, Davide; Sungkaworn, Titiwat

    2018-02-01

    G protein-coupled receptors (GPCRs) constitute the largest family of membrane receptors and are of great interest as pharmacological targets. Although the occurrence of GPCR signaling nanodomains has long been hypothesized based on indirect evidence, this and other fundamental aspects of GPCR signaling have been difficult to prove. The advent of single-molecule microscopy methods, which allow direct visualization of individual membrane proteins with unprecedented spatiotemporal resolution, provides unique opportunities to address several of these open questions. Indeed, recent single-molecule studies have revealed that GPCRs and G proteins transiently interact with each other as well as with structural components of the plasma membrane, leading to the formation of dynamic complexes and 'hot spots' for GPCR signaling. Whereas we are only beginning to understand the implications of this unexpected level of complexity, single-molecule approaches are likely to play a crucial role to further dissect the protein-protein interactions that are at the heart of GPCR signaling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Unprecedentedly rapid transport of single-file rolling water molecules

    Science.gov (United States)

    Qiu, Tong; Huang, Ji-Ping

    2015-10-01

    The realization of rapid and unidirectional single-file water-molecule flow in nanochannels has posed a challenge to date. Here, we report unprecedentedly rapid unidirectional single-file water-molecule flow under a translational terahertz electric field, which is obtained by developing a Debye doublerelaxation theory. In addition, we demonstrate that all the single-file molecules undergo both stable translation and rotation, behaving like high-speed train wheels moving along a railway track. Independent molecular dynamics simulations help to confirm these theoretical results. The mechanism involves the resonant relaxation dynamics of H and O atoms. Further, an experimental demonstration is suggested and discussed. This work has implications for the design of high-efficiency nanochannels or smaller nanomachines in the field of nanotechnology, and the findings also aid in the understanding and control of water flow across biological nanochannels in biology-related research.

  2. Single Molecule Study of Photoconversion and Spectral Heterogeneities of Fluorophores

    DEFF Research Database (Denmark)

    Liao, Zhiyu

    of conformational changes and dynamics. The photophysical properties of organic dyes directly determine the quality of the experiments. So the better understanding of the photophysical properties of organic dyes, the better we are able to design the experiments and interpret the data, especially in single molecule...... 104 single molecule measurements. A simple and practical method is introduced to study the characteristics of the photoproducts at the ensemble level. Control experiments reveal that the reaction leading to photobleaching is oxygen related, but the composition of the photoproducts remains inconclusive...... stimulate new pathways in engineering and designing photoconvertible fluorophores, based on the reaction with oxygen or other chemicals. Besides, this results show that dyes that convert into other emissive species could give problems when interpreting single molecule FRET systems. The revealed mechanism...

  3. Theory of single molecule emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bel, Golan, E-mail: bel@bgu.ac.il [Department of Solar Energy and Environmental Physics, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990 (Israel); Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Department of Chemistry and Biochemistry and Department of Physics, University of California, Santa Barbara, California 93106 (United States); Brown, Frank L. H., E-mail: flbrown@chem.ucsb.edu [Department of Chemistry and Biochemistry and Department of Physics, University of California, Santa Barbara, California 93106 (United States)

    2015-05-07

    A general theory and calculation framework for the prediction of frequency-resolved single molecule photon counting statistics is presented. Expressions for the generating function of photon counts are derived, both for the case of naive “detection” based solely on photon emission from the molecule and also for experimentally realizable detection of emitted photons, and are used to explicitly calculate low-order photon-counting moments. The two cases of naive detection versus physical detection are compared to one another and it is demonstrated that the physical detection scheme resolves certain inconsistencies predicted via the naive detection approach. Applications to two different models for molecular dynamics are considered: a simple two-level system and a two-level absorber subject to spectral diffusion.

  4. Deep learning for single-molecule science

    Science.gov (United States)

    Albrecht, Tim; Slabaugh, Gregory; Alonso, Eduardo; Al-Arif, SM Masudur R.

    2017-10-01

    Exploring and making predictions based on single-molecule data can be challenging, not only due to the sheer size of the datasets, but also because a priori knowledge about the signal characteristics is typically limited and poor signal-to-noise ratio. For example, hypothesis-driven data exploration, informed by an expectation of the signal characteristics, can lead to interpretation bias or loss of information. Equally, even when the different data categories are known, e.g., the four bases in DNA sequencing, it is often difficult to know how to make best use of the available information content. The latest developments in machine learning (ML), so-called deep learning (DL) offer interesting, new avenues to address such challenges. In some applications, such as speech and image recognition, DL has been able to outperform conventional ML strategies and even human performance. However, to date DL has not been applied much in single-molecule science, presumably in part because relatively little is known about the ‘internal workings’ of such DL tools within single-molecule science as a field. In this Tutorial, we make an attempt to illustrate in a step-by-step guide how one of those, a convolutional neural network (CNN), may be used for base calling in DNA sequencing applications. We compare it with a SVM as a more conventional ML method, and discuss some of the strengths and weaknesses of the approach. In particular, a ‘deep’ neural network has many features of a ‘black box’, which has important implications on how we look at and interpret data.

  5. Tackling the single molecule counting problem

    Science.gov (United States)

    Pressé, Steve

    2015-03-01

    Protein-protein interactions - that give rise to spatiotemporal organization in the cell - are the basis for most biological information processing and cellular control. Quantitatively understanding these interactions is an essential prerequisite for developing mechanistic models of cell biology. However, there is currently no routine answer to ``how many proteins of type X are in this complex?'' in living cells. Here we discuss methods developed in our group (Geoff Rollins, Kostas Tsekouras) for tackling this ``single molecule counting problem'' starting from photobleaching data and data from a superresolution microscopy technique called PALM (PhotoActivated Localization Microscopy). We gratefully acknowledge the NSF (MCB-1412259)

  6. Single-molecule imaging studies of protein dynamics

    Science.gov (United States)

    Zareh, Shannon Kian G.

    2011-12-01

    Single-molecule fluorescence imaging is a powerful method for studying biological events. The work of this thesis primarily focuses on single molecule studies of the dynamics of Green Fluorescent Protein (GFP) and other fluorescent-labeled proteins by utilizing Total Internal Reflection Fluorescence (TIRF) microscopy and imaging. The single molecule experiments of this thesis covered three broad topics. First, the adsorption mechanisms of proteins onto hydrophobic and hydrophilic fused silica surfaces were imaged and reversible and irreversible adsorption mechanisms were observed. The second topic covered a new technique for measuring the diffusion coefficient of Brownian diffusing proteins, in particular GFP, in solution via a single image. The corresponding experiments showed a relationship between the intensity profile width and the diffusion coefficient of the diffusing molecules. The third topic covered an in vivo experiment involving imaging and quantifying prokaryotic cell metabolism protein dynamics inside the Bacillus subtilis bacteria, in which a helical diffusion pattern for the protein was observed. These topics are presented in the chronological order of the experiments conducted.

  7. Direct spectroscopic observation of quantum jumps of a single molecule

    Science.gov (United States)

    Basché, Th.; Kummer, S.; Bräuchle, C.

    1995-01-01

    BOHR'S notion of quantum jumps between electronic states of an excited atom has now been demonstrated experimentally for single ions confined in radio-frequency traps and interacting with a driving laser field1-3. In these experiments the fluorescence of a strongly allowed transition was shown to cease abruptly when the ion jumped into a metastable state which was coupled to the common electronic ground state by a weak radiative transition. But attempts to monitor quantum jumps of single molecules have been hampered by the fact that the lifetime of the metastable triplet state was too short in relation to the photon detection rate. By using a system with favourable photophysical parameters-terrylene doped into p-terphenyl crystals4-we have now been able to observe directly quantum jumps between electronic states of single terrylene molecules. In contrast to single atoms, here the quantum jumps occur as non-radiative transitions between states of different multiplicity, and are manifested as interruptions of the fluorescence signal. These results demonstrate how single-molecule spectros-copy can reveal truly quantum-mechanical effects in large polyatomic molecules.

  8. Electronic Single Molecule Identification of Carbohydrate Isomers by Recognition Tunneling

    CERN Document Server

    Im, JongOne; Liu, Hao; Zhao, Yanan; Sen, Suman; Biswas, Sudipta; Ashcroft, Brian; Borges, Chad; Wang, Xu; Lindsay, Stuart; Zhang, Peiming

    2016-01-01

    Glycans play a central role as mediators in most biological processes, but their structures are complicated by isomerism. Epimers and anomers, regioisomers, and branched sequences contribute to a structural variability that dwarfs those of nucleic acids and proteins, challenging even the most sophisticated analytical tools, such as NMR and mass spectrometry. Here, we introduce an electron tunneling technique that is label-free and can identify carbohydrates at the single-molecule level, offering significant benefits over existing technology. It is capable of analyzing sub-picomole quantities of sample, counting the number of individual molecules in each subset in a population of coexisting isomers, and is quantitative over more than four orders of magnitude of concentration. It resolves epimers not well separated by ion-mobility and can be implemented on a silicon chip. It also provides a readout mechanism for direct single-molecule sequencing of linear oligosaccharides.

  9. Single particle tracking and single molecule energy transfer

    CERN Document Server

    Bräuchle, Christoph; Michaelis, Jens

    2009-01-01

    Closing a gap in the literature, this handbook gathers all the information on single particle tracking and single molecule energy transfer. It covers all aspects of this hot and modern topic, from detecting virus entry to membrane diffusion, and from protein folding using spFRET to coupled dye systems, as well recent achievements in the field. Throughout, the first-class editors and top international authors present content of the highest quality, making this a must-have for physical chemists, spectroscopists, molecular physicists and biochemists.

  10. Molecular electronics: the single molecule switch and transistor

    NARCIS (Netherlands)

    Sotthewes, Kai; Geskin, Victor; Heimbuch, Rene; Kumar, Avijit; Zandvliet, Henricus J.W.

    2014-01-01

    In order to design and realize single-molecule devices it is essential to have a good understanding of the properties of an individual molecule. For electronic applications, the most important property of a molecule is its conductance. Here we show how a single octanethiol molecule can be connected

  11. Low-energy cross-section calculations of single molecules by electron impact: a classical Monte Carlo transport approach with quantum mechanical description

    Science.gov (United States)

    Madsen, J. R.; Akabani, G.

    2014-05-01

    The present state of modeling radio-induced effects at the cellular level does not account for the microscopic inhomogeneity of the nucleus from the non-aqueous contents (i.e. proteins, DNA) by approximating the entire cellular nucleus as a homogenous medium of water. Charged particle track-structure calculations utilizing this approximation are therefore neglecting to account for approximately 30% of the molecular variation within the nucleus. To truly understand what happens when biological matter is irradiated, charged particle track-structure calculations need detailed knowledge of the secondary electron cascade, resulting from interactions with not only the primary biological component—water--but also the non-aqueous contents, down to very low energies. This paper presents our work on a generic approach for calculating low-energy interaction cross-sections between incident charged particles and individual molecules. The purpose of our work is to develop a self-consistent computational method for predicting molecule-specific interaction cross-sections, such as the component molecules of DNA and proteins (i.e. nucleotides and amino acids), in the very low-energy regime. These results would then be applied in a track-structure code and thereby reduce the homogenous water approximation. The present methodology—inspired by seeking a combination of the accuracy of quantum mechanics and the scalability, robustness, and flexibility of Monte Carlo methods—begins with the calculation of a solution to the many-body Schrödinger equation and proceeds to use Monte Carlo methods to calculate the perturbations in the internal electron field to determine the interaction processes, such as ionization and excitation. As a test of our model, the approach is applied to a water molecule in the same method as it would be applied to a nucleotide or amino acid and compared with the low-energy cross-sections from the GEANT4-DNA physics package of the Geant4 simulation toolkit

  12. PREFACE: Nanoelectronics, sensors and single molecule biophysics Nanoelectronics, sensors and single molecule biophysics

    Science.gov (United States)

    Tao, Nongjian

    2012-04-01

    lengths but different energy barrier profiles in order to elucidate electron transport in the molecular junctions. Kiguchi and Murakoshi study metallic atomic wires under electrochemical potential control. Asai reports on a theoretical study of rectification in substituted atomic wires. Finally, Weiss et al report on a new method to pattern and functionalize oxide-free germanium surfaces with self-assembled organic monolayers, which provides interfaces between inorganic semiconductors and organic molecules. Nanoelectronics, sensors and single molecule biophysics contents Biochemistry and semiconductor electronics—the next big hit for silicon?Stuart Lindsay Electrical detection of single pollen allergen particles using electrode-embedded microchannelsChihiro Kawaguchi, Tetsuya Noda, Makusu Tsutsui, Masateru Taniguchi, Satoyuki Kawano and Tomoji Kawai Quasi 3D imaging of DNA-gold nanoparticle tetrahedral structuresAvigail Stern, Dvir Rotem, Inna Popov and Danny Porath Effects of cytosine methylation on DNA charge transportJoshua Hihath, Shaoyin Guo, Peiming Zhang and Nongjian Tao Effect of electrostatics on aggregation of prion protein Sup35 peptideAlexander M Portillo, Alexey V Krasnoslobodtsev and Yuri L Lyubchenko Mapping the intracellular distribution of carbon nanotubes after targeted delivery to carcinoma cells using confocal Raman imaging as a label-free techniqueC Lamprecht, N Gierlinger, E Heister, B Unterauer, B Plochberger, M Brameshuber, P Hinterdorfer, S Hild and A Ebner Caveolae-mediated endocytosis of biocompatible gold nanoparticles in living Hela cellsXian Hao, Jiazhen Wu, Yuping Shan, Mingjun Cai, Xin Shang, Junguang Jiang and Hongda Wang Stability of an aqueous quadrupole micro-trapJae Hyun Park and Predrag S Krstić Electron transport properties of single molecular junctions under mechanical modulationsJianfeng Zhou, Cunlan Guo and Bingqian Xu An approach to measure electromechanical properties of atomic and molecular junctionsIlya V Pobelov, Gábor M

  13. A brief introduction to single-molecule fluorescence methods

    NARCIS (Netherlands)

    Wildenberg, S.M.J.L.; Prevo, B.; Peterman, E.J.G.; Peterman, EJG; Wuite, GJL

    2011-01-01

    One of the more popular single-molecule approaches in biological science is single-molecule fluorescence microscopy, which is the subject of the following section of this volume. Fluorescence methods provide the sensitivity required to study biology on the single-molecule level, but they also allow

  14. A brief introduction to single-molecule fluorescence methods

    NARCIS (Netherlands)

    van den Wildenberg, Siet M.J.L.; Prevo, Bram; Peterman, Erwin J.G.

    2018-01-01

    One of the more popular single-molecule approaches in biological science is single-molecule fluorescence microscopy, which will be the subject of the following section of this volume. Fluorescence methods provide the sensitivity required to study biology on the single-molecule level, but they also

  15. Nonequilibrium Energetics of a Single F1-ATPase Molecule

    OpenAIRE

    Toyabe, Shoichi; Watanabe-Nakayama, Takahiro; Okamoto, Tetsuaki; Kudo, Seishi; Muneyuki, Eiro

    2010-01-01

    Molecular motors drive mechanical motions utilizing the free energy liberated from chemical reactions such as ATP hydrolysis. Although it is essential to know the efficiency of this free energy transduction, it has been a challenge due to the system's microscopic scale. Here, we evaluate the single-molecule energetics of a rotary molecular motor, F1-ATPase, by applying a recently derived nonequilibrium equality together with an electrorotation method. We show that the sum of the heat flow thr...

  16. Simulated single molecule microscopy with SMeagol

    CERN Document Server

    Lindén, Martin; Boucharin, Alexis; Fange, David; Elf, Johan

    2015-01-01

    Recent advances in single particle tracking (SPT) microscopy 1 make it possible to obtain tens of thousands macromolecular trajectories from within a living cell in just a few minutes. Since molecules typically change their movement properties upon interactions, these trajectories contain information about both locations and rates of intracellular reactions. This information is unfortunately obscured by physical limitations of the optical microscope and noise in detection systems, making statistical methods development for SPT analysis a very active research field. Unbiased testing and comparison of such methods are however difficult given the absence of in vivo data of intracellular dynamics where the true states of interaction are known, a.k.a. the ground truth. A common resort is to instead use simulated, synthetic, data. However, tests using such data give unrealistically optimistic results if the simplifying assumptions underlying the analysis method are satisfied in the synthetic data, a practice known ...

  17. Multiplexed single-molecule force proteolysis measurements using magnetic tweezers.

    Science.gov (United States)

    Adhikari, Arjun S; Chai, Jack; Dunn, Alexander R

    2012-07-25

    The generation and detection of mechanical forces is a ubiquitous aspect of cell physiology, with direct relevance to cancer metastasis(1), atherogenesis(2) and wound healing(3). In each of these examples, cells both exert force on their surroundings and simultaneously enzymatically remodel the extracellular matrix (ECM). The effect of forces on ECM has thus become an area of considerable interest due to its likely biological and medical importance(4-7). Single molecule techniques such as optical trapping(8), atomic force microscopy(9), and magnetic tweezers(10,11) allow researchers to probe the function of enzymes at a molecular level by exerting forces on individual proteins. Of these techniques, magnetic tweezers (MT) are notable for their low cost and high throughput. MT exert forces in the range of ~1-100 pN and can provide millisecond temporal resolution, qualities that are well matched to the study of enzyme mechanism at the single-molecule level(12). Here we report a highly parallelizable MT assay to study the effect of force on the proteolysis of single protein molecules. We present the specific example of the proteolysis of a trimeric collagen peptide by matrix metalloproteinase 1 (MMP-1); however, this assay can be easily adapted to study other substrates and proteases.

  18. Single-molecule denaturation mapping of DNA in nanofluidic channels.

    Science.gov (United States)

    Reisner, Walter; Larsen, Niels B; Silahtaroglu, Asli; Kristensen, Anders; Tommerup, Niels; Tegenfeldt, Jonas O; Flyvbjerg, Henrik

    2010-07-27

    Here we explore the potential power of denaturation mapping as a single-molecule technique. By partially denaturing YOYO-1-labeled DNA in nanofluidic channels with a combination of formamide and local heating, we obtain a sequence-dependent "barcode" corresponding to a series of local dips and peaks in the intensity trace along the extended molecule. We demonstrate that this structure arises from the physics of local denaturation: statistical mechanical calculations of sequence-dependent melting probability can predict the barcode to be observed experimentally for a given sequence. Consequently, the technique is sensitive to sequence variation without requiring enzymatic labeling or a restriction step. This technique may serve as the basis for a new mapping technology ideally suited for investigating the long-range structure of entire genomes extracted from single cells.

  19. High-resolution, single-molecule measurements of biomolecular motion.

    Science.gov (United States)

    Greenleaf, William J; Woodside, Michael T; Block, Steven M

    2007-01-01

    Many biologically important macromolecules undergo motions that are essential to their function. Biophysical techniques can now resolve the motions of single molecules down to the nanometer scale or even below, providing new insights into the mechanisms that drive molecular movements. This review outlines the principal approaches that have been used for high-resolution measurements of single-molecule motion, including centroid tracking, fluorescence resonance energy transfer, magnetic tweezers, atomic force microscopy, and optical traps. For each technique, the principles of operation are outlined, the capabilities and typical applications are examined, and various practical issues for implementation are considered. Extensions to these methods are also discussed, with an eye toward future application to outstanding biological problems.

  20. Sm-ChIPi: Single-Molecule Chromatin Immunoprecipitation Imaging.

    Science.gov (United States)

    Tatavosian, Roubina; Ren, Xiaojun

    2018-01-01

    Epigenetic complexes regulate chromatin dynamics via binding to and assembling on chromatin. However, the mechanisms of chromatin binding and assembly of epigenetic complexes within cells remain incompletely understood, partly due to technical challenges. Here, we present a new approach termed single-molecule chromatin immunoprecipitation imaging (Sm-ChIPi) that enables to assess the cellular assembly stoichiometry of epigenetic complexes on chromatin. Sm-ChIPi was developed based on chromatin immunoprecipitation followed by single-molecule fluorescence microscopy imaging. In this method, an epigenetic complex subunit fused with a gene coding for a fluorescent protein is stably expressed in its corresponding knockout cells. Nucleosomes associated with epigenetic complexes are isolated from cells at native conditions and incubated with biotinylated antibodies. The resulting complexes are immobilized on a quartz slide that had been passivated and functionalized with NeutrAvidin. Image stacks are then acquired by using single-molecule TIRF microscopy. The individual spots imaged by TIRF microscopy represent single protein-nucleosome complexes. The number of copies of the protein complexes on a nucleosome is inferred from the fluorescence photobleaching measurements. Sm-ChIPi is a sensitive and direct method that can quantify the cellular assembly stoichiometry of epigenetic complexes on chromatin.

  1. Optical probing of single fluorescent molecules and proteins

    NARCIS (Netherlands)

    Garcia Parajo, M.F.; Veerman, J.A.; Bouwhuis, R.; Bouwhuis, Rudo; van Hulst, N.F.; Vallée, R.A.L.

    2001-01-01

    Single-molecule detection and analysis of organic fluorescent molecules and proteins are presented, with emphasis o­n the underlying principles methodology and the application of single-molecule analysis at room temperature. This Minireview is mainly focused o­n the application of confocal and

  2. A Single-Molecule Hershey-Chase Experiment

    CERN Document Server

    Van Valen, David; Chen, Yi-Ju; Tuson, Hannah; Wiggins, Paul; Phillips, Rob

    2012-01-01

    Ever since Hershey and Chase used phages to establish DNA as the carrier of genetic information in 1952, the precise mechanisms of phage DNA translocation have been a mystery. While bulk measurements have set a time scale for in vivo DNA translocation during bacteriophage infection, measurements of DNA ejection by single bacteriophages have only been made in vitro. Here, we present direct visualization of single bacteriophages infecting individual Escherichia coli cells. For bacteriophage lambda, we establish a mean ejection time of roughly 5 minutes with significant cell-to-cell variability, including pausing events. In contrast, corresponding in vitro single-molecule ejections take only 10 seconds to reach completion and do not exhibit significant variability. Our data reveal that the velocity of ejection for two different genome lengths collapses onto a single curve. This suggests that in vivo ejections are controlled by the amount of DNA ejected, in contrast with in vitro DNA ejections, which are governed...

  3. Light-Induced Switching of Tunable Single-Molecule Junctions

    KAUST Repository

    Sendler, Torsten

    2015-04-16

    A major goal of molecular electronics is the development and implementation of devices such as single-molecular switches. Here, measurements are presented that show the controlled in situ switching of diarylethene molecules from their nonconductive to conductive state in contact to gold nanoelectrodes via controlled light irradiation. Both the conductance and the quantum yield for switching of these molecules are within a range making the molecules suitable for actual devices. The conductance of the molecular junctions in the opened and closed states is characterized and the molecular level E 0, which dominates the current transport in the closed state, and its level broadening Γ are identified. The obtained results show a clear light-induced ring forming isomerization of the single-molecule junctions. Electron withdrawing side-groups lead to a reduction of conductance, but do not influence the efficiency of the switching mechanism. Quantum chemical calculations of the light-induced switching processes correlate these observations with the fundamentally different low-lying electronic states of the opened and closed forms and their comparably small modification by electron-withdrawing substituents. This full characterization of a molecular switch operated in a molecular junction is an important step toward the development of real molecular electronics devices.

  4. Vibrationally coupled electron transport through single-molecule junctions

    Energy Technology Data Exchange (ETDEWEB)

    Haertle, Rainer

    2012-04-26

    Single-molecule junctions are among the smallest electric circuits. They consist of a molecule that is bound to a left and a right electrode. With such a molecular nanocontact, the flow of electrical currents through a single molecule can be studied and controlled. Experiments on single-molecule junctions show that a single molecule carries electrical currents that can even be in the microampere regime. Thereby, a number of transport phenomena have been observed, such as, for example, diode- or transistor-like behavior, negative differential resistance and conductance switching. An objective of this field, which is commonly referred to as molecular electronics, is to relate these transport phenomena to the properties of the molecule in the contact. To this end, theoretical model calculations are employed, which facilitate an understanding of the underlying transport processes and mechanisms. Thereby, one has to take into account that molecules are flexible structures, which respond to a change of their charge state by a profound reorganization of their geometrical structure or may even dissociate. It is thus important to understand the interrelation between the vibrational degrees of freedom of a singlemolecule junction and the electrical current flowing through the contact. In this thesis, we investigate vibrational effects in electron transport through singlemolecule junctions. For these studies, we calculate and analyze transport characteristics of both generic and first-principles based model systems of a molecular contact. To this end, we employ a master equation and a nonequilibrium Green's function approach. Both methods are suitable to describe this nonequilibrium transport problem and treat the interactions of the tunneling electrons on the molecular bridge non-perturbatively. This is particularly important with respect to the vibrational degrees of freedom, which may strongly interact with the tunneling electrons. We show in detail that the resulting

  5. Probing the local environment of a single OPE3 molecule using inelastic tunneling electron spectroscopy

    NARCIS (Netherlands)

    Frisenda, R.; Perrin, M.L.; Van der Zant, H.S.J.

    2015-01-01

    We study single-molecule oligo(phenylene ethynylene)dithiol junctions by means of inelastic electron tunneling spectroscopy (IETS). The molecule is contacted with gold nano-electrodes formed with the mechanically controllable break junction technique. We record the IETS spectrum of the molecule from

  6. Nanopipette Delivery of Individual Molecules to Cellular Compartments for Single-Molecule Fluorescence Tracking

    National Research Council Canada - National Science Library

    Bruckbauer, Andreas; James, Peter; Zhou, Dejian; Yoon, Ji Won; Excell, David; Korchev, Yuri; Jones, Roy; Klenerman, David

    2007-01-01

    We have developed a new method, using a nanopipette, for controlled voltage-driven delivery of individual fluorescently labeled probe molecules to the plasma membrane which we used for single-molecule...

  7. Single Molecule Studies on Dynamics in Liquid Crystals

    OpenAIRE

    Daniela Täuber; Christian von Borczyskowski

    2013-01-01

    Single molecule (SM) methods are able to resolve structure related dynamics of guest molecules in liquid crystals (LC). Highly diluted small dye molecules on the one hand explore structure formation and LC dynamics, on the other hand they report about a distortion caused by the guest molecules. The anisotropic structure of LC materials is used to retrieve specific conformation related properties of larger guest molecules like conjugated polymers. This in particular sheds light on organization...

  8. Dwell time analysis of a single-molecule mechanochemical reaction.

    Science.gov (United States)

    Szoszkiewicz, Robert; Ainavarapu, Sri Rama Koti; Wiita, Arun P; Perez-Jimenez, Raul; Sanchez-Ruiz, Jose M; Fernandez, Julio M

    2008-02-19

    Force-clamp spectroscopy is a novel technique for studying mechanochemistry at the single-bond level. Single disulfide bond reduction events are accurately detected as stepwise increases in the length of polyproteins that contain disulfide bonds and that are stretched at a constant force with the cantilever of an atomic force microscope (AFM). The kinetics of this reaction has been measured from single-exponential fits to ensemble averages of the reduction events. However, exponential fits are notoriously ambiguous to use in cases of kinetic data showing multiple reaction pathways. Here we introduce a dwell time analysis technique, of widespread use in the single ion channel field, that we apply to the examination of the kinetics of reduction of disulfide bonds measured from single-molecule force-clamp spectroscopy traces. In this technique, exponentially distributed dwell time data is plotted as a histogram with a logarithmic time scale and a square root ordinate. The advantage of logarithmic histograms is that exponentially distributed dwell times appear as well-defined peaks in the distribution, greatly enhancing our ability to detect multiple kinetic pathways. We apply this technique to examine the distribution of dwell times of 4488 single disulfide bond reduction events measured in the presence of two very different kinds of reducing agents: tris-(2-carboxyethyl)phosphine hydrochloride (TCEP) and the enzyme thioredoxin (TRX). A different clamping force is used for each reducing agent to obtain distributions of dwell times on a similar time scale. In the case of TCEP, the logarithmic histogram of dwell times showed a single peak, corresponding to a single reaction mechanism. By contrast, similar experiments done with TRX showed two well-separated peaks, marking two distinct modes of chemical reduction operating simultaneously. These experiments demonstrate that dwell time analysis techniques are a powerful approach to studying chemical reactions at the single-molecule

  9. Single-Molecule Sensors: Challenges and Opportunities for Quantitative Analysis.

    Science.gov (United States)

    Gooding, J Justin; Gaus, Katharina

    2016-09-12

    Measurement science has been converging to smaller and smaller samples, such that it is now possible to detect single molecules. This Review focuses on the next generation of analytical tools that combine single-molecule detection with the ability to measure many single molecules simultaneously and/or process larger and more complex samples. Such single-molecule sensors constitute a new type of quantitative analytical tool, as they perform analysis by molecular counting and thus potentially capture the heterogeneity of the sample. This Review outlines the advantages and potential of these new, quantitative single-molecule sensors, the measurement challenges in making single-molecule devices suitable for analysis, the inspiration biology provides for overcoming these challenges, and some of the solutions currently being explored. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Single-molecule analysis of DNA replication in Xenopus egg extracts

    NARCIS (Netherlands)

    Yardimci, Hasan; Loveland, Anna B.; van Oijen, Antoine M.; Walter, Johannes C.; Mechali, Marcel

    The recent advent in single-molecule imaging and manipulation methods has made a significant impact on the understanding of molecular mechanisms underlying many essential cellular processes. Single-molecule techniques such as electron microscopy and DNA fiber assays have been employed to study the

  11. Kinetic measurements on single-molecule disulfide bond cleavage.

    Science.gov (United States)

    Liang, Jian; Fernández, Julio M

    2011-03-16

    We use single-molecule force clamp spectroscopy (SMFCS) to explore the reactivity of tris(2-carboxyethyl)phosphine (TCEP), 1, 4-dl-dithiothreitol (DTT) and hydrosulfide anion (HS(-)) on disulfide bonds within a mechanically stretched polypeptide. The single-bond level bimolecular nucleophilic substitution (S(N)2) events are recorded at a series of precisely controlled temperatures so that the Arrhenius kinetic parameters, that is, the height of the activation energy barrier (E(a)) and the attempting frequency (A) of the chemical reactions, can be determined. The values of A are typically at the order of 10(7) M(-1) s(-1), which is far lower than that predicted by the transition-state theory, in which A is given by k(B)T/h and around 10(12) M(-1) s(-1) at room temperature. Furthermore, E(a) is derived to be 30-40 kJ/mol, which can be lowered by ∼6-8% with every 100 pN mechanical force applied. The correlation of the A and E(a) with the molecular structures reveals that the relative magnitude of these two parameters cannot be simply judged from the size of the molecule or the nucleophilicity of the attacking atom. The comparison of the influences on the reaction rate induced by force and temperature indicates an equivalent accelerating effect by every 50 pN or 10 K increment, giving for the first time the relationship between mechanical and thermal effects on a single-molecule S(N)2 chemical reaction.

  12. Single molecule probing of SNARE proteins by Atomic Force Microscopy

    Science.gov (United States)

    Liu, Wei; Parpura, Vladimir

    2009-01-01

    Atomic Force Microscopy (AFM) in force spectroscopy mode has recently emerged as a technique of choice for studying mechanical interactions between the proteins of the core Soluble N-ethylmalmeimide-sensitive fusion protein Attachment protein REceptor (SNARE) complex. In these experiments, the rupture force, extension, spontaneous dissociation times and interaction energy for SNARE protein-protein interactions can be obtained at the single molecule level. These measurements, which are complementary to results and conclusions drawn from other techniques, improve our understanding of the role of the SNARE complex in exocytosis. PMID:19161382

  13. Atomic-Scale Control of Electron Transport through Single Molecules

    DEFF Research Database (Denmark)

    Wang, Y. F.; Kroger, J.; Berndt, R.

    2010-01-01

    Tin-phthalocyanine molecules adsorbed on Ag(111) were contacted with the tip of a cryogenic scanning tunneling microscope. Orders-of-magnitude variations of the single-molecule junction conductance were achieved by controllably dehydrogenating the molecule and by modifying the atomic structure...

  14. Single-Molecule Electronic Measurements with Metal Electrodes

    Science.gov (United States)

    Lindsay, Stuart

    2005-01-01

    A review of concepts like tunneling through a metal-molecule-metal-junction, contrast with electrochemical and optical-charge injection, strong-coupling limit, calculations of tunnel transport, electron transfer through Redox-active molecules is presented. This is followed by a discussion of experimental approaches for single-molecule measurements.

  15. Single molecule transcription factor dynamics in the syncytial Drosophila embryo

    Science.gov (United States)

    Darzacq, Xavier

    During early development in the Drosophila embryo, cell fates are determined over the course of just 2 hours with exquisite spatio-temoral precision. One of the key regulators of this process is the transcription factor Bicoid which forms a concentration gradient across the long axis of the embryo. Although Bicoids' primary role is activation at the anterior, where concentrations are highest, it is also known to play a role in the posterior where there are only 100s of molecules per nucleus. Understanding how Bicoid can find its target at such low concentrations has remained intractable, largely due to the inability to perform single molecule imaging in the context of the developing embryo. Here we use lattice light sheet microscopy to overcome the technical barriers of sample thickness and auto-fluorescence to characterize the single molecule dynamics of Bicoid. We find that off-rates do not vary across the embryo and that instead the on-rates are modulated through the formation of clusters that enrich local concentration. This data is contrary to the current concentration dependent model of Bicoid function since local concentration within the nucleus is now a regulated parameter and suggests a previously unknown mechanism for regulation at extremely low concentrations.

  16. Developing Single-Molecule Technique with Microsecond Resolution

    Science.gov (United States)

    Akhterov, Maxim V.

    Molecular machines like proteins are responsible for many regulatory and catalytic functions. Specifically, molecular motions of proteins and their flexibility determine conformational states required for enzyme catalysis, signal transduction, and protein-protein interactions. However, the mechanisms for protein transitions between conformational states are often poorly understood, especially in the milli- to microsecond ranges where conventional optical techniques and computational modeling are most limited. This work describes development of an electronic single-molecule technique for monitoring microsecond motions of biological molecules. Dynamic changes of conductance through a transistor made of a single-walled carbon nanotube (SWNT-FET) report conformational changes of a protein molecule tethered to the SWNT sidewall. In principle, the high operating speed of SWNT-FETs could allow this technique to resolve molecular events with nanosecond resolution. This project focused on improving the technique to a 200 kHz effective bandwidth in order to resolve microsecond-scale dynamics. The improvement was achieved with a home-built electrochemical flow cell. By minimizing parasitic capacitance due to liquid coupling to electrodes and eliminating noise pickup, the flow cell enabled low-noise, high bandwidth measurement of molecular events as short as 2 mus. The apparatus was used to observe closing and opening motions of lysozyme. Preliminary results suggest that lysozyme has a distribution of possible velocities with the most probable speed approaching our experimental resolution of 2 mus.

  17. Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS)

    Science.gov (United States)

    Kneipp, Katrin; Wang, Yang; Kneipp, Harald; Perelman, Lev T.; Itzkan, Irving; Dasari, Ramachandra R.; Feld, Michael S.

    1997-03-01

    By exploiting the extremely large effective cross sections ( 10-17-10-16 cm2/molecule) available from surface-enhanced Raman scattering (SERS), we achieved the first observation of single molecule Raman scattering. Measured spectra of a single crystal violet molecule in aqueous colloidal silver solution using one second collection time and about 2×105 W/cm2 nonresonant near-infrared excitation show a clear ``fingerprint'' of its Raman features between 700 and 1700 cm-1. Spectra observed in a time sequence for an average of 0.6 dye molecule in the probed volume exhibited the expected Poisson distribution for actually measuring 0, 1, 2, or 3 molecules.

  18. Breaking the concentration limit of optical single-molecule detection.

    Science.gov (United States)

    Holzmeister, Phil; Acuna, Guillermo P; Grohmann, Dina; Tinnefeld, Philip

    2014-02-21

    Over the last decade, single-molecule detection has been successfully utilized in the life sciences and materials science. Yet, single-molecule measurements only yield meaningful results when working in a suitable, narrow concentration range. On the one hand, diffraction limits the minimal size of the observation volume in optical single-molecule measurements and consequently a sample must be adequately diluted so that only one molecule resides within the observation volume. On the other hand, at ultra-low concentrations relevant for sensing, the detection volume has to be increased in order to detect molecules in a reasonable timespan. This in turn results in the loss of an optimal signal-to-noise ratio necessary for single-molecule detection. This review discusses the requirements for effective single-molecule fluorescence applications, reflects on the motivation for the extension of the dynamic concentration range of single-molecule measurements and reviews various approaches that have been introduced recently to solve these issues. For the high-concentration limit, we identify four promising strategies including molecular confinement, optical observation volume reduction, temporal separation of signals and well-conceived experimental designs that specifically circumvent the high concentration limit. The low concentration limit is addressed by increasing the measurement speed, parallelization, signal amplification and preconcentration. The further development of these ideas will expand our possibilities to interrogate research questions with the clarity and precision provided only by the single-molecule approach.

  19. Single Molecule Applications of Quantum Dots

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Elmelund; Jauffred, Liselotte; Brewer, Jonathan R.

    2013-01-01

    for tracking single lipids in lipid bilayers, 4) two-photon fluorescence correlation spectroscopy of QDs and 5) optical trapping and excitation of single QDs. In all of these applications, the focus is on the single particle sensitivity level of QDs. The high applicability of QDs in live cell imaging...

  20. Novel approaches for single molecule activation and detection

    CERN Document Server

    Benfenati, Fabio; Torre, Vincent

    2014-01-01

    How can we obtain tools able to process and exchange information at the molecular scale In order to do this, it is necessary to activate and detect single molecules under controlled conditions. This book focuses on the generation of biologically-inspired molecular devices. These devices are based on the developments of new photonic tools able to activate and stimulate single molecule machines. Additionally, new light sensitive molecules can be selectively activated by photonic tools. These technological innovations will provide a way to control activation of single light-sensitive molecules, a

  1. Rotation of a single molecule within a supramolecular bearing

    DEFF Research Database (Denmark)

    Gimzewski, J.K.; Joachim, C.; Schlittler, R.R.

    1998-01-01

    Experimental visualization and verification of a single-molecule rotor operating within a supramolecular bearing is reported. Using a scanning tunneling microscope, single molecules were observed to exist in one of two spatially defined states Laterally separated by 0.26 nanometers. One...

  2. Single-molecule approaches to characterizing kinetics of biomolecular interactions

    NARCIS (Netherlands)

    van Oijen, Antoine M.

    Single-molecule fluorescence techniques have emerged as powerful tools to study biological processes at the molecular level. This review describes the application of these methods to the characterization of the kinetics of interaction between biomolocules. A large number of single-molecule assays

  3. Electrochemical Single-Molecule Transistors with Optimized Gate Coupling

    DEFF Research Database (Denmark)

    Osorio, Henrry M.; Catarelli, Samantha; Cea, Pilar

    2015-01-01

    Electrochemical gating at the single molecule level of viologen molecular bridges in ionic liquids is examined. Contrary to previous data recorded in aqueous electrolytes, a clear and sharp peak in the single molecule conductance versus electrochemical potential data is obtained in ionic liquids....

  4. Large negative differential conductance in single-molecule break junctions

    NARCIS (Netherlands)

    Perrin, Mickael L.; Frisenda, Riccardo; Koole, Max; Seldenthuis, Johannes S.; Gil, Jose A. Celis; Valkenier, Hennie; Hummelen, Jan C.; Renaud, Nicolas; Grozema, Ferdinand C.; Thijssen, Joseph M.; Dulic, Diana; van der Zant, Herre S. J.

    2014-01-01

    Molecular electronics aims at exploiting the internal structure and electronic orbitals of molecules to construct functional building blocks(1). To date, however, the overwhelming majority of experimentally realized single-molecule junctions can be described as single quantum dots, where transport

  5. DNA analysis by single molecule stretching in nanofluidic biochips

    DEFF Research Database (Denmark)

    Abad, E.; Juarros, A.; Retolaza, A.

    2011-01-01

    Imprint Lithography (NIL) technology combined with a conventional anodic bonding of the silicon base and Pyrex cover. Using this chip, we have performed single molecule imaging on a bench-top fluorescent microscope system. Lambda phage DNA was used as a model sample to characterize the chip. Single molecules of λ...

  6. Dynamics of a GPCR studied with single-molecule microscopy

    NARCIS (Netherlands)

    Keijzer, Sandra de

    2006-01-01

    The behavior of single G-protein coupled receptor molecules were studied with single-molecule microscopy in the plasmamembrane during Dictyostelium discoideum chemotaxis. The mobility of the receptor was different in the anterior and posterior regions of living cells migrating towards the source of

  7. Single-molecule binding experiments on long time scales

    NARCIS (Netherlands)

    Elenko, Mark P.; Szostak, Jack W.; van Oijen, Antoine M.

    We describe an approach for performing single-molecule binding experiments on time scales from hours to days, allowing for the observation of slower kinetics than have been previously investigated by single-molecule techniques. Total internal reflection fluorescence microscopy is used to image the

  8. A single molecule DNA flow stretching microscope for undergraduates

    NARCIS (Netherlands)

    Williams, Kelly; Grafe, Brendan; Burke, Kathryn M.; Tanner, Nathan; van Oijen, Antoine M.; Loparo, Joseph; Price, Allen C.

    2011-01-01

    The design of a simple, safe, and inexpensive single molecule flow stretching instrument is presented. The instrument uses a low cost upright microscope coupled to a webcam for imaging single DNA molecules that are tethered in an easy to construct microfluidic flow cell. The system requires no

  9. Single-molecule probes in organic field-effect transistors

    NARCIS (Netherlands)

    Nicolet, Aurélien Armel Louis

    2007-01-01

    The goal of this thesis is to study charge transport phenomena in organic materials. This is done optically by means of single-molecule spectroscopy in a field-effect transistor based on a molecular crystal. We present (in Chapter 2) a fundamental requirement for single-molecule spectroscopy

  10. Single-molecule vibrational spectroscopy of water molecules using an LT-STM

    Science.gov (United States)

    Matsumoto, Chikako; Kim, Yousoo; Motobayashi, Kenta; Kawai, Maki

    2006-03-01

    Single-molecule vibrational spectroscopy has attracted considerable attention as a powerful tool for nanoscale chemistry. The adsorption of water molecules on metal surfaces plays an important role in understanding many phenomena in nature, such as heterogeneous catalysis and corrosion, etc. The structure of water at low coverage has been investigated on a variety of transition-metal surfaces with various techniques. But the microscopic understanding of the adsorption feature of single water molecules is still unclear. We report molecular scale study of adsorption behaviors of water molecules on Pt (111) surface at 4.7 K by use of single-molecule vibrational spectroscopy with the scanning tunneling microscopy (STM). The Pt (111) surface was dosed with a small amount of water molecules (cherry blossom', which can be explained by one of the water molecules rotating around the other. Inelastic electron tunneling spectroscopy using the STM was utilized to determine vibrational modes of individual water dimers.

  11. Electric field controlled magnetic anisotropy in a single molecule.

    Science.gov (United States)

    Zyazin, Alexander S; van den Berg, Johan W G; Osorio, Edgar A; van der Zant, Herre S J; Konstantinidis, Nikolaos P; Leijnse, Martin; Wegewijs, Maarten R; May, Falk; Hofstetter, Walter; Danieli, Chiara; Cornia, Andrea

    2010-09-08

    We have measured quantum transport through an individual Fe(4) single-molecule magnet embedded in a three-terminal device geometry. The characteristic zero-field splittings of adjacent charge states and their magnetic field evolution are observed in inelastic tunneling spectroscopy. We demonstrate that the molecule retains its magnetic properties and, moreover, that the magnetic anisotropy is significantly enhanced by reversible electron addition/subtraction controlled with the gate voltage. Single-molecule magnetism can thus be electrically controlled.

  12. Mg2+-Dependent High Mechanical Anisotropy of Three-Way-Junction pRNA as Revealed by Single-Molecule Force Spectroscopy.

    Science.gov (United States)

    Sun, Yang; Di, Weishuai; Li, Yiran; Huang, Wenmao; Wang, Xin; Qin, Meng; Wang, Wei; Cao, Yi

    2017-08-01

    Mechanical anisotropy is ubiquitous in biological tissues but is hard to reproduce in synthetic biomaterials. Developing molecular building blocks with anisotropic mechanical response is the key towards engineering anisotropic biomaterials. The three-way-junction (3WJ) pRNA, derived from ϕ29 DNA packaging motor, shows strong mechanical anisotropy upon Mg 2+ binding. In the absence of Mg 2+ , 3WJ-pRNA is mechanically weak without noticeable mechanical anisotropy. In the presence of Mg 2+ , the unfolding forces can differ by more than 4-fold along different pulling directions, ranging from about 47 pN to about 219 pN. Mechanical anisotropy of 3WJ-pRNA stems from pulling direction dependent cooperativity for the rupture of two Mg 2+ binding sites, which is a novel mechanism for the mechanical anisotropy of biomacromolecules. It is anticipated that 3WJ-pRNA can be used as a key element for the construction of biomaterials with controllable mechanical anisotropy. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Controlled transport through a single molecule

    NARCIS (Netherlands)

    Kumar, Avijit; Heimbuch, Rene; Poelsema, Bene; Zandvliet, Henricus J.W.

    2012-01-01

    We demonstrate how an electrode–molecule–electrode junction can be controllably opened and closed by careful tuning of the contacts' interspace and voltage. The molecule, an octanethiol, flips to bridge a ~1 nm interspace between substrate and scanning tunnelling microscope tip when an electric

  14. Computer systems for annotation of single molecule fragments

    Science.gov (United States)

    Schwartz, David Charles; Severin, Jessica

    2016-07-19

    There are provided computer systems for visualizing and annotating single molecule images. Annotation systems in accordance with this disclosure allow a user to mark and annotate single molecules of interest and their restriction enzyme cut sites thereby determining the restriction fragments of single nucleic acid molecules. The markings and annotations may be automatically generated by the system in certain embodiments and they may be overlaid translucently onto the single molecule images. An image caching system may be implemented in the computer annotation systems to reduce image processing time. The annotation systems include one or more connectors connecting to one or more databases capable of storing single molecule data as well as other biomedical data. Such diverse array of data can be retrieved and used to validate the markings and annotations. The annotation systems may be implemented and deployed over a computer network. They may be ergonomically optimized to facilitate user interactions.

  15. Controlling single-molecule junction conductance by molecular interactions

    Science.gov (United States)

    Kitaguchi, Y.; Habuka, S.; Okuyama, H.; Hatta, S.; Aruga, T.; Frederiksen, T.; Paulsson, M.; Ueba, H.

    2015-01-01

    For the rational design of single-molecular electronic devices, it is essential to understand environmental effects on the electronic properties of a working molecule. Here we investigate the impact of molecular interactions on the single-molecule conductance by accurately positioning individual molecules on the electrode. To achieve reproducible and precise conductivity measurements, we utilize relatively weak π-bonding between a phenoxy molecule and a STM-tip to form and cleave one contact to the molecule. The anchoring to the other electrode is kept stable using a chalcogen atom with strong bonding to a Cu(110) substrate. These non-destructive measurements permit us to investigate the variation in single-molecule conductance under different but controlled environmental conditions. Combined with density functional theory calculations, we clarify the role of the electrostatic field in the environmental effect that influences the molecular level alignment. PMID:26135251

  16. Single-Molecule Total Internal Reflection Fluorescence Microscopy

    OpenAIRE

    Kudalkar, Emily M.; Davis, Trisha N; Asbury, Charles L.

    2016-01-01

    The advent of total internal reflection fluorescence (TIRF) microscopy has permitted visualization of biological events on an unprecedented scale: the single molecule level. Using TIRF, it is now possible to view complex biological interactions such as cargo transport by a single molecular motor or DNA replication in real-time. TIRF allows for visualization of single molecules by eliminating out-of-focus fluorescence and enhancing the signal-to-noise ratio. TIRF has been instrumental for stud...

  17. Massively parallel single-molecule manipulation using centrifugal force

    CERN Document Server

    Halvorsen, Ken

    2009-01-01

    Precise manipulation of single molecules has already led to remarkable insights in physics, chemistry, biology and medicine. However, widespread adoption of single-molecule techniques has been impeded by equipment cost and the laborious nature of making measurements one molecule at a time. We have solved these issues with a new approach: massively parallel single-molecule force measurements using centrifugal force. This approach is realized in a novel instrument that we call the Centrifuge Force Microscope (CFM), in which objects in an orbiting sample are subjected to a calibration-free, macroscopically uniform force-field while their micro-to-nanoscopic motions are observed. We demonstrate high-throughput single-molecule force spectroscopy with this technique by performing thousands of rupture experiments in parallel, characterizing force-dependent unbinding kinetics of an antibody-antigen pair in minutes rather than days. Additionally, we verify the force accuracy of the instrument by measuring the well-est...

  18. Molecular electronics with single molecules in solid-state devices

    DEFF Research Database (Denmark)

    Moth-Poulsen, Kasper; Bjørnholm, Thomas

    2009-01-01

    The ultimate aim of molecular electronics is to understand and master single-molecule devices. Based on the latest results on electron transport in single molecules in solid-state devices, we focus here on new insights into the influence of metal electrodes on the energy spectrum of the molecule......, and how the electron transport properties of the molecule depend on the strength of the electronic coupling between it and the electrodes. A variety of phenomena are observed depending on whether this coupling is weak, intermediate or strong....

  19. Molecular electronics with single molecules in solid-state devices.

    Science.gov (United States)

    Moth-Poulsen, Kasper; Bjørnholm, Thomas

    2009-09-01

    The ultimate aim of molecular electronics is to understand and master single-molecule devices. Based on the latest results on electron transport in single molecules in solid-state devices, we focus here on new insights into the influence of metal electrodes on the energy spectrum of the molecule, and on how the electron transport properties of the molecule depend on the strength of the electronic coupling between it and the electrodes. A variety of phenomena are observed depending on whether this coupling is weak, intermediate or strong.

  20. A Brief Introduction to Single-Molecule Fluorescence Methods.

    Science.gov (United States)

    van den Wildenberg, Siet M J L; Prevo, Bram; Peterman, Erwin J G

    2018-01-01

    One of the more popular single-molecule approaches in biological science is single-molecule fluorescence microscopy, which will be the subject of the following section of this volume. Fluorescence methods provide the sensitivity required to study biology on the single-molecule level, but they also allow access to useful measurable parameters on time and length scales relevant for the biomolecular world. Before several detailed experimental approaches will be addressed, we will first give a general overview of single-molecule fluorescence microscopy. We start with discussing the phenomenon of fluorescence in general and the history of single-molecule fluorescence microscopy. Next, we will review fluorescent probes in more detail and the equipment required to visualize them on the single-molecule level. We will end with a description of parameters measurable with such approaches, ranging from protein counting and tracking, single-molecule localization super-resolution microscopy, to distance measurements with Förster Resonance Energy Transfer and orientation measurements with fluorescence polarization.

  1. Spin blockade effect in single-molecule transistors

    Science.gov (United States)

    Luo, Guangpu; Park, Kyungwha

    Recently single-molecule transistors consisting of individual single-molecule magnets trapped between electrodes have been experimentally realized and electron transport properties through individual single-molecule magnets have been measured. For a single-molecule magnet the (2S+1)-fold degeneracy of magnetic levels in a given spin multiplet is lifted even in the absence of external magnetic field, due to the magnetic anisotropy induced by spin-orbit coupling. This anisotropic nature of single-molecule magnets allowed one to discover interesting, unexpected transport properties. A recent theoretical study showed that an Eu-based anisotropic magnetic molecule can switch its magnetic anisotropy between magnetic easy plane and easy axis upon varying the charge state of the molecule. Motivated by this report, we investigate how this switch of magnetic anisotropy influences the electron transport through the molecule, by considering sequential electron tunneling. We calculate current-voltage characteristics by solving the master equation based on the model Hamiltonians. We explore this interesting effect in the absence and presence of external magnetic field. Funding from NSF DMR-1206354.

  2. Studying the Nucleated Mammalian Cell Membrane by Single Molecule Approaches

    Science.gov (United States)

    Wang, Feng; Wu, Jiazhen; Gao, Jing; Liu, Shuheng; Jiang, Junguang; Jiang, Shibo; Wang, Hongda

    2014-01-01

    The cell membrane plays a key role in compartmentalization, nutrient transportation and signal transduction, while the pattern of protein distribution at both cytoplasmic and ectoplasmic sides of the cell membrane remains elusive. Using a combination of single-molecule techniques, including atomic force microscopy (AFM), single molecule force spectroscopy (SMFS) and stochastic optical reconstruction microscopy (STORM), to study the structure of nucleated cell membranes, we found that (1) proteins at the ectoplasmic side of the cell membrane form a dense protein layer (4 nm) on top of a lipid bilayer; (2) proteins aggregate to form islands evenly dispersed at the cytoplasmic side of the cell membrane with a height of about 10–12 nm; (3) cholesterol-enriched domains exist within the cell membrane; (4) carbohydrates stay in microdomains at the ectoplasmic side; and (5) exposed amino groups are asymmetrically distributed on both sides. Based on these observations, we proposed a Protein Layer-Lipid-Protein Island (PLLPI) model, to provide a better understanding of cell membrane structure, membrane trafficking and viral fusion mechanisms. PMID:24806512

  3. Gold plasmonic effects on charge transport through single molecule junctions

    Science.gov (United States)

    Adak, Olgun; Venkataraman, Latha

    2014-03-01

    We study the impact of surface plasmon polaritons, the coupling of electromagnetic waves to collective electron oscillations on metal surfaces, on the conductance of single-molecule junctions. We use a scanning-tunneling microscope based break junction setup that is built into an optical microscope to form molecular junctions. Coherent 685nm light is used to illuminate the molecular junctions formed with 4,4'-bipyridine with diffraction limited focusing performance. We employ a lock-in type technique to measure currents induced by light. Furthermore, the thermal expansion due to laser heating is mimicked by mechanically modulating inter-electrode separation. For each junction studied, we measure current, and use AC techniques to determine molecular junction resonance levels and coupling strengths. We use a cross correlations analysis technique to analyze and compare the effect of light to that of the mechanical modulation. Our results show that junction transmission characteristics are not altered under illumination, within the resolution of our instrument. We argue that photo-currents measured with lock-in techniques in these kinds of structures are due to thermal effects. This work was funded by the Center for Re-Defining Photovoltaic Efficiency through Molecule Scale Control, an EFRC funded by the US Department of Energy, Office of Basic Energy Sciences under Contract No. DESC0001085.

  4. Single molecule detection using charge-coupled device array technology

    Energy Technology Data Exchange (ETDEWEB)

    Denton, M.B.

    1992-07-29

    A technique for the detection of single fluorescent chromophores in a flowing stream is under development. This capability is an integral facet of a rapid DNA sequencing scheme currently being developed by Los Alamos National Laboratory. In previous investigations, the detection sensitivity was limited by the background Raman emission from the water solvent. A detection scheme based on a novel mode of operating a Charge-Coupled Device (CCD) is being developed which should greatly enhance the discrimination between fluorescence from a single molecule and the background Raman scattering from the solvent. Register shifts between rows in the CCD are synchronized with the sample flow velocity so that fluorescence from a single molecule is collected in a single moving charge packet occupying an area approaching that of a single pixel while the background is spread evenly among a large number of pixels. Feasibility calculations indicate that single molecule detection should be achieved with an excellent signal-to-noise ratio.

  5. Investigating single molecule adhesion by atomic force spectroscopy.

    Science.gov (United States)

    Stetter, Frank W S; Kienle, Sandra; Krysiak, Stefanie; Hugel, Thorsten

    2015-02-27

    Atomic force spectroscopy is an ideal tool to study molecules at surfaces and interfaces. An experimental protocol to couple a large variety of single molecules covalently onto an AFM tip is presented. At the same time the AFM tip is passivated to prevent unspecific interactions between the tip and the substrate, which is a prerequisite to study single molecules attached to the AFM tip. Analyses to determine the adhesion force, the adhesion length, and the free energy of these molecules on solid surfaces and bio-interfaces are shortly presented and external references for further reading are provided. Example molecules are the poly(amino acid) polytyrosine, the graft polymer PI-g-PS and the phospholipid POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine). These molecules are desorbed from different surfaces like CH3-SAMs, hydrogen terminated diamond and supported lipid bilayers under various solvent conditions. Finally, the advantages of force spectroscopic single molecule experiments are discussed including means to decide if truly a single molecule has been studied in the experiment.

  6. Extending single-molecule microscopy using optical Fourier processing.

    Science.gov (United States)

    Backer, Adam S; Moerner, W E

    2014-07-17

    This article surveys the recent application of optical Fourier processing to the long-established but still expanding field of single-molecule imaging and microscopy. A variety of single-molecule studies can benefit from the additional image information that can be obtained by modulating the Fourier, or pupil, plane of a widefield microscope. After briefly reviewing several current applications, we present a comprehensive and computationally efficient theoretical model for simulating single-molecule fluorescence as it propagates through an imaging system. Furthermore, we describe how phase/amplitude-modulating optics inserted in the imaging pathway may be modeled, especially at the Fourier plane. Finally, we discuss selected recent applications of Fourier processing methods to measure the orientation, depth, and rotational mobility of single fluorescent molecules.

  7. Single Molecule Scanning of DNA Radiation Oxidative Damage Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal will develop an assay to map genomic DNA, at the single molecule level and in a nanodevice, for oxidative DNA damage arising from radiation exposure;...

  8. Single Molecule Spectroscopy in Chemistry, Physics and Biology Nobel Symposium

    CERN Document Server

    Gräslund, Astrid; Widengren, Jerker

    2010-01-01

    Written by the leading experts in the field, this book describes the development and current state-of-the-art in single molecule spectroscopy. The application of this technique, which started 1989, in physics, chemistry and biosciences is displayed.

  9. Single-Molecule High-Resolution Imaging with Photobleaching

    National Research Council Canada - National Science Library

    Matthew P. Gordon; Taekjip Ha; Paul R. Selvin; Gordon A. Baym

    2004-01-01

    ... of 1.5 nm with subsecond time resolution. Here we locate the position of two dyes and determine their separation with 5-nm precision, using the quantal photobleaching behavior of single fluorescent dye molecules...

  10. Single-molecule fluorescence microscopy in living Caenorhabditis elegans

    NARCIS (Netherlands)

    van Krugten, Jaap; Peterman, Erwin J.G.

    2018-01-01

    Transportation of organelles and biomolecules is vital for many cellular processes. Single-molecule (SM) fluorescence microscopy can expose molecular aspects of the dynamics that remain unresolved in ensemble experiments. For example, trajectories of individual, moving biomolecules can reveal

  11. Developing in vivo biophysics by fishing for single molecules.

    Science.gov (United States)

    Wang, Xi; Wohland, Thorsten; Korzh, Vladimir

    2010-11-01

    Single-molecule techniques (SMT) provide the possibility to quantitatively analyze the action of single molecules. SMTs can resolve the distribution of states of an ensemble of molecules, collecting information that is otherwise not accessible by typical ensemble techniques. Until now, the application of SMTs in developmental biology was limited. Several recent studies illustrate the possibility to investigate the behavior of single biological molecules in invertebrates such as Caenorhabditis elegans and transparent embryos of model teleosts. These studies have paved the way for the application of fluorescence-based SMTs, e.g. fluorescence correlation spectroscopy, fluorescent energy transfer, or single particle tracking, in developmental biology. This review aims to define SMTs applicable in developmental biology, and discuss properties of an ideal animal model. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Extending Single-Molecule Microscopy Using Optical Fourier Processing

    Science.gov (United States)

    2015-01-01

    This article surveys the recent application of optical Fourier processing to the long-established but still expanding field of single-molecule imaging and microscopy. A variety of single-molecule studies can benefit from the additional image information that can be obtained by modulating the Fourier, or pupil, plane of a widefield microscope. After briefly reviewing several current applications, we present a comprehensive and computationally efficient theoretical model for simulating single-molecule fluorescence as it propagates through an imaging system. Furthermore, we describe how phase/amplitude-modulating optics inserted in the imaging pathway may be modeled, especially at the Fourier plane. Finally, we discuss selected recent applications of Fourier processing methods to measure the orientation, depth, and rotational mobility of single fluorescent molecules. PMID:24745862

  13. Nanopipette Delivery of Individual Molecules to Cellular Compartments for Single-Molecule Fluorescence Tracking

    OpenAIRE

    Bruckbauer, Andreas; James, Peter; Zhou, Dejian; Yoon, Ji Won; Excell, David; Korchev, Yuri; Jones, Roy; Klenerman, David

    2007-01-01

    We have developed a new method, using a nanopipette, for controlled voltage-driven delivery of individual fluorescently labeled probe molecules to the plasma membrane which we used for single-molecule fluorescence tracking (SMT). The advantages of the method are 1), application of the probe to predefined regions on the membrane; 2), release of only one or a few molecules onto the cell surface; 3), when combined with total internal reflection fluorescence microscopy, very low background due to...

  14. Complex formation dynamics in a single-molecule electronic device.

    Science.gov (United States)

    Wen, Huimin; Li, Wengang; Chen, Jiewei; He, Gen; Li, Longhua; Olson, Mark A; Sue, Andrew C-H; Stoddart, J Fraser; Guo, Xuefeng

    2016-11-01

    Single-molecule electronic devices offer unique opportunities to investigate the properties of individual molecules that are not accessible in conventional ensemble experiments. However, these investigations remain challenging because they require (i) highly precise device fabrication to incorporate single molecules and (ii) sufficient time resolution to be able to make fast molecular dynamic measurements. We demonstrate a graphene-molecule single-molecule junction that is capable of probing the thermodynamic and kinetic parameters of a host-guest complex. By covalently integrating a conjugated molecular wire with a pendent crown ether into graphene point contacts, we can transduce the physical [2]pseudorotaxane (de)formation processes between the electron-rich crown ether and a dicationic guest into real-time electrical signals. The conductance of the single-molecule junction reveals two-level fluctuations that are highly dependent on temperature and solvent environments, affording a nondestructive means of quantitatively determining the binding and rate constants, as well as the activation energies, for host-guest complexes. The thermodynamic processes reveal the host-guest binding to be enthalpy-driven and are consistent with conventional 1 H nuclear magnetic resonance titration experiments. This electronic device opens up a new route to developing single-molecule dynamics investigations with microsecond resolution for a broad range of chemical and biochemical applications.

  15. Fluorescent Biosensors Based on Single-Molecule Counting.

    Science.gov (United States)

    Ma, Fei; Li, Ying; Tang, Bo; Zhang, Chun-Yang

    2016-09-20

    Biosensors for highly sensitive, selective, and rapid quantification of specific biomolecules make great contributions to biomedical research, especially molecular diagnostics. However, conventional methods for biomolecular assays often suffer from insufficient sensitivity and poor specificity. In some case (e.g., early disease diagnostics), the concentration of target biomolecules is too low to be detected by these routine approaches, and cumbersome procedures are needed to improve the detection sensitivity. Therefore, there is an urgent need for rapid and ultrasensitive analytical tools. In this respect, single-molecule fluorescence approaches may well satisfy the requirement and hold promising potential for the development of ultrasensitive biosensors. Encouragingly, owing to the advances in single-molecule microscopy and spectroscopy over past decades, the detection of single fluorescent molecule comes true, greatly boosting the development of highly sensitive biosensors. By in vitro/in vivo labeling of target biomolecules with proper fluorescent tags, the quantification of certain biomolecule at the single-molecule level is achieved. In comparison with conventional ensemble measurements, single-molecule detection-based analytical methods possess the advantages of ultrahigh sensitivity, good selectivity, rapid analysis time, and low sample consumption. Consequently, single-molecule detection may be potentially employed as an ideal analytical approach to quantify low-abundant biomolecules with rapidity and simplicity. In this Account, we will summarize our efforts for developing a series of ultrasensitive biosensors based on single-molecule counting. Single-molecule counting is a member of single-molecule detection technologies and may be used as a very simple and ultrasensitive method to quantify target molecules by simply counting the individual fluorescent bursts. In the fluorescent sensors, the signals of target biomolecules may be translated to the

  16. Electronic transport in benzodifuran single-molecule transistors

    Science.gov (United States)

    Xiang, An; Li, Hui; Chen, Songjie; Liu, Shi-Xia; Decurtins, Silvio; Bai, Meilin; Hou, Shimin; Liao, Jianhui

    2015-04-01

    Benzodifuran (BDF) single-molecule transistors have been fabricated in electromigration break junctions for electronic measurements. The inelastic electron tunneling spectrum validates that the BDF molecule is the pathway of charge transport. The gating effect is analyzed in the framework of a single-level tunneling model combined with transition voltage spectroscopy (TVS). The analysis reveals that the highest occupied molecular orbital (HOMO) of the thiol-terminated BDF molecule dominates the charge transport through Au-BDF-Au junctions. Moreover, the energy shift of the HOMO caused by the gate voltage is the main reason for conductance modulation. In contrast, the electronic coupling between the BDF molecule and the gold electrodes, which significantly affects the low-bias junction conductance, is only influenced slightly by the applied gate voltage. These findings will help in the design of future molecular electronic devices.Benzodifuran (BDF) single-molecule transistors have been fabricated in electromigration break junctions for electronic measurements. The inelastic electron tunneling spectrum validates that the BDF molecule is the pathway of charge transport. The gating effect is analyzed in the framework of a single-level tunneling model combined with transition voltage spectroscopy (TVS). The analysis reveals that the highest occupied molecular orbital (HOMO) of the thiol-terminated BDF molecule dominates the charge transport through Au-BDF-Au junctions. Moreover, the energy shift of the HOMO caused by the gate voltage is the main reason for conductance modulation. In contrast, the electronic coupling between the BDF molecule and the gold electrodes, which significantly affects the low-bias junction conductance, is only influenced slightly by the applied gate voltage. These findings will help in the design of future molecular electronic devices. Electronic supplementary information (ESI) available: The fabrication procedure for BDF single-molecule

  17. Probing the local environment of a single OPE3 molecule using inelastic tunneling electron spectroscopy.

    Science.gov (United States)

    Frisenda, Riccardo; Perrin, Mickael L; van der Zant, Herre S J

    2015-01-01

    We study single-molecule oligo(phenylene ethynylene)dithiol junctions by means of inelastic electron tunneling spectroscopy (IETS). The molecule is contacted with gold nano-electrodes formed with the mechanically controllable break junction technique. We record the IETS spectrum of the molecule from direct current measurements, both as a function of time and electrode separation. We find that for fixed electrode separation the molecule switches between various configurations, which are characterized by different IETS spectra. Similar variations in the IETS signal are observed during atomic rearrangements upon stretching of the molecular junction. Using quantum chemistry calculations, we identity some of the vibrational modes which constitute a chemical fingerprint of the molecule. In addition, changes can be attributed to rearrangements of the local molecular environment, in particular at the molecule-electrode interface. This study shows the importance of taking into account the interaction with the electrodes when describing inelastic contributions to transport through single-molecule junctions.

  18. Modification of single molecule fluorescence using external fields

    Science.gov (United States)

    Chen, Rui-Yun; Zhang, Guo-Feng; Qin, Cheng-Bin; Gao, Yan; Xiao, Lian-Tuan; Jia, Suo-Tang

    2017-10-01

    Controlling and manipulating the fluorescence of single fluorophores is of great interest in recent years for its potential uses in improving the performance of molecular photonics and molecular electronics, such as in organic light-emitting devices, single photon sources, organic field-effect transistors, and probes or sensors based on single molecules. This review shows how the fluorescence emission of single organic molecules can be modified using local electromagnetic fields of metallic nanostructures and electric-field-induced electron transfer. Electric-field-induced fluorescence modulation, hysteresis, and the achievement of fluorescence switch are discussed in detail.

  19. Single-Molecule Visualization of Living Polymerization

    Science.gov (United States)

    2014-02-18

    77 (2011). 11 D. P. Allen , M. M. Van Wingerden & R. H. Grubbs. Well-defined silica-supported olefin metathesis catalysts. Org Lett 11, 1261-1264...magnet position), we can also probe how mechanical tension affects the catalytic kinetics of the polymerization. When the magnets are positioned far...the setup include: two rectangular NdFeB magnets mounted on a rotatable base controlled by a motor via a timing belt , collimated LED illumination

  20. Novel fluorescent dyes for single DNA molecule techniques.

    Science.gov (United States)

    Zarkov, Alexander; Vasilev, Aleksey; Deligeorgiev, Todor; Stoynov, Stoyno; Nedelcheva-Veleva, Marina

    2013-01-01

    To answer the demands of scientific and medical imaging issues, the family of nucleic acid fluorescent dyes is constantly enlarging. Most of the developed dyes reveal high qualities in bulk solution assays but are inefficient to produce a strong and sufficiently stable signal to enable the application of single-molecule techniques. Therefore, we tested 12 novel monomeric and homodimeric cyanine dyes for potential single DNA molecule imaging. Although their qualities in bulk solutions have already been described, nothing was known about their behavior on a single-molecule level. All 12 dyes demonstrated strong emission when intercalated into single DNA molecules and stretched on a silanized surface, which makes them the perfect choice for fluorescent microscopy imaging. A comparison of their fluorescence intensity and photostability with the most applicable dyes in single-molecule techniques, fluorescent dyes YOYO-1 and POPO-3, was carried out. They all exhibited a strong signal, comparable to that of YOYO-1. However, in contrast to YOYO-1, which is visualized under a green filter only, their emission permits red filter visualization. As their photostability highly exceeds that of similar spectrum POPO-3 dye, the studied dyes stand out as the best choice for a broad range of solid surface single-molecule applications when yellow to red DNA backbone fluorescence is needed.

  1. Novel Fluorescent Dyes for Single DNA Molecule Techniques

    Directory of Open Access Journals (Sweden)

    Alexander Zarkov

    2013-03-01

    Full Text Available To answer the demands of scientific and medical imaging issues, the family of nucleic acid fluorescent dyes is constantly enlarging. Most of the developed dyes reveal high qualities in bulk solution assays but are inefficient to produce a strong and sufficiently stable signal to enable the application of single-molecule techniques. Therefore, we tested 12 novel monomeric and homodimeric cyanine dyes for potential single DNA molecule imaging. Although their qualities in bulk solutions have already been described, nothing was known about their behavior on a single-molecule level. All 12 dyes demonstrated strong emission when intercalated into single DNA molecules and stretched on a silanized surface, which makes them the perfect choice for fluorescent microscopy imaging. A comparison of their fluorescence intensity and photostability with the most applicable dyes in single-molecule techniques, fluorescent dyes YOYO-1 and POPO-3, was carried out. They all exhibited a strong signal, comparable to that of YOYO-1. However, in contrast to YOYO-1, which is visualized under a green filter only, their emission permits red filter visualization. As their photostability highly exceeds that of similar spectrum POPO-3 dye, the studied dyes stand out as the best choice for a broad range of solid surface single-molecule applications when yellow to red DNA backbone fluorescence is needed.

  2. Single-molecule manipulation experiments to explore friction and adhesion

    Science.gov (United States)

    Pawlak, R.; Kawai, S.; Meier, T.; Glatzel, T.; Baratoff, A.; Meyer, E.

    2017-03-01

    Friction forces, which arise when two bodies that are in contact are moved with respect to one another, are ubiquitous phenomena. Although various measurement tools have been developed to study these phenomena at all length scales, such investigations are highly challenging when tackling the scale of single molecules in motion on a surface. This work reviews the recent advances in single-molecule manipulation experiments performed at low temperature with the aim of understanding the fundamental frictional response of single molecules. Following the advent of ‘nanotribology’ in the field based on the atomic force microscopy technique, we will show the technical requirements to direct those studies at the single-molecule level. We will also discuss the experimental prerequisites needed to obtain and interpret the phenomena, such as the implementation of single-molecule manipulation techniques, the processing of the experimental data or their comparison with appropriate numerical models. Finally, we will report examples of the controlled vertical and lateral manipulation of long polymeric chains, graphene nanoribbons or single porphyrin molecules that systematically reveal friction-like characteristics while sliding over atomically clean surfaces.

  3. Studying transcription initiation by RNA polymerase with diffusion-based single-molecule fluorescence.

    Science.gov (United States)

    Alhadid, Yazan; Chung, SangYoon; Lerner, Eitan; Taatjes, Dylan J; Borukhov, Sergei; Weiss, Shimon

    2017-07-01

    Over the past decade, fluorescence-based single-molecule studies significantly contributed to characterizing the mechanism of RNA polymerase at different steps in transcription, especially in transcription initiation. Transcription by bacterial DNA-dependent RNA polymerase is a multistep process that uses genomic DNA to synthesize complementary RNA molecules. Transcription initiation is a highly regulated step in E. coli, but it has been challenging to study its mechanism because of its stochasticity and complexity. In this review, we describe how single-molecule approaches have contributed to our understanding of transcription and have uncovered mechanistic details that were not observed in conventional assays because of ensemble averaging. © 2017 The Protein Society.

  4. A starting point for fluorescence-based single-molecule measurements in biomolecular research.

    Science.gov (United States)

    Gust, Alexander; Zander, Adrian; Gietl, Andreas; Holzmeister, Phil; Schulz, Sarah; Lalkens, Birka; Tinnefeld, Philip; Grohmann, Dina

    2014-09-30

    Single-molecule fluorescence techniques are ideally suited to provide information about the structure-function-dynamics relationship of a biomolecule as static and dynamic heterogeneity can be easily detected. However, what type of single-molecule fluorescence technique is suited for which kind of biological question and what are the obstacles on the way to a successful single-molecule microscopy experiment? In this review, we provide practical insights into fluorescence-based single-molecule experiments aiming for scientists who wish to take their experiments to the single-molecule level. We especially focus on fluorescence resonance energy transfer (FRET) experiments as these are a widely employed tool for the investigation of biomolecular mechanisms. We will guide the reader through the most critical steps that determine the success and quality of diffusion-based confocal and immobilization-based total internal reflection fluorescence microscopy. We discuss the specific chemical and photophysical requirements that make fluorescent dyes suitable for single-molecule fluorescence experiments. Most importantly, we review recently emerged photoprotection systems as well as passivation and immobilization strategies that enable the observation of fluorescently labeled molecules under biocompatible conditions. Moreover, we discuss how the optical single-molecule toolkit has been extended in recent years to capture the physiological complexity of a cell making it even more relevant for biological research.

  5. A Starting Point for Fluorescence-Based Single-Molecule Measurements in Biomolecular Research

    Directory of Open Access Journals (Sweden)

    Alexander Gust

    2014-09-01

    Full Text Available Single-molecule fluorescence techniques are ideally suited to provide information about the structure-function-dynamics relationship of a biomolecule as static and dynamic heterogeneity can be easily detected. However, what type of single-molecule fluorescence technique is suited for which kind of biological question and what are the obstacles on the way to a successful single-molecule microscopy experiment? In this review, we provide practical insights into fluorescence-based single-molecule experiments aiming for scientists who wish to take their experiments to the single-molecule level. We especially focus on fluorescence resonance energy transfer (FRET experiments as these are a widely employed tool for the investigation of biomolecular mechanisms. We will guide the reader through the most critical steps that determine the success and quality of diffusion-based confocal and immobilization-based total internal reflection fluorescence microscopy. We discuss the specific chemical and photophysical requirements that make fluorescent dyes suitable for single-molecule fluorescence experiments. Most importantly, we review recently emerged photoprotection systems as well as passivation and immobilization strategies that enable the observation of fluorescently labeled molecules under biocompatible conditions. Moreover, we discuss how the optical single-molecule toolkit has been extended in recent years to capture the physiological complexity of a cell making it even more relevant for biological research.

  6. Electrochemical proton relay at the single-molecule level

    DEFF Research Database (Denmark)

    Kuznetsov, A. M.; Medvedev, I. G.; Ulstrup, Jens

    2009-01-01

    A scheme for the experimental study of single-proton transfer events, based on proton-coupled two-electron transfer between a proton donor and a proton acceptor molecule confined in the tunneling gap between two metal leads in electrolyte solution is suggested. Expressions for the electric current...... are derived and compared with formalism for electron tunneling through redox molecules. The scheme allows studying the kinetics of proton and hydrogen atom transfer as well as kinetic isotope effects at the single-molecule level under electrochemical potential control....

  7. Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS)

    Energy Technology Data Exchange (ETDEWEB)

    Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L.T.; Itzkan, I.; Dasari, R.R.; Feld, M.S. [George R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)]|[Department of Physics, Technical University of Berlin, D 10623 Berlin (Germany)

    1997-03-01

    By exploiting the extremely large effective cross sections (10{sup -17}{endash}10{sup -16}cm{sup 2}/molecule) available from surface-enhanced Raman scattering (SERS), we achieved the first observation of single molecule Raman scattering. Measured spectra of a single crystal violet molecule in aqueous colloidal silver solution using one second collection time and about 2{times}10{sup 5}W/cm{sup 2} nonresonant near-infrared excitation show a clear {open_quotes}fingerprint{close_quotes} of its Raman features between 700 and 1700cm{sup -1}. Spectra observed in a time sequence for an average of 0.6 dye molecule in the probed volume exhibited the expected Poisson distribution for actually measuring 0, 1, 2, or 3 molecules. {copyright} {ital 1997} {ital The American Physical Society}

  8. Single Molecule Raman Detection of Enkephalin on Silver Colloidal Particles

    DEFF Research Database (Denmark)

    Kneipp, Katrin; Kneipp, Holger; Abdali, Salim

    2004-01-01

    Enkephalin, an endogeneous substance in the human brain showing morphine-like biological functions, has been detected at the single molecule level based on the surface-enhanced Raman signal of the ring breathing mode of phenylalanine, which is one building block of the molecule. For enhancing...... the Raman signal the enkephalin molecules have been attached to silver colloidal cluster structures. The experiments demonstrate that the SERS signal of the strongly enhanced ring breathing vibration of phenylalanine at 1000 cm-1 can be used as “intrinsic marker” for detecting a single enkephalin molecule...... and for monitoring its diffusion on the surface of the silver colloidal cluster without using a specific label molecule....

  9. Single molecule dynamics of polyproline by using AFM

    Science.gov (United States)

    Tamamushi, Hironori; Kawakami, Masaru; Furukawa, Hidemitsu

    2017-04-01

    Polyproline forms a unique structure, called polyproline helix. It takes polyproline II helix in water and Polyproline I helix in n-propanol. PP II is known to be a rigid molecule in spite of no hydrogen bonds between backbone atoms, and to play an important role in biological functions such as formation of collagen structure and in the cell-adhesion. In this study, we carried out single molecule force spectroscopy of polyproline with AFM(Atomic Force Microscope) and covalent immobilization of polyproline molecule on gold substrate to evaluate the rigidity of PP II at single molecule level. We found that the force-extension curve of polyproline shows a linear increase, which is unusual and not seen with others homo-polypeptide molecules. These results indicate that the high rigidity of polyproline II helix can be explained by "enthalpic", not "entropic" driven elasticity.

  10. Single-Molecule Studies of Telomeres and Telomerase.

    Science.gov (United States)

    Parks, Joseph W; Stone, Michael D

    2017-05-22

    Telomeres are specialized chromatin structures that protect chromosome ends from dangerous processing events. In most tissues, telomeres shorten with each round of cell division, placing a finite limit on cell growth. In rapidly dividing cells, including the majority of human cancers, cells bypass this growth limit through telomerase-catalyzed maintenance of telomere length. The dynamic properties of telomeres and telomerase render them difficult to study using ensemble biochemical and structural techniques. This review describes single-molecule approaches to studying how individual components of telomeres and telomerase contribute to function. Single-molecule methods provide a window into the complex nature of telomeres and telomerase by permitting researchers to directly visualize and manipulate the individual protein, DNA, and RNA molecules required for telomere function. The work reviewed in this article highlights how single-molecule techniques have been utilized to investigate the function of telomeres and telomerase.

  11. Lattice diffusion of a single molecule in solution.

    Science.gov (United States)

    Ruggeri, Francesca; Krishnan, Madhavi

    2017-12-01

    The ability to trap a single molecule in an electrostatic potential well in solution has opened up new possibilities for the use of molecular electrical charge to study macromolecular conformation and dynamics at the level of the single entity. Here we study the diffusion of a single macromolecule in a two-dimensional lattice of electrostatic traps in solution. We report the ability to measure both the size and effective electrical charge of a macromolecule by observing single-molecule transport trajectories, typically a few seconds in length, using fluorescence microscopy. While, as shown previously, the time spent by the molecule in a trap is a strong function of its effective charge, we demonstrate here that the average travel time between traps in the landscape yields its hydrodynamic radius. Tailoring the pitch of the lattice thus yields two different experimentally measurable time scales that together uniquely determine both the size and charge of the molecule. Since no information is required on the location of the molecule between consecutive departure and arrival events at lattice sites, the technique is ideally suited to measurements on weakly emitting entities such as single molecules.

  12. Lattice diffusion of a single molecule in solution

    Science.gov (United States)

    Ruggeri, Francesca; Krishnan, Madhavi

    2017-12-01

    The ability to trap a single molecule in an electrostatic potential well in solution has opened up new possibilities for the use of molecular electrical charge to study macromolecular conformation and dynamics at the level of the single entity. Here we study the diffusion of a single macromolecule in a two-dimensional lattice of electrostatic traps in solution. We report the ability to measure both the size and effective electrical charge of a macromolecule by observing single-molecule transport trajectories, typically a few seconds in length, using fluorescence microscopy. While, as shown previously, the time spent by the molecule in a trap is a strong function of its effective charge, we demonstrate here that the average travel time between traps in the landscape yields its hydrodynamic radius. Tailoring the pitch of the lattice thus yields two different experimentally measurable time scales that together uniquely determine both the size and charge of the molecule. Since no information is required on the location of the molecule between consecutive departure and arrival events at lattice sites, the technique is ideally suited to measurements on weakly emitting entities such as single molecules.

  13. Deconvolving Single-Molecule Intensity Distributions for Quantitative Microscopy Measurements

    Science.gov (United States)

    Mutch, Sarah A.; Fujimoto, Bryant S.; Kuyper, Christopher L.; Kuo, Jason S.; Bajjalieh, Sandra M.; Chiu, Daniel T.

    2007-01-01

    In fluorescence microscopy, images often contain puncta in which the fluorescent molecules are spatially clustered. This article describes a method that uses single-molecule intensity distributions to deconvolve the number of fluorophores present in fluorescent puncta as a way to “count” protein number. This method requires a determination of the correct statistical relationship between the single-molecule and single-puncta intensity distributions. Once the correct relationship has been determined, basis histograms can be generated from the single-molecule intensity distribution to fit the puncta distribution. Simulated data were used to demonstrate procedures to determine this relationship, and to test the methodology. This method has the advantages of single-molecule measurements, providing both the mean and variation in molecules per puncta. This methodology has been tested with the avidin-biocytin binding system for which the best-fit distribution of biocytins in the sample puncta was in good agreement with a bulk determination of the avidin-biocytin binding ratio. PMID:17259276

  14. Photothermal cantilever actuation for fast single-molecule force spectroscopy.

    Science.gov (United States)

    Stahl, Stefan W; Puchner, Elias M; Gaub, Hermann E

    2009-07-01

    Photothermal cantilever excitation provides a fast and easy to implement means to control the deflection of standard atomic force microscopy cantilevers. Minute heat pulses yield deflections on the order of several tens of nanometers or when the deflection is kept constant, forces of several hundreds of piconewton can be applied. In our case these pulses resulted in less than 1 K temperature changes at the sample position. Here we present and characterize the implementation of photothermal actuation for single-molecule force-spectroscopy experiments. When molecules are stretched under force-clamp conditions, fast control cycles that re-establish the pulling force after the rupture of molecular domains are essential for detecting the complete unfolding pattern with high precision. By combining the fast response of photothermal cantilever excitation with a conventional piezoactuator, a fast force-clamp with high accuracy and large working distances is reached. Simple feedback mechanisms and standard cantilever geometries lead to step response times of less than 90 micros, which is more than one order of magnitude faster than those of conventional force-clamp systems that are based only on piezo feedback. We demonstrate the fast and accurate performance of the setup by unfolding a protein construct consisting of one green fluorescent protein and eight surrounding immunoglobulin domains at constant force.

  15. Single-Molecule Electronics with Cross- Conjugated Molecules: Quantum Interference, IETS and Non-Equilibrium "Temperatures"

    DEFF Research Database (Denmark)

    Jørgensen, Jacob Lykkebo

    Abstract The idea of using single-molecules as components in electronic devices is fas- cinating. For this idea to come into fruition, a number of technical and theo- retical challenges must be overcome. In this PhD thesis, the electron-phonon interaction is studied for a special class of molecules......, the electrons can tunnel in- elastically from the left to the right electrode. This is the process behind inelastic electron tunnelling spectroscopy (IETS), which is a single-molecule spectroscopic method, where the vibrational ngerprint of a molecule is di- rectly observed by the tunnelling current...... This process has been studied in detail for ordinary conjugated or saturated molecules. Selection rules does not exist in IETS, but some modes are favoured over others, and this is the bases for the propensity rules in IETS that has been rationalised. In this thesis, we study IETS for cross...

  16. Core substituted naphthalene diimides as sensors and in single molecule spectroscopy

    OpenAIRE

    Cox, Rosalind

    2017-01-01

    This research thesis explores core substituted naphthalene diimides in their roles as both chemosensors and as single molecule dyes; a combination of these applications ultimately leads to the ability to examine single molecule sensing events. The absorption and emission properties of new core substituted naphthalene diimide based sensors are investigated. Additionally, the underlying mechanisms involved during the sensor-target binding are explored and the corresponding optical signals analy...

  17. BRCA Testing by Single-Molecule Molecular Inversion Probes

    NARCIS (Netherlands)

    Neveling, K.; Mensenkamp, A.R.; Derks, R; Kwint, M.P.; Ouchene, H.; Steehouwer, M.; Lier, L.A. van; Bosgoed, E.A.J.; Rikken, A.; Tychon, M.W.J.; Zafeiropoulou, D.; Castelein, S.; Hehir-Kwa, J.Y.; Thung, G.W.; Hofste, T.; Lelieveld, S.H.; Bertens, S.M.; Adan, I.B.; Eijkelenboom, A.; Tops, B.B.J.; Yntema, H.G.; Stokowy, T.; Knappskog, P.M.; Hoberg-Vetti, H.; Steen, V.M.; Boyle, E.; Martin, B.; Ligtenberg, M.J.L.; Shendure, J.; Nelen, M.R.; Hoischen, A.

    2017-01-01

    BACKGROUND: Despite advances in next generation DNA sequencing (NGS), NGS-based single gene tests for diagnostic purposes require improvements in terms of completeness, quality, speed, and cost. Single-molecule molecular inversion probes (smMIPs) are a technology with unrealized potential in the

  18. Probing the local environment of a single OPE3 molecule using inelastic tunneling electron spectroscopy

    Directory of Open Access Journals (Sweden)

    Riccardo Frisenda

    2015-12-01

    Full Text Available We study single-molecule oligo(phenylene ethynylenedithiol junctions by means of inelastic electron tunneling spectroscopy (IETS. The molecule is contacted with gold nano-electrodes formed with the mechanically controllable break junction technique. We record the IETS spectrum of the molecule from direct current measurements, both as a function of time and electrode separation. We find that for fixed electrode separation the molecule switches between various configurations, which are characterized by different IETS spectra. Similar variations in the IETS signal are observed during atomic rearrangements upon stretching of the molecular junction. Using quantum chemistry calculations, we identity some of the vibrational modes which constitute a chemical fingerprint of the molecule. In addition, changes can be attributed to rearrangements of the local molecular environment, in particular at the molecule–electrode interface. This study shows the importance of taking into account the interaction with the electrodes when describing inelastic contributions to transport through single-molecule junctions.

  19. Modulation and Control of Charge Transport Through Single-Molecule Junctions.

    Science.gov (United States)

    Wang, Kun; Xu, Bingqian

    2017-02-01

    The ability to modulate and control charge transport though single-molecule junction devices is crucial to achieving the ultimate goal of molecular electronics: constructing real-world-applicable electronic components from single molecules. This review aims to highlight the progress made in single-molecule electronics, emphasizing the development of molecular junction electronics in recent years. Among many techniques that attempt to wire a molecule to metallic electrodes, the single-molecule break junction (SMBJ) technique is one of the most reliable and tunable experimental platforms for achieving metal-molecule-metal configurations. It also provides great freedom to tune charge transport through the junction. Soon after the SMBJ technique was introduced, it was extensively used to measure the conductances of individual molecules; however, different conductances were obtained for the same molecule, and it proved difficult to interpret this wide distribution of experimental data. This phenomenon was later found to be mainly due to a lack of precise experimental control and advanced data analysis methods. In recent years, researchers have directed considerable effort into advancing the SMBJ technique by gaining a deeper physical understanding of charge transport through single molecules and thus enhancing its potential applicability in functional molecular-scale electronic devices, such as molecular diodes and molecular transistors. In parallel with that research, novel data analysis methods and approaches that enable the discovery of hidden yet important features in the data are being developed. This review discusses various aspects of molecular junction electronics, from the initial goal of molecular electronics, the development of experimental techniques for creating single-molecule junctions and determining single-molecule conductance, to the characterization of functional current-voltage features and the investigation of physical properties other than charge

  20. A reversible single-molecule switch based on activated antiaromaticity.

    Science.gov (United States)

    Yin, Xiaodong; Zang, Yaping; Zhu, Liangliang; Low, Jonathan Z; Liu, Zhen-Fei; Cui, Jing; Neaton, Jeffrey B; Venkataraman, Latha; Campos, Luis M

    2017-10-01

    Single-molecule electronic devices provide researchers with an unprecedented ability to relate novel physical phenomena to molecular chemical structures. Typically, conjugated aromatic molecular backbones are relied upon to create electronic devices, where the aromaticity of the building blocks is used to enhance conductivity. We capitalize on the classical physical organic chemistry concept of Hückel antiaromaticity by demonstrating a single-molecule switch that exhibits low conductance in the neutral state and, upon electrochemical oxidation, reversibly switches to an antiaromatic high-conducting structure. We form single-molecule devices using the scanning tunneling microscope-based break-junction technique and observe an on/off ratio of ~70 for a thiophenylidene derivative that switches to an antiaromatic state with 6-4-6-π electrons. Through supporting nuclear magnetic resonance measurements, we show that the doubly oxidized core has antiaromatic character and we use density functional theory calculations to rationalize the origin of the high-conductance state for the oxidized single-molecule junction. Together, our work demonstrates how the concept of antiaromaticity can be exploited to create single-molecule devices that are highly conducting.

  1. Towards physiological complexity with in vitro single-molecule biophysics

    Science.gov (United States)

    Duzdevich, Daniel; Greene, Eric C.

    2013-01-01

    Single-molecule biology has matured in recent years, driven to greater sophistication by the development of increasingly advanced experimental techniques. A progressive appreciation for its unique strengths is attracting research that spans an exceptionally broad swath of physiological phenomena—from the function of nucleosomes to protein diffusion in the cell membrane. Newfound enthusiasm notwithstanding, the single-molecule approach is limited to an intrinsically defined set of biological questions; such limitation applies to all experimental approaches, and an explicit statement of the boundaries delineating each set offers a guide to most fruitfully orienting in vitro single-molecule research in the future. Here, we briefly describe a simple conceptual framework to categorize how submolecular, molecular and intracellular processes are studied. We highlight the domain of single-molecule biology in this scheme, with an emphasis on its ability to probe various forms of heterogeneity inherent to populations of discrete biological macromolecules. We then give a general overview of our high-throughput DNA curtain methodology for studying protein–nucleic acid interactions, and by contextualizing it within this framework, we explore what might be the most enticing avenues of future research. We anticipate that a focus on single-molecule biology's unique strengths will suggest a new generation of experiments with greater complexity and more immediately translatable physiological relevance. PMID:23267187

  2. Ninth international conference on hole burning, single molecule and related spectroscopies: science and applications (HBSM 2006)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This conference was organized around 9 sessions: -) single molecule, -) quantum optics, -) hole-burning materials and mechanisms, -) single nano-particle spectroscopy, -) dephasing and spectral diffusion, -) microwave photonics, -) biological systems, -) rare earth doped materials, -) novel laser sources. This document gathers only the slides of the presentations.

  3. Experimental and Computational Characterization of Biological Liquid Crystals: A Review of Single-Molecule Bioassays

    Directory of Open Access Journals (Sweden)

    Sungsoo Na

    2009-09-01

    Full Text Available Quantitative understanding of the mechanical behavior of biological liquid crystals such as proteins is essential for gaining insight into their biological functions, since some proteins perform notable mechanical functions. Recently, single-molecule experiments have allowed not only the quantitative characterization of the mechanical behavior of proteins such as protein unfolding mechanics, but also the exploration of the free energy landscape for protein folding. In this work, we have reviewed the current state-of-art in single-molecule bioassays that enable quantitative studies on protein unfolding mechanics and/or various molecular interactions. Specifically, single-molecule pulling experiments based on atomic force microscopy (AFM have been overviewed. In addition, the computational simulations on single-molecule pulling experiments have been reviewed. We have also reviewed the AFM cantilever-based bioassay that provides insight into various molecular interactions. Our review highlights the AFM-based single-molecule bioassay for quantitative characterization of biological liquid crystals such as proteins.

  4. Simulation of single transparent molecule interaction with an optical microcavity

    Energy Technology Data Exchange (ETDEWEB)

    Quan Haiyong; Guo Zhixiong [Department of Mechanical and Aerospace Engineering, Rutgers, State University of New Jersey, Piscataway, NJ 08854 (United States)

    2007-09-19

    Finite-element simulations of nanoscale molecule interaction with the evanescent radiation field of an optical resonant microcavity are conducted to characterize the detection of single transparent molecules using the microcavity as an extremely sensitive micro/nano-sensor. The model sensor is an integrated device consisting of a dielectric microdisk and a waveguide that can be nanofabricated on Si-based dielectric thin film. When the microdisk is operated at a whispering-gallery mode, a strong evanescent field arises, surrounding the periphery of the cavity. Foreign target molecules such as proteins present in the near-field will interact with the electromagnetic resonant field and induce changes to the resonance. Such induced changes are investigated in this report and their significance in the detection of single molecules for nanotechnology development is discussed.

  5. The Single-Molecule Approach to Membrane Protein Stoichiometry.

    Science.gov (United States)

    Nichols, Michael G; Hallworth, Richard

    2016-01-01

    The advent of techniques for imaging solitary fluorescent molecules has made possible many new kinds of biological experiments. Here, we describe the application of single-molecule imaging to the problem of subunit stoichiometry in membrane proteins. A membrane protein of unknown stoichiometry, prestin, is coupled to the fluorescent enhanced green fluorescent protein (eGFP) and synthesized in the human embryonic kidney (HEK) cell line. We prepare adherent membrane fragments containing prestin-eGFP by osmotic lysis. The molecules are then exposed to continuous low-level excitation until their fluorescence reaches background levels. Their fluorescence decreases in discrete equal-amplitude steps, consistent with the photobleaching of single fluorophores. We count the number of steps required to photobleach each molecule. The molecular stoichiometry is then deduced using a binomial model.

  6. Single Molecule Kinetics of ENTH Binding to Lipid Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Rozovsky, Sharon [Univ. of Delaware, Newark, DE (United States); Forstner, Martin B. [Syracuse Univ., NY (United States); Sondermann, Holger [Cornell Univ., Ithaca, NY (United States); Groves, Jay T. [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-04-03

    Transient recruitment of proteins to membranes is a fundamental mechanism by which the cell exerts spatial and temporal control over proteins’ localization and interactions. Thus, the specificity and the kinetics of peripheral proteins’ membrane residence are an attribute of their function. In this article, we describe the membrane interactions of the interfacial epsin N-terminal homology (ENTH) domain with its target lipid phosphatidylinositol (4,5)-bisphosphate (PtdIns(4,5)P2). The direct visualization and quantification of interactions of single ENTH molecules with supported lipid bilayers is achieved using total internal reflection fluorescence microscopy (TIRFM) with a time resolution of 13 ms. This enables the recording of the kinetic behavior of ENTH interacting with membranes with physiologically relevant concentrations of PtdIns(4,5)P2 despite the low effective binding affinity. Subsequent single fluorophore tracking permits us to build up distributions of residence times and to measure ENTH dissociation rates as a function of membrane composition. In addition, due to the high time resolution, we are able to resolve details of the motion of ENTH associated with a simple, homogeneous membrane. In this case ENTH’s diffusive transport appears to be the result of at least three different diffusion processes.

  7. Single-molecule dataset (SMD): a generalized storage format for raw and processed single-molecule data.

    Science.gov (United States)

    Greenfeld, Max; van de Meent, Jan-Willem; Pavlichin, Dmitri S; Mabuchi, Hideo; Wiggins, Chris H; Gonzalez, Ruben L; Herschlag, Daniel

    2015-01-16

    Single-molecule techniques have emerged as incisive approaches for addressing a wide range of questions arising in contemporary biological research [Trends Biochem Sci 38:30-37, 2013; Nat Rev Genet 14:9-22, 2013; Curr Opin Struct Biol 2014, 28C:112-121; Annu Rev Biophys 43:19-39, 2014]. The analysis and interpretation of raw single-molecule data benefits greatly from the ongoing development of sophisticated statistical analysis tools that enable accurate inference at the low signal-to-noise ratios frequently associated with these measurements. While a number of groups have released analysis toolkits as open source software [J Phys Chem B 114:5386-5403, 2010; Biophys J 79:1915-1927, 2000; Biophys J 91:1941-1951, 2006; Biophys J 79:1928-1944, 2000; Biophys J 86:4015-4029, 2004; Biophys J 97:3196-3205, 2009; PLoS One 7:e30024, 2012; BMC Bioinformatics 288 11(8):S2, 2010; Biophys J 106:1327-1337, 2014; Proc Int Conf Mach Learn 28:361-369, 2013], it remains difficult to compare analysis for experiments performed in different labs due to a lack of standardization. Here we propose a standardized single-molecule dataset (SMD) file format. SMD is designed to accommodate a wide variety of computer programming languages, single-molecule techniques, and analysis strategies. To facilitate adoption of this format we have made two existing data analysis packages that are used for single-molecule analysis compatible with this format. Adoption of a common, standard data file format for sharing raw single-molecule data and analysis outcomes is a critical step for the emerging and powerful single-molecule field, which will benefit both sophisticated users and non-specialists by allowing standardized, transparent, and reproducible analysis practices.

  8. Single DNA molecule patterning for high-throughput epigenetic mapping.

    Science.gov (United States)

    Cerf, Aline; Cipriany, Benjamin R; Benítez, Jaime J; Craighead, Harold G

    2011-11-01

    We present a method for profiling the 5-methyl cytosine distribution on single DNA molecules. Our method combines soft-lithography and molecular elongation to form ordered arrays estimated to contain more than 250 000 individual DNA molecules immobilized on a solid substrate. The methylation state of the DNA is detected and mapped by binding of fluorescently labeled methyl-CpG binding domain peptides to the elongated dsDNA molecules and imaging of their distribution. The stretched molecules are fixed in their extended configuration by adsorption onto the substrate so analysis can be performed with high spatial resolution and signal averaging. We further prove this technique allows imaging of DNA molecules with different methylation states.

  9. Research Update: Molecular electronics: The single-molecule switch and transistor

    Directory of Open Access Journals (Sweden)

    Kai Sotthewes

    2014-01-01

    Full Text Available In order to design and realize single-molecule devices it is essential to have a good understanding of the properties of an individual molecule. For electronic applications, the most important property of a molecule is its conductance. Here we show how a single octanethiol molecule can be connected to macroscopic leads and how the transport properties of the molecule can be measured. Based on this knowledge we have realized two single-molecule devices: a molecular switch and a molecular transistor. The switch can be opened and closed at will by carefully adjusting the separation between the electrical contacts and the voltage drop across the contacts. This single-molecular switch operates in a broad temperature range from cryogenic temperatures all the way up to room temperature. Via mechanical gating, i.e., compressing or stretching of the octanethiol molecule, by varying the contact's interspace, we are able to systematically adjust the conductance of the electrode-octanethiol-electrode junction. This two-terminal single-molecule transistor is very robust, but the amplification factor is rather limited.

  10. Simultaneous single molecule atomic force and fluorescence lifetime imaging

    Science.gov (United States)

    Schulz, Olaf; Koberling, Felix; Walters, Deron; Koenig, Marcelle; Viani, Jacob; Ros, Robert

    2010-02-01

    The combination of atomic force microscopy (AFM) with single-molecule-sensitive confocal fluorescence microscopy enables a fascinating investigation into the structure, dynamics and interactions of single biomolecules or their assemblies. AFM reveals the structure of macromolecular complexes with nanometer resolution, while fluorescence can facilitate the identification of their constituent parts. In addition, nanophotonic effects, such as fluorescence quenching or enhancement due to the AFM tip, can be used to increase the optical resolution beyond the diffraction limit, thus enabling the identification of different fluorescence labels within a macromolecular complex. We present a novel setup consisting of two commercial, state-of-the-art microscopes. A sample scanning atomic force microscope is mounted onto an objective scanning confocal fluorescence lifetime microscope. The ability to move the sample and objective independently allows for precise alignment of AFM probe and laser focus with an accuracy down to a few nanometers. Time correlated single photon counting (TCSPC) gives us the opportunity to measure single-molecule fluorescence lifetimes. We will be able to study molecular complexes in the vicinity of an AFM probe on a level that has yet to be achieved. With this setup we simultaneously obtained single molecule sensitivity in the AFM topography and fluorescence lifetime imaging of YOYO-1 stained lambda-DNA samples and we showed silicon tip induced single molecule quenching on organic fluorophores.

  11. Real-time single-molecule imaging of quantum interference.

    Science.gov (United States)

    Juffmann, Thomas; Milic, Adriana; Müllneritsch, Michael; Asenbaum, Peter; Tsukernik, Alexander; Tüxen, Jens; Mayor, Marcel; Cheshnovsky, Ori; Arndt, Markus

    2012-03-25

    The observation of interference patterns in double-slit experiments with massive particles is generally regarded as the ultimate demonstration of the quantum nature of these objects. Such matter-wave interference has been observed for electrons, neutrons, atoms and molecules and, in contrast to classical physics, quantum interference can be observed when single particles arrive at the detector one by one. The build-up of such patterns in experiments with electrons has been described as the "most beautiful experiment in physics". Here, we show how a combination of nanofabrication and nano-imaging allows us to record the full two-dimensional build-up of quantum interference patterns in real time for phthalocyanine molecules and for derivatives of phthalocyanine molecules, which have masses of 514 AMU and 1,298 AMU respectively. A laser-controlled micro-evaporation source was used to produce a beam of molecules with the required intensity and coherence, and the gratings were machined in 10-nm-thick silicon nitride membranes to reduce the effect of van der Waals forces. Wide-field fluorescence microscopy detected the position of each molecule with an accuracy of 10 nm and revealed the build-up of a deterministic ensemble interference pattern from single molecules that arrived stochastically at the detector. In addition to providing this particularly clear demonstration of wave-particle duality, our approach could also be used to study larger molecules and explore the boundary between quantum and classical physics.

  12. Communication: Coordinate-dependent diffusivity from single molecule trajectories

    Science.gov (United States)

    Berezhkovskii, Alexander M.; Makarov, Dmitrii E.

    2017-11-01

    Single-molecule observations of biomolecular folding are commonly interpreted using the model of one-dimensional diffusion along a reaction coordinate, with a coordinate-independent diffusion coefficient. Recent analysis, however, suggests that more general models are required to account for single-molecule measurements performed with high temporal resolution. Here, we consider one such generalization: a model where the diffusion coefficient can be an arbitrary function of the reaction coordinate. Assuming Brownian dynamics along this coordinate, we derive an exact expression for the coordinate-dependent diffusivity in terms of the splitting probability within an arbitrarily chosen interval and the mean transition path time between the interval boundaries. This formula can be used to estimate the effective diffusion coefficient along a reaction coordinate directly from single-molecule trajectories.

  13. Single Molecule Spectroscopy on Photosynthetic Pigment-Protein Complexes

    CERN Document Server

    Jelezko, F; Schuler, S; Thews, E; Tietz, C; Wechsler, A; Wrachtrup, J

    2001-01-01

    Single molecule spectroscopy was applied to unravel the energy transfer pathway in photosynthetic pigment-protein complexes. Detailed analysis of excitation and fluorescence emission spectra has been made for peripheral plant antenna LHC II and Photosystem I from cyanobacterium Synechococcus elongatus. Optical transitions of individual pigments were resolved under nonselective excitation of antenna chlorophylls. High-resolution fluorescence spectroscopy of individual plant antenna LHC II indicates that at low temperatures, the excitation energy is localized on the red-most Chl a pool absorbing at 680 nm. More than one pigment molecule is responsible for the fluorescence emission of the LHC II trimer. The spectral lines of single Chl a molecules absorbing at 675 nm are broadened because of the Foerster energy transfer towards the red-most pigments. Low-temperature spectroscopy on single PS I trimers indicates that two subgroups of pigments, which are present in the red antenna pool, differ by the strength of t...

  14. Coherent interaction of single molecules and plasmonic nanowires

    Science.gov (United States)

    Gerhardt, Ilja; Grotz, Bernhard; Siyushev, Petr; Wrachtrup, Jörg

    2017-09-01

    Quantum plasmonics opens the option to integrate complex quantum optical circuitry onto chip scale devices. In the past, often external light sources were used and nonclassical light was coupled in and out of plasmonic structures, such as hole arrays or waveguide structures. Another option to launch single plasmonic excitations is the coupling of single emitters in the direct proximity of, e.g., a silver or gold nanostructure. Here, we present our attempts to integrate the research of single emitters with wet-chemically grown silver nanowires. The emitters of choice are single organic dye molecules under cryogenic conditions, which are known to act as high-brightness and extremely narrow-band single photon sources. Another advantage is their high optical nonlinearity, such that they might mediate photon-photon interactions on the nanoscale. We report on the coupling of a single molecule fluorescence emission through the wire over the length of several wavelengths. The transmission of coherently emitted photons is proven by an extinction type experiment. As for influencing the spectral properties of a single emitter, we are able to show a remote change of the line-width of a single terrylene molecule, which is in close proximity to the nanowire.

  15. Break junction under electrochemical gating: testbed for single-molecule electronics.

    Science.gov (United States)

    Huang, Cancan; Rudnev, Alexander V; Hong, Wenjing; Wandlowski, Thomas

    2015-02-21

    Molecular electronics aims to construct functional molecular devices at the single-molecule scale. One of the major challenges is to construct a single-molecule junction and to further manipulate the charge transport through the molecular junction. Break junction techniques, including STM break junctions and mechanically controllable break junctions are considered as testbed to investigate and control the charge transport on a single-molecule scale. Moreover, additional electrochemical gating provides a unique opportunity to manipulate the energy alignment and molecular redox processes for a single-molecule junction. In this review, we start from the technical aspects of the break junction technique, then discuss the molecular structure-conductance correlation derived from break junction studies, and, finally, emphasize electrochemical gating as a promising method for the functional molecular devices.

  16. Single-molecule electronics: Cooling individual vibrational modes by the tunneling current.

    Science.gov (United States)

    Lykkebo, Jacob; Romano, Giuseppe; Gagliardi, Alessio; Pecchia, Alessandro; Solomon, Gemma C

    2016-03-21

    Electronic devices composed of single molecules constitute the ultimate limit in the continued downscaling of electronic components. A key challenge for single-molecule electronics is to control the temperature of these junctions. Controlling heating and cooling effects in individual vibrational modes can, in principle, be utilized to increase stability of single-molecule junctions under bias, to pump energy into particular vibrational modes to perform current-induced reactions, or to increase the resolution in inelastic electron tunneling spectroscopy by controlling the life-times of phonons in a molecule by suppressing absorption and external dissipation processes. Under bias the current and the molecule exchange energy, which typically results in heating of the molecule. However, the opposite process is also possible, where energy is extracted from the molecule by the tunneling current. Designing a molecular "heat sink" where a particular vibrational mode funnels heat out of the molecule and into the leads would be very desirable. It is even possible to imagine how the vibrational energy of the other vibrational modes could be funneled into the "cooling mode," given the right molecular design. Previous efforts to understand heating and cooling mechanisms in single molecule junctions have primarily been concerned with small models, where it is unclear which molecular systems they correspond to. In this paper, our focus is on suppressing heating and obtaining current-induced cooling in certain vibrational modes. Strategies for cooling vibrational modes in single-molecule junctions are presented, together with atomistic calculations based on those strategies. Cooling and reduced heating are observed for two different cooling schemes in calculations of atomistic single-molecule junctions.

  17. Optimal Background Estimators in Single-Molecule FRET Microscopy.

    Science.gov (United States)

    Preus, Søren; Hildebrandt, Lasse L; Birkedal, Victoria

    2016-09-20

    Single-molecule total internal reflection fluorescence (TIRF) microscopy constitutes an umbrella of powerful tools that facilitate direct observation of the biophysical properties, population heterogeneities, and interactions of single biomolecules without the need for ensemble synchronization. Due to the low signal/noise ratio in single-molecule TIRF microscopy experiments, it is important to determine the local background intensity, especially when the fluorescence intensity of the molecule is used quantitatively. Here we compare and evaluate the performance of different aperture-based background estimators used particularly in single-molecule Förster resonance energy transfer. We introduce the general concept of multiaperture signatures and use this technique to demonstrate how the choice of background can affect the measured fluorescence signal considerably. A new, to our knowledge, and simple background estimator is proposed, called the local statistical percentile (LSP). We show that the LSP background estimator performs as well as current background estimators at low molecular densities and significantly better in regions of high molecular densities. The LSP background estimator is thus suited for single-particle TIRF microscopy of dense biological samples in which the intensity itself is an observable of the technique. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Towards single molecule biosensors using super-resolution fluorescence microscopy.

    Science.gov (United States)

    Lu, Xun; Nicovich, Philip R; Gaus, Katharina; Gooding, J Justin

    2017-07-15

    Conventional immunosensors require many binding events to give a single transducer output which represents the concentration of the analyte in the sample. Because of the requirements to selectively detect species in complex samples, immunosensing interfaces must allow immobilisation of antibodies while repelling nonspecific adsorption of other species. These requirements lead to quite sophisticated interfacial design, often with molecular level control, but we have no tools to characterise how well these interfaces work at the molecular level. The work reported herein is an initial feasibility study to show that antibody-antigen binding events can be monitored at the single molecule level using single molecule localisation microscopy (SMLM). The steps to achieve this first requires showing that indium tin oxide surfaces can be used for SMLM, then that these surfaces can be modified with self-assembled monolayers using organophosphonic acid derivatives, that the amount of antigens and antibodies on the surface can be controlled and monitored at the single molecule level and finally antibody binding to antigen modified surfaces can be monitored. The results show the amount of antibody that binds to an antigen modified surface is dependent on both the concentration of antigen on the surface and the concentration of antibody in solution. This study demonstrates the potential of SMLM for characterising biosensing interfaces and as the transducer in a massively parallel, wide field, single molecule detection scheme for quantitative analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Enhanced mechanical strength of zeolites by adsorption of guest molecules.

    Science.gov (United States)

    Coasne, Benoit; Haines, Julien; Levelut, Claire; Cambon, Olivier; Santoro, Mario; Gorelli, Federico; Garbarino, Gaston

    2011-12-07

    We report a molecular simulation study of the mechanical properties of microporous zeolites filled with guest molecules. We show that the adsorption of molecules in the micropores of the material increases its bulk modulus. These results provide a microscopic picture of the deactivation of pressure-induced amorphization by incorporation of molecules.

  20. Coherent control of single molecules at room temperature.

    Science.gov (United States)

    Brinks, Daan; Hildner, Richard; Stefani, Fernando D; van Hulst, Niek F

    2011-01-01

    The detection of individual molecules allows to unwrap the inhomogeneously broadened ensemble and reveal the spatial disorder and temporal dynamics of single entities. During 20 years of increasing sophistication this approach has provided valuable insights into biomolecular interactions, cellular processes, polymer dynamics, etc. Unfortunately the detection of fluorescence, i.e. incoherent spontaneous emission, has essentially kept the time resolution of the single molecule approach out of the range of ultrafast coherent processes. In parallel coherent control of quantum interferences has developed as a powerful method to study and actively steer ultrafast molecular interactions and energy conversion processes. However the degree of coherent control that can be reached in ensembles is restricted, due to the intrinsic inhomogeneity of the synchronized subset. Clearly the only way to overcome spatio-temporal disorder and achieve key control is by addressing individual units: coherent control of single molecules. Here we report the observation and manipulation of vibrational wave-packet interference in individual molecules at ambient conditions. We show that adapting the time and phase distribution of the optical excitation field to the dynamics of each molecule results in a superior degree of control compared to the ensemble approach. Phase reversal does invert the molecular response, confirming the control of quantum coherence. Time-phase maps show a rich diversity in excited state dynamics between different, yet chemically identical, molecules. The presented approach is promising for single-unit coherent control in multichromophoric systems. Especially the role of coherence in the energy transfer of single antenna complexes under physiological conditions is subject of great attention. Now the role of energy disorder and variation in coupling strength can be explored, beyond the inhomogeneously broadened ensemble.

  1. Discrimination of photoblinking and photobleaching on the single molecule level

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Joerg [Center for Nanostructured Materials and Analytics, Institute of Physics, Chemnitz University of Technology, D-09107 Chemnitz (Germany)]. E-mail: schuster@physik.tu-chemnitz.de; Brabandt, Joerg [Center for Nanostructured Materials and Analytics, Institute of Physics, Chemnitz University of Technology, D-09107 Chemnitz (Germany); Borczyskowski, Christian von [Center for Nanostructured Materials and Analytics, Institute of Physics, Chemnitz University of Technology, D-09107 Chemnitz (Germany)

    2007-11-15

    Wide field observation of individual dye molecules have been performed to study fluorescence intermittency. We demonstrate a data analysis scheme, which enables us to quantify the decay of the ensemble intensity which is due to on/off-blinking of the molecules (photophysical bleaching) by getting rid of the effects of photochemical degradation of the dye (photochemical bleaching). Under the conditions of our experiments, photophysical and thus reversible bleaching is the dominant of the two bleaching mechanisms.

  2. Electrically driven single-photon emission from an isolated single molecule.

    Science.gov (United States)

    Zhang, Li; Yu, Yun-Jie; Chen, Liu-Guo; Luo, Yang; Yang, Ben; Kong, Fan-Fang; Chen, Gong; Zhang, Yang; Zhang, Qiang; Luo, Yi; Yang, Jin-Long; Dong, Zhen-Chao; Hou, J G

    2017-09-18

    Electrically driven molecular light emitters are considered to be one of the promising candidates as single-photon sources. However, it is yet to be demonstrated that electrically driven single-photon emission can indeed be generated from an isolated single molecule notwithstanding fluorescence quenching and technical challenges. Here, we report such electrically driven single-photon emission from a well-defined single molecule located inside a precisely controlled nanocavity in a scanning tunneling microscope. The effective quenching suppression and nanocavity plasmonic enhancement allow us to achieve intense and stable single-molecule electroluminescence. Second-order photon correlation measurements reveal an evident photon antibunching dip with the single-photon purity down to g (2) (0) = 0.09, unambiguously confirming the single-photon emission nature of the single-molecule electroluminescence. Furthermore, we demonstrate an ultrahigh-density array of identical single-photon emitters.Molecular emitters offer a promising solution for single-photon generation. Here, by exploiting electronic decoupling by an ultrathin dielectric spacer and emission enhancement by a resonant plasmonic nanocavity, the authors demonstrate electrically driven single-photon emission from a single molecule.

  3. Single-Molecule Analysis of Pre-mRNA Splicing with Colocalization Single-Molecule Spectroscopy (CoSMoS).

    Science.gov (United States)

    Braun, Joerg E; Serebrov, Victor

    2017-01-01

    Recent development of single-molecule techniques to study pre-mRNA splicing has provided insights into the dynamic nature of the spliceosome. Colocalization single-molecule spectroscopy (CoSMoS) allows following spliceosome assembly in real time at single-molecule resolution in the full complexity of cellular extracts. A detailed protocol of CoSMoS has been published previously (Anderson and Hoskins, Methods Mol Biol 1126:217-241, 2014). Here, we provide an update on the technical advances since the first CoSMoS studies including slide surface treatment, data processing, and representation. We describe various labeling strategies to generate RNA reporters with multiple dyes (or other moieties) at specific locations.

  4. 2012 Gordon Research Conference, Single molecule approaches to biology, July 15-20 2012

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Julio M. [Columbia Univ., New York, NY (United States)

    2012-04-20

    Single molecule techniques are rapidly occupying a central role in biological research at all levels. This transition was made possible by the availability and dissemination of robust techniques that use fluorescence and force probes to track the conformation of molecules one at a time, in vitro as well as in live cells. Single-molecule approaches have changed the way many biological problems are studied. These novel techniques provide previously unobtainable data on fundamental biochemical processes that are essential for all forms of life. The ability of single-molecule approaches to avoid ensemble averaging and to capture transient intermediates and heterogeneous behavior renders them particularly powerful in elucidating mechanisms of the molecular systems that underpin the functioning of living cells. Hence, our conference seeks to disseminate the implementation and use of single molecule techniques in the pursuit of new biological knowledge. Topics covered include: Molecular Motors on the Move; Origin And Fate Of Proteins; Physical Principles Of Life; Molecules and Super-resolution Microscopy; Nanoswitches In Action; Active Motion Or Random Diffusion?; Building Blocks Of Living Cells; From Molecular Mechanics To Physiology; Tug-of-war: Force Spectroscopy Of Single Proteins.

  5. SINGLE MOLECULE APPROACHES TO BIOLOGY, 2010 GORDON RESEARCH CONFERENCE, JUNE 27-JULY 2, 2010, ITALY

    Energy Technology Data Exchange (ETDEWEB)

    Professor William Moerner

    2010-07-09

    The 2010 Gordon Conference on Single-Molecule Approaches to Biology focuses on cutting-edge research in single-molecule science. Tremendous technical developments have made it possible to detect, identify, track, and manipulate single biomolecules in an ambient environment or even in a live cell. Single-molecule approaches have changed the way many biological problems are addressed, and new knowledge derived from these approaches continues to emerge. The ability of single-molecule approaches to avoid ensemble averaging and to capture transient intermediates and heterogeneous behavior renders them particularly powerful in elucidating mechanisms of biomolecular machines: what they do, how they work individually, how they work together, and finally, how they work inside live cells. The burgeoning use of single-molecule methods to elucidate biological problems is a highly multidisciplinary pursuit, involving both force- and fluorescence-based methods, the most up-to-date advances in microscopy, innovative biological and chemical approaches, and nanotechnology tools. This conference seeks to bring together top experts in molecular and cell biology with innovators in the measurement and manipulation of single molecules, and will provide opportunities for junior scientists and graduate students to present their work in poster format and to exchange ideas with leaders in the field. A number of excellent poster presenters will be selected for short oral talks. Topics as diverse as single-molecule sequencing, DNA/RNA/protein interactions, folding machines, cellular biophysics, synthetic biology and bioengineering, force spectroscopy, new method developments, superresolution imaging in cells, and novel probes for single-molecule imaging will be on the program. Additionally, the collegial atmosphere of this Conference, with programmed discussion sessions as well as opportunities for informal gatherings in the afternoons and evenings in the beauty of the Il Ciocco site in

  6. Quantitative single-molecule imaging by confocal laser scanning microscopy.

    Science.gov (United States)

    Vukojevic, Vladana; Heidkamp, Marcus; Ming, Yu; Johansson, Björn; Terenius, Lars; Rigler, Rudolf

    2008-11-25

    A new approach to quantitative single-molecule imaging by confocal laser scanning microscopy (CLSM) is presented. It relies on fluorescence intensity distribution to analyze the molecular occurrence statistics captured by digital imaging and enables direct determination of the number of fluorescent molecules and their diffusion rates without resorting to temporal or spatial autocorrelation analyses. Digital images of fluorescent molecules were recorded by using fast scanning and avalanche photodiode detectors. In this way the signal-to-background ratio was significantly improved, enabling direct quantitative imaging by CLSM. The potential of the proposed approach is demonstrated by using standard solutions of fluorescent dyes, fluorescently labeled DNA molecules, quantum dots, and the Enhanced Green Fluorescent Protein in solution and in live cells. The method was verified by using fluorescence correlation spectroscopy. The relevance for biological applications, in particular, for live cell imaging, is discussed.

  7. Nonlinear coherent spectroscopy in the single molecule limit (Presentation Recording)

    Science.gov (United States)

    Potma, Eric O.

    2015-10-01

    Detecting coherent anti-Stokes Raman scattering (CARS) signals from signal molecules is a longstanding experimental challenge. Driving the vibrational CARS response with surface plasmon fields has proven notoriously difficult due to strong background contributions, unfavorable heat dissipation and the phase dispersion of the plasmon modes in the ensemble. In this work we overcome previous experimental limitations and demonstrate time-resolved, vibrational CARS from molecules in the low copy number limit, down to the single molecule level. Our measurements, which are performed under ambient and non-electronic resonance conditions, establish that the coherent response from vibrational modes of individual molecules can be studied experimentally, opening up a new realm of molecular spectroscopic investigations.

  8. Biological Nanopores: Confined Spaces for Electrochemical Single-Molecule Analysis.

    Science.gov (United States)

    Cao, Chan; Long, Yi-Tao

    2018-02-20

    Nanopore sensing is developing into a powerful single-molecule approach to investigate the features of biomolecules that are not accessible by studying ensemble systems. When a target molecule is transported through a nanopore, the ions occupying the pore are excluded, resulting in an electrical signal from the intermittent ionic blockade event. By statistical analysis of the amplitudes, duration, frequencies, and shapes of the blockade events, many properties of the target molecule can be obtained in real time at the single-molecule level, including its size, conformation, structure, charge, geometry, and interactions with other molecules. With the development of the use of α-hemolysin to characterize individual polynucleotides, nanopore technology has attracted a wide range of research interest in the fields of biology, physics, chemistry, and nanoscience. As a powerful single-molecule analytical method, nanopore technology has been applied for the detection of various biomolecules, including oligonucleotides, peptides, oligosaccharides, organic molecules, and disease-related proteins. In this Account, we highlight recent developments of biological nanopores in DNA-based sensing and in studying the conformational structures of DNA and RNA. Furthermore, we introduce the application of biological nanopores to investigate the conformations of peptides affected by charge, length, and dipole moment and to study disease-related proteins' structures and aggregation transitions influenced by an inhibitor, a promoter, or an applied voltage. To improve the sensing ability of biological nanopores and further extend their application to a wider range of molecular sensing, we focus on exploring novel biological nanopores, such as aerolysin and Stable Protein 1. Aerolysin exhibits an especially high sensitivity for the detection of single oligonucleotides both in current separation and duration. Finally, to facilitate the use of nanopore measurements and statistical analysis

  9. Single Molecule Study of Cellulase Hydrolysis of Crystalline Cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y.-S.; Luo, Y.; Baker, J. O.; Zeng, Y.; Himmel, M. E.; Smith, S.; Ding, S.-Y.

    2009-12-01

    This report seeks to elucidate the role of cellobiohydrolase-I (CBH I) in the hydrolysis of crystalline cellulose. A single-molecule approach uses various imaging techniques to investigate the surface structure of crystalline cellulose and changes made in the structure by CBH I.

  10. A gate-tunable single-molecule diode

    NARCIS (Netherlands)

    Perrin, M.L.; Galán García, E.; Eelkema, R.; Thijssen, J.M.; Grozema, F.C.; van der Zant, H.S.J.

    2016-01-01

    In the pursuit of down-sizing electronic components, the ultimate limit is the use of single molecules as functional devices. The first theoretical proposal of such a device, predicted more than four decades ago, is the seminal Aviram–Ratner rectifier that exploits the orbital structure of the

  11. Computing magnetic anisotropy constants of single molecule magnets

    Indian Academy of Sciences (India)

    Administrator

    Abstract. We present here a theoretical approach to compute the molecular magnetic anisotropy parameters, DM and EM for single molecule magnets in any given spin eigenstate of exchange spin Hami- ltonian. We first describe a hybrid constant MS-valence bond (VB) technique of solving spin Hamilto- nians employing ...

  12. Computing magnetic anisotropy constants of single molecule magnets

    Indian Academy of Sciences (India)

    We present here a theoretical approach to compute the molecular magnetic anisotropy parameters, and for single molecule magnets in any given spin eigenstate of exchange spin Hamiltonian. We first describe a hybrid constant -valence bond (VB) technique of solving spin Hamiltonians employing full spatial ...

  13. Alternating-laser excitation : single-molecule FRET and beyond

    NARCIS (Netherlands)

    Hohlbein, Johannes; Craggs, Timothy D.; Cordes, Thorben

    2014-01-01

    The alternating-laser excitation (ALEX) scheme continues to expand the possibilities of fluorescence-based assays to study biological entities and interactions. Especially the combination of ALEX and single-molecule Forster Resonance Energy Transfer (smFRET) has been very successful as ALEX enables

  14. Alternating-laser excitation: single-molecule FRET and beyond

    NARCIS (Netherlands)

    Hohlbein, J.C.; Craggs, T.D.; Cordes, T.

    2014-01-01

    The alternating-laser excitation (ALEX) scheme continues to expand the possibilities of fluorescence-based assays to study biological entities and interactions. Especially the combination of ALEX and single-molecule Förster Resonance Energy Transfer (smFRET) has been very successful as ALEX enables

  15. A local view on single and coupled molecules

    NARCIS (Netherlands)

    van Dijk, E.M.H.P.; Hernando Campos, J.; Hoogenboom, Jacob; Garcia Parajo, M.F.

    2005-01-01

    The paper focuses on a novel approach to reveal ultrafast dynamics in single molecules. The main strength of the approach is towards ultrafast processes in extended multi-chromophoric molecular assemblies. Excitonically coupled systems consisting of 2 and 3 rigidly linked perylene-diimide units in a

  16. Dynamic protein assemblies in homologous recombination with single DNA molecules

    NARCIS (Netherlands)

    van der Heijden, A.H.

    2007-01-01

    What happens when your DNA breaks? This thesis describes experimental work on the single-molecule level focusing on the interaction between DNA and DNA-repair proteins, in particular bacterial RecA and human Rad51, involved in homologous recombination. Homologous recombination and its central event

  17. Visualizing Single-molecule DNA Replication with Fluorescence Microscopy

    NARCIS (Netherlands)

    Tanner, Nathan A.; Loparo, Joseph J.; Oijen, Antoine M. van

    2009-01-01

    We describe a simple fluorescence microscopy-based real-time method for observing DNA replication at the single-molecule level. A circular, forked DNA template is attached to a functionalized glass coverslip and replicated extensively after introduction of replication proteins and nucleotides. The

  18. The properties and applications of single-molecule DNA sequencing

    Science.gov (United States)

    2011-01-01

    Single-molecule sequencing enables DNA or RNA to be sequenced directly from biological samples, making it well-suited for diagnostic and clinical applications. Here we review the properties and applications of this rapidly evolving and promising technology. PMID:21349208

  19. Confinement Spectroscopy: Probing Single DNA Molecules with Tapered Nanochannels

    DEFF Research Database (Denmark)

    Persson, Karl Fredrik; Utko, Pawel; Reisner, Walter

    2009-01-01

    We demonstrate a confinement spectroscopy technique capable of probing small conformational changes of unanchored single DNA molecules in a manner analogous to force spectroscopy, in the regime corresponding to femtonewton forces. In contrast to force spectroscopy, various structural forms of DNA...

  20. An RNA toolbox for single-molecule force spectroscopy studies

    NARCIS (Netherlands)

    Vilfan, I.D.; Kamping, W.; Van den Hout, M.; Candelli, A.; Hage, S.; Dekker, N.H.

    2007-01-01

    Precise, controllable single-molecule force spectroscopy studies of RNA and RNA-dependent processes have recently shed new light on the dynamics and pathways of RNA folding and RNAenzyme interactions. A crucial component of this research is the design and assembly of an appropriate RNA construct.

  1. Visualizing DNA Replication at the Single-Molecule Level

    NARCIS (Netherlands)

    Tanner, Nathan A.

    2010-01-01

    Recent advances in single-molecule methodology have made it possible to study the dynamic behavior of individual enzymes and their interactions with other proteins in multiprotein complexes. Here, we describe newly developed methods to study the coordination of DNA unwinding, priming, and synthesis

  2. VISUALIZING DNA REPLICATION AT THE SINGLE-MOLECULE LEVEL

    NARCIS (Netherlands)

    Tanner, Nathan A.; van Oijen, Antoine M.; Walter, NG

    2010-01-01

    Recent advances in single-molecule methodology have made it possible to study the dynamic behavior of individual enzymes and their interactions with other proteins in multiprotein complexes. Here, we describe newly developed methods to study the coordination of DNA unwinding, priming, and synthesis

  3. Single molecule microscopy in 3D cell cultures and tissues.

    Science.gov (United States)

    Lauer, Florian M; Kaemmerer, Elke; Meckel, Tobias

    2014-12-15

    From the onset of the first microscopic visualization of single fluorescent molecules in living cells at the beginning of this century, to the present, almost routine application of single molecule microscopy, the method has well-proven its ability to contribute unmatched detailed insight into the heterogeneous and dynamic molecular world life is composed of. Except for investigations on bacteria and yeast, almost the entire story of success is based on studies on adherent mammalian 2D cell cultures. However, despite this continuous progress, the technique was not able to keep pace with the move of the cell biology community to adapt 3D cell culture models for basic research, regenerative medicine, or drug development and screening. In this review, we will summarize the progress, which only recently allowed for the application of single molecule microscopy to 3D cell systems and give an overview of the technical advances that led to it. While initially posing a challenge, we finally conclude that relevant 3D cell models will become an integral part of the on-going success of single molecule microscopy. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Calix[4]arene Based Single-Molecule Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Karotsis, Georgios; Teat, Simon J.; Wernsdorfer, Wolfgang; Piligkos, Stergios; Dalgarno, Scott J.; Brechin, Euan K.

    2009-06-04

    Single-molecule magnets (SMMs) have been the subject of much interest in recent years because their molecular nature and inherent physical properties allow the crossover between classical and quantum physics to be observed. The macroscopic observation of quantum phenomena - tunneling between different spin states, quantum interference between tunnel paths - not only allows scientists to study quantum mechanical laws in great detail, but also provides model systems with which to investigate the possible implementation of spin-based solid state qubits and molecular spintronics. The isolation of small, simple SMMs is therefore an exciting prospect. To date almost all SMMs have been made via the self-assembly of 3d metal ions in the presence of bridging/chelating organic ligands. However, very recently an exciting new class of SMMs, based on 3d metal clusters (or single lanthanide ions) housed within polyoxometalates, has appeared. These types of molecule, in which the SMM is completely encapsulated within (or shrouded by) a 'protective' organic or inorganic sheath have much potential for design and manipulation: for example, for the removal of unwanted dipolar interactions, the introduction of redox activity, or to simply aid functionalization for surface grafting. Calix[4]arenes are cyclic (typically bowl-shaped) polyphenols that have been used extensively in the formation of versatile self-assembled supramolecular structures. Although many have been reported, p-{sup t}But-calix[4]arene and calix[4]arene (TBC4 and C4 respectively, Figure 1A) are frequently encountered due to (a) synthetic accessibility, and (b) vast potential for alteration at either the upper or lower rim of the macrocyclic framework. Within the field of supramolecular chemistry, TBC4 is well known for interesting polymorphic behavior and phase transformations within anti-parallel bi-layer arrays, while C4 often forms self-included trimers. The polyphenolic nature of calix[n]arenes (where

  5. Living cell study at the single-molecule and single-cell levels by atomic force microscopy.

    Science.gov (United States)

    Shi, Xiaoli; Zhang, Xuejie; Xia, Tie; Fang, Xiaohong

    2012-10-01

    Atomic force microscopy (AFM) has been emerging as a multifunctional molecular tool in nanobiology and nanomedicine. This review summarizes the recent advances in AFM study of living mammalian cells at the single-molecule and single-cell levels. Besides nanoscale imaging of cell membrane structure, AFM-based force measurements on living cells are mainly discussed. These include the development and application of single-molecule force spectroscopy to investigate ligand-receptor binding strength and dissociation dynamics, and the characterization of cell mechanical properties in a physiological environment. Molecular manipulation of cells by AFM to change the cellular process is also described. Living-cell AFM study offers a new approach to understand the molecular mechanisms of cell function, disease development and drug effect, as well as to develop new strategies to achieve single-cell-based diagnosis.

  6. Quantum-Sequencing: Fast electronic single DNA molecule sequencing

    Science.gov (United States)

    Casamada Ribot, Josep; Chatterjee, Anushree; Nagpal, Prashant

    2014-03-01

    A major goal of third-generation sequencing technologies is to develop a fast, reliable, enzyme-free, high-throughput and cost-effective, single-molecule sequencing method. Here, we present the first demonstration of unique ``electronic fingerprint'' of all nucleotides (A, G, T, C), with single-molecule DNA sequencing, using Quantum-tunneling Sequencing (Q-Seq) at room temperature. We show that the electronic state of the nucleobases shift depending on the pH, with most distinct states identified at acidic pH. We also demonstrate identification of single nucleotide modifications (methylation here). Using these unique electronic fingerprints (or tunneling data), we report a partial sequence of beta lactamase (bla) gene, which encodes resistance to beta-lactam antibiotics, with over 95% success rate. These results highlight the potential of Q-Seq as a robust technique for next-generation sequencing.

  7. Electron and heat transport in graphene-based single-molecule devices

    Science.gov (United States)

    Mol, Jan; Gehring, Pascal; Lau, Chit; Briggs, Andrew

    Graphene nano-electrodes provide a versatile platform for contacting individual molecules. Unlike metal electrodes, graphene is atomically stable at room temperature and screening of the gate electric field is strongly reduced by the two-dimensional nature of the electrodes. Molecules can be anchored to the graphene via π- π stacking bonds. We will present single electron transport measurements of single pyrene-functionalised C60 molecules. Strong electron-phonon coupling in these molecules leads to the observation of Franck-Condon blockade. In addition to spectroscopic transport features arising from the electronic and mechanical degrees of freedom of the fullerene molecule, we observe the effect of quantum interference in the graphene leads. Density-of-states fluctuations due to multi-mode Fabry-Perot interference in graphene result in energy dependent coupling between the graphene leads and the molecule. Finally, we will present thermoelectric measurements of our graphene-based nanostructures, and show the energy dependent Seebeck coefficient both in the sequential electron tunnelling and quantum interference regime. Our experiments demonstrate the capability of graphene-based molecular junctions for studying transport in single molecules, and highlight spectroscopic features that cannot readily be observed in metal-molecule junctions.

  8. Measuring two at the same time: combining magnetic tweezers with single-molecule FRET.

    Science.gov (United States)

    Swoboda, Marko; Grieb, Maj Svea; Hahn, Steffen; Schlierf, Michael

    2014-01-01

    Molecular machines are the workhorses of the cell that efficiently convert chemical energy into mechanical motion through conformational changes. They can be considered powerful machines, exerting forces and torque on the molecular level of several piconewtons and piconewton-nanometer, respectively. For studying translocation and conformational changes of these machines, fluorescence methods, like FRET, as well as "mechanical" methods, like optical and magnetic tweezers, have proven well suited over the past decades. One of the current challenges in the field of molecular machines is gaining maximal information from single-molecule experiments by simultaneously measuring translocation, conformational changes, and forces exerted by these machines. In this chapter, we describe the combination of magnetic tweezers with single-molecule FRET for orthogonal simultaneous readout to maximize the information gained in single-molecule experiments.

  9. Electrochemical single-molecule conductivity of duplex and quadruplex DNA

    DEFF Research Database (Denmark)

    Zhang, Ling; Zhang, Jingdong; Ulstrup, Jens

    2017-01-01

    Photoinduced and electrochemical charge transport in DNA (oligonucleotides, OGNs) and the notions “hopping”, superexchange, polaron, and vibrationally gated charge transport have been in focus over more than two decades. In recent years mapping of electrochemical charge transport of pure and redox......-molecule electrochemical conductivity of pure and redox marked duplex OGNs, and address next electrochemistry and electrochemical conductivity in the few reported monolayer and single-molecule G-quadruplex studies. Facile electrochemical electron transfer of iron protoporphyrin IX stacked onto three-quartet 12-guanine...

  10. Advances in magnetic tweezers for single molecule and cell biophysics.

    Science.gov (United States)

    Kilinc, Devrim; Lee, Gil U

    2014-01-01

    Magnetic tweezers (MTW) enable highly accurate forces to be transduced to molecules to study mechanotransduction at the molecular or cellular level. We review recent MTW studies in single molecule and cell biophysics that demonstrate the flexibility of this technique. We also discuss technical advances in the method on several fronts, i.e., from novel approaches for the measurement of torque to multiplexed biophysical assays. Finally, we describe multi-component nanorods with enhanced optical and magnetic properties and discuss their potential as future MTW probes.

  11. SISGR: Room Temperature Single-Molecule Detection and Imaging by Stimulated Emission Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Xiaoliang Sunney [Harvard Univ., Cambridge, MA (United States). Dept. of Chemistry and Chemical Biology

    2017-03-13

    specificity than absorption and fluorescence. Current sensitivity limit of SRS microscopy has not yet reached single molecule detection. We proposed to capitalize on our state-of-the-art SRS microscopy and develop near-resonance enhanced SRS for single molecule detection of carotenoids and heme proteins. The specific aims we pursued are: (1) building the next SRS generation microscope that utilizes near resonance enhancement to allow detection and imaging of single molecules with undetectable fluorescence, such as -carotene. (2) using near-resonance SRS as a contrast mechanism to study dye-sensitize semiconductor interface, elucidating the heterogeneous electron ejection kinetics with high spatial and temporal resolution. (3) studying the binding and unbinding of oxygen in single hemoglobin molecules in order to gain molecular level understanding of the long-standing issue of cooperativity. The new methods developed in the fund period of this grant have advanced the detection sensitivity in many aspects. Near-resonance SRS improved the signal by using shorter wavelengths for SRS microscopy. Frequency modulation and multi-color SRS target the reduction of background to improve the chemical specificity of SRS while maintaining the high imaging speed. Time-domain coherent Raman scattering microscopy targets to reduce the noise floor of coherent Raman microscopy. These methods have already demonstrated first-of-a-kind new applications in biology and medical research. However, we are still one order of magnitude away from single molecule limit. It is important to continue to improve the laser specification and develop new imaging methods to finally achieve label-free single molecule microscopy.

  12. Single-molecule electrical contacts on silicon electrodes under ambient conditions

    Science.gov (United States)

    Aragonès, Albert C.; Darwish, Nadim; Ciampi, Simone; Sanz, Fausto; Gooding, J. Justin; Díez-Pérez, Ismael

    2017-04-01

    The ultimate goal in molecular electronics is to use individual molecules as the active electronic component of a real-world sturdy device. For this concept to become reality, it will require the field of single-molecule electronics to shift towards the semiconducting platform of the current microelectronics industry. Here, we report silicon-based single-molecule contacts that are mechanically and electrically stable under ambient conditions. The single-molecule contacts are prepared on silicon electrodes using the scanning tunnelling microscopy break-junction approach using a top metallic probe. The molecular wires show remarkable current-voltage reproducibility, as compared to an open silicon/nano-gap/metal junction, with current rectification ratios exceeding 4,000 when a low-doped silicon is used. The extension of the single-molecule junction approach to a silicon substrate contributes to the next level of miniaturization of electronic components and it is anticipated it will pave the way to a new class of robust single-molecule circuits.

  13. Single-molecule imaging and manipulation of biomolecular machines and systems.

    Science.gov (United States)

    Iino, Ryota; Iida, Tatsuya; Nakamura, Akihiko; Saita, Ei-Ichiro; You, Huijuan; Sako, Yasushi

    2018-02-01

    Biological molecular machines support various activities and behaviors of cells, such as energy production, signal transduction, growth, differentiation, and migration. We provide an overview of single-molecule imaging methods involving both small and large probes used to monitor the dynamic motions of molecular machines in vitro (purified proteins) and in living cells, and single-molecule manipulation methods used to measure the forces, mechanical properties and responses of biomolecules. We also introduce several examples of single-molecule analysis, focusing primarily on motor proteins and signal transduction systems. Single-molecule analysis is a powerful approach to unveil the operational mechanisms both of individual molecular machines and of systems consisting of many molecular machines. Quantitative, high-resolution single-molecule analyses of biomolecular systems at the various hierarchies of life will help to answer our fundamental question: "What is life?" This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Conductance and Surface-Enhanced Raman Scattering of Single Molecules Utilizing Dimers of Nanoparticles

    Science.gov (United States)

    Dadosh, Tali

    conductance at certain voltage values. The position of peaks in the spectrum was affected by the electrostatic environment, resulting in random gating. In view of the above developments, my thesis focuses on surface-enhanced Raman scattering (SERS) measurement of single molecules. Single-molecule spectroscopy is an emerging field that provides detailed information on molecular response, which is unavailable in measurements performed on an assembly of molecules. The obvious problem, however, in implementing most spectroscopic techniques, such as Raman scattering, is the very weak signal obtained from a single molecule. Interestingly, the Raman signal from a molecule has been shown to increase dramatically when the molecule is adsorbed to metal particles of certain types having sub-wavelength dimensions [1, 2]. This enhancement technique, known as surface-enhanced Raman scattering, can increase the Raman signal by as much as 14--15 orders of magnitude, which has been shown to be sufficient for performing single-molecule spectroscopy successfully. Dimer structures are not only attractive for conductance measurements on single-molecule devices; they could also serve as an efficient antenna system that greatly enhances the electromagnetic field at the center of the dimer, where the molecule resides. Dimers provide a basic experimental model for studying the fundamentals of the SERS enhancement, which are not well understood. Dimers have the advantage of possessing a small gap (on the order of a nanometer) that is beyond the limit of today's sophisticated lithography techniques. By utilizing the dimer structures that contain a Rhodamine 123 molecule, we were able to resolve some fundamental questions regarding the SERS enhancement mechanism. The issue of how the nanoparticles' surface plasmon properties affects the SERS enhancement was addressed both experimentally and by calculations. Moreover, it was predicted by our calculations that when the dimers consist of large

  15. Single-Cell and Single-Molecule Analysis of Gene Expression Regulation.

    Science.gov (United States)

    Vera, Maria; Biswas, Jeetayu; Senecal, Adrien; Singer, Robert H; Park, Hye Yoon

    2016-11-23

    Recent advancements in single-cell and single-molecule imaging technologies have resolved biological processes in time and space that are fundamental to understanding the regulation of gene expression. Observations of single-molecule events in their cellular context have revealed highly dynamic aspects of transcriptional and post-transcriptional control in eukaryotic cells. This approach can relate transcription with mRNA abundance and lifetimes. Another key aspect of single-cell analysis is the cell-to-cell variability among populations of cells. Definition of heterogeneity has revealed stochastic processes, determined characteristics of under-represented cell types or transitional states, and integrated cellular behaviors in the context of multicellular organisms. In this review, we discuss novel aspects of gene expression of eukaryotic cells and multicellular organisms revealed by the latest advances in single-cell and single-molecule imaging technology.

  16. Monitoring and Manipulating Motions of Single Molecules/Nanoparticles

    Science.gov (United States)

    Chen, Fang

    -nanometer pores in theory. We then experimentally studied nanoparticles diffusing on membrane filters containing 200 nm polyethyleneglycol- or C18-modified pores. Using STED microscopy, we resolved for the first time how small particles are retained by the pores. Trapping by the pore entrances rather than adsorption is responsible for the retention. Further studies on C18-modified pores showed consistency in Gibbs free energy about the retention process. In addition, in order to understand how nanoparticles interact with the surface when they are forced to be on, or very close to, the surface, we studied nanosecond rotation dynamics of gold nanorods with one end attached on the surface. We found that the nanorod motion is dominated by van der Waals interaction-induced immobilization rather Brownian rotational diffusion as previously thought. The actual rotation, during which the nanorod transits from one immobilized state to the other, slows down by 50 times. The second part of the research is the collaboration with Tour's group in Rice University. The ultimate goal is to use light to drive a motorized nanocar at ambient conditions. To fulfill this goal, we first studied the moving kinetics of adamantane-wheeled nanocars on hydroxylated and PEG-modified surfaces using single molecule fluorescence microscopy. We found that nanocars' diffusion slows down on solid surface over time, which is possibly caused by the increased hydrophobicity of the substrate surface due to the adsorbates from the air. A sticky-spots model was proposed to explain the observed slowing down. To find out whether a light-activatable motor works when it is incorporated into a nanocar, we carefully designed a series of molecules containing a regular motor, a slow motor, a nonunidirectional motor, and no motor. We found that a fast unidirectional rotating motor enhanced the diffusion of the molecule in solution upon UV-illumination. Detailed analysis suggested that the unimolecular submersible nanomachine (USN

  17. Detecting single DNA molecule interactions with optical microcavities (Presentation Recording)

    Science.gov (United States)

    Vollmer, Frank

    2015-09-01

    Detecting molecules and their interactions lies at the heart of all biosensor devices, which have important applications in health, environmental monitoring and biomedicine. Achieving biosensing capability at the single molecule level is, moreover, a particularly important goal since single molecule biosensors would not only operate at the ultimate detection limit by resolving individual molecular interactions, but they could also monitor biomolecular properties which are otherwise obscured in ensemble measurements. For example, a single molecule biosensor could resolve the fleeting interaction kinetics between a molecule and its receptor, with immediate applications in clinical diagnostics. We have now developed a label-free biosensing platform that is capable of monitoring single DNA molecules and their interaction kinetics[1], hence achieving an unprecedented sensitivity in the optical domain, Figure 1. We resolve the specific contacts between complementary oligonucleotides, thereby detecting DNA strands with less than 2.4 kDa molecular weight. Furthermore we can discern strands with single nucleotide mismatches by monitoring their interaction kinetics. Our device utilizes small glass microspheres as optical transducers[1,2, 3], which are capable of increasing the number of interactions between a light beam and analyte molecules. A prism is used to couple the light beam into the microsphere. Ourr biosensing approach resolves the specific interaction kinetics between single DNA fragments. The optical transducer is assembled in a simple three-step protocol, and consists of a gold nanorod attached to a glass microsphere, where the surface of the nanorod is further modified with oligonucleotide receptors. The interaction kinetics of an oligonucleotide receptor with DNA fragments in the surrounding aqueous solution is monitored at the single molecule level[1]. The light remains confined inside the sphere where it is guided by total internal reflections along a

  18. New Antifouling Platform Characterized by Single-Molecule Imaging

    Science.gov (United States)

    2015-01-01

    Antifouling surfaces have been widely studied for their importance in medical devices and industry. Antifouling surfaces mostly achieved by methoxy-poly(ethylene glycol) (mPEG) have shown biomolecular adsorption less than 1 ng/cm2 which was measured by surface analytical tools such as surface plasmon resonance (SPR) spectroscopy, quartz crystal microbalance (QCM), or optical waveguide lightmode (OWL) spectroscopy. Herein, we utilize a single-molecule imaging technique (i.e., an ultimate resolution) to study antifouling properties of functionalized surfaces. We found that about 600 immunoglobulin G (IgG) molecules are adsorbed. This result corresponds to ∼5 pg/cm2 adsorption, which is far below amount for the detection limit of the conventional tools. Furthermore, we developed a new antifouling platform that exhibits improved antifouling performance that shows only 78 IgG molecules adsorbed (∼0.5 pg/cm2). The antifouling platform consists of forming 1 nm TiO2 thin layer, on which peptidomimetic antifouling polymer (PMAP) is robustly anchored. The unprecedented antifouling performance can potentially revolutionize a variety of research fields such as single-molecule imaging, medical devices, biosensors, and others. PMID:24503420

  19. Applications of optical trapping to single molecule DNA

    Energy Technology Data Exchange (ETDEWEB)

    Sonek, G.J.; Berns, M.W. [Univ. of California, Irvine, CA (United States). Beckman Laser Inst. and Medical Clinic; Keller, R.A. [Los Alamos National Lab., NM (United States). Chemical Science and Technology Div.

    1997-12-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project focused on the methodologies required to integrate optical trapping with single molecule detection (SMD) so as to demonstrate high speed sequencing through optical micromanipulation of host substrates, nucleotide cleavage, and single molecule detection. As part of this effort, the new technology of optical tweezers was applied to the confinement and manipulation of microsphere handles containing attached DNA fragments. The authors demonstrated substrate optical trapping in rapid flow streams, the fluorescence excitation and detection of fluorescently labeled nucleotides in an optical trapping system, and the epifluorescent imaging of DNA fragments in flow streams. They successfully demonstrated optical trapping in laminar flow streams and completely characterized the trapping process as functions of fluid flow velocity, chamber dimension, trapping depth, incident laser power, and fluorescence measurement geometry.

  20. Single-molecule chemical reactions on DNA origami

    DEFF Research Database (Denmark)

    Voigt, Niels Vinther; Tørring, Thomas; Rotaru, Alexandru

    2010-01-01

    as templates for building materials with new functional properties. Relatively large nanocomponents such as nanoparticles and biomolecules can also be integrated into DNA nanostructures and imaged. Here, we show that chemical reactions with single molecules can be performed and imaged at a local position...... on a DNA origami scaffold by atomic force microscopy. The high yields and chemoselectivities of successive cleavage and bond-forming reactions observed in these experiments demonstrate the feasibility of post-assembly chemical modification of DNA nanostructures and their potential use as locally......DNA nanotechnology and particularly DNA origami, in which long, single-stranded DNA molecules are folded into predetermined shapes, can be used to form complex self-assembled nanostructures. Although DNA itself has limited chemical, optical or electronic functionality, DNA nanostructures can serve...

  1. Directly measuring single molecule heterogeneity using force spectroscopy

    CERN Document Server

    Hinczewski, Michael; Thirumalai, D

    2016-01-01

    One of the most intriguing results of single molecule experiments on proteins and nucleic acids is the discovery of functional heterogeneity: the observation that complex cellular machines exhibit multiple, biologically active conformations. The structural differences between these conformations may be subtle, but each distinct state can be remarkably long-lived, with random interconversions between states occurring only at macroscopic timescales, fractions of a second or longer. Though we now have proof of functional heterogeneity in a handful of systems---enzymes, motors, adhesion complexes---identifying and measuring it remains a formidable challenge. Here we show that evidence of this phenomenon is more widespread than previously known, encoded in data collected from some of the most well-established single molecule techniques: AFM or optical tweezer pulling experiments. We present a theoretical procedure for analyzing distributions of rupture/unfolding forces recorded at different pulling speeds. This re...

  2. Single Molecule Detection in Solution: Methods and Applications

    Science.gov (United States)

    Zander, Christoph; Enderlein, Jorg; Keller, Richard A.

    2002-07-01

    The detection of single molecules opens up new horizons in analytical chemistry, biology and medicine. This discipline, which belongs to the expanding field of nanoscience, has been rapidly emerging over the last ten years. This handbook provides a thorough overview of the field. It begins with basics of single molecule detection in solution, describes methods and devices (fluorescense correlation spectroscopy, surface enhanced Raman scattering, sensors, especially dyes, screening techniques, especially confocal laser scanning microscopy). In the second part, various applications in life sciences and medicine provide the latest research results. This modern handbook is a highly accessible reference for a broad community from advanced researchers, specialists and company professionals in physics, spectroscopy, biotechnology, analytical chemistry, and medicine. Written by leading authorities in the field, it is timely and fills a gap - up to now there exists no handbook concerning this theme.

  3. Supramolecular Systems and Chemical Reactions in Single-Molecule Break Junctions.

    Science.gov (United States)

    Li, Xiaohui; Hu, Duan; Tan, Zhibing; Bai, Jie; Xiao, Zongyuan; Yang, Yang; Shi, Jia; Hong, Wenjing

    2017-04-01

    The major challenges of molecular electronics are the understanding and manipulation of the electron transport through the single-molecule junction. With the single-molecule break junction techniques, including scanning tunneling microscope break junction technique and mechanically controllable break junction technique, the charge transport through various single-molecule and supramolecular junctions has been studied during the dynamic fabrication and continuous characterization of molecular junctions. This review starts from the charge transport characterization of supramolecular junctions through a variety of noncovalent interactions, such as hydrogen bond, π-π interaction, and electrostatic force. We further review the recent progress in constructing highly conductive molecular junctions via chemical reactions, the response of molecular junctions to external stimuli, as well as the application of break junction techniques in controlling and monitoring chemical reactions in situ. We suggest that beyond the measurement of single molecular conductance, the single-molecule break junction techniques provide a promising access to study molecular assembly and chemical reactions at the single-molecule scale.

  4. Studying DNA-protein interactions with single-molecule Förster resonance energy transfer

    NARCIS (Netherlands)

    Farooq, S.; Fijen, C.; Hohlbein, J.C.

    2014-01-01

    Single-molecule Förster resonance energy transfer (smFRET) has emerged as a powerful tool for elucidating biological structure and mechanisms on the molecular level. Here, we focus on applications of smFRET to study interactions between DNA and enzymes such as DNA and RNA polymerases. SmFRET, used

  5. Dysprosium Acetylacetonato Single-Molecule Magnet Encapsulated in Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Ryo Nakanishi

    2016-12-01

    Full Text Available Dy single-molecule magnets (SMMs, which have several potential uses in a variety of applications, such as quantum computing, were encapsulated in multi-walled carbon nanotubes (MWCNTs by using a capillary method. Encapsulation was confirmed by using transmission electron microscopy (TEM. In alternating current magnetic measurements, the magnetic susceptibilities of the Dy acetylacetonato complexes showed clear frequency dependence even inside the MWCNTs, meaning that this hybrid can be used as magnetic materials in devices.

  6. Heterometallic 3d-4f single molecule magnets

    OpenAIRE

    Rosado Piquer, Lidia; Sañudo Zotes, Eva Carolina

    2015-01-01

    The promising potential applications, such as information processing and storage or molecular spintronics, of single-molecule magnets (SMMs) have spurred on the research of new, better SMMs. In this context, lanthanide ions have been seen as ideal candidates for new heterometallic transition metal-lanthanide SMMs. This perspective reviews 3d-4f SMMs up to 2014 and highlights the most significant advances and challenges of the field.

  7. Connectivity dependence of Fano resonances in single molecules

    OpenAIRE

    Grace, Ali K. Ismael Iain; Lambert, Colin J.

    2017-01-01

    Using a first principles approach combined with analysis of heuristic tight-binding models, we examine the connectivity dependence of two forms of quantum interference in single molecules. Based on general arguments, Fano resonances are shown to be insensitive to connectivity, while Mach-Zehnder-type interference features are shown to be connectivity dependent. This behaviour is found to occur in molecular wires containing anthraquinone units, in which the pendant carbonyl groups create Fano ...

  8. Charge transport through single molecules, quantum dots and quantum wires.

    Science.gov (United States)

    Andergassen, S; Meden, V; Schoeller, H; Splettstoesser, J; Wegewijs, M R

    2010-07-09

    We review recent progress in the theoretical description of correlation and quantum fluctuation phenomena in charge transport through single molecules, quantum dots and quantum wires. Various physical phenomena are addressed, relating to cotunneling, pair-tunneling, adiabatic quantum pumping, charge and spin fluctuations, and inhomogeneous Luttinger liquids. We review theoretical many-body methods to treat correlation effects, quantum fluctuations, non-equilibrium physics, and the time evolution into the stationary state of complex nanoelectronic systems.

  9. Microfluidic device for single-molecule experiments with enhanced photostability.

    Science.gov (United States)

    Lemke, Edward A; Gambin, Yann; Vandelinder, Virginia; Brustad, Eric M; Liu, Hsiao-Wei; Schultz, Peter G; Groisman, Alex; Deniz, Ashok A

    2009-09-30

    A microfluidic device made of polydimethylsiloxane (PDMS) addresses key limitations in single-molecule fluorescence experiments by providing high dye photostability and low sample sticking. Photobleaching is dramatically reduced by deoxygenation via gas diffusion through porous channel walls. Rapid buffer exchange in a laminar sheath flow followed by optical interrogation minimizes surface-sample contacts and allows the in situ addition and combination of other reagents.

  10. Simultaneous Multicolor Single-Molecule Tracking with Single-Laser Excitation via Spectral Imaging.

    Science.gov (United States)

    Huang, Tao; Phelps, Carey; Wang, Jing; Lin, Li-Jung; Bittel, Amy; Scott, Zubenelgenubi; Jacques, Steven; Gibbs, Summer L; Gray, Joe W; Nan, Xiaolin

    2018-01-23

    Single-molecule tracking (SMT) offers rich information on the dynamics of underlying biological processes, but multicolor SMT has been challenging due to spectral cross talk and a need for multiple laser excitations. Here, we describe a single-molecule spectral imaging approach for live-cell tracking of multiple fluorescent species at once using a single-laser excitation. Fluorescence signals from all the molecules in the field of view are collected using a single objective and split between positional and spectral channels. Images of the same molecule in the two channels are then combined to determine both the location and the identity of the molecule. The single-objective configuration of our approach allows for flexible sample geometry and the use of a live-cell incubation chamber required for live-cell SMT. Despite a lower photon yield, we achieve excellent spatial (20-40 nm) and spectral (10-15 nm) resolutions comparable to those obtained with dual-objective, spectrally resolved Stochastic Optical Reconstruction Microscopy. Furthermore, motions of the fluorescent molecules did not cause loss of spectral resolution owing to the dual-channel spectral calibration. We demonstrate SMT in three (and potentially more) colors using spectrally proximal fluorophores and single-laser excitation, and show that trajectories of each species can be reliably extracted with minimal cross talk. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Single-molecule denaturation mapping of DNA in nanofluidic channels

    DEFF Research Database (Denmark)

    Reisner, Walter; Larsen, Niels Bent; Silahtaroglu, Asli

    2010-01-01

    . Consequently, the technique is sensitive to sequence variation without requiring enzymatic labeling or a restriction step. This technique may serve as the basis for a new mapping technology ideally suited for investigating the long-range structure of entire genomes extracted from single cells.......Here we explore the potential power of denaturation mapping as a single-molecule technique. By partially denaturing YOYO (R)-1-labeled DNA in nanofluidic channels with a combination of formamide and local heating, we obtain a sequence-dependent "barcode" corresponding to a series of local dips...

  12. Viruses and Tetraspanins: Lessons from Single Molecule Approaches

    Science.gov (United States)

    Dahmane, Selma; Rubinstein, Eric; Milhiet, Pierre-Emmanuel

    2014-01-01

    Tetraspanins are four-span membrane proteins that are widely distributed in multi-cellular organisms and involved in several infectious diseases. They have the unique property to form a network of protein-protein interaction within the plasma membrane, due to the lateral associations with one another and with other membrane proteins. Tracking tetraspanins at the single molecule level using fluorescence microscopy has revealed the membrane behavior of the tetraspanins CD9 and CD81 in epithelial cell lines, providing a first dynamic view of this network. Single molecule tracking highlighted that these 2 proteins can freely diffuse within the plasma membrane but can also be trapped, permanently or transiently, in tetraspanin-enriched areas. More recently, a similar strategy has been used to investigate tetraspanin membrane behavior in the context of human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV) infection. In this review we summarize the main results emphasizing the relationship in terms of membrane partitioning between tetraspanins, some of their partners such as Claudin-1 and EWI-2, and viral proteins during infection. These results will be analyzed in the context of other membrane microdomains, stressing the difference between raft and tetraspanin-enriched microdomains, but also in comparison with virus diffusion at the cell surface. New advanced single molecule techniques that could help to further explore tetraspanin assemblies will be also discussed. PMID:24800676

  13. Nanogap Electrodes towards Solid State Single-Molecule Transistors.

    Science.gov (United States)

    Cui, Ajuan; Dong, Huanli; Hu, Wenping

    2015-12-01

    With the establishment of complementary metal-oxide-semiconductor (CMOS)-based integrated circuit technology, it has become more difficult to follow Moore's law to further downscale the size of electronic components. Devices based on various nanostructures were constructed to continue the trend in the minimization of electronics, and molecular devices are among the most promising candidates. Compared with other candidates, molecular devices show unique superiorities, and intensive studies on molecular devices have been carried out both experimentally and theoretically at the present time. Compared to two-terminal molecular devices, three-terminal devices, namely single-molecule transistors, show unique advantages both in fundamental research and application and are considered to be an essential part of integrated circuits based on molecular devices. However, it is very difficult to construct them using the traditional microfabrication techniques directly, thus new fabrication strategies are developed. This review aims to provide an exclusive way of manufacturing solid state gated nanogap electrodes, the foundation of constructing transistors of single or a few molecules. Such single-molecule transistors have the potential to be used to build integrated circuits. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Two-Color Single-Molecule Tracking in Live Cells.

    Science.gov (United States)

    Hänselmann, Siegfried; Herten, Dirk-Peter

    2017-01-01

    Measuring the kinetics of protein-protein interactions between molecules in the plasma membrane of live cells provides valuable information for understanding dynamic processes, like cellular signaling, on a molecular scale. Two-color single-molecule tracking is a fluorescence microscopy-based method to detect and quantify specific protein-protein interactions on a single-event level, providing sensitivity to heterogeneities and rare events. Fundamentally, it allows following the movement of single molecules of two different protein species in live cells with a localization precision beyond the diffraction limit of light in real time. It hence provides information about the diffusion behavior of every protein as well as about their dimerization kinetics. Here, we describe all the necessary steps to obtain two-color tracking data of plasma membrane-associated proteins in live cells using SNAP-tag and HaloTag fusion constructs and total internal reflection fluorescence (TIRF) microscopy. Also, we outline the main steps needed for analyzing the recorded data.

  15. Chemical Principles and Interference in the Electrical Conductance of Single Molecules

    DEFF Research Database (Denmark)

    Borges, Anders Christian

    The electrical conductance of single molecules are routinely reported in the scientific literature and off-resonant coherent tunneling is believed to be the mechanism for transport in some of these experiments. In these experiments it is observed that, in spite of similar molecular structures......, the conductance of molecules can vary orders of magnitude and the concept of interference is believed to play a major role in this. This thesis investigates the links between single molecule conductance, chemistry and interference effects in short organic molecules. It is investigated to which extent...... the conductance can be understood in terms of separate contributions and when the effects of interference are important. Links between chemical principles and constructive- and destructive interference effects are demonstrated using a combination of simple models, atomistic calculations and Scanning...

  16. Single-Molecule Photocurrent at a Metal-Molecule-Semiconductor Junction.

    Science.gov (United States)

    Vezzoli, Andrea; Brooke, Richard J; Higgins, Simon J; Schwarzacher, Walther; Nichols, Richard J

    2017-11-08

    We demonstrate here a new concept for a metal-molecule-semiconductor nanodevice employing Au and GaAs contacts that acts as a photodiode. Current-voltage traces for such junctions are recorded using a STM, and the "blinking" or "I(t)" method is used to record electrical behavior at the single-molecule level in the dark and under illumination, with both low and highly doped GaAs samples and with two different types of molecular bridge: nonconjugated pentanedithiol and the more conjugated 1,4-phenylene(dimethanethiol). Junctions with highly doped GaAs show poor rectification in the dark and a low photocurrent, while junctions with low doped GaAs show particularly high rectification ratios in the dark (>10 3 for a 1.5 V bias potential) and a high photocurrent in reverse bias. In low doped GaAs, the greater thickness of the depletion layer not only reduces the reverse bias leakage current, but also increases the volume that contributes to the photocurrent, an effect amplified by the point contact geometry of the junction. Furthermore, since photogenerated holes tunnel to the metal electrode assisted by the HOMO of the molecular bridge, the choice of the latter has a strong influence on both the steady state and transient metal-molecule-semiconductor photodiode response. The control of junction current via photogenerated charge carriers adds new functionality to single-molecule nanodevices.

  17. Excitonic Coupling in Linear and Trefoil Trimer Perylenediimide Molecules Probed by Single-Molecule Spectroscopy

    KAUST Repository

    Yoo, Hyejin

    2012-10-25

    Perylenediimide (PDI) molecules are promising building blocks for photophysical studies of electronic interactions within multichromophore arrays. Such PDI arrays are important materials for fabrication of molecular nanodevices such as organic light-emitting diodes, organic semiconductors, and biosensors because of their high photostability, chemical and physical inertness, electron affinity, and high tinctorial strength over the entire visible spectrum. In this work, PDIs have been organized into linear (L3) and trefoil (T3) trimer molecules and investigated by single-molecule fluorescence microscopy to probe the relationship between molecular structures and interchromophoric electronic interactions. We found a broad distribution of coupling strengths in both L3 and T3 and hence strong/weak coupling between PDI units by monitoring spectral peak shifts in single-molecule fluorescence spectra upon sequential photobleaching of each constituent chromophore. In addition, we used a wide-field defocused imaging technique to resolve heterogeneities in molecular structures of L3 and T3 embedded in a PMMA polymer matrix. A systematic comparison between the two sets of experimental results allowed us to infer the correlation between intermolecular interactions and molecular structures. Our results show control of the PDI intermolecular interactions using suitable multichromophoric structures. © 2012 American Chemical Society.

  18. Single Molecule Screening of Disease DNA Without Amplification

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji-Young [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    The potential of single molecule detection as an analysis tool in biological and medical fields is well recognized today. This fast evolving technique will provide fundamental sensitivity to pick up individual pathogen molecules, and therefore contribute to a more accurate diagnosis and a better chance for a complete cure. Many studies are being carried out to successfully apply this technique in real screening fields. In this dissertation, several attempts are shown that have been made to test and refine the application of the single molecule technique as a clinical screening method. A basic applicability was tested with a 100% target content sample, using electrophoretic mobility and multiple colors as identification tools. Both electrophoretic and spectral information of individual molecule were collected within a second, while the molecule travels along the flow in a capillary. Insertion of a transmission grating made the recording of the whole spectrum of a dye-stained molecule possible without adding complicated instrumental components. Collecting two kinds of information simultaneously and combining them allowed more thorough identification, up to 98.8% accuracy. Probing mRNA molecules with fluorescently labeled cDNA via hybridization was also carried out. The spectral differences among target, probe, and hybrid were interpreted in terms of dispersion distances after transmission grating, and used for the identification of each molecule. The probes were designed to have the least background when they are free, but have strong fluorescence after hybridization via fluorescence resonance energy transfer. The mRNA-cDNA hybrids were further imaged in whole blood, plasma, and saliva, to test how far a crude preparation can be tolerated. Imaging was possible with up to 50% of clear bio-matrix contents, suggesting a simple lysis and dilution would be sufficient for imaging for some cells. Real pathogen DNA of human papillomavirus (HPV) type-I6 in human genomic DNA

  19. The study of single anticancer peptides interacting with HeLa cell membranes by single molecule force spectroscopy

    Science.gov (United States)

    Shan, Yuping; Huang, Jinfeng; Tan, Juanjuan; Gao, Gui; Liu, Shuheng; Wang, Hongda; Chen, Yuxin

    2012-02-01

    To determine the effects of biophysical parameters (e.g. charge, hydrophobicity, helicity) of peptides on the mechanism of anticancer activity, we applied a single molecule technique--force spectroscopy based on atomic force microscope (AFM)--to study the interaction force at the single molecule level. The activity of the peptide and analogs against HeLa cells exhibited a strong correlation with the hydrophobicity of peptides. Our results indicated that the action mode between α-helical peptides and cancer cells was largely hydrophobicity-dependent.To determine the effects of biophysical parameters (e.g. charge, hydrophobicity, helicity) of peptides on the mechanism of anticancer activity, we applied a single molecule technique--force spectroscopy based on atomic force microscope (AFM)--to study the interaction force at the single molecule level. The activity of the peptide and analogs against HeLa cells exhibited a strong correlation with the hydrophobicity of peptides. Our results indicated that the action mode between α-helical peptides and cancer cells was largely hydrophobicity-dependent. Electronic supplementary information (ESI) available: Peptide design, biophysical properties, biological activities and experimental section. See DOI: 10.1039/c2nr11541g

  20. Real-time submillisecond single-molecule FRET dynamics of freely diffusing molecules with liposome tethering

    Science.gov (United States)

    Kim, Jae-Yeol; Kim, Cheolhee; Lee, Nam Ki

    2015-04-01

    Single-molecule fluorescence resonance energy transfer (smFRET) is one of the powerful techniques for deciphering the dynamics of unsynchronized biomolecules. However, smFRET is limited in its temporal resolution for observing dynamics. Here, we report a novel method for observing real-time dynamics with submillisecond resolution by tethering molecules to freely diffusing 100-nm-sized liposomes. The observation time for a diffusing molecule is extended to 100 ms with a submillisecond resolution, which allows for direct analysis of the transition states from the FRET time trace using hidden Markov modelling. We measure transition rates of up to 1,500 s-1 between two conformers of a Holliday junction. The rapid diffusional migration of Deinococcus radiodurans single-stranded DNA-binding protein (SSB) on single-stranded DNA is resolved by FRET, faster than that of Escherichia coli SSB by an order of magnitude. Our approach is a powerful method for studying the dynamics and movements of biomolecules at submillisecond resolution.

  1. Vibrationally mediated control of single-electron transmission in weakly coupled molecule-metal junctions

    DEFF Research Database (Denmark)

    Olsen, Thomas; Schiøtz, Jakob

    2010-01-01

    We propose a mechanism which allows one to control the transmission of single electrons through a molecular junction. The principle utilizes the emergence of transmission sidebands when molecular vibrational modes are coupled to the electronic state mediating the transmission. We will show that i....... As an example we perform a density-functional theory analysis of a benzene molecule between two Au(111) contacts and show that exciting a particular vibrational mode can give rise to transmission of a single electron....

  2. Heterobifunctional crosslinkers for tethering single ligand molecules to scanning probes

    Energy Technology Data Exchange (ETDEWEB)

    Riener, Christian K.; Kienberger, Ferry; Hahn, Christoph D.; Buchinger, Gerhard M.; Egwim, Innocent O.C.; Haselgruebler, Thomas; Ebner, Andreas; Romanin, Christoph; Klampfl, Christian; Lackner, Bernd; Prinz, Heino; Blaas, Dieter; Hinterdorfer, Peter; Gruber, Hermann J

    2003-11-14

    Single molecule recognition force microscopy (SMRFM) is a versatile atomic force microscopy (AFM) method to probe specific interactions of cognitive molecules on the single molecule level. It allows insights to be gained into interaction potentials and kinetic barriers and is capable of mapping interaction sites with nm positional accuracy. These applications require a ligand to be attached to the AFM tip, preferably by a distensible poly(ethylene glycol) (PEG) chain between the measuring tip and the ligand molecule. The PEG chain greatly facilitates specific binding of the ligand to immobile receptor sites on the sample surface. The present study contributes to tip-PEG-ligand tethering in three ways: (i) a convenient synthetic route was found to prepare NH{sub 2}-PEG-COOH which is the key intermediate for long heterobifunctional crosslinkers; (ii) a variety of heterobifunctional PEG derivatives for tip-PEG-ligand linking were prepared from NH{sub 2}-PEG-COOH; (iii) in particular, a new PEG crosslinker with one thiol-reactive end and one terminal nitrilotriacetic acid (NTA) group was synthesized and successfully used to tether His{sub 6}-tagged protein molecules to AFM tips via noncovalent NTA-Ni{sup 2+}-His{sub 6} bridges. The new crosslinker was applied to link a recombinant His{sub 6}-tagged fragment of the very-low density lipoprotein receptor to the AFM tip whereupon specific docking to the capsid of human rhinovirus particles was observed by force microscopy. In a parallel study, the specific interaction of the small GTPase Ran with the nuclear import receptor importin {beta}1 was studied in detail by SMRFM, using the new crosslinker to link His{sub 6}-tagged Ran to the measuring tip [Nat. Struct. Biol. (2003), 10, 553-557].

  3. Analysis of reaction rates of single molecules on metal surfaces

    Science.gov (United States)

    Ueba, H.

    2017-10-01

    The experimental results of the action spectra i.e., reaction rate R(V) as a function of a bias voltage V are analyzed for rotation of a single CCH (D) molecule on a Cu (100) surface [5] and hopping of a single H(D)2O molecule on Pd(111) surface [6]. In the former system it is identified that rotation occurs if enough energy stored in the C-H (D) in-plane bending (IPB) mode excited by tunneling electron is transferred to the C-H (D) out of plane bending (OPB) mode (reaction coordinate mode) via the anharmonic mode coupling in a single electron process. The calculated R(V) shows an excellent agreement with the experimental results except at the low bias voltages below V ≃ 60 mV where no experimental data is available for the nonlinear current I dependence of R(I). A reproduction of the experimental R(V) at the higher voltage region allows us to determine the vibrational density of states of the C-H IPB mode and its coupling rate to the C-H (D) OPB mode as well as the inelastic tunneling current to excite IPB mode. A change of a conductance upon excitation of the C-H IPB mode enables us to evaluate the electron-vibration coupling strength inducing the rotation motion of CCH molecule. In the latter system investigated at a high temperature of about 40 K, the constant R(V) due to thermal hopping followed by the rapid increase is satisfactory explained by anharmonic inter-mode coupling between the scissor mode excited by tunneling electrons and the frustrated translation mode for H(D)2O molecule on Pd(111).

  4. The more the merrier: high-throughput single-molecule techniques.

    Science.gov (United States)

    Hill, Flynn R; Monachino, Enrico; van Oijen, Antoine M

    2017-06-15

    The single-molecule approach seeks to understand molecular mechanisms by observing biomolecular processes at the level of individual molecules. These methods have led to a developing understanding that for many processes, a diversity of behaviours will be observed, representing a multitude of pathways. This realisation necessitates that an adequate number of observations are recorded to fully characterise this diversity. The requirement for large numbers of observations to adequately sample distributions, subpopulations, and rare events presents a significant challenge for single-molecule techniques, which by their nature do not typically provide very high throughput. This review will discuss many developing techniques which address this issue by combining nanolithographic approaches, such as zero-mode waveguides and DNA curtains, with single-molecule fluorescence microscopy, and by drastically increasing throughput of force-based approaches such as magnetic tweezers and laminar-flow techniques. These methods not only allow the collection of large volumes of single-molecule data in single experiments, but have also made improvements to ease-of-use, accessibility, and automation of data analysis. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  5. What it means to measure a single molecule in a solution by fluorescence fluctuation spectroscopy.

    Science.gov (United States)

    Földes-Papp, Zeno

    2006-06-01

    Traditional methodologies in micro- and nanofluidics measure biological mechanisms as an average of a population of molecules as only their combined effect can be detected. Fluorescence fluctuation spectroscopy methods such as fluorescence correlation spectroscopy (FCS) and two-color fluorescence cross-correlation spectroscopy (FCCS) are used as alternative experimental approaches in ultrasensitive analytics at the single-molecule level. However, what is the measurement time in which one is able to study just one single molecule in solution without immobilizing it? Existing theories are inadequate since they do not predict the meaningful time as a function of the concentration of other molecules of the same kind in bulk solution. This situation produces considerable concern, and experimental hypotheses differ according to which single-molecule detection methods are thought to have greater validity. This subject is clearly at the forefront of research and should be of great interest to experimental medical scientists. As will be seen in this article, it is worthwhile to obtain a correct form of the meaningful-time relationship through theoretical means. The new ideas are comprehensively presented, and this relationship is a new concept at this time. The meaningful time for studying just one molecule without immobilization specifies the time parameter in the selfsame molecule likelihood estimator. Possible users for this concept are those working in biotechnological applications dealing with gene technology. Furthermore, the concept is of interest for a great number of medical, pharmaceutical and chemical laboratories. It may serve as a foundation for further work in single-cell biology. It is suspected that heterogeneities play a much larger role inside the cell than in free solution--a perfect opportunity for single-molecule studies and, thus, a novel hypothesis regarding structure and dynamics of cellular networks is first presented for the minimal neurotrophin

  6. Single molecule photobleaching (SMPB) technology for counting of RNA, DNA, protein and other molecules in nanoparticles and biological complexes by TIRF instrumentation.

    Science.gov (United States)

    Zhang, Hui; Guo, Peixuan

    2014-05-15

    Direct counting of biomolecules within biological complexes or nanomachines is demanding. Single molecule counting using optical microscopy is challenging due to the diffraction limit. The single molecule photobleaching (SMPB) technology for direct counting developed by our team (Shu et al., 2007 [18]; Zhang et al., 2007 [19]) offers a simple and straightforward method to determine the stoichiometry of molecules or subunits within biocomplexes or nanomachines at nanometer scales. Stoichiometry is determined by real-time observation of the number of descending steps resulted from the photobleaching of individual fluorophore. This technology has now been used extensively for single molecule counting of protein, RNA, and other macromolecules in a variety of complexes or nanostructures. Here, we elucidate the SMPB technology, using the counting of RNA molecules within a bacteriophage phi29 DNA-packaging biomotor as an example. The method described here can be applied to the single molecule counting of other molecules in other systems. The construction of a concise, simple and economical single molecule total internal reflection fluorescence (TIRF) microscope combining prism-type and objective-type TIRF is described. The imaging system contains a deep-cooled sensitive EMCCD camera with single fluorophore detection sensitivity, a laser combiner for simultaneous dual-color excitation, and a Dual-View™ imager to split the multiple outcome signals to different detector channels based on their wavelengths. Methodology of the single molecule photobleaching assay used to elucidate the stoichiometry of RNA on phi29 DNA packaging motor and the mechanism of protein/RNA interaction are described. Different methods for single fluorophore labeling of RNA molecules are reviewed. The process of statistical modeling to reveal the true copy number of the biomolecules based on binomial distribution is also described. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Naphthalene diimides as tunable fluorophores suitable for single molecule applications

    Science.gov (United States)

    Bell, Toby D. M.; Yap, Sheryll; Jani, Chintan; Langford, Steven J.; Hofkens, Johan; De Schryver, Frans; Ghiggino, Kenneth P.

    2007-02-01

    The photophysics of two new substituted aminopropenyl naphthalene diimide (SANDI) dyes are reported. The molecules exhibit many of the photophysical properties required for fluorescence labeling applications including high photostability and high fluorescence quantum yields (> 0.5) in the visible region of the spectrum. Furthermore, the emission is sensitive to the number of substituents attached to the aromatic core, and to the surrounding environment. For example, in toluene as solvent, the mono-allyl SANDI has an emission maximum at 550 nm, whereas the di-allyl SANDI emits at 630 nm. The fluorescence decay times are in the range of ~8 - 12 ns and the Forster critical distance for fluorescence resonance energy transfer (FRET) between the mono- and di-allyl SANDI derivatives is 4.1 nm for a random donor-acceptor orientation. Single molecules of the di-allyl SANDI embedded in poly(methyl methacrylate) films show very low yields of photobleaching and very few fluorescence intermittencies or "blinks". These compounds are ideal candidates for applications at the single molecule level, for example, as FRET labels.

  8. A Single Molecule Investigation of the Photostability of Quantum Dots

    DEFF Research Database (Denmark)

    Christensen, Eva Arnspang; Kulatunga, Pasad; Lagerholm, B. Christoffer

    2012-01-01

    Quantum dots (QDs) are very attractive probes for multi-color fluorescence applications. We report here however that single QDs that are subject to continuous blue excitation from a 100W mercury arc lamp will undergo a continuous blue-switching of the emission wavelength eventually reaching a per...... is especially detrimental for multi-color single molecule applications, as we regularly observe spectral blue-shifts of 50 nm, or more even after only ten seconds of illumination.......Quantum dots (QDs) are very attractive probes for multi-color fluorescence applications. We report here however that single QDs that are subject to continuous blue excitation from a 100W mercury arc lamp will undergo a continuous blue-switching of the emission wavelength eventually reaching...

  9. Plasmonic band structure controls single-molecule fluorescence.

    Science.gov (United States)

    Langguth, Lutz; Punj, Deep; Wenger, Jérôme; Koenderink, A Femius

    2013-10-22

    Plasmonics and photonic crystals are two complementary approaches to tailor single-emitter fluorescence, using strong local field enhancements near metals on one hand and spatially extended photonic band structure effects on the other hand. Here, we explore the emergence of spontaneous emission control by finite-sized hexagonal arrays of nanoapertures milled in gold film. We demonstrate that already small lattices enable highly directional and enhanced emission from single fluorescent molecules in the central aperture. Even for clusters just four unit cells across, the directionality is set by the plasmonic crystal band structure, as confirmed by full-wave numerical simulations. This realization of plasmonic phase array antennas driven by single quantum emitters opens a flexible toolbox to engineer fluorescence and its detection.

  10. Ultrasensitive Laser Spectroscopy in Solids: Statistical Fine Structure and Single-Molecule Detection

    Science.gov (United States)

    1990-03-28

    the measurement. Keywords: Statistical fine structure, Atomic properties, Single molecule detection, Molecule properties, Laser spectroscopy of solids, Instrumentation, Pentacene in p-terphenyl, Organic compounds, Near field.

  11. The physics of pulling polyproteins: a review of single molecule force spectroscopy using the AFM to study protein unfolding.

    Science.gov (United States)

    Hughes, Megan L; Dougan, Lorna

    2016-07-01

    One of the most exciting developments in the field of biological physics in recent years is the ability to manipulate single molecules and probe their properties and function. Since its emergence over two decades ago, single molecule force spectroscopy has become a powerful tool to explore the response of biological molecules, including proteins, DNA, RNA and their complexes, to the application of an applied force. The force versus extension response of molecules can provide valuable insight into its mechanical stability, as well as details of the underlying energy landscape. In this review we will introduce the technique of single molecule force spectroscopy using the atomic force microscope (AFM), with particular focus on its application to study proteins. We will review the models which have been developed and employed to extract information from single molecule force spectroscopy experiments. Finally, we will end with a discussion of future directions in this field.

  12. Controlling Protein Conformations to Explore Unprecedented Material Properties by Single-Molecule Surgery

    Science.gov (United States)

    2012-08-17

    Molecule Protein Conformational Dynamics in Enzymatic Reactions,” Single-Molecule Biophysics Meeting, Aspen , CO, Jan. 4-10, 2009. H. P. Lu, “Single...Donor-Acceptor: Cy3-Cy5) pair labeled HPPK molecule tethered between a glass cover-slip surface and a handle (biotin group plus streptavidin), and a...5, 2008. H. P. Lu, “Probing Single-Molecule Protein Conformational Dynamics in Enzymatic Reactions,” Single-Molecule Biophysics Meeting, Aspen

  13. Lipid mobility in supported lipid bilayers by single molecule tracking

    Science.gov (United States)

    Kohram, Maryam; Shi, Xiaojun; Smith, Adam

    2015-03-01

    Phospholipid bilayers are the main component of cell membranes and their interaction with biomolecules in their immediate environment is critical for cellular functions. These interactions include the binding of polycationic polymers to lipid bilayers which affects many cell membrane events. As an alternative method of studying live cell membranes, we assemble a supported lipid bilayer and investigate its binding with polycationic polymers in vitro by fluorescently labeling the molecules of the supported lipid bilayer and tracking their mobility. In this work, we use single molecule tracking total internal reflection fluorescence microscopy (TIRF) to study phosphatidylinositol phosphate (PIP) lipids with and without an adsorbed polycationic polymer, quaternized polyvinylpyridine (QPVP). Individual molecular trajectories are obtained from the experiment, and a Brownian diffusion model is used to determine diffusion coefficients through mean square displacements. Our results indicate a smaller diffusion coefficient for the supported lipid bilayers in the presence of QPVP in comparison to its absence, revealing that their binding causes a decrease in lateral mobility.

  14. Nanopipette delivery of individual molecules to cellular compartments for single-molecule fluorescence tracking.

    Science.gov (United States)

    Bruckbauer, Andreas; James, Peter; Zhou, Dejian; Yoon, Ji Won; Excell, David; Korchev, Yuri; Jones, Roy; Klenerman, David

    2007-11-01

    We have developed a new method, using a nanopipette, for controlled voltage-driven delivery of individual fluorescently labeled probe molecules to the plasma membrane which we used for single-molecule fluorescence tracking (SMT). The advantages of the method are 1), application of the probe to predefined regions on the membrane; 2), release of only one or a few molecules onto the cell surface; 3), when combined with total internal reflection fluorescence microscopy, very low background due to unbound molecules; and 4), the ability to first optimize the experiment and then repeat it on the same cell. We validated the method by performing an SMT study of the diffusion of individual membrane glycoproteins labeled with Atto 647-wheat germ agglutin in different surface domains of boar spermatozoa. We found little deviation from Brownian diffusion with a mean diffusion coefficient of 0.79 +/- 0.04 microm(2)/s in the acrosomal region and 0.10 +/- 0.02 microm(2)/s in the postacrosomal region; this difference probably reflects different membrane structures. We also showed that we can analyze diffusional properties of different subregions of the cell membrane and probe for the presence of diffusion barriers. It should be straightforward to extend this new method to other probes and cells, and it can be used as a new tool to investigate the cell membrane.

  15. Single molecule study of a processivity clamp sliding on DNA

    Energy Technology Data Exchange (ETDEWEB)

    Laurence, T A; Kwon, Y; Johnson, A; Hollars, C; O?Donnell, M; Camarero, J A; Barsky, D

    2007-07-05

    Using solution based single molecule spectroscopy, we study the motion of the polIII {beta}-subunit DNA sliding clamp ('{beta}-clamp') on DNA. Present in all cellular (and some viral) forms of life, DNA sliding clamps attach to polymerases and allow rapid, processive replication of DNA. In the absence of other proteins, the DNA sliding clamps are thought to 'freely slide' along the DNA; however, the abundance of positively charged residues along the inner surface may create favorable electrostatic contact with the highly negatively charged DNA. We have performed single-molecule measurements on a fluorescently labeled {beta}-clamp loaded onto freely diffusing plasmids annealed with fluorescently labeled primers of up to 90 bases. We find that the diffusion constant for 1D diffusion of the {beta}-clamp on DNA satisfies D {le} 10{sup -14} cm{sup 2}/s, much slower than the frictionless limit of D = 10{sup -10} cm{sup 2}/s. We find that the {beta} clamp remains at the 3-foot end in the presence of E. coli single-stranded binding protein (SSB), which would allow for a sliding clamp to wait for binding of the DNA polymerase. Replacement of SSB with Human RP-A eliminates this interaction; free movement of sliding clamp and poor binding of clamp loader to the junction allows sliding clamp to accumulate on DNA. This result implies that the clamp not only acts as a tether, but also a placeholder.

  16. Optical Microcavity: Sensing down to Single Molecules and Atoms

    Directory of Open Access Journals (Sweden)

    Shu-Yu Su

    2011-02-01

    Full Text Available This review article discusses fundamentals of dielectric, low-loss, optical micro-resonator sensing, including figures of merit and a variety of microcavity designs, and future perspectives in microcavity-based optical sensing. Resonance frequency and quality (Q factor are altered as a means of detecting a small system perturbation, resulting in realization of optical sensing of a small amount of sample materials, down to even single molecules. Sensitivity, Q factor, minimum detectable index change, noises (in sensor system components and microcavity system including environments, microcavity size, and mode volume are essential parameters to be considered for optical sensing applications. Whispering gallery mode, photonic crystal, and slot-type microcavities typically provide compact, high-quality optical resonance modes for optical sensing applications. Surface Bloch modes induced on photonic crystals are shown to be a promising candidate thanks to large field overlap with a sample and ultra-high-Q resonances. Quantum optics effects based on microcavity quantum electrodynamics (QED would provide novel single-photo-level detection of even single atoms and molecules via detection of doublet vacuum Rabi splitting peaks in strong coupling.

  17. Click strategies for single-molecule protein fluorescence.

    Science.gov (United States)

    Milles, Sigrid; Tyagi, Swati; Banterle, Niccolò; Koehler, Christine; VanDelinder, Virginia; Plass, Tilman; Neal, Adrian P; Lemke, Edward A

    2012-03-21

    Single-molecule methods have matured into central tools for studies in biology. Foerster resonance energy transfer (FRET) techniques, in particular, have been widely applied to study biomolecular structure and dynamics. The major bottleneck for a facile and general application of these studies arises from the need to label biological samples site-specifically with suitable fluorescent dyes. In this work, we present an optimized strategy combining click chemistry and the genetic encoding of unnatural amino acids (UAAs) to overcome this limitation for proteins. We performed a systematic study with a variety of clickable UAAs and explored their potential for high-resolution single-molecule FRET (smFRET). We determined all parameters that are essential for successful single-molecule studies, such as accessibility of the probes, expression yield of proteins, and quantitative labeling. Our multiparameter fluorescence analysis allowed us to gain new insights into the effects and photophysical properties of fluorescent dyes linked to various UAAs for smFRET measurements. This led us to determine that, from the extended tool set that we now present, genetically encoding propargyllysine has major advantages for state-of-the-art measurements compared to other UAAs. Using this optimized system, we present a biocompatible one-step dual-labeling strategy of the regulatory protein RanBP3 with full labeling position freedom. Our technique allowed us then to determine that the region encompassing two FxFG repeat sequences adopts a disordered but collapsed state. RanBP3 serves here as a prototypical protein that, due to its multiple cysteines, size, and partially disordered structure, is not readily accessible to any of the typical structure determination techniques such as smFRET, NMR, and X-ray crystallography.

  18. Single-molecule, antibody-free fluorescent visualisation of replication tracts along barcoded DNA molecules.

    Science.gov (United States)

    De Carli, Francesco; Gaggioli, Vincent; Millot, Gaël A; Hyrien, Olivier

    2016-01-01

    DNA combing is a standard technique to map DNA replication at the single molecule level. Typically, replicating DNA is metabolically labelled with nucleoside or nucleotide analogs, purified, stretched on coverslips and treated with fluorescent antibodies to reveal tracts of newly synthesized DNA. Fibres containing a locus of interest can then be identified by fluorescent in situ hybridization (FISH) with DNA probes. These steps are complex and the throughput is low. Here, we describe a simpler, antibody-free method to reveal replication tracts and identify the locus of origin of combed DNA replication intermediates. DNA was replicated in Xenopus egg extracts in the presence of a fluorescent dUTP. Purified DNA was barcoded by nicking with Nt.BspQI, a site-specific nicking endonuclease (NE), followed by limited nick-translation in the presence of another fluorescent dUTP. DNA was then stained with YOYO-1, a fluorescent DNA intercalator, and combed. Direct epifluorescence revealed the DNA molecules, their replication tracts and their Nt.BspQI sites in three distinct colours. Replication intermediates could thus be aligned to a reference genome map. In addition, replicated DNA segments showed a stronger YOYO-1 fluorescence than unreplicated segments. The entire length, replication tracts, and NE sites of combed DNA molecules can be simultaneously visualized in three distinct colours by standard epifluorescence microscopy, with no need for antibody staining and/or FISH detection. Furthermore, replication bubbles can be detected by quantitative YOYO-1 staining, eliminating the need for metabolic labelling. These results provide a starting point for genome-wide, single-molecule mapping of DNA replication in any organism.

  19. Connectivity dependence of Fano resonances in single molecules.

    Science.gov (United States)

    Ismael, Ali K; Grace, Iain; Lambert, Colin J

    2017-03-01

    Using a first principles approach combined with analysis of heuristic tight-binding models, we examine the connectivity dependence of two forms of quantum interference in single molecules. Based on general arguments, Fano resonances are shown to be insensitive to connectivity, while Mach-Zehnder-type interference features are shown to be connectivity dependent. This behaviour is found to occur in molecular wires containing anthraquinone units, in which the pendant carbonyl groups create Fano resonances, which coexist with multiple-path quantum interference features.

  20. An introduction to infinite HMMs for single molecule data analysis

    OpenAIRE

    Sgouralis, Ioannis; Presse, Steve

    2016-01-01

    The hidden Markov model (HMM) has been a workhorse of single molecule data analysis and is now commonly used as a standalone tool in time series analysis or in conjunction with other analyses methods such as tracking. Here we provide a conceptual introduction to an important generalization of the HMM which is poised to have a deep impact across Biophysics: the infinite hidden Markov model (iHMM). As a modeling tool, iHMMs can analyze sequential data without a priori setting a specific number ...

  1. Single molecule transistor based nanopore for the detection of nicotine

    Science.gov (United States)

    Ray, S. J.

    2014-12-01

    A nanopore based detection methodology was proposed and investigated for the detection of Nicotine. This technique uses a Single Molecular Transistor working as a nanopore operational in the Coulomb Blockade regime. When the Nicotine molecule is pulled through the nanopore area surrounded by the Source(S), Drain (D), and Gate electrodes, the charge stability diagram can detect the presence of the molecule and is unique for a specific molecular structure. Due to the weak coupling between the different electrodes which is set by the nanopore size, the molecular energy states stay almost unaffected by the electrostatic environment that can be realised from the charge stability diagram. Identification of different orientation and position of the Nicotine molecule within the nanopore area can be made from specific regions of overlap between different charge states on the stability diagram that could be used as an electronic fingerprint for detection. This method could be advantageous and useful to detect the presence of Nicotine in smoke which is usually performed using chemical chromatography techniques.

  2. Single molecule transistor based nanopore for the detection of nicotine

    Energy Technology Data Exchange (ETDEWEB)

    Ray, S. J., E-mail: ray.sjr@gmail.com [Institute of Materials Science, Technical University of Darmstadt, Alarich-Weiss-Str. 2, 64287 Darmstadt (Germany)

    2014-12-28

    A nanopore based detection methodology was proposed and investigated for the detection of Nicotine. This technique uses a Single Molecular Transistor working as a nanopore operational in the Coulomb Blockade regime. When the Nicotine molecule is pulled through the nanopore area surrounded by the Source(S), Drain (D), and Gate electrodes, the charge stability diagram can detect the presence of the molecule and is unique for a specific molecular structure. Due to the weak coupling between the different electrodes which is set by the nanopore size, the molecular energy states stay almost unaffected by the electrostatic environment that can be realised from the charge stability diagram. Identification of different orientation and position of the Nicotine molecule within the nanopore area can be made from specific regions of overlap between different charge states on the stability diagram that could be used as an electronic fingerprint for detection. This method could be advantageous and useful to detect the presence of Nicotine in smoke which is usually performed using chemical chromatography techniques.

  3. Quantitative single molecule FRET efficiencies using TIRF microscopy.

    Science.gov (United States)

    Hildebrandt, Lasse L; Preus, Søren; Birkedal, Victoria

    2015-01-01

    Förster resonance energy transfer (FRET) microscopy at the single molecule level has the potential to yield information on intra and intermolecular distances within the 2-10 nm range of molecules or molecular complexes that undergo frequent conformation changes. A pre-requirement for obtaining accurate distance information is to determine quantitative instrument independent FRET efficiency values. Here, we applied and evaluated a procedure to determine quantitative FRET efficiencies directly from individual fluorescence time traces of surface immobilized DNA molecules without the need for external calibrants. To probe the robustness of the approach over a wide range of FRET efficiencies we used a set of doubly labelled double stranded DNA samples, where the acceptor position was varied systematically. Interestingly, we found that fluorescence contributions arising from direct acceptor excitation following donor excitation are intrinsically taken into account in these conditions as other correction factors can compensate for inaccurate values of these parameters. We give here guidelines, that can be used through tools within the iSMS software (), for determining quantitative FRET and assess uncertainties linked with the procedure. Our results provide insights into the experimental parameters governing quantitative FRET determination, which is essential for obtaining accurate structural information from a wide range of biomolecules.

  4. Single-Molecule Electrochemical Gating in Ionic Liquids

    DEFF Research Database (Denmark)

    Kay, Nicola J.; Higgins, Simon J.; Jeppesen, Jan O.

    2012-01-01

    The single-molecular conductance of a redox active molecular bridge has been studied in an electrochemical single-molecule transistor configuration in a room-temperature ionic liquid (RTIL). The redox active pyrrolo-tetrathiafulvalene (pTTF) moiety was attached to gold contacts at both ends through...... −(CH2)6S– groups, and gating of the redox state was achieved with the electrochemical potential. The water-free, room-temperature, ionic liquid environment enabled both the monocationic and the previously inaccessible dicationic redox states of the pTTF moiety to be studied in the in situ scanning...... relaxation. Using this view, reorganization energies of ∼1.2 eV have been estimated for both the first and second redox transitions for the pTTF bridge in the 1-butyl-3-methylimidazolium trifluoromethanesulfonate (BMIOTf) ionic liquid environment. By contrast, in aqueous environments, a much smaller...

  5. Enhancing Single Molecule Imaging in Optofluidics and Microfluidics

    Directory of Open Access Journals (Sweden)

    Andreas E. Vasdekis

    2011-08-01

    Full Text Available Microfluidics and optofluidics have revolutionized high-throughput analysis and chemical synthesis over the past decade. Single molecule imaging has witnessed similar growth, due to its capacity to reveal heterogeneities at high spatial and temporal resolutions. However, both resolution types are dependent on the signal to noise ratio (SNR of the image. In this paper, we review how the SNR can be enhanced in optofluidics and microfluidics. Starting with optofluidics, we outline integrated photonic structures that increase the signal emitted by single chromophores and minimize the excitation volume. Turning then to microfluidics, we review the compatible functionalization strategies that reduce noise stemming from non-specific interactions and architectures that minimize bleaching and blinking.

  6. DNA Y structure: a versatile, multidimensional single molecule assay.

    Science.gov (United States)

    Inman, James T; Smith, Benjamin Y; Hall, Michael A; Forties, Robert A; Jin, Jing; Sethna, James P; Wang, Michelle D

    2014-11-12

    Optical trapping is a powerful single molecule technique used to study dynamic biomolecular events, especially those involving DNA and DNA-binding proteins. Current implementations usually involve only one of stretching, unzipping, or twisting DNA along one dimension. To expand the capabilities of optical trapping for more complex measurements would require a multidimensional technique that combines all of these manipulations in a single experiment. Here, we report the development and utilization of such a novel optical trapping assay based on a three-branch DNA construct, termed a "Y structure". This multidimensional assay allows precise, real-time tracking of multiple configurational changes. When the Y structure template is unzipped under both force and torque, the force and extension of all three branches can be determined simultaneously. Moreover, the assay is readily compatible with fluorescence, as demonstrated by unzipping through a fluorescently labeled, paused transcription complex. This novel assay thus allows for the visualization and precision mapping of complex interactions of biomechanical events.

  7. Investigating Single Molecule Physics with the Scanning Tunneling Microscope

    Science.gov (United States)

    Patel, Calvin Jay

    Scanning tunneling microscopy (STM) has given the scientific community a method to view, characterize, and manipulate the world at the atomic scale. Thirty years after the Nobel Prize in Physics was awarded for its invention, the remarkable instrument is still being used to deepen our understanding of physical and chemical processes. Tantamount to this has been the development of new techniques to expand its capabilities allowing STMs to answer increasingly more difficult scientific questions. This dissertation describes three technological thrusts in expanding the STMs capabilities in studying physics at the single molecule level. First, I have helped developed a new technique called the RF-STM which has the potential to snapshot femtosecond and picosecond processes by locking into the high frequency tunneling component generated from the 80MHz laser pulse train. This technique solves the problem of low frequency thermal oscillations when choppers are used in the beam line and if only tunneling signal is monitored, sub-angstrom spatial resolution should be simultaneously possible. Second, I have helped develop the itProbe technique by increasing its ability to map out the interaction potential energy surface (iPES) between a tip-CO molecule and a surface adsorbed molecule. I present a study conducted on the bridge-like 1,4 phenylene diisocyanide molecule where the iPES is probed at different heights and different energies. The result is an ability to 3-dimensionally map out the iPES and provide reliable insight into developing itProbe simulations. Third, I have developed a new technique called Energy Resolved Laser Action STM (ERLA-STM) where we can observe the change in molecular dynamics as a function of the illumination wavelength. In our pyrrolidine study, we demonstrated the kinetic changes that occur when an overtone of the CH stretch mode is excited by a near-IR laser pulse. By sweeping the excitation energy, we can characterize and control single molecule

  8. Combined single channel and single molecule detection identifies subunit composition of STIM1-activated transient receptor potential canonical (TRPC) channels.

    Science.gov (United States)

    Asanov, Alexander; Sampieri, Alicia; Moreno, Claudia; Pacheco, Jonathan; Salgado, Alfonso; Sherry, Ryan; Vaca, Luis

    2015-01-01

    Depletion of intracellular calcium ion stores initiates a rapid cascade of events culminating with the activation of the so-called Store-Operated Channels (SOC) at the plasma membrane. Calcium influx via SOC is essential in the initiation of calcium-dependent intracellular signaling and for the refilling of internal calcium stores, ensuring the regeneration of the signaling cascade. In spite of the significance of this evolutionary conserved mechanism, the molecular identity of SOC has been the center of a heated controversy spanning over the last 20 years. Initial studies positioned some members of the transient receptor potential canonical (TRPC) channel superfamily of channels (with the more robust evidence pointing to TRPC1) as a putative SOC. Recent evidence indicates that Stromal Interacting Molecule 1 (STIM1) activates some members from the TRPC family of channels. However, the exact subunit composition of TRPC channels remains undetermined to this date. To identify the subunit composition of STIM1-activated TRPC channels, we developed novel method, which combines single channel electrophysiological measurements based on the patch clamp technique with single molecule fluorescence imaging. We termed this method Single ion Channel Single Molecule Detection technique (SC-SMD). Using SC-SMD method, we have obtained direct evidence of the subunit composition of TRPC channels activated by STIM1. Furthermore, our electrophysiological-imaging SC-SMD method provides evidence at the molecular level of the mechanism by which STIM1 and calmodulin antagonize to modulate TRPC channel activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Inelastic electron tunneling spectroscopy of difurylethene-based photochromic single-molecule junctions.

    Science.gov (United States)

    Kim, Youngsang; Bahoosh, Safa G; Sysoiev, Dmytro; Huhn, Thomas; Pauly, Fabian; Scheer, Elke

    2017-01-01

    Diarylethene-derived molecules alter their electronic structure upon transformation between the open and closed forms of the diarylethene core, when exposed to ultraviolet (UV) or visible light. This transformation results in a significant variation of electrical conductance and vibrational properties of corresponding molecular junctions. We report here a combined experimental and theoretical analysis of charge transport through diarylethene-derived single-molecule devices, which are created using the mechanically controlled break-junction technique. Inelastic electron tunneling (IET) spectroscopy measurements performed at 4.2 K are compared with first-principles calculations in the two distinct forms of diarylethenes connected to gold electrodes. The combined approach clearly demonstrates that the IET spectra of single-molecule junctions show specific vibrational features that can be used to identify different isomeric molecular states by transport experiments.

  10. High sensitivity fluorescent single particle and single molecule detection apparatus and method

    Science.gov (United States)

    Mathies, Richard A.; Peck, Konan; Stryer, Lubert

    1990-01-01

    Apparatus is described for ultrasensitive detection of single fluorescent particles down to the single fluorescent molecule limit in a fluid or on a substrate comprising means for illuminating a predetermined volume of the fluid or area of the substrate whereby to emit light including background light from the fluid and burst of photons from particles residing in the area. The photon burst is detected in real time to generate output representative signal. The signal is received and the burst of energy from the fluorescent particles is distinguished from the background energy to provide an indication of the number, location or concentration of the particles or molecules.

  11. Single-Molecule Fluorescence Spectroscopy of Photosynthetic Systems.

    Science.gov (United States)

    Kondo, Toru; Chen, Wei Jia; Schlau-Cohen, Gabriela S

    2017-01-25

    Photosynthesis begins when a network of pigment-protein complexes captures solar energy and transports it to the reaction center, where charge separation occurs. When necessary (under low light conditions), photosynthetic organisms perform this energy transport and charge separation with near unity quantum efficiency. Remarkably, this high efficiency is maintained under physiological conditions, which include thermal fluctuations of the pigment-protein complexes and changing local environments. These conditions introduce multiple types of heterogeneity in the pigment-protein complexes, including structural heterogeneity, energetic heterogeneity, and functional heterogeneity. Understanding how photosynthetic light-harvesting functions in the face of these fluctuations requires understanding this heterogeneity, which, in turn, requires characterization of individual pigment-protein complexes. Single-molecule spectroscopy has the power to probe individual complexes. In this review, we present an overview of the common techniques for single-molecule fluorescence spectroscopy applied to photosynthetic systems and describe selected experiments on these systems. We discuss how these experiments provide a new understanding of the impact of heterogeneity on light harvesting and thus how these systems are optimized to capture sunlight under physiological conditions.

  12. Dual-Colored DNA Comb Polymers for Single Molecule Rheology

    Science.gov (United States)

    Mai, Danielle; Marciel, Amanda; Schroeder, Charles

    2014-03-01

    We report the synthesis and characterization of branched biopolymers for single molecule rheology. In our work, we utilize a hybrid enzymatic-synthetic approach to graft ``short'' DNA branches to ``long'' DNA backbones, thereby producing macromolecular DNA comb polymers. The branches and backbones are synthesized via polymerase chain reaction with chemically modified deoxyribonucleotides (dNTPs): ``short'' branches consist of Cy5-labeled dNTPs and a terminal azide group, and ``long'' backbones contain dibenzylcyclooctyne-modified (DBCO) dNTPs. In this way, we utilize strain-promoted, copper-free cycloaddition ``click'' reactions for facile grafting of azide-terminated branches at DBCO sites along backbones. Copper-free click reactions are bio-orthogonal and nearly quantitative when carried out under mild conditions. Moreover, comb polymers can be labeled with an intercalating dye (e.g., YOYO) for dual-color fluorescence imaging. We characterized these materials using gel electrophoresis, HPLC, and optical microscopy, with atomic force microscopy in progress. Overall, DNA combs are suitable for single molecule dynamics, and in this way, our work holds the potential to improve our understanding of topologically complex polymer melts and solutions.

  13. Single molecule fluorescence probes dynamics of barrier crossing

    Science.gov (United States)

    Chung, Hoi Sung; Eaton, William A.

    2013-01-01

    Kramers developed the theory on how chemical reaction rates are influenced by the viscosity of the medium1,2. At the viscosity of water, the kinetics of unimolecular reactions are described by diffusion of a Brownian particle over a free-energy barrier separating reactants and products. For reactions in solution this famous theory extended Eyring's transition state theory, and is widely applied in physics, chemistry, and biology, including reactions as complex as protein folding3,4. Because the diffusion coefficient of Kramers theory is determined by the dynamics in the sparsely-populated region of the barrier top, its properties have not been directly measured for any molecular system. Here we show that the Kramers diffusion coefficient and free energy barrier can be characterized by measuring the temperature- and viscosity-dependence of the transition path time for protein folding. The transition path is the small fraction of an equilibrium trajectory for a single molecule when the free-energy barrier separating two states is actually crossed (Fig. 1a). Its duration, the transition path time, can now be determined from photon trajectories for single protein molecules undergoing folding/unfolding transitions5. Our finding of a long transition path time with an unusually small solvent viscosity-dependence suggests that internal friction as well as solvent friction determine the Kramers diffusion coefficient for α-helical proteins, as opposed to a breakdown of his theory that occurs for many small-molecule reactions2. It is noteworthy that the new and fundamental information concerning Kramers theory and the dynamics of barrier crossings obtained here come from experiments on a protein rather than a much simpler chemical or physical system. PMID:24153185

  14. Exploring single-molecule dynamics with fluorescence nanoscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ringemann, Christian; Harke, Ben; Von Middendorff, Claas; Medda, Rebecca; Leutenegger, Marcel; Schoenle, Andreas; W Hell, Stefan; Eggeling, Christian [Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen (Germany); Honigmann, Alf; Wagner, Richard [Biophysik, University Osnabrueck, FB Biologie/Chemie, Osnabrueck (Germany)], E-mail: ceggeli@gwdg.de

    2009-10-15

    The study of molecular dynamics at the single-molecule level with fluorescence correlation spectroscopy (FCS) and far-field optics has contributed greatly to the functional understanding of complex systems. Unfortunately, such studies are restricted to length scales of >200 nm because diffraction does not allow further reduction of the measurement volume. This sets an upper limit on the applicable concentration of fluorescently labeled molecules and even more importantly, averages out details of nanoscale dynamics. By combining FCS and fluorescence intensity distribution analysis (FIDA) with sub-diffraction-resolution stimulated emission depletion (STED) nanoscopy, we remove this restriction and obtain open measurement volumes of nanoscale dimensions which are tunable in size. As a consequence, single-molecule studies can now be extended to nanoscale dynamics and may be applied to much larger, often endogenous concentrations. In solution, low-brightness signal from axial out-of-focus volume shells was taken into account by using both FCS and FIDA in conjunction to analyze the data. In two-dimensional systems, such as lipid membranes, the background is greatly reduced and measurements feature excellent signal-to-noise ratios. Measurement foci of down to 30 nm in diameter directly reveal anomalous diffusion of lipids in the plasma membrane of living cells and allow for the determination of on/off rates of the binding of lipids to other membrane constituents. Such important insight into the prominent biological question of lipid membrane organization or 'lipid rafts' shows that combining fluctuation analysis with STED-engineered ultra-small measurement volumes is a viable and powerful new approach to probing molecular dynamics on the nanoscale.

  15. Single Molecule Visualization of Protein-DNA Complexes: Watching Machines at Work

    Science.gov (United States)

    Kowalczykowski, Stephen

    2013-03-01

    We can now watch individual proteins acting on single molecules of DNA. Such imaging provides unprecedented interrogation of fundamental biophysical processes. Visualization is achieved through the application of two complementary procedures. In one, single DNA molecules are attached to a polystyrene bead and are then captured by an optical trap. The DNA, a worm-like coil, is extended either by the force of solution flow in a micro-fabricated channel, or by capturing the opposite DNA end in a second optical trap. In the second procedure, DNA is attached by one end to a glass surface. The coiled DNA is elongated either by continuous solution flow or by subsequently tethering the opposite end to the surface. Protein action is visualized by fluorescent reporters: fluorescent dyes that bind double-stranded DNA (dsDNA), fluorescent biosensors for single-stranded DNA (ssDNA), or fluorescently-tagged proteins. Individual molecules are imaged using either epifluorescence microscopy or total internal reflection fluorescence (TIRF) microscopy. Using these approaches, we imaged the search for DNA sequence homology conducted by the RecA-ssDNA filament. The manner by which RecA protein finds a single homologous sequence in the genome had remained undefined for almost 30 years. Single-molecule imaging revealed that the search occurs through a mechanism termed ``intersegmental contact sampling,'' in which the randomly coiled structure of DNA is essential for reiterative sampling of DNA sequence identity: an example of parallel processing. In addition, the assembly of RecA filaments on single molecules of single-stranded DNA was visualized. Filament assembly requires nucleation of a protein dimer on DNA, and subsequent growth occurs via monomer addition. Furthermore, we discovered a class of proteins that catalyzed both nucleation and growth of filaments, revealing how the cell controls assembly of this protein-DNA complex.

  16. From nanofabrication to self-fabrication--tailored chemistry for control of single molecule electronic devices

    DEFF Research Database (Denmark)

    Moth-Poulsen, Kasper; Bjørnholm, Thomas

    2010-01-01

    Single molecule electronics is a field of research focused on the use of single molecules as electronics components. During the past 15 years the field has concentrated on development of test beds for measurements on single molecules. Bottom-up approaches to single molecule devices are emerging...... the electronic properties of a single molecule by chemical design....... as alternatives to the dominant top-down nanofabrication techniques. One example is solution-based self-assembly of a molecule enclosed by two gold nanorod electrodes. This article will discuss recent attempts to control the self-assembly process by the use of supramolecular chemistry and how to tailor...

  17. Total Internal Reflection Fluorescence Microscopy Imaging-Guided Confocal Single-Molecule Fluorescence Spectroscopy

    OpenAIRE

    Zheng, Desheng; Kaldaras, Leonora; Lu, H. Peter

    2013-01-01

    We have developed an integrated spectroscopy system combining total internal reflection fluorescence microscopy imaging with confocal single-molecule fluorescence spectroscopy for two-dimensional interfaces. This spectroscopy approach is capable of both multiple molecules simultaneously sampling and in situ confocal fluorescence dynamics analyses of individual molecules of interest. We have demonstrated the calibration with fluorescent microspheres, and carried out single-molecule spectroscop...

  18. Resolving Single-Molecule Assembled Patterns with Superresolution Blink-Microscopy

    NARCIS (Netherlands)

    Cordes, Thorben; Strackharn, Mathias; Stahl, Stefan W.; Summerer, Wolfram; Steinhauer, Christian; Forthmann, Carsten; Puchner, Elias M.; Vogelsang, Jan; Gaub, Hermann E.; Tinnefeld, Philip

    2010-01-01

    In this paper we experimentally combine a recently developed AFM-based molecule-by-molecule assembly (single-molecule cut-and-paste, SMCP) with subdiffraction resolution fluorescence imaging. Using “Blink-Microscopy”, which exploits the fluctuating emission of single molecules for the reconstruction

  19. Detection of gas molecules on single Mn adatom adsorbed graphyne: a DFT-D study

    Science.gov (United States)

    Lu, Zhansheng; Lv, Peng; Ma, Dongwei; Yang, Xinwei; Li, Shuo; Yang, Zongxian

    2018-02-01

    As one of the prominent applications in intelligent systems, gas sensing technology has attracted great interest in both industry and academia. In the current study, the pristine graphyne (GY) without and with a single Mn atom is investigated to detect the gas molecules (CO, CH4, CO2, NH3, NO and O2). The pristine GY is promising to detect O2 molecules because of its chemical adsorption on GY with large electron transfer. The great stability of the Mn/GY is found, and the Mn atom prefers to anchor at the alkyne ring as a single atom. Upon single Mn atom anchoring, the sensitivity and selectivity of GY based gas sensors is significantly improved for various molecules, except CH4. The recovery time of the Mn/GY after detecting the gas molecules may help to appraise the detection efficiency for the Mn/GY. The current study will help to understand the mechanism of detecting the gas molecules, and extend the potentially fascinating applications of GY-based materials.

  20. Homebuilt single-molecule scanning confocal fluorescence microscope studies of single DNA/protein interactions.

    Science.gov (United States)

    Zheng, Haocheng; Goldner, Lori S; Leuba, Sanford H

    2007-03-01

    Many technical improvements in fluorescence microscopy over the years have focused on decreasing background and increasing the signal to noise ratio (SNR). The scanning confocal fluorescence microscope (SCFM) represented a major improvement in these efforts. The SCFM acquires signal from a thin layer of a thick sample, rejecting light whose origin is not in the focal plane thereby dramatically decreasing the background signal. A second major innovation was the advent of high quantum-yield, low noise, single-photon counting detectors. The superior background rejection of SCFM combined with low-noise, high-yield detectors makes it possible to detect the fluorescence from single-dye molecules. By labeling a DNA molecule or a DNA/protein complex with a donor/acceptor dye pair, fluorescence resonance energy transfer (FRET) can be used to track conformational changes in the molecule/complex itself, on a single molecule/complex basis. In this methods paper, we describe the core concepts of SCFM in the context of a study that uses FRET to reveal conformational fluctuations in individual Holliday junction DNA molecules and nucleosomal particles. We also discuss data processing methods for SCFM.

  1. Revealing the Conformational Dynamics in a Single-Molecule Junction by Site- and Angle-Resolved Dynamic Probe Method.

    Science.gov (United States)

    Yoshida, Shoji; Taninaka, Atsushi; Sugita, Yoshihiro; Katayama, Tomoki; Takeuchi, Osamu; Shigekawa, Hidemi

    2016-12-27

    Single-molecule junctions have been extensively studied because of their high potential for future nanoscale device applications as well as their importance in basic studies for molecular science and technology. However, since the bonding sites at an electrode and the molecular tilt angles, for example, cannot be determined experimentally, analyses have been performed assuming the structures of such interactive key factors, with uncertainties and inconsistencies remaining in the proposed mechanisms. We have developed a methodology that enables the probing of conformational dynamics in single-molecule junctions simultaneously with the direct characterization of molecular bonding sites and tilt angles. This technique has revealed the elemental processes in single-molecule junctions, which have not been clarified using conventional methods. The mechanisms of the molecular dynamics in 1,4-benzenedithiol and 4,4'-bipyridine single-molecule junctions, which, for example, produce binary conductance switching of different types, were clearly discriminated and comprehensively explained.

  2. Inserting Extrahelical Structures into Long DNA Substrates for Single-Molecule Studies of DNA Mismatch Repair.

    Science.gov (United States)

    Brown, M W; de la Torre, A; Finkelstein, I J

    2017-01-01

    The DNA mismatch repair (MMR) system corrects errors that occur during DNA replication. MMR needs the coordinated and highly dynamic assembly of repair enzymes at the site of the lesion. By visualizing transient intermediates of these assemblies, single-molecule approaches have shed critical insights into the mechanisms of MMR. These studies frequently require long (>20kb) DNA substrates with lesions and other extrahelical structures inserted at defined positions. DNA derived from bacteriophage λ (λ-DNA) is a high quality long (48.5kb) DNA substrate that is frequently used in single-molecule studies. Here we provide detailed protocols for site-specific incorporation of recombinant sequences and extrahelical structures into λ-DNA. We also describe how to assemble DNA curtains, and how to collect and analyze single-molecule observations of lesion recognition by MMR proteins diffusing on these DNA curtains. These protocols will facilitate future single-molecule studies of DNA transcription, replication, and repair. © 2017 Elsevier Inc. All rights reserved.

  3. Shedding Light on Protein Folding, Structural and Functional Dynamics by Single Molecule Studies

    Directory of Open Access Journals (Sweden)

    Krutika Bavishi

    2014-11-01

    Full Text Available The advent of advanced single molecule measurements unveiled a great wealth of dynamic information revolutionizing our understanding of protein dynamics and behavior in ways unattainable by conventional bulk assays. Equipped with the ability to record distribution of behaviors rather than the mean property of a population, single molecule measurements offer observation and quantification of the abundance, lifetime and function of multiple protein states. They also permit the direct observation of the transient and rarely populated intermediates in the energy landscape that are typically averaged out in non-synchronized ensemble measurements. Single molecule studies have thus provided novel insights about how the dynamic sampling of the free energy landscape dictates all aspects of protein behavior; from its folding to function. Here we will survey some of the state of the art contributions in deciphering mechanisms that underlie protein folding, structural and functional dynamics by single molecule fluorescence microscopy techniques. We will discuss a few selected examples highlighting the power of the emerging techniques and finally discuss the future improvements and directions.

  4. What have single-molecule studies taught us about gene expression?

    Science.gov (United States)

    Chen, Huimin

    2016-01-01

    The production of a single mRNA is the result of many sequential steps, from docking of transcription factors to polymerase initiation, elongation, splicing, and, finally, termination. Much of our knowledge about the fundamentals of RNA synthesis and processing come from ensemble in vitro biochemical measurements. Single-molecule approaches are very much in this same reductionist tradition but offer exquisite sensitivity in space and time along with the ability to observe heterogeneous behavior and actually manipulate macromolecules. These techniques can also be applied in vivo, allowing one to address questions in living cells that were previously restricted to reconstituted systems. In this review, we examine the unique insights that single-molecule techniques have yielded on the mechanisms of gene expression. PMID:27601529

  5. TIRF-Based Single-Molecule Detection of the RecA Presynaptic Filament Dynamics.

    Science.gov (United States)

    Kim, Sung H

    2018-01-01

    RecA is a key protein in homologous DNA repair process. On a single-stranded (ss) DNA, which appears as an intermediate structure at a double-strand break site, RecA forms a kilobase-long presynaptic filament that mediates homology search and strand exchange reaction. RecA requires adenosine triphosphate as a cofactor that confers dynamic features to the filament such as nucleation, end-dependent growth and disassembly, scaffold shift along the ssDNA, and conformational change. Due to the complexity of the dynamics, detailed molecular mechanisms of functioning presynaptic filament have been characterized only recently after the advent of single-molecule techniques that allowed real-time observation of each kinetic process. In this chapter, single-molecule fluorescence resonance energy transfer assays, which revealed detailed molecular pictures of the presynaptic filament dynamics, will be discussed. © 2018 Elsevier Inc. All rights reserved.

  6. Single-Molecule Imaging of Proteoglycans in the Pericellular Matrix.

    Science.gov (United States)

    Scrimgeour, Jan; McLane, Louis T; Chang, Patrick S; Curtis, Jennifer E

    2017-12-05

    The pericellular matrix is a robust, hyaluronan-rich polymer brush-like structure that controls access to the cell surface, and plays an important role in cell adhesion, migration, and proliferation. We report the observation of single bottlebrush proteoglycan dynamics in the pericellular matrix of living chondrocytes. Our investigations show that the pericellular matrix undergoes gross extension on the addition of exogenous aggrecan, and that this extension is significantly in excess of that observed in traditional particle exclusion assays. The mean-square displacement of single, bound proteoglycans increases with distance to cell surface, indicating reduced confinement by neighboring hyaluronan-aggrecan complexes. This is consistent with published data from quantitative particle exclusion assays that show openings in the pericellular matrix microstructure ranging from ∼150 nm near the cell surface to ∼400 nm near the cell edge. In addition, the mobility of tethered aggrecan drops significantly when the cell coat is enriched with bottlebrush proteoglycans. Single-molecule imaging in this thick polysaccharide matrix on living cells has significant promise in the drive to elucidate the role of the pericellular coat in human health. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. 8TH International Meeting on Hole Burning Single Molecule and Related Spectroscopies: Science and Applications

    Science.gov (United States)

    2003-07-01

    The 8th International Meeting on Hole Burning, Single Molecule , and Related Spectroscopies: Science and Applications (HBSM 2003) was held in Bozeman...fundamental science and applications of site-selective spectroscopies, spectral hole burning and single molecule spectroscopy, photon echoes, and related... Single molecule detection and spectroscopy, Laser frequency stabilization to SHB references, Optical storage and signal processing, Dephasing and spectral

  8. Towards single-molecule detection of intramolecular exciplexes: Photophysics of a benzanthrone derivative

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, Akifumi [Graduate School of Bio-Applications and Systems Engineering (BASE), Tokyo University of Agriculture and Technology, 2-24-16 Naka-machi, Koganei, Tokyo, 184-8588 (Japan); Department of Organic and Polymeric Materials, Tokyo Institute of Technology, Ookayama 2-12-1-S8, Meguro-ku, Tokyo, 152-8552 (Japan); Sato, Hisaya [Graduate School of Bio-Applications and Systems Engineering (BASE), Tokyo University of Agriculture and Technology, 2-24-16 Naka-machi, Koganei, Tokyo, 184-8588 (Japan); Vacha, Martin [Department of Organic and Polymeric Materials, Tokyo Institute of Technology, Ookayama 2-12-1-S8, Meguro-ku, Tokyo, 152-8552 (Japan)]. E-mail: vacha@op.titech.ac.jp

    2007-01-15

    We report luminescence study of intramolecular exciplexes based on an aminobenzanthrone derivative, dimethyl-amino-N-acetyl-3-aminobenzanthrone (BDA). The BDA compound shows strong dependence of the exciplex emission band intensity on the solvent dielectric function and moderate dependence on its viscosity. The exciplex emission mechanism is discussed in view of the unusual solvent polarity dependence and solvent-dependent excited state lifetimes. Preliminary results on single-molecule detection in polymer films are also presented.

  9. Single-Molecule Spectroscopic Investigations of RNA Structural Dynamics

    Science.gov (United States)

    Fiore, Julie L.; Nesbitt, David J.

    2007-03-01

    To function properly, catalytic RNAs (ribozymes) fold into specific three-dimensional shapes stabilized by multiple tertiary interactions. However, only limited information is available on the contributions of individual tertiary contacts to RNA conformational dynamics. The Tetrahymena ribozymes's P4--P6 domain forms a hinged, ``candy-cane'' structure with parallel helices clamped by two motifs, the GAAA tetraloop-tetraloop receptor and adenosine (A)-rich bulge--P4 helix interactions. Previously, we characterized RNA folding due to a tetraloop-receptor interaction. In this study, we employ time-resolved single-molecule FRET methods to probe A-rich bulge induced structural dynamics. Specifically, fluorescently labeled RNA constructs excited by a pulsed 532 nm laser are detected in the confocal region of an inverted microscope, with each photon sorted by arrival time, color and polarization. We resolve the kinetic dependence of A-rich bulge-P4 helix docking/undocking on cationic environment (e.g. Na^+ and Mg^2+ concentration.) At saturating [Mg^2+], the docked structure appears only weakly stabilized, while only 50% of the molecules exhibit efficient folding.

  10. Single-Molecule Detection in Nanogap-Embedded Plasmonic Gratings

    Directory of Open Access Journals (Sweden)

    Biyan Chen

    2015-07-01

    Full Text Available We introduce nanogap-embedded silver plasmonic gratings for single-molecule (SM visualization using an epifluorescence microscope. This silver plasmonic platform was fabricated by a cost-effective nano-imprint lithography technique, using an HD DVD template. DNA/ RNA duplex molecules tagged with Cy3/Cy5 fluorophores were immobilized on SiO 2 -capped silver gratings. Light was coupled to the gratings at particular wavelengths and incident angles to form surface plasmons. The SM fluorescence intensity of the fluorophores at the nanogaps showed approximately a 100-fold mean enhancement with respect to the fluorophores observed on quartz slides using an epifluorescence microscope. This high level of enhancement was due to the concentration of surface plasmons at the nanogaps. When nanogaps imaged with epifluorescence mode were compared to quartz imaged using total internal reflection fluorescence (TIRF microscopy, more than a 30-fold mean enhancement was obtained. Due to the SM fluorescence enhancement of plasmonic gratings and the correspondingly high emission intensity, the required laser power can be reduced, resulting in a prolonged detection time prior to photobleaching. This simple platform was able to perform SM studies with a low-cost epifluorescence apparatus, instead of the more expensive TIRF or confocal microscopes, which would enable SM analysis to take place in most scientific laboratories.

  11. Nanofabrication of SERS Substrates for Single/Few Molecules Detection

    KAUST Repository

    Melino, Gianluca

    2015-05-04

    Raman spectroscopy is among the most widely employed methods to investigate the properties of materials in several fields of study. Evolution in materials science allowed us to fabricate suitable substrates, at the nanoscale, capable to enhance the electromagnetic field of the signals coming from the samples which at this range turn out to be in most cases singles or a few molecules. This particular variation of the classical technique is called SERS (Surface Enanched Raman Spectroscopy). In this work, the enhancement of the electromagnetic field is obtained by manipulation of the optical properties of metals with respect to their size. By using electroless deposition (bottom up technique), gold and silver nanoparticles were deposited in nanostructured patterns obtained on silicon wafers by means of electron beam lithography (top down technique). Rhodamine 6G in aqueous solution at extremely low concentration (10-8 M) was absorbed on the resultant dimers and the collection of the Raman spectra demonstrated the high efficiency of the substrates.

  12. Synergizing superresolution optical fluctuation imaging with single molecule localization microscopy

    CERN Document Server

    Schidorsky, Shachar; Razvag, Yair; Golan, Yonatan; Weiss, Shimon; Sherman, Eilon

    2016-01-01

    Single molecule localization microscopy (SMLM) techniques enable imaging biological samples well beyond the diffraction limit of light, but they vary significantly in their spatial and temporal resolutions. High-order statistical analysis of temporal fluctuations as in superresolution optical fluctuation imaging (SOFI) also enable imaging beyond diffraction limit, but usually at a lower resolution as compared to SMLM. Since the same data format is acquired for both methods, their algorithms can be applied to the same data set, and thus may be combined synergistically to improve overall imaging performance. Here, we find that SOFI converges much faster than SMLM, provides additive information to SMLM, and can efficiently reject background. We then show how SOFI-assisted SMLM imaging can improve SMLM image reconstruction by rejecting common sources of background, especially under low signal-to-background conditions. The performance of our approach was evaluated using a realistic simulation of fluorescence imagi...

  13. Spin thermoelectric effects in organic single-molecule devices

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.L.; Wang, M.X.; Qian, C.; Hong, X.K.; Zhang, D.B.; Liu, Y.S.; Yang, X.F., E-mail: xfyang@cslg.edu.cn

    2017-05-25

    Highlights: • A stronger spin thermoelectric performance in a polyacetylene device is observed. • For the antiferromagnetic (AFM) ordering, a transport gap is opened. Thus the thermoelectric effects are largely enhanced. - Abstract: The spin thermoelectric performance of a polyacetylene chain bridging two zigzag graphene nanoribbons (ZGNRs) is investigated based on first principles method. Two different edge spin arrangements in ZGNRs are considered. For ferromagnetic (FM) ordering, transmission eigenstates with different spin indices distributed below and above Fermi level are observed, leading directly to a strong spin thermoelectric effect in a wide temperature range. With the edge spins arranged in the antiferromagnetic (AFM) ordering, an obvious transport gap appears in the system, which greatly enhances the thermoelectric effects. The presence of a small spin splitting also induces a spin thermoelectric effect greater than the charge thermoelectric effect in certain temperature range. In general, the single-molecule junction exhibits the potential to be used for the design of perfect thermospin devices.

  14. Drug-DNA interactions at single molecule level: A view with optical tweezers

    Science.gov (United States)

    Paramanathan, Thayaparan

    Studies of small molecule--DNA interactions are essential for developing new drugs for challenging diseases like cancer and HIV. The main idea behind developing these molecules is to target and inhibit the reproduction of the tumor cells and infected cells. We mechanically manipulate single DNA molecule using optical tweezers to investigate two molecules that have complex and multiple binding modes. Mononuclear ruthenium complexes have been extensively studied as a test for rational drug design. Potential drug candidates should have high affinity to DNA and slow dissociation kinetics. To achieve this, motifs of the ruthenium complexes are altered. Our collaborators designed a dumb-bell shaped binuclear ruthenium complex that can only intercalate DNA by threading through its bases. Studying the binding properties of this complex in bulk studies took hours. By mechanically manipulating a single DNA molecule held with optical tweezers, we lower the barrier to thread and make it fast compared to the bulk experiments. Stretching single DNA molecules with different concentration of drug molecules and holding it at a constant force allows the binding to reach equilibrium. By this we can obtain the equilibrium fractional ligand binding and length of DNA at saturated binding. Fitting these results yields quantitative measurements of the binding thermodynamics and kinetics of this complex process. The second complex discussed in this study is Actinomycin D (ActD), a well studied anti-cancer agent that is used as a prototype for developing new generations of drugs. However, the biophysical basis of its activity is still unclear. Because ActD is known to intercalate double stranded DNA (dsDNA), it was assumed to block replication by stabilizing dsDNA in front of the replication fork. However, recent studies have shown that ActD binds with even higher affinity to imperfect duplexes and some sequences of single stranded DNA (ssDNA). We directly measure the on and off rates by

  15. Monitoring single protease activities on triple-helical collagen molecules

    Science.gov (United States)

    Harzar, Raj; Froberg, James; Srivastava, D. K.; Choi, Yongki

    Matrix metalloproteinases (MMPs), a particular family of proteases, play a pivotal role in degrading the extracellular matrix (ECM). It has been known for more than 40 years that MMPs are closely involved in multiple human cancers during cell growth, invasion, and metastasis. However, the mechanisms of MMP activity are far from being understood. Here, we monitored enzymatic processing of MMPs with two complementary approaches, atomic force microscopy and nanocircuits measurements. AFM measurements demonstrated that incubation of collagen monomers with MMPs resulted in a single position cleavage, producing 3/4 and 1/4 collagen fragments. From electronic monitoring of single MMP nanocircuit measurements, we were able to capture a single cleavage event with a rate of 0.012 Hz, which were in good agreement with fluorescence assay measurements. This work was supported financially by the NIGMS/NIH (P30GM103332-02) and ND NASA EPSCoR RID Grant.

  16. Single vesicle biochips for ultra-miniaturized nanoscale fluidics and single molecule bioscience

    DEFF Research Database (Denmark)

    Christensen, Andreas Lauge; Lohr, Christina; Christensen, Sune M.

    2013-01-01

    , their fabrication via controlled self-assembly, and their characterization using fluorescence microscopy. We also highlight their applications in selected fields such as nanofluidics and single molecule bioscience. Despite their great potential for improved biocompatibility, extreme miniaturization and high...... ratio of these devices. Biochips based on immobilized vesicles circumvent this problem by encapsulating biomolecules in the protective environment of a lipid bilayer, thus minimizing interactions with hard surfaces. Here we review the development of biochips based on arrays of single nanoscale vesicles...... throughput, single vesicle biochips are still a niche technology that has yet to establish its commercial relevance....

  17. Demonstration of Single Barium Ion Sensitivity for Neutrinoless Double Beta Decay using Single Molecule Fluorescence Imaging

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, A.D.; et al.

    2017-11-13

    A new method to tag the barium daughter in the double beta decay of $^{136}$Xe is reported. Using the technique of single molecule fluorescent imaging (SMFI), individual barium dication (Ba$^{++}$) resolution at a transparent scanning surface has been demonstrated. A single-step photo-bleach confirms the single ion interpretation. Individual ions are localized with super-resolution ($\\sim$2~nm), and detected with a statistical significance of 12.9~$\\sigma$ over backgrounds. This lays the foundation for a new and potentially background-free neutrinoless double beta decay technology, based on SMFI coupled to high pressure xenon gas time projection chambers.

  18. Single-molecule techniques in biophysics: a review of the progress in methods and applications.

    Science.gov (United States)

    Miller, Helen; Zhou, Zhaokun; Shepherd, Jack; Wollman, Adam J M; Leake, Mark C

    2018-02-01

    Single-molecule biophysics has transformed our understanding of biology, but also of the physics of life. More exotic than simple soft matter, biomatter lives far from thermal equilibrium, covering multiple lengths from the nanoscale of single molecules to up to several orders of magnitude higher in cells, tissues and organisms. Biomolecules are often characterized by underlying instability: multiple metastable free energy states exist, separated by levels of just a few multiples of the thermal energy scale k B T, where k B is the Boltzmann constant and T absolute temperature, implying complex inter-conversion kinetics in the relatively hot, wet environment of active biological matter. A key benefit of single-molecule biophysics techniques is their ability to probe heterogeneity of free energy states across a molecular population, too challenging in general for conventional ensemble average approaches. Parallel developments in experimental and computational techniques have catalysed the birth of multiplexed, correlative techniques to tackle previously intractable biological questions. Experimentally, progress has been driven by improvements in sensitivity and speed of detectors, and the stability and efficiency of light sources, probes and microfluidics. We discuss the motivation and requirements for these recent experiments, including the underpinning mathematics. These methods are broadly divided into tools which detect molecules and those which manipulate them. For the former we discuss the progress of super-resolution microscopy, transformative for addressing many longstanding questions in the life sciences, and for the latter we include progress in 'force spectroscopy' techniques that mechanically perturb molecules. We also consider in silico progress of single-molecule computational physics, and how simulation and experimentation may be drawn together to give a more complete understanding. Increasingly, combinatorial techniques are now used, including

  19. Single-molecule techniques in biophysics: a review of the progress in methods and applications

    Science.gov (United States)

    Miller, Helen; Zhou, Zhaokun; Shepherd, Jack; Wollman, Adam J. M.; Leake, Mark C.

    2018-02-01

    Single-molecule biophysics has transformed our understanding of biology, but also of the physics of life. More exotic than simple soft matter, biomatter lives far from thermal equilibrium, covering multiple lengths from the nanoscale of single molecules to up to several orders of magnitude higher in cells, tissues and organisms. Biomolecules are often characterized by underlying instability: multiple metastable free energy states exist, separated by levels of just a few multiples of the thermal energy scale k B T, where k B is the Boltzmann constant and T absolute temperature, implying complex inter-conversion kinetics in the relatively hot, wet environment of active biological matter. A key benefit of single-molecule biophysics techniques is their ability to probe heterogeneity of free energy states across a molecular population, too challenging in general for conventional ensemble average approaches. Parallel developments in experimental and computational techniques have catalysed the birth of multiplexed, correlative techniques to tackle previously intractable biological questions. Experimentally, progress has been driven by improvements in sensitivity and speed of detectors, and the stability and efficiency of light sources, probes and microfluidics. We discuss the motivation and requirements for these recent experiments, including the underpinning mathematics. These methods are broadly divided into tools which detect molecules and those which manipulate them. For the former we discuss the progress of super-resolution microscopy, transformative for addressing many longstanding questions in the life sciences, and for the latter we include progress in ‘force spectroscopy’ techniques that mechanically perturb molecules. We also consider in silico progress of single-molecule computational physics, and how simulation and experimentation may be drawn together to give a more complete understanding. Increasingly, combinatorial techniques are now used, including

  20. New tools to study biophysical properties of single molecules and single cells

    Directory of Open Access Journals (Sweden)

    Márcio S. Rocha

    2007-03-01

    Full Text Available We present a review on two new tools to study biophysical properties of single molecules and single cells. A laser incident through a high numerical aperture microscope objective can trap small dielectric particles near the focus. This arrangement is named optical tweezers. This technique has the advantage to permit manipulation of a single individual object. We use optical tweezers to measure the entropic elasticity of a single DNA molecule and its interaction with the drug Psoralen. Optical tweezers are also used to hold a kidney cell MDCK away from the substrate to allow precise volume measurements of this single cell during an osmotic shock. This procedure allows us to obtain information about membrane water permeability and regulatory volume increase. Defocusing microscopy is a recent technique invented in our laboratory, which allows the observation of transparent objects, by simply defocusing the microscope in a controlled way. Our physical model of a defocused microscope shows that the image contrast observed in this case is proportional to the defocus distance and to the curvature of the transparent object. Defocusing microscopy is very useful to study motility and mechanical properties of cells. We show here the application of defocusing microscopy to measurements of macrophage surface fluctuations and their influence on phagocytosis.Apresentamos uma revisão de duas novas técnicas para estudar propriedades biofísicas de moléculas únicas e células únicas. Um laser incidindo em uma objetiva de microscópio de grande abertura numérica é capaz de aprisionar pequenas partículas dielétricas na região próxima ao foco. Este aparato é chamado de pinça óptica. Esta técnica tem a grande vantagem de permitir a manipulação de um objeto individual. Usamos a pinça óptica para medir a elasticidade entrópica de uma molécula única de DNA em sua interação com o fármaco Psoralen. A pinça óptica também é usada para segurar

  1. Developing DNA nanotechnology using single-molecule fluorescence.

    Science.gov (United States)

    Tsukanov, Roman; Tomov, Toma E; Liber, Miran; Berger, Yaron; Nir, Eyal

    2014-06-17

    CONSPECTUS: An important effort in the DNA nanotechnology field is focused on the rational design and manufacture of molecular structures and dynamic devices made of DNA. As is the case for other technologies that deal with manipulation of matter, rational development requires high quality and informative feedback on the building blocks and final products. For DNA nanotechnology such feedback is typically provided by gel electrophoresis, atomic force microscopy (AFM), and transmission electron microscopy (TEM). These analytical tools provide excellent structural information; however, usually they do not provide high-resolution dynamic information. For the development of DNA-made dynamic devices such as machines, motors, robots, and computers this constitutes a major problem. Bulk-fluorescence techniques are capable of providing dynamic information, but because only ensemble averaged information is obtained, the technique may not adequately describe the dynamics in the context of complex DNA devices. The single-molecule fluorescence (SMF) technique offers a unique combination of capabilities that make it an excellent tool for guiding the development of DNA-made devices. The technique has been increasingly used in DNA nanotechnology, especially for the analysis of structure, dynamics, integrity, and operation of DNA-made devices; however, its capabilities are not yet sufficiently familiar to the community. The purpose of this Account is to demonstrate how different SMF tools can be utilized for the development of DNA devices and for structural dynamic investigation of biomolecules in general and DNA molecules in particular. Single-molecule diffusion-based Förster resonance energy transfer and alternating laser excitation (sm-FRET/ALEX) and immobilization-based total internal reflection fluorescence (TIRF) techniques are briefly described and demonstrated. To illustrate the many applications of SMF to DNA nanotechnology, examples of SMF studies of DNA hairpins and

  2. TABASCO: A single molecule, base-pair resolved gene expression simulator

    Directory of Open Access Journals (Sweden)

    Endy Drew

    2007-12-01

    transcription and translation at individual molecule and single base-pair resolution. By directly representing the position and activity of individual molecules on DNA, Tabasco can directly test the effects of detailed molecular processes on system-wide gene expression. Tabasco would also be useful for studying the complex regulatory mechanisms controlling eukaryotic gene expression. The computational engine underlying Tabasco could also be adapted to represent other types of processive systems in which individual reaction events are organized across a single spatial dimension (e.g., polysaccharide synthesis.

  3. A simplified quantum mechanical model of diatomic molecules

    DEFF Research Database (Denmark)

    Nielsen, Lars Drud

    1978-01-01

    A one-dimensional molecule model with Coulomb potentials replaced by delta functions is introduced. The mathematical simplicity of the model facilitates the quantum mechanical treatment and offers a straightforward demonstration of the essentials of two-particle problems. In spite of the crudeness...

  4. A mechanism to activate branch migration between homologous DNA molecules in genetic recombination.

    Science.gov (United States)

    Sobell, H M

    1975-01-01

    A mechanism to activate branch migration between homologous DNA molecules is described that leads to synapsis in genetic recombination. The model involves a restriction-like endonucleolytic enzyme that first nicks DNA (to produce single-strand breaks) on strands of opposite polarity at symmetrically arranged nucleotide sequences (located at ends of genes or operons). This is followed by local denaturation of the region, promoted by a single-strand-specific DNA binding protein (i.e., an unwinding protein). Hydrogen-bounding between homologous DNA molecules can then be initiated and this allows for subsequent propagation of hybrid DNA in the pathway to formation of the synapton structure. PMID:1054504

  5. Extracting intrinsic dynamic parameters of biomolecular folding from single-molecule force spectroscopy experiments.

    Science.gov (United States)

    Nam, Gi-Moon; Makarov, Dmitrii E

    2016-01-01

    Single-molecule studies in which a mechanical force is transmitted to the molecule of interest and the molecular extension or position is monitored as a function of time are versatile tools for probing the dynamics of protein folding, stepping of molecular motors, and other biomolecular processes involving activated barrier crossing. One complication in interpreting such studies, however, is the fact that the typical size of a force probe (e.g., a dielectric bead in optical tweezers or the atomic force microscope tip/cantilever assembly) is much larger than the molecule itself, and so the observed molecular motion is affected by the hydrodynamic drag on the probe. This presents the experimenter with a nontrivial task of deconvolving the intrinsic molecular parameters, such as the intrinsic free energy barrier and the effective diffusion coefficient exhibited while crossing the barrier from the experimental signal. Here we focus on the dynamical aspect of this task and show how the intrinsic diffusion coefficient along the molecular reaction coordinate can be inferred from single-molecule measurements of the rates of biomolecular folding and unfolding. We show that the feasibility of accomplishing this task is strongly dependent on the relationship between the intrinsic molecular elasticity and that of the linker connecting the molecule to the force probe and identify the optimal range of instrumental parameters allowing determination of instrument-free molecular dynamics. © 2015 The Protein Society.

  6. Measuring "unmeasurable" folding kinetics of proteins by single-molecule force spectroscopy.

    Science.gov (United States)

    Jollymore, Ashlee; Li, Hongbin

    2010-09-24

    Folding and unfolding are fundamental biological processes in cell and are important for the biological functions of proteins. Characterizing the folding and unfolding kinetics of proteins is important for understanding the energetic landscape leading to the active native conformations of these molecules. However, the thermal or chemical-induced unfolding of many proteins is irreversible in vitro, precluding characterization of the folding kinetics of such proteins, just as it is impossible to "un-boil" an egg. Irreversible unfolding often manifests as irreversible aggregation of unfolded polypeptide chains, which typically occurs between denatured protein molecules in response to the exposure of hydrophobic residues to solvent. An example of such a protein where thermal denaturation results in irreversible aggregation is the β-1,4 endoxylanase from Bacillus circulans (BCX). Here, we report the use of single-molecule atomic force microscopy to directly measure the folding kinetics of BCX in vitro. By mechanically unfolding BCX, we essentially allowed only one unfolded molecule to exist in solution at a given time, effectively eliminating the possibility for aggregation. We found that BCX can readily refold back to the native state, allowing us to measure its folding kinetics for the first time. Our results demonstrate that single-molecule force-spectroscopy-based methods can adequately tackle the challenge of "un-boiling eggs", providing a general methodology to characterize the folding kinetics of many proteins that suffer from irreversible denaturation and thus cannot be characterized using traditional equilibrium methodologies. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Single molecule atomic force microscopy and force spectroscopy of chitosan.

    Science.gov (United States)

    Kocun, Marta; Grandbois, Michel; Cuccia, Louis A

    2011-02-01

    Atomic force microscopy (AFM) and AFM-based force spectroscopy was used to study the desorption of individual chitosan polymer chains from substrates with varying chemical composition. AFM images of chitosan adsorbed onto a flat mica substrate show elongated single strands or aggregated bundles. The aggregated state of the polymer is consistent with the high level of flexibility and mobility expected for a highly positively charged polymer strand. Conversely, the visualization of elongated strands indicated the presence of stabilizing interactions with the substrate. Surfaces with varying chemical composition (glass, self-assembled monolayer of mercaptoundecanoic acid/decanethiol and polytetrafluoroethylene (PTFE)) were probed with chitosan modified AFM tips and the corresponding desorption energies, calculated from plateau-like features, were attributed to the desorption of individual polymer strands. Desorption energies of 2.0±0.3×10(-20)J, 1.8±0.3×10(-20)J and 3.5±0.3×10(-20)J were obtained for glass, SAM of mercaptoundecanoic/dodecanethiol and PTFE, respectively. These single molecule level results can be used as a basis for investigating chitosan and chitosan-based materials for biomaterial applications. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. A single molecule investigation of the photostability of quantum dots.

    Directory of Open Access Journals (Sweden)

    Eva Christensen Arnspang

    Full Text Available Quantum dots (QDs are very attractive probes for multi-color fluorescence imaging in biological applications because of their immense brightness and reported extended photostability. We report here however that single QDs, suitable for biological applications, that are subject to continuous blue excitation from a conventional 100 W mercury arc lamp will undergo a continuous blue-switching of the emission wavelength eventually reaching a permanent dark, photobleached state. We further show that β-mercaptoethanol has a dual stabilizing effect on the fluorescence emission of QDs: 1 by increasing the frequency of time that a QD is in its fluorescent state, and 2 by decreasing the photobleaching rate. The observed QD color spectral switching is especially detrimental for multi-color single molecule applications, as we regularly observe spectral blue-shifts of 50 nm, or more even after only ten seconds of illumination. However, of significant importance for biological applications, we find that even small, biologically compatible, concentrations (25 µM of β-mercaptoethanol has a significant stabilizing effect on the emission color of QDs, but that greater amounts are required to completely abolish the spectral blue shifting or to minimize the emission intermittency of QDs.

  9. Ultra-stable and versatile widefield cryo-fluorescence microscope for single-molecule localization with sub-nanometer accuracy.

    Science.gov (United States)

    Li, Weixing; Stein, Simon C; Gregor, Ingo; Enderlein, Jörg

    2015-02-09

    We developed a stand-alone cryostat with optical access to the sample which can be adapted to any epi-fluorescence microscope for single-molecule fluorescence spectroscopy and imaging. The cryostat cools the sample to a cryogenic temperature of 89 K, and allows for imaging single molecules using an air objective with a numerical aperture of 0.7. An important property of this system is its excellent thermal and mechanical stability, enabling long-time observations of samples over several hours with negligible drift. Using this system, we performed photo-bleaching studies of Atto647N dye molecules, and find an improvement of the photostability of these molecules by more than two orders of magnitude. The resulting increased photon numbers of several millions allow for single-molecule localization accuracy of sub-nanometer.

  10. Electron transfer behaviour of biological macromolecules towards the single-molecule level

    Science.gov (United States)

    Zhang, Jingdong; Grubb, Mikala; Hansen, Allan G.; Kuznetsov, Alexander M.; Boisen, Anja; Wackerbarth, Hainer; Ulstrup, Jens

    2003-05-01

    Redox metalloproteins immobilized on metallic surfaces in contact with aqueous biological media are important in many areas of pure and applied sciences. Redox metalloprotein films are currently being addressed by new approaches where biotechnology including modified and synthetic proteins is combined with state-of-the-art physical electrochemistry with emphasis on single-crystal, atomically planar electrode surfaces, in situ scanning tunnelling microscopy (STM) and other surface techniques. These approaches have brought bioelectrochemistry important steps forward towards the nanoscale and single-molecule levels. We discuss here these advances with reference to two specific redox metalloproteins, the blue single-copper protein Pseudomonas aeruginosa azurin and the single-haem protein Saccharomyces cerevisiae yeast cytochrome c, and a short oligonucleotide. Both proteins can be immobilized on Au(111) by chemisorption via exposed sulfur-containing residues. Voltammetric, interfacial capacitance, x-ray photoelectron spectroscopy and microcantilever sensor data, together with in situ STM with single-molecule resolution, all point to a coherent view of monolayer organization with protein electron transfer (ET) function retained. In situ STM can also address the microscopic mechanisms for electron tunnelling through the biomolecules and offers novel notions such as coherent multi-ET between the substrate and tip via the molecular redox levels. This differs in important respects from electrochemical ET at a single metal/electrolyte interface. Similar data for a short oligonucleotide immobilized on Au(111) show that oligonucleotides can be characterized with comparable detail, with novel perspectives for addressing DNA electronic conduction mechanisms and for biological screening towards the single-molecule level.

  11. Electrophoretic time-of-flight measurements of single DNA molecules with two stacked nanopores.

    Science.gov (United States)

    Langecker, Martin; Pedone, Daniel; Simmel, Friedrich C; Rant, Ulrich

    2011-11-09

    Electrophoretic transport through a solid-state nanodevice comprised of two stacked nanopore sensors is used to determine the free-solution mobility of DNA molecules based on their "time-of-flight" between the two pores. Mobility measurements are possible at very low (100 pM) DNA concentration and for low as well as high salt concentrations (here 30 mM and 1 M KCl). The mechanism of DNA transport through the device is elucidated by statistical analysis, showing the free-draining nature of the translocating DNA polymers and a barrier-dominated escape through the second pore. Furthermore, consecutive threading of single molecules through the two pores can be used to gain more detailed information on the dynamics of the molecules by correlation analysis, which also provides a direct electrical proof for translocation.

  12. Biomolecular applications of single-molecule measurements: kinetics and dynamics of a single-enzyme reaction

    Science.gov (United States)

    Paige, Matt; Fromm, David P.; Moerner, William E.

    2002-03-01

    In this work we describe preliminary experiments in which we have used ultra-sensitive fluorescence microscopy to observe the dynamics of individual enzyme molecules acting upon a substrate. The enzyme, (beta) -galactosidase from E.coli, is specifically immobilized onto a glass substrate while maintaining its functionality. The immobilized protein degrades a fluorogenic substrate to produce a fluorescent product, whose generation can be observed in real time. Individual copies of (beta) -galactosidase can be observed for many minutes, allowing the measurement of a large number of successive substrate turnover events. A rudimentary analysis of these turnovers using autocorrelation functions is presented, and a strong heterogeneity in reaction rates between different molecules is observed. In addition, the challenges inherent in successful surface immobilization of proteins for single-molecule experiments are discussed.

  13. Single cell and single molecule techniques for the analysis of the epigenome

    Science.gov (United States)

    Wallin, Christopher Benjamin

    Epigenetic regulation is a critical biological process for the health and development of a cell. Epigenetic regulation is facilitated by covalent modifications to the underlying DNA and chromatin proteins. A fundamental understanding of these epigenetic modifications and their associated interactions at the molecular scale is necessary to explain phenomena including cellular identity, stem cell plasticity, and neoplastic transformation. It is widely known that abnormal epigenetic profiles have been linked to many diseases, most notably cancer. While the field of epigenetics has progressed rapidly with conventional techniques, significant advances remain to be made with respect to combinatoric analysis of epigenetic marks and single cell epigenetics. Therefore, in this dissertation, I will discuss our development of devices and methodologies to address these pertinent issues. First, we designed a preparatory polydimethylsiloxane (PDMS) microdevice for the extraction, purification, and stretching of human chromosomal DNA and chromatin from small cell populations down to a single cell. The valveless device captures cells by size exclusion within the micropillars, entraps the DNA or chromatin in the micropillars after cell lysis, purifies away the cellular debris, and fluorescently labels the DNA and/or chromatin all within a single reaction chamber. With the device, we achieve nearly 100% extraction efficiency of the DNA. The device is also used for in-channel immunostaining of chromatin followed by downstream single molecule chromatin analysis in nanochannels (SCAN). Second, using multi-color, time-correlated single molecule measurements in nanochannels, simultaneous coincidence detection of 2 epigenetic marks is demonstrated. Coincidence detection of 3 epigenetic marks is also established using a pulsed interleaved excitation scheme. With these two promising results, genome-wide quantification of epigenetic marks was pursued. Unfortunately, quantitative SCAN never

  14. Ensemble and Single-Molecule Studies on Fluorescence Quenching in Transition Metal Bipyridine-Complexes

    Science.gov (United States)

    Brox, Dominik; Kiel, Alexander; Wörner, Svenja Johanna; Pernpointner, Markus; Comba, Peter; Martin, Bodo; Herten, Dirk-Peter

    2013-01-01

    Beyond their use in analytical chemistry fluorescent probes continuously gain importance because of recent applications of single-molecule fluorescence spectroscopy to monitor elementary reaction steps. In this context, we characterized quenching of a fluorescent probe by different metal ions with fluorescence spectroscopy in the bulk and at the single-molecule level. We apply a quantitative model to explain deviations from existing standard models for fluorescence quenching. The model is based on a reversible transition from a bright to a dim state upon binding of the metal ion. We use the model to estimate the stability constants of complexes with different metal ions and the change of the relative quantum yield of different reporter dye labels. We found ensemble data to agree widely with results from single-molecule experiments. Our data indicates a mechanism involving close molecular contact of dye and quenching moiety which we also found in molecular dynamics simulations. We close the manuscript with a discussion of possible mechanisms based on Förster distances and electrochemical potentials which renders photo-induced electron transfer to be more likely than Förster resonance energy transfer. PMID:23483966

  15. Study of Large Multimeric Biomolecules by Single-Molecule Manipulation and Imaging

    Science.gov (United States)

    Lou, Kai; Wijeratne, Sitara S.; Martinez, Jerahme; Yeh, Hui-Chun; Moake, Joel; Dong, Jing-Fei; Farach-Carson, Mary C.; Kiang, Ching-Hwa

    2012-02-01

    Single-molecule manipulation enables us to study the properties of long chain, multimeric biomolecules. Perlecan, a giant secreted heparin sulfate proteoglycan, is a major component of basement membrane, bone stroma and blood vessels. It is involved in processes such as cell adhesion, migration and modulation of apoptosis. The changes in its synthesis and function are closely associated with many diseases, including cancer. Von Willebrand factor is a large multimeric protein circulating in blood, and is crucial for initiation of blood coagulation. We use atomic force microscope to obtain force curves and images of these proteins. We characterized the mechanical property of perlecan as well as the domain conformational changes of von Willebrand factor. The results demonstrate that single-molecule manipulation can probe directly the dynamics of large biomolecules that are usually not accessible with other methods.

  16. A Stochastic Single-Molecule Event Triggers Phenotype Switching of a Bacterial Cell

    Science.gov (United States)

    Xie, Sunney; Choi, Paul; Cai, Long

    2009-03-01

    By monitoring fluorescently labeled lactose permease with single-molecule sensitivity, we investigated the molecular mechanism of how an Escherichia coli cell with the lac operon switches from one phenotype to another. At intermediate inducer concentrations, a population of genetically identical cells exhibits two phenotypes: induced cells with highly fluorescent membranes and uninduced cells with a small number of membrane-bound permeases. We found that this basal-level expression results from partial dissociation of the tetrameric lactose repressor from one of its operators on looped DNA. In contrast, infrequent events of complete dissociation of the repressor from DNA result in large bursts of permease expression that trigger induction of the lac operon. Hence, a stochastic single-molecule event determines a cell's phenotype.

  17. Inelastic transport and low-bias rectification in a single-molecule diode.

    Science.gov (United States)

    Hihath, Joshua; Bruot, Christopher; Nakamura, Hisao; Asai, Yoshihiro; Díez-Pérez, Ismael; Lee, Youngu; Yu, Luping; Tao, Nongjian

    2011-10-25

    Designing, controlling, and understanding rectification behavior in molecular-scale devices has been a goal of the molecular electronics community for many years. Here we study the transport behavior of a single molecule diode, and its nonrectifying, symmetric counterpart at low temperatures, and at both low and high biases to help elucidate the electron-phonon interactions and transport mechanisms in the rectifying system. We find that the onset of current rectification occurs at low biases, indicating a significant change in the elastic transport pathway. However, the peaks in the inelastic electron tunneling (IET) spectrum are antisymmetric about zero bias and show no significant changes in energy or intensity in the forward or reverse bias directions, indicating that despite the change in the elastic transmission probability there is little impact on the inelastic pathway. These results agree with first principles calculations performed to evaluate the IETS, which also allow us to identify which modes are active in the single molecule junction.

  18. Single-molecule reconstitution of mRNA transport by a class V myosin.

    Science.gov (United States)

    Sladewski, Thomas E; Bookwalter, Carol S; Hong, Myoung-Soon; Trybus, Kathleen M

    2013-08-01

    Molecular motors are instrumental in mRNA localization, which provides spatial and temporal control of protein expression and function. To obtain mechanistic insight into how a class V myosin transports mRNA, we performed single-molecule in vitro assays on messenger ribonucleoprotein (mRNP) complexes reconstituted from purified proteins and a localizing mRNA found in budding yeast. mRNA is required to form a stable, processive transport complex on actin--an elegant mechanism to ensure that only cargo-bound motors are motile. Increasing the number of localizing elements ('zip codes') on the mRNA, or configuring the track to resemble actin cables, enhanced run length and event frequency. In multi-zip-code mRNPs, motor separation distance varied during a run, thus showing the dynamic nature of the transport complex. Building the complexity of single-molecule in vitro assays is necessary to understand how these complexes function within cells.

  19. Single-molecule kinetics under force: probing protein folding and enzymatic activity with optical tweezers

    Science.gov (United States)

    Wong, Wesley

    2010-03-01

    Weak non-covalent bonds between and within single molecules govern many aspects of biological structure and function (e.g. DNA base-paring, receptor-ligand binding, protein folding, etc.) In living systems, these interactions are often subject to mechanical forces, which can greatly alter their kinetics and activity. My group develops and applies novel single-molecule manipulation techniques to explore and quantify these force-dependent kinetics. Using optical tweezers, we have quantified the force-dependent unfolding and refolding kinetics of different proteins, including the cytoskeletal protein spectrin in collaboration with E. Evans's group [1], and the A2 domain of the von Willebrand factor blood clotting protein in collaboration with T. Springer's group [2]. Furthermore, we have studied the kinetics of the ADAMTS13 enzyme acting on a single A2 domain, and have shown that physiolgical forces in the circulation can act as a cofactor for enzymatic cleavage, regulating hemostatic activity [2]. References: 1. E. Evans, K. Halvorsen, K. Kinoshita, and W.P. Wong, Handbook of Single Molecule Biophysics, P. Hinterdorfer, ed., Springer (2009). 2. X. Zhang, K. Halvorsen, C.-Z. Zhang, W.P. Wong, and T.A. Springer, Science 324 (5932), 1330-1334 (2009).

  20. Single molecules in soft matter : a study of biomolecular conformation, heterogeneity and plasmon enhanced fluorescence

    NARCIS (Netherlands)

    Yuan, Haifeng

    2013-01-01

    We study the dynamics of single molecules and individual gold nanorods in glycerol at variable temperatures. We demonstrate temperature-cycle microscopy on FRET-labeled polyproline and double-stranded DNA molecules to access micro-second dynamics of single molecules, and reveal the influences of

  1. The Dynamics of mRNA Turnover Revealed by Single-Molecule Imaging in Single Cells.

    Science.gov (United States)

    Horvathova, Ivana; Voigt, Franka; Kotrys, Anna V; Zhan, Yinxiu; Artus-Revel, Caroline G; Eglinger, Jan; Stadler, Michael B; Giorgetti, Luca; Chao, Jeffrey A

    2017-11-02

    RNA degradation plays a fundamental role in regulating gene expression. In order to characterize the spatiotemporal dynamics of RNA turnover in single cells, we developed a fluorescent biosensor based on dual-color, single-molecule RNA imaging that allows intact transcripts to be distinguished from stabilized degradation intermediates. Using this method, we measured mRNA decay in single cells and found that individual degradation events occur independently within the cytosol and are not enriched within processing bodies. We show that slicing of an mRNA targeted for endonucleolytic cleavage by the RNA-induced silencing complex can be observed in real time in living cells. This methodology provides a framework for investigating the entire life history of individual mRNAs from birth to death in single cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Tracking of single receptor molecule mobility in neuronal membranes: a quick theoretical and practical guide.

    Science.gov (United States)

    Kwakowsky, A; Potapov, D; Abrahám, I M

    2013-11-01

    Single-molecule detection enables us to visualise the real-time dynamics of individual molecules in live cells. We review the recent advancements in single-molecule fluorescence tracking of receptor protein mobility in the neuronal membrane. First, we discuss the practical consideration of single-molecule tracking in neurones, including the choice of cells and possible fluorescent labelling, as well as the appropriate optical set-up and imaging technology. We then describe the analysis of the single-molecule imaging data, including its theoretical and practical aspects of and relevant estimations of the biophysical parameters. Finally, we provide an example of a single-molecule tracking study in neuroendocrinology and highlight the next frontiers of single-molecule detection technologies. © 2013 British Society for Neuroendocrinology.

  3. A theoretical justification for single molecule peptide sequencing.

    Directory of Open Access Journals (Sweden)

    Jagannath Swaminathan

    2015-02-01

    Full Text Available The proteomes of cells, tissues, and organisms reflect active cellular processes and change continuously in response to intracellular and extracellular cues. Deep, quantitative profiling of the proteome, especially if combined with mRNA and metabolite measurements, should provide an unprecedented view of cell state, better revealing functions and interactions of cell components. Molecular diagnostics and biomarker discovery should benefit particularly from the accurate quantification of proteomes, since complex diseases like cancer change protein abundances and modifications. Currently, shotgun mass spectrometry is the primary technology for high-throughput protein identification and quantification; while powerful, it lacks high sensitivity and coverage. We draw parallels with next-generation DNA sequencing and propose a strategy, termed fluorosequencing, for sequencing peptides in a complex protein sample at the level of single molecules. In the proposed approach, millions of individual fluorescently labeled peptides are visualized in parallel, monitoring changing patterns of fluorescence intensity as N-terminal amino acids are sequentially removed, and using the resulting fluorescence signatures (fluorosequences to uniquely identify individual peptides. We introduce a theoretical foundation for fluorosequencing and, by using Monte Carlo computer simulations, we explore its feasibility, anticipate the most likely experimental errors, quantify their potential impact, and discuss the broad potential utility offered by a high-throughput peptide sequencing technology.

  4. Mapping Transcription Factors on Extended DNA: A Single Molecule Approach

    Science.gov (United States)

    Ebenstein, Yuval; Gassman, Natalie; Weiss, Shimon

    The ability to determine the precise loci and distribution of nucleic acid binding proteins is instrumental to our detailed understanding of cellular processes such as transcription, replication, and chromatin reorganization. Traditional molecular biology approaches and above all Chromatin immunoprecipitation (ChIP) based methods have provided a wealth of information regarding protein-DNA interactions. Nevertheless, existing techniques can only provide average properties of these interactions, since they are based on the accumulation of data from numerous protein-DNA complexes analyzed at the ensemble level. We propose a single molecule approach for direct visualization of DNA binding proteins bound specifically to their recognition sites along a long stretch of DNA such as genomic DNA. Fluorescent Quantum dots are used to tag proteins bound to DNA, and the complex is deposited on a glass substrate by extending the DNA to a linear form. The sample is then imaged optically to determine the precise location of the protein binding site. The method is demonstrated by detecting individual, Quantum dot tagged T7-RNA polymerase enzymes on the bacteriophage T7 genomic DNA and assessing the relative occupancy of the different promoters.

  5. Single Molecule Fluorescence Measurements of Ribosomal Translocation Dynamics

    Science.gov (United States)

    Chen, Chunlai; Stevens, Benjamin; Kaur, Jaskarin; Cabral, Diana; Liu, Hanqing; Wang, Yuhong; Zhang, Haibo; Rosenblum, Gabriel; Smilansky, Zeev; Goldman, Yale E.; Cooperman, Barry S.

    2011-01-01

    We employ single-molecule fluorescence resonance energy transfer (smFRET) to study structural dynamics over the first two elongation cycles of protein synthesis, using ribosomes containing either Cy3-labeled ribosomal protein L11 and A- or P-site Cy5-labeled tRNA or Cy3 and Cy5 labeled tRNAs. Pre-translocation (PRE) complexes demonstrate fluctuations between classical and hybrid forms, with concerted motions of tRNAs away from L11 and from each other when classical complex converts to hybrid complex. EF-G·GTP binding to both hybrid and classical PRE complexes halts these fluctuations prior to catalyzing translocation to form the post-translocation (POST) complex. EF-G dependent translocation from the classical PRE complex proceeds via transient formation of a short-lived hybrid intermediate. A-site binding of either EF-G to the PRE complex or of aminoacyl-tRNA·EF-Tu ternary complex to the POST complex markedly suppresses ribosome conformational lability. PMID:21549313

  6. Versatile single-molecule multi-color excitation and detection fluorescence setup for studying biomolecular dynamics

    KAUST Repository

    Sobhy, M. A.

    2011-11-07

    Single-molecule fluorescence imaging is at the forefront of tools applied to study biomolecular dynamics both in vitro and in vivo. The ability of the single-molecule fluorescence microscope to conduct simultaneous multi-color excitation and detection is a key experimental feature that is under continuous development. In this paper, we describe in detail the design and the construction of a sophisticated and versatile multi-color excitation and emission fluorescence instrument for studying biomolecular dynamics at the single-molecule level. The setup is novel, economical and compact, where two inverted microscopes share a laser combiner module with six individual laser sources that extend from 400 to 640 nm. Nonetheless, each microscope can independently and in a flexible manner select the combinations, sequences, and intensities of the excitation wavelengths. This high flexibility is achieved by the replacement of conventional mechanical shutters with acousto-optic tunable filter (AOTF). The use of AOTF provides major advancement by controlling the intensities, duration, and selection of up to eight different wavelengths with microsecond alternation time in a transparent and easy manner for the end user. To our knowledge this is the first time AOTF is applied to wide-field total internal reflection fluorescence (TIRF) microscopy even though it has been commonly used in multi-wavelength confocal microscopy. The laser outputs from the combiner module are coupled to the microscopes by two sets of four single-mode optic fibers in order to allow for the optimization of the TIRF angle for each wavelength independently. The emission is split into two or four spectral channels to allow for the simultaneous detection of up to four different fluorophores of wide selection and using many possible excitation and photoactivation schemes. We demonstrate the performance of this new setup by conducting two-color alternating excitation single-molecule fluorescence resonance energy

  7. Versatile single-molecule multi-color excitation and detection fluorescence setup for studying biomolecular dynamics

    Science.gov (United States)

    Sobhy, M. A.; Elshenawy, M. M.; Takahashi, M.; Whitman, B. H.; Walter, N. G.; Hamdan, S. M.

    2011-11-01

    Single-molecule fluorescence imaging is at the forefront of tools applied to study biomolecular dynamics both in vitro and in vivo. The ability of the single-molecule fluorescence microscope to conduct simultaneous multi-color excitation and detection is a key experimental feature that is under continuous development. In this paper, we describe in detail the design and the construction of a sophisticated and versatile multi-color excitation and emission fluorescence instrument for studying biomolecular dynamics at the single-molecule level. The setup is novel, economical and compact, where two inverted microscopes share a laser combiner module with six individual laser sources that extend from 400 to 640 nm. Nonetheless, each microscope can independently and in a flexible manner select the combinations, sequences, and intensities of the excitation wavelengths. This high flexibility is achieved by the replacement of conventional mechanical shutters with acousto-optic tunable filter (AOTF). The use of AOTF provides major advancement by controlling the intensities, duration, and selection of up to eight different wavelengths with microsecond alternation time in a transparent and easy manner for the end user. To our knowledge this is the first time AOTF is applied to wide-field total internal reflection fluorescence (TIRF) microscopy even though it has been commonly used in multi-wavelength confocal microscopy. The laser outputs from the combiner module are coupled to the microscopes by two sets of four single-mode optic fibers in order to allow for the optimization of the TIRF angle for each wavelength independently. The emission is split into two or four spectral channels to allow for the simultaneous detection of up to four different fluorophores of wide selection and using many possible excitation and photoactivation schemes. We demonstrate the performance of this new setup by conducting two-color alternating excitation single-molecule fluorescence resonance energy

  8. Peering into Cells One Molecule at a Time: Single-molecule and plasmon-enhanced fluorescence super-resolution imaging

    Science.gov (United States)

    Biteen, Julie

    2013-03-01

    Single-molecule fluorescence brings the resolution of optical microscopy down to the nanometer scale, allowing us to unlock the mysteries of how biomolecules work together to achieve the complexity that is a cell. This high-resolution, non-destructive method for examining subcellular events has opened up an exciting new frontier: the study of macromolecular localization and dynamics in living cells. We have developed methods for single-molecule investigations of live bacterial cells, and have used these techniques to investigate thee important prokaryotic systems: membrane-bound transcription activation in Vibrio cholerae, carbohydrate catabolism in Bacteroides thetaiotaomicron, and DNA mismatch repair in Bacillus subtilis. Each system presents unique challenges, and we will discuss the important methods developed for each system. Furthermore, we use the plasmon modes of bio-compatible metal nanoparticles to enhance the emissivity of single-molecule fluorophores. The resolution of single-molecule imaging in cells is generally limited to 20-40 nm, far worse than the 1.5-nm localization accuracies which have been attained in vitro. We use plasmonics to improve the brightness and stability of single-molecule probes, and in particular fluorescent proteins, which are widely used for bio-imaging. We find that gold-coupled fluorophores demonstrate brighter, longer-lived emission, yielding an overall enhancement in total photons detected. Ultimately, this results in increased localization accuracy for single-molecule imaging. Furthermore, since fluorescence intensity is proportional to local electromagnetic field intensity, these changes in decay intensity and rate serve as a nm-scale read-out of the field intensity. Our work indicates that plasmonic substrates are uniquely advantageous for super-resolution imaging, and that plasmon-enhanced imaging is a promising technique for improving live cell single-molecule microscopy.

  9. Single vesicle biochips for ultra-miniaturized nanoscale fluidics and single molecule bioscience.

    Science.gov (United States)

    Christensen, Andreas L; Lohr, Christina; Christensen, Sune M; Stamou, Dimitrios

    2013-09-21

    One of the major bottlenecks in the development of biochips is maintaining the structure and function of biomolecules when interfacing them with hard matter (glass, plastics, metals, etc.), a challenge that is exacerbated during miniaturization that inevitably increases the interface to volume ratio of these devices. Biochips based on immobilized vesicles circumvent this problem by encapsulating biomolecules in the protective environment of a lipid bilayer, thus minimizing interactions with hard surfaces. Here we review the development of biochips based on arrays of single nanoscale vesicles, their fabrication via controlled self-assembly, and their characterization using fluorescence microscopy. We also highlight their applications in selected fields such as nanofluidics and single molecule bioscience. Despite their great potential for improved biocompatibility, extreme miniaturization and high throughput, single vesicle biochips are still a niche technology that has yet to establish its commercial relevance.

  10. Electrons, Photons, and Force: Quantitative Single-Molecule Measurements from Physics to Biology

    Science.gov (United States)

    2011-01-01

    Single-molecule measurement techniques have illuminated unprecedented details of chemical behavior, including observations of the motion of a single molecule on a surface, and even the vibration of a single bond within a molecule. Such measurements are critical to our understanding of entities ranging from single atoms to the most complex protein assemblies. We provide an overview of the strikingly diverse classes of measurements that can be used to quantify single-molecule properties, including those of single macromolecules and single molecular assemblies, and discuss the quantitative insights they provide. Examples are drawn from across the single-molecule literature, ranging from ultrahigh vacuum scanning tunneling microscopy studies of adsorbate diffusion on surfaces to fluorescence studies of protein conformational changes in solution. PMID:21338175

  11. Electrons, photons, and force: quantitative single-molecule measurements from physics to biology.

    Science.gov (United States)

    Claridge, Shelley A; Schwartz, Jeffrey J; Weiss, Paul S

    2011-02-22

    Single-molecule measurement techniques have illuminated unprecedented details of chemical behavior, including observations of the motion of a single molecule on a surface, and even the vibration of a single bond within a molecule. Such measurements are critical to our understanding of entities ranging from single atoms to the most complex protein assemblies. We provide an overview of the strikingly diverse classes of measurements that can be used to quantify single-molecule properties, including those of single macromolecules and single molecular assemblies, and discuss the quantitative insights they provide. Examples are drawn from across the single-molecule literature, ranging from ultrahigh vacuum scanning tunneling microscopy studies of adsorbate diffusion on surfaces to fluorescence studies of protein conformational changes in solution.

  12. Regulation of DNA Metabolism by DNA-Binding Proteins Probed by Single Molecule Spectroscopy

    Science.gov (United States)

    2006-12-05

    Recent advances in single - molecule force spectroscopy of DNA make it possible to study the thermodynamics and kinetics of DNA binding proteins under...to transient single-stranded DNA regions due to thermal fluctuations. The model is used to analyze recent single - molecule spectroscopy data of this system.

  13. Rectifications in organic single-molecule diodes alkanethiolate-terminated heterocyclics

    Energy Technology Data Exchange (ETDEWEB)

    An, Yipeng, E-mail: ypan@htu.edu.cn [College of Physics and Electronic Engineering, Henan Normal University, Xinxiang 453007 (China); Zhang, Mengjun; Wang, Tianxing; Wang, Guangtao [College of Physics and Electronic Engineering, Henan Normal University, Xinxiang 453007 (China); Fu, Zhaoming, E-mail: fuzhm1979@163.com [College of Physics and Electronic Engineering, Henan Normal University, Xinxiang 453007 (China); Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2016-02-22

    Based on the non-equilibrium Green's function formalism combined with the ab initio density functional theory, we investigate the rectifying behaviors of the organic single-molecule S(CH{sub 2}){sub 11}-terminated with a variety of heterocyclics (i.e., BIPY, PHE, PHEPY, and PYR) coupled with two semi-infinite Au electrodes. Our quantum transport calculation results show that the BIPY and PHE nanojunctions show the high-efficiency rectifying effects. While, differently, the current–voltage (I–V) curves of PHEPY and PYR nanojunctions display the insulating and linear characters, respectively. The corresponding electronic transport mechanisms are analyzed in detail. Our calculation results demonstrate that these investigated organic single-molecule nanojunctions have the potential applications in rectifiers and molecular wires. - Highlights: • The organic single-molecule diodes S(CH{sub 2}){sub 11}-terminated with bipyridyl and phenanthroline groups present rectifying effects. • The S(CH{sub 2}){sub 11}-terminated with phenylpyridyl exhibit the insulating character. • The I–V curve of S(CH{sub 2}){sub 11}-terminated with pyrazinyl group presents well linear character.

  14. Studying the structural dynamics of bipedal DNA motors with single-molecule fluorescence spectroscopy.

    Science.gov (United States)

    Masoud, Rula; Tsukanov, Roman; Tomov, Toma E; Plavner, Noa; Liber, Miran; Nir, Eyal

    2012-07-24

    We present a test case example of a detailed single-molecule fluorescence study of one of the most sophisticated and complex DNA devices introduced to date, a recently published autonomous bipedal DNA motor. We used the diffusion-based single-molecule Förster resonance energy transfer technique, coupled to alternating laser excitation (sm-FRET-ALEX), to monitor the motor assembly and operation. The study included verification of the formation of the correct structures, and of the correct motor operation, determination of the formation and stepping reaction yields, and identification of side products. Finally, the mechanisms of the motor assembly and operation were elucidated by measuring the reaction kinetics profile of track-walker binding and of lifting of the walker's leg upon fuel addition. The profiles revealed a fast phase, in which about half of the reaction was completed, followed by a slow phase which adds somewhat to the yield, reflecting the incomplete motor assembly and operation identified in the equilibrium experiments. Although further study is needed to fully understand the reasons for the incomplete assembly and operation, this work demonstrates that single-molecule fluorescence, based on its ability to provide detailed in situ structural dynamics information, inaccessible for traditional methods, constitutes an excellent tool for chaperoning the development of DNA-based technology.

  15. Single-molecule live-cell imaging of bacterial DNA repair and damage tolerance.

    Science.gov (United States)

    Ghodke, Harshad; Ho, Han; van Oijen, Antoine M

    2018-02-19

    Genomic DNA is constantly under threat from intracellular and environmental factors that damage its chemical structure. Uncorrected DNA damage may impede cellular propagation or even result in cell death, making it critical to restore genomic integrity. Decades of research have revealed a wide range of mechanisms through which repair factors recognize damage and co-ordinate repair processes. In recent years, single-molecule live-cell imaging methods have further enriched our understanding of how repair factors operate in the crowded intracellular environment. The ability to follow individual biochemical events, as they occur in live cells, makes single-molecule techniques tremendously powerful to uncover the spatial organization and temporal regulation of repair factors during DNA-repair reactions. In this review, we will cover practical aspects of single-molecule live-cell imaging and highlight recent advances accomplished by the application of these experimental approaches to the study of DNA-repair processes in prokaryotes. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  16. Lab-on-a-chip technologies for single-molecule studies.

    Science.gov (United States)

    Zhao, Yanhui; Chen, Danqi; Yue, Hongjun; French, Jarrod B; Rufo, Joseph; Benkovic, Stephen J; Huang, Tony Jun

    2013-06-21

    Recent developments on various lab-on-a-chip techniques allow miniaturized and integrated devices to perform on-chip single-molecule studies. Fluidic-based platforms that utilize unique microscale fluidic behavior are capable of conducting single-molecule experiments with high sensitivities and throughputs, while biomolecular systems can be studied on-chip using techniques such as DNA curtains, magnetic tweezers, and solid-state nanopores. The advances of these on-chip single-molecule techniques lead to next-generation lab-on-a-chip devices, such as DNA transistors, and single-molecule real-time (SMRT) technology for rapid and low-cost whole genome DNA sequencing. In this Focus article, we will discuss some recent successes in the development of lab-on-a-chip techniques for single-molecule studies and expound our thoughts on the near future of on-chip single-molecule studies.

  17. Efficient unfolding pattern recognition in single molecule force spectroscopy data

    Directory of Open Access Journals (Sweden)

    Labudde Dirk

    2011-06-01

    Full Text Available Abstract Background Single-molecule force spectroscopy (SMFS is a technique that measures the force necessary to unfold a protein. SMFS experiments generate Force-Distance (F-D curves. A statistical analysis of a set of F-D curves reveals different unfolding pathways. Information on protein structure, conformation, functional states, and inter- and intra-molecular interactions can be derived. Results In the present work, we propose a pattern recognition algorithm and apply our algorithm to datasets from SMFS experiments on the membrane protein bacterioRhodopsin (bR. We discuss the unfolding pathways found in bR, which are characterised by main peaks and side peaks. A main peak is the result of the pairwise unfolding of the transmembrane helices. In contrast, a side peak is an unfolding event in the alpha-helix or other secondary structural element. The algorithm is capable of detecting side peaks along with main peaks. Therefore, we can detect the individual unfolding pathway as the sequence of events labeled with their occurrences and co-occurrences special to bR's unfolding pathway. We find that side peaks do not co-occur with one another in curves as frequently as main peaks do, which may imply a synergistic effect occurring between helices. While main peaks co-occur as pairs in at least 50% of curves, the side peaks co-occur with one another in less than 10% of curves. Moreover, the algorithm runtime scales well as the dataset size increases. Conclusions Our algorithm satisfies the requirements of an automated methodology that combines high accuracy with efficiency in analyzing SMFS datasets. The algorithm tackles the force spectroscopy analysis bottleneck leading to more consistent and reproducible results.

  18. Decoupling of the copper core in a single copperphthalocyanine molecule

    NARCIS (Netherlands)

    Kuzmin, M.; Kumar, Avijit; Poelsema, Bene; Zandvliet, Henricus J.W.

    2013-01-01

    Here, we show how a copper atom in a copperphthalocyanine (CuPc) molecule can be decoupled from its environment. This is realized by trapping the CuPc molecule between two adjacent nanowires that are 1.6 nm apart. Using low-temperature scanning tunnelling microscopy and spectroscopy, the structural

  19. Fluctuation in Interface and Electronic Structure of Single-Molecule Junctions Investigated by Current versus Bias Voltage Characteristics.

    Science.gov (United States)

    Isshiki, Yuji; Fujii, Shintaro; Nishino, Tomoaki; Kiguchi, Manabu

    2018-02-22

    Structural and electronic detail at the metal-molecule interface has a significant impact on the charge transport across the molecular junctions, but its precise understanding and control still remain elusive. On the single-molecule scale, the metal-molecule interface structures and relevant charge transport properties are subject to fluctuation, which contains fundamental science of the single-molecule transport and implication for manipulability of the transport properties in the electronic devices. Here, we present a comprehensive approach to investigate the fluctuation in the metal-molecule interface in single-molecule junctions, based on current-voltage (I-V) measurements in combination with first-principles simulation. Contrary to conventional molecular conductance studies, this I-V approach provides a correlated statistical description of both, the degree of electronic coupling across the metal-molecule interface, and the molecular orbital-energy level. This statistical approach was employed to study fluctuation in single-molecule junctions of 1,4-butanediamine (DAB), pyrazine (PY), 4,4'-bipyridine (BPY), and fullerene (C60). We demonstrate that molecular dependent fluctuation of σ-, π-, and π-plane- type interface can be captured by analyzing molecular orbital-energy (MO) level under mechanical perturbation. While the MO level of DAB with the σ-type interface shows weak distance dependence and fluctuation, the MO level of PY, BPY, and C60 features unique distance dependence and molecular dependent fluctuation against the mechanical perturbation. The MO level of PY and BPY with the σ+π-type interface increases with the increase in the stretch distance. In contrary, the MO level of C60 with the π-plane-type interface decreases with the increase in the stretching perturbation. This study provides an approach to resolve the structural and electronic fluctuation in the single-molecule junctions and insight into the molecular dependent fluctuation in the

  20. Single Molecule Detection Using a Silicon Nanopore-Nanotransistor Integrated Circuit

    Science.gov (United States)

    2006-01-01

    CONTRACT NUMBER Single Molecule Detection Using a Silicon Nanopore-Nanotransistor Integrated Circuit 5b.GRANTNUMBER FA9550-04-1-0214 5c. PROGRAMWELEMENT...electrolyte, and the small pore volume (-20nm 3), D (200mV) we suppose that each of these electrical (i) signatures is indicative of a single molecule 60...polynucleotide. Most of the experimental work using a nanopore W - as a transducer for single molecule detection uses electronics D - K borrowed from

  1. Single Molecule Effects of Osteogenesis Imperfecta Mutations in Tropocollagen Protein Domains

    Science.gov (United States)

    2008-12-02

    Single molecule effects of osteogenesis imperfecta mutations in tropocollagen protein domains Alfonso Gautieri,1,2 Simone Vesentini,2 Alberto...DATES COVERED 00-00-2008 to 00-00-2008 4. TITLE AND SUBTITLE Single molecule effects of osteogenesis imperfecta mutations in tropocollagen...already at the single molecule level. This is in contrast to recent studies of mutations related to muscle dys- trophies21 that have shown that the

  2. Giant Suppression of Photobleaching for Single Molecule Detection via the Purcell Effect

    Science.gov (United States)

    2013-11-18

    Giant Suppression of Photobleaching for Single Molecule Detection via the Purcell Effect Hu Cang,†,‡ Yongmin Liu,†,§,∥ Yuan Wang,† Xiaobo Yin,†,⊥ and...Purcell effect to manipulate photochemical reactions at the subwavelength scale. KEYWORDS: Nano-optics, single - molecule fluorescence spectroscopy...COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Giant Suppression of Photobleaching for Single Molecule Detection via the Purcell Effect

  3. Single Molecule Spectral Diffusion in a Solid Detected Via Fluorescence Spectroscopy

    Science.gov (United States)

    1991-10-15

    NO. NO ACCESSION NO. 11. TITLE (Include Security Classification) Single Molecule Spectral Diffusion In A Solid Detected Via Fluorescence Spectroscopy...and identify by block number) FIELD jGROUP SUB-GROUP_ Single molecule spectroscopy Precision detection Spectral diffusion, Pentacene in p-terphenyl 19... Single Molecule Spectral Diffusion ’n A Solid Detected Via Fluorescence Spectroscopy hy W. P. Ambrose, T. Basche, and W. E. Moerner

  4. Nonlinear and Nonsymmetric Single-Molecule Electronic Properties Towards Molecular Information Processing.

    Science.gov (United States)

    Tamaki, Takashi; Ogawa, Takuji

    2017-09-05

    This review highlights molecular design for nonlinear and nonsymmetric single-molecule electronic properties such as rectification, negative differential resistance, and switching, which are important components of future single-molecule information processing devices. Perspectives on integrated "molecular circuits" are also provided. Nonlinear and nonsymmetric single-molecule electronics can be designed by utilizing (1) asymmetric molecular cores, (2) asymmetric anchoring groups, (3) an asymmetric junction environment, and (4) asymmetric electrode materials. This review mainly focuses on the design of molecular cores.

  5. Deformation rate controls elasticity and unfolding pathway of single tropocollagen molecules.

    Science.gov (United States)

    Gautieri, Alfonso; Buehler, Markus J; Redaelli, Alberto

    2009-04-01

    Collagen is an important structural protein in vertebrates and is responsible for the integrity of many tissues like bone, teeth, cartilage and tendon. The mechanical properties of these tissues are primarily determined by their hierarchical arrangement and the role of the collagen matrix in their structures. Here we report a series of Steered Molecular Dynamics (SMD) simulations in explicit solvent, used to elucidate the influence of the pulling rate on the Young's modulus of individual tropocollagen molecules. We stretch a collagen peptide model sequence [(Gly-Pro-Hyp)(10)](3) with pulling rates ranging from 0.01 to 100 m/s, reaching much smaller deformation rates than reported in earlier SMD studies. Our results clearly demonstrate a strong influence of the loading velocity on the observed mechanical properties. Most notably, we find that Young's modulus converges to a constant value of approximately 4 GPa tangent modulus at 8% tensile strain when the initially crimped molecule is straightened out, for pulling rates below 0.5 m/s. This enables us for the first time to predict the elastic properties of a single tropocollagen molecule at physiologically and experimentally relevant pulling rates, directly from atomistic-level calculations. At deformation rates larger than 0.5 m/s, Young's modulus increases continuously and approaches values in excess of 15 GPa for deformation rates larger than 100 m/s. The analyses of the molecular deformation mechanisms show that the tropocollagen molecule unfolds in distinctly different ways, depending on the loading rate, which explains the observation of different values of Young's modulus at different loading rates. For low pulling rates, the triple helix first uncoils completely at 10%-20% strain, then undergoes some recoiling in the opposite direction, and finally straightens for strains larger than 30%. At intermediate rates, the molecule uncoils linearly with increasing strain up to 35% strain. Finally, at higher

  6. Label-Free Monitoring of Single Molecule Immunoreaction with a Nanopipette.

    Science.gov (United States)

    Yu, Ru-Jia; Ying, Yi-Lun; Hu, Yong-Xu; Gao, Rui; Long, Yi-Tao

    2017-08-15

    The nanopipette has been employed for the single molecule analysis due to its advantage of easy fabrication and controllable diameter. Herein, we present that the single molecule immunoreaction could be monitored by using the quartz nanopipette through the discrimination of characteristic blockade current, which reflect the intrinsic character of the individual unlabeled protein molecules due to its heterogeneous motion in solution. Our methods show the ability to monitor the immunoreaction between single α-fetal protein (AFP) and its specific antibody in aqueous solution without any labeling. Our studies may open a new door to comprehensively understand the single molecule immunoreaction, which gain more insight into the molecular dynamic of elementary steps.

  7. Central dogma at the single-molecule level in living cells.

    Science.gov (United States)

    Li, Gene-Wei; Xie, X Sunney

    2011-07-20

    Gene expression originates from individual DNA molecules within living cells. Like many single-molecule processes, gene expression and regulation are stochastic, that is, sporadic in time. This leads to heterogeneity in the messenger-RNA and protein copy numbers in a population of cells with identical genomes. With advanced single-cell fluorescence microscopy, it is now possible to quantify transcriptomes and proteomes with single-molecule sensitivity. Dynamic processes such as transcription-factor binding, transcription and translation can be monitored in real time, providing quantitative descriptions of the central dogma of molecular biology and the demonstration that a stochastic single-molecule event can determine the phenotype of a cell.

  8. Nanofluidic laboratory-on-chip device for mapping of single molecule DNA extracted from single cells

    Science.gov (United States)

    Mahshid, Sara; Berard, Daniel; Sladek, Robert; Leslie, Sabrina; Reisner, Walter

    2014-03-01

    The aim of this project is to create a nanofluidic platform to provide comprehensive maps of single-cell genomes at 1 kbp resolution based on the direct analysis of single 1-10 Mbp extended DNA molecules extracted from individual cells on-chip. We have developed a nanodevice in which all biochemical processing of single cells (cell lysis, DNA purification and fragmentation) is performed in situ. The platform has the following three components: (1) a micro-cavity (50 ×20 micron in dimension) for trapping and biochemical processing of single cells; (2) post arrays (1 micron depth) for untangling the released genomic contents and (3) parallel nanochannel arrays (100 nm) for extension of ~ 1-10 Mbp DNA for high-throughput optical mapping. Moreover, we use ``Convex Lense-Induced Nanoconfinement'' (CLIC) technique for trapping of single cell and dragging DNA into nanochannels. The principle is that a convex lens is pushed down to deform a flexible coverslip lid above the aforesaid platform containing nano/micro patterns, creating a locally confined region that pins molecules in the embedded nano/micro features. CLIC is used to lower the device lid over a cell isolated in the microcavity with an adjustable gap for buffer exchange. The released DNA is untangled using 1 micron-deep post arrays and driven into nanochannel array where its genomic content is revealed. In particular, using CLIC we were able to successfully trap 20 micron lymphoblast cells inside microcavity and lyse the trapped cell to drive out DNA.

  9. Stereoelectronic Effect-Induced Conductance Switching in Aromatic Chain Single-Molecule Junctions.

    Science.gov (United States)

    Xin, Na; Wang, Jinying; Jia, Chuancheng; Liu, Zitong; Zhang, Xisha; Yu, Chenmin; Li, Mingliang; Wang, Shuopei; Gong, Yao; Sun, Hantao; Zhang, Guanxin; Liu, Zhirong; Zhang, Guangyu; Liao, Jianhui; Zhang, Deqing; Guo, Xuefeng

    2017-02-08

    Biphenyl, as the elementary unit of organic functional materials, has been widely used in electronic and optoelectronic devices. However, over decades little has been fundamentally understood regarding how the intramolecular conformation of biphenyl dynamically affects its transport properties at the single-molecule level. Here, we establish the stereoelectronic effect of biphenyl on its electrical conductance based on the platform of graphene-molecule single-molecule junctions, where a specifically designed hexaphenyl aromatic chain molecule is covalently sandwiched between nanogapped graphene point contacts to create stable single-molecule junctions. Both theoretical and temperature-dependent experimental results consistently demonstrate that phenyl twisting in the aromatic chain molecule produces different microstates with different degrees of conjugation, thus leading to stochastic switching between high- and low-conductance states. These investigations offer new molecular design insights into building functional single-molecule electrical devices.

  10. A Single Molecule Study of Two Bacteriophage Epigenetic Switches

    Science.gov (United States)

    Wang, Haowei

    Epigenetic switches allow organisms to evolve into different states by activating/repressing different sets of genes without mutations of the underlying DNA sequence. The study of epigenetic switches is very important to understand the mechanism of human development, the origin of cancer, mental illness and fundamental processes such as gene regulation. The coliphage lambda epigenetic switch, which allows switching from lysogeny to lysis, has been studied for more than 50 years as a paradigm, and has recently received renewed attention. Atomic force microscopy (AFM) was used here to show that the lambda repressor oligomerizes on DNA, primarily as a dodecamer, to secure a DNA loop, which is the basis of the lambda switch. This study also provides support for the idea that specifically bound repressor stabilizes adjacent, non-specifically bound repressor molecules, which confers robustness to the switch. 186 is a member of a different coliphage family. One of the major differences between the two coliphage families is that lambda phages can be induced to switch from the lysogenic to the lytic state by UV radiation, but most coliphages of P2 family, to which 186 belongs, cannot. Interaction between coliphage 186 repressor and DNA is characterized by AFM and tethered particle motion (TPM). To expedite analysis of the AFM data, MatLab codes were written to automate the laborious, manual tracing procedures. The programs automatically recognize DNA segments and protein particles in an image, in order to measure the DNA length and position of bound particles as well as their height, diameter and volume. Application of these algorithms greatly improved the efficiency of AFM analysis. It was showed that 186 CI dimers form heptameric wheels, which induce DNA wrapping and different kinds of DNA looping producing various conformations of nucleoprotein complexes. Information about the dynamics of DNA wrapping and looping on 186 CI particles was also obtained by TPM.

  11. Single molecule high-throughput footprinting of small and large DNA ligands.

    Science.gov (United States)

    Manosas, Maria; Camunas-Soler, Joan; Croquette, Vincent; Ritort, Felix

    2017-08-21

    Most DNA processes are governed by molecular interactions that take place in a sequence-specific manner. Determining the sequence selectivity of DNA ligands is still a challenge, particularly for small drugs where labeling or sequencing methods do not perform well. Here, we present a fast and accurate method based on parallelized single molecule magnetic tweezers to detect the sequence selectivity and characterize the thermodynamics and kinetics of binding in a single assay. Mechanical manipulation of DNA hairpins with an engineered sequence is used to detect ligand binding as blocking events during DNA unzipping, allowing determination of ligand selectivity both for small drugs and large proteins with nearly base-pair resolution in an unbiased fashion. The assay allows investigation of subtle details such as the effect of flanking sequences or binding cooperativity. Unzipping assays on hairpin substrates with an optimized flat free energy landscape containing all binding motifs allows determination of the ligand mechanical footprint, recognition site, and binding orientation.Mapping the sequence specificity of DNA ligands remains a challenge, particularly for small drugs. Here the authors develop a parallelized single molecule magnetic tweezers approach using engineered DNA hairpins that can detect sequence selectivity, thermodynamics and kinetics of binding for small drugs and large proteins.

  12. Studies of G-quadruplex DNA structures at the single molecule level

    DEFF Research Database (Denmark)

    Kragh, Sofie Louise

    2015-01-01

    Folding of G-quaduplex structures adopted by the human telomeric repeat is here studied by single molecule FRET microscopy. This method allows for the investigation of G-quadruplex structures and their conformational dynamic. Telomeres are located at the ends of our chromosomes and end in a single...... range. FRET spectroscopy can be performed on an ensemble of molecules, or on the single molecule level. In single molecule FRET experiments it is possible to follow the behaviour in time for each molecule independently, allowing insight into both dynamically and statistically heterogeneous molecular...... populations and thus providing more information than traditional ensemble experiments. Using single molecule FRET microscopy different aspects of G-quadruplex folding were investigated. We have obtained direct insight into G-quadruplex structural polymorphism both in K+ and Na+ solutions. Polymorphism have...

  13. Multichannel conductance of folded single-molecule wires aided by through-space conjugation.

    Science.gov (United States)

    Chen, Long; Wang, Ya-Hao; He, Bairong; Nie, Han; Hu, Rongrong; Huang, Fei; Qin, Anjun; Zhou, Xiao-Shun; Zhao, Zujin; Tang, Ben Zhong

    2015-03-27

    Deciphering charge transport through multichannel pathways in single-molecule junctions is of high importance to construct nanoscale electronic devices and deepen insight into biological redox processes. Herein, we report two tailor-made folded single-molecule wires featuring intramolecular π-π stacking interactions. The scanning tunneling microscope (STM) based break-junction technique and theoretical calculations show that through-bond and through-space conjugations are integrated into one single-molecule wire, allowing for two simultaneous conducting channels in a single-molecule junction. These folded molecules with stable π-π stacking interaction offer conceptual advances in single-molecule multichannel conductance, and are perfect models for conductance studies in biological systems, organic thin films, and π-stacked columnar aggregates. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Low-temperature single-molecule spectroscopy on photosynthetic pigment-protein complexes from purple bacteria.

    Science.gov (United States)

    Oellerich, Silke; Köhler, Jürgen

    2009-01-01

    The primary reactions of purple bacterial photosynthesis take place within two well characterized pigment-protein complexes, the core Reaction Center-Light Harvesting 1 (RC-LH1) complex and the more peripheral Light Harvesting 2 (LH2) complex. These antenna complexes serve to absorb incident solar radiation and to transfer it to the reaction-centers, where it is used to 'power' the photosynthetic redox reaction. This review provides an overview of how the character of the electronically excited states of these pigment-protein complexes are determined by quantum mechanics and how the respective spectral signatures can be observed by single-molecule spectroscopy.

  15. Simultaneous Single-Molecule Force and Fluorescence Sampling of DNA Nanostructure Conformations Using Magnetic Tweezers.

    Science.gov (United States)

    Kemmerich, Felix E; Swoboda, Marko; Kauert, Dominik J; Grieb, M Svea; Hahn, Steffen; Schwarz, Friedrich W; Seidel, Ralf; Schlierf, Michael

    2016-01-13

    We present a hybrid single-molecule technique combining magnetic tweezers and Förster resonance energy transfer (FRET) measurements. Through applying external forces to a paramagnetic sphere, we induce conformational changes in DNA nanostructures, which are detected in two output channels simultaneously. First, by tracking a magnetic bead with high spatial and temporal resolution, we observe overall DNA length changes along the force axis. Second, the measured FRET efficiency between two fluorescent probes monitors local conformational changes. The synchronized orthogonal readout in different observation channels will facilitate deciphering the complex mechanisms of biomolecular machines.

  16. Robust spin crossover and memristance across a single molecule

    National Research Council Canada - National Science Library

    Miyamachi, Toshio; Gruber, Manuel; Davesne, Vincent; Bowen, Martin; Boukari, Samy; Joly, Loïc; Scheurer, Fabrice; Rogez, Guillaume; Yamada, Toyo Kazu; Ohresser, Philippe; Beaurepaire, Eric; Wulfhekel, Wulf

    2012-01-01

    .... Although the switching process can be detected electrically in the form of a change in the molecule's conductance, adding spin functionality to molecular switches is a key concept for realizing...

  17. Forces and conductances in a single-molecule bipyridine junction

    DEFF Research Database (Denmark)

    Stadler, Robert; Thygesen, Kristian Sommer; Jacobsen, Karsten Wedel

    2005-01-01

    Inspired by recent measurements of forces and conductances of bipyridine nanojunctions, we have performed density functional theory calculations of structure and electron transport in a bipyridine molecule attached between gold electrodes for seven different contact geometries. The calculations s...

  18. Enrichment of megabase-sized DNA molecules for single-molecule optical mapping and next-generation sequencing

    DEFF Research Database (Denmark)

    Łopacińska-Jørgensen, Joanna M; Pedersen, Jonas Nyvold; Bak, Mads

    2017-01-01

    here we introduce a method for selection and enrichment of megabase-sized DNA molecules intended for single-molecule optical mapping: DNA from a human cell line is digested by the NotI rare-cutting enzyme and size-selected by pulsed-field gel electrophoresis. For demonstration, more than 600 sub...... demonstrate that the unannotated genome can be characterized in a locus-specific manner via molecules partially overlapping with the annotated genome. The method is a promising tool for investigation of structural variants in enriched human genomic regions for both research and diagnostic purposes. Our...

  19. Quantitative Limits on Small Molecule Transport via the Electropermeome - Measuring and Modeling Single Nanosecond Perturbations.

    Science.gov (United States)

    Sözer, Esin B; Levine, Zachary A; Vernier, P Thomas

    2017-03-03

    The detailed molecular mechanisms underlying the permeabilization of cell membranes by pulsed electric fields (electroporation) remain obscure despite decades of investigative effort. To advance beyond descriptive schematics to the development of robust, predictive models, empirical parameters in existing models must be replaced with physics- and biology-based terms anchored in experimental observations. We report here absolute values for the uptake of YO-PRO-1, a small-molecule fluorescent indicator of membrane integrity, into cells after a single electric pulse lasting only 6 ns. We correlate these measured values, based on fluorescence microphotometry of hundreds of individual cells, with a diffusion-based geometric analysis of pore-mediated transport and with molecular simulations of transport across electropores in a phospholipid bilayer. The results challenge the "drift and diffusion through a pore" model that dominates conventional explanatory schemes for the electroporative transfer of small molecules into cells and point to the necessity for a more complex model.

  20. Going Vertical To Improve the Accuracy of Atomic Force Microscopy Based Single-Molecule Force Spectroscopy.

    Science.gov (United States)

    Walder, Robert; Van Patten, William J; Adhikari, Ayush; Perkins, Thomas T

    2018-01-23

    Single-molecule force spectroscopy (SMFS) is a powerful technique to characterize the energy landscape of individual proteins, the mechanical properties of nucleic acids, and the strength of receptor-ligand interactions. Atomic force microscopy (AFM)-based SMFS benefits from ongoing progress in improving the precision and stability of cantilevers and the AFM itself. Underappreciated is that the accuracy of such AFM studies remains hindered by inadvertently stretching molecules at an angle while measuring only the vertical component of the force and extension, degrading both measurements. This inaccuracy is particularly problematic in AFM studies using double-stranded DNA and RNA due to their large persistence length (p ≈ 50 nm), often limiting such studies to other SMFS platforms (e.g., custom-built optical and magnetic tweezers). Here, we developed an automated algorithm that aligns the AFM tip above the DNA's attachment point to a coverslip. Importantly, this algorithm was performed at low force (10-20 pN) and relatively fast (15-25 s), preserving the connection between the tip and the target molecule. Our data revealed large uncorrected lateral offsets for 100 and 650 nm DNA molecules [24 ± 18 nm (mean ± standard deviation) and 180 ± 110 nm, respectively]. Correcting this offset yielded a 3-fold improvement in accuracy and precision when characterizing DNA's overstretching transition. We also demonstrated high throughput by acquiring 88 geometrically corrected force-extension curves of a single individual 100 nm DNA molecule in ∼40 min and versatility by aligning polyprotein- and PEG-based protein-ligand assays. Importantly, our software-based algorithm was implemented on a commercial AFM, so it can be broadly adopted. More generally, this work illustrates how to enhance AFM-based SMFS by developing more sophisticated data-acquisition protocols.

  1. Hydrogel Droplet Microfluidics for High-Throughput Single Molecule/Cell Analysis.

    Science.gov (United States)

    Zhu, Zhi; Yang, Chaoyong James

    2017-01-17

    Heterogeneity among individual molecules and cells has posed significant challenges to traditional bulk assays, due to the assumption of average behavior, which would lose important biological information in heterogeneity and result in a misleading interpretation. Single molecule/cell analysis has become an important and emerging field in biological and biomedical research for insights into heterogeneity between large populations at high resolution. Compared with the ensemble bulk method, single molecule/cell analysis explores the information on time trajectories, conformational states, and interactions of individual molecules/cells, all key factors in the study of chemical and biological reaction pathways. Various powerful techniques have been developed for single molecule/cell analysis, including flow cytometry, atomic force microscopy, optical and magnetic tweezers, single-molecule fluorescence spectroscopy, and so forth. However, some of them have the low-throughput issue that has to analyze single molecules/cells one by one. Flow cytometry is a widely used high-throughput technique for single cell analysis but lacks the ability for intercellular interaction study and local environment control. Droplet microfluidics becomes attractive for single molecule/cell manipulation because single molecules/cells can be individually encased in monodisperse microdroplets, allowing high-throughput analysis and manipulation with precise control of the local environment. Moreover, hydrogels, cross-linked polymer networks that swell in the presence of water, have been introduced into droplet microfluidic systems as hydrogel droplet microfluidics. By replacing an aqueous phase with a monomer or polymer solution, hydrogel droplets can be generated on microfluidic chips for encapsulation of single molecules/cells according to the Poisson distribution. The sol-gel transition property endows the hydrogel droplets with new functionalities and diversified applications in single

  2. Single banking supervision and the single supervisory mechanism

    Directory of Open Access Journals (Sweden)

    Gheorghe, C. A.

    2013-06-01

    Full Text Available A resolution seems to have been found for the banking crisis. The first steps have been made towards the construction of the Economic and Monetary Union, steps involving the single supervision of banks, in order to avoid the discount of a new financial crisis on the expense of the EU state members. The Single Supervisory Mechanism – SSM is to become effective as of March 1, 2014, at the earliest.

  3. Biophysics of DNA-Protein Interactions From Single Molecules to Biological Systems

    CERN Document Server

    Williams, Mark C

    2011-01-01

    This book presents a concise overview of current research on the biophysics of DNA-protein interactions. A wide range of new and classical methods are presented by authors investigating physical mechanisms by which proteins interact with DNA. For example, several chapters address the mechanisms by which proteins search for and recognize specific binding sites on DNA, a process critical for cellular function. Single molecule methods such as force spectroscopy as well as fluorescence imaging and tracking are described in these chapters as well as other parts of the book that address the dynamics of protein-DNA interactions. Other important topics include the mechanisms by which proteins engage DNA sequences and/or alter DNA structure. These simple but important model interactions are then placed in the broader biological context with discussion of larger protein-DNA complexes . Topics include replication forks, recombination complexes, DNA repair interactions, and ultimately, methods to understand the chromatin...

  4. Label-free in-flow detection of single DNA molecules using glass nanopipettes.

    Science.gov (United States)

    Gong, Xiuqing; Patil, Amol V; Ivanov, Aleksandar P; Kong, Qingyuan; Gibb, Thomas; Dogan, Fatma; deMello, Andrew J; Edel, Joshua B

    2014-01-07

    With the view of enhancing the functionality of label-free single molecule nanopore-based detection, we have designed and developed a highly robust, mechanically stable, integrated nanopipette-microfluidic device which combines the recognized advantages of microfluidic systems and the unique properties/advantages of nanopipettes. Unlike more typical planar solid-state nanopores, which have inherent geometrical constraints, nanopipettes can be easily positioned at any point within a microfluidic channel. This is highly advantageous, especially when taking into account fluid flow properties. We show that we are able to detect and discriminate between DNA molecules of varying lengths when motivated through a microfluidic channel, upon the application of appropriate voltage bias across the nanopipette. The effects of applied voltage and volumetric flow rates have been studied to ascertain translocation event frequency and capture rate. Additionally, by exploiting the advantages associated with microfluidic systems (such as flow control and concomitant control over analyte concentration/presence), we show that the technology offers a new opportunity for single molecule detection and recognition in microfluidic devices.

  5. Applications of a single-molecule detection in early disease diagnosis and enzymatic reaction study

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jiangwei [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    Various single-molecule techniques were utilized for ultra-sensitive early diagnosis of viral DNA and antigen and basic mechanism study of enzymatic reactions. DNA of human papilloma virus (HPV) served as the screening target in a flow system. Alexa Fluor 532 (AF532) labeled single-stranded DNA probes were hybridized to the target HPV-16 DNA in solution. The individual hybridized molecules were imaged with an intensified charge-coupled device (ICCD) in two ways. In the single-color mode, target molecules were detected via fluorescence from hybridized probes only. This system could detect HPV-16 DNA in the presence of human genomic DNA down to 0.7 copy/cell and had a linear dynamic range of over 6 orders of magnitude. In the dual-color mode, fluorescence resonance energy transfer (FRET) was employed to achieve zero false-positive count. We also showed that DNA extracts from Pap test specimens did not interfere with the system. A surface-based method was used to improve the throughput of the flow system. HPV-16 DNA was hybridized to probes on a glass surface and detected with a total internal reflection fluorescence (TIRF) microscope. In the single-probe mode, the whole genome and target DNA were fluorescently labeled before hybridization, and the detection limit is similar to the flow system. In the dual-probe mode, a second probe was introduced. The linear dynamic range covers 1.44-7000 copies/cell, which is typical of early infection to near-cancer stages. The dual-probe method was tested with a crudely prepared sample. Even with reduced hybridization efficiency caused by the interference of cellular materials, we were still able to differentiate infected cells from healthy cells. Detection and quantification of viral antigen with a novel single-molecule immunosorbent assay (SMISA) was achieved. Antigen from human immunodeficiency virus type 1(HIV-1) was chosen to be the target in this study. The target was sandwiched between a monoclonal capture antibody and a

  6. Single homopolypeptide chains collapse into mechanically rigid conformations

    OpenAIRE

    Dougan, Lorna; Li, Jingyuan; Badilla, Carmen L.; Berne, B. J.; Fernandez, Julio M.

    2009-01-01

    Huntington's disease is linked to the insertion of glutamine (Q) in the protein huntingtin, resulting in polyglutamine (polyQ) expansions that self-associate to form aggregates. While polyQ aggregation has been the subject of intense study, a correspondingly thorough understanding of individual polyQ chains is lacking. Here we demonstrate a single molecule force-clamp technique that directly probes the mechanical properties of single polyQ chains. We have made polyQ constructs of varying leng...

  7. Conserved linear dynamics of single-molecule Brownian motion

    KAUST Repository

    Serag, Maged F.

    2017-06-06

    Macromolecular diffusion in homogeneous fluid at length scales greater than the size of the molecule is regarded as a random process. The mean-squared displacement (MSD) of molecules in this regime increases linearly with time. Here we show that non-random motion of DNA molecules in this regime that is undetectable by the MSD analysis can be quantified by characterizing the molecular motion relative to a latticed frame of reference. Our lattice occupancy analysis reveals unexpected sub-modes of motion of DNA that deviate from expected random motion in the linear, diffusive regime. We demonstrate that a subtle interplay between these sub-modes causes the overall diffusive motion of DNA to appear to conform to the linear regime. Our results show that apparently random motion of macromolecules could be governed by non-random dynamics that are detectable only by their relative motion. Our analytical approach should advance broad understanding of diffusion processes of fundamental relevance.

  8. Single-Molecule FRET to Measure Conformational Dynamics of DNA Mismatch Repair Proteins.

    Science.gov (United States)

    Gauer, J W; LeBlanc, S; Hao, P; Qiu, R; Case, B C; Sakato, M; Hingorani, M M; Erie, D A; Weninger, K R

    2016-01-01

    Single-molecule FRET measurements have a unique sensitivity to protein conformational dynamics. The FRET signals can either be interpreted quantitatively to provide estimates of absolute distance in a molecule configuration or can be qualitatively interpreted as distinct states, from which quantitative kinetic schemes for conformational transitions can be deduced. Here we describe methods utilizing single-molecule FRET to reveal the conformational dynamics of the proteins responsible for DNA mismatch repair. Experimental details about the proteins, DNA substrates, fluorescent labeling, and data analysis are included. The complementarity of single molecule and ensemble kinetic methods is discussed as well. © 2016 Elsevier Inc. All rights reserved.

  9. [Interactions of DNA bases with individual water molecules. Molecular mechanics and quantum mechanics computation results vs. experimental data].

    Science.gov (United States)

    Gonzalez, E; Lino, J; Deriabina, A; Herrera, J N F; Poltev, V I

    2013-01-01

    To elucidate details of the DNA-water interactions we performed the calculations and systemaitic search for minima of interaction energy of the systems consisting of one of DNA bases and one or two water molecules. The results of calculations using two force fields of molecular mechanics (MM) and correlated ab initio method MP2/6-31G(d, p) of quantum mechanics (QM) have been compared with one another and with experimental data. The calculations demonstrated a qualitative agreement between geometry characteristics of the most of local energy minima obtained via different methods. The deepest minima revealed by MM and QM methods correspond to water molecule position between two neighbor hydrophilic centers of the base and to the formation by water molecule of hydrogen bonds with them. Nevertheless, the relative depth of some minima and peculiarities of mutual water-base positions in' these minima depend on the method used. The analysis revealed insignificance of some differences in the results of calculations performed via different methods and the importance of other ones for the description of DNA hydration. The calculations via MM methods enable us to reproduce quantitatively all the experimental data on the enthalpies of complex formation of single water molecule with the set of mono-, di-, and trimethylated bases, as well as on water molecule locations near base hydrophilic atoms in the crystals of DNA duplex fragments, while some of these data cannot be rationalized by QM calculations.

  10. Automation of a single-DNA molecule stretching device

    DEFF Research Database (Denmark)

    Sørensen, Kristian Tølbøl; Lopacinska, Joanna M.; Tommerup, Niels

    2015-01-01

    We automate the manipulation of genomic-length DNA in a nanofluidic device based on real-time analysis of fluorescence images. In our protocol, individual molecules are picked from a microchannel and stretched with pN forces using pressure driven flows. The millimeter-long DNA fragments free......, we demonstrate how to estimate the length of molecules by continuous real-time image stitching and how to increase the effective resolution of a pressure controller by pulse width modulation. The sequence of image-processing steps addresses the challenges of genomic-length DNA visualization; however...

  11. First Principles Study on the Interaction Mechanisms of Water Molecules on TiO₂ Nanotubes.

    Science.gov (United States)

    Dai, Jianhong; Song, Yan

    2016-12-16

    The adsorption properties of water molecules on TiO₂ nanotubes (TiO₂NT) and the interaction mechanisms between water molecules are studied by first principles calculations. The adsorption preferences of water molecules in molecular or dissociated states on clean and H-terminated TiO₂NT are evaluated. Adsorption of OH clusters on (0, 6) and (9, 0) TiO₂ nanotubes are first studied. The smallest adsorption energies are -1.163 eV and -1.383 eV, respectively, by examining five different adsorption sites on each type of tube. Eight and six adsorption sites were considered for OH adsorbtion on the H terminated (0, 6) and (9, 0) nanotubes. Water molecules are reformed with the smallest adsorption energy of -4.796 eV on the former and of -5.013 eV on the latter nanotube, respectively. For the adsorption of a single water molecule on TiO₂NT, the molecular state shows the strongest adsorption preference with an adsorption energy of -0.660 eV. The adsorption of multiple (two and three) water molecules on TiO₂NT is also studied. The calculated results show that the interactions between water molecules greatly affect their adsorption properties. Competition occurs between the molecular and dissociated states. The electronic structures are calculated to clarify the interaction mechanisms between water molecules and TiO₂NT. The bonding interactions between H from water and oxygen from TiO₂NT may be the reason for the dissociation of water on TiO₂NT.

  12. First Principles Study on the Interaction Mechanisms of Water Molecules on TiO2 Nanotubes

    Science.gov (United States)

    Dai, Jianhong; Song, Yan

    2016-01-01

    The adsorption properties of water molecules on TiO2 nanotubes (TiO2NT) and the interaction mechanisms between water molecules are studied by first principles calculations. The adsorption preferences of water molecules in molecular or dissociated states on clean and H-terminated TiO2NT are evaluated. Adsorption of OH clusters on (0, 6) and (9, 0) TiO2 nanotubes are first studied. The smallest adsorption energies are −1.163 eV and −1.383 eV, respectively, by examining five different adsorption sites on each type of tube. Eight and six adsorption sites were considered for OH adsorbtion on the H terminated (0, 6) and (9, 0) nanotubes. Water molecules are reformed with the smallest adsorption energy of −4.796 eV on the former and of −5.013 eV on the latter nanotube, respectively. For the adsorption of a single water molecule on TiO2NT, the molecular state shows the strongest adsorption preference with an adsorption energy of −0.660 eV. The adsorption of multiple (two and three) water molecules on TiO2NT is also studied. The calculated results show that the interactions between water molecules greatly affect their adsorption properties. Competition occurs between the molecular and dissociated states. The electronic structures are calculated to clarify the interaction mechanisms between water molecules and TiO2NT. The bonding interactions between H from water and oxygen from TiO2NT may be the reason for the dissociation of water on TiO2NT. PMID:28774138

  13. Injection molded nanofluidic chips: Fabrication method and functional tests using single-molecule DNA experiments

    DEFF Research Database (Denmark)

    Utko, Pawel; Persson, Karl Fredrik; Kristensen, Anders

    2011-01-01

    We demonstrate that fabrication of nanofluidic systems can be greatly simplified by injection molding of polymers. We functionally test our devices by single-molecule DNA experiments in nanochannels.......We demonstrate that fabrication of nanofluidic systems can be greatly simplified by injection molding of polymers. We functionally test our devices by single-molecule DNA experiments in nanochannels....

  14. Electrochemical detection of single molecules using abiotic nanopores having electrically tunable dimensions

    Science.gov (United States)

    Sansinena, Jose-Maria [Los Alamos, NM; Redondo, Antonio [Los Alamos, NM; Olazabal, Virginia [Los Alamos, NM; Hoffbauer, Mark A [Los Alamos, NM; Akhadov, Elshan A [Los Alamos, NM

    2009-12-29

    A barrier structure for use in an electrochemical stochastic membrane sensor for single molecule detection. The sensor is based upon inorganic nanopores having electrically tunable dimensions. The inorganic nanopores are formed from inorganic materials and an electrically conductive polymer. Methods of making the barrier structure and sensing single molecules using the barrier structure are also described.

  15. Single Molecule Source Reagents for Chemical Vapor Deposition of B- Silicon Carbide

    Science.gov (United States)

    1992-12-10

    Phase I conclusively showed the feasibility of rational design of single molecule -source reagents that could lead to improvements in the chemical...vapor deposition of stoichiometric Beta silicon carbide. Four single molecule sources were synthesized, their decomposition pathways studied, and their

  16. Designing Rugged Single Molecule Detectors for Stochastic Sensing: A Biological Surface Science Approach

    Science.gov (United States)

    2003-06-19

    This project involved the use of supported phospholipid bilayers to design a new generation of highly rugged single molecule sensors devices. The...devices employed alpha-hemolysin, a pore forming protein, as a single molecule transducer element. Our studies demonstrated that this ion channel could

  17. Electrochemical detection of single molecules using abiotic nanopores having electrically tunable dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Sansinena, Jose-Maria; Redondo, Antonio; Olazabal, Virginia; Hoffbauer, Mark A.; Akhadov, Elshan A.

    2017-07-18

    A barrier structure for use in an electrochemical stochastic membrane sensor for single molecule detection. The sensor is based upon inorganic nanopores having electrically tunable dimensions. The inorganic nanopores are formed from inorganic materials and an electrically conductive polymer. Methods of making the barrier structure and sensing single molecules using the barrier structure are also described.

  18. Recent Advances in Biological Single-Molecule Applications of Optical Tweezers and Fluorescence Microscopy

    NARCIS (Netherlands)

    Hashemi Shabestari, M; Meijering, A E C; Roos, W H; Wuite, G J L; Peterman, E J G

    2017-01-01

    Over the past two decades, single-molecule techniques have evolved into robust tools to study many fundamental biological processes. The combination of optical tweezers with fluorescence microscopy and microfluidics provides a powerful single-molecule manipulation and visualization technique that

  19. How accurately can a single molecule be localized in three dimensions using a fluorescence microscope?

    Science.gov (United States)

    Ram, Sripad; Ward, E Sally; Ober, Raimund J

    2005-01-01

    Single molecule fluorescence microscopy is a relatively novel technique that is used, for example, to study the behavior of individual biomolecules in cells. Since a single molecule can move in all three dimensions in a cellular environment, the three dimensional tracking of single molecules can provide valuable insights into cellular processes. It is therefore of importance to know the accuracy with which the location of a single molecule can be determined with a fluorescence microscope. We study this performance limit of a fluorescence microscope from a statistical point of view by deriving the Fisher information matrix for the estimation problem of the location of the single molecule. In this way we obtain a lower bound on the standard deviation of any reasonable (unbiased) estimation method of the location parameters. This lower bound provides a fundamental limit on the accuracy with which a single molecule can be localized using a fluorescence microscope and is given in terms of such quantities as the photon detection rate of the single molecule, the acquisition time, the numerical aperture of the objective lens etc. We also present results that show how factors such as noise sources, detector size and pixelation deteriorate the fundamental limit of the localization accuracy. The present results can be used to evaluate and optimize experimental setups in order to carry out three dimensional single molecule tracking experiments and provide guidelines for experimental design.

  20. Evidence for a single hydrogen molecule connected by an atomic chain

    DEFF Research Database (Denmark)

    Kiguchi, M.; Stadler, Robert; Bækgaard, Iben Sig Buur

    2007-01-01

    Stable, single-molecule conducting-bridge configurations are typically identified from peak structures in a conductance histogram. In previous work on Pt with H-2 at cryogenic temperatures it has been shown that a peak near 1G(0) identifies a single-molecule Pt-H-2-Pt bridge. The histogram shows ...

  1. Electrochemical detection of single molecules using abiotic nanopores having electrically tunable dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Sansinena, Jose-Maria; Redondo, Antonio; Olazabal, Virginia; Hoffbauer, Mark A.; Akhadov, Elshan A.

    2017-10-31

    A barrier structure for use in an electrochemical stochastic membrane sensor for single molecule detection. The sensor is based upon inorganic nanopores having electrically tunable dimensions. The inorganic nanopores are formed from inorganic materials and an electrically conductive polymer. Methods of making the barrier structure and sensing single molecules using the barrier structure are also described.

  2. Structural and electronic properties of single molecules and organic layers on surfaces

    NARCIS (Netherlands)

    Sotthewes, Kai

    2016-01-01

    Single molecules and organic layers on well-defined solid surfaces have attracted tremendous attention owing to their interesting physical and chemical properties. The ultimate utility of single molecules or self-assembled monolayers (SAMs) for potential applications is critically dependent on the

  3. Electrochemical detection of single molecules using abiotic nanopores having electrically tunable dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Sansinena, Jose-Maria; Redondo, Antonio; Olazabal, Virginia; Hoffbauer, Mark A.

    2017-09-12

    A barrier structure for use in an electrochemical stochastic membrane sensor for single molecule detection. The sensor is based upon inorganic nanopores having electrically tunable dimensions. The inorganic nanopores are formed from inorganic materials and an electrically conductive polymer. Methods of making the barrier structure and sensing single molecules using the barrier structure are also described.

  4. Camera-based single-molecule FRET detection with improved time resolution

    NARCIS (Netherlands)

    Farooq, S.; Hohlbein, J.C.

    2015-01-01

    The achievable time resolution of camera-based single-molecule detection is often limited by the frame rate of the camera. Especially in experiments utilizing single-molecule Fo¨rster resonance energy transfer (smFRET) to probe conformational dynamics of biomolecules, increasing the frame rate by

  5. Analysis of the fluctuations of a single-tethered, quantum-dot labeled DNA molecule in shear flow

    Energy Technology Data Exchange (ETDEWEB)

    Laube, K; Guenther, K; Mertig, M, E-mail: michael.mertig@tu-dresden.de [Professur fuer Physikalische Chemie, Mess- und Sensortechnik, Technische Universitaet Dresden, 01062 Dresden (Germany)

    2011-05-11

    A novel technique for analyzing the conformational fluctuations of a single, surface-tethered DNA molecule by fluorescence microscopy is reported. Attaching a nanometer-sized fluorescent quantum dot to the free end of a {lambda}-phage DNA molecule allows us to study the fluctuations of a native DNA molecule without the mechanical properties being altered by fluorescent dye staining. We report on the investigation of single-tethered DNA in both the unperturbed and the shear flow induced stretched state. The dependence of the observed fractional extension and the magnitude of fluctuations on the shear rate can be qualitatively interpreted by Brochard's stem-and-flower model. The cyclic dynamics of a DNA molecule is directly observed in the shear flow experiment.

  6. Single molecule experimentation in biological physics: exploring the living component of soft condensed matter one molecule at a time.

    Science.gov (United States)

    Harriman, O L J; Leake, M C

    2011-12-21

    The soft matter of biological systems consists of mesoscopic length scale building blocks, composed of a variety of different types of biological molecules. Most single biological molecules are so small that 1 billion would fit on the full-stop at the end of this sentence, but collectively they carry out the vital activities in living cells whose length scale is at least three orders of magnitude greater. Typically, the number of molecules involved in any given cellular process at any one time is relatively small, and so real physiological events may often be dominated by stochastics and fluctuation behaviour at levels comparable to thermal noise, and are generally heterogeneous in nature. This challenging combination of heterogeneity and stochasticity is best investigated experimentally at the level of single molecules, as opposed to more conventional bulk ensemble-average techniques. In recent years, the use of such molecular experimental approaches has become significantly more widespread in research laboratories around the world. In this review we discuss recent experimental approaches in biological physics which can be applied to investigate the living component of soft condensed matter to a precision of a single molecule. © 2011 IOP Publishing Ltd Printed in the UK & the USA

  7. DySCo: Quantitating Associations of Membrane Proteins Using Two-Color Single-Molecule Tracking

    OpenAIRE

    Dunne, Paul D; Fernandes, Ricardo A; McColl, James; Yoon, Ji Won; James, John R.; Davis, Simon J.; Klenerman, David

    2009-01-01

    Abstract We present a general method called dynamic single-molecule colocalization for quantitating the associations of single cell surface molecules labeled with distinct autofluorescent proteins. The chief advantages of the new quantitative approach are that, in addition to stable interactions, it is capable of measuring nonconstitutive associations, such as those induced by the cytoskeleton, and it is applicable to situations where the number of molecules is small.

  8. Single-Molecule Electronics with Cross- Conjugated Molecules: Quantum Interference, IETS and Non-Equilibrium "Temperatures"

    DEFF Research Database (Denmark)

    Jørgensen, Jacob Lykkebo

    , which is characterised by destructive quantum interference. The molecules are cross-conjugated, which means that the two parts of the molecules are conjugated to a third part, but not to each other. This gives rise to an anti-resonance in the trans- mission. In the low bias and low temperature regime......-resonance in the transmission. We then go on to study current induced heating and cooling, and nd that there is a basis for using quantum interference to design molecules that can be cooling by the tunnelling current. The basic idea is to align the incoming and the outgoing transmission channels such that absorption...... of a phonon is favoured over emission of a phonon. The incoming and outgoing channels are usually very alike, but by separating them using quantum interference it is possible to tune the system to observe a cooling eect. The basis is illus- trated in a simple tight-binding model, and the subsequent cooling...

  9. Aligned deposition and electrical measurements on single DNA molecules

    DEFF Research Database (Denmark)

    Eidelshtein, Gennady; Kotlyar, Alexander; Hashemi, Mohtadin

    2015-01-01

    A reliable method of deposition of aligned individual dsDNA molecules on mica, silicon, and micro/nanofabricated circuits is presented. Complexes of biotinylated double stranded poly(dG)–poly(dC) DNA with avidin were prepared and deposited on mica and silicon surfaces in the absence of Mg2+ ions....

  10. Single-molecule microscopy using silicone oil immersion objective lenses

    NARCIS (Netherlands)

    Hink, M.

    2012-01-01

    Microscopy techniques capable of detecting individual molecules and providing quantitative data have the potential to offer great biological insight; however, such approaches require the efficient capture of light. Here, Mark Hink explains how the use of new silicone oil immersion objective lenses

  11. Chemical Kinetics at the Single-Molecule Level

    Science.gov (United States)

    Levitus, Marcia

    2011-01-01

    For over a century, chemists have investigated the rates of chemical reactions using experimental conditions involving huge numbers of molecules. As a consequence, the description of the kinetics of the reaction in terms of average values was good enough for all practical purposes. From the pedagogical point of view, such a description misses the…

  12. Molecules with multiple switching units on a Au(111) surface: self-organization and single-molecule manipulation

    Science.gov (United States)

    Mielke, Johannes; Selvanathan, Sofia; Peters, Maike; Schwarz, Jutta; Hecht, Stefan; Grill, Leonhard

    2012-10-01

    Three different molecules, each containing two azobenzene switching units, were synthesized, successfully deposited onto a Au(111) surface by sublimation and studied by scanning tunneling microscopy at low temperatures. To investigate the influence of electronic coupling between the switching units as well as to the surface, the two azo moieties were connected either via π-conjugated para-phenylene or decoupling meta-phenylene bridges, and the number of tert-butyl groups was varied in the meta-phenylene-linked derivatives. Single molecules were found to be intact after deposition as identified by their characteristic appearance in STM images. Due to their mobility on the Au(111) surface at room temperature, the molecules spontaneously formed self-organized molecular arrangements that reflected their chemical structure. While lateral displacement of the molecules was accomplished by manipulation, trans-cis isomerization processes, typical for azobenzene switches, could not be induced.

  13. An Optical Tweezers Platform for Single Molecule Force Spectroscopy in Organic Solvents.

    Science.gov (United States)

    Black, Jacob W; Kamenetska, Maria; Ganim, Ziad

    2017-11-08

    Observation at the single molecule level has been a revolutionary tool for molecular biophysics and materials science, but single molecule studies of solution-phase chemistry are less widespread. In this work we develop an experimental platform for solution-phase single molecule force spectroscopy in organic solvents. This optical-tweezer-based platform was designed for broad chemical applicability and utilizes optically trapped core-shell microspheres, synthetic polymer tethers, and click chemistry linkages formed in situ. We have observed stable optical trapping of the core-shell microspheres in ten different solvents, and single molecule link formation in four different solvents. These experiments demonstrate how to use optical tweezers for single molecule force application in the study of solution-phase chemistry.

  14. Combined Magnetic Tweezers and Micro-mirror Total Internal Reflection Fluorescence Microscope for Single-Molecule Manipulation and Visualization.

    Science.gov (United States)

    Seol, Yeonee; Neuman, Keir C

    2018-01-01

    Magnetic tweezers is a versatile yet simple single-molecule manipulation technique that has been used to study a broad range of nucleic acids and nucleic acid-based molecular motors. In this chapter, we combine micro-mirror-based total internal reflection microscopy with a magnetic tweezers instrument, permitting simultaneous single-molecule visualization and mechanical manipulation. We provide a simple method to calibrate the evanescent wave penetration depth via supercoiling of DNA with a fluorescent nanodiamond-labeled magnetic bead and a complementary method employing a surface-immobilized fluorescent nanodiamond.

  15. Electron tunneling through molecule-electrode contacts of single alkane molecular junctions: experimental determination and a practical barrier model.

    Science.gov (United States)

    Wang, Kun; Xu, Bingqian

    2016-04-14

    An advanced understanding of the molecule-electrode contact interfaces of single-molecule junctions is a necessity for real world application of future single-molecule devices. This study aims to elucidate the change in the contact tunnelling barrier induced by junction extension and how this change affects the resulting junction conductance. The contact barrier of Au-octanedithiol/octanediamine-Au junctions was studied under triangle (TRI) mechanical modulations using the modified scanning tunneling microscopy (STM) break junction technique. The experimental results reveal that as the junction separation extends, the contact barrier of octanedithiol follows a unique trend, a linear increase followed by a plateau in barrier height, which is in contrast to that of octanediamine, a nearly rectangle barrier. We propose a modified contact barrier model for the unique barrier shape of octanedithiol, based on which the calculation agrees well with the experimental data. This study shows unprecedented experimental features of the molecule-electrode contact barrier of single-molecule junctions and provides new insights into the nature of contact effect in determining electron transport through single-molecule junctions.

  16. Too Hot for Photon-Assisted Transport: Hot-Electrons Dominate Conductance Enhancement in Illuminated Single-Molecule Junctions.

    Science.gov (United States)

    Fung, E-Dean; Adak, Olgun; Lovat, Giacomo; Scarabelli, Diego; Venkataraman, Latha

    2017-02-08

    We investigate light-induced conductance enhancement in single-molecule junctions via photon-assisted transport and hot-electron transport. Using 4,4'-bipyridine bound to Au electrodes as a prototypical single-molecule junction, we report a 20-40% enhancement in conductance under illumination with 980 nm wavelength radiation. We probe the effects of subtle changes in the transmission function on light-enhanced current and show that discrete variations in the binding geometry result in a 10% change in enhancement. Importantly, we prove theoretically that the steady-state behavior of photon-assisted transport and hot-electron transport is identical but that hot-electron transport is the dominant mechanism for optically induced conductance enhancement in single-molecule junctions when the wavelength used is absorbed by the electrodes and the hot-electron relaxation time is long. We confirm this experimentally by performing polarization-dependent conductance measurements of illuminated 4,4'-bipyridine junctions. Finally, we perform lock-in type measurements of optical current and conclude that currents due to laser-induced thermal expansion mask optical currents. This work provides a robust experimental framework for studying mechanisms of light-enhanced transport in single-molecule junctions and offers tools for tuning the performance of organic optoelectronic devices by analyzing detailed transport properties of the molecules involved.

  17. Alternative types of molecule-decorated atomic chains in Au–CO–Au single-molecule junctions

    Directory of Open Access Journals (Sweden)

    Zoltán Balogh

    2015-06-01

    Full Text Available We investigate the formation and evolution of Au–CO single-molecule break junctions. The conductance histogram exhibits two distinct molecular configurations, which are further investigated by a combined statistical analysis. According to conditional histogram and correlation analysis these molecular configurations show strong anticorrelations with each other and with pure Au monoatomic junctions and atomic chains. We identify molecular precursor configurations with somewhat higher conductance, which are formed prior to single-molecule junctions. According to detailed length analysis two distinct types of molecule-affected chain-formation processes are observed, and we compare these results to former theoretical calculations considering bridge- and atop-type molecular configurations where the latter has reduced conductance due to destructive Fano interference.

  18. Alternative types of molecule-decorated atomic chains in Au-CO-Au single-molecule junctions.

    Science.gov (United States)

    Balogh, Zoltán; Makk, Péter; Halbritter, András

    2015-01-01

    We investigate the formation and evolution of Au-CO single-molecule break junctions. The conductance histogram exhibits two distinct molecular configurations, which are further investigated by a combined statistical analysis. According to conditional histogram and correlation analysis these molecular configurations show strong anticorrelations with each other and with pure Au monoatomic junctions and atomic chains. We identify molecular precursor configurations with somewhat higher conductance, which are formed prior to single-molecule junctions. According to detailed length analysis two distinct types of molecule-affected chain-formation processes are observed, and we compare these results to former theoretical calculations considering bridge- and atop-type molecular configurations where the latter has reduced conductance due to destructive Fano interference.

  19. Alternative types of molecule-decorated atomic chains in Au–CO–Au single-molecule junctions

    Science.gov (United States)

    Balogh, Zoltán; Makk, Péter

    2015-01-01

    Summary We investigate the formation and evolution of Au–CO single-molecule break junctions. The conductance histogram exhibits two distinct molecular configurations, which are further investigated by a combined statistical analysis. According to conditional histogram and correlation analysis these molecular configurations show strong anticorrelations with each other and with pure Au monoatomic junctions and atomic chains. We identify molecular precursor configurations with somewhat higher conductance, which are formed prior to single-molecule junctions. According to detailed length analysis two distinct types of molecule-affected chain-formation processes are observed, and we compare these results to former theoretical calculations considering bridge- and atop-type molecular configurations where the latter has reduced conductance due to destructive Fano interference. PMID:26199840

  20. Measuring p53 Binding to Single DNA Molecules in a Nanofluidic Device

    Science.gov (United States)

    Whelsky, Amber; Gonzalez, Nicholas, Jr.; Gal, Susannah; Levy, Stephen

    2012-02-01

    Protein-DNA binding is central to several important cellular processes, for instance, the transfer of genetic information into proteins. The p53 protein plays a central role in regulating several major cell cycle pathways, in part by binding to well-characterized DNA sequences in the promoters of specific genes. Recent studies show that the most common mutation to the protein occurs in the region responsible for its binding to DNA. We have fabricated slit-like nanofluidic devices that allow us to trap and stretch single molecules of DNA containing a known recognition sequence of p53. We use fluorescent microscopy to observe the diffusion of a single p53 protein as it searches for its DNA recognition site. We measure the reaction rates of binding to selected DNA sequences as well as the one-dimensional, non-sequence specific diffusion of p53 along a stretched DNA molecule as a function of salt concentration. The mechanism of facilitated diffusion attempts to explain how proteins seem able to find their DNA target sequences much more quickly than would be expected from three-dimensional diffusion alone. We compare the observed search mechanism used by normal and mutated p53 from cancer cells to predictions based on this theory.

  1. Rational design of DNA motors: fuel optimization through single-molecule fluorescence.

    Science.gov (United States)

    Tomov, Toma E; Tsukanov, Roman; Liber, Miran; Masoud, Rula; Plavner, Noa; Nir, Eyal

    2013-08-14

    While numerous DNA-based molecular machines have been developed in recent years, high operational yield and speed remain a major challenge. To understand the reasons for the limited performance, and to find rational solutions, we applied single-molecule fluorescence techniques and conducted a detailed study of the reactions involved in the operation of a model system comprised of a bipedal DNA walker that strides on a DNA origami track powered by interactions with fuel and antifuel strands. Analysis of the kinetic profiles of the leg-lifting reactions indicates a pseudo-first-order antifuel binding mechanism leading to a rapid and complete leg-lifting, indicating that the fuel-removal reaction is not responsible for the 1% operational yield observed after six steps. Analysis of the leg-placing reactions showed that although increased concentrations of fuel increase the reaction rate, they decrease the yield by consecutively binding the motor and leading to an undesirable trapped state. Recognizing this, we designed asymmetrical hairpin-fuels that by regulating the reaction hierarchy avoid consecutive binding. Motors operating with the improved fuels show 74% yield after 12 consecutive reactions, a dramatic increase over the 1% observed for motors operating with nonhairpin fuels. This work demonstrates that studying the mechanisms of the reactions involved in the operation of DNA-based molecular machines using single-molecule fluorescence can facilitate rationally designed improvements that increase yield and speed and promote the applicability of DNA-based machines.

  2. Electronic Transport in Single Molecule Junctions: Control of the Molecule-Electrode Coupling Through Intramolecular Tunneling Barriers

    DEFF Research Database (Denmark)

    Danilov, Andrey; Kubatkin, Sergey; Kafanov, Sergey

    2008-01-01

    We report on single molecule electron transport measurements of two oligophenylenevinylene (OPV3) derivatives placed in a nanogap between gold (Au) or lead (Pb) electrodes in a field effect transistor device. Both derivatives contain thiol end groups that allow chemical binding to the electrodes...

  3. Influence of DNA Lesions on Polymerase-Mediated DNA Replication at Single-Molecule Resolution.

    Science.gov (United States)

    Gahlon, Hailey L; Romano, Louis J; Rueda, David

    2017-11-20

    Faithful replication of DNA is a critical aspect in maintaining genome integrity. DNA polymerases are responsible for replicating DNA, and high-fidelity polymerases do this rapidly and at low error rates. Upon exposure to exogenous or endogenous substances, DNA can become damaged and this can alter the speed and fidelity of a DNA polymerase. In this instance, DNA polymerases are confronted with an obstacle that can result in genomic instability during replication, for example, by nucleotide misinsertion or replication fork collapse. It is important to know how DNA polymerases respond to damaged DNA substrates to understand the mechanism of mutagenesis and chemical carcinogenesis. Single-molecule techniques have helped to improve our current understanding of DNA polymerase-mediated DNA replication, as they enable the dissection of mechanistic details that can otherwise be lost in ensemble-averaged experiments. These techniques have also been used to gain a deeper understanding of how single DNA polymerases behave at the site of the damage in a DNA substrate. In this review, we evaluate single-molecule studies that have examined the interaction between DNA polymerases and damaged sites on a DNA template.

  4. Mapping of single-base differences between two DNA strands in a single molecule using holliday junction nanomechanics.

    Directory of Open Access Journals (Sweden)

    Camille Brème

    Full Text Available OBJECTIVE: The aim of this work is to demonstrate a novel single-molecule DNA sequence comparison assay that is purely based on DNA mechanics. METHODS: A molecular construct that contained the two homologous but non-identical DNA sequences that were to be compared was prepared such that a four-way (Holliday junction could be formed by the formation of heteroduplexes through the inter-recombination of the strands. Magnetic tweezers were used to manipulate the force and the winding applied to this construct for inducing both the formation and the migration of a Holliday junction. The end-to-end distance of the construct was measured as a function of the winding and was used to monitor the behavior of the Holliday junction in different regions of the intra-molecular recombination. MAIN RESULTS: In the appropriate buffer, the magnet rotation induces the migration of the Holliday junction in the regions where there is no sequence difference between the recombining sequences. In contrast, even a single-base difference between the recombining sequences leads to a long-lasting blockage of the migration in the same buffer; this effect was obtained when the junction was positioned near this locus (the site of the single-base difference and forced toward the formation of heteroduplexes that comprise the locus. The migration blockages were detected through the identification of the formation of plectonemes. The detection of the presence of sequence differences and their respective mappings were obtained from the series of blockages that were detected. SIGNIFICANCE: This work presents a novel single-molecule sequence comparison assay that is based on the use of a Holliday junction as an ultra-sensitive nanomechanism; the mismatches act as blocking grains of sand in the Holliday "DNA gearbox". This approach will potentially have future applications in biotechnology.

  5. Nobel Lecture: Single-molecule spectroscopy, imaging, and photocontrol: Foundations for super-resolution microscopy*

    Science.gov (United States)

    Moerner, W. E. William E.

    2015-10-01

    The initial steps toward optical detection and spectroscopy of single molecules in condensed matter arose out of the study of inhomogeneously broadened optical absorption profiles of molecular impurities in solids at low temperatures. Spectral signatures relating to the fluctuations of the number of molecules in resonance led to the attainment of the single-molecule limit in 1989 using frequency-modulation laser spectroscopy. In the early 1990s, many fascinating physical effects were observed for individual molecules, and the imaging of single molecules as well as observations of spectral diffusion, optical switching and the ability to select different single molecules in the same focal volume simply by tuning the pumping laser frequency provided important forerunners of the later super-resolution microscopy with single molecules. In the room-temperature regime, imaging of single copies of the green fluorescent protein also uncovered surprises, especially the blinking and photoinduced recovery of emitters, which stimulated further development of photoswitchable fluorescent protein labels. Because each single fluorophore acts as a light source roughly 1 nm in size, microscopic observation and localization of individual fluorophores is a key ingredient to imaging beyond the optical diffraction limit. Combining this with active control of the number of emitting molecules in the pumped volume led to the super-resolution imaging of Eric Betzig and others, a new frontier for optical microscopy beyond the diffraction limit. The background leading up to these observations is described and selected current developments are summarized.

  6. Single-Molecule Multicolor FRET Assay for Studying Structural Dynamics of Biomolecules.

    Science.gov (United States)

    Lee, S; Jang, Y; Lee, S-J; Hohng, S

    2016-01-01

    Over the last 2 decades, single-molecule Forster resonance energy transfer (FRET) has been widely used to address important questions in molecular biology. However, a conventional approach based on a single donor-acceptor pair is not powerful enough to study complex biological systems. To address this challenge, single-molecule multicolor FRET techniques have been developed. In this chapter, we present practical considerations required for the successful implementation of single-molecule multicolor FRET in the laboratory. © 2016 Elsevier Inc. All rights reserved.

  7. Measuring Force-Induced Dissociation Kinetics of Protein Complexes Using Single-Molecule Atomic Force Microscopy.

    Science.gov (United States)

    Manibog, K; Yen, C F; Sivasankar, S

    2017-01-01

    Proteins respond to mechanical force by undergoing conformational changes and altering the kinetics of their interactions. However, the biophysical relationship between mechanical force and the lifetime of protein complexes is not completely understood. In this chapter, we provide a step-by-step tutorial on characterizing the force-dependent regulation of protein interactions using in vitro and in vivo single-molecule force clamp measurements with an atomic force microscope (AFM). While we focus on the force-induced dissociation of E-cadherins, a critical cell-cell adhesion protein, the approaches described here can be readily adapted to study other protein complexes. We begin this chapter by providing a brief overview of theoretical models that describe force-dependent kinetics of biomolecular interactions. Next, we present step-by-step methods for measuring the response of single receptor-ligand bonds to tensile force in vitro. Finally, we describe methods for quantifying the mechanical response of single protein complexes on the surface of living cells. We describe general protocols for conducting such measurements, including sample preparation, AFM force clamp measurements, and data analysis. We also highlight critical limitations in current technologies and discuss solutions to these challenges. © 2017 Elsevier Inc. All rights reserved.

  8. Biomimetic Nanoarchitectures for the Study of T Cell Activation with Single-Molecule Control

    Science.gov (United States)

    Cai, Haogang

    organized into a stereotypic geometric structure, known as the immunological synapse, between T cell and antigen-presenting cell. Novel bifunctionalization schemes were developed to better mimic the antigen-presenting surfaces. Nanoarrays were functionalized by single molecules of UCHT1 Fab', and served as individual T cell receptor binding sites. The adhesion molecule ICAM-1 was bound to either static PEG background, or a mobile supported lipid bilayer. The minimum geometric requirements (receptor clustering, spacing and stoichiometry) for T cell activation was probed by systematic variation of the nanoarray spacing and cluster size. Out-of-plane spatial control of the two key molecules by way of nanopillar arrays was used to adjust the membrane bending and steric effects, which were essential for the investigation of molecular segregation in T cell activation. The results provide insights into the complicated T cell activation mechanism, with translational implications toward adoptive immunotherapies for cancer and other diseases. This single-molecule platform serves as a novel and powerful tool for molecular and cellular biology, e.g., receptor-mediated signaling/adhesion, especially when multiple ligands or membrane deformation are involved.

  9. Single Molecule Experiments Challenge the Strict Wave-Particle Dualism of Light

    OpenAIRE

    Greulich, Karl Otto

    2010-01-01

    Single molecule techniques improve our understanding of the photon and light. If the single photon double slit experiment is performed at the “single photon limit” of a multi-atom light source, faint light pulses with more than one photon hamper the interpretation. Single molecules, quantum dots or defect centres in crystals should be used as light source. “Single photon detectors” do not meet their promise―only “photon number resolving single photon detectors” do so. Particularly, the accumu...

  10. Single-molecule diffusion and conformational dynamics by spatial integration of temporal fluctuations

    KAUST Repository

    Serag, Maged F.

    2014-10-06

    Single-molecule localization and tracking has been used to translate spatiotemporal information of individual molecules to map their diffusion behaviours. However, accurate analysis of diffusion behaviours and including other parameters, such as the conformation and size of molecules, remain as limitations to the method. Here, we report a method that addresses the limitations of existing single-molecular localization methods. The method is based on temporal tracking of the cumulative area occupied by molecules. These temporal fluctuations are tied to molecular size, rates of diffusion and conformational changes. By analysing fluorescent nanospheres and double-stranded DNA molecules of different lengths and topological forms, we demonstrate that our cumulative-area method surpasses the conventional single-molecule localization method in terms of the accuracy of determined diffusion coefficients. Furthermore, the cumulative-area method provides conformational relaxation times of structurally flexible chains along with diffusion coefficients, which together are relevant to work in a wide spectrum of scientific fields.

  11. In situ single molecule imaging of cell membranes: linking basic nanotechniques to cell biology, immunology and medicine.

    Science.gov (United States)

    Pi, Jiang; Jin, Hua; Yang, Fen; Chen, Zheng W; Cai, Jiye

    2014-11-07

    The cell membrane, which consists of a viscous phospholipid bilayer, different kinds of proteins and various nano/micrometer-sized domains, plays a very important role in ensuring the stability of the intracellular environment and the order of cellular signal transductions. Exploring the precise cell membrane structure and detailed functions of the biomolecules in a cell membrane would be helpful to understand the underlying mechanisms involved in cell membrane signal transductions, which could further benefit research into cell biology, immunology and medicine. The detection of membrane biomolecules at the single molecule level can provide some subtle information about the molecular structure and the functions of the cell membrane. In particular, information obtained about the molecular mechanisms and other information at the single molecule level are significantly different from that detected from a large amount of biomolecules at the large-scale through traditional techniques, and can thus provide a novel perspective for the study of cell membrane structures and functions. However, the precise investigations of membrane biomolecules prompts researchers to explore cell membranes at the single molecule level by the use of in situ imaging methods, as the exact conformation and functions of biomolecules are highly controlled by the native cellular environment. Recently, the in situ single molecule imaging of cell membranes has attracted increasing attention from cell biologists and immunologists. The size of biomolecules and their clusters on the cell surface are set at the nanoscale, which makes it mandatory to use high- and super-resolution imaging techniques to realize the in situ single molecule imaging of cell membranes. In the past few decades, some amazing imaging techniques and instruments with super resolution have been widely developed for molecule imaging, which can also be further employed for the in situ single molecule imaging of cell membranes. In

  12. In situ single molecule imaging of cell membranes: linking basic nanotechniques to cell biology, immunology and medicine

    Science.gov (United States)

    Pi, Jiang; Jin, Hua; Yang, Fen; Chen, Zheng W.; Cai, Jiye

    2014-10-01

    The cell membrane, which consists of a viscous phospholipid bilayer, different kinds of proteins and various nano/micrometer-sized domains, plays a very important role in ensuring the stability of the intracellular environment and the order of cellular signal transductions. Exploring the precise cell membrane structure and detailed functions of the biomolecules in a cell membrane would be helpful to understand the underlying mechanisms involved in cell membrane signal transductions, which could further benefit research into cell biology, immunology and medicine. The detection of membrane biomolecules at the single molecule level can provide some subtle information about the molecular structure and the functions of the cell membrane. In particular, information obtained about the molecular mechanisms and other information at the single molecule level are significantly different from that detected from a large amount of biomolecules at the large-scale through traditional techniques, and can thus provide a novel perspective for the study of cell membrane structures and functions. However, the precise investigations of membrane biomolecules prompts researchers to explore cell membranes at the single molecule level by the use of in situ imaging methods, as the exact conformation and functions of biomolecules are highly controlled by the native cellular environment. Recently, the in situ single molecule imaging of cell membranes has attracted increasing attention from cell biologists and immunologists. The size of biomolecules and their clusters on the cell surface are set at the nanoscale, which makes it mandatory to use high- and super-resolution imaging techniques to realize the in situ single molecule imaging of cell membranes. In the past few decades, some amazing imaging techniques and instruments with super resolution have been widely developed for molecule imaging, which can also be further employed for the in situ single molecule imaging of cell membranes. In

  13. Toward dynamic structural biology: Two decades of single-molecule Förster resonance energy transfer.

    Science.gov (United States)

    Lerner, Eitan; Cordes, Thorben; Ingargiola, Antonino; Alhadid, Yazan; Chung, SangYoon; Michalet, Xavier; Weiss, Shimon

    2018-01-19

    Classical structural biology can only provide static snapshots of biomacromolecules. Single-molecule Förster resonance energy transfer (smFRET) paved the way for studying dynamics in macromolecular structures under biologically relevant conditions. Since its first implementation in 1996, smFRET experiments have confirmed previously hypothesized mechanisms and provided new insights into many fundamental biological processes, such as DNA maintenance and repair, transcription, translation, and membrane transport. We review 22 years of contributions of smFRET to our understanding of basic mechanisms in biochemistry, molecular biology, and structural biology. Additionally, building on current state-of-the-art implementations of smFRET, we highlight possible future directions for smFRET in applications such as biosensing, high-throughput screening, and molecular diagnostics. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  14. Conformational equilibria in monomeric alpha-synuclein at the single molecule level

    CERN Document Server

    Sandal, Massimo; Tessari, Isabella; Mammi, Stefano; Bergantino, Elisabetta; Musiani, Francesco; Brucale, Marco; Bubacco, Luigi; Samori', Bruno

    2007-01-01

    Natively unstructured proteins defy the classical "one sequence-one structure" paradigm of protein science. Monomers of these proteins in pathological conditions can aggregate in the cell, a process that underlies socially relevant neurodegenerative diseases such as Alzheimer and Parkinson. A full comprehension of the formation and structure of the so-called misfolded intermediates from which the aggregated states ensue is still lacking. We characterized the folding and the conformational diversity of alpha-synuclein (aSyn), a natively unstructured protein involved in Parkinson disease, by mechanically stretching single molecules of this protein and recording their mechanical properties. These experiments permitted us to directly observe directly and quantify three main classes of conformations that, under in vitro physiological conditions, exist simultaneously in the aSyn sample, including disordered and "beta-like" structures. We found that this class of "beta-like" structures is directly related to aSyn ag...

  15. Single-Molecule Transport at a Rectifying GaAs Contact.

    Science.gov (United States)

    Vezzoli, Andrea; Brooke, Richard J; Ferri, Nicolò; Higgins, Simon J; Schwarzacher, Walther; Nichols, Richard J

    2017-02-08

    In most single- or few-molecule devices, the contact electrodes are simple ohmic resistors. Here we describe a new type of single-molecule device in which metal and semiconductor contact electrodes impart a function, namely, current rectification, which is then modified by a molecule bridging the gap. We study junctions with the structure Au STM tip/X/n-GaAs substrate, where "X" is either a simple alkanedithiol or a conjugated unit bearing thiol/methylthiol contacts, and we detect current jumps corresponding to the attachment and detachment of single molecules. From the magnitudes of the current jumps we can deduce values for the conductance decay constant with molecule length that agree well with values determined from Au/molecule/Au junctions. The ability to impart functionality to a single-molecule device through the properties of the contacts as well as through the properties of the molecule represents a significant extension of the single-molecule electronics "tool-box".

  16. The different adsorption mechanism of methane molecule onto a boron nitride and a graphene flakes

    Energy Technology Data Exchange (ETDEWEB)

    Seyed-Talebi, Seyedeh Mozhgan [Shahid Chamran University, Golestan boulevard, Ahvaz, Khouzestan (Iran, Islamic Republic of); Neek-Amal, M., E-mail: neekamal@srttu.edu [Shahid Rajaee Teacher Training University, Lavizan, Tehran (Iran, Islamic Republic of)

    2014-10-21

    Graphene and single layer hexagonal boron-nitride are two newly discovered 2D materials with wonderful physical properties. Using density functional theory, we study the adsorption mechanism of a methane molecule over a hexagonal flake of single layer hexagonal boron-nitride (h-BN) and compare the results with those of graphene. We found that independent of the used functional in our ab-initio calculations, the adsorption energy in the h-BN flake is larger than that for graphene. Despite of the adsorption energy profile of methane over a graphene flake, we show that there is a long range behavior beyond minimum energy in the adsorption energy of methane over h-BN flake. This result reveals the higher sensitivity of h-BN sheet to the adsorption of a typical closed shell molecule with respect to graphene. The latter gives insight in the recent experiments of graphene over hexagonal boron nitride.

  17. Hearing molecules, mechanism and transportation: modeled in Drosophila melanogaster.

    Science.gov (United States)

    Bokolia, Naveen Prakash; Mishra, Monalisa

    2015-02-01

    Mechanosensory transduction underlies the perception of touch, sound and acceleration. The mechanical signals exist in the environment are resensed by the specialized mechanosensory cells, which convert the external forces into the electrical signals. Hearing is a magnificent example that relies on the mechanotransduction mediated by the auditory cells, for example the inner-ear hair cells in vertebrates and the Johnston's organ (JO) in fly. Previous studies have shown the fundamental physiological processes in the fly and vertebrate auditory organs are similar, suggesting that there might be a set of similar molecules underlying these processes. The molecular studies of the fly JO have been shown to be remarkably successful in discovering the developmental and functional genes that provided further implications in vertebrates. Several evolutionarily conserved molecules and signaling pathways have been shown to govern the development of the auditory organs in both vertebrates and invertebrates. The current review describes the similarities and differences between the vertebrate and fly auditory organs at developmental, structural, molecular, and transportation levels. © 2014 Wiley Periodicals, Inc.

  18. Continuum mechanics of single-substance bodies

    CERN Document Server

    Eringen, A Cemal

    1975-01-01

    Continuum Physics, Volume II: Continuum Mechanics of Single-Substance Bodies discusses the continuum mechanics of bodies constituted by a single substance, providing a thorough and precise presentation of exact theories that have evolved during the past years. This book consists of three parts-basic principles, constitutive equations for simple materials, and methods of solution. Part I of this publication is devoted to a discussion of basic principles irrespective of material geometry and constitution that are valid for all kinds of substances, including composites. The geometrical notions, k

  19. Fast electron transfer through a single molecule natively structured redox protein

    DEFF Research Database (Denmark)

    Della Pia, Eduardo Antonio; Chi, Qijin; Macdonald, J. Emyr

    2012-01-01

    of the conductance through single-molecules of the electron transfer protein cytochrome b562 in its native conformation, under pseudo-physiological conditions. This is achieved by thiol (SH) linker pairs at opposite ends of the molecule through protein engineering, resulting in defined covalent contact between...... and remarkably high conductance was observed in this relatively complex electron transfer system, with single-molecule conductance values peaking around 18 nS and 12 nS for the SH-SA and SH-LA cytochrome b562 molecules near zero electrochemical overpotential. This strongly points to the important role...

  20. Quantum interference effects at room temperature in OPV-based single-molecule junctions

    DEFF Research Database (Denmark)

    Arroyo, Carlos R.; Frisenda, Riccardo; Moth-Poulsen, Kasper

    2013-01-01

    Interference effects on charge transport through an individual molecule can lead to a notable modulation and suppression on its conductance. In this letter, we report the observation of quantum interference effects occurring at room temperature in single-molecule junctions based on oligo(3......)-phenylenevinylene (OPV3) derivatives, in which the central benzene ring is coupled to either para- or meta-positions. Using the break-junction technique, we find that the conductance for a single meta-OPV3 molecule wired between gold electrodes is one order of magnitude smaller than that of a para-OPV3 molecule...

  1. STM/STS analysis of molecular chains consisting of Mn{sub 6}Cr single molecule magnets and single molecules on highly ordered pyrolytic graphite (HOPG)

    Energy Technology Data Exchange (ETDEWEB)

    Gryzia, Aaron; Brechling, Armin; Hachmann, Wiebke; Sacher, Marc D.; Heinzmann, Ulrich [Molecular and Surface Physics, Bielefeld University (Germany); Heidemeier, Maik; Glaser, Thorsten [Anorganic Chemistry I, Bielefeld University (Germany)

    2008-07-01

    We report on the preparation and characterization of Mn{sub 6}Cr-Single Molecule Magnets on a HOPG(0001) surface. The Mn{sub 6}Cr-molecules show 1D molecular arrangements with many interesting features, such as the occurrence of discrete kink angles in the molecular chains of 30 deg., only two different molecular orientations, the orientation of the chains along the main crystal axis of HOPG and much larger molecule-molecule distances than expected from the van der Waals radii of the molecules. By STS we characterized Mn{sub 6}Cr, thus gaining information on the electronic levels of the molecule and the shift of the levels whether it is part of a chain or not. One of our goals is to obtain data about the exact orientation of the molecule in respect to the surface; thus we can make a statement for the physical interaction why the molecules are assembling in chains. First results of these measurements are presented.

  2. Spectrally Resolved and Functional Super-resolution Microscopy via Ultrahigh-Throughput Single-Molecule Spectroscopy.

    Science.gov (United States)

    Yan, Rui; Moon, Seonah; Kenny, Samuel J; Xu, Ke

    2018-02-14

    As an elegant integration of the spatial and temporal dimensions of single-molecule fluorescence, single-molecule localization microscopy (SMLM) overcomes the diffraction-limited resolution barrier of optical microscopy by localizing single molecules that stochastically switch between fluorescent and dark states over time. While this type of super-resolution microscopy (SRM) technique readily achieves remarkable spatial resolutions of ∼10 nm, it typically provides no spectral information. Meanwhile, current scanning-based single-location approaches for mapping the positions and spectra of single molecules are limited by low throughput and are difficult to apply to densely labeled (bio)samples. In this Account, we summarize the rationale, design, and results of our recent efforts toward the integration of the spectral dimension of single-molecule fluorescence with SMLM to achieve spectrally resolved SMLM (SR-SMLM) and functional SRM (f-SRM). By developing a wide-field scheme for spectral measurement and implementing single-molecule fluorescence on-off switching typical of SMLM, we first showed that in densely labeled (bio)samples it is possible to record the fluorescence spectra and positions of millions of single molecules synchronously within minutes, giving rise to ultrahigh-throughput single-molecule spectroscopy and SR-SMLM. This allowed us to first show statistically that for many dyes, single molecules of the same species exhibit near identical emission in fixed cells. This narrow distribution of emission wavelengths, which contrasts markedly with previous results at solid surfaces, allowed us to unambiguously identify single molecules of spectrally similar dyes. Crosstalk-free, multiplexed SRM was thus achieved for four dyes that were merely 10 nm apart in emission spectrum, with the three-dimensional SRM images of all four dyes being automatically aligned within one image channel. The ability to incorporate single-molecule fluorescence measurement with

  3. Single Molecule Characterization of α-Synuclein in Aggregation-Prone States

    Science.gov (United States)

    Trexler, Adam J.; Rhoades, Elizabeth

    2010-01-01

    α-Synuclein (αS) is an intrinsically disordered protein whose aggregation into ordered, fibrillar structures underlies the pathogenesis of Parkinson's disease. A full understanding of the factors that cause its conversion from soluble protein to insoluble aggregate requires characterization of the conformations of the monomer protein under conditions that favor aggregation. Here we use single molecule Förster resonance energy transfer to probe the structure of several aggregation-prone states of αS. Both low pH and charged molecules have been shown to accelerate the aggregation of αS and induce conformational changes in the protein. We find that at low pH, the C-terminus of αS undergoes substantial collapse, with minimal effect on the N-terminus and central region. The proximity of the N- and C-termini and the global dimensions of the protein are relatively unaffected by the C-terminal collapse. Moreover, although compact at low pH, with restricted chain motion, the structure of the C-terminus appears to be random. Low pH has a dramatically different effect on αS structure than the molecular aggregation inducers spermine and heparin. Binding of these molecules gives rise to only minor conformational changes in αS, suggesting that their mechanism of aggregation enhancement is fundamentally different from that of low pH. PMID:21044603

  4. Single-Molecule Tribology: Force Microscopy Manipulation of a Porphyrin Derivative on a Copper Surface.

    Science.gov (United States)

    Pawlak, Rémy; Ouyang, Wengen; Filippov, Alexander E; Kalikhman-Razvozov, Lena; Kawai, Shigeki; Glatzel, Thilo; Gnecco, Enrico; Baratoff, Alexis; Zheng, Quanshui; Hod, Oded; Urbakh, Michael; Meyer, Ernst

    2016-01-26

    The low-temperature mechanical response of a single porphyrin molecule attached to the apex of an atomic force microscope (AFM) tip during vertical and lateral manipulations is studied. We find that approach-retraction cycles as well as surface scanning with the terminated tip result in atomic-scale friction patterns induced by the internal reorientations of the molecule. With a joint experimental and computational effort, we identify the dicyanophenyl side groups of the molecule interacting with the surface as the dominant factor determining the observed frictional behavior. To this end, we developed a generalized Prandtl-Tomlinson model parametrized using density functional theory calculations that includes the internal degrees of freedom of the side group with respect to the core and its interactions with the underlying surface. We demonstrate that the friction pattern results from the variations of the bond length and bond angles between the dicyanophenyl side group and the porphyrin backbone as well as those of the CN group facing the surface during the lateral and vertical motion of the AFM tip.

  5. Controlling the formation process and atomic structures of single pyrazine molecular junction by tuning the strength of the metal-molecule interaction.

    Science.gov (United States)

    Kaneko, Satoshi; Takahashi, Ryoji; Fujii, Shintaro; Nishino, Tomoaki; Kiguchi, Manabu

    2017-04-12

    The formation process and atomic structures were investigated for single pyrazine molecular junctions sandwiched by three different Au, Ag, and Cu electrodes using a mechanically controllable break junction technique in ultrahigh vacuum conditions at 300 K. We demonstrated that the formation process of the single-molecule junction crucially depended on the choice of the metal electrodes. While single-molecule junction showing two distinct conductance states were found for the Au electrodes, only the single conductance state was evident for the Ag electrodes, and there was no junction formation for the Cu electrodes. These results suggested that metal-molecule interaction dominates the formation process and probability of the single-molecule junction. In addition to the metal-molecule interaction, temperature affected the formation process of the single-molecule junction. The single pyrazine molecular junction formed between Au electrodes exhibited significant temperature dependence where the junction-formation probability was about 8% at 300 K, while there was no junction-formation at 100 K. Instead of the junction formation, an Au atomic wire was formed at the low temperature. This study provides insight into the tuning of the junction-forming process for single-molecule junctions, which is needed to construct device structures on a single molecule scale.

  6. Single-molecule fluorescence-based analysis of protein conformation, interaction, and oligomerization in cellular systems.

    Science.gov (United States)

    Okamoto, Kenji; Hiroshima, Michio; Sako, Yasushi

    2017-12-14

    Single-molecule imaging (SMI) of proteins in operation has a history of intensive investigations over 20 years and is now widely used in various fields of biology and biotechnology. We review the recent advances in SMI of fluorescently-tagged proteins in structural biology, focusing on technical applicability of SMI to the measurements in living cells. Basic technologies and recent applications of SMI in structural biology are introduced. Distinct from other methods in structural biology, SMI directly observes single molecules and single-molecule events one-by-one, thus, explicitly analyzing the distribution of protein structures and the history of protein dynamics. It also allows one to detect single events of protein interaction. One unique feature of SMI is that it is applicable in complicated and heterogeneous environments, including living cells. The numbers, location, movements, interaction, oligomerization, and conformation of single-protein molecules have been determined using SMI in cellular systems.

  7. Single-molecule femtochemistry: molecular imaging at the space-time limit.

    Science.gov (United States)

    Petek, Hrvoje

    2014-01-28

    Through a combination of light and electron probes, it may be possible to record single-molecule dynamics with simultaneous sub-Ångstrom spatial and femtosecond temporal resolution. Single-molecule femtochemistry is becoming a realistic prospect through a melding of laser spectroscopy and electron microscopy techniques. The paper by Lee et al. in this issue of ACS Nano takes a significant step toward chemical imaging at the space-time limit of chemical processes. By imaging electroluminescence spectra of single porphyrin molecules with submolecular resolution, the authors extract the implicit femtosecond dynamics of the coupled electron orbital-molecular skeletal motion triggered by a reduction-oxidation scattering process.

  8. Quantitative multi-parameter analysis of single molecule dynamics by PIE FastFLIM microscopy

    Science.gov (United States)

    Sun, Yuansheng; Coskun, Ulas; Tsoi, Phoebe S.; Ferreon, Josephine C.; Ferreon, Allan Chris; Barbieri, Beniamino; Liao, Shih-Chu Jeff

    2017-02-01

    PIE FastFLIM microscopy allows the quantitative multi-parameter measurement of single molecule protein folding and dynamics. Using donor-acceptor FRET pair-labeled proteins, we detect changes in protein conformation and dynamics by monitoring FRET efficiency, stoichiometry and lifetime. Together with anisotropy decay information, we acquire rotational relaxation times for single molecules. By applying antibunching, FLCS and burst analysis, multi-parameters (such as copy numbers in protein complexes), diffusion coefficient and molecular brightness can be fitted for deeper understanding of the conformational dynamic behavior of single protein molecules. In this paper, we'll focus on the multiparameters of FRET efficiency, stoichiometry and lifetime.

  9. Single-molecule detection of dihydroazulene photo-thermal reaction using break junction technique

    DEFF Research Database (Denmark)

    Huang, Cancan; Jevric, Martyn; Borges, Anders Christian

    2017-01-01

    Charge transport by tunnelling is one of the most ubiquitous elementary processes in nature. Small structural changes in a molecular junction can lead to significant difference in the single-molecule electronic properties, offering a tremendous opportunity to examine a reaction on the single-molecule...... scale by monitoring the conductance changes. Here, we explore the potential of the single-molecule break junction technique in the detection of photo-thermal reaction processes of a photochromic dihydroazulene/vinylheptafulvene system. Statistical analysis of the break junction experiments provides...

  10. Single-Molecule Confocal FRET Microscopy to Dissect Conformational Changes in the Catalytic Cycle of DNA Topoisomerases.

    Science.gov (United States)

    Hartmann, S; Weidlich, D; Klostermeier, D

    2016-01-01

    Molecular machines undergo large-scale conformational changes during their catalytic cycles that are linked to their biological functions. DNA topoisomerases are molecular machines that interconvert different DNA topoisomers and resolve torsional stress that is introduced during cellular processes that involve local DNA unwinding. DNA gyrase catalyzes the introduction of negative supercoils into DNA in an ATP-dependent reaction. During its catalytic cycle, gyrase undergoes large-scale conformational changes that drive the supercoiling reaction. These conformational changes can be followed by single-molecule Förster resonance energy transfer (FRET). Here, we use DNA gyrase from Bacillus subtilis as an illustrative example to present strategies for the investigation of conformational dynamics of multisubunit complexes. We provide a brief introduction into single-molecule FRET and confocal microscopy, with a focus on practical considerations in sample preparation and data analysis. Different strategies in the preparation of donor-acceptor-labeled molecules suitable for single-molecule FRET experiments are outlined. The insight into the mechanism of DNA supercoiling by gyrase gained from single-molecule FRET experiment is summarized. The general strategies described here can also be applied to investigate conformational changes and their link to biological function of other multisubunit molecular machines. © 2016 Elsevier Inc. All rights reserved.

  11. Single-molecule imaging of cell surfaces using near-field nanoscopy.

    Science.gov (United States)

    Hinterdorfer, Peter; Garcia-Parajo, Maria F; Dufrêne, Yves F

    2012-03-20

    Living cells use surface molecules such as receptors and sensors to acquire information about and to respond to their environments. The cell surface machinery regulates many essential cellular processes, including cell adhesion, tissue development, cellular communication, inflammation, tumor metastasis, and microbial infection. These events often involve multimolecular interactions occurring on a nanometer scale and at very high molecular concentrations. Therefore, understanding how single-molecules localize, assemble, and interact on the surface of living cells is an important challenge and a difficult one to address because of the lack of high-resolution single-molecule imaging techniques. In this Account, we show that atomic force microscopy (AFM) and near-field scanning optical microscopy (NSOM) provide unprecedented possibilities for mapping the distribution of single molecules on the surfaces of cells with nanometer spatial resolution, thereby shedding new light on their highly sophisticated functions. For single-molecule recognition imaging by AFM, researchers label the tip with specific antibodies or ligands and detect molecular recognition signals on the cell surface using either adhesion force or dynamic recognition force mapping. In single-molecule NSOM, the tip is replaced by an optical fiber with a nanoscale aperture. As a result, topographic and optical images are simultaneously generated, revealing the spatial distribution of fluorescently labeled molecules. Recently, researchers have made remarkable progress in the application of near-field nanoscopy to image the distribution of cell surface molecules. Those results have led to key breakthroughs: deciphering the nanoscale architecture of bacterial cell walls; understanding how cells assemble surface receptors into nanodomains and modulate their functional state; and understanding how different components of the cell membrane (lipids, proteins) assemble and communicate to confer efficient functional

  12. Single Molecule Cluster Analysis Identifies Signature Dynamic Conformations along the Splicing Pathway

    Science.gov (United States)

    Blanco, Mario R.; Martin, Joshua S.; Kahlscheuer, Matthew L.; Krishnan, Ramya; Abelson, John; Laederach, Alain; Walter, Nils G.

    2016-01-01

    The spliceosome is the dynamic RNA-protein machine responsible for faithfully splicing introns from precursor messenger RNAs (pre-mRNAs). Many of the dynamic processes required for the proper assembly, catalytic activation, and disassembly of the spliceosome as it acts on its pre-mRNA substrate remain poorly understood, a challenge that persists for many biomolecular machines. Here, we developed a fluorescence-based Single Molecule Cluster Analysis (SiMCAn) tool to dissect the manifold conformational dynamics of a pre-mRNA through the splicing cycle. By clustering common dynamic behaviors derived from selectively blocked splicing reactions, SiMCAn was able to identify signature conformations and dynamic behaviors of multiple ATP-dependent intermediates. In addition, it identified a conformation adopted late in splicing by a 3′ splice site mutant, invoking a mechanism for substrate proofreading. SiMCAn presents a novel framework for interpreting complex single molecule behaviors that should prove widely useful for the comprehensive analysis of a plethora of dynamic cellular machines. PMID:26414013

  13. Single Molecule Study on Polymer-Nanoparticle Interactions: The Particle Shape Matters.

    Science.gov (United States)

    Li, Zhandong; Zhang, Bin; Song, Yu; Xue, Yurui; Wu, Lixin; Zhang, Wenke

    2017-08-08

    The study on the nanoparticle-polymer interactions is very important for the design/preparation of high performance polymer nanocomposite. Here we present a method to quantify the polymer-particle interaction at single molecule level by using AFM-based single molecule force spectroscopy (SMFS). As a proof-of-concept study, we choose poly-l-lysine (PLL) as the polymer and several different types of polyoxometalates (POM) as the model particles to construct several different polymer nanocomposites and to reveal the binding mode and quantify the binding strength in these systems. Our results reveal that the shape of the nanoparticle and the binding geometry in the composite have significantly influenced the binding strength of the PLL/POM complexes. Our dynamic force spectroscopy studies indicate that the disk-like geometry facilitate the unbinding of PLL/AlMo 6 complexes in shearing mode, while the unzipping mode becomes dominate in spherical PLL-P 8 W 48 system. We have also systematically investigated the effects of charge numbers, particle size, and ionic strength on the binding strength and binding mode of PLL/POM, respectively. Our results show that electrostatic interactions dominate the stability of PLL/POM complexes. These findings provide a way for tuning the mechanical properties of polyelectrolyte-nanoparticle composites.

  14. Studying plus-end tracking at single molecule resolution using TIRF microscopy.

    Science.gov (United States)

    Dixit, Ram; Ross, Jennifer L

    2010-01-01

    The highly dynamic microtubule plus-ends are key sites of regulation that impact the organization and function of the microtubule cytoskeleton. Much of this regulation is performed by the microtubule plus-end tracking (+TIP) family of proteins. +TIPs are a structurally diverse group of proteins that bind to and track with growing microtubule plus-ends in cells. +TIPs regulate microtubule dynamics as well as mediate interactions between microtubule tips and other cellular structures. Most +TIPs can directly bind to microtubules in vitro; however, the mechanisms for their plus-end specificity are not fully understood. Cellular studies of +TIP activity are complicated by the fact that members of the +TIP family of proteins interact with each other to form higher-order protein assemblies. Development of an in vitro system, using minimal components, to study +TIP activity is therefore critical to unequivocally understand the behavior of individual +TIP proteins. Coupled with single molecule imaging, this system provides a powerful tool to study the molecular properties that are important for +TIP function. In this chapter, we describe a detailed protocol for in vitro reconstitution of +TIP activity at single molecule resolution using total internal reflection fluorescence microscopy. Copyright 2010 Elsevier Inc. All rights reserved.

  15. The elastic theory of a single DNA molecule

    Indian Academy of Sciences (India)

    We study the elastic responses of double- (ds) and single-stranded (ss) DNA at external force fields. A double-strand-polymer elastic model is constructed and solved by path integral methods and Monte Carlo simulations to understand the entropic elasticity, cooperative extensibility, and supercoiling property of dsDNA.

  16. The elastic theory of a single DNA molecule

    Indian Academy of Sciences (India)

    Abstract. We study the elastic responses of double- (ds) and single-stranded (ss) DNA at exter- nal force fields. A double-strand-polymer elastic model is constructed and solved by path integral methods and Monte Carlo simulations to understand the entropic elasticity, cooperative extensibil- ity, and supercoiling property of ...

  17. Single-Molecule Diodes with High On/Off Ratios Through Environmental Control

    Science.gov (United States)

    Capozzi, Brian; Xia, Jianlong; Dell, Emma; Adak, Olgun; Liu, Zhen-Fei; Neaton, Jeffrey; Campos, Luis; Venkataraman, Latha

    2015-03-01

    Single-Molecule diodes were first proposed with an asymmetric molecule comprising a donor-bridge-acceptor architecture to mimic a semiconductor p-n junction. Progress in molecular electronics has led to the realization of several single-molecule diodes; these have relied on asymmetric molecular backbones, asymmetric molecule-electrode linkers, or asymmetric electrode materials. Despite these advances, molecular diodes have had limited potential for functional applications due to several pitfalls, including low rectification ratios (``on''/``off'' current ratios environment instead of an asymmetric molecule, we reproducibly achieve high rectification ratios at low operating voltages for molecular junctions based on a family of symmetric small-gap molecules. This technique serves as an unconventional approach for developing functional molecular-scale devices and probing their charge transport characteristics. Furthermore, this technique should be applicable to other nanoscale devices, providing a general route for tuning device properties.

  18. Flicker Noise as a Probe of Electronic Interaction at Metal-Single Molecule Interfaces.

    Science.gov (United States)

    Adak, Olgun; Rosenthal, Ethan; Meisner, Jeffery; Andrade, Erick F; Pasupathy, Abhay N; Nuckolls, Colin; Hybertsen, Mark S; Venkataraman, Latha

    2015-06-10

    Charge transport properties of metal-molecule interfaces depend strongly on the character of molecule-electrode interactions. Although through-bond coupled systems have attracted the most attention, through-space coupling is important in molecular systems when, for example, through-bond coupling is suppressed due to quantum interference effects. To date, a probe that clearly distinguishes these two types of coupling has not yet been demonstrated. Here, we investigate the origin of flicker noise in single molecule junctions and demonstrate how the character of the molecule-electrode coupling influences the flicker noise behavior of single molecule junctions. Importantly, we find that flicker noise shows a power law dependence on conductance in all junctions studied with an exponent that can distinguish through-space and through-bond coupling. Our results provide a new and powerful tool for probing and understanding coupling at the metal-molecule interface.

  19. Nanomechanical Characterization of Amyloid Fibrils Using Single-Molecule Experiments and Computational Simulations

    Directory of Open Access Journals (Sweden)

    Bumjoon Choi

    2016-01-01

    Full Text Available Amyloid fibrils have recently received much attention due to not only their important role in disease pathogenesis but also their excellent mechanical properties, which are comparable to those of mechanically strong protein materials such as spider silk. This indicates the necessity of understanding fundamental principles providing insight into how amyloid fibrils exhibit the excellent mechanical properties, which may allow for developing biomimetic materials whose material (e.g., mechanical properties can be controlled. Here, we describe recent efforts to characterize the nanomechanical properties of amyloid fibrils using computational simulations (e.g., atomistic simulations and single-molecule experiments (e.g., atomic force microscopy experiments. This paper summarizes theoretical models, which are useful in analyzing the mechanical properties of amyloid fibrils based on simulations and experiments, such as continuum elastic (beam model, elastic network model, and polymer statistical model. In this paper, we suggest how the nanomechanical properties of amyloid fibrils can be characterized and determined using computational simulations and/or atomic force microscopy experiments coupled with the theoretical models.

  20. Fluorescence spectroscopy of single molecules at room temperature and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Taekjip [Univ. of California, Berkeley, CA (United States)

    1996-12-01

    We performed fluorescence spectroscopy of single and pairs of dye molecules on a surface at room temperature. Near field scanning optical microscope (NSOM) and far field scanning optical microscope with multi-color excitation/detection capability were built. The instrument is capable of optical imaging with 100nm resolution and has the sensitivity necessary for single molecule detection. A variety of dynamic events which cannot be observed from an ensemble of molecules is revealed when the molecules are probed one at a time. They include (1) spectral jumps correlated with dark states, (2) individually resolved quantum jumps to and from the meta-stable triplet state, (3) rotational jumps due to desorption/readsorption events of single molecules on the surface. For these studies, a computer controlled optical system which automatically and rapidly locates and performs spectroscopic measurements on single molecules was developed. We also studied the interaction between closely spaced pairs of molecules. In particular, fluorescence resonance energy transfer between a single resonant pair of donor and acceptor molecules was measured. Photodestruction dynamics of the donor or acceptor were used to determine the presence and efficiency of energy transfer Dual molecule spectroscopy was extended to a non-resonant pair of molecules to obtain high resolution differential distance information. By combining NSOM and dual color scheme, we studied the co-localization of parasite proteins and host proteins on a human red blood cell membrane infected with malaria. These dual-molecule techniques can be used to measure distances, relative orientations, and changes in distances/orientations of biological macromolecules with very good spatial, angular and temporal resolutions, hence opening new capabilities in the study of such systems.

  1. Joint Space-Time Coherent Vibration Driven Conformational Transitions in a Single Molecule

    Science.gov (United States)

    Li, Shaowei; Chen, Siyu; Li, Jie; Wu, Ruqian; Ho, W.

    2017-10-01

    We report single-molecule conformational transitions with joint angstrom-femtosecond resolution by irradiating the junction of a scanning tunneling microscope with femtosecond laser pulses. An isolated pyrrolidine molecule adsorbed on a Cu(001) surface undergoes reversible transitions between two conformational states. The transition rate decays in time and exhibits sinusoidal oscillations with periods of specific molecular vibrations. The dynamics of this transition depends sensitively on the molecular environment, as exemplified by the effects of another molecule in proximity.

  2. Studying Chemical Reactions, One Bond at a Time, with Single Molecule AFM Techniques

    Science.gov (United States)

    Fernandez, Julio M.

    2008-03-01

    The mechanisms by which mechanical forces regulate the kinetics of a chemical reaction are unknown. In my lecture I will demonstrate how we use single molecule force-clamp spectroscopy and protein engineering to study the effect of force on the kinetics of thiol/disulfide exchange. Reduction of disulfide bond via the thiol/disulfide exchange chemical reaction is crucial in regulating protein function and is of common occurrence in mechanically stressed proteins. While reduction is thought to proceed through a substitution nucleophilic bimolecular (SN2) reaction, the role of a mechanical force in modulating this chemical reaction is unknown. We apply a constant stretching force to single engineered disulfide bonds and measure their rate of reduction by dithiothreitol (DTT). We find that while the reduction rate is linearly dependent on the concentration of DTT, it is exponentially dependent on the applied force, increasing 10-fold over a 300 pN range. This result predicts that the disulfide bond lengthens by 0.34 å at the transition state of the thiol/disulfide exchange reaction. In addition to DTT, we also study the reduction of the engineered disulfide bond by the E. coli enzyme thioredoxin (Trx). Thioredoxins are enzymes that catalyze disulfide bond reduction in all organisms. As before, we apply a mechanical force in the range of 25-450 pN to the engineered disulfide bond substrate and monitor the reduction of these bonds by individual enzymes. In sharp contrast with the data obtained with DTT, we now observe two alternative forms of the catalytic reaction, the first requiring a reorientation of the substrate disulfide bond, causing a shortening of the substrate polypeptide by 0.76±0.07 å, and the second elongating the substrate disulfide bond by 0.21±0.01 å. These results support the view that the Trx active site regulates the geometry of the participating sulfur atoms, with sub-ångström precision, in order to achieve efficient catalysis. Single molecule

  3. The spontaneous formation of single-molecule junctions via terminal alkynes.

    Science.gov (United States)

    Pla-Vilanova, Pepita; Aragonès, Albert C; Ciampi, Simone; Sanz, Fausto; Darwish, Nadim; Diez-Perez, Ismael

    2015-09-25

    Herein, we report the spontaneous formation of single-molecule junctions via terminal alkyne contact groups. Self-assembled monolayers that form spontaneously from diluted solutions of 1, 4-diethynylbenzene (DEB) were used to build single-molecule contacts and assessed using the scanning tunneling microscopy-break junction technique (STM-BJ). The STM-BJ technique in both its dynamic and static approaches was used to characterize the lifetime (stability) and the conductivity of a single-DEB wire. It is demonstrated that single-molecule junctions form spontaneously with terminal alkynes and require no electrochemical control or chemical deprotonation. The alkyne anchoring group was compared against typical contact groups exploited in single-molecule studies, i.e. amine (benzenediamine) and thiol (benzendithiol) contact groups. The alkyne contact showed a conductance magnitude comparable to that observed with amine and thiol groups. The lifetime of the junctions formed from alkynes were only slightly less than that of thiols and greater than that observed for amines. These findings are important as (a) they extend the repertoire of chemical contacts used in single-molecule measurements to 1-alkynes, which are synthetically accessible and stable and (b) alkynes have a remarkable affinity toward silicon surfaces, hence opening the door for the study of single-molecule transport on a semiconducting electronic platform.

  4. Relaxation in Thin Polymer Films Mapped across the Film Thickness by Astigmatic Single-Molecule Imaging

    KAUST Repository

    Oba, Tatsuya

    2012-06-19

    We have studied relaxation processes in thin supported films of poly(methyl acrylate) at the temperature corresponding to 13 K above the glass transition by monitoring the reorientation of single perylenediimide molecules doped into the films. The axial position of the dye molecules across the thickness of the film was determined with a resolution of 12 nm by analyzing astigmatic fluorescence images. The average relaxation times of the rotating molecules do not depend on the overall thickness of the film between 20 and 110 nm. The relaxation times also do not show any dependence on the axial position within the films for the film thickness between 70 and 110 nm. In addition to the rotating molecules we observed a fraction of spatially diffusing molecules and completely immobile molecules. These molecules indicate the presence of thin (<5 nm) high-mobility surface layer and low-mobility layer at the interface with the substrate. (Figure presented) © 2012 American Chemical Society.

  5. Single molecule detection using charge-coupled device array technology. Technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Denton, M.B.

    1992-07-29

    A technique for the detection of single fluorescent chromophores in a flowing stream is under development. This capability is an integral facet of a rapid DNA sequencing scheme currently being developed by Los Alamos National Laboratory. In previous investigations, the detection sensitivity was limited by the background Raman emission from the water solvent. A detection scheme based on a novel mode of operating a Charge-Coupled Device (CCD) is being developed which should greatly enhance the discrimination between fluorescence from a single molecule and the background Raman scattering from the solvent. Register shifts between rows in the CCD are synchronized with the sample flow velocity so that fluorescence from a single molecule is collected in a single moving charge packet occupying an area approaching that of a single pixel while the background is spread evenly among a large number of pixels. Feasibility calculations indicate that single molecule detection should be achieved with an excellent signal-to-noise ratio.

  6. A single molecule switch based on two Pd nanocrystals linked by a ...

    Indian Academy of Sciences (India)

    Tunneling spectroscopy measurements have been carried out on a single molecule device formed by two Pd nanocrystals (dia. ∼ 5 nm) electronically coupled by a conducting molecule, dimercaptodiphenylacetylene. The – data, obtained by positioning the tip over a nanocrystal electrode, exhibit negative differential ...

  7. Quantum interference effects at room temperature in OPV-based single-molecule junctions

    NARCIS (Netherlands)

    Arroyo Rodriguez, C.; Frisenda, R.; Moth-Poulsen, K.; Seldenthuis, J.S.; Bjornholm, T.; Van der Zant, H.S.

    2013-01-01

    Interference effects on charge transport through an individual molecule can lead to a notable modulation and suppression on its conductance. In this letter, we report the observation of quantum interference effects occurring at room temperature in single-molecule junctions based on

  8. Feedback-controlled electro-kinetic traps for single-molecule ...

    Indian Academy of Sciences (India)

    2014-01-11

    Jan 11, 2014 ... However, surface tethering of molecules often introduces artifacts, particularly when studying the structural dynamics of biomolecules. To circumvent this limitation, we investigated alternative ways to extend single-molecule observation times in solution without surface immobilization. Among various ...

  9. Thermophoretic forces on DNA measured with a single-molecule spring balance

    DEFF Research Database (Denmark)

    Pedersen, Jonas Nyvold; Lüscher, Christopher James; Marie, Rodolphe

    2014-01-01

    We stretch a single DNA molecule with thermophoretic forces and measure these forces with a spring balance: the DNA molecule itself. It is an entropic spring which we calibrate, using as a benchmark its Brownian motion in the nanochannel that contains and prestretches it. This direct measurement...

  10. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy

    Science.gov (United States)

    Neuman, Keir C.; Nagy, Attila

    2012-01-01

    Single-molecule force spectroscopy has emerged as a powerful tool to investigate the forces and motions associated with biological molecules and enzymatic activity. The most common force spectroscopy techniques are optical tweezers, magnetic tweezers and atomic force microscopy. These techniques are described and illustrated with examples highlighting current capabilities and limitations. PMID:18511917

  11. Power-Law-Distributed Dark States are the Main Pathway for Photobleaching of Single Organic Molecules

    NARCIS (Netherlands)

    Hoogenboom, J.P.; Hoogenboom, Jacob; van Dijk, E.M.H.P.; Hernando Campos, J.; van Hulst, N.F.; Garcia Parajo, M.F.

    2005-01-01

    We exploit the strong excitonic coupling in a superradiant trimer molecule to distinguish between long-lived collective dark states and photobleaching events. The population and depopulation kinetics of the dark states in a single molecule follow power-law statistics over 5 orders of magnitude in

  12. Fluorescence Blinking and Photobleaching of Single Terrylenediimide Molecules Studied with a Confocal Microscope

    NARCIS (Netherlands)

    Göhde, Jr.; Fischer, U.C.; Fuchs, H.; Tittel, J.; Basché, Th.; Bräuchle, Ch.; Herrmann, A.; Müllen, K.

    1998-01-01

    Single terrylenediimide molecules diluted in a 20-nm-thick polyvinylbutyral polymer film were localized and observed by scanning confocal fluorescence microscopy. A modular and compact confocal microscope and the high optical stability of the molecules allowed a repeated imaging and observation over

  13. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy.

    Science.gov (United States)

    Neuman, Keir C; Nagy, Attila

    2008-06-01

    Single-molecule force spectroscopy has emerged as a powerful tool to investigate the forces and motions associated with biological molecules and enzymatic activity. The most common force spectroscopy techniques are optical tweezers, magnetic tweezers and atomic force microscopy. Here we describe these techniques and illustrate them with examples highlighting current capabilities and limitations.

  14. Evidence for a hopping mechanism in metal|single molecule|metal junctions involving conjugated metal–terpyridyl complexes; potential-dependent conductances of complexes [M(pyterpy)2]2+(M = Co and Fe; pyterpy = 4′-(pyridin-4-yl)-2,2′:6′,2′′-terpyridine) in ionic liquid

    DEFF Research Database (Denmark)

    Chappell, Sarah; Brooke, Carly; Nichols, Richard John

    2016-01-01

    Extensive studies of various families of conjugated molecules in metal|molecule|metal junctions suggest that the mechanism of conductance is usually tunnelling for molecular lengths < ca. 4 nm, and that for longer molecules, coherence is lost as a hopping element becomes more significant. In this...... potential in ionic liquid electrolyte, and the conductance–overpotential relationship is found to fit well with the Kuznetsov–Ulstrup relationship, which is essentially a hopping description....

  15. Efficient use of single molecule time traces to resolve kinetic rates, models and uncertainties

    Science.gov (United States)

    Schmid, Sonja; Hugel, Thorsten

    2018-03-01

    Single molecule time traces reveal the time evolution of unsynchronized kinetic systems. Especially single molecule Förster resonance energy transfer (smFRET) provides access to enzymatically important time scales, combined with molecular distance resolution and minimal interference with the sample. Yet the kinetic analysis of smFRET time traces is complicated by experimental shortcomings—such as photo-bleaching and noise. Here we recapitulate the fundamental limits of single molecule fluorescence that render the classic, dwell-time based kinetic analysis unsuitable. In contrast, our Single Molecule Analysis of Complex Kinetic Sequences (SMACKS) considers every data point and combines the information of many short traces in one global kinetic rate model. We demonstrate the potential of SMACKS by resolving the small kinetic effects caused by different ionic strengths in the chaperone protein Hsp90. These results show an unexpected interrelation between conformational dynamics and ATPase activity in Hsp90.

  16. Single-molecule pull-down for investigating protein-nucleic acid interactions.

    Science.gov (United States)

    Fareh, Mohamed; Loeff, Luuk; Szczepaniak, Malwina; Haagsma, Anna C; Yeom, Kyu-Hyeon; Joo, Chirlmin

    2016-08-01

    The genome and transcriptome are constantly modified by proteins in the cell. Recent advances in single-molecule techniques allow for high spatial and temporal observations of these interactions between proteins and nucleic acids. However, due to the difficulty of obtaining functional protein complexes, it remains challenging to study the interactions between macromolecular protein complexes and nucleic acids. Here, we combined single-molecule fluorescence with various protein complex pull-down techniques to determine the function and stoichiometry of ribonucleoprotein complexes. Through the use of three examples of protein complexes from eukaryotic cells (Drosha, Dicer, and TUT4 protein complexes), we provide step-by-step guidance for using novel single-molecule techniques. Our single-molecule methods provide sub-second and nanometer resolution and can be applied to other nucleoprotein complexes that are essential for cellular processes. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Direct Identification of Protein-Protein Interactions by Single-Molecule Force Spectroscopy.

    Science.gov (United States)

    Vera, Andrés M; Carrión-Vázquez, Mariano

    2016-11-02

    Single-molecule force spectroscopy based on atomic force microscopy (AFM-SMFS) has allowed the measurement of the intermolecular forces involved in protein-protein interactions at the molecular level. While intramolecular interactions are routinely identified directly by the use of polyprotein fingerprinting, there is a lack of a general method to directly identify single-molecule intermolecular unbinding events. Here, we have developed an internally controlled strategy to measure protein-protein interactions by AFM-SMFS that allows the direct identification of dissociation force peaks while ensuring single-molecule conditions. Single-molecule identification is assured by polyprotein fingerprinting while the intermolecular interaction is reported by a characteristic increase in contour length released after bond rupture. The latter is due to the exposure to force of a third protein that covalently connects the interacting pair. We demonstrate this strategy with a cohesin-dockerin interaction. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Real-space observation of spin-split molecular orbitals of adsorbed single-molecule magnets

    National Research Council Canada - National Science Library

    Schwöbel, Jörg; Fu, Yingshuang; Brede, Jens; Dilullo, Andrew; Hoffmann, Germar; Klyatskaya, Svetlana; Ruben, Mario; Wiesendanger, Roland

    2012-01-01

    A key challenge in the field of molecular spintronics, and for the design of single-molecule magnet-based devices in particular, is the understanding and control of the molecular coupling at the electrode interfaces...

  19. Single molecule characterization of DNA binding and strand displacement reactions on lithographic DNA origami microarrays.

    Science.gov (United States)

    Scheible, Max B; Pardatscher, Günther; Kuzyk, Anton; Simmel, Friedrich C

    2014-03-12

    The combination of molecular self-assembly based on the DNA origami technique with lithographic patterning enables the creation of hierarchically ordered nanosystems, in which single molecules are positioned at precise locations on multiple length scales. Based on a hybrid assembly protocol utilizing DNA self-assembly and electron-beam lithography on transparent glass substrates, we here demonstrate a DNA origami microarray, which is compatible with the requirements of single molecule fluorescence and super-resolution microscopy. The spatial arrangement allows for a simple and reliable identification of single molecule events and facilitates automated read-out and data analysis. As a specific application, we utilize the microarray to characterize the performance of DNA strand displacement reactions localized on the DNA origami structures. We find considerable variability within the array, which results both from structural variations and stochastic reaction dynamics prevalent at the single molecule level.

  20. Visualization and thermodynamic encoding of single-molecule partition function projections

    National Research Council Canada - National Science Library

    Palma, Carlos-Andres; Björk, Jonas; Klappenberger, Florian; Arras, Emmanuel; Kühne, Dirk; Stafström, Sven; Barth, Johannes V

    2015-01-01

    .... A special case occurs for single-molecule investigations under equilibrium conditions, for which free energy, entropy and enthalpy at finite temperatures are challenging to determine with ensemble averaging alone...

  1. Single Molecule Science for Personalized Nanomedicine: Atomic Force Microscopy of Biopolymer-Protein Interactions

    Science.gov (United States)

    Hsueh, Carlin

    Nanotechnology has a unique and relatively untapped utility in the fields of medicine and dentistry at the level of single-biopolymer and -molecule diagnostics. In recent years atomic force microscopy (AFM) has garnered much interest due to its ability to obtain atomic-resolution of molecular structures and probe biophysical behaviors of biopolymers and proteins in a variety of biologically significant environments. The work presented in this thesis focuses on the nanoscale manipulation and observation of biopolymers to develop an innovative technology for personalized medicine while understanding complex biological systems. These studies described here primarily use AFM to observe biopolymer interactions with proteins and its surroundings with unprecedented resolution, providing a better understanding of these systems and interactions at the nanoscale. Transcriptional profiling, the measure of messenger RNA (mRNA) abundance in a single cell, is a powerful technique that detects "behavior" or "symptoms" at the tissue and cellular level. We have sought to develop an alternative approach, using our expertise in AFM and single molecule nanotechnology, to achieve a cost-effective high throughput method for sensitive detection and profiling of subtle changes in transcript abundance. The technique does not require amplification of the mRNA sample because the AFM provides three-dimensional views of molecules with unprecedented resolution, requires minimal sample preparation, and utilizes a simple tagging chemistry on cDNA molecules. AFM images showed collagen polymers in teeth and of Drebrin-A remodeling of filamentous actin structure and mechanics. AFM was used to image collagen on exposed dentine tubules and confirmed tubule occlusion with a desensitizing prophylaxis paste by Colgate-Palmolive. The AFM also superseded other microscopy tools in resolving F-actin helix remodeling and possible cooperative binding by a neuronal actin binding protein---Drebrin-A, an

  2. Single homopolypeptide chains collapse into mechanically rigid conformations

    Science.gov (United States)

    Dougan, Lorna; Li, Jingyuan; Badilla, Carmen L.; Berne, B. J.; Fernandez, Julio M.

    2009-01-01

    Huntington's disease is linked to the insertion of glutamine (Q) in the protein huntingtin, resulting in polyglutamine (polyQ) expansions that self-associate to form aggregates. While polyQ aggregation has been the subject of intense study, a correspondingly thorough understanding of individual polyQ chains is lacking. Here we demonstrate a single molecule force-clamp technique that directly probes the mechanical properties of single polyQ chains. We have made polyQ constructs of varying lengths that span the length range of normal and diseased polyQ expansions. Each polyQ construct is flanked by the I27 titin module, providing a clear mechanical fingerprint of the molecule being pulled. Remarkably, under the application of force, no extension is observed for any of the polyQ constructs. This is in direct contrast with the random coil protein PEVK of titin, which readily extends under force. Our measurements suggest that polyQ chains form mechanically stable collapsed structures. We test this hypothesis by disrupting polyQ chains with insertions of proline residues and find that their mechanical extensibility is sensitive to the position of the proline interruption. These experiments demonstrate that polyQ chains collapse to form a heterogeneous ensemble of conformations that are mechanically resilient. We further use a heat-annealing molecular dynamics protocol to extensively search the conformation space and find that polyQ can exist in highly mechanically stable compact globular conformations. The mechanical rigidity of these collapsed structures may exceed the functional ability of eukaryotic proteasomes, resulting in the accumulation of undigested polyQ sequences in vivo. PMID:19549822

  3. Multispot single-molecule FRET: High-throughput analysis of freely diffusing molecules.

    Directory of Open Access Journals (Sweden)

    Antonino Ingargiola

    Full Text Available We describe an 8-spot confocal setup for high-throughput smFRET assays and illustrate its performance with two characteristic experiments. First, measurements on a series of freely diffusing doubly-labeled dsDNA samples allow us to demonstrate that data acquired in multiple spots in parallel can be properly corrected and result in measured sample characteristics consistent with those obtained with a standard single-spot setup. We then take advantage of the higher throughput provided by parallel acquisition to address an outstanding question about the kinetics of the initial steps of bacterial RNA transcription. Our real-time kinetic analysis of promoter escape by bacterial RNA polymerase confirms results obtained by a more indirect route, shedding additional light on the initial steps of transcription. Finally, we discuss the advantages of our multispot setup, while pointing potential limitations of the current single laser excitation design, as well as analysis challenges and their solutions.

  4. Influence of quantum dot labels on single molecule movement in the plasma membrane

    DEFF Research Database (Denmark)

    Clausen, Mathias P.; Lagerholm, B. Christoffer

    2011-01-01

    Single particle tracking results are very dependent on the probe that is used. In this study we have investigated the influence that functionalized quantum dots (QDs) have on the recorded movement in single molecule tracking experiments of plasma membrane species in live cells. Potential issues...... for simultaneous investigations of different plasma membrane species in order to discriminate the effect of the label from differences in movement of the target molecules....

  5. Multicolour single molecule imaging in cells with near infra-red dyes.

    Directory of Open Access Journals (Sweden)

    Christopher J Tynan

    Full Text Available The autofluorescence background of biological samples impedes the detection of single molecules when imaging. The most common method of reducing the background is to use evanescent field excitation, which is incompatible with imaging beyond the surface of biological samples. An alternative would be to use probes that can be excited in the near infra-red region of the spectrum, where autofluorescence is low. Such probes could also increase the number of labels that can be imaged in multicolour single molecule microscopes. Despite being widely used in ensemble imaging, there is a currently a shortage of information available for selecting appropriate commercial near infra-red dyes for single molecule work. It is therefore important to characterise available near infra-red dyes relevant to multicolour single molecule imaging.A range of commercially available near infra-red dyes compatible with multi-colour imaging was screened to find the brightest and most photostable candidates. Image series of immobilised samples of the brightest dyes (Alexa 700, IRDye 700DX, Alexa 790 and IRDye 800CW were analysed to obtain the mean intensity of single dye molecules, their photobleaching rates and long period blinking kinetics. Using the optimum dye pair, we have demonstrated for the first time widefield, multi-colour, near infra-red single molecule imaging using a supercontinuum light source in MCF-7 cells.We have demonstrated that near infra-red dyes can be used to avoid autofluorescence background in samples where restricting the illumination volume of visible light fails or is inappropriate. We have also shown that supercontinuum sources are suited to single molecule multicolour imaging throughout the 470-1000 nm range. Our measurements of near infra-red dye properties will enable others to select optimal dyes for single molecule imaging.

  6. Stretching, twisting and supercoiling in short, single DNA molecules

    Science.gov (United States)

    Lam, Pui-Man; Zhen, Yi

    2018-02-01

    We had combined the Neukirch-Marko model that describes the extension, torque and supercoiling in single, stretched and twisted DNA of infinite contour length, with a form of the free energy suggested by Sinha and Samuels to describe short DNA, with contour length only a few times the persistence length. We find that the free energy of the stretched but untwisted DNA, is significantly modified from its infinitely length value and this in turn modifies significantly the torque and supercoiling. We show that this is consistent with short DNA being more flexible than infinitely long DNA. We hope our results will stimulate experimental investigation of torque and supercoiling in short DNA.

  7. Single molecule methods for the study of catalysis: from enzymes to heterogeneous catalysts.

    Science.gov (United States)

    Janssen, Kris P F; De Cremer, Gert; Neely, Robert K; Kubarev, Alexey V; Van Loon, Jordi; Martens, Johan A; De Vos, Dirk E; Roeffaers, Maarten B J; Hofkens, Johan

    2014-02-21

    Structural and temporal inhomogeneities can have a marked influence on the performance of inorganic and biocatalytic systems alike. While these subtle variations are hardly ever accessible through bulk or ensemble averaged activity screening, insights into the molecular mechanisms underlying these diverse phenomena are absolutely critical for the development of optimized or novel catalytic systems and processes. Fortunately, state-of-the-art fluorescence microscopy methods have allowed experimental access to this intriguing world at the nanoscale. In this tutorial review we will first provide a broad overview of key concepts and developments in the application of single molecule fluorescence spectroscopy to (bio)catalysis research. In the second part topics specific to both bio and heterogeneous catalysis will be reviewed in more detail.

  8. Single-molecule fluorescence polarization study of conformational change in archaeal group II chaperonin.

    Directory of Open Access Journals (Sweden)

    Ryo Iizuka

    Full Text Available Group II chaperonins found in archaea and in eukaryotic cytosol mediate protein folding without a GroES-like cofactor. The function of the cofactor is substituted by the helical protrusion at the tip of the apical domain, which forms a built-in lid on the central cavity. Although many studies on the change in lid conformation coupled to the binding and hydrolysis of nucleotides have been conducted, the molecular mechanism of lid closure remains poorly understood. Here, we performed a single-molecule polarization modulation to probe the rotation of the helical protrusion of a chaperonin from a hyperthermophilic archaeum, Thermococcus sp. strain KS-1. We detected approximately 35° rotation of the helical protrusion immediately after photorelease of ATP. The result suggests that the conformational change from the open lid to the closed lid state is responsible for the approximately 35° rotation of the helical protrusion.

  9. The effects of geometry and stability of solid-state nanopores on detecting single DNA molecules.

    Science.gov (United States)

    Rollings, Ryan; Graef, Edward; Walsh, Nathan; Nandivada, Santoshi; Benamara, Mourad; Li, Jiali

    2015-01-30

    In this work we use a combination of 3D-TEM tomography, energy filtered TEM, single molecule DNA translocation experiments, and numerical modeling to show a more precise relationship between nanopore shape and ionic conductance and show that changes in geometry while in solution can account for most deviations between predicted and measured conductance. We compare the structural stability of ion beam sculpted (IBS), IBS-annealed, and TEM drilled nanopores. We demonstrate that annealing can significantly improve the stability of IBS made pores. Furthermore, the methods developed in this work can be used to predict pore conductance and current drop amplitudes of DNA translocation events for a wide variety of pore geometries. We discuss that chemical dissolution is one mechanism of the geometry change for SiNx nanopores and show that small modification in fabrication procedure can significantly increase the stability of IBS nanopores.

  10. Visualization of DNA Double-Strand Break Repair at the Single-Molecule Level

    Energy Technology Data Exchange (ETDEWEB)

    Dynan, William S.; Li, Shuyi; Mernaugh, Raymond; Wragg, Stephanie; Takeda, Yoshihiko

    2003-03-27

    Exposure to low doses of ionizing radiation is universal. The signature injury from ionizing radiation exposure is induction of DNA double-strand breaks (DSBs). The first line of defense against DSBs is direct ligation of broken DNA ends via the nonhomologous end-joining pathway. Because even a relatively high environmental exposure induces only a few DSBs per cell, our current understanding of the response to this exposure is limited by the ability to measure DSB repair events reliably in situ at a single-molecule level. To address this need, we have taken advantage of biological amplification, measuring relocalization of proteins and detection of protein phosphorylation as a surrogate for detection of broken ends themselves. We describe the use of specific antibodies to investigate the kinetics and mechanism of repair of very small numbers of DSBs in human cells by the nonhomologous end-joining pathway.

  11. Single-Molecule Electronic Measurements of the Dynamic Flexibility of Histone Deacetylases

    Science.gov (United States)

    Froberg, James; You, Seungyong; Yu, Junru; Haldar, Manas; Sedigh, Abbas; Mallik, Sanku; Srivastava, D. K.; Choi, Yongki

    Due to their involvement in epigenetic regulation, histone deacetylases (HDACs) have gained considerable interest in designing drugs for treatment of a variety of human diseases including cancers. Recently, we applied a label-free, electronic single-molecule nano-circuit technique to gain insight into the contribution of the dynamic flexibility in HDACs structure during the course of substrates/ ligands binding and catalysis. We observed that HDAC8 has two major (dynamically interconvertible) conformational states, ``ground (catalytically unfavorable)'' and ``transition (catalytically favorable)''. In addition, we found that its cognate substrates/ligands reciprocally catalyze the transition of the ground to the transition state conformation of HDAC8. Thus, we propose that both enzymes and their substrates/ligands serve as ``catalysts'' in facilitating the structural changes of each other and promoting the overall chemical transformation reaction. Such new information provides the potential for designing a new class of mechanism-based inhibitors and activators of HDAC8 for treating human diseases.

  12. Single-molecule force-conductance spectroscopy of hydrogen-bonded complexes

    DEFF Research Database (Denmark)

    Pirrotta, Alessandro; De Vico, Luca; Solomon, Gemma C.

    2017-01-01

    to inform about molecular recognition events at the single-molecule limit. For this, we consider the force-conductance characteristics of a prototypical class of hydrogen bonded bimolecular complexes sandwiched between gold electrodes. The complexes consist of derivatives of a barbituric acid and a Hamilton...... receptor that can form up to six simultaneous hydrogen bonds. The simulations combine classical molecular dynamics of the mechanical deformation of the junction with non-equilibrium Green’s function computations of the electronic transport. As shown, in these complexes hydrogen bonds mediate transport...... either by directly participating as a possible transport pathway or by stabilizing molecular conformations with enhanced conductance properties. Further, we observe that force-conductance correlations can be very sensitive to small changes in the chemical structure of the complexes and provide detailed...

  13. Single Molecule Analysis of Laser Localized Interstrand Crosslinks

    Directory of Open Access Journals (Sweden)

    Jing eHuang

    2016-05-01

    Full Text Available DNA interstrand crosslinks (ICLs block unwinding of the double helix, and have always been regarded as major challenges to replication and transcription. Compounds that form these lesions are very toxic and are frequently used in cancer chemotherapy. We have developed two strategies, both based on immunofluorescence, for studying cellular responses to ICLs. The basis of each is psoralen, a photoactive (by long wave ultraviolet light, UVA DNA crosslinking agent, to which we have linked an antigen tag. In the one approach, we have taken advantage of DNA fiber and immunoquantum dot technologies for visualizing the encounter of replication forks with ICLs induced by exposure to UVA lamps. In the other, psoralen ICLs are introduced into nuclei in live cells in regions of interest (ROI defined by a UVA laser. The antigen tag can be displayed by conventional immunofluorescence, as can the recruitment and accumulation of DNA Damage Response (DDR proteins to the laser localized ICLs. However, substantial difference between the technologies creates considerable uncertainty as to whether conclusions from one approach are applicable to those of the other. In this report we have employed the fiber/quantum dot methodology to determine lesion density and spacing on individual DNA molecules carrying laser localized ICLs. We have performed the same measurements on DNA fibers with ICLs induced by exposure of psoralen to UVA lamps. Remarkably, we find little difference in the adduct distribution on fibers prepared from cells exposed to the different treatment protocols.. Furthermore, there is considerable similarity in patterns of replication in the vicinity of the ICLs introduced by the two techniques

  14. Extracting physics of life at the molecular level: A review of single-molecule data analyses.

    Science.gov (United States)

    Colomb, Warren; Sarkar, Susanta K

    2015-06-01

    Studying individual biomolecules at the single-molecule level has proved very insightful recently. Single-molecule experiments allow us to probe both the equilibrium and nonequilibrium properties as well as make quantitative connections with ensemble experiments and equilibrium thermodynamics. However, it is important to be careful about the analysis of single-molecule data because of the noise present and the lack of theoretical framework for processes far away from equilibrium. Biomolecular motion, whether it is free in solution, on a substrate, or under force, involves thermal fluctuations in varying degrees, which makes the motion noisy. In addition, the noise from the experimental setup makes it even more complex. The details of biologically relevant interactions, conformational dynamics, and activities are hidden in the noisy single-molecule data. As such, extracting biological insights from noisy data is still an active area of research. In this review, we will focus on analyzing both fluorescence-based and force-based single-molecule experiments and gaining biological insights at the single-molecule level. Inherently nonequilibrium nature of biological processes will be highlighted. Simulated trajectories of biomolecular diffusion will be used to compare and validate various analysis techniques. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Single-molecule fluorescence microscopy review: shedding new light on old problems.

    Science.gov (United States)

    Shashkova, Sviatlana; Leake, Mark C

    2017-08-31

    Fluorescence microscopy is an invaluable tool in the biosciences, a genuine workhorse technique offering exceptional contrast in conjunction with high specificity of labelling with relatively minimal perturbation to biological samples compared with many competing biophysical techniques. Improvements in detector and dye technologies coupled to advances in image analysis methods have fuelled recent development towards single-molecule fluorescence microscopy, which can utilize light microscopy tools to enable the faithful detection and analysis of single fluorescent molecules used as reporter tags in biological samples. For example, the discovery of GFP, initiating the so-called 'green revolution', has pushed experimental tools in the biosciences to a completely new level of functional imaging of living samples, culminating in single fluorescent protein molecule detection. Today, fluorescence microscopy is an indispensable tool in single-molecule investigations, providing a high signal-to-noise ratio for visualization while still retaining the key features in the physiological context of native biological systems. In this review, we discuss some of the recent discoveries in the life sciences which have been enabled using single-molecule fluorescence microscopy, paying particular attention to the so-called 'super-resolution' fluorescence microscopy techniques in live cells, which are at the cutting-edge of these methods. In particular, how these tools can reveal new insights into long-standing puzzles in biology: old problems, which have been impossible to tackle using other more traditional tools until the emergence of new single-molecule fluorescence microscopy techniques. © 2017 The Author(s).

  16. Next-Generation DNA Curtains for Single-Molecule Studies of Homologous Recombination.

    Science.gov (United States)

    Soniat, Michael M; Myler, Logan R; Schaub, Jeffrey M; Kim, Yoori; Gallardo, Ignacio F; Finkelstein, Ilya J

    2017-01-01

    Homologous recombination (HR) is a universally conserved DNA double-strand break repair pathway. Single-molecule fluorescence imaging approaches have revealed new mechanistic insights into nearly all aspects of HR. These methods are especially suited for studying protein complexes because multicolor fluorescent imaging can parse out subassemblies and transient intermediates that associate with the DNA substrates on the millisecond to hour timescales. However, acquiring single-molecule datasets remains challenging because most of these approaches are designed to measure one molecular reaction at a time. The DNA curtains platform facilitates high-throughput single-molecule imaging by organizing arrays of DNA molecules on the surface of a microfluidic flowcell. Here, we describe a second-generation UV lithography-based protocol for fabricating flowcells for DNA curtains. This protocol greatly reduces the challenges associated with assembling DNA curtains and paves the way for the rapid acquisition of large datasets from individual single-molecule experiments. Drawing on our recent studies of human HR, we also provide an overview of how DNA curtains can be used for observing facilitated protein diffusion, processive enzyme translocation, and nucleoprotein filament dynamics on single-stranded DNA. Together, these protocols and case studies form a comprehensive introduction for other researchers that may want to adapt DNA curtains for high-throughput single-molecule studies of DNA replication, transcription, and repair. © 2017 Elsevier Inc. All rights reserved.

  17. Deciphering the Structure and Function of Nuclear Pores Using Single-Molecule Fluorescence Approaches.

    Science.gov (United States)

    Musser, Siegfried M; Grünwald, David

    2016-05-22

    Due to its central role in macromolecular trafficking and nucleocytoplasmic information transfer, the nuclear pore complex (NPC) has been studied in great detail using a wide spectrum of methods. Consequently, many aspects of its architecture, general function, and role in the life cycle of a cell are well understood. Over the last decade, fluorescence microscopy methods have enabled the real-time visualization of single molecules interacting with and transiting through the NPC, allowing novel questions to be examined with nanometer precision. While initial single-molecule studies focused primarily on import pathways using permeabilized cells, it has recently proven feasible to investigate the export of mRNAs in living cells. Single-molecule assays can address questions that are difficult or impossible to answer by other means, yet the complexity of nucleocytoplasmic transport requires that interpretation be based on a firm genetic, biochemical, and structural foundation. Moreover, conceptually simple single-molecule experiments remain technically challenging, particularly with regard to signal intensity, signal-to-noise ratio, and the analysis of noise, stochasticity, and precision. We discuss nuclear transport issues recently addressed by single-molecule microscopy, evaluate the limits of existing assays and data, and identify open questions for future studies. We expect that single-molecule fluorescence approaches will continue to be applied to outstanding nucleocytoplasmic transport questions, and that the approaches developed for NPC studies are extendable to additional complex systems and pathways within cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. On the dipole, velocity and acceleration forms in high-order harmonic generation from a single atom or molecule

    DEFF Research Database (Denmark)

    Baggesen, Jan Conrad; Madsen, Lars Bojer

    2011-01-01

    On the dipole, velocity and acceleration forms in high-order harmonic generation from a single atom or molecule......On the dipole, velocity and acceleration forms in high-order harmonic generation from a single atom or molecule...

  19. Excited-state annihilation reduces power dependence of single-molecule FRET experiments.

    Science.gov (United States)

    Nettels, Daniel; Haenni, Dominik; Maillot, Sacha; Gueye, Moussa; Barth, Anders; Hirschfeld, Verena; Hübner, Christian G; Léonard, Jérémie; Schuler, Benjamin

    2015-12-28

    Single-molecule Förster resonance energy transfer (FRET) experiments are an important method for probing biomolecular structure and dynamics. The results from such experiments appear to be surprisingly independent of the excitation power used, in contradiction to the simple photophysical mechanism usually invoked for FRET. Here we show that excited-state annihilation processes are an essential cause of this behavior. Singlet-singlet annihilation (SSA) is a mechanism of fluorescence quenching induced by Förster-type energy transfer between two fluorophores while they are both in their first excited singlet states (S1S1), which is usually neglected in the interpretation of FRET experiments. However, this approximation is only justified in the limit of low excitation rates. We demonstrate that SSA is evident in fluorescence correlation measurements for the commonly used FRET pair Alexa 488/Alexa 594, with a rate comparable to the rate of energy transfer between the donor excited state and the acceptor ground state (S1S0) that is exploited in FRET experiments. Transient absorption spectroscopy shows that SSA occurs exclusively via energy transfer from Alexa 488 to Alexa 594. Excitation-power dependent microsecond correlation experiments support the conclusion based on previously reported absorption spectra of triplet states that singlet-triplet annihilation (STA) analogously mediates energy transfer if the acceptor is in the triplet state. The results indicate that both SSA and STA have a pronounced effect on the overall FRET process and reduce the power dependence of the observed FRET efficiencies. The existence of annihilation processes thus seems to be essential for using FRET as a reliable spectroscopic ruler at the high excitation rates commonly employed in single-molecule spectroscopy.

  20. [Single-molecule detection and characterization of DNA replication based on DNA origami].

    Science.gov (United States)

    Wang, Qi; Fan, Youjie; Li, Bin

    2014-08-01

    To investigate single-molecule detection and characterization of DNA replication. Single-stranded DNA (ssDNA) as the template of DNA replication was attached to DNA origami by a hybridization reaction based on the complementary base-pairing principle. DNA replication catalyzed by E.coli DNA polymerase I Klenow Fragment (KF) was detected using atomic force microscopy (AFM). The height variations between the ssDNA and the double-stranded DNA (dsDNA), the distribution of KF during DNA replication and biotin-streptavidin (BA) complexes on the DNA strand after replication were detected. Agarose gel electrophoresis was employed to analyze the changes in the DNA after replication. The designed ssDNA could be anchored on the target positions of over 50% of the DNA origami. The KF was capable of binding to the ssDNA fixed on DNA origami and performing its catalytic activities, and was finally dissociated from the DNA after replication. The height of DNA strand increased by about 0.7 nm after replication. The addition of streptavidin also resulted in an DNA height increase to about 4.9 nm due to the formation of BA complexes on the biotinylated dsDNA. The resulting dsDNA and BA complex were subsequently confirmed by agarose gel electrophoresis. The combination of AFM and DNA origami allows detection and characterization of DNA replication at the single molecule level, and this approach provides better insights into the mechanism of DNA polymerase and the factors affecting DNA replication.